<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

BETONARME TAŞIYICI SİSTEMLERİN DOĞRUSAL OLMAYAN YÖNTEMLERLE PERFORMASININ DEĞERLENDİRİLMESİ

YÜKSEK LİSANS TEZİ

Mustafa KARAKAYA

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

KASIM 2013

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

BETONARME TAŞIYICI SİSTEMLERİN DOĞRUSAL OLMAYAN YÖNTEMLERLE PERFORMASININ DEĞERLENDİRİLMESİ

YÜKSEK LİSANS TEZİ

Mustafa KARAKAYA

501111040

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Zekai CELEP

KASIM 2013

İTÜ, Fen Bilimleri Enstitüsü'nün 501111040 numaralı Yüksek Lisans Öğrencisi Mustafa KARAKAYA, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "BETONARME TAŞIYICI SİSTEMLERİN DOĞRUSAL OLMAYAN YÖNTEMLERLE PERFORMANSININ DEĞERLENDİRİLMESİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Prof. Dr. Zekai Celep	
	İstanbul Teknik Üniversitesi	
Jüri Üyeleri :	Prof. Dr. Kadir GÜLER	
	İstanbul Teknik Üniversitesi	
	Doç. Dr. Z. Canan Girgin	
	Yıldız Teknik Üniversitesi	

Teslim Tarihi :11 Eylül 2013Savunma Tarihi :08 Kasım 2013

iv

ÖNSÖZ

Bu tez çalışmasında DBYBHY 2007'ye göre yedi adet yapının tasarımının yapılarak performansının belirlenmesi ve sonuçların karşılıklı değerlendirilmesi sunulmaktadır. Lisans ve yüksek lisans öğrenim hayatım boyunca kendisini tanıma imkanı bulduğum, verdiği derslerle mühendislik ufkumu geliştiren ve tez çalışmam süresince değerli vaktini ayırarak bana her konuda destek olan danışman hocam Sayın Prof. Dr. Zekai Celep'e teşekkürlerimi ve şükranlarımı sunarım.

Ayrıca hayatım boyunca sevgilerini ve desteklerini hiçbir zaman esirgemeyen, eğitimimde maddi ve manevi hiçbir fedakarlıktan kaçınmayarak bana daima ışık tutan, beni bugünlere getiren sevgili anneme ve sevgili babama sonsuz teşekkürlerimi ve sevgilerimi sunarım.

Kasım 2013

Mustafa KARAKAYA

İnşaat Mühendisi

vi

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	v
İÇİNDEKİLER	vii
KISALTMALAR	ix
ÇİZELGE LİSTESİ	xiii
ÖZET	xxi
SUMMARY	xxiii
1. GİRİŞ	1
1.1 Konu ve Konu ile İlgili Geçmiş Çalışmalar	1
1.2 Çalışmanın Amacı ve Kapsamı	3
2. BETONARME TAŞIYICI SİSTEMLERİN DEPREM PERFORMANSIN	IIN
BELİRLENMESİ	5
2.1 Genel Kavramlar	5
2.1.1 Malzeme modelleri	5
2.1.2 Betonarme kesitte eğilme etkisi ve eğilme rijitliği	8
2.1.3 Süneklik	14
2.1.4 Kapasite tasarımı	17
2.1.5 Plastik mafsal kavramı	24
2.2 Betonarme Yapı Sistemlerinin Deprem Performansının Belirlenmesinde	
Kullanılan Doğrusal Elastik Olmayan Hesap Yöntemleri	28
2.2.1 Giriş	28
2.2.2 Statik itme analizi ile deprem davranışının belirlenmesi	29
2.2.2.1 Hedef tepe yerdeğiştirmesinin hesabında kullanılan yöntemler	30
2.2.2.2 Performansın değerlendirilmesi	39
2.2.3 Artımsal eşdeğer deprem yükü yöntemi	45
2.2.4 Artımsal mod birleştirme yöntemi	46
2.2.5 Zaman tanım alanında doğrusal olmayan hesap yöntemi	46
3. 2,3,4,5,6,7 VE 8 KATLI OLMAK ÜZERE 7 FARKLI YAPININ DBYBH	Y
2007'YE GÖRE TASARIMI VE PERFORMANSININ BELIRLENMESI	47
3.1 Genel Yapı Bilgileri	47
3.2 Yapıların Tasarımı ve Analiz Sonuçları	50
3.2.1 2 Katlı yapı	50
3.2.2 3 Katlı yapı	51
3.2.3 4 Katlı yapı	52
3.2.4 5 Katlı yapı	53
3.2.5 6 Katlı yapı	54
3.2.6 / Katlı yapı	56
3.2. / 8 Katlı yapı	57
3.3 Iasarımı Yapılan Modellenmesi ve Doğrusal Olmayan Hesap Yöntemleri	ile
Deprem Performansinin Belirlenmesi	59
3.3.1 Modellemede yapılan kabuller	39

3.3.2 Yüklerin tanımlanması, tablalı kiriş hesabı ve eleman rijitliklerinin	
belirlenmesi	60
3.3.3 Artımsal eşdeğer deprem yükü yöntemi ile yapıların performansının	
belirlenmesi	62
3.3.3.1 2 Katlı yapı	73
3.3.3.2 3 Katlı yapı	78
3.3.3.3 4 Katlı yapı	84
3.3.3.4 5 Katlı yapı	89
3.3.3.5 6 Katlı yapı	95
3.3.3.6 7 Katlı yapı	100
3.3.3.7 8 Katlı yapı	106
3.3.3.8 8 Katlı yapının okul olarak değerlendirilmesi	111
3.3.4 Zaman tanım alanında doğrusal olmayan hesap yöntemi ile yapıların	
davranışının incelenmesi	121
4. SONUÇLARIN DEĞERLENDİRİLMESİ VE ÖNERİLER	131
KAYNAKLAR	137
EKLER	139
ÖZGEÇMİŞ	171
· · ·	171

KISALTMALAR

ATC	: Applied Technologies Council
βv	: Dinamik büyütme katsayısı
(EI) _e	: Çatlamış kesite ait eğilme rijitliği (etkin rijitlik)
(EI) _o	: Çatlamamış kesite ait eğilme rijitliği
$(\mathbf{M}_{\mathbf{d}})_{\mathbf{t}}$: Perdenin taban kesitinde yük katsayıları ile çarpılmış düşey yükler ve
	deprem yüklerinin ortak etkisi altında hesaplanan moment
$(\mathbf{M}_{\mathbf{p}})_{\mathbf{t}}$: Perdenin taban kesitinde f_{ck} , f_{vk} ve çeliğin pekleşmesi gözönüne
	alınarak hesaplanan moment kapasitesi
$(\mathbf{M}_{\mathbf{r}})_{\mathbf{t}}$: Perdenin taban kesitinde f_{cd} ve f_{vd} 'ye göre hesaplanan taşıma gücü
	momenti
A	: Etkin yer ivmesi katsayısı
$\mathbf{a_1}^{(i)}$: (i)'inci itme adımında birinci (deprem doğrultusunda hakim) moda ait
-	modal ivme
Ac	: Kolon veya perdenin brüt kesit alanı
ACI	: American Concrete Institude
ADRS	: Acceleration – Displacement Response Spectrum
A_{s1}	: Kolon-kiriş düğüm noktasının bir tarafında, kirişin negatif momentini
52	karşılamak için üste konulan çekme donatışının toplam alanı
A_{s2}	: Kolon-kiriş düğüm noktasının A_{s1} 'e göre öbür tarafında, kirişin pozitif
	momentini karşılamak için alta konulan çekme donatısının toplam
	alanı
A _{sw}	: Kesme kuvveti etriyesi kesit alanı
a _{v1}	: Birinci moda ait eşdeğer akma ivmesi
b	: Kesit genişliği
BS	: British Standard
$\mathbf{b}_{\mathbf{w}}$: Kiriş gövde genişliği
C ₀	: Spektral yerdeğiştirme – tepe yerdeğiştirmesi ilişkisini ifade eden
	katsayı
C_1	: Doğrusal elastik yerdeğiştirme – elastik olmayan yerdeğiştirme
	ilişkisini ifade eden katsayı
C_2	: Yapının yük – yerdeğiştirme ilişkisinin en büyük yerdeğiştirmeye
	etkisini ifade eden katsayı
C ₃	: II. mertebe etkiler sebebiyle yerdeğiştirmede oluşacak artmayı ifade
	eden katsayı
CG	: Can güvenliği performans düzeyi
C _{R1}	: Birinci moda ait spektral yerdeğiştirme oranı
ÇSD	: Çok serbestlik dereceli
d	: Kesit faydalı yüksekliği
$d_1^{(i)}$: (i)'inci itme adımında birinci (deprem doğrultusunda hakim) moda ait
	modal yerdeğiştirme
$d_1^{(p)}$: Birinci moda ait modal yerdeğiştirme istemi
DBYBHY	: Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
E _c	: Beton elastisite modülü

Es	: Donatı elastisite modülü
f	: Sargısız betonun maksimum basınç dayanımı
f _{cc}	: Sargılı betonun maksimum basınç dayanımı
fed	: Beton tasarım basınc dayanımı
fek	: Betonun karakteristik silindir basınc davanımı
fom	: Mevcut beton davanımı
fetd	: Betonun tasarım cekme davanımı
f _{ctm}	: Mevcut betonun cekme davanımı
FEMA	: Federal Emergency Management Agency
fvd	: Boyuna donatinin tasarim akma dayanimi
f _{vk}	: Boyuna donati karakteristik akma dayanımı
f _{vm}	: Mevcut boyuna donatinin akma gerilmesi
f _{vwm}	: Mevcut enine donatının akma gerilmesi
g	: Yerçekimi ivmesi (9.81 m/s2)
ĞC	: Göçme sınırı
GŐ	: Göçme öncesi performans düzeyi
GV	: Güvenlik sınırı
h	: Kesit yüksekliği
НК	: Hemen kullanım performans düzeyi
Ι	: Bina önem katsayısı
Ke	: Yapının elastik etkili rijitliği
Ki	: Yapının elastik baslangıç rijitliği
KSY	: Kapasite spektrum yöntemi
1	: Hesap açıklığı
l _b	: Kenetlenme boyu
ln	: Kolonun kirişler arasında arasında kalan serbest yüksekliği, kirişin
	kolon veya perde yüzleri arasındaki serbest açıklığı
lp	: Plastik mafsal boyu
	Kirişin iki moment sıfır noktası arasında kalan uzunluğu
MN	: Minimum hasar sınırı
$\mathbf{M}_{\mathbf{pi}}$: Kirişin sol ucu i'deki kolon yüzünde f _{ck} , f _{yk} ve çeliğin pekleşmesi
	gözönüne alınarak hesaplanan pozitif veya negatif moment kapasitesi
$\mathbf{M}_{\mathbf{pj}}$: Kirişin sağ ucu j'deki kolon yüzünde f_{ck} , f_{yk} ve çeliğin pekleşmesi
	gözönüne alınarak hesaplanan pozitif veya negatif moment kapasıtesi
M _{ra}	: Kolonun veya perdenin serbest yüksekliğinin alt ucunda f_{cd} ve f_{yd} ye
	göre hesaplanan taşıma gücü momenti
M _{ri}	: Kırışın sol ucu i deki kolon veya perde yüzünde f_{cd} ve f_{yd} ye göre
NÆ	hesaplanan poziții veya negații tașima gucu momenti
M _{rj}	: Kirişin sag ucu j deki kolon veya perde yuzunde f_{cd} ve f_{yd} ye gore
М	nesapianan pozitii veya negatii taşıma gu \square u momenti Valarıya sərbəst yölyəslili sinin öst yoyunda İyalər həsmə hyyuyətinin
IVL rü	hosehunda asas alunan moment
М	: Tasıma güçü momonti
IVIU NA	: r donrom doğrultuşunda doğruşal alaştik davranış için tanımlanan
TAT XI	birinci (bakim) moda ait etkin kütle
М	· Akma momenti
N	· Hareketli vük katılım katsavısı
Nn	· Yük katsayıları ile carnılmış düsev yükler ve denrem yüklerinin ortak
עי	etkisi altında hesanlanan eksenel kuvvet
Ndm	: Düsev yükler ve deprem yüklerinin ortak etkisi altında hesanlanan
um	, , , ,

	eksenel basınç kuvvetlerinin en büyüğü
Ø	: Donatı çapı
PEER	: The Pacific Earthquake Engineering Research
R	: Taşıyıcı sistem davranış katsayısı
\mathbf{R}_{y1}	: Birinci moda ait Dayanım Azaltma Katsayısı
S	: Etriye veya sargı donatı aralığı
S (T)	: Spektrum katsayısı
Sa	: Yapının birinci doğal periyoduna karşılık gelen spektral ivme
S _{ae1}	: İtme analizinin ilk adımında birinci moda ait elastik spektral ivme
S_d	: Spektral yerdeğiştirme
S _{de1}	: İtme analizinin ilk adımında birinci moda ait doğrusal elastik spektral
	yerdeğiştirme
S _{di1}	: Birinci moda ait doğrusal elastik olmayan spektral yerdeğiştirme
SEAOC	: Structural Engineers Association of California
SRA	: Spektrumun sabit ivme bölgesindeki spektral indirgeme katsayısı
SR _V	: Spektrumun sabit hız bölgesindeki spektral indirgeme katsayısı
T	: Periyot
$T_1^{(1)}$: Başlangıçtaki (i=1) itme adımında birinci (deprem doğrultusunda
	hakim) titreşim moduna ait doğal titreşim periyodu
T_{1x}	: Binanın x doğrultusunda birinci (hakim) doğal titreşim periyodu
T_A, T_B	: Spektrum karakteristik periyotları
T _e	: Etkili hakim periyot
Ti	: Yapının elastik dinamik analiz ile bulunan birinci doğal periyodu
TS 498	: Yapı elemanlarının boyutlandırılmasında alınacak yüklerin hesap değerleri
TS500	: Betonarme yapıların tasarım ve yapım kuralları
TSD	: Tek serbestlik dereceli
$\mathbf{u_{xN1}}^{(i)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda (i)'inci
(\mathbf{n})	itme adımı sonunda elde edilen birinci moda ait yerdeğiştirme
u_{xN1}	: x deprem doğrultusundakı tepe yerdeğiştirme talebi
Vb	: Taban kesme kuvveti
V _{b,eşdeğer}	: Eşdeğer deprem yükü yönteminde gözönüne alınan deprem
	doğrultusunda binaya etkiyen toplam eşdeğer deprem yükü (taban
T 7	kesme kuvveti)
V b,pushover	: Performans analizi yapilan yapilan kesme kuvveti kapasitesi
V _c	E Selon kesilinin kesine kuvveli dayanimina kalkisi
V _{cr}	Egik çallamayı oluşluran kesme kuvveli Kiriçin hərhəngi hir kəşitində düşayı yüklərdən məydənə gələn həşit
V dy	kiriş kosmo kuyuyeti
N/	Killş Kesille Kuvveli Kalan kiriş və nərdədə əninə dənəti həsəhində əsaş alınan kəsmə
V _e	kuvuoti
V.	Kuvveti • Kolon kesme kuvveti
v kol V	: Kolon kiris veva perde kesitinin kesme davanımı
vr Vr	: Statik itme analizinde tahan kesme kuyveti
V	: Enine donatinin (etrivenin) kesme kuvveti davanimina katkisi
V ^w (i)	: x deprem doğrultuşunda (i)'inci itme adımı sonunda elde edilen birinci
* X1	moda (hakim moda) ait taban kesme kuvveti
W	· Binanın hareketli yük katılım katsayısı kullanılarak bulunan tonlam
* *	ağırlığı
ZTA	Zaman Tanım Alanı

α_1	: 1. (itme yönünde hakim) moda ait modal kütle katsayısı
β _{eff}	: Etkili viskoz sönüm
Γ_{x1}	: x deprem doğrultusunda birinci moda ait katkı çarpanı
δ_{max}	: Statik itme analizinde tepe yerdeğiştirmesinin en büyük değeri
E _{c0}	: Sargısız betonda en büyük basınç gerilmesine karşı gelen birim kısalma
E _{cc}	: Sargısız betonda en büyük basınç gerilmesine karşı gelen birim kısalma
8cg	: Etriye içindeki bölgenin en dış lifindeki beton basınç birim şekil
0	değiştirmesi
E _{cu}	: Kesitin en dış lifindeki beton basın birim şekil değiştirmesi
θ _p	: Plastik dönme
P	: Kesitte çekme donatısı oranı
ρ'	: Basınç donatısı oranı
ρ _b	: Kesitte bulunması gereken enine donatının hacimsel oranı
ρ_{max}	: Kesitte maksimum donatı oranı
σ _e	: Akma gerilmesi
σ_k	: Kopma gerilmesi
$\sigma_{\rm p}$: Orantılılık sınırı gerilmesi
фe	: Elastik eğrilik
фp	: Plastik eğrilik
φ _t	: Toplam eğrilik
$\Phi_{\text{tepe},1}$: 1. (itme yönünde hakim) moda ait tepe genliği
фu	: Kopma eğriliği
φ _y	: Akma eğriliği
$\omega_1^{(1)}$: Başlangıçtaki (i=1) itme adımında birinci (deprem doğrultusunda
	hakim) titreşim moduna ait doğal açısal frekans
$\omega_{\rm B}$: İvme spektrumundaki karakteristik periyoda karşı gelen doğal açısal
	frekans
Φ_{xN1}	: Binanın tepesinde (N'inci katında) x deprem doğrultusunda birinci
	moda ait mod şekli genliği

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 2.1 : Taşıyıcı sistem davranış katsayısı (R)	.15
Çizelge 2.2 : Farklı deprem düzeylerinde binalar için öngörülen minimum	
performans hedefleri	. 39
Cizelge 2.3 : Vision 2000 (1995) raporunda belirlenen performans hedefleri	.40
Cizelge 2.4 : Eğilme açısından kritik kirişler için plastik mafsal dönme sınırları	
(Update to ASCE/SEI 41, 2007)	.41
Cizelge 2.5 : Kolonlar için plastik mafsal dönme sınırları (Update to ASCE/SEI 4)	l,
2007)	.42
Cizelge 3.1 : 2 katlı yapının kolon ve kiriş kesit bilgileri	. 50
Cizelge 3.2 : 2 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	. 50
Cizelge 3.3 : 2 katlı yapının modal periyot ve frekansları	. 51
Cizelge 3.4 : 3 katlı yapının kolon ve kiriş kesit bilgileri	. 51
Cizelge 3.5 : 3 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	. 51
Cizelge 3.6 : 3 katlı yapının modal periyot ve frekansları	. 52
Cizelge 3.7 : 4 katlı yapının kolon ve kiriş kesit bilgileri	. 52
Çizelge 3.8 : 4 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	. 53
Çizelge 3.9 : 4 katlı yapının modal periyot ve frekansları	. 53
Çizelge 3.10 : 5 katlı yapının kolon ve kiriş kesit bilgileri	. 54
Çizelge 3.11 : 5 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	. 54
Çizelge 3.12 : 5 katlı yapının modal periyot ve frekansları	. 54
Çizelge 3.13 : 6 katlı yapının kolon ve kiriş kesit bilgileri	. 55
Çizelge 3.14 : 6 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	. 55
Çizelge 3.15 : 6 katlı yapının modal periyot ve frekansları	. 56
Çizelge 3.16 : 7 katlı yapının kolon ve kiriş kesit Bilgileri	.56
Çizelge 3.17: 7 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	. 57
Çizelge 3.18 : 7 katlı yapının modal periyot ve frekansları	. 57
Çizelge 3.19: 8 katlı yapının kolon ve kiriş kesit bilgileri	. 58
Çizelge 3.20 : 8 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat	
yerdeğiştirmeleri	.58
Çizelge 3.21 : 8 katlı yapının modal periyot ve frekansları	.58
Çizelge 3.22 : Döşemelerden kirişlere gelen yükler	60
Çizelge 3.23 : 25/50 Kirişin (üst donatı=3Ø14, alt donatı=3Ø14) pozitif ve negatif	•
eğilme durumları için hasar sınırları	. 65
Çizelge 3.24 : 25/50 kirişin (üst donatı=4Ø14, alt donatı=3Ø14) pozitif ve negatif	
eğilme durumları için hasar sınırları	66

Çizelge 3.25 :	25/50 kirişin (üst donatı=5Ø14, alt donatı=3Ø14) pozitif ve negatif	
	eğilme durumları için hasar sınırları	67
Çizelge 3.26 :	2 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı	74
Çizelge 3.27 :	2 katlı yapıda kolonların hasar bölgeleri	77
Çizelge 3.28 :	2 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar	
	bölgeleri	78
Çizelge 3.29 :	2 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
	bölgeleri	78
Çizelge 3.30 :	3 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı	79
Çizelge 3.31 :	3 katlı yapıda kolonların hasar bölgeleri	83
Çizelge 3.32 :	3 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar	
	bölgeleri	83
Çizelge 3.33 :	3 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
	bölgeleri	83
Çizelge 3.34 :	4 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı	85
Çizelge 3.35 :	4 katlı yapıda kolonların hasar bölgeleri	88
Çizelge 3.36 :	4 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar	
	bölgeleri	89
Çizelge 3.37 :	4 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
	bölgeleri	89
Çizelge 3.38 :	5 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı	90
Çizelge 3.39 :	5 katlı yapıda kolonların hasar bölgeleri	93
Çizelge 3.40 :	5 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar	
	bölgeleri	94
Çizelge 3.41 :	5 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
	bölgeleri	94
Çizelge 3.42 :	6 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı	95
Çizelge 3.43 :	6 katlı yapıda kolonların hasar bölgeleri	99
Çizelge 3.44 :	6 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar	
	bölgeleri	99
Çizelge 3.45 :	6 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
	bölgeleri1	00
Çizelge 3.46 :	7 katlı yapının x doğrultusu modal kapasıte eğrisinin hesabi 1	01
Çizelge 3.47 :	7 katlı yapıda kolonların hasar bölgeleri 1	04
Çizelge 3.48 :	7 katlı yapıda kolon ve kırışlerin sayılarına göre bulundukları hasar	~ -
	bölgeleril	05
Çizelge 3.49 :	7 katlı yapıda kolon ve kırışlerin oranlarına göre bulundukları hasar	~ -
	bölgeleri	05
Çizelge 3.50 :	8 katlı yapının x doğrultusu modal kapasıte eğrisinin hesabi I	06
Çizelge 3.51 :	8 katlı yapıda kolonların hasar bölgeleri I	09
Çizelge 3.52 :	8 katlı yapıda kolon ve kırışlerin sayılarına göre bulundukları hasar	10
	bolgeleriI	10
Çızelge 3.53 :	8 katlı yapıda kolon ve kırışlerin oranlarına göre bulundukları hasar	10
	bolgeleril	10
Çizelge 3.54 :	8 katli yapinin (okul) x dogrultusu modal kapasite eğrisinin hesabi l	12
Çizelge 3.55 :	8 katii yapida (okui) kolonlarin hasar bölgeleri (aşılma olasılığı 50	1.
	yılıda $\%$ 10 olan deprem)	10
Çizeige 3.56 :	8 Katil yapıda (okul) Kolon ve kirişlerin sayılarına göre bulundukları	17
	nasar bolgeleri (aşılma olasılığı 50 yılda %10 olan deprem) I	1/

Çizelge 3.57 : 8 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
bölgeleri (aşılma olasılığı 50 yılda %10 olan deprem)1	17
Çizelge 3.58 : 8 katlı yapıda (okul) kolonların hasar bölgeleri (aşılma olasılığı 50	
yılda %2 olan deprem)1	20
Çizelge 3.59 : 8 katlı yapıda (okul) kolon ve kirişlerin sayılarına göre bulundukları	
hasar bölgeleri (aşılma olasılığı 50 yılda %2 olan deprem) 12	21
Çizelge 3.60 : 8 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar	
bölgeleri (aşılma olasılığı 50 yılda %2 olan deprem)12	21
Çizelge 3.61 : 8 katlı yapıda ZTA analiz (Düzce %100) sonucu kolonların hasar	
bölgeleri1	28
Çizelge 3.62 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin hasar sayıları 12	29
Çizelge 3.63 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin hasar yüzdeleri	
	29
Cizelge 4.1 : Yapılarda eşdeğer deprem yükünün hesabı (EI ₀)12	31
Cizelge 4.2 : Yapılarda eşdeğer deprem yükünün hesabı (EIe)1	32
Cizelge 4.3 : Yapılarda periyot, ağırlık ve taban kesme kuvveti değerlendirmesi 1	32
Cizelge 4.4 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin sayılarına göre	
bulundukları hasar bölgeleri	35
Cizelge 4.5 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin oranlarına göre	
bulundukları hasar bölgeleri	35
Cizelge A.1 : 2 katlı yapı kolon etkin eğilme rijitlikleri	40
Cizelge A.2 : 3 katlı yapı kolon etkin eğilme rijitlikleri	41
Cizelge A.3 : 4 katlı yapı kolon etkin eğilme rijitlikleri	42
Cizelge A.4 : 5 katlı yapı kolon etkin eğilme rijitlikleri	43
Cizelge A.5 : 6 katlı yapı kolon etkin eğilme rijitlikleri	45
Cizelge A.6 : 7 katlı yapı kolon etkin eğilme rijitlikleri	48
Cizelge A.7 : 8 katlı yapı kolon etkin eğilme rijitlikleri	50
Cizelge B.1 : 30×30 (6014) kolona ait hasar sınırları	54
Cizelge B.2 : 30×30 (6016) kolona ait hasar sınırları	58
Cizelge B.3 : 40×40 (8ø16) kolona ait hasar sınırları	61
Çizelge C.1 : 8 katlı yapı (okul) kolon etkin eğilme rijitlikleri 10	66

xvi

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 2.1 : Malzeme modelleri	5
Şekil 2.2 : Yapı ve beton çeliklerinde $\sigma - \varepsilon$ diyagramı	6
Şekil 2.3 : Betonun $\sigma - \varepsilon$ diyagramı	6
Şekil 2.4 : Betonun yaygın olarak kabul edilen $\sigma - \varepsilon$ eğrisi	7
Şekil 2.5 : Chang&Mander beton modeli	7
Şekil 2.6 : Sargı donatısının kesit dayanımına etkisi	8
Şekil 2.7 : Betonarme kesitte M – ϕ ilişkisi ve eğilme rijitliği EI değişimi	9
Şekil 2.8 : Betonarme bir kesite ait P – M karşılıklı etki diyagramı	. 10
Şekil 2.9 : Betonarme bir kesitte sargı donatısının M – ϕ ilişkisine etkisi	.11
Şekil 2.10 : Betonarme bir kesitte eksenel kuvvetin M – ϕ ilişkisine etkisi	.11
Şekil 2.11 : Tablalı kiriş kesit boyutları	. 12
Şekil 2.12 : Kesit, eleman ve sistem etki – şekil (yer) değiştirme ilişkisi	. 14
Şekil 2.13 : Hasar durumu göçme olan yapı elemanları (Van 2011 Depremi –	
Gedikbulak İlköğretim Okulu Binası)	. 16
Şekil 2.14 : Hasar durumu göçme olan yapı elemanları (2) (Van 2011 Depremi –	
Gedikbulak İlköğretim Okulu Binası)	. 16
Şekil 2.15 : Hasar durumu göçme olan yapı elemanları (Van 2011 Depremi)	. 17
Şekil 2.16 : İki halkalı zincirin gevrek ve sünek güç tükenmesi	. 18
Şekil 2.17 : Kolon – kiriş uç bölgelerinde taşıma gücü momentleri	. 20
Şekil 2.18 : Kuşatılmış kolon – kiriş birleşim bölgesi koşulları	. 21
Şekil 2.19 : Zımbalama bölgesi özellikleri ve tasarım zımbalama kuvveti	. 23
Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olm	ası
Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat	ası
Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması)	ası . 24
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi 	ası . 24 . 25
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları 	ası . 24 . 25 . 26
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları	ası . 24 . 25 . 26 . 30
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları	ası . 24 . 25 . 26 . 30 . 31
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi	ası . 24 . 25 . 26 . 30 . 31 . 32
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi 	ası . 24 . 25 . 26 . 30 . 31 . 32 . 33
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.27 : Modal kapasite diyagramı 	ası . 24 . 25 . 26 . 30 . 31 . 32 . 33 . 34
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi	ası . 24 . 25 . 26 . 30 . 31 . 32 . 33 . 34 . 37
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları. Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi. Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.27 : Modal kapasite diyagramı Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar). 	ası . 24 . 25 . 26 . 30 . 31 . 32 . 33 . 34 . 37 . 37
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları. Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi. Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.27 : Modal kapasite diyagramı Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar). Şekil 2.29 : Eşit yerdeğiştirme kuralı (rijit yapılar). 	ası 24 25 26 30 31 32 33 34 37 37 40
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olma tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları. Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi. Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar). Şekil 2.29 : Eşit yerdeğiştirme kuralı (rijit yapılar). Şekil 2.30 : Kesit hasar bölgeleri. 	ası 24 25 26 30 31 32 33 34 37 40 43
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olmatercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları	ası 24 25 26 30 31 32 33 33 37 40 43
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olmatercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar) Şekil 2.29 : Eşit yerdeğiştirme kuralı (rijit yapılar)	ası 24 25 26 30 31 32 33 34 37 40 43 44
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olm tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.27 : Modal kapasite diyagramı Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar) Şekil 2.30 : Kesit hasar bölgeleri Şekil 2.31 : Bileşik eğilme etkisindeki betonarme kesitte M – φ diyagramı Şekil 2.32 : EC8'de plastik şekil değiştirmelerin sınırları için taşıyıcı sistem elemanında tanımlanan çember kiriş dönmesi Şekil 2.33 : Kesitte moment – eğrilik bağıntısı ve Deprem Yönetmeliği, FEMA ve 	ası 24 25 26 30 31 32 33 33 37 40 43 44
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olm tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar) Şekil 2.29 : Eşit yerdeğiştirme kuralı (rijit yapılar) Şekil 2.30 : Kesit hasar bölgeleri	ası 24 25 26 30 31 32 33 33 37 40 43 44
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olm tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları. Şekil 2.23 : Statik itme analizi Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi. Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.27 : Modal kapasite diyagramı Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar) Şekil 2.30 : Kesit hasar bölgeleri Şekil 2.31 : Bileşik eğilme etkisindeki betonarme kesitte M – φ diyagramı Şekil 2.32 : EC8'de plastik şekil değiştirmelerin sınırları için taşıyıcı sistem elemanında tanımlanan çember kiriş dönmesi Şekil 2.33 : Kesitte moment – eğrilik bağıntısı ve Deprem Yönetmeliği, FEMA ve Eurocode yaklaşımlarına göre belirlenen sınırlar. 	ası 24 25 26 30 31 32 33 34 37 40 43 44 44
 Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olm tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi Şekil 2.22 : Teorik plastik mafsal boyları. Şekil 2.23 : Statik itme analizi. Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi. Şekil 2.25 : Elastik olmayan indirgenmiş spektrum Şekil 2.26 : Kapasite spektrum yöntemi ile performans noktasının belirlenmesi Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar). Şekil 2.29 : Eşit yerdeğiştirme kuralı (esnek yapılar). Şekil 2.30 : Kesit hasar bölgeleri. Şekil 2.31 : Bileşik eğilme etkisindeki betonarme kesitte M – \u03c6 diyagramı Şekil 2.33 : Kesitte moment – eğrilik bağıntısı ve Deprem Yönetmeliği, FEMA ve Eurocode yaklaşımlarına göre belirlenen sınırlar. Şekil 3.1 : Yapıların kat planı Şekil 3.2 : Kiriş açılımı. 	ası 24 25 26 30 31 32 33 34 37 40 43 44 44 44 44

Sekil 3.4 : 2 katlı yapının modeli	.50
Sekil 3.5 : 3 katlı yapının modeli	.51
Sekil 3.6 : 4 katlı yapının modeli	.52
Sekil 3.7 : 5 katlı yapının modeli	.53
Sekil 3.8 : 6 katlı yapının modeli	.55
Sekil 3.9 : 7 katlı yapının modeli	.56
Sekil 3.10 : 8 katlı yapının modeli	.57
Şekil 3.11 : Döşemelerden kirişlere üçgen yayılı yük aktarımı	.60
Şekil 3.12 : Çevre kirişlere döşemelerden aktarılan gelen ölü yükler	.61
Şekil 3.13 : Duvar yükleri	.61
Şekil 3.14 : Tablalı kirişler (a) çevre kirişlerin kenar açıklığı, (b) çevre kirişlerin i	ç
açıklığı, (c) orta kirişlerin kenar açıklığı, (d) orta kirişlerin iç açıklığı.	.62
Şekil 3.15 : Hasar sınırının section designer ile elde edilmesi	.64
Şekil 3.16 : 30×30 (6Ø14) kolona ait P – M karşılıklı etkileşim diyagramı	.68
Şekil 3.17 : 30×30 (6Ø16) Kolona ait P – M karşılıklı etkileşim diyagramı	.68
Şekil 3.18 : 40×40 (8Ø16) kolona ait P – M karşılıklı etkileşim diyagramı	.69
Şekil 3.19 : 30×30 (6Ø14) kolona ait hasar sınırları	.69
Şekil 3.20 : 30×30 (6Ø16) Kolona ait hasar sınırları	.70
Şekil 3.21 : 40×40 (8Ø16) kolona ait hasar sınırları	.70
Şekil 3.22 : x doğrultusunda yapılan statik itme analizi sonucu eşit plastik dönme	
değerleri elde edilen kolonlarn aynı renklerle gösterimi	.72
Şekil 3.23 : 2 katlı yapının statik itme eğrisi	.73
Şekil 3.24 : 2 katlı yapının x doğrultusu modal kapasite eğrisi	.74
Sekil 3.25 : 2 katlı yapının performans noktası	.76
Şekil 3.26 : 2 katlı yapıda oluşan plastik mafsallar	.76
Şekil 3.27 : 2 katlı yapının 1. ve 2. kat kolonlarındaki hasarların belirlenmesi	.77
Şekil 3.28 : 3 katlı yapının statik itme eğrisi	.78
Şekil 3.29 : 3 katlı yapının x doğrultusu modal kapasite eğrisi	.80
Şekil 3.30 : 3 katlı yapının performans noktası	.80
Şekil 3.31 : 3 katlı yapıda oluşan plastik mafsallar	.81
Şekil 3.32 : 3 katlı yapının 1. kat kolonlarındaki hasarların belirlenmesi	.81
Şekil 3.33 : 3 katlı yapının 2. kat kolonlarındaki hasarların belirlenmesi	.82
Şekil 3.34 : 3 katlı yapının 3. kat kolonlarındaki hasarların belirlenmesi	.82
Şekil 3.35 : 4 katlı yapının statik itme eğrisi	.84
Şekil 3.36 : 4 katlı yapının x doğrultusu modal kapasite eğrisi	.85
Şekil 3.37 : 4 katlı yapının performans noktası	.86
Şekil 3.38 : 4 katlı yapıda oluşan plastik mafsallar	.86
Şekil 3.39 : 4 katlı yapının 1. ve 2. kat kolonlarındaki hasarların belirlenmesi	.87
Şekil 3.40 : 4 katlı yapının 3. ve 4. kat kolonlarındaki hasarların belirlenmesi	.87
Şekil 3.41 : 5 katlı yapının statik itme eğrisi	. 89
Şekil 3.42 : 5 katlı yapının x doğrultusu modal kapasite eğrisi	.91
Şekil 3.43 : 5 katlı yapının performans noktası	.91
Şekil 3.44 : 5 katlı yapıda oluşan plastik mafsallar	.92
Şekil 3.45 : 5 katlı yapının 1. ve 3. kat kolonlarındaki hasarların belirlenmesi	.92
Şekil 3.46 : 5 katlı yapının 4. kat kolonlarındaki hasarların belirlenmesi	.93
Şekil 3.47 : 6 katlı yapının statik itme eğrisi	.95
Şekil 3.48 : 6 katlı yapının x doğrultusu modal kapasite eğrisi	.96
Şekil 3.49 : 6 katlı yapının performans noktası	.97
Şekil 3.50 : 6 katlı yapıda oluşan plastik mafsallar	.97
Şekil 3.51 : 6 katlı yapının 1. kat kolonlarındaki hasarların belirlenmesi	.98

Şekil 3	3.52 :	: 6 katlı yapının 5. kat kolonlarındaki hasarların belirlenmesi	. 98
Şekil 3	3.53 :	7 katlı yapının statik itme eğrisi	100
Şekil 3	3.5 4 :	7 katlı yapının x doğrultusu modal kapasite eğrisi	101
Şekil 3	3.55	7 katlı yapının performans noktası	102
Şekil 3	3.5 6	7 katlı yapıda oluşan plastik mafsallar	103
Şekil 3	3.57 :	7 katlı yapının 1, 4 ve 5. kat kolonlarındaki hasarların belirlenmesi	103
Şekil 3	3.58 :	7 katlı yapının 6. kat kolonlarındaki hasarların belirlenmesi	104
Şekil 3	3.59 :	: 8 katlı yapının statik itme eğrisi	106
Şekil 3	3.60 :	8 katlı yapının x doğrultusu modal kapasite eğrisi	107
Şekil 3	3.61	8 katlı yapının performans noktası	108
Şekil 3	3.62 :	8 katlı yapıda oluşan plastik mafsallar	108
Şekil 3	8.63	8 katlı yapının 1, 5 ve 6. kat kolonlarındaki hasarların belirlenmesi	109
Şekil 3	3.64 :	: 8 katlı yapının (okul) statik itme eğrisi	112
Şekil 3	3.65	: 8 katlı yapının (okul) x doğrultusu modal kapasıte eğrisi	113
Şekil 3	5.66	8 katlı yapının (okul) performans noktası (aşılma olasılığı 50 yılda %	10
a 1 a a		olan deprem)	114
Şekil 3	5.6 7 :	8 katlı yapıda (okul) oluşan plastik mafsallar (aşılma olasılığı 50 yılda	l 114
0 1 9 2		% 10 olan deprem	114
Şekii 3	5.68	3 Katli yapinin (okul) 1, 2, 5 ve 6. Kat Koloniarindaki hasarlarin	115
G . I9 2		belirienmesi (aşılma olasılığı 50 yılda %10 olan deprem)	115
Şekii 3	0.09	δ katii yapinin (okui) /. kat koioniarindaki nasariarin belirienmesi	115
Salvil 2	. 70	(aşılma olasılığı 50 yılda %10 olan depletin)	115 7
Şekii ə		olan daprom)	۲ 110
Salvil 3	871	• 8 katlı yapıda (akul) aluşan plaştik mafşallar (aşılma alaşılığı 50 yılda	110
ŞCKII J	. /1	%2 olan deprem)	ι 118
Sabil 3	x 72 -	• 8 katlı yapının (okul) 1. 2. 5 ye 6 kat kolonlarındaki hasarların	110
ŞCKII J	.12	belirlenmesi (asılma olasılığı 50 yılda %2 olan denrem)	119
Sekil 3	3 73	• 8 katlı vapının (okul) 7 kat kolonlarındaki hasarların belirlenmesi	11)
şenn e		(asılma olasılığı 50 vilda %2 olan deprem)	119
Sekil 3	3.74 :	Düzce depremi kavdı ile deprem vönetmeliği tasarım spektrumunun	
·,		benzesimi	122
Sekil 3	3.75 :	: Düzce depremi ivme – zaman verilerinin programa tanımlanması	122
Şekil 3	3.76 :	: 3 katlı yapı staik itme eğrisi ile ZTA analiz sonucu elde edilen değerle	erin
,		karşılaştırması	123
Şekil 3	3. 77 :	: 5 katlı yapı staik itme eğrisi ile ZTA analiz sonucu elde edilen değerle	erin
		karşılaştırması	124
Şekil 3	3.78 :	7 katlı yapı staik itme eğrisi ile ZTA analiz sonucu elde edilen değerle	erin
		karşılaştırması	124
Şekil 3	3.79 :	ZTA Düzce depremi analizi sonucu tepe yerdeğiştirmesinin zamana	
		bağlı değişimi	125
Şekil 3	3.80 :	ZTA Düzce depremi analizi sonucu taban kesme kuvvetinin zamana	
		bağlı değişimi	125
Şekil 3	3.81	: 8 katlı yapı staik itme eğrisi ile ZTA analiz sonucu elde edilen değerle	erin
		karşılaştırması	126
Şekil 3	8.82	8 katlı yapıda ZTA analiz sonucu oluşan plastik Mafsallar	126
Şekil 3	3.83	8 katlı yapının ZTA analizi (Düzce %100) sonucu 1, 2, 4, 5 ve 6. kat	
a		kolonlarındakı hasarların belirlenmesi	127
Şekil 3	5.84	8 katlı yapının ZTA analızı (düzce %100) sonucu 7. ve 8. kat	10-
		kolonlarındaki hasarların belirlenmesi	127

Şekil 4.1 :	: 8 katlı yapı staik itme eğrisi ile ZTA analiz sonucu elde e	edilen değerlerin
	karşılaştırması	

BETONARME TAŞIYICI SİSTEMLERİN DOĞRUSAL OLMAYAN YÖNTEMLERLE PERFORMASININ DEĞERLENDİRİLMESİ

ÖZET

Günümüzde az veya orta kat sayısına sahip olan, konut türü yapıların tasarımında yaygın olarak kullanılan kuvvete dayalı elastik hesap yöntemleri, kapasite tasarım ilkelerinin uygulanmasıyla, yeter derecede güvenli sonuçlar elde edilmesini sağlar. Ancak, doğrusal olmayan analiz yaklaşımlarının ve bilgisayar teknolojisinin gelişmesiyle yapıların deprem, rüzgâr gibi dinamik ve yatay etkiler altındaki davranışı daha gerçekçi bir şekilde yorumlanabilir hale gelmiştir.

Ülkemizdeki nüfus artışı, üretilen yeni yapıların çoğunlukla konut olmasına sebep olmaktadır. Bunun yanında mevcut yapı stokunun genellikle doğru mühendislik hizmeti almadan veya denetimsiz bir şekilde ilkel yöntemlerle inşa edilmiş olmaşı, geçmiş yönetmeliklerin yetersizliği veya doğru uygulanmayışı gibi etkenler, olası bir depremin ülkemizde büyük risk oluşturduğu gerçeğini ortaya çıkarmaktadır. Bu performansinin değerlendirilmesi, bağlamda, mevcut yapıların Deprem Yönetmeliği'nde de yer bulmuştur. Bu tez çalışmasında ise, ikiden sekiz kata kadar yedi adet yapının, aynı malzeme, kat planı ve minimum (veya minimuma yakın) boyutlandırma esas alınarak tasarımı yapılmıştır. Daha sonra bu yapılar mevcut yapı olarak kabul edilerek Doğrusal Olmayan Artımsal Eşdeğer Deprem Yükü Yöntemi ile performans değerlendirmesi yapılmıştır. Elde edilen sonuçlar ise, karşılaştırmalı değerlendirilerek, yatay yük taşıma kapasitesine bağlı olarak hangi yapının daha güvenli olduğu sorusuna cevap aranmıştır. Ayrıca Zaman Tanım Alanında Doğrusal Olmayan Analiz yapılarak Doğrusal Olmayan Artımsal Eşdeğer Deprem Yükü Yöntemi'nin ne kadar yaklaşık sonuç verdiği incelenmiştir.

Bu açıklamalar doğrultusunda yapılan çalışma 4 bölümden oluşmaktadır. Birinci bölümde, konu ile ilgili genel bilgiler, çalışmanın amacı ve kapsamı verilmiştir. İkinci bölümde doğrusal olmayan davranışın temelini oluşturan kavramlar, kapasite tasarım ilkeleri ve doğrusal olmayan hesap yöntemlerinin üzerinde durulmuştur. Üçüncü bölümde ise ikiden sekiz kata kadar yedi farklı yapı tasarlanarak mevcut yapı kabul edilmiştir ve doğrusal olmayan yöntemlerle performans değerlendirmesi yapılmıştır. Son bölüm olan dördüncü bölümde ise elde analizler sonucu elde edilen verilerin karşılaştırmalı değerlendirilmesi yapılarak bazı önerilerde bulunulmuştur.

PERFORMANCE EVALUATION OF REINFORCED CONCRETE SYSTEMS WITH NONLINEAR METHODS

SUMMARY

Contemporarily, prevalently utilized force-based elastic solution methods in design of low and medium rise residential building types yield sufficient results with the application of capacity design principles. However, with the advent of non-linear analytical approaches and computing technologies, response of buildings to dynamic and horizontal exposures such as earthquakes and winds can now be interpreted more practically.

The population growth in our country causes newly constructed buildings to be mostly residential. Additionally, factors including inefficacy or misconduct of former regulations, construction of the current stock of most buildings with primitive methods and without proper engineering service or supervision, bring out the fact that earthquake is a major risk for our country. With regard to this, performance evaluation of current buildings also takes place in Turkish Seismic Code 2007.

In this study, seven buildings ranging from having two to eight floors were designed with linear evaluation methods in accordance with Turkish Seismic Code 2007. Then these buildings were assumed to be current buildings and performance evaluation was conducted with the Non-Linear Incremental Equivalent Earthquake Load Method which is an application of Modal Pushover Analysis. An answer was sought for which of the buildings is more secure in regard to horizontal load-carrying capacity, with the help of comparative interpretation of the obtained results. Besides, Non-Linear Time History Analyze was also applied in order to determine the reliability of Non-Linear Incremental Equivalent Earthquake Load Method. The following main subjects are investigated in this study:

- Interpretation of buildings' real behavior during the earthquake
- Determination of performance level of buildings
- Correlation between story level and horizontal load-carrying capacities

In addition to these the 8 story building which was designed for residential utilization is considered as school and performance level is evaluated again with more conservative criterias by considering Turkish Seismic Code 2007.

In order to be consistent and realistic, the following criterias are considered in linear elastic design of buildings:

- Using same materials at all buildings (C30/S420)
- Each buildings having same floor plan
- Designing the structural components (beams and columns) by considering minimum (or close to minimum)sizing of sections

The study which was carried out in accordance with these explanations above consists of 4 sections. General descriptions, aim and scope of the study can be found in the first section. In the second section, underlying concepts of non-linear behavior

of buildings, capacity design principles and non-linear computing methods were emphasized. Then in the third section, seven separate buildings ranging from having two to eight floors, which were assumed to be current buildings, were designed and performance evaluation was carried out with non-linear methods. Finally, some suggestions were given with the help of comparative evaluation of data obtained from the analyses.

When it is considered that performance analysis notion does not exist, as it has been explained, the response to the question of "Which building would be more secure in case of they have been sized with identical design criteria but different number of floors? " would be that all of the buildings are equally secure, from an engineer's perspective.

But the solution of buildings with the methods, which are applied under seismic effects and based on non-linear displacement, yields more realistic results when it is compared to static/ linear analysis.

In this study, as the result of Nonlinear Incremental Equivalent Earthquake Load Method analysis, it is observed that all of the buildings, which have been designed with linear elastic methods, achieve the Life Security performance level whose exceeding possibility is predicted for residences as 10% in 50 years according to the Seismic Regulation. Besides, it has been evaluated which building has capacity to bear more load in reality, by comparing base shear force capacities, which have been obtained from buildings' performance analysis, with building weights and equivalent seismic loads used for linear resilient calculation.

According to results of this study, it has been observed that 2-story building in proportion to its weight has more capacity to bear seismic loads in comparison with 8-story one. Similarly, it has been achieved that 2-story building has a capacity to bear higher level of horizontal load than predicted equivalent seismic load when it is compared to 8-story building. In these circumstances the most significant consequence is as follows: Although the buildings have been designed through the criteria which are exactly identical to the linear methods in Seismic Regulation, practically low-rise buildings are more durable against earthquakes than high-rise constructions due to their higher capacity of bearing horizontal load. Thus, the question of which building is more secure, has been answered.

According to this result, it could be expressed that low-rise buildings could be sized more economical indeed. Reduction factor provides predicted seismic loads to be decreased through capacity design principles to be based. However, as it is seen, this could be interpreted as inadequate. In the equivalent seismic load calculation, a reduction coefficient, which would be estimated inversely proportional to the story level, could procure low-rise buildings to be sized both adequately secure and more economical.

It has been seen that the biggest base shear force (time-dependent) and roof displacement value, which have been calculated in consequence of time history analyses, have yielded proximate results with pushover curves. And in the performance evaluation which is the consequence of 8-story building's Time History Analysis, it has been seen that this building does not achieve the Life Security performance Level whose exceeding possibility is predicted for residences as 10% in 50 years according to the Seismic Regulation. And the reason for this fact is that four

beams are located in Collapse Region. When all other factors have been examined, Life Security performance level is achieved. Considering the Seismic Regulation it is seen that strict limits are existing for the beams in performance evaluation. For instance, regardless of the system size, LS target could not be accomplished even if one beam has reached to the Collapse Region. How realistic is this approach, still comes under question. Later on with the development of Seismic Regulation, it could be expected there would exist more flexible limits for the performance evaluation.

Consequently, it is clearly seen that, the analyses through non-linear approaches enable not only to interpret the actual performance of buildings under seismic effects (failure mechanism, displacements etc.) but also to design more economical structures. In the future it is expected that these methods would be also commonly used for new structure designs besides performance evaluation of existing structures. According to this fact the regulations would be improved. And for the improvement of these new regulations, it could be recommended that the damage limits to be determined not according to unit displacements occurred in concrete and steel, but according to directly plastic rotations occurred in section (as in FEMA 356). So that the analyses could be performed more practical and controlled.

1. GİRİŞ

1.1 Konu ve Konu ile İlgili Geçmiş Çalışmalar

Ülkemizde son yıllarda meydana gelen yıkıcı depremler sebebiyle özellikle sanayi faaliyetlerin ve nüfusun yoğun olduğu bölgelerde binlerce vatandaşımız hayatını kaybetmiş, pek çoğu evsiz kalmış ve ülke ekonomisi olumsuz yönde etkilenmiştir. 2010 yılında yayınlanan Meclis Araştırması Komisyonu Raporuna göre 1900'lü yıllardan günümüze kadar ülkemizde meydana gelen depremlerde 100 bine yakın kişi hayatını kaybetmiş, bir milyona yakın bina ise yıkılmış veya ağır hasara uğramıştır. 1999 yılında gerçekleşmiş olan 17 Ağustos Gölcük ve 12 Kasım Düzce depremlerinde ise resmi olmayan verilere göre yaklaşık 50 bin kişi hayatını kaybetmiş ve 100 bine yakın vatandaşımız yaralanmıştır [1]. Son yaşanan 2011 Van depremleri ülkemizdeki mevcut binaların güvenilirliğini tekrar gündeme getirmiş ve kentsel dönüşüm çalışmaları hız kazanmıştır.

Depremin bu yıkıcı etkisi, ülkemizde olduğu gibi, farklı ülkelerde de olumsuz sonuçlar doğurmuş ve yapı tasarımlarında dikkate alınmıştır. 1908'de İtalya'da meydana gelen Messina depremi, 83 bin kişinin yaşamını yitirmesine sebep olmuştur. Sonrasında İtalya hükümeti tarafından kurulan komitenin raporunda, yapı tasarımında ilk kez deprem yüklerinden bahsedilmiştir [2]. Raporda deprem yükleri yapı ağırlığının yüzdesi olarak hesaplanmaktadır. Turin (Torino) Politeknik Profesörlerinden Panetti'nin çalışması olan bu öneride, yapı birinci katına yapı ağırlığının 1/12'si, ikinci ve üçüncü katlara 1/8'i kadar deprem atalet kuvveti uygulanması tavsiye edilmiştir. Bu yöntem eşdeğer statik yük yöntemi olarak geliştirilerek günümüzde halen uygulanmaktadır [3]. Ülkemizde ise 1939 Erzincan depreminden sonra, çeşitli ülkelerde depremle ilgili yapılan çalışmalar incelenmiş, ve 1937 yılında uygulanmaya başlanan İtalyan Yapı Talimatnamesi'nden yararlanılarak, 1940'ta Zelzele Mıntıkaları Muvakkat Yapı Talimatnamesi hazırlanmıştır. 22 Temmuz 1944 tarihine gelindiğinde ise "Yersarsıntısından Evvel ve Sonra Alınacak Tedbirler Hakkında Kanun" çıkarılmıştır. Bu kanun Türkiye'de deprem tehlikesi ve riskinin belirlenmesi ve deprem zararlarının azaltılması konusunda, merkezi ve yerel

düzeylerde nasıl örgütlenileceğini, yerleşme ve yapılaşmaların nasıl denetleneceğini belirleyen ilk yasal düzenlemedir [4].

Yapıların depreme dayanıklı tasarımında yerdeğiştirmenin öneminin anlaşılmasıyla ve malzemenin doğrusal olmayan davranışının dikkate alınmasıyla performans kavramı ortaya çıkmıştır. Performans kavramı, yapı mühendisliğinde, bir yapının öngörülen deprem etkilerinde yapacağı elastik ötesi yerdeğiştirmenin, önceden belirlenen bir hedefe ulaşmasını ve bu durumda yapı elemanlarında oluşan hasarların belli sınırlarda tutulmasını ifade eder. Kuvvete dayalı tasarımlarda da yapının sünek davranış sergileyerek, yani elastik ötesi şekil değiştirmeler yaparak deprem enerjisini tüketeceği düşünülür ve buna bağlı olarak elastik deprem yükleri azaltılır. Ancak kuvvete dayalı tasarımda veya değerlendirmede,

- Yapı gerçekte ne kadar yerdeğiştirme yapacak,
- Oluşan yerdeğiştirme sonucu hangi elemanlar hasar görecek,
- Hasar dağılımı nasıl olacak,
- Sistemin muhtemel göçme mekanizmaları ne şekilde gerçekleşecek

gibi soruların cevabına tam açık karşılık bulunamaz. Performansa dayalı değerlendirmede ise yapıların gerçek davranışı, yeter yaklaşıklıkla yorumlanabilmektedir.

Depremlerde meydana gelen yapısal hasarın, yönetmeliklerin tanımladığı eşdeğer deprem yükleri altında yapısal elemanların mevcut dayanım kapasitelerinin aşılması ile doğrudan ilgili olmadığı, hasarın temel nedeninin sünek davranması öngörülen yapı elemanlarının şekildeğiştirme kapasitelerinin aşılması olduğu uzun bir süredir bilinmektedir [5]. Bu sebeple Deprem Yönetmeliği'nde tasarımda esas alınan, kapasite tasarım ilkelerini uygulamak büyük önem göstermektedir.

1994 Northridge ve 1995 Kobe depremleri ile ortaya çıkan can ve mal kaybından sonra, tüm dünyada, performansa dayalı tasarım ve değerlendirmenin önemi anlaşılmıştır. Bu çalışmaların ilk önemli ürünü, ABD'de, Kaliforniya Yapı Mühendisleri Birliği'nin 1995 yılında yayınlamış olduğu "Vision 2000 Raporu"dur [SEAOC, 1995]. Ardından 1996 yılında, Applied Technology Council tarafından, "Seismic Evaluation and Retrofit of Concrete Buildings" [ATC-40, 1996] ve 1997 yılında FEMA-273 ve 2000 yılında FEMA-356 yayınlanmıştır [6].

Performansa dayalı değerlendirme ile ilgili olarak yapılan çalışmaları iki farklı şekilde ele almak mümkündür: (1) Doğrudan doğruya sadece binaların kapasitelerini (statik itme eğrisi) hesaplayan yöntemler ve (2) kapasite ile birlikte deprem talebini de hesaplayan yöntemler. Performansa dayalı tasarım ve değerlendirme yöntemlerinde, Aydınoğlu [2003b, 2007], Chopra ve Goel [2001] ve Freeman ve diğ. [1975] 'nın çalışmalarında olduğu gibi, deprem talebinin de hesaplanması, daha sonra bu istem değerlerinin, seçilen performans düzeyleri için tanımlanan şekildeğiştirme kapasiteleri ile karşılaştırılması ve böylece yapısal performansın belirlenmesi gerekmektedir [6].

Deprem Yönetmeliği'nde mevcut betonarme binaların deprem güvenliğinin değerlendirmesinin performans kavramına dayalı yapılması öngörülmüştür. Performans kavramı, deprem mühendisliğinde yeni gelişen bir kavram olup, önce mevcut binaların deprem güvenliğinin belirlenmesi için geliştirilmiştir. Performans kavramına dayalı tasarım, klasik tasarımın genişletilmesi olarak beklenir. Deprem yönetmeliklerinin oluşumu incelenirse, daha önce de performans kavramının tanımlandığı görülebilir. Yönetmelikte, genel anlamda binanın küçük depremleri hasarsız atlatması, büyük depremleri can güvenliğini sağlayan sınırlı hasarla atlatması ve çok büyük depremleri de toptan göçme olmadan atlatması gibi performans seviyeleri hedeflenmistir. önerilen performansa Yeni dayalı değerlendirmede bu amaçlar daha belirgin şekilde tanımlanarak kabul edilmiştir. Deprem Yönetmeliği'nde mevcut binaların performansa dayalı değerlendirmesinin, yakın bir gelecekte performansa dayalı tasarım olarak yeni binalara da genişletileceği söylenebilir [7].

1.2 Çalışmanın Amacı ve Kapsamı

Bu çalışmada, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007'ye göre doğrusal hesap yöntemleri ile tasarımı yapılan, ikiden sekiz kata kadar olan yedi farklı binanın, doğrusal olmayan yöntemler kullanılarak değerlendirmesi yapılmıştır. Burada,

- Yapıların gerçek davranışının yorumlanması,
- Yönetmelikte öngörülen performans hedeflerinin sağlanması,

 Yapıların kat sayısı ile yatay kuvvet taşıma kapasiteleri arasın da ilişki kurulması ve buna bağlı olarak hangi yapının daha güvenli olduğunun belirlenmesi

amaçlanmıştır. Karşılaştırma ve değerlendirmelerin, tutarlı ve gerçekçi olabilmesi adına, elastik hesap yöntemleriyle yapılan tasarımlarda, tüm yapılarda,

- Aynı malzemelerin kullanılması (C30/S420)
- Her bir yapının aynı kat planına sahip olması
- Kolon kirişlerin boyutlandırılmasında minimum (veya minimuma yakın) kesit ve donatı seçilmesi

esas alınmıştır.

Çalışmanın kapsamında ise,

- Malzeme bakımından doğrusal olmayan sistemlerin davranışında kapasite tasarım ilkelerinin incelenmesi,
- Performansın değerlendirilmesinde farklı yönetmeliklerdeki yaklaşımlar,
- Deprem Yönetmeliği'nde doğrusal olmayan analiz yöntemleri, bunların kullanımı ve uygulamadaki pratikliğinin değerlendirilmesi,
- Elde edilen sayısal sonuçların değerlendirilmesi ve buna bağlı olarak öneriler yer almaktadır.

2. BETONARME TAŞIYICI SİSTEMLERİN DEPREM PERFORMANSININ BELİRLENMESİ

2.1 Genel Kavramlar

2.1.1 Malzeme modelleri

Malzemeler gerçekte genel olarak doğrusal olmayan gerilme – şekil değiştirme davranışı sergiler ancak yapı sistemlerinin çözümlemelerinde karmaşık olan bu davranışlar idealleştirilerek hesap yapılır. Matematik modelleri kurulan taşıyıcı sitemler düşey yükler altında çoğunlukla doğrusal davranış sergilese de deprem, rüzgâr gibi dinamik etkiler altındaki yapının karmaşık olan gerçek davranışının yorumlanmasında malzemelerin idealleştirilmesi önem kazanmaktadır. Modellerin en basiti doğrusal elastik ve doğrusal plastik malzeme modelleri olup, bazıları Şekil 2.1'de gösterilmiştir[7].

Şekil 2.1 : Malzeme modelleri

Betonarme yapılarda kullanılan donatı akma gerilmesine ulaşana kadar elastik davranış sergiler. Elastik davranış *orantı sınırı* olarak ifade edilen noktaya kadar doğrusal olarak gerçekleşir. Şekil 2.2'de betonarme yapılarda kullanılan donatı çeliğine ait gerilme – birim şekil değiştirme diyagramı gösterilmiştir. Burada;

- σ_k : Kopma gerilmesi
- σ_e : Akma gerilmesi
- σ_p : Orantılılık sınırı gerilmesini ifade etmektedir.

Şekil 2.2 : Yapı ve beton çeliklerinde $\sigma - \varepsilon$ diyagramı [8]

Çelik malzemeye göre daha gevrek davranış sergileyen ve daha az şekil değiştirme kapasitesine sahip olan beton numunelere ait gerilme – birim şekil değiştirme diyagramı Şekil 2.3'te gösterilmiştir.

Şekil 2.3 : Betonun $\sigma - \varepsilon$ diyagramı [9]

En büyük gerilmeye karşı gelen birim şekil değiştirme değeri $\varepsilon_{c0}=0.002$ olarak kabul edilirken kopma durumunda oluşan birim şekil değiştirme ε_{cu} değerlerinin ise beton sınıfı ile ters orantılı olacak şekilde $0.003 \sim 0.0035$ arasında değiştiği kabul edilmektedir. Ayrıca bu değerler betonda sargı donatısı miktarına bağlı olarak

artmaktadır. Şekil 2.4'te eğilme durumundaki beton bir çubuğun en dış basınç lifindeki gerilme – birim şekil değiştirme diyagramı gösterilmiştir.

Şekil 2.4 : Betonun yaygın olarak kabul edilen $\sigma - \varepsilon$ eğrisi [8]

Bu diyagramdaki f_{ck} karakteristik basınç dayanımını göstermektedir. Betonun elastisite modülü E_c de f_{ck} 'ye bağlı olarak TS500 - Betonarme Yapıların Tasarım ve Yapım Kuralları (Şubat 2000)'de verilen

$$E_c = 3250 \sqrt{f_{ck}} + 14000 \, MPa \tag{2.1}$$

denklem 2.1 ile hesaplanır.

Betonarme kesitlerin gerilme – birim şekil değiştirme eğrileri beton ve çeliğin malzeme sınıfına, boyuna ve enine donatıların miktarı ile kesitteki dağılımına bağlı olarak farklılık gösterir. Bu davranışın anlaşılabilmesi için yapılan deneysel çalışmalar ile çeşitli araştırmacılar tarafından birçok model oluşturulmuştur. Kent ve Park Modeli (1971); Saatçioğlu ve Razvi Modeli (1992); Chang ve Mander (1994) literatürde kabul görmüş modellerden bazılarıdır. Bu çalışmada kullanılan Chang ve Mander beton modeli Şekil 2.5'te gösterilmiştir.

Şekil 2.5 : Chang&Mander beton modeli

- f_c : Sargısız betonun maksimum basınç dayanımı
- ϵ_0 : Sargısız betonda en büyük basınç gerilmesine karşı gelen birim kısalma
- f_{cc} : Sargılı betonun maksimum basınç dayanımı

 ϵ_{cc} : Sargısız betonda en büyük basınç gerilmesine karşı gelen birim kısalma

Basınç gerilmeleri etkisi altındaki betonarme elmanın boyu kısalır ve kesit alanının artması suretiyle yanal şekil değiştirmeler meydana gelir. Bu şekil değiştirmeleri oluşturan kuvvetler kullanılan sargı donatıları ile karşılanarak betonarme kesitin çekirdek bölgesinde üç eksenli gerilmeler oluşmasını ve kesitin daha büyük basınç gerilmelerini karşılayabilmesini sağlar. Şekil 2.6'da çeşitli sargı donatılarına sahip olan betonarme elamanlar için dayanım – birim şekil kısalma ilişkisi gösterilmiştir.

Şekil 2.6 : Sargı donatısının kesit dayanımına etkisi [9]

Yapıların sünek davranış göstererek gevrek göçmelere maruz kalmamasında özellikle kolon – kiriş birleşim bölgelerinde sargı donatısının yönetmeliklerde belirtilen şartlara uygun olarak kullanılması büyük önem kazanmaktadır.

2.1.2 Betonarme kesitte eğilme etkisi ve eğilme rijitliği

Yapı elemanlarının tasarımında ve performansının değerlendirilmesinde kullanılan taşıma gücü kapasitesi ve şekil değiştirmeye bağlı hasar sınır değerleri gibi verilerin elde edilmesinde basit veya birleşik eğilme etkisi sonucu elde edilen kesite ait $Moment - Eğrilik M - \phi$ ilişkisinden yararlanılır. Betonarme taşıyıcı sistemlerde kiriş
elemanlara etki eden normal kuvvet değerleri genellikle düşük olduğundan basit eğilme etkisi altında oldukları kabul edilir. Kolonlarda ise oluşan normal kuvvet değerleri $M - \phi$ ilişkisini önemli ölçüde etkilemektedir. Bu ilişkiyi etkileyen bir diğer önemli faktör ise kesitin *Eğilme Rijitliği EI*= M / ϕ 'nde betonun çatlaması ve donatının akmasıyla ile meydana gelen azalmadır. Şekil 2.7'de basit eğilme etkisi altındaki betonarme kesite ait $M - \phi$ ilişkisi ile eğilme rijitliğindeki değişim gösterilmiştir.

Şekil 2.7 : Betonarme kesitte $M - \phi$ ilişkisi ve eğilme rijitliği EI değişimi [10]

Betonun çatlamasıyla kesitte oluşan çekme gerilmelerinin tamamının donatı tarafınan karşılandığı kabul edilir. Eğilme momentinin artmaya devam etmesi sonucu donatıyı akma gerilmesine ulaştıran M_y Akma Momenti değeri elde edilir. Bu noktadan sonra donatıda plastik şekil değiştirmeler meydana gelir. Kesitin yeterli plastik şekil değiştirme kapasitesine sahip olması sünek yapı tasarımı adına önemli bir konudur. Bu da ancak çekme donatısının dengeli donatıdan daha düşük değerde kullanılması ile mümkün olur. Aksi halde donatıda akma olayı gerçekleşmeden beton en büyük birim kısalma ε_{cu} değerine ulaşır ve göçme olayı gevrek olarak meydana gelir. Ayrıca $M - \phi$ grafiğinde ϕ_u / ϕ_y oranının süneklik olduğu kabul edilir.

Düşey taşıyıcı eleman olan kolonlarda eğilme momenti ile birlikte normal kuvvetin de bulunması birleşik eğilme durumunu ortaya çıkarır. Betonarme bir kesitin karşılayabileceği eğilme momenti ve normal kuvvet sınır değerleri beton ve donatı için kabul edilecek gerilme ve şekil değiştirme bağıntıları kullanılarak hesap edilebilir ve *Karşılıklı Etki Diyagramı* olarak bilinen bu diyagram bir eksen takımında çizilebilir [7]. Şekil 2.8'de *SAP2000* programının *Section Designer* bölümü kullanılarak elde edilmiş olan betonarme bir kesite ait moment – eksenel

kuvvet karşılıklı etkileşim diyagramı gösterilmiştir. Bu diyagramda eksenel kuvvetin pozitif değerleri basınç kuvvetlerini göstermektedir.

Şekil 2.8 : Betonarme bir kesite ait P – M karşılıklı etki diyagramı

Güç tükenme değerleri kullanılarak elde edilmiş olan karşılıklı etki diyagramının dışında kalan noktalara karşılık gelen etkiler kesit tarafından karşılanamaz.

Betonarme kesitlerde kullanılan sargı donatısının moment – eksenel kuvvet etkileşimine çok fazla katkısı olmasa da çekirdek bölgesindeki betonun basınç gerilmeleri altında şekil değiştirme oranında önemli bir artış sağlar. Böylelikle sargı donatısı kullanılan kesitin eğrilik kapasitesi artar ve sünek davranış sergilemesi sağlanır. Şekil 2.9'da betonarme bir kesitte sargı donatısının moment – eğrilik ilişkisine etkisi gösterilmiştir.

Sargı donatısı kullanılarak sünek duruma gelen betonarme kesitlerde eksenel kuvvet ve moment etkileri altında taşıma gücü sınırlarına ulaştıktan sonra artan yüklemeler altında plastik dönme ve plastik şekil değiştirmeler ortaya çıkar. Böylelikle taşıyıcı sistemde yüklemeler artarken kesitlerde oluşan plastik dönme veya plastik şekil değiştirmeler belirli sınırlarda tutularak taşınabilecek yük kapasitesi gerçekçi bir yaklaşımla elde edilmiş olur. Performansa dayalı tasarımın ve değerlendirmenin

temelini de bu konu oluşturur. Sargı donatısının dışında kolonda bulunan eksenel yükün de moment – eğrilik ilişkisinde önemli bir etkisi bulunmaktadır (Şekil 2.10).

Şekil 2.9 : Betonarme bir kesitte sargı donatısının $M - \phi$ ilişkisine etkisi

Şekil 2.10 : Betonarme bir kesitte eksenel kuvvetin $M - \phi$ ilişkisine etkisi [11]

Taşıyıcı sistemlerde dış yükler altında oluşan kesit etkilerinin ve yerdeğiştirmelerin hesabında kesit rijitliklerinin bilinmesine ihtiyaç vardır. Genellikle betonarme taşıyıcı sistemlerde kesit rijitliklerinden eğilme rijitliği diğerlerine göre hem iç kuvvetlerin dağılımına ve hem de yerdeğiştirmelere daha çok etkili olur. Kesit eğilme rijitliği, kesitin geometrik boyutlarına, donatı miktarına, beton ve donatının elastiklik modüllerine bağlı olarak ortaya çıkar [7]. Betonarme yapıların inşasında kirişler genellikle döşeme ile birlikte döküldüğünden döşemenin de kiriş rijitliğine katkısı olur. Döşemenin kiriş ile birlikte çalıştığı kabul edilen etkili tabla genişliğinin hesabı TS500 Bölüm 6'da denklem 2.2 ve 2.3'teki gibi verilmiştir.

Simetrik kesitlerde
$$b = b_w + 0.2l_p$$
 (2.2)

Simetrik olmayan kesitlerde $b = b_1 + 0.1l_p$ (2.3)

Ancak, gövde dışına taşan tabla genişliği, her bir yanda, tabla kalınlığının altı katından ve komşu kiriş gövde yüzüne olan uzaklığın yarısından fazla olamaz. Yukarıda kullanılan l_p, kirişin iki moment sıfır noktası arasındaki uzunluğudur. Kesin hesap yapılmayan durumlarda,

lp = 1,0 l (Tek açıklıklı, basit mesnetli kiriş)
 = 0,8 l (Sürekli kiriş kenar açıklığı)
 = 0,6 l (Sürekli kiriş iç açıklığı)
 = 1,5 l (Konsol kiriş)

alınabilir. Burada l, kirişin hesap açıklığıdır. Kirişin tabla ve gövde genişliklerini ifade eden b ve b_w ile b_1 Şekil 2.11'te gösterilmiştir.

Şekil 2.11 : Tablalı kiriş kesit boyutları [12]

Şekil 2.7'de verilen moment eğrilik değişiminde grafiğin teğet eğimi $EI = M / \phi$ *Eğilme Rijitliği*'ne karşı gelir. Kesitteki momentin artması sonucu betonun çatlaması ve donatının akması ile kesitin eğilme rijitliği giderek azalır. Betonarme bir elemanda çatlaklar moment değerinin en büyük olduğu bölgelerde oluşurken diğer kesitlerde çatlamamış rijitlik söz konusu olur. Ayrıca örneğin kiriş kesitinin tablalı olduğu da düşünülürse moment değerinin pozitif veya negatif olması durumuna göre çatlaklar kesitin altında veya üstünde oluşacak, bu sebeple açıklık ve mesnet bölgelerinde birbirinden farklı eğilme rijitlikleri ortaya çıkacaktır. Eğilme rijitliğindeki betonarme eleman boyunca meydana gelen bu değişim karmaşık hesaplamalar gerektirir ve bunun taşıyıcı sistemin tamamına uygulanması pratik olmayan bir hesap yöntemi olur. Genellikle betonarme kiriş ve kolonlar için ortalama bir eğilme rijitliği kabul edilir ve *Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007*'de denklem 2.4 ve 2.5'teki gibi verilmiştir.

Kirişlerde

$$(EI_e) = 0.4 * EI_0 \tag{2.4}$$

Kolon ve $N_D \le 0.1 * (A_C f_{cm})$ ise $(EI_e) = 0.4 * (EI_0)$ Perdelerde $N_D \ge 0.4 * (A_C f_{cm})$ ise $(EI_e) = 0.8 * (EI_0)$

Eksenel basınç kuvveti N_D 'nin ara değerleri için doğrusal enterpolasyon yapılabilir. N_D , deprem hesabında esas alınan toplam kütlelerle uyumlu yüklerin gözönüne alındığı ve çatlamamış kesitlere ait $(EI)_0$ eğilme rijitliklerinin kullanıldığı bir ön düşey yük hesabı ile belirlenecektir. Deprem hesabı için başlangıç durumunu oluşturan düşey yük hesabı ise, yukarıda belirtildiği şekilde elde edilen etkin eğilme rijitliği $(EI)_e$ kullanılarak, deprem hesabında esas alınan kütlelerle uyumlu yüklere göre yeniden yapılacaktır. Deprem hesabında da aynı rijitlikler kullanılacaktır.

 $N_{\rm D}$: Deprem hesabında esas alınan toplam kütlelerle uyumlu düşey yükler altında kolon veya perdede oluşan eksenel kuvvet

 $A_{\rm c}$: Kolon veya perdenin brüt kesit alanı

 $f_{\rm cm}$: Mevcut beton dayanımı

Deprem Yönetmeliği'ndeki bu yaklaşımda kolonların eksenel yük değeri arttığında daha rijit kaldıklarını, azaldığında ise taşıdığı eksenel yükün rijitlik değişimine etkisi dikkate alınmayan kirişler gibi $(EI)_{e} = 0.40$ $(EI)_{o}$ olarak hesaplandığını söylenebilir.

Eğilme rijitliklerinin kolon ve kirişlerde aynı ölçüde azaltılması kesit etkilerinin elemanlarda dağılışını değiştirmez sadece yerdeğiştirmelerin aynı oranda artmasına sebep olur. Yatay yükler etkisi altında yerdeğiştirme oranındaki bu artış 1.25 ($\approx 1/0.80$) ~ 2.50 ($\approx 1/0.40$) değerleri arasında olur. Sistem rijitliğinin değişmesi ayrıca yapı periyodunun (*T*) da değişmesine sebep olur. Periyot, rijitliğin karekökü ile ters orantılı olduğundan 1.12 ($\approx \sqrt{1/0.80}$) ~ 1.58 ($\approx \sqrt{1/0.40}$) oranları arasında artar ve

periyodun artan bu değerlerinin spektrum eğrisinin azalan düşey kolu üzerinde bulunması halinde sisteme etki eden deprem yüklerinin azalması sonucunu doğurur. Çatlamış kesit rijitliğinin göz önüne alınmasının daha gerçekçi olduğu için muhtemelen bu kavram yeni tasarımı yapılan binalarda da yaygınlaşarak kullanacağı beklenebilir [7].

2.1.3 Süneklik

İnşaat mühendisliğinde büyük öneme sahip olan bu kavram bir kesitin, bir elemanın veya bir taşıyıcı sistemin, dış yükte önemli bir değişme olmaksızın, elastik sınırın ötesinde şekil değiştirme, dolayısıyla yerdeğiştirme yapma yeteneği olarak tanımlanabilir. Matematiksel olarak süneklik, ulaşılabilecek toplam yerdeğiştirmenin (şekil değiştirmenin) elastik sınıra erişildiğindeki yerdeğiştirmeye (şekil değiştirmeye) oranı olarak denklem 2.6'daki gibi tarif edilebilir [13]:

$$\mu = \delta u / \delta y \tag{2.6}$$

Şekil 2.12'de bulunan grafikte F bir etkiyi ve δ karşı gelen şekil (veya yer) değiştirmeyi göstermektedir. A, B ve C noktaları ise sırasıyla betonun çatlaması, donatının akması ve kesit güç tükenmesi durumlarını ifade ederken bu noktaların bulunduğu gerçek davranış eğrisi, ideal elastoplastik davranış eğrisi olarak basitleştirilebilir.

Şekil 2.12 : Kesit, eleman ve sistem etki – şekil (yer) değiştirme ilişkisi [11]

Eğilme momenti etkisi altındaki bir kesitte karşı gelen şekil değiştirme eğrilik kabul edilerek, kesit eğrilik sünekliği tanımlanabilir. Bunun gibi ortasında yüklü bir kirişte

düşey yük ve düşey yer değiştirme ilişkisi göz önüne alınarak eleman düşey yerdeğiştirme sünekliği ve yatay yüklü bir çerçeve göz önüne alınarak taşıyıcı sistem yatay yerdeğiştirme sünekliği tanımlanabilir [7].

Düşey yükler altında taşıyıcı sistem elemanlarının doğrusal elastik sınırlar içinde davranış gösterdiği esas alınır, ancak seyrek olarak gerçekleşecek olan şiddetli deprem etkilerini de malzemenin elastik sınırlarını aşmadan karşılayacak şekilde tasarım yapmak ekonomik olmayan bir yaklaşımdır. Doğrusal elastik yöntemlerle yapılan yapı tasarımlarında sisteme etki eden deprem kuvvetleri, yapının sünek davranış sergileyeceği düşünülerek taşıyıcı sistem türüne göre azaltılır. Bu azaltma değeri Deprem Yönetmeliği Bölüm 2'de *Taşıyıcı Sistem Davranış Katsayısı (R)* olarak tanımlanmıştır. Çizelge 2.1'de yerinde dökme betonarme binalar için *R* katsayıları verilmiştir. Sünek tasarlanmış yapıların rijit yapılara göre daha fazla deprem enerjisini tüketme özelliğinin olması *R* katsayısının sistemin rijitliği ile ters orantılı olarak değişmesi sonucunu doğurur.

BİNA TAŞIYICI SİSTEMİ	Süneklik Düzeyi Normal Sistemler	Süneklik Düzeyi Yüksek Sistemler
(1) YERİNDE DÖKME BETONARME BİNALAR		
(1.1) Deprem yüklerinin tamamının çerçevelerle taşındığı binalar	4	8
(1.2) Deprem yüklerinin tamamının bağ kirişli (boşluklu) perdelerle taşındığı binalar	4	7
(1.3) Deprem yüklerinin tamamının boşluksuz perdelerle taşındığı binalar	4	6
(1.4) Deprem yüklerinin çerçeveler ile boşluksuz ve/veya bağ kirişli (boşluklu) perdeler tarafından birlikte taşındığı binalar	4	7

Çizelge 2.1 : Taşıyıcı sistem davranış katsayısı (R) [14]

Yapı sistemlerinin hesabında eşdeğer deprem yüklerinin *R* katsayısı ile azaltılması, deprem etkilerinin önemli bir kısmının sünek davranışla meydana gelen elastik ötesi şekil değiştirmelerle karşılanmasını dikkate almasıyla önemli bir konudur; ancak ne kadar gerçekçi veya yeterli bir yaklaşım olduğu tartışılabilir. Örneğin; aynı taşıyıcı sistem özelliklerine sahip, kat yükseklikleri farklı iki yapının yatay yer değiştirme süneklikleri de birbirinden farklı olacaktır. Dolaysıyla sönümleyecekleri deprem enerjisi oranlarının da farklı olacağı söylenebilir.

Yapılarda özellikle kolon - kiriş birleşim bölgelerinde yeterli sünekliğin sağlanamaması depremlerde oluşan hasarların başlıca sebepleri arasında yer almaktadır. Bir sistemin süneklik düzeyinin yüksek olabilmesi için öncelikle kullanılan malzemelerin sünek olması gerekmektedir. Sekil 2.13'te 23.10.2011tarihli Van Depremi'nde hasar görmüş yapılardan biri gösterilmektedir. Burada yapılan gözlemde beton ve çelik malzemenin durumu dikkat çekmektedir. Gereğinden büyük agregaların kullanılması kesitteki beton malzeme sünekliğinin öngörülenden daha düşük seviyede olmasına sebep olmuştur. Ayrıca donatının nervürsüz olmakla birlikte paslanmış halde bulunması, betonla olan gerekli aderansın sağlanmasını olanaksız hale getirmiştir. Tüm bu etkenler sonucunda gevrek olan göçme hasarı kaçınılmaz hale gelmiştir.

Şekil 2.13 : Hasar durumu göçme olan yapı elemanları (Van 2011 Depremi – Gedikbulak İlköğretim Okulu Binası)

Şekil 2.14 : Hasar durumu göçme olan yapı elemanları (2) (Van 2011 Depremi – Gedikbulak İlköğretim Okulu Binası)

Şekil 2.14 ve 2.15'te ise yine 23.10.2011 tarihli Van Depremi'nde hasara uğramış, kolon – kiriş birleşim bölgelerinde yeterli etriye sıklaştırmasının yapılmadığı gözlemlenen yapı elemanları gösterilmiştir. Ayrıca Şekil 2.15'te kirişe göre daha kuvvetli kolon esasının uygulanmadığı görülmektedir.

Şekil 2.15 : Hasar durumu göçme olan yapı elemanları (Van 2011 Depremi)

2.1.4 Kapasite tasarımı

Kapasite tasarımı ilkesinin depreme dayanıklı bina tasarımında uygulanması ilk olarak, Yeni Zelanda deprem yönetmeliğinde betonarme yapı sistemleri için gerçekleştirilmiştir (Paulay 1970). Daha sonra bu kavram diğer modern yönetmeliklerde, betonarme ve çelik yapı sistemlerini de kapsayacak şekilde yer almıştır. Kapasite tasarımı, şiddetli bir deprem hareketi altında sistemde meydana gelmesi öngörülen doğrusal-elastik sınır ötesi davranış mekanizmasının seçilmesi ve sistemin bu mekanizma durumuna uygun olarak davranmasını sağlayacak tasarım önlemlerin alınması olarak tanımlanabilir [15]. Bu önlemlerin temel prensibi, yapı elemanlarında özellikle birleşim bölgelerinde yeterli sünekliğin sağlanmasıyla beraber gevrek göçmeye sebep olacak etkilere karşı kapasitenin yeterince artırılarak güç tükenmesinin sünek olarak gerçekleşmesini sağlamaktır. Şekil 2.16'da gevrek ve sünek güç tükenmesini anlatan bir model verilmiştir. Burada görüldüğü gibi gevrek halkanın kapasitesi, sünek halkanın kapasitesinden düşük olması durumunda güç tükenmesi yapılarda istenmediği şekliyle ani ve gevrek olarak meydana gelir. Gevrek halka kapasitesinin daha yüksek olması durumunda ise sünek halkanın belirgin şekil değiştirmeler yaparak daha fazla enerji tüketmesi ve güç tükenmesinin kontrollü olarak gerçekleşmesi sağlanır.

Şekil 2.16 : İki halkalı zincirin gevrek ve sünek güç tükenmesi [11]

Depreme dayanıklı yapı tasarımında yaklaşımlardan biri malzemenin düşey yüklerde olduğu gibi deprem yükleri altında da doğrusal – elastik davranmasını sağlayacak şekilde boyutlandırma yapmaktır. Bu durumda eleman kesitlerinin gerçek kapasitelerinden yararlanılmayan ve ekonomik olmayan bir sonuç ortaya çıkar. Nükleer enerji santralleri gibi sadece önem derecesi yüksek olan yapıların tasarımında bu yaklaşımdan yararlanılır. Kullanımı daha yaygın olan konut, okul ve hastane gibi yapılarda deprem etkileri altında taşıyıcı sistemin doğrusal – elastik sınır ötesindeki davranışını gözönüne alan yaklaşım ise kapasite tasarım ilkelerinin uygulanması koşulu ile yeter derecede güvenli ve ekonomik sonuçlar verir.

Eşdeğer deprem yükleri kullanılarak yapılan hesaplar birçok kabul içerir. Düşük ihtimalle de olsa taşıyıcı sisteme öngörülenden daha büyük etkiler gelebilir. Buna bağlı olarak Deprem Yönetmeliği'nde binaların; hafif şiddetteki depremlerde yapısal ve yapısal olmayan elemanların herhangi bir hasar görmemesi, orta şiddetteki depremlerde yapısal ve yapısal olmayan elemanların sınırlı ve onarılabilir

düzeyde kalması, şiddetli depremlerde ise can güvenliğinin sağlanması amacı ile kalıcı yapısal hasar oluşumunun sınırlanması amaçlanmıştır. Kapasite tasarımının amacı ise öngörülmeyen etkilerin oluşması durumunda göçme olayının sünek, belirgin ve kontrol edilebilir şekilde gerçekleşmesini ve can güvenliğini sağlamaktır. Aşağıda TS 500 ve Deprem Yönetmeliği'ne göre bazı temel kapasite tasarım ilkeleri verilmiştir:

a. Çekme donatısının kenetlenmesi

Betonarme bir elemanda, donatının akmadan beton içinden sıyrılarak çıkması yani aderansın çözülmesi gevrek güç tükenmesine sebep olur. Donatı ile beton arasında yeterli aderansın sağlanabilmesi için TS 500 Bölüm 9'da denklem 2.7'

$$l_b = \left(0.12 \frac{f_{yd}}{f_{ctd}} \emptyset\right) \ge 20\emptyset \tag{2.7}$$

minimum kenetlenme boyu öngörülmüştür.

b. Betonarme kesitte betonda güç tükenmesi meydana gelmeden donatının akması

Eğilme etkileri altındaki betonarme elemanda donatının akması olayı, betondaki birim kısalmaya bağlı olarak meydana gelen gevrek güç tükenmesinden önce gerçekleştirilerek kesit sünekliği sağlanır. Böylelikle büyük şekil değiştirme değerleri elde edilerek artan etkilerin sistemdeki diğer kritik kesitlerce karşılanması sağlanır. Bu amaçla TS 500 Bölüm 7'de denklem 2.8'de verilen kesitteki çekme ve basınç donatı oranı farkının, dengeli donatı oranın en fazla %85'i olması öngörülmüştür.

$$\rho - \rho' \le \rho_{max} = 0.85 \rho_b \tag{2.8}$$

c. Kolon – kiriş birleşim bölgelerinde sargı donatısı kullanılması

Şekil 2.9'da betonarme bir kesitte sargı donatısı yani etriyenin kullanılmasına bağlı olarak moment – eğrilik ilişkisindeki farklılık verilmiştir. Betonun sargı donatısı ile yanal şekil değiştirmesinin sınırlandırılması kesit sünekliğinin artmasını sağlamıştır. Ayrıca basınç gerilmeleri altında kesitteki düşey donatıların burkularak ani güç tükenmesini önlemek amacıyla TS 500 ve Deprem Yönetmeliği'nde enine donatı aralıkları denklem (2.9-2.12)'deki gibi verilmiştir.

Kiriş(sarılma)
$$s_c \le min[0.25 h; 8\emptyset_l; 150mm]$$
 (2.9)

Kiriş(orta)	$s_c \leq min[0.5 d; 300mm]$	(2.10)
Kolon(sarılma)	$s_c \leq min[h/3; b/3; 100mm]$	(2.11)
Kolon(orta)	$s_{c} \leq min[0.5 h; 0.5b; 120]; 200mm]$	(2.12)

d. Kirişe göre daha kuvvetli kolon esası

Şekil 2.17'de kolon – kiriş birleşim bölgelerinde kesitlerin moment kapasiteleri gösterilmiştir. Deprem etkisi altında kolonlardaki güç tükenmesinin kirişlerden önce meydana gelmesi yapının göçmesine sebep olabilir. Göçme mekanizmasının sünek olarak gerçekleşmesi, kirişlerin güç tükenmesine daha önce ulaşmasıyla mümkün olur. Ayrıca Şekil 2.10'da verilen, betonarme bir kesite ait moment – eğrilik diyagramında görüldüğü gibi kolonlarda eksenel yüke bağlı olarak sünek davranış kısıtlanmaktadır. Bu etkenler doğrultusunda Deprem Yönetmeliğinde denklem 2.13'de verilen birleşim bölgesindeki kolonların toplam eğilme momenti kapasitesinin, kirişlerin toplam eğilme momenti kapasitesinden %20 daha büyük olması öngörülmüştür.

$$(M_{ra} + M_{rü}) \ge 1.2(M_{ri} + M_{ri}) \tag{2.13}$$

Şekil 2.17 : Kolon – kiriş uç bölgelerinde taşıma gücü momentleri [14]

e. Kolonların ve kirişlerin kesme güvenliği

Deprem etkisi altında kirişlerde oluşan kesme kuvvetleri, betonda oluşan güç tükenmesi sonucu gevrek göçmeye sebep olur. Göçmenin sünek olarak gerçekleşmesi için kolon veya kiriş elemanın kesme kuvveti kapasitesinin eğilme momenti kapasitesinden yüksek olması gerekir. Bu amaçla Deprem Yönetmeliği denklem 2.14'te verilen enine donatı hesabında esas alınan kesme kuvveti değerinin, düşey yükler altında meydana gelen kesme kuvveti ve eğilme momenti kapasitesine bağlı olarak oluşacak kesme kuvveti toplamına bağlı olarak hesaplanması öngörülmüştür.

$$V_e = V_{dy} \pm (M_{pi} + M_{pj})/l_n$$
(2.14)

Kiriş uçlarındaki moment kapasiteleri, daha kesin hesap yapılmadığı durumlarda,

 $M_{pi} \cong 1.4 M_{ri}$ ve $M_{pj} \cong 1.4 M_{rj}$ olarak alınabilir. Kolonların enine donatı hesabına esas alınacak kesme kuvveti V_e de benzer şekilde hesaplanabilir.

f. Kolon – kiriş birleşim bölgelerinin kesme güvenliği

Kolon – kiriş birleşim bölgelerinde kiriş donatıları akmaya erişmeden, basınç gerilmeleri etkisi altındaki betonda meydana gelen güç tükenme durumu gevrektir. Deprem Yönetmeliği denklem 2.15'te verilen birleşim bölgelerindeki kesme güvenliğinin ve dolayısıyla sünekliğin sağlanabilmesi için enine donatı hesabında esas alınan kesme kuvveti için aşağıdaki bağıntılar öngörülmüştür.

 $V_e = 1.25 f_{yk} (A_{s1} + A_{s2}) - V_{kol}$ (2.15)

Şekil 2.18 : Kuşatılmış kolon – kiriş birleşim bölgesi koşulları [14]

Kirişin kolona sadece bir taraftan saplandığı ve öbür tarafta devam etmediği durumlar için $A_{s2} = 0$ alınacaktır. Herhangi bir birleşim bölgesinde yukarıdaki denklem ile hesaplanan kesme kuvveti, gözönüne alınan deprem doğrultusunda

hiçbir zaman denklem 2.16 ve 2.17'de verilen sınırları aşmayacaktır (Şekil 2.18). Bu sınırların aşılması durumunda, kolon ve/veya kiriş kesit boyutları büyültülerek deprem hesabı tekrarlanacaktır.

Kuşatılmış birleşimlerde
$$V_e \le 0.60 b_j h f_{cd}$$
 (2.16)

Kuşatılmamış birleşimlerde
$$V_e \le 0.45 b_i h f_{cd}$$
 (2.17)

g. Kolonun enkesit koşulu

Eksenel yük etkisi altındaki kolonlarda deprem etkileriyle basınç gerilmeleri artmaktadır. Ayrıca Şekil 2.10'da görüldüğü gibi eksenel yük değerlerinin artması, kolonun şekil değiştirme kapasitesini azaltmaktadır. Deprem Yönetmeliği Bölüm 3'te kolonların yeter süneklikte davranış göstermelerini sağlayabilmek için düşey ve deprem yüklerinin ortak etkisi altında hesaplanan en büyük basınç kuvvetine bağlı olarak denklem 2.18'de verilen şartı sağlanması öngörülmüştür.

$$A_c \ge N_{dm} / (0.50 f_{ck}) \tag{2.18}$$

h. Perdelerin tasarım eğilme momentleri ve kesme kuvvetleri

Diğer betonarme taşıyıcı elemanlar gibi perdelerin de sünek davranış göstermesini sağlamak için kesme kuvveti etkilerine karşı taşıma gücü kapasitelerinin, eğilme momenti kapasitelerinden yüksek olması esas alınır. Buna bağlı olarak Deprem Yönetmeliği denklem 2.19'da verilen perde tasarım kesme kuvvetinin, perde eğilme momenti kapasitesine bağlı olarak hesaplanması öngörülmüştür.

$$V_e = \beta_v \frac{(M_p)_t}{(M_d)_t} V_d \tag{2.19}$$

Bu bağıntıda yer alan kesme kuvveti dinamik büyütme katsayısı $\beta_v = 1.5$ alınacaktır. Daha kesin hesap yapılmadığı durumlarda, perde tabanındaki pekleşmeli moment kapasitesi olarak $(M_p)_t \cong 1.4 (M_r)_t$ alınabilir.

 $(M_p)_t$ = Perdenin taban kesitinde f_{ck} , f_{yk} ve çeliğin pekleşmesi gözönüne alınarak hesaplanan moment kapasitesi

 $(M_d)_t$ = Perdenin taban kesitinde yük katsayıları ile çarpılmış düşey yükler ve deprem yüklerinin ortak etkisi altında hesaplanan moment

 $(M_r)_t$ = Perdenin taban kesitinde f_{cd} ve f_{yd} 'ye göre hesaplanan taşıma gücü momenti

Ayrıca perdelerin temele mesentlendiği bölgede donatı filizlerinin kenetlenme boyunu sağlayacak yeterlikte olmaması, gevrek güç tükenmesine sebep olacaktır.

i. Zımbalama

Kirişsiz döşemelerde ve temele mesnetlenen kolonlarda gevrek olarak meydana gelen zımbalama güç tükenmesi Şekil 2.19'da verilmiştir. Zımbalama güç tükenmesinin gerçekleşebileceği bölgelerde kapasitenin artırılarak sünekliğin sağlanmasına dair tasarım esasları TS 500 Bölüm 8'de verilmiştir.

Yukarıda anlatılan kapasite tasarım esaslarına ek olarak taşıycı sitemdeki aynı türden yapı elemanlarını, şekil değiştirme kapasiteleri birbirine yakın olacak şekilde boyutlandırmak gerekir. Bu sayede kritik kesitlerin yardımlaşması ve plastik şekil değiştirmeye uğrayan elemanların sistemde daha homojen dağılması sağlanır. Gereğinden fazla şekil değiştirme kapasitesine sahip elemanlar, sistemde artan etkileri kabul edilebilir plastik şekil değiştirmeler yaparak diğer yapı elemanlarına iletmek yerine kendi üzerine alarak bölgesel göçmelere veya sistemin mekanizma

durumuna gelmesine sebep olabilirler. Şekil 2.20'de basit çerçeve sistemde kapasite kavramının uygulaması verilmiştir. Birinci durumda plastik şekil değiştirmeler sistemde yayılı halde oluşmuş ve artan etkiler daha fazla yapı elemanının mevcut kapasiteleri değerlendirilerek karşılanmıştır. Diğer durumda ise birinci katta *kat mekanizması* oluşarak sistemin göçmesi gerçekleşmiştir. Yumuşak kat göçmesi olarak isimlendirilen bu durum, depremlerde sıklıkla karşılaşılan bir göçme türüdür.

Şekil 2.20 : Çerçeve türü taşıyıcı sistemlerde plastik mafsalların dağılımı: (a) olması tercih edilen dağılım, (b) olması istenmeyen dağılım (birinci katta kat mekanizması) [16]

Görüldüğü gibi, boyutlamada kapasite kavramının kullanılmasıyla, büyük bir depremde yapı, sünek olan ve toptan göçmeye neden olmayan belirli bir güç tükenme şekline zorlanmakta, diğer bir deyişle sünek olmayan ve toptan göçmeye neden olabilecek bir göçme şeklinin oluşmaması için önlem alınmaktadır [13].

2.1.5 Plastik mafsal kavramı

Yeterli sünekliğe sahip yapı elemanlarında, basit eğilme etkisi altında doğrusal olmayan şekil değiştirmelerin *plastik mafsal* adı verilen belirli kesitlerde yoğunlaştığı kabul edilir. Plastik mafsal bölgelerinin dışında ise yapı elemanının doğrusal – elastik davranış gösterdiği düşünülür. Şekil 2.21'de bir kirişin kolona mesnetlendiği bölgede ve açıklık bölgesinde, moment değişimine bağlı olarak idealleştirilmiş

moment – eğrilik ilişkisi ile plastikleşme bölgeleri verilmiştir. Kesitin taşıma gücü momenti M_u 'ya ulaşmasıyla plastikleşmenin başladığı görülür. Akma eğriliği ϕ_y değerinin elde edildiği bu noktaya kadar kesitte momentle orantılı olarak elastik eğrilik $\phi = M / EI$ meydana gelir.

Şekil 2.21 : Sürekli kirişte mesnet ve açıklık bölgesinde plastik eğrilik değişimi [11] Kesit üzerinde gösterilen eğrilik değişimi grafiğinin altında kalan alan, plastikleşme bölgesinin başlangıcında bulunan *A* kesitinin mesnet yüzündeki *B* kesitine göre dönmesi denklem 2.20'de verilmiştir.

$$\theta_{AB} = \int_{A}^{B} \phi \, dx = \int_{A}^{B} \phi_{elastik} \, dx + \int_{A}^{B} \phi_{plastik} \, dx \tag{2.20}$$

B kesitinde oluşan en büyük plastik eğrilik değeri esas alınarak dikdörtgen taralı alanla ifade edilen eşdeğer plastik eğrilik değişimi elde edilir. Eşdeğer plastik eğrilik değişiminin boyu ise l_p *Eşdeğer Plastik Mafsal Boyu* olarak kabul edilir ve denklem 2.21'de verilmiştir.

$$l_p = \frac{\theta_{AB \ plastik}}{\phi_{p \ max}} = \frac{1}{\phi_{p \ max}} \int_{A}^{B} \phi_{plastik} \ dx \tag{2.21}$$

Plastik mafsal bölgesinin boyu, eğrilik – moment bağıntısına, eleman boyunca eğilme momentinin değişimine, kesit yüksekliğine ve kesitteki normal kuvvete bağlıdır. Şekil 2.21'de moment değişiminin mesnet bölgesine göre daha yumuşak olduğu kirişin açıklık bölgesinde plastik mafsal boyunun daha uzun olduğu görülmektedir. Şekil 2.22'de ise dikdörtgen ve I kesitler için aynı tekil yükün etkisi altında oluşan plastikleşme bölgeleri verilmiştir. Burada plastikleşmenin tekil bir noktada yoğunlaştığı varsayımının, I kesitler için daha isabetli olduğu görülmektedir.

Şekil 2.22 : Teorik plastik mafsal boyları [17]

Plastik mafsal boyunun yukarıda verilen ifadelerle belirlenmesi, plastik mafsal kabulünün oluşturduğu kolaylığı ortadan kaldırır. Deney sonuçlarına dayanarak, kirişlerde plastik mafsal boyu için $l_p \ge 0.5 d$ olmak üzere denklem 2.22 ve 2.23

$$l_p = 0.25 \, d + 0.075 \, z \tag{2.22}$$

$$l_p = 0.50 \, d + 0.050 \, z \tag{2.23}$$

ifadeleri teklif edilmiştir. Burada z kesitin moment sıfır kesitinden olan uzaklığı, h kirişin toplam yüksekliği ve d faydalı yüksekliğidir. Bu ifade, beklendiği gibi,

açıklıkta mesnede göre daha büyük plastik mafsal boyu verecektir. Deprem Yönetmeliği'nde daha basit olan $l_p = 0.5 h$ kabulü benimsenmiştir [7].

Taşıyıcı bir sistemde plastik mafsallar; tekil yüklerin etkidiği noktalarda, elemanların düğüm noktalarına birleşen uç noktalarında ve yayılı yük etkisi atındaki elemanlarda kesme kuvvetinin sıfır olduğu noktalarda oluşur. Bu bağlamda düşey yükler etkisi altındaki kirişlerin açıklık bölgesinde plastik mafsal oluşması beklenebilir. Ancak tasarımda kullanma yükleri altında malzemenin doğrusal – elastik sınırı aşmaması esas alınır. Deprem yükleri etkisi altında ise kirişlerin mesnet kesitleri daha çok zorlanır ve plastik mafsalların bu bölgelerde oluşması beklenir. Performans değerlendirmesi yapıları yapıların matematiksel modellerinde de ilgili plastik mafsal tanımı genellikle kirişlerin yalnızca uç bölgelerine yapılarak işlem hacmi azaltılır. Kolonlarda ise gerek kirişlerden aktarılan etkilerle ve gerekse deprem etkileriyle genellikle en cok zorlanan kesitler kirislerde olduğu gibi eleman uç bölgeleridir. Ancak kolonlarda eğilme momentinin yanında normal kuvvetlerin de bulunması, daha önceki bölümlerde anlatıldığı gibi kesit sünekliğinin ve eğilme şekil değiştirme kapasitesinin azalmasına sebep olurken (Şekil 2.10), kesitlerde burulma momenti ve kesme kuvvetinin bulunması da benzer etkiyi yaratır. Bu durumda da plastik mafsallar öngörüldüğü şekliyle oluşmayacaktır. Örneğin, kolonda çok büyük eksenel yüklerin bulunduğunu düşünelim. Bu durumda kolonun tüm kesitleri plastikleşecek ve plastik mafsal varsayımı geçersiz olacaktır. Plastik mafsalların oluşabilmesi için kesitin yeterli dönme kapasitesine sahip olması gerekir. Dönme kapasitesi ise

- Kullanılan beton ve çelik malzemenin en büyük birim şekil değiştirme değerlerine,
- Sargı donatısı kullanımına, sıklığına ve türüne (Şekil 2.6, Şekil 2.9),
- Plastik mafsal boyunu etkileyen faktörlere (Örneğin, eleman enkesiti (Şekil
 2.22) ve moment diyagramındaki değişimin yumuşaklığı (Şekil 2.21))

bağlı olarak değişir.

Plastik mafsal çözümü, gerçekçi anlamda sadece basit eğilme durumunda geçerlidir. Kesitte basınç normal kuvvetinin bulunması, plastik mafsal özelliklerini değiştirdiği gibi, mafsal boyunu da uzatır. Plastik mafsal özelliklerinin belirlenmesinde genellikle kesme kuvvetinin ve burulma momentinin etkisi göz önüne alınmaz. Ancak normal kuvvet gibi kesme kuvvetinin bulunması plastik mafsalda dönme kapasitesini azaltır [10].

2.2 Betonarme Yapı Sistemlerinin Deprem Performansının Belirlenmesinde Kullanılan Doğrusal Elastik Olmayan Hesap Yöntemleri

2.2.1 Giriş

Yapı sistemlerinde doğrusal olmayan davranışın esas alındığı hesap yöntemlerinin temelini, malzemenin doğrusal elastik ötesi davranışının dikkate alınmasıyla ortaya çıkan süneklik, kapasite tasarımı ve plastik mafsal kavramları oluşturmaktadır. Bu yöntemler, deprem kuvvetlerinin yapılar üzerinde oluşturduğu etkiyi daha gerçekçi bir şekilde yorumlama olanağının yanında yeni yapıların tasarımında daha ekonomik kesitlerin elde edilmesini sağlar.

TS 500'de doğrusal olmayan davranış *Yeniden Dağılım İlkesi* ile gözönünde bulundurulmuştur. Bu ilke, yeter derecede sünek tasarlanmış kesitlerin, taşıma gücü momentine ulaştıktan sonra yapacağı plastik dönmelerle artan etkilerin diğer kesitler tarafından karşılanmasını esas alır. Plastikleşen kesitlerde sabit kabul edilen *M*_u taşıma gücü eğilme momenti değeri bulunurken, artan etkilerle bir sonraki kritik kesit bu değere ulaşır. Moment diyagramındaki bu değişim *Yeniden Dağılım* olarak tanımlanır. Oluşan plastik dönmeler öngörülen sınırları aşmadığı sürece yani bölgesel göçmeler oluşmadıkça, sistem göçme mekanizmasına erişinceye kadar yeni kritik kesitlerde plastik şekil değiştirmeler meydana gelir. Ayrıca, bir yapı elemanı boyunca çatlamanın belirli yerlerde meydana gelmesi sonucu rijitliğin göreceli olarak azalması söz konusudur. Örneğin tablalı kiriş kesitlerinde negatif moment etkisiyle mesnet bölgelerinin üst kısımlarda çatlaklar oluşurken, açıklık bölgesindeki çatlaklar kesitin alt kısmında oluşacaktır. Bu durumda tabla kısmında daha büyük rijitlik azalması oluşacak ve negatif momentin pozitif momente oranı azalacaktır.

TS 500'de bu açıklamalar doğrultusunda çerçeve kirişleri ile sürekli kiriş ve döşemelerde doğrusal elastik çözümleme sonucunda bulunan mesnet momentleri denklem 2.24 ve 2.25'te belirtilen oranlarda değiştirebilir.

$$(\rho - \rho') \le 0.4 \rho_b$$
 ise, en fazla %15 (2.24)

$$0.4\rho_b < (\rho - \rho') \le 0.6 \rho_b$$
 ise, en fazla %10 (2.25)

Değişim oranındaki farklılığın doğrudan kesit sünekliği ile ilgili olduğu görülmektedir. Kesitte çekme donatı oranının artması sünekliği olumsuz etkilerken, basınç donatıları kesitin süneklik kapasitesini arttırmaktadır.

Yeterli sünekliği sağlayacak donatının bulunması şartıyla, kullanma yüklerinde kesitlerde çatlamanın sınırlı tutulması için, TS 500 moment diyagramının değiştirilmesini %15 ile sınırlandırmıştır. ACI 318 ve BS 8110 gibi bazı yönetmelikler daha ileri giderek değiştirme oranını %20 ve hatta %30'a çıkartmaktadır. Yapılan deneyler moment değerlerinde

 $(\rho - \rho')/\rho_b$ oranının küçük değerleri için %30'a kadar değişiklikler yapılabileceğini göstermiştir. Moment diyagramında yapılan değişiklikle boyutlamada bazı kesitlerde büyük donatı yoğunlaşmalarının önüne geçmek ve donatı miktarında ekonomi sağlamak mümkündür [7].

2007 Deprem Yönetmeliği, mevcut yapıların değerlendirilmesinde ikisi statik olmak üzere doğrusal olmayan üç ayrı hesap yöntemi öngörmüştür. *Artımsal Eşdeğer Deprem Yükü Yöntemi* ile *Artımsal Mod Birleştirme Yöntemi* statik hesap yöntemleridir. Bu yöntemlerde eşdeğer deprem yüklerinin bir defada değil, sisteme adım adım arttırılarak uygulanması söz konusudur. Artımsal Mod Birleştirme Yöntemi, yapının ilk hakim modunun taşıycı sistem davranışını yeter derecede temsil edemediği durumlarda kullanılır ve Artımsal Eşdeğer Deprem Yükü Yöntemi'nin bir uygulaması olarak görülebilir. Diğer bir analiz yaklaşımı olan *Zaman Tanım Alanında Hesap Yöntemi* ise deprem etkilerinin zamana bağlı fonksiyonunun, yapının matematik modeline tanımlanmasıyla gerçekleştirilen dinamik bir analiz yöntemdir.

2.2.2 Statik itme analizi ile deprem davranışının belirlenmesi

Statik itme analizi yönteminde plastik mafsal kabulü yapılarak yüklemeler sistemde adım adım arttırılır. Sistem mekanizma durumuna geldiğinde ise limit yük bulunur. Şekil 2.23'te basit bir çerçevede statik itme analizi uygulaması gösterilmiştir. Burada görüldüğü gibi, sistemde mekanizma durumu meydana geldikten sonra daha fazla yatay yük taşınamaz ve büyük yerdeğiştirmeler sonucu göçme olayı gerçekleşir.

Şekil 2.23 : Statik itme analizi [10]

Literatürde statik itme analizi, ATC-40 (1996), FEMA 356 (2000), GB50011-2001 (2001) ve Eurocode 8 (2005)'de olduğu gibi Deprem Yönetmeliği'nde de kabul görmüştür. Statik itme analizi yapılan yapının deprem etkileri altındaki davranışı, Kapasite Spektrum Yöntemi (ATC-40), Yerdeğiştirme Katsayıları Yöntemi (FEMA 356) ve Eşit Yerdeğiştirme Kuralı (Deprem Yönetmeliği) gibi yöntemlerle hedef tepe yerdeğiştirmeleri bulunarak değerlendirilir. Hedef yerdeğiştirme, öngörülen deprem etkilerinin yapıdan talebi ve yapının kapasitesi esas alınarak elde edilir. Yapının deprem performansı ise statik itme analizinin bulunan hedef yerdeğiştirme değerine kadar yapılması sonucu elemanlarda oluşan elastik ötesi etkilerin değerlendirilmesiyle belirlenir.

2.2.2.1 Hedef tepe yerdeğiştirmesinin hesabında kullanılan yöntemler

a) Kapasite spektrum yöntemi (ATC-40)

Performansa dayalı sismik analiz tekniği olan Kapasite Spektrum Yöntemi (*KSY*); çok sayıda binanın hızlı olarak değerlendirilmesi, inşası yeni yapılacak olan özel yapıların tasarım tahkiki ve mevcut yapıların çeşitli şiddetlerdeki yer hareketleri etkisi altında oluşacak hasar durumlarının değerlendirilmesi gibi çeşitli amaçlar için kullanılabilir [18]. Doğrusal olmayan statik yöntem algoritmalarının uygulanması, çok serbestlik dereceli (*ÇSD*) yapı modelinin eşdeğer tek serbestlik dereceli (*TSD*) yapı modeline dönüştürülmesini gerekli kılmaktadır. Gülkan ve Sözen (1974), betonarme TSD sistemlerin deprem simülatörü deneylerine dayanarak, yapı sistemlerinin elastik ötesi davranışının azaltılmış rijitlik ve arttırılmış sönümlü TSD yapı sistemleri ile tanımlanabileceğini bulmuşlardır. Bu çalışmalar, kapasite spektrum yönteminin geliştirilmesinde araştırmacılar tarafından kullanılmıştır [3].

Kapasite spektrum yöntemde yapının kapasitesi (statik itme eğrisi) ile öngörülen depremin yapıdan talebi birbiriyle aynı grafik üzerinde kıyaslanarak hedef tepe yerdeğiştirme yani *performans noktası* elde edilir. Bu kıyaslamanın yapılabilmesi için ilk olarak, ÇSD sistemin davranışını temsil eden statik itme eğrisi, eşdeğer TSD sistemin davranışını temsil eden *modal kapasite eğrisi*'ne dönüştürülür. Literatürde *ADRS (Acceleration – Displacement Response Spectrum)format* olarak bilinen bu dönüşüm Mahaney vd. (1993) tarafından geliştirilmiştir. Modal kapasite eğrisinde; statik itme eğrisinin taban kesme kuvvetleri *spektral ivme S_a*'ya, tepe yerdeğiştirmeleri ise *spektral yerdeğiştirme S_d*'ye karşılık gelir ve denklem 2.26 ve 2.27 ile hesaplanır.

$$S_a = \frac{V_T/W}{\alpha_1} \tag{2.26}$$

$$S_d = \frac{\delta_{max}}{PF_1 \Phi_{tepe,1}} \tag{2.27}$$

Elastik deprem talep spektrumu, yapının elastik davranışı gözönünde bulundurularak %5 sönümlü olarak hesaba katılır. Ancak statik itme eğrisi gibi deprem spektrumunu da ADRS formatında ifade etmek gerekir (Şekil 2.24).

Şekil 2.24 : Deprem talep spektrumunun ADRS formatına dönüştürülmesi [19]

Elastik deprem talep spektrumunda dikkate alınan %5'lik viskoz sönümün yanında, yapının sünek davranış sergileyerek kesitlerde oluşan plastik şekil değiştirmelerle enerjinin tüketilmesi söz konusudur. Buna bağlı olarak elastik deprem spektrumunda denklem 2.28 ve 2.29'da verilen SR_A ve SR_V katsayıları ile azaltma yapılarak *elastik olmayan indirgenmiş spektrum* elde edilir (Şekil 2.25).

$$SR_A = \frac{3.21 - 0.68 \ln(\beta_{eff})}{2.12}$$
(2.28)

$$SR_V = \frac{2.31 - 0.41 \ln(\beta_{eff})}{1.65}$$
(2.29)

ATC-40 Bölüm 8'de verilen bu bağıntılar incelendiğinde *Etkili Viskoz Sönüm* β_{eff} katsayısının yapının yeni veya eski/zayıf kaliteli olmasına bağlı olarak değiştiği görülür. Yeni yapıların daha yüksek kalitede inşa edilmiş olmaları, sünek davranışın öngörülen seviyeye daha yakın bir şekilde ortaya çıkmasını ve bu sayede daha çok deprem enerjisinin tüketilmesini sağlar. β_{eff} değeri de buna bağlı olarak yeni yapılarda daha küçük bir değer alır ve indirgeme katsayısı değerleri artar.

Şekil 2.25 : Elastik olmayan indirgenmiş spektrum [19]

- S_a : Spektral ivme
- S_d : Spektral yerdeğiştirme
- V_T : Statik itme analizinde taban kesme kuvveti
- δ_{max} : Statik itme analizinde tepe yerdeğiştirmesinin en büyük değeri
- W : Toplam yapı ağırlığı

- $\Phi_{\text{tepe},1}$: 1. (itme yönünde hakim) moda ait tepe genliği
- α_1 : 1. (itme yönünde hakim) moda ait modal kütle katsayısı
- PF_1 : 1. (itme yönünde hakim) moda ait modal katılım çarpanı
- β_{eff} : Etkili viskoz sönüm
- SR_A : Spektrumun sabit ivme bölgesindeki spektral indirgeme katsayısı

SR_v : Spektrumun sabit hız bölgesindeki spektral indirgeme katsayısı

Son olarak ADRS formatında elde edilmiş kapasite eğrisi ve elastik olmayan indirgenmiş spektrum, aynı grafik üzerinde çizilerek yapının performans noktası bulunur. Bu iki grafiğin kesişim noktası, belirli koşulları sağlaması durumunda performans noktası olarak kabul edilir (Şekil 2.26). İstenen koşulların sağlanmadığı durumlarda ise ATC-40 Bölüm 8'de verilen üç farklı yöntemden (işlem A,B,C) biri kullanılarak hedef yerdeğiştirme değeri hesaplanabilir.

b) Eşit yerdeğiştirme kuralı

İkinci Dünya Deprem Mühendisliği Konferansı'nda, Muto vd., (1960) tek serbestlik dereceli yapı sisteminin elastik ötesi yerdeğiştirmesinin, benzer başlangıç periyodu ve sönüme sahip elastik sistemin yerdeğiştirmesinden çok farklı olmadığını yazmışlardır. Bu konferansta, Veletsos ve Newmark (1960) da benzer sonuçların alındığı bir çalışmayı konferansta sunmuşlardır. Bu sonuç, günümüzde doğrusal olmayan statik analizin teorik dayanağı olan "Eşdeğer Yerdeğiştirme Kuralı" nın kendisidir[3]. Eşit yerdeğiştirme kuralında, binanın tamamen elastik davranması durumunda yapacağı yerdeğiştirmenin, elastik ötesi davranışında yapacağı elastik olmayan yerdeğiştirmeye yaklaşık olarak eşit olması esas alınır. Ancak bu yaklaşım, periyodu belirli bir değerden daha yüksek olan esnek yapılar için geçerlidir. Daha düşük periyoda sahip olan rijit yapılarda elastik olmayan yerdeğiştirmeler, elastik yerdeğiştirmenin 1'den büyük bir katsayı ile çarpılmasıyla elde edilir.

Aynı deprem etkisi altında elastik çözümde bulunan u^{e}_{max} maksimum yerdeğiştirmesi ile elasto-plastik çözümde bulunan u^{ep}_{max} birbiri ile değişik açılardan karşılaştırılabilir:

- a. Elastik sistemin yatay rijitliği elasto-plastik sisteme göre daha büyük olduğu için karşı gelen yerdeğiştirme küçük olacaktır: $u^e_{max} < u^{ep}_{max}$
- b. Elastik sistem daha rijit olup, deprem etkisine direneceği için, depremin elastik sistemi zorlaması daha büyük olacak ve dolayısıyla büyük zorlama ve büyük yatay yerdeğiştirmeye sebep olacaktır: $u^{e}_{max} > u^{ep}_{max}$
- c. Elasto-plastik sistemde plastik şekil değiştirmelerden dolayı bir çevrimsel sönüm ortaya çıkacak ve dolayısıyla yerdeğiştirmeler daha küçük olacaktır: $u^{e}_{max} > u^{ep}_{max}$

Sonuç olarak aynı deprem etkisinde elastik sistemde ortaya çıkan kuvvet elastoplastik sisteme göre göreceli olarak büyük olmasına rağmen, bu etkilerden her iki sistemde meydana gelen yatay yerdeğiştirmelerin birbirinden çok farklı olmayacağı söylenebilir [7].

Deprem Yönetmeliği'nde hedef yerdeğiştirmenin yani performans noktasının hesabı, eşit yerdeğiştirme kuralı esas alınarak, kapasite spektrum yöntemine benzer şekilde elde edilir. Bunun için ilk olarak statik itme eğrisi, eşdeğer tek serbestlik dereceli sistemin davranışını ifade eden modal kapasite eğrisine dönüştürülür (Şekil 2.27).

Şekil 2.27 : Modal kapasite diyagramı [20]

Bu dönüşüm için Deprem Yönetmeliği'nde verilen denklem 2.30 ve 2.31'de verilen aşağıdaki ifadeler kullanılır:

(i)'inci itme adımında birinci (deprem doğrultusunda hakim) moda ait modal ivme $a_1^{(i)}$ aşağıdaki şekilde elde edilir.

$$a_1^{(i)} = \frac{V_{x1}^{(i)}}{M_{x1}} \tag{2.30}$$

(i)'inci itme adımında birinci (deprem doğrultusunda hakim) moda ait modal yerdeğiştirme $d_1^{(i)}$ 'nin hesabı için ise, aşağıdaki bağıntıdan yararlanılabilir:

$$d_1^{(i)} = \frac{u_{xN1}^{(i)}}{\Phi_{xN1}\Gamma_{x1}}$$
(2.31)

 $V_{x1}^{(i)}$: x deprem doğrultusunda (i)'inci itme adımı sonunda elde edilen birinci moda (hakim moda) ait taban kesme kuvveti

 M_{x1} : x deprem doğrultusunda doğrusal elastik davranış için tanımlanan birinci (hakim) moda ait etkin kütle

 $u_{xN1}^{(i)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda (i)'inci itme adımı sonunda elde edilen birinci moda ait yerdeğiştirme

 Φ_{xN1} : Binanın tepesinde (N'inci katında) x deprem doğrultusunda birinci moda ait mod şekli genliği

 Γ_{x1} : x deprem doğrultusunda birinci moda ait katkı çarpanı

Yönetmelikte performans noktası, *modal yerdeğiştirme talebi*, $d_1^{(p)}$ olarak tanımlanır ve *doğrusal olmayan spektral yerdeğiştirme*, S_{di1} 'e eşittir (denklem 2.32).

$$d_1^{(p)} = S_{di1} \tag{2.32}$$

Hesaplanan $d_1^{(p)}$ değerinin, denklem 2.31'de yerine konulması ile *x deprem doğrultusundaki tepe yerdeğiştirme talebi*, $u_{xNI}^{(p)}$ elde edilir (denklem 2.33)

$$u_{xN1}^{p} = \Phi_{xN1} \Gamma_{x1} d_{1}^{(p)}$$
 (2.33)

Doğrusal olmayan spektral yerdeğiştirme S_{di1}'in hesabı ise Deprem Yönetmeliği'nin Bilgilendirme Eki 7C.'de aşağıdaki gibi verilmiştir:

Doğrusal elastik olmayan spektral yerdeğiştirme, S_{di1} , itme analizinin ilk adımında, doğrusal elastik davranış esas alınarak hesaplanan birinci (hakim) moda ait $T_1^{(1)}$ başlangıç periyoduna karşı gelen *doğrusal elastik spektral yerdeğiştirme* S_{de1} 'e bağlı olarak denklem 2.34'ten elde edilir.

$$S_{di1} = C_{R1} S_{de1}$$
 (2.34)

Doğrusal elastik spektral yerdeğiştirme S_{de1} , itme analizinin ilk adımında birinci moda ait *elastik spektral ivme* S_{ae1} 'den denklem 2.35'teki gibi hesaplanır.

$$S_{de1} = \frac{S_{ae1}}{(\omega_1^{(1)})^2}$$
(2.35)

 C_{R1} : Birinci moda ait spektral yerdeğiştirme oranı

ω₁⁽¹⁾ : Başlangıçtaki (i=1) itme adımında birinci (deprem doğrultusunda hakim) titreşim moduna ait doğal açısal frekans

Spektral yerdeğiştirme oranı C_{R1}, *başlangıç periyodu* $T_1^{(1)}$ 'in değerine (T₁⁽¹⁾ = 2π / $\omega_1^{(1)}$) bağlı olarak belirlenir:

 $T_1^{(1)}$ başlangıç periyodunun, ivme spektrumundaki *karakteristik periyod* T_B 'ye eşit veya daha uzun olması durumunda $(T_1^{(1)} \ge T_B \text{ veya } (\omega_1^{(1)})^2 \le (\omega_B)^2)$, doğrusal elastik olmayan spektral yerdeğiştirme S_{di1} , *eşit yerdeğiştirme kuralı* uyarınca doğal periyodu yine $T_1^{(1)}$ olan *eşlenik doğrusal elastik sistem*'e ait lineer elastik spektral yerdeğiştirme S_{de1} 'e eşit alınacaktır (Şekil 2.28). Buna göre spektral yerdeğiştirme oranı denklem 2.36'da verilmiştir.

$$C_{R1} = 1$$
 (2.36)

 $T_1^{(1)}$ başlangıç periyodunun, ivme spektrumundaki *karakteristik periyod* T_B 'den daha kısa olması durumunda $(T_1^{(1)} < T_B \text{ veya } (\omega_1^{(1)})^2 > (\omega_B)^2)$ ise spektral yerdeğiştirme oranı C_{R1} denklem 2.37'den hesaplanır (Şekil2.29).

$$C_{R1} = \frac{1 + (R_{y1} - 1)T_B / T_1^{(1)}}{R_{y1}} \ge 1$$
(2.37)

Bu bağıntıdaki R_{y1} birinci moda ait dayanım azaltma katsayısı denklem 2.38'de verilmiştir.

$$R_{y1} = \frac{S_{ae1}}{a_{y1}} \tag{2.38}$$

a_{v1} : Birinci moda ait eşdeğer akma ivmesi

Şekil 2.28 : Eşit yerdeğiştirme kuralı (esnek yapılar) [21]

Şekil 2.29 : Eşit yerdeğiştirme kuralı (rijit yapılar) [21]

Spektral yerdeğiştirme oranını C_R 'nin elde edilişini incelediğimizde; yapının esnekliğinin dolayısıyla periyodunun $(T_1^{(1)})$ artmasıyla C_R değerinin azaldığının

görürüz. Periyodun $T_1^{(1)}=T_B$ değeri ise eşit yerdeğiştirme kuralının geçerli olduğu sınır durumudur ve denklemde yerine konulduğunda $C_R=1$ elde edilir. $R_{y1}\approx 1$ durumu ise çok rijit bir yapının elastik ötesi şekil değiştirmeler yapamadan güç tükenmesine erişeceğini ifade eder. Denklemde $R_y=1$ olarak hesap yapıldığında yine $C_R=1$ elde edilir. Bu da çok rijit bir yapının sünek davranış gösteremeden göçmesi durumunda u_{max}^e ve u_{max}^{ep} değerlerinin birbirine yakın olmasını doğrular.

c) Yerdeğiştirme katsayıları yöntemi (FEMA 356)

FEMA 356 (2000)'da analiz prosedürlerinin anlatıldığı 3. bölümde verilen bu yöntem de yapı kapasitesi ile deprem talebinin birbirine bağlı olduğu esasına dayanır. İstatistiksel verilerle elde edilen katsayılarla elastik deprem spektrumundan elastik olmayan deprem spektrumu belirlenir. Daha sonra oluşturulan kapasite eğrisi iki doğrulu hale dönüştürülür ve etkili periyot denklem 2.39'dan hesaplanır.

$$T_e = T_i \sqrt{\frac{K_i}{K_e}}$$
(2.39)

T_e : Etkili hakim periyot

T_i : Yapının elastik dinamik analiz ile bulunan birinci doğal periyodu

- K_i : Yapının elastik başlangıç rijitliği
- Ke : Yapının elastik etkili rijitliği

Yapının hedef yerdeğiştirmesi δ_t ise bulunan efektif periyot ve düzeltme katsayıları kullanılarak denklem 2.40'tan hesaplanır.

$$\delta_t = C_0 C_1 C_2 C_3 S_a \frac{T_e^2}{4\pi^2} g$$
(2.40)

C₀ : Spektral yerdeğiştirme – tepe yerdeğiştirmesi ilişkisini ifade eden katsayı

C₁ : Doğrusal elastik yerdeğiştirme – elastik olmayan yerdeğiştirme ilişkisini ifade eden katsayı

 C_2 : Yapının yük – yerdeğiştirme ilişkisinin en büyük yerdeğiştirmeye etkisini ifade eden katsayı

C₃ : II. mertebe etkiler sebebiyle yerdeğiştirmede oluşacak artmayı ifade eden katsayı

S_a : Yapının birinci doğal periyoduna karşılık gelen spektral ivme

2.2.2.2 Performansın değerlendirilmesi

Doğrusal elastik olmayan yöntemlere analizi yapılan yapıların performansı, elemanlarda oluşan hasarlara bağlı olarak belirlenir. Yapının türüne ve öngörülen deprem etkilerinin büyüklüğüne bağlı olarak hedeflenen en düşük performans seviyesi farklılık gösterir. Deprem Yönetmeliği'nde, genel anlamda binanın küçük depremleri hasarsız atlatması, büyük depremleri can güvenliğini sağlayan sınırlı hasarla atlatması ve çok büyük depremleri de toptan göçme olmadan atlatması gibi performans seviyeleri hedeflenmiştir [22]. FEMA 356, Eurocode 8 gibi yönetmeliklerde de benzer yaklaşımla bu sınırlar belirlenmiştir. Çizelge 2.2'de Deprem Yönetmeliği'nde öngörülen performans hedefleri verilmiştir. Çizelge 2.3'te ise bu konuyla ilgili çalışmaların ilk yayınlarından olan, Vision 2000 (SEAOC, 1995)'de verilen performans seviyeleri gösterilmiştir.

Rinanın Kullanım Amacı	Depremin Aşılma Olasılığı			
ve Türü	50 yılda %50	50 yılda %10	50 yılda %2	
Deprem Sonrası Kullanımı Gereken Binalar: Hastaneler, sağlık tesisleri, itfaiye binaları, haberleşme ve enerji tesisleri, ulaşım istasyonları, vilayet, kaymakamlık ve belediye yönetim binaları, afet yönetim merkezleri, vb.	-	НК	CG	
İnsanların Uzun Süreli ve Yoğun Olarak Bulunduğu Binalar: Okullar, yatakhaneler, yurtlar, pansiyonlar, askeri kışlalar, cezaevleri, müzeler, vb.	-	НК	CG	
İnsanların Kısa Süreli ve Yoğun Olarak Bulunduğu Binalar: Sinema, tiyatro, konser salonları, kültür merkezleri, spor tesisleri	НК	CG	-	
Tehlikeli Madde İçeren Binalar: Toksik, parlayıcı ve patlayıcı özellikleri olan maddelerin bulunduğu ve depolandığı binalar	-	НК	GÖ	
Diğer Binalar: Yukarıdaki tanımlara girmeyen diğer binalar (konutlar, işyerleri, oteller, turistik tesisler, endüstri yapıları, vb.)	-	CG	-	

Çizelge 2.2 : Farklı deprem düzeylerinde binalar için öngörülen minimum performans hedefleri [14]

HK : Hemen kullanım performans düzeyi

CG : Can güvenliği performans düzeyi

GÖ : Göçme öncesi performans düzeyi

Deprem Yönetmeliği Bölüm 7.7'de *HK*, *CG* ve *GÖ* performans düzeylerinin sağlaması gereken şartlar açıklanmıştır.

Deprem	Performans Hedefi				
Olabilirliği	Hemen Kullanım	İşlevsel	Can Güvenliği	Göçme Öncesi	
Sık	Basit Binalar	Kabul Edilmeyen			
Ara Sıra Olan	Önemli /	Basit Binalar	Performans		
Nadir	Hayati Tehlike	/Tehlikeli	Basit Binalar	Seviyesi	
Çok Nadir		Arz Eden Binalar	Binalar	Basit Binalar	

Cizelge 2.3 : Vision 2000 (1995) raporunda belirlenen performans hedefleri [23]

Öngörülen deprem etkileri altında, yapının performansını belirleyebilmek için tüm taşıyıcı elemanlarda plastik şekil değiştirmelere bağlı olarak kesit hasar durumları belirlenmelidir. Şekil 2.30'da şekil değiştirme ve iç kuvvete bağlı olarak Deprem Yönetmeliği'nde verilen kesit hasar bölgeleri gösterilmiştir.

İç Kuvvet

Şekil 2.30 : Kesit hasar bölgeleri [14]

- MN : Minimum hasar sınırı
- GV : Güvenlik sınırı
- GÇ : Göçme sınırı

Kesit hasarlarının değerlendirilmesinde farklı yaklaşımlar söz konusudur. Örneğin, hasar sınırları FEMA 356 ve Eurocode 8'de çeşitli yöntemlerle plastik mafsallarda oluşan dönmelere göre belirlenirken, Deprem Yönetmeliği'nde beton ve çelik malzemenin birim şekil değiştirmeleri esas alınır. Plastik şekildeğiştirmelerin meydana geldiği betonarme sünek taşıyıcı sistem elemanlarında, çeşitli kesit hasar sınırlarına göre izin verilen şekildeğiştirme üst sınırları denklem (2.41-2.43) ile (kapasiteleri) aşağıda tanımlanmıştır.

(a) Kesit Minimum Hasar Sınırı (MN) için kesitin en dış lifindeki beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları:

$$(\varepsilon_{cu})_{MN} = 0.0035$$
 , $(\varepsilon_s)_{MN} = 0.010$ (2.41)

(**b**) Kesit Güvenlik Sınırı (GV) için etriye içindeki bölgenin en dış lifindeki beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları:

$$(\varepsilon_{cu})_{GV} = 0.0035 + 0.01(\rho_s/\rho_{sm}) \le 0.0135$$
 , $(\varepsilon_s)_{MN} = 0.040$ (2.42)

(c) Kesit Göçme Sınırı (GÇ) için etriye içindeki bölgenin en dış lifindeki beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları:

$$(\varepsilon_{cu})_{GC} = 0.0040 + 0.014(\rho_s/\rho_{sm}) \le 0.0180$$
, $(\varepsilon_s)_{MN} = 0.060$ (2.43)

FEMA yaklaşımında öngörülen, plastik mafsal dönmesine bağlı hasar sınırları ise Çizelge 2.4 ve Çizelge 2.5'te verilmiştir [22].

·					
KİRİŞLER İÇİN PLASTİK MAFSAL DÖNME		$\begin{array}{c} PLASTIK MAFSAL DÖNMESI\\ 10^3 \times \phi_p l_p \end{array}$			
SINIRLARI (BİRİMLER: N, MM)		Performans seviyeleri			
$(ho - ho') ho_b$	Sargı donatısı	$V_d/(b_w d\sqrt{f_c})$	MN	GV	$G \c C$
≤0.0	var	≤0.25	10	20	25
≤0.0	var	≥0.50	5	10	20
≥0.5	var	≤0.25	5	10	20
≥0.5	var	≥0.50	5	5	15
≤0.0	yok	≤0.25	5	10	20
≤0.0	yok	≥0.50	1.5	5	10
≥0.5	yok	≤0.25	5	10	10
≥0.5	yok	≥0.50	1.5	5	5

Çizelge 2.4 : Eğilme açısından kritik kirişler için plastik mafsal dönme sınırları (Update to ASCE/SEI 41, 2007) [22]

KOLONLAR İÇİN PLASTİK MAFSAL DÖNME SINIRLARI		$\frac{PLASTIK MAFSAL DÖNMESI}{10^3 \times \phi_p l_p}$			
(BİRİMLER: N, MM)		Performans seviyeleri			
$N_d/(A_c f_c)$	Sargı donatısı	$V_d/(b_w d\sqrt{f_c})$	MN	GV	GÇ
≤0.1	var	≤0.25	5	24	32
≤0.1	var	≥0.50	5	19	25
≥0.4	var	≤0.25	3	8	9
≥0.4	var	≥0.50	3	6	7
≤0.1	yok	≤0.25	5	9	10
≤0.1	yok	≥0.50	4	5	5
≥0.4	yok	≤0.25	2	3	3
≥0.4	yok	≥0.50	0	0	0

Çizelge 2.5 : Kolonlar için plastik mafsal dönme sınırları (Update to ASCE/SEI 41, 2007) [22]

Plastik dönmenin ana etken olduğu hasar sınırlarına ait bu tablolar incelendiğinde, elde edilen değerlerin aşağıda verilen sebeplere bağlı olarak ortaya çıktığı görülür:

- Kesitlerde eğilme momenti ile birlikte kesme kuvvetinin de bulunması, sünek davranışın tam olarak gerçekleşmesini engeller ve daha düşük plastik şekil değiştirmelerde güç tükenmesine erişilmesine sebep olur. Buna bağlı olarak kesme kuvveti değerinin artması, plastik dönmeye bağlı hasar sınır değerlerinin azalmasına sebep olacaktır.
- Sünek davranışın sağlanmasında en önemli etkenlerden biri sargı donatısının kullanılmasıdır. Sargı donatısının bulunmaması, hasar sınırlarını önemli ölçüde azaltmaktadır. Kapasite tasarımının esaslarından olan kuvvetli kolonzayıf kiriş yaklaşımı dikkate alındığında, sargı donatısının bulunmaması, kolonlarda kirişlere göre hasar sınırının daha büyük oranda azalmasına sebep olduğu görülür.
- Kirişlerde çekme donatı oranının artması sünekliği azaltırken, basınç donatı oranının artması sünekliğin artmasını sağlar. Buna bağlı olarak (ρ ρ')ρ_b oranın artmasıyla kesitin şekil değiştirme kapasitesi ve öngörülen hasar sınırları azalır.
- Kolonlarda ise eğilme momenti ile birlikte normal kuvvetin de bulunması sünekliğin önemli derecede azalmasına sebep olur (Şekil 2.31). Kolonlar için

verilen hasar sınırı tablosu incelendiğinde, eksenel yük artışının kesme kuvvetindeki artışa göre hasar sınırlarında daha büyük oranda azalmaya sebep olduğu görülür.

Şekil 2.31 : Bileşik eğilme etkisindeki betonarme kesitte M – ϕ diyagramı [15]

Eurocode yaklaşımında ise, Şekil 2.32'de kiriş ve kolonlar için tanımlanan çember kiriş dönmesinin plastik değeri ana parametre kabul edilir. Bu parametreye bağlı sınırlar;

Minimum hasar sınırı (MN) $\theta_{ch}^{pl} = 0$ $\theta_{ch} = \theta_y$ Güvenlik sınırı (GV) $\theta_{ch}^{pl} = 0.75 \theta_{um}^{pl}$ Göçme sınırı (GÇ) $\theta_{ch}^{pl} = \theta_{um}^{pl}$

olarak verilir. Burada θ_{um}^{pl} , denklem 2.44 ile hesaplanır.

$$\theta_{um}^{pl} = \frac{f_c^{0.2}}{125} \left[\frac{A_{s1}}{A_{s \, top \, lam} - A_{s1}} \right]^{0.3} \left[\frac{h_{kat}/2}{h_{kolon}} \right]^{0.35}$$
(2.44)

Bu sınır değerin incelenmesinden a) donatı alanlarını içeren terimde kesitteki A_{s1} basınç donatısının sünekliğe olumlu etkisinin, b) h_{kat} kat yüksekliğinin h_{kolon} kolon

kesit yüksekliğine oranının, eğilme momentinin etkili olması durumunda sünekliğe olumlu etkisinin gözönüne alındığı görülmektedir. Ayrıca, kesitte normal kuvvetin etkili olması durumunda, sünekliğin azalması dönme sınır değerinin $0.25^{Nd/(fc \ Ac \)}$ ile çarpılması şeklinde gözönüne alınır [22].

Şekil 2.32 : EC8'de plastik şekil değiştirmelerin sınırları için taşıyıcı sistem elemanında tanımlanan çember kiriş dönmesi [22]

Görüldüğü gibi hasar sınırlarının belirlenmesinde Deprem Yönetmeliği, Eurocode ve FEMA'da farklı yaklaşımlar söz konusudur. Bu durumda, plastik şekil değiştirmeye uğramış bir kesitin hasar durumu farklı şekilde belirlenecektir. Şekil 2.33'te betonarme bir kesite ait moment – eğrilik ilişkisi üzerinde Deprem Yönetmeliği, Eurocode ve FEMA yaklaşımlarına göre belirlenen sınırlar gösterilmiştir.

Şekil 2.33 : Kesitte moment – eğrilik bağıntısı ve Deprem Yönetmeliği, FEMA ve Eurocode yaklaşımlarına göre belirlenen sınırlar [22]
Bu grafiğe görüldüğü gibi, Eurocode yaklaşımında akma eğriliği MN olarak kabul edilirken, GV değeri Deprem Yönetmeliği'ne göre GÇ değerinden daha büyüktür. FEMA yaklaşımında ise MN, Deprem Yönetmeliği'ne benzer şekilde ortaya çıksa da, GV ve GC değerleri diğer her iki yaklaşımın da çok ötesindedir. Deprem Yönetmeliği'ne göre hasar sınır aralıklarının daha dar olması, diğer yaklaşımlara göre hasarın belirlenmesinde daha hassas bir değerlendirme gerektirse de, bu sınır değerlerin diğer yaklaşımlara göre daha güvenli tarafta kaldığı görülür. Ülkemizde risk altındaki mevcut yapı stoku gözönüne alındığında, performans değerlendirmesi yaparken güvenli tarafta kalınması daha sağlıklı sonuçlar verecektir. Öyle ki, incelenecek yapıların birçoğunun statik projelerinin dahi bulunmaması, bulunsa da uygulamadaki denetimsizlikler ve kullanılan malzemelerin kalitesi, analizlerde birçok kabul gerektirir. Ancak, gelecekte yaygınlaşarak kullanılacağı öngörülen performansa dayalı tasarımda, kapasite tasarım ilkelerinin etkin bir şekilde uygulanmasıyla, öngörülen sünek davranış beklendiği yapılarda şekilde gerçekleşecektir. Bu durumda, hasar sınırlarının değerlendirmesinde, daha esnek bir aralığa sahip olan FEMA yaklaşımının esas alınması daha ekonomik kesitler elde edilmesini sağlayabilir. Ayrıca Deprem Yönetmeliği'nde verilen, birim şekil değiştirme sınır değerlerine bağlı olarak, kesitin moment eğrilik ilişkisinden ilgili sınır değerlerin toplam eğrilik türünden ifade edilmesi gerekir. Toplam eğrilik değerleri de plastik mafsal boyuyla çarpılarak toplam dönme değerleri elde edilir. Bu değerler, hesabı yapılan kesit için toplam dönme türünden hasar sınırlarını verir. Analiz sonucu elde edilen plastik dönme değerlerine kesitin elastik dönme değeri de eklenerek hasar durumu belirlenebilir. Bu işleminse yapıdaki tüm farklı kesitler için ayrı ayrı yapılması gerekir. Zahmetli olan bu uygulama yerine, FEMA yaklaşımında olduğu gibi, eleman hasar sınırlarını doğrudan plastik dönmelerle iliskilendirmek hesaplamalarda büyük kolaylık sağlayacaktır.

2.2.3 Artımsal eşdeğer deprem yükü yöntemi

Bu yöntem, yapının birinci (deprem doğrultusunda hakim) periyodunun, yapı davranışını yeter derecede temsil ettiği sistemlerde uygulanır. Deprem kuvvetleri, doğrusal elastik sistemlerde olduğu gibi eşdeğer deprem kuvveti olarak hesaba katılır ancak statik itme analizinde anlatıldığı gibi adım adım uygulanır. Analiz sonucu elde edilen statik itme eğrisi, eşdeğer tek serbestlik dereceli sistemin modal kapasite eğrisine dönüştürülür ve eşit yerdeğiştirme kuralına göre yapının performans noktası elde edilir. Daha sonra statik itme analizi, elde edilen hedef tepe yerdeğiştirmesi değerine kadar tekrar yapılır ve deprem istemine karşı gelen en büyük şekil değiştirmeler değerlendirilerek yapının performansı belirlenir.

Artımsal Eşdeğer Deprem Yükü Yöntemi'nin kullanılabilmesi için, binanın kat sayısının bodrum hariç 8'den fazla olmaması ve herhangi bir katta ek dışmerkezlik gözönüne alınmaksızın doğrusal elastik davranışa göre hesaplanan burulma düzensizliği katsayısının ηbi < 1.4 koşulunu sağlaması gereklidir. Ayrıca gözönüne alınan deprem doğrultusunda, doğrusal elastik davranış esas alınarak hesaplanan birinci (hakim) titreşim moduna ait etkin kütlenin toplam bina kütlesine (rijit perdelerle çevrelenen bodrum katlarının kütleleri hariç) oranının en az 0.70 olması zorunludur.

2.2.4 Artımsal mod birleştirme yöntemi

Bu yöntem Chopra ve Goel (2002) tarafından geliştirilmiştir. Bu yöntemin amacı, birinci modal kütlenin davranışa yeterli katkıda bulunmadığı durumlarda (yüksek binalar ve taşıyıcı sistemde düzensizlik bulunan binalar gibi) yeterli kütle katılımının sağlanması için diğer modların katkılarını gözönüne almaktadır. Yöntemin uygulanması taşıyıcı sistem davranışını temsil eden yeteri sayıda doğal titreşim mod şekli ve kat kütlesi ile orantılı olacak şekilde monotonik olarak adım adım arttırılan ve birbirleri ile uygun biçimde ölçeklendirilen modal yerdeğiştirmeler veya onlarla uyumlu modal deprem yükleri esas alınarak yapılır [7].

2.2.5 Zaman tanım alanında doğrusal olmayan hesap yöntemi

Bu yöntemde taşıyıcı sistemdeki doğrusal olmayan davranış gözönüne alınarak kabul edilen bir deprem hareketi altındaki taşıyıcı sistemin hareket denklemi sayısal olarak çözülerek, doğrusal davranışta olduğu gibi, sistemin bütün elastik ve plastik şekildeğiştirmeleri, yerdeğiştirmleri ve kesit iç etkileri zamana bağlı olarak bulunur. Daha sonra sistemde plastik mafsal dönmesi ve beton ve donatının birim uzama/kısalma talepleri belirlenir. Çözümün en kapsamlı olduğu bu yöntemde, kabullerin çok sayıda olması sonuçların yorumlanmasında özenli olmayı gerektirir. Ayrıca, seçilen deprem kaydının yönetmelikte verilen spektrum eğrisi ile uyuşması ve olabildiğince çok sayıda kayıtla çözüm yapılması önerilir[7].

3. 2,3,4,5,6,7 VE 8 KATLI OLMAK ÜZERE 7 FARKLI YAPININ DBYBHY 2007'YE GÖRE TASARIMI VE PERFORMANSININ BELİRLENMESİ

3.1 Genel Yapı Bilgileri

Bu çalışmada aynı kat planına sahip ikiden sekiz kata kadar yedi adet yapının öncelikle ideCAD Statik programında doğrusal elastik yöntemle tasarımı yapılmıştır ve daha sonra aynı malzeme, kesit, donatı ve yük parametreleri ile SAP 2000 programında tekrar modellenerek yapıların performansı incelenmiştir.

Malzeme olarak beton sınıfı C30, çelik sınıfı ise S420 seçilmiştir. Yapılar konuttur ve yerinde dökme betonarme bina olarak tasarlanmıştır. Deprem yüklerinin tamamı süneklilik düzeyi yüksek çerçeve sistemlerle karşılanmaktadır. Bu sebeple *bina önem katsayısı I=1* ve *taşıyıcı sistem katsayısı R=8*'dir. Yapıların 1. derece deprem bölgesinde ve Z2 sınıfı yerel zemin bölgesinde bulunduğu kabul edilerek *etkin yer ivmesi katsayısı A*₀=0.40 ve *spektrum karakteristik periyotları T*_A=0.15*s*, *T*_B=0.40*s* olarak belirlenmiştir. Hareketli yük değeri ise TS 498 (Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri)'de konutlar için öngörüldüğü şekilde $q=3.5kN/m^2$ olarak hesaplara katılmıştır.

Yapıların tasarımı öncelikle ideCAD Statik programında yapılacağından SAP 2000 programıyla uyumlu olabilmeleri için bazı noktalara dikkat edilmiştir. Örneğin SAP 2000'de kolon ve kiriş elemanların etriye sıklaştırma bölgeleri tanımlanamadığından (veya pratik olmadığından) tüm kolon ve kirişlerde Ø10/100mm etriye kullanılmıştır. Ayrıca yine SAP 2000 programında mesnet donatıları tanımlanamadığından kiriş tasarımlarında yalnızca montaj donatıları (üst donatı) ve düz donatılar (alt donatı) kullanılmıştır.

Yapılar, X ve Y doğrultularında tamamen simetriktir ve üçer açıklık bulunmaktadır. Ardışık iki açıklık arası tüm mesafeler 4 metre, kat yükseklikleri ise 3 metredir. Şekil 3.1'de tüm yapılara aynı olan kat planı gösterilmiştir. Her bir yapı için aynı katta bulunan tüm kolonlar aynı kesit özelliklerine sahiptir. Tüm yapılarda kare kolon kullanılmıştır ve ölçüleri 0.30m×0.30m veya 0.40m×0.40m'dir. Bu kolonların donatıları minimuma yakın seçilmiştir. Kiriş kesitleri tüm yapılarda 0.25m/0.50m'dir ve donatı özellikleri her kat için aynıdır. Döşeme kalınlıkları ise yine tüm yapılarda d=0.14m seçilmiştir ve buna bağlı olarak zati yükler g=5kN/m² olarak hesaplanmıştır. Ayrıca yapılar her iki doğrultuda simetrik olduğundan ve düşey doğrultuda da hiçbir süreksizlik bulunmadığından DBYBHY 2007 Bölüm 2.3'e göre düzensizlik mevcut değildir.

Şekil 3.1 : Yapıların kat planı

Tasarımda yapılardaki tüm kirişler 0.25m/0.50m olarak boyutlandırılmıştır ancak donatı miktarları farklılık göstermektedir. Tüm kirişlerde alt donatılar 3Ø14'ken üst donatılar 3Ø14, 4Ø14 ve 5Ø14 olarak değişmektedir. Alt ve üst donatılar dışında ise

mesnet veya gövde donatısı kullanılmamıştır. Şekil 3.2'de üst (montaj) donatısı 5Ø14 olan bir kirişin açılımı verilmiştir. Kolonlar ise 0.30m×0.30m (6Ø14 ve 6Ø16) ve 40x40 (8Ø16) olmak üzere 3 farklı şekilde boyutlandırılmıştır. Yapılarda tüm kolon ve kirişlerde Ø10/100mm etriye kullanılmıştır ancak 0.40m×0.40m kolonlarda yine 10cm aralıklarla iki adet çiroz da bulunmaktadır. Şekil 3.3'te boyutları 0.40m×0.40m olan bir kolona ait kolon düşey açılımı verilmiştir.

Şekil 3.2 : Kiriş açılımı

Şekil 3.3 : Kolon düşey açılımı

3.2 Yapıların Tasarımı ve Analiz Sonuçları

Bu bölümde yapıların doğrusal elastik hesapla yapılan analizi sonucu elde edilen, kolon ve kirişlerin boyutları ve donatıları, deprem kuvvetleri, kat yerdeğiştirmeleri ile modal periyot ve frekanslar verilmiştir (yapılardaki bütün kirişler 0.25m/0.50m'dir).

3.2.1 2 Katlı yapı

Şekil 3.4'te yapının modeli gösterilmiştir.

Şekil 3.4 : 2 katlı yapının modeli

Çizelge 3.1'de kolon ve kirişlere ait kesit bilgileri, Çizelge 3.2'de yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.3'te ise modal periyot ve frekanslar verilmiştir.

Kat	Kolon Boyutları		Kolon	Kiriş Donatısı		Etriyeler	
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10
2. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.1 : 2 katlı yapının kolon ve kiriş kesit bilgileri

Çizelge 3.2 : 2 katlı yapının kat ağırlıkları,	deprem kuvvetleri ve kat
yerdeğiştirmeleri	

	Kat Ağırlığı	Deprem k	Kuvvetleri	Kat Yerdeğiştirmeleri	
	(Hareketli Yükler Dahil)	(kN)		(mm)	
	(kN)	Fx	Fy	δx	δy
1. KAT	132	197	197	2.29	2.29
2. KAT	132	112	112	3.95	3.95
TOPLAM	264	309	309	_	-

Modal Periyot ve Frekanslar				
Mod	Periyot (s)	Frekans (Hz)		
1	0.327	3.057		
2	0.327	3.057		
3	0.258	3.879		
4	0.119	8.382		
5	0.119	8.382		

Çizelge 3.3 : 2 katlı yapının modal periyot ve frekansları

3.2.2 3 Katlı yapı

Şekil 3.5'te yapının modeli gösterilmiştir.

Şekil 3.5 : 3 katlı yapının modeli

Çizelge 3.4 : 3 katlı yapını	n kolon ve kiriş	kesit bilgileri
------------------------------	------------------	-----------------

Kat	Kolon Boyutları		Kolon	Kiriş Donatısı		Etriyeler	
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
2. Kat	30	30	6Ø16	3Ø14	3Ø14	Ø10/10	Ø10/10
3. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.5 : 3 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat yerdeğiştirmeleri

	Kat Ağırlığı	Deprem k	Kuvvetleri	Kat Yerdeğiştirmeleri (mm)	
	(Hareketli Yukler Dahil)	(K	N)		
	(kN)	Fx	Fy	δx	δy
1. KAT	132	51	51	1.18	1.18
2. KAT	132	138	138	4.10	4.10
3. KAT	132	214	214	5.93	5.93
TOPLAM	396	403	403	-	_

Çizelge 3.4'te kolon ve kirişlere ait kesit bilgileri, Çizelge 3.5'te yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.6'da ise modal periyot ve frekanslar verilmiştir.

Modal Periyot ve Frekanslar					
Mod	Periyot (s)	Frekans (Hz)			
1	0.388	2.580			
2	0.388	2.580			
3	0.305	3.258			
4	0.134	7.410			
5	0.134	7.410			

Çizelge 3.6 : 3 katlı yapının modal periyot ve frekansları

3.2.3 4 Katlı yapı

Şekil 3.6'da yapının modeli gösterilmiştir.

Şekil 3.6 : 4 katlı yapının modeli

Çizelge 3.7'de kolon ve kirişlere ait kesit bilgileri, Çizelge 3.8'de yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.9'da ise modal periyot ve frekanslar verilmiştir.

Kat	Kolon Boyutları		Kolon	Kiriş Donatısı		Etriyeler	
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
2. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
3. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10
4. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.7 : 4 katlı yapının kolon ve kiriş kesit bilgileri

	Kat Ağırlığı	Deprem k	Kuvvetleri	Kat Yerdeğiştirmeleri	
	(Hareketli Yükler Dahil)	- (kN)		(mm)	
	(kN)	Fx	Fy	δx	δy
1. KAT	132	48	48	1.41	1.41
2. KAT	132	83	83	3.08	3.08
3. KAT	132	141	141	6.07	6.07
4. KAT	132	211	211	7.91	7.91
TOPLAM	528	483	483	-	_

Çizelge 3.8 : 4 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat yerdeğiştirmeleri

Çizelge 3.9: 4 katlı yapının modal periyot ve frekansları

Modal Periyot ve Frekanslar					
Mod	Periyot (s)	Frekans (Hz)			
1	0.546	2.191			
2	0.456	2.191			
3	0.359	2.789			
4	0.171	5.856			
5	0.171	5.856			

3.2.4 5 Katlı yapı

Şekil 3.7'de yapının modeli gösterilmiştir.

Şekil 3.7 : 5 katlı yapının modeli

Çizelge 3.10'da kolon ve kirişlere ait kesit bilgileri, Çizelge 3.11'de yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.12'de ise modal periyot ve frekanslar verilmiştir.

Kat	Kolon Boyutları		Kolon	Kiriş Donatısı		Etriyeler	
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
2. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
3. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
4. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10
5. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.10 : 5 katlı yapının kolon ve kiriş kesit bilgileri

Çizelge 3.11 : 5 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat yerdeğiştirmeleri

	Kat Ağırlığı	Deprem Kuvvetleri		Kat Yerdeğiştirmeleri	
	(Hareketli Yükler Dahil)	(k)	N)	(mm)	
	(kN)	Fx	Fy	δx	δy
1. KAT	132	41	41	1.60	1.60
2. KAT	132	74	74	3.54	3.54
3. KAT	132	93	93	5.26	5.26
4. KAT	132	140	140	8.17	8.17
5. KAT	132	197	197	9.94	9.94
TOPLAM	660	545	545	-	-

Çizelge 3.12 : 5 katlı yapının modal periyot ve frekansları

Modal Periyot ve Frekanslar				
Mod	Periyot (s)	Frekans (Hz)		
1	0.534	1.871		
2	0.534	1.871		
3	0.419	2.390		
4	0.210	4.759		
5	0.210	4.759		

3.2.5 6 Katlı yapı

Şekil 3.8'de yapının modeli gösterilmiştir.

Çizelge 3.13'te kolon ve kirişlere ait kesit bilgileri, Çizelge 3.14'te yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.15'de ise modal periyot ve frekanslar verilmiştir.

Şekil 3.8 : 6 katlı yapının modeli

Çizelge 3.13 : 6 katlı yapının kolon ve kiriş kesit bilgileri

Kat	Ко Воул	lon utları	Kolon	olon Kiriş Donatısı		Etriyeler	
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
2. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
3. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
4. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
5. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10
6. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.14 : 6 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat yerdeğiştirmeleri

	Kat Ağırlığı	Deprem k	Kuvvetleri	Kat Yerdeğiştirmeleri	
	(Hareketli Yükler Dahil)	(k)	N)	(mm)	
	(kN)	Fx	Fy	δx	δy
1. KAT	132	34	34	1.74	1.74
2. KAT	132	62	62	3.90	3.90
3. KAT	132	82	82	5.88	5.88
4. KAT	132	96	96	7.58	7.58
5. KAT	132	134	134	10.38	10.38
6. KAT	132	184	184	12.08	12.08
TOPLAM	792	592	592	_	-

Modal Periyot ve Frekanslar				
Mod	Periyot (s)	Frekans (Hz)		
1	0.620	1.613		
2	0.620	1.613		
3	0.484	2.068		
4	0.244	4.100		
5	0.244	4.100		

Çizelge 3.15 : 6 katlı yapının modal periyot ve frekansları

3.2.6 7 Katlı yapı

Şekil 3.9'da yapının modeli gösterilmiştir.

Şekil 3.9:7 katlı yapının modeli

Kat	Ко Воут	lon utları	Kolon	Kolon Kiriş Donatısı		Etriyeler	
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
2. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
3. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
4. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
5. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
6. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10
7. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.16 : 7 katlı yapının kolon ve kiriş kesit bilgileri

Çizelge 3.16'da kolon ve kirişlere ait kesit bilgileri, Çizelge 3.17'de yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.18'de ise modal periyot ve frekanslar verilmiştir.

	Kat Ağırlığı	Deprem Kuvvetleri		Kat Yerdeğiştirmeleri	
	(Hareketli Yükler Dahil)	(k)	N)	(mm)	
	(kN)	Fx	Fy	δx	δy
1. KAT	132	29	29	1.85	1.85
2. KAT	132	52	52	4.18	4.18
3. KAT	132	70	70	6.37	6.37
4. KAT	132	84	84	8.33	8.33
5. KAT	132	94	94	10.00	10.00
6. KAT	132	126	126	12.69	12.69
7. KAT	132	172	172	14.34	14.34
TOPLAM	924	627	627	-	_

Çizelge 3.17 : 7 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat yerdeğiştirmeleri

Çizelge 3.18 : 7 katlı yapının modal periyot ve frekansları

Modal Periyot ve Frekanslar				
Mod	Periyot (s)	Frekans (Hz)		
1	0.711	1.406		
2	0.711	1.406		
3	0.552	1.811		
4	0.276	3.633		
5	0.276	3.633		

3.2.7 8 Katlı yapı

Şekil 3.10'da yapının modeli gösterilmiştir.

Şekil 3.10 : 8 katlı yapının modeli

Çizelge 3.19'da kolon ve kirişlere ait kesit bilgileri, Çizelge 3.20'de yapının kat ağırlıkları, deprem kuvvetleri ve bunlara bağlı olarak oluşan kat yerdeğiştirmeleri, Çizelge 3.21'de ise modal periyot ve frekanslar verilmiştir.

Kat	Ко Воуι	lon 1tları	Kolon	Kiriş D	onatisi	Etriyele	er
	b (cm)	h (cm)	Donatisi	Üst	Alt	Kolon	Kiriş
1. Kat	40	40	8Ø16	5Ø14	3Ø14	Ø10/10/10/10	Ø10/10
2. Kat	40	40	8Ø16	5Ø14	3Ø14	Ø10/10/10/10	Ø10/10
3. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
4. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
5. Kat	40	40	8Ø16	4Ø14	3Ø14	Ø10/10/10/10	Ø10/10
6. Kat	40	40	8Ø16	3Ø14	3Ø14	Ø10/10/10/10	Ø10/10
7. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10
8. Kat	30	30	6Ø14	3Ø14	3Ø14	Ø10/10	Ø10/10

Çizelge 3.19: 8 katlı yapının kolon ve kiriş kesit bilgileri

Çizelge 3.20 : 8 katlı yapının kat ağırlıkları, deprem kuvvetleri ve kat yerdeğiştirmeleri

	Kat Ağırlığı	Deprem Kuvvetleri		Kat Yerdeğiştirmeleri	
	(Hareketli Yükler Dahil)	(k)	N)	(m	ım)
	(kN)	Fx	Fy	δx	δy
1. KAT	132	25	25	1.94	1.94
2. KAT	132	45	45	4.39	4.39
3. KAT	132	59	59	6.76	6.76
4. KAT	132	71	71	8.94	8.94
5. KAT	132	82	82	10.87	10.87
6. KAT	132	89	89	12.52	12.52
7. KAT	132	119	119	15.13	15.13
8. KAT	132	163	163	16.75	16.75
TOPLAM	1056	653	653	-	-

Çizelge 3.21 : 8 katlı yapının modal periyot ve frekansları

Mo	Modal Periyot ve Frekanslar				
Mod	Periyot (s)	Frekans (Hz)			
1	0.807	1.240			
2	0.807	1.240			
3	0.623	1.606			
4	0.304	3.287			
5	0.304	3.287			

3.3 Tasarımı Yapılan Modellenmesi ve Doğrusal Olmayan Hesap Yöntemleri ile Deprem Performansının Belirlenmesi

Bu bölümde tasarımı yapılan yapıların Artımsal Eşdeğer Deprem Yükü Yöntemi ile 50 yılda aşılma olasılığı %10 olan tasarım depreminde Can Güvenliği performans hedefini sağlayıp sağlamadığı kontrol edilmiştir. Bununla birlikte yapıların yaklaşık olarak gerçek kabul edilen kapasitelerinin bulunmasıyla, statik itme analizinden elde edilen taban kesme kuvvetleri, elastik deprem yükleriyle ve yapı ağırlıklarıyla kıyaslanarak hangi yapının daha güvenli olduğunu belirlemek ve bunu yapının kat sayısı ile ilişkilendirilmesi amaçlanmıştır. Ayrıca gerçeğe en yakın sonuçları verdiği kabul edilen Zaman Tanım Alanında Doğrusal Olmayan Hesap Yöntemi ile analiz yapılarak statik itme eğrilerinin ne kadar yaklaşık sonuç verdiği incelenmiştir. Yapılan bu hesaplamalarda *SAP 2000* programından yararlanılmıştır.

3.3.1 Modellemede yapılan kabuller

Yapılar modellenirken yapılan bazı kabuller şunlardır:

- Kirişler ve kolonlar çubuk eleman olarak modellenmiş olup en alt kat kolonlarının temele ankastre mesnetlendiği kabul edilmiştir.
- Kirişlerde tabla etkisi göz önüne alınmıştır.
- Kolon ve kiriş elemanların çatlamış kesit eğilme rijitlikleri dikkate alınmıştır ve DBYBHY 2007 Bölüm 7.4.13'e göre belirlenmiştir.
- Tüm döşemelerin kendi kat seviyelerinde rijit diyafram davranışı sergilediği kabul edilmiştir.
- Tüm döşemeler kare olduğundan (4m×4m) kirişlere aktarılacak yükler üçgen yayılı yük olarak tanımlanmıştır.
- Plastik şekil değiştirmelerin elemanların uç bölgelerinde tanımlanan plastik mafsallarda meydana geldiği ve bu bölgelerin dışında malzeme davranışının doğrusal elastik olduğu kabul edilmiştir.
- Kirişlerde plastikleşmenin tek eksenli eğilme momenti ile (M3), kolonlarda ise iki eksenli eğilme momenti ve normal kuvvetin etkileşimi ile (P-M2-M3) meydana geldiği kabul edilmiştir. Plastik mafsal tanımlamaları da buna bağlı olarak program içinde bulunan *Default Hinge* kullanılarak yapılmıştır.

3.3.2 Yüklerin tanımlanması, tablalı kiriş hesabı ve eleman rijitliklerinin belirlenmesi

Modellerde kolon ve kiriş eleman ağırlıkları, malzemenin birim ağırlığının tanımlanmasıyla (beton için 25kN/m³, çelik için 78kN/m³) programın içinde mevcut olan *DEAD Load* ile hesaba katılmıştır. Döşemelerin davranışı her kat için rijit diyafram olarak tanımlanmıştır ve ayrıca döşeme elemanlar modellenmemiştir. Bu sebeple döşemelerden kirişlere gelecek olan yükler hesaplanarak (d=0.14 m olan döşemeler için ölü yük $G=5kN/m^2$, hareketli yük $Q=3.5kN/m^2$) kirişler üzerinde üçgen yayılı yük olarak tanımlanmıştır (Şekil 3.11).

Şekil 3.11 : Döşemelerden kirişlere üçgen yayılı yük aktarımı

Çevre ve orta kirişlerin maksimum üçgen yayılı yük değerleri Çizelge 3.22'de verilmiştir.

	Üçgen Yayılı Yükün En Büyük						
	Değeri						
	Çevre Kirişler	Orta Kirişler					
g (kN)	10	20					
q (kN)	7	14					

Çizelge 3.22 : Döşemelerden kirişlere gelen yükler

Şekil 3.12'de çevre kirişler için ölü yüklerin üçgen yayılı olarak tanımlanması gösterilmiştir.

Şekil 3.12 : Çevre kirişlere döşemelerden aktarılan gelen ölü yükler

Kirişlerin üzerinde bulunan duvar yükleri ise 1.91kN/m olarak hesaba katılmıştır (Şekil 3.13).

Şekil 3.13 : Duvar yükleri

Kirişlerin modellenmesinde, bu çalışmada Bölüm 2.1.2'de verilen, TS 500'deki yaklaşım esas alınarak tabla etkisi gözönünde bulundurulmuştur. Şekil 3.14'te çevre kirişlere (simetrik olmayan kesitler, L-kesiti) ve orta kirişlere (simetrik kesitler, T-kesiti) ait hesaplamalar sonucu elde edilen kesitler gösterilmiştir.

Şekil 3.14 : Tablalı kirişler (a) çevre kirişlerin kenar açıklığı, (b) çevre kirişlerin iç açıklığı, (c) orta kirişlerin kenar açıklığı, (d) orta kirişlerin iç açıklığı

Elemanların etkin rijitlikleri ise, bu çalışmada Böüm 2.1.2'de verilen, Deprem Yönetmeliği'nin öngördüğü bağıntılar kullanılarak hesaplanmıştır. Etkin rijitlikler kirişlerde $(EI)_e=0.40(EI)_o$ olarak alınırken, kolonlarda yapının G+nQ (Deprem Yönetmeliği Tablo2.7'de konutlar için n=0.3) yüklemesinde oluşan eksenel yük değerlerine bağlı olarak hesaplanmıştır. Ek A'da tüm yapılar için hesaplanan kolon etkin rijitlikleri verilmiştir.

3.3.3 Artımsal eşdeğer deprem yükü yöntemi ile yapıların performansının belirlenmesi

Bu çalışmada, tasarımı yapılmış olan yapıların performansı belirlendiğinden, Deprem Yönetmeliği Bölüm 7.2.2'de öngörüldüğü şekilde *kapsamlı bilgi düzeyi* mevcuttur ve bilgi düzeyi katsayısı 1.00 alınmıştır. Ayrıca beton ve çelik için mevcut malzeme dayanımı kullanılmıştır ($f_{cm} = 30$ MPa ve $f_{ym} = 420$ MPa).

Analiz sonrası yapıların performansının belirlenmesinde kesitlerin hasar sınırlarına göre değerlendirme yapmak gerekir. Deprem Yönetmeliği'nde hasar sınırları beton ve basıncın birim şekil değiştirmesine bağlı olarak denklem 3.1-3.3'te tanımlanmıştır:

(a) Kesit Minimum Hasar Sınırı (MN) için kesitin en dış lifindeki beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları:

$$(\varepsilon_{cu})_{MN} = 0.0035$$
 , $(\varepsilon_s)_{MN} = 0.010$ (3.1)

(**b**) Kesit Güvenlik Sınırı (GV) için etriye içindeki bölgenin en dış lifindeki beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları:

$$(\varepsilon_{cu})_{GV} = 0.0035 + 0.01(\rho_s/\rho_{sm}) \le 0.0135$$
 , $(\varepsilon_s)_{MN} = 0.040$ (3.2)

(c) Kesit Göçme Sınırı (GÇ) için etriye içindeki bölgenin en dış lifindeki beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları:

$$(\varepsilon_{cu})_{GC} = 0.0040 + 0.014(\rho_s/\rho_{sm}) \le 0.0180$$
, $(\varepsilon_s)_{MN} = 0.060$ (3.3)

Statik itme analizi sonucunda tanımlanan plastik mafsalların plastik dönmeleri elde edilir. Kesit hasarını belirleyebilmek için, hasar sınırlarını da plastik dönmelere bağlı olarak belirlememiz gerekir. Bu sebeple, öncelikle her bir farklı kesit için moment – eğrilik ilişkisinden yararlanılarak ilgili hasar sınırına karşı gelen toplam *eğrilik* ϕ_t değeri elde edilir. Daha sonra toplam eğrilikten *akma eğriliği* ϕ_y çıkartılarak *plastik eğrilik* ϕ_p hesaplanır. Plastik eğrilik değeri de plastik mafsal boyuyla çarpılarak ilgili hasar sınırına karşı gelen *plastik dönme* θ_p değerleri elde edilmiş olur. Böylelikle analiz sonucu elde edilen plastik dönme değeri ile plastik hasar sınırı karşılaştırılarak kesitin hasar durumu belirlenebilir.

Kirişlerde eksenel yükün düşük değerlerde olması sebebiyle MN, GV, ve GÇ için plastik dönme değerlerinin bir kez belirlenmesi yeterli olur. Ancak kolonlarda eksenel yük değerine bağlı olarak moment – eğrilik ilişkisi de değişir. Bu sebeple kolonların moment – normal kuvvet karşılıklı etkileşim diyagramlarından yararlanılarak, farklı normal kuvvet değerleri için moment – eğrilik ilişkisi elde edilir. Her bir moment eğrilik ilişkisi için de MN, GV, ve GÇ değerleri ayrı ayrı elde edilir. Sonuç olarak kolonlar için, eksenel kuvvet ve plastik dönmeye bağlı olarak hasar sınırı eğrileri oluşturulur. Hasarın belirlenmesinde diğer bir önemli işlem ise kesme kapasitesi kontrolüdür. Kolon ve kirişlerin kesme kuvveti kapasitelerinin, etkiyen kesme kuvvetinden daha düşük olması halinde güç tükenmesi zaten gevrek olarak gerçekleşeceğinden hasar durumunun belirlenmesine gerek olmayacaktır.

Hasar sınırlarının belirlenmesinde SAP 2000 programının *Section Designer* bölümünden yararlanılmıştır. Bunun için kesitin moment – eğrilik grafiğinde hareket edilerek beton ve çeliğin birim şekil değiştirmeleri takip edilir. Yönetmelikte verilen birim şekil değiştirmeye bağlı ilgili hasar sınırına beton veya çelikten hangisi ulaşmışsa o noktadaki toplam eğrilik değeri okunur. Toplam eğrilik değerinden de daha önce anlatıldığı gibi plastik dönmeye bağlı hasar sınırı elde edilmiş olur. Örnek olarak Şekil 3.15'te 0.40m×0.40m (8Ø16) kolonun 2624kN basınç kuvvetleri etkisi

altında, güvenlik hasar sınırı GV'ye karşı gelen toplam eğriliğin elde edilişi gösterilmiştir.

Sekil 3.15 : Hasar sınırının section designer ile elde edilmesi

Şekil 3.15'te görüldüğü gibi, *Concrete Strain*'in yönetmelikte güvenlik sınırı içi verilen 0.0135 değerine gelindiğinde *Steel Strain* güvenlik sınırı için verilen $(\varepsilon_s)_{GV}=0.040$ değerinin altındadır. Bu sebeple güvenlik hasar sınırını, betondaki birim şekil değiştirme belirlemiştir. Bu noktada karşı gelen toplam eğrilik $\phi_t=0.04145$ rad/m olarak elde edilir. Akma eğriliği değeri ise *Phi-yield(Initial)* $\phi_y=0.00817$ rad/m'dir.

Yapılarda bulunan tüm kirişler 0.25m/0.50m boyutundadır. Bu kirişlerin tamamında alt donatılar 3Ø14'tür ancak üst donatılar 3Ø14, 4Ø14 ve 5Ø14 olarak değişmektedir. Çizelge 3.23, 3.24 ve 3.25'te sırası ile bu kirişlere ait plastik dönmelere bağlı hasar sınırları verilmiştir. Sınırların belirlenmesinde kirişlerdeki tabla boyunun çok düşük değerde değişikliğe sebep olduğu görülmüştür. Bu sebeple ortalamaya yakın sonuçlar verdiği görülen orta iç açıklık kirişi esas alınmıştır (Şekil 3.14 (d)).

Kesit Hasar Sınırları	Akma Eğriliği φ _y (rad/m)	M _y (kNm)	ε _s	ε _{cu}	Toplam Eğrilik φ _t (rad/m)	M _t (kNm)	Plastik Eğrilik φ _p =φ _t -φ _y	Plastik Mafsal Boyu l _p (m)	Plastik Dönme θ _p =φ _p .l _p (rad)
				(+) Eği	lme				
Minimum Hasar Sınırı (MN)	0.0053	67.37	0.010	-0.0008	0.0241	86.77	0.0188	0.25	0.0047
Güvenlik Sınırı (GV)	0.0053	67.37	0.040	-0.0024	0.0940	94.58	0.0887	0.25	0.0222
Göçme Sınırı (GÇ)	0.0053	67.37	0.060	-0.0033	0.1399	95.10	0.1346	0.25	0.0336
				(-) Eği	lme				
Minimum Hasar Sınırı (MN)	0.0059	68.65	0.010	-0.0013	0.0259	84.09	0.0200	0.25	0.0050
Güvenlik Sınırı (GV)	0.0059	68.65	0.040	-0.0043	0.0985	86.18	0.0926	0.25	0.0232
Göçme Sınırı (GÇ)	0.0059	68.65	0.060	-0.0078	0.1503	82.05	0.1444	0.25	0.0361

Çizelge 3.23 : 25/50 kirişin (üst donatı=3Ø14, alt donatı=3Ø14) pozitif ve negatif eğilme durumları için hasar sınırları

Kesit Hasar Sınırları	Akma Eğriliği φ _y (rad/m)	M _y (kNm)	ε _s	E _{cu}	Toplam Eğrilik φ _t (rad/m)	M _t (kNm)	Plastik Eğrilik φ _p =φ₁-φ _y	Plastik Mafsal Boyu l _p (m)	Plastik Dönme θ _p =φ _p .l _p (rad)
				(+) Eği	lme				
Minimum Hasar Sınırı (MN)	0.0054	67.39	0.010	-0.0009	0.0249	86.52	0.0195	0.25	0.0049
Güvenlik Sınırı (GV)	0.0054	67.39	0.040	-0.0030	0.0960	93.78	0.0906	0.25	0.0227
Göçme Sınırı (GÇ)	0.0054	67.39	0.060	-0.0054	0.1450	91.32	0.1396	0.25	0.0349
				(-) Eğil	me				
Minimum Hasar Sınırı (MN)	0.0061	93.39	0.010	-0.0016	0.0269	111.10	0.0208	0.25	0.0052
Güvenlik Sınırı (GV)	0.0061	93.39	0.040	-0.0053	0.1026	110.97	0.0965	0.25	0.0241
Göçme Sınırı (GÇ)	0.0061	93.39	0.060	-0.0088	0.1544	107.87	0.1483	0.25	0.0371

Çizelge 3.24 : 25/50 kirişin (üst donatı=4Ø14, alt donatı=3Ø14) pozitif ve negatif eğilme durumları için hasar sınırları

Kesit Hasar Sınırları	Akma Eğriliği φ _y (rad/m)	M _y (kNm)	ε _s	E _{cu}	Toplam Eğrilik φ _t (rad/m)	M _t (kNm)	Plastik Eğrilik φ _p =φ₁-φ _y	Plastik Mafsal Boyu l _p (m)	Plastik Dönme θ _p =φ _p .l _p (rad)
				(+) Eğil	lme				
Minimum Hasar Sınırı (MN)	0.0053	67.12	0.010	-0.0008	0.0241	87.35	0.0188	0.25	0.0047
Güvenlik Sınırı (GV)	0.0053	67.12	0.040	-0.0028	0.0948	97.03	0.0895	0.25	0.0224
Göçme Sınırı (GÇ)	0.0053	67.12	0.060	-0.0049	0.1438	95.9	0.1385	0.25	0.0346
				(-) Eğil	me				
Minimum Hasar Sınırı (MN)	0.0064	115.90	0.010	-0.0018	0.0269	137.74	0.0206	0.25	0.0051
Güvenlik Sınırı (GV)	0.0064	115.90	0.040	-0.0062	0.1026	135.4	0.0962	0.25	0.0241
Göçme Sınırı (GÇ)	0.0064	115.90	0.060	-0.0095	0.1544	133.82	0.1480	0.25	0.0370

Çizelge 3.25 : 25/50 kirişin (üst donatı=5Ø14, alt donatı=3Ø14) pozitif ve negatif eğilme durumları için hasar sınırları

Görüldüğü gibi kirişlerde hasar sınırları, donatıdaki birim şekil değiştirme ile ortaya çıkmıştır. Bu da hasarın sünek olarak gerçekleştiğini göstermektedir.

Kolonlara ait kesit hasar sınırları da kirişlere benzer şekilde elde edilir, ancak bu sınırlar farklı eksenel yük değerlerinin moment – eğrilik ilişkisinde meydana getirdiği değişikliğe bağlı olarak *eksenel kuvvet – plastik dönme* eğrileri olarak ifade edilir. Şekil 3.15'te örnek olarak gösterilen uygulamada P=-2624kN değeri, yine *Section Designer* kullanılarak elde edilen eksenel kuvvet – moment karşılıklı etkileşim diyagramından alınan bir değerdir. Yapılarda bulunan kolonlar, 0.30m×0.30m (6Ø14), 0.30m×0.30m (6Ø16) ve 0.40m×0.40m (8Ø16) olmak üzere üç çeşittir. Sırasıyla bu kolonlara ait eksenel kuvvet – moment etkileşim diyagramları ile Deprem Yönetmeliği'nde verilen, süneklik düzeyi yüksek kolonlar için enkesit koşulu olan eksenel yük sınırları Şekil 3.16, 3.17 ve 3.18'de gösterilmiştir (eksenel yükün (+) değeri basınç olarak kabul edilmiştir).

Şekil 3.16 : 30×30 (6Ø14) kolona ait P – M karşılıklı etkileşim diyagramı

Şekil 3.17 : 30×30 (6Ø16) kolona ait P – M karşılıklı etkileşim diyagramı

Şekil 3.18 : 40×40 (8Ø16) kolona ait P – M karşılıklı etkileşim diyagramı

Analizler sonucu, kolonlarda oluşan en büyük eksenel yük değeri P=1325kN(basınç) olarak elde edilmiştir ve yönetmelikte aranan $A_c \ge N_{dm'}(0.50f_{ck})$ şartının sağlanmıştır.

Kolonlar için elde edilen hasar sınırları Ek B'de verilmiştir. Hasar sınırlarını ifade eden moment – plastik dönme eğrileri ise Şekil 3.19, 3.20 ve 3.21'de verilmiştir (eksenel yükün (+) değeri basınç olarak kabul edilmiştir).

Şekil 3.19 : 30×30 (6Ø14) kolona ait hasar sınırları

Şekil 3.20 : 30×30 (6Ø16) kolona ait hasar sınırları

Şekil 3.21 : 40×40 (8Ø16) kolona ait hasar sınırları

Kirişlerin Kesme Kuvveti Kapasitesi Kontrolü

Yapılardaki tüm kirişler 0.25m/0.50m boyutundadır ve Ø10/100mm etriye düzeni mevcuttur. Kesitin *kesme kuvveti kapasitesi V_r* denklem 3.4-3.8 ile elde edilir:

$$V_r = V_c + V_w \tag{3.4}$$

$$V_c = 0.80 \times V_{cr} \tag{3.5}$$

$$V_{cr} = 0.65 \times f_{ctm} \times b_w d \tag{3.6}$$

$$f_{ctm} = 0.35\sqrt{f_{cm}} \tag{3.7}$$

$$V_w = A_{sw} \times f_{ywm} \times d/s \tag{3.8}$$

 $V_c = 0.80 \times 0.65 \times 1.917 \times 250 \times 460 = 114.64 \text{kN}$

 $V_w = (2 \times 78.54) \times 420 \times 460/100 = 303.48$ kN

 $V_r = V_c + V_w = \underline{418.1kN}$

V_r : Kolon, kiriş veya perde kesitinin kesme dayanımı

V_c : Beton kesitinin kesme kuvveti dayanımına katkısı

V_w : Enine donatinin (etriyenin) kesme kuvveti dayanımına katkısı

V_{cr} : Eğik çatlamayı oluşturan kesme kuvveti

 f_{ctm} : Mevcut betonun çekme dayanımı

f_{cm} : Mevcut beton dayanımı

A_{sw} : Kesme kuvveti etriyesi kesit alanı

f_{ywm} : Mevcut enine donatinin akma gerilmesi

d : Faydalı yükseklik

s : Etriye veya sargı donatı aralığı

Analiz sonuçlarına göre tüm yapılarda, kirişlerde elde edilen en büyük kesme kuvveti değeri 99.9kN'dur. 418.1kN > 99.9kN olduğundan kirişler kesme kuvvetlerine karşı güvenlidir.

Kolonların Kesme Kuvveti Kapasitesi Kontrolü

0.30m×0.30m boyutlu ve Ø10/100mm etriyeli kolonun kesme kuvveti kapasitesi:

 $V_c = 0.80 \times 0.65 \times 1.917 \times 300 \times 260 = 77.75N$

 $V_w = (2 \times 78.54) \times 420 \times 260/100 = 171.53$ kN

 $V_r = V_c + V_w = \underline{249.3kN}$

Analiz sonuçlarına göre tüm yapılarda, en büyük kolon kesme kuvveti 99.9kN olarak elde edilmiştir. 0.40m×0.40m boyutlarındaki kolonlarda oluşan bu kuvvetin, 0.30×0.30m olan kolon tarafından da karşılanabildiği görülmektedir. Sonuç olarak yapılardaki tüm kolonlar, gevrek göçmeye sebep olacak olan kesme kuvveti etkilerine karşı yeterli kapasiteye sahiptir.

Kolon ve kirişlerin plastik dönmelere bağlı olarak hasar sınırları elde edilmiş, statik itme analizleri sonucu gevrek güç tükenmesine karşı yeter derecede kesme kuvveti kapasitesine sahip oldukları belirlenmiştir. Aşağıda her bir yapı için Artımsal Esdeğer Deprem Yükü Yöntemiyle yapıların performansının belirlenmesi anlatılmıştır. G+0.3Q yüklemesi ile yapılan doğrusal olmayan statik analiz, itme analizinin başlangıç koşulu olarak gözönünde bulundurulmuştur. Tüm yapılar, Bölüm 2.2.3'te verilen, bu yöntemin uygulanabilmesi için gereken şartları sağlamaktadır. Yapılar her iki doğrultuda da simetrik olduğundan yalnızca X doğrultusunda analiz yapılması yeterli olmuştur. Analizler sırasında, Deprem Yönetmeliği Madde 7.6.5.3'e göre, eşdeğer deprem yükü dağılımının, taşıyıcı sistemdeki plastik kesit oluşumlarından bağımsız biçimde sabit kaldığı varsayımı yapılmıştır. Bu durumda yük dağılımı, analizin başlangıç adımında doğrusal elastik davranış için hesaplanan birinci (deprem doğrultusundaki hakim) doğal titreşim mod şekli genliği ile ilgili kütlenin çarpımından elde edilen değerle orantılı olacak şekilde tanımlanmıştır. Ayrıca, yapılarda her iki doğrultuda simetri söz konusu olduğundan, X doğrultusunda yapılan statik itme analizleri sonucu aynı katta bulunan toplam 16 kolon içinde aynı plastik dönme değerlerine sahip olan kolonlar bulunmaktadır. Bunlar, S01-S13, S02-S14, S03-S15, S04-S16, S05-S09, S06-S10, S07-S14 ile S08-S12 kolonlarıdır ve Şekil 3.22'de gösterilmiştir. Aynı renkle isimlendirilmiş kolonların plastik dönme değerleri eşittir.

Şekil 3.22 : x doğrultusunda yapılan statik itme analizi sonucu eşit plastik dönme değerleri elde edilen kolonların aynı renklerle gösterimi

3.3.3.1 2 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.23'de verilmiştir.

Şekil 3.23 : 2 katlı yapının statik itme eğrisi

Statik itme eğrisinin, modal kapasite eğrisine dönüştürülmesi denklem 3.9 ve 3.10 ile yapılır.

$$\alpha_1^{(i)} = \frac{V_{x1}^{(i)}}{M_{x1}} \tag{3.9}$$

$$d_1^{(i)} = \frac{u_{xN1}^{(i)}}{\Phi_{xN1}\Gamma_{x1}}$$
(3.10)

 $\alpha_1^{(i)}$: (i)'inci itme adımı sonunda elde edilen birinci moda ait modal ivme

 $V_{x1}^{(i)}$: x deprem doğrultusunda (i)'inci itme adımı sonunda elde edilen birinci moda (hakim moda) ait taban kesme kuvveti

 M_{x1} : x deprem doğrultusunda doğrusal elastik davranış için tanımlanan birinci (hakim) moda ait etkin kütle

 $d_1^{(i)}$: (i)'inci itme adımı sonunda elde edilen birinci moda ait modal yerdeğiştirme $u_{xN1}^{(i)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda (i)'inci itme adımı sonunda elde edilen birinci moda ait yerdeğiştirme

 Φ_{xN1} : Binanın tepesinde (N'inci katında) x deprem doğrultusunda birinci moda ait mod şekli genliği

 Γ_{x1} : x deprem doğrultusunda birinci moda ait katkı çarpanı

Çizelge 3.26'da modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.24'te ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 3220.8 kN
Etkin kütle oranı	= 0.902>0.70 ✓
M _{x1}	$=(3220.8/9.81)\times 0.902 = 296.14$ kNs ² /m
Γ_{x1}	$= 17.064 \text{ kNs}^2$
$\Phi_{\rm xN1}$	= 0.0673

$u_{xN1}^{(i)}$	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.00	296.14	17.06	0.0673	0.000	0.000
0.006	189.98	296.14	17.06	0.0673	0.642	0.005
0.012	379.96	296.14	17.06	0.0673	1.283	0.010
0.016	516.12	296.14	17.06	0.0673	1.743	0.014
0.021	631.36	296.14	17.06	0.0673	2.132	0.018
0.023	671.66	296.14	17.06	0.0673	2.268	0.020
0.024	676.79	296.14	17.06	0.0673	2.285	0.021
0.026	688.46	296.14	17.06	0.0673	2.325	0.023
0.032	698.58	296.14	17.06	0.0673	2.359	0.028
0.038	699.97	296.14	17.06	0.0673	2.363	0.033
0.044	701.35	296.14	17.06	0.0673	2.368	0.039
0.050	702.73	296.14	17.06	0.0673	2.373	0.044
0.056	704.12	296.14	17.06	0.0673	2.378	0.049
0.060	704.96	296.14	17.06	0.0673	2.381	0.052

Çizelge 3.26 : 2 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

Şekil 3.24 : 2 katlı yapının x doğrultusu modal kapasite eğrisi

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile hesaplanır.

$$u_{xN1}^{(p)} = \Phi_{xN1} \Gamma_{x1} d_1^{(p)}$$
(3.11)

$$d_1^{(p)} = S_{di1} \tag{3.12}$$

$$S_{di1} = C_{R1} S_{de1} \tag{3.13}$$

$$S_{de1} = \frac{S_{ae1}}{\left(\omega_1^{(1)}\right)^2}$$
(3.14)

$$S_{ae1} = 2.5 \left(\frac{T_B}{T_{1x}}\right)^{0.8} A_0 I g \quad (T_{1x} \ge T_B ise)$$
(3.15)

 $u_{xN1}^{(p)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda tepe yerdeğiştirme istemi

 $d_1^{(p)}$: Birinci moda ait modal yerdeğiştirme istemi

S_{di1} : Birinci moda ait doğrusal elastik olmayan spektral yerdeğiştirme

 C_{R1} : Birinci moda ait spektral yerdeğiştirme oranı

 S_{de1} : İtme analizinin ilk adımında birinci moda ait doğrusal elastik spektral yerdeğiştirme

 S_{ae1} : İtme analizinin ilk adımında birinci moda ait elastik spektral ivme

 $\omega_1^{(1)}$: Başlangıçtaki (i=1) itme adımında birinci (deprem doğrultusunda hakim) titreşim moduna ait doğal açısal frekans

T_B : Spektrum karakteristik periyodu

 T_{1x} : Binanın x doğrultusunda birinci (hakim) doğal titreşim periyodu

A₀ : Etkin yer ivmesi katsayısı

I : Bina önem katsayısı

g : Yerçekimi ivmesi (9.81m/s²)

 $S_{ae1} = 2.5 \times (0.4/0.567)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 7.42 \text{ m/s}^2$

 $S_{de1} = 7.42/122.72 = 0.060 \text{ m}$; $(T_{1x}=0.567 \ge T_B=0.40) \rightarrow C_{R1}=1$

$$S_{di1} = 1 \times 0.060 = 0.060 \text{ m}$$

$$d_1^{(p)} = 0.060 \text{ m}$$

 $u_{xN1}^{(p)} = \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0673 \times 17.064 \times 0.060 = 0.068 \text{ m}$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.068m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.25'te performans noktası, Şekil 3.26'da ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.25 : 2 katlı yapının performans noktası

Şekil 3.26 : 2 katlı yapıda oluşan plastik mafsallar

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.27'de ve Çizelge 3.27'de gösterilmiştir.

Şekil 3.27 : 2 katlı yapının 1. ve 2. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	2. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi
S101, S113	183.6	0.01438	BHB	S201, S213	91.7	0.00010	MHB
S102, S114	203.1	0.01437	BHB	S202, S214	101.2	0.00081	MHB
S103, S115	183.7	0.01425	BHB	S203, S215	91.7	0.00058	MHB
S104, S116	148.8	0.01490	BHB	S204, S216	-	-	MHB
S105, S109	341.4	0.01355	BHB	S205, S209	-	-	MHB
S106, S110	359.1	0.01381	BHB	S206, S210	-	-	MHB
S107, S111	341.4	0.01420	BHB	S207, S211	-	-	MHB
S108, S112	239.4	0.01490	BHB	S208, S212	-	-	MHB

Çizelge 3.27 : 2 katlı yapıda kolonların hasar bölgeleri

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1. Kat kirişlerinde X doğrultusunda bulunan 12 adet kirişten 10'unda plastik mafsal oluşmuştur ve plastik dönme değerleri çok düşük değerdedir. 2. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.28'de

kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.29'da ise hasar oranları verilmiştir.

Çizelge 3.28 : 2 katlı yapıda	kolon ve kirişlerin	ı sayılarına g	öre bulundukları hasar
bölgeleri			

Tasarım Depremi (X Doğrultusu)									
Vot/Hogor		Kiri	ş	Kolon					
Kat/Hasar	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	24	-	-	-	-	16	-	-	
2	24 16							-	

Çizelge 3.29 : 2 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar (%)		Kolon							
	MHB	BHB	İΗΒ	GB	MHB	BHB	İHB	GB	
1	100	-	-	-	-	100	-	-	
2	100	_	-	-	100	-	-	-	

Bu sonuçlara göre 2 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.2 3 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.28'de verilmiştir.

Şekil 3.28 : 3 katlı yapının statik itme eğrisi

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür.

Çizelge 3.30'da modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.29'da ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 4915.2 kN
Etkin kütle oranı	= 0.782>0.70 ✓
M_{x1}	$= (4915.2/9.81) \times 0.782 = 391.81 \text{ kNs}^2/\text{m}$
Γ_{x1}	$= 19.614 \text{ kNs}^2$
$\Phi_{\rm xN1}$	= 0.0637

Çizelge 3	Çizelge 3.30 : 3 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı									
$u_{xN1}^{(i)}$	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$				
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)				
0.000	0.00	391.81	19.61	0.0637	0.000	0.000				
0.017	456.53	391.81	19.61	0.0637	1.165	0.014				
0.035	796.54	391.81	19.61	0.0637	2.032	0.028				
0.043	870.01	391.81	19.61	0.0637	2.220	0.034				
0.051	907.12	391.81	19.61	0.0637	2.315	0.041				
0.056	919.96	391.81	19.61	0.0637	2.347	0.045				
0.060	924.59	391.81	19.61	0.0637	2.359	0.048				
0.075	935.54	391.81	19.61	0.0637	2.387	0.060				
0.080	941.74	391.81	19.61	0.0637	2.403	0.064				
0.095	953.68	391.81	19.61	0.0637	2.434	0.077				
0.103	956.49	391.81	19.61	0.0637	2.441	0.083				
0.103	956.49	391.81	19.61	0.0637	2.441	0.083				
0.103	956.49	391.81	19.61	0.0637	2.441	0.083				
0.103	956.49	391.81	19.61	0.0637	2.441	0.083				
0.104	956.50	391.81	19.61	0.0637	2.441	0.083				
0.103	956.50	391.81	19.61	0.0637	2.441	0.083				
0.103	956.50	391.81	19.61	0.0637	2.441	0.083				
0.103	956.50	391.81	19.61	0.0637	2.441	0.083				

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$S_{ae1} = 2.5 \times (0.4/0.680)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 6.417 \text{ m/s}^2$$

$$S_{de1} = 6.417/85.453 = 0.0705 \text{ m} \qquad ; (T_{1x} = 0.680 \ge T_B = 0.40) \rightarrow C_{R1} = 1$$

 $S_{di1} = 1{\times}0.0705 = 0.0705 \ m$

$$d_1^{(p)} = 0.0705 \text{ m}$$

$$u_{xN1}^{(p)} = \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0637 \times 19.614 \times 0.0705 = 0.094 \text{ m}$$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.094m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.30'da performans noktası, Şekil 3.31'de ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.29 : 3 katlı yapının x doğrultusu modal kapasite eğrisi

Şekil 3.30 : 3 katlı yapının performans noktası

Şekil 3.31 : 3 katlı yapıda oluşan plastik mafsallar

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.32-33-34'te ve Çizelge 3.31'de gösterilmiştir.

Şekil 3.32 : 3 katlı yapının 1. kat kolonlarındaki hasarların belirlenmesi

Şekil 3.33 : 3 katlı yapının 2. kat kolonlarındaki hasarların belirlenmesi

Şekil 3.34 : 3 katlı yapının 3. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi	2. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi
S101, S113	153.8	0.00091	MHB	S201, S213	97.8	0.01049	BHB
S102, S114	310.9	0.00070	MHB	S202, S214	204.9	0.01361	BHB
S103, S115	281.6	0.00085	MHB	S203, S215	184.1	0.01369	BHB
S104, S116	-	-	MHB	S204, S216	152.3	0.00903	BHB
S105, S109	281.6	0.00014	MHB	S205, S209	184.1	0.00969	BHB
S106, S110	-	-	MHB	S206, S210	354.4	0.01257	BHB
S107, S111	-	-	MHB	S207, S211	339.1	0.01281	BHB
S108, S112	-	-	MHB	S208, S212	245.2	0.00851	BHB
3. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi				
\$301, \$313	47.9	0.00241	MHB				
S302, S314	104.7	0.00453	MHB				
\$303, \$315	91.9	0.00389	MHB				
\$304, \$316	65.8	0.00143	MHB				
\$305, \$309	91.9	0.00157	MHB				
S306, S310	183.0	0.00393	MHB				
S307, S311	171.0	0.00157	MHB				
S308, S312	113.2	0.00108	MHB				

Çizelge 3.31 : 3 katlı yapıda kolonların hasar bölgeleri

Çizelge 3.32 : 3 katlı yapıda	kolon ve kirişlerin sayıl	larına göre bulundukları hasar
bölgeleri		

Tasarım Depremi (X Doğrultusu)								
Kat/Hasar	Kiriş				Kolon			
	MHB	BHB	İΗΒ	GB	MHB	BHB	İΗΒ	GB
1	20	4	-	-	16	-	-	-
2	16	8	-	-	-	16	-	-
3	24	-	_	_	16	_	-	_

Çizelge 3.33 : 3 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)								
Kat/Hasar (%)	Kiriş				Kolon			
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB
1	83	17	-	-	100	-	-	-
2	67	33	-	-	-	100	-	-
3	100	-	-	-	100	-	-	-

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1. ve 2. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşurken bazı kirişlerin belirgin hasar bölgesinde olduğu görülmüştür. 3. Kat kirşlerinde ise plastik mafsal oluşmamıştır.

Çizelge 3.32'de kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.33'te ise hasar oranları verilmiştir.

Bu sonuçlara göre 3 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.3 4 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.35'te verilmiştir.

Şekil 3.35 : 4 katlı yapının statik itme eğrisi

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür. Çizelge 3.34'te modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.36'da ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 6609.6 kN
Etkin kütle oranı	= 0.752>0.70 ✓
M _{x1}	$=(6609.6/9.81)\times 0.752 = 506.67 \text{ kNs}^2/\text{m}$
Γ_{x1}	$= 22.351 \text{ kNs}^2$
Φ_{xN1}	= 0.0579

u _{xN1} ⁽ⁱ⁾	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.00	506.67	22.35	0.0579	0.000	0.000
0.019	459.81	506.67	22.35	0.0579	0.907	0.015
0.035	756.20	506.67	22.35	0.0579	1.492	0.028
0.045	852.10	506.67	22.35	0.0579	1.681	0.035
0.046	859.85	506.67	22.35	0.0579	1.697	0.036
0.076	931.33	506.67	22.35	0.0579	1.838	0.059
0.082	940.10	506.67	22.35	0.0579	1.855	0.064
0.113	948.90	506.67	22.35	0.0579	1.872	0.088
0.113	948.90	506.67	22.35	0.0579	1.872	0.088
0.130	952.48	506.67	22.35	0.0579	1.879	0.101
0.142	953.60	506.67	22.35	0.0579	1.882	0.109
0.142	953.61	506.67	22.35	0.0579	1.882	0.109
0.142	953.62	506.67	22.35	0.0579	1.882	0.109

Çizelge 3.34 : 4 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

Şekil 3.36 : 4 katlı yapının x doğrultusu modal kapasite eğrisi

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$S_{ae1} = 2.5 \times (0.4/0.805)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 5.606 \text{ m/s}^2$$

$$S_{de1} = 5.606/60.932 = 0.092 \text{ m}$$
; $(T_{1x}=0.805 \ge T_B=0.40) \rightarrow C_{R1}=1$

$$S_{di1} = 1 \times 0.092 = 0.092 \ m$$

 $d_1^{(p)} = 0.092 \text{ m}$

 $u_{xN1}^{(p)} = \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0579 \times 22.351 \times 0.092 = 0.119 \text{ m}$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.119m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.37'de performans noktası, Şekil 3.38'de ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.37 : 4 katlı yapının performans noktası

Şekil 3.38 : 4 katlı yapıda oluşan plastik mafsallar

Şekil 3.39: 4 katlı yapının 1. ve 2. kat kolonlarındaki hasarların belirlenmesi

Şekil 3.40 : 4 katlı yapının 3. ve 4. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	2. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi
S101, S113	214.1	0.00352	MHB	S201, S213	-	-	MHB
S102, S114	404.1	0.00254	MHB	S202, S214	301.9	0.00009	MHB
S103, S115	380.9	0.00279	MHB	S203, S215	282.9	0.00038	MHB
S104, S116	354.7	0.00229	MHB	S204, S216	-	-	MHB
S105, S109	380.9	0.00279	MHB	S205, S209	-	-	MHB
S106, S110	700.9	0.00169	MHB	S206, S210	-	-	MHB
S107, S111	673.4	0.00175	MHB	S207, S211	-	-	MHB
S108, S112	525.0	0.00161	MHB	S208, S212	-	-	MHB
3. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi	4. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
S301, S313	98.7	0.01243	BHB	S401, S413	-		MHB
S302, S314	203.4	0.01316	BHB	S402, S414	98.0	0.00008	MHB
S303, S315	184.7	0.01326	BHB	S403, S415	-		MHB
S304, S316	146.7	0.01078	BHB	S404, S416	-		MHB
S305, S309	184.7	0.01201	BHB	S405, S409	-		MHB
S306, S310	351.8	0.01224	BHB	S406, S410	-		MHB
S307, S311	337.0	0.01231	BHB	S407, S411	-		MHB
S308, S312	234.0	0.01000	BHB	S408, S412	-		MHB
2 ve 4. Kat l	Kolonların	ıda (S202, S Dönme	203, S214, eleri Çok D	S215 ve S402 Düşük Değerde	2, S414) Ol edir	uşan Plastik	. Mafsal

Çizelge 3.35 : 4 katlı yapıda kolonların hasar bölgeleri

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.39-40'ta ve Çizelge 3.35'te gösterilmiştir.

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1. ve 2. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşmuştur ve belirgin hasar bölgesinde oldukları görülmüştür. 3. Kat X doğrultusu kirişlerinde, simetrik konumda bulunan K302 ve K311 kirişlerinde plastik mafsal oluşmazken, diğer kirişlerde oluşan plastik mafsal dönmeleri düşük değerdedir ve minimum hasar bölgesinde oldukları görülmüştür. 4. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.36'da kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.37'de ise hasar oranları verilmiştir.

Tasarım Depremi (X Doğrultusu)								
Kat/Hasar		Kiriş			Kolon			
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB
1	12	12	-	-	16	-	-	-
2	12	12	-	-	16	-	-	-
3	24	_	-	-	-	16	-	-
4	24	-	-	-	16	-	-	-

Çizelge 3.36 : 4 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri

Çizelge 3.37 : 4 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)								
Kat/Hasar (%)		Kiriş			Kolon			
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB
1	50	50	-	-	100	-	-	-
2	50	50	-	-	100	-	-	-
3	100	-	-	-	-	100	-	-
4	100	-	-	-	100	-	-	-

Bu sonuçlara göre 4 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.4 5 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.41'de verilmiştir.

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür.

Çizelge 3.38'de modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.42'de ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W = 8328 kN Etkin kütle oranı = $0.816 > 0.70 \checkmark$ M_{x1} = $(8328/9.81) \times 0.816 = 692.7 \text{ kNs}^2/\text{m}$ Γ_{x1} = 26.17 kNs^2 Φ_{xN1} = 0.0515

Çizelge 3.38 : 5 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

u _{xN1} ⁽ⁱ⁾	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.000	692.7	26.17	0.0515	0.000	0.000
0.021	532.68	692.7	26.17	0.0515	0.768	0.016
0.037	846.93	692.7	26.17	0.0515	1.222	0.028
0.045	938.08	692.7	26.17	0.0515	1.354	0.034
0.091	1088.56	692.7	26.17	0.0515	1.571	0.068
0.103	1105.85	692.7	26.17	0.0515	1.596	0.077
0.171	1149.26	692.7	26.17	0.0515	1.659	0.127
0.194	1160.06	692.7	26.17	0.0515	1.674	0.144
0.201	1161.54	692.7	26.17	0.0515	1.676	0.150
0.204	1161.93	692.7	26.17	0.0515	1.677	0.152
0.206	1162.00	692.7	26.17	0.0515	1.677	0.153
0.208	1161.86	692.7	26.17	0.0515	1.677	0.155
0.218	1159.70	692.7	26.17	0.0515	1.674	0.162
0.280	1123.62	692.7	26.17	0.0515	1.622	0.208
0.328	1088.03	692.7	26.17	0.0515	1.570	0.244

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$S_{ae1} = 2.5 \times (0.4/0.897)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 5.14 \text{ m/s}^2$$

$$S_{de1} = 5.14/48.997 = 0.104 \text{ m} \qquad ; (T_{1x}=0.897 \ge T_B=0.40) \rightarrow C_{R1}=1$$

$$S_{di1} = 1 \times 0.104 = 0.104 \text{ m}$$

$$d_1^{(p)} = 0.104 \text{ m}$$
(c)

 $u_{xN1}^{(p)} = \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0515 \times 26.17 \times 0.104 = 0.140 \text{ m}$

Şekil 3.42 : 5 katlı yapının x doğrultusu modal kapasite eğrisi

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.140m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.43'te performans noktası, Şekil 3.44'te ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.43 : 5 katlı yapının performans noktası

Şekil 3.44 : 5 katlı yapıda oluşan plastik mafsallar

Şekil 3.45 : 5 katlı yapının 1. ve 3. kat kolonlarındaki hasarların belirlenmesi

Şekil 3.46 : 5 katlı yapının 4. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	3. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	
S101, S113	276.2	0.00588	MHB	S301, S313	-	-	MHB	
S102, S114	509.6	0.00486	BHB	S302, S314	296.7	0.00121	MHB	
S103, S115	480.1	0.00500	BHB	S303, S315	283	0.00126	MHB	
S104, S116	482.3	0.00437	MHB	S304, S316	-	-	MHB	
S105, S109	480.1	0.00512	BHB	S305, S309	-	-	MHB	
S106, S110	859.3	0.00446	BHB	S306, S310	-	-	MHB	
S107, S111	845.7	0.00446	BHB	S307, S311	-	-	MHB	
S108, S112	691.2	0.00334	BHB	S308, S312	-	-	MHB	
4. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi					
S401, S413	100.1	0.00146	MHB					
S402, S414	195.66	0.00215	MHB					
S403, S415	184.3	0.00233	MHB	2 ve 5. Kat	Kolonları	nda Plastik	Mafsal	
S404, S416	-	-	MHB		Oluşmar	nıştır		
S405, S409	183.4	0.00046	MHB					
S406, S410	342.5	0.00124	MHB	-				
S407, S411	344.6	0.00156	MHB					
S408, S412	-	-	MHB					

Çizelge 3.39	: 5 katlı yapıda	kolonların	hasar bölgeleri
--------------	------------------	------------	-----------------

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.45-46'da ve Çizelge 3.39'da gösterilmiştir.

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1, 2 ve 3. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşmuştur ve belirgin hasar bölgesinde oldukları görülmüştür. 4. Kat X doğrultusu kirişlerinin de tamamında plastik mafsal oluşmuştur ancak plastik mafsal dönmeleri düşük değerdedir ve minimum hasar bölgesinde oldukları görülmüştür. 5. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.40'ta kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.41'de ise hasar oranları verilmiştir.

	U								
Tasarım Depremi (X Doğrultusu)									
Vot/Hogor		Kiriş			Kolon				
Kat/Hasar	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	12	12	-	-	4	12	-	-	
2	12	12	-	-	16	-	-	-	
3	12	12	-	-	16	-	-	-	
4	24	-	-	-	16	-	-	-	
5	24	-	-	-	16	-	-	-	

Çizelge 3.40 : 5 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri

Çizelge 3.41 : 5 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar (%)		Kiriş			Kolon				
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	50	50	-	-	25	75	-	-	
2	50	50	-	-	100	-	-	-	
3	50	50	-	-	100	-	-	-	
4	100	-	-	-	100	-	-	-	
5	100	-	-	_	100	-	-	-	

Bu sonuçlara göre 5 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.5 6 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.47'de verilmiştir.

Şekil 3.47 : 6 katlı yapının statik itme eğrisi

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür. Çizelge 3.42'de modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.48'de ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 9998.4 kN
Etkin kütle oranı	= 0.82>0.70 ✓
M _{x1}	$= (9998.4/9.81) \times 0.82 = 835.75 \text{ kNs}^2/\text{m}$
Γ_{x1}	$= 28.82 \text{ kNs}^2$
$\Phi_{\rm xN1}$	= 0.0452

u _{xN1} ⁽ⁱ⁾	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.00	835.75	28.82	0.0452	0.000	0.000
0.026	614.90	835.75	28.82	0.0452	0.735	0.020
0.041	875.47	835.75	28.82	0.0452	1.047	0.032
0.046	922.57	835.75	28.82	0.0452	1.103	0.035
0.059	983.37	835.75	28.82	0.0452	1.176	0.045
0.091	1068.77	835.75	28.82	0.0452	1.278	0.070
0.133	1119.83	835.75	28.82	0.0452	1.339	0.102

Çizelge 3.42 : 6 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

0.142	1125.76	835.75	28.82	0.0452	1.347	0.109
0.223	1164.51	835.75	28.82	0.0452	1.393	0.171
0.240	1170.19	835.75	28.82	0.0452	1.400	0.184
0.242	1170.59	835.75	28.82	0.0452	1.401	0.186
0.248	1170.83	835.75	28.82	0.0452	1.401	0.190
0.250	1170.88	835.75	28.82	0.0452	1.401	0.192
0.253	1170.83	835.75	28.82	0.0452	1.401	0.194
0.255	1170.69	835.75	28.82	0.0452	1.401	0.196
0.262	1169.71	835.75	28.82	0.0452	1.399	0.201
0.303	1152.76	835.75	28.82	0.0452	1.379	0.232
0.307	1150.70	835.75	28.82	0.0452	1.376	0.235

Çizelge 3.42 (devamı) : 6 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

Şekil 3.48 : 6 katlı yapının x doğrultusu modal kapasite eğrisi

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$\begin{split} S_{ae1} &= 2.5 \times (0.4/1.049)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 4.54 \text{ m/s}^2 \\ S_{de1} &= 4.54/35.819 = 0.127 \text{ m} \qquad ; (T_{1x} = 1.049 \ge T_B = 0.40) \rightarrow C_{R1} = 1 \\ S_{di1} &= 1 \times 0.127 = 0.127 \text{ m} \\ d_1^{(p)} &= 0.127 \text{ m} \\ u_{xN1}^{(p)} &= \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0452 \times 28.82 \times 0.127 = 0.165 \text{ m} \end{split}$$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.165m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.49'da performans noktası, Şekil 3.50'de ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.49 : 6 katlı yapının performans noktası

Şekil 3.50 : 6 katlı yapıda oluşan plastik mafsallar

Şekil 3.51 : 6 katlı yapının 1. kat kolonlarındaki hasarların belirlenmesi

Şekil 3.52 : 6 katlı yapının 5. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	5. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi
S101, S113	348.9	0.00453	MHB	S501, S513	109.0	0.00480	MHB
S102, S114	608.7	0.00321	MHB	S502, S514	197.0	0.00584	MHB
S103, S115	583.9	0.00321	MHB	S503, S515	188.0	0.00594	MHB
S104, S116	588.1	0.00260	MHB	S504, S516	148.1	0.00487	MHB
S105, S109	583.9	0.00356	MHB	S505, S509	188.0	0.00444	MHB
S106, S110	1016.8	0.00288	BHB	S506, S510	323.3	0.00163	MHB
S107, S111	982.9	0.00295	BHB	S507, S511	320.2	0.00165	MHB
S108, S112	826.5	0.00181	MHB	S508, S512	226.7	0.00430	MHB
	2, 3, 4	ve 6. Kat K	Colonlarında	Plastik Mafsa	al <i>Oluşman</i>	nıştır	

Çizelge 3.43 : 6 katlı yapıda kolonların hasar bölgeleri

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.51-52'de ve Çizelge 3.43'te gösterilmiştir.

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1, 2, 3 ve 4. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşmuştur ve belirgin hasar bölgesinde oldukları görülmüştür. 5. Kat X doğrultusu kirişlerinin plastik mafsal dönmeleri düşük değerdedir ve minimum hasar bölgesinde oldukları görülmüştür. 6. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.44'te kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.45'te ise hasar oranları verilmiştir.

Çizelge 3.44 : 6 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar		Kiriş	Kolon						
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	12	12	-	-	12	4	-	-	
2	12	12	-	-	16	-	-	I	
3	12	12	-	-	16	-	-	-	
4	12	12	-	-	16	-	-	-	
5	24	-	-	-	16	-	-	-	
6	24	-	-	-	16	-	-	-	

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar (%)		Kiriş			Kolon				
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	50	50	-	-	75	25	-	-	
2	50	50	-	-	100	-	-	-	
3	50	50	-	-	100	-	-	-	
4	50	50	-	-	100	-	-	-	
5	100	-	-	-	100	-	-	I	
6	100	-	-	-	100	-	-	-	

Çizelge 3.45 : 6 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Bu sonuçlara göre 6 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.6 7 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.53'te verilmiştir.

Şekil 3.53 : 7 katlı yapının	statik itme eğrisi
------------------------------	--------------------

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür. Çizelge 3.46'da modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.54'te ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 11692.8 kN
Etkin kütle oranı	= 0.79>0.70 ✓
M _{x1}	$=(11692.8/9.81)\times 0.79 = 941.62 \text{ kNs}^2/\text{m}$

 $= 30.669 \text{ kNs}^2$

= 0.0448

 $\Phi_{\rm xN1}$

 Γ_{x1}

u _{xN1} ⁽ⁱ⁾	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.00	941.62	30.67	0.0448	0.000	0.000
0.034	609.92	941.62	30.67	0.0448	0.647	0.025
0.054	873.67	941.62	30.67	0.0448	0.927	0.039
0.065	937.51	941.62	30.67	0.0448	0.995	0.047
0.138	1095.50	941.62	30.67	0.0448	1.163	0.100
0.167	1122.21	941.62	30.67	0.0448	1.191	0.121
0.240	1161.76	941.62	30.67	0.0448	1.233	0.175
0.254	1165.83	941.62	30.67	0.0448	1.238	0.184
0.265	1167.71	941.62	30.67	0.0448	1.240	0.193
0.272	1168.11	941.62	30.67	0.0448	1.240	0.198
0.277	1168.27	941.62	30.67	0.0448	1.240	0.201
0.281	1168.21	941.62	30.67	0.0448	1.240	0.204
0.300	1166.01	941.62	30.67	0.0448	1.238	0.218
0.385	1140.73	941.62	30.67	0.0448	1.211	0.280
0.495	1085.96	941.62	30.67	0.0448	1.153	0.360
0.583	1034.20	941.62	30.67	0.0448	1.098	0.424
0.695	965.84	941.62	30.67	0.0448	1.025	0.506
0.779	914.74	941.62	30.67	0.0448	0.971	0.567
0.840	878.16	941.62	30.67	0.0448	0.932	0.611

Çizelge 3.46 : 7 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

101

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$\begin{split} S_{ae1} &= 2.5 \times (0.4/1.242)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 3.963 \text{ m/s}^2 \\ S_{de1} &= 3.963/25.599 = 0.155 \text{ m} \qquad ; (T_{1x}=1.242 \ge T_B=0.40) \rightarrow C_{R1}=1 \\ S_{di1} &= 1 \times 0.155 = 0.155 \text{ m} \\ d_1^{(p)} &= 0.155 \text{ m} \\ u_{xN1}^{(p)} &= \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0448 \times 30.669 \times 0.155 = 0.213 \text{ m} \end{split}$$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.213m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.55'te performans noktası, Şekil 3.56'da ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.55 : 7 katlı yapının performans noktası

Şekil 3.56 : 7 katlı yapıda oluşan plastik mafsallar

Şekil 3.58 : 7 katlı yapının 6. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	4. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
S101, S113	407.3	0.00537	BHB	S401, S413	-	-	MHB
S102, S114	712.7	0.00398	BHB	S402, S414	404.5	0.00003	MHB
S103, S115	684.1	0.00395	BHB	S403, S415	386.8	0.00018	MHB
S104, S116	700.0	0.00295	MHB	S404, S416	-	-	MHB
S105, S109	684.1	0.00463	BHB	S405, S409	-	-	MHB
S106, S110	1178.8	0.00401	BHB	S406, S410	-	-	MHB
S107, S111	1147.6	0.00380	BHB	S407, S411	-	-	MHB
S108, S112	975.2	0.00264	BHB	S408, S412	-	-	MHB
5. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi	6. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
\$501, \$513	-	-	-	S601, S613	102.9	0.00006	MHB
S502, S514	298.0	0.00035	MHB	S602, S614	196.4	0.00097	MHB
S503, S515	286.6	0.00069	MHB	S603, S615	186.9	0.00122	MHB
S504, S516	-	-	-	S604, S616	-	-	MHB
S505, S509	-	-	-	S605, S609	-	-	MHB
S506, S510	-	-	-	S606, S610	-	-	MHB
S507, S511	-	-	-	S607, S611	-	-	MHB
\$508, \$512	-	-	-	S608, S612	-	-	MHB
	2, 3 ve	e 7. Kat Ko	lonlarında l	Plastik Mafsal	Oluşmamışt	ır	

Çizelge 3.47 : 7 katlı yapıda kolonların hasar bölgeleri

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.57-58'de ve Çizelge 3.47'de gösterilmiştir.

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1, 2, 3 ve 4. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşmuştur ve belirgin hasar bölgesinde oldukları görülmüştür. 5. Kat X doğrultusu kirişlerinin de tamamında plastik mafsal oluşmuştur ancak tamamı belirgin hasar bölgesine ulaşmamıştır. 6. Kat X doğrultusu kirişlerinden, yalnızca simetrik konumda bulunan K606 ve K609 kirişlerinde plastik mafsal oluşmuştur ve minimum hasar bölgesinde oldukları görülmüştür. 7. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.48'de kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.49'da ise hasar oranları verilmiştir.

Çizelge 3.48 : 7 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar		Kiriş				Koloi	1		
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	12	12	-	-	2	14	-	-	
2	12	12	-	-	16	-	-	-	
3	12	12	-	-	16	-	-	-	
4	12	12	-	-	16	-	-	-	
5	16	8	-	-	16	-	-	-	
6	24	-	_	-	16	_	_	-	
7	24	-	-	-	16	-	-	-	

Çizelge 3.49 : 7 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar (%)		Kiriş				Koloi	1		
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	50	50	-	-	12.5	87.5	-	-	
2	50	50	-	-	100	-	-	-	
3	50	50	-	-	100	-	-	-	
4	50	50	-	-	100	-	-	-	
5	67	33	-	-	100	-	-	-	
6	100	-	-	-	100	-	-	-	
7	100	-	-	-	100	-	-	-	

Bu sonuçlara göre 7 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.7 8 Katlı yapı

Statik itme analizi sonucu elde edilen itme eğrisi Şekil 3.59'da verilmiştir.

Şekil 3.59 : 8 katlı yapının statik itme eğrisi

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür.

Çizelge 3.50'de modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.60'da ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 13387.2 kN
Etkin kütle oranı	= 0.798>0.70 ✓
M _{x1}	$=(13387.2/9.81)\times 0.798 = 1088.99 \text{ kNs}^2/\text{m}$
Γ_{x1}	$= 32.885 \text{ kNs}^2$
$\Phi_{\rm xN1}$	= 0.0417

Cizelge 3.50 :	8 katlı	vapinin x	doğrultusu	modal	kanasite	eğrisinin	hesabi
çizeige 5.50 .	0 Kuth	yupiini X	uogranusu	mouur	Rupusite	G I S II II II I	nesuor

u _{xN1} ⁽ⁱ⁾	V _{x1} ⁽ⁱ⁾	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	d ₁ ⁽ⁱ⁾
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.00	1088.99	32.89	0.0417	0.000	0.000
0.040	626.07	1088.99	32.89	0.0417	0.574	0.030
0.060	913.96	1088.99	32.89	0.0417	0.839	0.044

0.070	972.62	1088.99	32.89	0.0417	0.893	0.051
0.128	1093.35	1088.99	32.89	0.0417	1.004	0.093
0.208	1184.80	1088.99	32.89	0.0417	1.088	0.151
0.270	1213.29	1088.99	32.89	0.0417	1.114	0.197
0.282	1215.87	1088.99	32.89	0.0417	1.116	0.206
0.285	1216.28	1088.99	32.89	0.0417	1.116	0.208
0.299	1217.21	1088.99	32.89	0.0417	1.117	0.218
0.302	1217.27	1088.99	32.89	0.0417	1.117	0.220
0.316	1217.32	1088.99	32.89	0.0417	1.117	0.230
0.319	1217.35	1088.99	32.89	0.0417	1.118	0.233
0.327	1217.15	1088.99	32.89	0.0417	1.117	0.238
0.331	1216.96	1088.99	32.89	0.0417	1.117	0.241
0.340	1216.29	1088.99	32.89	0.0417	1.116	0.248
0.351	1214.63	1088.99	32.89	0.0417	1.115	0.256
0.447	1182.94	1088.99	32.89	0.0417	1.086	0.326
0.549	1129.42	1088.99	32.89	0.0417	1.037	0.400
0.648	1077.18	1088.99	32.89	0.0417	0.989	0.473
0.670	1065.74	1088.99	32.89	0.0417	0.978	0.488

Çizelge 3.50 (devamı) : 8 katlı yapının x doğrultusu modal kapasite eğrisinin hesabı

Şekil 3.60 : 8 katlı yapının x doğrultusu modal kapasite eğrisi

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$\begin{split} S_{ae1} &= 2.5 \times (0.4/1.398)^{0.8} \times 0.4 \times 1.0 \times 9.81 = 3.61 \text{ m/s}^2 \\ S_{de1} &= 3.61/20.211 = 0.178 \text{ m} \qquad ; (T_{1x}=1.398 \ge T_B=0.40) \rightarrow C_{R1}=1 \\ S_{di1} &= 1 \times 0.178 = 0.178 \text{ m} \\ d_1^{(p)} &= 0.178 \text{ m} \\ u_{xN1}^{(p)} &= \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0417 \times 32.885 \times 0.178 = \underline{0.245 \text{ m}} \end{split}$$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.245m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.61'de performans noktası, Şekil 3.62'de ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.61 : 8 katlı yapının performans noktası

Şekil 3.62 : 8 katlı yapıda oluşan plastik mafsallar

Şekil 3.63 : 8 katlı yapının 1, 5 ve 6. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi	5. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi		
S101, S113	828.7	0.00180	MHB	S501, S513	-	-	MHB		
S102, S114	791.2	0.00301	BHB	S502, S514	390.7	0.00035	MHB		
S103, S115	816.5	0.00302	BHB	S503, S515	403.6	0.00033	MHB		
S104, S116	477.1	0.00450	MHB	S504, S516	-	-	MHB		
S105, S109	1136.4	0.00198	BHB	S505, S509	-	-	MHB		
S106, S110	1298.0	0.00331	BHB	S506, S510	-	-	MHB		
S107, S111	1324.8	0.00324	BHB	S507, S511	-	-	MHB		
S108, S112	787.2	0.00380	BHB	S508, S512	-	-	MHB		
6. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi						
S601, S613	-	-	MHB						
S602, S614	287.9	0.00013	MHB						
S603, S615	297.3	0.00013	MHB	2, 3, 4, 7 v	e 8. Kat Ko	olonlarında	Plastik		
S604, S616	-	-	MHB	Μ	afsal <i>Oluş</i>	mamıştır.			
S605, S609	-	-	MHB						
S606, S610	-	-	MHB	-					
S607, S611	-	-	MHB						
S608, S612	-	-	MHB	-					

Çizelge 3.51 : 8 katlı yapıda kolonların hasar bölgeleri

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.63'te ve Çizelge 3.51'de gösterilmiştir.

Statik itme analizi X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1, 2, 3 ve 4. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşmuştur ve belirgin hasar bölgesinde oldukları görülmüştür. 5. Kat X doğrultusu kirişlerinin de tamamında plastik mafsal oluşmuştur acak tamamı belirgin hasar bölgesine ulaşmamıştır. 6. ve 7. Kat X doğrultusundaki bazı kirişlerde plastik mafsal oluşmuştur ancak dönme değerleri çok düşüktür ve minimum hasar bölgesinde oldukları görülmüştür. 8. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.52'de kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.53'te ise hasar oranları verilmiştir.

Çizelge 3.52 : 8 katlı yapıda kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)									
Kat/Hasar		Kiri	ş			Kolo	n		
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB	
1	12	12	-	-	4	12	-	-	
2	12	12	-	-	16	-	-	-	
3	12	12	-	-	16	-	-	-	
4	12	12	-	-	16	-	-	-	
5	16	8	-	-	16	-	-	-	
6	24	-	-	-	16	-	-	-	
7	24	-	-	-	16	-	-	-	
8	24	-	-	-	16	-	-	-	

Çizelge 3.53 : 8 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

Tasarım Depremi (X Doğrultusu)								
Kat/Hasar (%)		Kiris	3			Kolo	on	
	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB
1	50	50	-	-	25	75	-	-
2	50	50	-	-	100	-	-	-
3	50	50	-	-	100	-	-	-
4	50	50	-	-	100	-	-	-
5	67	33	-	-	100	-	-	-
6	100	-	-	-	100	-	-	-
7	100	_	_	-	100	-	_	-
8	100	-	-	-	100	-	_	-

Bu sonuçlara göre 8 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini sağlamaktadır.

3.3.3.8 8 Katlı yapının okul olarak değerlendirilmesi

Bu bölümde konut olarak tasarımı yapılmış olan 8 katlı yapının, okul olarak kullanıldığı varsayılarak Deprem Yönetmeliği'nde öngörülen şartlara göre deprem performansı değerlendirilmiştir. Buna göre öncelikle G+nQ yüklemesinde n=0.6 ve Q=5kN/m² değerleri esas alınarak yapının etkin rijitliği belirlenmiştir (EK C). Hareketli yük değerindeki ve hareketli yük katılım katsayısındaki bu değişimin, yapıda yaklaşık olarak 2200kN değerinde ciddi bir yük artışına sebep olduğu görülmüştür.

Bina kullanım amacının konut olması durumunda yönetmelikte, aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefi öngörülmektedir. Aynı deprem etkilerinde kullanım amacı okul olan binalarda ise *Hemen Kullanım* performans hedefi öngörülür. Ek olarak okul türü binalar için aşılma olasılığı 50 yılda %2 olan deprem etkilerinde *Can Güvenliği* performans hedefi de öngörülmektedir. Deprem Yönetmeliği Bölüm 2'de verilen tasarım ivme spektrumu, aşılma olasılığı 50 yılda %10 olan deprem etkilerini ifade eder. Bu grafikteki spektral ivme değerlerinin 1.5 katı alınarak, aşılma olasılığı 50 yılda %2 olan deprem için tasarım ivme spektrumu elde edilir. Ayrıca performans noktasının hesabında bina önem katsayısı I=1.4 olarak dikkate alınır.

Şekil 3.64'te okul olarak değerlendirilen 8 katlı yapının statik itme eğrisi verilmiştir.

Denklem 3.9 ve 3.10 ile statik itme eğrisi, modal kapasite eğrisine dönüştürülür.

Çizelge 3.54'te modal kapasite eğrisi verilerinin hesaplanması, Şekil 3.65'te ise elde edilen modal kapasite eğrisi gösterilmiştir.

Bina ağırlığı (G+0.3Q) W	= 15633.7 kN
Etkin kütle oranı	= 0.794 > 0.70 ✓
M_{x1}	$=(15633.7/9.81)\times 0.794 = 1265.4 \text{ kNs}^2/\text{m}$
Γ_{x1}	$= 34.26 \text{ kNs}^2$
Φ_{xN1}	= 0.0401

Şekil 3.64 : 8 katlı yapının (okul) statik itme eğrisi

u _{xN1} ⁽ⁱ⁾	$V_{x1}^{(i)}$	M _{x1}	Γ_{x1}	Φ_{xN1}	$\alpha_1^{(i)}$	$d_1^{(i)}$
(m)	(kN)	(kNs^2/m)	(kNs^2)		(m/s^2)	(m)
0.000	0.00	1265.40	34.26	0.0401	0.000	0.000
0.036	576.49	1265.40	34.26	0.0401	0.456	0.026
0.037	595.73	1265.40	34.26	0.0401	0.471	0.027
0.060	911.95	1265.40	34.26	0.0401	0.721	0.044
0.069	970.26	1265.40	34.26	0.0401	0.767	0.050
0.079	1003.45	1265.40	34.26	0.0401	0.793	0.058
0.118	1078.22	1265.40	34.26	0.0401	0.852	0.086
0.158	1134.09	1265.40	34.26	0.0401	0.896	0.115
0.194	1176.48	1265.40	34.26	0.0401	0.930	0.142
0.241	1207.29	1265.40	34.26	0.0401	0.954	0.175
0.279	1223.71	1265.40	34.26	0.0401	0.967	0.203
0.289	1226.34	1265.40	34.26	0.0401	0.969	0.210
0.304	1228.43	1265.40	34.26	0.0401	0.971	0.222
0.318	1229.57	1265.40	34.26	0.0401	0.972	0.231
0.325	1229.90	1265.40	34.26	0.0401	0.972	0.237
0.329	1229.97	1265.40	34.26	0.0401	0.972	0.239
0.332	1229.91	1265.40	34.26	0.0401	0.972	0.241
0.357	1228.25	1265.40	34.26	0.0401	0.971	0.260

	Cizelge 3.54 : 8 k	atlı yapının (ok	ul) x doğrultusu	modal kapasite	eğrisinin hesabı
--	---------------------------	------------------	------------------	----------------	------------------

Şekil 3.65 : 8 katlı yapının (okul) x doğrultusu modal kapasite eğrisi

<u>Aşılma olasılığı 50 yılda %10 olan deprem için performans değerlendirilmesi</u>

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$S_{ae1} = 2.5 \times (0.4/1.445)^{0.8} \times 0.4 \times 1.4 \times 9.81 = 4.92 \text{ m/s}^2$$

$$S_{de1} = 4.92/18.908 = 0.260 \text{ m}$$
; $(T_{1x}=1.444 \ge T_B=0.40) \rightarrow C_{R1}=1$

$$S_{di1} = 1 \times 0.260 = 0.260 \text{ m}$$

$$d_1^{(p)} = 0.260 \text{ m}$$

$$u_{xN1}^{(p)} = \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0401 \times 34.26 \times 0.260 = 0.357 \text{ m}$$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.357m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.66'da performans noktası, Şekil 3.67'de ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.66 : 8 katlı yapının (okul) performans noktası (aşılma olasılığı 50 yılda %10 olan deprem)

Şekil 3.67 : 8 katlı yapıda (okul) oluşan plastik mafsallar (aşılma olasılığı 50 yılda %10 olan deprem)

Şekil 3.68 : 8 katlı yapının (okul) 1, 2, 5 ve 6. kat kolonlarındaki hasarların belirlenmesi (aşılma olasılığı 50 yılda %10 olan deprem)

Şekil 3.69 : 8 katlı yapının (okul) 7. kat kolonlarındaki hasarların belirlenmesi (aşılma olasılığı 50 yılda %10 olan deprem)

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	2. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi
S101, S113	511.4	0.0084	BHB	S201, S213	448.1	0.0006	MHB
S102, S114	886.4	0.0074	BHB	S202, S214	774.4	0.0009	MHB
S103, S115	874.7	0.0075	BHB	S203, S215	768.1	0.0009	MHB
S104, S116	870.1	0.0057	BHB	S204, S216	-	-	MHB
S105, S109	855.7	0.0079	BHB	S205, S209	-	-	MHB
S106, S110	1453.8	0.0065	BHB	S206, S210	-	-	MHB
S107, S111	1429.6	0.0065	BHB	S207, S211	-	-	MHB
S108, S112	1206.1	0.0063	BHB	S208, S212	-	-	MHB
5. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	6. Kat Kolonları	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi
S501, S513	249.1	0.000004	MHB	S601, S613	-	-	MHB
S502, S514	440.0	0.0011	MHB	S602, S614	326.5	0.0014	MHB
S503, S515	432.2	0.0011	MHB	S603, S615	319.2	0.0015	MHB
S504, S516	-	-	MHB	S604, S616	-	-	MHB
S505, S509	-	-	MHB	S605, S609	-	-	MHB
S506, S510	-	-	MHB	S606, S610	-	-	MHB
S507, S511	-	-	MHB	S607, S611	-	-	MHB
S508, S512	-	-	MHB	S608, S612	-	-	MHB
7. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	3, 4 ve 8. Kat Kolonlarında Plastik Mafsal Oluşmamıştır			
S701, S713	112.5	0.0004	MHB				
S702, S714	214.8	0.0016	MHB				
S703, S715	207.9	0.0018	MHB				
S704, S716	148.6	0.0004	MHB				
S705, S709	-	-	MHB				
S706, S710	-	-	MHB				
S707, S711	359.1	0.00001	MHB				
S708, S712	-	-	MHB				

Çizelge 3.55 : 8 katlı yapıda (okul) kolonların hasar bölgeleri (aşılma olasılığı 50 yılda %10 olan deprem)

Çizelge 3.56'da kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.57'de ise hasar oranları verilmiştir.

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.68-69'da ve Çizelge 3.55'te gösterilmiştir.
Tasarım Depremi (X Doğrultusu) (Okul)											
Kot/Uggor		Kiriş				Kolor	1				
Kat/Hasai	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	12	12	-	-	-	16	-	-			
2	12	12	-	-	16	-	-	I			
3	12	12	-	-	16	-	-	I			
4	12	12	-	-	16	-	-	-			
5	12	12	-	-	16	-	-	-			
6	12	12	-	-	16	-	-	-			
7	24	_	_	-	16	_	_	-			
8	24	_	_	-	16	_	_	-			

Çizelge 3.56 : 8 katlı yapıda (okul) kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri (aşılma olasılığı 50 yılda %10 olan deprem)

Çizelge 3.57 : 8 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri (aşılma olasılığı 50 yılda %10 olan deprem)

Tasarım Depremi (X Doğrultusu) (Okul)											
$\mathbf{V}_{ot}/\mathbf{H}_{osor}(0/2)$		Kiriş	-		Kolon						
Kat/Hasal (70)	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	50	50	-	-	0	100	-	-			
2	50	50	-	-	100	-	-	-			
3	50	50	-	-	100	-	-	-			
4	50	50	-	-	100	-	-	-			
5	50	50	-	-	100	-	-	-			
6	50	50	-	-	100	-	-	-			
7	100	-	-	-	100	-	-	-			
8	100	-	-	_	100	-	-	-			

Bu sonuçlara göre 8 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, okullar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Hemen Kullanım* performans hedefini *sağlamamaktadır* (Performans düzeyi Can Güvenliği'dir).

<u>Aşılma olasılığı 50 yılda %2 olan deprem için performans değerlendirilmesi</u>

Modal yerdeğiştirme istemi $d_1^{(p)}$ (performans noktası) ve binanın tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ hesabı ise denklem 3.11-3.15 ile yapılır:

$$S_{ae1} = 1.5 \times 2.5 \times (0.4/1.445)^{0.8} \times 0.4 \times 1.4 \times 9.81 = 7.37 \text{ m/s}^2$$

- $S_{de1} = 7.37/18.908 = 0.390 \text{ m}$; $(T_{1x}=1.444 \ge T_B=0.40) \rightarrow C_{R1}=1$
- $S_{di1} = 1 \times 0.390 = 0.390 \ m$
- $d_1^{(p)} = 0.390 \text{ m}$

 $u_{xN1}^{(p)} = \Phi_{xN1} \times \Gamma_{x1} \times d_1^{(p)} = 0.0401 \times 34.26 \times 0.390 = 0.536 \text{ m}$

Statik itme analizi, yapının X doğrultusundaki tepe yerdeğiştirmesi istemi olan 0.536m için tekrarlanarak performans değerlendirilmesi yapılacaktır. Şekil 3.70'de performans noktası, Şekil 3.71'de ise modelde oluşan plastik mafsallar gösterilmiştir.

Şekil 3.70 : 8 katlı yapının (okul) performans noktası (aşılma olasılığı 50 yılda %2 olan deprem)

Şekil 3.71 : 8 katlı yapıda (okul) oluşan plastik mafsallar (aşılma olasılığı 50 yılda %2 olan deprem)

Şekil 3.72 : 8 katlı yapının (okul) 1, 2, 5 ve 6. kat kolonlarındaki hasarların belirlenmesi (aşılma olasılığı 50 yılda %2 olan deprem)

Şekil 3.73 : 8 katlı yapının (okul) 7. kat kolonlarındaki hasarların belirlenmesi (aşılma olasılığı 50 yılda %2 olan deprem)

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	2. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
S101, S113	511.4	0.0143	BHB	S201, S213	448.8	0.0022	MHB
S102, S114	886.4	0.0136	BHB	S202, S214	778.9	0.0024	MHB
S103, S115	886.0	0.0136	BHB	S203, S215	779.8	0.0024	MHB
S104, S116	870.1	0.0115	BHB	S204, S216	-	-	MHB
S105, S109	855.7	0.0139	BHB	S205, S209	748.6	0.0010	MHB
S106, S110	1453.8	0.0118	İHB	S206, S210	1267.1	0.0010	MHB
S107, S111	1430.5	0.0117	İHB	S207, S211	1247.9	0.0010	MHB
S108, S112	1205.9	0.0121	İHB	S208, S212	-	-	MHB
5. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	6. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
S501, S513	249.1	0.0013	MHB	S601, S613	-	-	MHB
S502, S514	441.8	0.0025	MHB	S602, S614	328.0	0.0033	MHB
S503, S515	438.7	0.0024	MHB	S603, S615	324.8	0.0034	MHB
S504, S516	381.8	0.0001	MHB	S604, S616	-	-	MHB
S505, S509	422.9	0.0005	MHB	S605, S609	-	-	MHB
S506, S510	726.1	0.0005	MHB	S606, S610	546.9	0.0005	MHB
S507, S511	711.3	0.0004	MHB	S607, S611	536.1	0.0007	MHB
S508, S512	-	-	MHB	S608, S612	-	-	MHB
7. Kat Kolonları	Eksenel Yük (kN)	θp (rad)	Hasar Bölgesi				
S701, S713	112.5	0.0049	MHB				
S702, S714	215.7	0.0069	BHB				
\$703, \$715	214.2	0.0069	BHB	3, 4 ve 8. Ka	at Kolonlar	ında Plasti	k Mafsal
S704, S716	148.6	0.0048	MHB		Oluşman	nıştır	
S705, S709	204.4	0.0038	MHB				
S706, S710	363.7	0.0048	BHB				
S707, S711	359.5	0.0051	BHB				
S708, S712	240.8	0.0036	MHB				

Çizelge 3.58 : 8 katlı yapıda (okul) kolonların hasar bölgeleri (aşılma olasılığı 50 yılda %2 olan deprem)

Statik itme analizinin, performans noktasına kadar yapılması sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.72-73'te ve Çizelge 3.58'de gösterilmiştir.

Çizelge 3.59'da kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.60'da ise hasar oranları verilmiştir.

Şiddetli Deprem (X Doğrultusu) (Okul)											
Vot/Hogor		Kiriş				Kolor	1				
Kat/Hasai	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	12	10	2	-	-	10	6	-			
2	12	-	12	-	16	-	-	-			
3	12	-	12	-	16	-	-	-			
4	12	-	12	-	16	-	-	-			
5	12	12	-	-	16	-	-	-			
6	12	12	-	-	16	-	-	-			
7	24	-	-	-	8	8	-	-			
8	24	-	-	-	16	_	-	-			

Çizelge 3.59 : 8 katlı yapıda (okul) kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri (aşılma olasılığı 50 yılda %2 olan deprem)

Çizelge 3.60 : 8 katlı yapıda kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri (aşılma olasılığı 50 yılda %2 olan deprem)

Şiddetli Deprem (X Doğrultusu) (Okul)											
Kat/Hasar (%)		Kiriş	-			Kolon					
Kat/Hasal (%)	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	50	42	8	-	-	62	38	-			
2	50	-	50	-	100	-	-	-			
3	50	-	50	-	100	-	-	-			
4	50	-	50	-	100	-	-	-			
5	50	50	-	-	100	-	-	-			
6	50	50	-	-	100	-	-	-			
7	100	-	-	-	50	50	-	-			
8	100	-	-	-	100	-	-	-			

Bu sonuçlara göre 8 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, okullar için aşılma olasılığı 50 yılda %2 olan deprem etkilerinde *Can Güvenliği* performans hedefini *sağlamamaktadır* (Performans düzeyi Göçme Öncesi'dir).

3.3.4 Zaman tanım alanında doğrusal olmayan hesap yöntemi ile yapıların davranışının incelenmesi

Bu bölümde 3, 5, 7 ve 8 katlı yapılarda ZTA doğrusal olmayan analiz, 1999 Düzce Depremi kaydı için yapılmıştır. Statik itme analizlerinde olduğu gibi, doğrusal olmayan statik G+nQ yüklemesi, ZTA analizin başlangıç koşulu olarak tanımlanmıştır. Deprem Yönetmeliği'nde verilen tasarım spektrumuyla benzeşimi yapılan kaydın, uygulama oranın değiştirilerek, her analiz için taban kesme kuvveti ve tepe yerdeğiştirme değerlerinin zamana bağlı olarak en büyükleri elde edilmiştir. Burada amaçlanan, en büyük taban kesme kuvvetlerini ve tepe yerdeğiştirmelerini, statik itme eğrisi ile aynı grafikte oluşturarak, statik (itme eğrisi) ve dinamik (ZTA) analiz değerlerini karşılaştırmaktır. Ayrıca 8 Katlı Yapı için performans değerlendirmesi yapılmıştır. Hesaplarda kullanılan Düzce Depremi'nin verileri, Pasifik Deprem Mühendisliği Araştırma Merkezi'nin (*PEER*) internet sitesinden alınmıştır. Şekil 3.74'te Düzce deprem kaydının, yönetmelikteki ivme spektrumu ile benzeşimi, Şekil 3.75'te ise ivme-zaman fonksiyonunun programa tanımlanması gösterilmiştir.

Şekil 3.74 : Düzce depremi kaydı ile deprem yönetmeliği tasarım spektrumunun benzeşimi [24]

Deprem fonksiyonu programa tanımlandıktan sonra, yük tanımlamalarında *Scale Factor* değiştirilerek farklı deprem etkileri için yapıların, zamana bağlı olarak, en büyük tepe yerdeğiştirmeleri ile taban kesme kuvvetleri elde edilmiştir.

3 Katlı Yapı'da, Düzce Depremi şiddetinin en fazla %60 olduğu duruma kadar analiz yapıldı. %65 orana gelindiğinde ise sistem mekanizma durumu oluştu ve çok büyük değerlerde (5-6 basamaklı değerler) yerdeğiştirme –taban kesme kuvveti değerleri elde edildi. Şekil 3.76'da 3 Katlı Yapı'nın performans noktasına kadar olan statik itme eğrisi ile ZTA analiz sonucu elde edilen değerler aynı grafik üzerinde gösterilmiştir.

Şekil 3.76 : 3 katlı yapı statik itme eğrisi ile ZTA analiz sonucu elde edilen değerlerin karşılaştırması

5 Katlı Yapı'da, Düzce Depremi şiddetinin en fazla %65 olduğu duruma kadar analiz yapıldı. %70 orana gelindiğinde ise sistem mekanizma durumu oluştu ve çok büyük değerlerde (5-6 basamaklı değerler) yerdeğiştirme –taban kesme kuvveti değerleri elde edildi. Şekil 3.77'de 5 Katlı Yapı'nın performans noktasına kadar olan statik itme eğrisi ile ZTA analiz sonucu elde edilen değerler aynı grafik üzerinde gösterilmiştir.

Şekil 3.77 : 5 katlı yapı statik itme eğrisi ile ZTA analiz sonucu elde edilen değerlerin karşılaştırması

7 Katlı Yapı'da, Düzce Depremi şiddetinin en fazla %90 olduğu duruma kadar analiz yapıldı. %100 orana gelindiğinde ise sistem mekanizma durumu oluştu ve çok büyük değerlerde (5-6 basamaklı değerler) yerdeğiştirme –taban kesme kuvveti değerleri elde edildi. Şekil 3.78'de 7 Katlı Yapı'nın performans noktasına kadar olan statik itme eğrisi ile ZTA analiz sonucu elde edilen değerler aynı grafik üzerinde gösterilmiştir.

Şekil 3.78 : 7 katlı yapı statik itme eğrisi ile ZTA analiz sonucu elde edilen değerlerin karşılaştırması

8 Katlı Yapı'da ise, Düzce Depremi etkileri, %8 oranda artırılana kadar analiz yapılmıştır. %10 arttırıldığında ise modelde mekanizma durumu meydana gelmiştir. Ayrıca Düzce Depremi için yapının performansı değerlendirilmiştir. Şekil 3.79'da Düzce deprem kaydı ile yapılan analiz sonucu tepe yerdeğiştirmesinin, Şekil 3.80'de ise taban kesme kuvvetinin zamana bağlı değişimi gösterilmiştir.

Şekil 3.79 : ZTA Düzce depremi analizi sonucu tepe yerdeğiştirmesinin zamana bağlı değişimi

Şekil 3.81'de 8 Katlı Yapı'nın performans noktasına kadar olan statik itme eğrisi ile ZTA analiz sonucu elde edilen değerler aynı grafik üzerinde gösterilmiştir.

Şekil 3.81 : 8 katlı yapı statik itme eğrisi ile ZTA Analiz sonucu elde edilen değerlerin karşılaştırması

Şekil 3.82'de, 8 Katlı Yapı'da Düzce Depremi analizi sonrası oluşan plastik mafsallar gösterilmiştir.

Şekil 3.82 : 8 katlı yapıda ZTA analiz sonucu oluşan plastik mafsallar

Zaman tanım alanında analiz sonucu kolonlarda oluşan eksenel kuvvet ve plastik dönmeye bağlı olarak hasarın belirlenmesi Şekil 3.83-84'te ve Çizelge 3.61'de gösterilmiştir.

Şekil 3.83 : 8 katlı yapının ZTA analizi (Düzce %100) sonucu 1, 2, 4, 5 ve 6. kat kolonlarındaki hasarların belirlenmesi

Şekil 3.84 : 8 katlı yapının ZTA analizi (Düzce %100) sonucu 7. ve 8. kat kolonlarındaki hasarların belirlenmesi

1. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	2. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
S101, S113	915.8	0.0049	BHB	S201, S213	-	-	-
S102, S114	888.3	0.0062	BHB	S202, S214	767.7	0.0001	MHB
S103, S115	883.3	0.0062	BHB	S203, S215	768	5E-07	MHB
S104, S116	880.5	0.0073	BHB	S204, S216	748	0.0003	MHB
S105, S109	1228.9	0.0049	BHB	S205, S209	-	-	-
S106, S110	1381.4	0.0061	BHB	S206, S210	-	-	-
S107, S111	1403.1	0.0058	BHB	S207, S211	-	-	-
S108, S112	1182.6	0.0067	BHB	S208, S212	-	-	-
				4. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
				S401, S413	509.4	0.0001	MHB
				S402, S414	557.3	0.0007	MHB
	3. Kat Kiri	şlerinde		S403, S415	539.1	0.0008	MHB
Plast	ik Mafsal (Oluşmamış	tır	S404, S416	-	-	-
				S405, S409	-	-	-
				S406, S410	-	-	-
				S407, S411	-	-	-
				S408, S412	-	-	-
				,			
5. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi	6. Kat Kolonları	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
5. Kat Kolonları S501, S513	Eksenel Yük (kN)	θ_p (rad)	Hasar Bölgesi	6. Kat Kolonları S601, S613	Eksenel Yük (kN)	θ_{p} (rad)	Hasar Bölgesi
5. Kat Kolonları S501, S513 S502, S514	Eksenel Yük (kN) 442.2	θ _p (rad)	Hasar Bölgesi MHB	6. Kat Kolonları S601, S613 S602, S614	Eksenel Yük (kN) 328.4	θ _p (rad)	Hasar Bölgesi MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515	Eksenel Yük (kN) 442.2 420.7	θ _p (rad) 0.0005 0.0005	Hasar Bölgesi MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615	Eksenel Yük (kN) 328.4 318.5	θ _p (rad) 0.0006 0.0004	Hasar Bölgesi MHB MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516	Eksenel Yük (kN) 442.2 420.7	θ _p (rad) 0.0005 0.0005	Hasar Bölgesi MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616	Eksenel Yük (kN) 328.4 318.5 -	θ _p (rad) 0.0006 0.0004	Hasar Bölgesi MHB MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509	Eksenel Yük (kN) 442.2 420.7 -	θ _p (rad) 0.0005 0.0005 -	Hasar Bölgesi MHB MHB -	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609	Eksenel Yük (kN) 328.4 318.5 -	θ _p (rad) 0.0006 0.0004 -	Hasar Bölgesi MHB MHB -
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510	Eksenel Yük (kN) 442.2 420.7 - -	θ _p (rad) 0.0005 0.0005 - - -	Hasar Bölgesi MHB MHB - - -	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610	Eksenel Yük (kN) 328.4 318.5 - - -	θ _p (rad) 0.0006 0.0004 - - -	Hasar Bölgesi MHB MHB - - -
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511	Eksenel Yük (kN) 442.2 420.7 - - - -	θ _p (rad) 0.0005 - - - - -	Hasar Bölgesi MHB - - - - -	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611	Eksenel Yük (kN) 328.4 318.5 - - - -	θ _p (rad) 0.0006 0.0004 - - - -	Hasar Bölgesi MHB - - - - -
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512	Eksenel Yük (kN) 442.2 420.7 - - - - - -	θ _p (rad) 0.0005 0.0005 - - - - - -	Hasar Bölgesi MHB MHB - - - - - -	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612	Eksenel Yük (kN) 328.4 318.5 - - - - - -	θ _p (rad) 0.0006 0.0004 - - - - -	Hasar Bölgesi MHB - - - - - -
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları	Eksenel Yük (kN) 442.2 420.7 - - - - - Eksenel Yük (kN)	$ \theta_p (rad) $ 0.0005 0.0005 - - - - - - - - -	Hasar Bölgesi MHB - - - - - Hasar Bölgesi	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları	Eksenel Yük (kN) 328.4 318.5 - - - - - Eksenel Yük (kN)	$ \theta_p (rad) $ 0.0006 0.0004 - - - - $\theta_p (rad)$	Hasar Bölgesi MHB - - - - - Hasar Bölgesi
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3	$\theta_{p} (rad)$ 0.0005 0.0005 - - - - $\theta_{p} (rad)$ 0.0021	Hasar Bölgesi MHB - - - - - Hasar Bölgesi MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN)	$\theta_{p} (rad)$ 0.0006 0.0004 - - - - $\theta_{p} (rad)$	Hasar Bölgesi MHB - - - - - Hasar Bölgesi
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713 S702, S714	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3 250.3	$\theta_{p} (rad)$ 0.0005 0.0005 - - - $\theta_{p} (rad)$ 0.0021 0.0037	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813 S802, S814	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN) 110.3	$\theta_{p} (rad)$ 0.0006 0.0004 - - - $\theta_{p} (rad)$ 0.0007	Hasar Bölgesi MHB MHB - - - - Hasar Bölgesi MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713 S702, S714 S703, S715	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3 250.3 259.6	$\theta_{p} (rad)$ 0.0005 0.0005 - - - - $\theta_{p} (rad)$ 0.0021 0.0037 0.0036	Hasar Bölgesi MHB - - - - Hasar Bölgesi MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813 S802, S814 S803, S815	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN) 110.3 118.9	$ \theta_p (rad) $ 0.0006 0.0004 - - - $\theta_p (rad) $ 0.0007 0.0006	Hasar Bölgesi MHB - - - - Hasar Bölgesi MHB MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713 S702, S714 S703, S715 S704, S716	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3 250.3 259.6 165.9	$\theta_p (rad)$ 0.0005 0.0005 - - - - $\theta_p (rad)$ 0.0021 0.0037 0.0036 0.0031	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813 S802, S814 S803, S815 S804, S816	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN) 110.3 118.9 -	$ \theta_p (rad) $ 0.0006 0.0004 - - - $\theta_p (rad) $ 0.0007 0.0006 -	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713 S702, S714 S703, S715 S704, S716 S705, S709	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3 250.3 259.6 165.9 249.0	θ_p (rad) 0.0005 0.0005 - - - θ_p (rad) 0.0021 0.0037 0.0036 0.0031 0.0009	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB MHB MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813 S802, S814 S803, S815 S804, S816 S805, S809	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN) 110.3 118.9 - -	$ \theta_p (rad) $ 0.0006 0.0004 - - - $\theta_p (rad) $ 0.0007 0.0006 - - - - - - - - -	Hasar Bölgesi MHB - - - - Hasar Bölgesi MHB MHB - -
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713 S702, S714 S703, S715 S704, S716 S705, S709 S706, S710	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3 250.3 259.6 165.9 249.0 352.0	θ_p (rad) 0.0005 0.0005 - - - θ_p (rad) 0.0021 0.0037 0.0036 0.0031 0.0009 0.0026	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB MHB MHB MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813 S802, S814 S803, S815 S804, S816 S805, S809 S806, S810	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN) 110.3 118.9 - - 171.0	$ \theta_p (rad) $ 0.0006 0.0004 - - - $\theta_p (rad) $ 0.0007 0.0006 - - 0.0001 -	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB - - MHB
5. Kat Kolonları S501, S513 S502, S514 S503, S515 S504, S516 S505, S509 S506, S510 S507, S511 S508, S512 7. Kat Kolonları S701, S713 S702, S714 S703, S715 S704, S716 S705, S709 S706, S710 S707, S711	Eksenel Yük (kN) 442.2 420.7 - - - - Eksenel Yük (kN) 174.3 250.3 259.6 165.9 249.0 352.0 371.0	$ \theta_p (rad) $ 0.0005 0.0005 - - - - $\theta_p (rad) $ 0.0021 0.0021 0.0037 0.0036 0.0031 0.0009 0.0026 0.0022	Hasar Bölgesi MHB MHB - - - Hasar Bölgesi MHB MHB MHB MHB MHB MHB MHB	6. Kat Kolonları S601, S613 S602, S614 S603, S615 S604, S616 S605, S609 S606, S610 S607, S611 S608, S612 8. Kat Kolonları S801, S813 S802, S814 S803, S815 S804, S816 S805, S809 S806, S810 S807, S811	Eksenel Yük (kN) 328.4 318.5 - - - - Eksenel Yük (kN) 110.3 118.9 - - 1171.0 -	$ \theta_p (rad) $ 0.0006 0.0004 - - - $\theta_p (rad) $ 0.0007 0.0007 0.0006 - - 0.0001 - - 0.0001 - - - - - - - - -	Hasar Bölgesi MHB - - - - Hasar Bölgesi MHB MHB - - - MHB

Cizelge 3.61	1:	8 katlı	vapida	ZTA	analiz	sonucu	kolon	ların	hasar	bölgeleri
, ,			~ 1							0

Zaman Tanım Alanında analiz X doğrultusunda yapıldığından, yalnızca bu doğrultudaki kirişlerde plastik mafsallar oluşmuştur. 1, 2, 4, 5 ve 6. Katta X doğrultusunda bulunan kirişlerin tamamında plastik mafsal oluşmuştur ve belirgin hasar bölgesinde oldukları görülmüştür. 3. Kat X doğrultusu kirişlerinin de tamamında plastik mafsal oluşmuştur ve K304-305-307-308 kirişlerinin *göçme bölgesinde*, diğer kirişlerinse belirgin hasar bölgesinde oldukları görülmüştür. 7. Kat X doğrultusundaki bazı kirişlerde plastik mafsal oluşmuştur ancak dönme değerleri çok düşüktür ve minimum hasar bölgesinde oldukları görülmüştür. 8. Kat kirşlerinde ise plastik mafsal oluşmamıştır. Çizelge 3.62'de kolon ve kirişlerin hasar bölgelerine göre sayıları, Çizelge 3.63'te ise hasar yüzdeleri verilmiştir.

Çizelge 3.62 : 8 katlı yapıda ZTA	analiz sonucu kolon ve	kirişlerin hasar	sayıları
-----------------------------------	------------------------	------------------	----------

ZTA Düzce Depremi (X Doğrultusu)											
Vot/Hocor		Kiriş				Kolor	1				
Kat/ Hasai	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	12	12	-	-	-	16	-	-			
2	12	12	-	-	16	-	-	-			
3	12	8	-	4	16	-	-	-			
4	12	12	-	-	16	-	-	-			
5	12	12	-	-	16	-	-	-			
6	12	12	-	-	16	-	-	-			
7	24	-	-	-	16	-	-	-			
8	24	_	-	-	16	-	-	-			

ZTA Düzce Depremi (X Doğrultusu)											
Vot/Hogor (0/)		Kiriş			Kolon						
Kat/Hasal (%)	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	50	50	-	-	-	100	-	-			
2	50	50	-	-	100	-	-	-			
3	50	33	-	17	100	-	-	-			
4	50	50	-	-	100	-	-	-			
5	50	50	-	-	100	-	-	-			
6	50	50	-	-	100	-	-	-			
7	100	-	-	-	100	-	-	-			
8	100	-	-	-	100	-	-	-			

Çizelge 3.63 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin hasar yüzdeleri

Bu sonuçlara göre 8 Katlı Yapı, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini *sağlayamamaktadır*. Bunun sebebi ise 4 adet kirişin göçme bölgesinde olmasıdır. Bu durumda sağlanan performans hedefi ise, *Göçme Öncesi Performans Düzeyi*'dir.

4. SONUÇLARIN DEĞERLENDİRİLMESİ VE ÖNERİLER

Bu calismada, ikiden sekiz kata kadar ayni kat planlarina sahip yedi adet bina incelenmiştir. Karşılaştırmalı sonuçların doğru yorumlar doğurabilmesi adına, tüm yapılarda aynı malzemelerin (C30/S420) kullanılması ve Deprem Yönetmeliği'ne göre minimum (veya minimuma yakın) kesit-donatı boyutlandırması esas alınmıştır. Performans analizi kavramının var olmadığını düşündüğümüzde, açıklandığı gibi aynı tasarım kriterleri ile boyutlandırılmış farklı sayıda kata sahip olan yapılardan hangisinin daha güvenli olduğu sorusu sorulduğunda, mühendis olarak vereceğimiz cevap, hepsinin aynı derecede güvenli olduğudur. Ancak binaların deprem etkileri altında, doğrusal olmayan şekil değiştirmeye dayalı yöntemlerle yapılan çözümü, statik/doğrusal analize göre daha gerçekçi sonuçlar vermektedir. Bu çalışmada, doğrusal elastik hesapla tasarımı yapıları yapıların tamamının, Artımsal Esdeğer Deprem Yükü Yöntemi ile yapılan doğrusal olmayan analizler sonucu, Deprem Yönetmeliği'nde konutlar için öngörülen, aşılma olasılığı 50 yılda %10 olan deprem etkilerinde Can Güvenliği performans hedefini sağladığı görülmüştür. Bunun yanında, binaların performans analizi sonuçlarına göre elde edilen taban kesme kuvveti kapasiteleri, yapı ağırlıklarıyla ve doğrusal elastik hesapta esas alınan eşdeğer deprem yükleriyle kıyaslanarak, hangi yapının gerçekte daha fazla yük taşıma kapasitesine sahip olduğu değerlendirilmiştir.

		T (s)	S(T)	W (kN)	A ₀ ×I/R	V _{b,eşdeğer} (kN)
	2 Katlı	0.364	2.50	3220.8	0.4×1/8	402.6
	3 Katlı	0.437	2.33	4915.2	0.4×1/8	572.4
Catlamamıs	4 Katlı	0.520	2.03	6609.6	0.4×1/8	669.8
Rijitliğe	5 Katlı	0.613	1.78	8328.0	0.4×1/8	739.8
Sahip Yapı	6 Katlı	0.715	1.57	9998.4	0.4×1/8	785.3
	7 Katlı	0.823	1.40	11692.8	0.4×1/8	820.6
	8 Katlı	0.936	1.27	13387.2	0.4×1/8	847.7

Çizelge 4.1 : Yapılarda eşdeğer deprem yükünün hesabı (EI₀)

		T (s)	S(T)	W (kN)	A ₀ ×I/R	V _{bstatik} (kN)
	2 Katlı	0.567	1.89	3220.8	0.4×1/8	304.5
α d	3 Katlı	0.68	1.64	4915.2	0.4×1/8	401.9
	4 Katlı	0.805	1.43	6609.6	0.4×1/8	472.2
Sobin	5 Katlı	0.897	1.31	8328.0	0.4×1/8	545.6
Samp Vani	6 Katlı	1.049	1.16	9998.4	0.4×1/8	577.9
i api	7 Katlı	1.242	1.01	11692.8	0.4×1/8	590.4
	8 Katlı	1.398	0.92	13387.2	0.4×1/8	615.0

Çizelge 4.2 : Yapılarda eşdeğer deprem yükünün hesabı (EIe)

Çizelge 4.1 ve 4.2'de elastik tasarım ivme spektrumuna bağlı olarak hesaplanan eşdeğer deprem yükü ($V_{b,eşdeğer}$) sonuçları, yapılarda çatlamamış ve etkin rijitlik durumları için elde edilmiştir. Çizelge 4.3'te ise analizler sonucu elde edilen, periyot (T), yapı ağırlığı (W), performans analizi yapılan yapının taban kesme kuvveti kapasitesi ($V_{b,pushover}$), elastik tasarım ivme spektrumuna bağlı olarak hesaplanan eşdeğer deprem yükü ($V_{b,eşdeğer}$) değerlendirmesi yapılmıştır (çizelgede *EI*₀, *çatlamamış* rijitliğe sahip yapıyı, *EI*_e, ise *etkin* rijitliğe sahip yapıyı ifade etmektedir).

		2 Katlı	3 Katlı	4 Katlı	5 Katlı	6 Katlı	7 Katlı	8 Katlı
T (a)	$(EI)_{\theta}$	0.36	0.44	0.52	0.61	0.72	0.82	0.94
1 (8)	$(EI)_e$	0.57	0.68	0.81	0.90	1.05	1.24	1.40
W (kN)		3220.8	4915.2	6609.6	8328.0	9998.4	11692.8	13387.2
V _{b,pushove}	r (kN)	711.9	939.0	985.0	1131.2	1136.6	1148.0	1202.7
V _{b,eşdeğer}	$(EI)_{\theta}$	402.6	572.4	669.8	739.8	785.3	820.6	847.7
(kN)	$(EI)_e$	304.5	401.9	472.2	545.6	577.9	590.4	615.0
V _{b,pushov}	_{er} /W	0.221	0.191	0.149	0.136	0.114	0.098	0.090
V _{b,pushover}	$(EI)_{\theta}$	1.768	1.640	1.471	1.529	1.447	1.399	1.419
/V _{b,eşdeğer}	$(EI)_e$	2.338	2.337	2.086	2.073	1.967	1.944	1.956

Çizelge 4.3 : Yapılarda periyot, ağırlık ve taban kesme kuvveti değerlendirmesi

Çizelge 4.3'te görüldüğü gibi, performans analizi yapılan yapının taban kesme kuvveti kapasitesinin ($V_{b,pushover}$), yapı ağırlığına (W) ve eşdeğer deprem yüküne ($V_{b,eşdeğer}$) olan oranı, yapının kat sayısı arttıkça azalmaktadır. Örneğin 2 Katlı Yapı'nın $V_{b,pushover}$ /W oranı 0.221'ken, 8 Katlı Yapı'da bu değer 0.090'dır. Yani 2 Katlı Yapı ağırlığına oranla, 8 Katlı Yapı'ya göre daha fazla deprem yükü taşıma kapasitesine sahiptir. Benzer şekilde, $V_{b,pushover}/V_{b,eşdeğer}$ oranlarına bakıldığında, 2 Katlı Yapı'nın, 8 Katlı Yapı'ya göre, öngörülen eşdeğer deprem yükünden daha yüksek oranda yatay yük taşıma kapasitesine sahip olduğu görülür. Bu durumda ortaya çıkan en önemli sonuç, yapılar Deprem Yönetmeliği'ndeki doğrusal olan yöntemlerle aynı kriterler esas alınarak tasarlanmış olsalar da, gerçekte düşük katlı yapılar, yüksek katlı yapılara göre daha yüksek yatay yük taşıma kapasitesine sahip olduklarından depreme karşı daha dayanıklıdır. Böylelikle hangi binanın daha güvenli olduğu sorusuna cevap verilmiş olur.

Elde edilen bu sonuca göre, düşük katlı yapıların, gerçekte daha ekonomik şekilde boyutlandırılabileceği söylenebilir. Yapı davranış katsayısı *R*, yapılarda kapasite tasarım ilkelerinin esas alınmasıyla, öngörülen deprem kuvvetlerinin azaltılmasını sağlar, ancak görüldüğü gibi yeterli olmadığı yorumu yapılabilir. Eşdeğer deprem yükü hesabında, kat yüksekliğiyle ters orantılı olacak şekilde öngörülecek bir azaltma katsayısı, düşük katlı yapıların, hem yeter derecede güvenli hem de daha ekonomik boyutlandırılmasını sağlayabilir.

Çizelge 4.3'de dikkat çeken bir diğer karşılaştırma, yapı periyotlarıdır. Periyot, rijitliğin karekökü ile ters orantılı şeklide değişmektedir. Çatlamış rijitlikler (etkin rijitlik) esas alındığında, sistemin rijitliği Deprem Yönetmeliği'ndeki yaklaşım esas alındığında %60'a kadar azalmaktadır ($EI_e=0.40EI_0$). Bu durumda yapının periyodu yaklaşık olarak 1.5 katına çıkar. Elde edilen sonuçlar da bu yöndedir. Ayrıca, ideCAD Statik Programı'ndan elde edilen eşdeğer deprem kuvvetleri, Çizelge 4.1'de hesaplanan eşdeğer deprem kuvvetleriyle karşılaştırıldığında, ideCAD programının, etkin rijitlik rijitlikler dikkate alınarak hesaplanan deprem kuvvetlerine yakın sonuç verdiği görülmüştür.

Tasarımı yapılan tüm yapıların konut türü olduğu kabul edilmiştir ve buna göre boyutlandırılmıştır. Performans değerlendirmeleri sonucunda da tüm yapıların yönetmelikte öngörülen, aşılma olasılığı 50 yılda %10 olan deprem etkilerinde Can Güvenliği performans hedefini sağladığı görülmüştür. Bunlara ek olarak konut olarak tasarımı yapılmış olan 8 Katlı Yapı'nın, okul olarak kullanıldığı varsayılarak performans değerlendirilmesi yapılmıştır. Buna göre yönetmelikte öngörülen aşılma olasılığı 50 yılda %10 olan deprem etkilerinde Hemen Kullanım performans hedefinin ve aşılma olasılığı 50 yılda %2 olan deprem etkilerinde Can Güvenliği performans hedefinin *sağlanamadığı* görülmüştür (sırası ile Can Güvenliği ve Göçme Öncesi performans düzeyleri elde edilmiştir). Bilindiği gibi ülkemizdeki birçok eski binanın kullanım amacı, insanların uzun süreli ve yoğun olarak bulunduğu dershane, yurt vb.dir. Bu çalışmada güncel yönetmeliğe göre konut olarak

tasarımı yapılmış binanın dahi kullanım amacı okul olduğu takdirde öngörülen performans hedeflerini sağlamadığı görülmüştür. Bu durumda doğru mühendislik hizmeti almadan yapılmış konut türü binaların, daha sonradan dönüştürülerek dershane vb. amaçlarla kullanılmasının tehlike oluşturduğu görülmektedir. Eski binalarda mühendislik hizmetinin ve denetimlerin yetersizliğinin yanında geçmiş dönemlerdeki inşaat teknolojisi ve malzeme kalitesi de düşünüldüğüne bu konun büyük bir önem arz ettiği açıktır. Ülke gündeminde sürekli yer bulan kentsel dönüşümler kapsamında, öncelikle insanların uzun süreli ve yoğun olarak bulunduğu eski binaların performans değerlendirmelerinin yapılması ve gerekli önlemlerin alınması önerilmektedir.

Zaman Tanım Alanında Doğrusal Olmayan Analiz sonuçlarına baktığımızda ise, ilk dikkat çeken, Düzce Depremi kaydının, 3 Katlı Yapı'da %60 şiddetindeki etkileri çözülebilmişken, 5 Katlı Yapı'da %65'i, 7 Katlı Yapı'da %90'ı ve 8 Katlı Yapı'da ise %108'e kadar çözülebilmiştir. Her bir yapıda, programda *Scale Factor* değiştirilerek şiddetin arttırılması durumunda, sistemler mekanizma durumuna gelmiştir. Ancak bu analiz yöntemi, literatürde en kesin sonuç verdiği kabul edilse de, birçok kabul ve belirsizlikler içerir. Ayrıca gerçeğe yakın bir değerlendirme yapabilmek için mümkün olduğunca fazla deprem kaydıyla değerlendirme yapılması gerektiğinden, 8 Katlı Yapı'nın Düzce Depremi'nin %8 arttırılmış şiddetine rağmen analizinin yapılmış olmasına bakılarak daha güvenli olduğunu söylemek doğru olmaz.

Şekil 4.1 : 8 katlı yapı statik itme eğrisi ile ZTA analiz sonucu elde edilen değerlerin karşılaştırması

Elde edilmiş olan statik itme eğrileri ile yapılan karşılaştırmada ise, 8 kata kadar olan bu yapıların, ZTA yapılan analizler sonucu bulunan zamana bağlı en büyük taban kesme kuvveti ve tepe yerdeğiştirmesi değerleri ile yakın sonuçlar verdiği görülmüştür. Örnek olarak 8 Katlı Yapı için bu grafik Şekil 4.1'de gösterilmiştir.

Bu çalışmada ayrıca 8 Katlı Yapının Düzce Depremi ile ZTA yapılan analiz sonucu performansı değerlendirilmiştir (Çizelge 4.4 ve 4.5).

	ZTA Düzce Depremi (X Doğrultusu)											
Vot/Hogor		Kiriş		Kolon								
Kat/Hasar	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB				
1	12	12	-	-	-	16	-	-				
2	12	12	-	-	16	-	-	-				
3	12	8	-	4	16	-	-	-				
4	12	12	-	-	16	-	-	-				
5	12	12	-	-	16	-	-	-				
6	12	12	-	-	16	-	-	-				
7	24	_	-	-	16	_	-	-				
8	24	-	-	-	16	-	-	-				

Çizelge 4.4 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin sayılarına göre bulundukları hasar bölgeleri

Çizelge 4.5 : 8 katlı yapıda ZTA analiz sonucu kolon ve kirişlerin oranlarına göre bulundukları hasar bölgeleri

	ZTA Düzce Depremi (X Doğrultusu)										
Vot/Hogor (0/)		Kiriş				Kolor	1				
Kat/Hasar (%)	MHB	BHB	İHB	GB	MHB	BHB	İHB	GB			
1	50	50	-	-	-	100	-	-			
2	50	50	-	-	100	-	-	-			
3	50	33	-	17	100	-	-	-			
4	50	50	-	-	100	-	-	-			
5	50	50	-	-	100	-	-	-			
6	50	50	-	-	100	-	-	-			
7	100	-	-	-	100	-	-	-			
8	100	-	-	-	100	-	-	-			

Bu sonuçlar incelendiğinde, 8 Katlı Yapı'nın, Deprem Yönetmeliği'nde öngörülen, konutlar için aşılma olasılığı 50 yılda %10 olan deprem etkilerinde *Can Güvenliği* performans hedefini *sağlayamadığı* görülür. Bunun sebebi ise, 4 adet kirişin (K304-305-307-308) göçme hasar bölgesinde olmasıdır. Diğer bütün elemanlar incelendiğinde ise *Can Güvenliği* performans hedefi sağlanmaktadır. Yönetmeliğe bakıldığında, performansın belirlenmesinde kirişler için katı sınırlar olduğu görülür. Örneğin sistemin boyutu ne olursa olsun, bir tek kiriş dahi olsa göçme bölgesine

ulaştığında, CG hedefi sağlanamamaktadır. Bununda ne kadar gerçekçi bir yaklaşım olduğu sorgulanabilir. İlerleyen zamanlarda, Deprem Yönetmeliği'nin gelişmesiyle, performans değerlendirmesinde daha esnek sınırlar olabileceği beklenebilir.

Sonuç olarak görülmektedir ki, doğrusal olmayan yaklaşımlarla yapılan analizler, yapıların deprem etkileri altındaki gerçek davranışını (göçme mekanizması, şekil ve yerdeğiştirmeler gibi) yorumlamamızın yanında, daha ekonomik tasarımlar yapmaya olanak sağlar. Gelecekte bu yöntemlerin, mevcut yapıların performansını değerlendirmenin yanında, yeni yapıların tasarımında da yaygınlıkla kullanılacağı beklenmektedir. Buna göre de yönetmelikler geliştirilecektir. Yeni yönetmeliklerin geliştirilmesinde ise, hasar sınırlarının beton ve çelikte oluşacak birim şekildeğiştirmeye değil, doğrudan kesitlerde oluşacak plastik dönmelere bağlı olarak (FEMA 356'da olduğu gibi) belirlenmesi tavsiye edilebilir. Böylelikle analizler daha pratik ve kontrollü yapılabilir.

KAYNAKLAR

- [1] **TBMM**, Deprem Riskinin Araştırılarak Deprem Yönetiminde Alınması Gereken Önlemlerin Belirlenmesi Amacıyla Kurulan Meclis Araştırması Komisyonu Raporu (2010)
- [2] **Priestley, M.J.N., Calvi, G.M., Kowalski, M.J.**, "Direct Displacement-Based Seismic Design of Structures" IUSS Press, 2007, Pavia, İtalya.
- [3] Kutanis M., "Deprem Mühendisliği'nde Yeni Ufuklar: Performans Yaklaşımı", DAYK 2008 I. Ulusal Doğal Afetler Ve Yerbilimleri Sempozyumu, 19-20-21-22 Mart 2008, Adapazarı
- [4] **Pampal, S., Özmen, B**., "Türkiye'nin Deprem Gerçeği" Gazi Üniversitesi Deprem Araştırma ve Uygulama Merkezi, 2007 Ankara
- [5] Aydınoğlu, M.N., "Yapıların deprem performansının değerlendirilmesi için artımsal spektrum analizi (arsa) yöntemi" 5. Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs 2003, İstanbul
- [6] Kutanis M., Yapı Ve Deprem Mühendisliğinde Performans Yaklaşımı -1, İMO Sakarya Bülten, Yıl 1, Sayı 3, 2007, Adapazarı
- [7] Celep Z., Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme – Deprem Yönetmeliği (2007) Kavramları, Beta, İstanbul, 2006
- [8] Özer E., Yapı Sistemlerinin Lineer Olmayan Analizi Ders Notları
- [9] Topçu A., Betonarme I Ders Notları
- [10] Celep Z., Gençoğlu M., Deprem Yönetmeliği (2007) de Doğrusal Olmayan Çözümleme Yöntemlerine Basit Örnekler, Prof. Yusuf Berdan, Prof. İsmet Aka, Prof. Mehmet Rahmi Bilge ve Prof.Dr. Halit Demir Betonarme Yapılar Semineri, 29 Mayıs 2008 İstanbul Teknik Üniversitesi, İstanbul
- [11] Celep Z., Betonarme Sistemlerde Doğrusal Olmayan Davranış: Plastik Mafsal Kabulü Ve Çözümleme, Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul
- [12] Betonarme Yapıların Tasarım ve Yapım Kuralları, Ankara, 2000
- [13] Celep Z., Betonarme Yapılar, Beta, İstanbul, 2013
- [14] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Ankara, 2007
- [15] Özer E., Kapasite Tasarımı İlkesi Ve Türk Deprem Yönetmeliği, Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul
- [16] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (2007) Açıklamalar ve Örnekler El Kitabı

- [17] Arda, S., Uzgider, E., Çelik Yapılarda Taşıma Gücü, İTÜ Matbaası, Gümüşsuyu, 1986
- [18] Sigmund A. F., Review Of The Development Of The Capacity Spectrum Method,ISET Journal of Earthquake Technology, Paper No. 438, Vol. 41, No. 1, March 2004, pp. 1-13
- [19] ATC, (1996) . Seismic Evaluation and Retrofit of Concrete Buildings, (ATC-40), Vol. 1, Applied Technology Council, Redwood City, CA.
- [20] Kıyı Ve Liman Yapıları, Demiryolları, Hava Meydanları İnşaatlarına İlişkin Deprem Teknik Esasları
- [21] **Kutanis M.**, Yapı Ve Deprem Mühendisliğinde Performans Yaklaşımı -2, İMO Sakarya Bülten, Yıl 1, Sayı 4, 2007, Adapazarı.
- [22] **İlki A., Celep Z.**, Betonarme Yapıların Deprem Güvenliği, 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı 11-14 Ekim 2011 ODTÜ
- [23] SEAOC, (1995), "Vision 2000, A Framework for Performance-Based Design", Structural Engineers Association of California, Vision 2000 Committee, California, USA.

[24] PEER Strong Motion Database

EKLER

Ek A : Her Bir Yapının G+0.3Q Yüklemesine Bağlı olarak Hesaplanan Kolon Etkin Rijitlikleri

Ek B : Yapılarda Bulunan Toplam Üç Farklı Kolona Ait Eksenel Yüke ve Plastik Dönmeye Bağlı Hasar Sınırları

Ek C : 8 Katlı Yapının G+0.6Q Yüklemesine Bağlı olarak Hesaplanan Kolon Etkin Rijitlikleri

Ek A : Her Bir Yapının G+0.3Q Yüklemesine Bağlı olarak Hesaplanan Kolon Etkin Rijitlikleri

		E	FKİN EĞ	İLME RİJİTL 2 katlımqı	İĞİ TABI DEL	LOSU	
Kolon	b (m)	h (m)	A_{c} (m ²)	$F_{\rm cm}$ (kN/m ²)	Nd (kN)	N _d /(Ac×f _{cm})	(EI)e
S 101	0.3	0.3	0.09	34000	98.75	0.0322	0.40
S 102	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 103	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 104	0.3	0.3	0.09	34000	98.75	0.0322	0.40
S 105	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 106	0.3	0.3	0.09	34000	338.20	0.1105	0.41
S 107	0.3	0.3	0.09	34000	338.20	0.1105	0.41
S 108	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 109	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 110	0.3	0.3	0.09	34000	338.20	0.1105	0.41
S 111	0.3	0.3	0.09	34000	338.20	0.1105	0.41
S 112	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 113	0.3	0.3	0.09	34000	98.75	0.0322	0.40
S 114	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 115	0.3	0.3	0.09	34000	184.11	0.0601	0.40
S 116	0.3	0.3	0.09	34000	98.75	0.0322	0.40
S 201	0.3	0.3	0.09	34000	48.65	0.0158	0.40
S 202	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 203	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 204	0.3	0.3	0.09	34000	48.65	0.0158	0.40
S 205	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 206	0.3	0.3	0.09	34000	170.05	0.0555	0.40
S 207	0.3	0.3	0.09	34000	170.05	0.0555	0.40
S 208	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 209	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 210	0.3	0.3	0.09	34000	170.05	0.0555	0.40
S 211	0.3	0.3	0.09	34000	170.05	0.0555	0.40
S 212	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 213	0.3	0.3	0.09	34000	48.65	0.0158	0.40
S 214	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 215	0.3	0.3	0.09	34000	91.94	0.0300	0.40
S 216	0.3	0.3	0.09	34000	48.65	0.0158	0.40

Çizelge A.1: 2 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

		Ε	TKİN EČ	GILME RIJITI	LİĞİ TAB	LOSU	
				3 KATLI MO	DEL		
	b	h	2	2			
Kolon	(m)	(m)	$A_{c}(m^{2})$	F_{cm} (kN/m ²)	N _d (kN)	$N_d/(Ac \times f_{cm})$	(EI) _e
S 101	0.4	0.4	0.16	34000	158.05	0.0290	0.40
S 102	0.4	0.4	0.16	34000	283.04	0.0520	0.40
S 103	0.4	0.4	0.16	34000	283.04	0.0520	0.40
S 104	0.4	0.4	0.16	34000	158.05	0.0290	0.40
S 105	0.4	0.4	0.16	34000	283.04	0.0520	0.40
S 106	0.4	0.4	0.16	34000	504.65	0.0927	0.40
S 107	0.4	0.4	0.16	34000	504.65	0.0927	0.40
S 108	0.4	0.4	0.16	34000	283.04	0.05202	0.40
S 109	0.4	0.4	0.16	34000	283.04	0.05202	0.40
S 110	0.4	0.4	0.16	34000	504.65	0.09276	0.40
S 111	0.4	0.4	0.16	34000	504.65	0.09276	0.40
S 112	0.4	0.4	0.16	34000	283.04	0.05202	0.40
S 113	0.4	0.4	0.16	34000	158.05	0.02905	0.40
S 114	0.4	0.4	0.16	34000	283.04	0.05202	0.40
S 115	0.4	0.4	0.16	34000	283.04	0.05202	0.40
S 116	0.4	0.4	0.16	34000	158.05	0.02905	0.40
S 201	0.3	0.3	0.09	34000	101.00	0.03300	0.40
S 202	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 203	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 204	0.3	0.3	0.09	34000	101.00	0.03300	0.40
S 205	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 206	0.3	0.3	0.09	34000	333.83	0.10909	0.41
S 207	0.3	0.3	0.09	34000	333.83	0.10909	0.41
S 208	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 209	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 210	0.3	0.3	0.09	34000	333.83	0.10909	0.41
S 211	0.3	0.3	0.09	34000	333.83	0.10909	0.41
S 212	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 213	0.3	0.3	0.09	34000	101.00	0.03300	0.40
S 214	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 215	0.3	0.3	0.09	34000	185.17	0.06051	0.40
S 216	0.3	0.3	0.09	34000	101.00	0.03300	0.40
S 301	0.3	0.3	0.09	34000	49.36	0.0161	0.40
S 302	0.3	0.3	0.09	34000	92.34	0.0301	0.40
S 303	0.3	0.3	0.09	34000	92.34	0.0301	0.40
S 304	0.3	0.3	0.09	34000	49.36	0.0161	0.40
S 305	0.3	0.3	0.09	34000	92.34	0.0301	0.40
S 306	0.3	0.3	0.09	34000	168.53	0.0550	0.40
S 307	0.3	0.3	0.09	34000	168.53	0.0550	0.40
S 308	0.3	0.3	0.09	34000	92.34	0.0301	0.40

Çizelge A.2: 3 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

S 309	0.3	0.3	0.09	34000	92.348	0.0301	0.40
S 310	0.3	0.3	0.09	34000	168.53	0.0550	0.40
S 311	0.3	0.3	0.09	34000	168.53	0.0550	0.40
S 312	0.3	0.3	0.09	34000	92.34	0.0301	0.40
S 313	0.3	0.3	0.09	34000	49.36	0.0161	0.40
S 314	0.3	0.3	0.09	34000	92.34	0.0301	0.40
S 315	0.3	0.3	0.09	34000	92.34	0.0301	0.40
S 316	0.3	0.3	0.09	34000	49.36	0.0161	0.40

Çizelge A.2(devamı) : 3 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

Çizelge A.3 : 4 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

		E	TKİN EĞ	ILME RIJIT	L İĞİ TAB	LOSU	
				4 KATLI MO	DEL		
	b	h					
Kolon	(m)	(m)	$A_{c}(m^{2})$	F_{cm} (kN/m ²)	N _d (kN)	$N_d/(Ac \times f_{cm})$	(EI) _e
S 101	0.4	0.4	0.16	34000	222.51	0.0409	0.40
S 102	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 103	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 104	0.4	0.4	0.16	34000	222.51	0.0409	0.40
S 105	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 106	0.4	0.4	0.16	34000	662.04	0.1216	0.43
S 107	0.4	0.4	0.16	34000	662.04	0.1216	0.43
S 108	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 109	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 110	0.4	0.4	0.16	34000	662.04	0.1216	0.43
S 111	0.4	0.4	0.16	34000	662.04	0.1216	0.43
S 112	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 113	0.4	0.4	0.16	34000	222.51	0.0409	0.40
S 114	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 115	0.4	0.4	0.16	34000	383.91	0.0705	0.40
S 116	0.4	0.4	0.16	34000	222.51	0.0409	0.40
S 201	0.4	0.4	0.16	34000	163.15	0.0299	0.40
S 202	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 203	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 204	0.4	0.4	0.16	34000	163.15	0.0299	0.40
S 205	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 206	0.4	0.4	0.16	34000	495.15	0.0910	0.40
S 207	0.4	0.4	0.16	34000	495.15	0.0910	0.40
S 208	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 209	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 210	0.4	0.4	0.16	34000	495.15	0.0910	0.40
S 211	0.4	0.4	0.16	34000	495.15	0.0910	0.40
S 212	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 213	0.4	0.4	0.16	34000	163.15	0.0299	0.40
S 214	0.4	0.4	0.16	34000	285.24	0.0524	0.40

S 215	0.4	0.4	0.16	34000	285.24	0.0524	0.40
S 216	0.4	0.4	0.16	34000	163.15	0.0299	0.40
S 301	0.3	0.3	0.09	34000	103.38	0.0337	0.40
S 302	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 303	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 304	0.3	0.3	0.09	34000	103.38	0.0337	0.40
S 305	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 306	0.3	0.3	0.09	34000	329.28	0.1076	0.41
S 307	0.3	0.3	0.09	34000	329.28	0.1076	0.41
S 308	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 309	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 310	0.3	0.3	0.09	34000	329.28	0.1076	0.41
S 311	0.3	0.3	0.09	34000	329.28	0.1076	0.41
S 312	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 313	0.3	0.3	0.09	34000	103.38	0.0337	0.40
S 314	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 315	0.3	0.3	0.09	34000	186.26	0.0608	0.40
S 316	0.3	0.3	0.09	34000	103.38	0.0337	0.40
S 401	0.3	0.3	0.09	34000	50.33	0.0164	0.40
S 402	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 403	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 404	0.3	0.3	0.09	34000	50.33	0.0164	0.40
S 405	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 406	0.3	0.3	0.09	34000	166.64	0.0544	0.40
S 407	0.3	0.3	0.09	34000	166.64	0.0544	0.40
S 408	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 409	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 410	0.3	0.3	0.09	34000	166.64	0.0544	0.40
S 411	0.3	0.3	0.09	34000	166.64	0.0544	0.40
S 412	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 413	0.3	0.3	0.09	34000	50.33	0.0164	0.40
S 414	0.3	0.3	0.09	34000	92.81	0.0303	0.40
S 415	0.3	0.3	0.09	34000	92.81	0.03033	0.40
S 416	0.3	0.3	0.09	34000	50.33	0.01644	0.40

Çizelge A.3(devamı): 4 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

Çizelge A.4 : 5 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

ETKİN EĞİLME RİJİTLİĞİ TABLOSU 5 KATLI MODEL											
Kolon	b (m)	h (m)	$A_{c}(m^{2})$	F _{cm} (kN/m ²)	N _d (kN)	N _d /(Ac×f _{cm})	(EI) _e				
S 101	0.4	0.4	0.16	34000	290.91	0.0534	0.40				
S 102	0.4	0.4	0.16	34000	486.13	0.0893	0.40				
S 103	0.4	0.4	0.16	34000	486.13	0.0893	0.40				
S 104	0.4	0.4	0.16	34000	290.91	0.0534	0.40				
S 105	0.4	0.4	0.16	34000	486.13	0.0893	0.40				

S 106	0.4	0.4	0.16	34000	812.81	0.1494	0.47
S 107	0.4	0.4	0.16	34000	812.81	0.1494	0.47
S 108	0.4	0.4	0.16	34000	486.13	0.0893	0.40
S 109	0.4	0.4	0.16	34000	486.13	0.0893	0.40
S 110	0.4	0.4	0.16	34000	812.81	0.1494	0.47
S 111	0.4	0.4	0.16	34000	812.81	0.1494	0.47
S 112	0.4	0.4	0.16	34000	486.13	0.0893	0.40
S 113	0.4	0.4	0.16	34000	290.91	0.0534	0.40
S 114	0.4	0.4	0.16	34000	486.13	0.0893	0.40
S 115	0.4	0.4	0.16	34000	486.13	0.0893	0.40
S 116	0.4	0.4	0.16	34000	290.91	0.0534	0.40
S 201	0.4	0.4	0.16	34000	231.29	0.0425	0.40
S 202	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 203	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 204	0.4	0.4	0.16	34000	231.29	0.0425	0.40
S 205	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 206	0.4	0.4	0.16	34000	646.34	0.1188	0.43
S 207	0.4	0.4	0.16	34000	646.34	0.1188	0.43
S 208	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 209	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 210	0.4	0.4	0.16	34000	646.34	0.1188	0.43
S 211	0.4	0.4	0.16	34000	646.34	0.1188	0.43
S 212	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 213	0.4	0.4	0.16	34000	231.29	0.0425	0.40
S 214	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 215	0.4	0.4	0.16	34000	387.38	0.0712	0.40
S 216	0.4	0.4	0.16	34000	231.29	0.0425	0.40
S 301	0.4	0.4	0.16	34000	168.35	0.0309	0.40
S 302	0.4	0.4	0.16	34000	287.30	0.0528	0.40
S 303	0.4	0.4	0.16	34000	287.30	0.0528	0.40
S 304	0.4	0.4	0.16	34000	168.35	0.0309	0.40
S 305	0.4	0.4	0.16	34000	287.30	0.0528	0.40
S 306	0.4	0.4	0.16	34000	485.82	0.0893	0.40
S 307	0.4	0.4	0.16	34000	485.82	0.0893	0.40
S 308	0.4	0.4	0.16	34000	287.30	0.0528	0.40
S 309	0.4	0.4	0.16	34000	287.30	0.0528	0.40
S 310	0.4	0.4	0.16	34000	485.82	0.0893	0.40
S 311	0.4	0.4	0.16	34000	485.82	0.0893	0.40
S 312	0.4	0.4	0.16	34000	287.30	0.05281	0.40
S 313	0.4	0.4	0.16	34000	168.35	0.03094	0.40
S 314	0.4	0.4	0.16	34000	287.30	0.05281	0.40
S 315	0.4	0.4	0.16	34000	287.30	0.05281	0.40
S 316	0.4	0.4	0.16	34000	168.35	0.03094	0.40
S 401	0.3	0.3	0.09	34000	106.25	0.0347	0.4

Çizelge A.4(devamı) : 5 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

S 402	0.3	0.3	0.09	34000	187.39	0.0612	0.4
S 403	0.3	0.3	0.09	34000	187.39	0.0612	0.4
S 404	0.3	0.3	0.09	34000	106.25	0.0347	0.4
S 405	0.3	0.3	0.09	34000	187.39	0.0612	0.4
S 406	0.3	0.3	0.09	34000	324.14	0.1059	0.41
S 407	0.3	0.3	0.09	34000	324.14	0.1059	0.41
S 408	0.3	0.3	0.09	34000	187.39	0.0612	0.40
S 409	0.3	0.3	0.09	34000	187.39	0.0612	0.40
S 410	0.3	0.3	0.09	34000	324.14	0.1059	0.41
S 411	0.3	0.3	0.09	34000	324.14	0.1059	0.41
S 412	0.3	0.3	0.09	34000	187.39	0.0612	0.40
S 413	0.3	0.3	0.09	34000	106.25	0.0347	0.40
S 414	0.3	0.3	0.09	34000	187.39	0.0612	0.40
S 415	0.3	0.3	0.09	34000	187.39	0.0612	0.40
S 416	0.3	0.3	0.09	34000	106.25	0.0347	0.40
S501	0.3	0.3	0.09	34000	51.48	0.0168	0.40
S502	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S503	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S504	0.3	0.3	0.09	34000	51.48	0.0168	0.40
S505	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S506	0.3	0.3	0.09	34000	164.55	0.0537	0.40
S507	0.3	0.3	0.09	34000	164.55	0.0537	0.40
S508	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S509	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S510	0.3	0.3	0.09	34000	164.55	0.0537	0.40
S511	0.3	0.3	0.09	34000	164.55	0.0537	0.40
S512	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S513	0.3	0.3	0.09	34000	51.48	0.0168	0.40
S514	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S515	0.3	0.3	0.09	34000	93.28	0.0304	0.40
S516	0.3	0.3	0.09	34000	51.48	0.0168	0.40

Çizelge A.4(devamı) : 5 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

Çizelge A.5: 6 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

	ETKİN EĞİLME RİJİTLİĞİ TABLOSU										
6 KATLI MODEL											
	b h										
Kolon	(m)	(m)	$A_{c}(m^{2})$	F_{cm} (kN/m ²)	N _d (kN)	$N_d/(Ac \times f_{cm})$	(EI) _e				
S 101	0.4	0.4	0.16	34000	364.12	0.0669	0.40				
S 102	0.4	0.4	0.16	34000	589.61	0.1083	0.41				
S 103	0.4	0.4	0.16	34000	589.61	0.1083	0.41				
S 104	0.4	0.4	0.16	34000	364.12	0.0669	0.40				
S 105	0.4	0.4	0.16	34000	589.61	0.1083	0.41				
S 106	0.4	0.4	0.16	34000	956.23	0.1757	0.50				
S 107	0.4	0.4	0.16	34000	956.23	0.1757	0.50				

S 108	0.4	0.4	0.16	34000	589.61	0.1083	0.41
S 109	0.4	0.4	0.16	34000	589.61	0.1083	0.41
S 110	0.4	0.4	0.16	34000	956.23	0.1757	0.50
S 111	0.4	0.4	0.16	34000	956.23	0.1757	0.50
S 112	0.4	0.4	0.16	34000	589.61	0.1083	0.41
S 113	0.4	0.4	0.16	34000	364.12	0.0669	0.40
S 114	0.4	0.4	0.16	34000	589.61	0.1083	0.41
S 115	0.4	0.4	0.16	34000	589.61	0.1083	0.41
S 116	0.4	0.4	0.16	34000	364.12	0.0669	0.40
S 201	0.4	0.4	0.16	34000	303.99	0.0558	0.40
S 202	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 203	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 204	0.4	0.4	0.16	34000	303.99	0.0558	0.40
S 205	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 206	0.4	0.4	0.16	34000	790.52	0.1453	0.46
S 207	0.4	0.4	0.16	34000	790.52	0.1453	0.46
S 208	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 209	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 210	0.4	0.4	0.16	34000	790.52	0.1453	0.46
S 211	0.4	0.4	0.16	34000	790.52	0.1453	0.46
S 212	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 213	0.4	0.4	0.16	34000	303.99	0.0558	0.40
S 214	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 215	0.4	0.4	0.16	34000	490.74	0.0902	0.40
S 216	0.4	0.4	0.16	34000	303.99	0.0558	0.40
S 301	0.4	0.4	0.16	34000	240.45	0.0442	0.40
S 302	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 303	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 304	0.4	0.4	0.16	34000	240.45	0.0442	0.40
S 305	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 306	0.4	0.4	0.16	34000	630.87	0.1159	0.42
S 307	0.4	0.4	0.16	34000	630.87	0.1159	0.42
S 308	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 309	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 310	0.4	0.4	0.16	34000	630.87	0.1159	0.42
S 311	0.4	0.4	0.16	34000	630.87	0.1159	0.42
S 312	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 313	0.4	0.4	0.16	34000	240.45	0.0442	0.40
S 314	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 315	0.4	0.4	0.16	34000	390.53	0.0717	0.40
S 316	0.4	0.4	0.16	34000	240.45	0.0442	0.40
S 401	0.4	0.4	0.16	34000	174.26	0.0320	0.40
S 402	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 403	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 404	0.4	0.4	0.16	34000	174.26	0.0320	0.40

Çizelge A.5(devamı): 6 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

S 405	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 406	0.4	0.4	0.16	34000	475.94	0.0874	0.40
S 407	0.4	0.4	0.16	34000	475.94	0.0874	0.40
S 408	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 409	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 410	0.4	0.4	0.16	34000	475.94	0.0874	0.40
S 411	0.4	0.4	0.16	34000	475.94	0.0874	0.40
S 412	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 413	0.4	0.4	0.16	34000	174.26	0.0320	0.40
S 414	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 415	0.4	0.4	0.16	34000	289.29	0.0531	0.40
S 416	0.4	0.4	0.16	34000	174.26	0.0320	0.40
S501	0.3	0.3	0.09	34000	109.44	0.0357	0.40
S502	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S503	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S504	0.3	0.3	0.09	34000	109.44	0.0357	0.40
S505	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S506	0.3	0.3	0.09	34000	318.80	0.1041	0.41
S507	0.3	0.3	0.09	34000	318.80	0.1041	0.41
S508	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S509	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S510	0.3	0.3	0.09	34000	318.80	0.1041	0.41
S511	0.3	0.3	0.09	34000	318.80	0.1041	0.41
S512	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S513	0.3	0.3	0.09	34000	109.44	0.0357	0.40
S514	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S515	0.3	0.3	0.09	34000	188.47	0.0615	0.40
S516	0.3	0.3	0.09	34000	109.44	0.0357	0.40
S601	0.3	0.3	0.09	34000	52.75	0.0172	0.40
S602	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S603	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S604	0.3	0.3	0.09	34000	52.75	0.0172	0.40
S605	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S606	0.3	0.3	0.09	34000	162.37	0.0530	0.40
S607	0.3	0.3	0.09	34000	162.37	0.0530	0.40
S608	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S609	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S610	0.3	0.3	0.09	34000	162.37	0.0530	0.40
S611	0.3	0.3	0.09	34000	162.37	0.0530	0.40
S612	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S613	0.3	0.3	0.09	34000	52.75	0.0172	0.40
S614	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S615	0.3	0.3	0.09	34000	93.73	0.0306	0.40
S616	0.3	0.3	0.09	34000	52.75	0.0172	0.40

Çizelge A.5(devamı): 6 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

ETKİN EĞİLME RİJİTLİĞİ TABLOSU											
	7 KATLI MODEL										
	b	h	2	2							
Kolon	(m)	(m)	$A_{c}(m^{2})$	F_{cm} (kN/m ²)	N_{d} (kN)	$N_d/(Ac \times f_{cm})$	(EI) _e				
S 101	0.4	0.4	0.16	34000	442.24	0.0812	0.40				
S 102	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 103	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 104	0.4	0.4	0.16	34000	442.24	0.0812	0.40				
S 105	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 106	0.4	0.4	0.16	34000	1092.78	0.2008	0.53				
S 107	0.4	0.4	0.16	34000	1092.78	0.2008	0.53				
S 108	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 109	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 110	0.4	0.4	0.16	34000	1092.78	0.2008	0.53				
S 111	0.4	0.4	0.16	34000	1092.78	0.2008	0.53				
S 112	0.4	0.4	0.16	34000	694.08	0.1275	0.43				
S 113	0.4	0.4	0.16	34000	442.24	0.0812	0.40				
S 114	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 115	0.4	0.4	0.16	34000	694.08	0.1275	0.44				
S 116	0.4	0.4	0.16	34000	442.24	0.0812	0.40				
S 201	0.4	0.4	0.16	34000	381.70	0.0701	0.40				
S 202	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 203	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 204	0.4	0.4	0.16	34000	381.70	0.0701	0.40				
S 205	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 206	0.4	0.4	0.16	34000	927.61	0.1705	0.49				
S 207	0.4	0.4	0.16	34000	927.61	0.1705	0.49				
S 208	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 209	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 210	0.4	0.4	0.16	34000	927.61	0.1705	0.49				
S 211	0.4	0.4	0.16	34000	927.61	0.1705	0.49				
S 212	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 213	0.4	0.4	0.16	34000	381.70	0.0701	0.40				
S 214	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 215	0.4	0.4	0.16	34000	595.13	0.1094	0.41				
S 216	0.4	0.4	0.16	34000	381.70	0.0701	0.40				
S 301	0.4	0.4	0.16	34000	317.28	0.0583	0.40				
S 302	0.4	0.4	0.16	34000	494.76	0.0909	0.40				
S 303	0.4	0.4	0.16	34000	494.76	0.0909	0.40				
S 304	0.4	0.4	0.16	34000	317.28	0.0583	0.40				
S 305	0.4	0.4	0.16	34000	494.76	0.0909	0.40				
S 306	0.4	0.4	0.16	34000	769.17	0.1413	0.46				
S 307	0.4	0.4	0.16	34000	769.17	0.1413	0.46				
S 308	0.4	0.4	0.16	34000	494.76	0.0909	0.40				
S 309	0.4	0.4	0.16	34000	494.76	0.0909	0.40				

Çizelge A.6 : 7 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

S 310	0.4	0.4	0.16	34000	769.17	0.1413	0.46
S 311	0.4	0.4	0.16	34000	769.17	0.1413	0.46
S 312	0.4	0.4	0.16	34000	494.76	0.0909	0.40
S 313	0.4	0.4	0.16	34000	317.28	0.0583	0.40
S 314	0.4	0.4	0.16	34000	494.76	0.0909	0.40
S 315	0.4	0.4	0.16	34000	494.76	0.0909	0.40
S 316	0.4	0.4	0.16	34000	317.28	0.0583	0.40
S 401	0.4	0.4	0.16	34000	250.25	0.0460	0.40
S 402	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 403	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 404	0.4	0.4	0.16	34000	250.25	0.0460	0.40
S 405	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 406	0.4	0.4	0.16	34000	615.31	0.1131	0.42
S 407	0.4	0.4	0.16	34000	615.31	0.1131	0.42
S 408	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 409	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 410	0.4	0.4	0.16	34000	615.31	0.1131	0.42
S 411	0.4	0.4	0.16	34000	615.31	0.1131	0.42
S 412	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 413	0.4	0.4	0.16	34000	250.25	0.0460	0.40
S 414	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 415	0.4	0.4	0.16	34000	393.41	0.0723	0.40
S 416	0.4	0.4	0.16	34000	250.25	0.0460	0.40
S 501	0.4	0.4	0.16	34000	180.51	0.0331	0.40
S 502	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 503	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 504	0.4	0.4	0.16	34000	180.51	0.0331	0.40
S 505	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 506	0.4	0.4	0.16	34000	466.09	0.0856	0.40
S 507	0.4	0.4	0.16	34000	466.09	0.0856	0.40
S 508	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 509	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 510	0.4	0.4	0.16	34000	466.09	0.0856	0.40
S 511	0.4	0.4	0.16	34000	466.09	0.0856	0.40
S 512	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 513	0.4	0.4	0.16	34000	180.511	0.0331	0.40
S 514	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 515	0.4	0.4	0.16	34000	291.10	0.0535	0.40
S 516	0.4	0.4	0.16	34000	180.51	0.0331	0.40
S 601	0.3	0.3	0.09	34000	112.83	0.0368	0.40
S 602	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 603	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 604	0.3	0.3	0.09	34000	112.83	0.0368	0.40
S 605	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 606	0.3	0.3	0.09	34000	313.47	0.1024	0.40

Çizelge A.6(devamı): 7 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

S 607	0.3	0.3	0.09	34000	313.47	0.1024	0.40
S 608	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 609	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 610	0.3	0.3	0.09	34000	313.47	0.1024	0.40
S 611	0.3	0.3	0.09	34000	313.47	0.1024	0.40
S 612	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 613	0.3	0.3	0.09	34000	112.83	0.0368	0.40
S 614	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 615	0.3	0.3	0.09	34000	189.44	0.0619	0.40
S 616	0.3	0.3	0.09	34000	112.83	0.0368	0.40
S 701	0.3	0.3	0.09	34000	54.11	0.0176	0.40
S 702	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 703	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 704	0.3	0.3	0.09	34000	54.11	0.0176	0.40
S 705	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 706	0.3	0.3	0.09	34000	160.19	0.0523	0.40
S 707	0.3	0.3	0.09	34000	160.19	0.0523	0.40
S 708	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 709	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 710	0.3	0.3	0.09	34000	160.19	0.0523	0.40
S 711	0.3	0.3	0.09	34000	160.19	0.0523	0.40
S 712	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 713	0.3	0.3	0.09	34000	54.11	0.0176	0.40
S 714	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 715	0.3	0.3	0.09	34000	94.14	0.0307	0.40
S 716	0.3	0.3	0.09	34000	54.11	0.0176	0.40

Çizelge A.6(devamı): 7 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

Çizelge A.7: 8 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

ETKİN EĞİLME RİJİTLİĞİ TABLOSU 8 katlı model											
b h											
Kolon	(m)	(m)	$A_{c}(m^{2})$	F_{cm} (kN/m ²)	N _d (kN)	$N_d/(Ac \times f_{cm})$	(EI) _e				
S 101	0.4	0.4	0.16	34000	525.10	0.0965	0.40				
S 102	0.4	0.4	0.16	34000	799.27	0.1469	0.46				
S 103	0.4	0.4	0.16	34000	799.27	0.1469	0.46				
S 104	0.4	0.4	0.16	34000	525.10	0.0965	0.40				
S 105	0.4	0.4	0.16	34000	799.27	0.1469	0.46				
S 106	0.4	0.4	0.16	34000	1223.15	0.2248	0.57				
S 107	0.4	0.4	0.16	34000	1223.15	0.2248	0.57				
S 108	0.4	0.4	0.16	34000	799.27	0.1469	0.46				
S 109	0.4	0.4	0.16	34000	799.27	0.1469	0.46				
S 110	0.4	0.4	0.16	34000	1223.15	0.2248	0.57				
S 111	0.4	0.4	0.16	34000	1223.15	0.2248	0.57				
S 112	0.4	0.4	0.16	34000	799.27	0.1469	0.46				
S 113	0.4	0.4	0.16	34000	525.10	0.0965	0.40				

S 114	0.4	0.4	0.16	34000	799.27	0.1469	0.46
S 115	0.4	0.4	0.16	34000	799.27	0.1469	0.46
S 116	0.4	0.4	0.16	34000	525.10	0.0965	0.40
S 201	0.4	0.4	0.16	34000	464.21	0.0853	0.40
S 202	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 203	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 204	0.4	0.4	0.16	34000	464.21	0.0853	0.40
S 205	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 206	0.4	0.4	0.16	34000	1058.42	0.1945	0.53
S 207	0.4	0.4	0.16	34000	1058.42	0.1945	0.53
S 208	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 209	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 210	0.4	0.4	0.16	34000	1058.42	0.1945	0.53
S 211	0.4	0.4	0.16	34000	1058.42	0.1945	0.53
S 212	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 213	0.4	0.4	0.16	34000	464.21	0.0853	0.40
S 214	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 215	0.4	0.4	0.16	34000	700.27	0.1287	0.44
S 216	0.4	0.4	0.16	34000	464.21	0.0853	0.40
S 301	0.4	0.4	0.16	34000	399.10	0.0733	0.40
S 302	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 303	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 304	0.4	0.4	0.16	34000	399.10	0.0733	0.40
S 305	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 306	0.4	0.4	0.16	34000	900.85	0.1655	0.49
S 307	0.4	0.4	0.16	34000	900.85	0.1655	0.49
S 308	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 309	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 310	0.4	0.4	0.16	34000	900.85	0.1655	0.49
S 311	0.4	0.4	0.16	34000	900.85	0.1655	0.49
S 312	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 313	0.4	0.4	0.16	34000	399.10	0.0733	0.40
S 314	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 315	0.4	0.4	0.16	34000	599.81	0.1102	0.41
S 316	0.4	0.4	0.16	34000	399.10	0.0733	0.40
S 401	0.4	0.4	0.16	34000	330.94	0.0608	0.40
S 402	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 403	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 404	0.4	0.4	0.16	34000	330.94	0.0608	0.40
S 405	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 406	0.4	0.4	0.16	34000	748.43	0.1375	0.45
S 407	0.4	0.4	0.16	34000	748.43	0.1375	0.45
S 408	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 409	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 410	0.4	0.4	0.16	34000	748.43	0.1375	0.45

Çizelge A.7(devamı) : 8 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

S 411	0.4	0.4	0.16	34000	748.43	0.1375	0.45
S 412	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 413	0.4	0.4	0.16	34000	330.94	0.0608	0.40
S 414	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 415	0.4	0.4	0.16	34000	498.30	0.0916	0.40
S 416	0.4	0.4	0.16	34000	330.94	0.0608	0.40
S 501	0.4	0.4	0.16	34000	260.24	0.0478	0.40
S 502	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 503	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 504	0.4	0.4	0.16	34000	260.24	0.0478	0.40
S 505	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 506	0.4	0.4	0.16	34000	600.29	0.1103	0.41
S 507	0.4	0.4	0.16	34000	600.29	0.1103	0.41
S 508	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 509	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 510	0.4	0.4	0.16	34000	600.29	0.1103	0.41
S 511	0.4	0.4	0.16	34000	600.29	0.1103	0.41
S 512	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 513	0.4	0.4	0.16	34000	260.24	0.0478	0.40
S 514	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 515	0.4	0.4	0.16	34000	395.92	0.0727	0.40
S 516	0.4	0.4	0.16	34000	260.24	0.0478	0.40
S 601	0.4	0.4	0.16	34000	186.89	0.0343	0.40
S 602	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 603	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 604	0.4	0.4	0.16	34000	186.89	0.0343	0.40
S 605	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 606	0.4	0.4	0.16	34000	456.56	0.0839	0.40
S 607	0.4	0.4	0.16	34000	456.56	0.0839	0.40
S 608	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 609	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 610	0.4	0.4	0.16	34000	456.56	0.0839	0.40
S 611	0.4	0.4	0.16	34000	456.56	0.0839	0.40
S 612	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 613	0.4	0.4	0.16	34000	186.89	0.0343	0.40
S 614	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 615	0.4	0.4	0.16	34000	292.66	0.0537	0.40
S 616	0.4	0.4	0.16	34000	186.89	0.0343	0.40
S 701	0.3	0.3	0.09	34000	116.29	0.0380	0.40
S 702	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 703	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 704	0.3	0.3	0.09	34000	116.29	0.0380	0.40
S 705	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 706	0.3	0.3	0.09	34000	308.32	0.1007	0.40
S 707	0.3	0.3	0.09	34000	308.32	0.1007	0.40

Çizelge A.7(devamı): 8 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri
S 708	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 709	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 710	0.3	0.3	0.09	34000	308.32	0.1007	0.40
S 711	0.3	0.3	0.09	34000	308.32	0.1007	0.40
S 712	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 713	0.3	0.3	0.09	34000	116.29	0.0380	0.40
S 714	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 715	0.3	0.3	0.09	34000	190.29	0.0621	0.40
S 716	0.3	0.3	0.09	34000	116.29	0.0380	0.40
S 801	0.3	0.3	0.09	34000	55.50	0.0181	0.40
S 802	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 803	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 804	0.3	0.3	0.09	34000	55.50	0.0181	0.40
S 805	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 806	0.3	0.3	0.09	34000	158.09	0.0516	0.40
S 807	0.3	0.3	0.09	34000	158.09	0.0516	0.40
S 808	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 809	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 810	0.3	0.3	0.09	34000	158.09	0.0516	0.40
S 811	0.3	0.3	0.09	34000	158.09	0.0516	0.40
S 812	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 813	0.3	0.3	0.09	34000	55.50	0.0181	0.40
S 814	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 815	0.3	0.3	0.09	34000	94.50	0.0308	0.40
S 816	0.3	0.3	0.09	34000	55.50	0.0181	0.40

Çizelge A.7(devamı) : 8 Katlı Yapı Kolon Etkin Eğilme Rijitlikleri

Kesit Hasar Sınırları	Eksenel Kuvvet (kN)	Akma Eğriliği φ _y (rad/m)	M _y (kNm)	ε _s	ε _{cu}	Toplam Eğrilik φ _t (rad/m)	M _t (kNm)	Plastik Eğrilik φ _p =φ _t -φ _y	L _p (m)	Plastik Dönme $\theta_p = \phi_p \times L_p$ (rad)
Minimum Hasar Sınırı (MN)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Güvenlik Sınırı (GV)	-1500.00	0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Göçme Sınırı (GÇ)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Minimum Hasar Sınırı (MN)		0.0105	60.67	0.000	-0.0035	0.0128	63.73	0.0023	0.15	0.0003
Güvenlik Sınırı (GV)	-1483.00	0.0105	60.67	-0.001	-0.0135	0.0505	6.99	0.0400	0.15	0.0060
Göçme Sınırı (GÇ)		0.0105	60.67	-0.001	-0.0180	0.0668	1.67	0.0563	0.15	0.0084
	-		-							

Ek B : Yapılarda Bulunan Toplam Üç Farklı Kolona Ait Eksenel Yüke ve Plastik Dönmeye Bağlı Hasar Sınırları

Çizelge B.1 : 30×30 (6Ø14) Kolona Ait Hasar Sınırları

Minimum Hasar Sınırı (MN)		0.0112	67.21	0.000	-0.0035	0.0136	69.81	0.0024	0.15	0.0004
Güvenlik Sınırı (GV)	-1385.00	0.0112	67.21	0.000	-0.0135	0.0525	17.58	0.0413	0.15	0.0062
Göçme Sınırı (GÇ)		0.0112	67.21	0.000	-0.0180	0.0696	10.67	0.0584	0.15	0.0088
Minimum Hasar Sınırı (MN)		0.0130	78.02	0.000	-0.0035	0.0159	80.13	0.0029	0.15	0.0004
Güvenlik Sınırı (GV)	-1172.00	0.0130	78.02	0.001	-0.0135	0.0575	38.29	0.0445	0.15	0.0067
Göçme Sınırı (GÇ)		0.0130	78.02	0.001	-0.0180	0.0750	32.68	0.0620	0.15	0.0093
Minimum Hasar Sınırı (MN)		0.0155	84.83	0.001	-0.0035	0.0187	87.50	0.0032	0.15	0.0005
Güvenlik Sınırı (GV)	-941.24	0.0155	84.83	0.003	-0.0135	0.0663	56.16	0.0508	0.15	0.0076
Göçme Sınırı (GÇ)		0.0155	84.83	0.004	-0.0180	0.0865	52.21	0.0711	0.15	0.0107
				·	· · · · · · · · · · · · · · · · · · ·					
Minimum Hasar Sınırı (MN)	-682.91	0.0188	88.16	0.002	-0.0035	0.0233	217.18	0.0045	0.15	0.0007

Çizelge B.1(devamı) : 30×30 (6Ø14) Kolona Ait Hasar Sınırları

Güvenlik Sınırı (GV)		0.0188	88.16	0.008	-0.0135	0.0842	181.26	0.0654	0.15	0.0098
Göçme Sınırı (GÇ)		0.0188	88.16	0.010	-0.0180	0.1120	178.69	0.0932	0.15	0.0140
Minimum Hasar Sınırı (MN)		0.0162	78.85	0.004	-0.0035	0.0292	83.72	0.0129	0.15	0.0019
Güvenlik Sınırı (GV)	-521.60	0.0162	78.85	0.011	-0.0135	0.0959	63.12	0.0796	0.15	0.0119
Göçme Sınırı (GÇ)		0.0162	78.85	0.014	-0.0180	0.1263	61.68	0.1101	0.15	0.0165
Minimum Hasar Sınırı (MN)		0.0137	62.95	0.007	-0.0035	0.0396	71.91	0.0260	0.15	0.0039
Güvenlik Sınırı (GV)	-319.96	0.0137	62.95	0.018	-0.0135	0.1244	58.38	0.1107	0.15	0.0166
Göçme Sınırı (GÇ)		0.0137	62.95	0.024	-0.0180	0.1640	58.02	0.1503	0.15	0.0225
Minimum Hasar Sınırı (MN)	122.21	0.0084	110.55	0.010	-0.0032	0.0531	137.74	0.0447	0.15	0.0067
Güvenlik Sınırı (GV)	-122.21	0.0084	110.55	0.034	-0.0135	0.1839	135.40	0.1755	0.15	0.0263

Çizelge B.1(devamı) : 30×30 (6Ø14) Kolona Ait Hasar Sınırları

Göçme Sınırı (GÇ)		0.0084	110.55	0.043	-0.0180	0.2422	133.82	0.2338	0.15	0.0351
Minimum Hasar Sınırı (MN)		0.0069	10.12	0.010	-0.0012	0.0451	137.74	0.0382	0.15	0.0057
Güvenlik Sınırı (GV)	185.50	0.0069	10.12	0.040	-0.0080	0.1896	135.40	0.1827	0.15	0.0274
Göçme Sınırı (GÇ)		0.0069	10.12	0.060	-0.0135	0.2907	133.82	0.2838	0.15	0.0426
Minimum Hasar Sınırı (MN)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Güvenlik Sınırı (GV)	339.45	0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Göçme Sınırı (GÇ)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000

Çizelge B.1(devamı): 30×30 (6Ø14) Kolona Ait Hasar Sınırları

Kesit Hasar Sınırları	Eksenel Kuvvet (kN)	Akma Eğriliği φ _y (rad/m)	M _y (kNm)	ε _s	ε _{cu}	Toplam Eğrilik φ _t (rad/m)	M _t (kNm)	Plastik Eğrilik φ _p =φ _t -φ _y	L _p (m)	Plastik Dönme θ _p =φ _p ×L _p (rad)
Minimum Hasar Sınırı (MN)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Güvenlik Sınırı (GV)	-1600.00	0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Göçme Sınırı (GÇ)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Minimum Hasar Sınırı (MN)		0.0104	62.78	0.000	-0.0035	0.0128	66.11	0.0024	0.15	0.0004
Güvenlik Sınırı (GV)	-1574.00	0.0104	62.78	-0.001	-0.0135	0.0505	9.75	0.0401	0.15	0.0060
Göçme Sınırı (GÇ)		0.0104	62.78	-0.001	-0.0180	0.0672	2.85	0.0568	0.15	0.0085
Minimum Hasar Sınırı (MN)	1454.00	0.0112	70.97	0.000	-0.0035	0.0136	73.76	0.0024	0.15	0.0004
Güvenlik Sınırı (GV)	-1434.00	0.0112	70.97	0.000	-0.0135	0.0529	22.38	0.0417	0.15	0.0062

Çizelge B.2 : 30×30 (6Ø16) Kolona Ait Hasar Sınırları

Göçme Sınırı (GÇ)		0.0112	70.97	0.000	-0.0180	0.0700	15.81	0.0588	0.15	0.0088
Minimum Hasar Sınırı (MN)		0.0130	83.03	0.000	-0.0035	0.0159	85.44	0.0029	0.15	0.0004
Güvenlik Sınırı (GV)	-1224.00	0.0130	83.03	0.001	-0.0135	0.0575	44.68	0.0445	0.15	0.0067
Göçme Sınırı (GÇ)		0.0130	83.03	0.001	-0.0180	0.0754	39.11	0.0624	0.15	0.0094
Minimum Hasar Sınırı (MN)		0.0155	91.35	0.001	-0.0035	0.0187	94.57	0.0031	0.15	0.0005
Güvenlik Sınırı (GV)	-971.08	0.0155	91.35	0.003	-0.0135	0.0658	64.96	0.0503	0.15	0.0075
Göçme Sınırı (GÇ)		0.0155	91.35	0.004	-0.0180	0.0860	61.05	0.0705	0.15	0.0106
Minimum Hasar Sınırı (MN)		0.0189	95.89	0.002	-0.0035	0.0233	98.39	0.0045	0.15	0.0007
Güvenlik Sınırı (GV)	-680.21	0.0189	95.89	0.008	-0.0135	0.0848	72.38	0.0660	0.15	0.0099
Göçme Sınırı (GÇ)		0.0189	95.89	0.011	-0.0180	0.1133	70.52	0.0944	0.15	0.0142

Çizelge B.2(devamı) : 30×30 (6Ø16) Kolona Ait Hasar Sınırları

Minimum Hasar Sınırı (MN)		0.0163	86.26	0.004	-0.0035	0.0292	92.65	0.0129	0.15	0.0019
Güvenlik Sınırı (GV)	-507.63	0.0163	86.26	0.011	-0.0135	0.0959	72.15	0.0796	0.15	0.0119
Göçme Sınırı (GÇ)		0.0163	86.26	0.014	-0.0180	0.1263	70.76	0.1100	0.15	0.0165
Minimum Hasar Sınırı (MN)		0.0136	68.66	0.007	-0.0035	0.0396	79.50	0.0260	0.15	0.0039
Güvenlik Sınırı (GV)	-277.97	0.0136	68.66	0.019	-0.0135	0.1275	66.69	0.1139	0.15	0.0171
Göçme Sınırı (GÇ)		0.0136	68.66	0.024	-0.0180	0.1679	66.6	0.1543	0.15	0.0231
Minimum Hasar Sınırı (MN)		0.0114	50.55	0.010	-0.0032	0.0531	58.93	0.0418	0.15	0.0063
Güvenlik Sınırı (GV)	-59.15	0.0114	50.55	0.037	-0.0135	0.1995	54.58	0.1881	0.15	0.0282
Göçme Sınırı (GÇ)		0.0114	50.55	0.048	-0.0180	0.2617	55.49	0.2503	0.15	0.0376
				•						

Çizelge B.2(devamı) : 30×30 (6Ø16) Kolona Ait Hasar Sınırları

Minimum Hasar Sınırı (MN)		0.0043	5.38	0.010	-0.0011	0.0451	17.82	0.0408	0.15	0.0061
Güvenlik Sınırı (GV)	310.40	0.0043	5.38	0.040	-0.0081	0.1912	20.38	0.1869	0.15	0.0280
Göçme Sınırı (GÇ)		0.0043	5.38	0.060	-0.0135	0.2922	20.70	0.2879	0.15	0.0432
Minimum Hasar Sınırı (MN)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Güvenlik Sınırı (GV)	458.44	0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000
Göçme Sınırı (GÇ)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.15	0.0000

Çizelge B.2(devamı) : 30×30 (6Ø16) Kolona Ait Hasar Sınırları

Çizelge B.3 : 40×40 (8Ø16) Kolona Ait Hasar Sınırları

Kesit Hasar Sınırları	Eksenel Kuvvet (kN)	Akma Eğriliği φ _y (rad/m)	M _y (kNm)	ε _s	ε _{cu}	Toplam Eğrilik φ _t (rad/m)	M _t (kNm)	Plastik Eğrilik φ _p =φ₁-φ _y	$L_{p}(m)$	Plastik Dönme $\theta_p = \phi_p \times L_p$ (rad)
Minimum Hasar Sınırı (MN)	-2700.00	0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.20	0.0000

Güvenlik Sınırı (GV)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.20	0.0000
Göçme Sınırı (GÇ)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.20	0.0000
Minimum Hasar Sınırı (MN)		0.0082	161.47	0.000	-0.0035	0.0096	169.17	0.0014	0.20	0.0003
Güvenlik Sınırı (GV)	-2624.00	0.0082	161.47	0.001	-0.0135	0.0415	114.74	0.0333	0.20	0.0067
Göçme Sınırı (GÇ)		0.0082	161.47	0.001	-0.0180	0.0549	105.08	0.0467	0.20	0.0093
Minimum Hasar Sınırı (MN)		0.0086	173.73	0.000	-0.0035	0.0106	183.05	0.0020	0.20	0.0004
Güvenlik Sınırı (GV)	-2468.00	0.0086	173.73	0.002	-0.0135	0.0430	133.91	0.0344	0.20	0.0069
Göçme Sınırı (GÇ)		0.0086	173.73	0.002	-0.0180	0.0565	125.85	0.0478	0.20	0.0096
Minimum Hasar Sınırı (MN)	2101.00	0.0100	195.37	0.001	-0.0035	0.0121	203.78	0.0022	0.20	0.0004
Güvenlik Sınırı (GV)	-2101.00	0.0100	195.37	0.004	-0.0135	0.0494	165.67	0.0395	0.20	0.0079

Çizelge B.3(devamı) : 40×40 (8Ø16) Kolona Ait Hasar Sınırları

Göçme Sınırı (GÇ)		0.0100	195.37	0.005	-0.0180	0.0656	159.10	0.0556	0.20	0.0111
Minimum Hasar Sınırı (MN)		0.0117	209.65	0.001	-0.0035	0.0144	219.72	0.0027	0.20	0.0005
Güvenlik Sınırı (GV)	-1705.00	0.0117	209.65	0.007	-0.0135	0.0595	180.85	0.0477	0.20	0.0095
Göçme Sınırı (GÇ)		0.0117	209.65	0.010	-0.0180	0.0797	177.05	0.0679	0.20	0.0136
Minimum Hasar Sınırı (MN)		0.0131	210.08	0.003	-0.0035	0.0179	217.18	0.0048	0.20	0.0010
Güvenlik Sınırı (GV)	-1268.00	0.0131	210.08	0.011	-0.0135	0.0696	181.26	0.0564	0.20	0.0113
Göçme Sınırı (GÇ)		0.0131	210.08	0.014	-0.0180	0.0925	178.69	0.0794	0.20	0.0159
Minimum Hasar Sınırı (MN)		0.0114	191.32	0.004	-0.0035	0.0218	202.96	0.0104	0.20	0.0021
Güvenlik Sınırı (GV)	-961.10	0.0114	191.32	0.014	-0.0135	0.0788	176.39	0.0674	0.20	0.0135
Göçme Sınırı (GÇ)		0.0114	191.32	0.019	-0.0180	0.1052	174.56	0.0938	0.20	0.0188

Çizelge B.3(devamı) : 40×40 (8Ø16) Kolona Ait Hasar Sınırları

Minimum Hasar Sınırı (MN)		0.0099	154.46	0.006	-0.0035	0.0285	180.05	0.0186	0.20	0.0037
Güvenlik Sınırı (GV)	-617.07	0.0099	154.46	0.023	-0.0135	0.1030	157.66	0.0931	0.20	0.0186
Göçme Sınırı (GÇ)		0.0099	154.46	0.030	-0.0180	0.1373	158.47	0.1274	0.20	0.0255
Minimum Hasar Sınırı (MN)		0.0084	110.55	0.010	-0.0032	0.0383	137.74	0.0300	0.20	0.0060
Güvenlik Sınırı (GV)	-281.78	0.0084	110.55	0.037	-0.0135	0.1451	135.40	0.1367	0.20	0.0273
Göçme Sınırı (GÇ)		0.0084	110.55	0.050	-0.0180	0.1938	133.82	0.1854	0.20	0.0371
Minimum Hasar Sınırı (MN)		0.0064	40.54	0.010	-0.0015	0.0337	137.74	0.0273	0.20	0.0055
Güvenlik Sınırı (GV)	166.09	0.0064	40.54	0.040	-0.0067	0.1334	135.40	0.1270	0.20	0.0254
Göçme Sınırı (GÇ)		0.0064	40.54	0.060	-0.0108	0.2021	133.82	0.1957	0.20	0.0391
					· · · · · · · · · · · · · · · · · · ·		· · ·			

Çizelge B.3(devamı) : 40×40 (8Ø16) Kolona Ait Hasar Sınırları

Minimum Hasar Sınırı (MN)	586.92	0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.20	0.0000
Güvenlik Sınırı (GV)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.20	0.0000
Göçme Sınırı (GÇ)		0.0000	0.00	0.000	0.0000	0.0000	0.00	0.0000	0.20	0.0000

Çizelge B.3(devamı) : 40×40 (8Ø16) Kolona Ait Hasar Sınırları

Ek C : 8 Katlı Yapının G+0.6Q Yüklemesine Bağlı olarak Hesaplanan Kolon Etkin Rijitlikleri

ETKİN EĞİLME RİJİTLİĞİ TABLOSU								
	8 KATLI MODEL							
Kolon	b (m)	h (m)	$A_{c}(m^{2})$	F_{cm} (kN/m ²)	N _d (kN)	$N_d/(Ac \times f_{cm})$	(EI) _e	
S 101	0.4	0.4	0.16	34000	598.41	0.1100	0.41	
S 102	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 103	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 104	0.4	0.4	0.16	34000	598.41	0.1100	0.41	
S 105	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 106	0.4	0.4	0.16	34000	1452.12	0.2669	0.62	
S 107	0.4	0.4	0.16	34000	1452.12	0.2669	0.62	
S 108	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 109	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 110	0.4	0.4	0.16	34000	1452.12	0.2669	0.62	
S 111	0.4	0.4	0.16	34000	1452.12	0.2669	0.62	
S 112	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 113	0.4	0.4	0.16	34000	598.41	0.1100	0.41	
S 114	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 115	0.4	0.4	0.16	34000	928.94	0.1708	0.49	
S 116	0.4	0.4	0.16	34000	598.41	0.1100	0.41	
S 201	0.4	0.4	0.16	34000	529.62	0.0974	0.40	
S 202	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 203	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 204	0.4	0.4	0.16	34000	529.62	0.0974	0.40	
S 205	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 206	0.4	0.4	0.16	34000	1256.29	0.2309	0.57	
S 207	0.4	0.4	0.16	34000	1256.29	0.2309	0.57	
S 208	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 209	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 210	0.4	0.4	0.16	34000	1256.29	0.2309	0.57	
S 211	0.4	0.4	0.16	34000	1256.29	0.2309	0.57	
S 212	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 213	0.4	0.4	0.16	34000	529.62	0.0974	0.40	
S 214	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 215	0.4	0.4	0.16	34000	814.35	0.1497	0.47	
S 216	0.4	0.4	0.16	34000	529.62	0.0974	0.40	
S 301	0.4	0.4	0.16	34000	455.74	0.0838	0.40	
S 302	0.4	0.4	0.16	34000	697.89	0.1283	0.44	
S 303	0.4	0.4	0.16	34000	697.89	0.1283	0.44	

Çizelge C.1: 8 katlı yapı (okul) kolon etkin eğilme rijitlikleri

S 304	0.4	0.4	0.16	34000	455.74	0.0838	0.40
S 305	0.4	0.4	0.16	34000	697.89	0.1283	0.44
S 306	0.4	0.4	0.16	34000	1069.29	0.1966	0.53
S 307	0.4	0.4	0.16	34000	1069.29	0.1966	0.53
S 308	0.4	0.4	0.16	34000	697.89	0.1283	0.44
S 309	0.4	0.4	0.16	34000	697.89	0.1283	0.44
S 310	0.4	0.4	0.16	34000	1069.29	0.1966	0.53
S 311	0.4	0.4	0.16	34000	1069.29	0.1966	0.53
S 312	0.4	0.4	0.16	34000	697.89	0.1283	0.44
S 313	0.4	0.4	0.16	34000	455.74	0.0838	0.40
S 314	0.4	0.4	0.16	34000	697.89	0.1283	0.44
S 315	0.4	0.4	0.16	34000	697.89	0.1283	0.44
S 316	0.4	0.4	0.16	34000	455.74	0.0838	0.40
S 401	0.4	0.4	0.16	34000	378.19	0.0695	0.40
S 402	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 403	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 404	0.4	0.4	0.16	34000	378.19	0.0695	0.40
S 405	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 406	0.4	0.4	0.16	34000	888.64	0.1634	0.48
S 407	0.4	0.4	0.16	34000	888.64	0.1634	0.48
S 408	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 409	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 410	0.4	0.4	0.16	34000	888.64	0.1634	0.48
S 411	0.4	0.4	0.16	34000	888.64	0.1634	0.48
S 412	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 413	0.4	0.4	0.16	34000	378.19	0.0695	0.40
S 414	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 415	0.4	0.4	0.16	34000	580.10	0.1066	0.41
S 416	0.4	0.4	0.16	34000	378.19	0.0695	0.40
S 501	0.4	0.4	0.16	34000	297.57	0.0547	0.40
S 502	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 503	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 504	0.4	0.4	0.16	34000	297.57	0.0547	0.40
S 505	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 506	0.4	0.4	0.16	34000	713.27	0.1311	0.44
S 507	0.4	0.4	0.16	34000	713.27	0.1311	0.44
S 508	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 509	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 510	0.4	0.4	0.16	34000	713.27	0.1311	0.44
S 511	0.4	0.4	0.16	34000	713.27	0.1311	0.44
S 512	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 513	0.4	0.4	0.16	34000	297.57	0.0547	0.40

Çizelge C.1(devamı): 8 katlı yapı (okul) kolon etkin eğilme rijitlikleri

S 514	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 515	0.4	0.4	0.16	34000	461.19	0.0848	0.40
S 516	0.4	0.4	0.16	34000	297.57	0.0547	0.40
S 601	0.4	0.4	0.16	34000	213.75	0.0393	0.40
S 602	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 603	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 604	0.4	0.4	0.16	34000	213.75	0.0393	0.40
S 605	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 606	0.4	0.4	0.16	34000	543.33	0.0999	0.40
S 607	0.4	0.4	0.16	34000	543.33	0.0999	0.40
S 608	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 609	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 610	0.4	0.4	0.16	34000	543.33	0.0999	0.40
S 611	0.4	0.4	0.16	34000	543.33	0.0999	0.40
S 612	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 613	0.4	0.4	0.16	34000	213.75	0.0393	0.40
S 614	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 615	0.4	0.4	0.16	34000	341.16	0.0627	0.40
S 616	0.4	0.4	0.16	34000	213.75	0.0393	0.40
S 701	0.3	0.3	0.09	34000	133.23	0.0435	0.40
S 702	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 703	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 704	0.3	0.3	0.09	34000	133.23	0.0435	0.40
S 705	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 706	0.3	0.3	0.09	34000	367.86	0.1202	0.43
S 707	0.3	0.3	0.09	34000	367.86	0.1202	0.43
S 708	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 709	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 710	0.3	0.3	0.09	34000	367.86	0.1202	0.43
S 711	0.3	0.3	0.09	34000	367.86	0.1202	0.43
S 712	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 713	0.3	0.3	0.09	34000	133.23	0.0435	0.40
S 714	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 715	0.3	0.3	0.09	34000	222.26	0.0726	0.40
S 716	0.3	0.3	0.09	34000	133.23	0.0435	0.40
S 801	0.3	0.3	0.09	34000	63.45	0.0207	0.40
S 802	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 803	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 804	0.3	0.3	0.09	34000	63.45	0.0207	0.40
S 805	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 806	0.3	0.3	0.09	34000	188.76	0.0617	0.40

Çizelge C.1(devamı): 8 katlı yapı (okul) kolon etkin eğilme rijitlikleri

S 807	0.3	0.3	0.09	34000	188.76	0.0617	0.40
S 808	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 809	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 810	0.3	0.3	0.09	34000	188.76	0.0617	0.40
S 811	0.3	0.3	0.09	34000	188.76	0.0617	0.40
S 812	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 813	0.3	0.3	0.09	34000	63.45	0.0207	0.40
S 814	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 815	0.3	0.3	0.09	34000	110.30	0.0360	0.40
S 816	0.3	0.3	0.09	34000	63.45	0.0207	0.40

Çizelge C.1(devamı): 8 katlı yapı (okul) kolon etkin eğilme rijitlikleri

ÖZGEÇMİŞ

Ad Soyad:	Mustafa Karakaya
Doğum Yeri ve Tarihi:	Eskişehir 12/08/1988
Adres:	Gençlik Bulvarı No:13 Odunpazarı/ESKİŞEHİR
E-Posta:	mustafa_karakaya@yahoo.com
Lisans: Mesleki Deneyim ve Ödülle	İstanbul Teknik Üniversitesi (2011) er:

11.2013'ten beri Keygen Uluslararası Mühendislik Müşavirlik firmasında betonarme projelerinde üstyapı ve altyapı tasarım mühendisi olarak çalışmaktadır.