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PREPARATION OF COLOR REMOVING CHITOSAN COMPOSITES AND 

ASSESSMENTS ON ADSORPTION KINETICS 

SUMMARY 

Many industries like textile, paper, plastic generate considerable amount of waste 

water since they use excessive amounts of water in their operations and they also use 

chemicals and colorants to color their products. These waste waters form a 

significant reason of worldwide water pollution, and if they are released before being 

treated, they bring an important harm to these waters. There are many studies in 

literature using modified or pure chitosan that aims for adsorption of dye molecules, 

detoxification of water and wastewater, and color removal. The objection of this 

study is the adsorption of textile dyes from water by chitosan derivatives. Chitosan-

montmorillonite composites, and composites of Chi-MMT with urea and urea-

formaldehyde were formed for this study. Chitosan was modified by mixing chitosan 

solutions and montmorillonite solutions with magnetic stirrer, washing with distilled 

water and subsequently drying. Urea-formaldehyde mixture was mixed with Chi-

MMT mixture at 80 ˚C in order to form composites, and afterwards, this mixture was 

poured onto watch glasses and dried. Dye solutions (Reactive Blue 221, Reactive 

Red 195 and Reactive Black 5) were prepared in distilled water and sufficient 

amount of the ground composite flakes and composite films were added to each dye 

solution for several experiments in order to determine the effect of different 

conditions on adsorption. Adsorption experiments in different conditions such as 

different temperature values, different pH values, different amounts of adsorbate, 

different crosslinking contents were performed, these were compared for best 

outcome. UV analysis was performed for the assessment of color change in solutions 

after adsorption and with the help of these analyses adsorption capacities of the 

composites were determined. Studies on adsorption kinetics were performed by 

calculating adsorption rate and maximum adsorption capacity of the composites used 

in every experiment. Furthermore, chitosan derivatives underwent FT-IR analyses for 

characterization and SEM analyses were performed in order to determine the particle 

size and structure of the composites. 
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RENK GİDERİCİ ÇİTOSAN KOMPOZİTLERİNİN HAZIRLANMASI VE 

ADSORPSİYON KİNETİĞİ ÇALIŞMALARI 

ÖZET 

Tekstil, kağıt, plastik gibi birçok endüstri oldukça fazla oranda su kullanmaktadır ve 

ayrıca ürünlerini renklendirmek için kimyasal ve boya kullanmaktadırlar. Sonuç 

olarak, oldukça fazla oranda atık su üretirler. Bu atık sular dünya çapında su 

kirlenmesinin önemli bir sebebini oluşturur ve işlem görmeden bertaraf edilirlerse 

verildikleri sulara çok büyük zarar verirler. Renk, atık suda fark edilen ilk 

kontaminanttır ve çok küçük miktarda boyanın varlığı bile oldukça görünür ve 

istenmez bir durumdur. En küçük hacimdeki sıvı atıklar bile yüzey sularının normal 

olmayan şekilde renklenmesine sebep olabilir, bu durum da suyun netliğini etkiler. 

Renkli atık suların çevreye salınımı genellikle istenmeyen bir durumdur, fakat bu 

sadece renklerinden dolayı değildir. Bunun sebebi birçok boya ve bozunma ürününün 

toksik veya mutajenik etkilere sebep olmasıdır. Bu atık sular bu sebeple insanlar için 

ve suda yaşayan organizmalar için de tehlike oluşturmaktadır. Boya içeren atık 

suların işlenmesi çok zordur; zira boyalar inatçı organik moleküller olup ışık, ısı ve 

oksitleyici ajanlar karşısında stabildir. Toksik atık suları su kirlenmesinin ana 

sebeplerinden biridir ve işlenmeden bertaraf edilirse atıldıkları sulara önemli zararlar 

verebilirler. Su kaynaklarının korunabilmesi için atık su konusundaki mevzuatlar 

giderek daha sıkı hale getirilmektedir. Giderek azalan bu su kaynaklarını 

koruyabilmek için mevcut durumun daha kötüye gitmemesi amaçlı olarak atık sular 

üzerine düzenleyici mevzuatlar atık su işlenmesinde daha fazla işlem 

gerektirmektedir. 

Tekstil atık sularındaki artık boyaların çok küçük miktarlarda bile çok fazla renk 

verebilmekte olması ve atık suyun içindeki güçlü tekstil boyaları yüzünden arıtma 

işlemi gördükten sonra bile rengini kaybetmemesi, bu konudaki yönetmelikler 

açısından zorluk oluşturmaktadır. Boyalar kalıcı ve ısrarcı moleküller oldukları için, 

boya içeren atık suların işlenmesi zor atıklar olduğu bilinir bir durumdur.  Bir diğer 

zorluk da düşük konsantrasyonda boya içeren atık suları arıtmaktır. Bu durumda, 

yaygın boya giderme yöntemleri ekonomik açıdan tercih edilmeyen veya teknik 

açıdan zor yöntemlerdir. Eser miktarda safsızlık gidermek için kullanılan yöntemler 

çok masraflı olduğu için, atık suda boya gidermek için kullanılan birçok yöntem 

tekstil endüstrisinde büyük çapta kullanılmamaktadır. Pratikte, tek bir yöntem yeterli 

arıtma sağlayamamakta ve en ekonomik yoldan istenen su kalitesine ulaşmak için 

farklı proseslerin kombinasyonu kullanılmaktadır. Bu sebeple, endüstriyel 

kullanımda kabul edilebilir ve etkili olan yeni renk giderme yöntemlerinin 

geliştirilmesi gerekmektedir. 

Düşük masraflı adsorbanlar kullanılarak yapılan adsorpsiyon çalışmaları bu konuda 

etkili ve ekonomik bir alternatif önermektedir, bu konuda birçok çalışma 

yapılmaktadır. Adsorpsiyon iyi bilinen bir ayırma işlemidir ve su dekontaminasyonu 

uygulamalarında etkili bir yöntemdir.Suyun yeniden kullanımında adsorpsiyon 
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masraf, tasarımın basitliği ve esnekliği, işlem kolaylığı, yüksek kapasiteye sahip 

olması ve toksik kontaminanlardan etkilenmeme açısından diğer tekniklerden daha 

iyi durumdadır. Adsorpsiyon ayrıca zararlı maddelerin oluşumuna da sebep 

olmamaktadır.  

Adsorbanlar öncelikle sıvıdan bileşenleri giderebilecek derecede geniş iç hacme 

sahip olmalıdır. Bu şekilde gözenekli katı yapılar karbonlu veya inorganik olabilir, 

bazı durumlardaysa gerçek moleküler eleme özelliklerine sahip olabilir. Adsorbanlar 

dayanıklı olabilmek ve adsorbatları hızlı şekilde aktarabilmek için iyi mekanik ve 

kinetik özelliklere de sahip olmalıdır. Adsorbanları kullandıktan sonra yeniden 

kazanabilmek ekonomik ve idealdir, bu durumda yeniden kazanımı etkili ve mekanik 

ve adsorban özelliklere hasar vermeden gerçekleştirebilmek esastır. Ekonomik 

açıdan ham maddeler ve absorpsiyon yöntemleri, adsorpsiyonunu diğer alternatif 

ayırma proseslerine göre ideal olması için düşük masraflı olmalıdır. 

Adsorbanlarla gerçekleştirilen çalışmalar henüz optimum duruma gelip, yani 

adsorban dozunu ve karşılaşılan sorunları en aza indirgemiş hale gelmemiştir. Fakat, 

bu konuda pratik ve yeniden kullanılabilir bir yöntem bulmak için aktif karbon gibi 

iyi bilinen adsorbanlar veya adsorban olarak kullanılabilir proses atıkları gibi birçok 

adsorban ile çalışmalar sürmektedir. Kullanılan adsorbanlar arasında özel bir ilgi 

doğal bir aminopolimer olan çitosana verilmektedir.  

Çitosan sulu çözeltilerden boyanın ayrılması amacıyla çalışmalarda kullanılmaktadır. 

Bu doğal polimer, rengin giderilmesi için onu etkili bir biosorban haline getirecek 

içsel özelliklere sahiptir. Biosorban olarak kullanımı iki önemli avantaja sahiptir: 

ticari diğer adsorbanlara göre daha ekonomiktir (dünyada selülozdan sonra ikinci en 

bol bulunan polimer olan çitinin deasetilasyonu ile oluşur) ve önemli bağlama 

özelliğine sahiptir (bu aminopolimerin ana uygulama alanlarından biri kirletici 

maddeleri, özellikle ağır metalleri bağlama özelliğidir).  

Çitosan çitinin deasetile bir türevi olup, temel olarak kabuklularda bulunan bir doğal 

polimerdir. Çitin ve çitosan arasındaki deasetilasyon düzeyini ayrıştırabilmek için 

genellikle %50 asetil içeriği bulunan polimerler çitosan olarak adlandırılır. Hem çitin 

hem çitosan kendilerine özgün yapıları nedeniyle yüksek derecede biyolojik ve 

mekanik özelliğe sahip olup, yenilenebilir ve biyofonksiyonel malzemelerdir. 

Çitosan gelişmiş çözünürlüğü ve ileri fonksiyonelliği sebebiyle bir çok uygulamada 

daha kullanışlıdır. Çitosan çitinden veya selülozdan kimyasal olarak daha çok yönlü 

olmakla beraber, biyobozunabilirliği, biyouyumluluğu, film oluşturma yetisi, 

polifonksiyonelliği, hidrofobisitesi ve adsorpsiyon özelliklerine sahiptir. Katyonik 

yapısı adsorpsiyon için umut vaat eden bir madde olmasını sağlar.  

Çitosan kabuklular, böcekler ve mantarların dış iskeletinden elde edilmekte olup, 

gıda sektörünün bir atığı olduğu için ekonomik açıdan idealdir. Geçerli olarak bir çok 

ülkede üretilmekte olup, kozmetik, tekstil, gıda, tarım, kimya, dişçilik, ilaç, 

biyoteknoloji ve tıbbi uygulamalar olmak üzere birçok sektörde kullanılmaktadır. 

Çitosan bazlı maddelerin kullanışlı adsorbanlar olarak adsorpsiyon biliminde 

gelişmekte olan bir alandır. Çitosan aktif çamur, poliüretan, bentonit, kaolin, selüloz, 

magnetit, kum ve daha birçok malzeme ile birlikte boya gidermekte kullanılmıştır. 

Literatürde çitosanı ağır metaller, boyalar, fenollar, anyonlar ve çevreyi kirleten 

maddelerin adsorpsiyonunda kullanan birçok çalışma bulunmaktadır, ekonomik bir 

adsorban olması bu çalışmaları desteklemektedir. 

Literatürde modifiye ve çitosan kullanılarak boya moleküllerinin adsorpsiyonu, su ve 

atık su detoksifikasyonu ve renk giderme üzerinde çalışmalar gerçekleştiren birçok 
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çalışma bulunmaktadır. Bu çalışmanın amacı çitosan türevleri kullanılarak tekstil 

boyalarının sudan adsorpsiyonudur. Bu çalışmada, çitosan-montmorillonit (Chi-

MMT) kompozitleri ve üre-formaldehit ve üre ile Chi-MMT kompozitleri 

oluşturulmuştur. Çitosan, çitosan ve montmorillonitin sulu karışımları manyetik 

karıştırıcıda karıştırılarak modifiye edilmiş, distile su ile yıkanmış ve kurutulup 

öğütülmüştür. Üre-formaldehit karışımı Chi-MMT sulu karışımı ile 80 ˚C’de 

karıştırılarak kompozitler oluşturulmuş, ve sonrasında bu karışım saat camlarına 

dökülerek kurutulmuştur. Boya çözeltileri (Reaktif Mavi 221, Reaktif Kırmızı 195 ve 

Reaktif Siyah 5) distile suda hazırlanmış ve yeterli miktarda öğütülmüş kompozit 

tozu veya kompozit filmler her boya çözeltisine farklı koşulların adsorpsiyon 

üzerindeki etkisini belirlemek amaçlı olarak farklı deneyler için eklenmiştir. Farklı 

sıcaklık değerleri, farklı pH değerleri, farklı adsorban miktarları, farklı çapraz bağlı 

madde içerikleri içeren adsorbanlar gibi farklı koşullarda adsorpsiyon deneyleri 

gerçekleştirilmiş ve bunlar en iyi sonuç için karşılaştırılmıştır. Adsorpsiyondan sonra 

renk değişiminin değerlendirilmesi için UV analizi gerçekleştirilmiş ve UV 

analizlerinden alınan sonuçlar ile kompozitlerin adsorpsiyon kapasiteleri 

hesaplanmıştır. Adsorpsiyon kinetiği üzerine çalışmalar gerçekleştirilerek 

adsorpsiyon hızı ve her deneyde kullanılan kompozitlerin maksimum adsorpsiyon 

kapasitesi belirlenmiştir. Sentezlenen çitosan türevleri üzerinde FT-IR analizi 

gerçekleştirilerek karakterizasyonu gerçekleştirilmiştir. Ayrıca, partikül boyutu ve 

yapısını inceleyebilmek için kompozitler SEM ile karakterize edilmiştir.  
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1.  INTRODUCTION 

Biocomposites are a new class of hybrid materials composed of fillers incorporated 

into a bio-based matrix. Such an association between eco-friendly biopolymers and 

other materials, with the aim to obtain synergic effects, is one of the most innovating 

routes to enhance the properties of these bio-matrices. Depending on the geometry 

and the nature of the filler, new and improved propertiescan be obtained [1]. 

It is now recognized that adsorption using low-cost adsorbents is an effective and 

economic method for water decontamination. Low-cost adsorbents with high 

adsorption capacities are still under development to reduce the adsorbent dose and 

minimize disposal problems. Special attention has been given to polysaccharides 

such as chitosan, a natural aminopolymer. It is clear from the literature that the 

biosorption of dyes using chitosan is one of the more frequently reported emerging 

methods for the removal of pollutants. This natural polymer possesses several 

intrinsic characteristics that make it an effective biosorbent for the removal of color 

[2]. 

Chitosan is the partially N-deacetylated derivative of chitin, a natural polymer 

present mainly in shells of crustaceans. There are no standard discretion for the 

degree of N–deacetylation between chitin and chitosan; however, commonly 

polymers with more than 25% of acetyl content are named as chitosan.  Chitosan is 

chemically more versatile than chitin or cellulose due to its biodegradability, 

biocompatibility, film-forming ability, bioadhesivity, polyfunctionality, 

hydrophobicity and adsorption properties. Its cationic nature allows it to be a 

promising material for adsorption purposes. 

Chitosan is produced from the exoskeleton of crustaceans, insects and certain fungi, 

and it is economically feasible since it is a food industry waste from shellfish. 

Currently it is produced commercially in Japan, India, Australia, Poland, Norway and 

USA, along with many more smaller production plants among many other countries. 

Chitosan is used in many industries such as cosmetics, textile food, agriculture, 
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chemistry, dentistry, pharmaceutics, biotechnological and medical applications. The 

development of chitosan-based materials as useful adsorbents is an ever-expanding 

field in the area of adsorption science. Chitosan has been used in removal of dyes in 

combination with activated clay, polyurethane, bentonite, kaolin, cellulose, 

magnetite, sand, and many more materials of different varieties. There are many 

studies in literature using chitosan successfully in the adsorption of heavy metals, 

dyes, phenols, anions and pollutants since it is a low-cost adsorbent like activated 

carbon, kaolin, fired clay and montmorillonite [3]. 

Color removal from wastewaters is an important environmental aspect in textile 

industry. Color is easily recognized in wastewater as a contaminant and very small 

amount of dyes can give very visible, undesirable coloring in water.  

Dyed wastewater is one of the most difficult industrial wastewaters to treat.  

Treatment difficulties are based on stability of recalcitrant dyes and their ability to 

bestow good coloring in very low concentrations. That being said, we can expect 

effective methods for dye removal to be overly complicated and that explains why 

they are assumed as unfavorable. Adsorption process provides an attractive 

alternative treatment especially if the adsorbent is selective and effective in various 

types of colorants, such as anionic, cationic and non-ionic dyes. At present, there is 

no single adsorbent capable of satisfying all of the necessary requirements. 

Composites of clay and natural polymers can give environmentally-friendly and 

economically-feasible adsorbents. 

In this study, we aim to provide an analytical look into the differences of adsorbent 

effects of pure chitosan and its composites with montmorillonite clay and urea and 

formaldehyde, and after the assessment of these results, provide an opinion about 

what would be the most useful method in industry. 
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2.  THEORETICAL PART 

2.1 Chitin and Chitosan 

Chitin and chitosan polymers are defined as natural aminopolysaccharides having 

unique structures, multidimensional properties, and highly sophisticated functions 

[4]. Both chitin and chitosan copolymers consist of N-acetylglucosamine and 

glucosamine. A copolymer is defined as chitin when it contains less than 7% 

nitrogen and it is defined as chitosan upon nitrogen content more than 7%. Both 

copolymers are found in nature, however, chitosan is generally defined as the 

deacetylated version of chitin. Chitin and its derivative chitosan both have 

similarities to cellulose [5]. They serve as an alternative to cellulose in terrestrial 

plants, and they serve as an alternative to collagen in animals [6].  
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O

OH

HO
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Figure 2.1 : Structure of glucosamine and glucose [4]. 

They are assumed to be an interesting option, among everything else, especially for 

the solution of problems of environmental toxicity. They possess high biological and 

mechanical properties due to their unique structures, as they are biorenewable, 

biodegradable, and biofunctional [7]. They have excellent adhesion characteristics, 

biocompatibility, and have versatile biological activities like antimicrobial activity 

and low immunogenicity, and low toxicity. These polymers are amino 

polysaccharides having the rare amide/amino functionality and hydroxyl groups that 

can undergo chemical modifications to give a variety of materials in a number of 

applications in healthcare, biotechnology, water treatment, cosmetics, food, 

agrochemicals, pulp and paper, textile finishes, photography, product separation and 

recovery, membranes and other miscellaneous applications [5]. 
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2.2 Chitin 

2.2.1 History of chitin 

Use of chitin is known in ancient times in India, China and Korea. It was used 

mainly to alleviate spasms and convulsions. Ancient practices of folk medicine 

shows that some of the healing properties of chitosan were recognized by Indian and 

Korean ancestors, however they could isolate the ingredient or produce it repeatedly. 

They used it in powdered shell form or they boiled the shells to degrade the protein 

content. In modern times, first discovery of chitin was in a botanical garden in 

Nancy, France, by Henri Braconnot who noticed there was a material in the cell wall 

of mushrooms that did not dissolve in sulfuric acid. It was named as fungine at that 

time by himself, two years later in 1823 it was named as chitin, meaning tunic-

envelop in Greek, by Odier. That was 30 years before the isolation of cellulose. In 

the year 1859, a French scientist C. Roget isolated chitosan from chitin, noting that 

insoluble chitin became soluble in acids when boiled in concentrated potassium 

hydroxide solution. In 1894, Hoppe-Seyler studied modified chitin and named it 

chitosan [4]. 

2.2.2 Place of chitin in nature 

Chitin is a natural polysaccharide shown as poly (β-(1→4)-N-acetyl-D-

glucosamine).Chitin is abundant in nature and synthesized by an enormous number 

of living organisms. While chitin can be found abundantly in nature, up to this day 

chitin is mainly produced from crab and shrimp shells commercially. It occurs in 

nature as in ordered crystalline state, being structural components in the exoskeleton 

of arthropods or in the cell walls of fungi and yeast, and it is present in a certain 

number of other viable organisms in the lower plant and animal populations, 

supplying mainly reinforcement and strength for the organisms containing it [8]. 

Shellfish chitin is an exoskeletal component in a complex network containing 

proteins and minerals (CaCO3) while the main components in the complex network 

of fungal chitin are other polysaccharides such as α and β-glucan, mannan and 

cellulose. Shellfish chitin is more crystalline and chemically more stable while 

fungal chitin is softer and less crystalline. Shellfish chitin is more acetylated 

compared to fungal chitin that has a lower degree of acetylation. Therefore, these 

differences have impact on the extraction processes utilized to produce chitin [9]. 
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Figure 2.2 : Different steps involved in chitin production [9]. 

It has been estimated that the crustacean chitin present in the sea amounts to 1560 

million tons. Chitin acts as a structural component and provides strength and 

protection to the organisms in the shell and cuticle. Chitin acts as a constituent to 

form a complex network of proteins and calcium carbonate deposits forming the 

rigid shell in crustaceans. The interaction between chitin and protein is constituted by 

covalent bonding, and basically is a polysaccharide-protein complex. Chitin is found 

in algae, protozoa and in the cell wall of several fungi in the plant kingdom. Chitin is 

present in fungi in contents varying from 0.45% in yeasts, and up to 10-40% in 

filamentous fungi species with high proteolytic activity [9]. Chitosan is not native to 

animal sources and is normally obtained by deacetylating chitin. In addition, some 

number of fungal strains produce chitosan instead of chitin [10]. 

2.2.3 Commercial aspects of chitin 

Taking into account the annual production amount of chitin, it can be said that it is 

the most abundant biopolymer after cellulose. A great structural similarity exists 

between chitin and cellulose. The difference between them is in that the hydroxyl 

group of carbon C2 in cellulose is substituted by an acetamide group in chitin [11]. 
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Figure 2.3 : Exoskeleton of crustacea, the source of commercial chitin[12]. 

Commercial chitin is extracted from crustacean wastes of the fishing industry, the 

main chitin sources being the shells of shrimp, crab, lobster, prawn and krill. These 

crustacean wastes consist of chitin (20–30 per cent), protein (30–40 per cent), 

inorganic salts (mainly calcium carbonate and phosphate) (30–50 per cent) and lipids 

(0–14 per cent). These percentages vary considerably with the species and the season 

[9]. There are some deacetylation and chain scission steps in its processing. The 

process used, the source of the raw chitinous material, and its treatment before 

processing determines the properties of the chitin obtained [6]. In industrial 

processing, chitin is extracted from crustaceans by acid treatment and alkaline 

extraction in order to dissolve calcium carbonate and solubilize proteins, 

respectively. In general, a color removal step is often added to remove leftover 

pigments and attain a colorless product. After being subjected to these processes, 

chitin is graded in terms of purity and color, since residual protein and pigment can 

cause problems especially for biomedical products [8]. There are certain basic 

necessities in the production of a biomaterial, these are in brief high purity and batch 

consistency. Only when these conditions are supplied, the product can be called a 

biomedical grade material. These are particularly important in the production of 

chitin as its biological origin corresponds to a wider variation in its raw materials, 

they can be summarized as properties differing in the shells like sex, age and habitat 

of the animal such as calcium and protein content. Also chitin can be obtained from 

several marine and plant sources. Different sources differ in extraction and isolation 

methods and these all lead to a different product depend on all of these 

considerations [9]. 
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2.2.4 Processing of chitin 

The isolation of chitin starts with selection of shells. Quality of the final product is 

determined by this selection, that is important especially for crabs and lobsters. 

Ideally, shells that have the same size and species are chosen. Shells are then cleaned 

and dried, afterwards thorough crushing is performed as the next step. The crushed 

shell pieces are treated with dilute hydrochloric acid in order to remove calcium 

carbonate. Proteins and organic impurities are removed by an alkali treatment [9]. 

Protein extraction is usually performed with a mild alkaline solution, at 60-70 C for a 

few hours, and then the extracted proteins are removed. These proteins can be put to 

use, if wanted, such in animal feeds [5]. In deproteinization, covalent chemical bonds 

have to be destroyed between the chitin-protein complex. Removing the protein 

content is important especially for some applications since some people are allergic 

to shellfish, more precisely towards its protein components. Pigments, primarily 

carotenoids are removed by extraction with ethanol or acetone after the 

demineralization process. Demineralization is performed by the decomposition of 

calcium carbonate into the water-soluble calcium salts. Most commonly used reagent 

is dilute hydrochloric acid (HCI) that produces water-soluble calcium chloride 

(CaCI2). Demineralization is straightforward process, however, for deproteinization 

this cannot be said [9]. 
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Figure 2.4 : Steps involved in chitin/chitosan preparation [11]. 

2.3 Chitosan 

By partial deacetylation of chitin under alkaline conditions, chitosan, the most 

important chitin derivative used in a variety of applications, is obtained. 

When the degree of deacetylation of chitin reaches above 50% (depending on the 

origin of the polymer), it becomes soluble in aqueous acidic media and is called 

chitosan. The solubilization occurs by protonation of the –NH2 function on the C-2 

position of the D-glucosamine repeat unit, whereby the polysaccharide is converted 

to a polyelectrolyte in acidic media [8]. 
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Figure 2.5 : Chemical structure of chitin and chitosan [11]. 

2.3.1 Structure of chitosan 

Despite its easy availability, chitin still remains an under utilized resource primarily 

because of its intractable molecular structure. However, chitosan as a derivative of 

chitin is better placed for a variety of applications due to its improved solubility and 

enhanced functionality [5]. 

Chitosan is a linear polysaccharide obtained by extensive deacetylation of chitin. It is 

obtained commercially from shrimp and crabshell chitin [13]. It is mainly composed 

of two kinds of β(1 →4) linked structural units which are 2-amino-2-deoxy- D -

glucose and N-acetyl-2-amino-2-deoxy- D –glucose. 

Chitosan, due to the presence of amino groups at the C2 position, and primary and 

secondary hydroxyl groups at the C3 and C6 positions, has many applications in 

various fields. Chitosan, being its simplest and least expensive derivative, is obtained 

from chitin. Along the chitosan polymer chain, the presence of positively charged 

amino groups enables it to bind with negatively charged surfaces via ionic or 

hydrogen bonding unlike most polysaccharides [7]. 

2.3.2 Degree of N–deacetylation 

Chitosan is the partially N-deacetylated derivative of chitin, it is a natural polymer 

present mainly in shells of crustaceans. There is no standard discretion for the degree 

of N–deacetylation between chitin and chitosan since it is virtually impossible to 

completely deacetylate chitin. Commonly, polymers with more than 25% of acetyl 

content are named as chitosan. 
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The process of deacetylation involves the removal of acetyl groups from the 

molecular chain of chitin, leaving behind a compound (chitosan) with high degree of 

chemically reactive amino groups [5]. Chitin deacetylation is based on the hydrolysis 

of the acetamide groups at high temperature and strongly alkaline conditions. These 

conditions are supplied by using concentrated (40–50 per cent) NaOH or KOH 

solutions at temperatures above 100°C, the reaction is performed heterogeneously 

preferably in an inert atmosphere or in the presence of reducing agents to avoid 

depolymerization, such as NaBH4 or thiophenol [11]. Chitin flakes are treated in 

suspension at 80-120 ˚C with constant stirring for 4-6 hours and this process is 

repeated for obtaining a high amino-content product [5]. Other factors that have an 

effect on conducting the reaction are the starting material, the previous treatment and 

the desired degree of acetylation.  That being said, if the deacetylation process is 

performed with the help of only one alkaline treatment, maximum deacetylation 

degree attained will be 75–85 per cent. Nevertheless, several treatments have been 

developed in order to prepare fully deacetylated chitosan [11]. Deacetylation of 

chitin can also be done enzymatically. Here powdered chitin is treated with N-

deacetylase or with microbes that secrete N-deacetylase. The enymatic method gives 

chitosan with low degree of deacetylation and polymerization [5]. 

Chitin is a semi-crystalline polymer, resembling cellulose in that manner. Conditions 

of deacetylation process affects the product of the process, such that when it is 

performed in heterogeneous conditions, mainly the amorphous regions are converted, 

while the process is performed under homogeneous conditions, the resulting polymer 

bring about a more uniform modification. Homogenous reaction is carried out using 

alkali chitin, which is obtained by conducting successive freezing–thawing cycles of 

an alkaline aqueous chitin suspension until it dissolves. Moreover, homogeneous 

deacetylation can be performed under more moderate alkali concentrations (about 13 

wt%), and at 25–40°C. The products of the heterogenous process are polydispersed 

in terms of the acetylation degree of their chains, while products of the homogeneous 

conditions do not exhibit chain compositional dispersion. 
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2.3.3 Structural advantages of chitosan 

Chitosan is chemically more versatile than chitin or cellulose due to its 

biodegradability, biocompatibility, film-forming ability, bioadhesivity, 

polyfunctionality, hydrophobicity and adsorption properties. 

Its cationic nature allows it to be a promising material for adsorption purposes. The 

unique structural advantage of chitosan is the presence of the primary amine in the 

C-2 position of the glucosamine. Few biological polymers have such a high content 

of primary amines, and these primary amines bring important functional properties to 

chitosan that can be exploited for chemical modification. Apart from the amino 

group, chitosan possesses a primary and secondary hydroxyl group good chemical 

modification so that its properties can be altered to incorporate improved physical, 

mechanical, solution and biological properties. Therefore it can be said that the 

presence of acetamodo and amine groups in chitin and chitosan influences their 

properties and make them different from cellulose. With regard to its improved 

functionality, modification of chitosan is more preferred than chitin. The properties 

of chitosan depend on the degree of N-acetylation and distribution of N-acetyl 

groups. Chitosan is a high molecular weight polysaccharide similar in structure to 

cellulose, differing in hydroxyl group in 2- position is replaced by the amino group 

[5]. 

Chitosan is positively charged due to the acidic environment and therefore it can 

interact with electrostatic forces. For its antimicrobial effect, its interaction with the 

anionic groups at the cell surface due to its cationic nature, is caused by the 

formation of an impermeable layer around the cell, which prevent the transport of 

essential solutes. The second mechanism involves the inhibition of the RNA and 

protein synthesis by permeation into the cell nucleus. Also, it is suggested its wound-

healing properties are caused by its ability to stimulate fibroblast production by 

affecting the fibroblast growth factor. As a result of its cationic character, chitosan is 

able to react with polyanions giving rise to polyelectrolyte complexes [5]. 

2.3.4 Adsorption studies with chitosan 

Besides being natural and plentiful, chitosan possesses interesting characteristics that 

also make it an effective biosorbent for the removal of color with outstanding 

adsorption capacities. Compared with conventional commercial adsorbents such as 
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commercial activated carbons (CAC) for removing dyes from solution, adsorption 

using chitosan-based materials as biosorbents offers several advantages [14].The 

effectiveness of chitin and chitosan to adsorb dye molecules has been reported by 

numerous workers from as early as 1958 [15]. 

Polymer/montmorillonite composites have improved properties such as excellent 

mechanical properties, thermal stability, gas barrier, and flame retardation in 

comparison to conventional composites [16]. Wang and colleagues found in their 

studies that molar ratio of chitosan to montmorillonite could influence the chemical 

environment of the composites and hence the adsorption properties. Increment in the 

molar ratio of chitosan to montmorillonite increases the adsorption capacity of 

Congo Red until the molar ratio exceeds 1:1 after which the adsorption remains 

almost constant. It may be caused by the montmorillonite being saturated by the 

amount of intercalated chitosan [17]. X-ray diffraction (XRD) analysis showed that 

chitosan intercalated into montmorillonite interlayer led to the destruction of 

montmorillonite crystalline structure. Wang and Wang [18] suggested two 

mechanisms of adsorption — electrostatic interaction and chemisorption. 

Won et al. [19] used polyurethane to form chitosan composites in adsorbing Acid 

Violet 48.The preparation of chitosan/polyurethane composites is different fromother 

methods, as chitosan does not undergo dissolution using acetic acid. According to the 

study of Lyoo et al. [20], at 0.25 wt% of glutaraldehyde concentration, chitosan was 

found to be most efficient in immobilizing into the polyurethane matrix foam. The 

scanning electron microscope (SEM) image revealed the composites to have open 

structures which had been proven in previous literatures [21]. The open structures of 

the composites enhance the accessibility of acid dyes into the chitosan adsorbent 

which had been immobilized in the composite foams [20]. 

Chang and Juang [22] studied the chitosan/activated clay composites. Based on 

specific gravity values, they concluded that the addition of activated clay could 

enhance the ability of chitosan to agglomerate and improve the hardness of the beads 

based on the Stokes Laws. In the adsorption studies of methylene blue and reactive 

dye (RR22), the chitosan composites had a comparable adsorption in comparison to 

chitosan beads. 
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Wan Ngah, Ariff, and Hanafiah [23], prepared crosslinked chitosan/bentonite 

composites to adsorb tartrazine, a dye which contains azo group that is harmful to 

living things, found that the experimental data correlated well with the pseudo-

second order model and an adsorption capacity of 435.0 mg/g of Malachite Green 

was achieved. 

Similarly, Hameed et al. [24] prepared crosslinked chitosan/oil palmcomposite beads 

to remove Reactive Blue 19. 

Zhu et al. [25] prepared a new chitosan bead which was blended with maghemite (γ-

Fe2O3) and kaolin. From the SEM and tunneling electron microscope (TEM) 

images, it was found that there were many pores and pleats on the surface of the 

composites which provided active sites for dye entrapment. The composites 

exhibited good adsorption ability as it could adsorb up to 70% methyl orange at pH 

6. 

Alumina is suitable to use as an adsorbent due to the amphoteric character of hydrous 

aluminum hydroxides. A number of works have been carried out on the application 

of chitosan/ceramic alumina composites as an adsorbent to remove anionic and 

cationic heavy metals such as As(III) [26], As(V) [26], Cr(VI) [27], Cu(II) [28] and 

Ni(II) [28]. 

Chitosan/perlite composites have been applied as an adsorbent to remove heavy 

metals such as cadmium [29], chromium [30], copper [31; 32] and nickel [31]. 

Sand can be modified to adsorb heavy metals and dyes in wastewater.Wan, Kan, Lin, 

Buenda, and Wu [33] have reported on the application of chitosan immobilized on 

sand in the adsorption of Cu(II). 

Chitosan/sand composites have shown better adsorption capacity than any of its 

component used alone. This is due to the three dimensional structure of the adsorbent 

used. Amine groups in chitosan provide active sites for the formation of complexes 

with metallic ions, which are stabilized by coordination [2]. 

In addition, PVA has been used to immobilize chitosan to form chitosan/PVA 

composites [34,35]. This type of composite has been used to remove Cu(II) [35] and 

Cd(II) [34] from wastewater. Desorption studies were carried out with more than 

60% recovery, suggesting that the adsorbent was recyclable [34,35]. 
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Another biosorbent was developed by coating chitosan onto PVC beads [36]. The 

composite beads were used to adsorb copper and nickel ions from aqueous solution. 

In contrast, Yang and Chen [37] found that chitosan/bentonite composites were a 

good adsorbent for removing mercury ions from wastewater. 

All of these studies suggest that chitosan is a suitable material for adsorption and a 

versatile raw material for water treatment purposes. 

2.4 Clays 

Clays are fine-grained natural materials present in soil or rocks [38]. They are also 

described as an aggregate of minerals and colloidal substances [39]. Generally they 

are hydrous aluminosilicate minerals that dominantly make up the colloid fraction 

(<2µ) of soil, rocks and water [40]. 

Multiple layers ofhydroxylated and coordinated tetrahedral and octahedralsheets 

generally constitutesclay minerals [38]. Their uniquechemical and physical 

properties are originated by the layered structure[41]. 

Clay minerals have good ion exchange capacity. They are an important constituent of 

soil and take up various contaminants from water, from both sources flowing over 

soil or penetrating underground. They have this effect by ion exchange and 

adsorption mechanisms. Chemical composition, nature of the surface atoms, the type 

and extent of defect sites, layer charge and the type of exchangeable cations are the 

factors effective on the surface activity of clays [42]. Parameters like pH, ionic 

strength, pressure and temperature of the surrounding environment affect the 

environmental effect of clays [43]. Also characteristics of clays like large surface 

area, cation exchange capacity (CEC), chemical and mechanical stability, layered 

structure determine the usefulness of the clays on this issue [44].It is observed that 

when the uptake of pollutants by the clays does not exceed the CEC, the mechanism 

of adsorption is dominated by ion exchange, but if the uptake is more than the CEC, 

the ions may be held through hydrophobic bonding. [45]. 

The edges and the faces of the clays are generally effective in taking up different 

types of species (cations, anions and polar organic contaminants) from water. The 

strength of such interactions is determined by the particular structural and related 

features of the clay. Accumulation of adsorbed pollutants on clay surface is likely to 
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face certain steric constraints as they enter into the interlayer space. Clay-adsorbate 

interactions may proceed via van der Waals type weak bonding, hydrophobic effects 

and even H-bonding, all of which are likely to play important roles in holding the 

pollutants to the clay surface. Crystal imperfections in the clay minerals may also 

affect adsorption and reaction processes on the clay surface [46]. 

Clay-based  composites  and  biocomposites  have become  materials  of  increasing  

interest  due  to  their  nanosized  structural  and  functional  properties.  Organic–

inorganic  nanohybrid  materials  possessing the  properties of both  types  of  

compounds are commonly developed by combining the  nanometric  scale  of  the  

expansive  surface  areas  and reactive  surfaces  of  clays  with  the  functional  

behavior  of  organic polymers  as  an  attractive  way. 

2.4.1 Montmorillonite 

Sodium montmorillonite (MMT) is a naturally occurring 2:1 phyllosilicate, capable 

of forming stable suspensions in water [47]. Origin of the name of montmorillonite 

(MMT) is the French  town  Montmorillon,  in this town it was  discovered  by  

Damour  and  Salvetat  in  1847. MMT is derived from the process of weathering of 

eruptive rock material (generally tuffs and volcanic ash) [48]. MMT  contains  trace  

amounts  of  crystobalite,  zeolites,  biotite,  quartz, feldspar, zirconia in its  pure  

form [49]. MMT is composed of a crystalline   structure of a  pyrophyllite  model.  

Structure of pyrophyllite  model  is composed of two silica tetrahedral sheets 

sandwiching an edge-shared octahedral sheet of either  aluminum  or  magnesium  

hydroxide,  known  as  t-o-t  sheets [48].  Stacking of the layers leads to a regular van 

der Waals gap between the layers called the interlayer or gallery. Isomorphic 

substitution within the layers generates charge deficiency (i.e. Fe2+ or Mg2+ replacing 

Al3+ in montmorillonite and Li+ replacing Mg2+ in hectorite). The deficit charges are 

compensated by cations (usually Na+ or K+) sorbed between the three-layer clay 

mineral sandwiches. These are held relatively loosely and give rise to the significant 

cation-exchange properties [50]. 
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Figure 2.6 : Structure of montmorillonite clay. 

Montmorillonite is one of the layered clay minerals, and it is well known that it is 

composed of 1 nm-thick silicate layers. Organic ammonium ions and neutral organic 

molecules are intercalated in the interlayer space between the silicate layers [51]. 

Some of the most commonly used smectite-type layered silicates for composite 

preparation are hectorite and montmorillonite. Smectites have high cation exchange 

capacities, surface area, surface reactivity, adsorptive properties, and therefore they 

are a valuable mineral class for industrial applications [52].Smectite clays, such as 

the common mineral montmorillonite, are characterized by substitution of lower-

valency metal cations (Mg2+ for Al3+ or Al3+ for Si4+) within the sheets to create a net 

negative charge that is compensated by interlayer cations that are typically solvated 

by water molecules [41]. 

MMT  is capable of  absorbing  certain  cations  and  maintain  them  in 

exchangeable state thus facilitating the exchange of intercalated cations by other 

cations in a  water  solution.  The most  common  exchangeable  cations are Na+ and  

Ca2+  cations.  Sodium  MMT  (Na+-MMT)  and  calcium  MMT  (Ca2+-MMT) are 

the two main classes of montmorillonites [48]. 

The most commonly used layered silicate is montmorillonite. MMT owes this 

attention to its ability to show extensive interlayer expansion or swelling which, in 

turn, is related to its peculiar structure. The efficiency of the MMT in improving the 
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properties of the polymeric materials is primarily determined by the degree of its 

dispersion in the polymer matrix [50]. 

2.5 Urea-Formaldehyde 

Urea-formaldehyde (UF) resins are based on the manifold reaction of two monomers, 

urea and formaldehyde. By using different conditions of reaction and preparation 

more or less innumerable variety of condensed structures is possible. UF resins are 

the most important type of the so-called aminoplastic resins [53]. 

Urea–formaldehyde (UF) resins are polymeric condensation products of the chemical 

reaction of formaldehyde with urea, mainly being adhesives extensively used for the 

production of wood-based composite panels [54]. UF resins are thermosetting 

duromers and consist of linear or branched oligomeric and polymeric molecules, 

which also always contain some amount of monomer. Non-reacted urea is often 

beneficial to achieve special effects, e.g. better stability during storage. However, the 

presence of free formaldehyde is ambivalent. On the one hand, it is necessary to 

induce the hardening reaction. On the other, it causes formaldehyde emission during 

the press cycle as well as subsequent, displeasing, formaldehyde emission from the 

pressed boards, a fact that has led to a total change in the formulation of UF resins. 

After hardening, UF resins form an insoluble, threedimensional network and cannot 

be melted or thermoformed again. In their stage of application UF resins are still 

soluble or dispersed in water or in the form of spray dried-powders, which, in most 

cases however, are redissolved in water for application. The main differences 

between UF resins with high and with low contents of formaldehyde are their 

reactivity as a consequence of the different free formaldehyde content and their 

degree of crosslinking in the cured network. The degree of crosslinking is directly 

correlated to the molar ratio of the two components. Taking into consideration that 

an ideal linear UF chain has a molar ratio of 1.0, assuming that there are no ether 

bridges, no unreacted branch-site methylol groups and no other free formaldehyde, 

then the small molar excess of formaldehyde above molar equality is what yields the 

final crosslinking. In practice this calculation is not really exact, because there are 

always ether bridges and some unreacted methylol groups in the resin, even after 

hardening [53]. 
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It can be said that UF resins are major raw materials of wood panel industry and they 

are seen as one of the most important types of adhesive in the wood-based panel 

industry [54]. Urea is rather inexpensive compared with melamine and phenol. 

Formaldehyde also is relatively inexpensive, and thus, together, they give a resin of 

low cost but nevertheless high performance. All aminoplastic glue resins usually give 

clear and unvisible gluelines after hardening, contrary to phenolic or polyphenolic 

gluelines [53]. UF resins have advantagessuch as fast curing, good performance in 

the panel,water solubility, and lower pricecompared tophenol–formaldehyde (PF) 

resins and diphenylmethanediisocyanate. Concordingly, disadvantages are lower 

water resistance that is limiting the use of wood-based panels bonded with UF resin 

to interior applications and formaldehyde emission (FE) from the panels [55]. The 

reversibility of the aminomethylene link is also the cause of low resistance UF resins 

possess againstthe influence of water and moisture, especially at highertemperatures. 

This is also one of the reasons for their subsequent formaldehyde emission, when 

hardenedand in service [53]. FE release from wood-based panels is caused by free 

formaldehyde present in UF resin and hydrolytic degradation of UF resin under 

moisture conditions [55]. Additionally, the reversibility of the aminomethylene link 

and its susceptibility to hydrolysis also are also reasons for lower resistance against 

water and moisture and subsequently FE [53]. It has been the main challenge for UF 

chemists over the last 20 years to reduce the content of formaldehyde in UF resins, 

and this without any major changes in the performance of the resins. In theory this is 

not possible, because formaldehyde is one of the two main reactive partners in the 

reaction with urea during the condensation reaction and during curing. Decreasing 

the F/U molar ratio means lowering the degree of branching and crosslinking in the 

hardened network, which unavoidably leads to a lower cohesive bonding strength 

[53]. However, chemists managed to work around this issue, lowering F/U molar 

ratio of UF resin from approximately 1.6 to a lower range, and keeping the same 

board performance requirements asgiven in the relevant quality standards [56]. 

2.6 Wastewaters in Textile Industry 

Textile industry uses a substantial amount of dyes for colorization and also consumes 

large volumes of water in the process. As a result of this process, a great amount of 

colored wastewater is created. Color is the first contaminant to be recognized in 
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wastewater. The presence of very small amounts of dyes in water (less than 1 ppm 

for some dyes) is highly visible and undesirable [57]. Even  minor  releases  of  

effluents  may cause  abnormal  coloration  of  surface waters, affecting the clarity  

of  the  water [58]. In particular, the release of coloured effluents into the 

environment is undesirable, not only because of their color, but also because many 

dyes from wastewater and their breakdown products are toxic and/or mutagenic to 

life [59]. These wastewaters are also dangerous for humans, as some of the dyes are 

reported to cause allergy, dermatitis, skin irritation bodies is essential [14]. Many of 

these dyes are also toxic and even carcinogenic and this poses a serious hazard to 

aquatic living organisms. However, wastewater containing dyes is very difficult to 

treat, since the dyes are recalcitrant organic molecules, resistant to aerobic digestion, 

and are stable to light, heat and oxidizing agents [57]. Their toxic effluents are a 

major source of aquatic pollution and will cause considerable damage to the 

receiving waters if discharged untreated. Thus, the removal of dyes from effluents 

before they are mixed up with unpolluted natural water wastewater is chemically 

very complex in nature [60]. There  are  several  ways  in  which  colorants  cause  

problems  in  waters, some of which are; acute  and/or  chronic  effects  on  exposed  

organisms, or affecting the growth of bacteria that biologically  degrade  impurities  

in  the  water [58]. 

Today, pollution of aquatic habitats is a universal phenomenon, due to the discharge 

of mostly untreated or partially treated municipal and industrial wastewaters into 

them [60].Legislation  about  toxic  substances  in  industrial  wastewaters  is  

becoming increasingly  strict;  consequently,  a  large  number  of  researchers  are  

addressing  the  variety  of  issues  in  this  area [58]. 

2.7 Dyes 

2.7.1 Structure of dyes 

Organic molecules that contain unsaturated double bonds are capable of absorbing 

light within a given wavelength range (usually in the ultraviolet). If these double 

bonds are conjugated and alternate within the molecule, they are able to mutually 

interact with one another as a cloud of n electrons. If sufficient conjugation exists, 

the molecule will partially absorb light in the lower energy visible wavelength range 

and will be considered a dye or a pigment. In general, dyes are colored molecules 
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soluble or dispersible in water or solvent media, which can penetrate the fiber on 

coloration. The unsaturated groups, which can be conjugated to make the molecule 

colored, are referred to as chromophores. Groups that enhance or alter the color 

within a conjugated system through alteration of the electron density are referred to 

as auxochromes [61]. A series of typical chromophores and auxochromes can be seen 

in Fig. 2.8. 

 

Figure 2.7 : Structure of typical chromophores and auxochromes. 

Dyes are classified according to their application and chemical structure. 

Chromophores are azo (–N=N–), carbonyl (–C=O), methine (–CH=), nitro (–NO2) 

and quinoid groups [59]. The chromophore and auxochrome are part of the 

chromogen, which is defined as suitable substituents that is attached to color a 

compound [62]. The most important auxochromes are amine (–NH3), carboxyl (–

COOH), sulfonate (–SO3H) and hydroxyl (–OH). It is worth to mention that the 

sulfonate groups confer very high aqueous solubility to the dyes. The auxochromes 

can belong to the classes of reactive, acid, direct, basic, mordant, disperse, pigment, 

vat, anionic and ingrain, sulphur, solvent and disperse dye. While azo dyes constitute 

a mixture of red, yellow and blue dyes, anthraquinone dyes have a wide range of 

colors in almost the whole visible spectrum, but they are most commonly used for 

violet, blue and green colors [59]. 

2.7.2 Types of dyes 

Disperse, azoic and sulfur dyes belong to the class of nonionic dyes; acid, reactive, 

and direct dyes belong to the class of anionic dyes; and basic dyes belong to the class 

of cationic dyes [63]. 
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2.7.2.1 Anionic dyes 

2.7.2.1.1 Direct dyes 

Direct as are named as such due to the directness and simplicity of their application. 

Direct dyes are relatively large and linear molecules. Thanks to their sodium 

sulfonate substituents, (-SO3Na ) they are soluble in water. These groups dissociate 

in water to give colored sulfonate anions and the corresponding number of sodium 

cations. Direct dyes generally can be described by the general formula: dye-(SO3
-

)n•nNa+, where n is  1-5.Direct dyes have relatively poor resistance towards washing, 

moderate resistance towards fading in exposure to light, and they give good color, 

however they are not characterized due to their brightness. They are moderate in cost 

and easy to apply [64]. 

2.7.2.1.2 Acid dyes 

Acid dyes are large molecules containing one or more sulfonic or carboxylic acid salt 

functional groups [61]. Synthetic  acid dyes can be denoted with the same formula as 

direct dyes, which is dye-(SO3-)n•nNa+. These molecules are smaller than direct 

dyes, and the number of sulfonate groups is lower. “n” value can be between 1-4, 

often 1 [64]. 

These dyes are applied onto fibers with an acid solution, and with the help of positive 

charges developed within the material to be dyed, acid solutions act as a driving 

force for dye diffusion and migration into the fiber. Because of that, only fibers 

which develop a positive charge in the presence of acid can be dyed by acid dyes, 

these are wool, nylon, and certain modified synthetics. Acid dyes are resistant to 

light and laundering, however, these properties can be improved [61]. 
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Figure 2.8 : General structure of an acid blue dye. 

2.7.2.1.3 Reactive dyes 

Reactive dyes are usually solubilized by the inclusion of sodium sulfonate groups, -

SO3Na, to act like direct dyes, and thus their anions obtain some substantivity, 

although not as much as direct dyes, in the presence of electrolytes. In order to 

explain their difference from direct dyes, one needs to explain that they have 

additional groups for facilitating reaction with cellulose fibers to produce new, 

colored cellulose derivatives. These colored covalent derivatives obtained have 

extremely high resistance to color removal by washing. These dyes can be 

represented by the general formula dye-X, where –X is a leaving group. The leaving 

group is displaced from the original dye molecule by reactive nucleophiles and 

becomes the X- anion. 

Overall reaction can be summarized as the release of an anion, X-, and the formation 

of a cellulose-dye bond. The primary activating groups are s-triazinyl ring and the 

masked vinyl sulfone side chain, -S02-CH2CH2-OSO3Na. Here, the hydroxide ion 

firstly unmasks the reactive vinyl group. While reactive dyes have a wide range of 

bright colors, they are expensive, their applications are not so easy, and they can 

produce an excessive amount of colored effluent [64]. 

 

Figure 2.9 : An important AZO reactive dye, Reactive Black 5. 
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2.7.2.2 Cationic dyes 

2.7.2.2.1 Basic dyes 

Basic or cationic dyes consist of a single highly colored cation, with a simple inert 

counter-ion: Dye+X- where, X- may be a chloride ion [64]. Cations of the basic dyes 

migrate toward negative charges in the material to be dyed. These dyes can be 

applied to protein, nylon, acrylic, and specially modified synthetic fibers. These dyes 

are applied from mildly acidic or neutral solutions. Generally basic dyes have good 

intensity, several of which are fluorescent, however, resistance of the color of the 

dyes on protein and nylon fibers is poor. This resistance can be improved through 

mordanting [61]. 

When dyed onto hydrophobic fibers, their light-resistance is good. This can be 

explained as the presence of water always has a material effect in accelerating the 

fading of colors exposed to light [64]. Their biggest utility today is for dyeing 

hydrophobic manmade fibers with anions attached to the polymer molecules [61]. 

 

Figure 2.10 : Structure of Basic Green 4. 

2.7.2.3 Nonionic dyes 

2.7.2.3.1 Disperse dyes 

Disperse dyes are hydrophobic, nonionic products and are sold as fine ground 

powders or dye pastes. Disperse dyes have found some utility on many hydrophobic 

fibers. They are often applied to nylon, on which they have generally poorer 

resistance properties than acid dyes. Disperse dyes are derived largely from simple 

monoazo and anthraquinonoid chromophores. [64].Coloring with disperse dyes are 

usually provided by small polar molecules that contains anthraquinone or azo groups 

and they don’t have charged cationic or anionic groups in their structure. The 

disperse dyes are sparingly soluble in water and must be dispersed with the aid of a 

surfactant in the dye bath. Resistance to washing and light of these dyes is generally 

good [61]. 
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Figure 2.11 : General structure of a Disperse Blue 6. 

2.7.2.3.2 Vat dyes 

Vat dyes are a good example of the cross-over between dyes and pigments. Large, 

planar and often containing multi-ring systems, vat dyes come exclusively from the 

carbonyl class of dyes (for example, indigo). The ring systems of the vat dyes help to 

strengthen the Van-der-Waals forces between dye and fibre. Vat dyes(colors) are 

sold in very finely divided pigmentary form either as pastes or powders. Vat colors 

are costly and complex chemicals, generally based on derivatives of anthraquinone. 

Vat dyeings generally have excellent wet, light and abrasion resistance. Vat dyeings 

are more limited in their color gamut than are direct dyeings. However, as a group, 

vat dyeings have outstanding resistance to bleaching [64]. 

 

Figure 2.12 : General structure of Vat Yellow 1. 

2.7.2.3.3 Sulfur dyes 

Sulfur dyes are pigmentary, but reducible to water-soluble anionic forms which dye 

cellulosic fibers readily. Sulfur colors reduce more readily than vat colors and require 

only sodium sulfides to dissolve them. They are more difficult than vat colors to 

oxidize. 
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Sulfur colors are the most economical of colors, but have, as a group, the narrowest 

color gamut of all. Their dyeings lack true reds, have only dull yellows and are 

mostvaluable for heavy blacks, navy blues, browns and dark greens. Resistance to 

light of their dyeings is moderate to good in heavy shades and their resistance to 

washing is good. In many ways the fastness properties parallel those of indigo 

dyeings, and sulfur colors are often used for denim goods [64]. 

2.7.2.3.4 Azoic dyes 

These are precursors of azo pigments. These, when dissolved in alkali, ionize to give 

anionic naphtholates, which have some substantivity for cellulose (just like other 

anionic dyes) in the presence of electrolytes. Starting with basic intermediates, which 

are in expensive, cost advantage these dyes supply is largely sacrificed to the 

complexity of a 2-step dyeing process. However, azoic combinations are still the 

only way the very deepest shades of orange, scarlet, red and bordeaux can be 

economically achieved on cotton and cotton/polyester blends [64]. 

2.8 Adsorption 

The term adsorption refers to the accumulation of a substance at the interface 

between two phases such as solid and liquid or solid and gas. The substance that 

accumulates at the interface is called ‘adsorbate’ and the solid on which adsorption 

occurs is ‘adsorbent’.  At the surface of the solids, there are unbalanced forces of 

attraction which are responsible for adsorption. In cases where the adsorption is due 

to weak van der Waals forces, it is called physical adsorption. On the other hand, 

there may be a chemical bonding between adsorbent and adsorbate molecule and 

such type of adsorption is referred as chemisorption [65]. 

Adsorption is a well known equilibrium separation process and an effective method 

for water decontamination applications. Adsorption has been found to be superior to 

other techniques for water re-use in terms of initial cost, flexibility and simplicity of 

design, ease of operation and insensitivity to toxic pollutants. Adsorption also does 

not result in the formation of harmful substances [66]. 

Adsorption enables the separation of selected compounds from dilute solutions. 

Compared to alternative technologies, adsorption is attractive for its relative 

simplicity of design, operation and scale up, high capacity and favorable rate, 
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insensitivity to toxic substances, ease of regeneration and low cost. Additionally, it 

avoids using toxic solvents and minimizes degradation [67]. 

Adsorption is a mass transfer process occurring at the liquid–liquid, gas–liquid, gas–

solid, or liquid–solid interfaces by the accumulation of substances within [68]. 

Adsorption occurs at the boundary between two phases, change in concentration of a 

given substance at the interface as compared with the neighboring phases is referred 

to as adsorption [69]. The term ‘adsorption’ deals with the process in which 

molecules accumulate in the interfacial layer, but desorption denotes the converse 

process. 

As a surface phenomenon, adsorption arises from interactions among individual 

atoms, ions or molecules of an adsorbate and those present in the adsorbent surface. 

The process involves the separation of a substance from one phase and its 

accumulation at the surface of another [70]. Upon contact of some fluid (gas or 

liquid) with a solid adsorbent, some of these fluid molecules (adsorbates) are 

concentrated at the surface with fluid–solid intermolecular attraction forces. 

Therefore, these fluid molecules become denser, and molecular diameters near the 

surface (adsorbed phase) extends. On the basis of differences in the fluid–solid forces 

of attraction between the components, desired components of the mixture are 

selectively adsorbed at the surface. Thereby separation provided by adsorption 

process is attained by creating an adsorbed phase with a composition different from 

the composition of bulk fluid phase. Energy is released during adsorption process, 

thus we can say it is an exothermic process [71]. 

The adsorbed state material is defined as adsorbate. Adsorption is defined as the 

penetration of these adsorbate molecules into the bulk solid phase. Terms, sorption, 

sorbent, sorbate and sorptive is used for indicating both adsorption and absorption, 

especially when both occur simultaneously or cannot be distinguished [69]. 

The action of the adsorbed molecules from the surface to the bulk fluid phase is 

called desorption, a reverse process of adsorption. Since adsorption process is 

exothermic, desorption process is endothermic and requires energy. Adsorbent is 

repeatedly used in this a practical separation process. Regenerative use of the 

adsorbent is the key to the practical use of this technology [71]. 
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Another term is named adsorption isotherm, referred as the fundamental concept in 

adsorption science. It is the relation of equilibrium between the quantity of the 

adsorbed material and the concentration in the bulk fluid phase at constant 

temperature. Adsorption isotherms are stated as the primary source of information on 

the adsorption process [69]. 

The process has become one of the preferred methods for removal of toxic 

contaminants from water into a solid phase and has been prescribed variously as very 

effective, economical, versatile and simple method of separation.[70]. The technique 

is applicable at very low concentrations, and can be followed through both batch and 

continuous processes, having ease of operation, little sludge generation, possibility of 

regeneration and reuse, and low capital investment, etc[72]. 

The fundamental practical applications of adsorption and related areas are following: 

 separation and purification of liquid and gas mixtures, bulk chemicals, 

isomers and air; 

 drying gases and liquids before loading them into industrial systems; 

 removal of impurities from liquid and gas media; 

 recovery of chemicals from industrial and vent gases; and 

 water purification [69] 

2.8.1 Adsorption kinetics 

In order to transport an adsorbate molecule from the bulk fluid phase to the 

adsorption site, a finite amount of time is required. Resulting rate process is denoted 

as adsorption kinetics. Sources of resistance to mass transfer resistance are the 

presence of fluid film outside the adsorbent particle and anisotropic skin at the 

particle surface, and internal macro- and microporous diffusional resistances. The 

presence of other adsorbates in the pores and temperature changes by 

releasing/absorbing energy by adsorption/desorption process affect the transport of 

the adsorbate. Reducing the size of adsorbent particle increases the rate of the 

adsorption process. In addition, gas phase adsorption is faster than liquid phase 

adsorption [71]. 

The amount of adsorbate that can be taken up by an adsorbent is a function of both 

temperature and concentration of adsorbate, and the process, at constant temperature, 

can be described by an adsorption isotherm according to the general Equation (2.1). 
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Where qt (mg/g) is the amount of adsorbate per mass unit of adsorbent at t = t, C0 

and Ct (mg/L) are the initial and at time t concentration of adsorbate, respectively, 

Vis the volume of the solution (L), and m is the mass of adsorbent (g). 

The pseudo-first order equation of Lagergren is generally expressed as follows in 

Equation (2.2): 
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Where qe and qt are the sorption capacities at equilibrium and at time t, respectively 

(mg/g), and k1 is the rate constant of pseudo-first-order sorption (1/min). After 

integration and applying boundary conditions, t =0 to t =t and qt =0 to qt =qt; the 

integrated form of equation (2.2) becomes 
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However, equation (2.3) is transformed into its linear form for use in the kinetic 

analysis of data.  
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Second rate order equation Equation (2.5):  
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Pseudo second order equation is Equation (2.5):  
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Where; 

qe= amount of dye absorbed in equilibrium (mg/g) 

qt= amount of dye absorbed at t=t(mg/g) 
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k1= rate constant of first order equation (min-1) 

k= rate constant of first order equation (g/ mg.min) 

k2= rate constant of pseudo second order equation (g/ mg.min) 

 

2.8.2 Parameters affecting adsorption and desorption 

In adsorption studies, the influence of the major operational variables on the whole 

process should be known in order to achieve high recovery rates and economical 

production [67]. 

Surface area, functionality, porosity, irregularities, strongly bound impurities, 

internal porous structure, particle size, nature and initial concentration of adsorbate, 

solution pH, temperature, interfering substances, nature and amount of adsorbent can 

be listed as factors affecting adsorption. 

Adsorption is proportional to the specific surface area since it is a surface 

phenomenon, meaning total surface area that is available for adsorption can limit or 

enhance the adsorption. For this reason, more porous and finely divided solid 

adsorbents can give better adsorption per unit weight [73, 74]. Surface area is mostly 

composed of the pores of molecular dimensions [68]. 

The solubility of the solute can affect adsorption to a great degree. If the solute is 

very soluble, its adsorption into the pores of the adsorbant will be harder. Also, 

molecular size will affect the transport into the pores. [75, 76]. 

Capacity of adsorption is significantly affected by the physicochemical nature of the 

adsorbent. In general, an inverse relationship can be expected between the extent of 

adsorption of a solute and its solubility in the solvent where the adsorption takes 

place. 

Changes in pH affects adsorption because the distribution of surface charge of the 

adsorbent can change, and therefore composition of raw materials and the technique 

of activation vary dependent on this change and affects adsorbate functional groups 

[77-78]. 
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Adsorption process can also be affected by temperature. Adsorption reactions are 

generally exothermic reactions; therefore it can be said that the extent of adsorption 

increases with decreasing temperature [79,80,81]. 

Final parameter affecting adsorption is concentration of coexistent organic and 

inorganic compounds. Many compounds present in water and wastewater strongly 

influence adsorption. This effect can be enhancing adsorption, or interfering with one 

other, or independent different effects of different compounds can be present [68]. 

Adsorption is also influenced by the adsorbate characteristics. Adsorption from a 

multicomponent solution is a complex problem. Interactions between adsorbates may 

improve the adsorption capacity of some compounds in binary and ternary systems 

[67]. 

The effectiveness of the treatment depends not only on the properties of the 

adsorbent and adsorbate, but also on various environmental conditions and variables 

used for the adsorption process, e.g. pH, ionic strength, temperature, existence of 

competing organic or inorganic compounds in solution, initial adsorbate/adsorbent 

concentration, contact time and speed of rotation, particle size of adsorbent, etc. 

These parameters should also be taken into account while examining the potential of 

low-cost adsorbents [65]. Cost factor should not be ignored. Low production cost 

with higher removal efficiency of adsorbents would make the process economical 

and efficient. 

2.8.3 Adsorbents 

Adsorbents should firstly possess high internal volume that will facilitate the 

components being removed from the fluid. Such highly porous solid structure may be 

either carbonaceous or inorganic in nature, and synthetic or naturally occurring, and 

in certain circumstances may have true molecular sieving properties. Adsorbents 

should  also have good mechanical and kinetic properties in order to be resistant and 

able to transfer adsorbates rapidly. Regenerating adsorbents after use is economical 

and ideal, and performing regeneration efficiently and without damage to mechanical 

and adsorptive properties is crucial. In terms of economical aspects, raw materials 

and methods of adsorbents should be inexpensive for adsorption to be ideal in 

comparison with other alternative separation processes [82]. 
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Internal surface area is generally consists of pores of various size. interconnected 

micropore, mesopore and macropore networks form total surface area in many of the 

adsorbent materials as carbons, silica gels etc. These pore sizes are in following 

volumes respectively: diameters of macropores are more than 50 nm, diameters of 

mesopores (known also as transitional pores) are between 2 - 50nm, and diameters of 

micropores are smaller than 2 nm. Even the largest pores in an adsorbent are in 

submicron levels and they can only consist of a small part of the total pore volume. 

While passing through this complex structure, adsorbate molecules first pass through 

the fluid film on the external surface of adsorbent particle, then passes through the 

macroporous structure and into the micropores. 

 

Figure 2.13 : An adsorbent molecule and resistances in the uptake of adsorbate [82]. 

2.8.4 Types of adsorbents 

A number of materials have been extensively investigated as adsorbents in water 

pollution control [65]. These include activated carbons, minerals, biosorbents, 

zeolites, aluminas, silica gels, polymeric adsorbents, and ion-exchange resins. The 

presence of a variety of micro- and mesoporous adsorbents has been the origin of the 

development of adsorption technology. Large specific surface area (500 to 1500 
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m2/g), varying pore structure, and polar and nonpolar surface properties can facilitate 

the selective adsorption[71]. 

Main types of adsorbents used in industry have been specified in Table 2.1. 

Table 2.1 : Types of industrial adsorbents [82]. 

Carbon Adsorbents Mineral 

Adsorbents 

Other Adsorbents 

Carbon 

Adsorbents 

Mineral 

Adsorbents 

Other Adsorbents 

Active carbons Silica gels Synthetic 

polymers 

Activated 

carbon fibers 

Activated alumina Composite 

adsorbents 

Molecular 

carbon sieves 

Oxides of metals Mixed sorbents 

Monocarbon 

microbeads 

Hydroxides of 

metals 

Monocarbon 

microbeads 

Fullerenes Zeolites Fullerenes 

Heterofullerenes Clay minerals Heterofullerenes 

Carbonaceous Pillared clays Carbonaceous 

nanomaterials Porous clay-

hetero structures 

nanomaterials 

 
Inorganic 

nanomaterials 
 

2.8.4.1 Activated carbons, resins, minerals 

Mineral adsorbents include siliceous materials and natural clays, which also show 

ion exchange ability. Chemical modification can increase the affinity of minerals 

towards the adsorption of several compounds [67]. These are strong adsorbents with 

high surface area. For example, for activated carbons, only about 0.0003% of the 

total surface is the external surface of the carbon particle assuming spherical particles  

[83]. Since clay minerals have low cost, high surface area, high porosity, and 

abundance in most continents, clays are good candidates as adsorbents. There are 

many kinds of clays:smectites (montmorillonite, saponite), mica (illite), kaolinite, 

serpentine, pylophyllite (talc), vermiculite, sepiolite, bentonite, kaolinite, diatomite, 

and Fuller’searth (attapulgite and montmorillonite varieties) [84]. Ion exchange 

resins and minerals are also used extensively in adsorption. 
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2.8.4.2 Low cost adsorbents 

These can be listed as fly ash, lignin and lignocellulosic materials, and 

polysaccharide-based adsorbents. This group includes chitin, chitosan, cyclodextrin, 

starch, crosslinked starch, starch derivatives, hybrid materials such as cyclodextrin 

bound to silica, non-woven fabrics immobilized on polypropylene, chitosan 

immobilized on sand, alginate–chitosan gels or chitosan–cyclodextrin derivatives 

Polysaccharide materials show versatility, chemical stability, high reactivity, ability 

to interact with a variety of molecules. Some functional groups provide excellent 

chelating and complexing properties, allowing an easy regeneration[67]. 

2.8.4.3 Biosorbents 

The term biosorption designs a number of metabolism-independent processes 

involving the uptake of solutes from aqueous solutions by material of microbial 

origin. Biosorbent materials such as wastes from fermentation and activated sludges 

are abundant and cost-efficient. Living biomass can also act as a biosorbent in 

degradation processes, but nutrient supply and toxicity should be considered. Dead 

cells can be regenerated and reused, although limitations derived from adsorbate 

separation and mass loss may occur. Sewage sludge might be used as a cheap 

biosorbent for phenolics alone or in combination with other adsorbents. Adsorption 

of model phenolics onto macroalgae, fungi, sponge, and olive mill phenolics onto 

bacterial cells was reported [67]. 
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3.  EXPERIMENTAL 

3.1 Chemicals 

Chitosan is supplied from Sigma-Aldrich. Product form is coarse ground flakes and 

powder and color is off-white to beige. Deacetylation ratio is 75%. Montmorillonite 

is supplied from Süd-Chemie. Average particle size of montmorillonite used in this 

thesis is smaller than 10 µm. Its cation exchange capacity is 80 meq/100g. Urea is 

supplied from Carlo Erba. It is an A.C.S. grade reagent with 99.8% assay. 37% 

formaldehyde solution was obtained from Merck. Acetic acid was supplied from 

Glacier Chemicals. Sodium hydroxide pellets used were supplied from Sigma 

Aldrich. Reactive Blue 221, Reactive Red 195 and Reactive Black 5 was obtained 

from Solar Fine Chemicals. 

3.2 Equipments 

Adsorbance values of dye solutions at certain wavelengths were measured by UV-

visible spectrophotometer the trademark Hitachi U-0080D able to measure 

wavelengths between 200 nm to 1100 nm. 

Trademark of FTIR used for characterization of composites is Perkin Elmer 

Spectrum 65. 

Trademark of drying oven used for drying composite films and composite flakes is 

Binder, it can be heated up to 300˚C. 

Trademark of magnetic stirrer used is Heidolph MR and it can be heated and stirred 

up to 350˚C and 1250 rpm.  

For SEM analyses, trademark of the device used is Philips ESEM–FEG XL-30. 
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3.3 Synthesis 

3.3.1 Synthesis of Chitosan-Montmorillonite Composites 

For the synthesis of chitosan-montmorillonite composites, firstly 0.5 g of 

montmorillonite (MMT) is mixed in 100 ml of distilled water in a magnetic stirrer at 

800 rpm for at least half an hour. Concurrently, 0.5 g of chitosan is mixed in 100 ml 

of 2% (v/v) distilled water and acetic acid solution. Chitosan solution is close to gel 

form upon mixing with dilute acid solution and attention must be paid the chitosan to 

completely dissolve. Then chitosan solution is thoroughly mixed with 

montmorillonite solution in a magnetic stirrer at 800 rpm for at least half an hour. 

Mixture is poured to a container to be dried in drying oven at 60 ˚C until it is dried 

completely. After drying, chitosan-montmorillonite composites are ground into fine 

flakes (Chi-MMT). Reactive Blue 221, Reactive Red 195 and Reactive Black 5 dye 

solutions are formed in 50 mg/L in concentration. 

Upon changing the ratio of chitosan to montmorillonite in composites, 0.25 mg of 

montmorillonite is mixed in 100 ml of water at 800 rpm for at least half an hour and 

0.5 g of chitosan is mixed in 100 ml of 2% acetic acid solution. The same operations 

are performed as explained above for these composites. 

Lastly, 0.5 mg of montmorillonite is mixed in 100 ml of water at 800 rpm for at least 

half an hour and 0.25 g of chitosan is mixed in 100 ml of 2% acetic acid solution. 

The same operations are performed as explained above for these composites. 

Table 3.1: Ratios of chitosan-montmorillonite in composites. 

Composite 

Name 

Chitosan 

Amount 

Montmorillonite 

Amount 

Chi-MMT 

ratio 

Chi/MMT-a 0.25 g 0.5 g 1:2 

Chi-MMT 0.5 g 0.5 g 1:1 

Chi/MMT-b 0.5 g 0.25 g 2:1 

3.3.2 Synthesis of Chitosan-Montmorillonite Composites Crosslinked with Urea-

Formaldehyde 

For the synthesis of chitosan-montmorillonite composites crosslinked with urea-

formaldehyde, 0.5 mg of montmorillonite is mixed in 100 ml of water at 800 rpm for 

at least half an hour  and 0.5 g of chitosan is mixed in 100 ml of 2% acetic acid 
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solution. Then chitosan solution is thoroughly mixed with montmorillonite solution 

in a magnetic stirrer at 800 rpm for at least half an hour. 0.6 g of urea is dissolved in 

3 ml of 37% formaldehyde solution. Urea-formaldehyde mixture is added dropwise 

to chitosan-montmorillonite mixture under stirring in a magnetic stirrer at 75˚C. 

After 3 hours of mixing at this temperature, mixtures (Chi-MMT-UF) were cast on 

watch glasses and left to dry at room temperature. 

For the synthesis of chitosan-montmorillonite composites crosslinked with urea-

formaldehyde with low formaldehyde content, 0.5 mg of montmorillonite is mixed in 

100 ml of water at 800 rpm for at least half an hour  and 0.5 g of chitosan is mixed in 

100 ml of 2% acetic acid solution. Then chitosan solution is thoroughly mixed with 

montmorillonite solution in a magnetic stirrer at 800 rpm for at least half an hour. 0.6 

g of urea is dissolved in 1.5 ml of 37% formaldehyde solution. Urea-formaldehyde 

mixture is added dropwise to chitosan-montmorillonite mixture under stirring in a 

magnetic stirrer at 75˚C. After 3 hours of mixing at this temperature, mixtures (Chi-

MMT-UF2) were cast on watch glasses and left to dry at room temperature. The ratio 

of formaldehyde content of these composites to priorly formed Chi-MMT-UF 

composites is 1:2.  

For the synthesis of chitosan-montmorillonite composites crosslinked with urea-

formaldehyde with no formaldehyde content, 0.5 mg of montmorillonite is mixed in 

100 ml of water at 800 rpm for at least half an hour  and 0.5 g of chitosan is mixed in 

100 ml of 2% acetic acid solution. Then chitosan solution is thoroughly mixed with 

montmorillonite solution in a magnetic stirrer at 800 rpm for at least half an hour. 0.6 

g of urea is dissolved in 3 ml of distilled water. Urea mixture is added dropwise to 

chitosan-montmorillonite mixture under stirring in a magnetic stirrer at 75˚C. After 3 

hours of mixing at this temperature, mixtures (Chi-MMT-U) were cast on watch 

glasses and left to dry at room temperature. 

3.4 Adsorption Experiments 

3.4.1 Chitosan-montmorillonite composites 

In the experiments which Chi-MMT amount was changed, first experiment was 

performed with 5 mg of dye and 50 mg adsorbent in 100 ml of distilled water. Three 
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solutions were prepared in this way for three dyes (Reactive Blue 221, Reactive Red 

195 and Reactive Black 5). In the other three experiments, dye amount was not 

changed (5 mg) and adsorbent amount was increased to 100 mg, 200 mg and 300 mg 

added to 100 ml dye solution. 

In the experiments which pH value amount was changed, 3 sets of solutions were 

prepared in pH values of 4, 6 and 8 by adjusting with NaOH solution. Nine solutions 

were prepared in this way for three dyes (Reactive Blue 221, Reactive Red 195 and 

Reactive Black 5). These solutions contained 5 mg of dye and 100 mg of adsorbent 

in 100 ml dye solution.   

In the experiments which temperature was changed, 2 sets of solutions were prepared 

in room temperature (25 ˚C) and refrigerated conditions (10 ˚C). Six solutions were 

prepared in this way for three dyes (Reactive Blue 221, Reactive Red 195 and 

Reactive Black 5).These solutions also contained 5 mg of dye and 100 mg of 

adsorbent in 100 ml dye solution. 

In the experiments which chitosan ratio in composite was changed, 3 sets of 

solutions were prepared with composites possessing chitosan:montmorillonite ratio 

of 1:1, 1:2 and 2:1. Nine solutions were prepared in this way for three dyes (Reactive 

Blue 221, Reactive Red 195and Reactive Black 5). These solutions contained 5 mg 

of dye and 100 mg of adsorbent in 100 ml dye solution. 

3.4.2 Chitosan-montmorillonite composites with urea and urea-formaldehyde 

In these experiments, composites of chitosan-montmorillonite with urea and urea-

formaldehyde was used. Three kinds of composites were formed, two of which with 

had 1:2 formaldehyde ratio among them (Chi-MMT-UF and Chi-MMT-UF2, 

respectively) and the third one had no formaldehyde content (Chi-MMT-U). 

2 sets of solutions were prepared with composites possessing formaldehyde ratio of 

2:1. Six solutions were prepared in this way for three dyes (Reactive Blue 221, 

Reactive Red 195and Reactive Black 5).These solutions contained 5 mg of dye and 

100 mg of adsorbent in 100 ml dye solution. 
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Three solutions were prepared with composites possessing no formaldehyde content 

for three dyes (Reactive Blue 221, Reactive Red 195 and Reactive Black 5).These 

solutions contained 5 mg of dye and 100 mg of adsorbent in 100 ml dye solution. 
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4.  RESULTS AND DISCUSSION 

In this study, Chi-MMT composites and urea-formaldehyde and Chi-MMT 

composites were formed for the adsorption of dye molecules from aqueous solutions. 

Chi-MMT composites were formed in ratios 1:1, 2:1 and 1:2 in order to determine 

the effect of different amounts of the clay. Chi-MMT composites containing urea and 

urea-formaldehyde were formed for improving adsorption properties of the 

composites, urea to formaldehyde ratio was 1:2, 1:1 in these composites, except for 

one composite in which no formaldehyde was used. Characterization of Chi-MMT 

composites and urea-formaldehyde and Chi-MMT composites is performed with 

FTIR and SEM. 

Changes of adsorption capacities (qt) with time data were plotted on qt-t graph 

values. After determination of adsorption capacities, the effect of adsorption data on 

rate equations was investigated and second order rate equations were fitted to data. 

The effect of adsorption amount, temperature and pH on adsorption capacity was 

investigated. Also, adsorption equilibrium constants were calculated.  

4.1 Characterization of Samples 

4.1.1 FTIR spectrophotometric analysis 

The FTIR spectra of urea and Chi-MMT-UF, Chi-MMT-UF2 and Chi-MMT-U  

composites and Chi-MMT composites are presented in Figure 4.1, Figure 4.2, Figure 

4.3 and Figure 4.4. 
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Figure 4.1 : FTIR spectrum Chi-MMT-UF composites. 

 

Figure 4.2 : FTIR spectrum Chi-MMT-UF2 composites. 
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Figure 4.3 : FTIR spectrum Chi-MMT-U composites. 

It can be seen that near 1550-1560 cm-1 a specific peak for urea-formaldehyde resins 

is observed due to N-H stretching. Also, due to C-N stretching, a peak near 1240   

cm-1 is observed. Approximately at 1640 cm-1, due to –NH-C=O- stretching, another 

peak is observed. Near 3330 cm-1, another peak can be observed due to N-H 

stretching. Proceeding to the other FTIR spectra, specific peaks for chitosan is 

examined in Figure 4.4 and 4.5. 

 

Figure 4.4 : FTIR spectrum Chi-MMT composites. 
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Figure 4.5 : FTIR spectrum chitosan flakes. 

It can be seen from Figure 4.5 that a specific peak for N-acetylglucosamine is present 

near 1314 cm-1. This band is smaller in Figure 4.4 due to interaction with 

montmorillonite. Also, the peak near 1648 cm-1 indicating presence of amide groups 

in Figure 4.5 is present in smaller size in near 1626cm-1 in Figure 4.4 for the same 

reason. Also, the large band due to–OH group and –NH stretching vibration near 

3291 cm-1 in Figure 4.5 is smaller in Figure 4.4 near 3367 cm-1 because of its 

interaction with montmorillonite. The peak at 2874cm-1 refers to aliphatic C-H 

stretching, also smaller in Figure 4.4 due to interaction. At 796 cm-1, a peak due to 

montmorillonite presence (Si-O) is observed, with another one at 1000 cm-1.due to 

Si-O stretching.  

4.1.2 SEM analysis 

Images obtained with Scanning Electron Microscope is presented in Figure 4.6 for 

Chi-MMT molecules. 
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(a) 

(b) 

Figure 4.6 : SEM images of Chi-MMT flakes (a) 1 µm (b) 2 µm. 

It can be seen that Chi-MMT composites have a porous structure favorable for 

adsorption. 

 (a) 

 (b) 

Figure 4.7 : SEM images of Chi-MMT (a) 5 µm (b) 2 µm. 
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It can also be seen from more distant images of Chi-MMT flakes that the surface area 

of composites is quite large as essential for adsorption. 

 (a) 

 (b) 

Figure 4.8 : SEM images of Chi-MMT-UF2 composites (a) 10 µm (b) 2 µm. 

It can be seen from SEM images of Chi-MMT-UF2 molecules that urea-

formaldehyde and Chi-MMT molecules have formed a porous structure suitable for 

adsorption. 

4.2 Adsorption Plots 

4.2.1 Experiments with changes in adsorbent amount 

The experiments were performed with dye solutions 50 mg/L in concentration. Four 

experiments were performed with 500 mg/L, 1000 mg/L, 2000 mg/L and 3000 mg/L 

adsorbent in 100 ml dye solutions. The data were plotted in qt/t graphs in Figure 4.9.  
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 (a) 

 (b) 

 (c) 

Figure 4.9 : Values of qt versus time for three different dyes by Chi-MMT 

composites of different amounts (a) RB5 (b) RB221 (c) RR195     

(Dye concentration=50 mg/L, Temperature=25˚C). 

The experiments performed with 2000 mg/L and 3000 mg/L adsorbent in 100 ml dye 

solutions were plotted in qt/t graphs in Figure 4.10.  
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 (a) 

 (b) 

 (c) 

Figure 4.10 : Values of qt versus time for three different dyes by Chi-MMT 

composites of different amounts (a) RB5 (b) RB221 (c) RR195     

(Dye concentration=50 mg/L, Temperature=25˚C). 
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performed in order to find optimum amount of adsorbent for the fastest adsorption 

and respective optimum conditions. Another experiment will be performed in order 

to find the best qt value. By increasing adsorbent amount from 500 mg/L to 1000 

mg/L, qt values were changed from 7.70 mg dye/mg adsorbent to 4.98 mg dye/mg 

adsorbent for Reactive Black, 7.79 mg dye/mg adsorbent to 5.46 mg dye/mg 

adsorbent for Reactive Blue and 5.34 mg dye/mg adsorbent to 4.36 mg dye/mg 

adsorbent for Reactive Red since dye amount is stable and milligram of dye for each 

milligram of adsorbent decreases with increasing adsorbent amounts. 

Experiments with 200 mg of adsorbent gave better qt values than the ones with 300 

mg of adsorbent. qt value was changed from 2.48 mg dye/mg adsorbent to 1.32 mg 

dye/mg adsorbent for Reactive Black, 2.68 mg dye/mg adsorbent to 1.48 mg dye/mg 

adsorbent for Reactive Blue and 1.52 mg dye/mg adsorbent to 2.48 mg dye/mg 

adsorbent for Reactive Red since dye amount is stable and milligram of dye for each 

milligram of adsorbent decreases with increasing adsorbent amounts. 

4.2.2 Experiments with adsorbents of different chitosan ratios 

The experiments were performed with 100 ml dye solutions 50 mg/L in 

concentration. Three experiments were performed with 1000 mg/L adsorbent with 

different chitosan:montmorillonite ratios of 1:1 (Chi-MMT), 2:1 (Chi-MMT-b), 1:2 

(Chi-MMT-a). The data were plotted in qt/t graphs in Figure 4.11. 
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 (a) 

 (b) 

 (c) 

Figure 4.11 : Values of qt versus time for three different dyes by Chi-MMT 

composites of different chitosan ratios (a) RB5 (b) RB221 (c)        

RR195 (Dye concentration=50 mg/L, Temperature=25˚C). 

Experiments with Chi-MMT-b gave best qt values than the ones with Chi-MMT-a 

and Chi-MMT. qt value was changed with Chi-MMT-a, Chi-MMT and Chi-MMT-b 

from 4.14 mg dye/mg adsorbent to 4.90 mg dye/mg adsorbent and 4.99 mg dye/mg 
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adsorbent for Reactive Black, 3.95 mg dye/mg adsorbent to 5.31 mg dye/mg 

adsorbent and 5.41 mg dye/mg adsorbent for Reactive Blue and 3.10 mg dye/mg 

adsorbent to 5.06 mg dye/mg adsorbent and 5.12 mg dye/mg adsorbent for Reactive 

Red. This can be explained by the increasing chitosan amount in composites. 

4.2.3 Experiments with different temperature values 

Two experiments were performed at 25˚C and 10˚C with 1000 mg/L adsorbent in 

100 ml dye solutions 50 mg/L concentration. The data were plotted in qt/t graphs in 

Figure 4.12. 

 (a) 

 
(b) 

 

(c) 

Figure 4.12 : Values of qt versus time for three different dyes by Chi-MMT 

composites in different temperature values (a) RB5 (b) RB221           

(c) RR195 (Dye concentration=50 mg/L, Adsorbent amount=1000 

mg/L). 
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Experiments with 25˚C and 10˚C gave similar results since temperature only affects 

the rate of adsorption and does not affect qt values significantly. For 10˚C qt value is 

4.94 mg dye/mg adsorbent for Reactive Black, 5.28 mg dye/mg adsorbent for 

Reactive Blue and 5.03 mg dye/mg adsorbent for Reactive Red.  qt value obtained 

with 25˚C is 4.99 mg dye/mg adsorbent for Reactive Black, 5.37 mg dye/mg 

adsorbent for Reactive Blue and 5.05 mg dye/mg adsorbent for Reactive Red. The 

fact that 10˚C gave slightly lower qt value can be explained by faster adsorption and 

shorter adsorption period.  

4.2.4 Experiments with different pH values 

Three experiments were performed at pH 4, pH 6 and pH 8 with 1000 mg/L 

adsorbent in 100 ml dye solutions 50 mg/L in concentration. The data were plotted in 

qt/t graphs in Figure 4.13. 
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 (a) 

 (b) 

 (c) 

 

Figure 4.13 : Values of qt versus time for three different dyes by Chi-MMT 

composites in different pH values (a) RB5 (b) RB221 (c) RR195    

(Dye concentration=50 mg/L, Adsorbent amount=1000 mg/L). 
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Experiments with pH value 4 gave best qt values than other ones with pH 6 and pH 8. 

qt values were changed with pH values of 4, 6 and 8 from 4.98 mg dye/mg adsorbent 

to 4.57 mg dye/mg adsorbent and 3.82 mg dye/mg adsorbent for Reactive Black, 

5.46 mg dye/mg adsorbent to 3.40 mg dye/mg adsorbent and 3.73 mg dye/mg 

adsorbent for Reactive Blue and 4.36mg dye/mg adsorbent to 2.51 mg dye/mg 

adsorbent and 1.08 mg dye/mg adsorbent for Reactive Red. Best results were 

obtained by pH value 4. 

4.2.5 Experiments with Chi-MMT-UF, Chi-MMT-UF2 and Chi-MMT-U 

Three experiments were performed with Chi-MMT-UF, Chi-MMT-UF2 and Chi-

MMT-U with 1000 mg/L adsorbent in 100 ml dye solutions 50 mg/L concentration. 

The data were plotted in qt/t graphs in Figure 4.14. 
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 (a) 

 (b) 

 (c) 

 

Figure 4.14 : Values of qt versus time for three different dyes by Chi-MMT-UF 

composites with different formaldehyde ratios (a) RB5 (b) RB221     

(c) RR195 (Dye concentration=50 mg/L, Adsorbent amount=1000 

mg/L). 
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5.34 mg dye/mg adsorbent and 4.81 mg dye/mg adsorbent for Reactive Blue and 

0.27 mg dye/mg adsorbent to 5.13 mg dye/mg adsorbent and 4.93 mg dye/mg 

adsorbent for Reactive Red.  

4.2.6 Experiments with optimum conditions 

Optimum conditions were determined from the previous experiments. An experiment 

was performed with Chi-MMT composites with 1000 mg/L adsorbent in 100 ml dye 

solutions in 50 mg/L dye concentration at 10 ˚C and pH 4. The data were plotted in 

qt/t graphs in Figure 4.15. Also, dye amount was increased and the same experiment 

was repeated at 10 ˚C and pH 4 with 1000 mg/L adsorbent in 100 ml dye solutions in 

200 mg/L dye concentration. Highest qt values were obtained with this experiment 

since amount of dye for each mg of adsorbent has been increased. 

 (a) 

 (b) (c) 

Figure 4.15 : Values of qt versus time for three different dyes by Chi-MMT 

composites in optimum conditions (a) RB5 (b) RB221 (c) RR195  

(Dye concentration=50 mg/L, Adsorbent amount=1000 mg/L). 
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Values of qt were determined to be 4.98 mg dye/mg adsorbent for Reactive Black, 

8,93 mg dye/mg adsorbent for Reactive Blue and 5.09 mg dye/mg adsorbent for 

Reactive Red. 

 (a) 

 (b) 

 (c) 

Figure 4.16 : Values of qt versus time for three different dyes by Chi-MMT 

composites in optimum conditions (a) RB5 (b) RB221 (c) RR195  

(Dye concentration=200 mg/L, Adsorbent amount=1000 mg/L). 
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Values of qt were determined to be 29.41 mg dye/mg adsorbent for Reactive Black, 

40 mg dye/mg adsorbent for Reactive Blue and 21.73 mg dye/mg adsorbent for 

Reactive Red. 

4.3 Adsorption Kinetics Studies 

4.3.1 Application of pseudo first and second order rate equation for experiments 

with different adsorbent amounts 

Results of adsorption experiment were tested for composite samples in different 

conditions. The results fitted pseudo-second order kinetic model and plots of t/qt 

against time for every experiment was added. Results of pseudo-first order kinetic 

model were presented in Table 4.1 for comparing against experimental qe values in 

order to prove the results have fit pseudo-second order kinetic model. 

Equilibrium adsorption capacities (qe) values were calculated from the slope of 

obtained trend lines and adsorption rate constant k2 values were calculated from the 

intercepts according to Equation (2.4) for pseudo first order rate calculations and 

Equation (2.5) for pseudo second order rate calculations.  

 

 

 

 

 

 



59 

 (a) 

 (b) 

 (c) 

 

Figure 4.17 : Pseudo-second order rate equation for adsorption results of               

Chi-MMT composites (a) RB5 (b) RB221 (c) RR195 (Dye 

concentration=50 mg/L, pH=4, T=25˚C). 

The experiments performed with 2000 mg/L and 3000 mg/L adsorbent in 100 ml dye 

solutions were plotted in qt/t graphs in Figure 4.18.  
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 (a) 

 (b) 

 (c) 

Figure 4.18 : Pseudo-second order rate equation for adsorption results of             

Chi-MMT composites (a) RB5 (b) RB221 (c) RR195 (Dye 

concentration=50 mg/L, pH=4, T=25˚C). 

For pseudo first and pseudo second kinetic models, values of k1, k2, qe, and R2 are 

listed in Table 4.1 and 4.2. 
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Table 4.1 : Kinetic parameters of Chi-MMT composites for pseudo-first order model 

(Dye concentration=50 mg/L, pH=4, T=25˚C). 

Dye Sample k1(day-1) qe(mg/mg) R2 

Reactive Black 5 50 mg adsorbent 0.056 6.12 0.904 

 100 mg 

adsorbent 
0.14 2.21 0.964 

 200 mg 

adsorbent 
0.167 0.27 0.787 

 300 mg 

adsorbent 
0.092 0.05 0.949 

Reactive Blue 

221 
50 mg adsorbent 0.276 17.81 0.846 

 100 mg 

adsorbent 
0.122 2.49 0.972 

 200 mg 

adsorbent 
0.209 0.84 0.554 

 300 mg 

adsorbent 
0.308 0.15 0.765 

Reactive Red 

195 
50 mg adsorbent 0.178 3.57 0.651 

 100 mg 

adsorbent 
0.154 2.47 0.733 

 200 mg 

adsorbent 
0.439 0.77 0.943 

 300 mg 

adsorbent 
0.343 0.15 0.626 

Kinetic parameters for pseudo second order model were given in Table 4.2. 
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Table 4.2 : Kinetic parameters of Chi-MMT composites for pseudo-second order 

model (Dye concentration=50 mg/L, pH=4, T=25˚C). 

Dye Sample k2(mg/mg.day) qe(mg/mg) R2 

Reactive Black 5 50 mg adsorbent 0.050 8.54 0.987 

 100 mg 

adsorbent 
0.135 5.26 0.995 

 200 mg 

adsorbent 
2.514 2.51 0.997 

 300 mg 

adsorbent 
2.440 1.37 0.983 

Reactive Blue 

221 
50 mg adsorbent 0.006 31.25 0.419 

 100 mg 

adsorbent 
0.106 5.88 0.995 

 200 mg 

adsorbent 
0.417 2.92 0.994 

 300 mg 

adsorbent 
13.571 1.51 0.998 

Reactive Red 

195 
50 mg adsorbent 0.075 5.68 0.928 

 100 mg 

adsorbent 
0.151 4.46 0.991 

 200 mg 

adsorbent 
1.056 2.59 0.999 

 300 mg 

adsorbent 
8.938 1.52 0.999 

 

It can be seen from the tables that pseudo second order kinetic model has fit better 

for experimental values. Highest k2 values are achieved with 300 mg absorbent. This 

can be explained that as the amount of the adsorbent increases, the adsorption 

becomes faster. However, the highest qe values are achieved with 50 mg adsorbent. 

This can be explained by the fact that dye amount is stable for all experiments and as 

the adsorbent amount increases, dye amount is distributed throughout the adsorbent 

molecules. 

4.3.2 Application of pseudo first and second order rate equation for experiments 

with adsorbents of different chitosan ratios 

Adsorption kinetic studies were applied for composites with different chitosan ratios 

with initial dye concentration of 50 mg/L, pH 4 and 1000 mg/L adsorbent. The 

results are presented in Figure 4.19. Kinetic parameters calculated applying pseudo-

first and second order kinetic model are given in Tables 4.3 and 4.4. 
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 (a) 

 (b) 

 (c) 

Figure 4.19 : Pseudo-second order rate equation for adsorption results of Chi-MMT 

composites with different chitosan ratios (a) RB5 (b) RB221 (c) 

RR195 (Dye concentration=50 mg/L, pH=4, T=25˚C). 

For pseudo first order kinetic model, values of k1, k2, qe, and R2 are listed in Table 

4.3. 
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Table 4.3 : Kinetic parameters of Chi-MMT composites for pseudo-first order model 

(Dye concentration=50 mg/L, pH=4, T=25˚C). 

Dye Sample k1(day-1) qe(mg/mg) R2 

Reactive Black 5 0.25/0.5 

Chi/MMT 
0.324 6.17 0.967 

 Chi-MMT 0.027 0.189 0.898 

 0.5/0.25 

Chi/MMT 
0.046 0.316 0.641 

Reactive Blue 

221 

0.25/0.5 

Chi/MMT 
0.172 1.62 0.994 

 Chi-MMT 0.03 0.26 0.998 

 0.5/0.25 

Chi/MMT 
0.031 0.25 0.794 

Reactive Red 

195 

0.25/0.5 

Chi/MMT 
0.051 3.42 0.761 

 Chi-MMT 0.058 0.16 0.993 

 0.5/0.25 

Chi/MMT 
0.203 0.26 0.944 

Kinetic parameters for pseudo second order model are given in Table 4.4. 

Table 4.4 : Kinetic parameters of Chi-MMT composites for pseudo-second order 

model (Dye concentration=50 mg/L, pH=4, T=25˚C). 

Dye Sample k2(mg/mg.day) qe(mg/mg) R2 

Reactive Black 5 0.25/0.5 

Chi/MMT 
0.034 5.95 0.991 

 Chi-MMT 6.868 4.92 1 

 0.5/0.25 

Chi/MMT 
2.8 5.05 1 

Reactive Blue 

221 

0.25/0.5 

Chi/MMT 
0.211 4.34 1 

 Chi-MMT 3.885 5.34 1 

 0.5/0.25 

Chi/MMT 
4.784 5.46 1 

Reactive Red 

195 

0.25/0.5 

Chi/MMT 
0.099 3.90 0.981 

 Chi-MMT 3.841 5.10 1 

 0.5/0.25 

Chi/MMT 
1.862 5.18 0.999 

It can be seen from the tables that pseudo second order kinetic model have fit better 

for experimental values. Lower k2 values are achieved with samples including less 

chitosan. This can be explained that low chitosan ratio in the adsorbent lowers 

adsorption rate.  
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4.3.3 Application of pseudo second order rate equation for experiments with 

different temperature values 

Adsorption kinetic studies were applied for composites in different temperatures with 

initial dye concentration of 50 mg/L, pH 4 and 1000 mg/L adsorbent. The results are 

presented in Figure 4.20. Kinetic parameters calculated applying pseudo-first and 

second order kinetic model are given in Table 4.5 and 4.6. 

 (a) 

 (b) 

 (c) 

Figure 4.20 : Pseudo-second order rate equation for adsorption results of Chi-MMT 

composites with different temperature values (a) RB5 (b) RB221 (c) 

RR195 (Dye concentration=50 mg/L, pH=4,Adsorbent 

amount=1000mg/L). 
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For pseudo first order kinetic model, values of k1, k2, qe, and R2 are listed in Table 

4.5. 

Table 4.5 : Kinetic parameters of Chi-MMT composites for pseudo-first order model 

(Dye concentration=50 mg/L, pH=4). 

Dye Sample k1(day-1) qe(mg/mg) R2 

Reactive Black  

5 
10˚C 0.029 0.135 0.810 

 25˚C  0.33 2.89 0.705 

Reactive Blue 

221 
10˚C 0.095 0.049 0.209 

 25˚C  0.455 4.41 0.839 

Reactive Red 

195 
10˚C 0.275 1.07 0.724 

 25˚C  0.246 2.98 0.527 

Kinetic parameters for pseudo second order model were given in Table 4.6. 

Table 4.6 : Kinetic parameters of Chi-MMT composites for pseudo-second order 

model (Dye concentration=50 mg/L, pH=4). 

Dye Sample k1(mg/mg.day) qe(mg/mg) R2 

Reactive Black  

5 
10˚C 6.733 4.97 

1 

 25˚C  0.029 7.09 0.894 

Reactive Blue 

221 
10˚C 4.324 5.37 

0.999 

 25˚C  0.059 6.57 0.969 

Reactive Red 

195 
10˚C 4.312 5.07 

1 

 25˚C  0.122 5.74 0.987 

It can be seen from the tables that pseudo second order kinetic model have fit better 

for experimental values. Highest k2 highest values are achieved with 10˚C. This can 

be explained by the fact that adsorption is exothermic and thus gives better results in 

low temperature.  

4.3.4 Application of pseudo second order rate equation for experiments with 

different pH values 

Adsorption kinetic studies were applied for composites in different pH values with 

initial dye concentration of 50 mg/L, 25˚C and 1000 mg/L adsorbent. The results are 

presented in Figure 4.21. Kinetic parameters calculated applying pseudo first and 

second order kinetic model are given in Table 4.7 and 4.8. 
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 (a) 

 (b) 

 (c) 

Figure 4.21 : Pseudo-second order rate equation for adsorption results of Chi-MMT 

composites with different pH values  (a) RB5 (b) RB221 (c) RR195 

(Dye concentration=50 mg/L, T=25˚C, Adsorbent 

amount=1000mg/L). 
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Table 4.7 : Kinetic parameters of Chi-MMT composites for pseudo-first order model 

(Dye concentration=50 mg/L, T=25˚C, Adsorbent amount=1000mg/L). 

Dye Sample k1(day-1) qe(mg/mg) R2 

Reactive Black 5 pH 4 0.14 2.21 0.964 

 pH 6 0.084 2.16 0.973 

 pH 8 0.189 4.58 0.974 

Reactive Blue 

221 
pH 4 0.122 2.49 0.938 

 pH 6 0.104 2.69 0.972 

 pH 8 0.254 6.04 0.999 

Reactive Red 

195 
pH 4 0.154 2.47 0.733 

 pH 6 0.035 2.12 0.337 

 pH 8 0.066 0.64 0.250 

Kinetic parameters for pseudo second order model were given in Table 4.8. 

Table 4.8 : Kinetic parameters of Chi-MMT composites for pseudo-second order 

model (Dye concentration=50 mg/L, T=25˚C, Adsorbent amount=1000mg/L). 

Dye Sample k2(mg/mg.day) qe(mg/mg) R2 

Reactive Black 5 pH 4 0.178 5.07 0.994 

 pH 6 0.176 4.52 0.999 

 pH 8 0.012 7.09 0.890 

Reactive Blue 

221 
pH 4 0.121 5.74 

0.992 

 pH 6 0.010 8.26 0.991 

 pH 8 0.005 9.43 0.773 

Reactive Red 

195 
pH 4 0.065 4.42 

0.966 

 pH 6 0.208 2.30 0.946 

 pH 8 1.933 1.12 0.999 

It can be seen from the tables that pseudo second order kinetic model have fit better 

for experimental values. Highest k2 values are achieved pH 4 value, except for 

Reactive Red 195. The highest qe values are achieved with pH 4 value again, except 

for Reactive Red 195. 

4.3.5 Application of pseudo second order rate equation for experiments with 

Chi-MMT-UF, Chi-MMT-UF2 and Chi-MMT-U 

Adsorption kinetic studies were applied for composites of Chi-MMT-UF, Chi-MMT-

UF2 and Chi-MMT-U with initial dye concentration of 50 mg/L, 25˚C and 1000 

mg/L adsorbent. The results are presented in Figure 4.22. Kinetic parameters 
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calculated applying pseudo first and second order kinetic model are given in Tables 

4.9 and 4.10. 

 (a) 

 (b) 

 (c) 

Figure 4.22 : Pseudo-second order rate equation for adsorption results of Chi-MMT-

UF, Chi-MMT-UF2 and Chi-MMT-U composites  (a) RB5 (b) RB221 

(c) RR195 (Dye concentration=50 mg/L, T=25˚C, Adsorbent 

amount=1000mg/L). 
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For pseudo first order kinetic model, values of k1, k2, qe, and R2 are listed in Table 

4.9. 

Table 4.9 : Kinetic parameters of composites for pseudo-first order model (Dye 

concentration=50 mg/L, T=25˚C, Adsorbent amount=1000mg/L). 

Dye Sample k1(day-1) qe(mg/mg) R2 

Reactive Black 5 Chi-MMT-UF 0.013 0.16 0.006 

 Chi-MMT-UF2 0.239 2.34 0.955 

 Chi-MMT-U 0.07 0.69 0.288 

Reactive Blue 

221 
Chi-MMT-UF 0.178 1.03 0.476 

 Chi-MMT-UF2 0.264 3.81 0.947 

 Chi-MMT-U 0.132 1.51 0.242 

Reactive Red 

195 
Chi-MMT-UF 0.03 0.29 0.056 

 Chi-MMT-UF2 0.242 1.99 0.979 

 Chi-MMT-U 0.099 0.81 0.236 

Kinetic parameters for pseudo second order model were given in Table 4.10. 

Table 4.10 : Kinetic parameters of composites for pseudo-second order model (Dye 

concentration=50 mg/L, T=25˚C, Adsorbent amount=1000mg/L). 

Dye Sample k2(mg/mg.day) qe(mg/mg) R2 

Reactive Black 5 Chi-MMT-UF 0.304 1.08 0.868 

 Chi-MMT-UF2 1.063 4.97 1 

 Chi-MMT-U 0.339 5.37 0. 997 

Reactive Blue 

221 
Chi-MMT-UF 0.019 4.06 

0.926 

 Chi-MMT-UF2 0.143 5.68 0.958 

 Chi-MMT-U 0.102 6.13 0.983 

Reactive Red 

195 
Chi-MMT-UF 0.168 0.65 

0.542 

 Chi-MMT-UF2 1.237 5.02 0.996 

 Chi-MMT-U 0.302 5.43 0.998 

 

It can be seen from the tables that for k2 highest values are achieved with Chi-MMT-

UF2. Furthermore, highest qe values were obtained with Chi-MMT-U. Similar trends 

were obtained with all of the dyes.  
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4.3.6 Application of pseudo second order rate equation for experiments with 

optimum conditions 

Adsorption kinetic studies were applied for optimum conditions of pH 4, 10 ˚C and 

Chi-MMT flakes for initial dye concentration of 50 mg/L, and 1000 mg/L adsorbent. 

The results are presented in Figure 4.23.  

 (a) 

 (b) 

 (c) 

Figure 4.23 : Pseudo-second order rate equation for adsorption results of Chi-MMT 

flakes  (a) RB5 (b) RB221 (c) RR195 (Dye concentration=50 mg/L, 

T=10˚C, Adsorbent amount=1000mg/L). 

Another experiment was performed by increasing dye amount and the same 

experiment was repeated at 10 ˚C and pH 4 with 1000 mg/L adsorbent in 100 ml dye 
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solutions in 200 mg/L dye concentration. Highest qe values were obtained with this 

experiment since amount of dye for each mg of adsorbent has been increased. The 

results are presented in Figure 4.24. 

 (a) 

 (b) 

 (c) 

Figure 4.24 : Pseudo-second order rate equation for adsorption results of Chi-MMT 

flakes  (a) RB5 (b) RB221 (c) RR195 (Dye concentration=200 mg/L, 

T=10˚C, Adsorbent amount=1000mg/L). 

For pseudo first order kinetic model, values of k1, k2, qe, and R2 are listed in Table 

4.11. 
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Table 4.11 : Kinetic parameters of Chi-MMT composites for pseudo-first order 

model (Adsorbent concentration=1000 mg/L, pH=4, T=25˚C). 

Dye Sample k1(day-1) qe(mg/mg) R2 

Reactive Black  

5 
50 mg/L 0.019 0.18 0.658 

 200 mg/L  0.93 14.64 0.892 

Reactive Blue 

221 
50 mg/L 0.570 10.91 0.857 

 200 mg/L  0.821 35.26 0.992 

Reactive Red 

195 
50 mg/L 0.347 0.16 0.942 

 200 mg/L  0.805 9.68 0.881 

 

Kinetic parameters for pseudo second order model were given in Table 4.12. 

Table 4.12 : Kinetic parameters of Chi-MMT composites for pseudo-second order 

model (Adsorbent concentration=1000 mg/L, pH=4, T=25˚C). 

Dye Sample k1(mg/mg.day) qe(mg/mg) R2 

Reactive Black  

5 
50 mg/L 40 5 1 

 200 mg/L  0.012 29.41 0.809 

Reactive Blue 

221 
50 mg/L 11.28 5.43 1 

 200 mg/L  0.004 40 0.783 

Reactive Red 

195 
50 mg/L 19.20 5.10 0.999 

 200 mg/L  0.117 21.73 0.998 

It can be seen from the tables that for optimum conditions very fast adsorption is 

obtained. Similar trends were obtained with all of the dyes.  
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CONCLUSIONS AND RECOMMENDATIONS 

The objection of this thesis is the adsorption of textile dyes from water by chitosan 

derivatives and determining optimum conditions for rapid and effective color 

removal. Chitosan-montmorillonite composites, and composites of Chi-MMT with 

urea and urea-formaldehyde were formed for this study. 

FTIR analysis was performed for characterization of composite samples and 

respective peaks were examined. Furthermore, SEM analysis was performed for the 

determination of morphology of the composites. With the help of UV/Visible 

spectroscopy, adsorption data of every experiment and adsorption capacities and 

adsorption rate were determined. Optimum values for rapid adsorption was 

investigated with performed experiments and it was found that best results were 

obtained with low pH (pH 4), low temperature and Chi-MMT flakes. Effect of even 

short periods of stirring is undeniable in every adsorption experiment, by the help of 

stirring dye molecules and adsorbent particles were able to come across and 

adsorption period was much more shorter. Even though experiments were performed 

without stirring dye solutions, it was observed that in the optimum conditions 

adsorption was completed in a matter of hours by adding stirring into process.  

In conclusion, chitosan-montmorillonite composites gave good results when used for 

adsorption of textile dyes and due to their rapid adsorption and simple handling 

properties, they can be used for wastewater treatment for color removal. 
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