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OZET

ELASTIK ROTOR PALLERININFREKANS ESITLIKLi OPTIMIZASYONU

Bir helikopter palinin tasariminda, g6zéniinde bulundurulan kriter, dogal

frekanslaninin yer ve hava rezonansindan koruyacak sekilde diigtiniilmesidir.

Bu ¢alismada, yer rezonansindan korunmak igin birinci dogal frekansi sabit tutarak,

rotor palinin agirliinin optimum yapilmas: tizerinde durulmustur.

Rotor palinin hareket denklemleri, Galerkin sonlu elemanlar yéntemiyle ayristiriimisg

ve en genel halde agagidaki sekilde yazilmistir:
Mi+(C+Cly+(Ky+K,)g = 1)

Rotor palinin kesiti agagidaki gekilde dikdértgen gekirdekten ibaret oldugu kabul
edilmistir. Optimizasyon esnasinda tasarim degiskeni olarak —b- boyutu
kullamlmugtir. Palin hareket denklemleri, Lagrange ¢arpanlar: kullanilarak
¢dziimlenmistir. Uretimi miimkiin olmayan tasarim degerleri elde etmemek igin ,
tasarim degiskeni belirli degerler arasinda tutulmugtur. Yapilan kabuller ise, palin

ankastre oldugu, soniimsiiz hareketin mevcudiyetidir.

\

cg. of the box beam ‘ c.g of nonstruclural
| mass

Palin dikdortgen kesiti



SUMMARY
OPTIMUM DESIGN OF ROTOR BLADES WITH EQUALITY CONSTRAINT
1.PROBLEM FORMULATION

An important design of helicopter rotor blades is the placement of the natural
frequencies to avoid ground and air resonances. This is done by proper tailoring of
the blade mass of the stiffness distribution to give a set of desired natural frequencies.
However, this is not an easy task due to the presence of various coupling effects as
discussed in Reference [38]. The pitch angle, blade twist and an off-set betwen the
elastic and inertia axes generally couse linear coupling effects between natural modes
of the rotor blades. The scope of the present study is to find a suitable mass
distributions of the blade which minimizes the weight while holding the selected
natural frequency at a specified value. Minimum bound limits are imposed on the
selected design variables to prevent them from reaching inpractical values during the

design optimization process.

Figure 1.1 depicts a typical rotor blade with a thin walled box beam cross section
along the span and leading edge tunning masses distributed along the span. In order
to simplify the analysis the following assumptions are made. The stiffness of the
blade is contributed by the unsymmetric box section with variable geometry and
nonstuctural mass distribution along the span. Stiffness contributed by skin, etc. is
negligible. The material densityis assumed to uniform throughout the blade. For the
structural analysis of the box beam, warping effects are neglected and thin wall
approximations are used. The simplified problem is formulated as to minimize the
weight of the blade which is assumed to be the sum of the weights of the box beam
and the distributed tip tuning masses. This is also can be called as the objective

function. Any conbinations of the box beam dimensions b,h,t1,t2,t3 can be used as the

design variable. The governing equations of motion of hingless rotor blades are

formulated in different references. Diffrent methods are used to discretize these

XI



equations. In this study, the discrete parameter form of the rotor blade equations are

given
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Figure 1.1: Box Beam Structure Geometry

by reference [44]. These equations are discretized by Galerkin type finite
elementmethod and are for general coupled flap-lag-torsion dynamics of a hingeless
rotor blade both for forward and hover flight conditions with arbitrary mass and
stiffness distributions. Cross sectional mass center and aerodynamic center offsets
from the elastics axis are also included. Aquasisteady aerodynamics has been used in
developing the equations where the compressibility and stall effects are not included.
The problem of weight minimization subject to a constraint on a natural frequency is
often referred as to the dual problem. The ;;rimal problem is the one where the
natural frequency is maximized holding the weight to a specified value. Both of these
problems as applied to optimum design of nonrotating beams with thin-walled cross

sections undergoing coupled bending and torsional vibrations have been addressed by

Xl



Hanagud and Chattopadhyay [23,24]. It has been observed that the optimum
distributions differ largely with and without the coupling effects.

1.1 Discretization of the Equations of Motion Usmg the Galerkin Finite Element
MethodO

O

The first step in solving the equations of motion. is the discretization of the spatial
dependence. This is accomplished through application of the Galerkin finite element
method. Subsequently, modal analysis is used to reduce the number of discrete

unknowns describing the problem.
1.2 Formulation of Equality Frequency Constraints Problem

The discrete parameter form of the governing equation of the rotor blade motion 1s

given by Reference [44] as

Mg +(C+Clg+ (K +K,)g = £(t) (1.1)
in above equation, K = Kg + Kj is a real unsymmetric matrix where indices S and
Acorresponds to structural and aerodynamic effects respectively. Finite element used
to discretize the blade and the associated degrees of fredoms are shown in Figure 1.2.

In this simplified analysis rotor blade motion in hover case is considered. The linear

undamped motion of the rotor blade is given by

MG+ (Kg+K,)g= 1) (1.2)

Elemental degrees of freedoms are rearranged such that,

. . f T
e 1
q° = {vl,v.,wl,-w1 P, V,,V' ,wz,W2,¢2}

XIII
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Figure 1.2:Beam Type Finite Element and Associated Degrees of Freedom
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The eigenvalue problem of the nonsymmetric system can be written as [45].

(K- ©?M)gi=0

(KL - 0?MT)si=0 (13)

where qj and sj are defined as right and left eigenvectors corrsponding to the ith

eigenvalue,w’. Both sets of eigenvectors can be expresed as square matrices Q and

S as

S = [s1,82,.......,5n] (1.4)
and orthonormality conditions can be also written as,

sTMQ =11

sTkQ=[A] (1.5)
where /\ is a diogonal matrix with eigenvalues on its diagonals.
1.1.1 Formulation of the Optimization Problem

The total weight of the resulting discritized blade is

N,

w=>(p.l,4,+W,) (1.6)

i=l

where, p, , is the material density, /, is the element lenght, 4, , is cross sectional area

and W is the nonstructural mass. The optimization problem can now be posed as
follows:

Minimize:



W =3 (old + W) (17

i=l

Subject to:

Equilibrium condition;

(K- w; M)qk =0

KL-0?MDsi =0 (1.8)

Orthonormality condition;

T
sk- Mq]= okl

skl K g = Skl @y, (1.9)

Besides design variables are bounded by lower and upper limits;
¢min = ¢n = ¢max (1 10)

As a first step only the problem of unsymmetric matrices and the associated frequency
constraints are considered. As the next step, the constrained optimization problem is
now converted into an unconstrained one by the use of Lagrange multipliers. The

modified objective function is written as

* n
W - Z(p‘-‘i l“i A“: + W;i )
i=l

Bl (sk K, qk-0?) 12 (ak K sk-o})

vk M, qk-1)-va(ak! M si-1)

-Q1(K, - o] M, )ak- Q2(K, - o] M, )sk (1.11)
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In above equation w, is the frequency which is desired to set equal to the v, sk

and gk are the corresponding eigenvectors of the rotor blade system. The problem

* -
now is to minimize W subject to the constraints on the design variables. The se

constraints are given by equation 1.10. This is done by obtaining stationary value of

*
the objective function W using full resources of variational .techniques, While
staying within the bounds on the design variables.

The necessary condition for the stainarity is given by,

AW =0 (1.12)
This leads to the condition,
wW _0
A,
w _0
& (1.13)

In view of equation 1.3 and 1.9, these conditions yiel to

Q1 = -(u1tu2)s1

Q2 = -(u1+u2)ql (1.14)
and

vitve=- o (u1+u2) (1.15)

»

The next requirement is M _ 0  and can be derived from equation 1.11. This

i

follows a set of optimality criteria condition given below,

XVII



aKu , 0K,
—H k, 6¢ —H qk,a¢ Sy,
GML, GMT
- —v|s?
1| Sk, 6¢ qk, o4, 5y,

(K, , M, | oK, ! ,OM, r
- Q, — @y qr, — H (1.16)

08, 09, o9,
Using equations 1.14, 1.15, 1.16 the optimality condition is rewritten as

0A, | w2s7 aMe] K oK,
“A % e VR el _
a¢an o —H WS, 29, gy, — S 24, q;

where nt denotes the number of elements over which the design variable ¢, does not

reach the limiting values posed by equation 1.10. Note that the global mass and
stiffness matrices M and K are replaced by the corresponding elemental quantities
M, and K, respectively,. Similary eigenvectors g,and s, are also replaced by
corresponding elemental eigenvectors qg and sk . This has been done since there
exist a one to one correspondence between an element and a design variable or in
other words, @, , only appears in the element stiffness and mass matrices of the ith

element. A simultaneus solutions of equations 1.7, 1.8, 1.9, and equation 1.17

with in the bounds equation 1.10 will resuit in possible optimum designs.
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CHAPTER 1

INTRODUCTION

1.1 ROTOR BLADES AEROELASTIC TAILORING: MULTIVARIABLE
OPTIMIZATIN PROBLEM

Many different considerations are necessary in designing a helicopter rotor blade.
Some of this considirrations include strength, damage tolerance, fatigue life reliability
and survivability. However, a very important design considiration is the requirement
of seperating the natural frequencies of the blades from the aerodynamic forcing
frequencies to avoid resonance. This is done by a proper tailoring of the blade mass
or the stiffness distribution to give a set of desired natural frequencies. However, this
is not an easy task due to the presence of various coupling effects as discussed in
reference [1]. One such reason is that the natural modes of the rotor blde twist, large
aerodynamic damping and offset between the elastic and inertial axes. The problem is
further complicated by margins less than 20 percent in the range of importance. A
failure to consider frequency placement at the stage of the preliminary design has the
potential of significantly increasing the weight in the structure. However, most of the
present preliminary design practices are not to tailor the design and place the desired
natural frequencies. After the design is completed, the designer checks for poorly
placed naturel frequencies and corrects for these poor placements by placing

appropriate nonstructural masses at cducial locations.

In order to avoid such weight penalties, as explained by Peters [2], it is now possible
to design and fabricate a helicopter blade that includes appropriate prescribed
variations in stiffness which permit placements of frequencies at the preliminary
design stages. One of the reasons for this possibility is as follows. Rotor blades are
being fabricated by the use of composite materials. The state of art of structural
dynamic system optimization techniques and parameter identification techniques have

improved to a state such that it is possible to apply these techniques at the preliminary



design stage of rotor blade and obtain appropriate variations in stiffnesses that results

in desired placement of natural frequencies.

1.2 BACKGROUND

Significant developments in the field of the application of optimization techniques to
rotor blade designs can be traced to the works of Bielawa [3], Bennett [4,5],
Friedmann [7,6] ,Peters [2],and Taylor [8]. Bielawa [3] has developed anoptimization
procedure to reduce blade loads consisted with aeroelastic restraints. This method,
however, was not completely automated. Taylor has considered the problem by the
use of modal shaping. The objective of his work is to reduce vibhration levels by
modifying the mass and stiffness distributions in order to modify modal shape
parameters. These modal shape parameters have been sometimes interpreted as an
ad-hoc optimality criterion. A very brief summary of other works due to Bennett,

Friedmann and Peters are outlined as follows.

Bennett [4,5] has considered problems of minimizing hub shears and blade weight.
However, in this study, the contribution of aerodynamics to stiffness and damping are
neglected in obtaning frequency constraints. It is equivalent to considering the system
in vacuum. Friedmann [7,6] has considered the problem of minimizing hub shears or
hub vibratory rolling moments subject to aeroelastic and frequency constraints. These
aeroelastic constraints are based on a fully coupled analysis of coupled flap-lag-
torsinal analysis of the rotor blade. However, the frequency constraints of the problem

are based on the uncoupled modes.

Peters [2] has addressed the problem of the placement of frequencies alone. Similarly
the blade was assumed to be in vacuum but c.g offset from the elastc axis and twist
are included to the problem. The problem of multible frequency constraints are
reduced to a single objective function. This study, based on coupled analysis of
frequencies, haé been formulated with inequality constraints for frequency plcements.
This has been motivated by the difficulties associated with handling equality

constraints by nonlinear mathematical programming techniques like Conmin.



Following these studies, several aspects of rotor blade optimization have been
invastigated : Walsh [9] developed a formal optimization procedure for helicopter
rotor blade designs which minimizes hover horsepower while assuring satisfactory
forward flight performance. Lim and Chopra [11] developed a structural optimization
procedure for a hingeless rotor to reduce oscillatory hub loads while maintaining
aeroelastic stability in forward flight. In these study a wide range of design variables
including distribution of nonstructural mass, chordwise location of blade c.g., blade
bending stiffness are used as the design variables to structuraly optimize the blade.
Sensitivity derivarives of blade respons , hub loads and eigebvalues with respect to
design variables are derived by the use of a direct analytical approach which reduced

the computational time substantially.

Recently, Banerje and Shanthakumaran [12]reviewed applications of numerical
optimization methods in helicopter industries. As stated in this review, helicopter
optimization process is a multilevel approach, which consist of a global level and a
local level , is used to achieve an overall optimum helicopter configuration. As the
general approch at the global level the overall configuration of the helicopter is aimed
to be optimized to meet the mission requirements. At the local level the preliminary
components are optimized to meet their specific design requirments. Particularly, for
rotor blade optimization studies these primary optimizations are aimed (i)the rotor
blade airfoil profile is optimized to improve performance [13] (ii) the structural
properties of the rotor blades are aeroelastically tailored to improve performance,
properly place the blade frequencies, minimize blade and hub loads; or minimize the
blade weight [2,4,5,6,7,8,3,11] (iii) the rotor blade geometry is optimized for
performance both in hover and forward flight [9,10,14] (iv) the bearingless rotor hub

structurally tailored for cyclic stresses causing fatigue and crack propagation [15].

These separate level optimizations have several common design parameters. A design
variable which is obtained for a local optimization process may fall into a very
undesirable range of variables for the optimum solution of another local goal. In
present these local level optimization processes are coordinated with each other by

engineeering judgements based on the experiences of the design team.



In future applications, global optimizations of rotor blades can be achieved by a
highly automated global procedure which will be using a combination of several local
level optimizations. This coordination between these local level optimizations will
guide individual processes so the critical design variables are globally optimized. As
discussed before, these critical design variables tend to give different optimum values
at different local level optimizations. In current applications these design variables
are constrained for diffrent local levels and for global solutions. they are iterated

betwen these local level optimizations.

As a futur goal this procedure can be guided by an expert system based on artificial
inteligence techniques. For this type of a global optimization local level
optimizations must be integrated by each other such away that they will share
informations about the optimizations trends at each separate local procedures. This
share of trend information will help the expert system to guide each local level
optimizations to proceed such that they can optimize the critical design variables to

common global optimum values.

Current minimum design processes of helicopter rotor blades generally uses package
programs like CONMIN for the optimization processes. On the other hand the
integration of local level optimizations and optimization trend information
generations require the use of explicitly formulated optimization procedures. This
new approach brings the necessity to develop local level optimization procedures
which are specially formulated for the specified problem. In view of this new
approach, Hanagud [22] attempted to extend a previously developed [23,24]
optimization method for rotor blades frequency placement and blade weight
minimization. This paper, is extention of optimum design problem of placement of
natural frequencies has been formulated with equality constraints on frequencies and a

minimum weight objective [22].

The intended procedure is to consider the minimization problem with one frequency
constraint at each time. Aerodynamic forces and moment and the effect of the
aerodynamics on the stiffness of the system is included to the problem but both
structural aerodynamic damping effects are neglected for the initial study. The

problem is formulated such away that it can handle mass center offset from the elastic



axis. The optimization is bsed on an optimality criterion that can consider equality
constraints with little difficulty. A purpose of selecting this reduced problem is to
understand the problem of frequency placement first and then consider the problem of
combined frequency and aeroelastic constraints by the use of optimality criterion

approach studies.

1.2 MATHEMATICAL FORMULATION: OPTIMIZATION

1.2.1 Background on Optimum Design with Frequency Constraints

The problem considered in this paper falls in the category of optimum design of beam
problems with frequency constraints. The first investigated of the beam vibration
problem is atributed to Niordson [25]. He considered the problem of finding the best
taber that yields the highest possible natural frequency. Following the initial work of
Niordson, many different investigations have considered different problems in the
field of optimal vibration of beams. References [26,27,28,29,30,31] [12-17] deal with
the problem of maximization of fundamental frequencies. The problem of
maximizing higher order frequencies and rotating beams was addressed by Olhoff
[32,33,34]. The problem of minimizing weight for a specified frequency constraints
has been addressed in References [35,26,37,38,39,40]. Multiple frequency constraints
have been also addressed in References [41,42,43]. An optimality criteria approach

has been discussed in References [39,41].

The work of this paper is also based on the optimality criterion approach. However,
all the aforementioned works have considered reciprocal relationships and symmetric
stiffness matrices. The problem considered here does not always have symmetric
stiffness matrix because of the aerodynamic contributions to the stiffness of the
system. The optimality criterion has been derived by the use of biorthogonal

eigenvectors



CHAPTER 2

PROBLEM FORMULATION

As discussed in the previous sections, an important design of helicopter rotor blades is
the placement of the natural frequencies to avoid ground and air resonances. This is
done by proper tailoring of the blade mass of the stiffness distribution to give a set of
desired natural frequencies. However, this is not an easy task due to the presence of
various coupling effects as discussed in Reference [38]. The pitch angle, blade twist
and an off-set betwen the elastic and inertia axes generally couse linear coupling
effects between natural modes of the rotor blades. The scope of the present study is to
find a suitable mass distributions of the blade which minimizes the weight while
holding the selected natural frequency at a specified value. Minimum bound limits
are imposed on the selected design variables to prevent them from reaching

inpractical values during the design optimization process.

Figure 2.1 depicts a typical rotor blade with a thin walled box beam cross section
along the span and leading edge tunning masses distributed along the span. In order
to simplify the analysis the following assumptions are made. The stiffness of the
blade is contributed by the unsymmetric box section with variable geometry and
nonstuctural mass distribution along the span. Stiffness contributed by skin, etc. is
negligible. The material densityis assumed to uniform throughout the blade. For the
structural analysis of the box beam, warping effects are neglected and thin wall
approximations are used. The simplified problem is formulated as to minimize the
weight of the blade which is assumed to be the sum of the weights of the box beam
and the distributed tip tuning masses. This is also can be called as the objective

function. Any conbinations of the box beam dimensions b,h,t1,t2,t3 can be used as the

design variable.



The governing equations of motion of hingless rotor blades are formulated in different

references. Diffrent methods are used to discretize these equations. In this study, the
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Figure 2.1: Box Beam Structure Geometry

discrete parameter form of the rotor blade equations are given by reference [44].
These equations are discretized by Galerkin type finite elementmethod and are for
general coupled flap-lag-torsion dynamics of a hingeless rotor blade both for forward
and hover flight conditions with arbitrary mass and stiffness distributions. Cross
sectional mass center and aerodynamic center offsets from the elastics axis are also
included. Aquasisteady aerodynamics has been used in developing the equations
where the compressibility and stall effects are not included. The j)roblem of weight
minimization subject to a constraint on a natural frequency is often referred as to the
dual problem. The primal problem is the one where the natural frequency is

maximized holding the weight to a specified value. Both of these problems as applied



to optimum design of nonrotating beams with thin-walled cross sections undergoing
coupled bending and torsional vibrations have been addressed by Hanagud and
Chattopadhyay [23,24]. It has been observed that the optimum distributions differ
largely with and without the coupling effects.

2.1 Discretization of the Equations of Motion Using the Galerkin Finite Element
Method

The first step in solving the equations of motion is the discretization of the spatial
dependence. This is accomplished through application of the Galerkin finite element
method. Subsequently, modal analysis is used to reduce the number of discrete

unknowns describing the problem.

The approximate global solution given by equation (2.1) is extended to include the

torsional deformation:

Ve
@ }={7* =0, ).} @1
¢*

This solution is now substituted into the flap-lag-torsion equations of motion,
Equation (B.2) and (B.4) and the corresponding boundry conditions. Recall, that in
the extended Galerkin method the shape functions ¢, need to satisfy only the

geometric boundry conditions. Therefore, both the natural boundry conditions at the
‘blade tip, Equations (B.6a-c), and the mixed boundry condition, due to the root
torsional spring, Equation (B.5b), contribute to the boundry residual.

The weighted Galerkin residual, obtained through appropriate combination of the

weighted differantial equation and boundry condition residuals is given below.
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Integrating by parts and cancelling the boundry terms, the final expression, corresp is
obtained as :

. M, ® ~-GI$ W _+V.T-q,)°
I([(I)mfu. M, +[@,[{ GIg.V +W,.T+aq,
o 0 M,
Py+Pu+Pp |° 0o |*
@73 p.+p.+pPo A%, + [CD,,,(O)]’. 0 =0 (2.2)
M, +q,+9q,+9, I?¢¢

L =[w(x, o (¥)} (2.3)
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For more information see Appendix A and Appendix B.

2.2 Formulation of Equality Frequency Constraints Problem

The discrete parameter form of the governing equation of the rotor blade motion is

given by Reference [44] as

Mg+(C+Cl+(K+K,)g= 1) 2.4)

in above equation, K = Kg + K3 is a real unsymmetric matrix where indices S and

Acorresponds to structural and aerodynamic effects respectively. Finite element used
to discretize the blade and the associated degrees of fredoms are shown in Figure 2.2.
In this simplified analysis rotor blade motion in hover case is considered. The linear

undamped motion of the rotor blade is given by

Mi+(K+K, )= 1) (2.5

Elemental degrees of freedoms are rearranged such that,

e _ v ' ' ’
q = {v1:v1aw1>w1 a¢1avz>v2 Wy, W 2’¢2}(

The eigenvalue problem of the nonsymmetric system can be written as [45].

(K-o/M)q=0

(K' - 0?ML )§i=0 2.6)
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where qj and si are defined as right and left eigenvectors corrsponding to the ith
eigenvalue,w’ . Both sets of eigenvectors can be expresed as square matrices Q and

Sas

S = [8;,8, 51 | S 2.7

and orthonormality conditions can be also written as,
sTmo=1
sTKQ=1[A] (2.8)

where /\ is a diogonal matrix with eigenvalues on its diagonals.
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Figure 2.2: Beam Type Finite Element and the Associated Degrees of Freedom
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2.2.1 Formulation of the Optimization Problem

The total weight of the resulting discritized blade is

n, ' .
w=2lp.1,4, +W,) ~ 2.9)

where, p, , is the material density, , is the element lenght, 4¢ , is cross sectional

area and W is the nonstructural mass. The optimization problem can now be posed as

follows:

Minimize;
W= (pld+ ) (2.10)
i=1

Subject to:

Equilibrium condition;

K-y M)qk =0

K -0 ML )s =0 2.11)

Orthonormality condition;

SkTM q =95kl

skTK ql= dklawy (2.12)

Besides design variables are bounded by lower and upper limits;
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Duin < P S P (2.13)

As a first step only the problem of unsymmetric matrices and the associated frequency
constraints are considered. As the next step, the constrained optimization problem is
now converted into an unconstrained one by the use of Lagrange multipliers. The

modified objective function is written as

* n
W= 30,14, +W,)

i=1
T 2 T 7 2
—-p1(sk™ K, qk-o;)-p2(qk K, sk-o;)
T ‘ T 1
-vi(sk M,qk-1)-v2(ak™ M,sk-1)

-Q1(K, ~o; M, )qk- Q2(K; - 0 M, ) sk (214

In above equation w, is the frequency which is desired to set equal to the v, sk

and qk are the corresponding eigenvectors of the rotor blade system. The problem

*
now is to minimize W subject to the constraints on the design variables. The se

constraints are given by equation 2.13. This is done by obtaining stationary value of

L3
the objective function W using full resources of variational techniques, While

staying within the bounds on the design variables.

The necessary condition for the stainarity is given by,

AW =0 (2.15)
This leads to the condition,
w’

=0

1
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W 0

&, (2.16)
In view of equation 1.3 and 1.9, these conditions yiél to

Q) =-(#)s o

Q, =-(tu)q ‘ (2.17)
and

vitv,=-0! (4, +y,) (2.18)

*

The next requirement is =0  and can be derived from equation 2.14. This

i

follows a set of optimality criteria condition given below,

ow’ 04,
=pl, =
og, ' 09,

oK oK
- —:ul[sljc; T:qkj—ﬂz(qkr, ?Sk,)

(9K, ,M, (K oM
- Q -, g, — 2 -, S, (2.19)

Using equations 2.17,2.18,2.19 the optimality condition is rewritten as

04

i

6¢ﬂ

4

og, T~ gy,

oM K,
T e J=0 i=12,.... n

Pol, —u(w,?SZ,
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where nt denotes the number of elements over which the design variable ¢, does not

reach the limiting values posed by equation 2.13. Note that the global mass and
stiffness matrices M and K are replaced by the corresponding elemental quantities
M, and K, respectively,. Similary eigenvec'to'r-s g,and s, are also replaced by
corresponding elemental eigenvectors qK and sk . This has been done since there

exist a one to one correspondence between an element and a design variable or in

other words, ¢, , only appears in the element stiffness and mass matrices of the ith

element. A simultaneus solutions of equations 2.10, 2.11, 2.12, and equation 2.20

with in the bounds equation 2.13 will result in possible optimum designs.

2.2.2. Recursion Relations

The optimization procedure begins with a set of feasible initial values for the
design variables. For this initial design, solutions of equations 2.11, and 2.12, will

provide the eigenvalue ¢, and the associated eigenvectorsq, and s,. Next, it is

necessary to solve for the Lagrange multiplier m. From equation 2.20, it is seen that

there exists n,equations involving a single unknown g . An eact solution of x is

therefore not possible. In fact, only on rare occasions a solution of the optimality
conditions provides immediate solutions of the Lagrange multipliers. Hence, an
approach for finding an estimated or best value of the Lagrange multiplier, which will

denoted by z , is necessary. Once the value zz is obtained, it is necessary to obtain a

set of recursive relations of redesign equations which will provide an updated set of
values for the design variables. Based on these recursion relations, an iterative
scheme is developed to move through the design space in such manner as the
eventually locate a stationary design that statisfies the optimality criteria exactly and

therefore is an optimum design. This is done as follows:

oM
Denote: 4,=sT —q,
] 6¢ l

¢




17

oK
B =sT 2 2.21
H ¢ a¢el qe, ( )

The optiinality criterion of equation 2.20 can now be written as

H H 1 H

C, - plw?4,-B)=0 Ci=12,..n  (222)

By defining,

Z, = p’4, - B, (2.23)

equation 2.27 is written as

n, (2.24)

At the optimum design, there exists a single value of z which will satisfy

equation 2.24 exactly. However, for a non-optimum design since there is no such

single value for u, an approach for finding a estimated value for g is derived. A
least square type of approach has been used for this purpose. Since equations 2.24 are

exactly satisfied for a unique value of g only at the optimum designs, a residual R,

is defined where

(2.25)

At the optimum design, R, =0for i =1,2,.......,n,. At nonoptimum designs it

is necessary to make z as close to the exact u as possible. Hence, the idea is to take
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the sum of the squares of the residuals and minimize it with respect to z Reference

[24]. That is set,

d (&,
2_;(2 R ) =0 (2.26)

which gives at the ( n+1) th iteration, the design process requires that

>ct
1
f=— i Y (2:27)

i(wZAi _Bik,' i i(&)le1 —Bi)

i=1

at the ( n+1 ) th iteration, the design process requires that

Bin+l — wz A1n+l ___%I_ Cin+l ,IZ" < 0

@AM =B + —_—ln—c,"+1 " >0 (2.28)
H

The above equations are written in such a manner as to ensure positive
quantities on the either side of the equality sign and are necessary to develop the
recursive relations. These relations are used to obtain improved value of the design

variables and are presented below. The deatils can be found in Reference [24].

B
— \Z 2 n
¢in+1 = ¢in (aa))n) { _._(% , ﬁ” >0
Bin +_:Cin
~ 3 P
¢in+l — ¢in ( a_Jn) ) . B,-" l X ,Zl—n <0 (229)
w n An __Cn
i L(w ) i }7 i
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where a is a positive exponent, [ is a relaxation parameter, @ is the equality

constraint of the desired frequency.

The rationale for using a scaling factor of — in the recursive relations has been
»

explained in Reference [39].
2.2.3Convergenge Criteria

Once a set of new values of design variables are obtained, the same

convergence criteria as used in Reference [39] are used. They are

Aw = L <g, (2.30)

778 n+l
AW = _W—P—VL <€, (2.31)
n+l1

where €, and €,are small prescribed tolerances, W is a weight obtained from a

previous design that satisfies the condition given by equation 2.29 and ™' denotes

the weight at the ( n+1)th iteration. The iteration scheme used is the same as in
Reference [39].



CHAPTER 3

RESULTS ARE DISCUSSION

3.1.Configuration Definitions

In this section, numerical results are presented for selected soft and stiff inplane blade
configurations under the condition of hover. The initial blade configuration, befor the
start of the optimization process it is assummed that blade had uniform cross sectional
mass and stiffness distributions. Off-sets between the aerodynamic center with elastic

center and mass centers are assumed to be equal to zero throughout the analysis.

For the numerical analysis, a typical hingeless rotor blade parameters are given in
Table 3.1 are aimed to achieved. Structural loas carrying part of the blade is assumed
to be a closed thin waaed box beam and made of aluminum. Cross section of this
symmetric box beam is shown in Figure 2.1. Initial box beam dimensions are also
listed in Table 3.2 where b1 chordwise dimension of the beam is choosen as the
design varible for the optimization process. The rotor blade is devided into ten beam
elements and the beam element and the associated degrees of freedoms are shown in
Figure 2.2. In order to match the desired initial nondimensional chordwise stiffness

values, b] is choosen as 40 mm and 60 mm for soft and stiffinplane configurations

respectively.

Mass per unit length of the rotor blade is consisted of the mass of the box beam,

pA ,and nonstructural mass, m,, of the blade the cross section.

m=pA+m,
where pis density, A is cross sectional area of the box beam and m, is the

nonstructural blade cross sectional weight per unit lenngth of the blade excluding the

box beam. Throughout the optimization process, the nonstructural blade mass is kept
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as its initial design value and box beam cross-sectional weight is changed due to

changes in the box beam geometry. Mass per unit length of the blade;

— + pA
m,y

In view of mass per unit length definition. Nondimensional mass moment of inertias

of the blade cross section are written as,

i p12+y§mns

I = 3.1

" " Tod, +m ) oD
2

i _ p]3 +y3mns (32)

" (pAV _’—"zns)R2

where Ay is average cross-sectional area of the box beam, R is the length of the
blade, I2 and I3 are cross-sectional moment of inertias of the box beam in chordwise
and flapewise directions respectively. Similarly, y2 and y3are the distances between

the c.g. of of the nonstructural mass and the cross-sectional c.g. of the blade in

chordwise and flapwise directions respectively as shown in Figure 2.1.

The values of y7 and y3 are choosen and nonstructural mass per unit length, m,,is
calculated such a way that the desired nondimensional inertial values, given in Table
3.1,are achieved for the initial configuration. During the optimization process,

I m, and I m, are slightly changed due to the changes in the box beam structure. Inertial

values given in Table 3.1.
Similarly the cross sectional bending and torsional stiffnesses are

nondimensionalized as

EI, I, E

= 33
mR*e* [ y mm} pR'o* G-3)
v
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P A E
3T MR’ [A +m—m} R o?
“p
GJ = J _ J G
mR*w’® [A +mm]PR40’2
L e
p

For the desired bending and torsion stiffnesses, given in Table ‘3.1, values of
E/pR*0* and G/pR*®® are calculated based on the system parameters. The
general geometry of the box beam stucture is arrenged such a way that the
dimensional rigidities /2,13 and J and the nonstructural mass m, satisfy the desired
nondimensional parameters given in Table 3.1. During the optimization process, 12,13
and J are changed significantly due to changes in the box beam geometry and 4V is

averaged as

where Aj is the cross-sectional area of the each blade section and ne is the number of

these blade sections. Based on this averaged cross-sectional area, nondimensional

mass per unit length, mj, is calculated as,

A +—=

e P
m; = - (3.4)
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Table 3.1:Configuration Parameters for Flap-Lag-Torsion Motions in Hover

First rotating lag Frequency w1 = 0.732 (soft) (EL, = 0.01079)
o1 = 1.417 (stiff) (EI, = 0.14745)

First rotating flap Frequency wp = 1.125 (EI; = 0.01079)

First rotating torsion Frequency g 91 =3.176 (GI =0.00203)

Ip =0.00625
(L_] ~00
L,
Semicord b 00275
R
Drag Coefficient Cao=0.01
Solidity Ratio c=0.07
Lock Number v=55
2-D Lift curve slope a=2n
Weight Coefficient Cw= 0.005
Aerodynamic center offset Xa=0.0
Percone angle Bp=0.0

For the optimization process described in the previous section, derivatives of

T S - ,GJ with respect to the desgn variable @ are required. These derivatives,

o, o, oG-J

are nondimensionalized by dividing these quantities by R,

length of the blade.

3.2. Numerical Results For Selected Rotorblade Configurations

3.2.1. Soft Inplane Hingelese Rotor Blade

The first of results are obtained for the soft inplane blade configuration. Where the
nondimensional chordwise bending stiffness of the blade is E/, =0.01079 for the

uniform initial blade configuration. For the soft inplane blade configuration desired
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nondimensional rotating lagging frequency of the blade is around @, A =0.80and

this value is set as the equality constraint for the smallest lagging dominant frequency.
Physically, to achieve the minimum weight, the optimization process tends to yield to
a final blade configuration with zero stiffness at the tip, where free end boundry
conditions are enforced, and infinite value of stiffness at the root of the blade, where
built-in boundry conditions are enforced. Computationally such a solution is not
possible for a discrete parameter form of governing equations. On the other hand,
such a solution is also does not have any practical application. For these reasons,

upper and lower bounds are introduced to the problem.

Three different lower bounds for the design variable are studied. For the first case,
the ratio of the initial value and the lower bound of the cohrdwise width of the box
beam is set equal to 1/8. For the next two cases these ratios are choosen as 1/4 and
1/2 respectively. No upper bound for the design variable is enforced for any of these
cases. For the soft inplane, the initial ratio of the chordwise and flapewise dimensions
of the box beam was 8/5 and this ratio is kept as same throughout the optimization
process. In other words, the flapewise dimension of the box beam is changed as the

chordwise dimension is changed with the initial ratio of 8/5.

Result for the case where the ratio of the lower bound for the design variable
waschoosen as 1/8. This choosen ratio lets the optimization program to increase the
design variable to be reduced to 1/8 of its initial value. For the ratio of 1/8, which is
the allowed lowest ratio for the design variable, the highest mass reduction %19.9 is
obtained. The initial and optimized distribution of the design variable, chordwise and
directly proportined flapewise dimensions of the box beam structure, and the stiffness
distributions are presented Figure 3.1.a and 3.1.b. Asignificant distribution change for
the nondimensional chordwise stiffness distribution is observed where the design

variable is proportional with the chordwise stiffness with its third power.

The resultant hub forces and moments are another major concern for evaluating the
optimization procedure and the choose of the objective function. The peak to peak
value of these forces and moments are calculated by three method given in Appendix

A of Reference [22]. In this study, since a new approach to develop an expilictly
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formulated optimization procedure is aimed, only the trend in the change of these
forces and moments are investigated. An overall optimization or qualitatively
calculation of the resultant hub forces and moments in the nonrotating frame are not
aimed. Therefore the results only show the éffect of the mass reduction and the

frequency placement on the isolated blade root reactions.

The nondimensional peak to peak values of the blade root forces for the initial and
optimized configurations are showed in Figure 3.1.c and 3.1.d respectively. These
forces are calculated for the hovering case with Lock number v =5.5 solidity ratio

o = 0.07 and the collective pitch was set equal to 8, = 0.2for the all cases. An over

all reduction in blade root reactions are observed and the highest reduction is attended
for lagwise force with 18.45% decrease. The lowest reduction is obtained for
theM,,, . As 5.21%.

For the second case the ratio of the initial and the minimum value for the design
variable was set equal to 1/4. Since the lower bound of the design variable is set
equal to a higher value, the achived mass reduction is less than the first case where the
lower bound was set to be equal to 1/8. Similarly the blade root forces and moments
are reduced in general with same range observed as in the first case. Results for the
design variable , the stiffness distributions, force and moment reductions are shown in

Figures 3.2.a-3.2.d respectively.

Figure 3.3.2-3.3.d depict the results for the case where the lower bound of the design
variable is set to its highest value compared with the first two cases. As expected the
lowest mass reduction is obtained for this lower bound configuration where the blade

optimization is most restrained from converging to its idealical solution.

The overall results are tabulated in Table 3.3. As seen from Table 3.3, more
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Table 3.2 :Cross Sectional Properties of the Box Beam Structure

SOFT INPLANE STIFF INPLANE
t 2.5 mm 2.5 mm
t2 7.5 mm 7.5 mm
t3 7.5 mm 7.5 mm
hy 25 mm 25 mm
b1 40 mm 60 mm

Table 3.3: Optimization Results for the Soft Inplane Configuration

Case | Design Var. | Mass Red. Flag Fflag |Mflag | Miag | Omin/ & max
%

1 | bim=40mm | 199 185 | 139 |124 (52 |18

2 |bim=40mm |17.6 188 |142 (134 |44 | %

3 |bim=40mm |13.2 312 |20 (274 (03 | %

mass reduction for the blade mass is observed when lower ratios for the lower bound
for the design variable is used. An overall reduction in blade root forces and moments
are observed in general. Our focus of interest is the trend of these reductions with
different mass reductions. As the reductions in the blade mass is increased lesser

reductions in F,, and M 1a @7€ Observed. On the other hand, reductions in Ffjgp and

Mlag are increased paralell with the increase in reduction of the blade mass which

was defined as the objective function for the problem.

3.2.2.Hingeless Rotor Blade

The second group of the results are obtained for the stiff inplane blade configuration
where the first rotating lag frequency is @, =1.417 which correspond to the
nondimentional nonrotating frequency of £I, =.14745. For this case, the constraint

for the first lagging frequency is set equal to @ =1.16. For the stiff inplane

configuration, both upper and lower bounds for the design variable is choosen as 1/12
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and upper bound is also set just taht its ratio is 2/1. This bounds represent the case
where the design variables are least constrained compared with the next two cases.
As expected, the highest mass reduction is obtained as 13.0%. Significant reductions

are also observed for the individual blade root forces and moments except the Mjgg .

Blade root forces and moments are again calculated for the same hovering
configuration parameters used for the soft inplane configuration. The results are
presented in Figures 3.4.a-3.4.d In the second considered case, the ratios of lower and

upper bounds for the
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Table 4: Optimization Results For the Stiff Inplane Configuration

Case | Design Var. Mass | Fiyg Filag |Mplag | Miag | ®min/ ¢ max
Red. %
1 b1ini = 60 mm 13 676 [375 |655 |88 1/12

Dimax= 125 mm

2 b= 60mm 76 703 (358 |688 (94 173

blmax= 100 mm

3 biini = 60 mm 6.6 723 35.7 | 73.0 15.0 1/6

b1max = 90 mm

design variable are set as 1/3 and 5/3 respectively. These bounds represent a more
restrictive case compared with the first considered case and as expected a lower mass
reduction, 7.6% is obtained. Reductions in the forces and moments are in the same

range of the first case. Figure 7.a-7.b show the results for this second case.

The last case considered for the stiff inplane configuration is the most restrcted in
terms of the upper and lower bounds onthe design variable. The lower bound is
choosen as 1/6 and the upper bound is set equal to 3/2. The lowest mass reduction is
also observed for this configuration and only the 6.6 per cent of the blade mass is
reduced. The similar trend in the reduction of the blade root reactions. Figures 8.a-8.d

similarly depict the results for this case.

The overall results for the root reactions are tabulated in Table 4. Similar with the soft

inplane case, the reactions increased, only Fflap and is increased but these changes

was not significant compared with the changes in the reductions of other reactions.

The reductions in the other reactions, Flag Mflap and Mjqg are decreased as the

gains in the mass reductions are increased.
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APPENDIX_A

A.1.GALERKIN FINITE ELEMENT METHOD

From the preceding literature review it is evident that the Galerkin finite element
method (GFEM) has been used successfully in treating a large number of nonself-
adjoint and nonlinear problems. In the next section a brief description of the method
will be given. Emphasis is placed on its application to nonself-adjoint systems. The
GFEM, being applied directly to the governing differantial equations, makes
discretization of nonlinear terms straightforward. The ensuing nonlinear equations
can then be solved with any of the algorithms used in the conventional finite element
method.

A.1.1 Global Galerkin Method

The local Galerkin method, resulting in a finite element discretization, can best be
clarified by illustrating its application to a simple system in_References (8) and (11).

Consider the following differential equation

Q(@)+P(q) =F (A1)

which is defined in a domain D, where Q is a symmetric positive definite differential
operator of order 2r and P is a general operator of order r or less, representing the
nonself-adjoint portion of equation. Both are operating on an unknown function q to
yield a given function F. Furtermore, the function q has to satisfy certain boundry
conditions on the boundry S of the domain D. For simplicity, q is chosen as a scalar
function; however, the subsequent development is equally applicable to vector

functions.

Next, an approximate global solution having the form,
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=345, (A2)

is assumed. The ¢, are linearly independent ’sﬁépé functions and the by are the

undetermined parameters for this problem. When using the extended Galerkin
method, b, have to have continious derinatives up to order ( r-1), i.e., cr-] continuity.
Further, they need to satisfy only the geometric boundry conditions, i.e., those
containing derivatives of order not higher than ( r-1 ). This approximate solution is
then substituted into the differential equation and the boundry conditions. The error is
minimized by requiring orthogonality with respect to a set of weighting functions.
Thus, an integral statement, equivalent to the differential equation and the boundry

conditions, is obtained.

In the extended Galerkin method the original shape fonctions ¢, are chosen as

weighting functions. It is then required that the sum of the weighted residuals of both
the differential equation and the natural boundry conditions, i.e., those containing

derivatives of order r and higher, be zero (10 ). Thuse,

|8, €dD6+ |8, €5dS =0 m=12,....M, (A3)

where

€= Q(q3)+P(q3)—F (A4)

and €, is the residual associated with the natural boundry conditions.

In many cases it is possible to apply integration by parts to Eq. ( A.3 ). This reduces
the order of differentiation in the symmetric operator Q, thus lowering requirements
onthe shape functions ¢ from C2r-1 to Cr-1 continuity. Furthermore, this algebraic
step also yields terms which cancel some of the boundry residual contributions. As a

matter of fact, formulation of the weighted boundry residual are made in such a way
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that, when integrating the last one by parts, identical terms of the boundry conditions

are homogeneous, all boundary residual terms cancel out and Eq. ( A.3 ) becomes

f ©06..9°)+4,Pla*)-4,F YD =0 (AS5)

D

where O denotes the operator Q after integration by parts:

Application of the extended Galerkin method to beam bending can be found in
Reference (51).

A.1.2 Finite Element Approach

When formulating a finite element version of Galerkin’s method the domain D is
subdivided into E subdomains d, which are called elements. In each element an

approximate solution of the form

N
q =2 v.a, (A6)
n=1
is assumed, where a’are the nodal parameters and i/ are linearly independent shape

functions defined only in the subdomain associated with the element d. This local

approximation can be extended over the whole domain D by defining
& = {//f, inside d
£ ={0 outsided (A7)

n

Using Eq. ( A.7), the global approximation can be expressed as

E N
¢ =3 &a (A8)
e=1 n=1
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After imposing compatibility conditions on the nodal parameters of adjacent elements
(this is done during the process of assembly), equations (A.2) and (A.8) are

equivalent.

Equation (A.5) can be rewritten using Eq. (A.8) as

iiﬂ 0 &)+ &P bl -£:F)=0 | (A9)

=1 n=

.
.-

where Q is obtained from Q by means of previously mentioned integration by parts.
In addition, it is implicitly assumed that no inter-element discontinuities occur. Thus,
the functions &7 and its derivatives of order r up to ( 2r-1 ) represents an intermediate

step and in reality only Eq. ( A.10 ) below is used.

As a consequence of the linear independence of the &; functions, Equation ( A.9 ) can

also be rewritten on the element level.

N

ZN@(Wﬁ,WS)+W§P(W§) C—yiF}=0 (A.10)

Equation ( A.10 ) thus represents a set of N equations for each element, from which

the element matrices can be calculated.

Because of the unique choice of weighting functions in Galerkin’s method and
because of the integration by parts, Q yields symmetric matrices. Further, when P is
equal to zero, Eq. ( A.10 )is the eact same expression as found when employing the
variational formulation of the finite element method. Operator P leads to
unsymmetric matrices. However, the banded nature of the system matrices is still

preserved.
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Assembly of the system matrices and enforcement of the geometric boundary

conditions is handled as in the conventional finite element method.

Finally, it should be pointed out that when Equation ( A.3 ) is solved directly, the
approximate solution has to have C2r-1 continuity and must satisfy all boundry
conditions. The generation of such finite elements is of course more difficult, in
particular for nonlinear terms, than generation of elements for the solution of
Equation ( A.5). In addition, all matrices will be nonsymmetric. On the other hand,
due to the higher-order continuity, one might expect more rapid convergence. Thus, it

becomes obvious that integration by parts plays an important role.
A.1.3 Convergence Properties

The Galerkin finite element method is equivalent to the conventional finite element
method when considering self-adjoint problems. It is well known that elements which
are conforming and are able to approximate constant strain will ensure convergence
for this class of problems. Some elements even display monotonic convergence, thus
allowing use of efficient extrapolation procedures and give an upper bound on the

potential energy.

Based on Mikhlin’s work (52),(53), Hutton and Anderson (11) and Kikuchi (9)
established convergence criteria for the Galerkin finite element method when applied
to a wider class of problems than those amenable to the variational FEM. However,
numerical results show that convergence is, in general, not monotonic (22) and
becomes less rapid when the nonself-adjoint character of the system ﬁnder

consideration becomes more pronounced (9).

Convergence studies for the Galerkin finite element method, when applied to

nonlinear systems, are of numerical nature only (48).

Noor and Whiteman (54) derived an error bound for a certain class of nonlinear
problems, solvable by the GFEM. There are a number of studies on convergence,

accuracy, and stability of the FEM in nonlinear problems. They are, however, either
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too general to be useful for practical applications or restricted to certain special
classes of problems. On the other hand, a large number of nonlinear problems have

been solved using the FEM with great success.

The comments made in this section are basically to be understood as an indication of
the ongoing research effort. The rotary-wing aeroelastic problem because of its
complexity will hardly be accessable to any convergence proof. Thus, for the time
being, convergence can only be established numerically (55), i.e., by refining the

discretization process.
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APPENDIX_B

APPLICATION OF THE METHOD
TO THE FLAP-LAG-TORSION AEROELASTIC PROBLEM
IN FORWARD FLIGHT

B.1Brief Description of the Equations of Motion

The equation of motion for the flap-lag-torsion problem in forward flight are coupled
nonlinear, nonconservative, partial differential equations with periodic coefficients. The
structural operator is taken from Reference [56]. The inertia and aerodynamic loads are
taken from Reference [2].

Axial equilibrium:

Ty+pPn=0 B.1)
Lag equilibrium:

_(M3,X +G_j¢xw—,ﬁ —FXT),X

(B.2)
~qyx +P,;+P, +P,=0
Flapequilibrium:
(]Mz,x +(~;j¢,xl7n' _WXT—),X (B.3)

~ Qo x + Py + Py + Py =0
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Torsion equilibrium:

My +M, +qy t 9 tqm =0 (B.4)

The corresponding boundry conditions are :

At X, =0:
V-l =y =W, =0 (B.53)
My K, =0 (B.5b)
At x, =1:
M, 4 _5‘7¢XW_)0{ +VT -q;,, =0 (B.6a)
M,y +GJI Vo + W, T +qy =0 (B.6b)
M,=-M,=M, =0 (B.6¢c)
T=0 (B.6d)

The boundry conditions at the free end, ¥, =1, are naturel boundry conditions,

expressing the fact that the shears, moments, and tension at the blade tip are zero. At the

blade root, X, =0, the boundry conditions for bending involve only geometric quantities,

i.,e., the bending displecements and slopes. The mixed boundry condition for torsion,

Equation (B.5b ), is a result of the root torsional spring.
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Equations (B.1)- (B.6) are written in a general form which is most suitable when using
the Galerkin finite element method to discretize the spatial dependence. All quantities

appearing in these equations are defined below.

The elastic moments are given by:

M, = (ET, cos? Ry, + EI, sin* Ro05 Y x +(&T, - ET,)

L N . (B.7a)
] EW’XX — OV o |SIN 2RO, + W 1y cos2R.6,

—_  — 1~ — . 78
M, =—(ET, - EI, ﬂEVﬂ +¢W,xx)sm 2RO + ¢V °°S2Rc96} B.7b)
- (Ei2 sin? R0, +EI, cos’ Rc%)’l—’,n
M, =(ET, - ET,)

A e

B %3 — W )sin 2R 04 ~V 3 W xx cOS 2&96} B
My =GI(py +V W) (B.7d)

The distributed force and moment vectors, per unit length of the undeformed elastic axis,

are expressed as:

D =Pl +Pé +Pé, (B.8a)
q=qxéy +9,8, +q,, (B.8b)
In general, these loads contain inertia, aerodynamics, and structural damping

contributions, denoted by the subscripts I, A and D, respectively. In writing the equations
of motion, (B.1)-(B.4), the final form of the loads, Reference [2], has been used. Note,
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however, that due to a more consistent applications of the ordering scheme, the torsional

inertia load, Equation (B.10c) differs in some higher-order terms.

Inertia loads:
Py =7, +%, +27) (B.9a)
Py =7n"(l7—l'/_.+ ZﬂPW—2ﬁ+ ¥, cosf, + ¥,0, sin 06) (B.9b)
P, = r_n'(— B, +%,)-W - 28,7 ~ %0, cosea) (B.9c)
qy = —mX, cosec;(él "H_‘o)"'éa(imz —ims)sm 20, (B.10a)
=4y
4y =3, sinf, (€, +5‘o)—29'0(]_m2 sin” 0, +1,,; cos’ GG) (B.10b)

= qy]

qy =mx, [Sin 00(1%_7"'17,)((51 'H?o))

+c0s0, (- (B, + 7, J&, +%,)-W 28,7

+¢(i7' —17)+¢V,X (6 +%,)- 2, 17)]— (F,+T,)

(90 +5+WX?X)— (imz _im3)

.[cos 26, (gﬁ ~ BV + 2¢l7:{ )+ sin 24, (% + I—/.:X ﬂ (B.10c)

_(imz sinZGG +I—m3 COSZ erW-;:Xﬁ-FV;"X)

= -—,qul +W,xqzr +q,
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Aerodynamic loads:
. Cp o _
P =T 6aF =+ o) + S8F 0,1 28

+(GGF2 +2%°— ,)ﬁ;@ +(0,F, - 2F, +6,F, )7,

+ FFy$ +(0,F, - 2F, - 2B, F, W +(0,F? + F,F, W, Wy
~FXW W +(.FV + FFEV, + FEW, )
+(- 27 + F7 T T, +(FT + F2V W o8

+(90F2 +29&F1)v7+(961~; ~2F, +0,F, W +F,F,$
a

+ (eGFE’:WX +F2¢)?/L+ (QGFsV,X ~2B,V - 2F3W:1’ +Fl¢y,
+EF4WX¢ +F3¢W,XVL + (‘ ZWJ +FIVXWJ’ +F3¢?X>—V—
O,V W + Eig+ 4777 |

(B.112)

Pu= "FK’“ 0sF, + F, ~'éc;};;)Fl +ﬂPF;V+(F2 “ZGGF;)F;V.X

+EFW, ~Fp+FVW, +(F2 - B2V 7,
- 2FFV ¢ +(F, - 20,FV + F¥ ~ FF.$

(77 - 2P g + EF W + V7| (B.11b)

N R2 _ _ . .
g, =-Tb Zl—z(o,s—x,,)(1-x,,)(eG +)F,

_R_ - -
-TI'd _l‘xA[(Fz _HGFl)Fl + BBV +(F2 “'ZHGF;)F;V,X
+FF W, ~F ¢+ FVW, +(F2 ~F2 VW,

~2FFV o6+ (F, - 20,F, Y + R
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FJ7. 7 —2F gV + 7 +V W | ®.11c)
— = R .
F, =¢ +X, +,u75m|// (B.11d)
F2=ﬂ.§+,u§ﬁpcosy/ . - (B.11e)
R
F, = ,u—l—cosw (B.111)
Ry, -
F,=b 7(1,5—x,,) (B.11g)
RZ
F, =b'2—l—2—(0,5—fA)(1—fA) (B.11h)
Damping loads:
P =8l (B.123)
P =Bl (B.12b)
9 =—Z P (B.12¢)

The coupled flap-lag-torsion problem is thus defined by Equations (B.2) — (B.4), together
with the elastic moment, Equations (B.7), and the loads, Equations (B.9) — (B.12). Note,
that the tension 7 will be eliminated using the axial equation and corresponding boundry
condition, Equations (B.1) and (B.6d). The axial displacement, # , will be replaced using
the assumption that the blade is inextensional in the axial direction, an assumption which

is commonly made in rotary-wing aeroelasticity.
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APPENDIX_C

C.1 LINEER UNDAMPED DYNAMIC EQUATION :

rka}+ (Bl el Lda )=o)

132X g Xe
Le2 ; d x le
_pXe  Xe 1-32¢ 4222
Xe L L2 L L
y=n={ 3 3 N
3Xe _nXe @ = 4—L—e—4f ,
2 3
L. L. ) :
2 3
X, X _ Ao o
L Le L2 N Le Le J
Xo=r1e t Xe

77 B6.F.-2F)
vy V{0 F SRRy 7o FF A0 FF, 7§ FF.

| n7BE
L4§]=F£ +n ¥ (F.-20.F)F, nn.F.F, -nd F

R0y Frd V. (F20.FF)  PUISEFFE,  -$# 5%
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