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SUN’IN JAVA IDL DERLEYĠCĠSĠNĠN STATĠK ÇAĞRI ARAYÜZÜ KULLANILARAK 
HĠZALAMA/GERĠ HĠZALAMA BAġARIMININ ĠNCELENMESĠ 

ÖZET 

Tezimiz, dağıtılmış sistemlere genel bir bakışla başlamaktadır. Dağıtılmış sistemler 
aşağıdaki evreleri izleyerek gelişmişlerdir :  

 Ana çatılar için yazılmış tek parçalı yazılımları kullanan Tek Parçalı 
Sistemler. 

 Hizmetler sağlayan bir sunucu ve sunucudan hizmetler isteyen bir 
istemciden oluşan İstemci/Sunucu Sistemleri.  

 Sistemi, kullanıcı arayüzü katmanı, iş kuralları katmanı ve veritabanı erişim 
katmanı olmak üzere parçalara ayıran Çok Parçalı İstemci/Sunucu 
Sistemleri. 

 Uygulamanın tüm işlevselliğini, sistemdeki veya diğer sistemlerdeki diğer 
nesnelerin sağladığı hizmetleri kullanabilecek nesneler olarak sunan 
Dağıtılmış Sistemler. 

Bundan sonra, dağıtılmış nesneleri ve bileşenleri tanıttık. Dağıtılmış nesneler ağ 
üzerinde herhangi bir yerde bulunabilecek genişletilmiş nesnelerdir. Bileşenler, 
değişik ortamlarda çalışan, sistemin en küçük kendi kendini yönetebilen, bağımsız 
ve kullanışlı parçalarıdır.  

Bir iş nesnesi üç ana parçadan oluşmaktadır :  

 İş Mantığı Nesnesi, nesnenin belirli olaylara karşı nasıl davranacağını 
tanımlar.  

 İş İşleme Nesnesi tüm sistem için iş mantığının sağlanmasına yardımcı olur.  

 Sunum Nesneleri kullanıcıya bileşenin bir gösterilimini sağlar. 

Genel Nesne İstek Aracısı Mimarisi (CORBA), nesne sistemlerinin geniş çeşitlilikleri 
arasında entegrasyona izin vermesi için Nesne Yönetim Grubu (OMG) tarafından 
yapılandırılmıştır. CORBA istemci/sunucu etkileşimini kolaylaştırmak için gerekli 
olan ve istemci ve sunucu tarafların ikisinde birden koşan bir dağıtılmış yazılımdır, 
yani bir aracı birimdir.  

OMG’nin Nesne Yönetim Mimarisi dört ana bileşenden oluşmaktadır :  

 Nesne İstek Aracısı (ORB), CORBA nesne yolunu tanımlar. 

 CORBA Hizmetleri, yolu (ORB) genişleten sistem-düzeyi nesne çalışma 
çerçeveleri tanımlar.  
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 CORBA Kolaylıkları, iş nesneleri tarafından doğrudan kullanılan yatay ve 
dikey uygulama çalışma çerçeveleri tanımlar. 

 Uygulama Nesneleri, iş nesneleri ve uygulamalarıdır. 

Bir ORB aşağıdaki parçalardan oluşur :  

 İstemci kütükleri veya statik çağrı arayüzü (SII), bir nesnenin OMG IDL 
tanımlı işlemlerine erişimi sunacaktır.  

 Dinamik çağrı arayüzü (DII),  nesne çağrılarının dinamik inşasına izin verir. 

 Gerçekleme iskeleti, nesnenin her tipini gerçekleyen metotlara bir arayüzdür.  

 Dinamik iskelet arayüzü (DSI), nesne çağrılarının dinamik işlenmesine izin 
verir. 

 Bir nesne bağdaştırıcısı, bir nesne gerçeklemesinin, ORB tarafından 
sağlanan hizmetlere erişiminin temel yoludur. 

 ORB arayüzü, ORB’a doğrudan giden arayüzdür.  

 IDL derleyicisi, arayüz tanımlamalarını yüksek-düzey dil yapılarına 
dönüştürür. Arayüz tanımlamaları OMG Arayüz Tanımlama Dili (OMG IDL) 
ile belirtilir.  

 Arayüz ambarı koşma anında bulunabilir bir biçimde, IDL bilgisini temsil eden 
kalıcı nesneler sağlayan bir hizmettir. 

CORBA Hizmetleri, IDL tarafından belirtilmiş arayüzlerle paketlenmiş, sistem düzeyi 
hizmetlerin koleksiyonlarıdır. OMG onbeş nesne hizmeti için standartlar 
yayınlamıştır : yaşam çevrimi, kalıcılık (kalıcı durum), adlandırma, olay, eşanlılık, 
bölünmez işlem, ilişki, dışarılama, sorgu, lisanslama, özellikler, zaman, güvenlik, 
tacir ve koleksiyon hizmetleri. 

Genel ORB Arası Protokol (GIOP), ORBlar arasındaki iletişim için bir standart iletim 
sentaksı ve bir mesaj biçimleri kümesi belirtir. Her CORBA 2.0 ORB’un desteklemek 
zorunda olduğu İnternet ORB Arası Protokolü (IIOP), GIOP mesajlarının TCP/IP 
bağlantıları kullanılarak nasıl karşılıklı değiştirileceğini belirtir. OMG ayrıca, Ortama 
Özel ORB Arası Protokollerin (ESIOP) açık sonlu bir kümesi için öngörümde 
bulunur. 

Alanlar sistemlerin, genel karakteristiklere sahip olan bileşenlerin koleksiyonlarına 
ayrılmalarına izin verir. Alanlar arasında karşılıklı ortaklaşma, iki köprüleme 
mekanizması ile sağlanır : 

 Aracılı köprülemede tüm alanlar bir genel protokole köprülenir.  

 Aracısız köprülemede ise iki alan, mesajın gerekli parçalarını çeviren bir 
köprü üzerinden birbirleriyle doğrudan konuşur.  

Tezimiz CORBA başarım analizinin yalnızca hizalama/geri hizalama yönüyle 
ilgilenmiştir. CORBA’nın yalnızca statik yönlerini kapsadık, dinamik yönlerini değil. 
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CORBA başarım ölçümüyle ilgili birçok yüksek lisans çalışması ve yayın 
bulunmaktadır. Ayrıca OMG tarafından, CORBA’nın başarım ölçümü için kurulmuş 
bir özel ilgi grubu da bulunmaktadır.  

Başlığımızın da yansıttığı gibi hizalama/geri hizalama başarımını inceledik. 
Hizalama/geri hizalama, tiplendirilmiş veri nesnelerinin yüksek düzey gösterimlerden 
düşük düzey gösterimlere çevrilmesini (hizalama)  ve tersi işlemi (geri hizalama) 
anlatır. Düşük düzey gösterimler, Genel Veri Gösterimi (CDR) kuralları izlenerek 
elde edilir.  

Ölçüt takımımız üç oyuncudan oluşmaktadır :  

 Değer Hizmetlisi, istemciden istekleri kabul eder ve tepkileri geri gönderir.  

 Zaman Hizmetlisi zaman işlemleriyle ilgilenir.  

 İstemci, sunucudan çağrılar yapar. 

Ölçüt ortamımız aşağıdaki ölçüler ele alınarak inşa edilmiştir :  

 Ölçütümüzü Dünya çapında en yaygın bulunabilen CORBA/Java ORBu 
üzerinde uyguladık. Yani Sun’ın Java IDL derleyicisini kullandık. 

 Sunucularımız ve istemcimiz aynı makinede (yerel çağrılar) veya iki kesim 
farklı makinelerde (uzak çağrılar) konumlandırıldı. 

 Metotlarımız tekyönlü veya çiftyönlü olarak tanımlandı.  

 Hiçbir parametre almayan ve hiçbirşey geri döndürmeyen bir fonksiyonumuz 
var. Ayrıca parametrelerimiz istemciden sunucuya, sunucudan istemciye, ve 
her iki yönde akış yaptı. 

 Tiplerimiz üç grup olarak sınıflandırıldı :  

 İlkel Tipler boolean, char, wchar, long, unsigned long, long long, 
unsigned long long, short, unsigned short, float, double, octet ve long 
double IDL tiplerini içermektedir. 

 İnşa Edilmiş Tipler yapıları, arayüzleri, birleşikleri ve söylenmişleri 
içermektedir. 

 İçeren Tipler dizileri, sıraları ve katarları içermektedir.  

İnşa ettiğimiz ölçütü koşturduk. Genel sonuçlarımıza göre : 

 Yerel çağrılar uzak çağrılardan daha hızlıdır. 

 Tekyönlü uyarmalar ikiyönlü uyarmalardan daha hızlıdır. Ancak, tekyönlüler 
güvenilir değildir ve bazıları testi tamamlayamamıştır. Diğer taraftan, tüm 
ikiyönlü çağrılar ölçümleri başarıyla tamamlamıştır.  

 Küçük boyutlu verilerin her akışı için hemen hemen aynı sonuçları aldık. 
Ancak daha büyük boyutlar için azalan sırada zamanlar şu şekildedir : iki 
yönde, istemciden sunucuya, sunucudan istemciye akış.  
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 İlkel tipler için düşük boyutta parametreler için yakın sonuçlar elde ettik. 
Yüksek boyutlu parametreler için sonuçlar tiplerin boyutlarına göre 
sıralanmıştır. 

 İnşa Edilmiş Tipler için : 

 Yapılar için ilkellerle aynı sonuçları aldık. 

 Söylenmişler için unsigned long tipi ile aynı sonucu aldık. 

 Arayüzlerle parametreler yavaş geçmektedir.  

 Bir birleşik içinde octet geçirmek, bir double geçirmekten daha kısa 
sürmektedir. 

 İçeren tipler için  : 

 Sıralar ve dizilerle aynı sonuçları elde ettik. 

 Katarlarla karakter içerenler için aynı sonuçları elde ettik. 

 Geniş katarlarla geniş karakter içerenler için aynı sonuçları elde ettik. 

Sonuç olarak, hemen hemen tüm statik IDL yapılarını bu tezde test ettik. Birçok ham 
verimiz var ve karşılaştırmalar bu veriler üzerinde yapılabilir. Yalnızca bunların 
bazıları için sonuçlar veriyoruz. İsteyen herkes verilerimizden gereksinim duyduğu 
sonuçları çıkarabilir. 
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MARSHALLING/DEMARSHALLING PERFORMANCE ANALYSIS OF SUN’S  

JAVA IDL BY USING STATIC INVOCATION INTERFACE 

SUMMARY 

Our thesis begin with an overview of the distributed systems. Distributed systems 
evolved by following the following eras : 

 Monolithic Systems uses monolithic software written for mainframes. 

 Client/server Systems are comprised of a server that provides services and a 
client that requests services of the server. 

 Multitier Client/server Systems partitions the system into a user interface 
layer, a business rules layer, and a database access layer. 

 Distributed Systems expose all functionality of the application as objects, 
each of which can use any of the services provided by other objects in the 
system or in other systems. 

After that, we introduced the distributed objects and components. Distributed objects 
are extended objects that can reside anywhere on a network. Components are the 
smallest self-managing, independent, and useful parts of a system that works in 
multiple environments.  

A business object consists of three main parts : 

 Business Logic Object (BLO) defines how the object reacts to certain events. 

 Business Process Obect (BPO) helps maintain the business logic for the 
entire system. 

 Presentation Objects provide the user with a representation of the 
component. 

The Common Object Request Broker Architecture (CORBA) is structured by Object 
Management Group (OMG) to allow integration of a wide variety of object systems. 
CORBA is a middleware which is  a distributed software required to facilitate 
client/server interaction and runs on both the client and server ends of a transaction. 

OMG’s Object Management Architecture (OMA) is composed of four main elements: 

 Object Request Broker (ORB) defines the CORBA object bus. 

 CORBA Services define the system-level object frameworks that extend the 
bus. 
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 CORBA Facilities define horizontal and vertical application frameworks that 
are used directly by business objects 

 Application Objects are the business objects and applications. 

An ORB  consisted of following parts : 

 The client stubs, or static invocation interface (SII), will present access to the 
OMG IDL-defined operations on an object. 

 The dynamic invocation interface (DII)  allows the dynamic construction of 
object invocations. 

 The implementation skeleton is an interface to the methods that implement 
each type of object. 

 The dynamic skeleton interface (DSI) allows dynamic handling of object 
invocations 

 An object adapter is the primary way that an object implementation accesses 
services provided by the ORB. 

 The ORB Interface is the interface that goes directly to the ORB. 

 The  IDL compiler brings the interface definitions to high-level language 
constructs. Interface definitions are specified by OMG Interface Definition 
Language (OMG IDL). 

 The Interface Repository is a service that provides persistent objects that 
represent the IDL information in a form available at run-time. 

CORBA services are collections of system-level services packaged with IDL-
specified interfaces. OMG has published standards for fifteen object services : life 
cycle, persistence (persistent state), naming, event, concurrency, transaction, 
relationship, externalization, query, licensing, properties, time, security, trader and 
collection services. 

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a 
set of message formats for communications between ORBs. Internet Inter-ORB 
Protocol (IIOP), to which every CORBA 2.0-compliant ORB must supply, specifies 
how GIOP messages are exchanged using TCP/IP connections. OMG also makes 
provision for an open-ended set of Environment-Specific Inter-ORB Protocols 
(ESIOPs). 

Domains allow partitioning of systems into collections of components which have 
some characteristic in common. Interoperability between domains is achieved by 
using two bridging mechanisms : 

 In mediated bridging all domains bridge to a single common protocol 

 In immediate bridging two domains talk directly to each other over a single 
bridge that translates whatever parts of the message require it. 
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Our thesis only concerned the marshalling/demarshalling aspects of performance 
analysis of CORBA. We only covered the static aspects of CORBA and not the 
dynamic aspects. 

There are a lot of master studies and publications related with performance analysis 
of CORBA. Also there is a special interest group founded by OMG on the 
benchmarking of CORBA. 

As our title reflects, we analyzed the marshalling/demarshalling performance. The 
marshalling/demarshalling refers to the transformations of typed data objects from 
higher-level representations to lower-level representations (marshalling) and vice 
versa (demarshalling). The low-level representations are created by following the 
rules of Common Data Representation (CDR). 

We have three players constitutes our benchmarking team :  

 Value Server accepts requests from the client and sends responses back.  

 Time Server handles the time operations.  

 Client makes calls from server. 

Our benchmarking environment is constructed by considering the following criterias : 

 We applied the benchmark to most commonly available CORBA/Java ORB 
worldwide, Sun’s Java IDL compiler. 

 We have the servers and the client at the same computer (local calls) or two 
sides are located at different computers (remote calls) 

 Our methods are defined as oneway and twoway. 

 We have a function which takes no parameters and returns nothing. Also our 
parameters flow from client to server, from server to client and in both 
directions. 

 Our types are classified into three groups : 

 Primitive types include the IDL types boolean, char, wchar, long, 
unsigned long, long long, unsigned long long, short, unsigned short, float, 
double, octet and long double. 

 Constructed types include structs, interfaces, unions and enums. 

 Container types include arrays, sequences and strings. 

We run the benchmark constructed. Our general results show that : 

 Local calls are faster than remote calls for big-sized data. For small-sized 
data, remote calls perform better. 

 Oneway invocations are faster than twoway invocations. But oneways are 
unreliable and some of them could not completed the test. On the other 
hand, all the twoway calls successfully completed the measurements. 
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 We see the nearly same results for small sized data for all the flows of data. 
But for the larger sizes the descending order is from server to client and  
client to server back, from client to server and from server to client. 

 For the primitive types we have the close results for small-sized parameters 
and results are ordered with sizes of types for larg-sized parameters. 

 For constructed types : 

 We have the same results for primitives with structs for small sizes. For 
big sizes, structs perform worse. 

 We have the same results for unsigned long with enums. 

 We have slow passing of parameters with interfaces. 

 Passing an octet within a union takes less time than passing a double. 

 For the container types : 

 We have the same results with sequences and arrays. 

 We have the same results for strings with char containers. 

 We have the same results for wstrings with wchar containers. 

As a conclusion we tested nearly all static IDL constructs in this thesis. We have a 
bulk of raw data, and comparisons can be made on these data. We only give 
conclusions for some of them. Whoever wants can deduce the conclusions he/she 
needs from our data. 
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1. HISTORY OF DISTRIBUTED SYSTEMS 

Here we will have an overview of distributed systems.  This chapter is mainly taken 

from [1]. 

1.1 Monolithic Systems 

We can say that distributed systems began with mainframes. Mainframes are 

managed centrally and software systems written for mainframes were often 

monolithic, i.e, the user interface, business logic, and data access functionality were 

all contained in one large application. A typical monolithic application architecture is 

illustrated in Figure 1.1 [1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 :  Typical monolithic application architecture. 



 2 

1.2 The Client/Server Model 

After the monolithic systems we see the client/server architecture. Client/server 

computing systems are comprised of two logical parts :  

 a server that provides services. 

 a client that requests services of the server (see Figure 1.2).  

Together, the two form a complete computing system with a distinct division of 

responsibility.  

Client (User) A

Client (User) B

Client (User) C

Server

 

Figure 1.2 : A traditional client/server system. Clients request 
services of the server independently but use the same interface. 

Client/server computing has gained popularity in the recent years due to the 

proliferation of low-cost hardware and the fact that a model relying on monolithic 

applications fails when the number of users accessing a system grows too high or 

when too many features are integrated into a single system.  

We defined the client as the component of the client/server architecture which 

requests services from servers. In addition, clients can also offer services to other 

clients. That is, a client can act as a server to other clients.  

According to the server’s behaviour, we can group server side of the client/server 

architecture into two models : 

 Pull Server Model 

 Push Server Model 
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Traditional servers are entities that passively await requests from clients and then 

act on them. This model is named pull server model. But, servers can actively 

search out changes in the state of clients and take appropriate action. This model is 

called push server model. 

Most client/server systems are flexible with regard to the distribution of authority, 

responsibility, and intelligence. A part of a system with a disproportionate amount of 

functionality is called fat; a thin portion of a system is a part with less responsibility 

delegated to it [2].  The server portion of a client/server system almost always holds 

the data, and the client is nearly always responsible for the user interface; the 

shifting of application logic constitutes the distinction between fat clients and fat 

servers (see Figure 1.3).  

Client

User Interface

Application Logic

Server

Data

 

Figure 1.3 : Since the distribution of the user interface and data is fixed, the placement 
of the application logic is what distinguishes fat-client from fat-server systems. 

The fat server model is often used to ensure greater compatibility between clients 

and servers : the more work the server does, the less dependent it is on the client. 

The fat client model can be used at the expense of universal compatibility [3]. 

1.3 Multitier (N-Tiered) Client/Server 

The canonical client/server model assumes exactly two discrete participants in the 

system. This is called a two-tier system; the application logic must be in the client or 

the server, or shared between the two. It is also possible to have the application 

logic reside separately from the user interface and the data (in other words, to 

partition the system into three logical tiers : the user interface layer, the business 

rules layer, and the database access layer, see Figure 1.4 [1])  turning the system 

into a three-tier system.  In an idealized three-tier system, all application logic 

resides in a layer separate from the user interface and data.  Decoupling the 

application logic from the data allows data from multiple sources to be used in a 

single transaction without a breakdown in the client/server model.  
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1.4 Distributed Systems 

Rather than differentiate between business logic and data access, the distributed 

system model simply exposes all functionality of the application as objects, each of 

which can use any of the services provided by other objects in the system, or even 

objects in other systems. The architecture can also blur the distinction between 

client and server because the client components can also create objects that 

behave in server-like roles. 

The distributed system architecture achieves its flexibility by enforcing the definition 

of specific component interfaces. The interface of a component specifies to other 

components what services are offered by that component and how they are used. 

As long as the interface of a component remains constant, that component's 

implementation can change dramatically without affecting other components. 

Distributed systems are really multitier client/server systems in which the number of 

distinct clients and servers is potentially large. One important difference is that 

distributed systems generally provide additional services, such as directory services, 

which allow various components of the application to be located by others. 

 

Figure 1.4 : Three-tier client/server architecture.  
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2. DISTRIBUTED OBJECTS AND COMPONENTS  

Distributed systems are built on the object oriented approach. Classical objects do 

not suffice for distributed systems. They are replaced with distributed objects and 

components. In this section we will present you with distributed objects and 

components.  This section is mainly taken from [3].  

2.1 From Objects to Distributed Objects 

As computing systems evolved, the paradigm of algorithmic computation was  

replaced by the use of interacting objects. Classical objects can be viewed as self-

contained entities that encapsulate data, and a set of operations that act on that 

data.  

Distributed objects are extended objects that can reside anywhere on a network and 

continue to exist as physical standalone entities while remaining accessible remotely 

by other objects. Robust distributed object systems allow objects written in different 

languages and compiled by different compilers to communicate seamlessly via 

standardized messaging protocols embodied by middleware. 

2.2 Benefits of Distributed Objects 

Distributed objects allow us to construct scaleable client/server systems by providing 

modularized software that features interchangeable parts.  

Self-managing distributed objects take responsibility for their own resources, work 

across networks, and interact with other objects. These capabilities are frequently 

given to objects through a distributed object framework that provides middleware to 

regulate the necessary inter-object communications and provides a resource pool 

for each object that is deleted when that object ceases to exist.  

Self-managing objects are used easily by other objects since no management 

burdens are imposed on the client object; it receives object services at no cost. 

Objects crafted to these specifications rely on a solid event model that allows 

objects to broadcast specific messages and generate certain events. These events 

are listened for by other objects, which then take action based on them. Each 

listening object responds to a given event in its own manner. By using object-
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oriented techniques such as polymorphism, closely related objects react differently 

to the same event. These capabilities simplify the programming of complex 

client/server systems. 

Objects can generate events to notify other objects that an action should take place. 

In this sense, events can be viewed as synchronization objects that allow one thread 

of execution to notify another thread that something has happened (see Figure 2.1). 

Using this model, an event can notify a component that it should take a certain 

action. An object that can listen for events provides a more robust framework for 

interaction between objects than a model that forces objects to wait for the next 

instruction. 

Because of the strict encapsulation that objects provide, distributed objects are a 

fundamentally sound unit from which to build client/server applications when 

separation of data is important. Cooperating objects form the logic portion of most 

substantial client/server systems because of the rich interaction services they offer 

[4] [5].  

Supplier A

Supplier  B

Event

Channel

Object

Supplier C

Consumer A

Consumer B

Consumer C

 

Figure 2.1 : A sample event management system. Depicted is CORBA’s Event Service. 

Since distributed objects allow applications to be split up into lightweight pieces that 

can be executed on separate machines, less powerful machines can run demanding 

applications. 

2.3 Components 

Components are the smallest self-managing, independent, and useful parts of a 

system that works in multiple environments. Components promise rapid application 

development and a high degree of customizability for end users, leading to fine-

tuned applications that are relatively inexpensive to develop and easy to learn. 
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Components are most often distributed objects incorporating advanced self-

management features. Components may contain multiple distributed or local 

objects, and they are often used to centralize and secure an operation. 

The interface of a component should be the primary concern of its developer. Since 

components are designed for use in a variety of systems and need to provide 

reliable services regardless of context, developers attempting to use a component 

must be able to identify clearly the function of a component and the means of 

invoking this behavior. 

2.4 Client/Server Using Distributed Objects 

Tht client/server computing using distributed objects is depicted in Figure 2.2.   

Clients

Application

Remote Method

Invocation

Object

Server

Object

Object

 

Figure 2.2 : Client/server computing using distributed objects. Communication between 
components (denoted by arrows) is facilitated through ORBs (which have been omitted for 
clarity) 

2.5 Business Objects 

Business objects are self-managing components used to represent key objects or 

processes in a real-life system. Business objects are shippable products that usually 

have a user interface and the ability to cooperate with other objects to meet a 

certain user need. Business objects allow application-independent concepts to be 

described at a high level, minimizing the importance of languages, tools, and 

application-level concepts. Business objects represent a major breakthrough in the 

modeling of business events since they can describe both a portion of a real-world 

business system and the executing piece of the information system supporting that 

portion of the business [2] [6]. 
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Like other components, business objects should support late binding so they can be 

interchanged easily and interact immediately with existing components; they should 

also support standard component features such as event handling and state 

maintenance.  

The Business Object Model Special Interest Group (BOMSIG) has proposed a 

standard for business objects. The standard calls for each business object to be 

composed of three types of cooperating objects (see Figure 2.3 [6]). 

 Business Logic Object (BLO) defines how the object reacts to certain events; 

it is responsible for the business logic of the component as well as for storing 

the relevant business data. 

 Business Process Obect (BPO) helps maintain the business logic for the 

entire system. The primary difference between a BPO and a BLO is the 

logical lifetime of the unit of logic : BPOs traditionally handle long-lived 

processes or processes related to the system as a whole. 

 Presentation Objects provide the user with a representation of the 

component, usually but not necessarily visual. 

A normal business object is likely to have multiple Presentation Objects, but usually 

has one BLO and BPO. Because these three objects are managed by one object, 

collaborating components see only one object that provides the aggregate services 

of its constituent objects. 

Business Object
Servers

Presentation

Object A

Business

Process Object

Business Logic

Object

Presentation

Object B

Documents

Other

Business

Objects

Other

Interfaces

 

Figure 2.3 : The parts of a business object and their communication with other 
system objects 

This three-object construction can be viewed as a three tier client/server system 

(see Figure 2.4) : 
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 Tier 1 : Visual aspects of a system, usually handled by a client system. 

 Tier 2 : Data for the object and the application logic required to meaningfully 

act on it. 

 Tier 3 : Data and application logic required to integrate the business object 

with other business objects and existing systems, such as legacy servers or 

databases. 

User Interface

Visual Attributes

Application Logic

Data

Legacy Systems

 

Figure 2.4 : Three tiers in a business object. 

The middle tier plays the largest role in this organizational scheme. Tier-two objects 

communicate directly with the tier-one objects to provide feedback to the user; they 

also provide the logic for the entire business object. Furthermore, tier-two objects 

communicate with multiple data repositories (tier three) and collaborate with other 

business objects to assist them provide services. This model separates the client 

from data for which it is not logically responsible. By channeling all requests for 

information through the tier-two servers, major changes (such as the implementation 

of a new database system) remain completely transparent to the user. If ORBs are 

used for communication between the clients and the tier-two objects, robust system 

services such as load balancing and event exchanges are implemented easily and 

applications remain scaleable. 
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3. CORBA OVERVIEW 

This chapter is mainly taken from the Object Management Group’s (OMG) formal 

documentation describing CORBA [7].  

The Common Object Request Broker Architecture (CORBA) is structured to allow 

integration of a wide variety of object systems. CORBA is a middleware, so first we 

define what is a middleware and then take a general look at CORBA. 

3.1 Middleware 

The distributed software required to facilitate client/server interaction is referred to 

as middleware. Middle refers to its place in a software abstraction hierarchy above 

transport protocols, but below clients and servers written in a high-level 

programming language [8]. Transparent access to non-local services and resources 

distributed across a network is usually provided through middleware, which serves 

as a framework for communication between the client and server portions of a 

system. Middleware can be thought of as the networking between the components 

of a client/server system; it is what allows the various components to communicate 

in a structured manner. Middleware is defined to include the Application 

Programmer Interfaces (APIs) used by clients to request a service from a server, the 

physical transmission of the request to the network (or the communication of the 

service request to a local server), and the resulting transmission of data for the client 

back to the network. Middleware is run on both the client and server ends of a 

transaction [3]. 

3.2 OMG’s Object Management Architecture (OMA) 

In the fall of 1990, the OMG first published the Object Management Architecture 

Guide (OMA Guide). After that it have gone under some changes and still goes. 

Figure 3.1 [10] shows the four main elements of the architecture [9] : 

1. Object Request Broker (ORB) defines the CORBA object bus. 
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2. CORBA Services (Common Object Services) define the system-level 

object frameworks that extend the bus 

3. CORBA Facilities (Common Facilities) define horizontal and vertical 

application frameworks that are used directly by business objects 

4. Application Objects are the business objects and applications, they are the 

ultimate consumers of the CORBA infrastructure. 

This section provides a top-level view of the elements that make up the CORBA 

infrastructure. 

 

Figure 3.1 : Object Management Architecture 

3.3 Object Request  Broker (ORB) 

The Objet Request Broker (ORB) is the object bus. It lets objects transparently 

make requests to -and receive responses from- other objects located locally or 

remotely.  

A CORBA ORB provides a wide variety of distributed middleware services. Every 

CORBA ORB provides [9] :   

 Static and dynamic method invocations  

 High-level language bindings 
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 Local/remote transparency  

 Polymorphic messaging 

 Coexistence with legacy systems 

and hides [11] [12] :  

 Object location (local/remote transparency) 

 Object implementation (high-level language bindings used for object 

implementation) 

 Object execution state (If object is not active at the time its method is 

invoked, ORB activates it)   

 Object communication mechanisms (the communication can be done 

via TCP/IP, shared memory, local method calls etc) 

Figure 3.2 [11] shows the structure of an individual Object Request Broker (ORB) 

and its interactions with the objects (client and servant). The arrows indicate 

whether the ORB is called or performs an up-call across the interface. 

 

Figure 3.2 : The structure of object request interfaces 

Now, we can go over the parts shown in Figure 3.2 and explain each of these. 
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3.3.1 clients  

A client of an object has access to an object reference for the object, and invokes 

operations on the object. A client knows only the logical structure of the object 

according to its interface. 

Clients generally see objects and ORB interfaces through the perspective of a 

language mapping, bringing the ORB right up to the programmer’s level. Clients are 

maximally portable and should be able to work without source changes on any ORB 

that supports the desired language mapping with any object instance that 

implements the desired interface.  

3.3.1.1 structure of a client 

A client of an object has an object reference that refers to that object. An object 

reference is a token that may be invoked or passed as a parameter to an invocation 

on a different object. Invocation of an object involves specifying the object to be 

invoked, the operation to be performed, and parameters to be given to the operation 

or returned from it. 

The ORB manages the control transfer and data transfer to the object 

implementation and back to the client. In the event that the ORB can not complete 

the invocation, an exception response is provided.  

Clients access object-type-specific stubs as library routines in their program (see 

Figure 3.3). The client program thus sees routines callable in the normal way in its 

programming language. All implementations will provide a language specific data 

type to use to refer to objects. The client then passes that object reference to the 

stub routines to initiate an invocation. The stubs have access to the object reference 

representation and interact with the ORB to perform the invocation.  

Clients most commonly obtain object references by receiving them as output 

parameters from invocations on other objects for which they have references. An 

object reference can also be converted to a string that can be stored in files or 

preserved or communicated by different means and subsequently turned back into 

an object reference by the ORB that produced the string. 
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Figure 3.3 : The structure of a typical client 

3.3.2 object implementations 

An object implementation provides the semantics of the object, usually by defining 

data for the object instance and code for the object’s methods.   

Often the implementation will use  other objects or additional software to implement 

the behavior of the object.  

Generally, object implementations do not depend on the ORB or how the client 

invokes the object. Object implementations may select interfaces to ORB-dependent 

services by the choice of Object Adapter. 

3.3.2.1 structure of an object implementation 

An object implementation provides the actual state and behavior of an object. The 

object implementation can be structured in a variety of ways. Besides defining the 

methods for the operations themselves, an implementation will usually define 

procedures for activating and deactivating objects and will use other objects or 

nonobject facilities to make the object state persistent, to control access to the 

object, as well as to implement the methods. 

The object implementation (see Figure 3.4) interacts with the ORB in a variety of 

ways to establish its identity, to create new objects, and to obtain ORB-dependent 

services. It primarily does this via access to an Object Adapter, which provides an 

interface to ORB services that is convenient for a particular style of object 

implementation. 
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Figure 3.4 : The structure of a typical object implementation 

Because of the range of possible object implementations, it is difficult to be definitive 

about how an object implementation is structured.  

3.3.2.2 object references 

An Object Reference (OR) is the information needed to specify an object within an 

ORB. Both clients and object implementations have an opaque notion of object 

references according to the language mapping, and thus are insulated from the 

actual representation of them. Two ORB implementations may differ in their choice 

of Object Reference representations. 

There is a distinguished object reference guaranteed to be different from all object 

references, that denotes no object. 

An Interoperable Object Reference (IOR) is the information needed to specify an 

object accross ORBs. This reference can be used when ORBs interoperate. The 

structure of an IOR includes repository ID, protocol and address details and object 

key [13]. 

3.3.3 IDL compiler 

As mentioned in section 3.3.1, clients see objects and ORB interfaces through the 

perspective of a language mapping. Bringing the interface definitions to high-level 

language constructs is done by the IDL compiler.  
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An IDL compiler transforms OMG IDL definitions into stubs and skeletons that are 

generated automatically in an application programming language like Java [14]. In 

addition to providing programming language transparency, IDL compilers eliminate 

common sources of network programming errors and provide opportunities for 

automated compiler optimizations [15]. 

3.3.3.1 OMG interface definition language (IDL) 

The OMG Interface Definition Language (OMG IDL) defines the types of objects by 

specifying their interfaces. An interface consists of a set of named operations and 

the parameters to those operations.  

IDL is the means by which a particular object implementation tells its potential 

clients what operations are available and how they should be invoked. From the IDL 

definitions, it is possible to map CORBA objects into particular programming 

languages or object systems. 

3.3.3.2 mapping of OMG IDL to programming languages 

Different object-oriented or non-object-oriented programming languages may prefer 

to access CORBA objects in different ways. For object-oriented languages, it may 

be desirable to see CORBA objects as programming language objects. Even for 

nonobject-oriented languages, it is a good idea to hide the exact ORB 

representation of the object reference, method names, etc. A particular mapping of 

OMG IDL to a programming language should be the same for all ORB 

implementations.  

3.3.4 client stubs 

The client stubs will present access to the OMG IDL-defined operations on an object 

in a way that is easy for programmers to predict once they are familiar with OMG 

IDL and the language mapping for the particular programming language.  

3.3.5 dynamic invocation interface (DII) 

An interface is also available that allows the dynamic construction of object 

invocations, that is, rather than calling a stub routine that is specific to a particular 

operation on a particular object, a client may specify the object to be invoked, the 
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operation to be performed, and the set of parameters for the operation through a call 

or sequence of calls.  

The client code must supply information about the operation to be performed and 

the types of the parameters being passed. 

The nature of the dynamic invocation interface may vary substantially from one 

programming language mapping to another. 

3.3.6 implementation skeleton 

For a particular language mapping, and possibly depending on the object adapter, 

there will be an interface to the methods that implement each type of object. The 

interface will generally be an up-call interface, in that the object implementation 

writes routines that conform to the interface and the ORB calls them through the 

skeleton.  

3.3.7 dynamic skeleton interface (DSI) 

An interface is available, which allows dynamic handling of object invocations. That 

is, rather than being accessed through a skeleton that is specific to a particular 

operation, an object’s implementation is reached through an interface that provides 

access to the operation name and parameters in a manner analogous to the client 

side’s Dynamic Invocation Interface. Purely static knowledge of those parameters 

may be used, or dynamic knowledge may be also used, to determine the 

parameters. 

The implementation code must provide descriptions of all the operation parameters 

to the ORB, and the ORB provides the values of any input parameters for use in 

performing the operation. The implementation code provides the values of any 

output parameters, or an exception, to the ORB after performing the operation. 

3.3.8 object adapters 

An Object Adapter is the primary way that an object implementation accesses 

services provided by the ORB. There are expected to be a few object adapters that 

will be widely available, with interfaces that are appropriate for specific kinds of 

objects. Services provided by the ORB through an Object Adapter often include 

generation and interpretation of object references, method invocation, security of 
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interactions, object and implementation activation and deactivation, mapping object 

references to implementations, registration of implementations. 

3.3.8.1 structure of an object adapter 

An object adapter (see Figure 3.5) is the primary means for an object 

implementation to access ORB services such as object reference generation. Object 

adapters are responsible for the following functions : 

 Generation and interpretation of object references 

 Method invocation 

 Security of interactions 

 Object and implementation activation and deactivation 

 Mapping object references to the corresponding object implementations 

 Registration of implementations 

These functions are performed using the ORB Core and any additional components 

necessary. Often, an object adapter will maintain its own state to accomplish its 

tasks. It may be possible for a particular object adapter to delegate one or more of 

its responsibilities to the Core upon which it is constructed. 

 

Figure 3.5 : The structure of a typical object adapter 

As shown in Figure 3.5, the Object Adapter is implicitly involved in invocation of the 

methods, although the direct interface is through the skeletons. 
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3.3.8.2 CORBA required object adapter 

There are a variety of possible object adapters; however, since the object adapter 

interface is something that object implementations depend on, it is desirable that 

there be as few as practical. Most object adapters are designed to cover a range of 

object implementations, so only when an implementation requires radically different 

services or interfaces should a new object adapter be considered.  

CORBA used to specify a Basic Object Adapter (BOA) that can be used for most 

ORB objects with conventional implementations. At June 1997, OMG published the 

specifications for the Portable Object Adapter (POA) [16]. POA allows developers to 

construct CORBA server applications that are portable between heterogeneous 

ORB implementations [17]. 

3.3.9 ORB interface 

The ORB Interface is the interface that goes directly to the ORB, which is the same 

for all ORBs and does not depend on the object’s interface or object adapter. 

Because most of the functionality of the ORB is provided through the object adapter, 

stubs, skeleton, or dynamic invocation, there are only a few operations that are 

common across all objects.  

3.3.10 interface repository (IR) 

The Interface Repository is a service that provides persistent objects that represent 

the IDL information in a form available at run-time. The Interface Repository 

information may be used by the ORB to perform requests. Moreover, using the 

information in the Interface Repository, it is possible for a program to encounter an 

object whose interface was not known when the program was compiled, yet, be able 

to determine what operations are valid on the object and make an invocation on it.  

3.4 CORBA Services  

CORBA services are collections of system-level services packaged with IDL-

specified interfaces. You can think of object services as augmenting and 

complementing the functionality of the ORB. OMG has published standards for 

fifteen object services [9] [18] : 
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 The Life Cycle Service defines services and conventions for creating, 

deleting, copying and moving objects [19]. 

 The Persistence (Persistent State) Service defines interfaces which present 

persistent information as storage objects stored in storage homes. Storage 

homes are themselves stored in datastores, an entity that manages data, for 

example a database, a set of files, a schema in a relational database [20]. 

 The Naming Service provides the principal mechanism through which most 

clients of an ORB-based system locate objects that they intend to use (make 

requests of) [21]. 

 The Event Service defines two roles for objects : the supplier role and the 

consumer role. Suppliers produce event data and consumers process event 

data. Event data are communicated between suppliers and consumers by 

issuing standard CORBA requests [22]. 

 The Concurrency Service mediates concurrent access to an object such that 

the consistency of the object is not compromised when accessed by 

concurrently executing computations [23]. 

 The Transaction Service provides interfaces that combine  the transaction 

paradigm, essential to developing reliable distributed applications, and the 

object paradigm, key to productivity and quality in application development, 

together to address the business problems of commercial transaction 

processing [24]. 

 The Relationship Service allows entities and relationships to be explicitly 

represented. Entities are represented as CORBA objects. The service 

defines two kinds of objects: relationships and roles [25]. 

 The Externalization Service defines protocols and conventions for 

externalizing (recording the object’s state in a stream of data) and 

internalizing objects [26]. 

 The Query Service provides query operations on collections of objects [27]. 

 The Licensing Service defines the interfaces that support management of 

software licenses [28]. 
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 The Properties Service provides the ability to dynamically associate named 

values with objects outside the static IDL-type system [29]. 

 The Time Service enables a user to obtain current time together with an 

error estimate associated with it [30]. 

 The Security Service defines a security reference model that provides the 

overall framework for CORBA security [31]. 

 The Trader Service facilitates the offering and the discovery of instances of 

services of particular types [32]. 

 The Collection Service provides a uniform way to create and manipulate the 

most common collections generically [33]. 

3.5 CORBA Facilities 

CORBA facilities are collections of IDL-defined frameworks that provide services of 

direct use to application objects. The two categories of common facilities—horizontal 

and vertical—define rules of engagement that business components need to 

effectively collaborate.  

3.6 Applicatıon Objects 

Application objects are business objects which we described at chapter 2. 

3.7 CORBA Interoperability 

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a 

set of message formats for communications between ORBs. The Internet Inter-ORB 

Protocol (IIOP) specifies how GIOP messages are exchanged using TCP/IP 

connections. Every CORBA 2.0-compliant ORB speaks the mandatory IIOP. OMG 

also makes provision for an open-ended set of Environment-Specific Inter-ORB 

Protocols (ESIOPs) [7]. The IIOP’s standing in networking in a OSI-like layer model 

is shown in Figure 3.6 [34].  
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Figure 3.6 : IIOP’s place in networking 

Figure 3.7 [35] shows how the CORBA ORB-to-ORB communication works : An 

invocation from a client of ORB 1 passes through its IDL stub into the ORB core. 

The ORB examines the object reference and if the implementation is local, the ORB 

passes the invocation through the skeleton to the object for servicing. If the 

implementation is remote, ORB 1 passes the invocation across the communication 

pathway to ORB 2, which routes it to the object. The object implementation has no 

way of knowing whether the client is local or remote.  

  

Figure 3.7 : Interoperability uses ORB-to-ORB communication. 

For the inter-ORB invocations objects must have the Interoperable Object 

References (IORs) [36]. 

3.7.1 CORBA domains 

Domains allow partitioning of systems into collections of components which have 

some characteristic in common. Interoperability between domains is only possible if 

there is a well-defined mapping between the behaviors of the domains being joined.   
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When an interaction takes place across a domain boundary, a mapping mechanism, 

or bridge, is required to transform relevant elements of the interaction as they 

traverse the boundary. There are essentially two approaches to achieving this : 

 In mediated bridging all domains bridge to a single common protocol 

 In immediate bridging two domains talk directly to each other over a single 

bridge that translates whatever parts of the message require it. 
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4. THE THESIS 

Our thesis is about the performance analysis of CORBA. We are only concerned 

about the marshalling/demarshalling aspects of performance analysis.  

4.1 The Goal of The Thesis 

Our main goal in this study is to analyze the marshalling/demarshalling performance 

of a CORBA/Java ORB using Static Invocation Interface (SII). That is, we have not 

covered the dynamic aspects of CORBA including DII (Dynamic Invocation 

Interface) with Requests created, populated and sent at run-time and dynamic types 

like any which also are created and populated at run-time. Indeed, we have tried to 

cover all static types of CORBA and IDL-specific features.  

4.2 Related Work 

There is a number of master studies on this subject. Buble compares three common 

C++ implementations of CORBA : OmniORB, ORBacus and Orbix [37]. Gopinath 

analyzes the performances of Real-Time CORBA endsystems by using omniORB 

[38]. Karlsson compares two C++ ORBs : Orbix and TAO [11]. 

There are also some related publications. Gokhale and Schmidt analyze the 

performance of DII and DSI over ATM networks by using Orbix and ORBeline [39]. 

They, in another paper, optimize the sunSoft IIOP and give measurements before 

and after applying their optimizations [40]. In another work, they give measurement 

results for four demultiplexing strategies by using TAO [41]. They also give latency 

results for two conventional ORBs, Orbix and VisiBroker, and then give their 

improved results for TAO [42]. 

Hirano, Yasu and Igarashi compare their lightweight ORB, HORB, with Voyager, 

VisiBroker and OrbixWeb [43] . Brose compares his ORB jacORB, with VisiBroker, 

Orbacus and RMI [44].  
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OMG also has its special interest group for benchmarking and this group published 

a white paper on benchmarking [45]. 

4.3 Marshalling And Demarshalling 

Marshalling/demarshalling refers to the transformations of typed data objects from 

higher-level representations to lower-level representations (marshalling) and vice 

versa (demarshalling) [39]. 

Marshalling and demarshalling operations take place in user space and are often 

time consuming [46] [39]. 

4.3.1 common data representation (CDR) 

Low-level representations are created by following the rules of Common Data 

Representation (CDR). CDR is a transfer syntax, mapping from data types defined 

in OMG IDL to a bicanonical, low-level representation for transfer between agents. 

CDR has the following features: 

 Variable byte ordering - Machines with a common byte order may exchange 

messages without byte swapping. When communicating machines have 

different byte order, the message originator determines the message byte 

order, and the receiver is responsible for swapping bytes to match its native 

ordering. Each GIOP message (and CDR encapsulation) contains a flag that 

indicates the appropriate byte order. 

 Aligned primitive types - Primitive OMG IDL data types are aligned on their 

natural boundaries within GIOP messages, permitting data to be handled 

efficiently by architectures that enforce data alignment in memory. 

 Complete OMG IDL Mapping - CDR describes representations for all OMG 

IDL data types [7]. 

The CDR transfer syntaxes of IDL types are explained in Appendix. 
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4.4 The Benchmark’s Players  

We have three players constituting our benchmarking team :  

 Value Server implements our benchmark’s IDL definitions. It accepts 

requests from the client and sends responses back to it.  

 Time Server handles the time operations. We have taken 25 samples of time 

taken by making 100 calls with each criteria. Time server saves each of 

these 25 time values. After that it computes the average of these 25 time 

values and stores them with their average in a file. 

 Client makes calls from server. 

Figure 4.1 shows these three players at work. 

Repeat 25 Times

Value

Server

Time

Server
Client

ping() 100 times

addSessionTime()

printTime()

 

Figure 4.1 : Objects used in our benchmarking framework. 

4.5 Structure of  The Benchmark 

The structure of our benchmark  in Backus-Naur Format (BNF) is : 

<benchmark> ::= ―JDK1.3_02/‖ ( <local> | <remote> ) 

<local>  ::= ―Local/‖ ( <oneway> | <twoway> ) 

<remote> ::= ―Remote/‖ ( <oneway> | <twoway> ) 

<oneway> ::= ―Oneway/‖ ( <invoke> | <only_send> ) 

<twoway>  ::= ―Twoway/‖ ( <invoke> | <only_send> | <only_get> | <send_get> ) 
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<invoke> ::= ―Invoke‖ 

<only_send> ::= ―OnlySend/‖ ( <primitve> | <constructed> | <container> )  

<only_get> ::= ―OnlyGet/‖ ( <primitve> | <constructed> | <container> )  

<send_get> ::= ―SendGet/‖ ( <primitve> | <constructed> | <container> )  

<primitive> ::= ―Primitive/‖ ( ―Boolean‖ | ‖Char‖ | ―WChar‖ | ―Double‖  

      |    ―LongDouble‖ | ―Float‖ | ―Long‖ | ―UnsignedLong‖ | ―LongLong‖ 

      |    ―UnsignedLongLong‖ | ―Octet‖ | ―Short‖ | ―UnsignedShort‖ ) 

<constructed> ::= ―Constructed/‖ ( <struct> | <interface> | <union> | <enum> ) 

<struct>  ::= ―Struct/‖ ( <primitive> | ―AllPrimitives‖ ) 

<interface> ::= ―Interface/‖ ( <primitive> | ―AllPrimitives‖ | ―Empty‖ ) 

<union> ::= ―Union/‖ ( ―AllPrimitivesOctet‖ | ―AllPrimitivesDouble‖ ) 

<enum> ::= ―Enum/AllPrimitives‖ 

<container> ::= ―Container/‖ ( <array> | <sequence> | <strings> ) 

<strings>  ::= ―Strings/‖ ( <string> | <wstring> ) 

<string> ::= ―String/‖  

  ( ―String1‖ | ―String10‖ | ―String100‖ | ―String1000‖ | ―String10000‖ ) 

<wstring> ::= ―WString/‖ ( ―WString1‖ | ―WString10‖ | ―WString100‖  

     | ―WString1000‖ | ―WString10000‖ ) 

<array> ::= ―Array/‖ ( <container_primitive> | <container_constructed> ) 

<sequence> ::= ―Sequence/‖ ( < container_primitive> | <container_constructed> ) 

<container_primitive> ::= ―ContainerPrimitive/‖ ( <boolean> | <char> | <wchar>  

| <double> | <long_double> | <float> | <long>  

| <unsigned_long> | <long_long> | <unsigned_long_long> 

| <octet> | <short> | <unsigned_short> ) 

<boolean> ::= ―Boolean/‖ ( ―Boolean1‖ | ―Boolean10‖ | ―Boolean100‖ 

       | ―Boolean1000‖ | ―Boolean10000‖ ) 

<char>  ::= ―Char/‖ ( ―Char1‖ | ―Char10‖ | ―Char100‖  | ―Char1000‖ | ―Char10000‖) 
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<wchar> ::= ―WChar/‖  

   ( ―WChar1‖ | ―WChar10‖ | ―WChar100‖ | ―WChar1000‖ | ―WChar10000‖) 

<double> ::= ―Double/‖  

    ( ―Double1‖ | ―Double10‖ | ―Double100‖ | ―Double1000‖ | ―Double10000‖ ) 

<long_double> ::= ―LongDouble/‖ ( ―LongDouble1‖ | ―LongDouble10‖  

| ―LongDouble100‖ | ―LongDouble1000‖ | ―LongDouble10000‖ ) 

<float> ::= ―Float/‖ ( ―Float1‖ | ―Float10‖ | ―Float100‖ | ―Float1000‖ | ―Float10000‖ ) 

<long> ::= ―Long/‖ ( ―Long1‖ | ―Long10‖ | ―Long100‖ | ―Long1000‖ | ―Long10000‖ ) 

<unsigned_long> ::= ―UnsignedLong/‖  

     ( ―UnsignedLong1‖ | ―UnsignedLong10‖ | ―UnsignedLong100‖  

     | ―UnsignedLong1000‖ | ―UnsignedLong10000‖ ) 

<long_long> ::= ―LongLong/‖ ( ―LongLong1‖ | ―LongLong10‖ | ―LongLong100‖  

         | ―LongLong1000‖ | ―LongLong10000‖ ) 

<unsigned_long_long> ::= ―UnsignedLongLong/ ( ―UnsignedLongLong1‖ 

     | ―UnsignedLongLong10‖ | ―UnsignedLongLong100‖ 

     | ―UnsignedLongLong1000‖ | ―UnsignedLongLong10000‖ ) 

<octet> ::= ―Octet/‖ ( ―Octet1‖ | ―Octet10‖ | ―Octet100‖ | ―Octet1000‖ | ―Octet10000‖) 

<short> ::= ―Short/‖ ( ―Short1‖ | ―Short10‖ | ―Short100‖ | ―Short1000‖ | ―Short10000‖ ) 

<unsigned_short> ::= ―Unsigned_short/‖  

      ( ―UnsignedShort1‖ | ―UnsignedShort10‖ | ―UnsignedShort100‖  

      | ―UnsignedShort1000‖ | ―UnsignedShort10000‖ ) 

<container_constructed> ::= ―ContainerConstructed/‖  

      ( <container_struct> | <container_interface>  

      | <container_union> | <container_enum> ) 

<container_struct> ::= ―ContainerStruct/‖ 

        ( <container_primitive> | <container_all_primitives> ) 

<container_interface> := ―ContainerInterface/‖ ( <container_primitive>  

 | <container_all_primitives> | < container_empty> ) 
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<container_union> ::= ContainerUnion/‖ ( <container_all_primitives_octet>  

       | <container_all_primitives_double> ) 

<container_enum> ::= ―ContainerEnum/‖ ( <container_all_primitives> ) 

<container_all_primitives> ::= ―ContainerAllPrimitives/‖  

               ( ―AllPrimitives1‖ | ―AllPrimitives10‖ | ―AllPrimitives100‖ 

           | ―AllPrimitives1000‖ | ―AllPrimitives10000‖ ) 

<container_all_primitivesoctet> ::= ―ContainerAllPrimitivesOctet/‖ 

    ( ―AllPrimitivesOctet1‖ | ―AllPrimitivesOctet10‖ 

        | ―AllPrimitivesOctet100‖ | ―AllPrimitivesOctet1000‖ 

        | ―AllPrimitivesOctet10000‖ ) 

<container_all_primitives_double> ::= ―ContainerAllPrimitivesDouble/‖ 

         ( ―AllPrimitivesDouble1‖ | ―AllPrimitivesDouble10‖ 

             | ―AllPrimitivesDouble100‖  

         | ―AllPrimitivesDouble1000‖ 

             | ―AllPrimitivesDouble10000‖ ) 

<container_empty> ::= ―ContainerEmpty/‖ ( ―Empty1‖ | ―Empty10‖ | ―Empty100‖  

| ―Empty1000‖ | ―Empty10000‖ ) 

Every parse of this grammar gives you a test result obtained, of course if it is 

supported by the ORB. For example, we obtained a result for 

―JDK1.3_02//Local/Oneway/Invoke‖. That is we have a result obtained by using 

Sun’s JDK1.3_02 IDL compiler, making Local Oneway calls by sending and getting 

no parameters, only Invoking an operation which takes no arguments and returns 

nothing (void) . 

4.6 Criteria Used 

Our benchmarking environment is constructed by considering the following criteria. 

4.6.1 used CORBA/Java ORB 

A CORBA/Java ORB is an ORB which is written fully in Java, i.e, it includes no 

native code. We applied the benchmark to most common CORBA/Java ORB 
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worldwide, Sun’s Java IDL compiler. It is so common because It comes with Java 2 

SDK, freely.  

4.6.2 local versus remote calls 

We have the servers and the client at the same computer (local calls) or two sides 

are located at different computers (remote calls).  

When making local calls the ORB implementor can use more efficient ways of 

passing parameters than remote calls. As an example, since for local calls, both 

client and server use the same memory, shared memory can be used. If it is so, 

then the network overhead is discarded.  

But, it is reported that Java VM is CPU-sensitive [47] and using two computers 

doubles the number of CPUs used. It can eliminate the advantages of using local 

system and even the network overhead can be defeated. 

For local calls we used a PC with a Pentium Celeron 850 processor and 128 MB of 

RAM.   

For remote calls, our servers are run on the PC which is used for local calls and our 

client is on a PC with Pentium II MMX 400 processor and 64 MB of RAM. 

Both of our computers use Microsoft Windows 2000 Professional as operating 

system. 

Our computers are located on an idle 10 Mbps Ethernet for remote calls. 

4.6.3 oneway versus twoway invocations 

OMG IDL allows you to declare operation attribute at operation declaration that 

specifies which invocation semantics the communication service must provide for 

invocations of a particular operation. 

When a client invokes an operation with the oneway attribute, the invocation 

semantics are best-effort, which does not guarantee delivery of the call; the 

operation will be invoked at-most-once. 

If a client invokes an operation without the oneway attribute (i.e, twoway), the 

operation semantics are at-most-once if an exception raised; the semantics are 

exactly-once if the operation invocation returns successfully [7]. 
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The CORBA standard does not require oneway operations to be non-blocking, but 

most implementations of CORBA does not block the caller of a oneway operation. 

The CORBA standard has left a great freedom in how an ORB handles oneway 

operations [48].  

4.6.4 flow of parameters 

CORBA IDL defines three directional attributes to parameters : 

 in : the parameter is passed from client to server 

 out : the parameter is passed from server to client 

 inout : the parameter is passed in both directions. 

If no parameters will be passed then you must leave the parameter declaration 

section of the operation empty and operation’s return result type must be the 

keyword void.  

We have named these conditions as only_send, only_get, send_get and invoke, 

respectively. 

We could use out and inout directional attributes to pass parameters back from the 

server and to and back from the server. But in that case, as a programmer, we 

should have handled the creation and use of Holder classes in accord with the 

generated ones by the IDL-to-Java  mapping of these parameters. But we defined 

our operations as taking (for only_send and send_get) or returning (for only_get and 

send_get) the type, and in the case of invoke taking no parameters and returning 

void. In this way we have left the preparation operations for sending and getting the 

parameters to ORB. 

4.6.5 CORBA types used 

We classified the CORBA IDL types into three categories :  

 Primitive Types 

 Constructed Types 

 Container Types 



 32 

4.6.5.1 primitive types 

Primitive types are the IDL allowed basic types which consists of the following : 

 boolean type stores a boolean value. IDL defines two boolean constants:  

true and false. 

 char type stores a single character value. The char type is an 8-bit 

quantity. 

 wchar is  wide character type. Its size is implementation-dependent.  

 long  is a 32-bit signed quantity with a range of -231 to 231-1. 

 unsigned long is a 32-bit unsigned quantity with a range of 0 to 232-1. 

 long long is a 64-bit signed quantity with a range of -263 to 263-1. 

 unsigned long long is a 64-bit unsigned quantity with a range of 0 to 264-

1. 

 short is a 16-bit signed quantity with a range of -215 to 215-1. 

 unsigned short is a 16-bit unsigned quantity with a range of 0 to 216-1. 

 float is an IEEE single-precision floating point value. 

 double is an IEEE double-precision floating point value. 

 octet is an 8-bit quantity that is guaranteed not to undergo any 

conversion when transmitted by the communication system.  

 long double is an IEEE double-extended floating point value having an 

exponent of at least 15 bits in length and a signed fraction of at least 64 

bits. Our ORB does not support this type. OMG says that this type is 

reserved for future support [14]. So, we do not have results for this type. 

4.6.5.2 constructed types 

OMG specifies structs, unions and enums as constructed types and mentions  

interfaces in another header. We added the interfaces to our constructed types, 

since they can be constructed from other types and can contain no methods. 
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Indeed, even if you don’t declare any methods, ORB creates the accessor and 

mutator functions for each attribute of the interface. But from the IDL view, it is 

correct that we can have interfaces without methods. 

We have a struct with only a boolean field, only a char field, etc. Same thing is true 

for our interfaces : an interface with only a boolean attribute, a char attribute, etc. 

We have our structs and interfaces for each of the primitive types. And we have an 

interface, struct, enum, and union which has a field for every primitive type. We have 

also an empty interface, an interface with no attributes and methods. Empty structs 

are not allowed, so we have no empty struct. We tested our union with passing an 

octet value (1 byte) and passing a double value ( 8 bytes).  

4.6.5.3 container types 

We have arrays, sequences and strings in this category. OMG defines sequences 

and strings as template types and arrays in the title complex declarator [7].  

4.6.6 IDL-to-Java mappings of used types 

Table 4.1 shows the IDL-to-Java mapping of our tested types [14].   

Table 4.1 : IDL-to-Java Mapping of primitive types 

IDL Type Java type 

boolean Boolean 

char Char 

wchar Char 

octet Byte 

string java.lang.String 

wstring java.lang.String 

short Short 

unsigned short Short 

long Int 

unsigned long Int 

long long Long 

unsigned long long Long 

float Float 

double Double 
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4.7 CDR Transfer Syntax 

Here is the CDR transfer syntax described by OMG [7]. The Common Data 

Representation (CDR) transfer syntax is the format in which the GIOP represents 

OMG IDL data types in an octet stream. 

4.7.1 primitive types 

Primitive data types are specified for both big-endian and little-endian orderings. The 

message formats include tags in message headers that indicate the byte ordering in 

the message. Encapsulations include an initial flag that indicates the byte ordering 

within the encapsulation. Primitive data types are encoded in multiples of octets. An 

octet is an 8-bit value. 

4.7.1.1 short and unsigned short 

Short values are represented as two’s complement numbers. Figure 4.2 illustrates 

the bit ordering and size of shorts. Unsigned shorts also have the same format but 

they are represented as unsigned binary numbers. 

Big Endian

MSB

LSB

octet

0

1

Little Endian

LSB

MSB

octet

0

1
 

Figure 4.2 : Bit ordering and size of shorts and unsigned shorts in 
big-endian and little-endian encodings. 

4.7.1.2 long and unsigned long 

Long values are represented as two’s complement numbers. Figure 4.3 illustrates 

the bit ordering and size of longs. Unsigned longs also have the same format but 

they are represented as unsigned binary numbers. 

4.7.1.3 long long and unsigned long long 

Long long values are represented as two’s complement numbers. Figure 4.4 

illustrates the bit ordering and size of long longs. Unsigned long longs also have the 

same format but they are represented as unsigned binary numbers. 
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Figure 4.3 : Bit ordering and size of longs and unsigned 
longs in big-endian and little-endian encodings. 
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Figure 4.4 : Bit ordering and size of long longs and unsigned long 
longs in big-endian and little-endian encodings. 

4.7.1.4 float 

Figure 4.5 illustrates the representation of floating point numbers. The figure shows 

three different components for floating point numbers, the sign bit (s), the exponent 

(e) and the fractional part (f) of the mantissa. The sign bit has values of 0 or 1, 

representing positive and negative numbers, respectively. 

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in 

the figure, where the 7 bits in e1 are most significant. The exponent is represented 

as excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 

2.0, f1 being most significant and f3 being least significant. The value of a  

normalized number is described by 1sign x 2 (exponent – 127) x (1+ fraction) . 
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Figure 4.5 : Bit ordering and size of floating point numbers in big-
endian and little-endian encodings. 

4.7.1.5 double 

Figure 4.6 illustrates the representation of double-precision numbers. For double-

precision values the exponent is 11 bits long, comprising e1 and e2 in the figure, 

where the 7 bits in e1 are most significant. The exponent is represented as excess 

1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m < 2.0, f1 

being most significant and f7 being least significant. The value of a normalized 

number is described by  1sign x 2 (exponent - 1023)  x (1 + fraction). 
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Figure 4.6 : Bit ordering and size of double-precision numbers in 
big-endian and little-endian encodings. 
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4.7.1.6 long double 

Figure 4.7 illustrates the representation of double-extended floating-point numbers. 

For double-extended floating-point values the exponent is 15 bits long, comprising 

e1 and e2 in the figure, where the 7 bits in e1 are the most significant. The fractional 

mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The 

value of a long double is determined by  1sign x 2 (exponent – 16383) x (1 + fraction).  Long 

double is not supported by our ORB as mentioned at section 4.6.5.1. 
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Figure 4.7 : Bit ordering and size of double-extended numbers in 
big-endian and little-endian encodings. 
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4.7.1.7 octet 

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo 

any conversion during transmission. Octets may be considered as unsigned 8-bit 

integer values. 

4.7.1.8 boolean 

Boolean values are encoded as single octets, where TRUE is the value 1, and 

FALSE as 0. 

4.7.1.9 char and wchar 

An IDL character is represented as a single octet. If the transmission code set is  

byte-oriented then each wide character is represented as one or more octets. If the 

transmission code set is non-byte-oriented then it is dependent on the character set.  

if the character set contains 2 bytes, then wide characters are represented as 

unsigned shorts.  if the character set contains 4 bytes, then they are represented as 

unsigned longs. 

4.7.2 constructed types 

As mentioned before constructed types are derived from other types. CDR rules 

governing the constructed types are as follows. 

4.7.2.1 struct 

The components of a structure are encoded in the order of their declaration in the 

structure. Each component is encoded as defined for its data type. 

4.7.2.2 union 

Unions are encoded as the discriminant tag of the type specified in the union 

declaration, followed by the representation of any selected member, encoded as its 

type indicates. 

4.7.2.3 enum 

Enum values are encoded as unsigned longs. The numeric values associated with 

enum identifiers are determined by the order in which the identifiers appear in the 
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enum declaration. The first enum identifier has the numeric value zero (0). 

Successive enum identifiers take ascending numeric values, in order of declaration 

from left to right. 

4.7.2.4 interface 

We could not see any CDR rule at the OMG’s formal specification.  

4.7.3 container types 

4.7.3.1 array 

Arrays are encoded as the array elements in sequence. As the array length is fixed, 

no length values are encoded. Each element is encoded as defined for the type of 

the array. In multidimensional arrays, the elements are ordered so the index of the 

first dimension varies most slowly, and the index of the last dimension varies most 

quickly. 

4.7.3.2 sequence 

Sequences are encoded as an unsigned long value, followed by the elements of the 

sequence. The initial unsigned long contains the number of elements in the  

sequence. The elements of the sequence are encoded as specified for their type. 

4.7.3.3 strings and wide strings 

A string is encoded as an unsigned long indicating the length of the string in octets, 

followed by the string value in single- or multi-byte form represented as a sequence 

of octets. The string contents include a single terminating null character. The string 

length includes the null character, so an empty string has a length of 1. 

A wide string is encoded as an unsigned long indicating the length of the string in 

octets or unsigned integers (determined by the transfer syntax for wchar) followed 

by the individual wide characters. The string contents include a single terminating 

null character. The string length includes the null character. The terminating null 

character for a wstring is also a wide character. 
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5. RESULTS FOR JDK1.3_02 

In this chapter we present the results for the benchmark we have constructed. 

5.1 About Sun’s IDL Compiler  

The Java IDL API, introduced in Version 1.2 of the Java 2 platform, provides an 

interface between Java programs and distributed objects and services built using 

the CORBA. Java IDL is an implementation of the standard Java Software 

Development Kit (SDK) in the org.omg.CORBA and org.omg.CosNaming (CORBA 

naming service support) packages and their subpackages [49]. Sun provides 

programmers with an idl-to-java compiler named idlj (its old name is idl2java). 

5.2 A Note on  Our Graphics 

We have used abbreviations for the primitive types in order to save space. The 

abbreviations and their meanings at their order of appearance in graphics are given 

in table 5.1. 

Table 5.1 : Abbreviations used in our graphics 

C : Char  WC : Wide Character D : Double L : Long UL : Unsigned Long 

LL : Long Long ULL : Unsigned Long Long F : Float S : Short US : Unsigned Short 

B : Boolean O : Octet A : All Primitives E : Empty WString : Wide String 

5.3 Results for Local Calls 

Following are the results for our local calls taken as described at section 4.6.2. 

5.3.1 local oneway and twoway invocation results 

Figure 5.1 shows the results for oneway and twoway functions which take no 

arguments and return no result. 
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Invocation Results
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Figure 5.1 : Local results for Oneway and Twoway Invocations 

5.3.1.1 comments on oneway and twoway invocation results 

It is seen from the results that oneway invocations are faster than twoways. It is 

natural to have such a result since oneway has no complaints about reliability and 

chores related with it is only handled with twoway calls. 

5.3.2 oneway – only send results  

We will briefly refer to these results as L_O_OS (Local_Oneway_OnlySend) results.  

5.3.2.1 L_O_OS primitive and primitive container results 

Figure 5.2 through 5.6 shows the results obtained for primitive types and containers 

with primitive types. 
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Figure 5.2 : L_O_OS Results for Primitives and Containers with 1 Primitive 
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Containers with 10 Primitives
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Figure 5.3 : L_O_OS Results for Containers with 10 Primitives 

Containers with 100 Primitives
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Figure 5.4 : L_O_OS Results for Containers with 100 Primitives 

Containers with 1000 Primitives
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Figure 5.5 : L_O_OS Results for Containers with 1000 Primitives 
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Containers with 10000 Primitives
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Figure 5.6 : L_O_OS Results for Containers with 10000 Primitives 

5.3.2.2 about L_O_OS primitive and primitive container results 

Some conclusions from the results are : 

 It is seen from our results (not from the graphics above, but the 25 samples 

we have taken. The above results are the average of these 25 values) for 

each repetition that an observable difference exists between the first call and 

second call. The difference between the second call and following calls are 

very small. This conclusion applies to all of our local results and will not be 

mentioned again. The reason behind this could be that when the code is 

executed for the first time, the loading of code fragment is from main 

memory, at the best wish, and could get some time. After this first call, it 

could be taken to the cache memory and to reach it could get less time. The 

fluctuations appearing at the middle could be the result of operating system 

taking the code fragment away from cache for a while and using cache for 

some other work. After this, it could again be taken to cache when it is used 

again by the application. 

 If we send a primitive, a primitive within an array or a sequence, almost no 

difference appears. Our arrays and sequences are fixed size.  According to 

the CDR rules, only values of array will be sent after marshalling. But for the 

sequence we could expect a little delay because of the preceding sending of 

unsigned long value which represents the size of the data to be sent. Our 

results do not seem to conform to this second conclusion. Since arrays and 

sequences are mapped to same Java type, and they have both fixed sizes 

our ORB seems to handle arrays and sequences in the same way. 
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 The difference among the results for containers with size 1, 10 and 100 are 

very little. But when we take the results for the size of 1000, we face with a 

sharp change. When we have 10000 elements, we have another sharp 

change. Indeed, we could expect that when we have doubled the size of the 

array, the time must have been doubled also. But it is not the case here. Its 

reason could be that when we have 1, 10 and 100 values they fix in a 

message. But when we have larger data, we have larger number of 

messages. So, our time is proportional to the number of messages sent, not 

only to the number of bytes sent (The proportion can be the ceiling of the 

ratio (number of bytes / message size)).  

 wchar can be represented with two bytes (as unsigned shorts) or four bytes 

(as unsigned longs) according to the choosen character set. Our results 

show that wchar is represented with two bytes since it has nearly the same 

results with types having size of 2 bytes (e.g, short). 

5.3.2.3 L_O_OS string and wide string results 

Figure 5.7 shows the results obtained. 
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Figure 5.7 : L_O_OS Results for Strings and Wide Strings 

5.3.2.4 about L_O_OS string and wide string results 

Either we send character strings as array or sequence of characters (see results for 

primitve type of char and wchar at 5.3.3.1) or we send them as elements of a string, 

we see almost no difference. 
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5.3.2.5 L_O_OS struct and struct container results 

Figures 5.8 through 5.12 shows the results obtained. 
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Figure 5.8 : L_O_OS Results for Structs and Containers with 1 Struct 
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Figure 5.9 : L_O_OS Results for Containers with 10 Structs. 
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Figure 5.10 : L_O_OS Results for Containers with 100 Structs 
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Containers with 1000 Structs
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Figure 5.11 : L_O_OS Results for Containers with 1000 Structs. 

Containers with 10000 Structs
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Figure 5.12 : L_O_OS Results for Containers with 10000 Structs 

5.3.2.6 about L_O_OS struct and struct container results 

Some conclusions from the results are : 

 If we consider the results obtained with only primitives and the results here 

we see that when we encapsulate a primitive within a struct, we see no 

observable difference between results for small sizes. But for the big-sized 

data, primitives perform better. 

 Also it is true that placing the primitives within structs and then within 

containers make no difference with the stattements above.. 

 We have a special struct which consits of the fields for every primitive type. It 

gives almost same results with little sizes. But when size enlarges, the 

difference becomes apparent. Its reason is that according to CDR rules 

when handling the structs, fields of it must be sent in order of their 

declaration. 
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5.3.2.7 L_O_OS interface and interface container results 

Figures 5.13 through 5.16 shows the results obtained. 
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Figure 5.13 : L_O_OS Results for Interface and Containers with 1 Interface 
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Figure 5.14 : L_O_OS Results for Containers with 10 Interfaces 

Containers with 100 Interfaces
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Figure 5.15 : L_O_OS Results for Containers with 100 Interfaces 
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Containers with 1000 Interfaces
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Figure 5.16 : L_O_OS Results for Containers with 1000 Interfaces 

10000 interfaces produced the Out Of Memory error. 

5.3.2.8 about L_O_OS interface and interface container results 

Some conclusions from the results are : 

 If we consider the results obtained with only primitives and the results here 

we see that when we encapsulate a primitive within an interface, the 

performance is reduced even with the small number of values. It could be the 

result of accessor and mutator functions created. But interface without 

members or functions (our empty interface) shows the same results. So, it is 

not a result of accessor or mutator functions but a result of type interface.  

 The overhead introduced by interface type overwhelms the overhead of 

primitve types. So we have nearly the same results for all types. 

 For 10000 elements we encountered the out of memory error at the server 

side.   

5.3.2.9 L_O_OS union and enum results 

Figures 5.17 through 5.21 shows the results obtained. 
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Results  for 1 Union and Enum
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Figure 5.17 : L_O_OS Results for Union, Enum and Containers with 1 Union and Enum 

Results  for 10 Unions and Enums
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Figure 5.18 : L_O_OS Results for Containers with 10 Unions and Enums 

Results  for 100 Unions and Enums
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Figure 5.19 : L_O_OS Results for Containers with 100 Unions and Enums 

Results  for 1000 Unions and Enums
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Figure 5.20 : L_O_OS Results for Containers with 1000 Unions and Enums 
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Results  for 10000 Unions and Enums
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Figure 5.21 : L_O_OS Results for Containers with 10000 Unions and Enums 

5.3.2.10 about L_O_OS union and enum results 

Some conclusions from the results are : 

 CDR says that enum type is encoded as unsigned longs. Our enum results 

are close to unsigned longs. It could be said that enums have same 

performance with unsigned longs.  

 Our results for unions, one carrying an octet and other a double, shows that 

for size 1, their performances are nearly the same. But when size increases, 

difference becomes apparent. Carrying double takes longer than carrying 

octet. 

5.3.3 twoway – only send results 

We will briefly refer to these results as L_T_OS (Local_Twoway_OnlySend) results.  

5.3.3.1 L_T_OS primitive and primitive container results 

Figure 5.22 through 5.26 shows the results obtained for primitive types and 

containers with primitive types. 
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Primitives and Containers with 1 Primitive 
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Figure 5.22 : L_T_OS Results for Primitives and Containers with 1 Primitive 

Containers with 10 Primitives
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Figure 5.23 : L_T_OS Results for Containers with 10 Primitives 

Containers with 100 Primitives
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Figure 5.24 : L_T_OS Results for Containers with 100 Primitives 
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Containers with 1000 Primitives
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Figure 5.25 : L_T_OS Results for Containers with 1000 Primitives 

Containers with 10000 Primitives
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Figure 5.26 : L_T_OS Results for Containers with 10000 Primitives 

5.3.3.2 about L_T_OS primitive and primitive container results 

Some conclusions from the results are : 

 We have nearly same results for arrays and sequences (with possible 10% 

deviation). 

 If we compare with L_O_OS results of same category we see that oneway 

results are faster for small sizes, but when we come to size 1000 and 10000 

we get the nearly same results. 

5.3.3.3 L_T_OS string and wide string results 

Figure 5.27 shows the results obtained. 
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Results for Strings and Wide Strings
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Figure 5.27 : L_T_OS Results for Strings and Wide Strings 

5.3.3.4 about L_T_OS string and wide string results 

Some conclusions from the results are : 

 For strings and wstrings we have nearly the same results with 

primitive arrays and sequences of type char and wchar, respectively. 

 If we compare with L_O_OS results, we see that for the small 

lengths, oneway calls are faster. But when size increases, the 

difference decreases and for the length of 10000, twoway shows 

better performance than oneway. 

5.3.3.5 L_T_OS struct and struct container results 

Figures 5.28 through 5.32 shows the results obtained. 
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Figure 5.28 : L_T_OS Results for Structs and Containers with 1 Struct 
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Containers with 10 Structs
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Figure 5.29 : L_T_OS Results for Containers with 10 Structs 

Containers with 100 Structs
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Figure 5.30 : L_T_OS Results for Containers with 100 Structs 

Containers with 1000 Structs
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Figure 5.31 : L_T_OS Results for Containers with 1000 Structs 
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Containers with 10000 Structs
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Figure 5.32 : L_T_OS Results for Containers with 10000 Structs 

5.3.3.6 about L_T_OS struct and struct container results 

Some conclusions from the results are : 

 We have the nearly same results for sequences and arrays. 

 If we compare the results with results of L_O_OS we see that for the small 

sizes (1,10, 100) oneway results are better than twoways. For the larger 

sizes they are nearly equal (size 1000 except our private all struct). Then for 

size 10000 it has two features in it : for primitive structs twoway is faster, and 

for our private all struct oneway is faster. 

5.3.3.7 L_T_OS interface and interface container results 

Figures 5.33 through 5.37 shows the results obtained. 
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Figure 5.33 : L_T_OS Results for Interface and Containers with 1 Interface 
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Containers with 10 Interfaces
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Figure 5.34 : L_T_OS Results for Containers with 10 Interfaces 

Containers with 100 Interfaces
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Figure 5.35 : L_T_OS Results for Containers with 100 Interfaces 

Containers with 1000 Interfaces
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Figure 5.36 : L_T_OS Results for Containers with 1000 Interfaces 
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Containers with 10000 Interfaces
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Figure 5.37 : L_T_OS Results for Containers with 10000 Interfaces 

5.3.3.8 about L_T_OS interface and interface container results 

Some conclusions from the results are : 

 Arrays and sequences performs nearly the same 

 If we compare with L_O_OS results we see that for the size of 100, twoway 

is faster than oneway, but at size 1, 10, 1000 oneway is faster.  

 L_O_OS with size 10000 could not complete the test. But with twoway we 

could completed it here. 

5.3.3.9 union and enum results 

Figures 5.38 through 5.42 shows the results obtained. 
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Figure 5.38 : L_T_OS Results for Union, Enum and Containers with 1 Union and Enum 
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Results  for 10 Unions and Enums
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Figure 5.39 : L_T_OS Results for Containers with 10 Unions and Enums 

Results  for 100 Unions and Enums
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Figure 5.40 : L_T_OS Results for Containers with 100 Unions and Enums 

Results  for 1000 Unions and Enums
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Figure 5.41 : L_T_OS Results for Containers with 1000 Unions and Enums 

Results  for 10000 Unions and Enums
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Figure 5.42 : L_T_OS Results for Containers with 10000 Unions and Enums 

5.3.3.10 about L_T_OS union and enum results 

Some conclusions from the results are : 
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 Arrays and sequences performs nearly the same 

 If we compare with L_O_OS results we see that for the size of 100, twoway 

is faster than oneway, but at size 1, 10, 1000 oneway is faster.  

5.3.4 twoway – send get results 

We will briefly refer to these results as L_T_SG (Local_Twoway_SendGet) results. 

5.3.4.1 L_T_SG primitive and primitive container results 

Figure 5.43 through 5.47 shows the results obtained for primitive types and 

containers with primitive types. 
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Figure 5.43 : L_T_SG Results for Primitives and Containers with 1 Primitive 

Containers with 10 Primitives
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Figure 5.44 : L_T_SG Results for Containers with 10 Primitives 
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Containers with 100 Primitives
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Figure 5.45 : L_T_SG Results for Containers with 100 Primitives 

Containers with 1000 Primitives
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Figure 5.46 : L_T_SG Results for Containers with 1000 Primitives 

Containers with 10000 Primitives
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Figure 5.47 : L_T_SG Results for Containers with 10000 Primitives 

5.3.4.2 about L_T_SG primitive and primitive container results 

Some conclusions from the results are : 

 One primitive, primitive within a sequence and primitive within an array 

performs the same.  
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 Sequences are a bit faster than the arrays for the size 10000. I can’t deduce 

anything from this result. In the worst case, arrays must have been faster 

than sequences. 

 If we compare with L_T_OS results, we see that sending a type is nearly the 

same with L_T_SG for small sizes (1, 10, 100) and becomes apparent when 

size increases (1000, 10000). We would expect the L_T_SG to performt 

slower all the times from L_T_OS since there is two paths of data flow. But it 

is not the case with small sizes. I guess this is because of the fact that small 

sized data can be carried in a packet and  the acknowledgement can be 

piggybacked with this packet. Twoway calls always block for an 

acknowledgement that specifies the successive end of the call. If the time 

consumed on the server side to copy data and send back is small, which is 

the case for small-sized data, then these results can be very close. For the 

big data we lose our time in coping with more than one packet and copying 

of return results to be sent back from the server. 

5.3.4.3 L_T_SG string and wide string results 

Figure 5.48 shows the results obtained. 
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Figure 5.48 : L_T_SG Results for Strings and Wide Strings 

5.3.4.4 about L_T_SG string and wide string results 

Some conclusions from the results are : 

 Strings and WStrings exhibits the same performance characteristics with 

char and wchar sequences, respectively. And they are faster than the arrays 

of their respective types. 
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 If we compare with L_T_OS results we see that the difference between 

sending and sending/getting the (w)strings becomes apparent after size 

1000. 

5.3.4.5 L_T_SG struct and struct container results 

Figures 5.49 through 5.53 shows the results obtained. 
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Figure 5.49 : L_T_SG Results for Structs and Containers with 1 Struct 
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Figure 5.50 : L_T_SG Results for Containers with 10 Structs 

Containers with 100 Structs
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Figure 5.51 : L_T_SG Results for Containers with 100 Structs 
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Containers with 1000 Structs
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Figure 5.52 : L_T_SG Results for Containers with 1000 Structs 

Containers with 10000 Structs
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Figure 5.53 : L_T_SG Results for Containers with 10000 Structs 

5.3.4.6 about L_T_SG struct and struct container results 

Some conclusions from the results are : 

 To carry a primitive alone, within a struct or within a container with 1 struct is 

same. 

 There is no difference between carrying the structs with arrays or 

sequences. 

 If we compare with L_T_OS results  we see that there is difference for sizes 

1, 10 and 100. After size 1000 difference becomes to appear. 

5.3.4.7 L_T_SG interface and interface container results 

Figures 5.54 through 5.58 shows the results obtained. 
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Interfaces and Containers with 1 Interface
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Figure 5.54 : L_T_SG Results for Interface and Containers with 1 Interface 

Containers with 10 Interfaces
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Figure 5.55 : L_T_SG Results for Containers with 10 Interfaces 

Containers with 100 Interfaces
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Figure 5.56 : L_T_SG Results for Containers with 100 Interfaces 
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Containers with 1000 Interfaces
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Figure 5.57 : L_T_SG Results for Containers with 1000 Interfaces 

Containers with 10000 Interfaces
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Figure 5.58 : L_T_SG Results for Containers with 10000 Interfaces 

5.3.4.8 about L_T_SG interface and interface container results 

Some conclusions from the results are : 

 To carry a primitive within an interface is slower than carrying it alone. 

 There is no difference between sequences and arrays. 

 Sharp changes between results begin very early, with size 10. This shows 

that interfaces requires big memory areas. 

 If we compare with L_T_OS results we see that even for the only one 

interface there is difference between only sending and sending/getting the 

interfaces. 

5.3.4.9 L_T_SG union and enum results 

Figures 5.59 through 5.63 shows the results obtained. 
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Results  for 1 Union and Enum
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Figure 5.59 : L_T_SG Results for Union, Enum and Containers with 1 Union and Enum 

Results  for 10 Unions and Enums
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Figure 5.60 : L_T_SG Results for Containers with 10 Unions and Enums 

Results  for 100 Unions and Enums
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Figure 5.61 : L_T_SG Results for Containers with 100 Unions and Enums 

Results  for 1000 Unions and Enums
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Figure 5.62 : L_T_SG Results for Containers with 1000 Unions and Enums 
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Results  for 10000 Unions and Enums
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Figure 5.63 : L_T_SG Results for Containers with 10000 Unions and Enums 

5.3.4.10 about L_T_SG union and enum results 

Some conclusions from the results are : 

 Enum shows the same characteristics with unsigned longs generally. But it is 

faster for size 10000 from unsigned longs.  

 Enum and union Arrays and sequences perform nearly the same as 

expected.  

 Difeerence between unions with doubles and unions with octets are obvious 

for sizes bigger than 10. 

 If we compare with L_T_OS results we see that for the enum they almost 

show the same performance up to size 1000, and for the union up to size 

100. 

5.3.5 twoway – only get results 

We will briefly refer to these results as L_T_OG (Local_Twoway_OnlyGet) results. 

5.3.5.1 L_T_OG primitive and primitive container results 

Figure 5.64 through 5.68 shows the results obtained for primitive types and 

containers with primitive types. 
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Primitives and Containers with 1 Primitive 
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Figure 5.64 : L_T_OG Results for Primitives and Containers with 1 Primitive 

Containers with 10 Primitives
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Figure 5.65 : L_T_OG Results for Containers with 10 Primitives 

Containers with 100 Primitives
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Figure 5.66 : L_T_OG Results for Containers with 100 Primitives 



 69 

Containers with 1000 Primitives
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Figure 5.67 : L_T_OG Results for Containers with 1000 Primitives 

Containers with 10000 Primitives
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Figure 5.68 : L_T_OG Results for Containers with 10000 Primitives 

5.3.5.2 about L_T_OG primitive and primitive container results 

Some conclusions from the results are : 

 Primitives alone and primitives in a container performs same. 

 Arrays and sequences perform nearly the same. Arrays are a bit better than 

sequences, but it can be ignored. 

 If we compare the results with L_O_SG results we see that for the small 

sizes they ara nearly equal. When calling a method we pass to the ORB (or 

more truely to the Object Adapter) the name and parameters of the method. 

So, when we have small sizes of parameters, we can fit them into a packet 

and can send the method name and parameters within a packet. But when 

parameter sizes increases the number of packets also increases. 

 If we compare the results with L_T_OS, we see that they perform almost the 

same.  
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5.3.5.3 L_T_OG string and wide string results 

Figure 5.69 shows the results obtained. 
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Figure 5.69 : L_T_OG Results for Strings and Wide Strings 

5.3.5.4 about L_T_OG string and wide string results 

Some conclusions from the results are : 

 Encapsulating char and wchar within containers and strings performs the 

same. 

 If we compare with L_T_OS results we see that the results are nearly same. 

 If we compare with L_T_SG results we see that they are nearly the same for 

sizes 1, 10 and 100 and L_T_SG becomes slower and slower for sizes 1000 

and 10000. 

5.3.5.5 L_T_OG struct and struct container results 

Figures 5.70 through 5.74 shows the results obtained. 
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Structs and Containers with 1 Struct
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Figure 5.70 : L_T_OG Results for Structs and Containers with 1 Struct 

Containers with 10 Structs

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Sequence 2,9844 3,0084 3,0688 2,96 2,9644 2,9804 2,9724 3,0204 3,0084 2,9684 3,0164 2,9524 3,1364

Array 2,972 2,9844 3,0084 2,956 2,976 2,964 2,992 2,9884 2,9484 2,9444 2,988 2,9764 3,1368

C WC D L UL LL ULL F S US B O A

 

Figure 5.71 : L_T_OG Results for Containers with 10 Structs. 

Containers with 100 Structs
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Figure 5.72 : L_T_OG Results for Containers with 100 Structs 
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Containers with 1000 Structs
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Figure 5.73 : L_T_OG Results for Containers with 1000 Structs 

Containers with 10000 Structs
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Figure 5.74 : L_T_OG Results for Containers with 10000 Structs 

5.3.5.6 about L_T_OG struct and struct container results 

Some conclusions from the results are : 

 To carry a primitive alone, within a struct or within a container with 1 struct is 

same. 

 There is no difference between carrying the structs within arrays or 

sequences. 

 If we compare with L_T_OS results  we see that we have the same 

performance for small sizes. But L_T_OG is faster as obviously seen from 

our special struct with size 10000, and slightly seen from the other results. 

 If we compare our results with L_T_SG we see that it is slower than L_T_OG 

results especially for greater sizes. 
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5.3.5.7 L_T_OG interface and interface container results 

Figures 5.75 through 5.79 shows the results obtained. 
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Figure 5.75 : L_T_OG Results for Interface and Containers with 1 Interface 
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Figure 5.76 : L_T_OG Results for Containers with 10 Interfaces 

Containers with 100 Interfaces
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Figure 5.77 : L_T_OG Results for Containers with 100 Interfaces 
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Containers with 1000 Interfaces
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Figure 5.78 : L_T_OG Results for Containers with 1000 Interfaces 

Containers with 10000 Interfaces
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Figure 5.79 : L_T_OG Results for Containers with 10000 Interfaces 

5.3.5.8 about L_T_OG interface and interface container results  

Some conclusions from the results are : 

 To carry a primitive within an interface or a container with 1 interface is the 

slowest of all constructed types and have the same performances. 

 If we compare with L_T_OS results we see that they have the same 

performance for  sizes 1, 10, 100, L_T_OS is better for size 1000 and  

L_T_OG is better for size 10000. 

 If we compare with L_T_SG we see that L_T_OG is faster for even size 1 

and difference grows radically with growing size. 

5.3.5.9 L_T_OG union and enum results 

Figures 5.80 through 5.84 shows the results obtained. 
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Results  for 1 Union and Enum
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Figure 5.80 : L_T_OG Results for Union, Enum and Containers with 1 Union and Enum 

Results  for 10 Unions and Enums
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Figure 5.81 : L_T_OG Results for Containers with 10 Unions and Enums 

Results  for 100 Unions and Enums
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Figure 5.82 : L_T_OG Results for Containers with 100 Unions and Enums 

Results  for 1000 Unions and Enums
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Figure 5.83 : L_T_OG Results for Containers with 1000 Unions and Enums 
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Results  for 10000 Unions and Enums
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Figure 5.84 : L_T_OG Results for Containers with 10000 Unions and Enums 

5.3.5.10 about L_T_OG union and enum results 

Some conclusions from the results are : 

 Enum shows the same characteristics with unsigned longs generally. But it is 

slower for size 10000 than unsigned longs.  

 Enum and union arrays and sequences performs nearly the same as 

expected. But for the size 10000 arrays are slower. 

 Difference between unions with doubles and unions with octets are obvious 

for sizes bigger than 100. 

 If we compare with L_T_OS results we see that for the enum and union 

sequences they almost shows the same performance. L_T_OS arrays are a 

bit slower. 

  If we compare with L_T_SG results we see that for the enums there is a 

clear difference for sizes greater than 1000. Octet unions start to show this 

difference with size 1000 and double unions with size 100.  

5.4 Results for Remote Calls 

Following are the results for our remote calls taken as described at section 4.5.3. 

We must point out the followings, before passing to the results : 

 We mentioned at the local results that we observe a sharp difference 

between the first call and the second. This sharpness is so prominent for 

some remote calls (and these anomalies occur randomly) that  it affects the 

average value of results greatly. So, we do not take the first calls’ time for the 

abnormal results for remote calls. You can expect a long time with respect to 
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others for first calls (our results show that it is about 20,000 msecs slower for 

our configuration) and the other calls have nearly the same times. 

 We have two different hardware configurations for the server and client 

sides. So, the comparisons between local and remote calls could be 

unhealthy. But it gives us an idea about the remote calls. 

 We took the results mainly to measure the effects of remote calls with 

respect to the local ones. So, we will generally give the conclusions 

regarding to local/remote changes. Other aspects will be mentioned only if 

they deviate from local ones greatly. So, we have a lot of results here, but 

very few comments on them.  

5.4.1 remote oneway and twoway invoke results 

Figure 5.85 shows the results for oneway and twoway functions which take no 

arguments and return nothing. 
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Figure 5.85 : Remote results for Oneway and Twoway Invocations 

5.4.2 about oneway and twoway invoke results 

Remote results are faster than local ones and oneway is faster than twoway. 

5.4.3 oneway – only send results  

We will briefly refer to these results as R_O_OS (Remote_Oneway_OnlySend) 

results. 



 78 

5.4.3.1 R_O_OS primitive and primitive container results 

Figure 5.86 through 5.90 shows the results obtained for primitive types and 

containers with primitive types. 
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Figure 5.86 : R_O_OS Results for Primitives and Containers with 1 Primitive 

Containers with 10 Primitives
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Figure 5.87 : R_O_OS Results for Containers with 10 Primitives 

Containers with 100 Primitives
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Figure 5.88 : R_O_OS Results for Containers with 100 Primitives 
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Containers with 1000 Primitives
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Figure 5.89 : R_O_OS Results for Containers with 1000 Primitives 

Containers with 10000 Primitives
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Figure 5.90 : R_O_OS Results for Containers with 10000 Primitives 

5.4.3.2 about R_O_OS primitive and primitive container results 

If we compare with L_O_OS results we see that local calls are faster than remote 

calls. 

5.4.3.3 R_O_OS string and wide string results 

Figure 5.91 shows the results obtained. 
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Results for Strings and Wide Strings
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Figure 5.91 : R_O_OS Results for Strings and Wide Strings 

5.4.3.4 about R_O_OS string and wide string results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 At the size 10000 the ratio of wstrings/strings nearly reach to the value of 2, 

which is the ratio of sizes of these two types. 

 Comparison with L_O_OS results shows that the local calls are very fast with 

respect to remote ones. 

5.4.3.5 R_O_OS struct and struct container results 

Figures 5.92 through 5.96 shows the results obtained. 
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Figure 5.92 : R_O_OS Results for Structs and Containers with 1 Struct 
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Containers with 10 Structs
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Figure 5.93 : R_O_OS Results for Containers with 10 Structs. 

Containers with 100 Structs
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Figure 5.94 : R_O_OS Results for Containers with 100 Structs 

Containers with 1000 Structs
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Figure 5.95 : R_O_OS Results for Containers with 1000 Structs. 
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Containers with 10000 Structs
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Figure 5.96 : R_O_OS Results for Containers with 10000 Structs 

5.4.3.6 about R_O_OS struct and struct container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_O_OS results we see that local results are generally 

faster than remote ones especially for large-sized structs, For example, it 

takes about 280 msecs for local calls to send ten thousands of our special 

struct and and about 920 msecs for remote calls; locals are 3,5 times faster. 

5.4.3.7 R_O_OS interface and interface container results 

Figures 5.97 through 5.101 shows the results obtained. 
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Figure 5.97 : R_O_OS Results for Interface and Containers with 1 Interface 
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Containers with 10 Interfaces
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Figure 5.98 : R_O_OS Results for Containers with 10 Interfaces 

Containers with 100 Interfaces
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Figure 5.99 : R_O_OS Results for Containers with 100 Interfaces 

Containers with 1000 Interfaces
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Figure 5.100 : R_O_OS Results for Containers with 1000 Interfaces 
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Containers with 10000 Interfaces
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Figure 5.101 : R_O_OS Results for Containers with 10000 Interfaces 

5.4.3.8 about R_O_OS interface and interface container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_O_OS results we see that local calls are faster than 

remote calls for sizes greater than 1. 

 We got the out of memory error at L_O_OS for size 10000. Here we could 

completed the test for this size. 

5.4.3.9 R_O_OS union and enum results 

Figures 5.102 through 5.106 show the results obtained. 
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Figure 5.102 : R_O_OS Results for Union, Enum and Containers with 1 Union and Enum 
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Results for 10 Unions and Enums
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Figure 5.103 : R_O_OS Results for Containers with 10 Unions and Enums 

Results for 100 Unions and Enums
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Figure 5.104 : R_O_OS Results for Containers with 100 Unions and Enums 

Results for 1000 Unions and Enums
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Figure 5.105 : R_O_OS Results for Containers with 1000 Unions and Enums 

Results for 10000 Unions and Enums
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Figure 5.106 : R_O_OS Results for Containers with 10000 Unions and Enums 

5.4.3.10 about R_O_OS union and enum results 

Some conclusions from the results we have taken are : 
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 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_O_OS results we see that local calls are faster than 

remote calls for sizes greater than about 100. 

5.4.4 twoway – only send results 

We will briefly refer to these results as R_T_OS (Remote_Twoway_OnlySend) 

results.  

5.4.4.1 R_T_OS primitive and primitive container results 

Figure 5.107 through 5.111 shows the results obtained for primitive types and 

containers with primitive types. 
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Figure 5.107 : R_T_OS Results for Primitives and Containers with 1 Primitive 

Containers with 10 Primitives

2,2

2,4

2,6

2,8

m
s
e
c
s

Sequence 2,536 2,5116 2,732 2,584 2,62 2,72 2,748 2,6316 2,576 2,5876 2,544 2,5516

Array 2,4956 2,5236 2,704 2,532 2,536 2,644 2,68 2,592 2,512 2,5156 2,5036 2,4876

C WC D L UL LL ULL F S US B O

 

Figure 5.108 : R_T_OS Results for Containers with 10 Primitives 
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Containers with 100 Primitives
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Figure 5.109 : R_T_OS Results for Containers with 100 Primitives 

Containers with 1000 Primitives
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Figure 5.110 : R_T_OS Results for Containers with 1000 Primitives 

Containers with 10000 Primitives
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Figure 5.111 : R_T_OS Results for Containers with 10000 Primitives 

5.4.4.2 about R_T_OS primitive and primitive container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 
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 If we compare with L_T_OS results we see that local calls are faster than 

remote calls. 

5.4.4.3 R_T_OS string and wide string results 

Figure 5.112 shows the results obtained. 
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Figure 5.112 : R_T_OS Results for Strings and Wide Strings 

5.4.4.4 about R_T_OS string and wide string results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_OS results we see that local calls are faster than 

remote calls. 

5.4.4.5 R_T_OS struct and struct container results 

Figures 5.113 through 5.117 shows the results obtained. 
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Structs and Containers with 1 Struct
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Figure 5.113 : R_T_OS Results for Structs and Containers with 1 Struct 
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Figure 5.114 : R_T_OS Results for Containers with 10 Structs. 

Containers with 100 Structs
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Figure 5.115 : R_T_OS Results for Containers with 100 Structs 
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Containers with 1000 Structs
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Figure 5.116 : R_T_OS Results for Containers with 1000 Structs. 

Containers with 10000 Structs
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Figure 5.117 : R_T_OS Results for Containers with 10000 Structs 

5.4.4.6 about R_T_OS struct and struct container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_OS results we see that local calls are faster than 

remote calls. 

5.4.4.7 R_T_OS interface and interface container results 

Figures 5.118 through 5.122 shows the results obtained. 
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Interfaces and Containers with 1 Interface
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Figure 5.118 : R_T_OS Results for Interface and Containers with 1 Interface 

Containers with 10 Interfaces
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Figure 5.119 : R_T_OS Results for Containers with 10 Interfaces 

Containers with 100 Interfaces
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Figure 5.120 : R_T_OS Results for Containers with 100 Interfaces 
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Containers with 1000 Interfaces
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Figure 5.121 : R_T_OS Results for Containers with 1000 Interfaces 

Containers with 10000 Interfaces

3600

3700

3800

3900

4000

4100

m
s
e
c
s

Sequence 3826 3818 3827 3779 3795 3862 3923 3843 3846 3849 3852 3848 4015 3845

Array 3832 3826 3791 3786 3805 3861 3921 3834 3834 3845 3842 3837 4002 3839

C WC D L UL LL ULL F S US B O A E

 

Figure 5.122 : R_T_OS Results for Containers with 10000 Interfaces 

5.4.4.8 about R_T_OS interface and interface container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_OS results we see that local calls are faster than 

remote calls. 

5.4.4.9 R_T_OS union and enum results 

Figures 5.123 through 5.127 shows the results obtained. 
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Results for 1 Union and Enum
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Figure 5.123 : R_T_OS Results for Union, Enum and Containers with 1 Union and Enum 

Results for 10 Unions and Enums
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Figure 5.124 : R_T_OS Results for Containers with 10 Unions and Enums 

Results for 100 Unions and Enums
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Figure 5.125 : R_T_OS Results for Containers with 100 Unions and Enums 

Results for 1000 Unions and Enums
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Figure 5.126 : R_T_OS Results for Containers with 1000 Unions and Enums 
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Results for 10000 Unions and Enums
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Figure 5.127 : R_T_OS Results for Containers with 10000 Unions and Enums 

5.4.4.10 about R_T_OS union and enum results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_OS results we see that local calls are faster than 

remote calls. 

5.4.5 twoway – send get results 

We will briefly refer to these results as R_T_SG (Remote_Twoway_SendGet) 

results. 

5.4.5.1 R_T_SG primitive and primitive container results 

Figure 5.128 through 5.132 shows the results obtained for primitive types and 

containers with primitive types. 

Primitives and Containers with 1 Primitive 

2,3

2,4

2,5

2,6

m
s
e
c
s

Primitive 2,4756 2,4916 2,58 2,4596 2,4756 2,5156 2,4996 2,5148 2,4676 2,4756 2,4396 2,4436

Sequence 2,508 2,5116 2,5756 2,464 2,5156 2,536 2,5716 2,548 2,4596 2,5156 2,4996 2,4472

Array 2,516 2,4796 2,5716 2,4636 2,4916 2,5316 2,5476 2,4916 2,4956 2,4836 2,4236 2,4796

C WC D L UL LL ULL F S US B O

 

Figure 5.128 : R_T_SG Results for Primitives and Containers with 1 Primitive 
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Containers with 10 Primitives
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Figure 5.129 : R_T_SG Results for Containers with 10 Primitives 

Containers with 100 Primitives
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Figure 5.130 : R_T_SG Results for Containers with 100 Primitives 

Containers with 1000 Primitives
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Figure 5.131 : R_T_SG Results for Containers with 1000 Primitives 
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Containers with 10000 Primitives
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Figure 5.132 : R_T_SG Results for Containers with 10000 Primitives 

5.4.5.2 about R_T_SG primitive and primitive container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.5.3 R_T_SG string and wide string results 

Figure 5.133 shows the results obtained. 
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Figure 5.133 : R_T_SG Results for Strings and Wide Strings 

5.4.5.4 about R_T_SG string and wide string results 

Some conclusions from the results we have taken are : 
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 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.5.5 R_T_SG struct and struct container results 

Figures 5.134 through 5.138 shows the results obtained. 
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Figure 5.134 : R_T_SG Results for Structs and Containers with 1 Struct 
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Figure 5.135 : R_T_SG Results for Containers with 10 Structs. 
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Containers with 100 Structs

0

5

10

15

20

m
s
e
c
s

Sequence 3,0244 3,4528 5,8728 4,1824 4,1884 5,7644 5,7924 4,2664 3,4528 3,46 3,0124 2,984 17,73

Array 2,9956 3,4372 5,8568 4,1464 4,182 5,748 5,7724 4,286 3,4604 3,4528 3,0084 2,9964 17,749

C WC D L UL LL ULL F S US B O A

 

Figure 5.136 : R_T_SG Results for Containers with 100 Structs 

Containers with 1000 Structs
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Figure 5.137 : R_T_SG Results for Containers with 1000 Structs. 

Containers with 10000 Structs
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Figure 5.138 : R_T_SG Results for Containers with 10000 Structs 

5.4.5.6 about R_T_SG struct and struct container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 
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 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.5.7 R_T_SG interface and interface container results 

Figures 5.139 through 5.143 shows the results obtained. 
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Figure 5.139 : R_T_SG Results for Interface and Containers with 1 Interface 
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Figure 5.140 : R_T_SG Results for Containers with 10 Interfaces 
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Figure 5.141 : R_T_SG Results for Containers with 100 Interfaces 
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Containers with 1000 Interfaces
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Figure 5.142 : R_T_SG Results for Containers with 1000 Interfaces 

Containers with 10000 Interfaces

5400

5600

5800

6000

6200

m
s
e
c
s

Sequence 5703 5737 5738 5734 5717 5863 5853 5753 5724 5782 5797 5756 5981 5730

Array 5710 5708 5716 5712 5730 5865 5855 5750 5753 5782 5772 5744 5976 5733

C WC D L UL LL ULL F S US B O A E

 

Figure 5.143 : R_T_SG Results for Containers with 10000 Interfaces 

5.4.5.8 about R_T_SG interface and interface container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.5.9 R_T_SG union and enum results 

Figures 5.144 through 5.148 shows the results obtained. 
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Results for 1 Union and Enum
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Figure 5.144 : R_T_SG Results for Union, Enum and Containers with 1 Union and Enum 

Results for 10 Unions and Enums
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Figure 5.145 : R_T_SG Results for Containers with 10 Unions and Enums 

Results for 100 Unions and Enums
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Figure 5.146 : R_T_SG Results for Containers with 100 Unions and Enums 

Results for 1000 Unions and Enums
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Figure 5.147 : R_T_SG Results for Containers with 1000 Unions and Enums 
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Results for 10000 Unions and Enums
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Figure 5.148 : R_T_SG Results for Containers with 10000 Unions and Enums 

5.4.5.10 about R_T_SG union and enum results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.6 twoway – only get results 

We will briefly refer to these results as R_T_OG (Remote_Twoway_OnlyGet) 

results. 

5.4.6.1 R_T_OG primitive and primitive container results 

Figure 5.149 through 5.153 shows the results obtained for primitive types and 

containers with primitive types. 
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Figure 5.149 : R_T_OG Results for Primitives and Containers with 1 Primitive 
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Containers with 10 Primitives
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Figure 5.150 : R_T_OG Results for Containers with 10 Primitives 

Containers with 100 Primitives
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Figure 5.151 : R_T_OG Results for Containers with 100 Primitives 

Containers with 1000 Primitives
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Figure 5.152 : R_T_OG Results for Containers with 1000 Primitives 



 104 

Containers with 10000 Primitives
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Figure 5.153 : R_T_OG Results for Containers with 10000 Primitives 

5.4.6.2 about R_T_OG primitive and primitive container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.6.3 R_T_OG string and wide string results 

Figure 5.154 shows the results obtained. 
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Figure 5.154 : R_T_OG Results for Strings and Wide Strings 

5.4.6.4 about R_T_OG string and wide string results 

Some conclusions from the results we have taken are : 
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 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.6.5 R_T_OG struct and struct container results 

Figures 5.155 through 5.159 shows the results obtained. 
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Figure 5.155 : R_T_OG Results for Structs and Containers with 1 Struct 

Containers with 10 Structs
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Figure 5.156 : R_T_OG Results for Containers with 10 Structs. 
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Containers with 100 Structs
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Figure 5.157 : R_T_OG Results for Containers with 100 Structs 

Containers with 1000 Structs
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Figure 5.158 : R_T_OG Results for Containers with 1000 Structs. 

Containers with 10000 Structs
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Figure 5.159 : R_T_OG Results for Containers with 10000 Structs 

5.4.6.6 about R_T_OG struct and struct container results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 
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 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.6.7 R_T_OG interface and interface container results 

Figures 5.160 through 5.164 shows the results obtained. 
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Figure 5.160 : R_T_OG Results for Interface and Containers with 1 Interface 

Containers with 10 Interfaces
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Figure 5.161 : R_T_OG Results for Containers with 10 Interfaces 
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Figure 5.162 : R_T_OG Results for Containers with 100 Interfaces 
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Containers with 1000 Interfaces
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Figure 5.163 : R_T_OG Results for Containers with 1000 Interfaces 

Containers with 10000 Interfaces
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Figure 5.164 : R_T_OG Results for Containers with 10000 Interfaces 

5.4.6.8 about R_T_OG interface and interface container results  

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 

5.4.6.9 R_T_OG union and enum results 

Figures 5.165 through 5.169 shows the results obtained. 
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Results for 1 Union and Enum

2,2

2,4

2,6

2,8

m
s
e
c
s

All Primitives 2,5152 2,4596 2,588

Sequence 2,5108 2,556 2,6636

Array 2,5076 2,5196 2,5916

Enum Union (Octet) Union (Double)

 

Figure 5.165 : R_T_OG Results for Union, Enum and Containers with 1 Union and Enum 

Results for 10 Unions and Enums
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Figure 5.166 : R_T_OG Results for Containers with 10 Unions and Enums 

Results for 100 Unions and Enums
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Figure 5.167 : R_T_OG Results for Containers with 100 Unions and Enums 

Results for 1000 Unions and Enums
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Figure 5.168 : R_T_OG Results for Containers with 1000 Unions and Enums 
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Results for 10000 Unions and Enums
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Figure 5.169 : R_T_OG Results for Containers with 10000 Unions and Enums 

5.4.6.10 about R_T_OG union and enum results 

Some conclusions from the results we have taken are : 

 If we consider the aspects other than the local/remote distinction, we have 

the same results with local ones. 

 If we compare with L_T_SG results we see that local calls are faster than 

remote calls. 
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6. CONCLUSIONS AND FUTURE WORK 

We had a wide benchmark and ran it. We have some conclusions from our study 

and future work plans. We will briefly mention these at the following lines. 

6.1 Conclusions 

We tested nearly all static IDL constructs in this study. We have a bulk of raw data, 
and comparisons can be made on these data. We only give conclusions for some of 
them. Whoever wants can deduce the conclusions he/she needs from our data. 

Our results (generally) show that : 

 Local calls are faster than remote calls for big-sized data. For small-sized 
data, remote calls are faster. 

 Oneway invocations are faster than twoway invocations. But oneways are 
unreliable and some of them could not complete the test. On the other hand, 
all the twoway calls successfully completed the measurements. 

 We see the nearly same results for small sized data for all the flows of data. 
But for the larger sizes the descending order is from client to server and  
server to client back, from client to server and from server to client. 

 For the primitive types we have the close results for small number of 
parameters and results are ordered with sizes of types for larger number of 
parameters. 

 For constructed types : 

 We have the same results for primitives with structs. For small sizes. But 
for the big sizes, structs perform worse. 

 We have the same results for unsigned long with enums. 

 We have extremely slow passing of parameters with interfaces. 

 Passing an octet within a union takes less time than passing a double. 

 For the container types : 

 We have the same results with sequences and arrays. 

 We have the same results for strings with chars.  
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 We have the same results for wstrings with wchars. 

6.2 Future Work 

As we mentioned, we have only tested the static CORBA, but  common phrase in 

the CORBA means static and dynamic [47]. So, our benchmark can be applied to 

dynamic CORBA.  

Also we mentioned that we applied our benchmark to the most commonly available 

CORBA/Java ORB worldwide. When we were studying on the release 1.3.1, Sun 

released the new version of its SDK, version 1.4, and it contains a different 

approach for the object adapter : it uses POA even though it also supports old style. 

So, our benchmark can be applied to this new release of Java IDL. 

Java IDL is not the only CORBA/Java ORB. There are a lot of CORBA/Java ORBs 

on the market (e.g, JavaORB, JacORB, OpenORB, Visibroker for Java, Voyager 

ORB, Engine Room CORBA, ... etc) and by applying the benchmark to these ORBs 

a comparison between the ORBs can be conducted.  

We have only thought of marshalling/demarshalling of parameters. But there are 

another ways of comparisons. So, we can extend our benchmark to cover, for 

example, dispatching, survivability and reliability as a future study. 
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