

ĠSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

MARSHALLING/DEMARSHALLING PERFORMANCE
ANALYSIS OF SUN’S JAVA IDL BY USING STATIC

INVOCATION INTERFACE

M.S. Thesis by

Tacettin AYAR, B.S.

Department : COMPUTER ENGINEERING

Programme: Computer Engineering

JANUARY 2003

ĠSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.S. Thesis by

Tacettin AYAR, B.S.

504991126

Date of submission : 24 December 2002

Date of defence examination: 15 January 2003

 Supervisor (Chairman): Prof. Dr. Bülent ÖRENCĠK

Members of the Examining Committee Assoc. Prof.Dr. Nadia ERDOĞAN (ĠTÜ.)

 Dr. Erdal ÇAYIRCI (Turkish War Colleges)

)

JANUARY 2003

MARSHALLING/DEMARSHALLING PERFORMANCE
ANALYSIS OF SUN’S JAVA IDL BY USING STATIC

INVOCATION INTERFACE

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

SUN’IN JAVA IDL DERLEYĠCĠSĠNĠN STATĠK ÇAĞRI
ARAYÜZÜ KULLANILARAK HĠZALAMA/GERĠ HĠZALAMA

BAġARIMININ ĠNCELENMESĠ

YÜKSEK LĠSANS TEZĠ

Müh. Tacettin AYAR

504991126

OCAK 2003

Tezin Enstitüye Verildiği Tarih : 24 Aralık 2002

Tezin Savunulduğu Tarih : 15 Ocak 2003

Tez DanıĢmanı : Prof.Dr. Bülent ÖRENCĠK

Diğer Jüri Üyeleri Doç.Dr. Nadia ERDOĞAN (Ġ.T.Ü.)

 Dr. Erdal ÇAYIRCI (Harp Akademileri)

 iii

FOREWORD

I am very grateful to my advisor Prof. Bülent Örencik for his guidance throughout
this study.

Thanks to my family for their patience.

Special thanks go to Yıldıray Hazır and Ahmet Çağatay Tunalı for the materials they
supplied me.

My colleagues and room mates dear Mehmet Siraç Özerdem, Ahmet Cüneyd
Tantuğ and Gülşen Cebiroğlu Eryiğit, deserves special thanks. I am very indebted to
them.

Tacettin AYAR

December, 2002

 iv

TABLE OF CONTENTS

FOREWORD ... iii

TABLE OF CONTENTS .. iv

ABBREVIATIONS ... ix

LIST OF TABLES .. x

LIST OF FIGURES .. xi

ÖZET .. xv

SUMMARY .. xix

1. HISTORY OF DISTRIBUTED SYSTEMS .. 1
1.1 Monolithic Systems ... 1
1.2 The Client/Server Model ... 2
1.3 Multitier (N-Tiered) Client/Server .. 3
1.4 Distributed Systems .. 4

2. DISTRIBUTED OBJECTS AND COMPONENTS .. 5
2.1 From Objects to Distributed Objects ... 5
2.2 Benefits of Distributed Objects.. 5
2.3 Components ... 6
2.4 Client/Server Using Distributed Objects .. 7
2.5 Business Objects .. 7

3. CORBA OVERVIEW ... 10
3.1 Middleware ... 10
3.2 OMG’s Object Management Architecture (OMA) 10
3.3 Object Request Broker (ORB) ... 11

3.3.1 clients .. 13

3.3.1.1 structure of a client ... 13

3.3.2 object implementations .. 14

3.3.2.1 structure of an object implementation ... 14

3.3.2.2 object references .. 15

3.3.3 IDL compiler .. 15

3.3.3.1 OMG interface definition language (IDL) 16

3.3.3.2 mapping of OMG IDL to programming languages 16

3.3.4 client stubs .. 16

3.3.5 dynamic invocation interface (DII) .. 16

 v

3.3.6 implementation skeleton .. 17

3.3.7 dynamic skeleton interface (DSI) ... 17

3.3.8 object adapters .. 17

3.3.8.1 structure of an object adapter ... 18

3.3.8.2 CORBA required object adapter ... 19

3.3.9 ORB interface .. 19

3.3.10 interface repository (IR) ... 19
3.4 CORBA Services .. 19
3.5 CORBA Facilities .. 21
3.6 Applicatıon Objects ... 21
3.7 CORBA Interoperability .. 21

3.7.1 CORBA domains ... 22

4. THE THESIS ... 24
4.1 The Goal of The Thesis .. 24
4.2 Related Work .. 24
4.3 Marshalling And Demarshalling .. 25

4.3.1 common data representation (CDR) .. 25
4.4 The Benchmark’s Players ... 26
4.5 Structure of The Benchmark .. 26
4.6 Criteria Used .. 29

4.6.1 used CORBA/Java ORB .. 29

4.6.2 local versus remote calls ... 30

4.6.3 oneway versus twoway invocations ... 30

4.6.4 flow of parameters ... 31

4.6.5 CORBA types used ... 31

4.6.5.1 primitive types .. 32

4.6.5.2 constructed types ... 32

4.6.5.3 container types ... 33

4.6.6 IDL-to-Java mappings of used types ... 33
4.7 CDR Transfer Syntax ... 34

4.7.1 primitive types ... 34

4.7.1.1 short and unsigned short .. 34

4.7.1.2 long and unsigned long .. 34

4.7.1.3 long long and unsigned long long ... 34

4.7.1.4 float .. 35

4.7.1.5 double .. 36

4.7.1.6 long double ... 37

4.7.1.7 octet ... 38

4.7.1.8 boolean .. 38

4.7.1.9 char and wchar ... 38

4.7.2 constructed types .. 38

 vi

4.7.2.1 struct .. 38

4.7.2.2 union .. 38

4.7.2.3 enum .. 38

4.7.2.4 interface ... 39

4.7.3 container types .. 39

4.7.3.1 array ... 39

4.7.3.2 sequence .. 39

4.7.3.3 strings and wide strings .. 39

5. RESULTS FOR JDK1.3_02 .. 40
5.1 About Sun’s IDL Compiler .. 40
5.2 A Note on Our Graphics .. 40
5.3 Results for Local Calls .. 40

5.3.1 local oneway and twoway invocation results 40

5.3.1.1 comments on oneway and twoway invocation results 41

5.3.2 oneway – only send results ... 41

5.3.2.1 L_O_OS primitive and primitive container results 41

5.3.2.2 about L_O_OS primitive and primitive container results 43

5.3.2.3 L_O_OS string and wide string results 44

5.3.2.4 about L_O_OS string and wide string results 44

5.3.2.5 L_O_OS struct and struct container results 45

5.3.2.6 about L_O_OS struct and struct container results 46

5.3.2.7 L_O_OS interface and interface container results 47

5.3.2.8 about L_O_OS interface and interface container results 48

5.3.2.9 L_O_OS union and enum results.. 48

5.3.2.10 about L_O_OS union and enum results 50

5.3.3 twoway – only send results .. 50

5.3.3.1 L_T_OS primitive and primitive container results 50

5.3.3.2 about L_T_OS primitive and primitive container results 52

5.3.3.3 L_T_OS string and wide string results .. 52

5.3.3.4 about L_T_OS string and wide string results 53

5.3.3.5 L_T_OS struct and struct container results 53

5.3.3.6 about L_T_OS struct and struct container results 55

5.3.3.7 L_T_OS interface and interface container results 55

5.3.3.8 about L_T_OS interface and interface container results 57

5.3.3.9 union and enum results .. 57

5.3.3.10 about L_T_OS union and enum results 58

5.3.4 twoway – send get results ... 59

5.3.4.1 L_T_SG primitive and primitive container results 59

5.3.4.2 about L_T_SG primitive and primitive container results 60

 vii

5.3.4.3 L_T_SG string and wide string results .. 61

5.3.4.4 about L_T_SG string and wide string results 61

5.3.4.5 L_T_SG struct and struct container results 62

5.3.4.6 about L_T_SG struct and struct container results 63

5.3.4.7 L_T_SG interface and interface container results 63

5.3.4.8 about L_T_SG interface and interface container results 65

5.3.4.9 L_T_SG union and enum results .. 65

5.3.4.10 about L_T_SG union and enum results 67

5.3.5 twoway – only get results... 67

5.3.5.1 L_T_OG primitive and primitive container results 67

5.3.5.2 about L_T_OG primitive and primitive container results 69

5.3.5.3 L_T_OG string and wide string results .. 70

5.3.5.4 about L_T_OG string and wide string results 70

5.3.5.5 L_T_OG struct and struct container results 70

5.3.5.6 about L_T_OG struct and struct container results 72

5.3.5.7 L_T_OG interface and interface container results 73

5.3.5.8 about L_T_OG interface and interface container results 74

5.3.5.9 L_T_OG union and enum results .. 74

5.3.5.10 about L_T_OG union and enum results 76
5.4 Results for Remote Calls .. 76

5.4.1 remote oneway and twoway invoke results .. 77

5.4.2 about oneway and twoway invoke results .. 77

5.4.3 oneway – only send results ... 77

5.4.3.1 R_O_OS primitive and primitive container results 78

5.4.3.2 about R_O_OS primitive and primitive container results 79

5.4.3.3 R_O_OS string and wide string results 79

5.4.3.4 about R_O_OS string and wide string results 80

5.4.3.5 R_O_OS struct and struct container results 80

5.4.3.6 about R_O_OS struct and struct container results 82

5.4.3.7 R_O_OS interface and interface container results 82

5.4.3.8 about R_O_OS interface and interface container results 84

5.4.3.9 R_O_OS union and enum results ... 84

5.4.3.10 about R_O_OS union and enum results 85

5.4.4 twoway – only send results .. 86

5.4.4.1 R_T_OS primitive and primitive container results 86

5.4.4.2 about R_T_OS primitive and primitive container results 87

5.4.4.3 R_T_OS string and wide string results 88

5.4.4.4 about R_T_OS string and wide string results 88

5.4.4.5 R_T_OS struct and struct container results 88

 viii

5.4.4.6 about R_T_OS struct and struct container results 90

5.4.4.7 R_T_OS interface and interface container results 90

5.4.4.8 about R_T_OS interface and interface container results 92

5.4.4.9 R_T_OS union and enum results.. 92

5.4.4.10 about R_T_OS union and enum results 94

5.4.5 twoway – send get results ... 94

5.4.5.1 R_T_SG primitive and primitive container results 94

5.4.5.2 about R_T_SG primitive and primitive container results 96

5.4.5.3 R_T_SG string and wide string results 96

5.4.5.4 about R_T_SG string and wide string results 96

5.4.5.5 R_T_SG struct and struct container results 97

5.4.5.6 about R_T_SG struct and struct container results 98

5.4.5.7 R_T_SG interface and interface container results 99

5.4.5.8 about R_T_SG interface and interface container results 100

5.4.5.9 R_T_SG union and enum results.. 100

5.4.5.10 about R_T_SG union and enum results 102

5.4.6 twoway – only get results... 102

5.4.6.1 R_T_OG primitive and primitive container results 102

5.4.6.2 about R_T_OG primitive and primitive container results 104

5.4.6.3 R_T_OG string and wide string results 104

5.4.6.4 about R_T_OG string and wide string results 104

5.4.6.5 R_T_OG struct and struct container results 105

5.4.6.6 about R_T_OG struct and struct container results 106

5.4.6.7 R_T_OG interface and interface container results 107

5.4.6.8 about R_T_OG interface and interface container results 108

5.4.6.9 R_T_OG union and enum results ... 108

5.4.6.10 about R_T_OG union and enum results 110

6. CONCLUSIONS AND FUTURE WORK .. 111
6.1 Conclusions .. 111
6.2 Future Work .. 112

REFERENCES ... 113

CURRICULUM VITAE .. 116

 ix

ABBREVIATIONS

CORBA : Common Object Request Broker Architecture
ORB : Object Request Broker
BOMSIG : Business Object Model Special Interest Group
BLO : Business Logic Object
BPO : Business Process Object
OMG : Object Management Group
API : Application Programmer Interface
OMA : Object Management Architecture
OR : Object Reference
IOR : Interoperable Object Reference
IDL : Interface Definition Language
DII : Dynamic Invocation Interface
DSI : Dynamic Skeleton Interface
BOA : Basic Object Adapter
POA : Portable Object Adapter
IR : Interface Repository
GIOP : General Inter-ORB Protocol
CDR : Common Data Representation
IIOP : Internet Inter-ORB Protocol
TCP/IP : Transmission Control Protocol/ Internet Protocol
ESIOP : Environment-Specific Inter-ORB Protocol
SII : Static Invocation Interface
ATM : Asynchronous Transfer Mode
BNF : Backus-Naur Format
CPU : Central Processing Unit
PC : Personal Computer
RAM : Random Access Memory
IEEE : Institute of Electrical and Electronics Engineers
MSB : Most Significant Bits
LSB : Least Significant Bits
SDK : Software Development Kit
L_O_OS : Local Oneway Only Send
L_T_OS : Local Twoway Only Send
L_T_SG : Local Twoway Send Get
L_T_OG : Local Twoway Only Get
R_O_OS : Remote Oneway Only Send
R_T_OS : Remote Twoway Only Send
R_T_SG : Remote Twoway Send Get
R_T_OG : Remote Twoway Only Get

 x

LIST OF TABLES

Page Number

Table 4.1. IDL-to-Java Mapping of Primitive Types...................................... 33

Table 5.1 Abbreviations Used in the Graphics.. 40

 xi

LIST OF FIGURES

Page Number

Figure 1.1 : Typical monolithic application architecture. .. 1
Figure 1.2 : A traditional client/server system. Clients request services of the server
independently but use the same interface. .. 2
Figure 1.3 : Since the distribution of the user interface and data is fixed, the
placement of the application logic is what distinguishes fat-client from fat-server
systems. ... 3
Figure 1.4 : Three-tier client/server architecture. .. 4
Figure 2.1 : A sample event management system. Depicted is CORBA’s Event
Service. .. 6
Figure 2.2 : Client/server computing using distributed objects. Communication
between components (denoted by arrows) is facilitated through ORBs (which have
been omitted for clarity) .. 7
Figure 2.3 : The parts of a business object and their communication with other
system objects .. 8
Figure 2.4 : Three tiers in a business object... 9
Figure 3.1 : Object Management Architecture .. 11
Figure 3.2 : The structure of object request interfaces ... 12
Figure 3.3 : The structure of a typical client ... 14
Figure 3.4 : The structure of a typical object implementation 15
Figure 3.5 : The structure of a typical object adapter ... 18
Figure 3.6 : IIOP’s place in networking .. 22
Figure 3.7 : Interoperability uses ORB-to-ORB communication. 22
Figure 4.1 : Objects used in our benchmarking framework. 26
Figure 4.2 : Bit ordering and size of shorts and unsigned shorts in big-endian and
little-endian encodings. ... 34
Figure 4.3 : Bit ordering and size of longs and unsigned longs in big-endian and
little-endian encodings. ... 35
Figure 4.4 : Bit ordering and size of long longs and unsigned long longs in big-
endian and little-endian encodings. ... 35
Figure 4.5 : Bit ordering and size of floating point numbers in big-endian and little-
endian encodings. .. 36
Figure 4.6 : Bit ordering and size of double-precision numbers in big-endian and
little-endian encodings. ... 36
Figure 4.7 : Bit ordering and size of double-extended numbers in big-endian and
little-endian encodings. ... 37
Figure 5.2 : L_O_OS Results for Primitives and Containers with 1 Primitive 41
Figure 5.3 : L_O_OS Results for Containers with 10 Primitives 42
Figure 5.4 : L_O_OS Results for Containers with 100 Primitives 42
Figure 5.5 : L_O_OS Results for Containers with 1000 Primitives 42
Figure 5.6 : L_O_OS Results for Containers with 10000 Primitives 43
Figure 5.7 : L_O_OS Results for Strings and Wide Strings 44
Figure 5.8 : L_O_OS Results for Structs and Containers with 1 Struct 45
Figure 5.9 : L_O_OS Results for Containers with 10 Structs. 45
Figure 5.10 : L_O_OS Results for Containers with 100 Structs 45
Figure 5.11 : L_O_OS Results for Containers with 1000 Structs. 46

 xii

Figure 5.12 : L_O_OS Results for Containers with 10000 Structs 46
Figure 5.13 : L_O_OS Results for Interface and Containers with 1 Interface 47
Figure 5.14 : L_O_OS Results for Containers with 10 Interfaces 47
Figure 5.15 : L_O_OS Results for Containers with 100 Interfaces 47
Figure 5.16 : L_O_OS Results for Containers with 1000 Interfaces 48
Figure 5.17 : L_O_OS Results for Union, Enum and Containers with 1 Union and
Enum .. 49
Figure 5.18 : L_O_OS Results for Containers with 10 Unions and Enums 49
Figure 5.19 : L_O_OS Results for Containers with 100 Unions and Enums 49
Figure 5.20 : L_O_OS Results for Containers with 1000 Unions and Enums 49
Figure 5.21 : L_O_OS Results for Containers with 10000 Unions and Enums 50
Figure 5.22 : L_T_OS Results for Primitives and Containers with 1 Primitive 51
Figure 5.23 : L_T_OS Results for Containers with 10 Primitives 51
Figure 5.24 : L_T_OS Results for Containers with 100 Primitives 51
Figure 5.25 : L_T_OS Results for Containers with 1000 Primitives 52
Figure 5.26 : L_T_OS Results for Containers with 10000 Primitives 52
Figure 5.27 : L_T_OS Results for Strings and Wide Strings................................... 53
Figure 5.28 : L_T_OS Results for Structs and Containers with 1 Struct 53
Figure 5.29 : L_T_OS Results for Containers with 10 Structs 54
Figure 5.30 : L_T_OS Results for Containers with 100 Structs 54
Figure 5.31 : L_T_OS Results for Containers with 1000 Structs 54
Figure 5.32 : L_T_OS Results for Containers with 10000 Structs 55
Figure 5.33 : L_T_OS Results for Interface and Containers with 1 Interface 55
Figure 5.34 : L_T_OS Results for Containers with 10 Interfaces 56
Figure 5.35 : L_T_OS Results for Containers with 100 Interfaces 56
Figure 5.36 : L_T_OS Results for Containers with 1000 Interfaces 56
Figure 5.37 : L_T_OS Results for Containers with 10000 Interfaces 57
Figure 5.38 : L_T_OS Results for Union, Enum and Containers with 1 Union and
Enum .. 57
Figure 5.39 : L_T_OS Results for Containers with 10 Unions and Enums 58
Figure 5.40 : L_T_OS Results for Containers with 100 Unions and Enums 58
Figure 5.41 : L_T_OS Results for Containers with 1000 Unions and Enums 58
Figure 5.42 : L_T_OS Results for Containers with 10000 Unions and Enums........ 58
Figure 5.43 : L_T_SG Results for Primitives and Containers with 1 Primitive 59
Figure 5.44 : L_T_SG Results for Containers with 10 Primitives 59
Figure 5.45 : L_T_SG Results for Containers with 100 Primitives 60
Figure 5.46 : L_T_SG Results for Containers with 1000 Primitives 60
Figure 5.47 : L_T_SG Results for Containers with 10000 Primitives 60
Figure 5.48 : L_T_SG Results for Strings and Wide Strings................................... 61
Figure 5.49 : L_T_SG Results for Structs and Containers with 1 Struct 62
Figure 5.50 : L_T_SG Results for Containers with 10 Structs 62
Figure 5.51 : L_T_SG Results for Containers with 100 Structs 62
Figure 5.52 : L_T_SG Results for Containers with 1000 Structs 63
Figure 5.53 : L_T_SG Results for Containers with 10000 Structs 63
Figure 5.54 : L_T_SG Results for Interface and Containers with 1 Interface 64
Figure 5.55 : L_T_SG Results for Containers with 10 Interfaces 64
Figure 5.56 : L_T_SG Results for Containers with 100 Interfaces 64
Figure 5.57 : L_T_SG Results for Containers with 1000 Interfaces 65
Figure 5.58 : L_T_SG Results for Containers with 10000 Interfaces 65
Figure 5.59 : L_T_SG Results for Union, Enum and Containers with 1 Union and
Enum .. 66
Figure 5.60 : L_T_SG Results for Containers with 10 Unions and Enums 66
Figure 5.61 : L_T_SG Results for Containers with 100 Unions and Enums 66
Figure 5.62 : L_T_SG Results for Containers with 1000 Unions and Enums 66
Figure 5.63 : L_T_SG Results for Containers with 10000 Unions and Enums........ 67

 xiii

Figure 5.64 : L_T_OG Results for Primitives and Containers with 1 Primitive 68
Figure 5.65 : L_T_OG Results for Containers with 10 Primitives............................ 68
Figure 5.66 : L_T_OG Results for Containers with 100 Primitives 68
Figure 5.67 : L_T_OG Results for Containers with 1000 Primitives 69
Figure 5.68 : L_T_OG Results for Containers with 10000 Primitives 69
Figure 5.69 : L_T_OG Results for Strings and Wide Strings 70
Figure 5.70 : L_T_OG Results for Structs and Containers with 1 Struct 71
Figure 5.71 : L_T_OG Results for Containers with 10 Structs. 71
Figure 5.72 : L_T_OG Results for Containers with 100 Structs 71
Figure 5.73 : L_T_OG Results for Containers with 1000 Structs 72
Figure 5.74 : L_T_OG Results for Containers with 10000 Structs 72
Figure 5.75 : L_T_OG Results for Interface and Containers with 1 Interface 73
Figure 5.76 : L_T_OG Results for Containers with 10 Interfaces 73
Figure 5.77 : L_T_OG Results for Containers with 100 Interfaces 73
Figure 5.78 : L_T_OG Results for Containers with 1000 Interfaces 74
Figure 5.79 : L_T_OG Results for Containers with 10000 Interfaces 74
Figure 5.80 : L_T_OG Results for Union, Enum and Containers with 1 Union and
Enum .. 75
Figure 5.81 : L_T_OG Results for Containers with 10 Unions and Enums 75
Figure 5.82 : L_T_OG Results for Containers with 100 Unions and Enums 75
Figure 5.83 : L_T_OG Results for Containers with 1000 Unions and Enums 75
Figure 5.84 : L_T_OG Results for Containers with 10000 Unions and Enums 76
Figure 5.86 : R_O_OS Results for Primitives and Containers with 1 Primitive 78
Figure 5.87 : R_O_OS Results for Containers with 10 Primitives 78
Figure 5.88 : R_O_OS Results for Containers with 100 Primitives 78
Figure 5.89 : R_O_OS Results for Containers with 1000 Primitives 79
Figure 5.90 : R_O_OS Results for Containers with 10000 Primitives 79
Figure 5.91 : R_O_OS Results for Strings and Wide Strings 80
Figure 5.92 : R_O_OS Results for Structs and Containers with 1 Struct 80
Figure 5.93 : R_O_OS Results for Containers with 10 Structs. 81
Figure 5.94 : R_O_OS Results for Containers with 100 Structs 81
Figure 5.95 : R_O_OS Results for Containers with 1000 Structs. 81
Figure 5.96 : R_O_OS Results for Containers with 10000 Structs 82
Figure 5.97 : R_O_OS Results for Interface and Containers with 1 Interface 82
Figure 5.98 : R_O_OS Results for Containers with 10 Interfaces........................... 83
Figure 5.99 : R_O_OS Results for Containers with 100 Interfaces 83
Figure 5.100 : R_O_OS Results for Containers with 1000 Interfaces 83
Figure 5.101 : R_O_OS Results for Containers with 10000 Interfaces 84
Figure 5.102 : R_O_OS Results for Union, Enum and Containers with 1 Union and
Enum .. 84
Figure 5.103 : R_O_OS Results for Containers with 10 Unions and Enums 85
Figure 5.104 : R_O_OS Results for Containers with 100 Unions and Enums 85
Figure 5.105 : R_O_OS Results for Containers with 1000 Unions and Enums 85
Figure 5.106 : R_O_OS Results for Containers with 10000 Unions and Enums 85
Figure 5.107 : R_T_OS Results for Primitives and Containers with 1 Primitive 86
Figure 5.108 : R_T_OS Results for Containers with 10 Primitives 86
Figure 5.109 : R_T_OS Results for Containers with 100 Primitives 87
Figure 5.110 : R_T_OS Results for Containers with 1000 Primitives 87
Figure 5.111 : R_T_OS Results for Containers with 10000 Primitives 87
Figure 5.112 : R_T_OS Results for Strings and Wide Strings 88
Figure 5.113 : R_T_OS Results for Structs and Containers with 1 Struct 89
Figure 5.114 : R_T_OS Results for Containers with 10 Structs. 89
Figure 5.115 : R_T_OS Results for Containers with 100 Structs 89
Figure 5.116 : R_T_OS Results for Containers with 1000 Structs. 90
Figure 5.117 : R_T_OS Results for Containers with 10000 Structs 90

 xiv

Figure 5.118 : R_T_OS Results for Interface and Containers with 1 Interface 91
Figure 5.119 : R_T_OS Results for Containers with 10 Interfaces 91
Figure 5.120 : R_T_OS Results for Containers with 100 Interfaces 91
Figure 5.121 : R_T_OS Results for Containers with 1000 Interfaces 92
Figure 5.122 : R_T_OS Results for Containers with 10000 Interfaces 92
Figure 5.123 : R_T_OS Results for Union, Enum and Containers with 1 Union and
Enum .. 93
Figure 5.124 : R_T_OS Results for Containers with 10 Unions and Enums 93
Figure 5.125 : R_T_OS Results for Containers with 100 Unions and Enums 93
Figure 5.126 : R_T_OS Results for Containers with 1000 Unions and Enums 93
Figure 5.127 : R_T_OS Results for Containers with 10000 Unions and Enums 94
Figure 5.128 : R_T_SG Results for Primitives and Containers with 1 Primitive 94
Figure 5.129 : R_T_SG Results for Containers with 10 Primitives 95
Figure 5.130 : R_T_SG Results for Containers with 100 Primitives 95
Figure 5.131 : R_T_SG Results for Containers with 1000 Primitives 95
Figure 5.132 : R_T_SG Results for Containers with 10000 Primitives 96
Figure 5.133 : R_T_SG Results for Strings and Wide Strings 96
Figure 5.134 : R_T_SG Results for Structs and Containers with 1 Struct 97
Figure 5.135 : R_T_SG Results for Containers with 10 Structs. 97
Figure 5.136 : R_T_SG Results for Containers with 100 Structs 98
Figure 5.137 : R_T_SG Results for Containers with 1000 Structs. 98
Figure 5.138 : R_T_SG Results for Containers with 10000 Structs 98
Figure 5.139 : R_T_SG Results for Interface and Containers with 1 Interface 99
Figure 5.140 : R_T_SG Results for Containers with 10 Interfaces 99
Figure 5.141 : R_T_SG Results for Containers with 100 Interfaces 99
Figure 5.142 : R_T_SG Results for Containers with 1000 Interfaces 100
Figure 5.143 : R_T_SG Results for Containers with 10000 Interfaces 100
Figure 5.144 : R_T_SG Results for Union, Enum and Containers with 1 Union and
Enum .. 101
Figure 5.145 : R_T_SG Results for Containers with 10 Unions and Enums 101
Figure 5.146 : R_T_SG Results for Containers with 100 Unions and Enums 101
Figure 5.147 : R_T_SG Results for Containers with 1000 Unions and Enums 101
Figure 5.148 : R_T_SG Results for Containers with 10000 Unions and Enums ... 102
Figure 5.149 : R_T_OG Results for Primitives and Containers with 1 Primitive 102
Figure 5.150 : R_T_OG Results for Containers with 10 Primitives 103
Figure 5.151 : R_T_OG Results for Containers with 100 Primitives 103
Figure 5.152 : R_T_OG Results for Containers with 1000 Primitives 103
Figure 5.153 : R_T_OG Results for Containers with 10000 Primitives 104
Figure 5.154 : R_T_OG Results for Strings and Wide Strings 104
Figure 5.155 : R_T_OG Results for Structs and Containers with 1 Struct 105
Figure 5.156 : R_T_OG Results for Containers with 10 Structs. 105
Figure 5.157 : R_T_OG Results for Containers with 100 Structs 106
Figure 5.158 : R_T_OG Results for Containers with 1000 Structs. 106
Figure 5.159 : R_T_OG Results for Containers with 10000 Structs 106
Figure 5.160 : R_T_OG Results for Interface and Containers with 1 Interface 107
Figure 5.161 : R_T_OG Results for Containers with 10 Interfaces 107
Figure 5.162 : R_T_OG Results for Containers with 100 Interfaces 107
Figure 5.163 : R_T_OG Results for Containers with 1000 Interfaces 108
Figure 5.164 : R_T_OG Results for Containers with 10000 Interfaces 108
Figure 5.165 : R_T_OG Results for Union, Enum and Containers with 1 Union and
Enum .. 109
Figure 5.166 : R_T_OG Results for Containers with 10 Unions and Enums 109
Figure 5.167 : R_T_OG Results for Containers with 100 Unions and Enums 109
Figure 5.168 : R_T_OG Results for Containers with 1000 Unions and Enums..... 109
Figure 5.169 : R_T_OG Results for Containers with 10000 Unions and Enums ... 110

 xv

SUN’IN JAVA IDL DERLEYĠCĠSĠNĠN STATĠK ÇAĞRI ARAYÜZÜ KULLANILARAK
HĠZALAMA/GERĠ HĠZALAMA BAġARIMININ ĠNCELENMESĠ

ÖZET

Tezimiz, dağıtılmış sistemlere genel bir bakışla başlamaktadır. Dağıtılmış sistemler
aşağıdaki evreleri izleyerek gelişmişlerdir :

 Ana çatılar için yazılmış tek parçalı yazılımları kullanan Tek Parçalı
Sistemler.

 Hizmetler sağlayan bir sunucu ve sunucudan hizmetler isteyen bir
istemciden oluşan İstemci/Sunucu Sistemleri.

 Sistemi, kullanıcı arayüzü katmanı, iş kuralları katmanı ve veritabanı erişim
katmanı olmak üzere parçalara ayıran Çok Parçalı İstemci/Sunucu
Sistemleri.

 Uygulamanın tüm işlevselliğini, sistemdeki veya diğer sistemlerdeki diğer
nesnelerin sağladığı hizmetleri kullanabilecek nesneler olarak sunan
Dağıtılmış Sistemler.

Bundan sonra, dağıtılmış nesneleri ve bileşenleri tanıttık. Dağıtılmış nesneler ağ
üzerinde herhangi bir yerde bulunabilecek genişletilmiş nesnelerdir. Bileşenler,
değişik ortamlarda çalışan, sistemin en küçük kendi kendini yönetebilen, bağımsız
ve kullanışlı parçalarıdır.

Bir iş nesnesi üç ana parçadan oluşmaktadır :

 İş Mantığı Nesnesi, nesnenin belirli olaylara karşı nasıl davranacağını
tanımlar.

 İş İşleme Nesnesi tüm sistem için iş mantığının sağlanmasına yardımcı olur.

 Sunum Nesneleri kullanıcıya bileşenin bir gösterilimini sağlar.

Genel Nesne İstek Aracısı Mimarisi (CORBA), nesne sistemlerinin geniş çeşitlilikleri
arasında entegrasyona izin vermesi için Nesne Yönetim Grubu (OMG) tarafından
yapılandırılmıştır. CORBA istemci/sunucu etkileşimini kolaylaştırmak için gerekli
olan ve istemci ve sunucu tarafların ikisinde birden koşan bir dağıtılmış yazılımdır,
yani bir aracı birimdir.

OMG’nin Nesne Yönetim Mimarisi dört ana bileşenden oluşmaktadır :

 Nesne İstek Aracısı (ORB), CORBA nesne yolunu tanımlar.

 CORBA Hizmetleri, yolu (ORB) genişleten sistem-düzeyi nesne çalışma
çerçeveleri tanımlar.

 xvi

 CORBA Kolaylıkları, iş nesneleri tarafından doğrudan kullanılan yatay ve
dikey uygulama çalışma çerçeveleri tanımlar.

 Uygulama Nesneleri, iş nesneleri ve uygulamalarıdır.

Bir ORB aşağıdaki parçalardan oluşur :

 İstemci kütükleri veya statik çağrı arayüzü (SII), bir nesnenin OMG IDL
tanımlı işlemlerine erişimi sunacaktır.

 Dinamik çağrı arayüzü (DII), nesne çağrılarının dinamik inşasına izin verir.

 Gerçekleme iskeleti, nesnenin her tipini gerçekleyen metotlara bir arayüzdür.

 Dinamik iskelet arayüzü (DSI), nesne çağrılarının dinamik işlenmesine izin
verir.

 Bir nesne bağdaştırıcısı, bir nesne gerçeklemesinin, ORB tarafından
sağlanan hizmetlere erişiminin temel yoludur.

 ORB arayüzü, ORB’a doğrudan giden arayüzdür.

 IDL derleyicisi, arayüz tanımlamalarını yüksek-düzey dil yapılarına
dönüştürür. Arayüz tanımlamaları OMG Arayüz Tanımlama Dili (OMG IDL)
ile belirtilir.

 Arayüz ambarı koşma anında bulunabilir bir biçimde, IDL bilgisini temsil eden
kalıcı nesneler sağlayan bir hizmettir.

CORBA Hizmetleri, IDL tarafından belirtilmiş arayüzlerle paketlenmiş, sistem düzeyi
hizmetlerin koleksiyonlarıdır. OMG onbeş nesne hizmeti için standartlar
yayınlamıştır : yaşam çevrimi, kalıcılık (kalıcı durum), adlandırma, olay, eşanlılık,
bölünmez işlem, ilişki, dışarılama, sorgu, lisanslama, özellikler, zaman, güvenlik,
tacir ve koleksiyon hizmetleri.

Genel ORB Arası Protokol (GIOP), ORBlar arasındaki iletişim için bir standart iletim
sentaksı ve bir mesaj biçimleri kümesi belirtir. Her CORBA 2.0 ORB’un desteklemek
zorunda olduğu İnternet ORB Arası Protokolü (IIOP), GIOP mesajlarının TCP/IP
bağlantıları kullanılarak nasıl karşılıklı değiştirileceğini belirtir. OMG ayrıca, Ortama
Özel ORB Arası Protokollerin (ESIOP) açık sonlu bir kümesi için öngörümde
bulunur.

Alanlar sistemlerin, genel karakteristiklere sahip olan bileşenlerin koleksiyonlarına
ayrılmalarına izin verir. Alanlar arasında karşılıklı ortaklaşma, iki köprüleme
mekanizması ile sağlanır :

 Aracılı köprülemede tüm alanlar bir genel protokole köprülenir.

 Aracısız köprülemede ise iki alan, mesajın gerekli parçalarını çeviren bir
köprü üzerinden birbirleriyle doğrudan konuşur.

Tezimiz CORBA başarım analizinin yalnızca hizalama/geri hizalama yönüyle
ilgilenmiştir. CORBA’nın yalnızca statik yönlerini kapsadık, dinamik yönlerini değil.

 xvii

CORBA başarım ölçümüyle ilgili birçok yüksek lisans çalışması ve yayın
bulunmaktadır. Ayrıca OMG tarafından, CORBA’nın başarım ölçümü için kurulmuş
bir özel ilgi grubu da bulunmaktadır.

Başlığımızın da yansıttığı gibi hizalama/geri hizalama başarımını inceledik.
Hizalama/geri hizalama, tiplendirilmiş veri nesnelerinin yüksek düzey gösterimlerden
düşük düzey gösterimlere çevrilmesini (hizalama) ve tersi işlemi (geri hizalama)
anlatır. Düşük düzey gösterimler, Genel Veri Gösterimi (CDR) kuralları izlenerek
elde edilir.

Ölçüt takımımız üç oyuncudan oluşmaktadır :

 Değer Hizmetlisi, istemciden istekleri kabul eder ve tepkileri geri gönderir.

 Zaman Hizmetlisi zaman işlemleriyle ilgilenir.

 İstemci, sunucudan çağrılar yapar.

Ölçüt ortamımız aşağıdaki ölçüler ele alınarak inşa edilmiştir :

 Ölçütümüzü Dünya çapında en yaygın bulunabilen CORBA/Java ORBu
üzerinde uyguladık. Yani Sun’ın Java IDL derleyicisini kullandık.

 Sunucularımız ve istemcimiz aynı makinede (yerel çağrılar) veya iki kesim
farklı makinelerde (uzak çağrılar) konumlandırıldı.

 Metotlarımız tekyönlü veya çiftyönlü olarak tanımlandı.

 Hiçbir parametre almayan ve hiçbirşey geri döndürmeyen bir fonksiyonumuz
var. Ayrıca parametrelerimiz istemciden sunucuya, sunucudan istemciye, ve
her iki yönde akış yaptı.

 Tiplerimiz üç grup olarak sınıflandırıldı :

 İlkel Tipler boolean, char, wchar, long, unsigned long, long long,
unsigned long long, short, unsigned short, float, double, octet ve long
double IDL tiplerini içermektedir.

 İnşa Edilmiş Tipler yapıları, arayüzleri, birleşikleri ve söylenmişleri
içermektedir.

 İçeren Tipler dizileri, sıraları ve katarları içermektedir.

İnşa ettiğimiz ölçütü koşturduk. Genel sonuçlarımıza göre :

 Yerel çağrılar uzak çağrılardan daha hızlıdır.

 Tekyönlü uyarmalar ikiyönlü uyarmalardan daha hızlıdır. Ancak, tekyönlüler
güvenilir değildir ve bazıları testi tamamlayamamıştır. Diğer taraftan, tüm
ikiyönlü çağrılar ölçümleri başarıyla tamamlamıştır.

 Küçük boyutlu verilerin her akışı için hemen hemen aynı sonuçları aldık.
Ancak daha büyük boyutlar için azalan sırada zamanlar şu şekildedir : iki
yönde, istemciden sunucuya, sunucudan istemciye akış.

 xviii

 İlkel tipler için düşük boyutta parametreler için yakın sonuçlar elde ettik.
Yüksek boyutlu parametreler için sonuçlar tiplerin boyutlarına göre
sıralanmıştır.

 İnşa Edilmiş Tipler için :

 Yapılar için ilkellerle aynı sonuçları aldık.

 Söylenmişler için unsigned long tipi ile aynı sonucu aldık.

 Arayüzlerle parametreler yavaş geçmektedir.

 Bir birleşik içinde octet geçirmek, bir double geçirmekten daha kısa
sürmektedir.

 İçeren tipler için :

 Sıralar ve dizilerle aynı sonuçları elde ettik.

 Katarlarla karakter içerenler için aynı sonuçları elde ettik.

 Geniş katarlarla geniş karakter içerenler için aynı sonuçları elde ettik.

Sonuç olarak, hemen hemen tüm statik IDL yapılarını bu tezde test ettik. Birçok ham
verimiz var ve karşılaştırmalar bu veriler üzerinde yapılabilir. Yalnızca bunların
bazıları için sonuçlar veriyoruz. İsteyen herkes verilerimizden gereksinim duyduğu
sonuçları çıkarabilir.

 xix

MARSHALLING/DEMARSHALLING PERFORMANCE ANALYSIS OF SUN’S

JAVA IDL BY USING STATIC INVOCATION INTERFACE

SUMMARY

Our thesis begin with an overview of the distributed systems. Distributed systems
evolved by following the following eras :

 Monolithic Systems uses monolithic software written for mainframes.

 Client/server Systems are comprised of a server that provides services and a
client that requests services of the server.

 Multitier Client/server Systems partitions the system into a user interface
layer, a business rules layer, and a database access layer.

 Distributed Systems expose all functionality of the application as objects,
each of which can use any of the services provided by other objects in the
system or in other systems.

After that, we introduced the distributed objects and components. Distributed objects
are extended objects that can reside anywhere on a network. Components are the
smallest self-managing, independent, and useful parts of a system that works in
multiple environments.

A business object consists of three main parts :

 Business Logic Object (BLO) defines how the object reacts to certain events.

 Business Process Obect (BPO) helps maintain the business logic for the
entire system.

 Presentation Objects provide the user with a representation of the
component.

The Common Object Request Broker Architecture (CORBA) is structured by Object
Management Group (OMG) to allow integration of a wide variety of object systems.
CORBA is a middleware which is a distributed software required to facilitate
client/server interaction and runs on both the client and server ends of a transaction.

OMG’s Object Management Architecture (OMA) is composed of four main elements:

 Object Request Broker (ORB) defines the CORBA object bus.

 CORBA Services define the system-level object frameworks that extend the
bus.

 xx

 CORBA Facilities define horizontal and vertical application frameworks that
are used directly by business objects

 Application Objects are the business objects and applications.

An ORB consisted of following parts :

 The client stubs, or static invocation interface (SII), will present access to the
OMG IDL-defined operations on an object.

 The dynamic invocation interface (DII) allows the dynamic construction of
object invocations.

 The implementation skeleton is an interface to the methods that implement
each type of object.

 The dynamic skeleton interface (DSI) allows dynamic handling of object
invocations

 An object adapter is the primary way that an object implementation accesses
services provided by the ORB.

 The ORB Interface is the interface that goes directly to the ORB.

 The IDL compiler brings the interface definitions to high-level language
constructs. Interface definitions are specified by OMG Interface Definition
Language (OMG IDL).

 The Interface Repository is a service that provides persistent objects that
represent the IDL information in a form available at run-time.

CORBA services are collections of system-level services packaged with IDL-
specified interfaces. OMG has published standards for fifteen object services : life
cycle, persistence (persistent state), naming, event, concurrency, transaction,
relationship, externalization, query, licensing, properties, time, security, trader and
collection services.

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a
set of message formats for communications between ORBs. Internet Inter-ORB
Protocol (IIOP), to which every CORBA 2.0-compliant ORB must supply, specifies
how GIOP messages are exchanged using TCP/IP connections. OMG also makes
provision for an open-ended set of Environment-Specific Inter-ORB Protocols
(ESIOPs).

Domains allow partitioning of systems into collections of components which have
some characteristic in common. Interoperability between domains is achieved by
using two bridging mechanisms :

 In mediated bridging all domains bridge to a single common protocol

 In immediate bridging two domains talk directly to each other over a single
bridge that translates whatever parts of the message require it.

 xxi

Our thesis only concerned the marshalling/demarshalling aspects of performance
analysis of CORBA. We only covered the static aspects of CORBA and not the
dynamic aspects.

There are a lot of master studies and publications related with performance analysis
of CORBA. Also there is a special interest group founded by OMG on the
benchmarking of CORBA.

As our title reflects, we analyzed the marshalling/demarshalling performance. The
marshalling/demarshalling refers to the transformations of typed data objects from
higher-level representations to lower-level representations (marshalling) and vice
versa (demarshalling). The low-level representations are created by following the
rules of Common Data Representation (CDR).

We have three players constitutes our benchmarking team :

 Value Server accepts requests from the client and sends responses back.

 Time Server handles the time operations.

 Client makes calls from server.

Our benchmarking environment is constructed by considering the following criterias :

 We applied the benchmark to most commonly available CORBA/Java ORB
worldwide, Sun’s Java IDL compiler.

 We have the servers and the client at the same computer (local calls) or two
sides are located at different computers (remote calls)

 Our methods are defined as oneway and twoway.

 We have a function which takes no parameters and returns nothing. Also our
parameters flow from client to server, from server to client and in both
directions.

 Our types are classified into three groups :

 Primitive types include the IDL types boolean, char, wchar, long,
unsigned long, long long, unsigned long long, short, unsigned short, float,
double, octet and long double.

 Constructed types include structs, interfaces, unions and enums.

 Container types include arrays, sequences and strings.

We run the benchmark constructed. Our general results show that :

 Local calls are faster than remote calls for big-sized data. For small-sized
data, remote calls perform better.

 Oneway invocations are faster than twoway invocations. But oneways are
unreliable and some of them could not completed the test. On the other
hand, all the twoway calls successfully completed the measurements.

 xxii

 We see the nearly same results for small sized data for all the flows of data.
But for the larger sizes the descending order is from server to client and
client to server back, from client to server and from server to client.

 For the primitive types we have the close results for small-sized parameters
and results are ordered with sizes of types for larg-sized parameters.

 For constructed types :

 We have the same results for primitives with structs for small sizes. For
big sizes, structs perform worse.

 We have the same results for unsigned long with enums.

 We have slow passing of parameters with interfaces.

 Passing an octet within a union takes less time than passing a double.

 For the container types :

 We have the same results with sequences and arrays.

 We have the same results for strings with char containers.

 We have the same results for wstrings with wchar containers.

As a conclusion we tested nearly all static IDL constructs in this thesis. We have a
bulk of raw data, and comparisons can be made on these data. We only give
conclusions for some of them. Whoever wants can deduce the conclusions he/she
needs from our data.

 1

1. HISTORY OF DISTRIBUTED SYSTEMS

Here we will have an overview of distributed systems. This chapter is mainly taken

from [1].

1.1 Monolithic Systems

We can say that distributed systems began with mainframes. Mainframes are

managed centrally and software systems written for mainframes were often

monolithic, i.e, the user interface, business logic, and data access functionality were

all contained in one large application. A typical monolithic application architecture is

illustrated in Figure 1.1 [1].

Figure 1.1 : Typical monolithic application architecture.

 2

1.2 The Client/Server Model

After the monolithic systems we see the client/server architecture. Client/server

computing systems are comprised of two logical parts :

 a server that provides services.

 a client that requests services of the server (see Figure 1.2).

Together, the two form a complete computing system with a distinct division of

responsibility.

Client (User) A

Client (User) B

Client (User) C

Server

Figure 1.2 : A traditional client/server system. Clients request
services of the server independently but use the same interface.

Client/server computing has gained popularity in the recent years due to the

proliferation of low-cost hardware and the fact that a model relying on monolithic

applications fails when the number of users accessing a system grows too high or

when too many features are integrated into a single system.

We defined the client as the component of the client/server architecture which

requests services from servers. In addition, clients can also offer services to other

clients. That is, a client can act as a server to other clients.

According to the server’s behaviour, we can group server side of the client/server

architecture into two models :

 Pull Server Model

 Push Server Model

 3

Traditional servers are entities that passively await requests from clients and then

act on them. This model is named pull server model. But, servers can actively

search out changes in the state of clients and take appropriate action. This model is

called push server model.

Most client/server systems are flexible with regard to the distribution of authority,

responsibility, and intelligence. A part of a system with a disproportionate amount of

functionality is called fat; a thin portion of a system is a part with less responsibility

delegated to it [2]. The server portion of a client/server system almost always holds

the data, and the client is nearly always responsible for the user interface; the

shifting of application logic constitutes the distinction between fat clients and fat

servers (see Figure 1.3).

Client

User Interface

Application Logic

Server

Data

Figure 1.3 : Since the distribution of the user interface and data is fixed, the placement
of the application logic is what distinguishes fat-client from fat-server systems.

The fat server model is often used to ensure greater compatibility between clients

and servers : the more work the server does, the less dependent it is on the client.

The fat client model can be used at the expense of universal compatibility [3].

1.3 Multitier (N-Tiered) Client/Server

The canonical client/server model assumes exactly two discrete participants in the

system. This is called a two-tier system; the application logic must be in the client or

the server, or shared between the two. It is also possible to have the application

logic reside separately from the user interface and the data (in other words, to

partition the system into three logical tiers : the user interface layer, the business

rules layer, and the database access layer, see Figure 1.4 [1]) turning the system

into a three-tier system. In an idealized three-tier system, all application logic

resides in a layer separate from the user interface and data. Decoupling the

application logic from the data allows data from multiple sources to be used in a

single transaction without a breakdown in the client/server model.

 4

1.4 Distributed Systems

Rather than differentiate between business logic and data access, the distributed

system model simply exposes all functionality of the application as objects, each of

which can use any of the services provided by other objects in the system, or even

objects in other systems. The architecture can also blur the distinction between

client and server because the client components can also create objects that

behave in server-like roles.

The distributed system architecture achieves its flexibility by enforcing the definition

of specific component interfaces. The interface of a component specifies to other

components what services are offered by that component and how they are used.

As long as the interface of a component remains constant, that component's

implementation can change dramatically without affecting other components.

Distributed systems are really multitier client/server systems in which the number of

distinct clients and servers is potentially large. One important difference is that

distributed systems generally provide additional services, such as directory services,

which allow various components of the application to be located by others.

Figure 1.4 : Three-tier client/server architecture.

 5

2. DISTRIBUTED OBJECTS AND COMPONENTS

Distributed systems are built on the object oriented approach. Classical objects do

not suffice for distributed systems. They are replaced with distributed objects and

components. In this section we will present you with distributed objects and

components. This section is mainly taken from [3].

2.1 From Objects to Distributed Objects

As computing systems evolved, the paradigm of algorithmic computation was

replaced by the use of interacting objects. Classical objects can be viewed as self-

contained entities that encapsulate data, and a set of operations that act on that

data.

Distributed objects are extended objects that can reside anywhere on a network and

continue to exist as physical standalone entities while remaining accessible remotely

by other objects. Robust distributed object systems allow objects written in different

languages and compiled by different compilers to communicate seamlessly via

standardized messaging protocols embodied by middleware.

2.2 Benefits of Distributed Objects

Distributed objects allow us to construct scaleable client/server systems by providing

modularized software that features interchangeable parts.

Self-managing distributed objects take responsibility for their own resources, work

across networks, and interact with other objects. These capabilities are frequently

given to objects through a distributed object framework that provides middleware to

regulate the necessary inter-object communications and provides a resource pool

for each object that is deleted when that object ceases to exist.

Self-managing objects are used easily by other objects since no management

burdens are imposed on the client object; it receives object services at no cost.

Objects crafted to these specifications rely on a solid event model that allows

objects to broadcast specific messages and generate certain events. These events

are listened for by other objects, which then take action based on them. Each

listening object responds to a given event in its own manner. By using object-

 6

oriented techniques such as polymorphism, closely related objects react differently

to the same event. These capabilities simplify the programming of complex

client/server systems.

Objects can generate events to notify other objects that an action should take place.

In this sense, events can be viewed as synchronization objects that allow one thread

of execution to notify another thread that something has happened (see Figure 2.1).

Using this model, an event can notify a component that it should take a certain

action. An object that can listen for events provides a more robust framework for

interaction between objects than a model that forces objects to wait for the next

instruction.

Because of the strict encapsulation that objects provide, distributed objects are a

fundamentally sound unit from which to build client/server applications when

separation of data is important. Cooperating objects form the logic portion of most

substantial client/server systems because of the rich interaction services they offer

[4] [5].

Supplier A

Supplier B

Event

Channel

Object

Supplier C

Consumer A

Consumer B

Consumer C

Figure 2.1 : A sample event management system. Depicted is CORBA’s Event Service.

Since distributed objects allow applications to be split up into lightweight pieces that

can be executed on separate machines, less powerful machines can run demanding

applications.

2.3 Components

Components are the smallest self-managing, independent, and useful parts of a

system that works in multiple environments. Components promise rapid application

development and a high degree of customizability for end users, leading to fine-

tuned applications that are relatively inexpensive to develop and easy to learn.

 7

Components are most often distributed objects incorporating advanced self-

management features. Components may contain multiple distributed or local

objects, and they are often used to centralize and secure an operation.

The interface of a component should be the primary concern of its developer. Since

components are designed for use in a variety of systems and need to provide

reliable services regardless of context, developers attempting to use a component

must be able to identify clearly the function of a component and the means of

invoking this behavior.

2.4 Client/Server Using Distributed Objects

Tht client/server computing using distributed objects is depicted in Figure 2.2.

Clients

Application

Remote Method

Invocation

Object

Server

Object

Object

Figure 2.2 : Client/server computing using distributed objects. Communication between
components (denoted by arrows) is facilitated through ORBs (which have been omitted for
clarity)

2.5 Business Objects

Business objects are self-managing components used to represent key objects or

processes in a real-life system. Business objects are shippable products that usually

have a user interface and the ability to cooperate with other objects to meet a

certain user need. Business objects allow application-independent concepts to be

described at a high level, minimizing the importance of languages, tools, and

application-level concepts. Business objects represent a major breakthrough in the

modeling of business events since they can describe both a portion of a real-world

business system and the executing piece of the information system supporting that

portion of the business [2] [6].

 8

Like other components, business objects should support late binding so they can be

interchanged easily and interact immediately with existing components; they should

also support standard component features such as event handling and state

maintenance.

The Business Object Model Special Interest Group (BOMSIG) has proposed a

standard for business objects. The standard calls for each business object to be

composed of three types of cooperating objects (see Figure 2.3 [6]).

 Business Logic Object (BLO) defines how the object reacts to certain events;

it is responsible for the business logic of the component as well as for storing

the relevant business data.

 Business Process Obect (BPO) helps maintain the business logic for the

entire system. The primary difference between a BPO and a BLO is the

logical lifetime of the unit of logic : BPOs traditionally handle long-lived

processes or processes related to the system as a whole.

 Presentation Objects provide the user with a representation of the

component, usually but not necessarily visual.

A normal business object is likely to have multiple Presentation Objects, but usually

has one BLO and BPO. Because these three objects are managed by one object,

collaborating components see only one object that provides the aggregate services

of its constituent objects.

Business Object
Servers

Presentation

Object A

Business

Process Object

Business Logic

Object

Presentation

Object B

Documents

Other

Business

Objects

Other

Interfaces

Figure 2.3 : The parts of a business object and their communication with other
system objects

This three-object construction can be viewed as a three tier client/server system

(see Figure 2.4) :

 9

 Tier 1 : Visual aspects of a system, usually handled by a client system.

 Tier 2 : Data for the object and the application logic required to meaningfully

act on it.

 Tier 3 : Data and application logic required to integrate the business object

with other business objects and existing systems, such as legacy servers or

databases.

User Interface

Visual Attributes

Application Logic

Data

Legacy Systems

Figure 2.4 : Three tiers in a business object.

The middle tier plays the largest role in this organizational scheme. Tier-two objects

communicate directly with the tier-one objects to provide feedback to the user; they

also provide the logic for the entire business object. Furthermore, tier-two objects

communicate with multiple data repositories (tier three) and collaborate with other

business objects to assist them provide services. This model separates the client

from data for which it is not logically responsible. By channeling all requests for

information through the tier-two servers, major changes (such as the implementation

of a new database system) remain completely transparent to the user. If ORBs are

used for communication between the clients and the tier-two objects, robust system

services such as load balancing and event exchanges are implemented easily and

applications remain scaleable.

 10

3. CORBA OVERVIEW

This chapter is mainly taken from the Object Management Group’s (OMG) formal

documentation describing CORBA [7].

The Common Object Request Broker Architecture (CORBA) is structured to allow

integration of a wide variety of object systems. CORBA is a middleware, so first we

define what is a middleware and then take a general look at CORBA.

3.1 Middleware

The distributed software required to facilitate client/server interaction is referred to

as middleware. Middle refers to its place in a software abstraction hierarchy above

transport protocols, but below clients and servers written in a high-level

programming language [8]. Transparent access to non-local services and resources

distributed across a network is usually provided through middleware, which serves

as a framework for communication between the client and server portions of a

system. Middleware can be thought of as the networking between the components

of a client/server system; it is what allows the various components to communicate

in a structured manner. Middleware is defined to include the Application

Programmer Interfaces (APIs) used by clients to request a service from a server, the

physical transmission of the request to the network (or the communication of the

service request to a local server), and the resulting transmission of data for the client

back to the network. Middleware is run on both the client and server ends of a

transaction [3].

3.2 OMG’s Object Management Architecture (OMA)

In the fall of 1990, the OMG first published the Object Management Architecture

Guide (OMA Guide). After that it have gone under some changes and still goes.

Figure 3.1 [10] shows the four main elements of the architecture [9] :

1. Object Request Broker (ORB) defines the CORBA object bus.

 11

2. CORBA Services (Common Object Services) define the system-level

object frameworks that extend the bus

3. CORBA Facilities (Common Facilities) define horizontal and vertical

application frameworks that are used directly by business objects

4. Application Objects are the business objects and applications, they are the

ultimate consumers of the CORBA infrastructure.

This section provides a top-level view of the elements that make up the CORBA

infrastructure.

Figure 3.1 : Object Management Architecture

3.3 Object Request Broker (ORB)

The Objet Request Broker (ORB) is the object bus. It lets objects transparently

make requests to -and receive responses from- other objects located locally or

remotely.

A CORBA ORB provides a wide variety of distributed middleware services. Every

CORBA ORB provides [9] :

 Static and dynamic method invocations

 High-level language bindings

 12

 Local/remote transparency

 Polymorphic messaging

 Coexistence with legacy systems

and hides [11] [12] :

 Object location (local/remote transparency)

 Object implementation (high-level language bindings used for object

implementation)

 Object execution state (If object is not active at the time its method is

invoked, ORB activates it)

 Object communication mechanisms (the communication can be done

via TCP/IP, shared memory, local method calls etc)

Figure 3.2 [11] shows the structure of an individual Object Request Broker (ORB)

and its interactions with the objects (client and servant). The arrows indicate

whether the ORB is called or performs an up-call across the interface.

Figure 3.2 : The structure of object request interfaces

Now, we can go over the parts shown in Figure 3.2 and explain each of these.

 13

3.3.1 clients

A client of an object has access to an object reference for the object, and invokes

operations on the object. A client knows only the logical structure of the object

according to its interface.

Clients generally see objects and ORB interfaces through the perspective of a

language mapping, bringing the ORB right up to the programmer’s level. Clients are

maximally portable and should be able to work without source changes on any ORB

that supports the desired language mapping with any object instance that

implements the desired interface.

3.3.1.1 structure of a client

A client of an object has an object reference that refers to that object. An object

reference is a token that may be invoked or passed as a parameter to an invocation

on a different object. Invocation of an object involves specifying the object to be

invoked, the operation to be performed, and parameters to be given to the operation

or returned from it.

The ORB manages the control transfer and data transfer to the object

implementation and back to the client. In the event that the ORB can not complete

the invocation, an exception response is provided.

Clients access object-type-specific stubs as library routines in their program (see

Figure 3.3). The client program thus sees routines callable in the normal way in its

programming language. All implementations will provide a language specific data

type to use to refer to objects. The client then passes that object reference to the

stub routines to initiate an invocation. The stubs have access to the object reference

representation and interact with the ORB to perform the invocation.

Clients most commonly obtain object references by receiving them as output

parameters from invocations on other objects for which they have references. An

object reference can also be converted to a string that can be stored in files or

preserved or communicated by different means and subsequently turned back into

an object reference by the ORB that produced the string.

 14

Figure 3.3 : The structure of a typical client

3.3.2 object implementations

An object implementation provides the semantics of the object, usually by defining

data for the object instance and code for the object’s methods.

Often the implementation will use other objects or additional software to implement

the behavior of the object.

Generally, object implementations do not depend on the ORB or how the client

invokes the object. Object implementations may select interfaces to ORB-dependent

services by the choice of Object Adapter.

3.3.2.1 structure of an object implementation

An object implementation provides the actual state and behavior of an object. The

object implementation can be structured in a variety of ways. Besides defining the

methods for the operations themselves, an implementation will usually define

procedures for activating and deactivating objects and will use other objects or

nonobject facilities to make the object state persistent, to control access to the

object, as well as to implement the methods.

The object implementation (see Figure 3.4) interacts with the ORB in a variety of

ways to establish its identity, to create new objects, and to obtain ORB-dependent

services. It primarily does this via access to an Object Adapter, which provides an

interface to ORB services that is convenient for a particular style of object

implementation.

 15

Figure 3.4 : The structure of a typical object implementation

Because of the range of possible object implementations, it is difficult to be definitive

about how an object implementation is structured.

3.3.2.2 object references

An Object Reference (OR) is the information needed to specify an object within an

ORB. Both clients and object implementations have an opaque notion of object

references according to the language mapping, and thus are insulated from the

actual representation of them. Two ORB implementations may differ in their choice

of Object Reference representations.

There is a distinguished object reference guaranteed to be different from all object

references, that denotes no object.

An Interoperable Object Reference (IOR) is the information needed to specify an

object accross ORBs. This reference can be used when ORBs interoperate. The

structure of an IOR includes repository ID, protocol and address details and object

key [13].

3.3.3 IDL compiler

As mentioned in section 3.3.1, clients see objects and ORB interfaces through the

perspective of a language mapping. Bringing the interface definitions to high-level

language constructs is done by the IDL compiler.

 16

An IDL compiler transforms OMG IDL definitions into stubs and skeletons that are

generated automatically in an application programming language like Java [14]. In

addition to providing programming language transparency, IDL compilers eliminate

common sources of network programming errors and provide opportunities for

automated compiler optimizations [15].

3.3.3.1 OMG interface definition language (IDL)

The OMG Interface Definition Language (OMG IDL) defines the types of objects by

specifying their interfaces. An interface consists of a set of named operations and

the parameters to those operations.

IDL is the means by which a particular object implementation tells its potential

clients what operations are available and how they should be invoked. From the IDL

definitions, it is possible to map CORBA objects into particular programming

languages or object systems.

3.3.3.2 mapping of OMG IDL to programming languages

Different object-oriented or non-object-oriented programming languages may prefer

to access CORBA objects in different ways. For object-oriented languages, it may

be desirable to see CORBA objects as programming language objects. Even for

nonobject-oriented languages, it is a good idea to hide the exact ORB

representation of the object reference, method names, etc. A particular mapping of

OMG IDL to a programming language should be the same for all ORB

implementations.

3.3.4 client stubs

The client stubs will present access to the OMG IDL-defined operations on an object

in a way that is easy for programmers to predict once they are familiar with OMG

IDL and the language mapping for the particular programming language.

3.3.5 dynamic invocation interface (DII)

An interface is also available that allows the dynamic construction of object

invocations, that is, rather than calling a stub routine that is specific to a particular

operation on a particular object, a client may specify the object to be invoked, the

 17

operation to be performed, and the set of parameters for the operation through a call

or sequence of calls.

The client code must supply information about the operation to be performed and

the types of the parameters being passed.

The nature of the dynamic invocation interface may vary substantially from one

programming language mapping to another.

3.3.6 implementation skeleton

For a particular language mapping, and possibly depending on the object adapter,

there will be an interface to the methods that implement each type of object. The

interface will generally be an up-call interface, in that the object implementation

writes routines that conform to the interface and the ORB calls them through the

skeleton.

3.3.7 dynamic skeleton interface (DSI)

An interface is available, which allows dynamic handling of object invocations. That

is, rather than being accessed through a skeleton that is specific to a particular

operation, an object’s implementation is reached through an interface that provides

access to the operation name and parameters in a manner analogous to the client

side’s Dynamic Invocation Interface. Purely static knowledge of those parameters

may be used, or dynamic knowledge may be also used, to determine the

parameters.

The implementation code must provide descriptions of all the operation parameters

to the ORB, and the ORB provides the values of any input parameters for use in

performing the operation. The implementation code provides the values of any

output parameters, or an exception, to the ORB after performing the operation.

3.3.8 object adapters

An Object Adapter is the primary way that an object implementation accesses

services provided by the ORB. There are expected to be a few object adapters that

will be widely available, with interfaces that are appropriate for specific kinds of

objects. Services provided by the ORB through an Object Adapter often include

generation and interpretation of object references, method invocation, security of

 18

interactions, object and implementation activation and deactivation, mapping object

references to implementations, registration of implementations.

3.3.8.1 structure of an object adapter

An object adapter (see Figure 3.5) is the primary means for an object

implementation to access ORB services such as object reference generation. Object

adapters are responsible for the following functions :

 Generation and interpretation of object references

 Method invocation

 Security of interactions

 Object and implementation activation and deactivation

 Mapping object references to the corresponding object implementations

 Registration of implementations

These functions are performed using the ORB Core and any additional components

necessary. Often, an object adapter will maintain its own state to accomplish its

tasks. It may be possible for a particular object adapter to delegate one or more of

its responsibilities to the Core upon which it is constructed.

Figure 3.5 : The structure of a typical object adapter

As shown in Figure 3.5, the Object Adapter is implicitly involved in invocation of the

methods, although the direct interface is through the skeletons.

 19

3.3.8.2 CORBA required object adapter

There are a variety of possible object adapters; however, since the object adapter

interface is something that object implementations depend on, it is desirable that

there be as few as practical. Most object adapters are designed to cover a range of

object implementations, so only when an implementation requires radically different

services or interfaces should a new object adapter be considered.

CORBA used to specify a Basic Object Adapter (BOA) that can be used for most

ORB objects with conventional implementations. At June 1997, OMG published the

specifications for the Portable Object Adapter (POA) [16]. POA allows developers to

construct CORBA server applications that are portable between heterogeneous

ORB implementations [17].

3.3.9 ORB interface

The ORB Interface is the interface that goes directly to the ORB, which is the same

for all ORBs and does not depend on the object’s interface or object adapter.

Because most of the functionality of the ORB is provided through the object adapter,

stubs, skeleton, or dynamic invocation, there are only a few operations that are

common across all objects.

3.3.10 interface repository (IR)

The Interface Repository is a service that provides persistent objects that represent

the IDL information in a form available at run-time. The Interface Repository

information may be used by the ORB to perform requests. Moreover, using the

information in the Interface Repository, it is possible for a program to encounter an

object whose interface was not known when the program was compiled, yet, be able

to determine what operations are valid on the object and make an invocation on it.

3.4 CORBA Services

CORBA services are collections of system-level services packaged with IDL-

specified interfaces. You can think of object services as augmenting and

complementing the functionality of the ORB. OMG has published standards for

fifteen object services [9] [18] :

 20

 The Life Cycle Service defines services and conventions for creating,

deleting, copying and moving objects [19].

 The Persistence (Persistent State) Service defines interfaces which present

persistent information as storage objects stored in storage homes. Storage

homes are themselves stored in datastores, an entity that manages data, for

example a database, a set of files, a schema in a relational database [20].

 The Naming Service provides the principal mechanism through which most

clients of an ORB-based system locate objects that they intend to use (make

requests of) [21].

 The Event Service defines two roles for objects : the supplier role and the

consumer role. Suppliers produce event data and consumers process event

data. Event data are communicated between suppliers and consumers by

issuing standard CORBA requests [22].

 The Concurrency Service mediates concurrent access to an object such that

the consistency of the object is not compromised when accessed by

concurrently executing computations [23].

 The Transaction Service provides interfaces that combine the transaction

paradigm, essential to developing reliable distributed applications, and the

object paradigm, key to productivity and quality in application development,

together to address the business problems of commercial transaction

processing [24].

 The Relationship Service allows entities and relationships to be explicitly

represented. Entities are represented as CORBA objects. The service

defines two kinds of objects: relationships and roles [25].

 The Externalization Service defines protocols and conventions for

externalizing (recording the object’s state in a stream of data) and

internalizing objects [26].

 The Query Service provides query operations on collections of objects [27].

 The Licensing Service defines the interfaces that support management of

software licenses [28].

 21

 The Properties Service provides the ability to dynamically associate named

values with objects outside the static IDL-type system [29].

 The Time Service enables a user to obtain current time together with an

error estimate associated with it [30].

 The Security Service defines a security reference model that provides the

overall framework for CORBA security [31].

 The Trader Service facilitates the offering and the discovery of instances of

services of particular types [32].

 The Collection Service provides a uniform way to create and manipulate the

most common collections generically [33].

3.5 CORBA Facilities

CORBA facilities are collections of IDL-defined frameworks that provide services of

direct use to application objects. The two categories of common facilities—horizontal

and vertical—define rules of engagement that business components need to

effectively collaborate.

3.6 Applicatıon Objects

Application objects are business objects which we described at chapter 2.

3.7 CORBA Interoperability

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a

set of message formats for communications between ORBs. The Internet Inter-ORB

Protocol (IIOP) specifies how GIOP messages are exchanged using TCP/IP

connections. Every CORBA 2.0-compliant ORB speaks the mandatory IIOP. OMG

also makes provision for an open-ended set of Environment-Specific Inter-ORB

Protocols (ESIOPs) [7]. The IIOP’s standing in networking in a OSI-like layer model

is shown in Figure 3.6 [34].

 22

Application Objects

ORB

IIOP

TCP

IP

Ethernet

Physical Device

Figure 3.6 : IIOP’s place in networking

Figure 3.7 [35] shows how the CORBA ORB-to-ORB communication works : An

invocation from a client of ORB 1 passes through its IDL stub into the ORB core.

The ORB examines the object reference and if the implementation is local, the ORB

passes the invocation through the skeleton to the object for servicing. If the

implementation is remote, ORB 1 passes the invocation across the communication

pathway to ORB 2, which routes it to the object. The object implementation has no

way of knowing whether the client is local or remote.

Figure 3.7 : Interoperability uses ORB-to-ORB communication.

For the inter-ORB invocations objects must have the Interoperable Object

References (IORs) [36].

3.7.1 CORBA domains

Domains allow partitioning of systems into collections of components which have

some characteristic in common. Interoperability between domains is only possible if

there is a well-defined mapping between the behaviors of the domains being joined.

 23

When an interaction takes place across a domain boundary, a mapping mechanism,

or bridge, is required to transform relevant elements of the interaction as they

traverse the boundary. There are essentially two approaches to achieving this :

 In mediated bridging all domains bridge to a single common protocol

 In immediate bridging two domains talk directly to each other over a single

bridge that translates whatever parts of the message require it.

 24

4. THE THESIS

Our thesis is about the performance analysis of CORBA. We are only concerned

about the marshalling/demarshalling aspects of performance analysis.

4.1 The Goal of The Thesis

Our main goal in this study is to analyze the marshalling/demarshalling performance

of a CORBA/Java ORB using Static Invocation Interface (SII). That is, we have not

covered the dynamic aspects of CORBA including DII (Dynamic Invocation

Interface) with Requests created, populated and sent at run-time and dynamic types

like any which also are created and populated at run-time. Indeed, we have tried to

cover all static types of CORBA and IDL-specific features.

4.2 Related Work

There is a number of master studies on this subject. Buble compares three common

C++ implementations of CORBA : OmniORB, ORBacus and Orbix [37]. Gopinath

analyzes the performances of Real-Time CORBA endsystems by using omniORB

[38]. Karlsson compares two C++ ORBs : Orbix and TAO [11].

There are also some related publications. Gokhale and Schmidt analyze the

performance of DII and DSI over ATM networks by using Orbix and ORBeline [39].

They, in another paper, optimize the sunSoft IIOP and give measurements before

and after applying their optimizations [40]. In another work, they give measurement

results for four demultiplexing strategies by using TAO [41]. They also give latency

results for two conventional ORBs, Orbix and VisiBroker, and then give their

improved results for TAO [42].

Hirano, Yasu and Igarashi compare their lightweight ORB, HORB, with Voyager,

VisiBroker and OrbixWeb [43] . Brose compares his ORB jacORB, with VisiBroker,

Orbacus and RMI [44].

 25

OMG also has its special interest group for benchmarking and this group published

a white paper on benchmarking [45].

4.3 Marshalling And Demarshalling

Marshalling/demarshalling refers to the transformations of typed data objects from

higher-level representations to lower-level representations (marshalling) and vice

versa (demarshalling) [39].

Marshalling and demarshalling operations take place in user space and are often

time consuming [46] [39].

4.3.1 common data representation (CDR)

Low-level representations are created by following the rules of Common Data

Representation (CDR). CDR is a transfer syntax, mapping from data types defined

in OMG IDL to a bicanonical, low-level representation for transfer between agents.

CDR has the following features:

 Variable byte ordering - Machines with a common byte order may exchange

messages without byte swapping. When communicating machines have

different byte order, the message originator determines the message byte

order, and the receiver is responsible for swapping bytes to match its native

ordering. Each GIOP message (and CDR encapsulation) contains a flag that

indicates the appropriate byte order.

 Aligned primitive types - Primitive OMG IDL data types are aligned on their

natural boundaries within GIOP messages, permitting data to be handled

efficiently by architectures that enforce data alignment in memory.

 Complete OMG IDL Mapping - CDR describes representations for all OMG

IDL data types [7].

The CDR transfer syntaxes of IDL types are explained in Appendix.

 26

4.4 The Benchmark’s Players

We have three players constituting our benchmarking team :

 Value Server implements our benchmark’s IDL definitions. It accepts

requests from the client and sends responses back to it.

 Time Server handles the time operations. We have taken 25 samples of time

taken by making 100 calls with each criteria. Time server saves each of

these 25 time values. After that it computes the average of these 25 time

values and stores them with their average in a file.

 Client makes calls from server.

Figure 4.1 shows these three players at work.

Repeat 25 Times

Value

Server

Time

Server
Client

ping() 100 times

addSessionTime()

printTime()

Figure 4.1 : Objects used in our benchmarking framework.

4.5 Structure of The Benchmark

The structure of our benchmark in Backus-Naur Format (BNF) is :

<benchmark> ::= ―JDK1.3_02/‖ (<local> | <remote>)

<local> ::= ―Local/‖ (<oneway> | <twoway>)

<remote> ::= ―Remote/‖ (<oneway> | <twoway>)

<oneway> ::= ―Oneway/‖ (<invoke> | <only_send>)

<twoway> ::= ―Twoway/‖ (<invoke> | <only_send> | <only_get> | <send_get>)

 27

<invoke> ::= ―Invoke‖

<only_send> ::= ―OnlySend/‖ (<primitve> | <constructed> | <container>)

<only_get> ::= ―OnlyGet/‖ (<primitve> | <constructed> | <container>)

<send_get> ::= ―SendGet/‖ (<primitve> | <constructed> | <container>)

<primitive> ::= ―Primitive/‖ (―Boolean‖ | ‖Char‖ | ―WChar‖ | ―Double‖

 | ―LongDouble‖ | ―Float‖ | ―Long‖ | ―UnsignedLong‖ | ―LongLong‖

 | ―UnsignedLongLong‖ | ―Octet‖ | ―Short‖ | ―UnsignedShort‖)

<constructed> ::= ―Constructed/‖ (<struct> | <interface> | <union> | <enum>)

<struct> ::= ―Struct/‖ (<primitive> | ―AllPrimitives‖)

<interface> ::= ―Interface/‖ (<primitive> | ―AllPrimitives‖ | ―Empty‖)

<union> ::= ―Union/‖ (―AllPrimitivesOctet‖ | ―AllPrimitivesDouble‖)

<enum> ::= ―Enum/AllPrimitives‖

<container> ::= ―Container/‖ (<array> | <sequence> | <strings>)

<strings> ::= ―Strings/‖ (<string> | <wstring>)

<string> ::= ―String/‖

 (―String1‖ | ―String10‖ | ―String100‖ | ―String1000‖ | ―String10000‖)

<wstring> ::= ―WString/‖ (―WString1‖ | ―WString10‖ | ―WString100‖

 | ―WString1000‖ | ―WString10000‖)

<array> ::= ―Array/‖ (<container_primitive> | <container_constructed>)

<sequence> ::= ―Sequence/‖ (< container_primitive> | <container_constructed>)

<container_primitive> ::= ―ContainerPrimitive/‖ (<boolean> | <char> | <wchar>

| <double> | <long_double> | <float> | <long>

| <unsigned_long> | <long_long> | <unsigned_long_long>

| <octet> | <short> | <unsigned_short>)

<boolean> ::= ―Boolean/‖ (―Boolean1‖ | ―Boolean10‖ | ―Boolean100‖

 | ―Boolean1000‖ | ―Boolean10000‖)

<char> ::= ―Char/‖ (―Char1‖ | ―Char10‖ | ―Char100‖ | ―Char1000‖ | ―Char10000‖)

 28

<wchar> ::= ―WChar/‖

 (―WChar1‖ | ―WChar10‖ | ―WChar100‖ | ―WChar1000‖ | ―WChar10000‖)

<double> ::= ―Double/‖

 (―Double1‖ | ―Double10‖ | ―Double100‖ | ―Double1000‖ | ―Double10000‖)

<long_double> ::= ―LongDouble/‖ (―LongDouble1‖ | ―LongDouble10‖

| ―LongDouble100‖ | ―LongDouble1000‖ | ―LongDouble10000‖)

<float> ::= ―Float/‖ (―Float1‖ | ―Float10‖ | ―Float100‖ | ―Float1000‖ | ―Float10000‖)

<long> ::= ―Long/‖ (―Long1‖ | ―Long10‖ | ―Long100‖ | ―Long1000‖ | ―Long10000‖)

<unsigned_long> ::= ―UnsignedLong/‖

 (―UnsignedLong1‖ | ―UnsignedLong10‖ | ―UnsignedLong100‖

 | ―UnsignedLong1000‖ | ―UnsignedLong10000‖)

<long_long> ::= ―LongLong/‖ (―LongLong1‖ | ―LongLong10‖ | ―LongLong100‖

 | ―LongLong1000‖ | ―LongLong10000‖)

<unsigned_long_long> ::= ―UnsignedLongLong/ (―UnsignedLongLong1‖

 | ―UnsignedLongLong10‖ | ―UnsignedLongLong100‖

 | ―UnsignedLongLong1000‖ | ―UnsignedLongLong10000‖)

<octet> ::= ―Octet/‖ (―Octet1‖ | ―Octet10‖ | ―Octet100‖ | ―Octet1000‖ | ―Octet10000‖)

<short> ::= ―Short/‖ (―Short1‖ | ―Short10‖ | ―Short100‖ | ―Short1000‖ | ―Short10000‖)

<unsigned_short> ::= ―Unsigned_short/‖

 (―UnsignedShort1‖ | ―UnsignedShort10‖ | ―UnsignedShort100‖

 | ―UnsignedShort1000‖ | ―UnsignedShort10000‖)

<container_constructed> ::= ―ContainerConstructed/‖

 (<container_struct> | <container_interface>

 | <container_union> | <container_enum>)

<container_struct> ::= ―ContainerStruct/‖

 (<container_primitive> | <container_all_primitives>)

<container_interface> := ―ContainerInterface/‖ (<container_primitive>

 | <container_all_primitives> | < container_empty>)

 29

<container_union> ::= ContainerUnion/‖ (<container_all_primitives_octet>

 | <container_all_primitives_double>)

<container_enum> ::= ―ContainerEnum/‖ (<container_all_primitives>)

<container_all_primitives> ::= ―ContainerAllPrimitives/‖

 (―AllPrimitives1‖ | ―AllPrimitives10‖ | ―AllPrimitives100‖

 | ―AllPrimitives1000‖ | ―AllPrimitives10000‖)

<container_all_primitivesoctet> ::= ―ContainerAllPrimitivesOctet/‖

 (―AllPrimitivesOctet1‖ | ―AllPrimitivesOctet10‖

 | ―AllPrimitivesOctet100‖ | ―AllPrimitivesOctet1000‖

 | ―AllPrimitivesOctet10000‖)

<container_all_primitives_double> ::= ―ContainerAllPrimitivesDouble/‖

 (―AllPrimitivesDouble1‖ | ―AllPrimitivesDouble10‖

 | ―AllPrimitivesDouble100‖

 | ―AllPrimitivesDouble1000‖

 | ―AllPrimitivesDouble10000‖)

<container_empty> ::= ―ContainerEmpty/‖ (―Empty1‖ | ―Empty10‖ | ―Empty100‖

| ―Empty1000‖ | ―Empty10000‖)

Every parse of this grammar gives you a test result obtained, of course if it is

supported by the ORB. For example, we obtained a result for

―JDK1.3_02//Local/Oneway/Invoke‖. That is we have a result obtained by using

Sun’s JDK1.3_02 IDL compiler, making Local Oneway calls by sending and getting

no parameters, only Invoking an operation which takes no arguments and returns

nothing (void) .

4.6 Criteria Used

Our benchmarking environment is constructed by considering the following criteria.

4.6.1 used CORBA/Java ORB

A CORBA/Java ORB is an ORB which is written fully in Java, i.e, it includes no

native code. We applied the benchmark to most common CORBA/Java ORB

 30

worldwide, Sun’s Java IDL compiler. It is so common because It comes with Java 2

SDK, freely.

4.6.2 local versus remote calls

We have the servers and the client at the same computer (local calls) or two sides

are located at different computers (remote calls).

When making local calls the ORB implementor can use more efficient ways of

passing parameters than remote calls. As an example, since for local calls, both

client and server use the same memory, shared memory can be used. If it is so,

then the network overhead is discarded.

But, it is reported that Java VM is CPU-sensitive [47] and using two computers

doubles the number of CPUs used. It can eliminate the advantages of using local

system and even the network overhead can be defeated.

For local calls we used a PC with a Pentium Celeron 850 processor and 128 MB of

RAM.

For remote calls, our servers are run on the PC which is used for local calls and our

client is on a PC with Pentium II MMX 400 processor and 64 MB of RAM.

Both of our computers use Microsoft Windows 2000 Professional as operating

system.

Our computers are located on an idle 10 Mbps Ethernet for remote calls.

4.6.3 oneway versus twoway invocations

OMG IDL allows you to declare operation attribute at operation declaration that

specifies which invocation semantics the communication service must provide for

invocations of a particular operation.

When a client invokes an operation with the oneway attribute, the invocation

semantics are best-effort, which does not guarantee delivery of the call; the

operation will be invoked at-most-once.

If a client invokes an operation without the oneway attribute (i.e, twoway), the

operation semantics are at-most-once if an exception raised; the semantics are

exactly-once if the operation invocation returns successfully [7].

 31

The CORBA standard does not require oneway operations to be non-blocking, but

most implementations of CORBA does not block the caller of a oneway operation.

The CORBA standard has left a great freedom in how an ORB handles oneway

operations [48].

4.6.4 flow of parameters

CORBA IDL defines three directional attributes to parameters :

 in : the parameter is passed from client to server

 out : the parameter is passed from server to client

 inout : the parameter is passed in both directions.

If no parameters will be passed then you must leave the parameter declaration

section of the operation empty and operation’s return result type must be the

keyword void.

We have named these conditions as only_send, only_get, send_get and invoke,

respectively.

We could use out and inout directional attributes to pass parameters back from the

server and to and back from the server. But in that case, as a programmer, we

should have handled the creation and use of Holder classes in accord with the

generated ones by the IDL-to-Java mapping of these parameters. But we defined

our operations as taking (for only_send and send_get) or returning (for only_get and

send_get) the type, and in the case of invoke taking no parameters and returning

void. In this way we have left the preparation operations for sending and getting the

parameters to ORB.

4.6.5 CORBA types used

We classified the CORBA IDL types into three categories :

 Primitive Types

 Constructed Types

 Container Types

 32

4.6.5.1 primitive types

Primitive types are the IDL allowed basic types which consists of the following :

 boolean type stores a boolean value. IDL defines two boolean constants:

true and false.

 char type stores a single character value. The char type is an 8-bit

quantity.

 wchar is wide character type. Its size is implementation-dependent.

 long is a 32-bit signed quantity with a range of -231 to 231-1.

 unsigned long is a 32-bit unsigned quantity with a range of 0 to 232-1.

 long long is a 64-bit signed quantity with a range of -263 to 263-1.

 unsigned long long is a 64-bit unsigned quantity with a range of 0 to 264-

1.

 short is a 16-bit signed quantity with a range of -215 to 215-1.

 unsigned short is a 16-bit unsigned quantity with a range of 0 to 216-1.

 float is an IEEE single-precision floating point value.

 double is an IEEE double-precision floating point value.

 octet is an 8-bit quantity that is guaranteed not to undergo any

conversion when transmitted by the communication system.

 long double is an IEEE double-extended floating point value having an

exponent of at least 15 bits in length and a signed fraction of at least 64

bits. Our ORB does not support this type. OMG says that this type is

reserved for future support [14]. So, we do not have results for this type.

4.6.5.2 constructed types

OMG specifies structs, unions and enums as constructed types and mentions

interfaces in another header. We added the interfaces to our constructed types,

since they can be constructed from other types and can contain no methods.

 33

Indeed, even if you don’t declare any methods, ORB creates the accessor and

mutator functions for each attribute of the interface. But from the IDL view, it is

correct that we can have interfaces without methods.

We have a struct with only a boolean field, only a char field, etc. Same thing is true

for our interfaces : an interface with only a boolean attribute, a char attribute, etc.

We have our structs and interfaces for each of the primitive types. And we have an

interface, struct, enum, and union which has a field for every primitive type. We have

also an empty interface, an interface with no attributes and methods. Empty structs

are not allowed, so we have no empty struct. We tested our union with passing an

octet value (1 byte) and passing a double value (8 bytes).

4.6.5.3 container types

We have arrays, sequences and strings in this category. OMG defines sequences

and strings as template types and arrays in the title complex declarator [7].

4.6.6 IDL-to-Java mappings of used types

Table 4.1 shows the IDL-to-Java mapping of our tested types [14].

Table 4.1 : IDL-to-Java Mapping of primitive types

IDL Type Java type

boolean Boolean

char Char

wchar Char

octet Byte

string java.lang.String

wstring java.lang.String

short Short

unsigned short Short

long Int

unsigned long Int

long long Long

unsigned long long Long

float Float

double Double

 34

4.7 CDR Transfer Syntax

Here is the CDR transfer syntax described by OMG [7]. The Common Data

Representation (CDR) transfer syntax is the format in which the GIOP represents

OMG IDL data types in an octet stream.

4.7.1 primitive types

Primitive data types are specified for both big-endian and little-endian orderings. The

message formats include tags in message headers that indicate the byte ordering in

the message. Encapsulations include an initial flag that indicates the byte ordering

within the encapsulation. Primitive data types are encoded in multiples of octets. An

octet is an 8-bit value.

4.7.1.1 short and unsigned short

Short values are represented as two’s complement numbers. Figure 4.2 illustrates

the bit ordering and size of shorts. Unsigned shorts also have the same format but

they are represented as unsigned binary numbers.

Big Endian

MSB

LSB

octet

0

1

Little Endian

LSB

MSB

octet

0

1

Figure 4.2 : Bit ordering and size of shorts and unsigned shorts in
big-endian and little-endian encodings.

4.7.1.2 long and unsigned long

Long values are represented as two’s complement numbers. Figure 4.3 illustrates

the bit ordering and size of longs. Unsigned longs also have the same format but

they are represented as unsigned binary numbers.

4.7.1.3 long long and unsigned long long

Long long values are represented as two’s complement numbers. Figure 4.4

illustrates the bit ordering and size of long longs. Unsigned long longs also have the

same format but they are represented as unsigned binary numbers.

 35

Big Endian

MSB

octet

0

1

Little Endian

LSB

octet

0

1

LSB

2

3
MSB

2

3

Figure 4.3 : Bit ordering and size of longs and unsigned
longs in big-endian and little-endian encodings.

Big Endian

MSB

octet

0

1

Little Endian

2

3

4

5

LSB

6

7

LSB 0

1

2

3

4

5

MSB

6

7

octet

Figure 4.4 : Bit ordering and size of long longs and unsigned long
longs in big-endian and little-endian encodings.

4.7.1.4 float

Figure 4.5 illustrates the representation of floating point numbers. The figure shows

three different components for floating point numbers, the sign bit (s), the exponent

(e) and the fractional part (f) of the mantissa. The sign bit has values of 0 or 1,

representing positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in

the figure, where the 7 bits in e1 are most significant. The exponent is represented

as excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f <

2.0, f1 being most significant and f3 being least significant. The value of a

normalized number is described by 1sign x 2 (exponent – 127) x (1+ fraction) .

 36

Big Endian

e1

f1

octet

0

1

Little Endian

f3

f2

octet

0

1

f2

f3

2

3

f1

e1

2

3

s

e2

e2

s

Figure 4.5 : Bit ordering and size of floating point numbers in big-
endian and little-endian encodings.

4.7.1.5 double

Figure 4.6 illustrates the representation of double-precision numbers. For double-

precision values the exponent is 11 bits long, comprising e1 and e2 in the figure,

where the 7 bits in e1 are most significant. The exponent is represented as excess

1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m < 2.0, f1

being most significant and f7 being least significant. The value of a normalized

number is described by 1sign x 2 (exponent - 1023) x (1 + fraction).

Big Endian Little Endian

e1

octet

0

1

f7

f6

octet

0

1

f2

f3

2

3

s

e2 f1

f4

f5

4

5

f6

f7

6

7

6e2 f1

e1 7s

f5

f4

2

3

f3

f2

4

5

Figure 4.6 : Bit ordering and size of double-precision numbers in
big-endian and little-endian encodings.

 37

4.7.1.6 long double

Figure 4.7 illustrates the representation of double-extended floating-point numbers.

For double-extended floating-point values the exponent is 15 bits long, comprising

e1 and e2 in the figure, where the 7 bits in e1 are the most significant. The fractional

mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The

value of a long double is determined by 1sign x 2 (exponent – 16383) x (1 + fraction). Long

double is not supported by our ORB as mentioned at section 4.6.5.1.

Big Endian Little Endian

e1

octet

0

1

f14

f13

octet

0

1

f1

f2

2

3

s

e2

f3

f4

4

5

f5

f6

6

7

f12

f11

2

3

f10

f9

4

5

f7

f8

8

9

f9

f10

10

11

f11

f12

12

13

f13

f14

14

15

e2

e1s

14

15

f8

f7

6

7

f6

f5

8

9

f4

f3

10

11

f2

f1

12

13

Figure 4.7 : Bit ordering and size of double-extended numbers in
big-endian and little-endian encodings.

 38

4.7.1.7 octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo

any conversion during transmission. Octets may be considered as unsigned 8-bit

integer values.

4.7.1.8 boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and

FALSE as 0.

4.7.1.9 char and wchar

An IDL character is represented as a single octet. If the transmission code set is

byte-oriented then each wide character is represented as one or more octets. If the

transmission code set is non-byte-oriented then it is dependent on the character set.

if the character set contains 2 bytes, then wide characters are represented as

unsigned shorts. if the character set contains 4 bytes, then they are represented as

unsigned longs.

4.7.2 constructed types

As mentioned before constructed types are derived from other types. CDR rules

governing the constructed types are as follows.

4.7.2.1 struct

The components of a structure are encoded in the order of their declaration in the

structure. Each component is encoded as defined for its data type.

4.7.2.2 union

Unions are encoded as the discriminant tag of the type specified in the union

declaration, followed by the representation of any selected member, encoded as its

type indicates.

4.7.2.3 enum

Enum values are encoded as unsigned longs. The numeric values associated with

enum identifiers are determined by the order in which the identifiers appear in the

 39

enum declaration. The first enum identifier has the numeric value zero (0).

Successive enum identifiers take ascending numeric values, in order of declaration

from left to right.

4.7.2.4 interface

We could not see any CDR rule at the OMG’s formal specification.

4.7.3 container types

4.7.3.1 array

Arrays are encoded as the array elements in sequence. As the array length is fixed,

no length values are encoded. Each element is encoded as defined for the type of

the array. In multidimensional arrays, the elements are ordered so the index of the

first dimension varies most slowly, and the index of the last dimension varies most

quickly.

4.7.3.2 sequence

Sequences are encoded as an unsigned long value, followed by the elements of the

sequence. The initial unsigned long contains the number of elements in the

sequence. The elements of the sequence are encoded as specified for their type.

4.7.3.3 strings and wide strings

A string is encoded as an unsigned long indicating the length of the string in octets,

followed by the string value in single- or multi-byte form represented as a sequence

of octets. The string contents include a single terminating null character. The string

length includes the null character, so an empty string has a length of 1.

A wide string is encoded as an unsigned long indicating the length of the string in

octets or unsigned integers (determined by the transfer syntax for wchar) followed

by the individual wide characters. The string contents include a single terminating

null character. The string length includes the null character. The terminating null

character for a wstring is also a wide character.

 40

5. RESULTS FOR JDK1.3_02

In this chapter we present the results for the benchmark we have constructed.

5.1 About Sun’s IDL Compiler

The Java IDL API, introduced in Version 1.2 of the Java 2 platform, provides an

interface between Java programs and distributed objects and services built using

the CORBA. Java IDL is an implementation of the standard Java Software

Development Kit (SDK) in the org.omg.CORBA and org.omg.CosNaming (CORBA

naming service support) packages and their subpackages [49]. Sun provides

programmers with an idl-to-java compiler named idlj (its old name is idl2java).

5.2 A Note on Our Graphics

We have used abbreviations for the primitive types in order to save space. The

abbreviations and their meanings at their order of appearance in graphics are given

in table 5.1.

Table 5.1 : Abbreviations used in our graphics

C : Char WC : Wide Character D : Double L : Long UL : Unsigned Long

LL : Long Long ULL : Unsigned Long Long F : Float S : Short US : Unsigned Short

B : Boolean O : Octet A : All Primitives E : Empty WString : Wide String

5.3 Results for Local Calls

Following are the results for our local calls taken as described at section 4.6.2.

5.3.1 local oneway and twoway invocation results

Figure 5.1 shows the results for oneway and twoway functions which take no

arguments and return no result.

 41

Invocation Results

0

1

2

3

4

m
s

e
c

s

Invoke 2,0188 2,8604

Onew ay Tw ow ay

Figure 5.1 : Local results for Oneway and Twoway Invocations

5.3.1.1 comments on oneway and twoway invocation results

It is seen from the results that oneway invocations are faster than twoways. It is

natural to have such a result since oneway has no complaints about reliability and

chores related with it is only handled with twoway calls.

5.3.2 oneway – only send results

We will briefly refer to these results as L_O_OS (Local_Oneway_OnlySend) results.

5.3.2.1 L_O_OS primitive and primitive container results

Figure 5.2 through 5.6 shows the results obtained for primitive types and containers

with primitive types.

Primitives and Containers with 1 Primitive

0

1

2

3

m
s
e
c
s

Primitive 2,0988 2,2192 2,1756 2,0872 2,0872 2,1232 2,1956 2,1632 2,3672 2,72 2,8039 2,0632

Sequence 2,2952 2,3836 2,6636 2,2672 2,2752 2,3356 2,3276 2,2916 2,572 2,3316 2,2312 2,84

Array 2,1512 2,6676 2,1352 2,0908 2,2276 2,1392 2,1872 2,1112 2,1712 2,1512 2,1192 2,6404

C WC D L UL LL ULL F S US B O

Figure 5.2 : L_O_OS Results for Primitives and Containers with 1 Primitive

 42

Containers with 10 Primitives

0

1

2

3

4

m
s
e
c
s

Sequence 2,2796 3,3524 2,4468 2,2876 2,2392 2,4032 2,4036 2,3436 2,3476 2,3116 2,3036 2,3032

Array 2,1232 2,2756 2,2996 2,2504 2,2992 2,3036 2,3876 2,2832 2,2352 2,1908 2,1512 2,1228

C WC D L UL LL ULL F S US B O

Figure 5.3 : L_O_OS Results for Containers with 10 Primitives

Containers with 100 Primitives

0

1

2

3

4

m
s
e
c
s

Sequence 2,4476 2,82 2,8524 2,832 2,844 2,94 2,832 2,64 2,5196 2,5516 2,3956 2,4036

Array 2,3188 2,4472 2,7564 2,5396 2,544 2,752 2,804 2,5676 2,3396 2,4352 2,3516 2,3832

C WC D L UL LL ULL F S US B O

Figure 5.4 : L_O_OS Results for Containers with 100 Primitives

Containers with 1000 Primitives

0

2

4

6

8

m
s
e
c
s

Sequence 3,1328 3,6252 5,64 4,298 4,3464 5,48 5,476 4,5464 3,9336 3,6332 3,1088 3,0764

Array 3,0608 3,5692 5,68 4,2616 6,0208 5,536 6,2772 4,5184 3,8412 3,6376 3,064 3,0124

C WC D L UL LL ULL F S US B O

Figure 5.5 : L_O_OS Results for Containers with 1000 Primitives

 43

Containers with 10000 Primitives

0

10

20

30

40

m
s
e
c
s

Sequence 6,994 9,554 31,542 15,194 15,162 29,662 29,647 16,788 9,3936 9,3812 6,4288 5,9688

Array 7,4872 10,431 35,675 15,198 15,022 28,124 28,305 17,697 10,002 10,315 6,922 6,3932

C WC D L UL LL ULL F S US B O

Figure 5.6 : L_O_OS Results for Containers with 10000 Primitives

5.3.2.2 about L_O_OS primitive and primitive container results

Some conclusions from the results are :

 It is seen from our results (not from the graphics above, but the 25 samples

we have taken. The above results are the average of these 25 values) for

each repetition that an observable difference exists between the first call and

second call. The difference between the second call and following calls are

very small. This conclusion applies to all of our local results and will not be

mentioned again. The reason behind this could be that when the code is

executed for the first time, the loading of code fragment is from main

memory, at the best wish, and could get some time. After this first call, it

could be taken to the cache memory and to reach it could get less time. The

fluctuations appearing at the middle could be the result of operating system

taking the code fragment away from cache for a while and using cache for

some other work. After this, it could again be taken to cache when it is used

again by the application.

 If we send a primitive, a primitive within an array or a sequence, almost no

difference appears. Our arrays and sequences are fixed size. According to

the CDR rules, only values of array will be sent after marshalling. But for the

sequence we could expect a little delay because of the preceding sending of

unsigned long value which represents the size of the data to be sent. Our

results do not seem to conform to this second conclusion. Since arrays and

sequences are mapped to same Java type, and they have both fixed sizes

our ORB seems to handle arrays and sequences in the same way.

 44

 The difference among the results for containers with size 1, 10 and 100 are

very little. But when we take the results for the size of 1000, we face with a

sharp change. When we have 10000 elements, we have another sharp

change. Indeed, we could expect that when we have doubled the size of the

array, the time must have been doubled also. But it is not the case here. Its

reason could be that when we have 1, 10 and 100 values they fix in a

message. But when we have larger data, we have larger number of

messages. So, our time is proportional to the number of messages sent, not

only to the number of bytes sent (The proportion can be the ceiling of the

ratio (number of bytes / message size)).

 wchar can be represented with two bytes (as unsigned shorts) or four bytes

(as unsigned longs) according to the choosen character set. Our results

show that wchar is represented with two bytes since it has nearly the same

results with types having size of 2 bytes (e.g, short).

5.3.2.3 L_O_OS string and wide string results

Figure 5.7 shows the results obtained.

Results for Strings and Wide Strings

0

2

4

6

8

10

m
s
e
c
s

String 2,1388 2,1716 2,3836 3,1208 7,122

WString 2,0592 2,4872 2,5316 3,5012 9,4696

1 10 100 1000 10000

Figure 5.7 : L_O_OS Results for Strings and Wide Strings

5.3.2.4 about L_O_OS string and wide string results

Either we send character strings as array or sequence of characters (see results for

primitve type of char and wchar at 5.3.3.1) or we send them as elements of a string,

we see almost no difference.

 45

5.3.2.5 L_O_OS struct and struct container results

Figures 5.8 through 5.12 shows the results obtained.

Structs and Containers with 1 Struct

0

2

4

m
s
e
c
s

Struct 2,2112 2,1912 2,2116 2,2028 2,1268 2,2476 2,1748 2,1268 2,1672 2,1668 2,1512 2,1792 2,3756

Sequence 2,178 2,2232 2,3476 2,1516 2,2196 2,3072 2,2912 2,2032 2,2188 2,2352 2,808 2,2348 2,3836

Array 2,2476 2,2624 2,8796 2,2472 2,1952 2,2952 2,3144 2,2596 2,2948 2,3876 2,78 2,3112 2,3876

C WC D L UL LL ULL F S US B O A

Figure 5.8 : L_O_OS Results for Structs and Containers with 1 Struct

Containers with 10 Structs

0

1

2

3

4

m
s
e
c
s

Sequence 2,1672 2,2228 2,4396 2,3116 2,2752 2,3596 2,3672 2,3032 2,2592 2,2192 2,2632 2,2508 2,7436

Array 2,1388 2,3556 3,7816 2,3276 2,3468 2,3836 2,4396 2,3436 2,2872 2,3276 2,1708 2,1992 2,7

C WC D L UL LL ULL F S US B O A

Figure 5.9 : L_O_OS Results for Containers with 10 Structs.

Containers with 100 Structs

0

2

4

6

m
s
e
c
s

Sequence 2,4036 2,5632 2,8484 2,796 2,672 2,892 2,8044 2,68 2,5516 2,5476 2,4716 2,4316 5,0028

Array 2,756 2,5356 3,0244 2,6276 2,652 2,776 2,8484 2,644 2,512 2,5276 2,4236 2,4356 5,0268

C WC D L UL LL ULL F S US B O A

Figure 5.10 : L_O_OS Results for Containers with 100 Structs

 46

Containers with 1000 Structs

0

10

20

30

m
s
e
c
s

Sequence 3,7892 4,254 6,2372 4,8312 4,8744 6,0368 6,0448 5,0316 4,3144 4,3464 4,8832 3,7616 21,278

Array 3,854 4,2784 6,1972 5,0828 4,8868 6,0168 6,0448 4,9836 4,302 4,3544 3,8448 3,7652 21,126

C WC D L UL LL ULL F S US B O A

Figure 5.11 : L_O_OS Results for Containers with 1000 Structs.

Containers with 10000 Structs

0

100

200

300

m
s
e
c
s

Sequence 19,636 22,52 43,483 27,591 28,249 41,536 41,924 29,831 22,376 22,745 19,848 19,492 281,3

Array 19,757 22,32 43,899 28,044 28,569 41,981 42,108 29,502 22,697 22,709 19,817 19,272 280,46

C WC D L UL LL ULL F S US B O A

Figure 5.12 : L_O_OS Results for Containers with 10000 Structs

5.3.2.6 about L_O_OS struct and struct container results

Some conclusions from the results are :

 If we consider the results obtained with only primitives and the results here

we see that when we encapsulate a primitive within a struct, we see no

observable difference between results for small sizes. But for the big-sized

data, primitives perform better.

 Also it is true that placing the primitives within structs and then within

containers make no difference with the stattements above..

 We have a special struct which consits of the fields for every primitive type. It

gives almost same results with little sizes. But when size enlarges, the

difference becomes apparent. Its reason is that according to CDR rules

when handling the structs, fields of it must be sent in order of their

declaration.

 47

5.3.2.7 L_O_OS interface and interface container results

Figures 5.13 through 5.16 shows the results obtained.

Interfaces and Containers with 1 Interface

2,4

2,6

2,8

3

m
s
e
c
s

Interface 2,672 2,684 2,652 2,68 2,676 2,688 2,692 2,668 2,672 2,612 2,748 2,652 2,712 2,68

Sequence 2,772 2,736 2,768 2,676 2,684 2,656 2,692 2,7 2,796 2,688 2,676 2,68 2,68 2,752

Array 2,66 2,604 2,66 2,636 2,66 2,704 2,688 2,68 2,7 2,68 2,668 2,648 2,691 2,772

C WC D L UL LL ULL F S US B O A E

Figure 5.13 : L_O_OS Results for Interface and Containers with 1 Interface

Containers with 10 Interfaces

3,4

3,6

3,8

4

4,2

m
s
e
c
s

Sequence 3,854 3,693 3,866 3,798 3,802 3,894 3,862 3,91 4,034 3,809 3,894 3,737 3,894 3,789

Array 3,71 3,758 3,773 3,774 3,798 3,789 3,794 3,773 3,778 3,81 3,781 3,778 3,83 3,777

C WC D L UL LL ULL F S US B O A E

Figure 5.14 : L_O_OS Results for Containers with 10 Interfaces

Containers with 100 Interfaces

11

11,5

12

12,5

13

m
s
e
c
s

Sequence 12,05 12,31 12,58 12,29 12,3 12,56 12,18 12,52 12,2 12,57 12,41 12,38 12,56 12,45

Array 12,23 12,09 12,32 12,06 12,32 12,1 11,95 11,91 12,01 12,35 12,41 12,01 12,89 12,43

C WC D L UL LL ULL F S US B O A E

Figure 5.15 : L_O_OS Results for Containers with 100 Interfaces

 48

Containers with 1000 Interfaces

125

130

135

140

m
s
e
c
s

Sequence 129,8 130,5 130 130,9 130,8 131,4 133,6 131 130,6 130,9 131,4 131,5 134,4 130,4

Array 128,8 129,6 131,2 128,7 130,6 132 132,8 130,7 130,4 132 130,8 130,7 134,8 129,4

C WC D L UL LL ULL F S US B O A E

Figure 5.16 : L_O_OS Results for Containers with 1000 Interfaces

10000 interfaces produced the Out Of Memory error.

5.3.2.8 about L_O_OS interface and interface container results

Some conclusions from the results are :

 If we consider the results obtained with only primitives and the results here

we see that when we encapsulate a primitive within an interface, the

performance is reduced even with the small number of values. It could be the

result of accessor and mutator functions created. But interface without

members or functions (our empty interface) shows the same results. So, it is

not a result of accessor or mutator functions but a result of type interface.

 The overhead introduced by interface type overwhelms the overhead of

primitve types. So we have nearly the same results for all types.

 For 10000 elements we encountered the out of memory error at the server

side.

5.3.2.9 L_O_OS union and enum results

Figures 5.17 through 5.21 shows the results obtained.

 49

Results for 1 Union and Enum

2

2,2

2,4

m
s
e
c
s

All Primitives 2,1668 2,3116 2,3076

Sequence 2,2716 2,2824 2,3836

Array 2,2912 2,3116 2,3312

Enum Union (Octet) Union (Double)

Figure 5.17 : L_O_OS Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

2

2,2

2,4

2,6

m
s
e
c
s

Sequence 2,3032 2,4236 2,5516

Array 2,3716 2,3956 2,556

Enum Union (Octet) Union (Double)

Figure 5.18 : L_O_OS Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

2

4

m
s
e
c
s

Sequence 2,62 3,0884 3,6052

Array 2,608 3,0844 3,5892

Enum Union (Octet) Union (Double)

Figure 5.19 : L_O_OS Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

10

20

m
s
e
c
s

Sequence 4,5064 8,9212 11,1996

Array 4,6468 8,8968 11,3004

Enum Union (Octet) Union (Double)

Figure 5.20 : L_O_OS Results for Containers with 1000 Unions and Enums

 50

Results for 10000 Unions and Enums

0

100

200

m
s
e
c
s

Sequence 18,3268 92,9052 118,4828

Array 18,2024 92,91 120,0568

Enum Union (Octet) Union (Double)

Figure 5.21 : L_O_OS Results for Containers with 10000 Unions and Enums

5.3.2.10 about L_O_OS union and enum results

Some conclusions from the results are :

 CDR says that enum type is encoded as unsigned longs. Our enum results

are close to unsigned longs. It could be said that enums have same

performance with unsigned longs.

 Our results for unions, one carrying an octet and other a double, shows that

for size 1, their performances are nearly the same. But when size increases,

difference becomes apparent. Carrying double takes longer than carrying

octet.

5.3.3 twoway – only send results

We will briefly refer to these results as L_T_OS (Local_Twoway_OnlySend) results.

5.3.3.1 L_T_OS primitive and primitive container results

Figure 5.22 through 5.26 shows the results obtained for primitive types and

containers with primitive types.

 51

Primitives and Containers with 1 Primitive

2,5

3

3,5

m
s
e
c
s

Primitive 2,9764 2,9884 3,024 2,932 2,9524 2,9724 2,9684 3,0004 2,9684 3,0124 3,3528 2,916

Sequence 2,9684 2,9684 2,9844 2,9404 2,94 2,9564 2,98 2,9964 2,9404 3,008 2,9444 3,3

Array 3,0004 3,0284 3,068 2,984 2,976 2,9884 3,0236 3,0284 2,996 3,0084 3 3,3724

C WC D L UL LL ULL F S US B O

Figure 5.22 : L_T_OS Results for Primitives and Containers with 1 Primitive

Containers with 10 Primitives

2,85

2,9

2,95

3

3,05

m
s
e
c
s

Sequence 2,9684 2,9324 2,9996 2,988 2,9564 2,9724 2,988 3,0004 2,932 2,9604 2,9404 3,0124

Array 2,9764 2,96 3,04 3,0004 2,9684 3,0244 3,0164 2,9924 2,9804 2,9924 2,9844 3,0084

C WC D L UL LL ULL F S US B O

Figure 5.23 : L_T_OS Results for Containers with 10 Primitives

Containers with 100 Primitives

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Sequence 2,9604 2,9924 3,1644 3,0124 3,0004 3,0804 3,0884 3,068 2,9804 3,0284 3,004 2,9924

Array 2,9924 3,0204 3,1648 3,0364 3,0484 3,1164 3,1568 3,08 3,0528 3,0524 3,0004 3,016

C WC D L UL LL ULL F S US B O

Figure 5.24 : L_T_OS Results for Containers with 100 Primitives

 52

Containers with 1000 Primitives

0

2

4

6

m
s
e
c
s

Sequence 3,3164 3,5528 5,0672 3,9932 3,9856 4,8428 4,8552 4,1744 3,5692 3,5488 3,2248 3,1644

Array 3,3532 3,6776 5,528 4,222 4,266 5,2592 5,2956 4,4264 3,6852 3,6652 3,2888 3,3128

C WC D L UL LL ULL F S US B O

Figure 5.25 : L_T_OS Results for Containers with 1000 Primitives

Containers with 10000 Primitives

0

10

20

30

40

m
s
e
c
s

Sequence 6,4612 8,8732 30,192 13,84 13,94 28,389 28,489 15,823 8,7368 8,7604 5,8768 5,7768

Array 7,01 9,658 34,105 15,166 15,37 31,814 31,994 17,233 9,578 9,8904 6,3932 6,4936

C WC D L UL LL ULL F S US B O

Figure 5.26 : L_T_OS Results for Containers with 10000 Primitives

5.3.3.2 about L_T_OS primitive and primitive container results

Some conclusions from the results are :

 We have nearly same results for arrays and sequences (with possible 10%

deviation).

 If we compare with L_O_OS results of same category we see that oneway

results are faster for small sizes, but when we come to size 1000 and 10000

we get the nearly same results.

5.3.3.3 L_T_OS string and wide string results

Figure 5.27 shows the results obtained.

 53

Results for Strings and Wide Strings

0

2

4

6

8

10

m
s
e
c
s

String 2,992 3,0044 3,0484 3,3408 6,496

WString 3,0364 3,0484 3,0684 3,6408 8,748

1 10 100 1000 10000

Figure 5.27 : L_T_OS Results for Strings and Wide Strings

5.3.3.4 about L_T_OS string and wide string results

Some conclusions from the results are :

 For strings and wstrings we have nearly the same results with

primitive arrays and sequences of type char and wchar, respectively.

 If we compare with L_O_OS results, we see that for the small

lengths, oneway calls are faster. But when size increases, the

difference decreases and for the length of 10000, twoway shows

better performance than oneway.

5.3.3.5 L_T_OS struct and struct container results

Figures 5.28 through 5.32 shows the results obtained.

Structs and Containers with 1 Struct

2,5

3

3,5

m
s
e
c
s

Struct 3,0116 2,9764 3,016 2,9884 3,0084 3,0564 3,0044 3,0284 3,04 3,0004 3,0204 2,98 3,1248

Sequence 3,0044 3,0044 3,0364 2,9524 2,952 2,9884 2,9844 2,9844 3,008 2,9924 3,3168 2,9764 3,1004

Array 3,04 3,0368 3,1084 3,0084 3,0124 3,0244 3,0524 3,0364 3,0324 3,0084 3,4252 3,0004 3,1524

C WC D L UL LL ULL F S US B O A

Figure 5.28 : L_T_OS Results for Structs and Containers with 1 Struct

 54

Containers with 10 Structs

2,7

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Sequence 2,9524 2,9324 3 2,948 2,9164 2,9564 2,9444 2,9684 2,9284 2,9524 2,944 2,9564 3,136

Array 2,9884 2,9884 3,084 3,0044 2,9684 2,96 2,9924 3,0244 2,9804 3,0084 3,0084 2,9764 3,1684

C WC D L UL LL ULL F S US B O A

Figure 5.29 : L_T_OS Results for Containers with 10 Structs

Containers with 100 Structs

0

2

4

6

m
s
e
c
s

Sequence 3,0484 3,0404 3,1804 3,064 3,0648 3,1124 3,1288 3,1284 3,036 3,0924 3,0084 3,0248 4,5464

Array 3,0684 3,1328 3,2808 3,0764 3,0964 3,1684 3,1888 3,1284 3,0804 3,1 3,0804 3,0884 4,6748

C WC D L UL LL ULL F S US B O A

Figure 5.30 : L_T_OS Results for Containers with 100 Structs

Containers with 1000 Structs

0

10

20

30

m
s
e
c
s

Sequence 3,9096 4,2656 5,6084 4,6304 4,666 5,392 5,428 4,8264 4,274 4,3304 3,8856 3,9496 19,868

Array 3,9616 4,3544 5,868 4,7192 4,7308 5,64 5,6644 4,9312 4,294 4,3864 3,962 3,9456 20,95

C WC D L UL LL ULL F S US B O A

Figure 5.31 : L_T_OS Results for Containers with 1000 Structs

 55

Containers with 10000 Structs

0

100

200

300

400

m
s
e
c
s

Sequence 16,892 21,014 41,011 20,209 20,354 39,505 39,405 21,635 21,19 21,443 16,724 16,648 303,32

Array 16,496 21,018 40,886 20,201 20,373 39,397 39,401 21,398 21,118 21,194 16,856 16,56 302,79

C WC D L UL LL ULL F S US B O A

Figure 5.32 : L_T_OS Results for Containers with 10000 Structs

5.3.3.6 about L_T_OS struct and struct container results

Some conclusions from the results are :

 We have the nearly same results for sequences and arrays.

 If we compare the results with results of L_O_OS we see that for the small

sizes (1,10, 100) oneway results are better than twoways. For the larger

sizes they are nearly equal (size 1000 except our private all struct). Then for

size 10000 it has two features in it : for primitive structs twoway is faster, and

for our private all struct oneway is faster.

5.3.3.7 L_T_OS interface and interface container results

Figures 5.33 through 5.37 shows the results obtained.

Interfaces and Containers with 1 Interface

3,1

3,2

3,3

3,4

m
s
e
c
s

Interface 3,252 3,276 3,213 3,221 3,237 3,261 3,237 3,245 3,261 3,273 3,349 3,26 3,257 3,241

Sequence 3,221 3,212 3,224 3,193 3,24 3,224 3,221 3,237 3,193 3,245 3,228 3,217 3,248 3,276

Array 3,24 3,237 3,253 3,26 3,224 3,281 3,241 3,233 3,249 3,248 3,281 3,269 3,241 3,353

C WC D L UL LL ULL F S US B O A E

Figure 5.33 : L_T_OS Results for Interface and Containers with 1 Interface

 56

Containers with 10 Interfaces

3,75

3,8

3,85

3,9

3,95

m
s
e
c
s

Sequence 3,842 3,846 3,822 3,834 3,83 3,866 3,886 3,857 3,841 3,846 3,862 3,873 3,898 3,846

Array 3,833 3,862 3,866 3,877 3,846 3,874 3,882 3,89 3,882 3,938 3,858 3,894 3,902 3,89

C WC D L UL LL ULL F S US B O A E

Figure 5.34 : L_T_OS Results for Containers with 10 Interfaces

Containers with 100 Interfaces

10

10,5

11

11,5

12

m
s
e
c
s

Sequence 11,02 11,39 11,21 10,9 11,29 11,46 11,26 11,19 11,17 11,24 11,27 11,18 11,83 11,41

Array 11,05 11,31 11,61 11,11 11,32 11,55 11,38 11,36 11,42 11,38 11,7 11,37 11,84 11,66

C WC D L UL LL ULL F S US B O A E

Figure 5.35 : L_T_OS Results for Containers with 100 Interfaces

Containers with 1000 Interfaces

110

120

130

140

150

m
s
e
c
s

Sequence 135,3 135,1 131,2 135,5 142,4 132,4 133,7 136,6 137,1 133,1 133,3 138,3 137,2 140,4

Array 127,5 130,1 131,6 128,1 132 132,6 134,2 127,9 130,2 132,1 132,6 131,4 136,3 129

C WC D L UL LL ULL F S US B O A E

Figure 5.36 : L_T_OS Results for Containers with 1000 Interfaces

 57

Containers with 10000 Interfaces

1300

1400

1500

1600

1700

m
s
e
c
s

Sequence 1573 1575 1595 1575 1587 1562 1572 1579 1583 1592 1591 1581 1610 1582

Array 1546 1549 1573 1547 1561 1572 1582 1551 1566 1570 1579 1563 1510 1436

C WC D L UL LL ULL F S US B O A E

Figure 5.37 : L_T_OS Results for Containers with 10000 Interfaces

5.3.3.8 about L_T_OS interface and interface container results

Some conclusions from the results are :

 Arrays and sequences performs nearly the same

 If we compare with L_O_OS results we see that for the size of 100, twoway

is faster than oneway, but at size 1, 10, 1000 oneway is faster.

 L_O_OS with size 10000 could not complete the test. But with twoway we

could completed it here.

5.3.3.9 union and enum results

Figures 5.38 through 5.42 shows the results obtained.

Results for 1 Union and Enum

2,8

3

3,2

m
s
e
c
s

All Primitives 3,0004 3,0328 3,0724

Sequence 2,98 2,96 3,132

Array 3,052 2,98 3,1244

Enum Union (Octet) Union (Double)

Figure 5.38 : L_T_OS Results for Union, Enum and Containers with 1 Union and Enum

 58

Results for 10 Unions and Enums

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Sequence 2,9364 3,0204 3,0564

Array 2,9796 3,0448 3,1004

Enum Union (Octet) Union (Double)

Figure 5.39 : L_T_OS Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

2

4

m
s
e
c
s

Sequence 3,0404 3,3692 3,6416

Array 3,0928 3,4328 3,7172

Enum Union (Octet) Union (Double)

Figure 5.40 : L_T_OS Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

5

10

15

m
s
e
c
s

Sequence 4,3664 7,8552 10,7116

Array 4,4344 8,0356 10,9836

Enum Union (Octet) Union (Double)

Figure 5.41 : L_T_OS Results for Containers with 1000 Unions and Enums

Results for 10000 Unions and Enums

0

50

100

150

m
s
e
c
s

Sequence 16,916 99,2664 106,5732

Array 16,744 100,7848 106,8536

Enum Union (Octet) Union (Double)

Figure 5.42 : L_T_OS Results for Containers with 10000 Unions and Enums

5.3.3.10 about L_T_OS union and enum results

Some conclusions from the results are :

 59

 Arrays and sequences performs nearly the same

 If we compare with L_O_OS results we see that for the size of 100, twoway

is faster than oneway, but at size 1, 10, 1000 oneway is faster.

5.3.4 twoway – send get results

We will briefly refer to these results as L_T_SG (Local_Twoway_SendGet) results.

5.3.4.1 L_T_SG primitive and primitive container results

Figure 5.43 through 5.47 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

2,5

3

3,5

m
s
e
c
s

Primitive 2,9724 3,0364 3,1164 2,9884 2,9724 3,012 3,0484 3,0364 3,0364 2,9884 3,3532 2,964

Sequence 3,06 3,0848 3,1444 3,0404 3,0604 3,128 3,1248 3,1128 3,0764 3,1684 3,044 3,3932

Array 3,0164 3,056 3,0968 2,9844 3,0244 3,1036 3,124 3,0648 3,0408 3,072 2,996 3,3848

C WC D L UL LL ULL F S US B O

Figure 5.43 : L_T_SG Results for Primitives and Containers with 1 Primitive

Containers with 10 Primitives

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Sequence 3,0684 3,0684 3,1444 3,0768 3,0804 3,1004 3,1208 3,1568 3,0524 3,0884 3,0484 3,0476

Array 2,9764 3,0276 3,0808 2,9804 3,0324 3,1204 3,1004 3,0404 3,016 3,0608 2,9844 3,0316

C WC D L UL LL ULL F S US B O

Figure 5.44 : L_T_SG Results for Containers with 10 Primitives

 60

Containers with 100 Primitives

2,8

3

3,2

3,4

3,6

m
s
e
c
s

Sequence 3,1164 3,1316 3,4244 3,1408 3,2121 3,3448 3,3728 3,2648 3,1448 3,1484 3,112 3,0844

Array 3,0564 3,0684 3,3448 3,1124 3,1684 3,3008 3,3172 3,2044 3,1244 3,1284 3,0444 3,0564

C WC D L UL LL ULL F S US B O

Figure 5.45 : L_T_SG Results for Containers with 100 Primitives

Containers with 1000 Primitives

0

5

10

m
s
e
c
s

Sequence 3,7336 4,3704 7,7908 5,2636 5,2596 7,3348 7,3268 5,6792 4,3104 4,278 3,6452 3,5288

Array 3,7216 4,2936 7,9432 5,376 5,3712 7,4868 7,5468 5,8164 4,3544 4,394 3,5892 3,6128

C WC D L UL LL ULL F S US B O

Figure 5.46 : L_T_SG Results for Containers with 1000 Primitives

Containers with 10000 Primitives

0

20

40

60

80

m
s
e
c
s

Sequence 9,9104 13,692 56,285 23,209 23,225 52,059 52,412 28,71 14,73 14,978 8,7844 8,5684

Array 11,148 16,319 70,874 26,566 26,999 66,812 67,401 32,735 17,257 17,846 10,179 9,8504

C WC D L UL LL ULL F S US B O

Figure 5.47 : L_T_SG Results for Containers with 10000 Primitives

5.3.4.2 about L_T_SG primitive and primitive container results

Some conclusions from the results are :

 One primitive, primitive within a sequence and primitive within an array

performs the same.

 61

 Sequences are a bit faster than the arrays for the size 10000. I can’t deduce

anything from this result. In the worst case, arrays must have been faster

than sequences.

 If we compare with L_T_OS results, we see that sending a type is nearly the

same with L_T_SG for small sizes (1, 10, 100) and becomes apparent when

size increases (1000, 10000). We would expect the L_T_SG to performt

slower all the times from L_T_OS since there is two paths of data flow. But it

is not the case with small sizes. I guess this is because of the fact that small

sized data can be carried in a packet and the acknowledgement can be

piggybacked with this packet. Twoway calls always block for an

acknowledgement that specifies the successive end of the call. If the time

consumed on the server side to copy data and send back is small, which is

the case for small-sized data, then these results can be very close. For the

big data we lose our time in coping with more than one packet and copying

of return results to be sent back from the server.

5.3.4.3 L_T_SG string and wide string results

Figure 5.48 shows the results obtained.

Results for Strings and Wide Strings

0

5

10

15

20

m
s
e
c
s

String 3,0488 3,0604 3,0964 3,7092 9,9024

WString 3,092 3,0604 3,1128 4,23 14,6532

1 10 100 1000 10000

Figure 5.48 : L_T_SG Results for Strings and Wide Strings

5.3.4.4 about L_T_SG string and wide string results

Some conclusions from the results are :

 Strings and WStrings exhibits the same performance characteristics with

char and wchar sequences, respectively. And they are faster than the arrays

of their respective types.

 62

 If we compare with L_T_OS results we see that the difference between

sending and sending/getting the (w)strings becomes apparent after size

1000.

5.3.4.5 L_T_SG struct and struct container results

Figures 5.49 through 5.53 shows the results obtained.

Structs and Containers with 1 Struct

2,5

3

3,5

m
s
e
c
s

Struct 3,012 3,0164 3,1004 3,0124 3,0124 3,0404 3,0244 3,0684 3,0044 3,004 2,9924 3,0044 3,2284

Sequence 3,0564 3,0444 3,1564 3,0248 3,0324 3,0428 3,0844 3,1084 3,0604 3,024 3,3808 2,9964 3,2648

Array 3,06 3,0884 3,1928 3,056 3,0884 3,0928 3,0964 3,1088 3,1004 3,0608 3,4244 3,0324 3,2568

C WC D L UL LL ULL F S US B O A

Figure 5.49 : L_T_SG Results for Structs and Containers with 1 Struct

Containers with 10 Structs

0

2

4

6

m
s
e
c
s

Sequence 2,9764 2,996 3,1004 2,9644 3,0244 3,0324 3,0728 3,0404 3,0004 3,0404 3,0124 3,9924 3,3252

Array 3,0688 3,0448 3,1048 3,0524 3,0648 3,0364 3,0488 3,0804 3,0328 3,0364 3,036 3,004 3,3804

C WC D L UL LL ULL F S US B O A

Figure 5.50 : L_T_SG Results for Containers with 10 Structs

Containers with 100 Structs

0

2

4

6

8

m
s
e
c
s

Sequence 3,108 3,1728 3,4092 3,1844 3,1848 3,3248 3,3448 3,2468 3,1528 3,1684 3,1328 3,1164 6,1812

Array 3,1608 3,2088 3,4532 3,2528 3,2328 3,3404 3,3772 3,2968 3,1808 3,2008 3,1804 3,1764 6,666

C WC D L UL LL ULL F S US B O A

Figure 5.51 : L_T_SG Results for Containers with 100 Structs

 63

Containers with 1000 Structs

0

20

40

60

m
s
e
c
s

Sequence 4,6148 5,2236 7,9952 6,0004 6,0328 7,8432 7,8742 6,4252 5,2072 5,3192 4,6348 4,5784 39,757

Array 4,7312 5,42 8,8204 6,3888 6,4452 8,4196 8,4444 6,766 5,404 5,384 4,7228 4,6504 36,649

C WC D L UL LL ULL F S US B O A

Figure 5.52 : L_T_SG Results for Containers with 1000 Structs

Containers with 10000 Structs

0

200

400

600

m
s
e
c
s

Sequence 20,117 38,439 99,575 50,929 51,67 96,098 95,91 55,476 38,796 39,128 20,113 19,68 492,86

Array 20,117 38,584 99,56 51,294 52,115 96,495 96,113 55,083 38,72 39,244 20,025 19,556 490,38

C WC D L UL LL ULL F S US B O A

Figure 5.53 : L_T_SG Results for Containers with 10000 Structs

5.3.4.6 about L_T_SG struct and struct container results

Some conclusions from the results are :

 To carry a primitive alone, within a struct or within a container with 1 struct is

same.

 There is no difference between carrying the structs with arrays or

sequences.

 If we compare with L_T_OS results we see that there is difference for sizes

1, 10 and 100. After size 1000 difference becomes to appear.

5.3.4.7 L_T_SG interface and interface container results

Figures 5.54 through 5.58 shows the results obtained.

 64

Interfaces and Containers with 1 Interface

3,3

3,4

3,5

3,6

3,7

m
s
e
c
s

Interface 3,465 3,481 3,496 3,457 3,488 3,481 3,473 3,481 3,473 3,472 3,585 3,457 3,485 3,477

Sequence 3,469 3,493 3,472 3,477 3,493 3,449 3,516 3,509 3,461 3,485 3,501 3,473 3,492 3,609

Array 3,465 3,513 3,476 3,488 3,473 3,476 3,453 3,453 3,465 3,461 3,517 3,441 3,473 3,574

C WC D L UL LL ULL F S US B O A E

Figure 5.54 : L_T_SG Results for Interface and Containers with 1 Interface

Containers with 10 Interfaces

4,4

4,5

4,6

4,7

4,8

m
s
e
c
s

Sequence 4,719 4,707 4,699 4,698 4,679 4,763 4,715 4,743 4,683 4,715 4,679 4,731 4,571 4,675

Array 4,647 4,622 4,651 4,619 4,694 4,615 4,663 4,622 4,618 4,655 4,626 4,623 4,663 4,783

C WC D L UL LL ULL F S US B O A E

Figure 5.55 : L_T_SG Results for Containers with 10 Interfaces

Containers with 100 Interfaces

0

10

20

30

m
s
e
c
s

Sequence 17,06 17,15 17,7 17,26 17,75 17,91 17,6 17,28 17,19 17,49 17,53 17,37 20,42 17,32

Array 15,83 15,97 16,34 16,06 16,14 16,37 16,19 15,74 15,93 16,18 16,21 15,94 18,48 18,32

C WC D L UL LL ULL F S US B O A E

Figure 5.56 : L_T_SG Results for Containers with 100 Interfaces

 65

Containers with 1000 Interfaces

0

100

200

300

400

m
s
e
c
s

Sequence 258,5 246,4 261,9 259,2 286,7 249,2 249,6 251,5 251,6 265,8 260,6 289,1 251,4 258,1

Array 215,9 217,5 227,6 217,9 229,7 226,4 226,6 218,3 217 227,6 227,8 217,2 223,3 216,6

C WC D L UL LL ULL F S US B O A E

Figure 5.57 : L_T_SG Results for Containers with 1000 Interfaces

Containers with 10000 Interfaces

2150

2200

2250

2300

2350

m
s
e
c
s

Sequence 2207 2255 2205 2204 2263 2304 2298 2205 2205 2304 2302 2205 2304 2204

Array 2205 2205 2300 2205 2304 2296 2304 2204 2206 2244 2244 2212 2304 2204

C WC D L UL LL ULL F S US B O A E

Figure 5.58 : L_T_SG Results for Containers with 10000 Interfaces

5.3.4.8 about L_T_SG interface and interface container results

Some conclusions from the results are :

 To carry a primitive within an interface is slower than carrying it alone.

 There is no difference between sequences and arrays.

 Sharp changes between results begin very early, with size 10. This shows

that interfaces requires big memory areas.

 If we compare with L_T_OS results we see that even for the only one

interface there is difference between only sending and sending/getting the

interfaces.

5.3.4.9 L_T_SG union and enum results

Figures 5.59 through 5.63 shows the results obtained.

 66

Results for 1 Union and Enum

2,8

3

3,2

3,4

m
s
e
c
s

All Primitives 3,0324 3,0928 3,1404

Sequence 3,0164 3,0524 3,1808

Array 3,0684 3,0684 3,2248

Enum Union (Octet) Union (Double)

Figure 5.59 : L_T_SG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

2,8

3

3,2

3,4

m
s
e
c
s

Sequence 3,124 3,0528 3,196

Array 3,0288 3,108 3,224

Enum Union (Octet) Union (Double)

Figure 5.60 : L_T_SG Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

2

4

6

m
s
e
c
s

Sequence 3,1644 3,6776 4,3984

Array 3,1568 3,7168 4,4064

Enum Union (Octet) Union (Double)

Figure 5.61 : L_T_SG Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

10

20

m
s
e
c
s

Sequence 5,516 11,9816 16,8524

Array 5,6124 12,1736 16,628

Enum Union (Octet) Union (Double)

Figure 5.62 : L_T_SG Results for Containers with 1000 Unions and Enums

 67

Results for 10000 Unions and Enums

0

100

200

300

m
s
e
c
s

Sequence 32,4744 187,702 256,8612

Array 31,2608 177,8596 273,5536

Enum Union (Octet) Union (Double)

Figure 5.63 : L_T_SG Results for Containers with 10000 Unions and Enums

5.3.4.10 about L_T_SG union and enum results

Some conclusions from the results are :

 Enum shows the same characteristics with unsigned longs generally. But it is

faster for size 10000 from unsigned longs.

 Enum and union Arrays and sequences perform nearly the same as

expected.

 Difeerence between unions with doubles and unions with octets are obvious

for sizes bigger than 10.

 If we compare with L_T_OS results we see that for the enum they almost

show the same performance up to size 1000, and for the union up to size

100.

5.3.5 twoway – only get results

We will briefly refer to these results as L_T_OG (Local_Twoway_OnlyGet) results.

5.3.5.1 L_T_OG primitive and primitive container results

Figure 5.64 through 5.68 shows the results obtained for primitive types and

containers with primitive types.

 68

Primitives and Containers with 1 Primitive

2,5

3

3,5

m
s
e
c
s

Primitive 2,9644 2,976 3,0644 2,9524 2,964 2,968 2,9924 3,0524 2,98 2,9764 3,3732 2,952

Sequence 2,9924 3,0288 3,0996 3,0164 3,0048 3,0644 3,0884 3,0688 3,032 3,056 3,0164 3,4292

Array 3,0004 3,0164 3,056 2,9604 2,9644 2,9764 3,0364 3,0444 2,9884 3,0124 2,956 3,3228

C WC D L UL LL ULL F S US B O

Figure 5.64 : L_T_OG Results for Primitives and Containers with 1 Primitive

Containers with 10 Primitives

2,9

2,95

3

3,05

3,1

m
s
e
c
s

Sequence 3,0128 3,0164 3,0764 3,0084 3,0004 3,0564 3,0684 3,0484 3,032 3,0324 2,9964 3,012

Array 2,96 2,9644 3,0284 2,9764 2,9964 3,0036 3,0324 3,0264 2,9924 3,0404 2,9604 3,0204

C WC D L UL LL ULL F S US B O

Figure 5.65 : L_T_OG Results for Containers with 10 Primitives

Containers with 100 Primitives

2,8

2,9

3

3,1

3,2

3,3

m
s
e
c
s

Sequence 3,0364 3,0564 3,1968 3,0644 3,0928 3,1568 3,1764 3,1164 3,0564 3,0604 3,0204 3,044

Array 2,9844 3,0084 3,1604 3,0528 3,0288 3,1288 3,1488 3,1084 3,0448 3,0564 3,0088 3,0004

C WC D L UL LL ULL F S US B O

Figure 5.66 : L_T_OG Results for Containers with 100 Primitives

 69

Containers with 1000 Primitives

0

2

4

6

m
s
e
c
s

Sequence 3,3448 3,6376 5,3236 4,1344 4,118 5,1156 5,1036 4,3184 3,6408 3,6528 3,3252 3,3092

Array 3,3248 3,6056 5,492 4,174 4,21 5,2876 5,3316 4,4268 3,6332 3,6852 3,3008 3,3252

C WC D L UL LL ULL F S US B O

Figure 5.67 : L_T_OG Results for Containers with 1000 Primitives

Containers with 10000 Primitives

0

10

20

30

40

m
s
e
c
s

Sequence 6,4976 8,46 29,771 12,614 12,606 28 27,612 15,322 8,9768 9,0852 6,0284 6,0124

Array 7,2264 9,718 33,32 14,272 14,733 31,742 31,99 17,325 10,407 10,575 6,706 6,5936

C WC D L UL LL ULL F S US B O

Figure 5.68 : L_T_OG Results for Containers with 10000 Primitives

5.3.5.2 about L_T_OG primitive and primitive container results

Some conclusions from the results are :

 Primitives alone and primitives in a container performs same.

 Arrays and sequences perform nearly the same. Arrays are a bit better than

sequences, but it can be ignored.

 If we compare the results with L_O_SG results we see that for the small

sizes they ara nearly equal. When calling a method we pass to the ORB (or

more truely to the Object Adapter) the name and parameters of the method.

So, when we have small sizes of parameters, we can fit them into a packet

and can send the method name and parameters within a packet. But when

parameter sizes increases the number of packets also increases.

 If we compare the results with L_T_OS, we see that they perform almost the

same.

 70

5.3.5.3 L_T_OG string and wide string results

Figure 5.69 shows the results obtained.

Results for Strings and Wide Strings

0

2

4

6

8

10

m
s
e
c
s

String 3,3852 3,044 3,0724 3,4292 6,6216

WString 3,0524 3,0168 3,0396 3,6412 8,6768

1 10 100 1000 10000

Figure 5.69 : L_T_OG Results for Strings and Wide Strings

5.3.5.4 about L_T_OG string and wide string results

Some conclusions from the results are :

 Encapsulating char and wchar within containers and strings performs the

same.

 If we compare with L_T_OS results we see that the results are nearly same.

 If we compare with L_T_SG results we see that they are nearly the same for

sizes 1, 10 and 100 and L_T_SG becomes slower and slower for sizes 1000

and 10000.

5.3.5.5 L_T_OG struct and struct container results

Figures 5.70 through 5.74 shows the results obtained.

 71

Structs and Containers with 1 Struct

0

2

4

m
s
e
c
s

Struct 2,984 2,992 3,0168 2,9524 2,9604 2,9844 3,0284 3,004 2,9396 2,9724 3,0164 2,972 3,0884

Sequence 3,0128 3,0564 3,0804 3,0004 2,9964 3,0084 3,0444 3,0524 3,02 3,0364 3,6412 2,9964 3,1516

Array 3,0008 3,0244 3,0964 2,9644 3 3,0284 3,0164 3,0444 3,0288 3,0044 3,6332 2,9676 3,0968

C WC D L UL LL ULL F S US B O A

Figure 5.70 : L_T_OG Results for Structs and Containers with 1 Struct

Containers with 10 Structs

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Sequence 2,9844 3,0084 3,0688 2,96 2,9644 2,9804 2,9724 3,0204 3,0084 2,9684 3,0164 2,9524 3,1364

Array 2,972 2,9844 3,0084 2,956 2,976 2,964 2,992 2,9884 2,9484 2,9444 2,988 2,9764 3,1368

C WC D L UL LL ULL F S US B O A

Figure 5.71 : L_T_OG Results for Containers with 10 Structs.

Containers with 100 Structs

0

2

4

6

m
s
e
c
s

Sequence 3,0568 3,0764 3,1768 3,064 3,0768 3,1368 3,1768 3,1324 3,1048 3,1004 3,0728 3,0324 4,6984

Array 3,0608 3,0724 3,2248 3,056 3,0808 3,1524 3,1568 3,1204 3,0448 3,0728 3,0404 3,0204 4,6784

C WC D L UL LL ULL F S US B O A

Figure 5.72 : L_T_OG Results for Containers with 100 Structs

 72

Containers with 1000 Structs

0

5

10

15

20

m
s
e
c
s

Sequence 3,8256 4,146 5,5844 4,5144 4,5308 5,34 5,416 4,7104 4,126 4,1104 3,8776 3,7856 18,19

Array 3,8528 4,138 5,5684 4,538 4,5788 5,3312 5,42 4,7308 4,094 4,16 3,862 3,7696 18,19

C WC D L UL LL ULL F S US B O A

Figure 5.73 : L_T_OG Results for Containers with 1000 Structs

Containers with 10000 Structs

0

100

200

300

m
s
e
c
s

Sequence 13,848 16,72 39,285 18,803 18,99 37,126 37,378 20,642 16,327 16,28 14,48 13,812 217,47

Array 13,684 15,378 39,721 18,318 18,783 37,269 37,506 19,789 15,622 15,959 14,205 13,468 223,15

C WC D L UL LL ULL F S US B O A

Figure 5.74 : L_T_OG Results for Containers with 10000 Structs

5.3.5.6 about L_T_OG struct and struct container results

Some conclusions from the results are :

 To carry a primitive alone, within a struct or within a container with 1 struct is

same.

 There is no difference between carrying the structs within arrays or

sequences.

 If we compare with L_T_OS results we see that we have the same

performance for small sizes. But L_T_OG is faster as obviously seen from

our special struct with size 10000, and slightly seen from the other results.

 If we compare our results with L_T_SG we see that it is slower than L_T_OG

results especially for greater sizes.

 73

5.3.5.7 L_T_OG interface and interface container results

Figures 5.75 through 5.79 shows the results obtained.

Interfaces and Containers with 1 Interface

3

3,2

3,4

3,6

m
s
e
c
s

Interface 3,268 3,249 3,253 3,268 3,261 3,26 3,265 3,256 3,272 3,273 3,28 3,276 3,285 3,26

Sequence 3,244 3,273 3,268 3,265 3,273 3,261 3,264 3,273 3,465 3,269 3,497 3,236 3,305 3,281

Array 3,245 3,281 3,268 3,261 3,269 3,289 3,272 3,273 3,257 3,261 3,265 3,293 3,281 3,273

C WC D L UL LL ULL F S US B O A E

Figure 5.75 : L_T_OG Results for Interface and Containers with 1 Interface

Containers with 10 Interfaces

0

2

4

6

m
s
e
c
s

Sequence 3,902 3,901 3,268 3,95 3,934 3,933 3,938 3,926 3,922 3,914 3,95 3,894 3,946 3,934

Array 3,978 3,93 3,938 3,954 3,942 3,934 4,022 3,946 3,914 3,941 3,946 3,95 3,953 3,93

C WC D L UL LL ULL F S US B O A E

Figure 5.76 : L_T_OG Results for Containers with 10 Interfaces

Containers with 100 Interfaces

8

9

10

11

m
s
e
c
s

Sequence 9,225 9,345 9,386 9,273 9,301 9,39 9,466 9,418 9,342 9,27 9,466 9,277 10,5 9,353

Array 9,204 9,734 9,57 9,306 9,389 9,93 9,446 9,982 9,406 9,401 9,29 9,69 10,53 9,349

C WC D L UL LL ULL F S US B O A E

Figure 5.77 : L_T_OG Results for Containers with 100 Interfaces

 74

Containers with 1000 Interfaces

130

135

140

145

m
s
e
c
s

Sequence 137,7 138 141 139,6 138,7 139 142,9 138,7 137,1 136,3 137,9 138,3 140,1 137,6

Array 137,4 137,8 138,9 138,7 138,6 139,3 140,3 138,7 138,3 138 137,2 138,2 139,2 137,5

C WC D L UL LL ULL F S US B O A E

Figure 5.78 : L_T_OG Results for Containers with 1000 Interfaces

Containers with 10000 Interfaces

0

1000

2000

3000

m
s
e
c
s

Sequence 1348 1380 1344 1554 1740 1471 1334 1348 1341 1286 1337 1333 1332 1603

Array 1342 1304 1270 1373 1444 1553 1630 2240 1516 1278 1270 1336 1321 1353

C WC D L UL LL ULL F S US B O A E

Figure 5.79 : L_T_OG Results for Containers with 10000 Interfaces

5.3.5.8 about L_T_OG interface and interface container results

Some conclusions from the results are :

 To carry a primitive within an interface or a container with 1 interface is the

slowest of all constructed types and have the same performances.

 If we compare with L_T_OS results we see that they have the same

performance for sizes 1, 10, 100, L_T_OS is better for size 1000 and

L_T_OG is better for size 10000.

 If we compare with L_T_SG we see that L_T_OG is faster for even size 1

and difference grows radically with growing size.

5.3.5.9 L_T_OG union and enum results

Figures 5.80 through 5.84 shows the results obtained.

 75

Results for 1 Union and Enum

2,8

3

3,2

m
s
e
c
s

All Primitives 3,0128 3,04 3,0808

Sequence 2,988 3,0284 3,1288

Array 3,0124 3,0204 3,1244

Enum Union (Octet) Union (Double)

Figure 5.80 : L_T_OG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

2,8

3

3,2

m
s
e
c
s

Sequence 2,992 3,0284 3,1084

Array 2,9476 2,9964 3,1168

Enum Union (Octet) Union (Double)

Figure 5.81 : L_T_OG Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

2

4

m
s
e
c
s

Sequence 3,0768 3,3572 3,7612

Array 3,0604 3,3568 3,7256

Enum Union (Octet) Union (Double)

Figure 5.82 : L_T_OG Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

5

10

m
s
e
c
s

Sequence 4,2984 7,1024 8,9092

Array 4,306 7,102 8,9248

Enum Union (Octet) Union (Double)

Figure 5.83 : L_T_OG Results for Containers with 1000 Unions and Enums

 76

Results for 10000 Unions and Enums

0

100

200

m
s
e
c
s

Sequence 16,0752 98,73 117,9896

Array 19,2916 113,7712 158,692

Enum Union (Octet) Union (Double)

Figure 5.84 : L_T_OG Results for Containers with 10000 Unions and Enums

5.3.5.10 about L_T_OG union and enum results

Some conclusions from the results are :

 Enum shows the same characteristics with unsigned longs generally. But it is

slower for size 10000 than unsigned longs.

 Enum and union arrays and sequences performs nearly the same as

expected. But for the size 10000 arrays are slower.

 Difference between unions with doubles and unions with octets are obvious

for sizes bigger than 100.

 If we compare with L_T_OS results we see that for the enum and union

sequences they almost shows the same performance. L_T_OS arrays are a

bit slower.

 If we compare with L_T_SG results we see that for the enums there is a

clear difference for sizes greater than 1000. Octet unions start to show this

difference with size 1000 and double unions with size 100.

5.4 Results for Remote Calls

Following are the results for our remote calls taken as described at section 4.5.3.

We must point out the followings, before passing to the results :

 We mentioned at the local results that we observe a sharp difference

between the first call and the second. This sharpness is so prominent for

some remote calls (and these anomalies occur randomly) that it affects the

average value of results greatly. So, we do not take the first calls’ time for the

abnormal results for remote calls. You can expect a long time with respect to

 77

others for first calls (our results show that it is about 20,000 msecs slower for

our configuration) and the other calls have nearly the same times.

 We have two different hardware configurations for the server and client

sides. So, the comparisons between local and remote calls could be

unhealthy. But it gives us an idea about the remote calls.

 We took the results mainly to measure the effects of remote calls with

respect to the local ones. So, we will generally give the conclusions

regarding to local/remote changes. Other aspects will be mentioned only if

they deviate from local ones greatly. So, we have a lot of results here, but

very few comments on them.

5.4.1 remote oneway and twoway invoke results

Figure 5.85 shows the results for oneway and twoway functions which take no

arguments and return nothing.

Invocation Results

0

1

2

3

m
s

e
c

s

Invoke 1,9028 2,3756

Onew ay Tw ow ay

Figure 5.85 : Remote results for Oneway and Twoway Invocations

5.4.2 about oneway and twoway invoke results

Remote results are faster than local ones and oneway is faster than twoway.

5.4.3 oneway – only send results

We will briefly refer to these results as R_O_OS (Remote_Oneway_OnlySend)

results.

 78

5.4.3.1 R_O_OS primitive and primitive container results

Figure 5.86 through 5.90 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

0

1

2

3

m
s
e
c
s

Primitive 1,9784 1,9508 2,0108 2,0312 1,9508 1,9712 1,9912 1,9872 1,9472 1,9344 2,5476 1,9348

Sequence 2,1272 2,0144 2,0172 2,1032 2,1632 2,1392 2,1472 2,3792 2,1188 2,1028 2,0432 1,9588

Array 2,0512 1,9756 2,0388 2,0832 1,9552 2,0508 1,9712 2,0908 2,0112 2,2588 2,01 2,5236

C WC D L UL LL ULL F S US B O

Figure 5.86 : R_O_OS Results for Primitives and Containers with 1 Primitive

Containers with 10 Primitives

0

1

2

3

m
s
e
c
s

Sequence 2,532 2,2108 2,3916 2,2472 2,1352 2,2748 2,2992 2,1748 2,0988 2,0752 2,0788 2,1152

Array 2,0228 2,0392 2,1872 2,0832 2,0828 2,2116 2,2752 2,0508 2,0508 2,0184 2,0508 2,0192

C WC D L UL LL ULL F S US B O

Figure 5.87 : R_O_OS Results for Containers with 10 Primitives

Containers with 100 Primitives

0

1

2

3

4

m
s
e
c
s

Sequence 3,5612 2,4356 3,1524 2,692 2,6836 3,124 3,1164 2,712 2,4356 2,4436 2,3192 2,2912

Array 2,2152 2,3352 3,0404 2,596 2,7924 3,0524 3,0524 2,608 2,3512 2,3836 2,2352 2,3872

C WC D L UL LL ULL F S US B O

Figure 5.88 : R_O_OS Results for Containers with 100 Primitives

 79

Containers with 1000 Primitives

0

5

10

15

m
s
e
c
s

Sequence 3,5652 4,6668 13,391 6,8176 6,842 13,44 13,415 6,81 4,6948 4,6708 3,5252 3,4488

Array 3,4252 4,5268 13,235 6,7568 6,7852 13,275 13,231 6,762 4,5424 4,586 3,4248 3,4088

C WC D L UL LL ULL F S US B O

Figure 5.89 : R_O_OS Results for Containers with 1000 Primitives

Containers with 10000 Primitives

0

50

100

150

m
s
e
c
s

Sequence 16,648 33,164 133,49 66,127 66,171 132,68 132,73 66,251 33,292 33,292 16,668 16,656

Array 16,6 32,963 135,75 65,759 65,959 133,75 133,58 65,97 33,04 33,039 16,576 16,564

C WC D L UL LL ULL F S US B O

Figure 5.90 : R_O_OS Results for Containers with 10000 Primitives

5.4.3.2 about R_O_OS primitive and primitive container results

If we compare with L_O_OS results we see that local calls are faster than remote

calls.

5.4.3.3 R_O_OS string and wide string results

Figure 5.91 shows the results obtained.

 80

Results for Strings and Wide Strings

0

10

20

30

40

m
s
e
c
s

String 1,9828 2,0344 2,2752 3,4892 16,608

WString 2,1148 2,0512 2,3676 4,5784 32,9152

1 10 100 1000 10000

Figure 5.91 : R_O_OS Results for Strings and Wide Strings

5.4.3.4 about R_O_OS string and wide string results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 At the size 10000 the ratio of wstrings/strings nearly reach to the value of 2,

which is the ratio of sizes of these two types.

 Comparison with L_O_OS results shows that the local calls are very fast with

respect to remote ones.

5.4.3.5 R_O_OS struct and struct container results

Figures 5.92 through 5.96 shows the results obtained.

Structs and Containers with 1 Struct

1,6

1,8

2

2,2

2,4

m
s
e
c
s

Struct 1,9948 1,9548 1,9868 1,9588 1,9428 2,0068 2,0036 1,9688 2,0032 2,0468 2,0268 2,0268 2,1704

Sequence 1,9304 2,0908 2,1232 2,0472 2,0788 2,1064 2,1712 2,0472 2,1312 2,0352 1,9828 2,0108 2,2276

Array 1,9636 2,0748 2,1836 2,0548 2,09 2,1148 2,1028 2,0912 2,0632 2,0268 2,0668 1,9836 2,2548

C WC D L UL LL ULL F S US B O A

Figure 5.92 : R_O_OS Results for Structs and Containers with 1 Struct

 81

Containers with 10 Structs

0

1

2

3

m
s
e
c
s

Sequence 2,0468 2,1072 2,1508 2,1468 2,1072 2,2392 2,2672 2,1388 2,0792 2,0912 2,0672 2,1756 2,776

Array 2,2912 2,1032 2,2472 2,0872 2,1188 2,2112 2,1996 2,1072 2,1272 2,1272 2,0592 2,0108 2,7996

C WC D L UL LL ULL F S US B O A

Figure 5.93 : R_O_OS Results for Containers with 10 Structs.

Containers with 100 Structs

0

5

10

m
s
e
c
s

Sequence 2,3268 2,3996 3,1168 2,6908 2,6836 3,3248 3,1208 2,704 2,4396 2,3836 2,3072 2,3236 8,116

Array 2,2792 2,4432 3,1084 2,6516 2,564 3,1728 3,096 2,6792 2,3876 2,4028 2,2952 2,3032 8,104

C WC D L UL LL ULL F S US B O A

Figure 5.94 : R_O_OS Results for Containers with 100 Structs

Containers with 1000 Structs

0

50

100

m
s
e
c
s

Sequence 3,9972 5,0068 13,247 6,9412 6,9144 13,262 13,246 6,986 5,0152 5,0272 3,9656 3,9572 79,118

Array 3,9456 5,0036 13,248 6,926 6,934 13,251 13,296 6,9944 5,0072 5,0352 3,9416 3,9896 79,074

C WC D L UL LL ULL F S US B O A

Figure 5.95 : R_O_OS Results for Containers with 1000 Structs.

 82

Containers with 10000 Structs

0

500

1000

m
s
e
c
s

Sequence 23,927 34,866 139,17 65,818 65,834 136,9 138,09 65,895 34,886 34,734 23,658 23,886 920,48

Array 23,882 34,766 139,32 65,807 65,802 136,6 136,99 65,79 34,902 34,854 23,39 24,038 920,57

C WC D L UL LL ULL F S US B O A

Figure 5.96 : R_O_OS Results for Containers with 10000 Structs

5.4.3.6 about R_O_OS struct and struct container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_O_OS results we see that local results are generally

faster than remote ones especially for large-sized structs, For example, it

takes about 280 msecs for local calls to send ten thousands of our special

struct and and about 920 msecs for remote calls; locals are 3,5 times faster.

5.4.3.7 R_O_OS interface and interface container results

Figures 5.97 through 5.101 shows the results obtained.

Interfaces and Containers with 1 Interface

2,2

2,4

2,6

2,8

m
s
e
c
s

Interface 2,504 2,508 2,476 2,516 2,524 2,483 2,495 2,42 2,504 2,484 2,568 2,464 2,499 2,496

Sequence 2,556 2,608 2,515 2,487 2,54 2,512 2,572 2,491 2,536 2,56 2,54 2,532 2,648 2,656

Array 2,584 2,572 2,564 2,508 2,616 2,52 2,58 2,512 2,515 2,488 2,567 2,568 2,644 2,644

C WC D L UL LL ULL F S US B O A E

Figure 5.97 : R_O_OS Results for Interface and Containers with 1 Interface

 83

Containers with 10 Interfaces

4,4

4,5

4,6

4,7

m
s
e
c
s

Sequence 4,534 4,57 4,542 4,626 4,591 4,57 4,602 4,535 4,595 4,506 4,55 4,563 4,635 4,494

Array 4,521 4,566 4,551 4,542 4,527 4,57 4,607 4,598 4,583 4,522 4,603 4,579 4,603 4,594

C WC D L UL LL ULL F S US B O A E

Figure 5.98 : R_O_OS Results for Containers with 10 Interfaces

Containers with 100 Interfaces

25

26

27

28

m
s
e
c
s

Sequence 25,86 25,89 25,83 25,83 25,87 26,61 26,6 25,79 25,82 25,88 25,9 25,87 27,26 25,86

Array 25,84 25,85 25,86 25,85 25,87 26,62 26,6 25,86 25,85 25,86 25,84 25,84 27,17 25,8

C WC D L UL LL ULL F S US B O A E

Figure 5.99 : R_O_OS Results for Containers with 100 Interfaces

Containers with 1000 Interfaces

280

290

300

310

m
s
e
c
s

Sequence 290,9 301,5 290,8 290,5 291,1 296,9 299,9 301,8 301,2 300,7 300,7 301,6 305,5 291,8

Array 290,8 291,1 290,6 291,2 292,2 298,3 292,2 292,7 304,9 296,5 301,4 299,5 305,8 291,4

C WC D L UL LL ULL F S US B O A E

Figure 5.100 : R_O_OS Results for Containers with 1000 Interfaces

 84

Containers with 10000 Interfaces

3000

3200

3400

3600

3800

m
s
e
c
s

Sequence 3336 3321 3336 3333 3335 3379 3366 3341 3342 3325 3327 3337 3427 3340

Array 3386 3383 3384 3386 3385 3420 3418 3386 3387 3371 3473 3390 3607 3493

C WC D L UL LL ULL F S US B O A E

Figure 5.101 : R_O_OS Results for Containers with 10000 Interfaces

5.4.3.8 about R_O_OS interface and interface container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_O_OS results we see that local calls are faster than

remote calls for sizes greater than 1.

 We got the out of memory error at L_O_OS for size 10000. Here we could

completed the test for this size.

5.4.3.9 R_O_OS union and enum results

Figures 5.102 through 5.106 show the results obtained.

Results for 1 Union and Enum

1,8

2

2,2

2,4

m
s
e
c
s

All Primitives 2,0072 1,9788 2,1308

Sequence 2,0116 2,0832 2,1588

Array 2,0592 2,0668 2,2312

Enum Union (Octet) Union (Double)

Figure 5.102 : R_O_OS Results for Union, Enum and Containers with 1 Union and Enum

 85

Results for 10 Unions and Enums

2

2,2

2,4

m
s
e
c
s

Sequence 2,1832 2,2112 2,3596

Array 2,1632 2,2468 2,3436

Enum Union (Octet) Union (Double)

Figure 5.103 : R_O_OS Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

2

4

6

m
s
e
c
s

Sequence 2,62 3,2964 4,2252

Array 2,64 3,3008 4,2936

Enum Union (Octet) Union (Double)

Figure 5.104 : R_O_OS Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

10

20

30

m
s
e
c
s

Sequence 6,798 13,2744 26,5664

Array 6,786 13,2996 26,5744

Enum Union (Octet) Union (Double)

Figure 5.105 : R_O_OS Results for Containers with 1000 Unions and Enums

Results for 10000 Unions and Enums

0

200

400

m
s
e
c
s

Sequence 65,8144 158,9368 286,8004

Array 66,0872 158,8204 286,6804

Enum Union (Octet) Union (Double)

Figure 5.106 : R_O_OS Results for Containers with 10000 Unions and Enums

5.4.3.10 about R_O_OS union and enum results

Some conclusions from the results we have taken are :

 86

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_O_OS results we see that local calls are faster than

remote calls for sizes greater than about 100.

5.4.4 twoway – only send results

We will briefly refer to these results as R_T_OS (Remote_Twoway_OnlySend)

results.

5.4.4.1 R_T_OS primitive and primitive container results

Figure 5.107 through 5.111 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

2,2

2,4

2,6

2,8

m
s
e
c
s

Primitive 2,4752 2,4876 2,4716 2,4632 2,4552 2,4912 2,4596 2,524 2,4752 2,4476 2,3912 2,4148

Sequence 2,476 2,4192 2,5356 2,456 2,4556 2,4952 2,4996 2,5396 2,4756 2,5196 2,4796 2,4592

Array 2,512 2,54 2,588 2,4436 2,4876 2,5228 2,5632 2,4996 2,4476 2,5796 2,5036 2,4036

C WC D L UL LL ULL F S US B O

Figure 5.107 : R_T_OS Results for Primitives and Containers with 1 Primitive

Containers with 10 Primitives

2,2

2,4

2,6

2,8

m
s
e
c
s

Sequence 2,536 2,5116 2,732 2,584 2,62 2,72 2,748 2,6316 2,576 2,5876 2,544 2,5516

Array 2,4956 2,5236 2,704 2,532 2,536 2,644 2,68 2,592 2,512 2,5156 2,5036 2,4876

C WC D L UL LL ULL F S US B O

Figure 5.108 : R_T_OS Results for Containers with 10 Primitives

 87

Containers with 100 Primitives

0

2

4

6

m
s
e
c
s

Sequence 2,7484 2,9804 4,4384 3,4252 3,3972 4,3704 4,3544 3,4612 3,0084 2,904 2,7604 2,796

Array 2,712 2,92 4,382 3,3492 3,3812 4,2824 4,3384 3,428 2,9484 2,964 2,7476 2,6796

C WC D L UL LL ULL F S US B O

Figure 5.109 : R_T_OS Results for Containers with 100 Primitives

Containers with 1000 Primitives

0

5

10

15

20

m
s
e
c
s

Sequence 4,9152 6,5052 17,341 9,9544 9,9908 17,097 17,196 10,267 6,5136 6,5376 4,8632 4,7912

Array 4,9312 6,5616 17,573 10,027 10,107 17,221 17,225 10,259 6,5736 6,6376 4,8952 4,8268

C WC D L UL LL ULL F S US B O

Figure 5.110 : R_T_OS Results for Containers with 1000 Primitives

Containers with 10000 Primitives

0

50

100

150

200

m
s
e
c
s

Sequence 21,511 38,984 150,15 73,434 73,422 147,76 147,98 76,53 38,948 38,936 21,154 20,269

Array 22,188 40,029 152,3 74,294 74,688 147,99 148,39 77,251 39,982 40,338 21,799 21,243

C WC D L UL LL ULL F S US B O

Figure 5.111 : R_T_OS Results for Containers with 10000 Primitives

5.4.4.2 about R_T_OS primitive and primitive container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 88

 If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.4.3 R_T_OS string and wide string results

Figure 5.112 shows the results obtained.

Results for Strings and Wide Strings

0

10

20

30

40

50

m
s
e
c
s

String 2,5036 2,5236 2,664 4,9392 21,3868

WString 2,5672 2,5476 2,992 6,5016 38,7

1 10 100 1000 10000

Figure 5.112 : R_T_OS Results for Strings and Wide Strings

5.4.4.4 about R_T_OS string and wide string results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.4.5 R_T_OS struct and struct container results

Figures 5.113 through 5.117 shows the results obtained.

 89

Structs and Containers with 1 Struct

0

2

4

m
s
e
c
s

Struct 2,5036 2,5076 2,5156 2,4996 2,4752 2,5152 2,4876 2,5236 2,5036 2,504 2,4312 2,504 2,7

Sequence 2,576 2,5676 2,64 2,4996 2,4836 2,5836 2,5388 2,5116 2,5516 2,5756 2,736 2,4956 2,7924

Array 2,56 2,556 2,62 2,4676 2,544 2,564 2,5036 2,4956 2,5476 2,5636 2,7636 2,524 2,9284

C WC D L UL LL ULL F S US B O A

Figure 5.113 : R_T_OS Results for Structs and Containers with 1 Struct

Containers with 10 Structs

0

1

2

3

4

m
s
e
c
s

Sequence 2,52 2,564 2,7724 2,6156 2,6196 2,728 2,732 2,656 2,5876 2,6076 2,552 2,536 3,7248

Array 2,5476 2,5316 2,768 2,564 2,6076 2,804 2,728 2,64 2,532 2,564 2,5636 2,5196 3,6896

C WC D L UL LL ULL F S US B O A

Figure 5.114 : R_T_OS Results for Containers with 10 Structs.

Containers with 100 Structs

0

5

10

15

m
s
e
c
s

Sequence 2,8364 3,0444 4,4628 3,5012 3,4932 4,4028 4,3984 3,5572 3,0728 3,032 2,82 2,8284 11,644

Array 2,808 3,0524 4,4064 3,4332 3,4772 4,3624 4,3904 3,52 3,0244 3,0204 2,7756 2,7644 11,568

C WC D L UL LL ULL F S US B O A

Figure 5.115 : R_T_OS Results for Containers with 100 Structs

 90

Containers with 1000 Structs

0

50

100

m
s
e
c
s

Sequence 5,3752 7,018 17,726 10,279 10,295 17,421 17,421 10,575 7,0024 7,05 5,3428 5,3156 90,911

Array 5,3356 6,9776 17,654 10,311 10,295 17,441 17,489 10,579 6,9704 7,0264 5,3072 5,26 90,951

C WC D L UL LL ULL F S US B O A

Figure 5.116 : R_T_OS Results for Containers with 1000 Structs.

Containers with 10000 Structs

0

500

1000

1500

m
s
e
c
s

Sequence 30,224 46,928 159,43 77,279 77,535 156,02 156,42 79,871 46,984 47,284 30,003 29,671 1007,8

Array 28,645 51,114 161,04 78,3 78,577 157,98 158,42 80,58 51,366 51,514 28,557 28,072 1025,2

C WC D L UL LL ULL F S US B O A

Figure 5.117 : R_T_OS Results for Containers with 10000 Structs

5.4.4.6 about R_T_OS struct and struct container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.4.7 R_T_OS interface and interface container results

Figures 5.118 through 5.122 shows the results obtained.

 91

Interfaces and Containers with 1 Interface

2,8

2,9

3

3,1

3,2

m
s
e
c
s

Interface 3,06 3,06 3,044 3,052 3,072 3,004 3,06 3,048 3,024 3,052 2,948 2,968 3,088 3,044

Sequence 3,008 3,12 2,992 3,012 3,032 3,04 3,032 3,04 3,004 3,004 3,008 3,06 3,072 3,076

Array 2,996 2,988 3,068 2,984 2,992 3,016 3 2,972 2,968 2,988 2,988 2,972 2,992 3,084

C WC D L UL LL ULL F S US B O A E

Figure 5.118 : R_T_OS Results for Interface and Containers with 1 Interface

Containers with 10 Interfaces

6,4

6,45

6,5

6,55

6,6

6,65

m
s
e
c
s

Sequence 6,538 6,505 6,534 6,554 6,485 6,513 6,534 6,522 6,526 6,489 6,513 6,47 6,578 6,518

Array 6,521 6,513 6,521 6,486 6,509 6,522 6,537 6,514 6,505 6,49 6,522 6,485 6,594 6,533

C WC D L UL LL ULL F S US B O A E

Figure 5.119 : R_T_OS Results for Containers with 10 Interfaces

Containers with 100 Interfaces

32

33

34

35

36

m
s
e
c
s

Sequence 33,64 33,63 33,68 33,72 33,42 34,45 34,71 33,45 33,82 33,55 33,55 33,38 35,49 33,64

Array 33,36 33,44 33,37 33,38 33,37 34,48 34,49 33,44 33,48 33,61 33,61 33,56 35,03 33,39

C WC D L UL LL ULL F S US B O A E

Figure 5.120 : R_T_OS Results for Containers with 100 Interfaces

 92

Containers with 1000 Interfaces

350

360

370

380

390

m
s
e
c
s

Sequence 367,8 367,1 368,6 367,7 370,2 376,4 378,4 369,5 369,7 372,6 371,2 370,9 385,4 367,6

Array 362,9 364 364 363,5 364,3 374,5 374,4 368,2 367,9 368,6 368,7 368,9 383,5 363,3

C WC D L UL LL ULL F S US B O A E

Figure 5.121 : R_T_OS Results for Containers with 1000 Interfaces

Containers with 10000 Interfaces

3600

3700

3800

3900

4000

4100

m
s
e
c
s

Sequence 3826 3818 3827 3779 3795 3862 3923 3843 3846 3849 3852 3848 4015 3845

Array 3832 3826 3791 3786 3805 3861 3921 3834 3834 3845 3842 3837 4002 3839

C WC D L UL LL ULL F S US B O A E

Figure 5.122 : R_T_OS Results for Containers with 10000 Interfaces

5.4.4.8 about R_T_OS interface and interface container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.4.9 R_T_OS union and enum results

Figures 5.123 through 5.127 shows the results obtained.

 93

Results for 1 Union and Enum

2,4

2,6

2,8

m
s
e
c
s

All Primitives 2,5516 2,5076 2,5672

Sequence 2,4996 2,4956 2,664

Array 2,5116 2,5236 2,6552

Enum Union (Octet) Union (Double)

Figure 5.123 : R_T_OS Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

2

2,5

3

m
s
e
c
s

Sequence 2,636 2,7396 2,9444

Array 2,6232 2,688 2,9444

Enum Union (Octet) Union (Double)

Figure 5.124 : R_T_OS Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

5

10

m
s
e
c
s

Sequence 3,4732 4,5264 6,3812

Array 3,4292 4,4984 6,3696

Enum Union (Octet) Union (Double)

Figure 5.125 : R_T_OS Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

20

40

m
s
e
c
s

Sequence 10,2148 18,7952 33,6204

Array 10,1908 18,8912 33,5916

Enum Union (Octet) Union (Double)

Figure 5.126 : R_T_OS Results for Containers with 1000 Unions and Enums

 94

Results for 10000 Unions and Enums

0

200

400

m
s
e
c
s

Sequence 76,1456 221,506 338,2424

Array 76,482 218,166 334,7256

Enum Union (Octet) Union (Double)

Figure 5.127 : R_T_OS Results for Containers with 10000 Unions and Enums

5.4.4.10 about R_T_OS union and enum results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.5 twoway – send get results

We will briefly refer to these results as R_T_SG (Remote_Twoway_SendGet)

results.

5.4.5.1 R_T_SG primitive and primitive container results

Figure 5.128 through 5.132 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

2,3

2,4

2,5

2,6

m
s
e
c
s

Primitive 2,4756 2,4916 2,58 2,4596 2,4756 2,5156 2,4996 2,5148 2,4676 2,4756 2,4396 2,4436

Sequence 2,508 2,5116 2,5756 2,464 2,5156 2,536 2,5716 2,548 2,4596 2,5156 2,4996 2,4472

Array 2,516 2,4796 2,5716 2,4636 2,4916 2,5316 2,5476 2,4916 2,4956 2,4836 2,4236 2,4796

C WC D L UL LL ULL F S US B O

Figure 5.128 : R_T_SG Results for Primitives and Containers with 1 Primitive

 95

Containers with 10 Primitives

2,2

2,4

2,6

2,8

3

m
s
e
c
s

Sequence 2,5116 2,6472 2,9164 2,664 2,684 2,8924 2,8924 2,832 2,628 2,636 2,5912 2,576

Array 2,56 2,5996 2,888 2,656 2,6476 2,8444 2,8444 2,708 2,54 2,56 2,5116 2,516

C WC D L UL LL ULL F S US B O

Figure 5.129 : R_T_SG Results for Containers with 10 Primitives

Containers with 100 Primitives

0

2

4

6

8

m
s
e
c
s

Sequence 2,9684 3,3728 5,8364 4,114 4,118 5,7244 5,7352 4,2224 3,3564 3,3968 2,9524 2,932

Array 2,9284 3,3408 5,7724 4,078 4,016 5,6684 5,6884 4,1744 3,3168 3,3488 2,916 2,876

C WC D L UL LL ULL F S US B O

Figure 5.130 : R_T_SG Results for Containers with 100 Primitives

Containers with 1000 Primitives

0

10

20

30

m
s
e
c
s

Sequence 6,7496 9,538 27,135 14,75 14,773 26,454 26,454 15,282 9,5216 9,5536 6,7056 6,4572

Array 6,818 9,67 27,295 14,849 14,99 26,646 26,718 15,454 9,6416 9,706 6,714 6,6416

C WC D L UL LL ULL F S US B O

Figure 5.131 : R_T_SG Results for Containers with 1000 Primitives

 96

Containers with 10000 Primitives

0

100

200

300

m
s
e
c
s

Sequence 34,326 60,972 246,93 117,63 117,65 239,92 240,22 122,3 60,908 60,948 33,392 31,594

Array 34,726 62,626 255,8 118,8 119,59 249,94 249,82 124,13 62,602 63,223 33,716 33,56

C WC D L UL LL ULL F S US B O

Figure 5.132 : R_T_SG Results for Containers with 10000 Primitives

5.4.5.2 about R_T_SG primitive and primitive container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.5.3 R_T_SG string and wide string results

Figure 5.133 shows the results obtained.

Results for Strings and Wide Strings

0

20

40

60

80

m
s
e
c
s

String 2,552 2,592 2,952 6,75 33,4844

WString 2,5356 2,6316 3,3652 9,4252 59,4656

1 10 100 1000 10000

Figure 5.133 : R_T_SG Results for Strings and Wide Strings

5.4.5.4 about R_T_SG string and wide string results

Some conclusions from the results we have taken are :

 97

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.5.5 R_T_SG struct and struct container results

Figures 5.134 through 5.138 shows the results obtained.

Structs and Containers with 1 Struct

2

2,5

3

m
s
e
c
s

Struct 2,516 2,4996 2,5676 2,4876 2,5316 2,5436 2,5156 2,5516 2,5276 2,5188 2,4752 2,508 2,9004

Sequence 2,5276 2,532 2,624 2,5116 2,5516 2,584 2,5996 2,6036 2,5316 2,4796 2,4636 2,588 2,868

Array 2,5116 2,52 2,648 2,5076 2,5076 2,5596 2,588 2,584 2,532 2,5276 2,4716 2,4596 2,8724

C WC D L UL LL ULL F S US B O A

Figure 5.134 : R_T_SG Results for Structs and Containers with 1 Struct

Containers with 10 Structs

0

2

4

6

m
s
e
c
s

Sequence 2,5716 2,6076 2,916 2,7 2,688 2,88 2,9124 2,736 2,644 2,64 2,568 2,6116 4,6224

Array 2,5796 2,64 2,908 2,6836 2,708 2,8844 2,896 2,74 2,632 2,6116 2,56 2,5636 4,5948

C WC D L UL LL ULL F S US B O A

Figure 5.135 : R_T_SG Results for Containers with 10 Structs.

 98

Containers with 100 Structs

0

5

10

15

20

m
s
e
c
s

Sequence 3,0244 3,4528 5,8728 4,1824 4,1884 5,7644 5,7924 4,2664 3,4528 3,46 3,0124 2,984 17,73

Array 2,9956 3,4372 5,8568 4,1464 4,182 5,748 5,7724 4,286 3,4604 3,4528 3,0084 2,9964 17,749

C WC D L UL LL ULL F S US B O A

Figure 5.136 : R_T_SG Results for Containers with 100 Structs

Containers with 1000 Structs

0

50

100

150

200

m
s
e
c
s

Sequence 7,4628 10,283 27,832 15,406 15,498 27,139 27,075 15,971 10,29 10,732 7,5032 7,3224 147,2

Array 7,4708 10,27 27,832 15,378 15,502 27,091 27,063 16,027 10,295 10,351 7,4628 7,3544 150,48

C WC D L UL LL ULL F S US B O A

Figure 5.137 : R_T_SG Results for Containers with 1000 Structs.

Containers with 10000 Structs

0

500

1000

1500

2000

m
s
e
c
s

Sequence 43,166 86,216 288,27 144,84 145,68 282,92 284,06 150,66 85,13 87,045 42,369 40,955 1599,9

Array 42,373 85,134 286,04 143,48 144,92 279,3 281,66 149,46 84,061 86,016 42,613 41,712 1595,6

C WC D L UL LL ULL F S US B O A

Figure 5.138 : R_T_SG Results for Containers with 10000 Structs

5.4.5.6 about R_T_SG struct and struct container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 99

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.5.7 R_T_SG interface and interface container results

Figures 5.139 through 5.143 shows the results obtained.

Interfaces and Containers with 1 Interface

3,2

3,3

3,4

3,5

m
s
e
c
s

Interface 3,436 3,405 3,421 3,316 3,409 3,413 3,393 3,429 3,393 3,437 3,317 3,341 3,421 3,385

Sequence 3,393 3,393 3,381 3,393 3,405 3,445 3,461 3,417 3,345 3,345 3,401 3,405 3,485 3,445

Array 3,377 3,369 3,38 3,361 3,369 3,385 3,405 3,372 3,373 3,381 3,36 3,341 3,461 3,397

C WC D L UL LL ULL F S US B O A E

Figure 5.139 : R_T_SG Results for Interface and Containers with 1 Interface

Containers with 10 Interfaces

9

9,2

9,4

9,6

m
s
e
c
s

Sequence 9,366 9,281 9,345 9,362 9,333 9,43 9,386 9,325 9,318 9,358 9,358 9,365 9,494 9,362

Array 9,37 9,377 9,402 9,398 9,398 9,449 9,473 9,402 9,394 9,406 9,409 9,426 9,558 9,41

C WC D L UL LL ULL F S US B O A E

Figure 5.140 : R_T_SG Results for Containers with 10 Interfaces

Containers with 100 Interfaces

45

50

55

60

m
s
e
c
s

Sequence 53,29 53,78 53,26 53,76 53,68 54,37 54,04 53,42 53,24 53,78 54,15 53,85 57,59 53,22

Array 53,35 53,39 52,93 53,25 53,39 54,19 54,32 53,42 53,69 53,07 52,33 52,61 57,71 53,13

C WC D L UL LL ULL F S US B O A E

Figure 5.141 : R_T_SG Results for Containers with 100 Interfaces

 100

Containers with 1000 Interfaces

560

580

600

620

640

660

m
s
e
c
s

Sequence 595,9 595,6 595,8 596,1 596,5 606,7 616,6 598,9 598,2 606,1 599,8 599,8 623,6 636,8

Array 594,8 594,4 595,6 595,6 596 607,2 608,6 597 597,2 592 595,3 592,7 613,6 593,9

C WC D L UL LL ULL F S US B O A E

Figure 5.142 : R_T_SG Results for Containers with 1000 Interfaces

Containers with 10000 Interfaces

5400

5600

5800

6000

6200

m
s
e
c
s

Sequence 5703 5737 5738 5734 5717 5863 5853 5753 5724 5782 5797 5756 5981 5730

Array 5710 5708 5716 5712 5730 5865 5855 5750 5753 5782 5772 5744 5976 5733

C WC D L UL LL ULL F S US B O A E

Figure 5.143 : R_T_SG Results for Containers with 10000 Interfaces

5.4.5.8 about R_T_SG interface and interface container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.5.9 R_T_SG union and enum results

Figures 5.144 through 5.148 shows the results obtained.

 101

Results for 1 Union and Enum

2,2

2,4

2,6

2,8

m
s
e
c
s

All Primitives 2,5036 2,584 2,6396

Sequence 2,536 2,5476 2,688

Array 2,5312 2,5756 2,712

Enum Union (Octet) Union (Double)

Figure 5.144 : R_T_SG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

0

2

4

m
s
e
c
s

Sequence 2,716 2,8804 3,3608

Array 2,688 2,8644 3,2528

Enum Union (Octet) Union (Double)

Figure 5.145 : R_T_SG Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

5

10

m
s
e
c
s

Sequence 4,158 5,9484 9,0892

Array 4,142 5,9364 9,0968

Enum Union (Octet) Union (Double)

Figure 5.146 : R_T_SG Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

20

40

60

m
s
e
c
s

Sequence 15,194 29,37 52,0388

Array 15,2016 29,6264 52,7

Enum Union (Octet) Union (Double)

Figure 5.147 : R_T_SG Results for Containers with 1000 Unions and Enums

 102

Results for 10000 Unions and Enums

0

200

400

600

800

m
s
e
c
s

Sequence 125,4604 359,2444 621,3416

Array 124,1668 355,6956 614,544

Enum Union (Octet) Union (Double)

Figure 5.148 : R_T_SG Results for Containers with 10000 Unions and Enums

5.4.5.10 about R_T_SG union and enum results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6 twoway – only get results

We will briefly refer to these results as R_T_OG (Remote_Twoway_OnlyGet)

results.

5.4.6.1 R_T_OG primitive and primitive container results

Figure 5.149 through 5.153 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

2,2

2,4

2,6

2,8

m
s
e
c
s

Primitive 2,4556 2,4716 2,5716 2,4316 2,4676 2,5076 2,4992 2,4836 2,4596 2,4756 2,4076 2,4276

Sequence 2,5436 2,4236 2,5952 2,4836 2,5196 2,5036 2,5876 2,5716 2,5036 2,548 2,5196 2,4516

Array 2,4116 2,4756 2,5956 2,3956 2,5396 2,4956 2,5716 2,56 2,4912 2,5436 2,5 2,4312

C WC D L UL LL ULL F S US B O

Figure 5.149 : R_T_OG Results for Primitives and Containers with 1 Primitive

 103

Containers with 10 Primitives

2,3

2,4

2,5

2,6

2,7

m
s
e
c
s

Sequence 2,5 2,524 2,68 2,5876 2,584 2,664 2,66 2,5912 2,5556 2,5432 2,5356 2,4956

Array 2,4596 2,4956 2,628 2,5076 2,5116 2,6116 2,5956 2,56 2,5116 2,5236 2,4996 2,4836

C WC D L UL LL ULL F S US B O

Figure 5.150 : R_T_OG Results for Containers with 10 Primitives

Containers with 100 Primitives

0

2

4

6

m
s
e
c
s

Sequence 2,6636 2,8724 3,93 3,1928 3,2164 3,8652 3,89 3,2484 2,856 2,872 2,692 2,6636

Array 2,6156 2,828 3,8776 3,1404 3,1364 3,8376 3,8336 3,2164 2,828 2,8404 2,6316 2,5956

C WC D L UL LL ULL F S US B O

Figure 5.151 : R_T_OG Results for Containers with 100 Primitives

Containers with 1000 Primitives

0

5

10

15

m
s
e
c
s

Sequence 4,342 5,516 12,738 7,8192 7,8192 11,648 12,482 8,0716 5,4956 5,4996 4,2824 4,2024

Array 4,3384 5,4876 12,006 7,8112 7,8552 11,757 12,61 8,148 5,488 5,516 4,2984 4,286

C WC D L UL LL ULL F S US B O

Figure 5.152 : R_T_OG Results for Containers with 1000 Primitives

 104

Containers with 10000 Primitives

0

50

100

m
s
e
c
s

Sequence 14,701 24,868 88,96 43,374 44,227 86,54 86,609 46,054 25,048 24,924 14,048 13,099

Array 15,23 26,234 92,89 44,64 45,345 90,242 90,594 47,552 26,018 25,625 14,577 14,236

C WC D L UL LL ULL F S US B O

Figure 5.153 : R_T_OG Results for Containers with 10000 Primitives

5.4.6.2 about R_T_OG primitive and primitive container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.3 R_T_OG string and wide string results

Figure 5.154 shows the results obtained.

Results for Strings and Wide Strings

0

10

20

30

m
s
e
c
s

String 2,5276 2,472 2,656 4,27 13,86

WString 2,4516 2,5356 2,848 5,3916 23,9464

1 10 100 1000 10000

Figure 5.154 : R_T_OG Results for Strings and Wide Strings

5.4.6.4 about R_T_OG string and wide string results

Some conclusions from the results we have taken are :

 105

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.5 R_T_OG struct and struct container results

Figures 5.155 through 5.159 shows the results obtained.

Structs and Containers with 1 Struct

2,2

2,4

2,6

2,8

m
s
e
c
s

Struct 2,4716 2,3992 2,5716 2,4876 2,4712 2,5196 2,544 2,508 2,496 2,4676 2,4876 2,4716 2,732

Sequence 2,5356 2,5796 2,592 2,4872 2,5676 2,564 2,536 2,552 2,5472 2,5076 2,4316 2,552 2,744

Array 2,4516 2,4796 2,5352 2,4596 2,4756 2,488 2,5236 2,5196 2,4876 2,4876 2,4436 2,4596 2,6676

C WC D L UL LL ULL F S US B O A

Figure 5.155 : R_T_OG Results for Structs and Containers with 1 Struct

Containers with 10 Structs

0

1

2

3

4

m
s
e
c
s

Sequence 2,54 2,5592 2,6996 2,5276 2,5676 2,6476 2,628 2,6076 2,5272 2,548 2,5236 2,5116 3,4248

Array 2,5276 2,52 2,688 2,576 2,5956 2,656 2,688 2,5996 2,544 2,5472 2,5316 2,5076 3,5252

C WC D L UL LL ULL F S US B O A

Figure 5.156 : R_T_OG Results for Containers with 10 Structs.

 106

Containers with 100 Structs

0

5

10

15

m
s
e
c
s

Sequence 2,712 2,8884 3,9132 3,2124 3,2084 3,8936 3,894 3,2764 2,8844 2,892 2,708 2,688 9,63

Array 2,8356 2,9004 3,9736 3,2284 3,2168 3,9016 3,8976 3,2924 2,8844 2,9044 2,7116 2,724 9,6336

C WC D L UL LL ULL F S US B O A

Figure 5.157 : R_T_OG Results for Containers with 100 Structs

Containers with 1000 Structs

0

20

40

60

m
s
e
c
s

Sequence 4,7348 5,9004 13,214 8,2 8,2596 12,826 12,141 8,5084 5,8764 5,9484 4,7824 4,6744 54,799

Array 4,7588 5,9324 13,235 8,232 8,276 12,061 12,963 8,5404 5,9404 5,9604 4,7392 4,6908 54,911

C WC D L UL LL ULL F S US B O A

Figure 5.158 : R_T_OG Results for Containers with 1000 Structs.

Containers with 10000 Structs

0

200

400

600

800

m
s
e
c
s

Sequence 21,046 31,541 98,602 47,332 48,43 95,602 96,166 50,657 31,574 31,874 20,706 20,233 593,31

Array 21,046 31,589 97,22 47,748 48,838 94,064 94,668 51,122 31,289 31,678 20,722 20,358 550,45

C WC D L UL LL ULL F S US B O A

Figure 5.159 : R_T_OG Results for Containers with 10000 Structs

5.4.6.6 about R_T_OG struct and struct container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 107

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.7 R_T_OG interface and interface container results

Figures 5.160 through 5.164 shows the results obtained.

Interfaces and Containers with 1 Interface

2,7

2,8

2,9

3

m
s
e
c
s

Interface 2,868 2,796 2,868 2,864 2,884 2,924 2,86 2,84 2,856 2,852 2,868 2,908 2,88 2,868

Sequence 2,836 2,82 2,848 2,82 2,832 2,88 2,884 2,832 2,816 2,868 2,844 2,856 2,912 2,924

Array 2,816 2,804 2,844 2,82 2,844 2,852 2,868 2,836 2,816 2,856 2,844 2,808 2,916 2,82

C WC D L UL LL ULL F S US B O A E

Figure 5.160 : R_T_OG Results for Interface and Containers with 1 Interface

Containers with 10 Interfaces

5,4

5,5

5,6

5,7

5,8

m
s
e
c
s

Sequence 5,576 5,576 5,592 5,62 5,592 5,532 5,648 5,584 5,648 5,62 5,616 5,596 5,708 5,568

Array 5,624 5,62 5,632 5,6 5,604 5,64 5,624 5,62 5,62 5,632 5,616 5,624 5,708 5,584

C WC D L UL LL ULL F S US B O A E

Figure 5.161 : R_T_OG Results for Containers with 10 Interfaces

Containers with 100 Interfaces

23,5

24

24,5

25

25,5

m
s
e
c
s

Sequence 24,29 24,28 24,35 24,45 24,33 24,32 24,31 24,37 24,33 24,42 24,4 24,37 25,18 24,27

Array 24,32 24,3 24,32 24,3 24,34 24,31 24,38 24,31 24,28 24,36 24,33 24,32 25,14 24,29

C WC D L UL LL ULL F S US B O A E

Figure 5.162 : R_T_OG Results for Containers with 100 Interfaces

 108

Containers with 1000 Interfaces

250

260

270

280

m
s
e
c
s

Sequence 265,4 270 260,5 258,6 259 272 262,1 259,1 258,8 260,8 258,6 258,3 265,9 258,5

Array 267 266,8 267 264,5 264,6 270,3 267,9 264,4 264,2 269,3 267,1 264,6 273,4 266,1

C WC D L UL LL ULL F S US B O A E

Figure 5.163 : R_T_OG Results for Containers with 1000 Interfaces

Containers with 10000 Interfaces

0

1000

2000

3000

4000

m
s
e
c
s

Sequence 2536 2716 2540 2558 2547 2581 2718 2691 2781 2968 2713 3304 2663 2527

Array 2536 2734 2534 2557 2551 2578 2718 2663 2774 2721 2715 2534 2682 2545

C WC D L UL LL ULL F S US B O A E

Figure 5.164 : R_T_OG Results for Containers with 10000 Interfaces

5.4.6.8 about R_T_OG interface and interface container results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.9 R_T_OG union and enum results

Figures 5.165 through 5.169 shows the results obtained.

 109

Results for 1 Union and Enum

2,2

2,4

2,6

2,8

m
s
e
c
s

All Primitives 2,5152 2,4596 2,588

Sequence 2,5108 2,556 2,6636

Array 2,5076 2,5196 2,5916

Enum Union (Octet) Union (Double)

Figure 5.165 : R_T_OG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

2

2,5

3

m
s
e
c
s

Sequence 2,5876 2,692 2,8764

Array 2,612 2,696 2,864

Enum Union (Octet) Union (Double)

Figure 5.166 : R_T_OG Results for Containers with 10 Unions and Enums

Results for 100 Unions and Enums

0

5

10

m
s
e
c
s

Sequence 3,2088 4,0132 5,3156

Array 3,2568 4,022 5,336

Enum Union (Octet) Union (Double)

Figure 5.167 : R_T_OG Results for Containers with 100 Unions and Enums

Results for 1000 Unions and Enums

0

20

40

m
s
e
c
s

Sequence 8,1516 13,0548 21,3628

Array 8,208 13,936 21,6348

Enum Union (Octet) Union (Double)

Figure 5.168 : R_T_OG Results for Containers with 1000 Unions and Enums

 110

Results for 10000 Unions and Enums

0

200

400

m
s
e
c
s

Sequence 47,8128 139,5288 210,9556

Array 47,8608 139,6768 203,2284

Enum Union (Octet) Union (Double)

Figure 5.169 : R_T_OG Results for Containers with 10000 Unions and Enums

5.4.6.10 about R_T_OG union and enum results

Some conclusions from the results we have taken are :

 If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

 If we compare with L_T_SG results we see that local calls are faster than

remote calls.

 111

6. CONCLUSIONS AND FUTURE WORK

We had a wide benchmark and ran it. We have some conclusions from our study

and future work plans. We will briefly mention these at the following lines.

6.1 Conclusions

We tested nearly all static IDL constructs in this study. We have a bulk of raw data,
and comparisons can be made on these data. We only give conclusions for some of
them. Whoever wants can deduce the conclusions he/she needs from our data.

Our results (generally) show that :

 Local calls are faster than remote calls for big-sized data. For small-sized
data, remote calls are faster.

 Oneway invocations are faster than twoway invocations. But oneways are
unreliable and some of them could not complete the test. On the other hand,
all the twoway calls successfully completed the measurements.

 We see the nearly same results for small sized data for all the flows of data.
But for the larger sizes the descending order is from client to server and
server to client back, from client to server and from server to client.

 For the primitive types we have the close results for small number of
parameters and results are ordered with sizes of types for larger number of
parameters.

 For constructed types :

 We have the same results for primitives with structs. For small sizes. But
for the big sizes, structs perform worse.

 We have the same results for unsigned long with enums.

 We have extremely slow passing of parameters with interfaces.

 Passing an octet within a union takes less time than passing a double.

 For the container types :

 We have the same results with sequences and arrays.

 We have the same results for strings with chars.

 112

 We have the same results for wstrings with wchars.

6.2 Future Work

As we mentioned, we have only tested the static CORBA, but common phrase in

the CORBA means static and dynamic [47]. So, our benchmark can be applied to

dynamic CORBA.

Also we mentioned that we applied our benchmark to the most commonly available

CORBA/Java ORB worldwide. When we were studying on the release 1.3.1, Sun

released the new version of its SDK, version 1.4, and it contains a different

approach for the object adapter : it uses POA even though it also supports old style.

So, our benchmark can be applied to this new release of Java IDL.

Java IDL is not the only CORBA/Java ORB. There are a lot of CORBA/Java ORBs

on the market (e.g, JavaORB, JacORB, OpenORB, Visibroker for Java, Voyager

ORB, Engine Room CORBA, ... etc) and by applying the benchmark to these ORBs

a comparison between the ORBs can be conducted.

We have only thought of marshalling/demarshalling of parameters. But there are

another ways of comparisons. So, we can extend our benchmark to cover, for

example, dispatching, survivability and reliability as a future study.

 113

REFERENCES

[1] Rosenberger, J.L., 1998, Teach Yourself CORBA in 14 Days, Sams

Publishing.

[2] Orfali, R., Harkey, D. and Edwards, J., 1996, The Essential Client / Server
Survival Guide, John Wiley, New York.

[3] Lewandowski, S. M., 1998, Frameworks for Component-Based Client/Server
Computing, ACM Computing Surveys, Vol. 30, No. 1 (March).

[4] Wegner, P., 1997, Frameworks For Active Compound Documents, Brown
University Department of Computer Science, Providence, RI.

[5] Wegner, P., 1997, Why interaction is more powerful than algorithms., Commun.
ACM (May), 80-91.

[6] Orfali, R., Harkey, D. and Edwards, J., 1996, The Essential Distributed objects
Survival Guide, John Wiley, New York.

[7] OMG , 2001, The Common Object Request Broker : Architecture and
Specification, revision 2.6, December.

[8] Fay-Wolfe, W., DiPippo, L. C., Cooper, G., Johnston, R., Kortmann, P. and
Thuraisingham, B., 2000, Real-Time CORBA , IEEE Transactions on Parallel and
Distributed Systems.

[9] Orfali, R., Harkey, D. and Edwards, J., 1997, Instant CORBA, John Wiley,
USA.

[10] Lee, D. , 2002, CORBA ―Fitting the pieces together‖,
http://www.scit.wlv.ac.uk/~cm1924/cp3025/distrib/reading/corba/corba8/corba11.html

 [11] Karlsson, M., 1999, Orbix versus TAO (A comparison between two CORBA
implementations), Master Thesis, Uppsala University, Sweden.

[12] Vinoski, S., 1997, CORBA : Integrating Diverse Applications Within Distributed
Heterogeneous Environments, IEEE Communications Magazine, Vol. 35, No. 2,
February.

[13] Henning, M., 1998, Binding, Migration, and Scalability in CORBA,
Communications of the ACM, Volume 41, No 10, October.

[14] OMG , 2001, IDL to Java Language Mapping Specification, version 1.1, June.

[15] Schmidt, D. C., Levine, D. L. and Mungee, S., 1998, The Design of the TAO
Real-Time Object Request Broker, Computer Communications, Elsivier Science,
Volume 21, No 4, April.

http://www.scit.wlv.ac.uk/~cm1924/cp3025/distrib/reading/corba/corba8/corba11.html

 114

[16] OMG, 1997, Specification of the Portable Object Adapter (POA), OMG
Document orbos/97-05-15 ed., June.

[17] Pyarali, I. and Schmidt, D. C., 1998, An Overview of the CORBA Portable
Object Adapter, Special Issue on CORBA in the ACM StandardView magazine,
Volume 6, Number 1, March.

[18] OMG, 2002, Catalog of CORBAservices Specifications,
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm

[19] OMG, 2002, Life Cycle Service Specification, version 1.2, formal/02-09-01,
September.

[20] OMG, 2002, Persistent State Service Specification, version 2.0, formal/02-09-
06, September.

[21] OMG, 2002, Naming Service Specification, version 1.2, formal/02-09-02,
September.

[22] OMG, 2001, Event Service Specification, version 1.1, March.

[23] OMG, 2000, Concurrency Service Specification, version 1.0, April.

[24] OMG, 2002, Transaction Service Specification, version 1.3, formal/02-08-07,
September.

[25] OMG, 2000, Relationship Service Specification, version 1.0, April.

[26] OMG, 2000, Externalization Service Specification, version 1.0, April.

[27] OMG, 2000, Query Service Specification, version 1.0, April.

[28] OMG, 2000, Licensing Service Specification, version 1.0, April.

[29] OMG, 2000, Property Service Specification, version 1.0, April.

[30] OMG, 2002, Time Service Specification, version 1.1, May.

[31] OMG, 2002, Security Service Specification, version 1.8, March.

[32] OMG, 2000, Trading Object Service Specification, version 1.0, May.

[33] OMG, 2002, Object Collection Specification, version 1.0.1, formal/02-08-03,
August.

[34] Minton, G., 1997, IIOP Specification : A Closer Look, Unix Review, January.

[35] OMG, 2002, CORBA FAQ, http://www.omg.org/gettingstarted/corbafaq.htm

[36] Siegel, J., 1996, CORBA Fundamentals and Programming, John Wiley, USA.

[37] Buble, A., 1999, Comparing CORBA Implementations, Master Thesis, Charles
University, Prague, Czech Republic.

http://www.acm.org/pubs/contents/journals/standardview/
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm
http://www.omg.org/gettingstarted/corbafaq.htm

 115

[38] Gopinath, A., 1993, Performance Measurement and Analysis of Real-Time
CORBA Endsystems, Master Thesis, Cochin University of Science and Technology,
India.

[39] Gokhale, A. and Schmidt, D. C., 1996, The Performance of the CORBA
Dynamic Invocation Interface and Dynamic Skeleton Interface over High-Speed
ATM Networks, GLOBECOM, London, November 18-22.

[40] Gokhale, A. and Schmidt, D. C., 1998, Principles for Optimizing CORBA
Internet Inter-ORB Protocol Performance, HICSS, Maui, Hawaii, January 9.

[41] Gokhale, A. and Schmidt, D. C., 1997, Evaluating the Performance of
Demultiplexing Strategies for Real-time CORBA, proceedings of GLOBECOM,
Phoenix, AZ, November.

[42] Gokhale, A. and Schmidt, D. C., 1997, Measuring and Optimizing CORBA
Latency and Scalability Over High-speed Networks, Proceedings of the International
Conference on Distributed Computing Systems, Baltimore, MD, May 27-30.

[43] Hirano, S., Yasu, Y. and Igarashi, H., 1998, Performance Evaluation of
Popular Distributed Object Technologies for Java, ACM Workshop on Java for High-
Performance Network Computing, February 28.

[44] Brose, G., 2002, JacORB Performance compared,
http://www.jacorb.org/performance/index.html

[45] OMG, 1999, Benchmark PSIG White Paper on Benchmarking, version 1.0,

OMG Document bench/99-12-01, December 27.

[46] Gokhale, A. And Schmidt, D. C., 1996, Measuring the performance of
Communication Middleware on High-Speed Networks, SIGCOMM,August.

[47] Orfali, R. and Harkey, D., 1998, Client/Server Programming with JAVA and
CORBA, John Wiley, USA.

[48] Baker, S., 1997, CORBA Distributed Objects Using ORBİX, ACM Press.

[49] Flanagan, D., Farley, J. and Crawford, W., 1999, Java Enterprise in a
Nutshell, O’reilly, USA.

http://www.jacorb.org/performance/index.html

 116

CURRICULUM VITAE

Tacettin Ayar was born in 1976. He received his Bsc degree from Middle East
Technical University Computer Engineering Department, in 1999. He is now a
research assistant at Istanbul Technical University Computer Engineering
Department.

