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SUN’IN JAVA IDL DERLEYICISININ STATIK GAGRI ARAYUZU KULLANILARAK
HIiZALAMA/GERI HIZALAMA BASARIMININ iINCELENMESI

OZET

Tezimiz, dagitiimis sistemlere genel bir bakigla baslamaktadir. Dagitiimis sistemler
asagidaki evreleri izleyerek gelismiglerdir :

e Ana catilar icin yaziimis tek pargali yazilimlari kullanan Tek Pargali
Sistemler.

e Hizmetler saglayan bir sunucu ve sunucudan hizmetler isteyen bir
istemciden olusan Istemci/Sunucu Sistemleri.

o Sistemi, kullanici arayizi katmani, is kurallari katmani ve veritabani erisim
katmani olmak (zere pargcalara ayiran Cok Pargali Istemci/Sunucu
Sistemleri.

e Uygulamanin tim iglevselligini, sistemdeki veya diger sistemlerdeki diger
nesnelerin sagladigi hizmetleri kullanabilecek nesneler olarak sunan
Dagitilmig Sistemler.

Bundan sonra, dagitilmis nesneleri ve bilesenleri tanittik. Dagitiimis nesneler ag
Uzerinde herhangi bir yerde bulunabilecek genisletiimis nesnelerdir. Bilesenler,
degisik ortamlarda calisan, sistemin en klglk kendi kendini ydnetebilen, bagimsiz
ve kullanigli parcalaridir.

Bir is nesnesi U¢ ana pargadan olusmaktadir :

e is Mantigi Nesnesi, nesnenin belirli olaylara karsi nasil davranacagini
tanimlar.

e s isleme Nesnesitim sistem igin is mantiginin saglanmasina yardimci olur.
e Sunum Nesneleri kullaniciya bilesenin bir gésterilimini saglar.
Genel Nesne istek Aracisi Mimarisi (CORBA), nesne sistemlerinin genis gesitlilikleri
arasinda entegrasyona izin vermesi igin Nesne Yonetim Grubu (OMG) tarafindan
yapilandiriimistir. CORBA istemci/sunucu etkilesimini kolaylastirmak igin gerekli
olan ve istemci ve sunucu taraflarin ikisinde birden kosan bir dagitiimis yazihmdir,
yani bir araci birimdir.
OMG’nin Nesne Yonetim Mimarisi dort ana bilesenden olusmaktadir :

e Nesne Istek Aracisi (ORB), CORBA nesne yolunu tanimlar.

o CORBA Hizmetleri, yolu (ORB) genisleten sistem-diizeyi nesne c¢alisma
cerceveleri tanimlar.
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o CORBA Kolayliklari, is nesneleri tarafindan dogrudan kullanilan yatay ve
dikey uygulama calisma gergeveleri tanimlar.

e Uygulama Nesneleri, is nesneleri ve uygulamalaridir.
Bir ORB asagidaki pargalardan olusur :

e stemci kiitiikleri veya statik ¢adri arayiizii (Sll), bir nesnenin OMG IDL
tanimli iglemlerine erigimi sunacaktir.

e Dinamik ¢agri araytizii (DIl), nesne ¢agrilarinin dinamik ingasina izin verir.
o Gergekleme iskeleti, nesnenin her tipini gercekleyen metotlara bir araytzddr.

o Dinamik iskelet arayiizii (DSI), nesne cagrilarinin dinamik islenmesine izin
verir.

e Bir nesne bagdastiricisi, bir nesne gerceklemesinin, ORB tarafindan
saglanan hizmetlere erisiminin temel yoludur.

e ORB araytizii, ORB’a dogrudan giden araylzdur.

e IDL derleyicisi, araylz tanimlamalarini ylksek-dizey dil vyapilarina
donastarur. Arayuz tanimlamalari OMG Araylz Tanimlama Dili (OMG IDL)
ile belirtilir.

e Arayliz ambari kosma aninda bulunabilir bir bigcimde, IDL bilgisini temsil eden
kalici nesneler saglayan bir hizmettir.

CORBA Hizmetleri, IDL tarafindan belirtiimis araylGzlerle paketlenmis, sistem dizeyi
hizmetlerin  koleksiyonlaridir., OMG onbes nesne hizmeti icin standartlar
yayinlamistir : yasam c¢evrimi, kalicilik (kalici durum), adlandirma, olay, esanlilik,
boéliinmez iglem, iliski, disarilama, sorgu, lisanslama, &zellikler, zaman, glivenlik,
tacir ve koleksiyon hizmetleri.

Genel ORB Arasi Protokol (GIOP), ORBlar arasindaki iletisim igin bir standart iletim
sentaksi ve bir mesaj bigimleri kiimesi belirtir. Her CORBA 2.0 ORB’un desteklemek
zorunda oldugu internet ORB Arasi Protokolii (IIOP), GIOP mesajlarinin TCP/IP
baglantilari kullanilarak nasil karsilikli degistirilecegini belirtir. OMG ayrica, Ortama
Ozel ORB Arasi Protokollerin (ESIOP) agik sonlu bir kiimesi igin éngérimde
bulunur.

Alanlar sistemlerin, genel karakteristiklere sahip olan bilesenlerin koleksiyonlarina
ayrilmalarina izin verir. Alanlar arasinda Kkarsilikli ortaklasma, iki koprileme
mekanizmasi ile saglanir :

e Aracili kbprilemede tum alanlar bir genel protokole kdprulenir.

o Aracisiz képrilemede ise iki alan, mesajin gerekli parcalarini ¢eviren bir
kopru Uzerinden birbirleriyle dogrudan konusur.

Tezimiz CORBA basarim analizinin yalnizca hizalama/geri hizalama yonlyle
ilgilenmigtir. CORBA’nIn yalnizca statik yonlerini kapsadik, dinamik yonlerini degil.
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CORBA basarim élguimuyle ilgili bircok ylksek lisans calismasi ve yayin
bulunmaktadir. Ayrica OMG tarafindan, CORBA’nin basarim 6l¢gimu igin kurulmus
bir 6zel ilgi grubu da bulunmaktadir.
Basligimizin da vyansittigi gibi hizalama/geri hizalama basarimini inceledik.
Hizalama/geri hizalama, tiplendirilmis veri nesnelerinin ytiksek diizey gosterimlerden
duslk duzey gosterimlere cevriimesini (hizalama) ve tersi iglemi (geri hizalama)
anlatir. DUsuk dizey gosterimler, Genel Veri Gosterimi (CDR) kurallari izlenerek
elde edilir.
Olgit takimimiz i oyuncudan olugsmaktadir :

o Deger Hizmetlisi, istemciden istekleri kabul eder ve tepkileri geri gonderir.

e Zaman Hizmetlisi zaman islemleriyle ilgilenir.

e Jstemci, sunucudan ¢agrilar yapar.

Olgiit ortamimiz asagidaki élgller ele alinarak insa edilmistir :

e Olgitimuzi Dinya capinda en yaygin bulunabilen CORBA/Java ORBu
uzerinde uyguladik. Yani Sun’in Java IDL derleyicisini kullandik.

e Sunucularimiz ve istemcimiz ayni makinede (yerel c¢agrilar) veya iki kesim
farkli makinelerde (uzak ¢agrilar) konumlandirildi.

o Metotlarimiz tekydnll veya ciftyonll olarak tanimlandi.

e Hicbir parametre almayan ve hicbirsey geri dondirmeyen bir fonksiyonumuz
var. Ayrica parametrelerimiz istemciden sunucuya, sunucudan istemciye, ve
her iki yonde akis yapti.

o Tiplerimiz Gg grup olarak siniflandirildi :

e lkel Tipler boolean, char, wchar, long, unsigned long, long long,
unsigned long long, short, unsigned short, float, double, octet ve long

double IDL tiplerini icermektedir.

e Insa Edilmis Tipler yapilar, arayizleri, birlesikleri ve sdylenmisleri
icermektedir.

e ceren Tipler dizileri, siralari ve katarlari icermektedir.
insa ettigimiz 6lgiitii kosturduk. Genel sonuglarimiza gére :

e Yerel ¢cagrilar uzak ¢agrilardan daha hizlidrr.

e Tekyonlu uyarmalar ikiyonlu uyarmalardan daha hizlidir. Ancak, tekyonliler
guvenilir degildir ve bazilari testi tamamlayamamigtir. Diger taraftan, tim
ikiydnld cagrilar dlgtimleri basariyla tamamlamistir.

o KiglUk boyutlu verilerin her akigi igcin hemen hemen ayni sonuglari aldik.

Ancak daha buydk boyutlar icin azalan sirada zamanlar su sekildedir : iki
yonde, istemciden sunucuya, sunucudan istemciye akis.
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e lkel tipler icin diisiik boyutta parametreler igin yakin sonuglar elde ettik.
Yuksek boyutlu parametreler icin sonuglar tiplerin boyutlarina goére
siralanmistir.

e insa Edilmis Tipler icin :

e Yapllarigin ilkellerle ayni sonuglari aldik.
e Soylenmisler icin unsigned long tipi ile ayni sonucu aldik.

o Arayilzlerle parametreler yavas gegcmektedir.

o Bir birlesik icinde octet gecirmek, bir double gegirmekten daha kisa
surmektedir.

e geren tiplerigin :
e Siralar ve dizilerle ayni sonuglari elde ettik.
o Katarlarla karakter igerenler icin ayni sonuglari elde ettik.
e Genis katarlarla genis karakter icerenler icin ayni sonugclari elde ettik.
Sonug olarak, hemen hemen tim statik IDL yapilarini bu tezde test ettik. Birgok ham
verimiz var ve kargilastirmalar bu veriler Gzerinde yapilabilir. Yalnizca bunlarin

bazilari igin sonuglar veriyoruz. isteyen herkes verilerimizden gereksinim duydugu
sonuglari ¢ikarabilir.
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MARSHALLING/DEMARSHALLING PERFORMANCE ANALYSIS OF SUN’S
JAVA IDL BY USING STATIC INVOCATION INTERFACE

SUMMARY

Our thesis begin with an overview of the distributed systems. Distributed systems
evolved by following the following eras :

¢ Monolithic Systems uses monolithic software written for mainframes.

¢ Client/server Systems are comprised of a server that provides services and a
client that requests services of the server.

o Multitier Client/server Systems partitions the system into a user interface
layer, a business rules layer, and a database access layer.

e Distributed Systems expose all functionality of the application as objects,
each of which can use any of the services provided by other objects in the
system or in other systems.

After that, we introduced the distributed objects and components. Distributed objects
are extended objects that can reside anywhere on a network. Components are the
smallest self-managing, independent, and useful parts of a system that works in
multiple environments.
A business object consists of three main parts :

e Business Logic Object (BLO) defines how the object reacts to certain events.

o Business Process Obect (BPO) helps maintain the business logic for the
entire system.

e Presentation Objects provide the user with a representation of the
component.

The Common Object Request Broker Architecture (CORBA) is structured by Object

Management Group (OMG) to allow integration of a wide variety of object systems.

CORBA is a middleware which is a distributed software required to facilitate

client/server interaction and runs on both the client and server ends of a transaction.

OMG’s Object Management Architecture (OMA) is composed of four main elements:
o Object Request Broker (ORB) defines the CORBA object bus.

o CORBA Services define the system-level object frameworks that extend the
bus.
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o CORBA Facilities define horizontal and vertical application frameworks that
are used directly by business objects

e Application Objects are the business objects and applications.
An ORB consisted of following parts :

e The client stubs, or static invocation interface (Sll), will present access to the
OMG IDL-defined operations on an object.

e The dynamic invocation interface (DIl) allows the dynamic construction of
object invocations.

¢ The implementation skeleton is an interface to the methods that implement
each type of object.

e The dynamic skeleton interface (DSI) allows dynamic handling of object
invocations

e An object adapter is the primary way that an object implementation accesses
services provided by the ORB.

o The ORB Interface is the interface that goes directly to the ORB.

e The IDL compiler brings the interface definitions to high-level language
constructs. Interface definitions are specified by OMG Interface Definition
Language (OMG IDL).

o The Interface Repository is a service that provides persistent objects that
represent the IDL information in a form available at run-time.

CORBA services are collections of system-level services packaged with IDL-
specified interfaces. OMG has published standards for fifteen object services : life
cycle, persistence (persistent state), naming, event, concurrency, transaction,
relationship, externalization, query, licensing, properties, time, security, trader and
collection services.

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a
set of message formats for communications between ORBs. Internet Inter-ORB
Protocol (IIOP), to which every CORBA 2.0-compliant ORB must supply, specifies
how GIOP messages are exchanged using TCP/IP connections. OMG also makes
provision for an open-ended set of Environment-Specific Inter-ORB Protocols
(ESIOPSs).

Domains allow partitioning of systems into collections of components which have
some characteristic in common. Interoperability between domains is achieved by
using two bridging mechanisms :

¢ In mediated bridging all domains bridge to a single common protocol

e In immediate bridging two domains talk directly to each other over a single
bridge that translates whatever parts of the message require it.
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Our thesis only concerned the marshalling/demarshalling aspects of performance
analysis of CORBA. We only covered the static aspects of CORBA and not the
dynamic aspects.
There are a lot of master studies and publications related with performance analysis
of CORBA. Also there is a special interest group founded by OMG on the
benchmarking of CORBA.
As our title reflects, we analyzed the marshalling/demarshalling performance. The
marshalling/demarshalling refers to the transformations of typed data objects from
higher-level representations to lower-level representations (marshalling) and vice
versa (demarshalling). The low-level representations are created by following the
rules of Common Data Representation (CDR).
We have three players constitutes our benchmarking team :

e Value Server accepts requests from the client and sends responses back.

¢ Time Server handles the time operations.

¢ Client makes calls from server.
Our benchmarking environment is constructed by considering the following criterias :

o We applied the benchmark to most commonly available CORBA/Java ORB
worldwide, Sun’s Java IDL compiler.

¢ We have the servers and the client at the same computer (local calls) or two
sides are located at different computers (remote calls)

e Our methods are defined as oneway and twoway.

¢ We have a function which takes no parameters and returns nothing. Also our
parameters flow from client to server, from server to client and in both
directions.

e Our types are classified into three groups :

o Primitive types include the IDL types boolean, char, wchar, long,
unsigned long, long long, unsigned long long, short, unsigned short, float,
double, octet and long double.

e Constructed types include structs, interfaces, unions and enums.

e Container types include arrays, sequences and strings.

We run the benchmark constructed. Our general results show that :

e Local calls are faster than remote calls for big-sized data. For small-sized
data, remote calls perform better.

e Oneway invocations are faster than twoway invocations. But oneways are

unreliable and some of them could not completed the test. On the other
hand, all the twoway calls successfully completed the measurements.
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¢ We see the nearly same results for small sized data for all the flows of data.
But for the larger sizes the descending order is from server to client and
client to server back, from client to server and from server to client.

e For the primitive types we have the close results for small-sized parameters
and results are ordered with sizes of types for larg-sized parameters.

e For constructed types :

e We have the same results for primitives with structs for small sizes. For
big sizes, structs perform worse.

¢ We have the same results for unsigned long with enums.

e We have slow passing of parameters with interfaces.

e Passing an octet within a union takes less time than passing a double.

e For the container types :

¢ \We have the same results with sequences and arrays.

¢ \We have the same results for strings with char containers.

e We have the same results for wstrings with wchar containers.
As a conclusion we tested nearly all static IDL constructs in this thesis. We have a
bulk of raw data, and comparisons can be made on these data. We only give

conclusions for some of them. Whoever wants can deduce the conclusions he/she
needs from our data.
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1. HISTORY OF DISTRIBUTED SYSTEM

Here we will have an overview of distributed systems. This chapter is mainly taken

from [1].

1.1 Monolithic Systems

We can say that distributed systems began with mainframes. Mainframes are
managed centrally and software systems written for mainframes were often
monolithic, i.e, the user interface, business logic, and data access functionality were

all contained in one large application. A typical monolithic application architecture is

illustrated in Figure 1.1 [1].

S

Maintrame

Application

Business
Logic

,

/

Database

Usat Intertacs

A 4

\

3 L

-

-

Tarminal Terminal

Figure 1.1 : Typical monolithic application architecture.




1.2 The Client/Server Model

After the monolithic systems we see the client/server architecture. Client/server

computing systems are comprised of two logical parts :
= a server that provides services.
= aclient that requests services of the server (see Figure 1.2).

Together, the two form a complete computing system with a distinct division of

responsibility.

Client (User) A

Client (User) B [« Server

Client (User) C

Figure 1.2 : A traditional client/server system. Clients request
services of the server independently but use the same interface.

Client/server computing has gained popularity in the recent years due to the
proliferation of low-cost hardware and the fact that a model relying on monolithic
applications fails when the number of users accessing a system grows too high or

when too many features are integrated into a single system.

We defined the client as the component of the client/server architecture which
requests services from servers. In addition, clients can also offer services to other

clients. That is, a client can act as a server to other clients.

According to the server's behaviour, we can group server side of the client/server

architecture into two models :
e Pull Server Model

e Push Server Model



Traditional servers are entities that passively await requests from clients and then
act on them. This model is named pull server model. But, servers can actively
search out changes in the state of clients and take appropriate action. This model is

called push server model.

Most client/server systems are flexible with regard to the distribution of authority,
responsibility, and intelligence. A part of a system with a disproportionate amount of
functionality is called fat; a thin portion of a system is a part with less responsibility
delegated to it [2]. The server portion of a client/server system almost always holds
the data, and the client is nearly always responsible for the user interface; the
shifting of application logic constitutes the distinction between fat clients and fat
servers (see Figure 1.3).

A A

User Interface Data
Application Logic

Client Server

Yv

Figure 1.3 : Since the distribution of the user interface and data is fixed, the placement
of the application logic is what distinguishes fat-client from fat-server systems.

The fat server model is often used to ensure greater compatibility between clients
and servers : the more work the server does, the less dependent it is on the client.

The fat client model can be used at the expense of universal compatibility [3].

1.3 Multitier (N-Tiered) Client/Server

The canonical client/server model assumes exactly two discrete participants in the
system. This is called a two-tier system; the application logic must be in the client or
the server, or shared between the two. It is also possible to have the application
logic reside separately from the user interface and the data (in other words, to
partition the system into three logical tiers : the user interface layer, the business
rules layer, and the database access layer, see Figure 1.4 [1]) turning the system
into a three-tier system. In an idealized three-tier system, all application logic
resides in a layer separate from the user interface and data. Decoupling the
application logic from the data allows data from multiple sources to be used in a

single transaction without a breakdown in the client/server model.



1.4 Distributed Systems

Rather than differentiate between business logic and data access, the distributed
system model simply exposes all functionality of the application as objects, each of
which can use any of the services provided by other objects in the system, or even
objects in other systems. The architecture can also blur the distinction between
client and server because the client components can also create objects that

behave in server-like roles.

The distributed system architecture achieves its flexibility by enforcing the definition
of specific component interfaces. The interface of a component specifies to other
components what services are offered by that component and how they are used.
As long as the interface of a component remains constant, that component's
implementation can change dramatically without affecting other components.

Distributed systems are really multitier client/server systems in which the number of
distinct clients and servers is potentially large. One important difference is that
distributed systems generally provide additional services, such as directory services,

which allow various components of the application to be located by others.
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Figure 1.4 : Three-tier client/server architecture.
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2. DISTRIBUTED OBJECTS AND COMPONENTS

Distributed systems are built on the object oriented approach. Classical objects do
not suffice for distributed systems. They are replaced with distributed objects and
components. In this section we will present you with distributed objects and

components. This section is mainly taken from [3].

2.1 From Objects to Distributed Objects

As computing systems evolved, the paradigm of algorithmic computation was
replaced by the use of interacting objects. Classical objects can be viewed as self-
contained entities that encapsulate data, and a set of operations that act on that
data.

Distributed objects are extended objects that can reside anywhere on a network and
continue to exist as physical standalone entities while remaining accessible remotely
by other objects. Robust distributed object systems allow objects written in different
languages and compiled by different compilers to communicate seamlessly via
standardized messaging protocols embodied by middleware.

2.2 Benefits of Distributed Objects

Distributed objects allow us to construct scaleable client/server systems by providing

modularized software that features interchangeable parts.

Self-managing distributed objects take responsibility for their own resources, work
across networks, and interact with other objects. These capabilities are frequently
given to objects through a distributed object framework that provides middleware to
regulate the necessary inter-object communications and provides a resource pool

for each object that is deleted when that object ceases to exist.

Self-managing objects are used easily by other objects since no management
burdens are imposed on the client object; it receives object services at no cost.
Objects crafted to these specifications rely on a solid event model that allows
objects to broadcast specific messages and generate certain events. These events
are listened for by other objects, which then take action based on them. Each

listening object responds to a given event in its own manner. By using object-



oriented techniques such as polymorphism, closely related objects react differently
to the same event. These capabilities simplify the programming of complex

client/server systems.

Objects can generate events to notify other objects that an action should take place.
In this sense, events can be viewed as synchronization objects that allow one thread
of execution to notify another thread that something has happened (see Figure 2.1).
Using this model, an event can notify a component that it should take a certain
action. An object that can listen for events provides a more robust framework for
interaction between objects than a model that forces objects to wait for the next

instruction.

Because of the strict encapsulation that objects provide, distributed objects are a
fundamentally sound unit from which to build client/server applications when
separation of data is important. Cooperating objects form the logic portion of most
substantial client/server systems because of the rich interaction services they offer

[4] [5]-

Supplier A \ /v Consumer A

Event
Channel [«
Object

Supplier C / \ Consumer C

Figure 2.1 : A sample event management system. Depicted is CORBA’s Event Service.

Consumer B

A\ 4
A\ 4

Supplier B |«

Since distributed objects allow applications to be split up into lightweight pieces that
can be executed on separate machines, less powerful machines can run demanding

applications.

2.3 Components

Components are the smallest self-managing, independent, and useful parts of a
system that works in multiple environments. Components promise rapid application
development and a high degree of customizability for end users, leading to fine-

tuned applications that are relatively inexpensive to develop and easy to learn.
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Components are most often distributed objects incorporating advanced self-
management features. Components may contain multiple distributed or local

objects, and they are often used to centralize and secure an operation.

The interface of a component should be the primary concern of its developer. Since
components are designed for use in a variety of systems and need to provide
reliable services regardless of context, developers attempting to use a component
must be able to identify clearly the function of a component and the means of
invoking this behavior.

2.4 Client/Server Using Distributed Objects

Tht client/server computing using distributed objects is depicted in Figure 2.2.

Application ‘\ Object
Remote Method R
Invocation -
Object */ Object
Clients Server

Figure 2.2 : Client/server computing using distributed objects. Communication between
components (denoted by arrows) is facilitated through ORBs (which have been omitted for
clarity)

2.5 Business Objects

Business objects are self-managing components used to represent key objects or
processes in a real-life system. Business objects are shippable products that usually
have a user interface and the ability to cooperate with other objects to meet a
certain user need. Business objects allow application-independent concepts to be
described at a high level, minimizing the importance of languages, tools, and
application-level concepts. Business objects represent a major breakthrough in the
modeling of business events since they can describe both a portion of a real-world
business system and the executing piece of the information system supporting that

portion of the business [2] [6].



Like other components, business objects should support late binding so they can be
interchanged easily and interact immediately with existing components; they should
also support standard component features such as event handling and state

maintenance.

The Business Object Model Special Interest Group (BOMSIG) has proposed a
standard for business objects. The standard calls for each business object to be

composed of three types of cooperating objects (see Figure 2.3 [6]).

e Business Logic Object (BLO) defines how the object reacts to certain events;
it is responsible for the business logic of the component as well as for storing
the relevant business data.

o Business Process Obect (BPO) helps maintain the business logic for the
entire system. The primary difference between a BPO and a BLO is the
logical lifetime of the unit of logic : BPOs traditionally handle long-lived

processes or processes related to the system as a whole.

e Presentation Objects provide the user with a representation of the

component, usually but not necessarily visual.

A normal business object is likely to have multiple Presentation Objects, but usually
has one BLO and BPO. Because these three objects are managed by one object,
collaborating components see only one object that provides the aggregate services

of its constituent objects.

Servers
Business Object Y
/ Business Logicv\
Presentation Object ~
Other |, Object A Documents
Interfaces
Presentation
ObjectB Business Other
Process Object|® » Business
J Objects

Figure 2.3 : The parts of a business object and their communication with other
system objects

This three-object construction can be viewed as a three tier client/server system

(see Figure 2.4) :



e Tier 1: Visual aspects of a system, usually handled by a client system.

e Tier 2 : Data for the object and the application logic required to meaningfully

act on it.

e Tier 3 : Data and application logic required to integrate the business object
with other business objects and existing systems, such as legacy servers or
databases.

User Interface

Application Logic

Legacy Systems

Visual Attributes

Figure 2.4 : Three tiers in a business object.

The middle tier plays the largest role in this organizational scheme. Tier-two objects
communicate directly with the tier-one objects to provide feedback to the user; they
also provide the logic for the entire business object. Furthermore, tier-two objects
communicate with multiple data repositories (tier three) and collaborate with other
business objects to assist them provide services. This model separates the client
from data for which it is not logically responsible. By channeling all requests for
information through the tier-two servers, major changes (such as the implementation
of a new database system) remain completely transparent to the user. If ORBs are
used for communication between the clients and the tier-two objects, robust system
services such as load balancing and event exchanges are implemented easily and

applications remain scaleable.



3. CORBA OVERVIEW

This chapter is mainly taken from the Object Management Group’s (OMG) formal
documentation describing CORBA [7].

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. CORBA is a middleware, so first we

define what is a middleware and then take a general look at CORBA.

3.1 Middleware

The distributed software required to facilitate client/server interaction is referred to
as middleware. Middle refers to its place in a software abstraction hierarchy above
transport protocols, but below clients and servers written in a high-level
programming language [8]. Transparent access to non-local services and resources
distributed across a network is usually provided through middleware, which serves
as a framework for communication between the client and server portions of a
system. Middleware can be thought of as the networking between the components
of a client/server system; it is what allows the various components to communicate
in a structured manner. Middleware is defined to include the Application
Programmer Interfaces (APIs) used by clients to request a service from a server, the
physical transmission of the request to the network (or the communication of the
service request to a local server), and the resulting transmission of data for the client
back to the network. Middleware is run on both the client and server ends of a

transaction [3].

3.2 OMG’s Object Management Architecture (OMA)

In the fall of 1990, the OMG first published the Object Management Architecture
Guide (OMA Guide). After that it have gone under some changes and still goes.

Figure 3.1 [10] shows the four main elements of the architecture [9] :

1. Object Request Broker (ORB) defines the CORBA object bus.
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2. CORBA Services (Common Object Services) define the system-level

object frameworks that extend the bus

3. CORBA Facilities (Common Facilities) define horizontal and vertical

application frameworks that are used directly by business objects

4. Application Objects are the business objects and applications, they are the

ultimate consumers of the CORBA infrastructure.

This section provides a top-level view of the elements that make up the CORBA

infrastructure.

Common Facilities {CORBA facilities)
Yertical Carnmon Facilities

Application ohjeds
| 1
Harizontal Cormman Fadilities

Distributed Infarmation Systam Task
| documents management Trian &g em ent management
1 | 1

e

Object Request Broker {ORE)

T
1 [ [ [ 1
g Lite ; L .
Naming oyl Properties Relationships Security
I I |
Persistence Events Query Tirne Trader
I I |
Externalization Transactions Concurrency Collections Licensing
Commaon Object Services {CORBA services)

Figure 3.1 : Object Management Architecture

3.3 Object Request Broker (ORB)

The Objet Request Broker (ORB) is the object bus. It lets objects transparently
make requests to -and receive responses from- other objects located locally or

remotely.

A CORBA ORB provides a wide variety of distributed middleware services. Every
CORBA ORB provides [9] :

= Static and dynamic method invocations

= High-level language bindings
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= Local/remote transparency
= Polymorphic messaging
= Coexistence with legacy systems
and hides [11] [12] :
= Obiject location (local/remote transparency)

= Object implementation (high-level language bindings used for object

implementation)

= Object execution state (If object is not active at the time its method is

invoked, ORB activates it)

= Object communication mechanisms (the communication can be done

via TCP/IP, shared memory, local method calls etc)

Figure 3.2 [11] shows the structure of an individual Object Request Broker (ORB)
and its interactions with the objects (client and servant). The arrows indicate
whether the ORB is called or performs an up-call across the interface.

IDL Compiler I

Client

Interface Repository

Object Implementation
(Servant)

2

Ll 10L Chject
Skeleton | | Adapter

ORE
Interface

(u]

GIOP / IOP ORE Core

[[]=ame forall oREBs ] ORB-privats interfacs

[Z] Interface-specific [o] There may be multiple
stubs and skelstons object adapters

Figure 3.2 : The structure of object request interfaces

Now, we can go over the parts shown in Figure 3.2 and explain each of these.
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3.3.1 clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object

according to its interface.

Clients generally see objects and ORB interfaces through the perspective of a
language mapping, bringing the ORB right up to the programmer’s level. Clients are
maximally portable and should be able to work without source changes on any ORB
that supports the desired language mapping with any object instance that
implements the desired interface.

3.3.1.1 structure of aclient

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation
on a different object. Invocation of an object involves specifying the object to be
invoked, the operation to be performed, and parameters to be given to the operation

or returned from it.

The ORB manages the control transfer and data transfer to the object
implementation and back to the client. In the event that the ORB can not complete

the invocation, an exception response is provided.

Clients access object-type-specific stubs as library routines in their program (see
Figure 3.3). The client program thus sees routines callable in the normal way in its
programming language. All implementations will provide a language specific data
type to use to refer to objects. The client then passes that object reference to the
stub routines to initiate an invocation. The stubs have access to the object reference

representation and interact with the ORB to perform the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. An
object reference can also be converted to a string that can be stored in files or
preserved or communicated by different means and subsequently turned back into

an object reference by the ORB that produced the string.
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Figure 3.3 : The structure of a typical client
3.3.2 object implementations

An object implementation provides the semantics of the object, usually by defining

data for the object instance and code for the object’s methods.

Often the implementation will use other objects or additional software to implement

the behavior of the object.

Generally, object implementations do not depend on the ORB or how the client
invokes the object. Object implementations may select interfaces to ORB-dependent

services by the choice of Object Adapter.

3.3.2.1 structure of an object implementation

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define
procedures for activating and deactivating objects and will use other objects or
nonobject facilities to make the object state persistent, to control access to the
object, as well as to implement the methods.

The object implementation (see Figure 3.4) interacts with the ORB in a variety of
ways to establish its identity, to create new objects, and to obtain ORB-dependent
services. It primarily does this via access to an Object Adapter, which provides an
interface to ORB services that is convenient for a particular style of object

implementation.
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Figure 3.4 : The structure of a typical object implementation

Because of the range of possible object implementations, it is difficult to be definitive

about how an object implementation is structured.

3.3.2.2 object references

An Object Reference (OR) is the information needed to specify an object within an
ORB. Both clients and object implementations have an opaque notion of object
references according to the language mapping, and thus are insulated from the
actual representation of them. Two ORB implementations may differ in their choice
of Object Reference representations.

There is a distinguished object reference guaranteed to be different from all object
references, that denotes no object.

An Interoperable Object Reference (IOR) is the information needed to specify an
object accross ORBs. This reference can be used when ORBs interoperate. The
structure of an IOR includes repository ID, protocol and address details and object
key [13].

3.3.3 IDL compiler

As mentioned in section 3.3.1, clients see objects and ORB interfaces through the
perspective of a language mapping. Bringing the interface definitions to high-level

language constructs is done by the IDL compiler.
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An IDL compiler transforms OMG IDL definitions into stubs and skeletons that are
generated automatically in an application programming language like Java [14]. In
addition to providing programming language transparency, IDL compilers eliminate
common sources of network programming errors and provide opportunities for

automated compiler optimizations [15].

3.3.3.1 OMG interface definition language (IDL)

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and
the parameters to those operations.

IDL is the means by which a particular object implementation tells its potential
clients what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

3.3.3.2 mapping of OMG IDL to programming languages

Different object-oriented or non-object-oriented programming languages may prefer
to access CORBA objects in different ways. For object-oriented languages, it may
be desirable to see CORBA objects as programming language objects. Even for
nonobject-oriented languages, it is a good idea to hide the exact ORB
representation of the object reference, method names, etc. A particular mapping of
OMG IDL to a programming language should be the same for all ORB

implementations.

3.3.4 client stubs

The client stubs will present access to the OMG IDL-defined operations on an object
in a way that is easy for programmers to predict once they are familiar with OMG

IDL and the language mapping for the particular programming language.

3.3.5 dynamic invocation interface (DIl)

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular

operation on a particular object, a client may specify the object to be invoked, the
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operation to be performed, and the set of parameters for the operation through a call

or sequence of calls.

The client code must supply information about the operation to be performed and

the types of the parameters being passed.

The nature of the dynamic invocation interface may vary substantially from one

programming language mapping to another.

3.3.6 implementation skeleton

For a particular language mapping, and possibly depending on the object adapter,
there will be an interface to the methods that implement each type of object. The
interface will generally be an up-call interface, in that the object implementation
writes routines that conform to the interface and the ORB calls them through the
skeleton.

3.3.7 dynamic skeleton interface (DSI)

An interface is available, which allows dynamic handling of object invocations. That
is, rather than being accessed through a skeleton that is specific to a particular
operation, an object’s implementation is reached through an interface that provides
access to the operation name and parameters in a manner analogous to the client
side’s Dynamic Invocation Interface. Purely static knowledge of those parameters
may be used, or dynamic knowledge may be also used, to determine the

parameters.

The implementation code must provide descriptions of all the operation parameters
to the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any

output parameters, or an exception, to the ORB after performing the operation.

3.3.8 object adapters

An Object Adapter is the primary way that an object implementation accesses
services provided by the ORB. There are expected to be a few object adapters that
will be widely available, with interfaces that are appropriate for specific kinds of
objects. Services provided by the ORB through an Object Adapter often include

generation and interpretation of object references, method invocation, security of
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interactions, object and implementation activation and deactivation, mapping object

references to implementations, registration of implementations.

3.3.8.1 structure of an object adapter

An object adapter (see Figure 3.5) is the primary means for an object
implementation to access ORB services such as object reference generation. Object

adapters are responsible for the following functions :
e Generation and interpretation of object references
e Method invocation
e Security of interactions
¢ Object and implementation activation and deactivation
e Mapping object references to the corresponding object implementations
e Registration of implementations

These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its
tasks. It may be possible for a particular object adapter to delegate one or more of

its responsibilities to the Core upon which it is constructed.

4 A
0 b]E'Ct Imple mentation
Interface A Intarface B
Mathods Methods
\. J
Dynamic Interface A Interface B .
Skeleton Skeleton Skeletan iﬁj;;;t@r
Interfaca
ORB Core

Figure 3.5 : The structure of a typical object adapter

As shown in Figure 3.5, the Object Adapter is implicitly involved in invocation of the

methods, although the direct interface is through the skeletons.
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3.3.8.2 CORBA required object adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that
there be as few as practical. Most object adapters are designed to cover a range of
object implementations, so only when an implementation requires radically different

services or interfaces should a new object adapter be considered.

CORBA used to specify a Basic Object Adapter (BOA) that can be used for most
ORB objects with conventional implementations. At June 1997, OMG published the
specifications for the Portable Object Adapter (POA) [16]. POA allows developers to
construct CORBA server applications that are portable between heterogeneous
ORB implementations [17].

3.3.9 ORSB interface

The ORB Interface is the interface that goes directly to the ORB, which is the same
for all ORBs and does not depend on the object’s interface or object adapter.
Because most of the functionality of the ORB is provided through the object adapter,
stubs, skeleton, or dynamic invocation, there are only a few operations that are

common across all objects.

3.3.10 interface repository (IR)

The Interface Repository is a service that provides persistent objects that represent
the IDL information in a form available at run-time. The Interface Repository
information may be used by the ORB to perform requests. Moreover, using the
information in the Interface Repository, it is possible for a program to encounter an
object whose interface was not known when the program was compiled, yet, be able

to determine what operations are valid on the object and make an invocation on it.

3.4 CORBA Services

CORBA services are collections of system-level services packaged with IDL-
specified interfaces. You can think of object services as augmenting and
complementing the functionality of the ORB. OMG has published standards for

fifteen object services [9] [18] :
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The Life Cycle Service defines services and conventions for creating,

deleting, copying and moving objects [19].

The Persistence (Persistent State) Service defines interfaces which present
persistent information as storage objects stored in storage homes. Storage
homes are themselves stored in datastores, an entity that manages data, for
example a database, a set of files, a schema in a relational database [20].

The Naming Service provides the principal mechanism through which most
clients of an ORB-based system locate objects that they intend to use (make
requests of) [21].

The Event Service defines two roles for objects : the supplier role and the
consumer role. Suppliers produce event data and consumers process event
data. Event data are communicated between suppliers and consumers by

issuing standard CORBA requests [22].

The Concurrency Service mediates concurrent access to an object such that
the consistency of the object is not compromised when accessed by

concurrently executing computations [23].

The Transaction Service provides interfaces that combine the transaction
paradigm, essential to developing reliable distributed applications, and the
object paradigm, key to productivity and quality in application development,
together to address the business problems of commercial transaction

processing [24].

The Relationship Service allows entities and relationships to be explicitly
represented. Entities are represented as CORBA objects. The service

defines two kinds of objects: relationships and roles [25].

The Externalization Service defines protocols and conventions for
externalizing (recording the object’'s state in a stream of data) and

internalizing objects [26].
The Query Service provides query operations on collections of objects [27].

The Licensing Service defines the interfaces that support management of

software licenses [28].
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e The Properties Service provides the ability to dynamically associate named

values with objects outside the static IDL-type system [29].

e The Time Service enables a user to obtain current time together with an

error estimate associated with it [30].

e The Security Service defines a security reference model that provides the
overall framework for CORBA security [31].

o The Trader Service facilitates the offering and the discovery of instances of
services of particular types [32].

e The Collection Service provides a uniform way to create and manipulate the

most common collections generically [33].

3.5 CORBA Facilities

CORBA facilities are collections of IDL-defined frameworks that provide services of
direct use to application objects. The two categories of common facilities—horizontal
and vertical—define rules of engagement that business components need to

effectively collaborate.

3.6 Application Objects

Application objects are business objects which we described at chapter 2.

3.7 CORBA Interoperability

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a
set of message formats for communications between ORBs. The Internet Inter-ORB
Protocol (IIOP) specifies how GIOP messages are exchanged using TCP/IP
connections. Every CORBA 2.0-compliant ORB speaks the mandatory IIOP. OMG
also makes provision for an open-ended set of Environment-Specific Inter-ORB
Protocols (ESIOPSs) [7]. The IIOP’s standing in networking in a OSlI-like layer model
is shown in Figure 3.6 [34].
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Figure 3.6 : IIOP’s place in networking

Figure 3.7 [35] shows how the CORBA ORB-to-ORB communication works : An
invocation from a client of ORB 1 passes through its IDL stub into the ORB core.
The ORB examines the object reference and if the implementation is local, the ORB
passes the invocation through the skeleton to the object for servicing. If the
implementation is remote, ORB 1 passes the invocation across the communication
pathway to ORB 2, which routes it to the object. The object implementation has no

way of knowing whether the client is local or remote.

| Client ‘ ‘ Dbject| ‘ Clientw ‘ Db'ect}
73 A
=thb 2=l Stuhb Slgel
Iop
" ORE 1 ORB 2=
Protocol

Figure 3.7 : Interoperability uses ORB-to-ORB communication.

For the inter-ORB invocations objects must have the Interoperable Object

References (IORs) [36].

3.7.1 CORBA domains

Domains allow partitioning of systems into collections of components which have
some characteristic in common. Interoperability between domains is only possible if

there is a well-defined mapping between the behaviors of the domains being joined.
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When an interaction takes place across a domain boundary, a mapping mechanism,
or bridge, is required to transform relevant elements of the interaction as they

traverse the boundary. There are essentially two approaches to achieving this :

¢ In mediated bridging all domains bridge to a single common protocol

e In immediate bridging two domains talk directly to each other over a single
bridge that translates whatever parts of the message require it.
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4. THE THESIS

Our thesis is about the performance analysis of CORBA. We are only concerned

about the marshalling/demarshalling aspects of performance analysis.

4.1 The Goal of The Thesis

Our main goal in this study is to analyze the marshalling/demarshalling performance
of a CORBA/Java ORB using Static Invocation Interface (Sll). That is, we have not
covered the dynamic aspects of CORBA including DIl (Dynamic Invocation
Interface) with Requests created, populated and sent at run-time and dynamic types
like any which also are created and populated at run-time. Indeed, we have tried to

cover all static types of CORBA and IDL-specific features.

4.2 Related Work

There is a number of master studies on this subject. Buble compares three common
C++ implementations of CORBA : OmniORB, ORBacus and Orbix [37]. Gopinath
analyzes the performances of Real-Time CORBA endsystems by using omniORB
[38]. Karlsson compares two C++ ORBs : Orbix and TAO [11].

There are also some related publications. Gokhale and Schmidt analyze the
performance of DIl and DSI over ATM networks by using Orbix and ORBeline [39].
They, in another paper, optimize the sunSoft IIOP and give measurements before
and after applying their optimizations [40]. In another work, they give measurement
results for four demultiplexing strategies by using TAO [41]. They also give latency
results for two conventional ORBs, Orbix and VisiBroker, and then give their

improved results for TAO [42].

Hirano, Yasu and lgarashi compare their lightweight ORB, HORB, with Voyager,
VisiBroker and OrbixWeb [43] . Brose compares his ORB jacORB, with VisiBroker,
Orbacus and RMI [44].
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OMG also has its special interest group for benchmarking and this group published

a white paper on benchmarking [45].

4.3 Marshalling And Demarshalling

Marshalling/demarshalling refers to the transformations of typed data objects from
higher-level representations to lower-level representations (marshalling) and vice

versa (demarshalling) [39].

Marshalling and demarshalling operations take place in user space and are often
time consuming [46] [39].

4.3.1 common data representation (CDR)

Low-level representations are created by following the rules of Common Data
Representation (CDR). CDR is a transfer syntax, mapping from data types defined
in OMG IDL to a bicanonical, low-level representation for transfer between agents.
CDR has the following features:

e Variable byte ordering - Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have
different byte order, the message originator determines the message byte
order, and the receiver is responsible for swapping bytes to match its native
ordering. Each GIOP message (and CDR encapsulation) contains a flag that

indicates the appropriate byte order.

e Aligned primitive types - Primitive OMG IDL data types are aligned on their
natural boundaries within GIOP messages, permitting data to be handled

efficiently by architectures that enforce data alignment in memory.

o Complete OMG IDL Mapping - CDR describes representations for all OMG
IDL data types [7].

The CDR transfer syntaxes of IDL types are explained in Appendix.
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4.4 The Benchmark’s Players

We have three players constituting our benchmarking team :

e Value Server implements our benchmark’s IDL definitions. It accepts

requests from the client and sends responses back to it.

e Time Server handles the time operations. We have taken 25 samples of time
taken by making 100 calls with each criteria. Time server saves each of
these 25 time values. After that it computes the average of these 25 time
values and stores them with their average in a file.

e Client makes calls from server.

Figure 4.1 shows these three players at work.

Value Client Time
Server Server

<¢—ping() 100 time

Repeat 25 Times

addSessionTime()—»

——printTime()——P»

Figure 4.1 : Objects used in our benchmarking framework.

45 Structure of The Benchmark

The structure of our benchmark in Backus-Naur Format (BNF) is :

<benchmark> ::= “JDK1.3_02/" ( <local> | <remote> )
<local> ::= “Local/” ( <oneway> | <twoway> )
<remote> ::= “Remote/” ( <oneway> | <twoway> )
<oneway> ::= “Oneway/” ( <invoke> | <only_send>)

<twoway> ::=“Twoway/” ( <invoke> | <only_send> | <only_get> | <send_get>)

26



<invoke> ::= “Invoke”
<only_send> ::= “OnlySend/” ( <primitve> | <constructed> | <container>)
<only_get> ::= “OnlyGet/” ( <primitve> | <constructed> | <container>)
<send_get> ::= “SendGet/” ( <primitve> | <constructed> | <container>)
<primitive> ::= “Primitive/” ( “Boolean” | "Char” | “WChar” | “Double”
| “LongDouble” | “Float” | “Long” | “UnsignedLong” | “LongLong”
| “UnsignedLonglLong” | “Octet” | “Short” | “UnsignedShort” )
<constructed> ::= “Constructed/” ( <struct> | <interface> | <union> | <enum>)
<struct> ::= “Struct/” ( <primitive> | “AllPrimitives” )
<interface> ::= “Interface/” ( <primitive> | “AllPrimitives” | “Empty” )
<union> ::= “Union/” ( “AllPrimitivesOctet” | “AllPrimitivesDouble” )
<enum> ::= “Enum/AllPrimitives”
<container> ::= “Container/” ( <array> | <sequence> | <strings> )
<strings> ::= “Strings/” ( <string> | <wstring>)
<string> ::= “String/”
( “String1” | “String10” | “String100” | “String1000” | “String10000” )
<wstring> ::= “WString/” ( “WString1” | “WString10” | “WString100”
| “WString1000” | “WString10000” )
<array> ::= “Array/” ( <container_primitive> | <container_constructed> )
<sequence> ::= “Sequence/” ( < container_primitive> | <container_constructed> )
<container_primitive> ::= “ContainerPrimitive/” ( <boolean> | <char> | <wchar>
| <double> | <long_double> | <float> | <long>
| <unsigned_long> | <long_long> | <unsigned_long_long>
| <octet> | <short> | <unsigned_short>)
<boolean> ::= “Boolean/” ( “Boolean1” | “Boolean10” | “Boolean100”
| “Boolean1000” | “Boolean10000” )

<char> ::=“Char/” ( “Char1” | “Char10” | “Char100” | “Char1000” | “Char10000”)
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<wchar> ::= “WChar/”
(“WChar1” | “WChar10” | “WChar100” | “WChar1000” | “WChar10000”)
<double> ::= “Double/”
( “Double1” | “Double10” | “Double100” | “Double1000” | “Double10000” )
<long_double> ::= “LongDouble/” ( “LongDouble1” | “LongDouble10”
| “LongDouble100” | “LongDouble1000” | “LongDouble10000” )
<float> ::= “Float/” ( “Float1” | “Float10” | “Float100” | “Float1000” | “Float10000” )
<long> ::= “Long/” ( “Long1” | “Long10” | “Long100” | “Long1000” | “Long10000” )
<unsigned_long> ::= “UnsignedLong/”
( “UnsignedLong1” | “UnsignedLong10” | “UnsignedLong100”
| “UnsignedLong1000” | “UnsignedLong10000” )
<long_long> ::= “LongLong/” ( “LongLong1” | “LongLong10” | “LongLong100”
| “LongLong1000” | “LongLong10000” )
<unsigned_long_long> ::= “UnsignedLonglLong/ ( “UnsignedLonglLong1”
| “UnsignedLongLong10” | “UnsignedLonglLong100”

| “UnsignedLongLong1000” | “UnsignedLonglLong10000” )

<octet> ::= “Octet/” ( “Octet1” | “Octet10” | “Octet100” | “Octet1000” | “Octet10000”)

<short> ::= “Short/” ( “Short1” | “Short10” | “Short100” | “Short1000” | “Short10000” )
<unsigned_short> ::= “Unsigned_short/”
( “UnsignedShort1” | “UnsignedShort10” | “UnsignedShort100”
| “UnsignedShort1000” | “UnsignedShort10000” )
<container_constructed> ::= “ContainerConstructed/”
( <container_struct> | <container_interface>
| <container_union> | <container_enum>)
<container_struct> ::= “ContainerStruct/”
( <container_primitive> | <container_all_primitives>)

<container_interface> := “Containerinterface/” ( <container_primitive>

| <container_all_primitives> | < container_empty> )

28



<container_union> ::= ContainerUnion/” ( <container_all_primitives_octet>
| <container_all_primitives_double>)
<container_enum> ::= “ContainerEnum/” ( <container_all_primitives>)
<container_all_primitives> ::= “ContainerAllPrimitives/”
( “AllPrimitives1” | “AllPrimitives10” | “AllPrimitives100”
| “AllPrimitives1000” | “AllPrimitives10000” )
<container_all_primitivesoctet> ::= “ContainerAllPrimitivesOctet/’
( “AllPrimitivesOctet1” | “AllPrimitivesOctet10”
| “AllPrimitivesOctet100” | “AllPrimitivesOctet1000”
| “AllPrimitivesOctet10000” )
<container_all_primitives_double> ::= “ContainerAllPrimitivesDouble/”
( “AllPrimitivesDouble1” | “AllPrimitivesDouble10”
| “AllPrimitivesDouble100”
| “AllPrimitivesDouble1000”
| “AllPrimitivesDouble10000” )
<container_empty> ::= “ContainerEmpty/” ( “Empty1” | “Empty10” | “Empty100”
| “Empty1000” | “Empty10000” )

Every parse of this grammar gives you a test result obtained, of course if it is
supported by the ORB. For example, we obtained a result for
“JDK1.3_02//Local/Oneway/Invoke”. That is we have a result obtained by using
Sun’s JDK1.3_02 IDL compiler, making Local Oneway calls by sending and getting
no parameters, only Invoking an operation which takes no arguments and returns

nothing (void) .

46 Criteria Used

Our benchmarking environment is constructed by considering the following criteria.

4.6.1 used CORBA/Java ORB

A CORBA/Java ORB is an ORB which is written fully in Java, i.e, it includes no

native code. We applied the benchmark to most common CORBA/Java ORB
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worldwide, Sun’s Java IDL compiler. It is so common because It comes with Java 2
SDK, freely.

4.6.2 local versus remote calls

We have the servers and the client at the same computer (local calls) or two sides

are located at different computers (remote calls).

When making local calls the ORB implementor can use more efficient ways of
passing parameters than remote calls. As an example, since for local calls, both
client and server use the same memory, shared memory can be used. If it is so,

then the network overhead is discarded.

But, it is reported that Java VM is CPU-sensitive [47] and using two computers
doubles the number of CPUs used. It can eliminate the advantages of using local
system and even the network overhead can be defeated.

For local calls we used a PC with a Pentium Celeron 850 processor and 128 MB of
RAM.

For remote calls, our servers are run on the PC which is used for local calls and our
client is on a PC with Pentium Il MMX 400 processor and 64 MB of RAM.

Both of our computers use Microsoft Windows 2000 Professional as operating

system.

Our computers are located on an idle 10 Mbps Ethernet for remote calls.

4.6.3 oneway versus twoway invocations

OMG IDL allows you to declare operation attribute at operation declaration that
specifies which invocation semantics the communication service must provide for

invocations of a particular operation.

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; the

operation will be invoked at-most-once.

If a client invokes an operation without the oneway attribute (i.e, twoway), the
operation semantics are at-most-once if an exception raised; the semantics are

exactly-once if the operation invocation returns successfully [7].
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The CORBA standard does not require oneway operations to be non-blocking, but
most implementations of CORBA does not block the caller of a oneway operation.
The CORBA standard has left a great freedom in how an ORB handles oneway

operations [48].

4.6.4 flow of parameters

CORBA IDL defines three directional attributes to parameters :
e in:the parameter is passed from client to server
e out: the parameter is passed from server to client
e inout : the parameter is passed in both directions.

If no parameters will be passed then you must leave the parameter declaration
section of the operation empty and operation’s return result type must be the

keyword void.

We have named these conditions as only_send, only_get, send_get and invoke,

respectively.

We could use out and inout directional attributes to pass parameters back from the
server and to and back from the server. But in that case, as a programmer, we
should have handled the creation and use of Holder classes in accord with the
generated ones by the IDL-to-Java mapping of these parameters. But we defined
our operations as taking (for only_send and send_get) or returning (for only_get and
send_get) the type, and in the case of invoke taking no parameters and returning
void. In this way we have left the preparation operations for sending and getting the
parameters to ORB.

4.6.5 CORBA types used

We classified the CORBA IDL types into three categories :
e Primitive Types
e Constructed Types

e Container Types
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4.6.5.1 primitive types
Primitive types are the IDL allowed basic types which consists of the following :

¢ boolean type stores a boolean value. IDL defines two boolean constants:

true and false.

e char type stores a single character value. The char type is an 8-bit
quantity.

e wcharis wide character type. Its size is implementation-dependent.
e long is a 32-bit signed quantity with a range of -2 to 2%'-1.

e unsigned long is a 32-bit unsigned quantity with a range of 0 to 23%-1.
e long long is a 64-bit signed quantity with a range of -2% to 2%%-1.

e unsigned long long is a 64-bit unsigned quantity with a range of 0 to 2%*-
1.

e short is a 16-bit signed quantity with a range of -2'°to 2'°-1.

e unsigned short is a 16-bit unsigned quantity with a range of 0 to 2*°-1.
o float is an IEEE single-precision floating point value.

e double is an IEEE double-precision floating point value.

e octet is an 8-bit quantity that is guaranteed not to undergo any

conversion when transmitted by the communication system.

¢ long double is an IEEE double-extended floating point value having an
exponent of at least 15 bits in length and a signed fraction of at least 64
bits. Our ORB does not support this type. OMG says that this type is
reserved for future support [14]. So, we do not have results for this type.

4.6.5.2 constructed types

OMG specifies structs, unions and enums as constructed types and mentions
interfaces in another header. We added the interfaces to our constructed types,

since they can be constructed from other types and can contain no methods.
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Indeed, even if you don’t declare any methods, ORB creates the accessor and
mutator functions for each attribute of the interface. But from the IDL view, it is

correct that we can have interfaces without methods.

We have a struct with only a boolean field, only a char field, etc. Same thing is true
for our interfaces : an interface with only a boolean attribute, a char attribute, etc.
We have our structs and interfaces for each of the primitive types. And we have an
interface, struct, enum, and union which has a field for every primitive type. We have
also an empty interface, an interface with no attributes and methods. Empty structs
are not allowed, so we have no empty struct. We tested our union with passing an
octet value (1 byte) and passing a double value ( 8 bytes).

4.6.5.3 container types

We have arrays, sequences and strings in this category. OMG defines sequences
and strings as template types and arrays in the title complex declarator [7].

4.6.6 IDL-to-Java mappings of used types
Table 4.1 shows the IDL-to-Java mapping of our tested types [14].

Table 4.1 : IDL-to-Java Mapping of primitive types

IDL Type Java type
boolean Boolean

char Char

wchar Char

octet Byte

string java.lang.String
wstring java.lang.String
short Short

unsigned short Short

long Int

unsigned long Int

long long Long

unsigned long long Long

float Float

double Double
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4.7 CDR Transfer Syntax

Here is the CDR transfer syntax described by OMG [7]. The Common Data
Representation (CDR) transfer syntax is the format in which the GIOP represents

OMG IDL data types in an octet stream.

4.7.1 primitive types

Primitive data types are specified for both big-endian and little-endian orderings. The
message formats include tags in message headers that indicate the byte ordering in
the message. Encapsulations include an initial flag that indicates the byte ordering
within the encapsulation. Primitive data types are encoded in multiples of octets. An
octet is an 8-bit value.

4.7.1.1 short and unsigned short

Short values are represented as two’s complement numbers. Figure 4.2 illustrates
the bit ordering and size of shorts. Unsigned shorts also have the same format but
they are represented as unsigned binary numbers.

Big Endian Little Endian
octet octet
MSB 0 LSB 0
LSB| 1 MSB 1

Figure 4.2 : Bit ordering and size of shorts and unsigned shorts in
big-endian and little-endian encodings.

4.7.1.2 long and unsigned long

Long values are represented as two’s complement numbers. Figure 4.3 illustrates
the bit ordering and size of longs. Unsigned longs also have the same format but

they are represented as unsigned binary numbers.

4.7.1.3 long long and unsigned long long

Long long values are represented as two’s complement numbers. Figure 4.4
illustrates the bit ordering and size of long longs. Unsigned long longs also have the

same format but they are represented as unsigned binary numbers.
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Big Endian Little Endian

octet octet
MSB 0 LSB 0
1 1
2 2
LSB 3 MSB 3

Figure 4.3 : Bit ordering and size of longs and unsigned
longs in big-endian and little-endian encodings.

Big Endian Little Endian
octet octet

MSB 0 LSB 0
1 1

2 2

3 3

4 4

5 5

6 6

LSB 7 MSB 7

Figure 4.4 : Bit ordering and size of long longs and unsigned long
longs in big-endian and little-endian encodings.

47.1.4 float

Figure 4.5 illustrates the representation of floating point numbers. The figure shows
three different components for floating point numbers, the sign bit (s), the exponent
(e) and the fractional part (f) of the mantissa. The sign bit has values of 0 or 1,

representing positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising el and €2 in
the figure, where the 7 bits in el are most significant. The exponent is represented
as excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <=f <
2.0, f1 being most significant and f3 being least significant. The value of a

normalized number is described by 159" x 2 (®xPonent=127) y (14 fraction) .
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Big Endian

octet
S el 0
e2 f1 1
f2 2
f3 3

Little Endian
f3
f2
e2 f1
S el

octet

Figure 4.5 : Bit ordering and size of floating point numbers in big-

endian and little-endian encodings.

4.7.1.5 double

Figure 4.6 illustrates the representation of double-precision numbers. For double-

precision values the exponent is 11 bits long, comprising el and e2 in the figure,

where the 7 bits in el are most significant. The exponent is represented as excess

1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <=m < 2.0, f1

being most significant and f7 being least significant. The value of a normalized

number is described by 159" x 2 (®xPonent-1023) (7 + fraction).

Big Endian
octet

s el 0
e2 f1 1

f2 2

f3 3

f4 4

f5 5

f6 6

f7 7

Little Endian

7

6

f5

f4

f3

f2

e2

f1

el

octet

Figure 4.6 : Bit ordering and size of double-precision numbers in

big-endian and little-endian encodings.
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4.7.1.6 long double

Figure 4.7 illustrates the representation of double-extended floating-point numbers.
For double-extended floating-point values the exponent is 15 bits long, comprising
el and e2 in the figure, where the 7 bits in el are the most significant. The fractional
mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The

value of a long double is determined by 159" x 2 (€xponent=16383) y (7 + fraction). Long

double is not supported by our ORB as mentioned at section 4.6.5.1.

Big Endian

S el

e?2

f1

f2

3

f4

5

f6

f7

8

f9

f10

f11

f12

f13

f14

octet

10

11

12

13

14

15

Little Endian

f14

f13

f12

f11

f10

f9

f8

7

6

5

f4

f3

f2

f1

e?2

S el

octet

10

11

12

13

14

15

Figure 4.7 : Bit ordering and size of double-extended numbers in
big-endian and little-endian encodings.
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4.7.1.7 octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo
any conversion during transmission. Octets may be considered as unsigned 8-bit

integer values.

4.7.1.8 boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and
FALSE as 0.

47.1.9 char and wchar

An IDL character is represented as a single octet. If the transmission code set is
byte-oriented then each wide character is represented as one or more octets. If the
transmission code set is non-byte-oriented then it is dependent on the character set.
if the character set contains 2 bytes, then wide characters are represented as
unsigned shorts. if the character set contains 4 bytes, then they are represented as
unsigned longs.

4.7.2 constructed types

As mentioned before constructed types are derived from other types. CDR rules

governing the constructed types are as follows.

4.7.2.1 struct

The components of a structure are encoded in the order of their declaration in the

structure. Each component is encoded as defined for its data type.

4.7.2.2 union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as its

type indicates.

4.7.2.3 enum

Enum values are encoded as unsigned longs. The numeric values associated with

enum identifiers are determined by the order in which the identifiers appear in the
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enum declaration. The first enum identifier has the numeric value zero (0).
Successive enum identifiers take ascending numeric values, in order of declaration

from left to right.

4.7.2.4 interface

We could not see any CDR rule at the OMG’s formal specification.

4.7.3 container types

4.7.3.1 array

Arrays are encoded as the array elements in sequence. As the array length is fixed,
no length values are encoded. Each element is encoded as defined for the type of
the array. In multidimensional arrays, the elements are ordered so the index of the
first dimension varies most slowly, and the index of the last dimension varies most

quickly.

4.7.3.2 sequence

Sequences are encoded as an unsigned long value, followed by the elements of the
sequence. The initial unsigned long contains the number of elements in the

sequence. The elements of the sequence are encoded as specified for their type.

4.7.3.3 strings and wide strings

A string is encoded as an unsigned long indicating the length of the string in octets,
followed by the string value in single- or multi-byte form represented as a sequence
of octets. The string contents include a single terminating null character. The string

length includes the null character, so an empty string has a length of 1.

A wide string is encoded as an unsigned long indicating the length of the string in
octets or unsigned integers (determined by the transfer syntax for wchar) followed
by the individual wide characters. The string contents include a single terminating
null character. The string length includes the null character. The terminating null

character for a wstring is also a wide character.
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5. RESULTS FOR JDK1.3_02

In this chapter we present the results for the benchmark we have constructed.

5.1 About Sun’s IDL Compiler

The Java IDL API, introduced in Version 1.2 of the Java 2 platform, provides an
interface between Java programs and distributed objects and services built using
the CORBA. Java IDL is an implementation of the standard Java Software
Development Kit (SDK) in the org.omg.CORBA and org.omg.CosNaming (CORBA
naming service support) packages and their subpackages [49]. Sun provides

programmers with an idl-to-java compiler named idlj (its old name is idI2java).

5.2 A Note on Our Graphics

We have used abbreviations for the primitive types in order to save space. The
abbreviations and their meanings at their order of appearance in graphics are given
in table 5.1.

Table 5.1 : Abbreviations used in our graphics

C: Char WC : Wide Character D : Double L: Long UL : Unsigned Long
LL : Long Long ULL : Unsigned Long Long | F: Float S : Short US : Unsigned Short
B : Boolean O : Octet A : All Primitives E : Empty WString : Wide String

5.3 Results for Local Calls

Following are the results for our local calls taken as described at section 4.6.2.

5.3.1 local oneway and twoway invocation results

Figure 5.1 shows the results for oneway and twoway functions which take no

arguments and return no result.
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msecs

Invocation Results

Onew ay

Tw ow ay

O Invoke

2,0188

2,8604

Figure 5.1 : Local results for Oneway and Twoway Invocations

5.3.1.1 comments on oneway and twoway invocation results

It is seen from the results that oneway invocations are faster than twoways. It is

natural to have such a result since oneway has no complaints about reliability and

chores related with it is only handled with twoway calls.

5.3.2 oneway - only send results

We will briefly refer to these results as L_O_OS (Local_Oneway_OnlySend) results.

5.3.2.1 L_O_OS primitive and primitive container results

Figure 5.2 through 5.6 shows the results obtained for primitive types and containers

with primitive types.

msecs

Primitives and Containers with 1 Primitive

C

wC

D

L

uL

LL

ULL

F

S

us

B

Primitive

2,0988

2,2192

2,1756 (2,0872

2,0872 (2,1232

2,1956

2,1632

2,3672

2,72

2,8039

2,0632

Sequence

2,2952

2,3836

2,6636 (2,2672

2,2752 (2,3356

2,3276

2,2916

2,572

2,3316

2,2312

2,84

Array

2,1512

2,6676

2,1352 (2,0908

2,2276 (2,1392

2,1872

2,1112

2,1712

2,1512

2,1192

2,6404

Figure 5.2 : L_O_OS Results for Primitives and Containers with 1 Primitive
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Containers with 10 Primitives

4
%] 31
o
%] 2 1
S 1
O 4
C wC D L uL LL | uLL F S us B 0
Sequence |2,2796 | 3,3524 |2,4468 | 2,2876 |2,2392 |2,4032 | 2,4036 |2,3436 |2,3476 |2,3116 |2,3036 |2,3032
Array 2,1232|2,2756 | 2,2996 (2,2504 (2,2992 [2,3036 (2,3876 |2,2832|2,2352 |2,1908 |2,1512 | 2,1228
Figure 5.3 : L_O_OS Results for Containers with 10 Primitives
Containers with 100 Primitives
4
0 31
o
7] 2 1
E 1
O 4
c wC | D L uL LL | uLL F S us B o}
@ Sequence |2,4476| 2,82 (2,8524(2,832 | 2,844 | 2,94 | 2,832 | 2,64 (2,5196(2,5516|2,3956 |2,4036
B Array 2,31882,4472|2,7564 |2,5396| 2,544 | 2,752 | 2,804 |2,5676(2,3396 |2,4352(2,3516 |2,3832
Figure 5.4 : L_O_OS Results for Containers with 100 Primitives
Containers with 1000 Primitives
8
0 6 1
o
7] 4 1
O 4
c wC | D L uL LL | uLL F S us B o}
@ Sequence |3,1328(3,6252| 5,64 (4,298 |4,3464| 5,48 | 5,476 |4,5464(3,9336 |3,6332|3,1088 |3,0764
B Array 3,0608|3,5692| 5,68 |4,2616(6,0208 | 5,536 (6,2772|4,5184(3,8412|3,6376| 3,064 |3,0124

Figure 5.5 : L_O_OS Results for Containers with 1000 Primitives
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Containers with 10000 Primitives

40
30 A
20 A

eenunn IEhG T

C wC D L UL LL ULL F S us B (@]

msecs

O Sequence | 6,994 | 9,554 |31,542(15,194|15,162 |29,662(29,647|16,788(9,3936 (9,3812|6,4288 5,9688
B Array 7,4872110,431|35,675(15,198(15,022|28,124|28,305|17,697(10,002 | 10,315| 6,922 |6,3932

Figure 5.6 : L_O_OS Results for Containers with 10000 Primitives
5.3.2.2 about L_O_OS primitive and primitive container results
Some conclusions from the results are :

e It is seen from our results (not from the graphics above, but the 25 samples
we have taken. The above results are the average of these 25 values) for
each repetition that an observable difference exists between the first call and
second call. The difference between the second call and following calls are
very small. This conclusion applies to all of our local results and will not be
mentioned again. The reason behind this could be that when the code is
executed for the first time, the loading of code fragment is from main
memory, at the best wish, and could get some time. After this first call, it
could be taken to the cache memory and to reach it could get less time. The
fluctuations appearing at the middle could be the result of operating system
taking the code fragment away from cache for a while and using cache for
some other work. After this, it could again be taken to cache when it is used

again by the application.

¢ If we send a primitive, a primitive within an array or a sequence, almost no
difference appears. Our arrays and sequences are fixed size. According to
the CDR rules, only values of array will be sent after marshalling. But for the
sequence we could expect a little delay because of the preceding sending of
unsigned long value which represents the size of the data to be sent. Our
results do not seem to conform to this second conclusion. Since arrays and
sequences are mapped to same Java type, and they have both fixed sizes

our ORB seems to handle arrays and sequences in the same way.
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¢ The difference among the results for containers with size 1, 10 and 100 are
very little. But when we take the results for the size of 1000, we face with a
sharp change. When we have 10000 elements, we have another sharp
change. Indeed, we could expect that when we have doubled the size of the
array, the time must have been doubled also. But it is not the case here. Its
reason could be that when we have 1, 10 and 100 values they fix in a
message. But when we have larger data, we have larger number of
messages. So, our time is proportional to the number of messages sent, not
only to the number of bytes sent (The proportion can be the ceiling of the
ratio (number of bytes / message size)).

o wchar can be represented with two bytes (as unsigned shorts) or four bytes
(as unsigned longs) according to the choosen character set. Our results
show that wchar is represented with two bytes since it has nearly the same

results with types having size of 2 bytes (e.g, short).

5.3.2.3 L_O_OS string and wide string results

Figure 5.7 shows the results obtained.

Results for Strings and Wide Strings

10

8 4
I 6 -
]
£ 41
jim w Hm BN
0
1 10 100 1000 10000
@ String 2,1388 2,1716 2,3836 3,1208 7,122
B WString 2,0592 2,4872 2,5316 3,5012 9,4696

Figure 5.7 : L_O_OS Results for Strings and Wide Strings
5.3.2.4 about L_O_OS string and wide string results

Either we send character strings as array or sequence of characters (see results for
primitve type of char and wchar at 5.3.3.1) or we send them as elements of a string,

we see almost no difference.
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5.3.2.5 L_O_OS struct and struct container results

Figures 5.8 through 5.12 shows the results obtained.
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Figure 5.8 : L_O_OS Results for Structs and Containers with 1 Struct
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Figure 5.9 : L_O_OS Results for Containers with 10 Structs.
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Containers with 100 Structs
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Figure 5.10 : L_O_OS Results for Containers with 100 Structs
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Containers with 1000 Structs
30
% 20 A
(]
[
€ 10
olrm rm [ (W (W (W re (e rm
cC |wc | D L uL LL oL | F S us B o} A
Sequence (3,7892| 4,254 (6,2372(4,8312|4,8744(6,0368|6,0448(5,0316 |4,3144 4,3464(4,8832|3,7616|21,278
Array 3,854 |4,2784|6,1972(5,0828|4,8868|6,0168(6,0448|4,9836 | 4,302 |4,3544(3,8448(3,7652|21,126
Figure 5.11: L_O_OS Results for Containers with 1000 Structs.
Containers with 10000 Structs
300
% 200
(]
[
= 100 A
0 Jem rm [ rm o row (W M W cw cw o o
cC |wc| D L uL LL oL | F S us B o} A
Sequence [19,636 | 22,52 (43,483(27,591|28,249|41,536|41,924(29,831 22,376 [22,745(19,848|19,492| 281,3
Array 19,757| 22,32 |43,899|28,044/|28,569(41,981[42,108|29,502 (22,697 [22,709(19,817|19,272|280,46

Figure 5.12 : L_O_OS Results for Containers with 10000 Structs

5.3.2.6 about L_O_OS struct and struct container results

Some conclusions from the results are :

If we consider the results obtained with only primitives and the results here

we see that when we encapsulate a primitive within a struct, we see no

observable difference between results for small sizes. But for the big-sized

data, primitives perform better.

Also it is true that placing the primitives within structs and then within

containers make no difference with the stattements above..

We have a special struct which consits of the fields for every primitive type. It

gives almost same results with little sizes. But when size enlarges, the

difference becomes apparent. Its reason is that according to CDR rules

when handling the structs, fields of it must be sent in order of their

declaration.
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5.3.2.7 L_O_OS interface and interface container results

Figures 5.13 through 5.16 shows the results obtained.

Interfaces and Containers with 1 Interface
3
4 2,8 -
»
£ =000 0 O L A o A
2,4 -
c|w|bpb | L |w/|wilfu| F|s |us]|B|O|A]|E
Interface |2,672 (2,684 (2,652 | 2,68 |2,676 2,688 (2,692 |2,668(2,672|2,612|2,748 | 2,652 (2,712 | 2,68
Sequence | 2,772 (2,736 | 2,768 | 2,676 | 2,684 | 2,656 | 2,692 | 2,7 [2,796 (2,688 (2,676 | 2,68 | 2,68 |2,752
Array 2,66 (2,604 2,66 |2,636| 2,66 |2,704|2,688| 2,68 | 2,7 | 2,68 |2,668|2,648(2,691 |2,772
Figure 5.13 : L_O_OS Results for Interface and Containers with 1 Interface
Containers with 10 Interfaces
4,2
n 4
o
L 3,8
E 3’6 - ﬂ
3,4 4
c |w|D L |[uw/|Lw]|uw| F| s |us]| B | O ]| A | E
Sequence | 3,854 | 3,693 | 3,866 | 3,798 | 3,802 | 3,894 | 3,862 | 3,91 [4,034 3,809 (3,894 | 3,737 | 3,894 | 3,789
Array 3,71 |3,758 3,773 (3,774 3,798 | 3,789 | 3,794 | 3,773| 3,778 | 3,81 |3,781|3,778| 3,83 [3,777
Figure 5.14 : L_O_OS Results for Containers with 10 Interfaces
Containers with 100 Interfaces
13
* 12,5
o
o 12 -
E 11,5
11 -
c|wc|pbp | L |w/|wlfur| F|s |us]| B | O|A]|E
Sequence | 12,05 (12,31 12,58 [ 12,29 | 12,3 12,56 |12,18 (12,52 12,2 |12,57 [12,41|12,38 [ 12,56 | 12,45
Array 12,2312,09 (12,32 (12,06 |12,32| 12,1 [11,95(11,91|12,01 [12,35(12,41 12,01 12,89 [ 12,43

Figure 5.15: L_O_OS Results for Containers with 100 Interfaces
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Containers with 1000 Interfaces

140

135 A

Al nndnnilin

C wcC D L UL LL | ULL F S us B o A E

msecs

Sequence |129,8 (130,5( 130 (130,9(130,8(131,4(133,6( 131 |130,6(130,9(131,4(131,5(134,4(130,4
Array 128,81129,6 (131,2|128,7(130,6 | 132 |132,8(130,7|130,4( 132 |130,8|130,7 |134,8]129,4

Figure 5.16 : L_O_OS Results for Containers with 1000 Interfaces
10000 interfaces produced the Out Of Memory error.
5.3.2.8 about L_O_OS interface and interface container results
Some conclusions from the results are :

o If we consider the results obtained with only primitives and the results here
we see that when we encapsulate a primitive within an interface, the
performance is reduced even with the small number of values. It could be the
result of accessor and mutator functions created. But interface without
members or functions (our empty interface) shows the same results. So, it is

not a result of accessor or mutator functions but a result of type interface.

e The overhead introduced by interface type overwhelms the overhead of

primitve types. So we have nearly the same results for all types.

e For 10000 elements we encountered the out of memory error at the server

side.

5.3.2.9 L_O_OSunion and enum results

Figures 5.17 through 5.21 shows the results obtained.
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msecs

Results for 1 Union and Enum
2,4
2 . .
Enum Union (Octet) Union (Double)
||:| All Primitives 2,1668 2,3116 2,3076
|m Sequence 2,2716 2,2824 23836
||:| Array 2,2912 2,3116 2,3312

Figure 5.17 : L_O_OS Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

2,6
3
8 2,4 A
E 2’2 ] 1
2
Enum Union (Octet) Union (Double)
O Sequence 2,3032 2,4236 2,5516
B Array 2,3716 2,3956 2,556
Figure 5.18 : L_O_OS Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
4
(%]
o
) 2 1
€
0
Enum Union (Octet) Union (Double)
O Sequence 2,62 3,0884 3,6052
B Array 2,608 3,0844 3,5892
Figure 5.19 : L_O_OS Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
20
(%]
Q
b 10 A
. e I
0 4
Enum Union (Octet) Union (Double)
O Sequence 4,5064 8,9212 11,1996
| Array 4,6468 8,8968 11,3004

Figure 5.20 : L_O_OS Results for Containers with 1000 Unions and Enums
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200

Results for 10000 Unions and Enums

100 A

msecs

04— T

[

. I

Enum Union (Octet) Union (Double)
O Sequence 18,3268 92,9052 118,4828
W Array 18,2024 92,91 120,0568

Figure 5.21 : L_O_OS Results for Containers with 10000 Unions and Enums

5.3.2.10 about L_O_0OS union and enum results

Some conclusions from the results are :

e CDR says that enum type is encoded as unsigned longs. Our enum results

are close to unsigned longs. It could be said that enums have same

performance with unsigned longs.

e Our results for unions, one carrying an octet and other a double, shows that

for size 1, their performances are nearly the same. But when size increases,

difference becomes apparent. Carrying double takes longer than carrying

octet.

5.3.3 twoway — only send results

We will briefly refer to these results as L_T_OS (Local_Twoway_OnlySend) results.

5.3.3.1 L_T_OS primitive and primitive container results

Figure 5.22 through 5.26 shows the results obtained for primitive types and

containers with primitive types.
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Figure 5.22 : L_T_OS Results for Primitives and Containers with 1 Primitive
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Figure 5.23 : L_T_OS Results for Containers with 10 Primitives
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Figure 5.24 : L_T_OS Results for Containers with 100 Primitives
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Containers with 1000 Primitives
6
2 44
[}
(7]
S 2
O 4
c wC D L uL LL | uLL F s us B o}
@ Sequence |3,3164 |3,55285,0672 |3,9932(3,9856 |4,8428|4,8552 | 4,1744(3,5692 | 3,5488|3,2248 | 3,1644
B Array 3,3532(3,6776| 5,528 | 4,222 | 4,266 |5,2592(5,2956 |4,4264|3,6852 | 3,6652|3,2888 |3,3128
Figure 5.25: L_T_OS Results for Containers with 1000 Primitives
Containers with 10000 Primitives
40
" 30
ot
g 20
S 0 1
. .rm [H (N
c wC D L uL LL | uLL F S us B o
@ Sequence |6,4612|8,8732(30,192 | 13,84 | 13,94 |28,389|28,489 15,823|8,7368 |8,7604|5,8768 |5,7768
B Array 7,01 | 9,658 |34,105|15,166| 15,37 |31,814|31,994|17,233| 9,578 |9,8904|6,3932 |6,4936

Figure 5.26 : L_T_OS Results for Containers with 10000 Primitives

5.3.3.2 about L_T_OS primitive and primitive container results

Some conclusions from the results are :

¢ We have nearly same results for arrays and sequences (with possible 10%

deviation).

e If we compare with L_O_OS results of same category we see that oneway

results are faster for small sizes, but when we come to size 1000 and 10000

we get the nearly same results.

5.3.3.3 L_T_OS string and wide string results

Figure 5.27 shows the results obtained.
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Results for Strings and Wide Strings

10

8 4
8 6 -
b
£ 41
0
1 10 100 1000 10000
@ String 2,992 3,0044 3,0484 3,3408 6,496
B WString 3,0364 3,0484 3,0684 3,6408 8,748

5.3.3.4 about L_T_OS string and wide string results

Figure 5.27 : L_T_OS Results for Strings and Wide Strings

Some conclusions from the results are :

For strings and wstrings we have nearly the same results with

primitive arrays and sequences of type char and wchar, respectively.

If we compare with L_O_OS results, we see that for the small

lengths, oneway calls are faster. But when size increases, the

difference decreases and for the length of 10000, twoway shows

better performance than oneway.

5.3.3.,5 L_T _OS struct and struct container results

Figures 5.28 through 5.32 shows the results obtained.
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Figure 5.28 : L_T_OS Results for Structs and Containers with 1 Struct
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Containers with 10 Structs

32
3,1 -
)]
]
£ 2,9 -
2,8 -
2,7 -
c |wc| D L UL | LL juL | F S us | B o] A
Sequence [2,9524(2,9324] 3 [2,948 |2,9164|2,9564(2,9444(2,9684 2,9284 (2,9524( 2,944 |2,9564| 3,136
Array 2,9884(2,9884| 3,084 |3,0044(2,9684| 2,96 |2,9924(3,0244|2,9804|3,0084|3,00842,97643,1684
Figure 5.29 : L_T_OS Results for Containers with 10 Structs
Containers with 100 Structs
6
2 41
(]
%]
IS 2
O 4
c |wc| D L UL | LL juL | F S us | B o] A
Sequence [3,0484(3,0404(3,1804 | 3,064 |3,0648|3,1124|3,1288(3,1284| 3,036 |3,0924(3,0084 (3,0248|4,5464
Array 3,0684(3,1328|3,2808|3,0764(3,0964 (3,16843,1888|3,1284(3,0804| 3,1 |3,0804|3,08844,6748
Figure 5.30 : L_T_OS Results for Containers with 100 Structs
Containers with 1000 Structs
30
9 20 |
(]
]
IS 10 1
i o T I s
c |wc| D L UL | LL juL | F S us | B o] A
Sequence [3,9096 [4,2656(5,6084(4,6304| 4,666 | 5,392 | 5,428 (4,8264 | 4,274 |4,3304(3,8856|3,9496/|19,868
Array 3,9616|4,3544| 5,868 |4,7192(4,7308| 5,64 |5,6644(4,9312| 4,294 |4,3864| 3,962 |3,9456| 20,95

Figure 5.31: L_T_OS Results for Containers with 1000 Structs
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Containers with 10000 Structs

400

300 H
200 A

msecs

100 A

o4 o [ o com [0 M cpw cmw e cmn oo
C wC D L UL LL ULL F S Us B (0] A

Sequence |16,892(21,014/41,011(20,209|20,354(39,505(39,405(21,635] 21,19 |21,443|16,724|16,648|303,32
Array 16,496(21,018)40,886|20,201(20,373(39,397|39,401(21,398|21,118|21,194(16,856 16,56 |302,79

Figure 5.32: L_T_OS Results for Containers with 10000 Structs
5.3.3.6 about L_T_OS struct and struct container results
Some conclusions from the results are :
¢ We have the nearly same results for sequences and arrays.

e If we compare the results with results of L_O_OS we see that for the small
sizes (1,10, 100) oneway results are better than twoways. For the larger
sizes they are nearly equal (size 1000 except our private all struct). Then for
size 10000 it has two features in it : for primitive structs twoway is faster, and

for our private all struct oneway is faster.

5.3.3.7 L_T _OS interface and interface container results

Figures 5.33 through 5.37 shows the results obtained.

Interfaces and Containers with 1 Interface

3,4

3,3

= [ A AT A

C wcC D L UL LL | ULL F S us B (0] A E

msecs

Interface |3,252|3,276(3,213|3,221|3,237 (3,261 3,237 |3,245(3,261|3,273 (3,349 3,26 |3,257 (3,241
Sequence | 3,2213,212 3,224 (3,193 3,24 |3,224|3,221(3,237|3,193|3,2453,228( 3,217 3,248 | 3,276
Array 3,24 (3,237]3,253| 3,26 |3,224(3,281(3,241|3,233|3,249|3,248(3,281| 3,269 | 3,241 | 3,353

Figure 5.33 : L_T_OS Results for Interface and Containers with 1 Interface
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Containers with 10 Interfaces

3,95
" 3,9
o
o 3,85 A
E 3’8 - ’_I
3,75 ~
c|w|bp | L |w]|LwiluwL|F|[s|Ju|B|O]|A]|E
Sequence | 3,842 | 3,846 3,822 3,834 | 3,83 [3,866 (3,886 | 3,857 3,841 (3,846 |3,862|3,873 (3,898 | 3,846
Array 3,833(3,862|3,866 | 3,877 (3,846 |3,874|3,882 | 3,89 |3,882|3,938|3,858(3,894|3,902| 3,89
Figure 5.34 : L_T_OS Results for Containers with 10 Interfaces
Containers with 100 Interfaces
12
” 11,5 -
3
Q 11 A
E 10,5 A
10 A
c|wc|D | L |Juw|Lwju|F|s|Ju|B|O]|A]|E
Sequence |11,02(11,39|11,21| 10,9 [11,29|11,46(11,26(11,19|11,17 (11,24{11,27|11,18|11,83|11,41
Array 11,05|11,31(11,6111,11(11,32(11,55|11,38 11,36 (11,42 | 11,38 | 11,7 |11,37|11,84 (11,66
Figure 5.35: L_T_OS Results for Containers with 100 Interfaces
Containers with 1000 Interfaces
150
” 140
3
Q 130
E 120
110
c|wc|D | L |uw|Lwiju|F|s|Ju|B|O]|A]|E
Sequence | 135,3(135,1|131,2|135,5(142,4|132,4|133,7(136,6 | 137,1|133,1|133,3| 138,3(137,2| 140,4
Array 127,5/130,1(131,6|128,1| 132 |132,6(|134,2(127,9|130,2(132,1(132,6|131,4|136,3| 129

Figure 5.36 : L_T_OS Results for Containers with 1000 Interfaces

56




Containers with 10000 Interfaces
1700
” 1600 -
3
9 1500 -
E 1400 -
1300 -
c |w| D | L |w|Lwwlu| F | s |us|B|O|A]|E
Sequence | 1573 | 1575 | 1595 | 1575 | 1587 | 1562 | 1572 | 1579 | 1583 | 1592 | 1591 | 1581 | 1610 | 1582
Array 1546 | 1549 | 1573 | 1547 | 1561 | 1572 | 1582 | 1551 | 1566 | 1570 | 1579 | 1563 | 1510 | 1436

Figure 5.37 : L_T_OS Results for Containers with 10000 Interfaces

5.3.3.8 about L_T_OS interface and interface container results

Some conclusions from the results are :

e Arrays and sequences performs nearly the same

e If we compare with L_O_OS results we see that for the size of 100, twoway

is faster than oneway, but at size 1, 10, 1000 oneway is faster.

e L_O_OS with size 10000 could not complete the test. But with twoway we

could completed it here.

5.3.3.9 union and enum results

Figures 5.38 through 5.42 shows the results obtained.

Results for 1 Union and Enum
3,2
[92]
o
7] 31
IS
2,8
Enum Union (Octet) Union (Double)
||:| All Primitives 3,0004 3,0328 3,0724
[m Sequence 2,98 2,96 3,132
lo Array 3,052 2,98 3,1244
Figure 5.38 : L_T_OS Results for Union, Enum and Containers with 1 Union and Enum
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Results for 10 Unions and Enums
32
%] 3,1
3
7] 31
2,8 -
Enum Union (Octet) Union (Double)
|E| Sequence 2,9364 3,0204 3,0564
|m Array 2,979 3,0448 3,1004
Figure 5.39 : L_T_OS Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
4
[92]
o]
» 24
IS
0
Enum Union (Octet) Union (Double)
|E| Sequence 3,0404 3,3692 3,6416
|m Array 3,0928 3,4328 3,7172
Figure 5.40: L_T_OS Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
15
8 10
Q
(2]
E 5 - 1
[ T
Enum Union (Octet) Union (Double)
|E| Sequence 4,3664 7,8552 10,7116
= Array 44344 8,0356 10,9836
Figure 5.41 : L_T_OS Results for Containers with 1000 Unions and Enums
Results for 10000 Unions and Enums
150
8 100
(9]
(2]
IS 50 A
fo J I — ]
Enum Union (Octet) Union (Double)
||:| Sequence 16,916 99,2664 106,5732
|l Array 16,744 100,7848 106,8536

Figure 5.42 : L_T_OS Results for Containers with 10000 Unions and Enums

5.3.3.10 about L_T_OS union and enum results

Some conclusions from the results are :
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e Arrays and sequences performs nearly the same

o If we compare with L_O_OS results we see that for the size of 100, twoway

is faster than oneway, but at size 1, 10, 1000 oneway is faster.

5.3.4 twoway — send get results

We will briefly refer to these results as L_T_SG (Local_Twoway_SendGet) results.

5.3.4.1 L_T_SG primitive and primitive container results

Figure 5.43 through 5.47 shows the results obtained for primitive types and
containers with primitive types.

Primitives and Containers with 1 Primitive
3,5
]
3
0 3 1
€
2,5 -
C wC D L uL LL ULL F S us B o
Primitive  |2,9724 |3,0364 |3,1164 (2,9884|2,9724 | 3,012 [3,04843,0364 |3,0364 |2,9884 (3,3532| 2,964
Sequence | 3,06 |3,0848|3,1444 (3,0404|3,0604 | 3,128 |3,1248(3,1128 |3,0764|3,1684 | 3,044 |3,3932
Array 3,0164 | 3,056 |3,0968 |2,9844 |3,0244 (3,1036 | 3,124 |3,0648 [3,0408| 3,072 | 2,996 |3,3848
Figure 5.43 : L_T_SG Results for Primitives and Containers with 1 Primitive
Containers with 10 Primitives
3,2
* 3,1 -
o
n 3 1
= 2,9 -
2,8 -
C wcC D L uL LL ULL F S us B o)
Sequence |3,0684 |3,0684 |3,1444|3,0768 |3,0804 | 3,1004 |3,1208 | 3,1568 |3,0524 |3,0884 | 3,0484 |3,0476
Array 2,9764(3,0276 (3,0808 [2,9804 (3,0324 |3,1204 |3,1004 |3,0404 | 3,016 |3,0608 [2,9844 |3,0316

Figure 5.44 : L_T_SG Results for Containers with 10 Primitives
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Containers with 100 Primitives

3,6
3,4
3,2 1

Sl N

C wC D L UL LL ULL F S us B (0]

msecs

O Sequence (3,1164(3,1316|3,4244 (3,1408|3,2121 |3,3448(3,3728 | 3,2648(3,1448 3,1484| 3,112 (3,0844
B Array 3,0564 |3,0684|3,3448 |3,1124(3,1684 |3,3008|3,3172|3,2044(3,1244 (3,1284(3,0444 | 3,0564

Figure 5.45: L_T_SG Results for Containers with 100 Primitives

Containers with 1000 Primitives

10

JOLL Almm

C wcC D L UL LL ULL F S us B (0]

msecs
[&)]

O Sequence (3,7336(4,3704|7,7908 [5,2636|5,2596 | 7,3348(7,3268 |5,6792(4,3104 | 4,278 |3,6452 (3,5288
B Array 3,7216(4,2936|7,9432| 5,376 |5,3712 |7,4868(7,5468 5,8164|4,3544 | 4,394 |3,5892|3,6128

Figure 5.46 : L_T_SG Results for Containers with 1000 Primitives

Containers with 10000 Primitives

80

60 -
40

C wC D L uL LL ULL F S us B (0]

msecs

O Sequence |9,9104 (13,692|56,285 (23,209|23,225|52,059(|52,412( 28,71 | 14,73 |14,978|8,7844 |8,5684
B Array 11,148(16,319|70,874|26,566(26,999 (66,812|67,401|32,735(17,257 (17,846(10,179 |9,8504

Figure 5.47 : L_T_SG Results for Containers with 10000 Primitives
5.3.4.2 about L_T_SG primitive and primitive container results
Some conclusions from the results are :

e One primitive, primitive within a sequence and primitive within an array

performs the same.
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Sequences are a bit faster than the arrays for the size 10000. | can’t deduce
anything from this result. In the worst case, arrays must have been faster

than sequences.

If we compare with L_T_OS results, we see that sending a type is nearly the
same with L_T_SG for small sizes (1, 10, 100) and becomes apparent when
size increases (1000, 10000). We would expect the L_T_SG to performt
slower all the times from L_T_OS since there is two paths of data flow. But it
is not the case with small sizes. | guess this is because of the fact that small
sized data can be carried in a packet and the acknowledgement can be
piggybacked with this packet. Twoway calls always block for an
acknowledgement that specifies the successive end of the call. If the time
consumed on the server side to copy data and send back is small, which is
the case for small-sized data, then these results can be very close. For the
big data we lose our time in coping with more than one packet and copying

of return results to be sent back from the server.

5.3.4.3 L_T_SG string and wide string results

Figure 5.48 shows the results obtained.

msecs

Results for Strings and Wide Strings

20
15 4
10 A

54

L rmm rmm mm [

10

100

1000

10000

0O String

3,0488

3,0604

3,0964

3,7092

9,9024

@ \WString

3,092

3,0604

3,1128

4,23

14,6532

Figure 5.48 : L_T_SG Results for Strings and Wide Strings

5.3.4.4 about L_T_SG string and wide string results

Some conclusions from the results are :

Strings and WStrings exhibits the same performance characteristics with
char and wchar sequences, respectively. And they are faster than the arrays

of their respective types.
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o If we compare with L_T_OS results we see that the difference between
sending and sending/getting the (w)strings becomes apparent after size
1000.

5.3.45 L_T_SG struct and struct container results

Figures 5.49 through 5.53 shows the results obtained.

Structs and Containers with 1 Struct

3,5

1181 10 18 AT OB

C wC D L UL LL ULL F S us B (0] A

msecs

Struct 3,012 |3,0164(3,1004(3,0124|3,0124|3,0404 (3,0244|3,06843,0044 | 3,004 |2,9924|3,0044(3,2284
Sequence |3,0564 (3,0444|3,1564 (3,0248|3,0324|3,0428(3,0844(3,1084|3,0604 | 3,024 |3,3808|2,9964|3,2648
Array 3,06 (3,0884|3,1928| 3,056 (3,0884|3,0928|3,0964(3,1088|3,1004|3,0608(3,4244 (3,0324|3,2568

Figure 5.49 : L_T_SG Results for Structs and Containers with 1 Struct

Containers with 10 Structs

msecs

C wC D L UL LL ULL F S US B (0] A

Sequence |2,9764 2,996 |3,1004(2,9644|3,0244|3,0324(3,0728(3,0404|3,00043,0404|3,0124|3,9924|3,3252
Array 3,06883,0448|3,1048(3,0524(3,0648|3,0364|3,0488(3,0804 |3,0328|3,0364( 3,036 | 3,004 |3,3804

Figure 5.50 : L_T_SG Results for Containers with 10 Structs

Containers with 100 Structs

8

6 4
4 4

gl nnusnnnnni

C wC D L UL LL ULL F S US B (0] A

msecs

Sequence | 3,108 (3,1728|3,4092(3,1844|3,1848(3,3248|3,3448(3,2468|3,1528(3,1684|3,1328|3,1164(6,1812
Array 3,16083,2088|3,4532(3,2528|3,2328|3,3404|3,3772|3,2968 |3,1808(3,2008(3,1804 |3,1764| 6,666

Figure 5.51: L_T_SG Results for Containers with 100 Structs
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Containers with 1000 Structs
60
% 40
(]
%]
€ 20 -
ol rm M rm rm M [ O e oW cw o
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence (4,6148(5,2236(7,9952(6,0004|6,0328|7,8432|7,8742(6,4252 |5,2072 |5,3192(4,6348|4,5784/39,757
Array 4,7312| 5,42 (8,8204|6,3888|6,4452(8,4196(8,4444| 6,766 | 5,404 | 5,384 |4,72284,6504(36,649
Figure 5.52 : L_T_SG Results for Containers with 1000 Structs
Containers with 10000 Structs
600
% 400 A
(]
%]
€ 200 A

o e (B e e [ [ o or= e e
(0]

C wC D L UL LL ULL F S us B A

Sequence |20,117(38,439|99,575(50,929| 51,67 [96,098| 95,91 (55,476|38,796(39,128|20,113| 19,68 |492,86
Array 20,11738,584| 99,56 (51,294|52,115|96,495(96,113|55,083| 38,72 (39,244(20,025]19,556[490,38

Figure 5.53 : L_T_SG Results for Containers with 10000 Structs
5.3.4.6 about L_T_SG struct and struct container results
Some conclusions from the results are :

e To carry a primitive alone, within a struct or within a container with 1 struct is

same.

e There is no difference between carrying the structs with arrays or

sequences.

o If we compare with L_T_OS results we see that there is difference for sizes
1, 10 and 100. After size 1000 difference becomes to appear.

5.3.4.7 L_T_SG interface and interface container results

Figures 5.54 through 5.58 shows the results obtained.
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Interfaces and Containers with 1 Interface

37
(%] 3,6
o)
Q 35
S 1 1N IY 0 IR1 ) MM m
33
c|wc|D | L |Juw|Lwju| F|s|Ju|B|O]|A]|E
Interface [3,465 3,481 3,496 3,457 |3,488|3,481|3,473|3,481| 3,473 |3,472|3,585 | 3,457 | 3,485 | 3,477
Sequence | 3,469 | 3,493 | 3,472 | 3,477 | 3,493 3,449 3,516 | 3,509 | 3,461 | 3,485 | 3,501 | 3,473 | 3,492 | 3,609
Array 3,465(3,513|3,476 | 3,488 (3,473 3,476 | 3,453 | 3,453 3,465 3,461 | 3,517 3,441 (3,473|3,574
Figure 5.54 : L_T_SG Results for Interface and Containers with 1 Interface
Containers with 10 Interfaces
48
” 47
3
@ 4,6
E 45
4,4
c|wc|D | L |uw|Lju|F|s]|Ju]|B|O]|A]|E
Sequence |4,719|4,707 | 4,699 | 4,698 [ 4,679 4,763 | 4,715 4,743 | 4,683 | 4,715 (4,679 4,731 | 4,571 | 4,675
Array 4,647 |4,622|4,651(4,619|4,694|4,615|4,663|4,622| 4,618 | 4,655 | 4,626 | 4,623 | 4,663 | 4,783
Figure 5.55: L_T_SG Results for Containers with 10 Interfaces
Containers with 100 Interfaces
30
% 20
(]
]
1S 10 +
0 .
c|wc|D | L |uw]|L|ju|F|s]|Ju|B|O]|A]|E
Sequence |17,06|17,15| 17,7 |17,26|17,75|17,91| 17,6 |17,28|17,19|17,49|17,53| 17,37 | 20,42 | 17,32
Array 15,83| 15,97 16,34 | 16,06 [ 16,14 | 16,37 | 16,19 | 15,74 | 15,93 | 16,18 | 16,21 | 15,94 | 18,48 | 18,32

Figure 5.56 : L_T_SG Results for Containers with 100 Interfaces
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Containers with 1000 Interfaces
400
” 300
3
9 200
E 100
0 4
c |w| D | L |w|Lwwlu| F | s |us|B|O|A]|E
Sequence | 258,5 | 246,4 | 261,9|259,2 | 286,7 | 249,2 [ 249,6 | 251,5| 251,6 | 265,8 | 260,6 | 289,1 | 251,4 | 258,1
Array 215,9(217,5(227,6|217,9|229,7|226,4 | 226,6 | 218,3| 217 [227,6|227,8|217,2(223,3|216,6
Figure 5.57 : L_T_SG Results for Containers with 1000 Interfaces
Containers with 10000 Interfaces
2350
” 2300 -
3
9 2250
€

o L LI TH T M

C wcC D L UL LL | ULL F S us B (0] A E

Sequence | 2207 | 2255 | 2205 [ 2204 | 2263 | 2304 | 2298 | 2205 | 2205 | 2304 | 2302 | 2205 | 2304 | 2204
Array 2205 | 2205 | 2300 [ 2205 | 2304 [ 2296 | 2304 | 2204 | 2206 | 2244 | 2244 | 2212 | 2304 | 2204

Figure 5.58 : L_T_SG Results for Containers with 10000 Interfaces
5.3.4.8 about L_T_SG interface and interface container results
Some conclusions from the results are :
e To carry a primitive within an interface is slower than carrying it alone.
¢ There is no difference between sequences and arrays.

e Sharp changes between results begin very early, with size 10. This shows

that interfaces requires big memory areas.

o If we compare with L_T_OS results we see that even for the only one
interface there is difference between only sending and sending/getting the

interfaces.

5.3.4.9 L_T_SGunion and enum results

Figures 5.59 through 5.63 shows the results obtained.
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Results for 1 Union and Enum

34
4 32
[
%]
- e RSN
2,8 - -
Enum Union (Octet) Union (Double)
||:| All Primitives 3,0324 3,0928 3,1404
|I Sequence 3,0164 3,0524 3,1808
o Array 3,0684 3,0684 3,2248

Figure 5.59 : L_T_SG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

34
4 32
]
(2]
2,8
Enum Union (Octet) Union (Double)
|E| Sequence 3,124 3,0528 3,196
m Array 3,0288 3,108 3,04
Figure 5.60 : L_T_SG Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
6
3 41
Q
(2]
E 2 - —- 1
0
Enum Union (Octet) Union (Double)
||:| Sequence 3,1644 3,6776 4,3984
|I Array 3,1568 3,7168 4,4064
Figure 5.61 : L_T_SG Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
20
[92]
3
9 10 4
IS

ol [ T

Enum Union (Octet) Union (Double)
|E| Sequence 5,516 11,9816 16,8524
|l Array 5,6124 12,1736 16,628

Figure 5.62 : L_T_SG Results for Containers with 1000 Unions and Enums
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300

msecs

Results for 10000 Unions and Enums

200 -
100 A
04

I —

Enum

Union (Octet)

Union (Double)

|E| Sequence

32,4744

187,702

256,8612

|l Array

31,2608

177,8596

273,5536

Figure 5.63 : L_T_SG Results for Containers with 10000 Unions and Enums

5.3.4.10 about L_T_SG union and enum results

Some conclusions from the results are :

faster for size 10000 from unsigned longs.

e Enum and union Arrays and sequences perform nearly the same as

expected.

e Difeerence between unions with doubles and unions with octets are obvious

for sizes bigger than 10.

e If we compare with L_T_OS results we see that for the enum they almost

show the same performance up to size 1000, and for the union up to size

100.

5.3.5 twoway — only get results

We will briefly refer to these results as L_T_OG (Local_Twoway_OnlyGet) results.

5.3.5.1 L_T _OG primitive and primitive container results

Figure 5.64 through 5.68 shows the results obtained for primitive types and

containers with primitive types.
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msecs

Primitives and Containers with 1 Primitive

35

‘monmmmdmmnd

Primitive

2,9644

2,976

3,0644 (2,9524 | 2,964

2,968 12,9924

3,0524

2,98

2,9764

3,3732

2,952

Sequence

2,9924

3,0288

3,0996 (3,0164 |3,0048

3,0644 (3,0884

3,0688

3,032

3,056

3,0164

3,4292

Array

3,0004

3,0164

3,056 |2,9604|2,9644

2,9764 (3,0364

3,0444

2,9884

3,0124

2,956

3,3228

Figure 5.64 : L_T_OG Results for Primitives and Containers with 1 Primitive

msecs

Containers with 10 Primitives

31
3,05 A
3
2,95 A
2,9 1

Cc

wC

D

L UL

LL

ULL

F

S

us

B

Sequence

3,0128

3,0164

3,0764 |3,0084 |3,0004

3,0564 |3,0684

3,0484

3,032

3,0324

2,9964

3,012

Array

2,96

2,9644

3,0284 12,9764 |2,9964

3,0036 |3,0324

3,0264

2,9924

3,0404

2,9604

3,0204

Figure 5.65: L_T_OG Results for Containers with 10 Primitives

msecs

3,3
3,2 1
3,1

3
2,9 1
2,8 1

Containers with 100 Primitives

C

1l

wC

D

L uL

LL

ULL

S

us

B

O Sequence

3,0364

3,0564(3,1968

3,0644]3,0928 | 3,1568

3,1764

3,1164

3,0564

3,0604

3,0204

3,044

B Array

2,9844

3,00843,1604

3,0528]3,0288 | 3,1288

3,1488

3,1084

3,0448

3,0564

3,0088

3,0004

Figure 5.66 : L_T_OG Results for Containers with 100 Primitives
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msecs

Containers with 1000 Primitives

0_

C wC D L UL LL ULL F S us B (0]

O Sequence (3,3448(3,6376(5,3236 (4,1344| 4,118 |5,1156(5,1036 |4,3184(3,6408 |3,6528|3,3252 (3,3092

B Array 3,3248(3,6056| 5,492 | 4,174 | 4,21 |5,2876(5,3316 (4,4268|3,6332 |3,6852|3,3008 |3,3252

Figure 5.67 : L_T_OG Results for Containers with 1000 Primitives

msecs

Containers with 10000 Primitives

40
30 A

20 A

im0 TH TR ’_I|_||1I_ll‘l

C wcC D L UL LL ULL F S us B (0]

O Sequence (6,4976| 8,46 |29,771(12,614|12,606| 28 (27,612]15,322(8,9768(9,0852|6,0284 (6,0124

B Array 7,2264( 9,718 | 33,32 |14,272|14,733 (31,742 31,99 (17,325|10,407|10,575| 6,706 |6,5936

Figure 5.68 : L_T_OG Results for Containers with 10000 Primitives

5.3.56.2 about L_T_OG primitive and primitive container results

Some conclusions from the results are :

Primitives alone and primitives in a container performs same.

Arrays and sequences perform nearly the same. Arrays are a bit better than

sequences, but it can be ignored.

If we compare the results with L_O_SG results we see that for the small
sizes they ara nearly equal. When calling a method we pass to the ORB (or
more truely to the Object Adapter) the name and parameters of the method.
So, when we have small sizes of parameters, we can fit them into a packet
and can send the method name and parameters within a packet. But when

parameter sizes increases the number of packets also increases.

If we compare the results with L_T_OS, we see that they perform almost the

same.
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5.3.5.3 L_T_OG string and wide string results

Figure 5.69 shows the results obtained.

msecs

10

Results for Strings and Wide Strings

o N A O
! ! ! !

N

N

N

B

1

10

100

1000

10000

O String

3,3852

3,044

3,0724

3,4292

6,6216

B WString

3,0524

3,0168

3,0396

3,6412

8,6768

Figure 5.69 : L_T_OG Results for Strings and Wide Strings

5.3.5.4 aboutL_T OG string and wide string results

Some conclusions from the results are :

Encapsulating char and wchar within containers and strings performs the

same.

If we compare with L_T_OS results we see that the results are nearly same.

If we compare with L_T_SG results we see that they are nearly the same for
sizes 1, 10 and 100 and L_T_SG becomes slower and slower for sizes 1000
and 10000.

5.3.5.,5 L_T _OG struct and struct container results

Figures 5.70 through 5.74 shows the results obtained.
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Structs and Containers with 1 Struct

4
[}
o)
" 2 1
1S
0 .
cC |wc| D L uL | L |uL | F S us | B o] A
Struct 2,984 | 2,992 |3,0168(2,95242,9604|2,9844 (3,0284| 3,004 |2,9396(2,9724(3,0164| 2,972 |3,0884
Sequence (3,0128(3,0564(3,0804(3,0004|2,9964|3,0084|3,0444(3,0524| 3,02 (3,0364(3,6412|2,9964|3,1516
Array 3,0008(3,0244(3,0964(2,9644| 3 |3,0284|3,0164|3,04443,0288|3,0044(3,6332(2,9676|3,0968
Figure 5.70 : L_T_OG Results for Structs and Containers with 1 Struct
Containers with 10 Structs
32
” 31
3
%} 31
E 2’9 - ﬂﬂ ﬂ ﬂ
2,8
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence [2,9844(3,0084(3,0688| 2,96 |2,9644|2,9804|2,97243,0204(3,0084|2,9684(3,0164(2,9524|3,1364
Array 2,972 |2,9844(3,0084 | 2,956 | 2,976 | 2,964 | 2,992 (2,9884|2,9484(2,9444| 2,988 |2,9764|3,1368
Figure 5.71: L_T_OG Results for Containers with 10 Structs.
Containers with 100 Structs
6
2 41
(]
]
1S 2 1
O 4
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence [3,0568(3,0764(3,1768| 3,064 |3,0768|3,1368|3,1768|3,13243,1048|3,1004(3,0728 3,0324|4,6984
Array 3,0608(3,0724(3,2248| 3,056 (3,0808|3,1524|3,1568|3,1204 |3,0448|3,0728|3,0404 [3,0204|4,6784

Figure 5.72: L_T_OG Results for Containers with 100 Structs
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msecs
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Containers with 1000 Structs
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L
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il |

LL

il

ULL
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F

il
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W

B

[H

o

Sequence |3,8256

4,146

5,5844

4,5144

4,5308

5,34

5,416

4,7104

4,126

4,1104

3,8776

3,7856

18,19

Array

3,8528

4,138

5,5684

4,538

4,5788

5,3312

5,42

4,7308

4,094

4,16

3,862

3,7696

18,19

Figure 5.73 : L_T_OG Results for Containers with 1000 Structs

msecs
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200 H

100 A

Containers with 10000 Structs

0 {=mm_
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i
wcC
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-
L

-
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i

LL

.

ULL

-
[=

=
S

i
us

e
B

e —
(0]

A

Sequence |13,848

16,72

39,285

18,803

18,99

37,126

37,378

20,642

16,327

16,28

14,48

13,812

217,47

Array

13,684

15,378

39,721

18,318

18,783

37,269

37,506

19,789

15,622

15,959

14,205

13,468

223,15

Figure 5.74 : L_T_OG Results for Containers with 10000 Structs

5.3.5.6 about L_T_OG struct and struct container results

Some conclusions from the results are :

e To carry a primitive alone, within a struct or within a container with 1 struct is

same.

e There is no difference between carrying the structs within arrays or

sequences.

o If we compare with L_T_OS results

we see that we have the same

performance for small sizes. But L_T_OG is faster as obviously seen from

our special struct with size 10000, and slightly seen from the other results.

o If we compare our results with L_T_SG we see that it is slower than L_T_OG

results especially for greater sizes.
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5.3.5.7 L_T_OG interface and interface container results

Figures 5.75 through 5.79 shows the results obtained.

msecs

3,6

Interfaces and Containers with 1 Interface

3,4 1

I
3 m

[l

I

Il

1

[l

1

i1

m

wC

D

L

uL

LL

uLL

F

us

Interface

3,268

3,249

3,253

3,268

3,261

3,26

3,265

3,256

3,272

3,273

3,28

3,276

3,285

3,26

Sequence

3,244

3,273]3,268

3,265

3,273

3,261

3,264

3,273

3,465

3,269

3,497

3,236

3,305

3,281

Array

3,245

3,281

3,268

3,261

3,269

3,289

3,272

3,273

3,257

3,261

3,265

3,293

3,281

3,273

Figure 5.75: L_T_OG Results for Interface and Containers with 1 Interface

msecs

Containers with 10 Interfaces

wcC

UL

LL

ULL

us

Sequence

3,902

3,901

3,268

3,95

3,934

3,933

3,938

3,926

3,922

3,914

3,95

3,894

3,946

3,934

Array

3,978

3,93

3,938

3,954

3,942

3,934

4,022

3,946

3,914

3,941

3,946

3,95

3,953

3,93

Figure 5.76 : L_T_OG Results for Containers with 10 Interfaces

msecs
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Containers with 100 Interfaces

10 H

9 4

8 4
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C

wcC

1

L

1]

UL

LL

ULL

1

S

1]

us

Sequence

9,225

9,345

9,386

9,273

9,301

9,39

9,466

9,418

9,342

9,27

9,466

9,277

10,5

9,353

Array

9,204

9,734

9,57

9,306

9,389

9,93

9,446

9,982

9,406

9,401

9,29

9,69

10,53

9,349

Figure 5.77 : L_T_OG Results for Containers with 100 Interfaces
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Containers with 1000 Interfaces

145

140 A

mi il A

C wcC D L UL LL | ULL F S us B (0] A E

msecs

Sequence |137,7| 138 | 141 (139,6|138,7| 139 |142,9(138,7|137,1|136,3|137,9(138,3(140,1|137,6
Array 137,41137,8(138,9|138,7(138,6|139,3|140,3|138,7|138,3( 138 |137,2(138,2|139,2(137,5

Figure 5.78 : L_T_OG Results for Containers with 1000 Interfaces

Containers with 10000 Interfaces

3000

2000 H

“IOmAARRdnnmmn

C wcC D L UL LL | ULL F S us B (0] A E

msecs

Sequence | 1348 | 1380 | 1344 [ 1554 | 1740 | 1471 | 1334 | 1348 | 1341 | 1286 | 1337 | 1333 | 1332 | 1603
Array 1342 |1 1304 | 1270 | 1373 | 1444 | 1553 | 1630 | 2240 | 1516 | 1278 | 1270 | 1336 | 1321 | 1353

Figure 5.79 : L_T_OG Results for Containers with 10000 Interfaces
5.3.5.8 about L_T_OG interface and interface container results

Some conclusions from the results are :

e To carry a primitive within an interface or a container with 1 interface is the

slowest of all constructed types and have the same performances.

o If we compare with L_T _OS results we see that they have the same
performance for sizes 1, 10, 100, L_T_OS is better for size 1000 and
L_T_OG is better for size 10000.

o If we compare with L_T_SG we see that L_T_OG is faster for even size 1

and difference grows radically with growing size.

5.3.5.9 L_T OG union and enum results

Figures 5.80 through 5.84 shows the results obtained.

74



msecs

3,2

Results for 1 Union and Enum

= W

n B

L
2,8

Enum

Union (Octet)

Union (Double)

|E| All Primitives 3,0128 3,04 3,0808
|I Sequence 2,988 3,0284 3,1288
|E| Array 3,0124 3,0204 3,1244

Figure 5.80 : L_T_OG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

3.2
[9]
3
7] 31
: [
2,8
Enum Union (Octet) Union (Double)
O Sequence 2,992 3,0284 3,1084
B Array 2,9476 2,9964 3,1168
Figure 5.81: L_T_OG Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
4
[%2]
[8]
] 2 1
IS
0
Enum Union (Octet) Union (Double)
||:| Sequence 3,0768 3,3572 3,7612
|I Array 3,0604 3,3568 3,7256
Figure 5.82 : L_T_OG Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
10
[92]
[8]
b 51
£

Enum Union (Octet) Union (Double)
|E| Sequence 4,2984 7,1024 8,9092
|l Array 4,306 7,102 8,9248

Figure 5.83: L_T_OG Results for Containers with 1000 Unions and Enums
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Results for 10000 Unions and Enums

200

N e e B

msecs

Enum Union (Octet) Union (Double)
|E| Sequence 16,0752 98,73 117,9896
|l Array 19,2916 113,7712 158,692

Figure 5.84 : L_T_OG Results for Containers with 10000 Unions and Enums
5.3.5.10 about L_T_OG union and enum results

Some conclusions from the results are :

Enum shows the same characteristics with unsigned longs generally. But it is

slower for size 10000 than unsigned longs.

e Enum and union arrays and sequences performs nearly the same as

expected. But for the size 10000 arrays are slower.

e Difference between unions with doubles and unions with octets are obvious
for sizes bigger than 100.

o If we compare with L_T_OS results we see that for the enum and union
sequences they almost shows the same performance. L_T_OS arrays are a
bit slower.

o If we compare with L_T_SG results we see that for the enums there is a
clear difference for sizes greater than 1000. Octet unions start to show this
difference with size 1000 and double unions with size 100.

5.4 Results for Remote Calls

Following are the results for our remote calls taken as described at section 4.5.3.

We must point out the followings, before passing to the results :

+ We mentioned at the local results that we observe a sharp difference
between the first call and the second. This sharpness is so prominent for
some remote calls (and these anomalies occur randomly) that it affects the
average value of results greatly. So, we do not take the first calls’ time for the

abnormal results for remote calls. You can expect a long time with respect to
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0'0

Y/
0'0

54.1

Figure

others for first calls (our results show that it is about 20,000 msecs slower for

our configuration) and the other calls have nearly the same times.

We have two different hardware configurations for the server and client
sides. So, the comparisons between local and remote calls could be

unhealthy. But it gives us an idea about the remote calls.

We took the results mainly to measure the effects of remote calls with
respect to the local ones. So, we will generally give the conclusions
regarding to local/remote changes. Other aspects will be mentioned only if
they deviate from local ones greatly. So, we have a lot of results here, but

very few comments on them.

remote oneway and twoway invoke results

5.85 shows the results for oneway and twoway functions which take no

arguments and return nothing.

msecs

Invocation Results

Onew ay Twow ay

O Invoke 1,9028 2,3756

54.2

Figure 5.85 : Remote results for Oneway and Twoway Invocations

about oneway and twoway invoke results

Remote results are faster than local ones and oneway is faster than twoway.

543

We wil

results.

oneway — only send results

| briefly refer to these results as R_O_OS (Remote_Oneway_OnlySend)
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5.4.3.1 R_O_OS primitive and primitive container results

Figure 5.86 through 5.90 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive
3
8 2
? I
O 41 L
C WC D L uL LL ULL F S us B o}
Primitve  [1,9784 [1,9508|2,0108 |2,0312[1,9508 |1,9712 |1,9912|1,9872 [1,9472|1,9344 | 2,5476 [ 1,9348
Sequence |2,1272 {2,0144|2,0172 |2,1032 | 2,1632 | 2,1392 [2,1472|2,3792 [2,1188|2,1028 [2,0432 |1,9588
Array 2,0512 [1,9756 | 2,0388 |2,0832 [1,9552 | 2,0508 [1,9712|2,0908 |2,0112 |2,2588 | 2,01 |2,5236
Figure 5.86 : R_O_OS Results for Primitives and Containers with 1 Primitive
Containers with 10 Primitives
3
8 21
()
(7]
S 1
0 4
C wC D L uL LL ULL F S us B o}
Sequence | 2,532 |2,2108 (2,3916 (2,2472 [2,1352(2,2748 (2,2992 | 2,1748 |2,0988 |2,0752|2,0788 | 2,1152
Array 2,0228(2,0392 (2,1872|2,0832 |2,0828 |2,2116 |2,2752 |2,0508 | 2,0508 |2,0184 [2,0508 |2,0192
Figure 5.87 : R_O_OS Results for Containers with 10 Primitives
Containers with 100 Primitives
4
%) 31
3
) 2 1
S 1
O 4
C wC D L uL LL | uL F S us B o
O Sequence |3,5612|2,4356(3,1524 | 2,692 |2,6836 | 3,124 |3,1164 | 2,712 |2,4356 2,4436|2,3192 |2,2912
B Array 2,2152 (2,3352|3,0404 | 2,596 |2,7924 |3,0524(3,0524 | 2,608 |2,3512|2,3836|2,2352 (2,3872

Figure 5.88 : R_O_OS Results for Containers with 100 Primitives
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Containers with 1000 Primitives

15

10 A

msecs

5 4

Nin 0l 1 Inmmm

C wC D L UL LL ULL F S us B (@]

O Sequence [3,5652 (4,6668|13,391 (6,8176| 6,842 | 13,44 (13,415| 6,81 (4,6948(4,6708|3,5252 (3,4488
B Array 3,425214,5268(13,235 (6,7568(6,7852|13,275|13,231| 6,762 (4,5424 | 4,586 |3,4248 |3,4088

Figure 5.89 : R_O_OS Results for Containers with 1000 Primitives

Containers with 10000 Primitives

150

100 A

" m T lome

C wcC D L UL LL ULL F S us B O

msecs

O Sequence (16,648 (33,164|133,49 (66,127|66,171|132,68(132,73|66,251 (33,292 (33,292|16,668 [ 16,656
B Array 16,6 [32,963|135,75|65,759|65,959 (133,75(133,58 65,97 | 33,04 |33,039|16,576|16,564

Figure 5.90 : R_O_OS Results for Containers with 10000 Primitives
5.4.3.2 about R_O_OS primitive and primitive container results

If we compare with L_O_OS results we see that local calls are faster than remote

calls.

5.4.3.3 R_O_OS string and wide string results

Figure 5.91 shows the results obtained.
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Results for Strings and Wide Strings
40
30 A
0
o
g 20 |
1S
10
0 ——— e — ] — |
1 10 100 1000 10000
@ String 1,9828 2,0344 2,2752 3,4892 16,608
® WString 2,1148 2,0512 2,3676 4,5784 32,9152

Figure 5.91: R_O_OS Results for Strings and Wide Strings

5.4.3.4 about R_O_OS string and wide string results

Some conclusions from the results we have taken are :

the same results with local ones.

which is the ratio of sizes of these two types.

respect to remote ones.

5.4.3.5 R_O_OS struct and struct container results

Figures 5.92 through 5.96 shows the results obtained.

If we consider the aspects other than the local/remote distinction, we have

At the size 10000 the ratio of wstrings/strings nearly reach to the value of 2,

Comparison with L_O_OS results shows that the local calls are very fast with

2,4

Structs and Containers with 1 Struct

2,2 1

2 4
1,8 4
1,6 1

msecs

ol

i |

|

|

]

I

|1

C wcC

D

L UL

LL

ULL

F

S us

B

(0] A

Struct

1,9948(1,9548

1,9868

1,9588(1,9428

2,0068

2,0036

1,9688

2,0032)2,0468

2,0268

2,0268(2,1704

Sequence

1,9304(2,0908

2,1232

2,0472(2,0788

2,1064

2,1712

2,0472

2,1312)2,0352

1,9828

2,0108(2,2276

Array

1,9636(2,0748

2,1836

2,0548( 2,09

2,1148

2,1028

2,0912

2,0632(2,0268

2,0668

1,9836(2,2548

Figure 5.92 : R_O_OS Results for Structs and Containers with 1 Struct
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Containers with 10 Structs

3
2 21
(]
%]
IS 1
0 4
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence [2,0468(2,1072(2,1508(2,1468|2,1072|2,2392|2,2672(2,1388 [2,0792 [2,0912(2,0672|2,1756| 2,776
Array 2,2912(2,1032|2,2472|2,0872(2,1188(2,2112(2,1996|2,1072 [2,1272|2,1272|2,05922,0108|2,7996
Figure 5.93 : R_O_OS Results for Containers with 10 Structs.
Containers with 100 Structs
10
)]
3
%} 5
E i |
O [0
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence [2,3268(2,3996(3,1168(2,6908|2,6836|3,3248|3,1208| 2,704 (2,4396 |2,3836(2,3072|2,3236| 8,116
Array 2,2792(2,4432|3,1084(2,6516( 2,564 |3,1728| 3,096 |2,6792(2,3876|2,4028|2,29522,3032| 8,104
Figure 5.94 : R_O_OS Results for Containers with 100 Structs
Containers with 1000 Structs
100
)]
3
o 50 -
IS
0 4= l—-_J:.__I:-__I:-_J:._J:._J:-__:-__:- I—
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence [3,99725,0068(13,247 [6,9412|6,9144|13,262|13,246| 6,986 |5,0152(5,0272(3,9656|3,9572|79,118
Array 3,9456(5,0036|13,248| 6,926 | 6,934 |13,251|13,296|6,9944 |5,0072|5,0352|3,9416 (3,9896|79,074

Figure 5.95: R_O_OS Results for Containers with 1000 Structs.
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Containers with 10000 Structs

1000

500 A

msecs

ol e (M cm o (W (W e e o

C wC D L UL LL ULL F S us B (0] A

Sequence |23,927(34,866|139,17(65,818|65,834| 136,9 [138,09(65,895|34,88634,734|23,658|23,886(920,48
Array 23,882|34,766|139,32(65,807|65,802| 136,6 [136,99] 65,79 |34,902(34,854( 23,39 |24,038(920,57

Figure 5.96 : R_O_OS Results for Containers with 10000 Structs
5.4.3.6 about R_O_OS struct and struct container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

e |If we compare with L_O_OS results we see that local results are generally
faster than remote ones especially for large-sized structs, For example, it
takes about 280 msecs for local calls to send ten thousands of our special
struct and and about 920 msecs for remote calls; locals are 3,5 times faster.

5.4.3.7 R_O_OS interface and interface container results

Figures 5.97 through 5.101 shows the results obtained.

Interfaces and Containers with 1 Interface

2,8

2,6

o1 0] 10 00 L T

C wcC D L UL LL | ULL F S us B (0] A E

msecs

Interface |2,504|2,508(2,476)2,516|2,524(2,483|2,495| 2,42 (2,504 2,484 (2,568 2,464 2,499 | 2,496
Sequence | 2,556 | 2,608 [ 2,515 (2,487 | 2,54 |2,512]2,572(2,491|2,536| 2,56 | 2,54 (2,532(2,648 2,656
Array 2,58412,572(2,564(2,508]2,616( 2,52 | 2,58 [2,512]|2,515|2,488|2,567 | 2,568 2,644 | 2,644

Figure 5.97 : R_O_OS Results for Interface and Containers with 1 Interface
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Containers with 10 Interfaces

47
% 4,6
(]
%]
E 4’5 -ﬂ ﬂ
4,4
c|wc|D | L |uw|L|u|F|s|Ju]|B|O]|A]|E
Sequence |4,534| 4,57 |4,542|4,626 (4,591 4,57 |4,602|4,535|4,595 | 4,506 | 4,55 (4,563 4,635 4,494
Array 4,521|4,566| 4,551 (4,542|4,527| 4,57 |4,607|4,598 4,583 |4,522|4,603 | 4,579 | 4,603 | 4,594
Figure 5.98 : R_O_OS Results for Containers with 10 Interfaces
Containers with 100 Interfaces
28
4 27
(]
%]
€ 26 -
(0L [I [T [0 T (0 (0 (0(WTW
c|wc|D | L |uw]|L|u|F|s]|Ju]|B|O]|A]|E
Sequence | 25,86 | 25,89 | 25,83 | 25,83 25,87 | 26,61 | 26,6 |25,79|25,82 (25,88 25,9 | 25,87 27,26 | 25,86
Array 25,84 (25,85 25,86 | 25,85 [ 25,87 26,62 | 26,6 |25,86|25,85 | 25,86 | 25,84 | 25,84 [27,17| 25,8
Figure 5.99 : R_O_OS Results for Containers with 100 Interfaces
Containers with 1000 Interfaces
310
0 300 |
[&]
()
(%))
] 290 ﬂ ﬂﬂﬂ ﬂ
280 A
c|wc|D | L |uw]|L|u|F|s]|Ju]|B|O]|A]|E
Sequence |290,9|301,5|290,8290,5 [ 291,1 | 296,9 | 299,9|301,8 | 301,2 | 300,7 [ 300,7 | 301,6 | 305,5 | 291,8
Array 290,8(291,1|290,6 (291,2(292,2|298,3 | 292,2|292,7| 304,9 | 296,5 | 301,4 | 299,5 [ 305,8 | 291,4

Figure 5.100 : R_O_OS Results for Containers with 1000 Interfaces
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3800

Containers with 10000 Interfaces

3600 -
3400 -

msecs

3200 H
3000 H

A

MR

1]

I}

C wcC D L UL LL | ULL F S us B (6] A E
Sequence | 3336 | 3321 [ 3336 [ 3333 | 3335 | 3379 | 3366 | 3341 | 3342 | 3325 | 3327 | 3337 | 3427 | 3340
Array 3386 | 3383 | 3384 [ 3386 | 3385 [ 3420 | 3418 | 3386 | 3387 | 3371 [ 3473 | 3390 | 3607 | 3493

Figure 5.101 : R_O_OS Results for Containers with 10000 Interfaces

5.4.3.8 about R_O_OS interface and interface container results

Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_O_OS results we see that local calls are faster than

remote calls for sizes greater than 1.

o We got the out of memory error at L_O_OS for size 10000. Here we could

completed the test for this size.

5.4.3.9 R_O_OSunion and enum results

Figures 5.102 through 5.106 show the results obtained.

Results for 1 Union and Enum
2,4
1)
é 2,2
18
Enum Union (Octet) Union (Double)
|E\ All Primitives 2,0072 1,9788 2,1308
[m sequence 2,0116 2,0832 21588
|E\ Array 2,0592 2,0668 2,2312
Figure 5.102 : R_O_OS Results for Union, Enum and Containers with 1 Union and Enum
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Results for 10 Unions and Enums
2,4
[92]
]
o 2,2
: Bl
2
Enum Union (Octet) Union (Double)
|E| Sequence 2,1832 2,2112 2,3596
|l Array 2,1632 2,2468 2,3436
Figure 5.103 : R_O_OS Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
6
3 4
[
(2]
0
Enum Union (Octet) Union (Double)
|E| Sequence 2,62 3,2964 4,2252
|I Array 2,64 3,3008 4,2936
Figure 5.104 : R_O_OS Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
30
&8 20 -
]
ol [ TR
Enum Union (Octet) Union (Double)
|E| Sequence 6,798 13,2744 26,5664
|- Array 6,786 13,2996 26,5744
Figure 5.105 : R_O_OS Results for Containers with 1000 Unions and Enums
Results for 10000 Unions and Enums
400
[92]
3
@ 200 A
: [
ol [
Enum Union (Octet) Union (Double)
||:| Sequence 65,8144 158,9368 286,8004
|- Array 66,0872 158,8204 286,6804

Figure 5.106 : R_O_OS Results for Containers with 10000 Unions and Enums

5.4.3.10 about R_O_OS union and enum results

Some conclusions from the results we have taken are :
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e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_O_OS results we see that local calls are faster than

remote calls for sizes greater than about 100.

5.4.4 twoway — only send results

We will briefly refer to these results as R_T_OS (Remote_Twoway_OnlySend)
results.

5.4.4.1 R_T_OS primitive and primitive container results

Figure 5.107 through 5.111 shows the results obtained for primitive types and
containers with primitive types.

Primitives and Containers with 1 Primitive

2,8

A o M mld)

C wC D L UL LL ULL F S us B (0]

msecs

Primitive |2,4752 |2,4876|2,4716 |2,4632|2,4552 (2,4912 (2,4596 | 2,524 (2,4752(2,4476 (2,3912(2,4148
Sequence | 2,476 |2,4192|2,5356 | 2,456 (2,4556 (2,4952 (2,4996|2,5396 |2,4756|2,5196 |2,4796 (2,4592
Array 2,512 | 2,54 | 2,588 |2,4436|2,4876 |2,5228 |2,5632|2,4996 |2,4476|2,5796 |2,5036 | 2,4036

Figure 5.107 : R_T_OS Results for Primitives and Containers with 1 Primitive

Containers with 10 Primitives

2,8

2,6 1

msecs

2,4 1

2,2 1
C wcC D L UL LL ULL F S us B (0]

Sequence | 2,536 |2,5116 | 2,732 | 2,584 | 2,62 | 2,72 | 2,748 |2,6316| 2,576 (2,5876| 2,544 |2,5516
Array 2,4956(2,5236 | 2,704 | 2,532 | 2,536 | 2,644 | 2,68 | 2,592 | 2,512 |2,5156|2,5036 |2,4876

Figure 5.108 : R_T_OS Results for Containers with 10 Primitives
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Containers with 100 Primitives

msecs

ol 1l A

C wC D L UL LL ULL F S us B (@]

O Sequence (2,7484(2,9804|4,4384 (3,4252(3,3972|4,3704 (4,3544 (3,4612|3,0084 | 2,904 |2,7604 | 2,796
B Array 2,712 | 2,92 (4,382 (3,3492(3,3812|4,2824|4,3384 | 3,428 |2,9484 | 2,964 |2,7476 |2,6796

Figure 5.109 : R_T_OS Results for Containers with 100 Primitives

Containers with 1000 Primitives

20
15 A

10 H

gl Bl [0 [0 mm

C wcC D L UL LL ULL F S us B O

msecs

O Sequence (4,9152(6,5052|17,341 (9,954419,9908 (17,097(17,196 | 10,267 (6,5136 6,5376|4,8632 (4,7912
B Array 4,931216,5616(17,573(10,027(10,107 {17,221|17,225|10,259|6,5736 |6,6376|4,8952 (4,8268

Figure 5.110 : R_T_OS Results for Containers with 1000 Primitives

Containers with 10000 Primitives

200
150 A
100 A

C wC D L uL LL ULL F S us B O

msecs

O Sequence |21,511(38,984|150,15(73,434|73,422|147,76|147,98( 76,53 (38,948 |38,936|21,154 | 20,269
B Array 22,188140,029| 152,3 (74,294(74,688|147,99|148,39|77,251(39,982 |40,338|21,799 | 21,243

Figure 5.111 : R_T_OS Results for Containers with 10000 Primitives
5.4.4.2 about R_T_OS primitive and primitive container results
Some conclusions from the results we have taken are :

o If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.
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o If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.4.3 R_T_OS string and wide string results

Figure 5.112 shows the results obtained.

Results for Strings and Wide Strings

50
40 -

2]
g 30 -
g 20
10
1 10 100 1000 10000
B String 2,5036 2,5236 2,664 4,9392 21,3868
B WString 2,5672 2,5476 2,992 6,5016 38,7

Figure 5.112 : R_T_OS Results for Strings and Wide Strings
5.4.4.4 about R_T_OS string and wide string results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

e If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.45 R_T_OS struct and struct container results

Figures 5.113 through 5.117 shows the results obtained.
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Structs and Containers with 1 Struct

4
[}
3
" 2 1
1S
0 .
cC |wc| D L uL | L |u | F S us | B o] A
Struct  |2,5036(2,5076(2,5156|2,4996|2,4752(2,5152|2,4876|2,5236 [2,5036 | 2,504 |2,4312( 2,504 | 2,7
Sequence | 2,576 [2,5676| 2,64 (2,4996|2,4836|2,5836|2,5388(2,5116(2,5516(2,5756| 2,736 (2,4956|2,7924
Array 2,56 |2,556 | 2,62 |2,4676| 2,544 | 2,564 |2,5036(2,4956|2,54762,5636(2,7636| 2,524 (2,9284
Figure 5.113 : R_T_OS Results for Structs and Containers with 1 Struct
Containers with 10 Structs
4
) 31
3
%} 2
IS 1
0 4
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence | 2,52 | 2,564 [2,7724(2,6156|2,6196| 2,728 | 2,732 | 2,656 [2,5876(2,6076| 2,552 | 2,536 |3,7248
Array 2,5476(2,5316| 2,768 | 2,564 [2,6076| 2,804 | 2,728 | 2,64 |2,532 | 2,564 |2,5636(2,5196|3,6896
Figure 5.114 : R_T_OS Results for Containers with 10 Structs.
Containers with 100 Structs
15
% 10 A
(]
%]
IS 5
,Amm o [ (N
cC |wc| D L uL | LL |uL | F S us | B o] A
Sequence [2,8364(3,0444(4,4628(3,5012|3,4932|4,4028|4,3984(3,5572(3,0728| 3,032 | 2,82 (2,8284|11,644
Array 2,808 |3,0524|4,4064 (3,4332|3,4772|4,3624(4,3904| 3,52 |3,0244(3,0204(2,7756|2,7644|11,568

Figure 5.115: R_T_OS Results for Containers with 100 Structs
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Containers with 1000 Structs

100

50 A

msecs

0 __:-_J:-_J]_J:-_J:-_J]_J]_J:-_J:-_J:-__:-__:-_
C wC D L UL LL ULL F S Us B (0] A

Sequence |5,3752( 7,018 |17,726(10,279|10,295(17,421{17,421(10,575]7,0024| 7,05 |5,3428|5,3156(90,911
Array 5,3356(6,9776|17,654(10,311|10,295|17,441|17,489|10,579|6,9704(7,0264(5,3072| 5,26 [90,951

Figure 5.116 : R_T_OS Results for Containers with 1000 Structs.

Containers with 10000 Structs

1500

1000 A

msecs

500 A

O = [T cow coom [ T o e e o
C WC D L UL LL ULL F S us B (0] A

Sequence |30,224 (46,928|159,43(77,279|77,535|156,02(156,42(79,871 146,984 |47,284|30,003|29,671|1007,8
Array 28,645|51,114|161,04( 78,3 |78,577|157,98|158,42| 80,58 |51,366(51,514(28,557|28,072(1025,2

Figure 5.117 : R_T_OS Results for Containers with 10000 Structs
5.4.4.6 about R_T_OS struct and struct container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.47 R_T_OSinterface and interface container results

Figures 5.118 through 5.122 shows the results obtained.
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Interfaces and Containers with 1 Interface

32
%] 3,1 4
o)
" 31
S 2,9 -
2,8
c|wc|D | L |Juw|Lwju|F|s|Ju|B|O]|A]|E
Interface | 3,06 | 3,06 | 3,044 |3,052|3,072| 3,004 | 3,06 | 3,048 3,024 |3,052|2,948 | 2,968 | 3,088 | 3,044
Sequence | 3,008 | 3,12 {2,992 |3,012(3,032| 3,04 |3,032| 3,04 |3,004|3,004 3,008 | 3,06 |3,072|3,076
Array 2,996 (2,988 (3,068 |2,984(2,992|3,016| 3 [2,972|2,968(2,988|2,988|2,972(2,992 3,084
Figure 5.118 : R_T_OS Results for Interface and Containers with 1 Interface
Containers with 10 Interfaces
6,65
6,6
&S 6,55 -
o .
e 6,5
i |
6,4
c|wc|D | L |uw]|L|u|F|s]|Ju]|B|O]|A]|E
Sequence | 6,538 6,505 | 6,534 | 6,554 | 6,485 6,513 | 6,534 | 6,522 | 6,526 | 6,489 6,513 | 6,47 |6,578|6,518
Array 6,521 (6,513 6,521 | 6,486 6,509 | 6,522 | 6,537 6,514 6,505 | 6,49 |6,522|6,485 (6,594 | 6,533
Figure 5.119 : R_T_OS Results for Containers with 10 Interfaces
Containers with 100 Interfaces
36
" 35 -
3
o 34 -
32 -
c|wc|D | L |uw]|L|u|F|s]|Ju]|B|O]|A]|E
Sequence | 33,64|33,63|33,68|33,72 (33,42 34,45 34,71| 33,45 | 33,82 | 33,55 [ 33,55 | 33,38 | 35,49 | 33,64
Array 33,36 | 33,44 |33,3733,38(33,37| 34,48 | 34,49 (33,44 | 33,48 | 33,61 | 33,61 33,56 | 35,03 | 33,39

Figure 5.120 : R_T_OS Results for Containers with 100 Interfaces
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Containers with 1000 Interfaces
390
" 380
3
9 370
“ -mih ﬂﬂ I
350
c |w| D | L |w|Lw|u| F | s |us|B|O|A]|E
Sequence | 367,8 | 367,1|368,6|367,7[370,2|376,4 | 378,4(369,5|369,7 | 372,6 | 371,2| 370,9 [ 385,4 | 367,6
Array 362,9| 364 | 364 |363,5|364,3(374,5|374,4|368,2(367,9(368,6|368,7|368,9(383,5(|363,3
Figure 5.121 : R_T_OS Results for Containers with 1000 Interfaces
Containers with 10000 Interfaces
4100
4000 A
3 3900 -
(]
[
€

ST m

C wcC D L UL LL | ULL F S us B (6] A E

Sequence | 3826 | 3818 [ 3827 [ 3779 | 3795 | 3862 | 3923 | 3843 | 3846 | 3849 | 3852 | 3848 | 4015 | 3845
Array 3832 | 3826 | 3791 [ 3786 | 3805 [ 3861 | 3921 | 3834 | 3834 | 3845 | 3842 | 3837 | 4002 | 3839

Figure 5.122 : R_T_OS Results for Containers with 10000 Interfaces
5.4.4.8 about R_T_OS interface and interface container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.49 R_T_OSunion and enum results

Figures 5.123 through 5.127 shows the results obtained.
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2,8

msecs

2,6 1

ol [

Results for 1 Union and Enum

o |

i

Enum Union (Octet) Union (Double)
|E| All Primitives 2,5516 2,5076 2,5672
|I Sequence 2,4996 2,4956 2,664
|E| Array 2,5116 2,5236 2,6552

Figure 5.123 : R_T_OS Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

3
1]
o
o 2,5 -
€
2
Enum Union (Octet) Union (Double)
|E| Sequence 2,636 2,7396 2,9444
m Array 2,6232 2,688 2,0444
Figure 5.124 : R_T_OS Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
10
1]
o
o 5 1
; | [
0 -
Enum Union (Octet) Union (Double)
lm sequence 34732 4,5264 6,3812
m Array 3,4292 4,4984 6,3696
Figure 5.125 : R_T_OS Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
40
1)
®
9 20
: Bl [
0 g
Enum Union (Octet) Union (Double)
|m sequence 10,2148 18,7952 33,6204
|m Array 10,1908 18,8912 33,5916

Figure 5.126 : R_T_OS Results for Containers with 1000 Unions and Enums
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Results for 10000 Unions and Enums

400
[%2]
o]
3 200 A
IS
ol [ TN : :
Enum Union (Octet) Union (Double)
|m sequence 76,1456 221,506 338,2424
|I Array 76,482 218,166 334,7256

Figure 5.127 : R_T_OS Results for Containers with 10000 Unions and Enums
5.4.4.10 about R_T_OS union and enum results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

e If we compare with L_T_OS results we see that local calls are faster than

remote calls.

5.4.5 twoway — send get results

We will briefly refer to these results as R_T_SG (Remote_Twoway_SendGet)

results.

5.45.1 R_T_SG primitive and primitive container results

Figure 5.128 through 5.132 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

2,6

- il it

C wC D L UL LL ULL F S us B (0]

msecs

Primitive  [2,4756 (2,4916| 2,58 [2,4596|2,4756 |2,5156 |2,4996|2,5148 |2,4676|2,4756 |2,4396 |2,4436
Sequence | 2,508 |2,5116|2,5756 | 2,464 (2,5156 | 2,536 (2,5716]| 2,548 |2,4596|2,5156 [2,4996 (2,4472
Array 2,516 |2,4796|2,5716 |2,4636|2,4916 |2,5316 |2,5476 |2,4916 | 2,4956 | 2,4836 | 2,4236 | 2,4796

Figure 5.128 : R_T_SG Results for Primitives and Containers with 1 Primitive
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Containers with 10 Primitives

3
* 2,8
o
o 2,6
E 2’4 -ﬂ
2,2
C wC D L uL LL | ULL F S us B o)
Sequence |2,5116 |2,6472 (2,9164 | 2,664 | 2,684 |2,8924 |2,8924 | 2,832 | 2,628 | 2,636 |2,5912 | 2,576
Array 2,56 [2,5996 | 2,888 | 2,656 |2,6476|2,8444 |2,8444| 2,708 | 2,54 | 2,56 [2,5116 2,516
Figure 5.129 : R_T_SG Results for Containers with 10 Primitives
Containers with 100 Primitives
8
0 6
o
7] 4 1
O 4
c wC | D L uL LL | uLL F S us B o}
@ Sequence |2,9684 |3,3728(5,8364 | 4,114 | 4,118 |5,7244|5,7352|4,2224(3,3564 | 3,3968|2,9524 | 2,932
B Array 2,9284|3,3408|5,7724 | 4,078 | 4,016 |5,6684|5,6884 |4,1744(3,3168(3,3488| 2,916 | 2,876
Figure 5.130 : R_T_SG Results for Containers with 100 Primitives
Containers with 1000 Primitives
30
9 20 -
(]
(%]
S 10 A
.1 [T M lmm
c wC | D L uL LL | uLL F S us B o}
@ Sequence |6,7496 | 9,538 27,135 14,75 | 14,773 |26,454|26,454 | 15,282 (9,5216 [9,5536|6,7056 | 6,4572
B Array 6,818 | 9,67 (27,295(14,849| 14,99 |26,646(26,718(15,454|9,6416 | 9,706 | 6,714 |6,6416

Figure 5.131 : R_T_SG Results for Containers with 1000 Primitives
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300

msecs

Containers with 10000 Primitives

200 H

100 A
o |

[H

1

L

L

[H

[H

|

C

wC

D

L

UL

LL

ULL

F

S

us

B

O Sequence

34,326

60,972

246,93

117,63

117,65

239,92

240,22

122,3

60,908

60,948

33,392

31,594

B Array

34,726

62,626

255,8

118,8

119,59

249,94

249,82

124,13

62,602

63,223

33,716

33,56

Figure 5.132 : R_T_SG Results for Containers with 10000 Primitives
5.4.5.2 about R_T_SG primitive and primitive container results
Some conclusions from the results we have taken are :

o If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.45.3 R_T_SG string and wide string results

Figure 5.133 shows the results obtained.

Results for Strings and Wide Strings
80
" 60 -
o
@ 40 A
1S
20 A
0 e — |
1 10 100 1000 10000
@ String 2,552 2,592 2,952 6,75 33,4844
B WString 2,5356 2,6316 3,3652 9,4252 59,4656

Figure 5.133 : R_T_SG Results for Strings and Wide Strings

5.4.5.4 about R_T_SG string and wide string results

Some conclusions from the results we have taken are :
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e If we consider the aspects other than the local/remote distinction, we have
the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than
remote calls.

5.45.5 R_T_SG struct and struct container results

Figures 5.134 through 5.138 shows the results obtained.

Structs and Containers with 1 Struct
3
)]
3
Q 2,5 -
E
2 4 I
C wC D L uL LL | uLL F S us B o] A
Struct 2,516 |2,4996(2,5676|2,4876(2,5316|2,5436|2,5156(2,5516|2,5276(2,5188|2,4752 | 2,508 |2,9004
Sequence |2,5276| 2,532 | 2,624 |2,5116(2,5516| 2,584 [2,5996|2,6036 (2,5316 (2,4796/|2,4636| 2,588 | 2,868
Array 2,5116| 2,52 | 2,648 |2,5076|2,5076(2,5596| 2,588 | 2,584 | 2,532 [2,5276|2,4716|2,4596(2,8724
Figure 5.134 : R_T_SG Results for Structs and Containers with 1 Struct
Containers with 10 Structs
6
2 41
(]
7]
=

NN nnnnl

C wC D L UL LL ULL F S US B (0] A

Sequence |2,5716(2,6076| 2,916 | 2,7 |2,688 | 2,88 |2,9124(2,736 | 2,644 | 2,64 | 2,568 |2,6116|4,6224
Array 2,5796| 2,64 | 2,908 (2,6836| 2,708 |2,8844| 2,896 | 2,74 | 2,632 (2,6116| 2,56 |2,5636|4,5948

Figure 5.135: R_T_SG Results for Containers with 10 Structs.
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Containers with 100 Structs
20
” 15
3
o 10
IS
N il il
orm W W WM rm
c |wc | D L UL | LL juL | F S us | B o) A
Sequence [3,0244(3,4528(5,8728|4,1824(4,18845,7644|5,7924(4,26643,4528| 3,46 [3,0124|2,984 | 17,73
Array 2,99563,4372|5,8568|4,1464| 4,182 | 5,748 |5,7724| 4,286 |3,4604|3,4528|3,00842,9964(17,749
Figure 5.136 : R_T_SG Results for Containers with 100 Structs
Containers with 1000 Structs
200
" 150 -
3
o 100 -
E 50 A
ode=m o [T rom com [T [ o cm e e
c |wc| D L UL | LL juL | F S us | B o) A
Sequence |7,462810,283(27,832(15,406|15,498|27,139(27,075(15,971 | 10,29 (10,732(7,5032(7,3224| 147,2
Array 7,4708 10,27 |27,832|15,378(15,502 27,091 [27,063|16,027|10,295|10,351|7,4628|7,3544|150,48
Figure 5.137 : R_T_SG Results for Containers with 1000 Structs.
Containers with 10000 Structs
2000
" 1500 -
3
o 1000 -
E 500 -

0 == l—-_J:.__I:-__I:-_J:._J:._J:-__:-__:- —
C wC D L UL LL ULL F S us B (0] A

Sequence |43,166(86,216|288,27(144,84|145,68(282,92|284,06(150,66| 85,13 [87,045|42,369|40,955(1599,9
Array 42,373|85,134(286,04(143,48|144,92| 279,3 (281,66|149,46(84,061(86,016|42,613|41,712|1595,6

Figure 5.138 : R_T_SG Results for Containers with 10000 Structs
5.4.5.6 about R_T_SG struct and struct container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

98



o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.5.7 R_T_SG interface and interface container results

Figures 5.139 through 5.143 shows the results obtained.

Interfaces and Containers with 1 Interface
35
8 3,4 -
b
£ 3,3
3,2 -
c|w| Db | L |uw/|Lwfuww|F | s |Jus| B ]| O|A]|E
Interface |3,4363,405|3,421 3,316 | 3,409 3,413|3,393(3,429|3,393(3,437|3,317 | 3,341 | 3,421 | 3,385
Sequence | 3,393 | 3,393 | 3,381 3,393 3,405 | 3,445 | 3,461 (3,417 | 3,345 | 3,345 | 3,401 | 3,405 | 3,485 | 3,445
Array 3,377(3,369| 3,38 [3,361|3,369 3,385 3,405 |3,372|3,373 (3,381 3,36 |3,341|3,461 3,397
Figure 5.139 : R_T_SG Results for Interface and Containers with 1 Interface
Containers with 10 Interfaces
9,6
% 9,4 -
(]
7]
S 9,2
9 -
c|{fwec| b | L |w/|w|u|F ]| s |us|B|O]|A/|E
Sequence | 9,366 | 9,281|9,345|9,362 9,333| 9,43 |9,386(9,325|9,318 (9,358 9,358 9,365 | 9,494 | 9,362
Array 9,37 |9,377(9,402|9,398 (9,398 | 9,449 (9,473 9,402 | 9,394 | 9,406 | 9,409 | 9,426 [ 9,558 | 9,41
Figure 5.140 : R_T_SG Results for Containers with 10 Interfaces
Containers with 100 Interfaces
60
% 55 -
(]
7]
£ 50 -
45
c|{fwec| b | L |w/|w|u|F ]| s |us|B|O]|A/|E
Sequence | 53,29 53,78 53,26 | 53,76 | 53,68 | 54,37 | 54,04 [ 53,42 | 53,24 | 53,78 | 54,15 | 53,85 [ 57,59 | 53,22
Array 53,35(53,3952,93 (53,25 53,39 | 54,19 | 54,32 | 53,42 | 53,69 | 53,07 | 52,33 | 52,61 | 57,71 | 53,13

Figure 5.141 : R_T_SG Results for Containers with 100 Interfaces
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Containers with 1000 Interfaces
660
640
3 620 -
?
e 600
560
c |w| D | L |w|Lw|u| F | s |us|B|O|A]|E
Sequence | 595,9 [ 595,6 | 595,8 | 596,1 [ 596,5 | 606,7 | 616,6 | 598,9 | 598,2 | 606,1 | 599,8 | 599,8 | 623,6 | 636,8
Array 594,8(594,4|595,6 |595,6 | 596 |607,2|608,6| 597 [597,2| 592 |595,3|592,7(613,6|593,9
Figure 5.142 : R_T_SG Results for Containers with 1000 Interfaces
Containers with 10000 Interfaces
6200
” 6000
3
9 5800 -
€

MO NN AAAAEANAD

C wcC D L UL LL | ULL F S us B (6] A E

Sequence | 5703 | 5737 [ 5738 [ 5734 | 5717 | 5863 | 5853 | 5753 | 5724 | 5782 | 5797 | 5756 | 5981 [ 5730
Array 5710 | 5708 | 5716 [ 5712 | 5730 [ 5865 | 5855 | 5750 | 5753 | 5782 [ 5772 | 5744 | 5976 | 5733

Figure 5.143 : R_T_SG Results for Containers with 10000 Interfaces
5.4.5.8 about R_T_SG interface and interface container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.45.9 R_T_SG union and enum results

Figures 5.144 through 5.148 shows the results obtained.
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msecs

Results for 1 Union and Enum

2,8

2,6

wa [

2,2

Enum Union (Octet) Union (Double)

|I:| All Primitives 2,5036 2,584 2,6396
|I Sequence 2,536 2,5476 2,688
||:| Array 2,5312 2,5756 2,712

Figure 5.144 : R_T_SG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

[92]
[8]
o 2
IS
0
Enum Union (Octet) Union (Double)
O Sequence 2,716 2,8804 3,3608
B Array 2,688 2,8644 3,2528
Figure 5.145 : R_T_SG Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
10
(2]
3
) 5
: [ . -
04
Enum Union (Octet) Union (Double)
|E| Sequence 4,158 5,9484 9,0892
|l Array 4,142 5,9364 9,0968
Figure 5.146 : R_T_SG Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
60
[92]
[8] 40
]

0

| [

Enum Union (Octet) Union (Double)
|m sequence 15,104 20,37 52,0388
|I Array 15,2016 29,6264 52,7

Figure 5.147 : R_T_SG Results for Containers with 1000 Unions and Enums
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Results for 10000 Unions and Enums

800
§ 600
o 400
o S I— |
Enum Union (Octet) Union (Double)
||:| Sequence 125,4604 359,2444 621,3416
|l Array 124,1668 355,6956 614,544

Figure 5.148 : R_T_SG Results for Containers with 10000 Unions and Enums
5.4.5.10 about R_T_SG union and enum results
Some conclusions from the results we have taken are :

o If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6 twoway — only get results

We will briefly refer to these results as R_T_OG (Remote_Twoway OnlyGet)

results.

5.4.6.1 R_T_OG primitive and primitive container results

Figure 5.149 through 5.153 shows the results obtained for primitive types and

containers with primitive types.

Primitives and Containers with 1 Primitive

2,8
2,6 1

il g mddind | die

Primitive  2,4556 (2,4716|2,5716 |2,4316|2,4676 |2,5076 |2,4992|2,4836 |2,4596 |2,4756 |2,4076 |2,4276
Sequence |2,5436 |2,4236|12,5952 | 2,4836 (2,5196 (2,5036 (2,5876 12,5716 |2,5036 | 2,548 [2,5196 (2,4516
Array 2,4116 |2,4756 |2,5956 |2,3956 |2,5396 |2,4956 |2,5716| 2,56 |2,4912|2,5436| 2,5 |2,4312

msecs

Figure 5.149 : R_T_OG Results for Primitives and Containers with 1 Primitive
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Containers with 10 Primitives

2,7
* 2,6
o
o 2,5
E 2,4
2,3
c | wc D L uL LL | u F S us B o)
Sequence| 25 |2524 | 2,68 |2,5876 2,584 | 2,664 | 2,66 |2,5912(2,5556 |2,5432 (2,5356 |2,4956
Array 2,45962,4956 | 2,628 (2,5076 (2,5116 2,6116 [2,5956 | 2,56 |2,5116 |2,5236|2,4996 |2,4836
Figure 5.150 : R_T_OG Results for Containers with 10 Primitives
Containers with 100 Primitives
6
2 4-
(3]
0
O 4
cC |wc | D L uL LL | uLL F S us B o}
@ Sequence |2,66362,8724( 3,93 (3,1928|3,2164 (3,8652| 3,89 |3,2484| 2,856 | 2,872 | 2,692 |2,6636
B Array 2,6156 | 2,828 |3,8776|3,1404|3,1364 3,8376|3,8336|3,2164 | 2,828 (2,8404|2,6316 |2,5956
Figure 5.151 : R_T_OG Results for Containers with 100 Primitives
Containers with 1000 Primitives
15
9 10 A
(3]
(%]
(L1 (A M
cC |wc | D L uL LL | uLL F S us B o}
@ Sequence | 4,342 | 5,516 12,738 (7,8192|7,8192|11,648(12,482|8,07165,4956 |5,4996|4,2824 | 4,2024
H Array 4,33845,4876|12,006 |7,8112|7,8552|11,757| 12,61 | 8,148 | 5,488 | 5,516 |4,2984 | 4,286

Figure 5.152 : R_T_OG Results for Containers with 1000 Primitives
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Containers with 10000 Primitives

100

50 A

msecs

| 5

ULL F S

|

UL

(B m

us B (@]

o lrm [ "

C wC D L

LL

14,701
15,23

24,868
26,234

88,96
92,89

43,374
44,64

44,227
45,345

86,54
90,242

86,609
90,594

46,054
47,552

25,048
26,018

24,924
25,625

14,048
14,577

13,099
14,236

O Sequence

B Array

Figure 5.153 : R_T_OG Results for Containers with 10000 Primitives
5.4.6.2 about R_T_OG primitive and primitive container results
Some conclusions from the results we have taken are :

o If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.3 R_T_OG string and wide string results

Figure 5.154 shows the results obtained.

Results for Strings and Wide Strings
30
0 20 4
(&)
(]
(%]
1S 10 -
o L —— — 1
1 10 100 1000 10000
O String 2,5276 2,472 2,656 4,27 13,86
| WString 2,4516 2,5356 2,848 5,3916 23,9464

Figure 5.154 : R_T_OG Results for Strings and Wide Strings

5.4.6.4 about R_T_OG string and wide string results

Some conclusions from the results we have taken are :
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e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.5 R_T_OG struct and struct container results

Figures 5.155 through 5.159 shows the results obtained.

Structs and Containers with 1 Struct

2,8

<A M md D o

C wC D L UL LL ULL F S us B (0] A

msecs

Struct 2,4716(2,3992|2,5716|2,4876|2,4712|2,5196 2,544 | 2,508 | 2,496 |2,4676|2,4876(2,4716( 2,732
Sequence |2,5356(2,5796| 2,592 (2,4872|2,5676| 2,564 | 2,536 | 2,552 |2,5472|2,5076|2,4316| 2,552 | 2,744
Array 2,451612,4796|2,5352(2,4596|2,4756| 2,488 |2,5236|2,5196|2,48762,4876|2,4436|2,4596|2,6676

Figure 5.155 : R_T_OG Results for Structs and Containers with 1 Struct

Containers with 10 Structs

4
13 31
3
" 2 1
IS 1
0 -
C wC D L UL LL ULL F S us B (0] A
Sequence | 2,54 (2,5592|2,6996(2,5276|2,5676(2,6476| 2,628 [2,6076]2,5272| 2,548 |2,5236|2,5116|3,4248
Array 2,5276( 2,52 | 2,688 | 2,576 |2,5956]| 2,656 | 2,688 |2,5996| 2,544 (2,5472(2,5316(2,5076(3,5252

Figure 5.156 : R_T_OG Results for Containers with 10 Structs.
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Containers with 100 Structs
15
9 10 -
(]
[
IS 5 1
[T (HH W mm
c |wc | D L uL LL o | F s us B o A
Sequence | 2,712 |2,8884(3,9132|3,2124|3,2084|3,8936 | 3,894 (3,2764|2,8844 2,892 | 2,708 | 2,688 | 9,63
Array 2,8356(2,9004(3,97363,2284|3,2168|3,9016|3,8976|3,2924|2,8844|2,9044(2,7116| 2,724 [9,6336
Figure 5.157 : R_T_OG Results for Containers with 100 Structs
Containers with 1000 Structs
60
9 40 A
(]
[
€ 20
0 lrm m (Hm cm (MW m o m cm om
c |wc| D L uL LL o | F s us B o A
Sequence [4,7348(5,9004(13,214| 8,2 |8,2596(12,826(12,141|8,50845,8764(5,94844,7824|4,6744(54,799
Array 4,7588(5,9324(13,235( 8,232 | 8,276 |12,061|12,963(8,54045,9404|5,9604|4,7392|4,6908|54,911
Figure 5.158 : R_T_OG Results for Containers with 1000 Structs.
Containers with 10000 Structs
800
" 600
3
o 400
£ 200
ol e [ e com [0 (T o e e =
c |wc | D L uL LL o | F s us B o A
Sequence [21,046|31,541(98,602|47,332| 48,43 |95,602|96,166|50,657 |31,574(31,874(20,706|20,233(593,31
Array 21,046 (31,589 97,22 (47,74848,838|94,064|94,668|51,122|31,289|31,678|20,722(20,358[550,45

Figure 5.159 : R_T_OG Results for Containers with 10000 Structs
5.4.6.6 about R_T_OG struct and struct container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.
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o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.7 R_T_OG interface and interface container results

Figures 5.160 through 5.164 shows the results obtained.

Interfaces and Containers with 1 Interface
3
8 2,9 -
?
- “[hmmmm mmm 1
2,7
c|{wec| b | L |Juw/|wu|FrF ]| s |us|B|O]|A/|E
Interface |2,868|2,796|2,868|2,864|2,884(2,924| 2,86 | 2,84 |2,856(2,852|2,868(2,908| 2,88 |2,868
Sequence |2,836| 2,82 |2,848| 2,82 [2,832| 2,88 |2,884|2,832|2,816 | 2,868 | 2,844 2,856 2,912 | 2,924
Array 2,816(2,804|2,844| 2,82 | 2,844 |2,852|2,868 2,836 | 2,816 (2,856 | 2,844 (2,808 2,916 2,82
Figure 5.160 : R_T_OG Results for Interface and Containers with 1 Interface
Containers with 10 Interfaces
5.8
* 5,7 -
3
Q 5,6
E 5’5 - ﬂ
54
c|{fwec| b | L |w/|w|u|F ]| s |us|B|O]|A/|E
Sequence | 5,576 5,576 (5,592 | 5,62 [5,592|5,532 | 5,648 (5,584 |5,648 | 5,62 |5,616|5,596 | 5,708 | 5,568
Array 5,624 5,62 |5,632| 5,6 |5,604| 564 |5624| 562 | 5,62 [5,632|5,616|5,624|5,708 | 5,584
Figure 5.161 : R_T_OG Results for Containers with 10 Interfaces
Containers with 100 Interfaces
25,5
” 25 A
3
Q 24,5 -
S

Rinninnnnnnnnnnl

C wcC D L UL LL | ULL F S US B (6] A E

Sequence | 24,29 | 24,28 | 24,35 (24,45 24,33 | 24,32 | 24,31 (24,37 24,33 | 24,42 | 24,4 (24,37 (25,18(24,27
Array 24,32| 24,3 | 24,32 24,3 |24,34|24,31| 24,38 (24,31| 24,28 | 24,36 | 24,33 | 24,32 (25,14 | 24,29

Figure 5.162 : R_T_OG Results for Containers with 100 Interfaces
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Containers with 1000 Interfaces
280
4 270 -
(]
[
250
c |w| D | L |w|Lw|u| F | s |us|B|O|A]|E
Sequence |265,4| 270 |260,5|258,6( 259 | 272 |262,1(259,1|258,8 |260,8|258,6|258,3 [265,9|258,5
Array 267 |266,8| 267 |264,5(264,6|270,3|267,9(264,4|264,2|269,3|267,1|264,6(273,4]|266,1
Figure 5.163 : R_T_OG Results for Containers with 1000 Interfaces
Containers with 10000 Interfaces
4000
” 3000 A
3
9 2000 A
£ 1000 -
0_
c |w| D | L |w|Lw|u| F | s |us|B|O|A]|E
Sequence | 2536 | 2716 | 2540 | 2558 | 2547 | 2581 | 2718 [ 2691 | 2781 | 2968 | 2713 | 3304 | 2663 | 2527
Array 2536 | 2734 | 2534 | 2557 | 2551 | 2578 | 2718 | 2663 | 2774 | 2721 | 2715 | 2534 | 2682 | 2545

Figure 5.164 : R_T_OG Results for Containers with 10000 Interfaces
5.4.6.8 about R_T_OG interface and interface container results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.

5.4.6.9 R_T_OG union and enum results

Figures 5.165 through 5.169 shows the results obtained.
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msecs

2,8
2,6 1

< .
2,2

Results for 1 Union and Enum

m

Enum Union (Octet) Union (Double)
O All Primitives 2,5152 2,4596 2,588
B Sequence 2,5108 2,556 2,6636
||:| Array 2,5076 2,5196 2,5916

Figure 5.165 : R_T_OG Results for Union, Enum and Containers with 1 Union and Enum

Results for 10 Unions and Enums

3
[92]
o
b 2,5
1S
2
Enum Union (Octet) Union (Double)
O Sequence 2,5876 2,692 2,8764
B\ Array 2,612 2,696 2,864
Figure 5.166 : R_T_OG Results for Containers with 10 Unions and Enums
Results for 100 Unions and Enums
10
1))
3
n 5
: B [ [
0 -
Enum Union (Octet) Union (Double)
O Sequence 3,2088 4,0132 5,3156
B Array 3,2568 4,022 5,336
Figure 5.167 : R_T_OG Results for Containers with 100 Unions and Enums
Results for 1000 Unions and Enums
40
0
3
9 20 -
E — [
0 u
Enum Union (Octet) Union (Double)
O Sequence 8,1516 13,0548 21,3628
B Array 8,208 13,936 21,6348

Figure 5.168 : R_T_OG Results for Containers with 1000 Unions and Enums
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Results for 10000 Unions and Enums

400

(2]
3
» 200 A
: e — [
O T . .
Enum Union (Octet) Union (Double)
0 Sequence 47,8128 139,5288 210,9556
B Array 47,8608 139,6768 203,2284

Figure 5.169 : R_T_OG Results for Containers with 10000 Unions and Enums
5.4.6.10 about R_T_OG union and enum results
Some conclusions from the results we have taken are :

e If we consider the aspects other than the local/remote distinction, we have

the same results with local ones.

o If we compare with L_T_SG results we see that local calls are faster than

remote calls.
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6. CONCLUSIONS AND FUTURE WORK

We had a wide benchmark and ran it. We have some conclusions from our study

and future work plans. We will briefly mention these at the following lines.

6.1 Conclusions

We tested nearly all static IDL constructs in this study. We have a bulk of raw data,
and comparisons can be made on these data. We only give conclusions for some of
them. Whoever wants can deduce the conclusions he/she needs from our data.

Our results (generally) show that :

Local calls are faster than remote calls for big-sized data. For small-sized
data, remote calls are faster.

Oneway invocations are faster than twoway invocations. But oneways are
unreliable and some of them could not complete the test. On the other hand,
all the twoway calls successfully completed the measurements.

We see the nearly same results for small sized data for all the flows of data.
But for the larger sizes the descending order is from client to server and
server to client back, from client to server and from server to client.

For the primitive types we have the close results for small number of
parameters and results are ordered with sizes of types for larger number of
parameters.

For constructed types :

¢ We have the same results for primitives with structs. For small sizes. But
for the big sizes, structs perform worse.

¢ We have the same results for unsigned long with enums.

¢ We have extremely slow passing of parameters with interfaces.

e Passing an octet within a union takes less time than passing a double.
For the container types :

¢ We have the same results with sequences and arrays.

e We have the same results for strings with chars.
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¢ \We have the same results for wstrings with wchars.

6.2 Future Work

As we mentioned, we have only tested the static CORBA, but common phrase in
the CORBA means static and dynamic [47]. So, our benchmark can be applied to
dynamic CORBA.

Also we mentioned that we applied our benchmark to the most commonly available
CORBA/Java ORB worldwide. When we were studying on the release 1.3.1, Sun
released the new version of its SDK, version 1.4, and it contains a different
approach for the object adapter : it uses POA even though it also supports old style.

So, our benchmark can be applied to this new release of Java IDL.

Java IDL is not the only CORBA/Java ORB. There are a lot of CORBA/Java ORBs
on the market (e.g, JavaORB, JacORB, OpenORB, Visibroker for Java, Voyager
ORB, Engine Room CORBA, ... etc) and by applying the benchmark to these ORBs
a comparison between the ORBs can be conducted.

We have only thought of marshalling/demarshalling of parameters. But there are
another ways of comparisons. So, we can extend our benchmark to cover, for

example, dispatching, survivability and reliability as a future study.
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