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AN APPLICATION OF NEURAL NETWORK-BASED MUSIC 
GENERATION MODELS IN THE CONTEXT OF MODERN AND 

CONTEMPORARY MUSIC 

SUMMARY 

The purpose of this thesis is to test the performance of the artificial neural network-
based music generation models in a different musical context and to determine if they 
can be used as composition assistance tools by the contemporary composer. A brief 
explanation of the working principles and recent history of ANNs are given before 
moving onto the conducted experiments.  
For the purposes of the thesis, a model called Performance RNN, developed by Project 
Magenta, is trained three times with different datasets and/or hyperparameters. The 
model is capable of creating performances with feeling: it is sensitive to time intervals 
as small as eight milliseconds and it can process dynamic information. The datasets 
are in MIDI format and they are compiled from audio files with the help of another 
neural network model called Onsets and Frames, which transcribes raw audio files of 
piano music into MIDI files. 
For the first experiment a dataset of Messiaen’s complete piano works is used, which 
spans over six hours. Messiaen is chosen because of his relative consistent musical 
language and large output of solo piano works. The configuration used takes dynamics 
into account. Several features reminiscent of Messiaen can be observed in the outputs, 
however, the training accuracy is as low as forty percent. The model performs well in 
terms of pitch content but struggles with rhythmic and formal structures.  
The same dataset is used for the second experiment, but this time the dynamics are 
eliminated and a small part of the dataset is set aside for validation. Also, the model is 
trained with an additional layer to increase its learning capacity. There is a slight 
improvement in accuracy of the test set, but the model does not do well on the 
validation test: it can not generalize over musical features of Messiaen’s works. The 
outputs are rhythmically more chaotic and no drastic improvements are observed in 
the pitch content.  
For the third experiment the dataset is expanded with works by other composers. These 
composers are chosen with the help of a neural network model called Self Organizing 
Maps, which reduces the dimension of data and displays the similarities among them. 
In this case, the data is mostly spectral features extracted from audio files. In the end 
an hour of Stockhausen, Schönberg, Murail and Ferneyhough’s piano music is added 
to the dataset. The model reacts to the addition of the works of these composers; 
various musical examples are given to address this reaction.  
The last experiment is run with a dataset of improvisations made by the author of the 
thesis. The outputs of this experiment are then used to compose a piano miniature. 
Compositional context is widely discussed in the related section. 
In the last section the importance of the size and content of the chosen dataset for 
these experiments is underlined and the difficulties of compiling a dataset of 
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contemporary music is discussed. Finally, the impact made by the used transcription 
model and the encoding type used in the generation model is briefly mentioned. 
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NÖRAL AĞ BAZLI MÜZİK JENERASYON MODELLERİNİN MODERN 
VE ÇAĞDAŞ MÜZİK BAĞLAMINDA UYGULAMASI 

ÖZET 

Bu tezin amacı nöral ağ bazlı müzik jenerasyon modellerini farklı bir müzikal 
bağlamda test etmek ve bu modellerin çağdaş besteciler tarafından kompozisyona 
yardımcı bir araç olarak kullanılıp kullanılmayacağını anlamaktır. Yapılan 
deneylerden önce nöral ağların çalışma prensipleri ve tarihleri ile ilgili kısaca bilgi 
verilmiştir. 
Bu doğrultuda Project Magenta tarafından geliştirilen Performance RNN isimli bir 
model değişik dataset ve/ya da hiperparametreler ile üç kez eğitilmiştir. Söz konusu 
model dinamik bilgileri dikkate aldığından ve sekiz milisaniyeye kadar zaman 
aralıklarına duyarlı olduğundan hissiyat içeren performanslar yaratabilmektedir. 
Modeli eğitmek için kullanılan datasetteki dosyalar MIDI formatındadır ve bu formata 
ses dosyalarından Onsets and Frames isimli başka bir nöral ağ tarafından 
dönüştürülmüştür. 
Birinci deney için Messiaen’in bütün piyano eserleri kullanılmıştır. Bu eserler yaklaşık 
altı saat sürmektedir. Messiaen yazdığı müziklerde nispeten tutarlı bir dil kullanması 
ve geniş bir piyano repertuarı olması nedeniyle seçilmiştir. Modelin ilk deneyde 
kullanılan konfigürasyonu dinamik bilgileri dikkate almaktadır. Bu deney sonucunda 
elde edilen müziklerde Messiaen’in müziğini andıran özellikler bulunsa da model 
eğitiminin doğruluk derecesi yüzde 40 gibi düşük bir rakamda kalmıştır. Modelin nota 
içeriği olarak başarılı müzikler ürettiğini söylenebilse de aynı şeyi ritmik içerik ve 
formal yapı olarak söylemek mümkün değildir.  
Aynı dataset ikinci deney için de kullanılmış, fakat bu kez modelden dinamik içerik 
elenmiş ve datasetin küçük bir kısmı modeli doğrulamak üzere kenara ayrılmıştır. 
Ayrıca modelin öğrenme kapasitesine artırabilmek için nöral ağa ekstra bir katman 
eklenmiştir. Bu değişikliklerin sonucunda eğitim setinin doğruluk derecesinde küçük 
bir artış görülse de model doğrulama setinde iyi bir performans gösterememiştir. 
Bundan yola çıkarak modelin Messiaen’in müziklerini genelleyebilecek kadar iyi 
öğrenemediği söylenebilir. Bu deneyin ürettiği müziklere bakıldığında ritmik olarak 
daha kaotik yapılar görülmektedir. Nota içeriği olarak ise ilk deneye kıyasla ciddi bir 
gelişme gözlenmemiştir. 
Üçüncü deneyde datasete değişik bestecilerden çalışmalar eklenmiştir. Bu besteciler 
Self Organizing Map isimli bir nöral ağ modelinin yardımıyla seçilmiştir. Bu model 
yüksek boyutlu verilerin boyutunu düşürüp verileri aralarındaki benzerliklere göre 
görselleştirebilmektedir. Bu deneyde veri olarak ses dosyalarından spektral nitelikler 
elde edilmiştir. Bu sürecin sonunda her biri birer saat olmak üzere Stockhausen, 
Schönberg, Murail ve Ferneyhough’un piyano müzikleri datasetine eklenmiştir. 
Eğitim sonrası üretilen müziklere bakarak modelin bu eklemelere tepki verdiği 
söylenebilir. Bu konu ilgili bölümde birçok müzikal örnek üzerinden tartışılmıştır. 
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Son deneyin dataseti yazarın kendi doğaçlamalarından oluşmaktadır. Bu deneyde elde 
edilen çıktılar bir piyano miniyatürünün bestelenmesinde kullanılmıştır. İlgili bölümde 
çıktıların kompozisyon bağlamında kullanımı detaylı bir biçimde ele alınmıştır. 
En son bölümde bu tarz çalışmalar için seçilen datasetin boyut ve içeriğinin önemi 
belirtilmiş, çağdaş müzik bağlamında verip toplamanın zorluğu tartışılmıştır. Son 
olarak, ses dosyalarının MIDI formatına transkripsiyonunu yapan modelin ve üretici 
modelde kullanılan kodlama biçiminin önemine kısaca değinilmiştir. 
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 INTRODUCTION  

 Purpose  

Artificial neural networks (ANN) have a relatively long history. It was as early as 1943 

when McCulloch-Pitts Neuron was introduced, followed by Perceptron in 1957 – the 

two primary ancestors of  today’s models. However, up until recently, the challenges 

in effectively training multi-layer networks have limited the interest in ANNs. This 

situation changed when a pre-training technique was proposed by Hinton et al. (2006) 

and a deep neural network algorithm, i.e., AlexNet won the ImageNet Large Scale 

Visual Recognition Contest using this technique in 2012 (Briot et al., 2019). Music 

generation research also joined the trend, a successful demonstration of which has been 

Google AI’s launch of Magenta research project which focuses on machine learning 

applications in arts. Despite the broad definition, almost all demos on their website use 

various architectures of ANNs. 

If an algorithm is very generally defined as a formalizable and abstractable procedure 

(Nierhaus, 2009), then we can say that numerous composers were assisted by 

algorithmic procedures. Famous examples include Mozart’s dice game, which 

permutates pre-composed measures of music according to the outcomes of dice rolls. 

A more recent example from the 20th century is Xenaxis, who utilized stochastic 

models for music composition. Magenta project tends to a similar purpose. In their 

blog post about Magenta Studio they state their aim as developing models specifically 

targeted to the goals of creators  and then developing easy-to-use tools based on these 

models (Roberts et al., 2019). However, most of the ANN models are trained on MIDI 

datasets of common practice period music, which is of limited use to a contemporary 

music composer. ANNs are able to generate music based on the corpus style on which 

they have been trained, but once they are trained, only a few, if any, interventions on 

the output may be made by humans. 

In this context the primary purpose of this research is to test the performance of a 

recent ANN model of Magenta called Performance RNN in the context of modern and 



 2 

contemporary music, which can be more sophisticated than the music composed in the 

tonal idiom in the common practice period. The second aim is to investigate whether 

these models are useful as composition assistance tools for the contemporary 

composer. To address these aims, I compile my own datasets and generate polyphonic 

music by training the ANN on them.  

The title of the thesis includes labels of both modern and contemporary music for the 

lack of a better term. Modern music refers to the departures in musical language that 

occurred around the turn of twentieth century (Metzer, 2011). The term generally does 

not imply a consistent musical style but implies a break from tradition and focus on 

innovation. Composers of the Second Viennese School, Messiaen and Stockhausen 

used in the datasets of this thesis can be classified under this label. On the other hand, 

I used the term contemporary music in a literal sense, as the music being written today. 

This refers to the use of Murail and Ferneyhough in the datasets and more importantly 

to my own improvisation and compositions. The common denominator of the 

composers classified under both labels is that they do not use a tonal language in their 

works.  

 Neural Networks 

Prior to introducing the literature review on deep learning in music, I would like to 

take a moment to briefly introduce the working principles and the history of ANNs. 

Although a comprehensive review of the mathematical framework of ANNs are not in 

scope of this thesis, some insights may prove to be beneficial for those with a music 

background but are inexperienced in the field of machine learning. 

1.2.1 Working principles 

ANNs are mathematical models which loosely imitate the signal flow of the human 

nerve cells. Their main capability is to extract and replicate features and patterns in a 

dataset, rendering them useful for various classification, clustering, prediction and 

generation tasks. Essentially, ANNs are composed of multiple layers, each one 

containing a certain number of neurons. The first layer is called the input layer, the last 

one the output layer and the layers inbetween are called the hidden layers. In a fully 

connected feedforward network, each neuron in a layer is connected to all the other 

neurons in the preceding and succeeding layers. There are various architectures 
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differing in significant ways, but feedforward networks have arguably the simplest 

form, which makes them particularly useful for getting acquainted with ANNs. Figure 

1.1 depicts a small scale example of this architecture with circles representing 

individual neurons.  

Each neuron in the input layer accepts a number as input. The arcs connecting the 

neurons have weights associated with them. As data flows through the network, the 

inputs are multiplied with these weights and these multiplications are summed up 

before being fed into the non-linear activation function of the  next neuron, eventually 

reaching the output layer. 

 

 

Figure 1.1: Architecture of a fully connected feedforward ANN1 

While in every ANN the weights are initially random, it is possible to train the network 

and to update these weights in order to obtain the output we desire. In musical terms, 

this can simply be the next note given a previous sequence, encoded in numerical 

values. Performance RNN on the other hand has a much more sophisticated way of 

encoding musical material as it generates polyphonic music. I will talk about encoding 

alternatives in the Literature Review section (1.3) and as I go over Performance RNN 

in the next chapter (2.2). 

                                                
 
1 Illustrated based on the figure in Briot et al (2019, p.53). 
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To be able to train a network, we first need a measure of fitness. That is what a loss 

function is for: measuring the deviation from the desired output after the evaluation of 

each batch of input by the ANN. Next step is to link this loss back to the weights 

between pairs of neurons. This process utilizes the backpropagation algorithm to 

compute the gradient (vector of partial derivatives) via the chain rule, which allows 

the information from the loss function to flow backwards through the network  

(Goodfellow et al., 2016).  Gradient descent algorithm completes the procedure by 

updating the weights in the opposite direction of the gradient, which guarantees to 

reduce loss2. The amount of the movement along the opposite direction of the gradient 

depends on the learning rate, which is a very small positive number fixed beforehand 

according to the collective experience of machine learning researchers.   

1.2.2 Brief history 

In their seminal article, McCulloch and Pitts (1943) propose the first model of a 

neuron. This model is confined to learn boolean functions, as all its inputs and outputs 

are 0 or 1 (Chandra, 2018a). Perceptron, proposed by Rosenblatt (1958) built upon this 

and introduced numerical weights for inputs and a method for learning them, hence 

the inputs of the Perceptron do not have to be boolean values (Chandra, 2018b). 

Perceptron was criticized by Minsky and Papert (1969) primarily because it could not 

learn nonlinearly seperable functions, resulting in a period where AI research stagnated 

for more than a decade (Kurenkov, 2015). 

 

Figure 1.2: Biological inspiration of a perceptron3 

                                                
 
2 For the mathematical proof, see Nielsen (2019). 
3 Retrieved from http://cs231n.github.io/neural-networks-1/ on 04.11.2019. 
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The period of stagnation ended when Rumelhart et al. (1986) proposed the application 

of backpropagation algorithm on neural nets and addressed Minsky and Papert 

criticisms. Implementations of various architectures and applications to real world 

problems followed in the next few years (Kurenkov, 2015). 

One such architecture is the Recurrent Neural Networks (RNN) that are able to process 

and output sequential data, which is crucial for musical applications. They may have 

connections between neurons within the same layer and to a neuron from itself in the 

form of a loop - creating a memory structure within the network. Training of RNNs 

suffered from short term memory before the Long Short-Term Memory (LSTM) idea 

was proposed by Schmidhuber and Hochreiter (1997). LSTMs are special kind of 

RNNs; each LSTM cell keeps track of a cell state in addition to its output. The cell 

state is controlled by various gates which are neural nets themselves (Nguyen, 2018). 

This way the memory of the cells is improved to keep the more relative information. 

ANNs became increasingly popular with the pre-training technique of Hinton (2006) 

involving non-random initialization of weights, the convincing win of AlexNet in an 

image recognition competition in 2012 and the availability of general purpose 

Graphical Processing Units (GPU). The popularity of RNNs in particular owe to 

Karpathy’s viral post “The Unreasonable Effective of Recurrent Neural Networks” 

(2015), where he showed that a simple RNN can recreate the look and feel of any text 

(McDonald, 2017). 

 Literature Review 

Last thirty years, the last decade in particular witnessed many examples of music 

generation with deep learning methods. In this section, I will try to introduce some of 

the most significant attempts4.  

The first instance of music generation with ANNs is achieved by Todd (1989). He used 

an RNN structure for generating monophonic melodies. The melodies of the training 

set are transposed to C major beforehand. Every output of the network represents a 

single pitch and each input vector represents a single time step. In 2002, Eck moved 

this experiment to an LSTM framework in the context of blues improvisation. Eck’s 

                                                
 
4 For a more in-depth literature survey, see Briot et al. (2019). 
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work does not impose a key restriction and the model is able to learn the harmonic 

relationship between pitches for itself. 

Another task for ANN models besides monophonic music generation is harmonization. 

HARMONET, developed by Hild et al. (1992), harmonizes melodies in the style of 

J.S. Bach. It is a hybrid system consisting of three parts: (1) An RNN responsible for 

deriving a harmonic skeleton from the melody with pitches encoded as the set of 

harmonic functions that contains them; (2) A symbolic algorithm generating the chord 

skeleton out of the harmonic skeleton; and (3) A neural net inserting eighth note 

ornamentations to chords. Another ANN architecture called Restricted Boltzman 

Machine (RBM) is used by  Boulanger-Lewandowski et al (2012), which generates 

chord progressions based on Bach chorales. Prior to training, the chorales are 

transposed to the key of C major or C minor. The representation used is called a multi-

hot encoding, in which the input vector has the size of the number of available pitches 

and every pitch is represented by a boolean value: the corresponding element of the 

vector is 1 if the pitch is being played at any time step. A more recent system called 

DeepBach (Hadjeres et al., 2017) generates chorale harmonizations in a more 

sophisticated manner. It uses two LSTM networks summing up the past and future 

information, a feedforward network responsible for the current notes and a second one 

merging all the output generated by the previous networks. The choice of 

representation is a multi-one-hot encoding: in each voice just a single pitch can be 

played at any time. (Briot et al., 2019).  

Moving on to another task of polyphonic music generation, Boulanger-Lewandowski 

et al. (2015) associated an RNN to the RBM structure mentioned above. In this hybrid 

structure RNN models the temporal sequence and the RBM models the pitches that 

should be played together (Briot et al., 2019). The model is trained on four different 

datasets: J.S. Bach chorales, classical piano pieces, orchestral classical music and folk 

tunes. A similar model is also built by Johnson (2015) where he used a biaxial RNN 

with the first and second parts recurrent in time and notes, respectively. The model is 

trained on the MIDI files on Classical Piano Midi Page5, which consists of common 

practice period piano works. A variation of Johnson’s model is proposed by Mao et al 

(2018), which they named the DeepJ. This system focuses on the consistency of style, 

                                                
 
5 http://www.piano-midi.de/ 
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as it takes an input vector of 23 numbers adding up to 1, corresponding to the 23 

composers of common practice period that it was trained on. This way the users can 

opt for different percentage values of the styles of different composers in the output. 

This kind of style encoding is criticized as being to simplistic by Briot et al (2019) on 

the grounds that musical styles are not orthogonal to each other and share many 

characteristics.  

One of the latest developments in the polyphonic music generation research is the 

Music Transformer6 model developed by Huang et al. (2018) within the Magenta 

project. Transformer models are solely based on attention mechanisms, which allows 

for modeling dependencies without regard to their distance in the input or output 

sequences, as opposed to the sequential nature of recurrent models (Vaswani et al., 

2017). With the help of this architecture, Music Transformer performs better than 

Performance RNN in terms of long term coherence. Samples for comparison can be 

found in the blog post about the model7.  

These examples of ANNs primarily operate on symbolic level but there is also research 

on music generation on the raw audio level – the drawback being the greater 

computational need for training the models and generating outputs. One example like 

this is the WaveNet system (van den Oord et al., 2016), which uses convolutional 

neural nets (frequently used in the visual domain) to create speech from text and to 

generate music. Convolutional networks are neural networks that use the mathematical 

operation of convolution in at least one of their layers. They are suitable for data with 

a grid-like topology (Goodfellow et al., 2016). In the case of audio files, temporality 

of the samples are represented in a one-dimensional grid.  

  

                                                
 
6 The model is not considered for this thesis as the code is not yet released. 
7 https://magenta.tensorflow.org/music-transformer 
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 MODELS  

 Onsets and Frames 

The first challenge in applying a machine learning tool to music is to compile a dataset. 

Performance RNN preprocesses and trains on MIDI data, however available MIDI 

files of compositions of 20th century and contemporary composers are scarce. Creating 

MIDI files manually from scratch would be very time consuming and therefore not 

feasible. Two alternative solutions are: (1) creating MIDI files from scores with an 

optical music recognition software; (2) using machine learning transcription models 

like Onsets and Frames of the Magenta Project. 

The alternative of using an optical music recognition software requires the availability 

of PDF files of scores for every composition in the dataset. However this is not always 

the case. Obtaining hard copies of scores and scan them manually is time consuming 

as well as logistically and financially very difficult, if not impossible. Also, the quality 

of the resultant MIDI files decreases with the decreasing quality of PDF files. Frequent 

errors include inaccurate durations of single notes, resulting in incomplete measures. 

This is a must-fix error and it is only manually fixable. Due to all this factors second 

alternative is used for the purposes of the thesis.  

The machine learning transcription model used in this thesis, i.e., Onsets and Frames, 

which was also used for creating the dataset for training the interactive Colaboratory 

version8 of Music Transformer (Huang et al., 2018), is a deep learning model for 

transcribing polyphonic piano music employing deep recurrent and convolutional 

networks (Hawthorne et al., 2018). The model is able to extract the onsets, durations 

and velocity of notes from raw audio files and output MIDI files as a result. It 

outperformed similar models on two different test sets used by the authors. The  sustain 

pedal changes are managed by extending the duration of the notes until the pedal-off 

message while preprocessing the MIDI files in the training set. 

                                                
 
8 https://colab.research.google.com/notebooks/magenta/piano_transformer/piano_transformer.ipynb 
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The first drawback for using the model is that we are restricted to piano music only. 

The second and more important one is the quality of MIDI transcriptions. The model 

is trained on the MAPS dataset compiled by Emiya et al. (2010) and the dataset 

contains music pieces aside from monophonic sounds and random chords. The music 

pieces used in the dataset are from the Classical Piano Midi Page containing a 

repertoire from the common practice period. Intuitively this should determine the style 

of music the model has a better performance with. For the sake of comparison, figures 

2.1 and 2.2 show the first two bars of Messiaen’s Le Chocard des Alpes from 

Catalogue des Oiseaux and its transcription. The MIDI file is quantized and converted 

to a score by Logic Pro X. Logic outputs measures of four quarter notes by default. 

Sibelius 7.5 is used for editing the layout for the screenshots, via the MusicXML files 

exported from Logic. 

 

Figure 2.1: First two bars of Le Chocard des Alpes 

 

Figure 2.2: Transcription of the first two bars of Le Chocard des Alpes 

Firstly we observe that the beat is converted to a half note in the transcription from 

the quarter note in the original score. The rhytmic values of the notes are far from 

accurate. Some of the chords are perceived as broken and some of the note onsets are 

late. This has to do with the fact that the model outputs MIDI with millisecond 
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durations based on the original performances, which is usually far from mechanical 

and can deviate from the score. Then it is quantized by Logic, which increases the 

error margin. The incapabilities of Logic are threefold: (1) The transcription does not 

hold notes properly when it detects the beginning of a new pitch, even though in the 

MIDI data notes are sustained for much longer than seen in the transcribed score – 

accounting for the sustain pedal as well9; (2) Logic does not recognize any other 

tuplets than the triplet; and (3) It does not generate particularly legible scores when 

dealing with extreme registers.  

Returning to the performance of the model, we can see that it does incredibly well in 

the pitch domain. It only missed a single pitch in this case, the low B natural in the 

second bar. It was the success of the model in terms of pitch content that convinced 

me to use the model in this thesis. Having this observation in mind, I prioritized pitch 

content over rhythmical content when analyzing the outputs.  

I ran the code for Onsets and Frames locally on my personal computer using mostly 

Youtube recordings of performances as audio sources. There is also an online 

interface of the model called Piano Scribe10, but I had difficulties running it because 

of the upload speed limitations of my internet service provider. Moreover, for the 

short segments that I managed to upload, it produced worse results.  

Lastly, it is also worth mentioning that by November 2019 the command published 

for running Onsets and Frames locally contains simple mistakes. The original and 

corrected version of the command can be found in Appendix A. 

 Performance RNN 

Performance RNN is a neural network-based generative music model from the paper 

Oore et al. (2018), which is capable of learning expressive dynamics and timing and 

generating performance-like MIDI outputs. It uses an LSTM architecture with three 

layers of 512 neurons. The encoding of musical information is done by one-hot vectors 

with a dimension of 413, consisting of 128 note-on, 128 note-off, 125 time-shift and 

32 velocity events, which correspond to the range of 128 notes, 125 time steps of 

                                                
 
9 Exact durations are shown if MIDI files are opened with Sibelius directly, but then the scores 
become illegible. 
10 https://piano-scribe.glitch.me/ 
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multiples of 8 milliseconds (adding up to a second at most) and the whole range of 

velocity values divided into 32 bins. To clarify the encoding further, this means that a 

note is sustained after a note-on message until an input vector with the note-off 

message in the corresponding note is fed to the network. In between there may be 

vectors with time-shift messages and vectors indicating that other notes should be 

played. Input vectors with velocity messages are fed to the network consecutively to 

the vectors with note-on messages. The minimum time step of 8 milliseconds is quite 

sensitive and it contributes significantly to the expressiveness of the output. 

As stated in Nierhaus (2009) and repeated in Oore et al. (2018), long term coherence 

can not be captured with ANN models properly. That is why formal considerations 

were not prioritized in the analysis of the outputs in the next sections. Music 

Transformer from Huang et al. (2018) seemingly addresses this problem – we will be 

able to experiment and tell more about this in the modern and contemporary music 

context when the code is released. 

One of the reasons I chose to use Performance RNN over the other neural network-

based polyphonic music generation models is that I find the premise of ready-made 

performances intriguing. Also, both being projects within Magenta Project, 

Performance RNN integrates with Onsets and Frames quite well. Performance RNN 

also preprocesses the MIDI files with extending note-off messages until the end of 

pedal-off messages from sustain pedal, eliminating the representation of sustain pedal 

in the input vectors. As mentioned above, Onsets and Frames outputs MIDI 

transcriptions in a similar fashion – it does not recognize the use of sustain pedal, but 

it simply extends note durations until they finish resonating. 

Another reason is the ease of use; there is step by step explanations of how to train the 

model on the GitHub page of the project11. I followed these steps and ran the 

commands on Google Colaboratory, which can execute Python12 code, runs in the 

cloud and provides free GPU for 12 hours. After 12 hours one can usually rerun the 

code, though every now and then you are banned from using a GPU for a short period 

of time, for the purposes of fair share. I connected the Colaboratory environment with 

Google Drive, so that the model could access the dataset to train on and save 

                                                
 
11 https://github.com/tensorflow/magenta/tree/master/magenta/models/performance_rnn 
12 Python is a high level programming language. 
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checkpoints during traning. I trained the model for approximately 2 days for each 

experiment and recorded performance metrics like accuracy and loss with 

Tensorboard13.  

The model was originally trained with the International Piano-e-Competition14 dataset 

in the paper, which consists of the MIDI recordings of the performances of contestants. 

The dataset includes approximately 1400 pieces of classical music (which I assume to 

be close to a hundred hours of music for the training set), overwhelming majority being 

composed by the composers of the common practice period. Before training my model 

I researched for a rule of thumb for an acceptable amount of data for training, which 

apparently does not exist. The amount of data varies: Johnson (2015) and Mao et al. 

(2018) used the Classical Midi Piano Page15, which is less then 20 hours of data, 

whereas for the Google Colaboratory version of Music Transformer used over 10000 

hours of Youtube videos for training (Simon et al., 2019). However it is doubtful that 

the outputs of models using more data are musically meaningful. The first output 

sample given in the blog post for Performance RNN16 is very impressive in the context 

of harmonic consistency and phrasing; the fragment shows that the model generalized 

exceptionally well on the features of consonance, chords, cadences – tonality in 

general. On the other hand, it seems like an incoherent mixture of musical styles: in 

thirty seconds a Mozartean texture is overlapped with Chopinesque runs, giving an 

idea about the most represented composers in the training set. When generating from 

scratch from the Google Colaboratory version of Music Transformer outputs may even 

contain circle of fifth clichees in a manner of pop-song arrangements (Figure 2.3). 

Either way it is not possible to compile sizeable datasets for this thesis because of time 

and storage constraints but we may benefit from training the model with a smaller 

                                                
 
13 Magenta library is powered by Tensorflow, which is itself an open source library for developing 
machine learning projects. Tensorboard is a tool of Tensorflow for recording and visualizing 
performance metrics. 
14 http://www.piano-e-competition.com/ 
15 http://www.piano-midi.de/ 
16 https://magenta.tensorflow.org/performance-rnn 
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dataset (as long as we are careful about overfitting17) if we manage to get stylistically 

more consistent outputs as a result.  

 

Figure 2.3: Excerpt from a sample output of the Colab notebook of Music Transformer 

 

2.2.1 First experiment 

2.2.1.1 Music of Messiaen 

Musical output of the 20th century is very diverse in terms of style. Musical 

modernism is especially marked by its linguistic plurality and the failure of any 

language to assume a dominant position (Morgan, 1984). Training a network with a 

dataset including music of various composers of that era is problematic because of the 

scarcity of common features in the music of different composers, compared to many 

common features of tonality among the common practice period composers. For that 

reason I decided to compile a dataset from the piano music of a single composer and I 

chose Messiaen. 

I would prefer to choose a more contemporary composer, however a large repertoire 

of solo piano music is needed to train the model, which limits the alternatives 

considerably. Messiaen on the other hand has a significant output of piano music and 

he has a book called “The Technique of My Musical Language” (1956), in which he 

summarizes the musical material he employs in his compositions. This book is of great 

assistance to any musician who intends to analyze Messiaen’s music and in this thesis 

it provides the framework for analyzing the output of the model that is trained by 

Messiaen’s piano music. 

In his book, Messiaen discusses his musical material under the subtopics of rhythm, 

melody, form and harmony. I will take a moment to briefly summarize his 

                                                
 
17 Overfitting occurs when the model does not generalize at all and learns the noise in the training 
data, in other words, the model memorizes the training data. 
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explanations, leaving out the discussion about form for the reasons mentioned in the 

previous section. 

First rhythmical tool Messiaen employed is the concept of added value, which are 

notes of very small durations added to common or previously used rhythmical 

groupings in a piece. These groupings are often in prime numbers in his music, 

instead of multiples of 2 or 3 as in the case with the music of common practice 

period. Messiaen variated rhythms by diminishing, augmenting and retrograding 

them, which are procedures commonly applied to melodic lines in Baroque music. 

He was particularly interested in rhythmic groups that remain the same when 

retrograded, i.e., non-retrogradable rhythms. Other rhythmic interests of Messiaen 

included polyrhythmic structures, rhythmic canons and pedals. 

Melodically, Messiaen emphasised descending melodic intervals of augmented 4th 

and major 6th, he also used these intervals in cadences. Certain chromatic cells, 

shown in Figure 2.4, were mentioned in his book. Messiaen is famously interested in 

bird songs; he used transcriptions of them in his compositions. Other techniques he 

frequently employed were abrupt register changes, interversion of the order of 

pitches and the elimination process, akin to the process of fragmentation described in 

Caplin (1998).  

 
Figure 2.4: Chromatic cells mentioned in Messiaen (1956) 

The parallel of the concept of added values in the rhythmical dimension is found as 

added notes in the harmonic dimension. Messiaen did not put any restrictions on 

possible additions made to chords, but once more listed the augmented 4th and major 

6th as the most frequently added intervals, underlining the importance of them. A more 

important harmonic concept of Messiaen is his modes of limited transpositions, which 

are modes that map onto themselves under transposition by certain intervals, so that 

they have less than 12 transpositions in total. When analyzing the outputs of the model 

I looked for these modes and chords built from the pitches of the modes, however did 

not attribute all modes the same level of importance. Messiaen has 7 modes in total – 

the first two of them are whole tone and diminished scales, respectively. The fifth 
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mode is contained by the fourth mode so I did not include it in my discussions. I also 

omitted the seventh mode completely as it is only two pitches short from the chromatic 

scale. Statistically it covers most musical fragments in the outputs. Modes 3,4 and 6 

can be seen in Figures 2.5-7 respectively.  

 
Figure 2.5: Messiaen’s 3rd mode of limited transposition 

 
Figure 2.6: Messiaen’s 4th mode of limited transposition 

 
Figure 2.7: Messiaen’s 6th mode of limited transposition 

Messiaen preferred using these modes over using polytonality, because according to 

him these modes have fragments from major and minor scales and they give the 

impression of being in multiple tonalities at once. He freely modulated between these 

modes and used them in a polymodal context as well.  

Aside from these modes, Messiaen also listed particular chords he used frequently. 

One such chord is the dominant chord, as he called it, which consists of all pitches 

diatonic to a major scale. Another one is the resonant chord, created by adding the 

higher partials over a dominant seventh chord. On a related note, Messiaen borrowed 

the term “effects of resonance” from Paul Dukas, referring to musical passages where 

chords in higher registers create an artifical resonance for sustained pitches or chords 

in the lower register. Specific pitch relations for the pitches that create the resonance 

are not mentioned for this technique.  
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Figure 2.8: Dominant chord and the chord of resonance 

2.2.1.2 Analysis of outputs 

After the network is trained, any number and length of outputs can be quickly 

generated. I decided to generate five short outputs of 30 seconds or 1 minutes each for 

observing the behaviour with different initializations and a longer output of 5 minutes 

for examining the long-term behaviour in each experiment. I analyzed no further 

outputs so that I would not end up cherry picking the best musical examples. First two 

pages of the longer outputs for each experiment can be found in the Appendix. On 

many occasions the passages in the outputs are not playable by a human performer, 

but I did not make an analysis from that perspective as the outputs are not directly 

considered for performance purposes. 

 
Figure 2.9: Bars 4-6 of the first 30 second-output, first experiment 

The first intriguing feature of the first short output of the first experiment is that it 

starts with a simple sustained major third. Overall, triadic structures commonly found 

in tonal works are frequently found in the outputs of the first experiment, which is not 

surprising as the early works of Messiaen (for instance his eight preludes) are mostly 

composed with triadic material.  

Bars 4-6 (Figure 2.9) are interesting for two reasons. Firstly, the melodic interval of 

augmented fourth, which Messiaen attributes great importance, is found in bar 4 as the 

top voice moves from E to B flat. This interval is used once more an octave higher in 

the next bar to establish formal coherence in a very small scale. Furthermore, the root 
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of the chord underneath is also a B flat, thus it is possible to speak of a cadence in the 

Messiaenic sense. Secondly, the B flat in the bass and the A on top of it is sustained 

from the last beat of the 4th bar up until bar 6 and various chords are played in an 

upper register over these pitches. This fits Messiaen’s description (or rather given 

examples) of effects of resonance.  

 
Figure 2.10: Bars 13-14 of the first 30 second-output, first experiment 

Bar 13 of the same output (Figure 2.10) demonstrates birdsong like qualities. This 

impression is mostly due to the high register, consistent rhythm of 16th note triplets, 

melodic curve and the brief halt of rhythmic activity in the second 8th note of the bar. 

Frequent register changes also catch the listeners attention. This bar resolves to a 

diminished scale chord in bar 14, in other words the third transposition of the second 

mode.  

 

Figure 2.11: Bars 4-5 of the fourth 30 second-output, first experiment 

Finding extended passages residing in a single mode is not very easy. Bars 4-5 in the 

fourth 30 second-output include 8 of the 9 pitches of the first transposition of the third 

mode and the pitch F, which is out of the mode. My opinion is that the model is not 

able to internalize a high level feature such as the modes, instead we frequently observe 

pitch content which almost adds up to a mode, resulting from the interval relationships 

learned by the model. This is reasonable, as Messiaen does not use the modes 

consistently and many of the works in the dataset do not use them at all. I believe that 

with a dataset that consistently uses the modes, the ANN model would be able to learn 

to compose with them.  
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Figure 2.12: Bar 13 of the fourth 30 second-output, first experiment 

On the other hand, there are many passages with most of the simultaneities being 

derived from one of the modes. In the passage in Figure 2.12 the first chord is from 

the 3rd mode, second chord and third chord are from the diminished scale and whole 

tone scale, respectively; most of the remaining chords are also derived from these three 

modes. The last chord of the bar is particularly interesting: it is an altered F sharp 

dominant seventh chord with an upper structure of a major triad with an added sixth. 

Also, the whole passage is another instance of effects of resonance. 

Aside from techniques and material that belong strictly to Messiaen, there are general 

musical issues that should be addressed as well, considering the fact that the model is 

agnostic to any kind of musical idea prior to training. In the fifth 30-second output of 

the first experiment there are points where musical activity stops, dividing the output 

into phrases. The model also uses dynamic information for the purposes of phrasing18. 

The beginning of a musical phrase and its velocity information (in a piano roll format) 

are shown in Figure 2.13 and Figure 2.14, respectively. The velocity of the pitches 

increase gradually as the phrase begins, creating a crescendo in a musically sensible 

way. 

 

Figure 2.13: Bars 5-6 of the fifth 30 second-output, first experiment 

                                                
 
18 The first experiment is trained with a configuration called “performance with dynamics, compact”. 
This configuration also uses dynamic information to train the model. The whole range of dynamics is 
divided into 32 bins, which means that only 32 values are possible for the loudness of a pitch. 
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Figure 2.14: Velocity data19 of figure 2.13 

 

Figure 2.15: Chromatic cells in the 5 minute-output, first experiment 

 

Figure 2.16: Repeated motive in the 5 minute-output, first experiment 

The 5 minute-output introduces a couple instances of chromatic cells that Messiaen 

mentioned among his material. In the 2nd bar the pitches are found in the melody, 

                                                
 
19 The velocity of the pitches increases as the colors in the piano roll get warmer. 
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whereas in bar 35 another cell is found in the bass voice with the G displaced an octave. 

A more specific motive that gets repeated three times is seen in Figure 2.16. Within 10 

bars we hear the motive consisting of a descending interval followed by an ascending 

interval of the same size. With each occurence the motive gets rhythmically 

augmented: from a 16th note triplet to 16th notes and finally to quarter notes. Another 

repeated pitch pattern is found in bars 44-45 in the bass voice (Figure 2.17). The 

repetition occurs in a cadence-like moment and the feeling of centricity around the 

pitch B flat is reinforced with the reiteration of the ascending melodic interval from F 

sharp to B flat an octave lower in a descending manner.  

 

Figure 2.17: Reiteration of the root motion in 5 minute-output, first experiment 

As mentioned earlier, fragments of Messiaen’s modes fit in major and minor scales 

and Messiaen uses the modes in a way that the music sounds like in multiple keys at 

once. This aspect of the technique is examplified in the 5 minute-output in bar 35, 

where we find a nine-pitched chord involving seven out of the nine pitches of the 

second transposition of the third mode and two octave doublings. The chord has the 

pitches F, G, and A flat in it, in other words the first three pitches of an F minor scale. 

This feature prepares the upcoming F minor material in the next two chords, which 

can easily be heard and interpreted as inverted versions of F minor extended by 9th, 

11th and/or 13th. After the interpolation made by two 4th mode chords, 3rd mode 

material returns in a different transposition (1st). Then the progression moves to chord 

with the pitch B in the root. (which is an augmented fourth away from F), namely a B 

dominant seventh with an added flat 5. Additionally, the smooth voice leading into the 

initial nine-pitched chord captures the listeners attention as well. Two pitches in the 

previous chord descends by a half step and the remaining pitch is held (Figure 2.18). 
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Figure 2.18: Third mode chord and F minor material in the 5 minute-output, first experiment 

The last musical example from the first experiment is seen in Figure 2.19, depicting 

bars 89-90 of the 5 minute-output. The passage shows an extreme registral separation; 

there are even notes outside the range of piano (marked red) in the lower range. This 

is possible as the model accepts inputs and outpus for the whole range of the MIDI 

format, which exceeds the range of piano. Extreme amounts of registral separation is 

also found in the piano music of Messiaen, examplified by Catalogue d’Oiseaux, no.7, 

bars 19-23 (Figure 2.20). The passage in the original piece is a birdsong transcription 

of Messiaen. With the part in the higher register being quasi-repetitive in a narrow 

range, the passage from the output is also reminiscent of a birdsong; however, it is not 

nearly as consistent in its rhythmic pattern and pitch content. Overall, the model does 

not seem to capture Messiaen’s rhytmhic material like the often used retrograde or 

non-retrogradable rhythms. The outputs rarely show instances of repetitive rhythmic 

patterns or any sign of rhythmic development, proving me right about my concerns 

about the rhythmic framework of the model and the errors made by the software used 

in the experiment.  

  

Figure 2.19: Bars 89-90 of the 5 minute-output, first experiment 
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Figure 2.20: Bars 19-23 of Messiaen’s Catalogue d’Oiseaux, no. 7 

Prior to training, I also had concerns about overfitting because of the small dataset I 

had to use. After assessing the outputs we can assume that overfitting is not an issue, 

as the generated outputs are very different than the original dataset in various aspects. 

Figures 2.21 and 2.22 show the training accuracy and loss of the model, with the data 

collected via Tensorboard. The X-axis depicts the number of steps and the y-axis 

depicts accuracy and loss, respectively. The outliers and the period around 80k steps 

with no data is presumably due to reinitializations of the training after a loss of 

connection to Google Colaboratory. 

 

 

Figure 2.21: Training accuracy of the first experiment 
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Figure 2.22: Training loss of the first experiment 

No data is given about the training accuracy in Oore et al. (2018), however the training 

loss is smaller than 1 in that experiment. The loss in this experiment is approximately 

1,8 at the lowest and the accuracy is as low as 40 percent at best, implying that there 

is room for further improvement. Aside from the net values of loss and accuracy, we 

can also make deductions from the constant wide fluctuations of these values. It 

suggests that the batches are different from each other in various ways and a set of 

parameters that gets a good result with one batch often does not work as well on the 

next one. We shall come back to this observation in the next experiment. As increasing 

the size of the dataset is not possible, the most sensible step is to increase the capacity 

of the model for the second experiment to get better values of accuracy and loss.  

2.2.2 Second experiment 

2.2.2.1 Hyperparameters 

For the second experiment I decided to change the configuration of the model. I wanted 

a configuration that does not take dynamics into account, so that the model parameters 

can focus more on the pitch content. However, only configuration that used compact 

input files operated with dynamics and the alternatives created very large input files, 

so I used the same configuration but changed the number of bins for the dynamic 

information from 32 to 1, indirectly eliminating the dynamics from the model. 

Furthermore, I added one further layer to the architecture of 512 neurons. Oore et al. 

(2018) state that the model was not sensitive to the hyperparameter of number of 

neurons per layer, which is why I did not experiment with that hyperparameter. Lastly, 
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I set aside ten percent of the original dataset as a validation set. Testing the model 

parameters on a set of data that has not been trained on enables the user to make 

deductions about the generalization capabilities of the model and the pitfalls of 

overfitting and underfitting. The code fragment of Performance RNN for the used 

configuration is given in Appendix C. 

2.2.2.2 Analysis of outputs 

The outputs of the second experiment show an increased rhythmic activity in general. 

Especially the surface rhythm in the lower registers is increased compared to the 

previous experiment. As a result, many passages seem more chaotic and less musical. 

My intuition is that the model devoted some of its increased learning capacity to 

rhythmic precision, which resulted in excessively detailed and unmusical surface 

rhythms because of the accumulated deviations resulting from the performance, 

transcription and training phases. Examples of some of the more interesting passages 

within the outputs are given below. In this experiment the shorter generations are 1 

minutes long instead of 30 seconds, except for one output out of the five. 

The second of the short outputs examplifies the rhythmic activity in the low registers, 

with a C/C sharp  in the 4th octave being held over for almost eleven measures. Under 

this held note we can observe triadic structures resulting in F sharp major, F sharp 

diminished, C major seventh and E flat major chords.  

 

Figure 2.23: Bars 15-16 of the second 1 minute-output, second experiment 

In my opinion in many cases the notes which would have been transcribed as a 

simultaneity in the previous experiment show themselves as broken chords in this 

experiment. 4th bar of the third short output shows a broken D dominant seventh in 

this manner, with the frequently observed added note of major 6th on top. Bars 29-30 

show a passage with dense rhythmic activity. Two voices almost alternate in their use 
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of 16th note triplets and regular 16th notes in a contrapuntal texture; however, the 

result is chaotic as all the examples are transcribed at 120 bpm.  

 
Figure 2.24: Bar 4 of the third 1 minute-output, second experiment 

 

Figure 2.25: Bar 29-30 of the third 1 minute-output, second experiment 

The only 30 second-output experiment breathes more than its counterparts. A cadential 

moment with an upwards leap of an augmented fourth is found in the 2nd bar. The end 

of the 3rd bar contains a very large melodic leap of almost three octaves. After this 

single note of high register the melody settles back to mid registers instantly. Messiaen 

employs large and abrupt leaps in his music as well, so this is not very surprising; 

however, this leap is not prepared and does not have a musical context, as it is usually 

the case in these experiments.  

 

Figure 2.26: Bar 2-3 of the 30 second-output, second experiment 
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In the same output there is an interesting chord progression in bars 11-12. The 

progression begins with an F sharp minor chord, with the pedal note A underneath. 

The second chord is rare in terms of pitch content: its pitches are derived from the 

fourth transposition of sixth mode. The next two chords point to A minor, followed by 

an iiÆ7 – V – i7 progression in E minor, with the V chord replaced by a diminished 

chord of the seventh degree with an added 6th. The A minor chord and A pedal are 

understood to be the subdominant chord and pedal in retrospect. This progression is 

underlined by the root motion from A to E in the very next bar.  

 

Figure 2.27: Bar 11-12 of the 30 second-output, second experiment 

Moving on to the 5 minute-output of the experiment, bars 35-36 is the first passage I 

find worthy of commentary. The displayed passage (Figure 2.28) begins with a shift 

in register in the third beat, notably from a chord built with the intervals of augmented 

fourth and major sixth on top of the pitch A. Then, we observe numerous repetitions 

of pitches C and C sharp in a short space. This is just one example of many instances 

where pitches within a narrow range are repeated rapidly, creating a frivolous rhythmic 

activity.  

 

Figure 2.28: Bars 35-36 of the 5 minute-output, second experiment 

Another recurring concept in the outputs is the interpolation of the harmonic functions. 

In bar 58, chords that can be mapped to either of mode three or six are interpolated by 

an F minor hybrid chord. In bar 94, the C minor chord with an added eleventh comes 
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back two bars later in the last beat. In between there is a diminished scale chord and 

an F sharp minor chord, the latter one being introduced with a wide leap.  

 
Figure 2.29: Bar 58 of the 5 minute-output, second experiment 

 
Figure 2.30: Bars 94-96 of the 5 minute-output, second experiment 

Two of the special chords appear in the long output of this experiment. In bar 64, we 

can see the chord of resonance with the 5th and 11th of the chord omitted. However, 

the chord is voiced in a way that the chord notes form two distinct intervals of 

augmented fourths. In bar 138 the chord in fourths can be spotted, which is a chord 

built of alternating perfect and augmented fourths, accumulating to the pitch content 

of the 5th mode. In this case the chord is two notes short of the fifth mode, but it is 

voiced exactly as Messiaen describes. The chord in fourths has a B flat in as its root 

and it is preceded by a B flat dominant seventh chord with the added notes of 9th, 

sharp ninth and sharp 11th. It is followed by G minor (with an added 9th) and B flat 

minor seventh chords. Overall, we can claim that triadic material is frequent in the 

second experiment as well.  

 

Figure 2.31: Special chords in bars 64 and 138 of the 5 minute-output, second experiment 
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Last musical example given from this experiment is the most naively constructed 

passage in the outputs of both experiments. It is a lullabyish melodic idea centered 

around the pitch E flat. This is the first fragment in which we observe a very consistent 

repetition of a melody with clear direction. It can also be argued that the duration of 

the pitches are extended with added values to create a slight rhythmic imbalance. 

 

Figure 2.32: Lullabyish musical idea in bars 114-118 of the 5 minute-output, second experiment 

Figures 2.33 and 2.34 show the accuracy and loss graphs of the training and evaluation 

sets in orange and blue, respectively. The straight lines in the blue curve denote the 

time intervals where no data is gathered20. The intuition in the last experiment was that 

the model was not overfitting. In this experiment, we see an increase in the accuracy 

of the training set. However, the data show that the accuracy/loss of the validation set 

decreases/increases very early (after approximately 2-3 thousand steps of training). 

This proves that the model is not able to generalize and it is in fact unsuccessfully 

“trying” to overfit. It can be claimed that a more refined dataset is needed for better 

results. We had a hint in the previous example from the wide fluctuations of accuracy 

and loss at every step. Improvement in the transcription data could help, but if we 

desire from model to find common features in the data, we primarily need to use a 

dataset that employs the discussed features more consistently. Limiting the used 

repertoire of Messiaen within a time period could be a solution, but in that case the 

size of the dataset shrinks considerably. The ways of compiling a more consistent 

                                                
 
20 I ran an evaluation job in the Google Colaboratory simultaneous with the training job. However, 
once in a while, the evaluation job throws an error and stops without an apparent reason. I was not 
able to see a reason in the code of Magenta and did not spend more time on the issue as I am not a 
programmer and there was enough data to see the general trend. 
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dataset for 20th or 21st century repertoire is a possible topic of discussion in further 

studies.  

Having mentioned this issue, I think the model still generates original and musically 

interesting results as it is not able to overfit to the dataset properly. The accuracy for 

the validation set is not released in the paper of Performance RNN as well - the 

measure may not be deemed relevant to the authenticity of the generated outputs. For 

the purposes of this thesis, I moved forward by repeating the experiment with same 

hyperparameters, but I used an expanded dataset including works from composers 

other than Messiaen. 

 

Figure 2.33: Training accuracy of the training (orange) and validation (blue) set, second experiment21 

 

Figure 2.34: Training loss of the training (orange) and validation (blue) set, second experiment 

                                                
 
21 The model was trained further, however the accuracy/loss data was not collected as the trends of the 
curves were already clear. 
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2.2.3 Third experiment 

2.2.3.1 Music SOM 

As discussed earlier, expanding the dataset in the previous experiments with works 

sharing similar features is problematic for the modernist repertoire and for 

contemporary music, if not impossible. The decision of which composers to add may 

be done completely by subjective judgement; however, I decided to use a more 

theoretical approach and used a neural network model called Self Organizing Maps.  

Self Organizing Maps (SOM) are unsupervised learning models proposed by Kohonen 

in 1982. SOM is a tool for visualizing high dimensional data. This visualization also 

displays the similarities among the input data (Kohonen et al., 2012).   

Before moving further, I want to clarify the term “unsupervised learning”. In our 

previous models we used supervised learning techniques: in every training step there 

was a correct output vector for every input vector. We measured the distance between 

the actual input of the model and the correct output and gave our model a feedback 

accordingly; so that the weights are updated in the right direction. To be clear, the 

correct output vector is the next input vector in the sequence, as we are training the 

model to recreate the musical example we feed to it. In the case of SOM however, 

there is no measure of error that we can backpropagate to update the weights. 

The architecture of SOMs consists of a single input and output layer. The neurons in 

the output layer have weights of the same dimension as the input vectors. The learning 

takes place in three steps after these weights are initialized. First step is called 

competition. The distance between the weights of each neuron and the input vector is 

measured with the help of a distance function – the neuron with the least distance wins. 

The second step is cooperation. In this step we choose the neighbours of the winning 

neurons, primarily according to their distance in the two dimensional output space. 

The weights of the winning neuron and its neighbours are updated in the third step, 

which is named adaptation (Khazri, 2019). 

I used a code called Music-SOM submitted to the software development platform 

GitHub in 2017 by Odysseas Krystalakos. The raw audio dataset of the piano 

compositions that I compiled included works by Messiaen, Karlheinz Stockhausen, 

Tristan Murail, Luciano Berio, Second Viennese School (mostly Schönberg with an 

addition of a couple works by Berg and Webern), Alfred Schnittke, Brian 
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Ferneyhough, Pierre Boulez  and Salvatore Sciarrino. Each composer had a hundred 

samples of 30 seconds each. For this experiment I chose composers with a significant 

amount of solo piano compositions who work outside of tonal idiom. Three of these 

composers (Stockhausen, Boulez and Murail) have had Messiaen as their teacher at 

some point, though their styles did not always resemble each other. My plan was to 

choose four of the eight composers mentioned above and to increase the database to 

more than 10 hours by adding an hour of piano music from each new composer. 

The input vectors for the Music SOM are 35 dimensional. The features are extracted 

from the audio files with the help of a Python package called LibROSA, which is 

used for music and audio analysis (“LibROSA”, n.d.). The first dimension is 

reserved for the beat tracking function. The function returns the estimated tempo and 

beat locations. The second dimension is for the tuning estimation function, which 

returns the estimation of tuning deviation from the reference of A=440 Hz (McFee et 

al., 2015). Next seven numbers are the tonal centroids as calculated by Harte et al. 

(2006), which is a representation of pitch and harmony based on Riemann’s Tonnetz. 

Tonal space is six dimensional according to Harte et al.22, thus I am assuming that 

the seventh dimension represents the time frame that the data is gathered in. Mel 

Frequency Ceptral Coefficients (MFCC) cover twenty one slots of the input vector. 

These coefficients are used to describe the overall shape of a spectral envelope and 

therefore convey important information about the timbre (Tjoa, 2015). Remaning 

slots are filled by the feature of spectral contrast, which considers the spectral peak, 

spectral valley and their difference in every sub-band (Jiang et al., 2012). 

I have made adjustments on the code of Krystalakos. Aside from minor updates23, 

parameter changes (concerning the map size and audio samples per composer) and 

required fixes for plotting a larger map than 4x4 (which was the size of the original 

example given by Krystalakos), I placed the calls for the training function in a loop. 

In the original version of the code the training function feeds every sample into the 

model only once, whereas my version shuffles the training samples and feeds them to 

the model 250 times, aiming for better results with a longer training period. Both 

versions can be found in Appendix E. Note that the function is called multiple times 

                                                
 
22 Two dimensions each for perfect fifths, major thirds and minor thirds.  
23 Compiling the Python code in a newer version than the code was written in often requires some 
updates to various commands. 
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even if every sample is fed into the model once. This way the learning rate (the third 

argument passed to the training function) can be reduced as the training progresses.  

I trained the model with a grid of 20x20 neurons. To decide which composers to 

choose, I examined the neurons which are won by the audio files of Messiaen works 

more than 200 times24. A sensible measure of similarity is the number of wins of the 

other sample groups in these neurons, as the wins are decided by the similarity of 

neurons and samples in the first place. The generated maps will be different in each 

run as the weight initializations and sample order shufflings are random, which is 

why I repeated this experiment twice and compared the results. Table 2.1 displays 

the total number of wins of each sample group in the neurons won by Messiaen audio 

files by more than 200 times for both experiments and Figure 2.35 shows the map 

resulting from the first experiment. 

 

 KS LB SV SS PB BF AS TM 

1 5975 5054 6403 5000 4554 5925 5703 5708 

2 6159 7243 6539 6014 4743 6339 4762 5724 

Table 2.1: The number of wins in cells won by Messiaen more than 200 times25 

The choice of composers became easier with the help of the table in figure 2.6, as 

Stockhausen, Ferneyhough and composers of the Second Viennese School are 

amongst the top four in both experiments. As the fourth composer to add to the 

dataset, I chose Tristan Murail based on subjective judgement. He is one of the 

pupils of Messiaen and his compositions frequently use resonance effects in 

Messianic sense, high-pitched material and register separation. Moreover, 

considering Messiaen’s emphasis on resonance and his use of different registers, we 

can claim that he, like Murail, has a spectral sensitivity in his music. 

                                                
 
24 The data of the amount of times each neuron is won by each sample group (composer) is available. 
25 In figure 2.6 and 2.7 the composers mentioned earlier in this section are referred by their initials. 
SV denotes Second Viennese School.   
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Figure 2.35: Map from the first experiment with Music SOM 

The experiment is carried with the same hyperparameters from the second 

experiment. If I had been able to analyze the outputs of the second experiment before 

I started training for the third experiment I would have considered reversing the 

changes done in the second experiment; however, that was not possible because of 

time constraints.  

2.2.3.2 Analysis of outputs 

After training the model with a new dataset including the works from multiple 

composers, the natural expectation is observing musical features from the works of 

those composers in the generated outputs. This is what I looked for when analysing 

the outputs of this experiment.  

The first musical feature unobserved in the previous outputs is shown in Figure 2.36. 

In the first two experiments, end of phrases or distinct groups of notes were marked 

by sustained pitches of long duration. In this example, the last note is a B flat in the 

3rd octave, which functions like a punctuation mark abruptly ending the phrase. It is 

actually even shorter than a 16th note26, but more importantly it is in a different 

                                                
 
26 It is possible to quantize the MIDI file to 32nd notes or lower subdivisions, but the scores become 
very hard to read for the purposes of analysis. 
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register than the previous notes, which makes this punctuation effect even clearer. 

Similar passages with sudden changes in note duration within the notes which are 

musically grouped together are frequently found in the outputs of this experiment. 

We can attribute this novelty to the inclusion of Stockhausen, Schönberg and 

Ferneyhough to the dataset.  

 

Figure 2.36: Bars 2-4 of the first 30 second-output, third experiment 

In the 13th and 14th bar of the second 30 seconds-output (Figure 2.37) there are two 

consistently ascending adjacent arpeggios, which were also a rarity in the previous 

experiments. The second arpeggio has a rubato-like rhythm in the manner of a brief 

rhythmic decrescendo and crescendo (not noticable in the transcription), which is 

reminiscent of the music of Tristan Murail, for instance of Les Travaux et les Jours. 

An examplary passage from that piece is given in Figure 2.38. 

 

Figure 2.37: Bars 13-14 of the second 30 seconds-output, third experiment 

 
Figure 2.38: Bar 16 of Les Travaux et les Jours, no.1 
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The third short output of the third experiment is perhaps the most interesting one 

among all outputs of this experiment. The pitches D/D sharp are rapidly played in a 

manner of tremolo (occasionally speeding up and down in the process, which could be 

more successfully notated in rhythmic crescendos and decrescendos) for four bars 

before unveiling a texture of arpeggios (Figure 2.39), once more reminiscent of Murail. 

Looking at this passage, we can claim that the model has reacted to the additions made 

to the dataset. Works of Messiaen do not have passages of incessant repetition, unlike 

Klavierstück IX of Stockhausen (Figure 2.40) and Territoires de l’oubli of Murail, both 

among the additions made to the dataset for the third experiment. 

 

 

Figure 2.39: Bars 4-6 of the third 30 second-output, third experiment 

 

Figure 2.40: First bar of Klaviersütck IX 

In previous experiments there were many examples of abrupt register changes. The 

long output of this experiment contains extreme examples of register changes in which 

a single note is played per each register (Figure 2.41), reminiscent of the pointillistic 

style of Webern. Overall, chordal textures still dominate, but compared to previous 

experiments there are more instances where it is closer to a two-voice counterpoint 

(Figure 2.42), in the style of Stockhausen’s Klavierstück IV. 
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Figure 2.41: Bar 25-26 of the 5 minute-output, third experiment 

 

Figure 2.42: Bars 129-130 of the 5 minute-output, third experiment 

Considering the fact that serialist composers are added to the dataset for this 

experiment, adopting a set theory apporach for the analysis makes sense as well. For 

instance, following the terminology of Straus (2005), the pitch class set found in bar 

23-2427 of the output with the prime form of (012579) is transpositionally equivalent 

to the one found in bar 41. I also looked for instances of chromatic saturation, though 

I did not find any. Instead, there are many passages with different pitch classes 

accumulating quickly to undermine the sense of centricity, like when 10 different pitch 

classes unfold in a couple beats in bar 141. Deeper analysis could reveal more intricate 

relationships, but analysing in the same level of depth as Toop (1990) did for 

Ferneyhough’s Lemma-Icon-Epigram would be speculatory, as it does not seem 

realistic for the model to learn concealed features such as filtering (Toop, 1990, pg.59) 

from a dataset with only an hour of Ferneyhough’s music out of a total of ten hours.  

          
Figure 2.43: Transpositionally equivalent pitch class sets in the 5 minute-output, third experiment 

                                                
 
27 Consisting of C, C sharp, D, F, G and A. 
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Figure 2.44: Bar 141 of the 5 minute-output, third experiment 

In general, we can say that the experiment is successful, as we are able to observe 

different musical features in the output that we can relate to the works of the composers 

added to the dataset. It would be particularly interesting to train the same dataset with 

a configuration that handles dynamic information as well, considering the dynamic 

changes of Stockhausen within the idiom of total serialism or the level of detail in 

Ferneyhough’s music.  

Looking at the graphs of accuracy and loss, we can state that there are no major 

changes in the behaviour between the second and third experiment, except for the fact 

that the accuracy graph is more unstable in terms of jumps between batches. This is 

expected considering that the dataset in this experiment is more diverse. More 

importantly, a small increase/decrease can be observed in the level of accuracy/loss of 

the validation set. The peak/trough levels of both curves are also seen a bit later in the 

training compared to the second experiment. From this information we can 

retrospectively understand that the size of the initial dataset was indeed insufficient. 

Even the extension of the dataset by the works of other composers provided an increase 

in the generalization capabilities of the model.  

 

Figure 2.45: Training accuracy of the training (orange) and validation (blue) set, third experiment 
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Figure 2.46: Training loss of the training (orange) and validation (blue) set, third experiment 

2.2.4 Fourth experiment 

2.2.4.1 Improvisational context 

For the last experiment I decided the train the model with my own improvisations and 

use the outputs to compose a piano miniature. I improvised for approximately six and 

a half hours in 28 sessions, which is close to the length of Messiaen’s piano repertoire. 

The length of the sessions change between 5 and 25 minutes. To be consistent with the 

previous experiments I recorded audio files and converted them to MIDI with Onset 

and Frames afterwards, instead of recording MIDI files directly. A sample of these 

improvisation transcriptions can be found in Appendix G. Finally, I used the model 

parameters from the first experiment as I thought dynamic information in the outputs 

could be helpful for the subsequent composition process.  

The improvisations were not totally free, in the sense that there was musical material 

prepared beforehand. This material can be grouped in categories of vertical and 

horizontal. The first item in the vertical category is polychords. Frequently used 

polychords include major triads a minor 2nd, major 2nd, minor 3rd, major 3rd or 

tritone above another major triad, and minor triads a minor 2nd, minor 3rd or tritone 

above a major triad. The second item is the natural or scaled versions of the harmonic 

spectrum, with the scale factors 0.8, 0.9 and 1.228. The scaled spectrum examples over 

the fundamental C2 are found in Figure 2.47. Root motion by major and minor third 

is favored when progressing between these material. The remaining vertical sonorities 

                                                
 
28 The scaled versions of spectra is adjusted to equal temperament. 
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include extended chords found commonly in jazz music and other sonorities derived 

from material in horizontal category. The items in the horizontal category are  1st, 2nd 

(diminished and whole tone scales), 3rd and 6th modes of Messiaen, which are 

presented earlier in this thesis.  

 

Figure 2.47: Spectra stretched with scale factors 0.8, 0.9 and 1.2, respectively 

The resulting improvisations however do not consist entirely of the material discussed 

above. Deviations occur, because I could not afford to be selective while compiling 

this dataset, though I was not always satisfied with the recordings in terms of 

aesthetics.  

2.2.4.2 Compositional thinking 

Before moving on to the compositional process, I would like to briefly talk about the 

outputs of the model. Compared to the outputs in the previous experiments, the outputs 

in this experiment more frequently have simplistic passages containing triadic material 

(Figure 2.48). Overall, the outputs seem harmonically and rhythmically less complex, 

demonstrating a more improvisatory character involving many arpeggios and runs, not 

unlike improvisation in the context of jazz music (Figure 2.49). These features of the 

outputs are reflective of my capabilities as an improvisor and experience in jazz 

improvisation.  
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Figure 2.48: Sample output containing triadic material 

 

 Figure 2.49: Sample output containing a single-voice run 

Looking at the training accuracy, we observe a similar trend to the previous 

experiments. The main difference is that the accuracy curve is much more stable, 

which indicates that the improvisation dataset was more coherent in terms of style. 

This is expected, as I worked with limited material while improvising. Also 

noteworthy is the level of training accuracy, which is slightly lower compared to the 

third experiment.  

Taking these graphs into account, further analysis of the outputs is avoided in this 

experiment – the capabilities of the model have already been demonstrated in the 

previous sections. Instead, the focus is shifted to the compositional process. 

 

Figure 2.50: Training accuracy of the training (orange) and validation (blue) set, fourth experiment 
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Figure 2.51: Training loss of the training (orange) and validation (blue) set, fourth experiment 

As I mentioned earlier, outputs can be generated in a couple of minutes after the 

training is complete. In a compositional context, this means almost unlimited material 

to work with. Because of time constraints, I chose to generate fifteen one minute long 

and one five minutes long output, totaling to twenty minutes of material. Then I went 

on to collect fragments out of these outputs which particularly strike me as 

aesthetically pleasing or formally coherent. These fragments range between 2 to 10 

bars and are over four minutes long in total.  

At this stage I would like to point out that the ways of composing with this material is 

practically unlimited, it depends on the choices and working habits of the composer. 

For a longer piece and a larger time window for composing I would work with shorter 

material and develop more. For the purposes of this thesis however, I chose to stay 

closer to the material in the outputs to demonstrate the usefulness of them. Also, this 

choice helped me to compose more quickly as I had to make fewer lower level 

decisions about pitch content and rhythm, and intrigued me aesthetically as the end 

product preserved the improvisational character in the outputs. 

The end product, which I called “comprovisational miniature for piano”, is 

approximately two minutes and fifteen seconds long. The score can be found in 

Appendix I. Specifically, the piece is composed juxtaposing the fragments I extracted 

from the outputs. Among these fragments, I selected passages which were suitable for 

creating a formal coherence and made changes to create smooth transitions whenever 

necessary. Dynamics, articulations and pedalings are inserted throughout the 
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composition and adjustments are made in the notation for the sake of readability and 

playability. I would like to look closely at the juxtapositions and changes (made to the 

outputs) in the composition before I conclude the section.    

The first five bars of the piece is extracted from the first bars of fourteenth 1 minute-

output, with the difference of a single pitch in bar 5. The original pitch of F sharp is 

raised a semi-tone to G to obtain the dissonant interval of a tritone instead of a perfect 

fourth. Also, one beat is added to the bar to space the material out. Extensions of 

durations of chords or single notes and insertion of rests is employed frequently 

throughout the piece to let the material breathe. The next fragment from bar 6 to 14 is 

found in the seventh 1 minute-output and serves the purpose of leading the low register 

way up to the fifth octave of the piano. The last pitch of A5 found in bar 14 is originally 

a Bb4 in the output, but it is changed for voice leading and register shifting purposes. 

The next fragment in bars 15-16 is reused in bars 24-25. It is subjected to various 

alterations in pitch and rhythm; the original version can be seen in Example 2.52. The 

last chord of the passage is held over the next fragment for a smooth transition in the 

composition.  

 

Figure 2.52: Bars 12-14 in the fifteenth 1 minute-output, fourth experiment 

The next fragment between bars 17-23 (original output in Figure 2.53) is taken from 

the earlier measures of the same output. The noteworthy changes in the fragment are 

the pitch F6 found in bars 17 and 18, which is inserted for register considerations and 

the quintuplet found in bar 20. In faster passages or passages with unstable rhythm, I 

occasionally felt the need to stabilize the rhythm with consistent durations. Similarly 

a septuplet is used in the next fragment from the thirteenth 1 minute-output (bars 26-

31, original passage in Figure 2.54). The rhythmic structure in bar 30 is altered with 

the inserted 16th note triplet and sextuplets. This change contributes to building a 

momentum at this point, as it provides an increased surface rhythm.  
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Figure 2.53: Bars 3-9 in the fifteenth 1 minute-output, fourth experiment 

 

Figure 2.54: Bars 8-14 in the thirteenth 1 minute-output, fourth experiment 

The subsequent passage (bars 32-35) is from the same output as the last one. Even 

though they are not consecutive in the output, it allows itself to start directly after the 

last fragment without interrupting the musical flow. The last chord in bar 34 is altered, 

which originally had a single different pitch from the previous chord in the same bar 

and caused harmonic stagnation. 

More significant changes took place in the following passage (bars 36-44, originally 

extracted from bars 17-24 of the nineth 1 minute-output). The sforzando chords found 

in bars 37, 38 and 41 are all shifted an octave higher to introduce a novel idea to the 

passage. The climax of the miniature occurs in bar 41 of this passage as well, to which 

the mentioned idea contributes significantly. Other alterations are mainly done for 

voice leading purposes, like the insertion of D and G natural in the first beat of 39 and 

the push of the A#3 (originally A#2) in the third beat of bar 42 up an octave. 
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Lastly, the passage in bars 45-52 (taken from bars 2-8 of the seventh 1 minute-output, 

shown in Figure 2.55) is intended for providing a musical relief after the climactic 

moment in the piece. The pitch content is slightly altered compared to the version in 

the output, mostly for aesthetic preferences and avoiding exaggerated consonances. 

Last chords of the piece seen in the last four bars are composed manually.  

 

Figure 2.55: Bars 2-8 in the seventh 1 minute-output, fourth experiment 
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 CONCLUSION AND DISCUSSION 

In the first experiment, I trained Performance RNN with the entire piano repertoire of 

Olivier Messiaen. Some of his musical language was observed in the outputs, but the 

overall accuracy was quite low. To improve the accuracy in the next experiment, I 

added one more layer to the neural network to increase its learning capability and 

eliminated the velocity data of the input dataset. The outputs, however, turned out to 

be less musical compared to the first experiment. For the third experiment I decided to 

enlarge the dataset with the works of different composers. Four composers (Murail, 

Stockhausen, Ferneyhough and Schönberg, Webern and Berg as a single group) were 

chosen for this purpose out of the predetermined pool of eight composers with the help 

of another neural network model called Music SOM. This model clusters musical 

works according to the similarities in their spectral features. Performance RNN reacted 

successfully to the enlarged dataset; fragments in the outputs frequently demonstrated 

musical style comparable to those of the composers added to the dataset. In the last 

experiment I trained the neural network with my own improvisations. Then, I used the 

outputs of the model for composing a piano miniature, providing an example for the 

case of a neural network assisting a human composer in the context of contemporary 

music.  

Looking back to the first two experiments where I tested the capabilities of a neural 

network outside of the idiom of tonal music, it is apparent that the model and training 

data used in this set were trying to overfit instead of generalizing the style of Messiaen. 

In spite of that, it learned the training data up to sixty percent accuracy and we were 

able to see some of Messiaen’s musical language in the outputs. Because of the 

relatively low level of accuracy, we can claim that model generates original works 

loosely inspired by a subset of Messiaen’s compositions. 

As the ANN models for music generation improved drastically in the last few years, 

there should be more discussion about the chosen datasets, as they are the most crucial 

component on the way to more meaningful musical results. The experiments in this 

thesis showed us that when working with complex music, small datasets may be 
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insufficient; however, increasing the dataset size requires sacrificing from consistency 

of style, especially in 20th and 21st century music with many diverse styles of 

composition. Therefore, great care should be exercised for the decisions about the size 

and content of a dataset. 

Depending on the purpose of the application at hand, different choices about the 

dataset can be made. Tonal works of the common practice period are obviously easier 

to work with for the sole purpose of style imitation, where datasets of larger sizes can 

be obtained by compiling the works of composers with a similar musical style. On the 

other hand, for the purposes of contemporary composition the fourth experiment in 

this thesis is more relevant. Of course, an important question in this context is where 

a composer places the material gathered from the outputs in the spectrum spreading 

from raw material to end product. The outputs generated by Performance RNN is 

appropriate for using as raw material but they are not suitable if a composer is trying 

to generate material as an end product, as RNNs do not generate formally coherent 

outputs. Music transformer by Huang et al. (2018) should be investigated for that 

purpose, as mentioned in the previous sections.  

In order to get better results within the context of contemporary music, the ways of 

compiling a dataset must be discussed as well. The audio-to-midi transcription model 

used in this thesis performed worse with Messiaen than it performs with common 

practice period composers; a more accurate representation of the actual works would 

undoubtfully improve the results we obtain from any model. More meaningful 

experiments can be made if the neural network-based transcription models are trained 

with and improved for contemporary music, or manually created MIDI datasets of 

contemporary music become increasingly available in the future.  

Lastly, different encoding types used by different models also have a significant effect 

on the outcome. Performance RNN states its purpose as creating performances and it 

encodes time information based on milliseconds, which arguably make the learning 

process for complicated rhythms more difficult. In other words, rhythmic complexities 

arising from performances may interfere with the learning of complex rhythms in 

compositions. Therefore, a duration encoding based on exact note divisions may be 

more efficient for the purpose of composition assistance, on the condition that tuplets 

can be encoded as well. 
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APPENDIX A: Commands for running Onsets and Frames locally 

 
MODEL_DIR=<path to directory containing checkpoint> 
onsets_frames_transcription_transcribe \ 
  --model_dir="${CHECKPOINT_DIR}" \ 
  <piano_recording1.wav, piano_recording2.wav, ...> 
 

Figure A.1: Original code for running Onsets and Frames locally29 

 

 

 

MODEL_DIR=<path to directory containing checkpoint> 
onsets_frames_transcription_transcribe \ 
  --model_dir=${MODEL_DIR} \ 
  <piano_recording1.wav, piano_recording2.wav, ...> 
 

 
Figure A.2: Corrected code for running Onsets and Frames locally 

  

                                                
 
29 On 06.11.2019, retrieved from https://github.com/tensorflow/magenta/tree/master/magenta 
/models/onsets_frames_transcription 
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APPENDIX B: First two pages of the longer output of the first experiment
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Figure A.3: Sample output from the first experiment 
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APPENDIX C: Code fragment of Performance RNN for the Performance with 
asdafdsgfdgfdgıthe ‘performance_with_dynamics_compact’ configuration 
 
 
'performance_with_dynamics_compact': PerformanceRnnConfig( 
        magenta.protobuf.generator_pb2.GeneratorDetails( 
            id='performance_with_dynamics', 

description='Performance RNN with dynamics (compact        
input)'), 

        magenta.music.OneHotIndexEventSequenceEncoderDecoder( 
            magenta.music.PerformanceOneHotEncoding( 
                num_velocity_bins=32)), 
        tf.contrib.training.HParams( 
            batch_size=64, 
            rnn_layer_sizes=[512, 512, 512], 
            dropout_keep_prob=1.0, 
            clip_norm=3, 
            learning_rate=0.001), 
    num_velocity_bins=32) 
 

Figure A.4: ‘performance_with_dynamics_compact’ configuration30 
  

                                                
 
30 num_velocity_bins is changed to 1 and rnn_layer_sizes is changed to [512, 512, 512, 512] in the 
second experiment. 
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APPENDIX D: First two pages of the longer output of the second experiment 
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Figure A.5: Sample output from the second experiment 
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APPENDIX E: Calls for the training function of Music SOM 

 
somap.train(train_samples[:21],train_labels[:21],1,3) 
somap.train(train_samples[21:31],train_labels[21:31],0.5,3) 
somap.train(train_samples[31:41],train_labels[31:41],0.1,1) 
somap.train(train_samples[41:],train_labels[41:],0.1,0.1) 

 

Figure A.6: Original code for calling the training function of Music SOM 

 
 
 
for x in range(250): 
    somap.train(train_samples[:31],train_labels[:31],1,3) 
    train_samples, train_labels = 
unison_shuffled_copies(train_samples, train_labels) 
 
for x in range(250): 
   somap.train(train_samples[31:41],train_labels[31:41],0.5,3) 
    train_samples, train_labels = 
unison_shuffled_copies(train_samples, train_labels) 
 
for x in range(250): 
   somap.train(train_samples[41:51],train_labels[41:51],0.1,1) 
    train_samples, train_labels = 
unison_shuffled_copies(train_samples, train_labels) 
 
for x in range(250): 
    somap.train(train_samples[51:],train_labels[51:],0.1,0.1) 
    train_samples, train_labels = 
unison_shuffled_copies(train_samples, train_labels) 
 

Figure A.7: Updated code for calling the training function of Music SOM 
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APPENDIX F: First two pages of the longer output of the third experiment 
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Figure A.8: Sample output from the third experiment 
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APPENDIX G: Sample of improvisation transcription 
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Figure A.9: Sample of improvisation transcription 
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APPENDIX H: First two pages of the longer output of the fourth experiment 
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Figure A.10: Sample output from the fourth experiment 

  



 67 

APPENDIX I: Comprovisational miniature 
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Figure A.11: Comprovisational miniature 
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