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HIGH ENERGY MILLING AND SPRAY DRYING CHARACTERISTICS OF 

MoO3, Cr2O3 AND WO3 

SUMMARY 

Nanoparticles are quite attractive due to their unique electronic, optical, thermal and 

magnetic properties relying on particle dimension and high surface-to-volume ratio. 

On the nanoscale, materials behave very differently from those in larger scales.  

Many physical, chemical and thermal methods were used to produce nanoparticles, 

which have different sizes and morphologies. One of these methods is high-energy 

milling. This method has many advantages such as the production of great amount of 

materials, ease of production and cheap equipment. High-energy milling is more 

effective than conventional milling due to the achievement of nanosized particles in 

lesser times. 

Spray drying is a granulation process where the slurry, which is generally water or 

organic based suspension, is transformed to dry powder by spraying into a hot drying 

medium. This process is a widely used in producing granulated feed material for 

compaction processes. Spray drying enables the fabrication of composite powders by 

aggregation of any kind of small particles using an appropriate organic binder. 

Optimization of the type and amount of binder is a very important parameter, which 

determines the flowability, bulk density, and compaction behavior of spray-dried 

granules. All these properties also affect the sintering behavior of the system if the 

final usage requires bulk material. 

Transition metal oxides are a fascinating class of materials due to their wide-ranging 

electronic, chemical and mechanical properties. The electrochromic, optochromic 

properties of MoO3 and WO3 make them usable in many applications such as smart 

windows, optical memories and gas sensors. On the other hand, Cr2O3 is a hard oxide 

that also exhibits low friction coefficient, high wear and corrosion resistance, and 

good optical and adiabatic characteristics. These properties allow it to be used as a 

protective coating in tribological and microelectronic applications. 

According to the above concepts, the aim of this study is production, development 

and characterization investigations of WO3, MoO3, and Cr2O3 powders via high-

energy milling and spray drying processes. The characterization methods used in this 

study were density measurements, particle size distributions, phase characterizations, 

and macrostructure and microstructure analysis. 
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MoO3,  Cr2O3 VE WO3 TOZLARININ YÜKSEK ENERJİLİ ÖĞÜTME VE 

PÜSKÜRTMELİ KURUTMA KARAKTERİSTİKLERİ 

ÖZET 

Son yıllarda nanoteknoloji üzerine çalışmalar hızla artmakta olup farklı yöntem ve 

yaklaşımlardan hareketle farklı boyut aralıklarında nanopartiküllerinin üretimine 

yönelik çalışmaların sayısında giderek artış gözlenmektedir. Nanopartikülerin farklı 

yöntem ve yaklaşımlar kullanılarak  gerek yukarıdan-aşağıya ve gerekse aşağıdan 

yukarıya prensipleriyle farklı boyut aralıklarında, farklı geometrilerde ve farklı 

kimyasal formlarda üretilebileceği ortaya konmuş olup özellikle boyuta bağlı olarak 

gösterdikleri çok farklı özellikler nedeniyle bu partiküllein doğrudan ya da katışık 

olarak kullanımıyla çok farklı alanlarda uygulanabilirliğine yönelik çalışmalar büyük 

bir hızla devam etmektedir. Nanopartiküllerin özellikle mikron üstü boyutlarda 

gösterdikleri elektronik, optik ve ısıl özelliklerin mikronaltı ve ultra ince boyutlara 

gidildikçe değişime uğradığı ve her malzeme kimyası için aynı olmamakla birlikte 

özellikle 100 nm altında çok farklı davranışlar gösterdiği bilinmektektedir. 

Nanopartikül üretiminde kullanılan ve yukarıdan-aşağı yaklaşımlarından biri olan 

yüksek enerjili öğütme, nispeten diğer yöntemlere nazaran fazla miktarda malzeme 

üretimine olanak sağlayan, nispeten kolay ve ekonomik ekipman seçenekleri ve 

farklı sistemlere kolay uygulanabilirliği gibi nedenlerle tercih edilen bir metottur. 

Yüksek enerjili öğütmede, normal öğütmeye göre daha kısa sürelerde partikül 

boyutlarında küçülme sağlamakta ve nano boyutlara daha kısa proses sürelerinde 

inilmesine olanak tanımaktadır. Bununla birlikte mekanik kuvvetler etkisiyle 

gerçekleşen bir proses olması nedeniyle öğütücü ortam ile öğütülecek malzeme 

karakteristikleri arasındaki uyumsuzluk özellikle artan öğütme sürelerinde kirliliğe 

yol açabilen enerji yoğun bir süreçtir.  

Öğütme mekanizması ile homojen malzeme üretiminde önemli rol oynayan bir çok 

etken vardır. Son ürün özellikleri öğütme koşullarına bağli olmakla birlikte bu 

koşulların kontrolü sağlandığında iyi ürün eldesi gerçekleşir. Son ürünü etkileyen 

parametrelerden bazıları; öğütücü tipi, öğütme hızı, öğütme süresi, bilye-toz oranı, 

öğütme atmosferi, proses kontrol katışığı, öğütme sıcaklığı, öğütme kabı ve bilye 

boyutudur. Öğütücü tipleri, öğütme kapasitesine, öğütme hızına ve sıcaklık 

değişimiyle işlemi kontrol edebilme özelliğine göre farklılık gösterir. Genellikle 

Spex öğütücüler alaşımlama için kullanırken Fritsch Pulverisette gezegen değirmen 

veya atritörler çok miktarda toz öğütmek için uygundur. Öğütme süresi en önemli 

parametredir. Süreyi seçerken parçacıkların kırılması ve kaynaşması arasındaki 

dengenin göz önüne alınması gerekir. Öğütme süresinin artmasıyla kontaminasyon 

artar ve istenmeyen fazlar oluşur. Bu nedenle öğütmede yeterli sürenin dışına 

çıkılması istenmez. 

Granülasyon, belirli toz özelliklerini geliştirmek için daha geniş kümeleşme içinde 

ince tozların kasıtlı aglomerasyonudur. Granülasyonun üç avantajı vardır. Bunlar; 

nihai tozların akışkanlık yeteneğine, yüksek bir paketleme yoğunluğuna ve güçlü 

presleme yeteneğine sahip olmasıdır. Granüllerin üretilmesinde çoğunlukla 
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püskürtmeli granülasyon ve püskürtmeli kurutma teknikleri kullanılmaktadır. Farklı 

sektör ve uygulama alanlarında çok farklı amaçlarla kullanılabilen püskürtmeli 

kurutma ekipmanı özellikle bir çok ince tozun paketlenme özelliklerinde yaşanan 

sorunlar nedeniyle  presleme öncesinde püskürtmeli kurutucu ile granül haline 

getirilmeleri için kullanılmakta ve bu tarz ince tozların preslenebilirliklerinde bazı 

katkıların da katılmasıyla birlikte ciddi iyileştirme sağlanmaktadır. 

Püskürtmeli kurutma, genellikle su veya organik bazlı süspansiyon olan akışkan 

malzemeyi sıcak hava ortamına püskürterek sıvının kademeli olarak sistemden 

ayrılmasıyla katı malzemenin granül formuna döndüğü bir yüzey küçültme işlemidir. 

Püskürtmeli kurutucu, atomizör yardımıyla kurutulacak çözeltinin sıcak gaz akışı 

içerisine ince damlacıklar halinde püskürtüldüğü düşey ve genellikle silindirik bir 

kurutma odasıdır. Sıvı besleme, kurutma odasına üstten püskürtülür. Oluşan 

damlacıklar sıcak hava ile karşılaşır. Başlangıçta püskürtülen çözelti ve hava karışımı 

spiral bir yol takip ederek, kurutucu tabanına doğru iner. Bu esnada çözücü 

buharlaşır, sıcak gaz, hava karışımı ile birlikte yönünü değiştirir, kurutucunun 

merkezinden yukarı geçerek kurutucuyu terk eder ve siklona gider. Kurutulmuş ürün 

konik tabanda toplanır. Siklona bir açı ile giren sıcak hava bir dönme hareketi ile 

hareket ederken santirfüj kuvvet katı parçacıkları merkezkaç kuvveti ile fırlatır ve 

katı parçacıklardan temizlenmiş hava siklonu terk eder. Kurutma odasındaki hava 

akışı modeli, sıvıdan ayrılan nemin tamamını ve granüllerin geçirildiği maksimum 

sıcaklığı kontrol eder. Püskürtmeli kurutmada sıvı-hava karışımı, hava dağıtıcı yeri 

ve atomizör cihazı aracılığıyla oluşmaktadır. Sıvı-hava karışımı; paralel akım, ters 

akım ve bunların birleşiminden oluşan karışık akım olarak sınıflandırılır. Paralel 

akım modelinde; atomizör cihazı, kurutmanın üst tarafında ve hava dağıtıcının 

yakınında bulunur. Ters Akım şartları atomizör cihazı kurutma odasının en üstüne ve 

hava dağıtıcının en alta yerleştirildiği zaman oluşur. Karışık akım şartları doğru ve 

ters hava akımının bir birleşimidir. 

Püskürtmeli kurutma, uygun bir bağlayıcı kullanılması ile küçük partiküllerin ya da 

farklı kimyaya sahip tozların bir araya gelerek kompozit yapıların elde edilmesine de 

olanak sağlayan bir yöntemdir. Granülasyonun gerçekleştirileceği ilgili sistem için 

püskürtmeli kurutma parametrelerine bağlı olarak farklı boyutta ve şekilde 

granüllerin elde edilmesi suretiyle  ilgili tozların akışkanlık davranışının 

geliştirilmesi ve bu suretle şekillendirme sırasında farklı paketlenme yoğunluklarına 

ulaşılması mümkündür. Özellikle sinterlemenin gerekli olduğu bir çok durumda 

şekillendirme sırasında sağlanan ve yaş yoğunluk olarak bilinen paketlenme 

davranışı, tozların sinterleme davranışını ve ilgili süreçte yoğunlaşmayı doğrudan 

etkilemektedir. PVA, kuru preslemede en çok kullanılan bağlayıcıdır. Suda 

çözünebilen bir bağlayıcı olarak PVA, akışkan malzemelerde kullanılmaktadır. 

Organik bağlayıcının püskürtmeli kurutulmuş granüllerde homojen olmayan dağılımı 

presleme sonrasında mikroyapısal hatalara neden olabilmektedir. Sinterleme 

sırasında bu şekilde oluşturulan gözenekleri kapatmak zordur. Bu durumda, 

gözenekler çatlak oluşturmakta ve sinterlenmiş bünyenin mukavemetini 

düşürmektedir. 

Geçiş metal oksitleri, elektronik, kimyasal ve mekanik özelliklerinden dolayı oldukça 

ilgi çeken malzemelerdir. Bu çalışma kapsamında seçilen MoO3 ve WO3; 

elektrokromik, optokromik özelliklerinden ötürü akıllı cam, optik hafızalama ve gaz 

sensörleri gibi birçok alanda kullanılmaktadırlar. Diğer yandan bu çalışma 

kapsamında seçilen MoO3 ve WO3 periyodik tabloda aynı grupta yeralan Cr2O3, 

düşük sürtünme katsayısı, yüksek aşınma ve korozyon dayanımı ve iyi optik, 
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adyabatik karakter gösteren sert bir metal oksittir. Bu özelliklerinden dolayı, 

tribolojik ve mikroelektronik uygulamalarda koruyucu kaplama malzemesi olarak 

kullanılmaktadırlar. 

Bu tez çalışmasında öncelikle  başlangıçta mikronüstü boyutlarda olan WO3, MoO3 

ve Cr2O3 tozlarının yüksek enerjili öğütme koşullarında boyut değişimleri ve 

nanoboyutlarda toz oluşum koşulları zamana bağlı olarak çalışılmıştır. Yüksek 

enerjili öğütme ile nanoboyutlara inen ya da bu boyutlarda belli fraksiyonları içeren 

tozların granülasyon davranışları incelenmiştir. püskürtmeli kurutmadan geçirilerek 

tozların karakterizasyonları yapılmıştır. Bu tez kapsamında çalışılan MoO3, WO3 ve 

Cr2O3 örneklerine ait başlangıç tozların, ve süreye bağlı olarak yüksek enerjili  

öğütme neticesinde elde edilen tozların ve de püskürtmeli kurutma işleminden 

geçirilen tozların yoğunluk ölçümleri ve partikül boyutları gibi genel fiziksel 

özelliklerinin tespitine ilave olarak  paketlenme ve sinterlenme davranışları 

incelenerek genel karakteristikleri ortaya konmuştur.  

İlgili süreçte, partikül boyut ölçüm cihazı, X ışınları difraktometresi cihazı, yoğunluk 

ölçüm cihazı, stereo mikroskobu ve taramalı elektron mikroskobu gibi ileri 

karakterizasyon yöntemlerinden faydalanılmıştır. 
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1. INTRODUCTION 

The importance of nanoparticles lies in their large surface-to-volume ratio relative to 

that of large particles (Baraton, 2003). Nanoparticles are a contact between bulk 

materials and atomic or molecular structures. While bulk materials have constant 

physical properties regardless of its size, among nanoparticles the size often dictates 

the physical and chemical properties. Thus, the properties of materials change as 

their size approaches the nanoscale and as the percentage of atoms at the surface of a 

material becomes significant (Url-1).  

Two basic strategies are used to produce nanoparticles:”Bottom-Up” and “Top- 

Down”. In the Bottom-Up systems, chemical processes make structures. The 

selection of the relative process lean on the chemical composition and the desired 

features specified for the nanoparticles. This method is form on physico-chemical 

principles of molecular or atomic self-organization. This approach produces selected, 

more complex structures from atoms or molecules, better controlling sizes, shapes 

and size ranges (Raab et al, 2011). Top-Down refers to mechanical-physical particle 

production processes based on principles of micro system technology. The traditional 

mechanical-physical crushing methods produce nanoparticles involving various 

milling techniques (Raab et al, 2011; Url-2). The mechanical production approach 

uses milling to crush micro particles. This approach is applied in producing metallic 

and ceramic nanomaterials. Compared to the chemo-physical production processes, 

using mills to crush particles yields final powders with a relatively broad particle-

size range (Raab et al, 2011; Url-2). Mechanical alloying is a simple and useful 

processing technique that is being employed in the production of nanoparticles from 

all material classes. Although a variety of mechanical alloying devices exist, high-

energy ball mills are typically used to produce particles in the nanoscale size range. 

Particle size reduction is affected over time in the high-energy ball mill, as is a 

reduction in crystallite grain size. Particle agglomeration, where nanoparticles stick 

together because of attractive forces, is a serious issue at long milling times (Baraton, 

2003). Most powders in nanometric range are strongly agglomerated and have poor 

http://www.news-medical.net/health/Synthesis-of-Nanoparticles.aspx
http://www.news-medical.net/health/Synthesis-of-Nanoparticles.aspx
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flowability. To overcome these problems, nanoparticles can be spray-dried from a 

colloidal suspension to obtain micrometer-sized granules. Granules are an 

agglomeration of a large amount of nanoparticles (Cellard et al, 2006). Spray drying 

method has the capability of producing uniformly spherical particles from submicron 

to micron sizes. If the suspension consists of colloidal nanoparticles (primary 

particles), the resulting particles also comprise nanoparticles to form a 

nanostructured powder (Okuyama and Lenggoro, 2003).  

Among metal oxides, transition metal oxides are the key parts for the development of 

many advanced functional materials and smart devices. Nanostructuring has 

appeared as one of the best tools to unlock their full potential (Zheng et al, 2011). 

Transition metal oxides constitute one of the most important classes of inorganic 

solids, exhibiting a wide variety of structures, properties. The unusual properties of 

transition metal oxides are due to the unique nature of the outer d electrons, the 

metal-oxygen bonding varying anywhere from nearly ionic to metallic (Rao and 

Raveau, 1998). These materials can have unusual and useful electronic, magnetic, 

chemical, and mechanical properties. Many of these properties strongly depend on 

materials defects like vacancies, dislocations, stacking faults and grain boundaries. 

These defects affect local oxygen bonding (Cox, 1992; Rao and Raveau, 1998). 

Among the transition metals, VIB group elements (W, Mo, and Cr) show interesting 

properties such as high corrosion resistance and high temperature stability which 

make them useful in many applications and industries. In addition, the oxides of VIB 

elements have electrochromism ability means they are able to change their optical 

properties in a reversible and persistent way under the action of a voltage pulse 

(Zheng et al, 2011; Ivanova et al, 2011).  

Tungsten oxides, which are one of the transition metal oxides, are of great interest. 

With electrochromic, optochromic, and gaschromic properties, tungsten oxides have 

been used to construct flatpanel displays, photoelectrochromic smart windows, 

optical modulation devices, write-read-erase optical devices, gas sensors, humidity 

and temperature sensors, etc. (Zhou et al, 2005). Tungsten has several common 

oxidation states like +2, +3, +4, +5, and +6. Tungsten is stable, and therefore its most 

common valence state is +6 (Lassner and Schubert, 1999). WO3 has a perovskite-like 

structure. The corner and edge sharing of WO6 octahedra form crystals of WO3. Such 

corner sharing results in the following crystal phases: monoclinic I (γ), monoclinic II 



3 

(ԑ), triclinic (δ), orthorhombic (β), tetragonal (α), and cubic (although cubic is not a 

commonly observed phase). At room temperature, γ-WO3 is the most stable crystal 

phase (Zheng et al, 2011). WO3 has a density of 7.16 g/cm
3
, and its melting point is 

1473 °C (Lassner and Schubert, 1999). Nanostructured WO3 compared to the bulk 

material include: 1) Increased surface-to-volume ratio, which provides more surface 

area for both chemical and physical interactions. 2) Significantly altered surface 

energies that allow engineering of the material’s properties, as atomic species near 

the surface have different bond structures than those embedded in the bulk, and 3) 

Quantum confinement effects, due to the inherently small size of nanostructured 

materials, that significantly influences charge transport, electronic band structure and 

optical properties (Zheng et al, 2011). 

MoO3 is used in many applications such as electrochromic display devices, optical 

memories, gas sensors and lithium batteries, organic solar cells and smart window 

technology because of its wide range of stoichiometry leading to chromogenic and 

catalytic properties (Walia et al, 2013; Ramana et al, 2007). The most common 

crystal phases of MoO3 are the thermodynamically stable α-MoO3 and the metastable 

β-MoO3. At temperatures above 350 °C, the β phase transforms into the more stable, 

layered α-MoO3 phase (Walia et al, 2013). The structural flexibility inherent in 

molybdenum trioxide and its hydrates makes it possible to synthesize many 

morphologies, such as molybdenum trioxide prisms and nanorods, nanotubes, hollow 

MoO3 nanospheres and nanostructured toroids, MoO3 fibers and nanobelts (Ortiz and 

Herrera, 2012). MoO3’s density is 4.69 g/cm
3 

and its melting point is 795 °C (Rao et 

al, 2013). 

Chromium oxide is another one of the transition metal oxides. There are many 

crystalline modifications of the chromium oxide, such as Cr2O3 (corundum), 

CrO2 (rutile), Cr5O12 (three-dimensional framework), Cr2O5 and CrO3 (unconnected 

strings of CrO4 tetrahedral). However, the only stable bulk oxide form is Cr2O3, 

which is a magnetic dielectric with the corundum structure (Maldonado et al, 2012). 

Similar to corundum, Cr2O3 is a hard, brittle material (Mohs hardness 8-8.5). It has a 

high melting point of 2435 °C and density of 5.22 g/cm
3
. Because of its considerable 

stability, chromia is a commonly used pigment.  It is used in paints, inks, and glasses. 

It is one of the materials that are used when polishing the edges of knives, razors, etc 

on a piece of leather, balsa, cloth, or other material (Udy, 1956). Chromium oxide is 

http://en.wikipedia.org/wiki/Mohs_hardness
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the hardest oxide that also exhibits low friction coefficient, high wear and corrosion 

resistance, and good optical and adiabatic characteristics. These properties allow it to 

be used as a protective coating in tribological and microelectronic applications (Pang 

et al, 2007). 

Keeping the above concepts in mind, the aim of this study has been to develop WO3, 

MoO3 and Cr2O3 powders via high-energy milling and spray drying processes and 

characterize their properties and sintering behavior. 
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2. GENERAL PRODUCTION ROUTES OF CERAMICS 

A variety of powder preparation methods have been developed so far. They are 

classified in two groups. One is breakdown process, in which large particles are 

ground and divided into smaller ones, and the other is referred to as a build-up 

process, in which particles are produced by precipitation and deposition (Vincenzini, 

1991). Many specific techniques can be used for the production advanced ceramics. 

A general route is described below for the powder-based production of ceramic bulk 

materials. 

 2.1 Starting Materials 

Properties of most ceramic products are determined by the properties of the raw 

material powders, which some requirements are fine particles (<1 µm), narrow size 

range, no aggregation, controlled particle shape, uniformity in chemical and phase 

compositions, and high purity (Vincenzini, 1991). 

2.2 Mixing or Blending 

After selection of the materials, the next step is blending or mixing. Mixing step 

affects the final distribution of reinforcement particles and porosity in green 

compacts, which strongly has an influence on the mechanical properties of the final 

products (Lindroos et al, 2004). After all, there are some problems, such as 

segregation and clustering. The reasons of these problems include different flow 

characteristics between metal powder and reinforcement particles and the tendency 

of the agglomeration of particles to minimize their surface enerfy. The segregation 

behavior of different sized particles is shown in Figure 2.1 (Liu et al, 1994). 
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Figure 2.1: Monte Carlo simulations of shaking of a ternary mixture of particles 

according to number of cycles (Liu et al, 1994). 

As seen in figure 2.1, the larger particles rise to top, because they are moved upwards 

as smaller particles filled the voids beneath the larger particles. Furthermore, the 

effect of different densities between particles is very important, too. The lighter 

particles tend to move upwards, while the heavier ones segregate at the bottom 

(Lindroos et al, 2004). However, these segregation and clustering problems can be 

overcome by milling process (Liu et al, 1994). In addition, milling is used to reduce 

the particle sizes. This technique will be discussed in detail in section 3. 

2.3 Forming 

Shape forming techniques can be divided into techniques such as dry pressing, 

powder injection moulding and extrusion, and wet colloidal forming techniques such 

as spray drying, slip casting, gelcasting, hydrolysis assisted solidification, etc. The 

reliability of dry pressing ceramics is limited by defects due to agglomerates. 

Manufacturing of ceramic components by powder pressing usually requires a 

granulation operation prior to pressing. The goal is to gain free flowing granules that 

evenly fill the pressing dye and easily disintegrate at pressing. Granulation is 

normally conducted by an initial mixing of the powder and appropriate pressing aids 

(binder, plasticiser) in a liquid. The suspension can then be dried with some 

remaining liquid and sieve granulated (small scale) or spray-dried (large scale) (Rak, 

2000; Rundgren et al, 2003). Granulation process will be discussed in detail in 

section 4.  
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2.4 Sintering 

Sintering is a processing technique used to produce density-controlled materials and 

components from metal or/and ceramic powders by applying thermal energy (Kang, 

2005). In sintering, particles bond with one another by atomic diffusion. There are 

different variables, which determine sinterability and the sintered microstructure of a 

powder compact. All sintering equations contain a number of parameters such as 

diffusion coefficient, surface tension, particle size, initial pore volume. One can 

divide these parameters into two classes: a) intrinsic and b) extrinsic (Upadhyaya, 

2001). 

1. Intrinsic - these specify the intrinsic properties of the materials being sintered, 

such as surface tension, diffusion coefficient, vapour pressure, viscosity, etc. These 

properties change when the chemical composition, ambient atmosphere or 

temperature changes (Upadhyaya, 2001). 

2. Extrinsic – these depend on the geometrical or topological details of a system. 

These include parameters, as average particle size, particle or pore or grain shape and 

size distribution, etc (Upadhyaya, 2001). 

Sintering processes can be divided into two types: solid state sintering and liquid 

phase sintering. Solid state sintering occurs when the powder compact is densified 

wholly in solid state at the sintering temperature, while liquid phase sintering occurs 

when a liquid phase is present in the powder compact during sintering (Kang, 2005). 

In addition to solid state and liquid phase sintering, other types of sintering, for 

example, transient liquid phase sintering and viscous flow sintering can be utilized. 

Viscous flow sintering occurs when the volume fraction of liquid is sufficiently high, 

so that the full densification of the compact can be achieved by a viscous flow of 

grain-liquid mixture without having any grain shape change during densification. 

Transient liquid phase sintering is a combination of liquid phase sintering and solid 

state sintering. In this sintering technique, a liquid phase forms in the compact at an 

early stage of sintering, but the liquid disappears as sintering proceeds and 

densification is completed in the solid state (Figure 2.2) (Kang, 2005). 
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Figure 2.2: Illustration of various types of sintering (Kang, 2005). 

The driving force for sintering is the minimization of the solid-vapor interface area 

(i.e., the total area of the powders in contact with the surrounding vapor) and 

elimination of the regions of sharp curvature at powder contacts. In the initial stages 

of sintering, small necks form and grow between contacting particles by mass 

transfer via atomic diffusion. Fine powders increase the driving force for sintering 

because of a larger surface area per unit volume, which increases the total solid-

vapor interfacial energy (Asthana et al., 2006). Figure 2.3 shows different patterns of 

atomic motion, leads to various sintering mechanisms. 

 

Figure 2.3: Various sintering mechanisms (Fang, 2010). 
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2.4.1 Solid-state sintering: 

These three main steps occur while solid-state sintering: 

Initial Stage: Particle surface smoothing and rounding of pores, grain boundaries 

form, neck formation and growth, homogenization of segregated material by 

diffusion, open pores and small porosity decreases <12% (Ring, 1996). 

Intermediate Stage: Intersection of grain boundaries, shrinkage of open pores, 

porosity decreases substantially, slow grain growth and differential pore shrinkage, 

and grain growth in heterogeneous material (Ring, 1996). 

Final Stage: Closed pores—density >92%, closed pores intersect grain boundaries, 

pores shrink to a limiting size or disappear and pores larger than the grains shrink 

very slowly (Ring, 1996). 

 

Figure 2.4: Schematic showing the densification curve of a powder compact and the 

three sintering stages (Kang, 2005). 

Metallurgical bonds occur between the powder particles during sintering. Moreover, 

some desirable properties such as strength, ductility, toughness and electrical and 

thermal conductivities are also improved when the density increases. As a result of 

the density increase, initial dimensions of the compact decreases. However, the 

compacted part should be suitably oversized to have desired tolerances, so the 

porosity is not fully removed. In addition, between 5% and 25% residual porosity 

usually remain in the final pressed and sintered powder metallurgy products 

(Newkirk and Kohser, 2004). 
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3. HIGH ENERGY MILLING 

Particle size reduction or comminution is an important step in lots of technological 

operations. This process contains the mechanical breakdown of solids into smaller 

particles without changing their state of aggregation. It can be used to create particles 

of a certain size and shape (including nanosize), to increase the surface area and 

reduce defects in solids which is needed for following operations such as chemical 

reactions, sorption, etc. Besides increasing the surface area of solids, milling could 

increase the proportion of regions of high activity in the surface (Balaz et al, 2004). 

Conventionally, the term fine milling is used for size range below 100 μm and the 

ultrafine (or very fine) milling for particles size less than 10 μm. In 

mechanochemistry, the term high-energy milling is usually being used in order to 

stress the character of applied milling equipments (mills) (Balaz, 2008). 

High-energy milling as a way for nanomaterials synthesis has been firstly developed 

in metallurgy as a mean to produce oxide dispersion strengthened solids. Later the 

application has been directed to the preparation of alloys, superconducting materials, 

rare permanent magnets, superplastic alloys and intermetallic compounds. In 

addition, this technique can be used to induce chemical reactions in powder mixtures 

at room temperature or at much lower temperatures than normally required to 

synthesize pure metals (Balaz et al, 2004). 

3.1 Types of Mills 

Different types of high-energy milling equipment are used to produce mechanically 

alloyed powders. Spex Mixer/mills, planetary ball mills, attritor mills and 

commercial mills are the examples of widely used equipment for this purpose. They 

have different capacity, efficiency of milling and additional arrangements for 

cooling, heating, etc (Suryanarayana, 2001; Goff, 2003). Spex Mixer/mills can mill 

about 10-20 g powder at a time depending on the density of starting constituents 

(Goff, 2003). Typical Spex mill and tungsten carbide vial set can be seen in Figure 

3.1. 
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Figure 3.1: a) A typical Spex shaker mill b) Tungsten carbide vial set consisting of 

the vial, lid, gasket, and balls (Suryanarayana, 2001). 

One of the popular mills for laboratory investigations is the planetary ball mills. It is 

called the planetary ball because of its vial’s planet-like movement. The centrifugal 

force produced by the vials rotating around their own axes act on the vial contents, 

consisting of material to be ground and the grinding balls. As a result, powders are 

trapped between the rotating balls and the walls of the vial and refined. Even though 

the linear velocity of the balls in this type of mill is higher than that is in the Spex 

mills, the frequency of impacts is much more in the Spex mills (Suryanarayana, 

2001). 

Therefore, compared to Spex mills, planetary ball mills can be considered lower 

energy mills (Suryanarayana, 2001). In Figure 3.2, a schematic view of ball motion 

in a planetary ball mill can be seen. 

 

Figure 3.2: Schematic drawing of a high-energy planetary ball mill (El-

Eskandarany, 2001). 
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Another type of mills is the attritor mill. In attritor mills, large quantities of powder 

(from about 0.5 to 40 kg) can be milled at a time (Suryanarayana, 2001).  Schematic 

view of an attritor mill is given in Figure 3.3. 

 

Figure 3.3: A schematic view of an attritor mill (Goff, 2003). 

Finally, commercial mills are much larger than the mills described above and can 

grind several hundred kilograms of powders at a time. Milling for commercial 

production is carried out in ball mills of up to about 1250 kg capacity 

(Suryanarayana, 2001). A picture of commercial-size ball mills can be seen in Figure 

3.4. 

 

Figure 3.4: Commercial production-size ball mills (Suryanarayana, 2001). 
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The milling time decreases with an increase in the energy of the mill. Roughly, it can 

be estimated that a process that takes only a few minutes in the Spex mill may take 

hours in an attritor and a few days in a commercial mill (Suryanarayana, 2001). 

3.2 Process Variables in Milling 

Ball milling process is influenced by several factors that play very important roles in 

the fabrication of homogeneous materials. The properties of the milled powders of 

the final product, such as the particle size distribution, the degree of disorder, or 

amorphization, and the final stoichiometry, depend on the milling conditions and, as 

such, the more complete the control and monitoring of the milling conditions, the 

better end product is obtained (El-Eskandarany, 2001; Suryanarayana, 2001) 

A summary of these chief factors that control the milling process is schematically 

presented in Figure 3.5. 

 

Figure 3.5: Schematic presentation of the main factors that affect the milling process 

(El-Eskandarany, 2001). 

The material used for the milling container (grinding vessel, vial) is important since 

the impact of the grinding medium on the inner walls of the container will result in 

tiny fractions of milling material that fracture off and disperse into the powder (El-

Eskandarany, 2001; Suryanarayana, 2001). These can contaminate the powder or 

alter the chemistry of the powder. If the material of the grinding vessel is different 

from that of the powder, then the powder may be contaminated with the grinding 
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vessel material (Suryanarayana, 2001; Goff, 2003). Regardless of the type of milling 

process, the most appropriate type of container and milling media for the given 

system should be chosen. Generally, milling media that is made of a similar material 

as that of the material to be processed is used to reduce contamination during 

processing (Goff, 2003). Additionally, the density of the grinding medium should be 

high enough so that the balls create enough impact force on the powder 

(Suryanarayana, 2001). 

Another important issue is the ball-to-powder ratio (BPR). The value of BPR has 

been varied by different investigators from a value as low as 1:1 to as high as 220:1. 

Generally, a ratio of 10:1 is most commonly used while milling the powder in a 

small capacity mill such as a Spex mill. The BPR has an important effect on the time 

required to achieve a particular phase in the powder being milled. The higher the 

BPR, the shorter is the time required (Suryanarayana, 2001). 

Milling atmosphere is also an important variable for the mechanical alloying process. 

The major effect of the milling atmosphere is on the contamination of the powder 

(El-Eskandarany, 2001). The powders are milled in containers that have been either 

vacuumed or filled with an inert gas such as argon or helium. However, high purity 

argon is the most common used gas to prevent oxidation and contamination of the 

powder (Suryanarayana, 2001). The presence of air in the vial causes to produce 

oxides and nitrides in the powder, especially if the powders are reactive in nature. 

Thus, the loading and unloading of the powders into the vial has to be carried out 

inside an atmosphere-controlled glove box (Suryanarayana, 2001; Fecht, 2002). The 

time of milling is the most important parameter. In most of milling processes, the 

rate of refinement of the internal structure (particle size, crystallite size, lamellar 

spacing, etc.) is roughly logarithmic with processing time (Figure 3.6). In a few 

minutes to an hour, the lamellar spacing usually becomes small and the crystallite (or 

grain) size is refined to nanometer dimensions. Furthermore, the times required 

depend on the type of the mill used, the intensity of milling, the ball-to-powder ratio 

and the temperature of milling. These times have to be decided for each combination 

of the above parameters and for the particular powder system. However, it should be 

realized that the level of contamination increases and some undesirable phases form 

if the powder is milled for times longer than required. Therefore, the powder has to 

be milled just for the required duration and not any longer (Suryanarayana, 2001). 
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Figure 3.6: Refinement of particles and grain sizes with milling time 

(Suryanarayana, 2001). 

The use of process control agents (PCA) is another concern in the milling process. 

Generally, ductile powder particles get cold-welded to each other, resulting from 

intense plastic deformation during milling. However, true alloying among powder 

particles can occur only when a balance is maintained between cold welding and 

fracture of particles (El-Eskandarany, 2001). In order to provide the right dynamic 

balance between cold welding and fracturing, a process control agent (PCA) is added 

to the powder mixture during milling to reduce the amount of cold welding 

(Öveçoğlu, 1987; Suryanarayana, 2001; Gilman and Benjamin, 1983). The PCA’s 

can be solids, liquids, or gases. They are mostly organic compounds, which act as 

surface-active agents by adsorbing on the surface of the powder particles and 

minimizing cold welding between powder particles and thereby inhibiting the 

agglomeration (Suryanarayana, 2001). 

3.3  Mechanism of Milling 

Milling is an advanced fabrication process that can produce ultra-fine and 

homogenous powders. Even, nanocrystalline materials ( with a grain size of few 

nanometers, usually<100 nm) are also produced by mechanical alloying (MA) of 

powder mixtures (Ryu et al., 2000). 
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During high-energy milling, the powder particles are repeatedly flattened, cold-

welded, fractured and rewelded. When two steel balls collide, some amount of 

powder is trapped in between them. The force of the impact plastically deforms the 

powder particles leading to work hardening and fracture. Figure 3.7 is a schematic 

representation of the collided balls. (Suryanarayana, 2001). 

 

Figure 3.7: Schematic view of a ball-powder-ball collision (Suryanarayana, 2001). 

It is possible to conduct mechanical alloying of three different combinations of 

metals and alloys: 

(1)  Ductile-ductile  

(2) Ductile-brittle 

(3) Brittle-brittle systems (Suryanarayana, 2001). 

3.3.1 Ductile-ductile systems 

The ideal combination of materials for mechanical alloying is the ductile-ductile 

systems. It is necessary to have at least 15% of a ductile component for achieving 

alloying. This is because true alloying occurs due to the repeated action of cold 

welding and fracturing of powder particles. Cold welding cannot occur if the 

particles are not ductile. At the first step of mechanical alloying (MA), the ductile 

components get flattened to platelet/pancake shapes by a micro-forging process. A 

small quantity of the powder, usually one or two particle thickness, also gets welded 

onto the ball surfaces. This coating of the powder on the grinding medium is 

advantageous since it prevents excessive wear of the grinding medium. In the next 

step, these flattened particles get cold-welded together and form a composite lamellar 

structure of the constituent metals. An increase in particle size is also observed at this 
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stage. With increasing MA time, the composite powder particles get work hardened, 

the hardness and brittleness increase. With further milling, the elemental lamellae of 

the welded layer and both the coarse and fine powders become convoluted rather 

than being linear. The hardness and particle sizes tend to reach a steady value at this 

stage. Finally, true alloying occurs at the atomic level resulting in the formation of 

solid solutions, intermetallics, or even amorphous phases. The layer spacing becomes 

so fine or disappears at this stage that it becomes invisible under an optical 

microscope (Suryanarayana, 2001). 

3.3.2 Ductile-brittle systems 

In the initial stages of milling, the ductile metal powder particles get flattened by the 

ball-powder-ball collisions, while the brittle oxide or intermetallic particles get 

fragmented. These fragmented brittle particles get trapped in the ductile particles. 

With further milling, the ductile powder particles get work hardened, the lamellae get 

convoluted, and refined. The composition of the individual particles converges 

toward the overall composition of the starting powder blend. With continued milling, 

the interlamellar spacing decreases, and the brittle particles get uniformly dispersed. 

The alloying process in a ductile-brittle system also depends on the solid solubility of 

the brittle component in the ductile matrix. If a component has a few solid solubility 

then, alloying is unlikely to occur, e.g., boron in iron (Suryanarayana, 2001). 

3.3.3 Brittle-brittle systems 

This type of alloying occurs when a consisting of two or more brittle components, 

because the absence of a ductile component prevents any welding from occurring, 

and in its absence, alloying is not expected to occur. The brittle components get 

fragmented during milling and their particle size gets reduced. However, at very 

small particle sizes, the powder particles behave in a ductile mode, and further 

reduction in size is not possible. During milling of brittle-brittle component systems, 

the harder (more brittle) component is fragmented and is embedded in the softer (less 

brittle) component (Suryanarayana, 2001). 

Recently, MA process has become a popular method to fabricate nanocrystaline 

materials due to its simplicity and relatively inexpensive equipment (El-Eskandarany 

et al., 2000; El-Eskandarany, 2001). The advantage of using MA for the synthesis of 

nanocrystalline materials lies in its ability to produce bulk quantities of material in 
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the solid state using simple equipment and at room temperature (Suryanarayana, 

2001). Grain sizes with nanometer dimensions have been observed in almost all 

MA’d pure metals, intermetallics, and alloys (Suryanarayana, 2001). The elemental 

processes leading to formation of nanostructures include three basic stages. Firstly, 

the deformation is localized in shear bands, which contain a high dislocation density 

(Fecht, 2002). Their typical width is approximately 0.5-1 µm (Suryanarayana, 2001). 

At a certain level of strain within the high strained regions, these dislocations 

annihilate and recombine to small-angle grain boundaries separating the individual 

grains (Fecht, 2002). This results in a decrease of the lattice strain. With the 

continuing process, deformation occurs in shear bands located in previously 

unstrained parts of the material. The grain size decreases steadily and the shear bands 

unite. The small angle boundaries are replaced by higher angle grain boundaries and, 

consequently, dislocation-free nanostructured grains are formed (Suryanarayana, 

2001).  

3.4 Reported Milling Investigations of WO3, MoO3 and Cr2O3 Powders 

Cellard et al. investigated spherical micron-sized Cr2O3 granules by spray-drying 

method. But this technique requires stable and well-dispersed suspensions (Cellard et 

al, 2007). For this reason, Cr2O3 nanopowders dispersion was developed and 

optimized by a ball milling method for producing granules. According to Cellard et 

al., the appropriate dispersant, Darvan C, was selected with zetapotential 

measurements (Cellard et al, 2007). The effect of milling time, diameter of milling 

balls and ball-to-powder ratio was investigated. Well dispersed and stable 

suspension, suitable for spray-drying, is achieved at natural pH, with 1.3 wt.% of 

Darvan C, after 95 h of desagglomeration with milling balls diameter 0.9–1.9 mm 

and a weight ratio of 7 (Cellard et al, 2007). 

Mestl et al. investigated the effect of the mechanical activation of MoO3 upon 

particle size and morphology (Mestl et al, 1995). After 600 mins of milling, BET 

surface area increases from 1.3 to 32 m
2
/g and the particle size decreased from 1 µm 

to about 50 nm. Also, they investigated decreasing primary crystallite size from 

about 160 nm to about 80 nm (Mestl et al, 1995). In another experiment Mestl et al. 

investigated the defects at the crystallite surfaces and redox behaivior of MoO3 

powders which causes by mechanical activation of MoO3 (Mestl et al, 1996). They 
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demonstrated that both milled and unmilled MoO3 have 5-fold coordinated Mo
5+

, but 

milled MoO3 has 6-fold coordinated Mo
5+

 additionally (Mestl et al, 1995; Mestl et al, 

1996).  
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4. GRANULATION 

Granulation is a size enlargement process during which primary particles are shaped 

into larger, physically strong agglomerates wherein the primary particles can still be 

identified. There are three main advantages of granulation: 1) the resulting powders 

have flowability, 2) a high packing density, and 3) strong compactability (Kim and 

Jung, 2007). Despite these advantages, the granules often lead to internal defects, 

which can cause a premature fracture and low reliability of the sintered parts. These 

problems arise from the fact that the granules with large internal pores do not 

collapse during compaction and remain after sintering. The formation of large donut-

shaped open pores or deep craters is associated with the migration of ceramic 

particles from the interior of the granule onto its surface during the hot drying 

process (Kim and Jung, 2007; Reeds, 1997). 

Granulation methods can be divided into agitation, pressure, or spray techniques as 

shown in Figure 4.1. 

 

Figure 4.1: Common granulation methods (Riedel and Chen, 2012). 
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4.1 Granulation by Agitation 

Granulation by agitation involves bringing moist particles into contact by mixing or 

tumbling so that bonding forces can cause agglomeration. The agitation granulation 

techniques, both tumbling and mixing, are typically used to prepare feedstock for 

calcining or melting operations. Bulky powders are granulated prior to these 

operations if the improvements in heat transfer, flow properties, and bulk density can 

be justified on either a cost or technical basis. Granules formed by agitation 

techniques are subjected to destructive forces, within the moving powder charge, that 

oppose those forces causing agglomeration. The balance between these forces 

determines the maximum granule size possible under given process conditions 

(Lukasiewicz, 1991). 

4.2 Granulation by Pressure 

Size enlargement by pressure granulation is accomplished by compressing a powder 

while it is held in a confined space. Pellets formed are usually of a regular, but non-

spherical, geometry. Common techniques include roll briquetting, pelletizing, and 

extrusion. Granules produced by roll briquetting are commonly in the form of a 

“pillow” shape as the powder is pressed between matching indentations in the rolls. 

Pressure is applied to the rolls hydraulically. Pellet mills form cylindrical shapes by 

compressing and forcing moist powder through an orifice. A binder can be added to 

the powder to promote adhesion, increase pellet strength, and act as a lubricant. 

Extrusion is accomplished by forcing a plastic powder mass through either an orifice 

or a perforated plate. The extruder can be either the piston or the auger type. Water 

and binder solutions must be added to materials that are not already in a plastic 

condition. Pressure granulation techniques typically produce large granules and are 

used in the ceramic industry to form a feed material for calcining or melting 

operations. They can also be used to prepare the feedstock for injection-molding 

processes. They are not used to produce press-powders for automatic presses 

(Lukasiewicz, 1991). 
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4.3 Granulation by Spraying 

Spray techniques are often used to prepare granulated powder for automatic presses 

because they tend to yield dust-free, highly flowable powders of constant bulk 

density. The most commonly used methods are spray drying and spray granulation. 

The feed for a spray dryer is a solid-liquid suspension. For a spray granulator, it is 

usually a dry or slightly moist bulky powder. Spray granulation is commonly used in 

the pharmaceutical industry to prepare feedstock for tablet presses. It is used less 

frequently in the ceramic industry for producing press-powder because many ceramic 

powders are wet-milled prior to granulation and would have to be dried before being 

spray granulated (Lukasiewicz, 1991). 

4.3.1 Spray Drying 

Spray drying is one of the most important granulation methods. As most ceramic 

powders undergo a suspension-based pre-processing step such as wet milling or 

mixing, the combination of drying and agglomeration processes is obvious (Riedel 

and Chen, 2012). This process consists of the transformation of an aqueous slurry 

into dry spherical powders, often called granules, by spraying the slurry, which 

contains ceramic powders, a dispersant, binder, plasticizer, antifoaming agents, and if 

necessary a lubricant, into a hot drying medium (Kim and Jung, 2007). 

 

Figure 4.2: A schematic view of spray dryer (Peighambardoust et al., 2011). 

In spray drying, the suspensions are atomized into small droplets and injected into a 

hot gas stream. In most cases, water is used as the suspension fluid and air as the 
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drying gas, although in special cases organic liquids such as alcohol and inert drying 

gases are utilized. When in contact with the gas stream, the suspension fluid 

evaporates from the droplets. Ideally, the spherical shape of the droplets is preserved 

and the pressing aids are homogeneously precipitated onto the primary particle 

surfaces, after which the dry granules are separated from the gas stream and collected 

in a chamber. Atomization ideally results in the formation of droplets with the 

desired size and a narrow size distribution. It is carried out using centrifugal 

atomizers, pressure nozzles, or two-fluid nozzles (Riedel and Chen, 2012).  

Drying of the suspension droplets occurs in two characteristic stages (Figure 4.3). 

The droplets reach equilibrium with the drying air within several milliseconds, 

without any significant change in moisture content; subsequently, the drying 

continues at a constant rate, as long as the surface remains saturated with the liquid. 

The droplet diameter decreases during this stage, but the surface temperature remains 

constant. At the so-called critical point, the drying rate decreases, as the liquid–vapor 

interface recedes into the porous material and the subsurface temperature increases. 

This phase is extended until almost all of the liquid has evaporated. Ideally, the 

critical point is reached when the primary particles come into contact and form a 

homogeneous packing (Reeds et al., 1999). 

 

Figure 4.3: a) Droplet temperature and b) Droplet moisture content during the 

characteristic stages of the spray-drying process (Riedel and Chen, 

2012). 

A rapid drying and high particle mobility favor the formation of a rigid particle shell 

at the surface, before the particles in the interior of the droplet are exposed to each 

other. In this case, the drying rate is decreased as the low permeability of the shell 

hinders the liquid flow to the surface. Ultimately, the shell structure leads to the 
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formation of hollow granules that often exhibit craters or so-called blowholes formed 

by an inward collapse of the shell. Such collapse may be explained by the formation 

of a partial vacuum by the capillarity-induced movement of particles from the 

interior to the surface shell. Preferably, hollow granules should be avoided in 

ceramic pressing as they disturb the packing homogeneity and are clearly a source of 

pressing defects (Reeds et al., 1999). 

The characteristics of spray-dried granules depend on multiple parameters. Besides 

the drying conditions, the particles of the base powder and the additives introduced 

into the suspension play an important role. As the ideal granule should be a uniform 

solid sphere, a too-rapid drying must be avoided as this causes the formation of a 

rigid surface, before the droplet has reached its stable spherical shape after 

atomization, and will result ultimately in a hollow granule. Hollow granules are 

favored by using highly deflocculated slurries and low solids loading of the 

suspension (Riedel and Chen, 2012). General morphology of particle preparing by 

spray drying method is illustrated in Figure 4.4. 

Spray droplet and drying gas movement occur under co-current, counter-current, or 

mixed-flow conditions (Figure 4.5). A co-current flow means flow in the same 

direction, and is applied to coarse products, whereas the counter-current arrangement 

has excellent heat utilization and is applied to non-heat-sensitive materials. Both 

methods are integrated in the case of mixed-current flow, in which the drying 

chambers may have large dimensions of up to several meters, from the bottom of 

which the coarse granules can be discharged, with the chamber acting as a cyclone 

separator and the fines being separated by a second, high-efficiency cyclone 

separator (Riedel and Chen, 2012). 
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Figure 4.4: Morphology of particle preparing by spray drying (Okuyama and 

Lenggoro, 2003). 

 

Figure 4.5: Typical product-air flow patterns in spray dryers (Peighambardoust et 

al., 2011). 

The binder is the most important ingredient for spray drying, since the binder 

determines the flowability, bulk density, and compaction behavior of the granules. 
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An adequate binder for spray drying should confer high green strength to the 

compact article at the lowest possible addition. The parameters controlling binder 

performance are the glass transition temperature (Tg), polymer backbone structure, 

molecular weight, viscosity, and hygroscopicity. The binders commonly used in 

spray drying are water-soluble polymers such as polyvinyl alcohol (PVA), cellulose, 

polyethylene glycol (PEG), and polyacrylate. The selection criteria for the binder are 

based on its ability to form granules that readily deform during compaction, to burn 

out cleanly before sintering, and to give a high compact density and strength. In 

addition, to prevent a hard granule surface from forming, the binder should undergo 

minimal migration onto the granule surface while spray drying the powder (Kim and 

Jung, 2007). Slurries that contain binder solutions have a tendency to foam when 

subjected to high shear strain rates during mixing. The resulting trapped air is often 

incorporated in the granules and lowers their density. The addition of a defoaming 

agent can be helpful when foaming cannot be prevented (Lukasiewicz, 1991). 

4.4 Reported Granulation Investigations of WO3, MoO3 and Cr2O3 Powders 

Some works held before about the granulation method. Cellard et al. investigated 

spherical micron-sized granules by spray-drying method for development of wear-

resistant plasma sprayed nanostructured coatings from nanopowders (Figure 4.6) 

(Cellard et al, 2006). According to Cellard et al., stable and well-dispersed 

suspension was achieved by milling process with adding 1.3% wt Darvan C as 

dispersant agent. This optimized colloidal suspension was spray-dried. The 

maximum flowability and packed density of the granulated powder was obtained 

with a slurry feed rate of 7.5 ml/min and a binder concentration of 2% wt (Cellard et 

al, 2006). 

 

Figure 4.6: Cr2O3 granules obtained from optimized slip by spray-drying (Cellard et 

al, 2006). 
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In another research, Liu et al. investigated superfine WO3 granules from 

NH4OH/WO3 solution by spray drying process. They studied the effect of centrifuge 

rotary speed and the ratio of NH4OH/ WO3 on the spray-drying process. They 

demonstrated that the size of the precursor of tungsten powder is related to the 

centrifuge rotary speeds and the size of centrifuge disk, while the density of the 

precursor of tungsten powder is related to the ratio of NH4OH/ WO3 and the WO3 

concentration in (NH4)2WO3 solution (Liu et al, 2012). 

Lyo et al. investigated microstructure and tribological properties of plasma-sprayed 

chromium oxide-molybdenum oxide composite coatings (Lyo et al, 2003). Plasma-

sprayed Cr2O3 coatings are used in internal combustion engines because of its high 

wear resistance. On the other hand, molybdenum is used in plasma-sprayed piston 

ring and synchronizer ring coatings to enhance scuff resistance. Lyo et al. studied the 

effect of adding MoO3 to Cr2O3 coatings on tribological properties (Lyo et al, 2003). 

To aim this goal, they fabricated MoO3-Cr2O3 composite using a spray drying 

method. Lyo et al. demonstrated that using Cr2O3-MoO3 composite coatings reduces 

the friction and wear of the counterpart material (Lyo et al, 2003). 
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5. EXPERIMENTAL PROCEDURE 

WO3, MoO3, and Cr2O3 powders were high energy milled (HEM’d) separately for 1, 

4, 16, and 32 hours. The selected colloidal suspensions were then spray dried (SD’d), 

compacted and sintered at 750 °C, 400 °C and 1200 °C respectively. The effects of 

dispersant agent, high energy milling duration on the microstructure properties, 

effect of spray drying on compaction process and final product were investigated. 

Microstructural and phase characterizations were performed via particle size, XRD, 

and SEM analyses. Furthermore, density measurements of HEM’d samples, SD’d 

samples and sintered samples were carried out. The experimental procedure of the 

study is summarized in the flowchart presented in Figure 5.1. 

5.1 Preparation of Samples 

5.1.1 High energy ball milling 

In this study, WO3 (99.8% purity, Alfa Aesar™), MoO3 (99.5% purity, Alfa 

Aesar™) and, Cr2O3 (99% purity, Alfa Aesar™) powders were used. Colloidal 

suspensions with solid contents of 30 %wt WO3, MoO3 and Cr2O3 were prepared 

separately. Darvan® C-N (Ammonium Polymethacrylate, Vanderbilt Minerals) was 

used as the dispersant agent. Milling experiments were carried out using a Fritsch™ 

Pulverisette 5 Planetary ball mill (Figure 5.2) with a speed of 1200 rpm in a polymer 

vial with zirconia balls having a diameter of 5 mm. The balls-to-powder weight ratio 

(BPR) was 7:1. Each oxide was milled separately with different milling times of 1, 4, 

16 and 32 hours. All milling experiments of the mixtures were conducted in wet 

conditions in distilled water. 
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Figure 5.1: The flowchart of the experimental procedure. 

 



31 

 

Figure 5.2: Fritsch™ Pulverisette 5 Planetary mill. 

5.1.2 Spray drying 

The initial powders and the WO3, MoO3 and Cr2O3 powder samples HEM’d for 4 

and 32 hours were selected and then SD’d separately. 2 %wt PVA used as the binder 

during SD process. The Büchi ™ Mini Spray Dryer (B-290) was used during SD 

experiments. Büchi ™ Mini Spray Dryer (B-290) and Dehumidifier™ (B-296) are 

shown in Figure 5.3. 

 

Figure 5.3: a) Büchi ™ Mini Spray Dryer (B-290) and b) Dehumidifier™ (B-296). 

The parameters, which were used in spray drying process, are given in Table 5.1. 

Table 5.1: Spray drying parameters used for samples. 

 Inlet 

Temperature 

(°C) 

Outlet 

Temperature 

(°C) 

Pump Aspirator % Flow 

MoO3 200 93±1 10 100 5 

WO3 200 95±1 10 100 4 

Cr2O3 200 99±1 10 100 5 
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5.1.3 Compaction 

The HEM’d and SD’d powders were compacted by cold pressing in a tool-steel die 

at a pressure of 150 MPa into cylinder shaped green compacts with a diameter of 

 12.7 mm for 30 seconds by using a 10 tons MSE™ uni-action hydraulic press. 

Figure 5.4 shows the picture of the MSE™ hydraulic press. Zinc stearate was applied 

onto the walls of the die in order to take the samples out of the die easily. 

 

Figure 5.4: MSE™ uni-action hydraulic press. 

5.1.4 Sintering 

As shown in figure 5.5, sintering was performed in Protherm™ Standard Chamber 

furnaces, which are used to heat a material up to 1700 °C, to provide uniform 

sintering process by heating elements on the two sides of the furnace. Compacted 

HEM’d and SD’d MoO3, WO3, and Cr2O3 were sintered in air at 400 °C, 750 °C, and 

1200 °C respectively for 30 minutes. Sintering regime involved a heating/cooling 

rate of 2 °C/min. 
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Figure 5.5: Protherm™ Standard Chamber furnaces. 

5.2 Characterization of Powder Mixtures and Sintered Samples 

5.2.1 Particle size distribution 

Particle size of initial powders was measured by using a Malvern Instruments
TM

 

Mastersizer 2000 (Figure 5.6a). Particle size of HEM’d samples were analyzed by 

using a Microtrac™ NANO-flex particle size analyzer (Figure 5.6b). Particle size 

analysis of SD’d samples could not be done because of the solubility of the 

dispersant agent in aqueous systems and disintegrating the granules. Particle size 

distributions were carried out by using distilled water. Before analyzing particle 

sizes, samples were held in a Bandelin™ Sonopuls for approximately 30 seconds to 

inhibit agglomeration and homogenize the suspension (Figure 5.7). 

 

                              (a)                                                                   (b) 

Figure 5.6: a) Malvern Instruments
TM

 Mastersizer 2000 and b) Microtrac™ Nano-

flex particle size analyzer. 
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Figure 5.7: Bandelin™ Sonopuls HD 2200. 

5.2.2 Phase characterizations 

Initial powders, HEM’d, and sintered samples were characterized by X-ray 

diffraction (XRD) analysis. Phase characterizations of these samples were carried out 

using 40 kV and 40 mA Cu Kα conditions on a Bruker™ D8 Advance type X-ray 

diffractometer (Figure 5.8). 

 

Figure 5.8: Bruker™ D8 Advanced type X-ray diffractometer. 

5.2.3 Density measurements 

5.2.3.1 Density measurements of the initial, HEM’d, and SD’d samples 

Apparent density of initial powders, HEM’d, and SD’d samples were measured using 

Arnold apparent density meter (Figure 5.9) and true density of these samples were 

carried out using a Micromeritics™ AccuPyc® II 1340 Pycnometer (Figure 5.10). 
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Figure 5.9: Arnold apparent density meter. 

 

Figure 5.10: Micromeritics™ AccuPyc® II 1340 Pycnometer. 

5.2.3.2 Density measurements of the sintered samples 

Densities of green compacts were calculated geometrically, which is ratio of mass to 

volume of specimens. Density measurements of sintered samples were carried out 

using Archimedes’ method based on liquid displacement. In this method, the sample 

is firstly weighed in air and then in a liquid. The weights in air and in liquid were 

measured by using a Precisa™ XB220A Precision Balance (Figure 5.11). After that, 

the mass in air was divided to the difference of these results and then multiplied with 

the density of the liquid. Distilled water and ethanol were used as the liquid media. 

 

Figure 5.11: Precisa™ XB220A Precision Balance. 
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5.2.4 Microstructural Characterization 

Microstructural characterization investigations of initial powders, HEM’d, and SD’d 

samples were conducted using a JEOL™ Neoscope JSM 6000 scanning electron 

microscope (SEM) in a Secondary Electron Imaging (SEI) mode. JEOL™ Neoscope 

JSM 6000 scanning electron microscope is shown in figure 5.12. 

5.2.5. Macrostructural characterization 

The macrostructures of sintered samples were analyzed using a Zeiss™ 

Stereomicroscope (Figure 5.13). 

 

Figure 5.12: JEOL™ Neoscope JSM 6000 scanning electron microscope (SEM). 

 

Figure 5.13: Zeiss™ StereoMicroscope. 
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6. RESULTS AND DISCUSSION 

6.1 Characterization of Initial and HEM’d Samples 

6.1.1 Particle size distribution 

Figure 6.1 and Table 6.1 show the respective particle sizes analysis of initial MoO3, 

Cr2O3 and WO3 powders, which have an average diameter of 73.3 µm, 4.2 µm and 

71.5 µm, respectively. 

 

(a) 

 

(b) 

Figure 6.1: Particle size distributions of initial powders: a) MoO3, b) Cr2O3 and c) 

WO3. 
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(c) 

Figure 6.1 (Continued): Particle size distributions of initial powders: a) MoO3, b) 

Cr2O3 and c) WO3. 

Table 6.1: Particle size data of the initial powders. 

 MoO3 Cr2O3 WO3 

D10 (µm) 44.7 1.6 25.3 

D50 (µm) 69.3 3.1 70.2 

D90 (µm) 107.6 6.4 118.1 

Average (µm) 73.3 4.2 71.5 

Figure 6.2 shows the particle size distribution of HEM’d MoO3 samples subjected to 

different milling times of 1, 4, 16, and 32 hours in distilled water and without any 

dispersant agent. 

Figure 6.2 a-d and Table 6.2 show the evaluation of particle size distributions of 

MoO3 samples during high-energy milling. As seen in Figure 6.2, the average 

particle size of MoO3 powders decreased with increasing milling times. After milling 

for 32h, the average particle size decreased from 73.3 µm to 174 nm. 
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(a)                                                          (b) 

 

(c)                                                         (d) 

Figure 6.2: Particle size distributions of HEM’d MoO3 powders with different 

milling times of: a) 1 hour, b) 4 hours, c) 16 hours, and d) 32 hours. 

Table 6.2: Particle size data of HEM’d MoO3. 

 1 hour 4 hours 16 hours 32 hours 

D10 (nm) 178.2 145.0 106.3 70.1 

D50 (nm) 227.5 227.2 173.9 130.8 

D90 (nm) 281.5 359 322.0 328.0 

Average (nm) 229.0 242.8 198.3 174.0 

1.5% wt Darvan C-N was used to study the effect of adding dispersant on particle 

size distribution. Figure 6.3 shows the particle size distributions of HEM’d MoO3 

samples with 1.5% wt Darvan C-N.  
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(a)                                                              (b) 

 

(c)                                                                (d) 

Figure 6.3: Particle size distributions of HEM’d MoO3+Darvan C samples with 

different milling times of: a) 1 hour, b) 4 hours, c) 16 hours and, d) 32 

hours. 

As shown in the Table 6.3, After 32 hours of milling the average particle size of 

MoO3+Darvan C powders decreased from 225.3 nm to 180.9 nm. 

Table 6.3: Particle size data of HEM’d MoO3+Darvan C. 

 1 hour 4 hours 16 hours 32 hours 

D10 (nm) 199.1 132.9 115.5 85.1 

D50 (nm) 224.1 213.2 185.7 157.1 

D90 (nm) 253.3 317.0 308.0 309.0 

Average (nm) 225.3 227.7 203.6 180.9 
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As seen in the Figure 6.4 and Figure 6.5, with the addition of 1.5 %wt Darvan C to 

MoO3, the agglomeration behavior of 32 hours HEM’d powder seems to be reduced. 

 

Figure 6.4: Comparative plots of particle size distributions of HEM’d MoO3 samples 

milled for 1, 4, 16, and 32 hours. 

 

 

Figure 6.5: Comparative plots of particle size distributions of HEM’d 

MoO3+Darvan C samples milled for 1, 4, 16, and 32 hours. 

Figure 6.6 shows the effect of adding dispersant on the average particle size of 

HEM’d MoO3 samples. 
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Figure 6.6: Effect of adding Darvan C on the average particle sizes of HEM’d MoO3 

samples. 

Figure 6.6 reveals that the average particle sizes of HEM’d MoO3 samples are not 

changed by the addition of Darvan C as dispersant. 

The same experiment was done using WO3 and Cr2O3 powders. Figure 6.7 shows the 

particle size distributions of Cr2O3 samples at different milling times. 

               

(a)                                                               (b) 

 

(c)                                                             (d) 

Figure 6.7: Particle size distributions of HEM’d Cr2O3 samples milled for different 

times of: a) 1 hour, b) 4 hours, c) 16 hours, and d) 32 hours. 
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Figure 6.7 and Table 6.4 show the variation in the particle size distributions of Cr2O3 

powders with high-energy milling. As seen in the Table 6.4, the average particle size 

decreased after 32 hours milling from 4.2 µm to 279.3 nm.  

Table 6.4: Particle size data of HEM’d Cr2O3. 

 1 hour 4 hours 16 hours 32 hours 

D10 (nm) 303.0 87.4 155.6 99.1 

D50 (nm) 449.0 298.6 273.1 280.6 

D90 (nm) 754.0 536.0 413.0 480.0 

Average (nm) 524.0 299.1 281.2 279.3 

Figure 6.8 and Table 6.5 show the particle size distributions of Cr2O3+Darvan C 

samples at different milling times. 

 

(a)                                                                  (b) 

 

(c)                                                                (d) 

Figure 6.8: Particle size distributions of HEM’d Cr2O3+Darvan C samples milled for 

different times of: a) 1 hour, b) 4 hours, c) 16 hours, and d) 32 hours. 
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Table 6.5: Particle size data of HEM’d Cr2O3+Darvan C. 

 1 hour 4 hours 16 hours 32 hours 

D10 (nm) 171.1 90.3 171.0 165.1 

D50 (nm) 287.8 313.0 232.8 210.9 

D90 (nm) 584.0 491.0 302.0 263.9 

Average (nm) 341.0 289.4 235.8 212.9 

As Figure 6.8 shows, with the addition of 1.5 %wt Darvan C, the particle size 

distribution became narrower for 16 and 32 hours. The average particle size of 

Cr2O3+Darvan C samples decreased from 341 nm to 212.9 nm. 

Figure 6.9 and Figure 6.10 show the comparative plots of particle size distributions 

of the HEM’d Cr2O3 samples milled for different times. 

 

Figure 6.9: Comparative plots of particle size distributions of the HEM’d Cr2O3 

samples milled for 1, 4, 16, and 32 hours. 
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Figure 6.10: Comparative plots of particle size distributions of the HEM’d 

Cr2O3+Darvan C samples milled for 1, 4, 16, and 32 hours. 

Figure 6.11 shows the effect of adding Darvan C on the average particle size of 

HEM’d Cr2O3 samples. 

 

 

Figure 6.11: Effect of adding Darvan C on the average particle sizes of the HEM’d 

Cr2O3 samples. 

It can be illustrated from the particle size analysis of Cr2O3 samples that, adding 

Darvan C helps to inhibit agglomeration during milling. 
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Figure 6.12 and Table 6.6 show the particle size distributions of WO3 samples milled 

for 1, 4, 16, and 32 hours. It can be illustrated that, there is a decreasing in average 

particle size with increasing milling time up to 32 hours. The average particle sizes 

after 32 hours milling reduced from 71.5 µm to 130.1 nm. Figure 6.12 b and c show 

agglomeration behavior in the WO3 powders. 

  

(a)                                                              (b) 

        

(c)                                                              (d) 

Figure 6.12: Particle size distributions of HEM’d WO3 samples milled at different 

times of: a) 1 hour, b) 4 hours, c) 16 hours, and d) 32 hours. 

Figure 6.13 and Table 6.7 show the particle size distributions of WO3+Darvan C 

samples milled at different times. 
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Table 6.6: Particle size data of HEM’d WO3. 

 1 hour 4 hours 16 hours 32 hours 

D10 (nm) 122.5 68.1 76.9 58.5 

D50 (nm) 232.8 118.9 209.6 110.2 

D90 (nm) 370.0 288.2 384.0 236.3 

Average (nm) 242.0 157.2 219.4 130.1 

  

(a)                                                              (b) 

  

(c)                                                                 (d) 

Figure 6.13: Particle size distributions of HEM’d WO3+Darvan C samples milled 

for: a) 1 hour, b) 4 hours, c) 16 hours, and d) 32 hours. 
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Table 6.7: Particle size data of HEM’d WO3+Darvan C. 

 1 hour 4 hours 16 hours 32 hours 

D10 (nm) 125.0 87.8 81.9 42.4 

D50 (nm) 228.1 218.3 162.2 133.4 

D90 (nm) 589.0 368.0 339.0 241.0 

Average (nm) 292.7 226.8 188.9 138.3 

With the addition of dispersant to the samples, the average particle size decreased 

from 292.7 nm to 138.3 nm.  

Figure 6.14 and Figure 6.15 show the comparative plots of particle size distributions 

of the HEM’d WO3 samples milled for different times. 

 

Figure 6.14: Comparative plots of particle size distributions of HEM’d WO3 

samples milled for 1, 4, 16, and 32 hours. 
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Figure 6.15: Comparative plots of particle size distributions of HEM’d 

WO3+Darvan C samples milled for 1, 4, 16, and 32 hours. 

The effect of the addition of Darvan C on the average particle sizes of WO3 samples 

is given in figure 6.16. 

 

Figure 6.16: Effect of adding Darvan C on the average particle sizes of HEM’d WO3 

samples. 
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6.1.2 Density measurements 

Density measurements for HEM’d MoO3 samples at different milling times are given 

in table 6.8. 

Table 6.8: Density measurements of MoO3 samples HEM’d for different times. 

Milling Time (hour) Darvan C (%) Apparent Density 

(g/cm
3
) 

True Density (g/cm
3
) 

0 _ 1.309±0.137 4.670±0.007 

1 _ 1.189±0.076 4.719±0.008 

4 _ 1.108±0.031 4.758±0.003 

16 _ 1.223±0.111 4.618±0.002 

32 _ 1.143±0.012 4.742±0.001 

1 1.5 1.201±0.019 4.724±0.006 

4 1.5 1.138±0.015 4.785±0.003 

16 1.5 1.052±0.018 4.711±0.003 

32 1.5 0.992±0.013 4.826±0.013 

The apparent density values of HEM’d MoO3 powders are given in Figure 6.17. 

These values indicate  the compaction behavior of the powders. As seen in the Figure 

6.17 increasing the milling time causes a decrease in apparent density values. This 

means with further milling MoO3 powders exhibit less packing behavior.  

 

Figure 6.17: Apparent density values of MoO3 samples at different milling times. 
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Figure 6.18 shows the true density values of MoO3 samples at different milling 

times. 

 

Figure 6.18: True density values of MoO3 samples at different milling times. 

Density measurements for WO3 samples at different milling times are listed in Table 

6.9. 

Table 6.9: Density measurements of WO3 samples HEM’d for different times. 

Milling Time (h) Darvan C (%) Apparent Density 

(g/cm
3
) 

True Density (g/cm
3
) 

0 _ 3.182±0.027 7.307±0.007 

1 _ 1.984±0.019 7.362±0.003 

4 _ 1.807±0.039 7.221±0.002 

16 _ 1.709±0.030 6.997±0.002 

32 _ 1.844±0.056 6.870±0.006 

1 1.5 2.169±0.024 7.188±0.005 

4 1.5 2.113±0.026 7.045±0.002 

16 1.5 2.109±0.026 7.013±0.073 

32 1.5 2.067±0.019 6.767±0.048 

Figure 6.19 shows the apparent density values of WO3 samples at different milling 

times. 
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Figure 6.19: Apparent density values of WO3 samples at different milling times. 

As shown in Figure 6.19, the apparent density of HEM’d WO3 shows a sharp 

decrease after passing 1 hour. 

True density values of HEM’d WO3 samples as a function of milling times are given 

in Figure 6.20. 

 

Figure 6.20: True density values of WO3 samples at different milling times. 

Density measurements for Cr2O3 samples at different milling times are given in table 

6.10. 
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Table 6.10: Density measurements of Cr2O3 samples HEM’d for different times. 

Milling Time (h) Darvan C (%) Apparent Density 

(g/cm
3
) 

True Density (g/cm
3
) 

0 _ 0.576±0.063 5.167±0.004 

1 _ 0.952±0.020 5.214±0.009 

4 _ 1.057±0.040 5.151±0.009 

16 _ 1.025±0.024 5.009±0.004 

32 _ 1.006±0.005 5.249±0.009 

1 1.5 1.014±0.015 5.202±0.005 

4 1.5 1.243±0.024 5.184±0.004 

16 1.5 1.203±0.014 5.215±0.004 

32 1.5 1.165±0.014 5.295±0.006 

Figure 6.21 shows the changes in apparent density against milling time for Cr2O3 

samples. Apparent density values of HEM’d Cr2O3 powders increases after milling 

for 1 hour. There is a slight reduction in apparent density with further milling up to 

32 hours. 

 

Figure 6.21: Apparent density values of Cr2O3 samples milled for different times. 

Figure 6.22 shows the true density values of Cr2O3 samples milled for different times 
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Figure 6.22: True density values of Cr2O3 samples milled for different times. 

6.1.3 Phase analysis and microstructural characterizations 

Figure 6.23 shows the XRD patterns of MoO3 samples with different HEM’d 

duration. As seen in all patterns of Figure 6.23, only the peaks of MoO3 which has an 

orthorhombic Bravais lattice with the lattice parameters of a=3.963 nm, b=13.855 

nm, and c=3.696 nm (PDF No: 01-076-1003) can be identified, Indicating the fact 

that any phases, other than the orthorhombic MoO3, did not form during HEM up to 

32h. 

 

Figure 6.23: XRD patterns of the initial and HEM’d MoO3 samples. 
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The XRD patterns of WO3 samples with different HEM durations are shown in 

Figure 6.24. As seen in all patterns of Figure 6.24, only the peaks of WO3 which has 

a monoclinic Bravais lattice with the lattice parameters of a=7.301 nm, b=5.389 nm, 

and c=7.689 nm (PDF No: 01-083-0950) can be identified. Again, similar to Figure 

6.23, only the monoclinic WO3 phase existed during HEM with no presence of a new 

phase in the microstructure. 

 

Figure 6.24: XRD patterns of the initial and HEM’d WO3 samples. 

XRD patterns of the initial and HEM’d Cr2O3 samples are shown in Figure 6.25. The 

peaks of Cr2O3, which has a rhombohedral Bravais lattice with the lattice parameters 

of a=4.953 nm and c=13.578 nm (PDF No: 01-072-3533) can be identified in all 

samples, which means no new phase formation took place during HEM of the 

rhombohedral Cr2O3.  

Figure 6.26 shows the SEM micrographs of the initial WO3 powder and those 

HEM’d for 4, 16, and 32 hours. As can be seen from this figure, initial particle sizes 

of WO3 were continuously decreased with increasing HEM. Figure 6.26 b-d shows 

particles varying in size between 100 nm and 200 nm. Local agglomerations, which 

are clearly seen in Figure 6.26 b and c, occur due to small particle size distribution of 

the HEM’d WO3 samples. 
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Figure 6.25: XRD pattern of the initial and HEM’d Cr2O3 samples. 

 

                               (a)                                                                 (b) 

  

 

                                (c)                                                                 (d) 

Figure 6.26: SEM images of: a) initial, b) 4h HEM’d, c) 16h HEM’d, and d) 32h 

HEM’d WO3 samples. 
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Figure 6.27 shows the SEM micrographs of the initial MoO3 powder and those 

HEM’d for 4, 16, and 32 hours. As can be seen in this figure, microscale initial 

MoO3 powders have diameters in nanoscale after HEM. Initial MoO3 particles are 

about 70 µm in size. Figure 6.27 b-d shows particles varying in size between 100 nm 

and 200 nm. Local agglomerations, which are clearly seen in Figure 6.26 b-d, 

occurred due to small particle size distribution of the HEM’d MoO3 samples. 

 

                            (a)                                                                  (b) 

 

                           (c)                                                                   (d) 

Figure 6.27: SEM images of: a) initial, b) 4h HEM’d, c) 16h HEM’d, and d) 32h 

HEM’d MoO3 samples. 

SEM micrographs of the initial Cr2O3 powder and effect of high energy milling up to 

32 hours on this powder are given in Figure 6.28. Initial Cr2O3 particles are about 4 

µm in size. Figure 6.28 b-d shows particles varying in size between 200 nm and 300 

nm. In all Cr2O3 samples, local agglomerations occurred due to small particle size 

distribution. 
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                               (a)                                                                (b)  

              

 

                              (c)                                                                 (d) 

Figure 6.28: SEM images of: a) initial, b) 4h HEM’d, c) 16h HEM’d, and d) 32h 

HEM’d Cr2O3 samples. 

6.2 Characterization of SD’d Samples 

6.2.1 Density measurements 

Density measurements of SD’d MoO3 samples are given in the Table 6.11. 

Table 6.11: Density measurements of SD’d MoO3 samples. 

HEM Duration 

(h) 

Apparent Density 

(g/cm
3
) 

True Density 

(g/cm
3
) 

Initial 0.832±0.021 4.616±0.004 

4h HEM’d 0.644±0.012 5.394±0.132 

32h HEM’d 0.512±0.016 4.570±0.021 
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Figure 6.29: True density vs. Apparent density values of SD’d MoO3 samples at 

different milling times. 

Figure 6.29 shows the true density and apparent density values of SD’d MoO3 

samples. With increasing milling time, apparent density values of SD’d MoO3 

reduced slightly. On the other hand, the maximum true density value belongs to the 

4h HEM’d MoO3 powders. 

Apparent density and true density values of SD’d WO3 samples are given in Table 

6.12 and Figure 6.30. The minimum value of apparent density and the maximum 

value of true density belong to the 4h HEM’d WO3 powders. 

Table 6.12: Density measurements of SD’d WO3 samples. 

HEM Duration 

(h) 

Apparent Density 

(g/cm
3
) 

True Density 

(g/cm
3
) 

Initial 1.443±0.013 6.719±0.015 

4h HEM’d 1.062±0.022 7.081±0.009 

32h HEM’d 1.162±0.025 6.573±0.002 
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Figure 6.30: True density vs. Apparent density values of SD’d WO3 samples at 

different milling times. 

Figure 6.31 and Table 6.13 show the apparent density and true density measurements 

of SD’d Cr2O3 samples. Both true density and apparent density values of SD’d Cr2O3 

samples declined steadily with increasing milling time. 

Table 6.13: Density measurements of SD’d Cr2O3 samples. 

HEM Duration 

(h) 

Apparent Density 

(g/cm
3
) 

True Density 

(g/cm
3
) 

Initial 0.592±0.017 5.110±0.007 

4h HEM’d 0.557±0.022 5.036±0.006 

32h HEM’d 0.472±0.010 4.847±0.007 

 

 

Figure 6.31: True density vs. Apparent density values of SD’d Cr2O3 samples at 

different milling times. 
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6.2.2 Microstructural characterizations 

SEM micrographs of the SD’d initial WO3 powders and those HEM’d for 4 and 32h 

are given in Figure 6.32. Spherical shaped particles can be seen in all SD’d WO3 

samples.  

Figure 6.33 shows the 4 and 32h HEM’d Cr2O3 samples after spray drying. Spherical 

granules can be seen in both 4 and 32 h HEM’d Cr2O3. Local agglomerations of 

Cr2O3 particles can be seen in Figure 6.33 a.  

SEM micrographs of SD’d MoO3 samples which HEM’d for 4 and 32h are given in 

Figure 6.34. The hollow and doughnut shaped particles are clearly seen in SD’d 

MoO3 samples. 

 

(a) 

  

                               (b)                                                                (c) 

Figure 6.32: SEM micrographs of SD’d: a) initial, b) 4h HEM’d, and c) 32h HEM’d 

WO3 samples. 
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 (a)                                                                 (b) 

Figure 6.33: SEM micrographs of SD’d: a) 4h HEM’d and b) 32h HEM’d Cr2O3 

samples. 

 

(a)                                                              (b) 

Figure 6.34: SEM micrographs of SD’d: a) 4h HEM’d and b) 32h HEM’d MoO3  

samples.  

6.3 Characterization of Sintered Samples 

6.3.1 Macrostructural characterizations 

Sintered WO3 samples are shown in Figure 6.35. Several cracks occurred during 

sintering in the samples which have been just HEM’d. With increasing milling time, 

the cracks and roughness seem to be reduced. The sample number 2, which was 

HEM’d for 1 hour, disintegrated completely. SD’d samples showed better 

compactability. The macrostructure of the WO3 samples were analyzed by 

stereomicroscope and are shown in Figure 6.36. The description of the experimental 

codes of sintered WO3 samples are given in Table 6.14. 
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Figure 6.35: WO3 samples sintered at 750 °C. 

Table 6.14: Description of the experimental codes of sintered WO3 samples. 

Sample Number Sample Name 

W1  Initial  

W2 1h HEM’d  

W3 4h HEM’d  

W4 16h HEM’d  

W5 32h HEM’d  

W6 SD’d- initial  

W7 SD’d-4h HEM’d 

W8 SD’d-32h HEM’d  

Figure 6.37 reveals the differences between sintered initial and SD’d initial WO3. 

The WO3 sample, which just pressed and sintered at 750 °C, has several cracks and it 

is almost impossible to hold the sample. On the other hand the SD’d WO3 sample has 

much better surface characteristics without any crack. Figure 6.38 also shows the 

same result as Figure 6.37 samples. In the Figure 6.39a and b, 32h HEM’d WO3 with 
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and without SD were given. It is apparent from the figures that both samples have 

some cracks on their outer surfaces. 

 

                                        (a)                                                (b) 

 

                                         (c)                                                (d) 

 

                                        (e)                                                  (f) 

  

                                        (g)                                                 (h) 

Figure 6.36: Macrostructures of sintered WO3 samples: a) W1, b) W2, c) W3, d) 

W4, e) W5, f) W6, g) W7, and h) W8. 
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                               (a)                                                              (b) 

Figure 6.37: Sintered pellets of: a) W1 and b) W6 samples. 

  

                           (a)                                                                 (b) 

Figure 6.38: Sintered pellets of: a) W3 and b) W7 samples. 

  

                            (a)                                                                     (b) 

Figure 6.39: Sintered pellets of: a) W5 and b) W8 samples. 
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Figure 6.40 shows the MoO3 samples sintered at 400 °C. The description of the 

experimental codes of sintered MoO3 samples are given in Table 6.15. 

 

Figure 6.40: MoO3 samples sintered at 400 °C. 

Table 6.15: Description of the experimental codes of sintered MoO3 samples. 

Sample Number Sample Name 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

M8 

Initial  

1h HEM’d  

4h HEM’d  

16h HEM’d  

32h HEM’d  

SD’d-initial 

SD’d-4h HEM’d 

SD’d-32h HEM’d 

The macrostructure of the MoO3 samples are shown in Figure 6.41. As shown in the 

Figure 6.41, with increasing the HEM time, the roughness on the surface of samples 

decreases. In the Figure 6.42a, the sintered initial MoO3 has many cracks and it 

almost disintegrates. However, the SD’d one (6.42b) shows better surface properties 

and smoother than the un-spray dried one. 6.43a and b, reveals the differences 

between sintered 4h HEM’d MoO3 sample and SD’d 4h HEM’d MoO3 sample. It 

seems with spray drying, the flow ability of granules made the compacted sample’s 

surface with less cracks.  
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                              (a)                                            (b) 

  

                                     (c)                                                     (d) 

  

                                     (e)                                                   (f) 

  

                               (g)                                        (h) 

Figure 6.41: Macrostructures of sintered MoO3 samples: a) M1, b) M2, c) M3, d) 

M4, e) M5, f) M6, g) M7, and h) M8. 
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                               (a)                                                               (b) 

Figure 6.42: Sintered pellets of: a) M1 and b) M6 samples. 

 

                                 (a)                                                            (b) 

Figure 6.43: Sintered pellets of: a) M3 and b) M7 samples. 

 

                                (a)                                                            (b) 

Figure 6.44: Sintered pellets of: a) M5 and b) M8 samples. 
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Figure 6.45 shows the Cr2O3 samples sintered at 1200 °C. The description of the 

experimental codes of sintered Cr2O3 samples are given in Table 6.16. 

 

Figure 6.45: Cr2O3 samples sintered at 1200 °C. 

Table 6.16: Description of the experimental codes of sintered Cr2O3 samples. 

Sample Number Sample Name 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

Initial 

1h HEM’d 

4h HEM’d 

16h HEM’d 

32h HEM’d 

SD’d -initial 

SD’d- 4h HEM’d 

SD’d- 32h HEM’d 

Figure 6.46 shows the macrostructures of Cr2O3 samples. It can be illustrated from 

Figure 6.46 a-e that increasing milling time, helps to produce a pressed sample with 

better surface characteristics and less cracks. 
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                                          (a)                                           (b) 

 

(c)                                                (d) 

 

                                      (e)                                                  (f) 

 

                                       (g)                                                  (h) 

Figure 6.46: Macrostructures of sintered Cr2O3 samples: a) C1, b) C2, c) C3, d) C4, 

e) C5, f) C6, g) C7, and h) C8. 

Figure 6.47, 6.48 and 6.49 show the difference between samples with and without 

spray drying process. It can be seen from the figures that samples, which are 

processed with spray drying, have better surface characteristics than HEM’d ones. 
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                              (a)                                                            (b) 

Figure 6.47: Sintered pellets of: a) C1 and b) C6 samples. 

 

 

                               (a)                                                         (b) 

Figure 6.48: Sintered pellets of: a) C3 and b) C7 samples. 

 

                             (a)                                                            (b) 

Figure 6.49: Sintered pellets of: a) C5 and b) C8 samples. 
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6.3.2 Phase analysis  

XRD pattern of sintered 32h HEM’d WO3 sample is given in Figure 6.50. As seen in 

this figure, only the peaks of WO3, which has a monoclinic Bravais lattice with the 

lattice parameters of a=7.301 nm, b=5.389 nm, and c=7.689 nm (PDF No:01-083-

0950) can be identified, i.e. no new phase formation took place during sintering of 

the monoclinic WO3.  

 

Figure 6.50: XRD pattern of the sintered WO3 sample HEM’d for 32h. 

XRD pattern of the sintered Cr2O3 sample that was HEM’d for 32h is shown in 

Figure 6.51. The peaks of Cr2O3, which has a rhombohedral Bravais lattice with the 

lattice parameters of a=4.953 nm and c=13.578 nm (PDF No: 01-072-3533) can be 

identified. Additionally, the presence of the ZrO2 phase which has a tetragonal 

Bravais lattice with the lattice parameters of a=3.598 nm and c=5.185 nm (PDF No: 

01-072-7115) detected due to contamination during HEM. 
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Figure 6.51: XRD pattern of the sintered Cr2O3 sample HEM’d for 32h. 

Figure 6.52 shows the XRD pattern of the MoO3 sample that was HEM’d for 32h. As 

seen in the figure, the peaks of MoO3 which has an orthorhombic Bravais lattice with 

the lattice parameters of a=3.963 nm, b=13.855 nm, and c=3.696 nm (PDF No: 01-

076-1003) can be identified, indicating that any phases other than orthorhombic 

MoO3 did not occur during sintering. 

 

Figure 6.52: XRD pattern of the sintered MoO3 sample HEM’d for 32h. 
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6.3.3 Density measurements 

The green density and sintered density values of sintered WO3 samples are given in 

Table 6.17. The sintered density of initial, 1h and 4h HEM’d WO3 samples could not 

be measured because of the cracks and disintegrations. A decreasing tendency in the 

green density of both SD’d and un-SD’d samples were observed with increasing 

milling times. Sintered density values of SD’d samples are more than HEM’d ones 

and varies between 91.5 and 96.7 % based on HEM duration.  

Table 6.17: Relative green and sintered density values of the WO3 sintered samples. 

Sample Name % Green Density (g/cm
3
) % Sintered Density (g/cm

3
) 

Initial  77.6 _ 

1h HEM’d  75.5 _ 

4h HEM’d 71.5 _ 

16h HEM’d 70.3 95.2 

32h HEM’d 67.8 95.7 

SD’d-initial 77.2 91.5 

SD’d-4h HEM’d 73.2 93.5 

SD’d-32h HEM’d 66.6 96.7 

Figure 6.53 shows the green density and sintered density comparative plots between 

SD’d and un-SD’d WO3 samples. It can be illustrated that SD’d samples have more 

sintered density than HEM’d ones. 

The green density and sintered density values of the sintered Cr2O3 samples are given 

in Table 6.18. Green density values of Cr2O3 samples vary between 53.4 and 66.1 %.  

However, there is no correlation between the green density values. The minimum 

value corresponds to the SD’d initial Cr2O3 and the maximum one to the SD’d 32h 

HEM’d Cr2O3. Sintered density of SD’d Cr2O3 values vary between 91 and 92.7 %. It 

remains approximately constant inferring that the sintered density of SD’d samples 

was independent from HEM duration. Maximum value of sintered density occurred 

in un-SD’d 32h HEM’d Cr2O3 with a value of 98.6 %. Figure 6.54 shows the 

comparative plots between relative densities of SD’d and un-SD’d Cr2O3 samples. 
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Figure 6.53: Green density and sintered density values of HEM’d and SD’d WO3 

samples at different milling times. 

Table 6.18: Relative green and sintered density values of the Cr2O3 sintered samples. 

Sample Name % Green Density (g/cm
3
) % Sintered Density (g/cm

3
) 

Initial 63.6 95.1 

1h HEM’d 62.7 93.9 

4h HEM’d 62.3 96.8 

16h HEM’d 64.7 94.5 

32h HEM’d 64.4 98.6 

SD’d-initial 53.4 92.7 

SD’d-4h HEM’d 64.4 91.4 

SD’d-32h HEM’d 66.1 91.0 

Green density values of MoO3 samples are given in Table 6.19. The green density 

values of MoO3 samples vary between 62.7 and 69.1 %. As seen in the Figure 6.55, 

green density values of SD’d samples remains approximately constant, indicating 

that the HEM duration did not cause sharp changes in green density of SD’d MoO3 

samples. Sintered density of initial MoO3 could not be measured due to 

disintegration of the sample. Sintered density values vary between 72.1 and 91.5 %. 

60 

65 

70 

75 

80 

85 

90 

95 

100 

0 5 10 15 20 25 30 

D
e

n
si

ty
 (%

) 

Milling Time (h) 

Green Density of HEM'd 
samples 

Green Density of SD'd 
samples 

Sintered Density of SD'd 
samples 

Sintered Density of HEM'd 
samples 



76 

SD’d samples have low sintered density values compared to HIM’d ones. There is a 

decreasing tendency in the sintered densities as HIM duration increases. 

 

Figure 6.54: Green density and sintered density values of HEM’d and SD’d Cr2O3 

samples with different milling times. 

Table 6.19: Relative green and sintered density values of the MoO3 sintered 

samples. 

Sample Name % Green Density (g/cm
3
) % Sintered Density (g/cm

3
) 

Initial 67.5 _ 

1h HEM’d 63.9 91.5 

4h HEM’d 66.9 96.1 

16h HEM’d 69.1 90.3 

32h HEM’d 69.0 85.4 

SD’d-initial 63.9 83.7 

SD’d-4h HEM’d 63.8 80.6 

SD’d-32h HEM’d 62.7 72.1 
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Figure 6.55: Green density and sintered density values of HEM’d and SD’d MoO3 

samples at different milling times. 
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CONCLUSIONS 

On the basis of the results of the present investigations, the following conclusions 

can be drawn: 

1. During HEM, certain decrease for the mean particle sizes of initial MoO3, WO3 

and Cr2O3 powders were observed. Although over micron-sized initial powders were 

selected as starting materials, particle size distributions varying between 100 and 200 

nm were measured for each system after 32h milling. With addition of Darvan C to 

the Cr2O3 during HEM, the mean particle sizes of samples were decreased compared 

to the samples which were without Darvan C. For the rest of two systems, any sharp 

changes in the particle size distributions were not observed. It should be noted that in 

the Cr2O3 system, with increasing milling time up to 32 hours, the contamination of 

milling media (ZrO2) was observed. 

2. Although the experimental parameters for all three systems were chosen as same 

during spray drying process, each system led to different morphology compared to 

the others. After SD of WO3, dense spherical granules were formed in the size ranges 

of 1 and 10 µm based on HEM duration. While hollow shapes varying in size 

between 1 and 5 µm observed for SD’d MoO3 particles, doughnut-shaped granules 

were formed for the Cr2O3 system. 

3. With increasing milling time, apparent density values were increased for both 

WO3 and MoO3 powders. This indicates that the packing behavior of these powders 

reduces with further HEM. On the other hand, observed lower apparent densities of 

SD’d samples compared to HEM’d ones was a related with use of additional PVA 

used during SD process.  

4. In all systems after sintering, the HEM’d samples had several cracks whereas 

SD’d ones had much better surface characteristics and less cracks. In the case of 

WO3 cracks led to total disintegration of initial compact shape therefore their 

sintered density could not be measured. 
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5. Sintered density values of SD’d WO3 samples were increased with increasing the 

HEM duration. It could be interpreted that with increasing HEM duration, small 

particle sizes act as a driving force in the sintering process. Sintered density of SD’d 

MoO3 had lower values than HEM’d one due to the formation of hollow granules 

and porous structure. The sintered density behavior of Cr2O3 systems couldn’t be 

interpreted due to the contamination in the samples.  

6. This study has shown that all SD’d powders, regardless of their morphology, have 

shown better compactability during die pressing compared to their counterparts of 

HEM’d powders. On the other hand each system has to be studied in details to 

achieve desired particle shapes and granulation morphology after SD.
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