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INVESTIGATING OF INTERACTIONS BETWEEN STATIN-BASED 
CHOLESTEROL LOWERING DRUGS  WITH P-GLYCOPROTEIN 
MEMBRANE PROTEIN BY MOLECULAR MODELING 

SUMMARY 

P-glycoprotein (Pgp) is a multidrug resistance protein whose function is to expel the 
toxic compounds out of the cell and in this way protect the cell from the harmful 
effect of these compounds. Pgp plays a critical role during medication since it can 
export different types of drugs ranging from cancer therapeutics to cardiovascular 
disease drugs. In order to increase the effectiveness of these drugs, there is a need to 
block Pgp or design drugs which can bypass Pgp during medication. To be able to do 
that, it is first necessary to understand mechanism of Pgp. 

The aim of this study is to understand the mechanism of Pgp by using molecular 
dynamic simulation. To do this, ALLM (N-acetyl-lue-leu-methinonal), AFMRF (N-
acetyl-phe-met-arg-phe-al) linear peptides known as Pgp substrates and atorvastatin, 
a cholesterol lowering drug, was used as model compounds. First, the integration of 
the Pgp into a lipid bilayer was done and its stability was checked. Then to supply 
the required energy for transportation, two MgATP were docked into the nucleotide 
binding pocket of Pgp. For each simulation, different substrates were docked into 
this system and simulated for 10 ns.   

As a result of the simulations, no interaction could be detected between the linear 
peptides and Pgp. The reason of this situation could be the insufficient number of 
peptide per transport cycle used during simulations. Pgp can export more than one 
molecule per transport cycle and need to fill its pocket with enough molecules to 
function.  Lactone form of atorvastatin, on the other hand, was found to interact with 
Pgp as expected and led to an asymmetrical closure of nucleotide binding domains 
during 10 ns simulation.  
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BİR MEMBRAN PROTEİNİ OLAN P-GLİKOPROTEİNİN STATİN BAZLI 
KOLESTEROL DÜŞÜRÜCÜ İLAÇLARLA ETKİLEŞİMİNİN MOLEKÜLER 
MODELLEME YOLUYLA İNCELENMESİ 

ÖZET 

P-glikoprotein (Pgp), bir çoklu-ilaç direnç proteini olup fonksiyonu toksik maddeleri 
hücreden uzaklaştırma yolu ile hücreyi bu maddelerin zararlı etkilerin korumaktır.  
Pgp, kanser terapiden kalp damar hastalıklarına kadar çeşitli tipte ilaçı 
uzaklaştırabildiği için tedavi sürecinde kritik rol oynar.  Bu ilaçların etkisini 
artırabilmek için Pgp’nin çalışmasını durduracak yada Pgp’ye uğramadan hücreye 
ulaşabilecek  ilaçların tasarlanmasına ihtiyaç vardır. Bunu başarabilmek için ilk 
olarak Pgp’nin mekanizmasını anlamak gerekmektedir.  

Bu çalışmanın amacı moleküler dinamik simülasyon kullanarak Pgp’nin 
mekanizmasını anlamaktır. Bunun için Pgp substratı olduğu bilinen ALLM (N-asetil-
leu-leu-met-al), AFMRF (N-asetil-phe-met-arg-phe-al) doğrusal peptidleri ve 
kolesterol düşürücü atorvastatin’nin lakton formu örnek molekül olarak kullanıldı. 
İlk olarak Pgp’nin lipid zar içine yerleştirilmesi gerçekeştirildi ve stabilitesi gözden 
geçirildi.  Arkasından Pgp nin taşıma için gerekli enerjiyi tedariğine yönelik 
proteinin ilgili nükleotid bağlanma bölgelerine iki adet MgATP molekülü 
yerleştirildi. Her bir simülasyon için oluşturulan bu yapıya farklı substratlar 
yerleştirildi ve 10 ns boyunca simüle edildi.    

Çalışma neticesinde doğrusal peptid zincirlerinin pek Pgp ile etkileşmediği gözlendi. 
Bunun sebebi peptid büyüklüklerinin yetersiz kalması olabilir. Çünkü Pgp aynı anda 
birden fazla ilaçı taşıyabilme kapasitesine sahip bir proteindir. Bu peptidler için de 
birden fazlası taşıma için gerekli olabilir. Ancak diğer taraftan atorvastatin lakton 
formu Pgp ile beklenen şekilde etkileşime girdi ve 10 ns simülasyon boyunca  
nükleotid bağlanma domainlerinde asimetrik bir kapanmaya neden oldu. 
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1.  INTRODUCTION 

1.1 P-glycoprotein 

1.1.1 The ABC transporters 

P-glycoprotein (Pgp) is a 170 kDa member of the ATP-Binding cassette (ABC) 

transporters superfamily that was first identified in drug-resistant Chinese hamster 

ovary cells by its ability to reduce the rate of drug uptake. Cell lines that were 

initially selected for resistance to one cytotoxic drug were later shown to display 

cross-resistance to other structurally unrelated cytotoxic compounds [1-3]. In nearly 

all cases, the drug-resistant cell lines showed over-expression of a 170 kDa 

glycosylated plasma membrane protein when compared to the drug-sensitive parent 

cell lines [4,5]. The protein was termed P-glycoprotein (Pgp) because it appeared to 

affect the permeability of the membrane to cytotoxic compounds [6]. 

In 1986, three groups reported the cloning and sequencing of the gene responsible for 

Pgp-mediated drug resistance from hamster [7], human [8] and mouse [9] cell lines. 

It is a product of the MDR1 (ABCB1) gene in humans and has two homologues in 

mice (abcbla and abcblb). It was subsequently shown that Pgp is an ATP-dependent 

drug pump that can transport a broad range of structurally unrelated compounds out 

of the cell [10].  

ATP-binding cassette transporters (ABC-transporter) are members of a protein 

superfamily that is one of the largest and most ancient families with representatives 

in all extant phyla from prokaryotes to humans [11]. ABC transporters are 

transmembrane proteins that utilize the energy of adenosine triphosphate (ATP) 

hydrolysis to carry out certain biological processes including translocation of various 

substrates across membranes [12,13] and non-transport-related processes such as 

translation of RNA and DNA repair [14]. They transport a wide variety of substrates 

across extra- and intracellular membranes, including metabolic products, lipids and 

sterols, and drugs. Proteins are classified as ABC transporters based on the sequence 

and organization of their ATP-binding cassette (ABC) domain(s). ABC transporters 
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are involved in tumour resistance, cystic fibrosis, bacterial multidrug resistance, and 

a range of other inherited human diseases. 

Cellular survival requires the generation and maintenance of electrical and chemical 

concentration gradients across the generally impermeable cell membrane. ATP-

binding cassette (ABC) transporters are key participants in this process, and typically 

use the favourable chemical energy of ATP hydrolysis to translocate molecules 

across membranes in a thermodynamically unfavourable direction. ABC transporters 

function as either importers, which bring nutrients and other molecules into cells, or 

as exporters, which pump toxins, drugs and lipids across membranes. 

Members of the ABC transporter family are present in organisms from all kingdoms 

of life; whereas exporters are found in both eukaryotes and prokaryotes, importers 

seem to be present exclusively in prokaryotic organisms. ABC transporters constitute 

the largest protein family in E. coli, including 80 distinct systems that represent 5% 

of the genome [18], whereas 50 ABC transporters are present in humans [19] and 

seventeen of these proteins are source of some diseases [20]. 

ABC transporters have a characteristic architecture that consists minimally of four 

domains Figure 1.1: two transmembrane domains (TMDs) that are embedded in the 

membrane bilayer, and two ABCs (or nucleotide-binding domains (NBDs)) that are 

located in the cytoplasm. At the sequence level, the superfamily of ABC transporters 

is identified by a characteristic set of highly conserved motifs that are present in the 

ABCs. By contrast, the sequences and architectures of the TMDs are variable, 

reflecting the chemical diversity of the translocated substrates. Beyond these four 

domains, additional elements can fuse to the TMDs and/or ABCs of ABC 

transporters and probably have regulatory functions [21]. For prokaryotic ABC 

transporters that function as importers, substrate translocation is also dependent on 

another protein component, a high-affinity binding protein that specifically 

associates with the ligand in the periplasm for delivery to the appropriate ABC 

transporter [22]. In ABC importers, the TMDs and NBDs are separate polypeptide 

chains. In bacterial exporters, by contrast, a TMD is fused to a NBD, generating a 

'halftransporter' that forms a homodimer or heterodimer to generate the functional 

unit. Many eukaryotic ABC exporters are expressed with all four domains in a single 

polypeptide chain [23]. 
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Figure 1.1 : Molecular architecture of ABC transporters. A) A cartoon of the 

modular organization of ATP-binding cassette (ABC) transporters, 
which are composed of two transmembrane domains (TMDs) and two 
ABC domains (or nucleotide-binding domains). The binding protein 
component that is required by importers is also shown. Two 
conformational states of the ABC transporter-outward facing and inward 
facing, with the substrate-binding site orientated towards the periplasmic 
(extracellular) and cytoplasmic (intracellular) regions, respectively - are 
depicted to show the alternating access mechanism of transport. B) The 
E. coli vitamin B12 importer BtuCDF[15] (PDB  2QI9). The core 
transporter consists of four subunits: the two TMD BtuC subunits (green 
and blue) and the two ABC BtuD subunits (yellow and magenta). This 
complex also contains one copy of BtuF, the periplasmic binding protein 
(pink). C) The mouse p-glycoprotein multidrug exporter [16] (PDB 
3G60). P-glycoprotein is a monomer and all four domain is combined 
into a single polypeptide chain. D) The Staphylococcus aureus Sav1866 
multidrug exporter [17] (PDB code 2HYD). Sav1866 consists of two 
subunits (green and blue), which contain a fused TMD and ABC 
domain. The nucleotides that are bound in this structure are shown by 
space-filling models. ICL, intracellular loop. 
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1.1.2 Tissue distribution 

Early studies of Pgp distribution in human [24] and rodent [25] tissues showed that 

the protein is expressed at low levels in most tissues but is found in much higher 

amounts at the apical surface of epithelial cells lining the colon, small intestine, 

pancreatic ductules, bile ductules and kidney proximal tubules, and the adrenal 

gland. Thus, epithelial cells with excretory roles generally express Pgp. The 

transporter is also located in the endothelial cells of the blood–brain barrier [26], the 

blood–testis barrier [27], and the blood–mammary tissue barrier [28], and has 

recently been found to play a role in the blood–inner ear barrier, where it is 

expressed in the capillary endothelial cells of the cochlea and vestibule [29]. Thus 

the role of Pgp in the blood–brain and blood–tissue barriers is likely to protect these 

organs from toxic compounds that gain entry into the circulatory system. Pgp is 

expressed at high levels at the luminal surface of secretory epithelial cells in the 

pregnant endometrium [30], as well as the placenta [31], where it may provide 

protection for the fetus [32]. The protein is also found on the surface of 

hematopoietic cells, where its function remains enigmatic. The ABCB4 protein is 

expressed at high levels on the bile canalicular membrane of hepatocytes, in 

accordance with its proposed role in transport of PC into the bile [33]. 

1.1.3 Physiological role 

The tissue localization of Pgp suggests that the protein plays a physiological role in 

the protection of susceptible organs such as the brain, testis, and inner ear from toxic 

xenobiotics, the secretion of metabolites and xenobiotics into bile, urine, and the 

lumen of the gastrointestinal tract, and possibly the transport of hormones from the 

adrenal gland and the uterine epithelium. These ideas have been strongly supported 

by studies on transgenic knockout mice lacking one or both of the genes encoding 

the drug-transporting Pgps Abcb1a and Abcb1b. Both single- and double-knockout 

mice are fertile, viable, and phenotypically indistinguishable from wild-type mice 

under normal conditions. So Pgp does not appear to fulfill any essential physiological 

functions. However, Pgp knockout mice showed radical changes in the way that they 

handled a challenge with many drugs [34]. mdr3 knockout mice displayed a 

disrupted blood–brain barrier and were 100-fold more sensitive to the pesticide 
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ivermectin, which was neurotoxic to the animals [35]. This Pgp isoform appears to 

play the major role in preventing accumulation of drugs in the brain [34,36]. The 

double-knockout mouse has proved useful in evaluating the effect of Pgp-mediated 

transport on drugs that are targeted to the central nervous system [37]. Certain dogs 

of the collie lineage [38] and several other dog breeds [39,40] have a naturally 

occurring lack of Pgp due to a frameshift mutation in the MDR1 gene and are also 

hypersensitive to ivermectin. To date, no human null alleles have been reported, 

despite widespread use of drugs that are Pgp substrates. 

Pgp in the intestinal epithelium plays an important role in the extrusion of many 

drugs from the blood into the intestinal lumen, and in preventing drugs in the 

intestinal lumen from entering the bloodstream. Pgp activity can therefore reduce the 

absorption and oral bioavailability of those drugs that are transport substrates. Due to 

the prevalence of Pgp in a variety of barrier tissues, and the physiological role that it 

plays in the bioavailability and pharmacokinetics of clinically administered drugs, 

the interaction of drugs with Pgp is an important factor that needs to be considered 

when designing a treatment regimen. 

1.1.4 Multidrug resistance 

The overexpression of Pgp is one of the main causes of cancer cells becoming 

simultaneously resistant to multiple chemotherapeutic drugs, resulting in a condition 

known as multidrug resistance (MDR) [41]. The development of MDR is a major 

obstacle to treating cancer, and Pgp is thought to contribute to chemotherapy drug 

resistance in 50% of human cancers [10]. Some tumours are inherently drug-

resistant, whereas others develop MDR over the course of treatment. Cancers of the 

colon, liver, pancreas and kidney tend to be intrinsically drug-resistant, whereas 

leukemias, myeloma, ovarian and breast cancers tend to develop MDR as a result of 

chemotherapeutic intervention. Cancers that acquire MDR due to overexpression of 

Pgp after chemotherapy show a greater response to Pgp inhibitors than cancers 

expressing elevated levels of Pgp at the time of diagnosis, likely because other 

mechanisms of resistance are present in the latter [42]. The ability of Pgp to confer 

drug resistance in vivo has been demonstrated with the retroviral transfer of MDR1 

into murine bone marrow cells, resulting in resistance to the cytotoxic drug taxol 

[43]. Using positron emission tomography and n C-labelled verapamil as a substrate, 
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cyclosporin A was shown to inhibit the human BBB Pgp [44]. This method is useful 

for monitoring the in vivo activity of Pgp. 

Since Pgp causes in vivo drug resistance, inhibition of Pgp-mediated drug efflux has 

been proposed as one way to increase the uptake of chemotherapy drugs into MDR 

tumour cells. Pgp modulators, which are MDR reversal agents, block the drug efflux 

ability of Pgp by interacting at either the substrate binding pocket [45], or one of 

several proposed allosteric binding sites [46]. Pgp modulators alone are not toxic to 

MDR cells, but a combination of modulator and chemotherapy drug is highly 

cytotoxic. Pgp modulators belong to many different structural classes, and some are 

thought to act as alternative substrates for Pgp, engaging the protein in a futile cycle 

of ATP hydrolysis and transport. Clinical trials involving the Pgp modulator 

cyclosporin A have shown that acute myeloid leukemia patients who were treated 

with the modulator, as well as cytarabine and daunorubicin, had increased survival 

over patients treated with only standard chemotherapy drugs [47]. However, the use 

of modulators in cancer treatment has not generally been very successful [48]. Due to 

the variety of human tissues in which Pgp is normally found, the use of modulators 

can cause toxicity problems and needs to be carefully monitored. The toxicity and 

limited efficacy of Pgp modulators in vivo has hindered their use in the treatment of 

MDR cancers, and highlights the need for a greater understanding of the transporter. 

1.1.5 Clinical importance of p-glycoprotein 

1.1.5.1 Pgp-mediated in vivo drug-drug interactions 
A main focus of Pgp research thus far has been to reverse the Pgp-induced MDR 

phenotype in tumour cells, but with hundreds of potential substrates, there are 

numerous other clinical implications of Pgp expression. Pgp transports a wide variety 

of drugs used in the treatment of human diseases including anti-cancer drugs, 

antibiotics, HIV protease inhibitors, tyrosine kinase inhibitors, calcium channel 

blockers and cardiac glycosides. Simultaneously treating patients with different 

drugs is common practice, and with the ability of Pgp to affect the absorption, 

distribution and bioavailability of drugs, co-administration of multiple drugs that are 

Pgp substrates could have serious side effects [49]. The in vivo interaction of 

multiple drugs with Pgp can also be beneficial. Studies on Pgp knockout mice 

showed up to a 100-fold increase in central nervous system (CNS) penetration of 



 7 

drugs [50], indicating that Pgp modulators could be used to enhance the treatment of 

neurological disorders by increasing drug access to the brain. 

Numerous adverse reactions have been observed in the clinic as a result of 

simultaneously treating patients with multiple Pgp substrates. Administration of the 

calcium channel blocker, mibefradil, and the immune suppressor, tacrolimus, to a 

liver transplant patient resulted in unexpected cognitive side effects, because both 

drugs interact with cytochrome P450 and are Pgp modulators [51]. Decreased 

metabolism of tacrolimus resulted in elevated blood levels that overwhelmed Pgp, 

and the drug passed through the BBB, causing CNS toxicity. Pgp expression in the 

brush-border of the small intestine normally prevents the absorption of numerous 

orally administered drugs. Administering rifampin with digoxin concomitantly 

resulted in a significant decrease in digoxin absorption, due to a 3.5 fold increase in 

Pgp expression caused by rifampin [52]. An increase in Pgp expression has also been 

observed after administration of St. John's wort [53], which is commonly found in 

over-the-counter herbal medications, demonstrating the potential for serious side 

effects if patients take herbal remedies in conjunction with drugs prescribed by their 

doctor. Due to the potential negative side effects of multiple drugs interacting 

simultaneously with Pgp, many compounds are now screened for Pgp transport 

ability during the drug discovery process. Drugs can be screened using in vitro and in 

vivo assays , as well as with computational methods based on in silico models of Pgp 

quantitative structure-activity relationships (QSAR) [54]. 

1.1.5.2 Overcoming Pgp-induced MDR in cancer therapy 
The overexpression of Pgp in tumour cells is one of the main causes of MDR, which 

is responsible for drug resistance in 50% of human cancers [41]. There was initial 

optimism that the use of Pgp reversal agents would allow oncologists to overcome 

the Pgp-induced drug resistance in MDR tumours. Although there has been some 

success using Pgp modulators to treat juvenile cancers, their use in clinical trials of 

adult cancers has been disappointing. The lack of efficacy of Pgp modulators in early 

clinical trials discouraged many pharmaceutical companies from further pursuing 

Pgp inhibition as a method of treating MDR [55]. A critical analysis of these studies 

indicates that their results may not be very reliable [45], and reveals a number of 

reasons why they failed to show a beneficial effect. One of the main problems was 

the lack of a consistent diagnosis of the MDR phenotype, resulting in the inclusion of 
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patients in the clinical trial who did not have drug resistance as a result of Pgp 

overexpression. 

First generation modulators (cyclosporin A, verapamil) were often 

pharmacologically active, and had low efficacy and high toxicity at clinically 

relevant doses, although some trials did show promising results [46]. Second 

generation modulators (PSC833 (valspodar)) were more efficacious at low doses and 

had no inherent toxicity, but many were substrates of cytochrome P450 3A. This 

resulted in adverse pharmacokinetic interactions, and increased toxicity in vivo when 

the treatment drug was also a P450 3A substrate. Problems with first and second 

generation modulators led to the careful design of third generation modulators 

(LY335979 (zosuquidar), GG918 (elacridar)) with low pharmacokinetic interactions 

and high affinity for Pgp. Currently, Phase I, II and III clinical trials involving third 

generation Pgp modulators are still under way. The results of well-designed Phase III 

clinical trials involving third generation modulators will be vital in determining if 

inhibition of Pgp can result in increased patient survival [55]. 

As an alternative to reversing MDR by suppressing Pgp function, it may be possible 

to exploit Pgp activity to induce cytotoxicity in MDR tumour cells. A 

thiosemicarbazone derivative (NSC73306) was identified in an NCI drug screen that 

looked for the potential interaction of candidate anti-cancer drugs with the 48 known 

human ABC proteins in the NCI-60 cell lines [56]. Surprisingly, compounds were 

identified whose activity increased rather than decreased in the presence of ABCB1. 

NSC73306 appears to interact with Pgp through an allosteric mechanism, and is 

cytotoxic to cells that overexpress Pgp either intrinsically, or through an acquired 

mechanism [57]. Administration of NSC73306 resensitized Pgp-expressing MDR 

carcinoma cells to other chemotherapeutic drugs, thus reversing the MDR phenotype. 

By selectively targeting MDR tumour cells that overexpress Pgp, NSC73306 

represents a novel way of reversing Pgp-mediated MDR, and may have an important 

clinical impact in cancer therapy [57]. 

The modulation of Pgp activity is an important step in the treatment of MDR cancers, 

but Pgp is not the only multidrug-binding ABC protein that contributes to in vivo 

drug resistance. The second generation Pgp modulator VX-710 (biricodar) has been 

shown to also inhibit the function of the multidrug transporters MRP1 (ABCC1) and 

BCRP (ABCG2), suggesting that it may be possible to develop agents with low 
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toxicity and high potency against all three proteins. To evaluate the in vivo effects of 

modulators, the radiopharmaceutical Tc-99m sestamibi, which is a Pgp substrate, has 

been used as an imaging agent. Tc-99m sestamibi allows clinicians to evaluate the 

efficacy of a modulator by monitoring changes in the in vivo uptake of a Pgp 

substrate. Despite early setbacks in the development and use of Pgp modulators, the 

importance of MDR in limiting the successful treatment of cancer demonstrates the 

need for continued research into ways of overcoming it. 

The use of modulators in combination with chemotherapy drugs has given promising 

results in vitro, but treatment success in vivo has been more difficult to obtain. The 

lack of success in clinical trials of Pgp modulators may be due to poor study design 

that did not account for Pgp single nucleotide polymorphisms (SNPs). More than 50 

SNPs (and insertion/deletion mutations) have been reported for ABCB1 [58], and 

recent studies have shown that a silent mutation in Pgp can result in changes in the 

binding affinity of substrates, likely by altering the kinetics of protein folding [59] 

1.2 Pgp Structure and Topology 

The human Pgp (product of the MDR1 gene; ABCB1) has 1280 amino acids that are 

arranged as two homologous halves joined by a linker region. Each half begins with 

a transmembrane domain (TMD) containing six transmembrane (TM) segments 

followed by a hydrophilic region containing a nucleotide-binding domain (NBD or 

ABC) (see Figure 1.2) [8,60,61]. The presence of four domains and conserved 

sequences in the NBDs are characteristic of the ATP-binding cassette (ABC) family 

of transporters [62]. The proposed topology of Pgp (Figure 1.2A) was first confirmed 

through the use of Cys mutagenesis [61] and epitope insertion with 

immunofluorescence. 

Several low-to-medium resolution electron microscopic images have been reported 

for Pgp, [63-66] the best of which is a ~8 Å cryo-electron microscopy structure with 

bound AMP-PNP [66]. The ~8 Å structure is important because it give us some 

opinion about nucleotide bound state of p-glycoprotein. This nucleotide bonded Pgp 

is very similar with Sav1866 (see 1.1D) [67] bound to ADP structure. This structure 

confirms the presence of two closely associated NBDs and TMDs consisting of 12 

helices in total, which reorient upon ATP binding. But cross-linking experiments 

have shown that TM helix 6 is close to TM10, 11, and 12, and that TM helix 12 is  
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Figure 1.2 : Structure of Pgp: A) The white cylinders represent the TM segments in 
TMD1, while the grey cylinders represent TM segments within TMD2. 
The branched lines represent the glycosylation sites and the rectangles 
represent the NBDs. B) Carton representation p-glycoprotein (pdb 
3G60). Symmetrical α-helices represented by similar color. C) View of 
the NBDs shown from the cytosol looking up toward the membrane. 

close to TM4, 5, and 6 [68]. From Cys mutagenesis studies, the drug-binding sites of 

Pgp appear to reside in the membrane-embedded region, at the interface between the 

two halves of the protein, in TM helices 4−6 and 9−12 [69-73]. Fluorescence studies 

have confirmed that the NBDs of Pgp are closely associated [74] and lie close to the 

membrane surface,[75] and showed that the drug-binding sites reside in the region of 
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the protein located in the inner leaflet of the membrane [76,77]. A recent study used 

cysteine mutagenesis and chemical cross-linking to show that Pgp shares important 

features of its domain architecture with Sav1866; in particular, the long intracellular 

loops of one TMD appeared to contact the opposing NBD, a feature not observed in 

bacterial ABC importers [78]. 

An important development in our understanding of mammalian ABC drug pumps 

was the recent publication of the 3.8 Å crystal structure of mouse Pgp in the absence 

of nucleotide [16] (Figure 1.2 B and C). The most remarkable feature of this “apo” 

structure is how well it agrees with both the bacterial ABC protein structures and the 

biochemical/biophysical data generated on Pgp structure and function over the past 

30 years [79]. The structure of Pgp ( Figure 1.2) represents a nucleotide-free inward-

facing conformation arranged as two “halves” with pseudo two-fold molecular 

symmetry spanning ~136 Å perpendicular to and ~70 Å in the plane of the bilayer. 

The nucleotide-binding domains (NBDs) are separated by ~30 Å. The inward-facing 

conformation, formed from two bundles of six transmembrane helices (TMs 1 to 3, 

6, 10, 11 and TMs 4, 5, 7 to 9, 12), results in a large internal cavity open to both the 

cytoplasm and the inner leaflet [16]. This crossover is very reminiscent of the 

Sav1866 (Figure 1.1 D) and corrected MsbA structures [80]. The Pgp structure was 

solved in the absence of nucleotide, and the two NBDs are located ~30 Å apart 

(Figure 1.2 A). The open-apo structure of MsbA from E. coli displays a much wider 

separation of the NBD domains. In contrast, one apo structure and the nucleotide-

bound MsbA structures, as well as the structures of Sav1866 (both nucleotide-bound 

[17,67]) and other bacterial ABC proteins, [23,81] show a tight association of the 

NBDs. The arrangement of the NBDs is already controversial, since some evidence 

supports the wide apo-MsbA structure [82-84]. It remains unclear whether such an 

open structure exists for native MsbA, since it would require a dramatic 

conformational change to close the NBDs upon nucleotide binding/hydrolysis. While 

the NBD separation is only 30 Å in the Pgp structure, versus ~50 Å in MsbA, Aller 

et al. suggest that Pgp may open even wider to accommodate very large substrates 

[16]. Further work will be required to distinguish whether this open conformation is 

a real feature of native Pgp or a crystal-packing artifact. 

The crystal structure of Pgp has some missing residues [16]. The N-terminus 

(residues 1-33) was not visualized and no electron density was present for most of 
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the linker region (residues 627-683), which is likely a flexible region connecting the 

two halves of Pgp [85]. Interestingly, both full-length Pgp and co-expressed half-

molecules of Pgp devoid of the linker region (Δ627-683) share similar drug-

stimulated ATPase activity suggesting that an intact linker is not required for drug-

coupled ATPase hydrolysis [86]. 

1.3 Interaction of Pgp With Substrates, Modulators and Nucleotides 

1.3.1 Drug binding 

1.3.1.1 Substrate specificity 
Pgp shows broad substrate specificity, recognizing hundreds of compounds as small 

as 330 daltons up to 4000 daltons [87,88]. In general, Pgp substrates tend to be large, 

hydrophobic, amphipathic molecules with aromatic rings and a positively-charged 

nitrogen atom [10-89], but these are not absolute requirements. However, it is 

difficult to make generalizations about the properties of compounds that interact with 

Pgp, and many substrates have been identified that do not strictly conform to these 

descriptors. For example, a variety of linear and cyclic peptides and ionophores are 

known to interact with the protein [90-92],  yet peptides are smaller than typical 

substrates and often lack aromatic rings. Pgp substrates include classical 

chemotherapeutic drugs (such as anthracyclines, Vinca alkaloids, and taxols), new 

classes of anticancer agents such as tyrosine kinase inhibitors, human 

immunodeficiency virus (HIV) protease inhibitors, immunosuppressants, ionophores, 

peptides, fluorescent dyes, steroids, cardiac glycosides, and many others (see Table 

1.1 ) [79]. There is a variation in the binding affinity (Kd of Pgp for drugs that covers 

4 orders of magnitude [17], indicating that the protein is able to distinguish between 

different substrates. 

Substrates are thought to interact with Pgp via hydrogen bonding, as well as 

hydrophobic and van der Waal's interactions, in a large, flexible, substrate binding 

pocket. Based on FRET mapping studies, the binding pocket is thought to be located 

in the cytoplasmic leaflet of the TM region of the protein [76,77]. It has been 

proposed that drugs bind to Pgp by an induced-fit type of mechanism [93], in which 

substrates enter the substrate binding pocket and create their own specific drug 

binding site using residues from a number of different TM helices. This mechanism  
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Group Compound 
analgesics morphine 

antiarrhythmics amiodarone, propafenone,quinidine 
antibiotics erythromycin, gramicidinD 

anthracenes bisantrene, mitoxantrone 
anthracyclines doxorubicin, daunorubicin 
camptothecins topotecan 

epipodophyllotoxins etoposide, teniposide 
taxanes paclitaxel,docetaxel 

Vincaalkaloids vinblastine, vincristine 
antiemetics ondansetron 

antiepileptics felbamate, topiramate 
antihelminthics ivermectin 
antihistamines fexofenadine, terfenadine 

antihypertensives reserpine, propanolol 
antiviraldrugs nelfinavir, ritonavir, saquinavir 

calcium-channelblockers azidopine, diltiazem, nifedipine, verapamil 
calmodulinantagonists chlorpromazine, trans-flupentixol 

cardiacglycosides digoxin 
fluorescentdyes calcein-AM,Hoechst 33342, rhodamine 123, 

 tetramethylrosamine 
H2-receptorantagonists cimetidine 

HMG-CoAreductaseinhibitors lovastatin, simvastatin, atorvastatin 
immunosuppressiveagents cyclosporinA, tacrolimus(FK506) 

naturalproducts colchicine, curcuminoids 

pesticides N-acetyl-LLY-amide(ALLN), leupeptin, 
pepstatinA, 

 valinomycin 
pesticides cypermethrin,endosulfan, fenvalerate, 

 methylparathion 

steroids aldosterone,corticosterone, cortisol, 
dexamethasone 

tyrosinekinaseinhibitors gefitinib, imatinibmesylate 
antialcoholismdrugs disulfiram 

 

explains how mutations at specific residues alter the binding affinity of Pgp for one 

substrate, but have no effect on the affinity for other substrates [94]. 

There have been attempts to associate the “affinity” of a Pgp substrate or modulator 

with its physical, chemical or structural properties through the use of QSARs. The 

search for specific structural characteristics common to all Pgp substrates has met 

with limited success. There is no common “pharmacophore” that can be used to 

identify a particular drug as a Pgp substrate [79]. The best general description of a 

Table 1.1: Chemotherapeutic Drugs and Other Compounds That Interact with p-
glycoproteins [79]. 



 14 

Pgp substrate is that it contains 2 or 3 electron donor (hydrogen bond acceptor) 

groups with a fixed spatial separation [95,96]. Seelig and co-workers examined over 

100 compounds known to interact with Pgp and classified them based on the number 

and separation distance of electron donor groups. All substrates examined were 

found to possess either 2 or 3 electron donor groups separated by 2.5 or 4.6 Å. Other 

researchers subsequently suggested combinations of electron donors, hydrophobic 

groups, and/or aromatic rings in specific spatial organizations [97-99]. A more recent 

3-dimensional approach suggested that molecules with two H-bond acceptors 11.5 Å 

apart and two H-bond donors 16.5 Å apart would be Pgp substrates [100]. TM 

regions of Pgp thought to be involved in drug binding contain a large proportion of 

amino acid side chains that can act as hydrogen bond donors, facilitating interaction 

with substrate electron donor groups [95]. The fluorescence properties of aromatic 

Trp residues in Pgp are sensitive to substrate binding [101], and may be involved in 

stacking interactions between drug substrates and aromatic side chains in the Pgp 

drug binding pocket [102]. 

1.3.1.2 Nature of the drug binding site 
Pgp appears to have a large flexible binding region that can accommodate a wide 

range of compounds, rather than one or more well-defined binding sites. Two 

“functional” binding sites have been identified based on the transport of the drug 

substrates rhodamine 123 (R-site) and Hoechst 33342 (H-site) [103]. Two drugs that 

bind to the same site (either the H-site or the R-site) are proposed to show mutual 

inhibition of transport, whereas drugs that bind to different sites are proposed to 

exhibit mutual stimulation of transport. Using FRET, the locations of the H-site [76] 

and the R-site [77] have been mapped, and both are found within the cytoplasmic 

leaflet of the membrane. Analysis of the fluorescence characteristics of drugs bound 

to the H and R binding sites has shown that they are very hydrophobic in nature, with 

a polarity lower than chloroform [93], making it unlikely that the binding pocket is 

open to an aqueous chamber as previously suggested [64,104]. Crosslinking studies 

involving the insertion of Cys residues into Cys-less Pgp suggested that the substrate 

binding pocket is formed at the interface between the two TMDs, and involves TM 

helices 4, 5, and 6 in the N-terminal half of Pgp, and TM helices 9, 10, 11 and 12 in 

the C-terminal half [72]. The Pgp drug binding pocket is thought to be funnel-
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shaped, based on both cross-linking and EM studies [16], and appears to be narrower 

on the cytoplasmic side where TM2-TM11 and TM5-TM8 come together [105]. 

Using 3-D models of Pgp substrates, Garrigues and coworkers identified two 

different, overlapping pharmacophores in the protein [106], which may correspond to 

the H and R functional binding sites. This study suggested that it was possible for 

either two smaller substrates to bind to Pgp at the same time, or one larger substrate 

to occupy both pharmacophores. A recent homology model of Pgp in the post-

hydrolysis state, based on Savl866 [107], identified three main drug binding regions; 

one at the cytosolic interface of the membrane, and two located within the TM 

helices of the TMDs. In addition, a large central binding pocket was identified that 

contained residues from all three regions, which is thought to represent a low affinity 

“escaping” site from which substrates are released [107]. In the absence of high 

resolution structural data for Pgp with bound substrates, homology models can give 

insight into the specific molecular interactions that might take place in the drug 

binding pocket 

1.3.2 Nucleotide binding and hydrolysis 

The NBDs of ABC transporters are divided into two domains, the catalytic domain 

and the helical domain, which are connected via the Q-loop and the Pro-loop [108]. 

The catalytic domain contains the Walker A and B motifs, as well as the H-loop and 

D-loop, while the helical domain contains the ABC signature C motif. The binding of 

ATP to ABC proteins requires the Walker A and B motif of one NBD, along with the 

C motif of the partner NBD (see Figure 1.3). Thus, two ATP molecules are bound to 

each ABC protein, at the interface between the NBDs. The C motif interacts 

specifically with the γ-phosphate moiety of ATP, allowing for stable dimerization of 

the NBDs when ATP is bound, but not when ADP is present. Close association of the 

NBDs in the absence of nucleotide would facilitate dimer formation upon ATP 

binding, and has been seen in the crystal structures of several ABC proteins [15, 80, 

109]. Cryo-EM [64,66,110] and biochemical studies of Pgp [74,111] have also 

suggested close association of the NBDs. 
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Figure 1.3 : Nucleotide binding domain: The X-ray crystal structure of the NBDs of 
the bacterial MJ0796 ABC ATPase dimer (1L2T.pdb) with bound 
nucleotide. The conservative motifs (Walker A, B, C-Loop, D-Loop, H-
Switch) are showed on cartoon representation. 

Mutational analysis of the NBDs has identified a number of key residues that are 

involved in nucleotide binding and hydrolysis. The crystal structure of the 

catalytically inactive E171Q mutant of the NBD subunit MJ0796 first showed the 

formation of a nucleotide sandwich dimer through the stable binding of two ATP 

molecules [112]. A similar structure was observed for the NBDs of HlyB [113]. 

Corresponding mutations of Glu residues in mouse abcbla Pgp (E552A/El197A) 

resulted in tight occlusion of bound nucleotide at one NBD, and almost complete 

inhibition of ATPase activity [114]. This mutation abolished enzymatic activity by 

inhibiting formation of the catalytic transition state. Mutations of Ser (S430/S1073) 

or Lys (K429/K1072) residues in the Walker A motifs were also shown to be 

involved in reducing catalytic turnover, and allowed ATP binding, but inhibited 

occlusion [115]. The Q-loop is thought to be involved in communication between the 

substrate binding pocket and the catalytic sites, and mutations in the Q-loop Gin 

residues (Q471/Q1114) greatly reduced the stimulation of ATPase activity by 

verapamil [116]. Mutation of the conserved His residue in the H-loop (H662A) of 

HlyB resulted in a loss of ATPase activity, and has been proposed to be the 

“linchpin” of catalytic activity [117]. 

The TMDs of ABC proteins contain α-helical motifs that are embedded in the 

surface of the NBDs, at the interface between the helical and catalytic subdomains, 

and are essential for transmitting conformational changes between the NBDs and 
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TMDs. These coupling helices share little sequence similarity, but when bound to the 

NBDs their structures are very similar when superimposed upon one another 

[15,109]. The binding of the coupling helices to the NBDs differs for ABC importers 

and exporters. In exporters (Savl866 and MsbA), the TMD of one subunit interacts 

with the NBD of the opposing subunit, resulting in tight association of the NBDs, 

and a twisted conformation [17,80]. In contrast, the coupling helices of ABC 

importers (ModB2C2A, BtuCD, HI1470/71, maltose permease) are not swapped with 

the NBDs, resulting in a large gap at the centre of the transporter [15,109]. The 

coupling helices provide evidence for a common transport mechanism for all ABC 

proteins. The binding of substrate to an ABC protein, which occurs through 

interactions with an extracellular binding protein in importers, facilitates ATP 

hydrolysis by bringing the NBDs and coupling helices together, resulting in the 

protein transitioning from an inward-facing conformation to an outward-facing 

conformation [81,109]. ATP hydrolysis is thought to cause a reorientation of the TM 

helices that disrupts protein-substrate interactions, and results in substrate 

translocation. According to this model, translocation would occur in importers after 

the release of ADP and Pi resets the protein back to the inward-facing conformation 

[109], whereas in exporters, translocation would occur before the release of ADP and 

Pi. 

The binding to Pgp of a variety of nucleotides has been characterized, including 

ADP, ATP, their fluorescent derivatives 2'(3')-0-(2,4,6-trinitrophenyl)adenosine 5'-

diphosphate (TNP-ADP) and 2'(3')-0-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate 

(TNP-ATP), as well the non-hydrolysable nucleotide analogues AMP-PNP and ATP-

γ-S. The binding affinities of ADP, ATP, and AMP-PNP to Pgp are all quite similar 

(Kd -0.2- 0.4 mM) [101, 118], whereas the fluorescent nucleotides TNP-ADP and 

TNP-ATP bind to Pgp with a much higher affinity (Kd ~5 μM) [119]. The tight 

binding of TNP-labelled nucleotides is likely due to interactions of the hydrophobic 

trinitrophenyl group with nonpolar regions of Pgp. The non-hydrolysable analogue 

ATP-γ-S binds to Pgp with an even higher affinity than the fluorescent nucleotides 

(Kd -5 μM), and when bound to the protein may induce the formation of the occluded 

state [120]. ATP occlusion had previously been demonstrated only for catalytically 

deficient Pgp mutants. Purified Pgp generally demonstrates a high basal level of 

ATPase activity in the absence of substrate, although protein preparations from some 
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groups have very low basal ATPase activity, and need to be reactivated by adding 

lipids or reducing agents. These preparations often show a much higher fold-increase 

in drug stimulated ATPase activity due to an underestimation of the true potential 

basal activity [121]. 

It is thought that hydrolysis of ATP at the NBDs of Pgp occurs by an alternating sites 

mechanism, in which only one of the two catalytic sites is active at any time [122]. 

Communication between the two NBDs is facilitated by the D-loop, which enables 

alternating catalysis of ATP by transmitting information between the NBDs via the 

H-loop [117]. Both catalytic sites need to be functional for transport to occur as 

indicated by studies in which ATPase activity was abolished when mutations were 

made at one of the NBDs [123]. Pgp is able to bind two ATP molecules at once 

[124,125], but there has been debate over whether one or two molecules of ATP are 

hydrolyzed during the transport cycle. There has been a proposal that there are two 

rounds of ATP hydrolysis, with the first round driving substrate translocation, and 

the other responsible for resetting the protein for subsequent transport [126,127]. 

However, it has been demonstrated that there is an asymmetric occlusion of ATP 

during the catalytic cycle, with a stoichiometry of 1 [115,128] which would indicate 

that one ATP is hydrolyzed per transport cycle, as proposed in the original 

alternating sites mechanism. 

1.4 Transport Mechanisms of Pgp 

1.4.1 Hydrophobic vacuum cleaner and flippase models 

The majority of Pgp substrates are hydrophobic, indicating they likely first partition 

into the membrane bilayer before interacting with the protein. The location of the 

substrate binding sites of Pgp have been mapped in the cytoplasmic leaflet of 

membrane bilayer [76,77], supporting the idea that Pgp substrates must first partition 

into the membrane before they can bind to the protein. Many Pgp substrates have 

high lipid-water partition coefficients (Plip), which is consistent with this idea. Drugs 

with a high Plip tend to have a high affinity (low Kd) for binding to Pgp [129]. Once 

drugs have partitioned into the membrane, they move into the substrate binding 

pocket of Pgp in a process that is nearly isoenergetic [130], possibly through gates at 

the interface of the two TMDs, formed by TM helices 2 and 11 at one end of Pgp, 

and helices 5 and 8 at the opposite end [105]. 
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Two similar, but distinct mechanisms have been proposed for Pgp-mediated drug 

efflux; the hydrophobic vacuum cleaner model, and the flippase model [131]. It has 

been proposed that Pgp acts as a hydrophobic vacuum cleaner that binds drugs 

somewhere within the membrane and expels them to the extracellular medium. The 

flippase model is compatible with the hydrophobic vacuum cleaner model, and 

proposes that Pgp is a flippase that binds drugs in the cytoplasmic leaflet of the 

membrane and flips them to the extracellular leaflet. Attempts to distinguish between 

these two models have been inconclusive, as it is difficult to determine whether 

drugs are transported directly to the extracellular medium, or merely to the 

extracellular leaflet of the membrane, because drugs can partition very rapidly 

between the two locations. 

1.4.2 Catalytic cycle 

The catalytic cycle of Pgp involves the coupling of ATP binding and hydrolysis with 

substrate translocation across the cell membrane. Reactions taking place at the NBDs 

during the catalytic cycle include ATP binding and formation of a nucleotide 

sandwich dimer, followed by ATP hydrolysis, Pi dissociation, and finally ADP 

dissociation. For substrate translocation, drugs bind in the substrate binding pocket 

located in the inner leaflet, and conformational changes in the TMDs transport the 

substrate across the membrane where it is released. ATP binding, ATP hydrolysis 

and the release of ADP/Pi have all been shown to result in conformational changes in 

the protein [132], suggesting that energy is released at each of these steps. 

Crosslinking studies have shown that substrate binding induces changes in the 

packing of the TMDs [73]. Covalent coupling of the TMDs reversibly abolished 

ATPase activity [133], suggesting that nucleotide hydrolysis at the NBDs is coupled 

to substrate translocation via rotation or displacement of the TMDs. 

How ATP binding and hydrolysis drives the transport of Pgp substrates has been the 

subject of much debate. The binding of drugs can result in stimulation or inhibition 

of the ATPase activity of Pgp, with some drugs showing a biphasic pattern, with 

stimulation at low concentrations and inhibition at higher concentrations [134]. The 

presence of both a high-affinity stimulatory drug binding site, and a low-affinity 

inhibitory drug-binding site could explain the biphasic pattern [135]. Drugs that 

stimulate ATPase activity cause the Walker A residues of one half of Pgp to move 

closer to the LSGGQ motif of the other half [136], and promote occlusion of ATP at 
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one NBD [115], facilitating ATP hydrolysis. The establishment of a nucleotide 

sandwich dimer appears to be an important step in the catalytic cycle of Pgp, but 

there is still debate as to whether it is the binding of ATP, or ATP hydrolysis itself 

that drives the transport of substrates, and whether drug binding stimulates ATP 

binding and dimerization of the NBDs. 

One proposed model for drug translocation by Pgp is the ATP switch model [137], in 

which resting state Pgp would have high affinity for substrates and low affinity for 

ATP. Substrate binding initiates communication with the NBDs, resulting in the 

binding of two ATP molecules. ATP binding induces NBD dimerization, with 

corresponding changes in the TMDs that result in substrate translocation by exposing 

the substrate to the extracellular environment, where the TMDs have low affinity for 

substrate. ATP hydrolysis at one or both NBDs, followed by release of ADP and Pi, 

resets Pgp back to its resting state. Although this model claims to be supported by 

available biochemical data, it makes numerous assumptions based on the 

photoaffinity labelling technique, which has been shown to be an unreliable method 

for measuring binding affinity [138]. Pgp drug substrates are clearly not required for 

NBD dimerization, as Pgp can bind and hydrolyze ATP in the absence of substrates 

[121]. It has also been demonstrated that the rate-limiting step of transport is ATP 

hydrolysis, which is associated with a reorientation of the drug binding site from a 

high-affinity state to a low affinity state [139], indicating that ATP binding does not 

cause substrate translocation as proposed in this model. While the ATP switch model 

attempts to provide a generalized transport mechanism for all ABC proteins, it is 

inconsistent with biochemical data available for Pgp, and does not adequately 

explain the catalytic cycle of this protein. 

Orthovanadate (Vi) is a phosphate analogue that has helped give insight into the 

catalytic cycle of Pgp. Vi can reversibly replace Pi in a single active site after ATP 

hydrolysis, trapping Pgp in a stable complex. The vanadate trapped Pgp-ADP-Vi-

M2+ (where M2+ is a divalent cation) still has one free NBD, but displays no ATPase 

activity [140], and is thought to have a structure that resembles the catalytic 

transition state. The complex is stable for >3 h when trapped in the presence of 

Co2+ [125], allowing for detailed studies with fluorescence spectroscopy, before slow 

dissociation of Vi, and subsequently ADP, results in full restoration of ATPase 

activity. Vanadate-trapped Pgp has been shown to have a substrate binding affinity 
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similar to that of native Pgp, indicating that ATP hydrolysis, rather than the release 

of ADP, resets the transporter back to its resting state [141]. Crosslinking studies 

show that the vanadate-trapped state has different residues accessible to crosslinkers 

compared to nucleotide-free Pgp [142], suggesting that although Pgp-ADP-Vi-

M2+ has normal affinity for substrates, some TM helix rotations are still required for 

the protein to regain its native conformation [143]. 

Detailed biochemical studies of Pgp using spin-labelled substrates, and 

thermodynamic analysis at different stages of the catalytic cycle, led to the proposal 

of the partition model, in which Pgp has two distinct transition states [121]. One 

transition state corresponds to basal ATPase activity that is uncoupled from drug 

translocation, and the other state corresponds to coupled drug transport activity. If 

there is sufficient drug present, Pgp will partition into the drug-coupled transport 

cycle, in which substrate binding is followed by the binding of two ATP molecules, 

with occlusion and hydrolysis of one ATP by an alternating sites mechanism [122]. 

When no drug is present, and a second molecule of ATP binds, then the protein will 

partition into the uncoupled basal cycle. The rate-limiting step for both the basal 

cycle and drug-coupled cycle is ATP hydrolysis, and the energy released from 

hydrolysis of one ATP molecule is sufficient to forcibly rehydrate a bound drug 

molecule [121]. ATP hydrolysis is proposed to move substrates from a drug loading 

“ON-site” in the inner leaflet with high affinity for substrate, to a drug-unloading 

“OFF-site” in the extracellular leaflet with low affinity for substrate, resulting in 

transport of drug across the membrane. For drug substrates that show inhibition of 

ATPase activity at higher concentrations, free energy analysis demonstrated that this 

is not the result of a separate rate-limiting step, but likely the result of inhibition of 

drug release from the low affinity OFF-site. However, studies showing a permanent 

increase in ATPase activity after covalent crosslinking of methanethiosulfonate 

(MTS)-verapamil to the drug binding pocket suggest that drug release from the “ON-

site” is not required for ATPase stimulation [144]. 

The drug-coupled ATPase activity of various drugs displayed a linear free energy 

relationship, indicating that all drugs have the same rate-limiting transition step 

during the transport cycle. Basal ATPase activity has a clearly different free energy 

relationship from drug-coupled activity, suggesting that basal activity is not the result 

of either transport of an unidentified substrate, or nonspecific lipid-flipping, as 
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previously suggested [145]. Each drug makes unique molecular interactions with the 

transition state, and has a different intrinsic kcat value. Drugs that require fewer 

molecular rearrangements to achieve the transition state are transported faster, and 

therefore have a higher level of drug-coupled ATPase activity. This model explains 

how some drugs appear to stimulate ATPase activity, whereas others appear to have 

no effect. If the drug-coupled ATPase activity for a particular substrate is higher than 

the intrinsic basal ATPase activity, then biochemical assays will indicate that the 

drug causes a stimulation of ATPase activity. The partition model is currently the 

only model in the literature that can account for most of the kinetic data available for 

Pgp [146], and may explain the complex relationship between the catalytic and drug 

transport cycles of this enzyme. 

1.5 HMG-CoA Reductase Inhibitors (Statins) 

Elevated cholesterol levels are a primary risk factor for coronary artery disease. This 

disease is a major problem in developed countries. Dietary changes and drug therapy 

reduce serum cholesterol levels and dramatically decrease the risk of stroke and 

overall mortality. Inhibitors of HMGR, commonly referred to as statins, are effective 

and safe drugs that are widely prescribed in cholesterol-lowering therapy. In addition 

to lowering cholesterol, statins appear to have a number of additional effects, such as 

the nitric oxide–mediated promotion of new blood vessel growth [147] stimulation of 

bone formation [148], protection against oxidative modification of low-density 

lipoprotein, as well as anti-inflammatory effects and a reduction in C-reactive protein 

levels [149]. Based on the accumulation of evidence obtained in vitro and in clinical 

settings, statins are now being tried for other diseases, including Alzheimer's disease, 

cancer, and osteoporosis [150]. All statins curtail cholesterol biosynthesis by 

inhibiting the committed step in the biosynthesis of isoprenoids and sterols [151]. 

This step is the four-electron reductive deacylation of HMG-CoA to CoA and 

mevalonate. It is catalyzed by HMGR in a reaction that proceeds as follows; 

(S)-HMG-CoA + 2NADPH + 2H+ → (R)-meval + 2NADPH+ + CoASH 

where NADP+ is the oxidized form of nicotinamide adenine dinucelotide, NADPH is 

the reduced form of NADP+, and CoASH is the reduced form of CoA. 
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Several statins are available or in late-stage clinical development (Figure 1.4). All 

share an HMG-like moiety, which may be present in an inactive lactone form. in 

vivo, these prodrugs are enzymatically hydrolyzed to their active hydroxy-acid forms 

[151]. The statins share rigid, hydrophobic groups that are covalently linked to the 

HMG-like moiety. Lovastatin, pravastatin, and simvastatin resemble the substituted 

decalin-ring structure of compactin (also known as mevastatin). Fluvastatin, 

cerivastatin, atorvastatin, and rosuvastatin are fully synthetic HMGR inhibitors with 

larger groups linked to the HMG-like moiety. The additional groups range in 

character from very hydrophobic (e.g., cerivastatin) to partly hydrophobic (e.g., 

rosuvastatin). All statins are competitive inhibitors of HMGR with respect to binding 

of the substrate HMG-CoA, but not with respect to binding of NADPH [152]. The 

Ki (inhibition constant) values for the statin-enzyme complexes range between 0.1 to 

2.3 nM [151], whereas the Michaelis constant, Km, for HMG-CoA is 4 μM [153]. 

As statins come to be used more frequently to treat complicated diseases, one should 

use them more carefully paying attention to drug-drug interactions, which raise the 

risk of adverse events [154]. In 2001, cerivastatin was withdrawn from the market 

because of rhabdomyolysis found especially in patients coprescribed gemfibrozil. It 

has been proved that gemfibrozil elevated cerivastatin concentration with 5.6-fold for 

AUC of parent form and 4.4-fold for that of lactone form [155]. 

1.6 Role of P-glycoprotein on Statin Pharmacokinetics 

Atorvastatin [156] (acid [157-160], methyl ester [157], and lactone [157,161] forms), 

lovastatin (lactone form) [156,157,159,161,162] and simvastatin (acid [159] and 

lactone forms) [156,157,159,161,163] inhibit P-gp substrate transport in a 

concentration-dependent manner, [156-158,160] with high concentrations of 

atorvastatin needed in some studies [156,159,160]. 
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Figure 1.4 : Statins: Structural formulas of statin inhibitors and the enzyme substrate 
HMG-CoA. The HMG-like moiety that is conserved in all statins is 
colored in red 

Drug interactions have been reported between statins and Pgp substrates or 

inhibitors, including St. John's wort, digoxin, diltiazem, verapamil, itraconazole, 

grapefruit juice, cyclosporine, mibefradil, erythromycin, and clarithromycin [164] Of 

interest,great overlap exists between agents that are both CYP3A4 and Pgp substrates 

or inhibitors [165,166]. With the exception of digoxin, all other Pgp substrates or 

inhibitors are also CYP3A4 modulators [166,167]. Statins are generally regarded as 

CYP3A4 substrates; however, neither pravastatin nor rosuvastatin has been shown to 

be metabolized by CYP3A4 [167-169]. Pravastatin is enzymatically broken down in 

liver cells into inactive metabolites [168], and fluvastatin is metabolized 

predominantly by CYP2C9 [167]. An in vitro study showed that rosuvastatin was 

neither a substrate nor an inhibitor of CYP3A4 [169]. Coincidentally, fluvastatin 

(although partially metabolized by CYP3A4), pravastatin, and rosuvastatin have not 
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been shown to be a substrate or inhibitor of Pgp [164]. How much the drug 

interactions with simvastatin, lovastatin, and atorvastatin are due to CYP3A4 or Pgp 

modulation is unknown. However, since data suggest that these statins are Pgp 

substrates, both CYP3A4 and Pgp modulation may be involved in the interaction, 

causing an increase in serum concentrations of the respective statin. There is great 

opportunity to explore the precise mechanisms of these drug interactions. 

Interactions that were once thought to be purely related to CYP3A4 interactions may 

also be at least partly explained by Pgp-mediated interactions. 

1.7 Aim of The Study 

The purpose of this study is to investigate the interactions of Pgp with statins by the 

aid of molecular dynamic simulation and by using Atorvastatin as a model 

compound. 
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2.  METHODOLOGY 

2.1 Molecular Dynamics Simulation 

Biomolecular dynamics occur over a wide range of scales in both time and space, 

and the choice of approach to study them depends on the question asked. Molecular 

simulation is far from the only theoretical method; when the aim is to predict, e.g., 

the structure and/or function of proteins rather than studying the folding process, the 

best tool is normally bioinformatics that detect related proteins from amino acid 

sequence similarity; and, for computational drug design, often it is much more 

productive to use statistical methods such as quantitative structure–activity 

relationship (QSAR) instead of spending billions of CPU hours to simulate binding 

of thousands of compounds. 

bond length
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rotation
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water
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lipid
rotation

transport in
ion channel

lipid
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rapid protein
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normal
protein folding

ribosome
synthesis

membrane
protein folding

Accessible to atomic-detail simulation today  

Figure 2.1 : Range of time scales for dynamics in biomolecular systems: Although 
the individual time steps of molecular dynamics is 1 to 2 fs, parallel 
computers make it possible to simulate on a microsecond scale, and 
distributed computing techniques can sample even slower processes, 
almost reaching milliseconds [170]. 

The most important point of simulations is that they provide a way to test whether 

theoretical models predict experimental observations. As an example, simulations of 

ion channels cannot compete with experiments when it comes to measuring ion 

currents, but they have been useful to explain why some ions pass whereas others are 

blocked. Similarly, simulations can provide detail not accessible through 

experiments, for instance, pressure distributions inside membranes. Further, 

structural refinement and energy minimizations are regularly used to improve both 

experimental and predicted protein structures, and drug design is moving toward 
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more accurate models, even including large-scale simulations for free energy 

screening. 

Ideally, the time-dependent Schrödinger equation should be able to predict all 

properties of any molecule with arbitrary precision ab initio. However, as soon as 

more than a handful of particles are involved, it is necessary to introduce 

approximations. For most biomolecular systems, we, therefore, choose to work with 

empirical parameterizations of models instead; for instance, classic Coulomb 

interactions between pointlike atomic charges rather than a quantum description of 

the electrons. These models are not only orders of magnitude faster, but because they 

have been parameterized from experiments, they also perform better when it comes 

to reproducing observations on a microsecond scale (see Figure 2.1), rather than 

extrapolating quantum models 10 orders of magnitude. The first molecular dynamics 

simulation was performed as late as 1957 [171], although it was not until the 1970s 

that it was possible to simulate water [172] and biomolecules [173]. 

2.2 Theory 

Macroscopic properties measured in an experiment are not direct observations, but 

averages over billions of molecules representing a statistical mechanics ensemble. 

This has deep theoretical implications, which are covered in great detail in the 

literature [174,175], but, even from a practical point of view, there are important 

consequences. 1) It is not sufficient to work with individual structures, but systems 

have to be expanded to generate a representative ensemble of structures at the given 

experimental conditions, e.g., temperature and pressure. 2) Thermodynamic 

equilibrium properties related to free energy, such as binding constant, solubilities, 

and relative stability, cannot be calculated directly from individual simulations. 3) 

For equilibrium properties (in contrast to kinetic), the aim is to examine the ensemble 

of structures, and not necessarily to reproduce individual atomic trajectories. 

The two most common ways to generate statistically faithful equilibrium ensembles 

are Monte Carlo and molecular dynamics simulations; the latter also has the 

advantage of accurately reproducing kinetics of non-equilibrium properties such as 

diffusion or folding times. When a starting configuration is very far from 

equilibrium, large forces can cause the simulation to crash or distort the system, and, 

in this case, it is necessary to start with energy minimization of the system before the 
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molecular dynamics simulation. In addition, energy minimizations are commonly 

used to refine low-resolution experimental structures. 

All classic simulation methods rely on more or less empirical approximations called 

force fields [176-179] to calculate interactions and evaluate the potential energy of 

the system as a function of point like atomic coordinates. A force field consists of 

both the set of equations used to calculate the potential energy and forces from 

particle coordinates, as well as a collection of parameters used in the equations. For 

most purposes, these approximations work well, but they cannot reproduce quantum 

effects such as bond formation or breaking. 

Bond
vibration

Angle
vibration

Torsion
potentials

+ -

van der Waals interactions Electrostatics
 

Figure 2.2 : Examples of interaction functions in modern force fields: Bonded 
interactions include covalent bond-stretching, angle-bending, torsion 
rotation around bonds and out-of-plane or “improper” torsions (not 
shown). Non-bonded interactions are based on neighborlists and consist 
of Lennard-Jones attraction and repulsion as well as Coulomb 
electrostatics. 

All common force fields subdivide potential functions into two classes. Bonded 

interactions cover covalent bond-stretching, angle-bending, torsion potentials when 

rotating around bonds, and out-of-plane “improper torsion” potentials, all which are 

normally fixed throughout a simulation (see Figure 2.2).  The remaining nonbonded 

interactions consist of Lennard-Jones repulsion and dispersion as well as Coulomb 

electrostatics. These are typically computed from neighbour lists updated every 5 to 

10 steps. 

Given the potential and force (negative gradient of potential) for all atoms, the 

coordinates are updated for the next step. For energy minimization, the steepest 
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descent algorithm simply moves each atom a short distance in the direction of 

decreasing energy, while molecular dynamics is performed by integrating Newton’s 

equations of motion (see Equation 2.1) [180].  
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The updated coordinates are then used to evaluate the potential energy again, as 

shown in the flowchart of Figure 2.3. 

Typical biomolecular simulations use periodic boundary conditions to avoid surface 

artifacts, so that a water molecule that exits to the right reappears on the left; if the 

box is sufficiently large, the molecules will not interact significantly with their 

periodic copies. This is intimately related to the non-bonded interactions, which 

ideally should be summed over all neighbors in the resulting infinite periodic system. 

Simple cut-offs can work for Lennard-Jones interactions that decay very rapidly, but, 

for Coulomb interactions, a sudden cut-off can lead to large errors. One alternative is 

to “switch off” the interaction before the cut-off, but a better option is to use particle 

mesh Ewald summation (PME) to calculate the infinite electrostatic interactions by 

splitting the summation into short- and long-range parts [181]. For PME, the cut-off 

only determines the balance between the two parts, and the long-range part is treated 

by assigning charges to a grid that is solved in reciprocal space through Fourier 

transforms. 

Cut-offs and rounding errors can lead to drifts in energy, which will cause the system 

to heat up during the simulation. To control this, the system is normally coupled to a 

thermostat that scales velocities during the integration to maintain room temperature. 

Similarly, the total pressure in the system can be adjusted through scaling the 

simulation box size, either isotropically or separately in x, y, and z dimensions. 

The single most demanding part of simulations is the computation of non-bonded 

interactions, because millions of pairs have to be evaluated for each time step. 

Extending the time step is, thus, an important way to improve simulation 

performance, but, unfortunately, errors are introduced in bond vibrations already at 1 

fs. However, in most simulations, the bond vibrations are not of interest per se, and  
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Figure 2.3 : Simplified flowchart of a typical molecular dynamics simulation: The 
basic idea is to generate structures from a natural ensemble by 
calculating potential functions and integrating Newton’s equations of 
motion; these structures are then used to evaluate equilibrium properties 
of the system. A typical time step is on the order of 1 or 2 fs! 

can be removed entirely by introducing bond constraint algorithms such as SHAKE 

[182] or LINCS [183]. Constraints make it possible to extend time steps to 2 fs, and 

fixed-length bonds are likely better approximations of the quantum mechanical 

grounds state than harmonic springs. 
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2.2.1 Potential energy function 

The backbone of the classical simulations is the potential energy function, a relation 

that expresses the energy of a molecular system as a function of its atomic 

coordinates [184]. 

A typical potential energy function has the form: 
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The first three terms are associated with covalently connected atoms, while the last 

two terms are for non-covalent on non-bonded interaction between atoms. The first 

term is a summation over energies associated with bond stretching between two 

covalently bonded atoms (1-2, two-body interactions), the second term represent the 

bending of bond angles(1-3 three-body interactions) while the third term represent 

torsions (1-4, four body interactions). In the fourth term, van der Waals interactions 

are described by a Lennard-Jones potential between atoms separated by distance rij. 

The fifth term is associated with electrostatic interactions, described as partial point 

charges interacting via Coulomb's law. Non-bonded pair interactions involving atoms 

that are covalently linked by one or a chain of two bonds (e.g. pairs 1-2 and 1-3) are 

normally excluded from the fourth and fifth terms. Terms in the equation are 

optimized to describe physical interactions that determine the structure and dynamic 

properties of the molecular system. Nuclei and electrons are treated together as 

spherical particles (atoms) with a net point charge. Atomic radii are determined from 

experiment structural data while bonds connecting atoms are modelled as harmonic 

springs with the ability to stretch, bend and twist as illustrated in Figure 2.2. 

Equation (2.2) represents the basic functional form of the potential energy function. 

Variants of this equation may have additional terms such as: an improper dihedral 

term to prevent out-of-plane distortions, mixed terms that directly couple stretching 

and bending in adjacent bonds, special hydrogen-bond terms to account for 

electronic polarizability etc [185]. These extensions are normally meant to increase 

accuracy or to tailor the function for specialized applications. The quest for increased 
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accuracy is, however, normally associated with increased computational cost. The 

values for bond lengths b, bond angles θ, torsion angles ψ and distance between 

atoms rij, are obtained from experimental X-ray or NMR structures of from modeled 

structures. The rest of the parameters in Equation (2.2) are optimized to reproduce 

experimentally known properties of the system or ab initio quantum data on small 

molecules. Experimental data use in fitting parameters include, densities, enthalpies 

of vaporization and free energies of solvation. The potential energy function, 

together with its associated set of parameters, constitute a “force-field”. Commonly 

used force-fields for simulating biomolecules include AMBER [186], CHARMM 

[177], GROMOS [187] and OPS [188]. Naturally, the choices of the force-field 

should be guided by the type of molecular system for which it has been 

parameterized. 

Following the choice of an appropriate force-field, the next task is to generate a set 

of low energy configuration of the molecular system to be used in statistical 

mechanical evaluation of macroscopic properties. 

2.3 Simulation Detail 

2.3.1 Simulation system design 

The initial systems (see Table 2.1 and Figure 2.4) was set up to explore the 

conformational dynamics of Pgp, an approximation of the physiological 

environment, whereby the entire protein is inserted into a solvated lipid (dimyristoyl 

phosphatidylcholine, DMPC) bilayer in a box of water. Then the system was 

explored with and without different substrates. For simulation ALLM (N-acetyl-lue-

leu-methinonal), AFMRF (N-acetyl-phe-met-arg-phe-al) linear peptide and lactone 

atorvastatin is used as substrates. 
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Figure 2.4 : Simulation system: Pgp is shown in surface representation. The Ppp 
complex is embedded in a DMPC bilayer, with headgroup phosphorus 
atoms in orange and the hydrophobic tails of the lipids in cyan. The 
hydrophobic residues of Pgp are colored gray. TYR and TRP (red) 
residues that positioned between and lipid and aqua phase charged 
residues (blue) that are generally positioned in aqua phase. 

Table 2.1:   Summary of simulations 

Simulation Components Number of 
atoms 

duration 
restrained 

(ns) 

duration 
unrestrained 

(ns) 
APO Pgp ~220,000 1.2 ns 10 ns 

ALLM Pgp + MgATP + 
ALLM ~220,000 1.2 ns 10 ns 

AFMRF Pgp + MgATP + 
AFMRF ~220,000 1.2 ns 10 ns 

AFMRF-noATP Pgp + AFMRF ~220,000 1.2 ns 10 ns 

LACAVA 
Pgp + MgATP + 

Lactone 
Atorvastatin 

~220,000 1.2 ns 10 ns 

 

2.3.2 System preparation and simulations 

Coordinate (PDB code 3G60 [16]) for Pgp were used and downloaded from the 

Protein Data Bank [189]. The only modification from the downloaded coordinates 

was the removal of the bonded inhibitor molecules from the Pgp structure. 

A pre-equilibrated DMPC bilayer of 128 lipid bilayer [190] is used to construct 512 

bilayer. The TMDs were inserted in this bilayer and oriented using bands of charged 
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residues to determine the optimal position of the protein relative to the bilayer. The 

protein is then oriented in such a way that its hydrophobic belt is aligned with the 

non-polar lipid tails [191]. DMPC molecules overlapping the protein were removed 

with g_membed [192] application, and the resultant Pgp/bilayer system was solvated, 

energy-minimized, and equilibrated for 5 ns, with the non-H atoms of the Pgp 

restrained (force constant ) 1000 kJ mol-1nm-1) in order to allow a relaxation of the 

packing of lipids around the protein. 

Polar hydrogens were added to the crystal structure of Pgp. A doubly protonated 

state was chosen for the side chain of each histidine residue in H-Switch  of NBD. 

Default protonation states were assumed for all other residues. 

 

Figure 2.5 : Docking of lactone atorvastatin: This figure represents binding pocket 
of lactone atorvastatin in Pgp. This binding pocket is found by docking 
and nearly same for all other used substrates. 

In order to generate the Pgp and substrate complex, it was necessary to dock the 

substrate into Pgp. Before docking, substrate was positioned in place of inhibitor 

position according to crystal structure. After this positioning of subsrate, Autodock 

and Autock Vina tools [193,194] were used to dock substrates. 

Mg2+-ATP was docked into the NBDs using the MJ0796 NBD dimer structure (PDB 

code 1L2T) as a template. The Na-ATP coordinates from MJ0796 were 

superimposed onto each Pgp by least-squares fitting of residues from the Walker A 

and Walker B motifs and the Q-loop. It was then assumed that the Mg2+ ion binds to 

the same coordinates as the Na+ ion. In the default ATP force field the γ-phosphate is 

singly protonated. We modified this by removing the hydrogen from the γ-phosphate 
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and redistributing the partial charges evenly over the phosphate oxygen atoms such 

that the overall charge of the MgATP is -2e. 
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Figure 2.6 : ATP Docking: Each ATP molecules are docked manually by represent 
characteristic all ABC transporters. All motifs have a role in positioning 
ATP molecule is represented in figure. Mg atom and coordination shell 
hydrogen bonding are represented by yellow dots. 

All energy minimization was performed using 100 steps of the steepest descents 

algorithm. Equilibration was performed using harmonic restraints on the protein non-

H atoms (and ATP when present) (force constant) 1000 kJ mol-1nm-1), a Berendsen 

thermostat [195], and pressure maintained at 1 bar by a Berendsen barostat [195]. 

The unrestrained production runs were performed with a Nose-Hoover thermostat 

([196-197] and pressure maintained at 1 bar by a Parrinello-Rahman barostat [198]. 

The simulations were run in the NPT ensemble and at a temperature of 310 K. 

Particle mesh Ewald (PME) was used to treat long-range electrostatics [199], and the 

single point charge (SPC) water model [200] was used for the solvent. Chloride 

anions were positioned randomly among the solvent to neutralize the system. The 

integration time step was 2 fs, and coordinates were saved every 5 ps for subsequent 

analysis. The LINCS algorithm was used to restrain all bond lengths [183]. 

Simulations were run and analyzed using the GROMACS v. 4.0.5 

(http://www.gromacs.org) molecular dynamics simulation package [201-203] with 

the GROMOS96 united-atom forcefield [178,187]. Lipid parameters were based on 

those described in [190]. Pore profiles were calculated using CAVER [204]. 3D 

graphics were produced using VMD [205] and PyMol [206]. 
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2.4 Analysis Method 

The positions and velocities of every atom of a simulation system are specified for 

every time step by the simulations trajectory. The structural changes of a protein can 

thus be obtained from such a trajectory, and are characterized by the methods 

introduced below. 

2.4.1 Root mean square deviation 

The root mean square deviation (RMSD) of a structure with atomic coordinates 

ri with respect to a reference structure with its atoms coordinates 0
ir  yields a 

quantitative measure for the structural difference between both, 
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The definition of the RMSD requires the rotation and translation of the structure 

towards its best fit to the reference structure. The calculation of an appropriate 

RMSD of a proteins structure along its trajectory with respect to its crystal structure, 

e.g., yields a measure for conformational changes. Typically, an RMSD of 2–3 Å is 

caused by thermal fluctuations, whereas larger values point towards conformational 

changes. 

To obtain information about the globular motion of the structure, a subset of atoms 

from the system is chosen for the calculation of the RMSD via Equation (2.3). This 

subset consists out of the amino acid backbone atoms, due to the noise induced by 

the fluctuations of amino acid side-chains. However, if a certain region in the protein 

is expected to contribute strongly to the total RMSD, a subset of atoms from that 

particular region can be used to calculate a more specific RMSD of that region. 

Even though the RMSD can indicate general motions or conformational changes, the 

specific motions in phase space cannot be exactly determined. It is, therefore, not 

possible to correlate the globular motions of a protein from two ore more 

independent trajectories by their respective time resolved RMSD. 
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2.4.2 Principal component analysis 

One major technique to extract and classify information about large conformational 

changes from an ensemble of protein structures generated either experimentally or 

theoretically, is principal component analysis (PCA). A detailed mathematical 

description of PCA is given in ref. [180,207]. Principal component analysis is based 

on the observation that the largest part of positional fluctuations in biomolecules, like 

proteins, occurs along a small subset of collective degrees of freedom. The presence 

of a large number of internal constraints, defined by the atomic interactions in a 

biomolecule, leads to the dominance of this small subset of degrees of freedom 

(essential subspace) in the molecular dynamics of a protein. In particular, these 

interactions range from the strong covalent bonds to the weaker non-bonded 

interactions. PCA identifies the collective degrees of freedom that most contribute to 

the total amount of fluctuations. Typically, a small subset of 5–10% of the total 

degrees of freedom accounts for more than 90% of the total fluctuations within a 

protein [207-209]. 

In general, PCA can be regarded as a multi-dimensional linear least squares fit 

procedure in configuration space. After fitting each configuration to a reference 

structure, the covariance matrix of the atoms positional fluctuations is build and 

diagonalized, 

  TRtRRtRC  )()(  (2.4) 

where R(t) resembles the fitted ensemble (e.g. from a MD trajectory) of internal 

motions and  an ensemble average. Here, R is a column vector of size 3N, 

describing the coordinates of N atoms, and thus representing every structure of the 

ensemble. Because the collective motions of a protein are described very well by 

their backbone motions, the covariance matrix was made up by the proteins 

backbone atoms in this work. The sym-metric 3Nx3N matrix C is diagonalized by an 

orthogonal coordinate transformation D, containing the eigenvalues λi of matrix C. 

The ith column of D contains the normalized eigenvector, i.e. principal component, 

μi of matrix C corresponding to λi. 

The eigenvalues λi describe the mean square fluctuations along the respective 

eigenvector μi .Hence, they contain each principal component’s contribution to the 
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total fluctuation. Sorting the eigenvectors μi according to their corresponding 

eigenvalue λi from large to small, therefore, yields a description of the collective 

motions of the system by the first eigenvectors. 

These principal components comply with collective coordinates, including 

contributions from every atom of the protein, and were shown to make up for the 

functional dynamics of proteins in several cases [207,210]. 
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3.  RESULTS and DISCUSSION 

3.1 Equilibration of Lipid Bilayer 

Before Pgp simulation the lipid bilayer was prepared and analysed whether or not 

represent real system. The 512 DMPC (1,2-dimyristoyl-sn-glycero-3-

phosphocholine) bilayer was constructed by using 128 pre-equilibrated 128 lipid 

bilayer. After energy minimization of bilayer, the system was simulated for 1ns and 

analysed. These analyses are: 

 The area per lipid of lipid bilayer was calculated from the lateral x and y 

dimensions of the simulation box divided by the number of lipid molecules in 

one leaflet of the bilayer. The Figure 3.1 shows the area per lipid value of 

prepared lipids. The value of area per lipid was equilibrated about 0.62 and 

this value is acceptable with compared experimental value of 0.606 [211]. 

 The deuterium order parameter SCD for the carbon tails is calculated from the 

elements of the order parameter tensor Sxx = 1/2 2/)1cos3( 2 i  and 

Syy as SCD = 2/3Sxx + 1/3Syy. The angle αi is the angle between the molecular 

axis given by the carbon atoms Ci−1 and Ci+1 and the lipid bilayer normal; the 

average is taken over the time of 0-10 ns and for all lipid molecules. 

Calculations have been performed with the g_order program of the 

GROMACS suite. 
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Figure 3.1 :  Area per lipid of DMPC. Area per lipid ratio dependent on MD 
simulation time for a 512-molecule lipid bilayer obtained for DMPC. 
The experimental value of area per lipid for DMPC is 0.606 [211]. 

Although the lipid bilayer structure is quite stable, its individual phospholipid and 

sterol molecules have some freedom of motion. The structure and flexibility of the 

lipid bilayer depend on temperature and on the lipid types. At relatively low 

temperatures, the lipids in a bilayer form a semisolid gel phase, in which all types of 

motion of individual lipid molecules are strongly constrained; the bilayer is 

paracrystalline. At relatively high temperatures, individual hydrocarbon chains of 

fatty acids are in constant motion produced by rotation about the carbon-carbon 

bonds of the long acyl side chains. In this liquid-disordered state, or fluid state, the 

interior of the bilayer is more fluid than solid and the bilayer is like a sea of 

constantly moving lipid. At intermediate temperatures, the lipids exist in a liquid-

ordered state; there is less thermal motion in the acyl chains of the lipid bilayer, but 

lateral movement in the plane of the bilayer still takes place. According to Figure 3.2 

bilayer the lipids gets into liquid-ordered state and represents in-vivo environment. 

This lipid bilayer is used for inserting Pgp. After each Pgp simulation these 

parameters (area per lipid, deuterium order parameters) were checked for stability of 

lipid bilayer. 
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Deuterium Order Parameters
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Figure 3.2 :   Deuterium order parameters of DMPC bilayer. Comparison of the 
deuterium order parameters along the carbon atoms of the lipid acyl 
tails from simulation (*) and those from experimental results (+). The 
top plot represents SCD values of sn1 chain and the bottom plot 
represents SCD values of sn2 chain of lipids. The experimental values 
are from the sn2 chain in both parts. Experimental deuterium order 
parameter is taken from [212]. All value is for 310 K(35 C). 

3.2 Conformational Stability and Flexibility 

The Root Mean Square Deviation (RMSD) of Cα atoms with respect to the initial 

conformation was calculated as a function of time to assess the conformational 

stability of the protein during the simulations (Figure 3.3). 
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Figure 3.3 :   RMSD of simulations. The Cα RMSD calculated for the 3 simulation 
systems. The other simulation results (AFMRF-noATP and ALLM) 
were not showed. 

According to Figure 3.3 APO simulation is equilibrated faster than other two 

simulations. The reason of this difference is that Pgp with substrate changed its 

conformation to adopt its substrate. To show this rearrangement in Figure 3.4 the 

RMSD values of LACAVA simulation presented for each sub domain. We can see 

easily from this graphic the reason of RMSD fluctuation of LACAVA Simulation is 

a result of fluctuation with transmembrane domains (TMD). If we extract these 

fluctuations from RMSD values the simulations were equilibrated around 4 ns. 

To identify the flexible regions of the protein, Root Mean Square Fluctuation 

(RMSF) of Cα atoms from its time averaged position was analyzed (Figure 3.5). 

Generally from APO to LACAVA, RMSF values are increased. Especially the NBD 

of LACAVA simulation is higher significantly than other simulations. Figure 3.6 

shows the b-factor values of LACAVA simulation and the increased fluctuation of 

NBD can be seen by changing its colour blue into red. 

Both RMSD and RMSF analysis give us opinion about convergence of simulation. 

According to these results and other quality control parameters like minimum 

distance between periodic images and energy terms (temperature, pressure, potential 

and kinetics energies) - these parameters are not showed in here - each simulation is 

quantifiable for further investigations. 
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Figure 3.4 :   RMSD of LACAVA simulation. This graphic represents RMDS values 
for each sub domains of Pgp. 
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Figure 3.5 :   RMSF of simulations. This graph shows RMSF values for each 
simulation. 
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Figure 3.6 :   B-factor representation of LACAVA simulation: This figure represents 
b-factors of Pgp according to LACAVA simulation. From blue to red, 
the b-factor (fluctuation) values increase. According to this 
representation ATP binding pocket and lactone atorvastatin pocket has 
high b-factors. In addition of this high-fluctuated region. Some intra-
domain regions has high b-factors like binding pockets. 

3.3 Principal Component Analysis (PCA) 

The prominent motions in the transporter during the course of simulation were 

analyzed with the help of PCA [207]. The principal motions for first eigenvectors of 

the three simulations are visualized using porcupine plot (see Figure 3.7). First 

eigenvector account for 40%, 37% and 76% of the motions in apo, AFMRF peptide 

and atorvastatin lactone bound simulations, respectively. 

We observed a concerted movement of TM helices within domains TMD1 and 

TMD2 during the simulations, suggesting a rigid body movement of these domains. 

The noticeable motion in the apo form simulation was a opening of the two 

transmembrane domains relative to one another, and is shown as a schematic 

diagram in Figure  3.7 APO. While in the case of atorvastation lactone bound form  

(see Figure 3.7 LACAVA), domains showed an closing motion type movement and 

TM4-5 and TM10-11 has a twisting motion in addition to closure. However, the 

molecular dynamics of AFMRF bound form of the transporter (see Figure 3.7 
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AFMRF) has a closing motion but its motion degree is lower than atorvastatin 

lactone bond form. 

 

 

Figure 3.7 :   PCA of Pgp simulations. The principal motions for first eigen vectors 
of the three simulations are represented in this figure. The direction of 
red arrows shows the direction of motion and the length of arrows 
shows the magnitude of motion. 

Proteins often accomplish their functions through collective atomic motions. To 

examine which residues undergo concerted motions, we analyzed the covariance 

matrix (see Figure 3.8) derived from the sets of conformations generated in the 10 ns 

simulations. This analysis highlighted regions of the protein that move together. The 

NBD1 (350-600) and NBD2 (residue 850-1200) has  intensive correlations with the 

opposite direction. Aside from anticipated correlations between NBD we can see that 

some transmembrane domains have correlations and moves with NBD domain. 

TM4-5 and TM10-11 were found to correlate with each other. 
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Figure 3.8 :   Covariance matrix of simulations. The matrix shows the covariance 
between atoms. Red means that two atoms move together, whereas 
blue means they move opposite to each other. The intensity of the red 
color is indicating the amplitude of the fluctuations. 
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3.4 Inter-helical Hydrogen Bonds 

Hydrogen bonds formed between TM helices are shown to play a critical role in 

stabilizing the tertiary structure of membrane proteins as well as in the 

conformational rearrangement required for specific functions [213]. We analyzed all 

possible inter-helical hydrogen bonds formed by Pgp during the time period of 

molecular dynamics simulation. Several inter and intra-domain hydrogen bonds were 

identified, and significant rearrangements of the hydrogen bonds were also observed 

in the three simulation systems. For LACAVA simulation, TM10-11, TM2-11 and 

TM9-7 interact with its counterpart through an increased hydrogen bonding (See 

Figure 3.9). TM9-7 interactions has special role its hydrogen bonding significantly 

increased when any substrate binded to Pgp. With LACAVA simulation TM1-2 

hydrogen bonding is higher than AFMRF and ALLM peptide bond form. 

To see big picture of hydrogen bonding profile it is possible to look only interdomain 

hydrogen bonding. Figure 3.10 shows that inter-transmembrane and inter-nucleotide 

binding domain interactions increased during simulation. Especially for TMDs and 

NBDs, inter-domain hydrogen bonding is increased during simulation and this 

increased hydrogen bonding stabilizes the closure of Pgp for LACAVA simulation. 
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Figure 3.9 :   LACAVA inter-helical hydrogen bonding. The hydrogen bonding 
number of LACAVA simulation for TM10-11, TM1-11 and TM9-7. 
The bonding profiles give opinion which transmembrane helices have 
more roles during transporting. 
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Figure 3.10 : Interdomain Hydrogen Bonding Profile. This plot show how the 
numbers of hydrogen bond between domains change during LACAVA 
simulation. According to this figure, the number of hydrogen bonding 
between TMD1-TMD2 and NBD1-NBD2 increased. However, the 
hydrogen bonding profile between TMD and NBD fluctuated and after 
for while this fluctuation is equilibrated. 

3.5 ATP Binding 

The catalytic cycle of Pgp involves the coupling of ATP binding and hydrolysis with 

substrate translocation across the cell membrane. Reactions taking place at the NBDs 
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during the catalytic cycle include ATP binding and formation of a nucleotide 

sandwich dimer, followed by ATP hydrolysis, Pi dissociation, and finally ADP 

dissociation. The simulation result of LACAVA simulation has asymmetric closure 

for ATP binding pocket. Although the simulation duration was short we could see 

the starting closure for one of the binding pocket of LACAVA system (see 

Figure 3.13). The other APO (see Figure 3.11) and AFMRF (see Figure 3.12) 

simulations have no remarkable closure for ATP binding pocket. 
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Figure 3.11 : Distance between Walker A and LSGGQ for APO simulation. This 
plot show how distance between Walker A and LSGGQ signature 
motif changed during simulation. According to this plot after a 
fluctuation, the distances for each pocket are equilibrated. Any closure 
motion for NBDs was not seen. 

The simulation results show that only for LACAVA simulation has a closure motion 

for one of its ATP binding pocket. And this closure motion is asymmetric closure as 

defined previous studies [120]. A few simulation studies which were done for 

Sav1866 MDR protein [214,215] concluded same result with this LACAVA 

simulation. As discussed previously in introduction section the asymmetric ATP 

hydrolyses is suggested [120] for MDR proteins. And the LACAVA result is 

matching to this mechanism. But the duration of simulation is not enough to be sure 

whether or not the asymmetric closure for LACAVA is final conformation of this 

simulation. Because this conformation can be results of random starting conditions 

and can leave this conformation with longer simulation. 
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Figure 3.12 : Distance between Walker A and LSGGQ for AFMRF simulation: This 
plot show how distance between Walker A and LSGGQ signature 
motif changed during simulation. According to this plot there, the 
fluctuation of distance value was not equilibrated and any closure for 
ATP binding pocket was not seen. 
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Figure 3.13 : Distance between Walker A and LSGGQ for LACAVA 
simulation. This plot show how distance between Walker A and 
LSGGQ signature motif changed during simulation. According to this 
plot, we can see that there is a closure in one of the ATP binding 
pockets. The other ATP binding pocket not closing one was fluctuated 
during simulation. 
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4.  CONCLUSION 

P-Glycoprotein is a drug transporter of the ABC superfamily that functions as an 

ATP-powered drug efflux pump. Rapid progress has been made in recent years in 

understanding the three-dimensional structure and ATP hydrolysis cycle of this 

protein, and many tools are now available for its study at the molecular level. 

Although the transporter can interact with hundreds of nonpolar, weakly amphipathic 

compounds with no apparent structural similarity, progress is being made in 

developing a pharmacophore model to describe its binding regions. The protein 

appears to interact with its multiple substrates via a large flexible drug-binding 

pocket, to which drugs gain access from the bilayer, leading to the suggestion that it 

is a “vacuum cleaner” for hydrophobic compounds that concentrate within the 

membrane. The drug transport mechanism of Pgp is poorly described and may 

involve “flipping” of substrates from the inner to the outer membrane leaflet. The 

primary physiological role of the protein appears to be the protection of sensitive 

organs and tissues from xenobiotic toxicity. Many drugs used in clinical therapy are 

P-glycoprotein substrates, and the transporter is now increasingly recognized to play 

a central role in the absorption and disposition of many drugs, including 

chemotherapeutic agents. Other compounds, known as modulators, that block the 

drug efflux function of Pgp are under development and may have clinical 

applications in the future.  

With release of crystal structure of Pgp, molecular dynamic simulation can create 

great opportunities to discover Pgp mechanism. If we resolve the mechanism of Pgp 

we can increasingly rationalize the drug development process of disease like cancer. 

Molecular dynamics simulation gives us to investigate atomistic level mechanism. 

This study investigated Pgp mechanism with some linear peptides and lactone 

atorvastatin. Because of low resolution of structure of Pgp there is some problem to 

investigate structure. Although this obstacle about structure we can say that Pgp 

interacted with lactone form of atorvastatin and has asymmetrical closure of 

nucleotide binding domains as we see with other MDR proteins like Sav1866.   
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In spite of atorvastatin interaction with Pgp, any meaningful interactions with linear 

peptides were not seen from simulation results.  These peptides were selected 

because both ALLM (N-acetyl-leu-leu-met-al) and AFMRF (N-acetyl-phe-met-phe-

arg-phe-al) are characterized as a substrates of Pgp and topology preparation was not 

required. There are some possible reasons for non-interactions between peptides and 

Pgp.  One of these reasons can be that single peptide was not enough to interact with 

Pgp.  Because we have known that Pgp has large polyspecific drug binding pocket 

and can transport more than one molecule per transport cycle.  

Ideas for further studies arising from the results of this work are manyfold. First, 

simulations of lactone atorvastatin should be continued to further understand the 

mechanism of Pgp and which residues are critic for transportation and to develop 

ways to better combine simulations with experiments. Also, work on acid form of 

atorvastatin should be investigated to understand which form of atorvastatin interacts 

with Pgp. In addition to atorvastatin, other statin molecules should be included in 

simulation to understand the drug metabolism of statins.  



 57 

REFERENCES  

 [1] Biedler, J. and Riehm, H., 1970. Cellular resistance to actinomycin D in  
Chinese hamster cells in vitro: cross-resistance, radioautographic, and 
cytogenetic studies, Cancer Res., 30, 1174–1184. 

[2] Riordan, J. and Ling, V., 1985. Genetic and biochemical characterization of 
multidrug resistance, Pharmacology & therapeutics, 28, 51–75. 

[3] Shen, D., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S., 
Pastan, I. and Gottesman, M., 1986. Multiple drug-resistant human 
KB carcinoma cells independently selected for high-level resistance to 
colchicine, adriamycin, or vinblastine show changes in expression of 
specific proteins., Journal of Biological Chemistry, 261, 7762. 

[4] Ling, V. and Thompson, L., 1974. Reduced permeability in CHO cells as a 
mechanism of resistance to colchicine, Journal of Cellular 
Physiology, 83. 

[5] See, Y., Carlsen, S., Till, J. and Ling, V., 1974. Icreased drug permeability in 
Chinese hamster ovary cells in the presence of cyanide, Biochimica et 
Biophysica Acta (BBA)-Biomembranes, 373, 242–252. 

[6] Juliano, R. and Ling, V., 1976. A surface glycoprotein modulating drug 
permeability in Chinese hamster ovary cell mutants, Biochim Biophys 
Acta, 455, 152–162. 

[7] Gerlach, J., Endicott, J., Juranka, P., Henderson, G., Sarangi, F., Deuchars, 
K. and Ling, V., 1986. Homology between P-glycoprotein and a 
bacterial haemolysin transport protein suggests a model for multidrug 
resistance, Nature, 324, 485–489. 

[8] Chen, C., Chin, J., Ueda, K., Clark, D., Pastan, I., Gottesman, M. and 
Roninson, I., 1986. Internal duplication and homology with bacterial 
transport proteins in the mdrl (P-glycoprotein) gene from multidrug-
resistant human cells, Cell, 47, 381–389. 

[9] Gros, P., Ben, N., Croop, J. and Housman, D., 1986. Isolation and expression 
of a complementary DNA that confers multidrug resistance, Nature, 
323, 728–731. 

[10] Gottesman, M. and Pastan, I., 1993. Biochemistry of multidrug resistance 
mediated by the multidrug transporter, Anniu. Reu. Biochem., 62, 385–
427. 

[11] Jones, P. and George, A., 2004. The ABC transporter structure and 
mechanism: perspectives on recent research, Cellular and Molecular 
Life Sciences, 61, 682–699. 



 58 

[12] Dean, D., Davidson, A. and Nikaido, H., 1989. Maltose transport in membrane 
vesicles of Escherichia coli is linked to ATP hydrolysis, Proceedings 
of the National Academy of Sciences, 86, 9134–9138. 

[13] Ames, G., Nikaido, K., Groarke, J. and Petithory, J., 1989. Reconstitution of 
periplasmic transport in inside-out membrane vesicles. Energization 
by ATP, Journal of Biological Chemistry, 264, 3998–4002. 

[14] Davidson, A., Dassa, E., Orelle, C. and Chen, J., 2008. Structure, function, 
and evolution of bacterial ATP-binding cassette systems, Microbiol. 
Mol. Biol. Rev., 72, 317–364. 

[15] Hollenstein, K., Frei, D.C. and Locher, K.P.A., 2007. Structure of an ABC 
transporter in complex with its binding protein, Nature, 446, 213–216. 

[16] Aller, S.G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, 
P.M., Trinh, Y.T., Zhang, Q., Urbatsch, I.L. and Chang, G., 2009. 
Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-
Specific Drug Binding, Science, 323, 1718 – 1722. 

[17] Dawson, R.J. and Locher, K.P., 2006. Structure of a bacterial multidrug ABC 
transporter, Nature, 443, 180–185. 

[18] Linton, K.J. and Higgins, C.F., 1998. The Escherichia coli ATP-binding 
cassette (ABC) proteins, Mol. Microbiol., 28, 5–13. 

[19] Dean, M., Rzhetsky, A. and Allikmets, R., 2001. The human ATP-binding 
cassette (ABC) transporter superfamily, Annu. Rev. Cell Biol., 11, 
1156–1166. 

[20] Gottesman, M.M. and Ambudkar, S.V., 2001. Overview: ABC transporters 
and human disease, J. Bioenerg. Biomembr., 33, 453–458. 

[21] Biemans-Oldehinkel, E., Doeven, M.K. and Poolman, B., 2006. ABC 
transporter architecture and regulatory roles of accessory domains, 
FEBS Letters, 580, 1023–1035. 

[22] Ames, G.F.L., 1986. Bacterial periplasmic transport systems structure, 
mechanism and evolution, Annu. Rev. Biochem., 55, 397–425. 

[23] Hollenstein, K., Dawson, R.J.P. and Locher, K.P., 2007. Structure and 
mechanism of ABC transporter proteins, Current Opinion in 
Structural Biology, 17, 412–418. 

[24] Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M., Pastan, I. and 
Willingham, M., 1987. Cellular localization of the multidrug-
resistance gene product P-glycoprotein in normal human tissues, 
Proceedings of the National Academy of Sciences of the United States 
of America, 84, 7735. 

[25] Croop, J., Raymond, M., Haber, D., Devault, A., Arceci, R., Gros, P. and 
Housman, D., 1989. The three mouse multidrug resistance (mdr) 
genes are expressed in a tissue-specific manner in normal mouse 
tissues., Molecular and cellular biology, 9, 1346. 

[26] Beaulieu, E., Demeule, M., Ghitescu, L. and Beliveau, R., 1997. P-
glycoprotein is strongly expressed in the luminal membranes of the 



 59 

endothelium of blood vessels in the brain., Biochemical Journal, 326, 
539. 

[27] Melaine, N., Liénard, M., Dorval, I., Le Goascogne, C., Lejeune, H. and 
Jégou, B., 2002. Multidrug resistance genes and p-glycoprotein in the 
testis of the rat, mouse, Guinea pig, and human, Biology of 
reproduction, 67, 1699. 

[28] Edwards, J., Alcorn, J., Savolainen, J., Anderson, B. and McNamara, P., 
2005. Role of P-glycoprotein in distribution of nelfinavir across the 
blood-mammary tissue barrier and blood-brain barrier, Antimicrobial 
agents and chemotherapy, 49, 1626. 

[29] Saito, T., Zhang, Z., Tsuzuki, H., Ohtsubo, T., Yamada, T., Yamamoto, T. 
and Saito, H., 1997. Expression of P-glycoprotein in inner ear 
capillary endothelial cells of the guinea pig with special reference to 
blood-inner ear barrier, Brain research, 767, 388–392. 

[30] Arceci, R., Croop, J., Horwitz, S. and Housman, D., 1988. The gene encoding 
multidrug resistance is induced and expressed at high levels during 
pregnancy in the secretory epithelium of the uterus, Proceedings of the 
National Academy of Sciences of the United States of America, 85, 
4350. 

[31] Gil, S., Saura, R., Forestier, F. and Farinotti, R., 2005. P-glycoprotein 
expression of the human placenta during pregnancy, Placenta, 26, 
268–270. 

[32] Kalabis, G., Kostaki, A., Andrews, M., Petropoulos, S., Gibb, W. and 
Matthews, S., 2005. Multidrug resistance phosphoglycoprotein 
(ABCB1) in the mouse placenta: fetal protection, Biology of 
reproduction, 73, 591. 

[33] Smit, J., Schinkel, A., Mol, C., Majoor, D., Mooi, W., Jongsma, A., Lincke, 
C. and Borst, P., 1994. Tissue distribution of the human MDR3 P-
glycoprotein., Laboratory investigation; a journal of technical 
methods and pathology, 71, 638. 

[34] Schinkel, A., 1998. Pharmacological insights from P-glycoprotein knockout 
mice., International journal of clinical pharmacology and 
therapeutics, 36, 9. 

[35] Schinkel, A., Smit, J., Van Tellingen, O., Beijnen, J., Wagenaar, E., 
Van Deemter, L., Mol, C., Van der Valk, M., Robanus-Maandag, 
E. and Te Riele, H., 1994. Disruption of the mouse mdr1a P-
glycoprotein gene leads to a deficiency in the blood-brain barrier and 
to increased sensitivity to drugs, Cell, 77, 491–502. 

[36] Jette, L., Pouliot, J., Murphy, G. and Beliveau, R., 1995. Isoform I (mdr3) is 
the major form of P-glycoprotein expressed in mouse brain capillaries. 
Evidence for cross-reactivity of antibody C219 with an unrelated 
protein., Biochemical Journal, 305, 761. 



 60 

[37] Doran, A., Obach, R., Smith, B., Hosea, N., Becker, S., Callegari, E., Chen, 
C., Chen, X., Choo, E. and Cianfrogna, J., 2005. The impact of P-
glycoprotein on the disposition of drugs targeted for indications of the 
central nervous system: evaluation using the MDR1A/1B knockout 
mouse model, Science’s STKE, 33, 165. 

[38] Roulet, A., Puel, O., Gesta, S., Lepage, J., Drag, M., Soll, M., Alvinerie, M. 
and Pineau, T., 2003. MDR1-deficient genotype in Collie dogs 
hypersensitive to the P-glycoprotein substrate ivermectin* 1, 
European Journal of Pharmacology, 460, 85–91. 

[39] Nelson, O., Carsten, E., Bentjen, S. and Mealey, K., 2003. Ivermectin toxicity 
in an Australian Shepherd dog with the MDR1 mutation associated 
with ivermectin sensitivity in Collies, Journal of veterinary internal 
medicine, 17, 354–356. 

[40] Neff, M., Robertson, K., Wong, A., Safra, N., Broman, K., Slatkin, M., 
Mealey, K. and Pedersen, N., 2004. Breed distribution and history of 
canine mdr1-1Δ, a pharmacogenetic mutation that marks the 
emergence of breeds from the collie lineage, Proceedings of the 
National Academy of Sciences of the United States of America, 101, 
11725. 

[41] Gottesman, M.M., Fojo, T. and Bates, S.E., 2001. Multidrug resistance in 
cancer role of ATP-dependent transporters, Nature Rev. Cancer, 2, 
48–58. 

[42] Goldstein, L., Galski, H., Fojo, A., Willingham, M., Lai, S., Gazdar, A., 
Pirker, R., Green, A., Crist, W. and Brodeur, G., 1989. Expression 
of a multidrug resistance gene in human cancers, J. Natl. Cancer Inst., 
81, 116–124. 

[43] Sorrentino, B., Brandt, S., Bodine, D., Gottesman, M., Pastan, I., Cline, A. 
and Nienhuis, A., 1992. Selection of drug-resistant bone marrow cells 
in vivo after retroviral transfer of human MDR1, Science, 257, 99. 

[44] Sasongko, L., Link, J., Muzi, M., Mankoff, D., Yang, X., Collier, A., 
Shoner, S. and Unadkat, J., 2005. Imaging P-glycoprotein Transport 
Activity at the Human Blood-brain Barrier with Positron Emission 
Tomographyast, Clinical Pharmacology and Therapeutics, 77, 503–
514. 

[45] Robert, J. and Jarry, C., 2003. Multidrug resistance reversal agents, J. Med. 
Chem, 46, 4805–4817. 

[46] Dayan, G., Jault, J., Baubichon-Cortay, H., Baggetto, L., Renoir, J., 
Baulieu, E., Gros, P. and Di Pietro, A., 1997. Binding of Steroid 
Modulators to Recombinant Cytosolic Domain from Mouse P-
Glycoprotein in Close Proximity to the ATP Site, Biochemistry, 36, 
15208–15215. 

[47] List, A., Kopecky, K., Willman, C., Head, D., Persons, D., Slovak, M., Dorr, 
R., Karanes, C., Hynes, H. and Doroshow, J., 2001. Benefit of 
cyclosporine modulation of drug resistance in patients with poor-risk 
acute myeloid leukemia: a Southwest Oncology Group study, Blood, 
98, 3212. 



 61 

[48] Polgar, O. and Bates, S., 2005. ABC transporters in the balance: is there a role 
in multidrug resistance? , Biochemical Society Transactions, 33, 241–
245. 

[49] Aszalos, A., 2007. Drug-drug interactions affected by the transporter protein, P-
glycoprotein (ABCB1, MDR1):: II. Clinical aspects, Drug discovery 
today, 12, 838–843. 

[50] Schinkel, A., 1999. P-Glycoprotein, a gatekeeper in the blood-brain barrier, 
Advanced drug delivery reviews, 36, 179–194. 

[51] Krahenbuhl, S., Menafoglio, A., Giostra, E. and Gallino, A., 1998. Serious 
Interaction Between Mibefradil and Tacrolimus1, Transplantation, 66, 
1113. 

[52] Greiner, B., Eichelbaum, M., Fritz, P., Kreichgauer, H., Von Richter, O., 
Zundler, J. and Kroemer, H., 1999. The role of intestinal P-
glycoprotein in the interaction of digoxin and rifampin, Journal of 
Clinical Investigation, 104, 147–153. 

[53] Durr, D., Stieger, B., Kullak-Ublick, G., Rentsch, K., Steinert, H., Meier, P. 
and Fattinger, K., 2000. St John’s Wort induces intestinal P-
glycoprotein/MDR1 and intestinal and hepatic CYP3A4, Clinical 
Pharmacology and Therapeutics, 68, 598–604. 

[54] Giacomini, K., Huang, S., Tweedie, D., Benet, L., Brouwer, K., Chu, X., 
Dahlin, A., Evers, R., Fischer, V. and Hillgren, K., 2010. 
Membrane transporters in drug development, Nature Reviews Drug 
Discovery, 9, 215–236. 

[55] Szakacs, G., Paterson, J., Ludwig, J., Booth-Genthe, C. and Gottesman, M., 
2006. Targeting multidrug resistance in cancer, Nature Reviews Drug 
Discovery, 5, 219–234. 

[56] Szakacs, G., Annereau, J., Lababidi, S., Shankavaram, U., Arciello, A., 
Bussey, K., Reinhold, W., Guo, Y., Kruh, G. and Reimers, M., 
2004. Predicting drug sensitivity and resistance:: Profiling ABC 
transporter genes in cancer cells, Cancer Cell, 6, 129–137. 

[57] Ludwig, J., Szakacs, G., Martin, S., Chu, B., Cardarelli, C., Sauna, Z., 
Caplen, N., Fales, H., Ambudkar, S. and Weinstein, J., 2006. 
Selective toxicity of NSC73306 in MDR1-positive cells as a new 
strategy to circumvent multidrug resistance in cancer, Cancer 
research, 66, 4808. 

[58] Leschziner, G., Andrew, T., Pirmohamed, M. and Johnson, M., 2006. 
ABCB1 genotype and PGP expression, function and therapeutic drug 
response: a critical review and recommendations for future research, 
The pharmacogenomics journal, 7, 154–179. 

[59] Kimchi-Sarfaty, C., Oh, J., Kim, I., Sauna, Z., Calcagno, A., Ambudkar, S. 
and Gottesman, M., 2007. A" silent" polymorphism in the MDR1 
gene changes substrate specificity, Science, 315, 525. 

[60] Kast, C., Canfield, V., Levenson, R. and Gros, P., 1996. Transmembrane 
organization of mouse P-glycoprotein determined by epitope insertion 
and immunofluorescence, Journal of Biological Chemistry, 271, 9240. 



 62 

[61] Loo, T. and Clarke, D., 1995. Membrane topology of a cysteine-less mutant of 
human P-glycoprotein, Journal of Biological Chemistry, 270, 843. 

[62] Higgins, C.F., 1992. ABC transporters from microorganisms to man, Annu. 
Rev. Cell Biol., 8, 67–113. 

[63] Rosenberg, M.F., Callaghan, R., Ford, R.C. and Higgins, C.F., 1997. 
Structure of the multidrug resistance P-glycoprotein to 2.5 nm 
resolution determined by electron microscopy and image analysis, The 
Journal Of Biological Chemistry, 272, 10685–10694. 

[64] Rosenberg, M., Velarde, G., Ford, R., Martin, C., Berridge, G., Kerr, I., 
Callaghan, R., Schmidlin, A., Wooding, C. and Linton, K., 2001. 
Repacking of the transmembrane domains of P-glycoprotein during 
the transport ATPase cycle, The EMBO Journal, 20, 5615. 

[65] Rosenberg, M.F., Kamis, A.B., Callaghan, R., Higgins, C.F. and Ford, R.C., 
2003. Three-dimensional Structures of the Mammalian Multidrug 
Resistance P-glycoprotein Demonstrate Major Conformational 
Changes in the Transmembrane Domains upon Nucleotide Binding, 
The Journal Of Biological Chemistry, 278, 8294–8299. 

[66] Rosenberg, M.F., Callaghan, R., Modok, S., Higgins, C.F. and Ford, R.C., 
2005. Three-dimensional structure of P-glycoprotein: the 
transmembrane regions adopt an asymmetric configuration in the 
nucleotide-bound state, The Journal Of Biological Chemistry, 280, 
2857–2862. 

[67] Dawson, R.J. and Locher, K.P., 2007. Structure of the multidrug ABC 
transporter Sav1866 from Staphylococcus aureus in complex with 
AMP-PNP, FEBS Letters, 581, 935–938. 

[68] Loo, T. and Clarke, D., 2000. The packing of the transmembrane segments of 
human multidrug resistance P-glycoprotein is revealed by disulfide 
cross-linking analysis, Journal of Biological Chemistry, 275, 5253. 

[69] Loo, T.W. and Clarke, D.M., 1997. Identification of Residues in the Drug-
binding Site of Human P-glycoprotein Using a Thiol-reactive 
Substrate, The Journal Of Biological Chemistry, 272, 31945–31948. 

[70] Loo, T. and Clarke, D., 1999. Merck Frosst Award Lecture 1998. Molecular 
dissection of the human multidrug resistance P-glycoprotein., 
Biochemistry and cell biology= Biochimie et biologie cellulaire, 77, 
11. 

[71] Loo, T. and Clarke, D., 1999. Identification of residues in the drug-binding 
domain of human P-glycoprotein. Analysis of transmembrane segment 
11 by cysteine-scanning mutagenesis and inhibition by 
dibromobimane., The Journal of biological chemistry, 274, 35388. 

[72] Loo, T. and Clarke, D., 2000. Identification of residues within the drug-
binding domain of the human multidrug resistance P-glycoprotein by 
cysteine-scanning mutagenesis and reaction with dibromobimane, 
Journal of Biological Chemistry, 275, 39272. 



 63 

[73] Loo, T. and Clarke, D., 2005. Recent progress in understanding the mechanism 
of P-glycoprotein-mediated drug efflux, Journal of Membrane 
Biology, 206, 173–185. 

[74] Qu, Q. and Sharom, F., 2001. FRET Analysis Indicates That the Two ATPase 
Active Sites of the P-Glycoprotein Multidrug Transporter Are Closely 
Associated, Biochemistry, 40, 1413–1422. 

[75] Liu, R. and Sharom, F., 1998. Proximity of the Nucleotide Binding Domains 
of the P-glycoprotein Multidrug Transporter to the Membrane 
Surface: A Resonance Energy Transfer Study, Biochemistry, 37, 
6503–6512. 

[76] Qu, Q. and Sharom, F., 2002. Proximity of Bound Hoechst 33342 to the 
ATPase Catalytic Sites Places the Drug Binding Site of P-glycoprotein 
within the Cytoplasmic Membrane Leaflet, Biochemistry, 41, 4744–
4752. 

[77] Lugo, M. and Sharom, F., 2005. Interaction of LDS-751 with P-Glycoprotein 
and Mapping of the Location of the R Drug Binding Site, 
Biochemistry, 44, 643–655. 

[78] Zolnerciks, J.K., Wooding, C. and Linton, K.J., 2007. Evidence for a 
Sav1866-like architecture for the human multidrug transporter P-
glycoprotein, FEBS Letters, 21, 3937–3948. 

[79] Eckford, P. and Sharom, F., 2009. ABC efflux pump-based resistance to 
chemotherapy drugs, Chemical Reviews, 109, 2989–3011. 

[80] Ward, A., Reyes, C.L., Yu, J., Roth, C.B. and Chang, G., 2007. Flexibility in 
the ABC transporter MsbA: alternating access with a twist, PNAS, 
104, 19005–19010. 

[81] Dawson, R.J.P., Hollenstein, K. and Locher, K.P., 2007. Uptake or extrusion: 
crystal structures of full ABC transporters suggest a common 
mechanism, Molecular Microbiology, 65, 250–257. 

[82] Haubertin, D., Madaoui, H., Sanson, A., Guerois, R. and Orlowski, S., 2006. 
Molecular dynamics simulations of E. coli MsbA transmembrane 
domain: formation of a semipore structure, Biophysical journal, 91, 
2517–2531. 

[83] Dong, J., Yang, G. and Mchaourab, H., 2005. Structural basis of energy 
transduction in the transport cycle of MsbA, Science, 308, 1023–1028. 

[84] Buchaklian, A., Funk, A. and Klug, C., 2004. Resting state conformation of 
the MsbA homodimer as studied by site-directed spin labeling, 
Biochemistry, 43, 8600–8606. 

[85] Hrycyna, C., Airan, L., Germann, U., Ambudkar, S., Pastan, I. and 
Gottesman, M., 1998. Structural Flexibility of the Linker Region of 
Human P-Glycoprotein Permits ATP Hydrolysis and Drug Transport, 
Biochemistry, 37, 13660–13673. 

[86] Loo, T. and Clarke, D., 1994. Reconstitution of drug-stimulated ATPase 
activity following co-expression of each half of human P-glycoprotein 
as separate polypeptides., Journal of Biological Chemistry, 269, 7750. 



 64 

[87] Ramachandra, M., Ambudkar, S.V. and Christine, D.C., 1998. Human P-
glycoprotein exhibits reduced affinity for substrates during a catalytic 
transition state, Biochemistry, 37, 5010–5019. 

[88] Lam, F., Liu, R., Lu, P., Shapiro, A., Renoir, J., Sharom, F. and Reiner, P., 
2001. beta-Amyloid efflux mediated by p-glycoprotein, Journal of 
Neurochemistry, 76, 1121–112. 

[89] Gatlik-Landwojtowicz, E., nismaa, P. and Seelig, A., 2006. Quantification 
and Characterization of P-Glycoprotein Substrate Interactions, 
Biochemistry, 45, 3020–3032. 

[90] Loe, D. and Sharom, F., 1994. Interaction of multidrug-resistant Chinese 
hamster ovary cells with the peptide ionophore gramicidin D, 
Biochimica et Biophysica Acta (BBA)-Biomembranes, 1190, 72–84. 

[91] Sharom, F., DiDiodato, G., Yu, X. and Ashbourne, K., 1995. Interaction of 
the P-glycoprotein multidrug transporter with peptides and 
ionophores, Journal of Biological Chemistry, 270, 10334. 

[92] Sharom, F., Yu, X., DiDiodato, G. and Chu, J., 1996. Synthetic hydrophobic 
peptides are substrates for P-glycoprotein and stimulate drug 
transport., Biochemical Journal, 320, 421. 

[93] Lugo, M. and Sharom, F., 2005. Interaction of LDS-751 and Rhodamine 123 
with P-Glycoprotein: Evidence for Simultaneous Binding of Both 
Drugs, Biochemistry, 44, 14020–14029. 

[94] Loo, T. and Clarke, D., 1994. Functional consequences of glycine mutations in 
the predicted cytoplasmic loops of P-glycoprotein., Journal of 
Biological Chemistry, 269, 7243. 

[95] Seelig, A., 1998. A general pattern for substrate recognition by P-glycoprotein, 
European Journal of Biochemistry, 251, 252 – 261. 

[96] Seelig, A., 1998. How does P-glycoprotein recognize its substrates? , 
International journal of clinical pharmacology and therapeutics, 36, 
50–54. 

[97] Ekins, S., Kim, R., Leake, B., Dantzig, A., Schuetz, E., Lan, L., Yasuda, K., 
Shepard, R., Winter, M. and Schuetz, J., 2002. Three-dimensional 
quantitative structure-activity relationships of inhibitors of P-
glycoprotein, Molecular pharmacology, 61, 964. 

[98] Ekins, S., Kim, R., Leake, B., Dantzig, A., Schuetz, E., Lan, L., Yasuda, K., 
Shepard, R., Winter, M. and Schuetz, J., 2002. Application of 
three-dimensional quantitative structure-activity relationships of P-
glycoprotein inhibitors and substrates, Molecular pharmacology, 61, 
974. 

[99] Pajeva, I. and Wiese, M., 2002. Pharmacophore model of drugs involved in P-
glycoprotein multidrug resistance: explanation of structural variety 
(hypothesis), J. Med. Chem, 45, 5671–5686. 

[100] Cianchetta, G., Singleton, R., Zhang, M., Wildgoose, M., Giesing, D., 
Fravolini, A., Cruciani, G. and Vaz, R., 2005. A pharmacophore 
hypothesis for P-glycoprotein substrate recognition using GRIND-
based 3D-QSAR, J. Med. Chem, 48, 2927–2935. 



 65 

[101] Liu, R., Siemiarczuk, A. and Sharom, F., 2000. Intrinsic Fluorescence of the 
P-glycoprotein Multidrug Transporter: Sensitivity of Tryptophan 
Residues to Binding of Drugs and Nucleotides, Biochemistry, 39, 
14927–14938. 

[102] Pawagi, A., Wang, J., Silverman, M., Reithmeier, R. and Deber, C., 1994. 
Transmembrane Aromatic Amino Acid Distribution in P-
glycoprotein:: A Functional Role in Broad Substrate Specificity, 
Journal of molecular biology, 235, 554–564. 

[103] Shapiro, A. and Ling, V., 1997. Positively cooperative sites for drug transport 
by P-glycoprotein with distinct drug specificities, European Journal of 
Biochemistry, 250, 130–137. 

[104] Loo, T., Bartlett, M. and Clarke, D., 2004. The Drug-Binding Pocket of the 
Human Multidrug Resistance P-Glycoprotein Is Accessible to the 
Aqueous Medium, Biochemistry, 43, 12081–12089. 

[105] Loo, T. and Clarke, D., 2005. Do drug substrates enter the common drug-
binding pocket of P-glycoprotein through, Biochemical and 
biophysical research communications, 329, 419–422. 

[106] Garrigues, A., Loiseau, N., Delaforge, M., Ferte, J., Garrigos, M., Andre, 
F. and Orlowski, S., 2002. Characterization of two pharmacophores 
on the multidrug transporter P-glycoprotein, Molecular 
pharmacology, 62, 1288. 

[107] Globisch, C., Pajeva, I. and Wiese, M., 2008. Identification of putative 
binding sites of P-glycoprotein based on its homology model, 
ChemMedChem, 3, 280–295. 

[108] Chen, J., Lu, G., Lin, J., Davidson, A. and Quiocho, F., 2003. A tweezers-
like motion of the ATP-binding cassette dimer in an ABC transport 
cycle, Molecular cell, 12, 651–661. 

[109] Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L. and Chen, J., 
2007. Crystal structure of a catalytic intermediate of the maltose 
transporter, Nature, 450, 515–522. 

[110] Lee, J., Urbatsch, I., Senior, A. and Wilkens, S., 2008. Nucleotide-induced 
structural changes in P-glycoprotein observed by electron microscopy, 
Journal of Biological Chemistry, 283, 5769. 

[111] Loo, T.W., Bartlett, M.C. and Clarke, D.M., 2002. The LSGGQ motif in 
each nucleotide-binding domain of human P-glycoprotein is adjacent 
to the opposing walker A sequence, The Journal Of Biological 
Chemistry, 277, 41303–41306. 

[112] Smith, P., Karpowich, N., Millen, L., Moody, J., Rosen, J., Thomas, P. and 
Hunt, J., 2002. ATP binding to the motor domain from an ABC 
transporter drives formation of a nucleotide sandwich dimer, 
Molecular cell, 10, 139–149. 

[113] Hanekop, N., Zaitseva, J., Jenewein, S., Holland, I. and Schmitt, L., 2006. 
Molecular insights into the mechanism of ATP-hydrolysis by the NBD 
of the ABC-transporter HlyB, FEBS letters, 580, 1036–1041. 



 66 

[114] Tombline, G., Bartholomew, L., Urbatsch, I. and Senior, A., 2004. 
Combined mutation of catalytic glutamate residues in the two 
nucleotide binding domains of P-glycoprotein generates a 
conformation that binds ATP and ADP tightly, Journal of Biological 
Chemistry, 279, 31212. 

[115] Tombline, G., Muharemagić, A., White, L. and Senior, A., 2005. 
Involvement of the occluded nucleotide conformation of P-
glycoprotein in the catalytic pathway, Biochemistry, 44, 12879. 

[116] Urbatsch, I., Gimi, K., Wilke-Mounts, S. and Senior, A., 2000. Investigation 
of the Role of Glutamine-471 and Glutamine-1114 in the Two 
Catalytic Sites of P-Glycoprotein, Biochemistry, 39, 11921–11927. 

[117] Zaitseva, J., Jenewein, S., Jumpertz, T., Holland, I. and Schmitt, L., 2005. 
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding 
domain of the ABC transporter HlyB, The EMBO Journal, 24, 1901–
1910. 

[118] Liu, R. and Sharom, F., 1996. Site-Directed Fluorescence Labeling of P-
Glycoprotein on Cysteine Residues in the Nucleotide Binding 
Domains, Biochemistry, 35, 11865–11873. 

[119] Liu, R. and Sharom, F., 1997. Fluorescence Studies on the Nucleotide 
Binding Domains of the P-Glycoprotein Multidrug Transporter, 
Biochemistry, 36, 2836–2843. 

[120] Sauna, Z.E., Kim, I.W., Nandigama, K., Kopp, S., Chiba, P. and 
Ambudkar, S.V., 2007. Catalytic Cycle of ATP Hydrolysis by P-
Glycoprotein: Evidence for Formation of the EAS Reaction 
Intermediate with ATP-γ-S, a Nonhydrolyzable Analogue of ATP, 
Biochemistry, 46, 13787–13799. 

[121] Al-Shawi, M., Polar, M., Omote, H. and Figler, R., 2003. Transition state 
analysis of the coupling of drug transport to ATP hydrolysis by P-
glycoprotein, Journal of Biological Chemistry, 278, 52629–52640. 

[122] Senior, A., Al-Shawi, M. and Urbatsch, I., 1995. The catalytic cycle of P-
glycoprotein, FEBS letters, 377, 285–289. 

[123] Loo, T. and Clarke, D., 1995. Covalent modification of human P-glycoprotein 
mutants containing a single cysteine in either nucleotide-binding fold 
abolishes drug-stimulated ATPase activity, Journal of Biological 
Chemistry, 270, 22957. 

[124] Delannoy, S., Urbatsch, I., Tombline, G., Senior, A. and Vogel, P., 2005. 
Nucleotide Binding to the Multidrug Resistance P-Glycoprotein as 
Studied by ESR Spectroscopy, Biochemistry, 44, 14010–14019. 

[125] Qu, Q., Russell, P. and Sharom, F., 2003. Stoichiometry and Affinity of 
Nucleotide Binding to P-Glycoprotein during the Catalytic Cycle, 
Biochemistry, 42, 1170–1177. 

[126] Sauna, Z. and Ambudkar, S., 2000. Evidence for a requirement for ATP 
hydrolysis at two distinct steps during a single turnover of the catalytic 
cycle of human P-glycoprotein, Proceedings of the National Academy 
of Sciences of the United States of America, 97, 2515. 



 67 

[127] Sauna, Z. and Ambudkar, S., 2001. Characterization of the catalytic cycle of 
ATP hydrolysis by human P-glycoprotein, Journal of Biological 
Chemistry, 276, 11653. 

[128] Tombline, G. and Senior, A., 2005. The occluded nucleotide conformation of 
p-glycoprotein, Journal of bioenergetics and biomembranes, 37, 497–
500. 

[129] Romsicki, Y. and Sharom, F., 1999. The Membrane Lipid Environment 
Modulates Drug Interactions with the P-Glycoprotein Multidrug 
Transporter, Biochemistry, 38, 6887–6896. 

[130] Seelig, A. and LI, B., 2000. Substrate recognition by P-glycoprotein and the 
multidrug resistance-associated protein MRP1: a comparison: Special 
issue: Clinical Pharmacology of P-glycoprotein and related 
transporters, International journal of clinical pharmacology and 
therapeutics, 38, 111–121. 

[131] Higgins, C. and Gottesman, M., 1992. Is the multidrug transporter a flippase? 
, Trends in biochemical sciences, 17, 18. 

[132] Sharom, F., 2003. Probing of conformational changes, catalytic cycle and 
ABC transporter function, ABC Proteins: From Bacteria to Man, 
Academic Press, pp. 107–133. 

[133] Loo, T. and Clarke, D., 1997. Drug-stimulated ATPase activity of human P-
glycoprotein requires movement between transmembrane segments 6 
and 12, Journal of Biological Chemistry, 272, 20986. 

[134] Sharom, F., 2006. Shedding light on drug transport: structure and function of 
the P-glycoprotein multidrug transporter (ABCB1), Biochemistry and 
Cell Biology, 84, 979–992. 

[135] Litman, T., Zeuthen, T., Skovsgaard, T. and Stein, W., 1997. Structure-
activity relationships of P-glycoprotein interacting drugs: kinetic 
characterization of their effects on ATPase activity, Biochimica et 
Biophysica Acta (BBA)-Molecular Basis of Disease, 1361, 159–168. 

[136] Loo, T., Bartlett, M. and Clarke, D., 2003. Drug binding in human P-
glycoprotein causes conformational changes in both nucleotide-
binding domains, Journal of Biological Chemistry, 278, 1575. 

[137] Higgins, C. and Linton, K., 2004. The ATP switch model for ABC 
transporters, Nature structural and molecular biology, 11, 918–926. 

[138] Sankaran, B., Bhagat, S. and Senior, A., 1997. Inhibition of P-glycoprotein 
ATPase activity by procedures involving trapping of nucleotide in 
catalytic sites, Archives of biochemistry and biophysics, 341, 160–169. 

[139] Omote, H., Figler, R., Polar, M. and Al-Shawi, M., 2004. Improved Energy 
Coupling of Human P-glycoprotein by the Glycine 185 to Valine 
Mutation, Biochemistry, 43, 3917–3928. 

[140] Urbatsch, I., Sankaran, B., Weber, J. and Senior, A., 1995. P-glycoprotein 
is stably inhibited by vanadate-induced trapping of nucleotide at a 
single catalytic site, Journal of Biological Chemistry, 270, 19383. 



 68 

[141] Qu, Q., Chu, J. and Sharom, F., 2003. Transition State P-glycoprotein Binds 
Drugs and Modulators with Unchanged Affinity, Suggesting a 
Concerted Transport Mechanism, Biochemistry, 42, 1345–1353. 

[142] Loo, T. and Clarke, D., 2002. Vanadate trapping of nucleotide at the ATP-
binding sites of human multidrug resistance P-glycoprotein exposes 
different residues to the drug-binding site, Proceedings of the National 
Academy of Sciences of the United States of America, 99, 3511. 

[143] Mather, R., 2008. Characterizing The Substrate Binding Pocket Of The P-
Glycoprotein Multi-Drug Efflux Pump, Master’s thesis, The 
University of Guelph. 

[144] Loo, T., Bartlett, M. and Clarke, D., 2003. Permanent activation of the 
human P-glycoprotein by covalent modification of a residue in the 
drug-binding site, Journal of Biological Chemistry, 278, 20449. 

[145] Krupka, R., 1999. Uncoupled active transport mechanisms accounting for low 
selectivity in multidrug carriers: P-glycoprotein and SMR antiporters, 
Journal of Membrane Biology, 172, 129–143. 

[146] Al-Shawi, M. and Omote, H., 2005. The remarkable transport mechanism of 
P-glycoprotein: a multidrug transporter, Journal of bioenergetics and 
biomembranes, 37, 489–496. 

[147] Kureishi, Y., Luo, Z., Shiojima, I., Bialik, A., Fulton, D., Lefer, D., Sessa, 
W. and Walsh, K., 2000. The HMG-CoA reductase inhibitor 
simvastatin activates the protein kinase Akt and promotes 
angiogenesis in normocholesterolemic animals., Nature Medicine, 6, 
1004–1010. 

[148] Mundy, G., Garrett, R., Harris, S., Chan, J., Chen, D., Rossini, G., Boyce, 
B., Zhao, M. and Gutierrez, G., 1999. Stimulation of bone formation 
in vitro and in rodents by statins, Science, 286, 1946. 

[149] Davignon, J. and Laaksonen, R., 1999. Low-density lipoprotein-independent 
effects of statins, Current Opinion in Lipidology, 10, 543. 

[150] Miida, T., Hirayama, S. and Nakamura, Y., 2004. Cholesterol-independent 
effects of statins and new therapeutic targets: ischemic stroke and 
dementia, Journal of atherosclerosis and thrombosis, 11, 253–264. 

[151] Corsini, A., Maggi, F. and Catapano, A., 1995. Pharmacology of competitive 
inhibitors of HMG-CoA reductase., Pharmacological research: the 
official journal of the Italian Pharmacological Society, 31, 9. 

[152] Endo, A., Kuroda, M. and Tanzawa, K., 1976. Competitive inhibition of 3-
hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and 
ML-23613, fungal metabolites having hypocholesterolemic activity, 
FEBS Lett, 72, 323–326. 

[153] Bischoff, K. and Rodwell, V., 1992. Biosynthesis and characterization of (S)-
and (R)-3-hydroxy-3-methylglutaryl coenzyme A, Biochemical 
medicine and metabolic biology, 48, 149–158. 



 69 

[154] Graham, D., Staffa, J., Shatin, D., Andrade, S., Schech, S., La Grenade, L., 
Gurwitz, J., Chan, K., Goodman, M. and Platt, R., 2004. Incidence 
of hospitalized rhabdomyolysis in patients treated with lipid-lowering 
drugs, Jama, 292, 2585. 

[155] Backman, J., Kyrklund, C., Neuvonen, M. and Neuvonen, P., 2002. 
Gemfibrozil greatly increases plasma concentrations of 
cerivastatin&ast, Clinical Pharmacology and Therapeutics, 72, 685–
691. 

[156] Wang, E., Casciano, C., Clement, R. and Johnson, W., 2001. HMG-CoA 
reductase inhibitors (statins) characterized as direct inhibitors of P-
glycoprotein, Pharmaceutical research, 18, 800–806. 

[157] Bogman, K., Peyer, A., Torok, M., Kusters, E. and Drewe, J., 2001. HMG-
CoA reductase inhibitors and P-glycoprotein modulation, British 
journal of pharmacology, 132, 1183. 

[158] Wu, X., Whitfield, L. and Stewart, B., 2000. Atorvastatin transport in the 
Caco-2 cell model: contributions of P-glycoprotein and the proton-
monocarboxylic acid co-transporter, Pharmaceutical research, 17, 
209–215. 

[159] Hochman, J., Pudvah, N., Qiu, J., Yamazaki, M., Tang, C., Lin, J. and 
Prueksaritanont, T., 2004. Interactions of human P-glycoprotein 
with simvastatin, simvastatin acid, and atorvastatin, Pharmaceutical 
research, 21, 1686–1691. 

[160] Boyd, R., Stern, R., Stewart, B., Wu, X., Reyner, E., Zegarac, E., 
Randinitis, E. and Whitfield, L., 2000. Atorvastatin coadministration 
may increase digoxin concentrations by inhibition of intestinal P-
glycoprotein-mediated secretion, The Journal of Clinical 
Pharmacology, 40, 91. 

[161] Sakaeda, T., Fujino, H., Komoto, C., Kakumoto, M., Jin, J., Iwaki, K., 
Nishiguchi, K., Nakamura, T., Okamura, N. and Okumura, K., 
2006. Effects of acid and lactone forms of eight HMG-CoA reductase 
inhibitors on CYP-mediated metabolism and MDR1-mediated 
transport, Pharmaceutical research, 23, 506–512. 

[162] Sakaeda, T., Takara, K., Kakumoto, M., Ohmoto, N., Nakamura, T., 
Iwaki, K., Tanigawara, Y. and Okumura, K., 2002. Simvastatin 
and lovastatin, but not pravastatin, interact with MDR1., The Journal 
of pharmacy and pharmacology, 54, 419. 

[163] Christians, U., Schmitz, V. and Haschke, M., 2005. Functional interactions 
between P-glycoprotein and CYP3A in drug metabolism, Expert Opin. 
Drug Metab. Toxicol., 1, 641–654. 

[164] Holtzman, C., Wiggins, B. and Spinler, S., 2006. Role of P-glycoprotein in 
statin drug interactions, Pharmacotherapy, 26, 1601–1607. 

[165] Kirn, R., Wandel, C., Leake, B., Cvetkovic, M., Fromm, M., Dempsey, P., 
Roden, M., Belas, F., Chaudhary, A. and Roden, D., 1999. 
Interrelationship between substrates and inhibitors of human CYP3A 
and P-glycoprotein, Pharmaceutical research, 16, 408–414. 



 70 

[166] Wacher, V., Wu, C. and Benet, L., 1995. Overlapping substrate specificities 
and tissue distribution of cytochrome P450 3A and P-glycoprotein: 
implications for drug delivery and activity in cancer chemotherapy, 
Molecular Carcinogenesis, 13, 129–134. 

[167] Williams, D. and Feely, J., 2002. Pharmacokinetic-pharmacodynamic drug 
interactions with HMG-CoA reductase inhibitors, Clinical 
pharmacokinetics, 41, 343–370. 

[168] Corsini, A., Bellosta, S., Baetta, R., Fumagalli, R., Paoletti, R. and Bernini, 
F., 1999. New insights into the pharmacodynamic and 
pharmacokinetic properties of statins, Pharmacology and 
therapeutics, 84, 413–428. 

[169] McCormick, A., McKillop, D., Butters, C., Miles, G., Baba, T., Touchi, A. 
and Yamaguchi, Y., 2000. ZD4522-an HMG-CoA reductase inhibitor 
free of metabolically mediated drug interactions: metabolic studies in 
human in vitro systems, J Clin Pharmacol, 40, 1055. 

[170] Lindahl, E., 2008. Molecular Dynamics Simulations, Molecular Modeling of 
Proteins, Humana Press, pp. 3–23. 

[171] Alder, B. and Wainwright, T., 1957. Phase transition for a hard sphere 
system, The Journal of Chemical Physics, 27, 1208. 

[172] Rahman, A. and Stillinger, F., 1971. Molecular dynamics study of liquid 
water, The Journal of Chemical Physics, 55, 3336. 

[173] McCammon, J., Gelin, B. and Karplus, M., 1977. Dynamics of folded 
proteins, Nature, 267, 585. 

[174] Allen, M. and Tildesley, D., 1989. Computer Simulation of Liquids., 
Clarendon Press. 

[175] Frenkel, D. and Smit, B., 2001. Understanding Molecular Simulation, 
Academic Press. 

[176] Kaminski, G., Friesner, R., Tirado-Rives, J. and Jorgensen, W., 2001. 
Evaluation and reparametrization of the OPLS-AA force field for 
proteins via comparison with accurate quantum chemical calculations 
on peptides, J. Phys. Chem, 105, 6474–6487. 

[177] MacKerell, A., Brooks, B., Brooks III, C., Nilsson, L., Roux, B., Won, Y. 
and Karplus, M., 1998. CHARMM: the energy function and its 
parameterization with an overview of the program, The encyclopedia 
of computational chemistry, 1, 271–277. 

[178] Oostenbrink, C., Villa, A., Mark, A. and van Gunsteren, W., 2004. A 
biomolecular force field based on the free enthalpy of hydration and 
solvation: the GROMOS force-field parameter sets 53A5 and 53A6, 
Journal of Computational Chemistry, 25, 1656–1676. 

[179] Wang, J., Cieplak, P. and Kollman, P., 2000. How well does a restrained 
electrostatic potential (RESP) model perform in calculating 
conformational energies of organic and biological molecules? , J. 
Comput. Chem, 21, 1049–1074. 



 71 

[180] Leach, A., 2001. Molecular modelling: principles and applications, Prentice 
Hall, Harlow, UK. 

[181] Essmann, U., Perera, L., Berkowitz, M., Darden, T., Lee, H. and Pedersen, 
L., 1995. A smooth particle mesh Ewald method, Journal of Chemical 
Physics, 103, 8577–8593. 

[182] Ryckaert, J., Ciccotti, G. and Berendsen, H., 1977. Numerical integration of 
the cartesian equations of motion of a system with constraints: 
molecular dynamics of n-alkanes, J. Comp. Phys, 23, 327–341. 

[183] Hess, B., Bekker, H., Berendsen, H. and Fraaije, J., 1997. 3 LINCS: a linear 
constraint solver for molecular simulations, J Comput Chem, 18, 
1463–1472. 

[184] Wang, W., Donini, O., Reyes, C. and Kollman, P., 2001. Biomolecular 
simulations: recent developments in force fields, simulations of 
enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic 
acid noncovalent interactions, Annu. Rev. Biophys. Biomol. Struct, 30, 
211–243. 

[185] Mackerell, A., 2004. Empirical force fields for biological macromolecules: 
overview and issues, Journal of computational chemistry, 25, 1584–
1604. 

[186] Cornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., Ferguson, D., 
Spellmeyer, D., Fox, T., Caldwell, J. and Kollman, P., 1995. A new 
force field for molecular mechanical simulation of nucleic acids and 
proteins, J. Am. Chem. Soc, 117, 5179–5197. 

[187] Scott, W., Hunenberger, P., Tironi, I., Mark, A., Billeter, S., Fennen, J., 
Torda, A., Huber, T., Kruger, P. and van Gunsteren, W., 1999. 
The GROMOS biomolecular simulation program package, J. Phys. 
Chem. A, 103, 3596–3607. 

[188] Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. and Klein, M., 
1983. Comparison of simple potential functions for simulating liquid 
water, The Journal of Chemical Physics, 79, 926. 

[189] Berman, H., Battistuz, T., Bhat, T., Bluhm, W., Bourne, P., Burkhardt, K., 
Feng, Z., Gilliland, G., Iype, L. and Jain, S., 2002. The protein data 
bank, Acta Crystallographica Section D: Biological Crystallography, 
58, 899–907. 

[190] Kukol, A., 2006. Lipid Models for United-Atom Molecular Dynamics 
Simulations of Proteins, J. Chem. Theory Comput., 5 (3), 615–626. 

[191] Kandt, C., Xu, Z. and Tieleman, D., 2006. Opening and Closing Motions in 
the Periplasmic Vitamin B12 Binding Protein BtuF, Biochemistry, 45, 
13284–13292. 

[192] Wolf, M., Hoefling, M., Aponte-Santamaria, C., Grubmuller, H. and 
Groenhof, G., 2010. g_membed: Efficient insertion of a membrane 
protein into an equilibrated lipid bilayer with minimal perturbation, 
Journal of Computational Chemistry. 



 72 

[193] Seeliger, D. and de Groot, B., 2010. Ligand docking and binding site analysis 
with PyMOL and Autodock/Vina, Journal of computer-aided 
molecular design, 24, 417–422. 

[194] Trott, O. and Olson, A., 2010. AutoDock Vina: improving the speed and 
accuracy of docking with a new scoring function, efficient 
optimization, and multithreading, Journal of Computational 
Chemistry, 31, 455–461. 

[195] Berendsen, H., Postma, J., van Gunsteren, W., DiNola, A. and Haak, J., 
1984. Molecular dynamics with coupling to an external bath, The 
Journal of Chemical Physics, 81, 3684. 

[196] Nose, S., 1984. A molecular dynamics method for simulations in the canonical 
ensemble, Molecular Physics, 52, 255–268. 

[197] Hoover, W., 1985. Canonical dynamics: Equilibrium phase-space 
distributions, Physical Review A, 31, 1695–1697. 

[198] Parrinello, M. and Rahman, A., 1981. Polymorphic transitions in single 
crystals: A new molecular dynamics method, Journal of Applied 
Physics, 52, 7182. 

[199] Darden, T., York, D. and Pedersen, L., 1993. Particle mesh Ewald: An N.log 
(N) method for Ewald sums in large systems, The Journal of Chemical 
Physics, 98, 10089. 

[200] Hermans, J., Berendsen, H., van Gunsteren, W. and Postma, J., 1984. A 
consistent empirical potential for water-protein interactions, 
Biopolymers, 23. 

[201] Berendsen, H., Van der Spoel, D. and Van Drunen, R., 1995. GROMACS: 
a message-passing parallel molecular dynamics implementation, 
Computer Physics Communications, 91, 43–56. 

[202] Lindahl, E., Hess, B. and van der Spoel, D., 2001. GROMACS 3.0: a 
package for molecular simulation and trajectory analysis, Journal of 
Molecular Modeling, 7, 306–317. 

[203] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. and 
Berendsen, H., 2005. GROMACS: fast, flexible, and free, Journal of 
Computational Chemistry, 26, 1701–1718. 

[204] Medek, P., Benevs, P. and Sochor, J., 2007. Computation of tunnels in 
protein molecules using Delaunay triangulation, Journal of WSCG, 15, 
107–114. 

[205] Humphrey, W., Dalke, A. and Schulten, K., 1996. VMD: visual molecular 
dynamics, Journal of Molecular Graphics, 14, 33–38. 

[206] DeLano, W., 2002. 
[207] Amadei, A., Linssen, A. and Berendsen, H., 1993. Essential dynamics of 

proteins, Proteins: Structure, Function, and Genetics, 17. 
[208] Kitao, A., Hirata, F. and Go, N., 1991. The effects of solvent on the 

conformation and the collective motions of protein: normal mode 
analysis and molecular dynamics simulations of melittin in water and 
in vacuum, Chemical physics, 158, 447–472. 



 73 

[209] Garcia, A., 1992. Large-amplitude nonlinear motions in proteins, Physical 
review letters, 68, 2696–2699. 

[210] Ivetac, A., Campbell, J. and Sansom, M., 2007. Dynamics and Function in a 
Bacterial ABC Transporter: Simulation Studies of the BtuCDF System 
and Its Components, Biochemistry, 46, 2767–2778. 

[211] Filippov, A., Oradd, G. and Lindblom, G., 2003. Influence of Cholesterol 
and Water Content on Phospholipid Lateral Diffusion in Bilayers, 
Langmuir, 19, 6397–6400. 

[212] Douliez, J., Leonard, A. and Dufourc, E., 1995. Restatement of order 
parameters in biomembranes: calculation of CC bond order 
parameters from CD quadrupolar splittings, Biophysical journal, 68, 
1727–1739. 

[213] Hildebrand, P., Gunther, S., Goede, A., Forrest, L., Frommel, C. and 
Preissner, R., 2008. Hydrogen-bonding and packing features of 
membrane proteins: functional implications, Biophysical journal, 94, 
1945–1953. 

[214] Becker, J.P., Van Bambeke, F., Tulkens, P.M. and Provost, M., 2010. 
Dynamics and Structural Changes Induced by ATP Binding in 
SAV1866, a Bacterial ABC Exporter, The Journal of Physical 
Chemistry B, 0. 

[215] Aittoniemi, J., de Wet, H., Ashcroft, F. and Sansom, M., 2010. Asymmetric 
Switching in a Homodimeric ABC Transporter: A Simulation Study, 
PLoS Comput Biol, 6, e1000762. 

 
 

 



 74 



 75 

CURRICULUM VITAE 

 

 
Candidate’s full name:  Deniz KARASU  

Place and date of birth:  02.12.1978 

Permanent Address:  Selimiye quarter, Bestekar Avni Anıl St. Hamle Apt. 
No:15/12 Üsküdar / İSTANBUL 

Universities and 
Colleges attended:   

 M.Sc. (2008-2010) Istanbul Technical University, Molecular Biology and 
Genetic Department 

 B.Eng. (1998-2002) Istanbul University, Industrial Engineering 


