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A MODIFIED ANFIS SYSTEM FOR AERIAL VEHICLES CONTROL

SUMMARY

This thesis presents fuzzy logic systems (FLS) and their control applications in aerial
vehicles. In this context, firstly, type-1 fuzzy logic systems and secondly type-2
fuzzy logic systems are examined. Adaptive Neuro-Fuzzy Inference System (ANFIS)
training models are examined and new type-1 and type-2 models are developed and
tested. The new approaches are used for control problems as quadrotor control.

Fuzzy logic system is a humanly structure that does not define any case precisely
as 1 or 0. The Fuzzy logic systems define the case with membership functions. In
literature, there are very much fuzzy logic applications as data processing, estimation,
control, modeling, etc. Different Fuzzy Inference Systems (FIS) are proposed as
Sugeno, Mamdani, Tsukamoto, and Şen. The Sugeno and Mamdani FIS are the most
widely used fuzzy logic systems. Mamdani antecedent and consequent parameters
are composed of membership functions. Because of that, Mamdani FIS needs
a defuzzification step to have a crisp output. Sugeno antecedent parameters are
membership functions but consequent parameters are linear or constant and so, the
Sugeno FIS does not need a defuzzification step.

The Sugeno FIS needs less computational load and it is simpler than Mamdani FIS
and so, it is more widely used than Mamdani FIS. Training of Mamdani parameters
is more complicated and needs more calculation than Sugeno FIS. The Mamdani
ANFIS approaches in the literature are examined and a new Mamdani ANFIS model
(MANFIS) is proposed. Training performance of the proposed MANFIS model is
tested for a nonlinear function and control performance is tested on a DC motor
dynamic. Besides, Şen FIS that was used for estimation of sunshine duration in 1998,
is examined. This ŞEN FIS antecedent and consequent parameters are membership
functions as Mamdani FIS and needs to defuzzification step. However, because of the
structure of the Şen defuzzification structure, the Şen FIS can be calculated with less
computational load, and therefore Şen ANFIS training model has been created. These
three approaches are trained on a nonlinear function and used for online control.

In this study, the neuro-fuzzy controller is used as online controller. Neuro-fuzzy
controllers consist of simultaneous operation of two functions named fuzzy logic
and ANFIS. The fuzzy logic function is the one that generates the control signal. It
generates a control signal according to the controller inputs. The other function is the
ANFIS function that trains the parameters of the fuzzy logic function. Neuro-fuzzy
controllers are intelligent controllers, independent of the model, and constantly
adapting their parameters. For this reason, these controllers’ parameters values are
constantly changing according to the changes in the system. There are studies on
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different neuro-fuzzy control systems in the literature. Each approach is tested on a
DC motor model that is a single-input and single-output system, and the neuro-fuzzy
controllers’ advantages and performances are examined. In this way, the approaches
in the literature and the approaches added within the scope of the thesis are compared
to each other. Selected neuro-fuzzy controllers are used in quadrotor control.

Quadrotors have a two-stage controller structure. In the first stage, position control
is performed and the position control results are defined as angles. In the second
stage, attitude control is performed over the calculated angle values. In this thesis,
the neuro-fuzzy controller is shown to work perfectly well in single layer control
structures, i.e., there was not any overshooting, and settling time was very short.
But it is seen from quadrotor control results that the neuro-fuzzy controller can not
give the desired performance in the two-layered control structure. Therefore, the
feedback error learning control system, in which the fuzzy controller works together
with conventional controllers, is examined.

Fundamentally, there is an inverse dynamic model parallel to a classical controller in
the feedback error learning structure. The inverse dynamic model aims to increase
the performance by influencing the classical controller signal. In the literature, there
are a lot of papers about the structure of feedback error learning control and there
are different proposed approaches. In the structure used in this work, fuzzy logic
parameters are trained using ANFIS with error input.The fuzzy logic control signal
is obtained as a result of training. The fuzzy logic control signal is added to the
conventional controller signal. This study has been tested on models such as DC
motor and quadrotor. It is seen that the feedback error learning control with the ANFIS
increases the control performances.

Antecedent and consequent parameters of type-1 fuzzy logic systems consist of certain
membership functions. A type-2 FLS is proposed to better define the uncertainties,
because of that, type-2 fuzzy inference membership functions are proposed to include
uncertainties. The type-2 FLS is operationally difficult because of uncertainties. In
order to simplify type-2 FLS operations, interval type-2 FLS is proposed as a special
case of generalized type-2 FLS in the literature.

Interval type-2 membership functions are designed as a two-dimensional projection
of general type-2 membership functions and represent the area between two type-1
membership functions. The area between these two type-1 membership functions
is called Footprint of Uncertainty (FOU). This uncertainty also occurs in the weight
values obtained from the antecedent membership functions. Consequent membership
functions are also type-2 and it is not possible to perform the defuzzification step
directly because of uncertainty. Therefore, type reduction methods have been
developed to reduce the type-2 FLS to the type-1 FLS. Type reduction methods try to
find the highest and lowest values of the fuzzy logic model. Therefore, a switch point
should be determined between the weights obtained from the antecedent membership
functions. Type reduction methods find these switch points by iterations and this
process causes too much computation, so many different methods have been proposed
to minimize this computational load. In 2018, an iterative-free method called Direct
Approach (DA) was proposed. This method performs the type reduction process faster
than other iterative methods.
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In the literature, studies such as neural networks and genetic algorithms on the training
for parameters of the type-2 FLS still continue. These studies are also used in the
interval type-2 fuzzy logic control systems. There are proposed interval type-2 ANFIS
structures in literature, but they are not effective because of uncertainties of interval
type-2 membership functions.

FLS parameters for ANFIS training should not contain uncertainties. However, the
type-2 FLS should inherently contain uncertainty. For this reason, Karnik-Mendel
algorithm is modified, which is one of the type-reduction methods, to apply the ANFIS
on interval type-2 FLS. The modified Karnik-Mendel algorithm gives the same results
as the Karnik-Mendel algorithm. The modified Karnik-Mendel algorithm also gives
exact parameter values for use in ANFIS. One can notice that the ANFIS training of
the interval type-2 FLS has been developed successfully and has been used for system
control.
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HAVA ARAÇLARI KONTROLÜ İÇİN DEĞİŞTİRİLMİŞ ANFIS SİSTEMİ

ÖZET

Bu tez; bulanık çıkarım sistemlerini ve eğitimlerini inceleyerek bulanık çıkarım
sistemlerinin kontrol alanında uygulamalarını incelemektedir. Yapılan çalışmada
öncelikle tip-1 bulanık mantık sistemleri incelenmiş, sonra tip-2 bulanık sistemleri
incelenmiştir. Literatürde ki eğitim modelleri incelenerek yeni eğitim modelleri
geliştirilmiş ve belli denklemler için test edilmiştir. Bu yeni modeller ile quadrotor
kontrolü yapılmıştır.

Bulanık mantık sistemleri insanların düşünsel yapısı göz önünde bulundurularak
geliştirilmiş sistemlerdir. Herhangi bir olaya 1 veya 0 gibi bir yaklaşım sergilemek
yerine belli üyelik dereceleri ile yaklaşılmaktadır. Bu sistemler ortaya çıktıktan
sonra literatürde veri işleme, tahmin, sistem kontrolü, modelleme vb. çok farklı
alanlarda uygulanmışlardır. Bugün için ulaşılabilir literatürde Sugeno, Mamdani,
Şen, Tsukamato gibi farklı çıkarım sistemleri türetilmiş ve kullanılmıştır. Mamdani
ve Sugeno bu sistemlerin en yaygın kullanılanlarıdır. Mamdani bulanık çıkarım
sisteminin giriş ve çıkış parametreleri üyelik fonksiyonlarından oluşmaktadır. Çıkış
parametreleri üyelik fonksiyonlarından oluştuğu için durulaştırma adımına ihtiyaç
duymaktadır. Sugeno bulanık çıkarım sistemi ise hesap yükü daha az olan bir sistemdir
ve çıkış parametreleri sabit veya doğrusal olarak seçilebilir. Çıkış parametreleri üyelik
fonksiyonu barındırmadığı için tekrar durulaştırma işlemine ihtiyaç duymamaktadır.

Sugeno bulanık çıkarım sistemi, çıkış parametrelerinin doğrusal veya sabit olmasından
kaynaklı olarak daha az matematiksel yük içerdiğinden daha yaygın olarak
kullanılmaktadır. Ne var ki, çıkış parametreleri üyelik fonksiyonları şeklinde olan
Mamdani bulanık çıkarım sisteminin parametrelerinin eğitimi daha zor olmaktadır ve
kullanım alanı daha kısıtlı kalmıştır. Bu tezde literatürde bulunan eğitim modelleri
incelenmiş ve Mamdani için yeni bir eğitim modeli oluşturulmuştur. Ayrıca 1998
yılında güneş ışınımının tahmini için kullanılan Şen bulanık çıkarım sistemi de
incelenmiştir. Bu bulanık çıkarım sisteminin giriş ve çıkış parametreleri Mamdani gibi
bulanıktır ve durulaştırma işlemine ihtiyaç duymaktadır. Fakat, çıkarım sisteminden
kaynaklı olarak daha az hesaplama yükü ile hesaplanabilmektedir. Ulaşılabilir
literatürde Şen bulanık çıkarım sisteminin eğitimi üzerine çalışma bulunmadığı için
tez çalışması kapsamında yeni bir eğitim modeli oluşturulmuştur. Bu üç yaklaşımında
eğitimi bir örnek üzerinden yapılarak karşılaştırılmış ve çevrimiçi olarak kontrol için
kullanılmışlardır.

Bu tez kapsamında nöro-bulanık kontrolcüler üzerinde çalışılmıştır. Nöro-bulanık
kontrolcüler akıllı kontrolcü olup, modelden bağımsızdırlar ve sürekli olarak
kendi parametrelerini eğiterek değiştirmektedirler. Bu sebeple, bu kontrolcünün
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parametreleri sistem çalışırken sürekli olarak değişmektedirler. Nöro-bulanık
kontrolcüler iki ayrı fonksiyonun aynı anda çalışmasından oluşmaktadır. Bu
fonksiyonlar bulanık mantık fonksiyonu ve eğitim fonksiyonu olarak isimlendirilebilir.
Bulanık mantık fonksiyonu kontrol sinyalini üreten fonksiyondur ve bulanık kontrol
sistemine giren girdilere göre kontrol sinyali üretmektedir. Eğitim fonksiyonu
ise uyarlamalı nöro-bulanık çıkarım sisteminden (ANFIS) oluşmaktadır. Bu
fonksiyon bulanık mantık fonksiyonunun parametrelerinin eğitimini yapmaktadır.
Literatürde farklı nöro-bulanık kontrol sistemleri üzerine çalışmalar bulunmaktadır.
Bu yaklaşımlar tez kapsamında tek giriş ve tek çıkışlı bir sistem olan bir motor
modeli üzerinde denenerek avantajları ve performansları incelenmiştir. Bu sayede
literatürdeki yaklaşımlar ve tez kapsamında eklenen yaklaşımlar incelenmiştir. Seçilen
nöro-bulanık kontrolcüler quadrotor modeli üzerinde test edilmiştir.

Quadrotörler iki aşamalı bir kontrolcü yapısına sahiptir. Birinci aşamada pozisyon
kontrolü yapılmaktadır ve bu kontrol sayesinde açı değerlerine ulaşılmaktadır. İkinci
aşamada hesaplanan açı değerleri üzerinden yönelme kontrolü yapılmaktadır. Yapılan
testler sonucunda nöro-bulanık kontrolcünün tek katmanlı yapılarda mükemmel
derecede iyi çalıştığı görülmüştür yani aşım oluşmamış, oturma zamanı ise çok kısa
olmuştur. Yalnız iki kontrolün peş peşe olduğu katlı yapıda nöro-bulanık kontrolcünün
istenen performansı veremediği görülmüştür. Bu sebeple bulanık kontrolcünün
başka kontrolcülerle beraber çalıştığı Geri-Beslemeli hata öğrenme kontrol sistemi
incelenmiştir. Bu kontrol yapısında genel olarak klasik bir kontrolcüye paralel
şekilde dinamik modelin tersini içeren bir model daha bulunmaktadır. Ters dinamik
model klasik kontrolcüden gelen kontrol sinyalini etkileyerek kontrolcü performansını
artırmayı hedeflemektedir. Literatürde bu geri-beslemeli hata öğrenme kontrolünün
yapısı üzerine çok çalışma yapılmış ve farklı yaklaşımlar önerilmiştir. Bu tezde
kullanılan yapıda hata girişi ile beraber uyarlamalı nöro-bulanık çıkarım sistemi
kullanılarak bulanık mantık parametreleri eğitilmiştir. Bu parametrelerin eğitimi
sonucunda elde edilen kontrol sinyali klasik kontrol sinyalinin üzerine eklenmiştir.
Bu çalışma DC motor ve quadrotor gibi modeller üzerinde test edilmiştir ve kontrol
performanslarının çok iyi düzeyde arttığı görülmüştür.

Tip-1 bulanık mantık sistemlerinin giriş ve çıkış parametreleri açık ve kesin üyelik
fonksiyonlarından oluşmaktadır. Belirsizlikleri daha iyi tanımlayabilmek için tip-2
bulanık mantık sistemi önerilmiştir. Tip-2 üyelik fonksiyonları belirsizlikler içeren
fonksiyonlardır ve bu durum tip-2 bulanık mantık sistemi ile işlem yapılmasını
zorlaştırmaktadır. Bu sebeple literatürde tip-2 bulanık sistemin özel bir durumu
olarak aralık değerli tip-2 bulanık mantık sistemi önerilmiştir. Aralık değerli tip-2
üyelik fonksiyonları, genel tip-2 üyelik fonksiyonlarının iki boyutlu iz düşümü
şeklinde tasarlanmıştır. Bir aralık değerli tip-2 üyelik fonksiyonu 2 tane tip-1 üyelik
fonksiyonun arasında kalan alan ile ifade edilmektedir. Bu iki tane tip-1 üyelik
fonksiyonu arasında kalan alana Belirsizliğin Ayakizi ismi verilmiştir. Bu üyelik
fonksiyonlarındaki belirsizlik sebebiyle üyelik fonksiyonlarından elde edilen üyelik
değerleri de belirsizlik içermektedir. Çıkış üyelik fonksiyonları da aralık değerli tip-2
üyelik fonksiyonu olduğundan belirsizlik içermektedir ve bu nedenle durulaştırma
işlemi yapmak imkansızdır. Durulaştırma işlemini yapabilmek için tip-2 bulanık
çıkarım sistemi tip-1 bulanık çıkarım sistemine indirgenmelidir. Bunun için tip
indirgeme yöntemleri oluşturulmuştur.
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Tip indirgeme yöntemleri herhangi bir tip-2 bulanık mantık modelinin alabileceği en
yüksek ve en düşük değerleri bulmaya çalışmaktadır. Bunun için üyelik değerlerinden
elde edilen ağırlıkların arasında bir değişim noktası belirlenmelidir. Tip indirgeme
yöntemleri bu değişim noktalarını iterasyonlar ile bulmaktadır. İterasyonlar yüksek
hesaplama yükü içerdiğinden bu hesaplama yükünü minimize edecek birçok farklı
yöntem önerilmiştir. En son 2018 yılında Direkt Yaklaşım isimli iterasyonsuz bir
yöntem önerilmiştir. Bu yöntem kural sayısı yüksek olduğunda tip indirgeme işlemini
iterasyonlu yöntemlere göre daha hızlı yapmaktadır ancak düşük kural sayılarında
diğer yöntemlerden daha yavaş kalmaktadır.

Literatürde tip-2 ve aralık değerli tip-2 bulanık sistemlerinin parametrelerinin eğitimi
üzerine sinir ağları, genetik algoritmalar gibi çalışmalar hâlâ devam etmektedir. Bu
tez kapsamında aralık değerli tip-2 bulanık mantık sisteminin eğitimi için ANFIS
yapısı incelenmiştir. Açık literatürde ANFIS yapısının tip-2 için kullanımının
verimli olmadığı belirtilmiştir. Bunun sebebi ANFIS eğitiminin belirsizlik içermeyen
parametrelerle yapılması gerekliliğidir. Fakat belirsizlik tip-2 bulanık çıkarım
sisteminin doğasından gelmektedir ve bu sebeple tip-2 ve aralık değerli tip-2 bulanık
çıkarım sistemlerinin içindeki değerler belirsizlik içermektedir.

Belirsiz parametreler sorununun üstesinden gelmek için, bu tezde tip indirgeme
yöntemlerinden birisi olan Karnik-Mendel algoritması üzerinde değişiklikler yapılarak
değiştirilmiş Karnik-Mendel algoritması oluşturulmuştur. Bu değiştirilmiş indirgeme
yöntemi sayesinde belirsiz parametreler yerini belirsizlik içermeyen parametrelere
bırakmıştır. Bu kesin parametre değerleri kullanılarak aralık değerli tip-2 bulanık
mantık sisteminin parametrelerinin ANFIS eğitimi başarılı şekilde yapılabilmiştir.
Geliştirilen aralık değerli tip-2 ANFIS yapısı bir doğrusal olmayan fonksiyon üzerinde
test edilmiştir ve sistem kontrolü (DC motor, quadrotor) için kullanılmıştır.
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1. INTRODUCTION

Aircrafts are nonlinear systems that include nonlinearities and uncertainties. Their

controllers have to cope with noises and disturbances like wind, turbulence, etc.

So, there are very many control researches that are tested on the aircrafts as linear

(PID, Linear Quadratic Regulator), model based (Adaptive Control, Sliding mode

Controller) and intelligent controllers (Neural Network, Fuzzy Logic). The linear

controllers are the commonly utilized controllers in industry [1] that their parameters

can be calculated with respect to requirements like overshoot, settling time, etc. These

control methods are linear and so they have operating limits.

The model based controllers as Adaptive Control and Sliding Mode Controller

(SMC) are nonlinear. The nonlinear controllers can cope with changes in system

dynamics. However, their robustness is limited with system design. For example,

an inverse model for adaptive control is determined before implementation [2] and

in an unexpected disturbance or model change, the controller’s operating range can

be exceeded. However, intelligent controllers like Neural Network (NN), Genetic

algorithms (GA) and Fuzzy Logic (FL) based controllers don’t depend on the

mathematical model and they can handle unexpected changes better than conventional

control methods. In this thesis, Fuzzy Logic Systems (FLS) are examined and Fuzzy

Logic Controllers (FLC) are tested on a quadrotor model.

1.1 Purpose of Thesis

Aerial vehicles are highly nonlinear systems and implementation of intelligent

controllers on aerial vehicles is still a research area. This thesis aims to develop

intelligent controllers and test nonlinear system dynamics. So, fuzzy logic systems

in the literature are examined and new approaches are proposed for modelling and

control. The new approaches are compared to existing models to see their advantages

and disadvantages.
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The fuzzy logic systems can be given under two headings as type-1 FLS and type-2

FLS. The type-1 FLS has different FISs as Sugeno, Mamdani, Tsukamato, etc. In the

scope of this thesis, adaptive neuro fuzzy inference system (ANFIS) is constructed for

Mamdani and Şen FIS. They are compared to Sugeno ANFIS for training performances

and used for online ANFIS controller. In this way, in addition to the studies proposed

in the literature, better control performance is tried to be obtained.

Type-2 FLS includes highly uncertainty in its antecedent and consequent parameters.

So, in the literature, interval type-2 FLS is proposed to simplify the type-2 FLS

calculations. The interval type-2 ANFIS is mentioned in the literature as ineffective

and so a new ANFIS approach is developed in the scope of this thesis. A new

type-reduction approach that the interval type-2 FLS needs it to have a crisp output,

is proposed to develop the new ANFIS model. The developed interval type-2 ANFIS

model is tested and compared with the type-1 ANFIS for training and control. The new

interval type-2 ANFIS model works with less error when compared to type-1 ANFIS

and this shows that it can be used more efficiently in modelling and control.

1.2 Literature Review

Fuzzy Logic System is one of the Computational Intelligent (CI) methods that are very

useful to represent nonlinear systems and mathematically non-solvable problems [3,4].

There are two commonly used type-1 FLS as Sugeno and Mamdani. The Mamdani

FLS antecedent and consequent parameters are fuzzy, so it needs to defuzzification

step to have an exact value [5]. Because of its fuzzy consequent Membership Functions

(MFs), the Mamdani FLS is linguistic and it has humanly structure. Sugeno FLS

consequent parameters are crisp or linear functions and so, Sugeno FLS does not have

a defuzzification step. Sugeno FLS is more effective at engineering problems than

Mamdani FLS [6].

FLS parameters can be determined by expert opinion. But it is very hard to use expert

opinion for complicated systems. So, training methods are proposed in the literature

that ANFIS is the most used training approach [7,8]. The FLS training involves

two stages as antecedent parameters training and consequent parameters training.

In ANFIS, the antecedent parameters training is performed with Gradient Descent
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(GD) algorithm and consequent parameters’ training is performed with Least Square

Estimation (LSE) or Gradient Descent algorithms [9]. For FLS training, different

techniques can be used as stated in the literature, but the mentioned method needs

less computational load and gives better results than other methods [10,11].

Because of the simplicity of the Sugeno FLS, the ANFIS is widely used in engineering

problems. However, since Mamdani FLS consequent parameters are fuzzy, it is more

suitable for human nature. So, in the literature, the Mamdani ANFIS (MANFIS)

structure is proposed and compared to ANFIS for traffic solution problem [12]. The

suggested MANFIS structure in the literature is examined and a new MANFIS model

with better results is proposed in this thesis [13]. The new enhanced MANFIS model

that is created under some assumptions is tested for modelling and control studies.

In 1998, Şen FLS was proposed to estimate solar irradiation from sunshine duration

[14]. The proposed Şen FLS was used for single input single output system. The ŞEN

FIS antecedent and consequent parameters are MFs but output calculation is simple

as Sugeno FLS. In this thesis, we made the Şen FLS available for multi input multi

output system. We proposed a new ŞEN ANFIS structure and tested it in modelling

and control studies.

The aerial vehicle control system is still a main problem because of their nonlinearities,

coupling effects, disturbances etc [15]. So, intelligent controllers like fuzzy logic

controller (FLC) [16] and Neural Network (NN) [17] are used as aircraft controllers.

In the literature, the FLCs were used directly to produce control signals, to tune PID

coefficients or they were used together as Fuzzy-PID controllers. FLC was directly

used to control pH system in [18,19], a DC motor [20], an ABS brake system [21], a 2

DOF helicopter system [22] etc. Besides, Fuzzy-PID controllers were examined in the

literature [23]–[27].

The classical FLCs need optimized FLS parameters those are determined by expert

opinion or off-line ANFIS trainings. So, their parameters are constant. These

controllers must run in some intervals and assumptions. Because of that, it can go

into uncertainty if unexpected changes occur in the system. To overcome this problem,

intelligent controllers have been studied within the scope of this thesis. In this thesis,
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Neural Network based FLCs are examined. In 2007, a Neuro-Fuzzy Controller (NFC)

was implemented to an Induction Motor Drive with two control inputs and a target

function [28]. The results were compared to PI controller. In 2010, a new NFC with

three control inputs is implemented to a Servo system and compared to PI [29]. In

2014, a two input NFC compared to PID on a 2 DOF helicopter system [30]. The

methods proposed in the literature have been revised and new target functions and

NFC structures have been created. The NFC methods that we proposed in this study

have been tested and compared to each other for Sugeno, Mamdani and ŞEN FLC [31].

Quadrotor is a highly nonlinear system that has decoupling effects and needs a

cascaded control structure [32]. There are very different control studies about

quadrotor in open literature [1]. In this work, the NFC controllers have been tested

on a quadrotor model and the results show that there is no overshoot and oscillation

for the attitude controller. However, the NFC controller was not effective for quadrotor

position control because of cascaded structure. Therefore, Feedback Error Learning

(FEL) Controllers, which are a combination of classical controllers and NFC, were

examined.

The FEL controller was proposed to help the main controller as inverse system

dynamic [33]. The dynamic inverse model can be calculated mathematically [34,35]

or any other learning method as Neural Network [36]. In 2007, a new FEL approach is

proposed with on-line neural network learning algorithm [37]. This new approach was

effectively used for control of nonlinear systems as satellites [38] and quadrotors [15]

with Type-2 Fuzzy Logic System. The FEL controller has been tested for single input

single output (SISO) and multi input multi output (MIMO) systems in this work.

Although T1 FLCs are used effectively for nonlinear systems, T1 Fuzzy Sets (FS) is

not adequate to define uncertainties because type-1 MFs are precise [39]. So, Type-2

Fuzzy Sets (FS) are proposed by Lotfi A. Zadeh to directly include uncertainty into

FSs [40]. The Type-2 FSs include uncertainty because of the type-2 MFs’ three

dimensional structure but are rather difficult to calculate [41]. Because of that, the

three-dimensional structure of Generalized Type-2 FSs is reduced to two-dimensional

structure named as Interval Type-2 Fuzzy Logic System (IT2 FLS) [42]. Even when
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the FSs are two-dimensional, the uncertainty continued and a crisp value could not

be obtained as a result of the defuzzification step. So, Karnik-Mendel Algorithm

(KMA) is proposed as a type-reduction method that reduces the Interval Type-2 FSs to

Type-1 FSs [43]. The KMA finds an optimal switch point by iterations for reduction.

Enhanced Karnik-Mendel Algorithm (EKMA) is proposed to reduce the computational

cost that EKMA defines starting points for switching [44]. Iterative Algorithm with

Stop Condition (IASC) [45] and Enhanced Iterative Algorithm with Stop Condition

(EIASC) [46] are proposed to reduce the computational load by reducing the iteration

numbers. In 2018, Direct Approach (DA) is proposed to minimize the computational

load by eliminating the iterations and this study is tested within the scope of this

thesis [47].

There are many IT2 FLC studies in the literature performed with the above-mentioned

type-reduction methods and it is seen that the IT2 FLC is better than T1 FLC to

handle uncertainties [48,49]. The Karnik-Mendel Algorithm was used for control of

autonomous mobile robots and it has been stated that IT2 FLC is better than T1 FLC at

dealing with uncertainties [39]. In [39], the IT2 FLS was used without any learning or

model inversion. The first model inversion method for IT2 FLS is proposed to control a

nonlinear Internal Model Control structure [50,51]. A precise method was proposed to

create the inverse of the interval Type-2 Takagi-Sugeno FLS by using a pure analytical

method. But, the presented method can only be used for SISO systems. The IT2

FLC and PID combinations are tested on a 2 DOF helicopter model [52] and on a

pH control system [53]. These studies [52,53] indicate that robustness of IT2-FLCs

has been observed. However, all of these IT2 FLCs were implemented in systems

without intelligent learning. Training of IT2 FLS parameters is a complicated problem

because of parameters uncertainty. There are very much IT2 FLS parameters training

approaches in the literature such as Big Bang-Big Crunch optimization [54,55],

gradient descent [56], neural network [57], sliding mode [15,58,59] that they are used

in IT2 FLCs.

The IT2 ANFIS method given in the literature is examined. It is seen that the IT2

ANFIS results are worse than T1 ANFIS results [60,61]. This is because of uncertainty

in the IT2 FLS antecedent and consequent parameters. The ANFIS parameters must
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be crisp for training. In this study, we proposed a new approach for Karnik-Mendel

algorithm named Modified Karnik-Mendel algorithm (M-KMA) that M-KMA uses

certain parameters to calculate FLS outputs. Thanks to this algorithm, the same results

with uncertain parameters can be obtained with certain parameters [62]. This enhanced

algorithm was tested for modelling and implemented in systems as controllers.

This thesis consists of 6 chapters. Chapter 1 discusses the purpose of the thesis and

literature review. Chapter 2 discusses the type-1 ANFIS studies. In this chapter,

two different ANFIS structures have been proposed for Mamdani FLS and Şen FLS.

Chapter 3 discusses the NFC and FEL controllers based on the proposed ANFIS

structures. In this section, target functions and NFC structures in the literature are

examined. New target function and NFC structures are proposed. Chapter 4 discusses

the interval type-2 fuzzy logic systems. Type reduction methods have been reviewed

and a new IT2 ANFIS structure is proposed and tested by modifying the KMA type

reduction method. Chapter 5 discusses the usage of the proposed IT2 ANFIS structure

for control studies. Chapter 6 discusses the quadrotor model. The proposed fuzzy

logic control structures (NFC, FEL) in the thesis are tested for quadrotor position and

attitude control.
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2. MAMDANI ANFIS AND ŞEN ANFIS

This chapter includes training and comparison of three fuzzy logic systems those are

Sugeno FLS, Mamdani FLS and Şen FLS. Firstly, the Sugeno ANFIS is examined

that is a widely used model in literature. Secondly, Mamdani ANFIS is examined

that there are Mamdani ANFIS studies in the literature [12]. But we proposed a new

Mamdani ANFIS model to get better results than the Mamdani ANFIS models given in

the literature. The proposed Mamdani ANFIS is compared to Sugeno ANFIS. Thirdly,

Şen FLS is examined. There is not any Şen ANFIS model in the open literature. We

proposed a Şen ANFIS model and its advantages and disadvantages are discussed.

The learning algorithms are implemented for a three input nonlinear function. So, the

results are compared to each other with equation 2.1 [63].

y = 1+a0.5 +b−1.5 + sin(c) (2.1)

Range is chosen as [0.5, 10] with sample time is 0.5. For the given range [1,

20]x[1, 20]x[1, 20], there are 8000 training data pairs. So, training data matrix

is (8000x4). Membership functions for every inputs are chosen as 4 trapezoid

membership functions.

The performances of methods for consequent parameters are calculated for GD and

LSE. In the following chapters, the training parameters are used in control algorithms.

To have less complex and less computational burden, the antecedent parameters’

training is not performed. Anyway, the antecedent parameters’ training does not

change the result much as seen in the Table 2.1. The ANFIS antecedent parameters

are defined as given in Figure 2.1. "2.00" states the maximum value of the inputs and

"0" states the minimum value of the inputs.
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Figure 2.1 : ANFIS antecedent parameters.

2.1 Sugeno FIS

Sugeno FIS has and/or method, implication and defuzzification steps. In Matlab

ANFIS toolbox; for and/or operator "and/prod", for implication operator "product"

and for defuzzification operator "wtaver" is used. So, the same operators will be used.

The ANFIS structure is given in Figure 2.2. The trained Sugeno FLS structure is:

Step 1: Fuzzification;

O1
i = µAi(x) O1

i = µBi(y) (2.2)

Step 2: "and/or" method:

O2
i = µAi(x)∗µBi(y) = wi (2.3)

Step 3: Implication "product" operator:

fi = pi ∗ x1 +qi ∗ x2 + ri O3
i = wi ∗ fi (2.4)

Step 4: Aggregation "sum" operator:

O4
i =

n

∑
i=1

O3
i (2.5)

Step 5: Defuzzification "wtaver" (weighted average) operator:

O5
i =

O4
i

∑
n
i=1 wi

(2.6)
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Figure 2.2 : ANFIS structure.

2.2 Sugeno ANFIS

For the given Sugeno FLS structure; the ANFIS structure in the literature is given

below:

Layer 1: Membership functions are generated:

O1
i = µAi(x) O1

i = µBi(y) (2.7)

Layer 2: The membership grades are multiplied with each others:

O2
i = µAi(x)∗µBi(y) = wi (2.8)

Layer 3: The "wtaver" method is represented and weights are normalized.:

O3
i =

wi

∑
n
i=1 wi

(2.9)

Layer 4: The rule outputs are calculated:

O4
i = yi = wi fi = wi(pix1 +qix2 + ri) (2.10)

Layer 5: All rule outputs are summed up:

O5
i =

n

∑
i=1

yi =
n

∑
i=1

wi fi = (w1x1)p1 +(w1x2)q1 +w1r1 +(w2x2)p2 +(w2x2)q2 +w2r2

(2.11)

In this study, consequent parameters are trained with LSE and GD methods.
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2.2.1 ANFIS LSE Method

The LSE method equations are given below as stated in the literature. The equation

2.11 can be written again to use LSE as given below [9]:

y = (w1x1)p1 +(w1x2)q1 +w1r1 +(w2x1)p2 +(w2x2)p2 +w2r2 (2.12)

y =
[
w1x1 w1x2 w1 w2x1 w2x2 w2

]


p1
q1
r1
p2
q2
r2

= XW (2.13)

Figure 2.3 : Measured and LSE based ANFIS calculated data.

In the equations, "w" is the weights, "x" is the inputs and "W" is the consequent

parameters. The inputs are known and the weights are calculated. The ANFIS trains

the consequent parameters.

Y = XW ⇒W = X−1Y (2.14)

Generally, X does not be a square matrix and so it can not be inverted. Then,

pseudo-inverse is used. The trained Sugeno FLS is tested with actual data taken from

the equation 2.1 and with a desired sinusoidal trajectory. The results are given in Figure

2.3 and in Figure 2.4.
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Figure 2.4 : LSE based ANFIS results on a trajectory.

2.2.2 ANFIS Gradient Descent Method

In some cases, the pseudo-inverse of the X matrix can be meaningless and then the

LSE method can be ineffective. The GD that is used in online ANFIS controller, does

not need to inverse of the X matrix. The GD equations are given below as stated in the

literature where "y" is measured output values, "yt" is calculated output values, "lr" is

learning rate and W = ri.

E =
1
2
(y− yt)2 y = XW (2.15)

r(t +1) = r(t)− lr
∂E
∂ ri

(2.16)

∂E
∂ ri

= (y− yt)X (2.17)

r(t +1) = r(t)− lr(y− yt)X ⇒W (t +1) =W (t)− lr(y− yt)X (2.18)

The GD based ANFIS model is trained to create a Sugeno FLS. The trained Sugeno

FLS is tested with actual data taken from the equation 2.1 and on a desired sinusoidal

trajectory. The results are given in Figures (2.5, 2.6). Similarly, the LSE based ANFIS

training with Matlab tool is made and tested with actual data taken from the equation

2.1 on a desired sinusoidal trajectory. The results are given in Figures (2.7, 2.8).
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Figure 2.5 : Measured and GD based ANFIS calculated data.

Figure 2.6 : GD based ANFIS results on a trajectory.

Figure 2.7 : Measured and Matlab ANFIS tool calculated (LSE) data for 40 epochs.
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Figure 2.8 : Matlab ANFIS tool (LSE) results on a trajectory for 40 epochs.

Table 2.1 : Comparison of ANFIS training results.

Parameters Matlab ANFIS
Tool LSE

Sugeno
LSE

Matlab ANFIS
Tool GD

Sugeno
GD

Epoch Number 40 1 40 40
Training Error 0.175904 0.155995 2.812876 0.834712

In these ANFIS studies, only consequent parameters are trained. Also, the same

training is performed for antecedent and consequent training in Matlab ANFIS toolbox

for hybrid learning option. In the ANFIS tool, hybrid option is chosen that the

consequent parameters are trained with LSE and the antecedent parameters are trained

with back-propagation algorithm. In the Matlab ANFIS tool, back propagation option

is chosen that the antecedent and consequent parameters trained with back propagation

(GD) algorithms. The results show that only consequent parameters training is

effective as two sided training.

2.3 Mamdani FIS

Mamdani FIS antecedent and consequent parameters are fuzzy; however, Sugeno FIS

consequent parameters are constant or linear. So, the Mamdani FIS has advantages

over Sugeno FIS: The Mamdani FIS is institutional and very compatible with human

thought structure [12].

In this section, we proposed a Mamdani ANFIS (MANFIS) approach and it is

compared to Sugeno ANFIS for on-line and off-line training. Firstly, a target Mamdani
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FIS model must be determined to create a convenient MANFIS model. The chosen

Mamdani FIS operator: for and/or operator "and/prod", for implication operator

"product", for aggregation operator "sum" and for defuzzification operator "centroid"

is used. The selected Mamdani FIS structure is:

Step 1: Fuzzification:

O1
i = µAi(x) O1

i = µBi(y) (2.19)

Step 2: "and-prod" operator is used:

O2
i = µAi(x)∗µBi(y) = wi (2.20)

Step 3: Implication; "product" operator is used ("areai" is area of the consequent MFs)

:

O3
i = wi ∗areai = ai (2.21)

Step 4: Aggregation; "sum" operator is used ("zi" is center of the consequent MFs):

O4
i =

n

∑
i=1

(aizi) (2.22)

Step 5: Defuzzification; "centroid" operator is used:

O5
i =

∑
n
i=1(aizi)

∑
n
i=1 ai

(2.23)

2.4 Mamdani ANFIS

The maximum and minimum values of the measured data are divided to rule number.

So, the consequent MFs number will be equal to the rule number. The MANFIS

structure is proposed as given in Figure 2.9 for the selected Mamdani FIS model.

Layer 1: Membership functions are generated:

O1
i = µAi(x) O1

i = µBi(y) (2.24)

Layer 2: The "prod" operator is implemented. The membership grades are multiplied

with each others:

O2
i = µAi(x)∗µBi(y) = wi (2.25)
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Layer 3: Implication "prod" operator is used. ai is the consequent MFs area:

O3
i = wi ∗ (area) = ai (2.26)

For the consequent parameters training, the area of the consequent MFs are unknown.

So, the area must be determined. In this study area is defined as:

b1 =
max(ymeas)−min(ymeas)

rulenumber
(2.27)

b2 = 4∗b1 (2.28)

where b1 is top line and b2 is bottom line of the triangular. ymeas defines the training

output data.

area =
b1 +b2

2
(2.29)

This area calculation is used in this thesis for MANFIS. For simplicity, the area can be

selected as 1.

Layer 4: All areas are normalized:

O4
i =

ai

∑
n
i=1 ai

= ai (2.30)

Layer 5: Every rule output is calculated:

O5
i = yi = ziai (2.31)

Layer 6: All rule outputs are summed up:

O6
i =

n

∑
i=1

yi = a1z1 +a2z2 +a3z3... (2.32)

2.4.1 Mamdani ANFIS LSE Method

Least Square Estimation (LSE) is an effective training algorithm that is used in ANFIS.

The inverse of the X matrix must be calculated in LSE training method. This matrix is

given in the literature as [wiai] [12]. This is a [1,rulenumber] vector where the number

of columns is one and the number of rows equal to the rule number. Because of that,

inverse of the X vector is not precise.
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Figure 2.9 : MANFIS structure.

In this study, the Mamdani ANFIS structure is created as [ai] instead of [wiai] as seen

in Figure 2.9. The [ai] matrix is [rulenumber,datanumber]. So, the X matrix can

be calculated more precisely than previous version given in the literature [13]. The

Mamdani ANFIS LSE equations are given below:

y =
[
a1 a2 a3

]z1
z2
z3

= XW (2.33)

"X" is triggered MF areas and "W" is the consequent parameters. The triggered

membership functions and areas are known but the consequent parameters are not

known. So the consequent parameters will be trained.

Y = XW ⇒W = X−1Y (2.34)

The trained Mamdani FLS is tested with actual data taken from the equation 2.1 and

with a desired sinusoidal trajectory. The results are given in Figure 2.10 and in Figure

2.11.

2.4.2 Mamdani ANFIS Gradient Descent Method

The Gradient Descent (GD) method is adapted to MANFIS structure. The equations

are given below where "y" is measured output values, "yt" is calculated output values,

"lr" is learning rate and W = ri.

E =
1
2
(y− yt)2 y = ziai (2.35)
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Figure 2.10 : Measured and LSE based MANFIS calculated data.

Figure 2.11 : LSE based MANFIS results on a trajectory.

z(t +1) = z(t)− lr
∂E
∂ zi

(2.36)

∂E
∂ zi

= (y− yt)ai (2.37)

z(t +1) = z(t)− lr(y− yt)ai (2.38)

The trained Mamdani FIS is tested with actual data that was produced with equation

2.1 and on a sinusoidal desired trajectory. The selected Mamdani FIS is trained for 100

epochs.
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The Gradient Descent based Mamdani ANFIS training gives faster reaction than GD

based Sugeno ANFIS training. It is clear that the GD based MANFIS results have less

error when compared to Gradient based ANFIS. The results are given in Figures (2.12,

2.13).

Figure 2.12 : Measured and GD based MANFIS calculated data.

Figure 2.13 : Gradient based MANFIS results on a trajectory.

2.5 Şen FIS

Şen FIS is proposed as SISO system for estimation of solar irradiation from sunshine

duration in 1988 [14]. The Şen FIS antecedent and consequent parameters are fuzzy.

The Şen FIS structure is given in Figure 2.14.
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The first two steps are same for Mamdani, Sugeno and Şen FIS. In the third step, α

and z variables are calculated and multiplied with the rule weights [64]. This step

is different from other fuzzy inference systems. The selected Şen FIS structure for

training is given below:

Figure 2.14 : Şen FIS structure.

Step 1: Fuzzification;

O1
i = µAi(x) O1

i = µBi(y) (2.39)

Step 2: "and-prod" operator:

O2
i = µAi(x)∗µBi(y) = wi (2.40)

Step 3: Implication; "product" operator is used where z is center value of consequent

membership functions for symmetric MFs:

O3
i = wi ∗ zi zi =

α1 +α2

2
(2.41)
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Step 4: Aggregation; all rule outputs are summed up:

O4
i =

n

∑
i=1

O3
i (2.42)

Step 5: Defuzzification; "wtaver" (weighted average) operator is used:

O5
i =

O4
i

∑
n
i=1 wi

(2.43)

2.6 Şen ANFIS

As mentioned before, the Mamdani and Şen FIS antecedent and consequent parameters

are fuzzy; however, the Sugeno FIS consequent parameters are linear or constant. So,

Mamdani and Şen FIS have advantages on Sugeno model: they are heuristic and very

compatible to human thought structure [12].

In this work, a new Şen ANFIS structure is proposed with GD and LSE methods

respectively. The proposed method is given in the following sections and they are

tested on a nonlinear equation 2.1. The proposed Şen ANFIS training structure is

generated as given in Figure 2.15 for the selected Şen FIS model.

Layer 1: Membership functions are generated:

O1
i = µAi(x) O1

i = µBi(y) (2.44)

Layer 2: The "prod" operator is implemented. The membership grades are multiplied

with each others:

O2
i = µAi(x)∗µBi(y) = wi (2.45)

Layer 3: The weights are normalized:

O3
i =

wi

∑
n
i=1 wi

= wi (2.46)

Layer 4: The rule outputs are calculated:

O4
i = yi = wizi (2.47)

Layer 5: All rule outputs are summed up:

O5
i =

n

∑
i=1

wizi (2.48)
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Figure 2.15 : SANFIS structure.

2.6.1 Şen ANFIS LSE Method

To implement LSE to proposed Şen ANFIS, the X and W matrices must be defined as

given below:

y =
[
w1 w2 w3

]z1
z2
z3

= XW (2.49)

Figure 2.16 : Measured and LSE based Şen ANFIS calculated data.

"X" is normalized membership functions and "W" is the consequent parameters. The

consequent parameter calculation is given below as:

Y = XW ⇒W = X−1Y (2.50)
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Figure 2.17 : LSE based Şen ANFIS results on a trajectory.

The trained Şen FLS is tested with actual data taken from the equation 2.1 and with a

desired sinusoidal trajectory. The results are given in Figure 2.16 and in Figure 2.17.

2.6.2 Şen ANFIS Gradient Descent Method

The Gradient Descent (GD) method is adapted to Şen ANFIS structure. The equations

are given below where "y" is measured output values, "yt" is calculated output values,

"lr" is learning rate. Firstly, error is defined as:

E =
1
2
(y− yt)2 y = ziwi (2.51)

z(t +1) = z(t)− lr
∂E
∂ zi

(2.52)

∂E
∂ zi

= (y− yt)wi (2.53)

z(t +1) = z(t)− lr(y− yt)wi (2.54)

The trained Şen FIS is tested with actual data taken from the equation 2.1 and with a

desired sinusoidal trajectory.The results are given in Figure 2.18 and in Figure 2.19.

The result figures show that the three ANFIS models work regularly. While the best
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Figure 2.18 : Measured and GD based Şen ANFIS calculated data.

Figure 2.19 : GD based Şen ANFIS results on a trajectory.

results are taken from the LSE based Sugeno ANFIS, the worst results are taken from

the GD based Sugeno ANFIS models.

2.7 Comparison of Methods

The contribution of this chapter is the proposed Mamdani ANFIS and ŞEN ANFIS

models. The Şen FIS has been redesigned to be a multi input system. Afterwards,

Şen ANFIS is proposed for defined multi input Şen FIS. The Sugeno ANFIS and

proposed Mamdani ANFIS and Şen ANFIS structures are trained for the equation 2.1.

The results are given in Table 2.2 that the iteration numbers are chosen same for the
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three fuzzy inference systems. All training parameters are selected as the same for an

accurate comparison.

Table 2.2 : Comparison of ANFIS methods.

Parameters Sugeno
LSE

Sugeno
GD

Mamdani
LSE

Mamdani
GD

Şen LSE Şen GD

Epoch Number 1 40 1 40 1 40
Training Error 0.155995 0.834712 0.604405 0.645085 0.604405 0.604405
Computation
Time (s)

0.6674 3.6053 0.0761 10.4652 0.0916 1.0860

For the LSE training method, the Sugeno ANFIS training error is the smallest one.

However, Sugeno ANFIS needs more computation time than Mamdani and Şen LSE

based ANFIS training. So, for off-line training studies, the Sugeno ANFIS is the best.

For the GD training method, the Sugeno ANFIS training error is higher than other

FLSs. Mamdani and Şen based ANFIS training errors is same for GD and LSE

algorithms. However, GD based Mamdani ANFIS needs higher computation time than

other FLSs. The computation time is very important for control studies.

Şen ANFIS is better than Mamdani ANFIS at computation time and Şen ANFIS is

better than Sugeno ANFIS at training error and computation time. So, implementation

of the proposed Şen ANFIS for control studies is more effective compared to Mamdani

ANFIS and Sugeno ANFIS.
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3. NEURO FUZZY CONTROL SYSTEMS

Fuzzy Logic Controller (FLC) can work lonely or can tune any conventional controller

parameters [19,27]. In these studies, the designer determines FLC parameters and so

these systems work perfectly for defined models. However, any unexpected change in

the model or environment may adversely affect the FLC results. So, tuning of FLC

parameters is a widely used approach in the literature. For example, lonely Type-1

Neuro-fuzzy Controller (NFC) was tested in [30], and FLC with Sliding Mode Control

(SMC) theory based training was tested in [58,59]. All of these studies are simulation

studies. For 2 DOF helicopter actual systems, the FLC model was constructed by using

Francis-Isidori-Byrnes (FIB) differential equation [22].

In this chapter, we focus on NFC structures proposed in the literature are examined and

tried to be developed. For every loop, the training model changes the FLC parameters

values and tries to reduce errors. In this chapter, the training algorithm is constructed

only for consequent parameters as given in [28] by using Gradient Descent Method.

Target function which is used in NFC parameters training is examined [28]. In addition

to the target function given in the literature, different target functions have also been

tested.

The NFC structures in the literature are viewed and we proposed new NFC structures.

These existing and proposed structures are compared and the most appropriate one is

decided. The most suitable NFC structure is used for Sugeno, Mamdani and Şen FIS.

The chosen NFC structure is used for type-2 FLC in the following chapters.

3.1 DC Servo Motor Dynamics

The NFC is tested in a simulation for a DC motor. In this example, the input of the

system is voltage and the output is rotational velocity. The physical parameters are

given in Table 3.1.
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Table 3.1 : DC motor physical parameters.

Parameters Values
J moment of inertia of the rotor 0.01 kgm2

b motor viscous friction constant 0.1 Nms
Ke electromotive force constant 0.01 V/rad/sec
Kt motor torque constant 0.01 Nm/Amp
R electric resistance 1 Ohm
L electric inductance 0.5 H

The tested DC motor equation is:

J
∂ 2θ

∂ t2 +b
∂θ

∂ t
= Ki (3.1)

L
∂ i
∂ t

+Ri =V −K
∂θ

∂ t
(3.2)

For the given parameter values a feedback system was prepared as seen in Figure 3.1.

Figure 3.1 : Kp=1 Dc motor proportional control structure.

3.2 Neuro Fuzzy Controller Methods (Sugeno)

NFC is a combination of FLC and Neural Network (NN) with defining a target

function. There are different implementations of NFC structures. In this section,

these structures are tested and compared to each other. In this chapter, different NFC

structures have been prepared and compared to each others. All the Neuro-Fuzzy

Controllers have two stages. The first stage is tuning and the second is FLC.

In the literature, Fuzzy Logic antecedent parameters training is done by

back-propagation (BP) method. This method imposes highly mathematical

computational burden and can sometimes take the antecedent MF parameters out of

acceptable limits. For this reason, as a result of the tests for the antecedent parameters,

the standard antecedent MF parameters are determined as seen in Figure 3.2. These
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values are used as the antecedent MF parameters of all NFC structures and studies in

this paper. In this way, the system is avoided from high values caused by the derivative

terms in the BP algorithm used for antecedent parameters training.

Figure 3.2 : NFC input membership function parameters.

3.2.1 NFC with two inputs (normalized error and output derivative)

NFC is designed for a DC motor with two inputs in [28]. As mentioned before, the

target for DC motor control is to reach desired rotational velocity. To saturate fuzzy

logic antecedent parameters, the controller inputs are chosen as normalized error and

rotational acceleration. So normalized error fuzzy logic MFs can be chosen -1 to 1.

Similarly, the rotational acceleration can be chosen in a small gap. The NFC structure

is given in Figure 3.3.

Figure 3.3 : Neuro-Fuzzy controller structure.
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Nerror =
wdes −w

wdes
(3.3)

a(rad/s2) =
w(n)−w(n−1)

dt
(3.4)

where dt is sampling time, w(n) is present angular velocity and w(n-1) is past angular

velocity. In this example, fuzzy logic block contains linear Sugeno FIS. The Sugeno

consequent parameters are trained with ANFIS block.

3.2.1.1 Tuning Methods

As it is seen from equation 2.11 the ANFIS output is y=O5
i . But a target function must

be defined to implement the FLC training algorithm. In the DC servo motor example,

the target function is chosen with respect to acceleration.

Figure 3.4 : Target function.

In this control example, main target is minimizing the error term. To decrease the error

term, the desired velocity and the real velocity must be the same. So, the normalized

error will be zero and the change in velocity will be zero. Related drawing is given in

Figure 3.4 [28]. In literature [28], the given target equation is offered as:

y(cal) = (1− exp(
−w2

2∗0.012 ))∗1000∗ sign(w) (3.5)
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The ANFIS will try to reach target value for acceleration. When we define desired

speed slope as (y) and actual speed slope as (dw/dt) the ANFIS training difference is

given by

E = 0.5∗ (y(cal)− dw
dt

)2 (3.6)

As remembered from equation 2.16 the update law is:

W (n) =W (n−1)− lr
∂E
∂W

(3.7)

From the equation 2.15:

y(cal) = XW (3.8)

E = 0.5∗ (XW − y(target))2 ⇒ ∂E
∂W

= (XW − y(target))∗X (3.9)

W (n) =W (n−1)− lr(y(cal)− y(target))∗X (3.10)

However, the target function that is given in equation 3.5 is logically false. Because,

while the error is zero or very small, physically, actual acceleration must be very small.

So, the target function value must be very small. At the same time, desired value (w)

can be very high. As a result, the target value "y" can be able to very small for big w

values. However, in equation 3.5, the target value will be big. Because of that, we have

generated some different target equations:

y = 1− exp(wdes −w) (3.11)

y = wdes −w (3.12)

Equation 3.11; gives the target function versus error as stated in Figure 3.5. The

results for different desired angle velocities are given in Figure 3.6 and Figure 3.7. It

is seen from the Figure 3.5 that the NFC gives harder reaction to positive errors than

negative errors. So, the response time becomes less effective at positive errors.
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Figure 3.5 : Target function for equation 3.11.

Figure 3.6 : Equation 3.11 target function result for w=1.

Figure 3.7 : Equation 3.11 target function result for w=10.
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When the figures are examined it is seen that the answers for positive direction are very

small. However, in the negative direction, the controller response becomes very fast

because of the target function characteristics.

Figure 3.8 : Target function for equation 3.12.

Figure 3.9 : Equation 3.12 target function result for w=1.

Equation 3.12; is used for the same studies that the results can be seen in Figure (3.8,

3.9, 3.10). As seen from the figures the symmetric target function give better results.

Of course, some other target functions can be tested for better results.

It is seen from the figures that the target function with only error term is better than

other target function definitions.
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Figure 3.10 : Equation 3.12 target function result for w=10.

3.2.2 NFC with three inputs

There are different NFC implementations. In the previous heading, the two inputs NFC

controllers are discussed. Target function was chosen as error. In this section, three

inputs NFC controllers will be discussed and compared to each others.

Figure 3.11 : Neuro-Fuzzy controller structure for three inputs.

In 2010, a different NFC method with three inputs (error, error derivative, sum of error)

are proposed for DC servo motor [29]. However, it is trained and determined that

the NFC, with the defined inputs, does not work regularly. Because of that different

combinations are tested.
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3.2.2.1 NFC with three inputs (error, output derivative and sum of error)

The controller inputs are selected as error, output derivative and sum of errors. The

NFC structure is given in Figure 3.11. Target function is used as given in equation

3.12. The results are given in Figures (3.12, 3.13).

Figure 3.12 : Sugeno NFC results for three inputs (error, output derivative, sum of
error) where w=1.

Figure 3.13 : Sugeno NFC results for three inputs (error, output derivative, sum of
error) where w=10.

3.2.2.2 NFC with three inputs (error, output derivative and integral of error)

The controller inputs are selected as error, output derivative and integral of errors. The

results are given in Figures (3.15, 3.16).
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Figure 3.14 : Sugeno FIS NFC control signals for inputs (error, output derivative,
sum of error) where w=10 (The figure below is zoomed in.).

Figure 3.15 : Sugeno NFC results for three inputs (error, output derivative, integral of
error) where w=1.

Figure 3.16 : Sugeno NFC results for three inputs (error, output derivative, integral of
error) where w=10.
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Figure 3.17 : Sugeno FIS NFC control signals for inputs (error, output derivative,
integral of error) where w=10 (The figure below is zoomed in.).

3.2.2.3 NFC with three inputs (Normalized error, output derivative and sum of

error)

The controller inputs are selected as normalized error, output derivative and sum of

errors. The results are given in Figures (3.18, 3.19).

Figure 3.18 : Sugeno NFC results for three inputs (normalized error, output
derivative, sum of error) where w=1.
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Figure 3.19 : Sugeno NFC results for three inputs (normalized error, output
derivative, sum of error) where w=10.

Figure 3.20 : Sugeno NFC control signals for inputs (Normalized error, output
derivative, sum of error) where w=10 (The figure below is zoomed in.).

3.2.2.4 NFC with three inputs (Normalized error, output derivative and integral

of error)

The controller inputs are selected as normalized error, output derivative and integral of

errors. The results are given in Figures (3.21, 3.22).
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Figure 3.21 : Sugeno NFC results for three inputs (normalized error, output
derivative, integral of error) where w=1.

Figure 3.22 : Sugeno NFC results for three inputs (normalized error, output
derivative, integral of error) where w=10.

Figure 3.23 : Sugeno FIS NFC control signals for inputs (Normalized error, output
derivative, integral of error) where w=10 (The figure below is zoomed in.).
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3.2.3 Comparison of Sugeno NFC Methods

The methods are trained and it is seen from the results that target function with

symmetric structure is better than others. So, the symmetric target function results

are compared to each others. All the values are examined in Table 3.2 for wdesired = 10

and first 10 seconds.

Table 3.2 : Comparison of sugeno NFCs for w=10.

Inputs %OS Ts RMSE Computation
Time (second)

Normalized error, output derivative 9.6 2.25 3.2788 19.8910
Error, output derivative, sum of error 27.1 1.39 0.2815 47.3358
Error, output derivative, integral of
error

5.3 1.86 0.3252 37.4145

Normalized error, output derivative,
sum of error

4.6 1.44 2.6404 42.8820

Normalized error, output derivative,
integral of error

12.2 2.04 2.9121 35.1141

As seen from Table 3.2, three inputs NFC is better with overshoot, settling time and

Root Mean Square Error (RMSE). Summing errors gives better results than integrating

the errors at settling time and RMSE. When the figures are checked, normalizing the

errors gives higher RMSE results than direct error usage.

As it is seen from Table 3.2, (error, output derivative and sum of error) the NFC

inputs combination is the best at RMSE and settling time. However, it has very

much overshoot. However, (normalized error, output derivative and sum of error)

the NFC inputs combination has the least overshoot. So, in comparing to ŞEN and

Mamdani FIS, the (error, output derivative and sum of error) and (normalized error,

output derivative and sum of error) NFC inputs combinations will be used.
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3.3 Neuro Fuzzy Controller Methods (Mamdani)

The three inputs NFC combinations; (error, output derivative and sum of error) and

(normalized error, output derivative and sum of error) are tested for Mamdani based

NFC. The same learning rate is used (lr = 0.07) that was used in Sugeno NFC. All

conditions are the same.

Figure 3.24 : Mamdani NFC results for inputs (error, output derivative, sum of error)
where w=1.

Figure 3.25 : Mamdani NFC results for inputs (error, output derivative, sum of error)
where w=10.

The MANFIS structure is given in chapter 1. The given MANFIS structure works

regularly for offline mode. However, in online mode, the output parameters must be
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Figure 3.26 : Mamdani NFC control signals for inputs (error, output derivative, sum
of error) where w=10.

Figure 3.27 : Mamdani NFC results for inputs (normalized error, output derivative,
sum of error) where w=1.

trained for an input value for every epoch. Generally, this leads to non-proportional

consequent parameters that can lead the system to "Not a Number (NaN)" error.

In Mamdani codes, the consequent parameters maximum and minimum values are

divided into 100 pieces as stated in Chapter 2. In irregular output MFs, sometimes,

the divided parts can’t trigger the any of consequent MFs. So, the controller does not

work regularly. Because of that, firstly, it is defined in the controller that if the values

go to NaN because of dividing to zero, the value is taken as zero. Afterward, as a more

precise solution, the pieces are increased from 100 to 1000. So, the system works very

properly. The "z" values that were given in Chapter 2, are restricted from -100 to 100.
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Figure 3.28 : Mamdani NFC results for inputs (normalized error, output derivative,
sum of error) where w=10.

Figure 3.29 : Mamdani NFC control signals for inputs (normalized error, output
derivative, sum of error) where w=10.

When the result figures are examined, it is seen that the Mamdani based NFC works

regularly with very small overshoots when compared to Sugeno NFC. However,

because of the complexity of the Mamdani structure, Mamdani based NFC needs more

computational burden than Sugeno based NFC.

3.4 Neuro Fuzzy Controller Methods (Şen)

The (error, output derivative and sum of error) and (normalized error, output derivative

and sum of error) three inputs NFC combinations are tested for Şen based NFC. The

same learning rate is used (lr = 0.07) that was used in Sugeno and Mamdani NFCs.

All conditions are chosen as same.
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Figure 3.30 : Şen FIS NFC results for inputs (error, output derivative, sum of error)
where w=1.

Figure 3.31 : Şen FIS NFC results for inputs (error, output derivative, sum of error)
where w=10.

When the result figures are examined, it is seen that the Şen FIS based NFC works

regularly with very small overshoots when compared to Sugeno NFC and has the same

results as seen in Mamdani NFC. Besides, it needs less computational burden than

Mamdani NFC.

As stated in previous chapter, the training algorithms of Mamdani and Şen FISs are

given. The training algorithms are different but structurally they are similar. Because,

the both of them is human-like systems and has similar structures. Because of that,

as seen from Figures (3.30, 3.31, 3.33, 3.34) the Mamdani and Şen FLCs results are

similar. The Figure (3.31) and Figure (3.25) are explicitly different. This dissimilarity
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Figure 3.32 : Şen FIS NFC control signals for inputs (error, output derivative, sum of
error) where w=10.

Figure 3.33 : Şen FIS NFC results for inputs (normalized error, output derivative,
sum of error) where w=1.

is because of boundaries that is used for the Mamdani FIS consequent parameters as

(-100, 100). If the restrictions are removed then the results could be the similar.

3.5 Comparison of NFC Methods (Sugeno, Mamdani, Şen)

The three fuzzy inference systems (Sugeno, Mamdani and Şen) are tested for three

inputs NFCs as (error, output derivative, sum of errors) and (normalized error, output

derivative, sum of errors). The results are given in Tables (3.3, 3.4) that in (normalized

error, output derivative, sum of errors) inputs the Sugeno is the best at settling time and

simulation time. However, Mamdani and Şen FIS are better than Sugeno at RMSE.

Besides, Şen FIS and Sugeno FIS computation times are similar. So, the Şen NFC can
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Figure 3.34 : Şen FIS NFC results for inputs (normalized error, output derivative,
sum of error) where w=10.

Figure 3.35 : Şen FIS NFC control signals for inputs (normalized error, output
derivative, sum of error) where w=10.

be used instead of the Sugeno NFC in this inputs combination with more computation

time. Besides, the Şen NFC overshoot values are better than Sugeno NFC in case

studies generally.

Table 3.3 : Comparison of NFCs with three inputs (error, output derivative, sum of
error) for w=10.

Inputs %OS Ts RMSE Computation Time (second)
Sugeno NFC 27.1 1.390 0.2815 47.3358

Mamdani NFC 0 7.429 0.6721 888.9318
Şen NFC 10.5 2.483 0.3427 72.0989
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Table 3.4 : Comparison of NFCs with three inputs (normalized error, output
derivative, sum of error) for w=10.

Inputs %OS Ts RMSE Computation Time (second)
Sugeno NFC 4.6 1.440 2.6404 42.8820

Mamdani NFC 0 2.555 0.3883 901.8182
Şen NFC 0 2.557 0.3873 74.3647

However, it is seen that in (error, output derivative, sum of errors) inputs the Sugeno is

the best at settling time, RMSE and computation time. In this inputs combination the

Sugeno NFC results are better than other FIS controllers. When all NFC results were

examined, it is seen that the Sugeno NFC system with (error, output derivative, sum of

errors) inputs is the best [31] so, this NFC control combination is chosen to compare

in the best way the effects of the selected controllers (type-1 NFC, type-2 NFC, FEL)

on the quadrotor model.

It is seen in these NFC studies that the control signals are very wavy. Because of that,

directly using the ANFIS for a real system’s controller is not efficient. So, Feedback

Error Learning (FEL) controller is examined and tested for the DC motor.

3.6 Feedback Error Learning (FEL) Control with Fuzzy Logic

The FEL control is firstly proposed by Kawato [33] that it does not need a certain

model. In [36], two different FEL structure is given. In the first structure, FEL inputs

are desired input values and in the second structure, the FEL inputs are the system

output values. There are different proposed FEL structures in literature [35] that the

stability of the controller was discussed in [34]. The three different FEL structures are

tested that their inputs were "desired input", "error" and "error, error derivative". It is

seen that the FEL structure with error input gives the best results as examined in [37].

The DC motor PID coefficients are selected as [10 20 10]. The results of PID and FEL

controllers are given in Figure 3.37. They have the similar control signals as given in

Figures 3.38. In the FEL control, the conventional controller is the main controller and

the NFC is the secondary controller. The NFC is used to decrease overshoot, settling

time and RMSE. It is seen from Figure Figures 3.38 that the FEL controller signals are

more regular when compared to the only NFC signals.
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Figure 3.36 : FEL scheme.

Figure 3.37 : Comparison of PID and FEL controllers for w=10.

Figure 3.38 : Comparison of PID and FEL control signals for w=10.

As seen from Table 3.5 the Mamdani FLC has more computation load than other fuzzy

logic systems. The Sugeno FEL and Şen FEL controllers have similar results. They

decrease the overshoot, settling time and RMSE value. This study is tested for a

quadrotor model in the following chapters.
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Table 3.5 : Comparison of FEL controllers.

Inputs %OS Ts RMSE Computation Time (second)
PID 4.6 4.911 2.3728 0.4306

FEL (Sugeno) 4.5 4.362 1.4644 3.1239
FEL (Mamdani) 9.2 4.127 2.1057 16.5186

FEL (Şen) 4.5 4.397 1.4727 3.4909

Consequently, the contribution of this chapter is to test and compare the NFC structures

and determine the best of fuzzy logic based controllers. These determined control

structures are used in the following studies.
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4. INTERVAL TYPE-2 ANFIS MODEL WITH MODIFIED KMA

Type-1 Fuzzy Inference System (T1 FIS) was proposed firstly by Lotfi A. Zadeh

[65] that T1FIS is very useful to represent nonlinear systems and non-mathematical

problems like human behavior that is not possible to solve mathematically. However,

T1 FLS antecedent parameters are not fuzzy and so T1 FLS is theoretically insufficient

to uncertainty. Because of that, Type-2 FLS (T2 FLS) is proposed to deal with

uncertainties in a better way in 1975 [40].

T2 FIS is very operational on uncertain and nonlinear systems but defining antecedent

and consequent parameters are still in research. Type-2 Fuzzy sets include uncertainty

and so any type-1 Fuzzy Set can not represent Type-2 Fuzzy Sets. To overcome the

difficulty of dealing with T2 membership functions, Interval Type-2 FLS (IT2 FLS) is

proposed in 2000 [42] that every Fuzzy Sets consist of two Type-1 MFs as given in

Figure 4.1. The external MF is named as Upper Membership Function (UMF) and the

internal MF is named as Lower Membership Function (LMF). The area between the

UMF and LMF is named as Footprint of Uncertainty (FOU).

Type-2 has similar rule base as Type-1 [41]:

ri : If x1 is Xn
1 and ... and xl is Xn

l , then y is Yn

where ri is rules, Xn
l is fuzzy sets of the antecedent variables and Y n is the consequent

membership set. IT2 FLS has the same structure as T1 FLS but in the next steps, there

is clearness because of the membership functions. In the IT2 FLS, it is impossible

to calculate the defuzzification step as it is done in T1 FLS. Type-reduction must be

implemented to Interval Type-2 FLS. The type-reduction is defined as an optimization

problem and solved with different methods in the literature [46]. These type-reduction

methods are given in this chapter in detail.

There are different optimization methods for IT2 FLS parameters training as Big-bang

big-crunch optimization [66] and Gradient Descent based algorithms [56]. A T1

49



Figure 4.1 : Interval Type-2 membership function.

ANFIS like approach is adapted to IT2 ANFIS in literature [60,67]. When the results

were compared, IT2 ANFIS results were not better than T1 ANFIS results.

In this chapter, we proposed a new IT2 ANFIS model. We modified the Karnik-Mendel

algorithm which is one of the type reduction methods to use in the proposed IT2 ANFIS

approach. The proposed IT2 ANFIS model is tested and compared to T1 ANFIS. The

results are given in tables and examined.

4.1 Interval Type-2 Fuzzy Inference Systems

In IT2 FLS, there are two different weights and so they must be degraded to one weight

value [68].

Y =
∑

N
i=1 FiWi

∑
N
i=1Wi

≡ [yl,yr] (4.1)

fi ∈ Fi ≡ [ f i, f i] i = 1,2, ...,N (4.2)

wi ∈Wi ≡ [wi,wi] i = 1,2, ...,N (4.3)
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where f is fi = pi ∗ x1 +qi ∗ x2 + ri. For sugeno interval type-2 fuzzy inference system

(IT2 FIS) Fi can be given with p, q, r values. The equation (4.1) gives two results

because of weights’ uncertainty. The two weight series must be chosen as minimum

and maximum:

yl = min
∑

N
i=1 fiwi

∑
N
i=1 wi

(4.4)

yr = max
∑

N
i=1 fiwi

∑
N
i=1 wi

(4.5)

To calculate minimum and maximum values, switch points for weights must be

calculated [69]. It was stated before that:

y =
∑

N
i=1 fiwi

∑
N
i=1 wi

(4.6)

To determine switch point (k), y derivative is calculated and equated to zero.

∂y
∂wk

=
∂

∂wk
[
∑

N
i=1 fiwi

∑
N
i=1 wi

] =
∂

∂wk
[

fkwk +∑
N
i=1,i ̸=k fiwi

wk +∑
N
i=1,i̸=k wi

] (4.7)

=
fk(wk +∑

N
i=1,i ̸=k wi)− ( fkwk +∑

N
i=1,i ̸=k fiwi)1

(wk +∑
N
i=1,i̸=k wi)2

(4.8)

=
fk

wk +∑
N
i=1,i̸=k wi

− ∑
N
i=1 fiwi

(∑N
i=1 wi)2

=
fk

∑
N
i=1 wi

− ∑
N
i=1 fiwi

∑
N
i=1 wi

1

∑
N
i=1 wi

(4.9)

∂y
∂wk

=
fk − y

∑
N
i=1 wi

⇒ y = fk (4.10)

When the result is placed in equation (4.6):

y = fk ⇒
∑

n
i=1 fiwi

∑
n
i=1 wi

= fk ⇒
n

∑
i=1

fiwi = fk

n

∑
i=1

wi ⇒
n

∑
i=1,i ̸=k

fiwi ̸= fk

n

∑
i=1,i̸=k

wi (4.11)

The inequality shows that the switch points can not be calculated analytically. So,

logical approach is used for the equation (4.12).

∂y
∂wk

=
fk − y

∑
n
i=1 wi

(4.12)

With the assumption that ∑
N
i=1 wi > 0:

∂y
∂wk

=

{
≥ 0, fk ≥ y
< 0, fk < y (4.13)

It can be shown from the equation (4.12) that for fk > y, ∂y
∂wk

will be bigger than zero.

It means that y increases for increasing wk values. For fk < y, ∂y
∂wk

will be smaller than
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zero. It means that y decreases for increasing wk values. This leads to the following

results.

(I) if fk > y and wk increases(decreases), y increases(decreases)
(II) if fk < y and wk increases(decreases), y decreases(increases)

This conditions defines how to choose the switching points and the weights. As stated

in the conditions (I), minimum y values is calculated by minimum w values. Maximum

y values is calculated by the maximum w values. In the condition (II), the calculations

are made vice versa.

The condition (I) defines the minimum y value as:

wk =

{
wk, fk > y
wk, fk < y (4.14)

The condition (II) defines the maximum y value as:

wk =

{
wk, fk > y
wk, fk < y (4.15)

So, to calculate minimum and maximum y values a switch point must be defined that

the switch point is stated as "l" and "r".

yl =
∑

l
i=1 f iwi +∑

N
i=l+1 f iwi

∑
l
i=1 wi +∑

N
i=l+1 wi

(4.16)

yr =
∑

r
i=1 f iwi +∑

N
i=r+1 f iwi

∑
r
i=1 wi +∑

N
i=r+1 wi

(4.17)

In literature, there are very many optimization methods to calculate the switch points.

Four of them are mentioned in this study that they are Karnik-Mendel Algorithms,

Enhanced Karnik-Mendel Algorithms, Iterative Algorithm with Stop Condition and

Enhanced Iterative Algorithm with Stop Condition. They give the same results but

only the simulation times change.
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4.1.1 Karnik-Mendel Algorithm (KMA)

Karnik-Mendel is the proposed first algorithm to determine the switch points [70].

Computing yl:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize wi by setting wi =
wi+wi

2 and compute

y =
∑

N
i=1 f iwi

∑
N
i=1 wi

(4.18)

3- Find switch point "l" for f l < y ≤ f l+1

4- Compute

y′ =
∑

l
i=1 f iwi +∑

N
i=l+1 f iwi

∑
l
i=1 wi +∑

N
i=l+1 wi

(4.19)

5- If y′ = y, set yl = y; if not, set y = y′ and go to Step 3.

Computing yr:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize wi by setting wi =
wi+wi

2 and compute

y =
∑

N
i=1 f iwi

∑
N
i=1 wi

(4.20)

3- Find switch point "r" for f r < y ≤ f r+1

4- Compute

y′ =
∑

r
i=1 f iwi +∑

N
i=r+1 f iwi

∑
r
i=1 wi +∑

N
i=r+1 wi

(4.21)

5- If y′ = y,yr = y; if not, set y=y’ and go to Step 3.

4.1.2 Enhanced Karnik-Mendel Algorithm (EKMA)

Enhanced Karnik-Mendel Algorithm (EKMA) is introduced as enhanced KMA [44].

This method propose starting values for switch points that is near to targets. So,

this method gives the switch point with less iterations. By this way, simulation time

is decreased. The equations (4.22,4.23) are used to define KMA start point. This
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generally gives midpoints and iteration starts.

yl =
∑

N
i=1 f i

wi+wi
2

∑
N
i=1

wi+wi
2

(4.22)

yr =
∑

N
i=1 f i

wi+wi
2

∑
N
i=1

wi+wi
2

(4.23)

In EKMA, some tests are implemented to initialize L and R values those are L0 =

N/2.4,R0 = N/1.7 [44].

Computing yl:

1- Sort f i in increasing order. Match the weights with f i.

2- Set l=N/2.4 (the nearest integer to N/2.4) and compute

a =
l

∑
i=1

f iwi +
N

∑
i=l+1

f iwi (4.24)

b =
l

∑
i=1

wi +
N

∑
i=l+1

wi (4.25)

y = a/b (4.26)

3- Find switch point l′ ∈ [1,N −1] that f l′ < y ≤ f l′+1

4- If l′ = l, stop; otherwise, continue.

5-Compute s = sign(l′− l), and

a′ = a+ s
max(l,l′)

∑
i=min(l+l′)+1

f i(wi −wi) (4.27)

b′ = b+ s
max(l,l′)

∑
i=min(l+l′)+1

(wi −wi) (4.28)

y′ = a′/b′ (4.29)

6- If y′ = y,a = a′,b = b′ and l = l′. Go to Step 3.

Computing yr:

1- Sort f i in increasing order. Match the weights with f i.

2- Set r=N/1.7 (the nearest integer to N/1.7) and compute

a =
r

∑
i=1

f iwi +
N

∑
i=r+1

f iwi (4.30)
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b =
r

∑
i=1

wi +
N

∑
i=r+1

wi (4.31)

y = a/b (4.32)

3- Find switch point r′ ∈ [1,N −1] that f r′ < y ≤ f r′+1

4- If r′ = r, stop; otherwise, continue.

5-Compute s = sign(r′− r), and

a′ = a− s
max(r,r′)

∑
i=min(r+r′)+1

f i(wi −wi) (4.33)

b′ = b− s
max(r,r′)

∑
i=min(r+r′)+1

(wi −wi) (4.34)

y′ = a′/b′ (4.35)

6- If y′ = y,a = a′,b = b′ and r = r′. Go to Step 3.

4.1.3 Iterative Algorithm with Stop Condition (IASC)

IASC depends on the increase and decrease of yl and yr [45]. Starting points to

iterations are zero.

Computing yl:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize yl and l

a =
N

∑
i=1

f iwi b =
N

∑
i=1

wi (4.36)

yl = f N l = 0 (4.37)

3-Compute l = l +1, and

a = a+ f l(wl −wl) b = b+wl −wl (4.38)

c = a/b (4.39)

4- Check that if c > yl . If yes, stop and set l = l −1. If not yl = c and go to Step 3.

Computing yr:

1- Sort ci in increasing order. Match the weights with ci.
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2- Initialize yr and r

a =
N

∑
i=1

ciwi b =
N

∑
i=1

wi (4.40)

yr = c1 r = 0 (4.41)

3-Compute r = r+1, and

a = a− cr(wl −wl) b = b−wr +wr (4.42)

c = a/b (4.43)

4- Check that if c > yr. If yes, stop and set r = r−1. If not yr = c and go to Step 3.

4.1.4 Enhanced Iterative Algorithm with Stop Condition (EIASC)

EIASC is enhanced to decrease iteration time that the starting switch point is given as

r=N [46].

Computing yl:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize yl and l

a =
N

∑
i=1

f iwi b =
N

∑
i=1

wi (4.44)

yl = f N l = 0 (4.45)

3-Compute l = l +1, and

a = a+ f l(wl −wl) b = b+wl −wl (4.46)

yl = a/b (4.47)

4- Check that if f l+1 ≥ yl . If yes stop. If not go to Step 3.

Computing yr:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize yr and r

a =
N

∑
i=1

f iwi b =
N

∑
i=1

wi (4.48)

yr = f 1 r = N (4.49)
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3-Compute

a = a+ f r(wl −wl) b = b+wr −wr (4.50)

yl = a/b r = r−1 (4.51)

4- Check that if yr ≥ f r. If yes stop. If not go to Step 3.

4.2 Interval Type-2 Optimization in Literature

In literature, there are different methods used in Type-2 optimization. As one of the

optimization studies, the LSE and back-propagation are implemented and results are

compared to Type-1 optimization in [60,67]. The proposed ANFIS architecture in

[60,67] for the IT2 FLS is given below:

4.2.1 Interval Type-2 ANFIS LSE Method (KMA)

Type-2 ANFIS LSE structure is same as given in Type-1 ANFIS.

Type-1 Sugeno ANFIS LSE Structure

Layer 1:

O1
i = µAi(x) O1

i = µBi(y) (4.52)

Layer 2:

O2
i = µAi(x)∗µBi(y) = wi (4.53)

Layer 3:

O3
i = wi =

wi

∑
n
i=1 wi

(4.54)

Layer 4:

O4
i = yi = wi fi == wi(pix1 +qix2 + ri) (4.55)

Layer 5:

O5
i =

n

∑
i=1

yi =
n

∑
i=1

wi fi = (w1x1)p1 +(w1x2)q1 +w1r1 +(w2x2)p2 +(w2x2)q2 +w2r2

(4.56)

y = (w1x1)p1 +(w1x2)q1 +w1r1 +(w2x1)p2 +(w2x2)p2 +w2r2 (4.57)
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y =
[
w1x1 w1x2 w1 w2x1 w2x2 w2

]


p1
q1
r1
p2
q2
r2

= XW (4.58)

Y = XW ⇒W = X−1Y (4.59)

Interval Type-2 LSE Structure [60,67] (KMA)

Layer 1:

O1
i = µAi(x) O1

i = µBi(y) O1
i = µAi(x) O1

i = µBi(y) (4.60)

Layer 2:

O2
i = µAi(x)∗µBi(y) = wi O2

i = µAi(x)∗µBi(y) = wi (4.61)

Layer 3:

O3
i = wi =

wi

∑
n
i=1 wi

O3
i = wi =

wi

∑
n
i=1 wi

(4.62)

Layer 4:

O4
i = yi = wi f i O4

i = yi = wi f i (4.63)

Layer 5:

O5
i =

n

∑
i=1

yi O5
i =

n

∑
i=1

yi (4.64)

As seen from the equations, there are two output and two different weight series in

Interval Type-2 ANFIS. So these equations are reduced to one value by taking the

average. So, an LSE-like structure with Type-1 ANFIS is used to calculate the "W"

value. But it does not work properly. Because the weights and outputs are accepted

as average. However, the outputs depend on switch points and the weights can not be

averaged. So, the results are worse compared to Type-1 [60,61].

O5
i = y =

(Q5 +Q5
)

2
(4.65)

X =
[

w1+w1
2 x1

w1+w1
2 x2

w1+w1
2 . . .

]
(4.66)

Y = XW ⇒W = X−1Y (4.67)
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4.2.2 Interval Type-2 ANFIS Gradient Method (KMA)

As discussed in previous heading, the LSE based ANFIS optimization method with

Karnik-Mendel algorithm is incompatible to Interval Type-2 FLS. The IT2 ANFIS

with Gradient Descent Method is given below where "y" is measured output values,

"yt" is calculated output values, "lr" is learning rate and W = ri.

E =
1
2
(y− yt)2 y = XW (4.68)

r(t +1) = r(t)− lr
∂E
∂ ri

(4.69)

∂E
∂ ri

= (XW − yt)X = (y− yt)X (4.70)

r(t +1) = r(t)− lr(y− yt)X ⇒W (t +1) =W (t)− lr(y− yt)X (4.71)

It is seen that the GD based algorithm considers the "X" and "y". The output and

weights were defined as average. However, it would not give exact results. So, the

LSE-like problem will be in this example.

The question is that can ∂E
∂ ri

be calculated without "X". The error is computed and

differentiated with respect to r. This gives us different results for every r. All

differentiated values are added to r as seen in equation (4.69). This is trained and

it is seen that the result was not acceptable.

4.3 Interval Type-2 Modified Karnik-Mendel Based ANFIS Optimization

A sample IT2 FLS MF is depicted in Figure 4.1 that input MF values are defined for

two cases. So, it is impossible to define "X" to calculate IT2 FLS parameters. In this

study, Karnik-Mendel Algorithm is modified and the "X" value is calculated from the

Modified Karnik-Mendel Algorithm (M-KMA). The M-KMA is given below:

Computing yl:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize wi by setting wi =
wi+wi

2 and compute

y =
∑

N
i=1 f iwi

∑
N
i=1 wi

(4.72)
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3- Find switch point "l" for f l < y ≤ f l+1

4- Compute y′ = XlW where

Xl =

[
w1x1 w1x2 w1 ... wlx1 wlx2 wl...

wl+1x1 wl+1x2 wl+1 ... wNx1 wNx2 wN

]
∑

l
i=1 wi +∑

N
i=l+1 wi

(4.73)

5- If y′ = y, set yl = y; if not, set y = y′ and go to Step 3.

Computing yr:

1- Sort f i in increasing order. Match the weights with f i.

2- Initialize wi by setting wi =
wi+wi

2 and compute

y =
∑

N
i=1 f iwi

∑
N
i=1 wi

(4.74)

3- Find switch point "l" for f l < y ≤ f l+1

4- Compute y′ = XlW where

Xr =

[
w1x1 w1x2 w1 ... wlx1 wlx2 wl...

wl+1x1 wl+1x2 wl+1 ... wNx1 wNx2 wN

]
∑

l
i=1 wi +∑

N
i=l+1 wi

(4.75)

5- If y′ = y, set yl = y; if not, set y = y′ and go to Step 3.

Result y:

y =
yr + yl

2
=

XlW +XrW
2

=
Xl +Xr

2
W = XW (4.76)

The defined "X" matrix is a valid matrix to reach the same result with the

Karnik-Mendel algorithm.

4.3.1 Interval Type-2 ANFIS (M-KMA)

The proposed IT2 ANFIS model is shown in Fig. 4.2 for two inputs and one output.

The inputs are named x, the output is named y. The IT2 ANFIS structure has seven

layers described below.

Layer 1: This layer inputs are crisp values and outputs are MF results. This MF results

are defined as upper and lower values.

O1
i = µ

Ai
(x) O1

i = µ
Bi
(y)

O1
i = µAi

(x) O1
i = µBi

(y)
(4.77)
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Figure 4.2 : Interval Type-2 ANFIS structure.

Layer 2: The weights are multiplied as the pairs which are the upper and lower values.

O2
i = µ

Ai
(x)∗µ

Bi
(y) = wi

O2
i = µAi

(x)∗µBi
(y) = wi

(4.78)

Layer 3: In this layer, switch points are calculated and the weights are sorted with

respect to f values where fi = pix1 +qix2 + ri.

O3
i = sort(wi wi f i)

O3
i = sort(wi wi f i)

(4.79)

Layer 4: In this layer, X matrices are calculated.

O4
i = Xl =

[
w1x1 w1x2 w1 ... wlx1 wlx2 wl...

wl+1x1 wl+1x2 wl+1 ... wnx1 wnx2 wn

]
∑

l
n=1 wn +∑

N
n=l+1 wn

(4.80)

O4
i = Xr =

[
w1x1 w1x2 w1 ... wrx1 wrx2 wr...

wr+1x1 wr+1x2 wr+1 ... wnx1 wnx2 wn

]
∑

r
n=1 wn +∑

N
n=r+1 wn

(4.81)

Layer 5: The X matrices are converted to a single X matrix.

O5
i = Xinner =

O4
i +O4

i
2

=
Xl +Xr

2
(4.82)

Layer 6: The calculated X matrix in Layer 5 emerged as sorted matrix. However, the

X matrix must be unsorted.
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O6
i = X = unsort(Xinner) (4.83)

Layer 7: The unsorted matrix X obtained in Layer 6 must be implemented in the

following equation.

O7
i = y = XW (4.84)

Hence, y values can be obtained by using X values. LSE and GD can now be applied

to IT2 ANFIS. LSE is implemented as seen in equation (4.85).

W = X−1y (4.85)

Gradient Descent method equation is given below for "y" is output values, "yt" is target

values, and "lr" is learning rate.

E =
1
2
(y− yt)2 y = XW (4.86)

W (t +1) =W (t)− lr
∂E
∂Wi

(4.87)

∂E
∂Wi

= (y− yt)X (4.88)

W (t +1) =W (t)− lr(y− yt)X (4.89)

It is seen from the equation (4.89) output parameters "W" are tuned with respect to

error "y− yt" and X matrix.

4.4 Results

The contribution of this section is the proposition of the M-KMA and IT2 ANFIS

structure. In this way, the training of the IT2 FLS parameters has become as easy as

the training of T1 FLS parameters. So, The T1 ANFIS, IT2 KMA based ANFIS and

IT2 M-KMA based ANFIS are tested for the equation (4.90) [7,62]. The equation

has two inputs and one output. The antecedent membership function parameters are

62



chosen as triangular and fixed as given in Figure 4.3. Only consequent parameters are

trained. The antecedent parameters are chosen as IT2 MFs and consequent parameters

are chosen as linear. Every parameter and initial value are defined the same to make a

fair comparison.

z =
sin(x)

x
sin(y)

y
(4.90)

Figure 4.3 : Membership functions for inputs.

The grid points are defined as x∈[1,10] and y∈[1,10], so, 100 training pairs are used.

Because of the 3 MFs for every inputs, there are 9 rules. The three methods are tested

LSE and Gradient Descent respectively.

As seen from the Tables (4.1,4.2), the methods are tested for linear and constant

consequent membership functions. The Root Mean Square Error (RMSE) is used to

compare the results.

The results clearly show that classical IT2 KMA based ANFIS errors are higher than

T1 FLS ANFIS. For this reason, KMA based ANFIS is not suitable for use in any area.

Therefore, IT2 M-KMA and T1 ANFIS results were analyzed comparatively.
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Table 4.1 : ANFIS (LSE) results for constant consequent parameters.

T1 b IT2 (KMA) IT2 (M-KMA)
0.084906 1 3.248081 0.084906

0.9 3.248081 0.084868
0.8 3.248081 0.084740
0.7 3.248081 0.084486
0.6 3.248081 0.084064
0.5 3.248081 0.083415
0.4 3.248081 0.082476
0.3 3.248081 0.081271
0.2 3.248081 0.080460
0.1 3.248081 0.081320

Table 4.2 : ANFIS (LSE) results for linear consequent parameters.

T1 b IT2 (KMA) IT2 (M-KMA)
0.045523 1 3.245881 0.045523

0.9 3.245881 0.045489
0.8 3.245881 0.045349
0.7 3.245881 0.045041
0.6 3.245881 0.044502
0.5 3.245881 0.043472
0.4 3.245881 0.039940
0.3 3.245881 0.037517
0.2 3.245881 0.033585
0.1 3.245881 0.037559

As stated in Tables (4.1, 4.2), the IT2 ANFIS results change with respect to uncertainty.

When the b value is 1, the training results between T1 ANFIS and the proposed IT2

ANFIS approaches are similar. The T1 ANFIS uses A1-C1 (Antecedent type-1 MF

- Consequent type-1 MF) membership functions and the proposed IT2 ANFIS uses

A2-C1 (Antecedent type-2 MF - Consequent type-1 MF) membership functions. When

b=1, the IT2 FLS antecedent membership functions turn into T1 FLS membership

functions (A1-C1), so, the results must be same for b=1 as seen in Tables (4.1, 4.2).

This shows that the system is working properly.

The b value in Figure 4.3 defines the uncertainty. The high b values mean less

uncertainty and low b values mean high uncertainty. In the linear model with LSE,

the RMSE is 0.045523 for b=1 and the RMSE is 0.033585 for b=0.2. It shows that the
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proposed IT2 ANFIS gives better results in more uncertainty for least square estimation

usage.

Table 4.3 : ANFIS (GD) results for constant consequent parameters with 1000
epochs.

T1 b IT2 (KMA) IT2 (M-KMA)
0.084906 1 3.226571 0.084906

0.9 3.226571 0.084868
0.8 3.226571 0.084740
0.7 3.226571 0.084486
0.6 3.226571 0.084064
0.5 3.226571 0.083415
0.4 3.226571 0.082476
0.3 3.226571 0.081271
0.2 3.226571 0.080460
0.1 3.226571 0.081320

Table 4.4 : ANFIS (GD) results for linear consequent parameters with 1000 epochs.

T1 b IT2 (KMA) IT2 (M-KMA)
0.067583 1 3.238083 0.067180

0.9 3.238251 0.067600
0.8 3.238332 0.067783
0.7 3.237450 0.067661
0.6 3.238050 0.067429
0.5 3.240285 0.067126
0.4 3.240482 0.067594
0.3 3.238486 0.066504
0.2 3.237452 0.065325
0.1 3.239447 0.065037

The same study is tested for GD method. The GD tuning algorithm is iterated 1000

times with a learning rate 10−5. The learning is changed in every epoch with respect to

change in error. If the error is increasing the learning rate is minimized with a defined

percent (%10). If the error is minimizing the learning rate is increased with a constant

percent (%1). So, the learning becomes faster and can avoid unexpected failures.

The results show that when the consequent parameters are taken as constant, the LSE

and GD training results are similar to the proposed IT2 ANFIS approach. However,

for linear consequent parameters the LSE method results are better. It is because of the

epoch numbers. The constant consequent parameters needs less iteration number and
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it reaches to minimum RMSE value at a small epoch number. However, the T1 ANFIS

and the proposed IT2 ANFIS need more iteration numbers to reach the minimum

RMSE value in the linear consequent parameters. It is clear that GD methods have

more computational load than LSE, but the GD method is used in control studies.

The results are given in Tables (4.3,4.4). When the results are examined, it is clear that

more epochs are needed to have better results. The IT2 ANFIS results are better than

T1 ANFIS for constant and linear consequent parameters. The greater the uncertainty,

the better the IT2 ANFIS results.

66



5. COMPARISON OF NEURO FUZZY CONTROLLERS

The Interval Type-2 Fuzzy Logic System (IT2 FLS) is a powerful system for

controlling nonlinear systems and overcoming uncertainties. So, there are several

IT2FLS control studies in the literature. The Interval Type-2 Fuzzy Logic Controller

(IT2 FLC) studies without online parameter training are implemented to various

systems [49,52,53] and the results show that the IT2FLC is more effective against

uncertainties and nonlinearity.

Tuning of T2 FLS parameters is still a research area and a hard task so there are

different tuning methods in the open literature. In 2011, an inverse Interval Type-2

Fuzzy Logic Controller (IT2 FLC) is proposed that the IT2 FLS Takagi-Sugeno (TS)

consequent parameters are updated with pure mathematics. So, it does not contain the

inverse of IT2 FLS and it works only for SISO systems [50]. In [66,71], another inverse

IT2FLC is proposed that the inverse control signal is produced by Big Branch-Big

Crunch (BB-BC) algorithm. So, the IT2 FLS is not inverted in this studies but

antecedent parameters are trained and consequent parameters are chosen as crisp [55].

In 2015, a sliding mode based tuning for IT2 FLS is proposed by Kayacan that this

approach is used on 2 DOF helicopter [58], satellites [38] and quadrotor [15]. In these

studies, A2-C1 models are used and consequent parts are trained. The papers’ results

clearly show that the IT2FLC is better to handle uncertainties and more adaptive to

input signal variations [48,54].

In this chapter, the IT2 FLC based controllers are implemented to a SISO system

(DC motor). So, the IT2 fuzzy controllers are tested and compared to T1 fuzzy logic

controllers.
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5.1 Comparison of IT2 NFC and T1 NFC

The same conditions are used for both T1 FLC and IT2 FLC. The IT2 FIS NFC results

for a DC motor example are given in Figures (5.1, 5.2) and in Table 5.1.

Figure 5.1 : IT2 NFC results for inputs (error, output derivative, sum of error) where
w=10.

Figure 5.2 : IT2 NFC control signals for inputs (error, output derivative, sum of
error) where w=10.

The used IT2 FLS is based on Sugeno FIS. The only difference is membership

functions. So, IT2 NFC and Sugeno NFC results are similar. When the results are

examined, it is seen that overshoot is similar for both IT2 NFC and T1 NFC. the IT2
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Table 5.1 : Comparison of T1 and IT2 NFCs with three inputs (error, output
derivative, sum of error) for w=10.

Inputs %OS Ts RMSE Computation Time (second)
Sugeno NFC 27.1 1.390 0.2815 47.3358

Mamdani NFC 0 7.429 0.6721 888.9318
ŞEN NFC 10.5 2.483 0.3427 72.0989

IT2 NFC (b=1) 27.5 0.830 0.2778 86.3923
IT2 NFC (b=0.5) 27.5 0.830 0.2801 74.3662

NFC is faster than other controllers and has the smallest RMSE values. So, it is clear

that the IT2 NFC has better results compared to other controllers.

5.2 Comparison of IT2 FEL and T1 FEL

The IT2 FLC is implemented to FEL controller as performed for the Type-1 FLS. The

IT2 lower MFs’ peak point "b" is taken as "1" and "0.5". The results are given in

Figures (5.3, 5.4).

Figure 5.3 : IT2 FEL results where w=10.

Table 5.2 : Comparison of T1 and IT2 FEL controllers for w=10.

Inputs %OS Ts RMSE Computation Time (second)
PID 4.6 4.911 2.3728 0.4306

T1 FEL (Sugeno) 4.5 4.362 1.4644 3.1239
IT2 FEL (b=1) 4.5 4.372 1.4646 5.1455

IT2 FEL (b=0.5) 4.5 4.367 1.4646 4.7353
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Figure 5.4 : IT2 FEL control signals where w=10.

The T1 and IT2 controllers are tested for FEL controller as seen in Table 5.2. The

results show that the T1 FEL and IT2 FEL controller results are similar. This similarity

is because of the restrictions. The main controller is a conventional controller and the

fuzzy logic is used as secondary controller. So, the effect of the fuzzy is restricted.

What should be considered in this study is the effect of FLC on the classical controller.

Thanks to this effect, the system can respond faster with fewer errors and overshoots.
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6. NEURO FUZZY CONTROL IMPLEMENTATION ON QUADROTOR
MODELLING

In this chapter, previously proposed NFC and FEL controllers are tested on a quadrotor

model. Because of that, a quadrotor model is represented. The controller approaches

for quadrotors are given and some assumptions are discussed. Finally, disturbance

effects on the quadrotor are tested.

The chosen quadrotor model is a T frame model as seen in Figure 6.1. The X axis

direction (rotor 1) is accepted as the front side and rotor 3 side is rear. Rotor 2 side is

right and rotor 4 side is left. The rotors 1 and 3 rotate counter-clockwise and rotors 2

and 4 rotate clockwise.

Figure 6.1 : Quadrotor X frame.

Two frames are defined in quadrotor system; the earth inertial frame (E) and body fixed

frame (B). Velocities in the B frame along XB,YB,ZB axes are given as u,v,w(m/s) and

the angular rates along the XB,YB,ZB axes are p,q,r(rad/s) respectively [32].
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VB =

u
v
w

 , ηB =

p
q
r

 , ν =

[
VB
ηB

]
(6.1)

The position and angle of body fixed frame with respect to earth inertial frame are

represented with x,y,z,φ ,θ ,ψ as given in [72].

Γ =

X
Y
Z

 , Θ =

φ

θ

ψ

 , ξ =

[
Γ

Θ

]
(6.2)

The rotation matrix for position from B frame to E frame is given in equation 6.3 where

c = cos,s = sin, t = tan that the rotation matrix was given in [2] in detail.

R = RB
E =

cψcθ −sψcφ + cψsθ sφ sψsφ + cψsθ cφ

sψcθ cψcφ + sψsθ sφ −cψsφ + sψsθ cφ

−sθ cθ sφ cθ cφ

 (6.3)

The transformation matrix for angular rates from body fixed frame to earth inertial

frame is given as:

T = T B
E =

1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ/cθ cφ/cθ

 (6.4)

So, the translation between the earth inertial frame and the body fixed frame is given

below:

Γ̇ = RB
EVB Θ̇ = T B

E ηB (6.5)

6.1 Mathematical Model of Quadrotor

The dynamics of the quadrotor can be defined with Newton’s second law. FE vector

defines the forces with respect to earth inertial frame (E) and FB(N) vector defines the

forces with respect to body fixed frame (B). The τE(Nm) vector defines the torques

with respect to E frame and τb vector defines the torques with respect to B frame.

The force equations are given below:

FB =
[
Fx Fy Fz

]T (6.6)
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F = ma ⇒ FE = m

ẍ
ÿ
z̈

⇒ FE = mΓ̈ = m
˙︷︸︸︷

RVB ⇒ RFB = m
˙︷︸︸︷

RVB (6.7)

RFB = m(ṘVB +RV̇B) = m(R[ηBxVB]+RV̇B) (6.8)

FB = m(V̇B +ηBxVB) (6.9)

Fx
Fy
Fz

=

mu̇
mv̇
mẇ

+m

p
q
r

x

u
v
w

=

mu̇
mv̇
mẇ

+m

qw− rv
ru− pw
pv−qu

=

m(u̇+qw− rv)
m(v̇+ ru− pw)
m(ẇ+ pv−qu)


(6.10)

where "x" is cross product [73].

The torque equations are given below:

τB =
[
τx τy τz

]T (6.11)

τ = IΘ̈ ⇒ τE = I

φ̈

θ̈

ψ̈

⇒ τE = I
˙︷︸︸︷

T ηB = T τB (6.12)

T τB = I(Ṫ ηB +T η̇B) = I(T [ηBxηB]+T η̇B) (6.13)

τB = Iη̇B +ηBx(IηB) (6.14)

τx
τy
τz

=

Ix ṗ
Iyq̇
Izṙ

+
p

q
r

x

Ix p
Iyq
Izr

=

Ix(ṗ+ Izqr− Iyqr)
Iy(q̇+ Ix pr− Iz pr)
Iz(ṙ+ Iy pq− Ix pq)

 (6.15)

where "x" is cross product. So, the equations can be written in matrix form as:

FT =

[
FB
τB

]
=

[
mI3x3 03x3
03x3 I3x3

][
V̇B
η̇B

]
+

[
ηBx(mVB)
ηBx(IηB)

]
= MBv̇+CBv (6.16)

where;
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v =
[

VB
ηB

]
=


u
v
w
p
q
r

 , MB =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz

 (6.17)

CB =


0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 0 0 0 Izzr −Iyyq
0 0 0 −Izzr 0 Ixx p
0 0 0 Iyyq −Ixx p 0

 (6.18)

In these equations, the relation between the forces, torques and the quadrotor velocities,

rotation are examined. The forces and torques are produced by three components those

are gravity, gyroscopic effects and thrust (motors).

MBv̇+CBv = FT = GB +OBΩ+EBΩ
2 (6.19)

GB(
m3

kgs2 ) is gravity vector, 0B is gyroscopic propeller matrix, EB is thrust and torque

matrix generated by the rotors and Ω(rad/s) is propellers’ speeds.

The gravitational force only affects the linear equations. The rotational parameters

are not affected from gravity. So, the gravity vector can be written as;

GB =

[
FB

03x1

]
=

[
R−1FE

03x1

]
=

R−1

 0
0

−mg


03x1

=

RT

 0
0

−mg


03x1

=


mgsθ

−mgcθ sφ

−mgcθ sφ

0
0
0

 (6.20)

The rotation matrix is normalized orthogonal matrix [73] that R−1 is equal to RT .

The gyroscopic force only affects the rotational equations. The propellers are

perpendicular to XB and YB axes. So, the gyroscopic force affects only the z axis.
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OB =


03x1

−Jr

ηBx

0
0
1



−Ω1
+Ω2
−Ω3
+Ω4


T

=


03x1

−Jr

q1− r0
r0− p1
p0−q0



−Ω1
+Ω2
−Ω3
+Ω4


T

⇒ (6.21)

OB =


03x1

Jr

−q
p
0



+Ω1
−Ω2
+Ω3
−Ω4


T

= Jr


0 0 0 0
0 0 0 0
0 0 0 0
−q q −q q
p −p p −p
0 0 0 0

Ω = Jr


0
0
0

−qΩr
pΩr

0

 (6.22)

where OB is the gyroscopic propeller matrix, Jr is the total rotational moment of inertia

around the propeller axis and Ω(rad/s) is the propellers’ speed.

Propeller’s speed (Ω) is given as:

Ω =


Ω1
Ω2
Ω3
Ω4

 (6.23)

The overall rotor speeds can be given as:

Ωr = Ω1 −Ω2 +Ω3 −Ω4 (6.24)

The force and torque those produced by actuators are the third part of the forces

affecting the aircraft. The moment equation is given as:

EBΩ
2 =


0
0

U1
U2
U3
U4

=


0 0 0 0
0 0 0 0
b b b b
0 −bl 0 bl

−bl 0 bl 0
−d d −d d




Ω2
1

Ω2
2

Ω2
3

Ω2
4

=


0
0

b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)
bl(Ω2

4 −Ω2
2)

bl(Ω2
3 −Ω2

1)
−d(Ω2

1 −Ω2
2 +Ω2

3 −Ω2
4)


(6.25)

b(Ns2) is thrust coefficient, d(Nms2) is drag coefficient and l(m) is the distance

between the quadrotor center and the propeller center. U1(N) is the total force produced
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by propellers that is the total of all propellers’ thrust. U2(Nm) is the torque around the

XB axis (roll motion). So, right (Ω2) and left (Ω4) propellers affect the U2(Nm) value.

U3(Nm) is the torque around the YB axis (pitch motion).So, front (Ω1) and rear (Ω3)

propellers affect the U3(Nm) value. U4(Nm) is the torque around the ZB axis (yaw

motion). All the propellers affect the torque value around the ZB axis.

From the equation 6.19, it can be written as;

MBv̇ =−CBv+GB +OBΩ+EBΩ
2 (6.26)

v̇ = MB
−1(−CBv+GB +OBΩ+EBΩ

2) (6.27)

v̇ = MB
−1(−


0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 0 0 0 Izzr −Iyyq
0 0 0 −Izzr 0 Ixx p
0 0 0 Iyyq −Ixx p 0




u
v
w
p
q
r

+


mgsθ

−mgcθ sφ

−mgcθ sφ

0
0
0

+OBΩ+EBΩ
2)

(6.28)

v̇ = MB
−1(−


mwq−mvr
−mwp+mur
mvp−muq
Izzqr− Iyyqr
−Izz pr+ Ixx pr
Iyyqp− Ixx pq

+


mgsθ

−mgcθ sφ

−mgcθ sφ

0
0
0

+


0
0
0

−JrqΩr
Jr pΩr

0

+EBΩ
2) (6.29)

v̇ =



1
m 0 0 0 0 0
0 1

m 0 0 0 0
0 0 1

m 0 0 0
0 0 0 1

Ixx
0 0

0 0 0 0 1
Iyy

0
0 0 0 0 0 1

Izz


(


−mwq+mvr+mgsθ

mwp−mur−mgcθ sφ

−mvp+muq−mgcθ sφ

−Izzqr+ Iyyqr− JrqΩr
Izz pr− Ixx pr+ Jr pΩr

−Iyy pq+ Ixx pq

+


0
0

U1
U2
U3
U4

) (6.30)


u̇
v̇
ẇ
ṗ
q̇
ṙ

=



1
m(−mwq+mvr+mgsθ )
1
m(mwp−mur−mgcθ sφ )

1
m(−mvp+muq−mgcθ sφ +U1)
1

Ixx
(−Izzqr+ Iyyqr− JrqΩr +U2)

1
Iyy
(Izz pr− Ixx pr+ Jr pΩr +U3)

1
Izz
(−Iyy pq+ Ixx pq+U4)


(6.31)


u̇
v̇
ẇ
ṗ
q̇
ṙ

=



(vr−wq)+gsθ

(wp−ur)−gcθ sφ

(uq− vp)−gcθ sφ +
U1
m

Iyy−Izz
Ixx

qr− Jr
Ixx

qΩr +
U2
Ixx

Izz−Ixx
Iyy

pr+ Jr
Iyy

pΩr +
U3
Iyy

Ixx−Iyy
Izz

pq+ U4
Izz


(6.32)
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The equation 6.32 defines the quadrotor equations with respect to body-fixed frame.

The linear equations must be defined with respect to earth-inertial frame. So, a new

frame is called as "H" that the linear equations are given with respect to earth inertial

frame and rotational equations are given with respect to body-fixed frame [32].

ζ =

[
Γ̇

ηB

]
=


Ẋ
Ẏ
Ż
p
q
r

 (6.33)

MH ζ̇ +CHζ = GH +OHΩ+EHΩ
2 (6.34)

The M matrix will not change. So, the same matrix will be used.

MH = MB =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz

 (6.35)

The Coriolis matrix is changed. The linear effects will be zero with respect to

earth-inertial frame.

CH =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Izzr −Iyyq
0 0 0 −Izzr 0 Ixx p
0 0 0 Iyyq −Ixx p 0

 (6.36)

The gravitational force only affects the linear equations in z direction when designed

with respect to the earth-inertial frame.

GH =


0
0

−mg
0
0
0

 (6.37)

The gyroscopic force only affects the rotational equations. The rotational frames are

the same as body fixed frame. So, the gyroscopic matrix is the same.
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OH = Jr


0 0 0 0
0 0 0 0
0 0 0 0
−q q −q q
p −p p −p
0 0 0 0

Ω (6.38)

The force and torque matrix was composed of the forces and torques. The torques are

still on the same axes (XB,YB,ZB). So, the torque values (U2,U3,U4) will not change.

The thrust along the ZB axis will be converted to ZE axis. So, the U1 will affect the

three axes.

EHΩ
2 =

[
RE

B O3x3
O3x3 I3x3

]
EBΩ

2 (6.39)

EHΩ
2 =


cψcθ −sψcφ + cψsθ sφ sψsφ + cψsθ cφ 0 0 0
sψcθ cψcφ + sψsθ sφ −cψsφ + sψsθ cφ 0 0 0
−sθ cθ sφ cθ cφ 0 0 0

0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz




0
0

U1
U2
U3
U4

 (6.40)

EHΩ
2 =


(sψsφ + cψsθ cφ )U1
(−cψsφ + sψsθ cφ )U1

(cθ cφ )U1
U2
U3
U4

=


(sψsφ + cψsθ cφ )b(Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4)

(−cψsφ + sψsθ cφ )b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)
(cθ cφ )b(Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4)

bl(Ω2
4 −Ω2

2)
bl(Ω2

3 −Ω2
1)

−d(Ω2
1 −Ω2

2 +Ω2
3 −Ω2

4)


(6.41)

The same equation structure with the Equation 6.27 is implemented and the resulting

equation is given.



ẌE

ŸE

Z̈E

ṗ

q̇

ṙ


=



(sψsφ + cψsθ cφ )
U1
m

(−cψsφ + sψsθ cφ )
U1
m

−g+(cθ cφ )
U1
m

Iyy−Izz
Ixx

qr− Jr
Ixx

qΩr +
U2
Ixx

Izz−Ixx
Iyy

pr+ Jr
Iyy

pΩr +
U3
Iyy

Ixx−Iyy
Izz

pq+ U4
Izz



(6.42)
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6.2 Quadrotor Open Loop

The quadrotor open loop structure is given in Figure 6.2 that inputs are the propeller

speeds and the output is quadrotor position and rotation.

Figure 6.2 : Open loop quadrotor system.

The quadrotor parameters used as an example are given in Table 6.1 [15].

Table 6.1 : Quadrotor parameters.

Parameters Description Value Unit
Ixx Moment of inertia about the X-axis 0.007 kg ·m2

Iyy Moment of inertia about the Y-axis 0.007 kg ·m2

Izz Moment of inertia about the Z-axis 0.012 kg ·m2

Jr Rotor moment of inertia 6.5 ·10−5 kg ·m2

b Thrust coefficient 4.13 ·10−5 N · s2

d Drag coefficient 8.5 ·10−7 N ·m · s2

l Distance from propellers to the center 0.17 m
m Mass 0.68 kg
g Gravitational constant 9.81 m/s2

The three rotation motions are named as roll (around XB axis), pitch (around YB axis)

and yaw (around ZB axis). The propeller speeds’ effect on the motions are given as;

Roll motion is provided by changing the left Ω4 and right Ω2 propellers’ speeds. For

the given quadrotor parameters, when the propellers’ speed is 201 rad/s, the quadrotor

will be in hovering condition. When the all propellers’ speed are increased to 202, the

quadrotor will rise as seen in Figures (6.3, 6.4).

For roll motion the propeller’s speed is defined as; Ω1 = 201,Ω2 = 200,Ω3 =

201,Ω4 = 202. So, the left propeller speed is increased and the right propeller speed

is decreased. So, the quadrotor will do rotation about the XB axis as shown in Figure
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Figure 6.3 : Quadrotor position for Ω1 = 202,Ω2 = 202,Ω3 = 202,Ω4 = 202.

Figure 6.4 : Quadrotor rotation for Ω1 = 202,Ω2 = 202,Ω3 = 202,Ω4 = 202.

(6.6). In this motion, the quadrotor moves in the −YB direction. In rolling motion, the

quadrotor uses some of the forces for rolling and so the thrust in ZB direction becomes

less. For this reason, the altitude of the quadrotor will decrease as stated in Figure

(6.5).

Pitch motion is provided by changing the front Ω1 and rear Ω2 propellers’ speeds.

For the pitch motion the propeller’s speed is defined as; Ω1 = 200,Ω2 = 201,Ω3 =

202,Ω4 = 201. So, the front propeller speed is decreased and the rear propeller speed

is increased. So, the quadrotor will do rotation about the YB axis as shown in Figure

(6.8).
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Figure 6.5 : Quadrotor position for Ω1 = 201,Ω2 = 200,Ω3 = 201,Ω4 = 202 (roll
motion).

Figure 6.6 : Quadrotor rotation for Ω1 = 201,Ω2 = 200,Ω3 = 201,Ω4 = 202 (roll
motion).

In this motion, the quadrotor moves in the XB direction. In the pitching motion, the

quadrotor uses some of the forces for pitching and so the thrust in ZB direction becomes

less. For this reason, the altitude of the quadrotor will decrease as stated in Figure (6.7).

Yaw motion is provided by changing the propellers correlatively that the Ω1,Ω3

couple rotates negatively to Ω2,Ω4 couple. When the couple propellers’ speed changed

the quadrotor rotates about the ZB axis. For the yaw motion the propeller’s speed is

defined as; Ω1 = 200,Ω2 = 202,Ω3 = 200,Ω4 = 202. The quadrotor will rotate about

the ZB axis as shown in Figure (6.10). In this motion, the quadrotor does not move in

any direction as seen in Figure (6.9).
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Figure 6.7 : Quadrotor position for Ω1 = 200,Ω2 = 201,Ω3 = 202,Ω4 = 201 (pitch
motion).

Figure 6.8 : Quadrotor rotation for Ω1 = 200,Ω2 = 201,Ω3 = 202,Ω4 = 201 (pitch
motion).

In this example, the right and left propellers’ speeds is bigger than front and rear

propellers’ speeds. So, the faster rotating propellers produce more gyroscopic effect.

The left and right propellers turn around at clockwise direction. The effect will be

anticlockwise. It means that the quadrotor will turn in ”+” direction as seen in Figure

(6.10). The quadrotor controller consists of two stages, state control and position

control.
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Figure 6.9 : Quadrotor position for Ω1 = 200,Ω2 = 202,Ω3 = 200,Ω4 = 202 (yaw
motion).

Figure 6.10 : Quadrotor rotation for Ω1 = 200,Ω2 = 202,Ω3 = 200,Ω4 = 202 (yaw
motion).

6.3 Quadrotor Attitude Control

The quadrotor attitude control scheme is given in Figure (6.11). The error between

desired Euler angles and the results are used to calculate the needed force and torques.

In the previous section, the relation from the propellers’ speed to forces was given.

Similar work was done for the inverse relationship. The transition equations from

forces to propeller speeds are got from the equation 6.25.
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Figure 6.11 : Quadrotor attitude control scheme.



Ω2
1

Ω2
2

Ω2
3

Ω2
4


=



1
4bU1 − 1

2blU3 − 1
4dU4

1
4bU1 − 1

2blU2 +
1

4dU4

1
4bU1 +

1
2blU3 − 1

4dU4

1
4bU1 +

1
2blU2 +

1
4dU4


(6.43)

There are different approaches for quadrotor attitude control in literature. In this thesis,

the equation 6.42 is used to define attitude controllers and force equation. The used

force and controller equations for a PD controller are given below. The force equation

is exactly the inverse of the forward equation. Some assumptions are used for the

angular control signals [74].



U1

Uφ

Uθ

Uψ


=



(Kz,p(zre f − zE)+Kz,d(żre f − żE)+g) m
cφ cθ

(Kφ ,p(φre f −φ)+Kφ ,d(φ̇re f − φ̇))Ixx

(Kθ ,p(θre f −θ)+Kθ ,d(θ̇re f − θ̇))Iyy

(Kψ,p(ψre f −ψ)+Kψ,d(ψ̇re f − ψ̇))Izz


(6.44)

where Kz,p,Kφ ,p,Kθ ,p,Kψ,p are proportional controller coefficients and

Kz,d,Kφ ,d,Kθ ,d,Kψ,d are derivative controller coefficients.

Table 6.2 : Quadrotor PD coefficients

Parameters Kp Kd
z 3 1
φ 5 1
θ 5 1
ψ 5 1
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The PD, NFC and FEL controllers are used for quadrotor control. The PD coefficients

are given as stated in Table 6.2. The integral coefficient leads to oscillation and so it

must be small. So, the integral controller is not used for attitude.

Figure 6.12 : Quadrotor attitude PD control results.

Figure 6.13 : PD control signals.

The Sugeno based Neuro-Fuzzy Controller (NFC) with three inputs (error, output

derivative, sum of errors) is used in quadrotor attitude control. The NFC has no

overshoot and settling time is small. However, control signals are very wavy. So, the

NFC was used with PD. The results are given in Table 6.3 that NFC has no overshoot

and has the smallest settling time. the NFC has the biggest mathematical load. The

FEL has minimum RMSE values and computation time is less when compared to NFC

results. The FEL is better in Settling time and overshoot than PD controller.
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Figure 6.14 : Quadrotor attitude NFC results.

Figure 6.15 : NFC control signals.

Figure 6.16 : Quadrotor attitude FEL control results.
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Figure 6.17 : FEL control signals.

Table 6.3 : Comparison of NFC, PD and FEL.

Inputs %OS Ts RMSE (φ ) RMSE (θ ) RMSE (ψ) Computation
Time (second)

PD 63.1 11.510 0.0351 0.0461 0.0417 0.3480
T1 NFC
(Sugeno)

0 3.907 0.0383 0.0384 0.0383 4.5641

T1 FEL
(Sugneo)

48 10.140 0.0266 0.0322 0.0307 1.6181

6.4 Quadrotor Position Control

The quadrotor position control scheme is given in Figure (6.18). The desired position

is given to the quadrotor. The quadrotor defines the necessary angles to reach the

desired position. The position controller block consists of two stages as shown in

Figure (6.19). The first stage represents the controller and the second stage represents

the inverse kinematic.

Figure 6.18 : Quadrotor position control scheme.
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Figure 6.19 : Quadrotor position controller block.

Inverse kinematic I: In the open literature, there are different ways to define the

inverse kinematic. In [72], the inverse kinematic equations are derived from equation

6.42. To show simpler, the equations are written in matrix form as given below.


ẌE

ŸE

Z̈E

=


0

0

−g

+ U1

m


sψsφ + cψsθ cφ

−cψsφ + sψsθ cφ

cθ cφ

 (6.45)

U1


sψsφ + cψsθ cφ

−cψsφ + sψsθ cφ

cθ cφ

=


mẌE

mŸE

m(Z̈E +g)

= RT (3, :)


mẌE

mŸE

m(Z̈E +g)

 (6.46)

U1 = m[ẌE(sψsφ + cψsθ cφ )+ ŸE(−cψsφ + sψsθ cφ )+(Z̈E +g)(cθ cφ )] (6.47)

φre f = arcsin
(

ẌEsψ − ŸEcψ

Ẍ2
E + Ÿ 2

E +(Z̈E +g)2

)
θre f = arctan

(
ẌEcψ + ŸEsψ

Z̈E +g

)
(6.48)

The inverse kinematic equations can be written as;

U1 = m[ux(sψsφ + cψsθ cφ )+uy(−cψsφ + sψsθ cφ )+(uz +g)(cθ cφ )] (6.49)

φre f = arcsin

(
uxsψ −uycψ

u2
x +u2

y +(uz +g)2

)
θre f = arctan

(
uxcψ +uysψ

uz +g

)
(6.50)

Inverse kinematic II: In [15], the inverse kinematic equations are derived as given

below. In this approach, Newton’s second rule has been taken into account.

88



U1 = m
√

u2
x +u2

y +(uz +g)2 (6.51)

φre f = arcsin
(
−

muy

U1

)
θre f = arctan

(
ux

uz +g

)
(6.52)

Figure 6.20 : Quadrotor inverse kinematic calculation.

For the φre f angle two force vectors are considered in ZE direction and YE direction.

The sin function of the vectors defines the φre f angle.

φre f = arcsin

−
muy

m
√

u2
x +u2

y +(uz +g)2

= arcsin

−
uy√

u2
x +u2

y +(uz +g)2


(6.53)

In the φre f angle calculation, the sinus defines the force around the XE axis. In the

θre f angle calculation, the tangent defines the force around the YE axis. In this thesis,

the second inverse kinematic approach is used. The used PID coefficients are given

in Table 6.4. The position control of the quadrotor is tested for PID, Neuro-Fuzzy

Controller (NFC) and ANFIS based Feedback Error Learning (FEL). The NFC control

signals are very wavy and so it is not compared to others.

Table 6.4 : Quadrotor position control PID coefficients

Parameters Kp Ki Kd
x 3 0.13 1.1
y 3 0.13 1.1
z 3 0.13 1.1
φ 6 0.6 10
θ 6 0.6 10
ψ 6 0.6 10
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Figure 6.21 : Trajectory tracking performance on X axis of the different controllers.

Figure 6.22 : PID and FEL control signals for X axis.

Figure 6.23 : Trajectory tracking performance on Y axis of the different controllers.

The FEL controller is composed of conventional controller and the NFC. So, the FEL

gives faster reaction then conventional controllers as seen in Figure (6.21, 6.23, 6.25).
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Figure 6.24 : PID and FEL control signals for Y axis.

Figure 6.25 : Trajectory tracking performance on Z axis of the different controllers.

Figure 6.26 : PID and FEL control signals for Z axis.

As seen in Figures (6.22, 6.24, 6.26), the FEL control signals is more harsh answers
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Figure 6.27 : Trajectory tracking performance of the different controllers.

than PID for errors. However, this much more powerful reactions does not cause to

larger overshoots.

Table 6.5 : Comparison of PID and FEL controllers for Quadrotor position control.

Inputs RMSE (x) RMSE (y) RMSE (z) Computation
Time (second)

PID 0.3389 0.3297 0.1034 0.9157
T1 FEL (Sugeno) 0.1507 0.1272 0.0470 3.6578

IT2 FEL (b=1) 0.1507 0.1272 0.0470 5.9418
IT2 FEL (b=0.5) 0.1507 0.1272 0.0470 6.6833

As seen in Table 6.5, FEL controller calculation load is more than PID. However, the

FEL controller RMSE values are significantly smaller. The performance of the FEL

can be seen from Figure 6.27. There is no uncertainty in the system, so the IT2 FLC

and T1 FLC have the same results. Because of the inner iterations, the elapsed time of

the IT2 FLC is much more than T1 FLC.

6.4.1 Wind Disturbance

The aircrafts have many disturbances while working like air resistance, wind

disturbance, ground effect and ceiling effect if it is in a closed area [75]. The

controllers’ performance is examined under the wind disturbance effect. The wind

disturbance effects are stated as ζ . The equations with wind disturbance are given

below.
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

ẌE

ŸE

Z̈E

ṗ

q̇

ṙ


=



(sψsφ + cψsθ cφ )
U1
m +ζ1

(−cψsφ + sψsθ cφ )
U1
m +ζ2

−g+(cθ cφ )
U1
m +ζ3

Iyy−Izz
Ixx

qr− Jr
Ixx

qΩr +
U2
Ixx

+ζ4

Izz−Ixx
Iyy

pr+ Jr
Iyy

pΩr +
U3
Iyy

+ζ5

Ixx−Iyy
Izz

pq+ U4
Izz

+ζ6



(6.54)

The wind disturbance on the aircraft is given as two different signals. Firstly, a fixed

value is given for a second as shown in Figure 6.28.

Figure 6.28 : Fixed wind speed.

Table 6.6 : Comparison of PID and FEL controllers for Quadrotor position control
with fixed wind disturbance.

Inputs RMSE (x) RMSE (y) RMSE (z) Computation
Time (second)

PID 0.4055 0.4202 0.1769 0.5139
T1 FEL (Sugeno) 0.1812 0.1499 0.0824 2.0105

IT2 FEL (b=1) 0.1812 0.1499 0.0824 6.7139
IT2 FEL (b=0.5) 0.1812 0.1499 0.0824 6.2762

The controller RMSE values for fixed wind disturbance are given in Table 6.6. As seen

from Figure 6.29, the ANFIS based FEL controller is robust against to disturbances.
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Figure 6.29 : Trajectory tracking performance of the different controllers for fixed
wind noise.

Figure 6.30 : Wind speed with sinusoidal white noise.

Table 6.7 : Comparison of PID and FEL controllers for Quadrotor position control
with sinusoidal white noise.

Inputs RMSE (x) RMSE (y) RMSE (z) Computation
Time (second)

PID 0.7980 0.4378 0.3707 0.5990
T1 FEL (Sugeno) 0.3292 0.1692 0.1477 1.9978

IT2 FEL (b=1) 0.3290 0.1689 0.1476 6.2987
IT2 FEL (b=0.5) 0.3290 0.1689 0.1475 7.0863

Secondly, a sinusoidal white noise is given as wind disturbance to the system as shown

in Figure 6.30.
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Figure 6.31 : Trajectory tracking performance of the different controllers for
sinusoidal white noise.

The controller RMSE values for sinusoidal white noise disturbance are given in Table

6.7. The results show that the ANFIS based FEL controller is very effective to control

any system under disturbances.
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7. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, type-1 and interval type-2 fuzzy inference systems are examined and

some modifications are implemented. New ANFIS models are proposed for Mamdani,

Şen and interval type-2 FIS. The given ANFIS models are tested as controllers on SISO

and MIMO systems.

Firstly, type-1 FISs are examined. The Mamdani ANFIS model is proposed and tested.

The Şen FIS, which is found as SISO in the open literature, is designed as MIMO and

the Şen ANFIS training model is proposed and tested. The proposed Mamdani and Şen

ANFIS is compared with Sugeno ANFIS. It is seen that the LSE based Sugeno ANFIS

has less RMSE value than others. However, the GD based Mamdani and ŞEN ANFIS

has less RMSE value than Sugeno ANFIS, but the Mamdani ANFIS need to more

computation time. In control studies, GD algorithm is used because FLS parameters

must change smoothly for every single input vectors.

Secondly, the proposed type-1 ANFIS models are used in the NFCs. There are different

NFC target functions in the literature. These target functions are tested and the best

performing one selected. In addition, there are approaches with different controller

inputs in the literature for the NFC structure. Five of them are compared to each other

and one of them is chosen with respect to it’s performance. The chosen NFC structure

is used to compare Sugeno, Mamdani and Şen FISs. The Şen NFC has much less

computational load than Mamdani NFC with same controller parameters. The Sugeno

NFC has more overshoot than both of others but it has less computational load with

less RMSE error. The Sugeno, Mamdani and Şen ANFIS controllers are compared for

different NFC structures and Sugeno NFC is selected as the best. So, Sugeno ANFIS

is compared to interval type-2 ANFIS studies in following studies.

Thirdly, the interval type-2 ANFIS are used in the NFC. As stated in the literature,

the ANFIS uses exact parameter values, however, the IT2 FLS parameters include

uncertainties. To eliminate the uncertainties in X matrix, we proposed the modified
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Karnik-Mendel algorithm. The modified Karnik-Mendel algorithm is a different

mathematical approach of Karnik-Mendel algorithm that is one of the type-reduction

methods. The proposed IT2 ANFIS structure is tested over the function previously

used for type-1 ANFIS. It is clear that the proposed IT2 ANFIS has less RMSE values

than type-1 ANFIS for both LSE and GD method. At worst case, the IT2 ANFIS has

the same RMSE results with T1 ANFIS. The development in this IT2 ANFIS has been

a significant advance in solving problems involving uncertainties.

The solely NFC is very effective as controller but it is does not work regularly for

a cascade structure like quadrotors. So, the FEL controller is tested on a quadrotor

model. The results show that both of type-1 and interval type-2 based FEL controllers

increased the performance of classical controllers. In IT2 ANFIS training, A2-C1

consequent parameters were trained. So, the type-1 and interval type-2 FEL controller

results are similar. As future study, we continue on the IT2 ANFIS research on A2-C2

(Antecedent type-2 MF - Consequent type-2 MF) parameters training to decrease

RMSE value and to increase controller performance. Because of that, the newly

proposed direct approach type-reduction method is examined and being worked on

to generate a new ANFIS model.
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[41] Taşkın, A. (2015). A Matlab/simulink Toolbox For Interval Type-2 Fuzzy Logic
Systems, (Ph.d. Thesis), Istanbul Technical University.

[42] Liang, Q. and Mendel, J.M. (2000). Interval type-2 fuzzy logic systems: theory
and design, IEEE Transactions on Fuzzy systems, 8(5), 535–550.

[43] Karnik, N.N., Mendel, J.M. and Liang, Q. (1999). Type-2 fuzzy logic systems,
IEEE transactions on Fuzzy Systems, 7(6), 643–658.

[44] Wu, D. and Mendel, J.M. (2008). Enhanced karnik–mendel algorithms, IEEE
Transactions on Fuzzy Systems, 17(4), 923–934.

[45] Duran, K., Bernal, H. and Melgarejo, M. (2008). Improved iterative algorithm
for computing the generalized centroid of an interval type-2 fuzzy
set, NAFIPS 2008-2008 Annual Meeting of the North American Fuzzy
Information Processing Society, IEEE, pp.1–5.

[46] Wu, D. and Nie, M. (2011). Comparison and practical implementation of
type-reduction algorithms for type-2 fuzzy sets and systems, 2011 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE 2011), IEEE,
pp.2131–2138.

[47] Chen, C., John, R., Twycross, J. and Garibaldi, J.M. (2017). A direct approach
for determining the switch points in the Karnik–Mendel algorithm, IEEE
Transactions on Fuzzy Systems, 26(2), 1079–1085.

[48] Wu, D. (2012). On the fundamental differences between interval type-2 and type-1
fuzzy logic controllers, IEEE Transactions on Fuzzy Systems, 20(5),
832–848.

[49] Sakalli, A., Beke, A. and Kumbasar, T. (2018). Analyzing the control surfaces
of type-1 and interval type-2 FLCs through an experimental study, 2018
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE,
pp.1–6.

[50] Kumbasar, T., Eksin, I., Guzelkaya, M. and Yesil, E. (2011). Interval type-2
fuzzy inverse controller design in nonlinear IMC structure, Engineering
Applications of Artificial Intelligence, 24(6), 996–1005.

102



[51] Kumbasar, T., Eksin, I., Guzelkaya, M. and Yesil, E. (2017). An inverse
controller design method for interval type-2 fuzzy models, Soft
Computing, 21(10), 2665–2686.

[52] Zeghlache, S., Kara, K. and Saigaa, D. (2014). Type-2 fuzzy logic control of a
2-DOF helicopter (TRMS system), Open Engineering, 4(3), 303–315.

[53] Kumbasar, T. (2014). A simple design method for interval type-2 fuzzy PID
controllers, Soft Computing, 18(7), 1293–1304.

[54] Kumbasar, T., Eksin, I., Guzelkaya, M. and Yesil, E. (2012). Type-2
fuzzy model based controller design for neutralization processes, ISA
transactions, 51(2), 277–287.

[55] Kumbasar, T. and Hagras, H. (2014). Big Bang–Big Crunch optimization based
interval type-2 fuzzy PID cascade controller design strategy, Information
Sciences, 282, 277–295.

[56] Kumbasar, T. and Hagras, H. (2015). A gradient descent based online tuning
mechanism for pi type single input interval type-2 fuzzy logic controllers,
2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
IEEE, pp.1–6.

[57] Khanesar, M.A. and Kayacan, E., (2015). Controlling the pitch and yaw angles
of a 2-dof helicopter using interval type-2 fuzzy neural networks, Recent
Advances in Sliding Modes: From Control to Intelligent Mechatronics,
Springer, pp.349–370.

[58] Khanesar, M.A., Kayacan, E. and Kaynak, O. (2015). Optimal sliding mode
type-2 tsk fuzzy control of a 2-dof helicopter, 2015 IEEE international
conference on fuzzy systems (FUZZ-IEEE), IEEE, pp.1–6.

[59] Kayacan, E. and Khanesar, M.A. (2016). Recurrent interval type-2 fuzzy
control of 2-DOF helicopter with finite time training algorithm,
IFAC-PapersOnLine, 49(13), 293–299.

[60] Chen, C., John, R., Twycross, J. and Garibaldi, J.M. (2016). An extended
ANFIS architecture and its learning properties for type-1 and interval
type-2 models, 2016 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), IEEE, pp.602–609.

[61] Chen, C., John, R., Twycross, J. and Garibaldi, J.M. (2017). Type-1 and interval
type-2 ANFIS: A comparison, 2017 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), IEEE, pp.1–6.
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