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SUMMARY 

In this study, the energy concept which is a current issue of study and provides a 
powerful approach in structural analysis is investigated in four parts consisting of the 
introductory presentation, analytical and statistical evaluation of energy quantities, 
and the preliminary knowledge of energy-based seismic design of structures. In Part 
1, it is explained that the drawbacks of the conventional earthquake resistant design 
methodologies generated from the force-based or displacement-based analysis of 
structures can be eliminated by using energy approach. Additionally, the history of 
energy theory is presented. In Part 2, analytical evaluation of energy components in 
the single-degree-of-freedom-systems is explained in the absolute energy equation 
and the relative energy equation and their properties are compared by a numerical 
example. Moreover, the analytical procedures for the evaluation of energy quantities 
in the multi-degree-of-freedom systems are briefly presented. In Part 3, utilizing the 
results of statistical study, firstly, a procedure for estimating input energy spectra in 
terms of the total power of the ground acceleration is introduced; secondly, a method 
based on the evaluation of the equivalent number of cycles associated with the 
earthquake characteristics is introduced in order to evaluate the hysteretic and input 
energy spectra. In Part 4, the basic design procedures, principles as well as an 
energy-based seismic design method using yield mechanism and predetermined 
deformation are presented.  
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ÖZET 

Bu çalışmada güncel araştırma konusu olan ve yapı analizinde güçlü bir yaklaşım 
sağlayan enerji kavramı incelenmiştir. Dört bölümden oluşan bu çalışma giriş, enerji 
miktarlarının analitik ve istatistik yöntemlerle elde edilmesi ve yapıların enerjiye 
dayalı sismik tasarımı konularını içermektedir. Birinci bölümde yapıların kuvvete 
veya yerdeğiştirmeye dayalı analizinden meydana gelmiş geleneksel depreme 
dayanıklı yapı tasarımının güçlükleri anlatılmış ve bu zorlukların enerji yaklaşımı ile 
aşılabileceği ortaya konmuştur. Ayrıca enerji kavramının oluşum süreci anlatılmıştır. 
İkinci bölümde tek serbestlik dereceli sistemlerdeki enerji bileşenlerinin analitik 
olarak elde edilmesi mutlak enerji denklemi ve nispi enerji denklemi şeklinde ifade 
edilmiş ve özellikleri bir sayısal örnekle karşılaştırılmıştır. Buna ek olarak çok 
serbestlik dereceli sistemlerdeki enerji değerlerinin elde edilmesi kısaca anlatılmıştır. 
Üçüncü bölümde istatistik araştırma sonuçlarından yararlanılarak, önce yer ivmesinin 
toplam gücü cinsinden ifade edilmiş en büyük giriş enerjisini elde eden bir yöntem 
tanıtılmıştır; sonra deprem özelliklerine bağlı olarak ifade edilmiş eşdeğer çevirim 
sayısına dayalı, en büyük plastik enerji ve giriş enerjisini elde eden bir yöntem daha 
tanıtılmıştır. Dördüncü bölümde temel tasarım aşamaları, tasarım ilkeleri ve önceden 
belirlenmiş akma mekanizması ve yerdeğiştirmesini esas alan bir enerjiye dayalı 
sismik tasarım yöntemi tanıtılmıştır.  
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PART 1 INTRODUCTION 

Present earthquake-resistant design methodologies and the earthquake damage 

assessment approaches oriented from the traditional force-based or displacement-based 

analysis of structures have many shortcomings. These shortcomings can be eliminated 

by utilizing energy approach which has been developed in several stages by different 

researchers such as Housner and Akiyama etc. 

1.1 Shortcomings of the Conventional Force-Based or Displacement-

Based Analysis of Structures 

In the analysis of structural systems, two main issues must be considered: the first is the 

interpretation of the load, such as earthquake ground motions, applied to structures and 

the objective evaluation of its effects; the second is the evaluation of resistance of 

structures to such external loading effects [1]. 

In traditional seismic analysis of structures, the loading effect of the earthquake is 

represented by static equivalent forces, which are obtained from elastic response spectra 

representing the relation between the peak ground acceleration and the pseudo-

acceleration [2]. In considering the contribution of ductility in a structure, a seismic 

force reduction factor is utilized to reduce the elastic force demand to the design level. 

The seismic force reduction factor represents the ductility capacity. However, the effect 

of duration-related cumulative damage is neglected in this procedure. Another 

alternative approach, displacement-based design procedure is being developed. 

Nonetheless, the same drawback still exists [3]. Furthermore, the forces exerted by an 

earthquake are defined by the elastic and plastic characteristics of the structure. 

Consequently, the loading effect of the earthquake and the resistance of the structure are 

coupled, because of which, the seismic design becomes quite complex [2]. 



 2

1.2 Necessity of Using Energy Concept in Seismic Analysis 

In order to eliminate these shortcomings, energy theory has been proposed by 

researchers. In the energy theory, the total amount of energy exerted by an earthquake, 

input energy, is considered as the external load and the corresponding resistance of the 

structure is the energy absorption capacity of the frame [1]. 

Modern approaches in the seismic design methodologies are established on the 

definition of performance-based methods for both the design of new structures and the 

assessment of the seismic capacity of existing structures. In this field, utilizing the 

energy concept and the energy balance equation enables us to optimize the design and 

detailing and to define methodologies and techniques for innovative control or protective 

systems such as base isolation and passive energy dissipation devices in the earthquake-

resistant design of new structures or in the seismic retrofitting of existing structures. 

Referring to the earthquake demand, different authors consider the input energy iE  as an 

effective tool in the seismic design pointing out that iE  represents a very stable 

parameter of the structural response and it hardly depends on the hysteretic properties of 

the structure. However, it is necessary to observe that a part of the input energy 

transmitted to structure by an earthquake is dissipated by means of damping whereas 

another is dissipated by means of the inelastic deformation, which is the hysteretic 

energy. Only the part of the dissipated energy due to the inelastic deformation 

contributes to the damage of a structure subjected to the seismic excitation.  

Particularly, the energy criterion shows that the structure collapses if it is demanded to 

dissipate, via inelastic deformations, an amount of energy larger than that supplied. 

However, it has the limitation to treat the energy dissipated in all the plastic cycles 

regardless of the amplitude of each cycle. On the other hand, it is experimentally shown 

that in many cases plastic cycles having a low amplitude do not contribute to the 

damage. Therefore, it is necessary that only a fraction of the plastic energy be 

considered to cause damage. Nonetheless, despite the limitation, the energy approach is 

regarded as a powerful tool in seismic design because of the simplicity and the large 

experimental background. Furthermore, if the energy demand is supposed to be equal to 
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the energy dissipated under monotonic loads, the energy criterion represents a lower 

limit of the response capacity of the structure and, therefore, its application is on safe 

side leading to a conservative design. 

However, reliable assessment of the demand of the dissipated energy that is very 

dependent on earthquake characteristics forms the base for energy method. This 

assessment is carried out by means of the evaluation of the input energy by many 

researchers [4].  

One of the significant advantages of representing the loading effect of earthquakes in 

terms of energy is that the characteristics of ground motions and those of the structure 

can be dealt with separately, that is, earthquake load effect and structural resistance can 

be basically uncoupled. The characterization of the loading effect of the earthquake in 

terms of energy is the basis of the so-called energy-based seismic design methods [2]. 

On the damage assessment, generally, the damage potential of ground motions is 

measured by its maximum acceleration or velocity. However, the results from high 

acceleration and velocity of some recent ground motions show that the relation between 

the damage potential of earthquakes and the damage to structures is not so. The 

impulsive acceleration of near fault earthquake and the cyclic effect of far source 

earthquake cause different damages respectively. Therefore, the dynamic damage 

potential of ground motions must be evaluated by the response behavior of structures.  

The total input energy (energy spectrum) is a representative estimation concept of the 

damage potential of ground motions, in which the earthquake-resistant capacity of 

structures is evaluated by means of energy dissipating behavior via viscous damping and 

inelastic hysteresis loop [5]. 

1.3 The history of the Energy Theory 

Energy theory has the following history of development: 

1. Tanahashi conducted an elastic-plastic analysis of buildings subjected to pulse-like 

artificial ground motions and concluded that the square of the maximum velocity of 

ground motions can be used as an indicator of the earthquake’s destructive force. 
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2. Housner made a quantitative evaluation of the total amount of energy input that 

contributes to the building’s responses with the use of the velocity response spectra in 

the elastic system and assumed that the energy input responsible for the damage in 

the elastic-plastic system is identical to that in the elastic system. Housner verified his 

hypothesis by examination of several examples of damage. However, these examples 

were limited to cases of plastic deformation of anchor-bolts in column bases of steel 

structures and of bracings in the frames for which diagonal bracings with a large 

slenderness ratio were used for resistance to lateral forces. Housner limited his 

examinations to these structures because the amount of energy absorbed by the plastic 

deformation can be easily determined in these structures.  

3. Velestos and Newmark conducted a response analysis of the one-mass elastic plastic 

system. They obtained the ratio of the maximum response deformation in the elastic 

perfectly plastic system mu  to the maximum response deformation in the elastic 

system yu , and suggested the possibility of making an estimate of its upper bound 

value by assuming the apparent equivalence in strain energy.  

4. Penzien drew a similar conclusion through the response analysis of the single-degree-

of-freedom system and the multi-degree-of-freedom elastic-plastic system [1]. 

5. Akiyama showed that the total amount of input energy iE  exerted by a given 

earthquake on a structure is a very stable parameter, governed primarily by the 

natural period T  and the total mass m , and scarcely by other structural 

characteristics such as the resistance, damping, hysteretic loop shapes, etc [2]. 

6. Uang and Bertero have presented the conceptual methodology for earthquake 

resistant design of reinforced concrete buildings. In this methodology, total input 

energy, inelastic design response spectra, and energy dissipation obtained through 

damping energy and hysteretic energy are considered simultaneously, to discuss the 

damage potential of ground motions and the damage index of structures.  

7. Krawinkler and Nassar have presented that ductility and cumulative damage 

considerations can and should be incorporated explicitly into the design process, and 

proposed the seismic design procedure using demand spectrum. In this procedure, 
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demand parameters (strength, ductility, energy) are defined as a quantity that relates 

seismic input to structural response.  

8. Fajfar has applied damage index that is based on maximum displacement and 

dissipated energy to also consider cumulative damage for evaluating structural 

damage, and presented examples of inelastic design spectra using equivalent ductility 

factor corresponding to given damage index [5]. 
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PART 2 THEORETICAL EVALUATION OF SEISMIC 

ENERGY IN STRUCTURES 

Various energy quantities in structures are defined as the work done by the 

corresponding structural forces such as inertial force, damping force and resisting force. 

Seismic energies in structures are theoretically evaluated by integrating the dynamic 

equation of motion in the deformation range. In the energy analysis of single-degree-of-

freedom (SDF) systems subjected to earthquake induced ground motions, two types of 

equations are available in literature. The first approach uses an absolute energy 

formulation while the second approach uses a relative energy formulation. Both energy 

formulations can be interpreted as the work done by different forces. For a given 

ductility ratio, the input energy demands evaluated by using both methods are identical 

in the intermediate period range, however they are different at large extend for the short 

and long period ranges [6]. 

2.1 Evaluation of Energy in Single-Degree-of-Freedom Systems 

Energy equations can be evaluated only within the limitation of a linearly elastic-

perfectly plastic, elastoplastic briefly, SDF system. 

For a viscous damped SDF system subjected to a horizontal earthquake ground motion, 

the equation of motion can be written as 

0=++ st fucum &&&                                                     (2.1.1) 

where =m  mass, =c  viscous damping coefficient, =sf  restoring force, =+= gt uuu  

absolute (or total) displacement of the mass, =u  relative displacement of the mass with 

respect to the ground, and =gu  earthquake ground displacement.  
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Figure 2.1 Mathematical model of a SDF system subjected to an earthquake ground 

motion 

It should be noted that sf  may be expressed as ku  for a linear elastic system where =k  

stiffness. Substituting gt uuu &&&&&& += , Eq. 2.1.1 can be written as 

gs umfucum &&&&& −=++                                                (2.1.2) 

Consequently, the structural system in Fig. 2.1a can easily be seen as the equivalent 

system in Fig. 2.1b with a fixed base and subjected to an effective horizontal dynamic 

force of magnitude gum &&− . Although the relative displacement which both systems 

undergo is identical, the equations result in the input energy and kinetic energy with 

different definitions depending on whether Eq. 2.1.1 or Eq. 2.1.2 is used. Corresponding 

to the specific equation used to derive energy formulation, two kinds of energy 

formulation can be introduced, i.e. absolute energy formulation and relative energy 

formulation.  

2.1.1 Formulation 1 – Derivation of Absolute Energy Equation 

Integrate Eq. 2.1.1 with respect to u  from the time that the ground motion excitation 

starts: 

0=++ ∫∫∫ dufduucduum st &&&                                           (2.1.3) 
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∫
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Substituting )( gt uuu −=  in the first term of Eq. 2.1.3, then 

    (2.1.4) 

Substituting Eq. 2.1.4 into Eq. 2.1.3 yields 

∫∫∫ =++ gts
t duumdufduuc
um

&&&
&

2
)( 2

                                  (2.1.5) 

The first term of the above equation is the absolute kinetic energy kE ,  

2
)( 2
t

k
um

E
&

=                                                       (2.1.6) 

since the absolute velocity tu&  is used to calculate the kinetic energy. The second term in 

Eq. 2.1.5 is the damping energy dE , which is always non-negative because 

∫ ∫== dtucduucEd
2&&                                               (2.1.7) 

The third term in Eq. 2.1.5 is the absorbed energy aE , which consists of recoverable 

elastic strain energy sE  and irrecoverable hysteretic or yielding or plastic energy hE : 

hssa EEdufE +== ∫                                               (2.1.8) 

where 
[ ]
k
tf

tE s
s 2

)(
)(

2

=  and [ ] ssssh EdtuufutEduuuftE −=−= ∫∫ ),()(),()( &&& [7]. 

By definition, the right hand side term in Eq. 2.1.5 is the input energy iE : 

∫= gti duumE )( &&                                                    (2.1.9) 

iE  is defined as the absolute input energy in this formulation. This definition is 

physically meaningful for that the term tum &&  represents the inertia force applied to the 

structure. The total force applied to the structure foundation is equal to this inertia force 
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which is composed of restoring force and damping force due to Eq. 2.1.1. Therefore, iE  

can be treated as the work done by the total base shear at the foundation on the 

foundation displacement. Consequently, the absolute energy equation can be written as 

hsdkadki EEEEEEEE +++=++=                                (2.1.10) 

2.1.2 Formulation 2 – Derivation of Relative Energy Equation 

Integrate Eq. 2.1.2 with respect to u : 

∫∫∫∫ −=++ duumdufduucduum gs &&&&&                                  (2.1.11) 

It is observed that the second and third term on the left side of the equation are identical 

to the ones of Eq. 2.1.3 and equal to dE  and aE  respectively. The first term of Eq. 

2.1.11 can be written as  

∫ ∫ ∫ ===
2

)( 2umudumdu
dt
udmduum

&
&&

&
&&  

which is the relative kinetic energy kE ′  calculated from the relative velocity: 

2
)( 2umEk
&

=′                                                   (2.1.12) 

The right side term of Eq. 2.1.11 is then defined as the input energy iE ′ : 

∫−=′ duumE gi &&                                                (2.1.13) 

iE ′  is formulated as the relative input energy in this formulation. This definition 

physically represents the work done by the static equivalent lateral force gum &&−  on the 

equivalent fixed-base system. In other words, it neglects the effect of the rigid body 

translation of the structure. Consequently, the relative energy equation can be expressed 

as 

hsdkadki EEEEEEEE +++′=++′=′                             (2.1.14) 
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2.2 Comparison of Energy Time Histories 

2.2.1 Prerequisite Presentation for Energy Time History 

Evaluation of the energy terms requires that the earthquake response analysis of the 

system be conducted. Because evaluation of energy quantities is limited to the 

elastoplastic system, it is necessary to obtain inelastic dynamic response of the 

corresponding system for selected vibration period nT , damping ratio ξ  and yield force 

yf . Obviously, we have to determine firstly the response )(tu  of the linear system in 

order to define the peak deformation 0u  and the peak force 00 kuf =  which are 

necessary for the inelastic dynamic analysis. Evaluation of the response analysis of a 

linear system and nonlinear system has been briefly recalled here [7]. 

2.2.1.1 Response Analysis of a Linear System 

The governing equation for an elastic system under the ground motion is  

)()()()( tumtkutuctum g&&&&& −=++                                    (2.2.1) 

Deformation response of a linear system to an arbitrary ground motion with zero initial 

conditions is given by Duhamel’s integral with dynamic force )(tp  replaced by 

)()( tumtp geff &&−= : 

[ ]∫ −−= −−t

D
t

g
D

dteutu n

0

)( )(sin)(1)( ττωτ
ω

τξω&&                         (2.2.2) 

By differentiating Eq. 2.2.2 under the integral sign 

[ ]∫ −−−= −−t

D
t

gn dteututu n

0

)( )(cos)()()( ττωτξω τξω&&&                      (2.2.3) 

The equation of motion for the system provides us an equation for the acceleration )(tu t&&  

)(2)()( 2 tututu nn
t &&& ξωω −−=                                          (2.2.4) 

These integrals can be carried out by numerical ways.  
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However, integration of equation of motions under arbitrary force can be easily carried 

out by numerical time-stepping methods available in the literature. Newmark’s method 

has been presented here. Following procedure summarizes Newmark’s time-stepping 

method as it can be implemented on the computer program. 

Newmark’s method for linear systems: 

Special cases 

(1) Average acceleration method (
2
1

=γ , 
4
1

=β ) 

(2) Linear acceleration method (
2
1

=γ , 
6
1

=β ) 

1.0 Initial calculations 

1.1  
m

kuucp
u 000

0
−−

=
&

&& . 

1.2  Select t∆ . 

1.3  m
t

c
t

kk 2)(
1ˆ
∆

+
∆

+=
ββ

γ . 

1.4  cm
t

a
β
γ

β
+

∆
=

1 ; and ctmb 







−∆+= 1

22
1

β
γ

β
. 

2.0 Calculations for each time step, i  

2.1  iiii ubuapp &&& ++∆=∆ˆ . 

2.2  
k
p

u i
i ˆ

∆
=∆ . 

2.3  iiii utuu
t

u &&&& 







−∆+−∆

∆
=∆

β
γ

β
γ

β
γ

2
1 . 

2.4  iiii uu
t

u
t

u &&&&&
βββ 2
11

)(
1

2 −
∆

−∆
∆

=∆ . 
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2.5  ,1 iii uuu ∆+=+  ,1 iii uuu &&& ∆+=+  .1 iii uuu &&&&&& ∆+=+  

3.0 Repetition for the next time step. Replace i  by 1+i  and implement steps 2.1 to 2.5 

for the next time step.  

2.2.1.2 Response Analysis of a Nonlinear System 

The governing equation for an inelastic system under the ground motion is  

)(),()()( tumuuftuctum gs &&&&&& −=++                                    (2.2.5) 

Force-deformation relation for an inelastic system can be idealized, for convenience, by 

an elastic-perfectly plastic, elastoplastic briefly, or bilinear force-deformation relation. 

Under initial loading, this idealized system behaves as linearly elastic system with 

stiffness k  as long as the force does not exceed yield strength yf . Yielding begins when 

the force reaches yf . The deformation at which yielding begins is yu , the yield 

deformation. Yielding takes place at constant force i.e. the stiffness is zero. Fig. 2.2 

shows a typical cycle of loading, unloading and reloading for an elastoplastic system. 

 
Figure 2.2 Elastoplastic force-deformation relation 

The normalized yield strength yf  of an elastoplastic system is defined as 

00 u
u

f
f

f yy
y ==                                                   (2.2.6) 
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where 0f  and 0u  are the peak values of the earthquake-induced resisting force and 

deformation respectively in the corresponding linear system. 0f  can be explained as the 

strength at which the structure remains within its linearly elastic limit during the 

earthquake excitation. It is easy to validate the second part of Eq. 2.2.6 by using 

yy kuf =  and 00 kuf = .  

The yield reduction factor yR  which defines an alternative relation between yf  and 0f  

is presented as 

yy
y u

u
f
f

R 00 == .                                                 (2.2.7) 

Obviously, yR  is reciprocal of yf .  

The peak, or absolute (without regard to algebraic sign) maximum, deformation of the 

elastoplastic system induced by the earthquake excitation is denoted by mu . The 

ductility factor µ  then can be defined as 

y

m

u
u

=µ ,                                                       (2.2.8) 

which is the normalization of mu  relative to the yield deformation of the system.  

The relationship between the peak deformation mu  and 0u  of the elastoplastic and 

corresponding linear system can be explained by their ratio as 

y
y

m

R
f

u
u µµ ==

0

.                                                 (2.2.9) 

Dynamic response of an inelastic system is also obtained by using various numerical 

procedures available in the literature. One of them, Newmark’s method has been 

presented here. 

Newmark’s method for nonlinear systems: 

Special cases 
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(1) Average acceleration method (
2
1

=γ , 
4
1

=β ) 

(2) Linear acceleration method (
2
1

=γ , 
6
1

=β ) 

1.0 Initial calculations 

1.1  
m

fucp
u s 000

0
)(−−

=
&

&& . 

1.2  Select t∆ . 

1.3 cm
t

a
β
γ

β
+

∆
=

1 ; and ctmb 







−∆+= 1

22
1

β
γ

β
. 

2.0 Calculations for each time step, i  

2.1  iiii ubuapp &&& ++∆=∆ˆ . 

2.2  Determine the tangent ik .  

2.3  m
t

c
t

kk ii 2)(
1ˆ
∆

+
∆

+=
ββ

γ .  

2.4  Solve for iu∆  from ik̂  and ip̂∆  using the iterative procedure. 

2.5  iiii utuu
t

u &&&& 







−∆+−∆

∆
=∆

β
γ

β
γ

β
γ

2
1 . 

2.6  iiii uu
t

u
t

u &&&&&
βββ 2
11

)(
1

2 −
∆

−∆
∆

=∆ . 

2.7  ,1 iii uuu ∆+=+  ,1 iii uuu &&& ∆+=+  .1 iii uuu &&&&&& ∆+=+  

3.0 Repetition for the next time step. Replace i  by 1+i  and implement steps 2.1 to 2.7 

for the next time step.  
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The procedure to evaluate energy time history for an inelastic SDF system can be 

summarized as following: 

1. Numerically define the ground motion )(tug&& . 

2. Select the damping ratio ξ  for which the energy time history is defined. 

3. Select a value for nT .  

4. Determine the response )(tu  of the linear system with nT  and ξ  equal to the 

values selected. From )(tu  determine the peak deformation 0u  and the peak 

force 00 kuf = .  

5. Determine the response )(tu  of an elastoplastic system with the same nT  and ξ , 

and yield force 0fff yy = , with a selected 1<yf . 

6. Compute the corresponding energy terms by using the obtained response of the 

elastoplastic system and show them on a plot.  

2.2.2 Numerical Example 

2.2.2.1 Elastic response analysis of the system with sec2.0=nT  

An elastic SDF system has the following characteristics:  

kgmNsm 4.10142/4.10142 2 == , mNk /1010 6×= , sec)/4.31( radn =ω , 05.0=ξ . 

East-West acceleration component of Düzce earthquake recorded at Düzce Meteorology 

Station in Nov. 12, 1999 is used for this analysis. It is shown in Fig. 2.3. Its peak ground 

acceleration and magnitude were g52.0  and 7.2ML  respectively. 

Dynamic responses of this system to the selected ground motion are evaluated below: 

Initial calculations 

136.318472 == nmc ωξ  

00 =u , 00 =u& , 00 =p  

0000
0 =

−−
=

m
kuucp

u
&

&& . 

005.0=∆t . 
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Figure 2.3 Acceleration time history of Düzce earthquake in 1999 

Above summarized Newmark’s time-stepping method has been implemented on the C 

program code given at Appendix A.  

The deformation response of this system is presented in Fig. 2.4. As seen in the figure, 

mu 001309.00 =  at sec41.3=t  and the corresponding peak resisting force 

Nkuf 3
00 1009.13 ×== .  
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Figure 2.4 Deformation response of the linear system with sec2.0=nT  and 

05.0=ξ  

2.2.2.2 Elastic response analysis of the system with sec5=nT  

An elastic SDF system has the following characteristics: 

kgmNsm 55.6338999/63390 2 == , mNk /1010 6×= , sec)/256.1( radn =ω , 

05.0=ξ . Düzce earthquake in 1999 has been selected for the ground motion. Dynamic 

responses of this system to the selected ground motion have been evaluated below. 
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Initial calculations 

27.7961782 == nmc ωξ  

00 =u , 00 =u& , 00 =p  

0000
0 =

−−
=

m
kuucp

u
&

&& . 

005.0=∆t . 

By the same C program through corresponding changes, the deformation response of 

this system is presented in Fig. 2.5. As seen in the figure, mu 16283.00 =  at 

sec63.13=t  and the corresponding peak resisting force Nkuf 162830000 == .  
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Figure 2.5 Deformation response of the linear system with sec5=nT  and 05.0=ξ  

2.2.2.3 Inelastic response analysis of the system with sec2.0=nT  

For the same system, the selected normalized yield strength 125.0=f , the 

corresponding yield force Nf y 1636=  and the yield deformation 

m
k
f

u y
y 00011636.0== . 

Initial calculations 

00 =u , 00 =u& , 00 =p  

00000
0 =

−−
=

m
ukucp

u
&

&& . 

005.0=∆t . 
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Previously summarized Newmark’s time-stepping method for the nonlinear system has 

been implemented on the C program code given at Appendix B.  

Deformation response, inelastic resisting force response and the force-deformation 

relation, hysterics loop, has been shown in Fig. 2.6, Fig. 2.7 and Fig. 2.8 respectively. 
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Figure 2.6 Deformation response of the inelastic system with sec2.0=nT  and 

05.0=ξ  for 125.0=f  
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Figure 2.7 Resisting force response of the inelastic system with sec2.0=nT  and 

05.0=ξ  for 125.0=f  

2.2.2.4 Inelastic response analysis of the system with sec5=nT  

For the same system, the selected normalized yield strength 125.0=f , the 

corresponding yield force Nf y 5.203537=  and the yield deformation 

m
k
f

u y
y 0203537.0== . 
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Figure 2.8 Force-deformation relation, hysterics loop, for the inelastic system with 

sec2.0=nT  and 05.0=ξ  for 125.0=f  

Initial calculations 

00 =u , 00 =u& , 00 =p  

00000
0 =

−−
=

m
ukucp

u
&

&& . 

005.0=∆t . 

By the same C program through corresponding changes, inelastic deformation response, 

resisting force response and the force-deformation relation, hysterics loop, has been 

obtained and shown on Fig. 2.9, Fig. 2.10 and Fig. 2.11 respectively. 
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Figure 2.9 Deformation response of the inelastic system with sec5=nT  and 

05.0=ξ  for 125.0=f  
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Figure 2.10 Resisting force response of the inelastic system with sec5=nT  and 

05.0=ξ  for 125.0=f  
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Figure 2.11 Force-deformation relation, hysterics loop, for the inelastic system with 

sec5=nT  and 05.0=ξ  for 125.0=f  

2.2.2.5 Numerical Calculation of Energy Quantities 

The absolute energy and the relative energy terms of the given system have been 

evaluated separately by using the numerical results obtained from the preceding 

response analysis. Absolute input energy time histories for the systems with sec2.0=nT  

and sec5=nT  are presented in Fig. 2.12, Fig. 2.13, and the separate plot of dE , hE , sE , 

kE  time histories for them are shown at Appendix C and D respectively. Similarly, 

relative input energy time histories for the systems with sec2.0=nT  and sec5=nT  are 

presented in Fig. 2.14, Fig. 2.15, and the separate plot of dE , hE , sE , kE ′  time histories 

for them are shown at Appendix E and F respectively. 
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Figure 2.12 Absolute input energy time history of the system with sec2.0=nT  and 

05.0=ξ  for 125.0=f  
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Figure 2.13 Absolute input energy time history of the system with sec5=nT  and 
05.0=ξ  for 125.0=f  
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Figure 2.14 Relative input energy time history of the system with sec2.0=nT  and 

05.0=ξ  for 125.0=f  
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Figure 2.15 Relative input energy time history of the system with sec5=nT  and 

05.0=ξ  for 125.0=f  

Similarly, relative input energy time history of the system with sec2.0=nT  and 

05.0=ξ  for 25.0=f  is presented in Fig. 2.16 in order to show the variation of energy 

depending on the normalized yield strength which reflects ductility of the structure. The 

value of energy decreases significantly when the ductility of the structure becomes low.  
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Figure 2.16 Relative input energy time history of the system with sec2.0=nT  and 

05.0=ξ  for 25.0=f  

Input energy defined by either Eq. 2.9 or Eq. 2.13 is a function of time. 

Damping energy dE , strain energy sE  and hysteretic energy hE  are uniquely defined 

regardless of which formulation is used. However, the input energy and kinetic energy 

show difference regarding which method is used. The significant difference in 

magnitude of iE  and iE ′  can be observed for the long period structure. The mass of the 
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structure almost does not move when the period of the structure is significantly larger 

than the predominant excitation period of the ground motion. Consequently, as it is 

explained in the iE  time history, the absolute input energy for the relatively long period 

structure should be low.  

It is necessary to determine the time at which the input energy is evaluated in order to 

build input energy spectra. Mostly, the input energy is proposed to be evaluated at (i) the 

end of the ground motion duration, or (ii) this duration plus a time equal to one half the 

period of free vibration of the structure, or (iii) this duration plus a time at which the 

velocity of the structure changes sign. For short period structures, theses methods can 

generate proper results as far as the relative energy equation is used. However, for long 

period structures, they can significantly underestimate the maximum input energy that 

may occur early in the ground motion shaking.  

2.3 Estimation of the Difference between Input Energies from 

Different Definitions 

Both the absolute energy equation and the relative energy equation have been used by 

different authors depending on their purposes. The difference between the input energies 

defined by formulation 1 and formulation 2 can be calculated as 

iggit

gttttgti

EuumumEumum

duuumduumduduumduumE

′++=′+−=

+−=−== ∫∫ ∫∫
&&&&&

&&&&&&&&&&

222 )(
2

)(
2

)(
2

)()())(()(
 

so 

ggii uumumEE &&& +=′− 2)(
2

                                       (2.3.1a) 

The difference between the kinetic energies due to the different definitions also provides 

us the same result i.e. 

ggkk uumumEE &&& +=′− 2)(
2

.                                     (2.3.1b) 
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It is hard to evaluate the difference because of the term u&  in the last term of the previous 

equation. However, for the structures having very long and very short period, the value 

of iE  and iE ′  are estimated below. 

For a structure with very long period ( ∞→T ), the input energy converges to a constant 

value depending on which definition of input energy is used. For a structure with 

infinitely long period, 

guu −=  

0=+= gt uuu ;           0=tu&&  

therefore,  

Formulation 1:            0)0( === ∫∫ ggt
i duduu
m
E

&&                                                 (2.3.2a) 

Formulation 2:            
2

)(
)()(

2
g

ggggg
i u

duuduuduu
m
E &

&&&&&& ==−−=−=
′

∫∫∫              (2.3.2b) 

i.e. the difference between the input energies iE  and iE ′  for a structure ∞→T  is equal 

to 
2

)( 2
gum &

. The value of the input energy iE ′  evaluated at the end of duration will be 

very small because gu&  tends to vanish gradually. If iE ′  is evaluated as the maximum 

throughout the duration, 
m
Ei′  will converge to 

2

2
(max)gu  for structures with long period.  

For a structure with very short period ( 0→T ), the input energy also converges to a 

constant value depending on the different definitions. For a structure with zero period, 

i.e. a rigid structure, 

gt uu &&&& =  

gt uu = ,       0=u , 

therefore, 
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Formulation 1:            
2

)( 2
g

gggt
i u

duuduu
m
E &

&&&& === ∫∫                                         (2.3.3a) 

Formulation 2:            0)0( =−=−=
′

∫∫ gg
i uduu
m
E

&&&&                                               (2.3.3b) 

i.e. the difference between the input energies for a structure having zero period 

is
2

2
(max)gum &  [6]. 

2.4 The Relation between Energy-Based Velocity Spectrum and the 

Fourier Amplitude Spectrum 

It is well known the energy-based velocity spectrum ev  of undamped elastic SDF 

systems is perfectly coincident with the Fourier amplitude spectrum, simply denoted by 

( )ωF  [8]. The Fourier amplitude spectrum of base acceleration is defined by 

2

0

2

00

000 sin)(cos)()()( 





+






== ∫∫∫ − t

g

t

g

t ti
g tdttutdttudtetuF ωωω ω &&&&&&     (2.4.1) 

As known, the kinetic energy of the mass is expressed as 

2)]([
2
1 tumEk &= ,                                               (2.4.2) 

and the potential energy equal to the strain energy sE  is expressed as 

2)]([
2
1 tukEs =                                                  (2.4.3) 

The energy input consists of these two parts i.e. 

22 )]([
2
1)]([

2
1 tumtukEi &+=                                      (2.4.5) 

It is obvious that 
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{ }2
1

222
1

)]([)]([2 tutu
m
E

n
i &+=





 ω                                  (2.4.6) 

where 

∫ −=
t

ngn dtutu
0

)](sin[)()( ττωτω &&                                 (2.4.7) 

∫ −=
t

ng dtutu
0

)](cos[)()( ττωτ&&&                                  (2.4.8) 

Through substituting these expressions and some mathematical manipulations, 

[ ] [ ]{ }2
1

22
sin)(cos)(

2
∫∫ += ττωτττωτ dudu

m
E

ngng
i &&&& ,                (2.4.9) 

right hand side of which is the Fourier amplitude spectrum ( )ωF . If left hand side of 

Eq. 2.4.9 is denoted by the equivalent input energy velocity ev , 

( )
m
E

vF i
e

2
≡=ω                                            (2.4.10) 

2.5 Evaluation of Energy in Multi-Degree-of-Freedom-Systems 

2.5.1 Energy Equations for the Original MDF Systems 

2.5.1.1 Relative Energy Equation for MDF Systems 

The governing equation of motion for a MDF system is given by 

gs umufucum &&&&& }1]{[})}({{}]{[}]{[ −=++                                 (2.5.1) 

where ][m , ][c , })}({{ uf s  and }{u  are the diagonal mass matrix, viscous damping 

matrix, restoring force vector and relative displacement vector respectively [9]. 

Integrating Eq. 2.5.1 in the displacement range, we get 

∫∫∫∫ −=++ T
g

T
s

TT duumduufduucduum }{}1]{[}})}{({{}}{]{[}}{]{[ &&&&&   (2.5.2a) 
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Considering dtudu TT }{}{ &= , we can rewrite Eq. 2.5.2a with respect to time as 

∫∫∫∫ −=++ dtumudtufudtucudtumu g
T

s
TTT &&&&&&&&& }1]{[}{})}({{}{}]{[}{}]{[}{   (2.5.2b) 

The first term is the kinetic energy kE , the second term is the damping energy dE , the 

third term is the sum of the irrecoverable hysteretic energy hE  and the recoverable 

elastic strain energy sE . The right hand side term is the input energy iE . 

For the purpose of comparison among different systems, it is useful to normalize the 

various energy terms to the total mass of the system.  

2.5.1.2 Absolute Energy Equation for MDF Systems 

The absolute energy equation for multi-degree-of-freedom-systems subjected to an 

earthquake excitation has been derived as below: 

∫ ∑∫∫
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=++ g

n

i
tii

T
s

T
t

T
t duumudfudcuumu )(}{}{}{][}{}]{[}{

2
1

1

&&&&&             (2.5.3) 

where tiu&&  is the absolute acceleration at the i th floor. The kinetic energy and input 

energy are obtained as below.  
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&&&                               (2.5.4a) 

∫ ∑
=

=
n

i
gtiii duumE

1
)( &&                                           (2.5.4b) 

where kE  is the summation of the kinetic energy at each floor level due to an absolute 

velocity tiu&  at the i th floor, and iE  is the summation of the work done by an inertia 

force tiium &&  at each floor for ground displacement [6].  
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2.5.2 Energy Equations for the Equivalent SDF Systems 

2.5.2.1 Seismic Analysis of a MDF System Using SDF Equivalent System 

A simplified approach for the seismic analysis of a MDF system using the seismic 

response of the corresponding equivalent SDF system has been presented here using the 

dimensional form of the equations of motion [8]. Firstly, the multistory building is 

assumed to have a constant deflection shape }{φ . Hence the relative displacement vector 

)}({ tu  can be written as 

)(}{)}({ ttu δφ=                                                (2.5.5) 

where )(tδ  is the lateral displacement at the roof level.  

Substituting Eq. 2.5.5 into the equation of motion of the building subjected to an 

earthquake ground motion, we get 

)()()(2)( tu
M
tRtt g&&

&&& γδξωδ −=++ ∗

∗
∗                                 (2.5.6) 

where ∗ω  is the fundamental circular frequency of the building, and 

}]{[}{ φφ mM T=∗                                              (2.5.7) 

)}({}{)( tRtR Tφ=∗                                              (2.5.8) 

∗

∗

=
M
Lγ                                                      (2.5.9) 

}1]{[}{ mL Tφ=∗                                              (2.5.10) 

where ][m  is a diagonal mass matrix and )}({ tR  is the resistance vector with terms 

associated with each lateral degree of freedom.  

Solution of Eq. 2.5.6 in the range yδδ ≤  

Let’s remind the equation of motion of SDF system: 
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)(
)(

)(2)( tu
m
tf

tutu g
s &&&&& −=++ ξω                                    (2.5.11) 

The restoring force terms of Eq. 2.5.6 and Eq. 2.5.11 can be written respectively as 

)()( 2 t
M
tR δω∗
∗

∗

=                                               (2.5.12) 

)(
)( 2 tu

m
tf s ω=                                                (2.5.13) 

Substituting Eq. 2.5.12 into Eq. 2.5.6 leads to 

)()()(2)( 2 tuttt g&&
&&& γδωδξωδ −=++ ∗∗                               (2.5.14) 

Comparison of Eq. 2.5.14 and the combination of Eq. 2.5.13 and Eq. 2.5.11 shows that 

when ∗= ωω , if )(tu  is the solution of Eq. 2.5.11, )(tuγ  would be the solution of Eq. 

2.5.14. That is 

)()( tut γδ =                                                  (2.5.15) 

From Eq. 2.5.15, we can write 

yy uγδ =                                                    (2.5.16) 

Combining Eq. 2.5.12, Eq. 2.5.13 and Eq. 2.5.15, we can write 

m
tf

M
tR s )()( γ=∗

∗

                                              (2.5.17) 

Solution of Eq. 2.5.6 in the inelastic range 

For solving Eq. 2.5.6 in the inelastic range, it is assumed that the global displacement 

ductility ratio of the building and the displacement ductility ratio of the SDF system are 

equal, i.e. 

yy u
tut )()(

=
δ
δ                                                   (2.5.18) 
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Eq. 2.5.15 can also be obtained by combining Eq. 2.5.16 and Eq. 2.5.18. Therefore, if 

)(tu  is the solution of the nonlinear Eq. 2.5.11, )(tuγ  would be the solution of Eq. 2.5.6 

in the inelastic range. 

Substituting Eq. 2.5.17 into Eq. 2.5.6, we can get 

)(
)(

)(2)( tu
m
tf

tt g
s &&&&& γγδξωδ −=++ ∗                               (2.5.19) 

Inspection of the above equation and Eq. 2.5.11 shows that the solution of the equation 

of motion of the equivalent nonlinear SDF system is given by Eq. 2.5.15, which proves 

that Eq. 2.5.17 is also valid for the inelastic range. 

2.5.2.2 Energy Equations for the Equivalent SDF Systems 

Integration of the differential equation of motion of the equivalent SDF system, Eq. 

2.5.19, with respect to δ  leads to 

∫∫∫∫ −=++ ∗ δγδγδδξωδδ dtud
m
tf

dtdt g
s )(

)(
)(2)( &&&&&                 (2.5.20) 

Substituting Eq. 2.5.15 into Eq. 2.5.20, we can get 

∫∫∫∫ −=++ ∗ dutudu
m
tf

dutudutu g
s )(

)(
)(2)( 2222 &&&&& γγγξωγ            (2.5.21) 

The third term on the left hand side of the above equation represents the hysteretic 

energy ∗
hE  plus the strain energy ∗

sE  of the equivalent SDF system, i.e. 

∫=+ ∗∗ du
m
tf

EE s
sh

)(2γ                                         (2.5.22) 

As known, for a SDF system, the sum of hysteretic energy per unit mass plus the elastic 

strain energy per unit mass is given by 

∫=+ du
m
tf

EE s
sh

)(
                                           (2.5.23) 

Combining Eq. 2.5.23 and Eq. 2.5.22 yields 
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)(2
shsh EEEE +=+ ∗∗ γ                                         (2.5.24) 

Using the definition of hysteretic energy, from Eq. 2.5.24 we can write 

hh EE 2γ=∗                                                   (2.5.25) 
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PART 3 STATISTICAL EVALUATION OF ENERGY IN 

STRUCTURES 

It is very cumbersome to calculate the energy quantities by the analytical method 

presented in the previous part. In order to eliminate this difficulty, many statistical 

approaches for the evaluation of energy components, especially input energy which is a 

key parameter in the seismic assessment of structures and earthquakes, have been 

proposed by researchers. In this part, two of them proposed by Fajfar [9] and Manfredi 

[4] have been introduced respectively. 

3.1 A Procedure for Estimating Input Energy Spectra 

3.1.1 Introduction 

The potential for accumulation of damage that may occur in the structure subjected to an 

earthquake with long duration and large magnitude is an important issue in seismic 

design of structures. As far as the long-duration ground motions are concerned, yielding 

structures experience an increased number of cycles into the inelastic range; the 

concerning damage may significantly influence the whole performance of the structure 

depending on the damage characteristics of the structure. Formulation of duration-

dependent inelastic seismic design spectra was developed by Fajfar and his colleagues. 

This approach uses the suggestion which assumes that the lateral strength of a structure 

can be increased to compensate for the cumulative damage associated with an increased 

duration of the ground motion. The estimation of seismic demand in the form of an input 

energy spectrum forms the main procedure in the formulation of duration-dependent 

seismic design spectra. In the recent approach, the input energy is estimated by making 

use of the ground motion parameters which include the duration of the ground motion. 

An inelastic seismic design spectrum is developed by requiring that the structure has 

cyclic plastic strain energy capacity that is larger than or equal to the portion of the 
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seismic input energy contributing to cumulative damage. The plastic strain energy 

capacity is determined using an energy-based cumulative damage model. 

3.1.2 Equivalent Input Energy Velocity Spectrum 

3.1.2.1 Basic equations 

In seismic design of structures, the damage potential of an earthquake ground motion 

can be evaluated in terms of the total power associated with the acceleration of the 

ground motion. The total power of an earthquake ground motion can be evaluated by the 

similar procedure to the evaluation of the total power of a random signal. Particularly, 

the well-known Parseval’s theorem proposes that the total power associated with an 

earthquake ground acceleration )(tug&& can be computed by an integral either in the time 

domain or the frequency domain i.e. 

Total Power ∫∫
∞

−∞

∞

−∞
== ωω

π
dFdttug

22 )(
2
1)(&&                        (3.1.1) 

where ω =circular frequency, and )(ωF =Fourier amplitude spectrum of the ground 

acceleration )(tug&& . The Fourier transform of the ground acceleration )(tug&&  is expressed 

as: 

∫
∞

−∞

−= dtetuF ti
g

ωω )()( &&                                           (3.1.2) 

where 1−=i . Because the ground acceleration involves only a real function, the 

below property is true for the Fourier transform of the ground acceleration: 

*)()( ωω FF =−                                                (3.1.3) 

where *)(ωF  is the complex conjugate of the Fourier transform of the ground 

acceleration. Using the special property in Eq. 3.1.3, and replacing the limits of the 

integration in the time domain by 0=t  and 0tt =  where 0t  is the length of the digitized 

ground accelerogram, and the limits of integration in the frequency domain by 0=ω  to 

∞=ω , Eq. 3.1.1 can be written as: 
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∫∫
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2 )(1)(0 ωω
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dFdttu
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g&& .                                    (3.1.4) 

The left hand side of Eq. 3.1.4 can also be written as the mean square of the ground 

acceleration 2
gu&&

σ  times the length of the digitized accelerogram 0t . Thus the total power 

of the ground acceleration can be written as: 

Total Power ∫
∞

==
0

2
0

2 )(1 ωω
π

σ dFt
gu&&

.                            (3.1.5) 

However, the peak-ground-acceleration max)( gu&&  is more often used to define the 

intensity of the ground motion rather than the root-mean-square (RMS) of the ground 

acceleration 
gu&&

σ  for seismic design of structures. Therefore, the root-mean-square of the 

ground acceleration 
gu&&

σ  is expressed in terms of the peak-ground-acceleration max)( gu&&  

using a peak factor Z  which estimates the most probable peak-ground-acceleration for a 

given RMS value of the ground acceleration, i.e. 

gug Zu &&&& σ≡max)( .                                              (3.1.6) 

RMS of the ground acceleration can be expressed as [ ]∑
=

=
n

i
igu tu

ng
1

2)(1
&&&&σ . 

Using the above definition for the peak factor Z , Eq. 3.1.5 can be written as: 
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π

dFt
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ug&& .                                  (3.1.7) 

The peak factor Z  will be discussed later.  

It is necessary that the integral on the right hand side of Eq. 3.1.7 be evaluated in order 

to build the equivalent input energy velocity spectrum. However, the Fourier amplitude 

spectrum of the ground acceleration ( )ωF  is highly variable and makes it hard to carry 

out the integration directly. However, it is worth noting that the Fourier amplitude 

spectrum of ground acceleration ( )ωF  is identical to the equivalent input energy 

velocity ev  for an elastic, undamped SDF system, i.e. 



 35

( )
m
E

vF i
e

2
≡=ω                                            (3.1.8) 

It has been shown that the presence of damping in the structure tends to smooth out the 

irregular peaks in the input energy spectrum without significantly affecting the average 

value of the spectrum. Based on the numerical analyses of inelastic structural response 

under earthquake excitations, it has been concluded that the input energy at the end of 

the ground motion is not very sensitive to the lateral strength of the structure. Therefore, 

Eq. 3.1.8 can be considered to provide a good estimation of the input energy to 

structures.  

Due to the observation that the maximum input energy per unit mass approaches 

2
)( 2

maxgu&  as the period of the structure ∞→T  where max)( gu&  is the peak-ground-

velocity, the equivalent input energy velocity ev  can be written as a product of an 

amplification factor vΩ  and the peak-ground-velocity max)( gu& , i.e.  

max)( gve uv &Ω=                                               (3.1.9) 

where the amplification factor vΩ  depends on the ground motion parameters and the 

period of the structure. This approach is commonly used in energy-based seismic design 

of structures. The equivalent input energy velocity spectrum can be defined in terms of 

the amplification factor vΩ  using this approach. Relating to the input energy to a 

structure, it is necessary to note that the maximum input energy and the input energy 

calculated at the end of the ground motion is not identical. At very long period ∞→T , 

the maximum input energy does not occur at the end of the ground motion but occurs 

well before the end of the ground motion. A large portion of the maximum input energy 

is stored as the kinetic energy and elastic strain energy and do not contribute to the 

cumulative damage of the structure although the maximum input energy per unit mass 

approaches 
2
)( 2

maxgu&  when ∞→T . The use of input energy at the end of the ground 

motion which includes the energy dissipated by all inelastic cycles, rather than the 

maximum input energy, is more proper when the effect of cumulative damage is taken 
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into account in seismic designing. The input energy calculated at the end of the ground 

motion, and hence the amplification factor vΩ , should therefore tend to zero when the 

period ∞→T . 

3.1.2.2 Spectral Shape and Peak Amplification Factor 

According to the studies of inelastic dynamic response of SDF systems, for a given 

lateral strength of the system, a general shape shown in Fig. 3.1 can be adopted for the 

amplification factor  vΩ  characterizing the input energy at the end of the ground motion. 

The peak amplification factor *
vΩ  occurs at the characteristic period cT  of the ground 

motion. The characteristic period cT  will be discussed further later in this study. 

Defining the spectral shape in Fig. 3.1 in detail, the amplification factor vΩ  is assumed 

to tend to zero when the period 0→T , and when ∞→T . In this study, below spectrum 

is adopted for the amplification factor: 
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where *
vΩ =peak amplification factor for the equivalent input energy velocity, and 0≥λ , 

where λ  defines the spectral shape for period larger than the characteristic period. A 

value of 0=λ  defines a bilinear spectrum whereas a large value of λ  defines a spectral 

shape having faster rate of decrease for the amplification factor vΩ  in the long period 

range. The proposed spectral shape for vΩ  enables us to integrate the right hand side of 

Eq. 3.1.7 to obtain: 
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Figure 3.1 Amplification factor vΩ  for equivalent input energy velocity 

In the damage assessment of structures subjected to earthquake ground motions, the 

duration corresponds to the strong motion phase of the ground motion dt  is more 

important than the length of the digitized accelerogram 0t . Consequently, it is more 

proper to replace the length of digitized accelerogram 0t  in Eq. 3.1.7 by the strong 

motion duration dt  when the total power of the ground acceleration is calculated. 

However, it is necessary to conduct a proper adjustment of the peak factor Z  when 

performing the replacement. This will be discussed later on. Although various 

definitions have been proposed for the duration of strong ground motion, the definition 

by Trifunac and Brady will be used here: 

05.095.0 tttd −=                                                 (3.1.12) 

where 05.0t  and 95.0t  correspond to the times when 5% and 95% of the final Arias 

intensity are reached by the ground motion. Replacing 0t  by  dt , Eq. 3.1.7 and Eq. 

2.1.11 can be combined to give the peak amplification factor *
vΩ  for the equivalent input 

energy velocity: 

22
2/1

)(
)(

max

max*

+
+

=Ω
λ

λ
cd

g

g
v Tt

uZ
u
&

&&
          where    0≥λ                 (3.1.13) 
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where the peak amplification factor *
vΩ  for the equivalent input energy velocity is now 

expressed in terms of the ground motion parameters max)( gu& , max)( gu&& , dt , cT  and the 

peak factor Z . The peak amplification factor defined by Eq. 3.1.13 is not significantly 

dependent on the variation of λ  for large value of λ  (say 1≥λ ). Depending on the 

variation of λ  from 1 to 2, the peak amplification factor decreases by about 5%. A value 

of 1=λ  is used unless otherwise stated for discussion results later in this study. It can 

also be seen from the resulting expression, Eq. 3.1.13 that the peak amplification factor 
*
vΩ  is only dependent on the square root of the characteristic period cT , although is 

supposed to occur at the characteristic period cT . The peak amplification factor *
vΩ , 

which is a key parameter for the spectrum, is not significantly dependent on where the 

exact period occurs. 

3.1.2.3 Peak-to-RMS Ratio for Ground Acceleration 

Presenting the equivalent input energy velocity spectrum requires that the peak factor Z  

representing the ratio between peak-ground-acceleration and root-mean-square of the 

ground acceleration be estimated. However, for a nonstationary process, it is generally 

difficult to estimate the peak factor. In estimating the peak factor Z , one of the various 

expressions proposed in the literature based on the assumption of a stationary process, 

which has been resulted from a study of wind effects on structures,  is presented here: 
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where γ =Euler constant=0.577, ω =circular frequency of the system, and 1dt  

corresponds to a segment of the stationary excitation where the peak factor is to be 

determined, and 1dt  is usually used to express some measure of the “duration” of the 

ground motion when the expression is presented for earthquake excitation. A different 

expression for the peak factor has also been proposed for the vibration analysis of 

structures under random seismic excitation assumed to have a stationary process: 
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where p =probability of exceedance, and 2dt  represents a measure of the “duration” of 

the excitation and has identical meaning as 1dt . For a probability of exceedance in the 

range of 3.01.0 ≤≤ p , the peak factors obtained from Eq. 3.1.14 and Eq. 3.1.15 are very 

close to each other, and are not very sensitive to the duration 1dt  or 2dt , nor the circular 

frequency ω  of the structure. Consequently, a constant value for the peak factor 3=Z  

has been suggested for use. 

It is not proper to use the direct values of the peak factors obtained from Eq. 3.1.14 or 

Eq. 3.1.15, or a constant value of 3=Z  for the estimation of the peak amplification 

factor *
vΩ , because the term dt  in Eq. 3.1.13 has been defined based on the definition of 

the strong motion duration proposed by Trifunac and Brady. However, the appropriate 

value of the peak factor can be estimated through the statistical study of the peak factor 

using ground motion records. By rewriting Eq. 3.1.4-Eq. 3.1.6, the peak factor can be 

expressed as: 
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In estimating the peak factor Z , a statistical study has been conducted by Fajfar 

evaluating Eq. 3.1.16 using 118 ground motions recorded in California. Even though the 

set of data points tend to be concentrated in the short duration rage ( 20<dt sec), the 

peak factor varies primarily between 2 and 6, and seems to be insensitive to the duration 

of the ground motion, as noted earlier for Eq. 3.1.14 and Eq. 3.1.15. The mean value of 

the peak factor is obtained as 98.3=Z , and the standard deviation is 81.0=zσ . 

Consequently, a constant peak factor of 4=Z  is suggested to be used for the estimation 

for the peak amplification factor *
vΩ  in accordance with dt  defined by Eq. 3.1.12 for the 

strong ground motion duration.  
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3.1.3 Characteristic Periods of Ground Motions 

The use of input energy spectrum requires an estimation of the characteristic period cT , 

which represents the period at which the peak value of the input energy occurs. In the 

literature, this period may be called either the characteristic period or predominant 

period of the ground motion. The former will be used in this study. However, a given 

ground motion does not have a unique characteristic period since it is dependent on the 

lateral strength of the system, to a lesser extent, on the damping of the system. The 

assumption accepted for the approach proposed in this study is that the characteristic 

period corresponds to the transition period between the acceleration-controlled and 

velocity controlled elastic response spectrum, and may be defined by: 
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where vc  corresponds to the ratio of the spectral elastic response velocity to peak-

ground-velocity in the velocity-controlled (medium) period range, and ac  corresponds to 

the ratio of the spectral elastic response acceleration to peak-ground-acceleration in the 

acceleration-controlled (short) period range. The coefficients vc  and ac  have been taken 

as 2.0 and 2.5 respectively in the duration-dependent inelastic seismic design spectra. 

3.1.4 Comparison of Peak Amplification Factors *
vΩ  

3.1.4.1 Comparison with Ground Motions 

Using a peak factor of 4=Z , and a value of 1=λ , and substituting the characteristic 

period cT  as given by Eq. 3.1.1 into Eq. 3.1.13 with coefficients 2=vc  and 5.2=ac , 

the expression for the peak amplification factor *
vΩ  reduces to: 
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Eq. 3.1.18 indicates that the peak amplification factor *
vΩ  is proportional to the square 

root of the va /  ratio and the strong motion duration dt  of the ground motion.  

3.1.4.2 Comparison with Peak Amplification Factor Obtained from Bilinear 

Equivalent Input Energy Velocity Spectrum 

A bilinear spectrum was proposed by Kuwamura and Galambos for the equivalent input 

energy velocity. In this study, the peak equivalent input energy velocity eov  is given by: 

∫= 0
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2
1 t

gceo dttuTv &&                                         (3.1.19) 

where cT  may be taken as the characteristic period of the ground motion, )(tug&& =ground 

acceleration time history, and =0t  length of digitized accelerogram. By replacing the 

peak equivalent input energy velocity by the product of the peak amplification factor and 

the peak-ground-velocity i.e. max
* )( gveo uv &Ω= , and the integral of the square of the 

ground acceleration by: 
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where the length of the digitized accelerogram 0t  has been replaced by the strong 

motion duration dt , and the peak factor Z  has been defined in conjunction with the 

strong motion duration dt , the below peak amplification factor for the equivalent input 

energy velocity can be obtained from Eq. 3.1.19: i.e.  

cd
g

g
blv Tt

uZ
u

max

max*

)(2
)(

)(
&

&&
=Ω .                                      (3.1.21) 

It is worth noting that the peak amplification factor defined by Eq. 3.1.21 is similar with 

that obtained from Eq. 3.1.13 for the value of 0=λ  for the bilinear equivalent input 

energy velocity spectrum. By the way, it should be noted that a bilinear spectrum 

underestimates the peak amplification factor. Therefore, the value of the peak 

amplification factor defined by Eq. 3.1.19 for a bilinear spectrum was suggested to be 
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increased by 27%. It is also observed that the peak amplification factor resulted from Eq. 

3.1.13 with the replacement of 1=λ  is 22% larger that that obtained from Eq. 3.1.21 for 

a bilinear spectrum. 

3.1.4.3 Comparison with Empirical Formula 

In a study by Vidic and Fajfar, an empirical formulation was proposed to estimate the 

peak amplification factor i.e. 
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In comparing the peak amplification factors obtained from Eq. 3.1.18 with that obtained 

from Eq. 3.1.22, the peak amplification factors estimated by the two equations are highly 

identical to each other for the duration range 5510 ≤≤ dt  sec. However, for a short 

duration range e.g. 10<dt sec, the empirical peak amplification factor empv )( *Ω  can be 

significantly larger than that predicted by the formula, especially for low va /  ratio. 

Contrarily, the peak amplification factor predicted by the empirical expression Eq. 

3.1.22 is slightly smaller than that predicted by the formula Eq. 3.1.18 for a long 

duration e.g. 20>dt  sec and for high and ultrahigh va /  ratios. To sum up, the variation 

of the peak amplification factor in accordance with strong motion duration dt  and va /  

ratio can be seen as the major difference between the two peak amplification factors. In 

considering the empirical expression Eq. 3.1.22, the peak amplification factor varies 

depending on duration and va /  ratio as a power of 3/8, while the peak amplification 

factor obtained from Eq. 3.1.18 varies as a square root of the duration and va /  ratio.  

3.2 Evaluation of Seismic Energy Demand 

3.2.1 Hysteretic Energy and Equivalent Number of Cycles 

The amount of the hysteretic energy hE  definitely influences the cyclic collapse of 

structures with a degrading behavior. This provides us the possibility to define a damage 

functional based on the assumption that the structural collapse occurs when the 
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hysteretic energy dissipated under seismic actions is equal to the energy dissipated under 

monotonic load. We can evaluate the allowable hysteretic energy via a theoretical or 

experimental analysis of monotonic tests. If the allowable plastic energy of the structure 

analyzed is denoted with uhE , , the seismic check can be represented as below: 

uhh EE ,≤                                                     (3.2.1) 

As mentioned, the energy criterion has the limitation which requires that all the plastic 

cycles be taken into account adding the dissipated energy regardless of the amplitude of 

each cycle. Therefore, a measure of the distribution of cycles amplitude is the equivalent 

number of cycles eqn  which represents the number of cycles at the maximum plastic 

displacement that the structure can undergo in order to dissipate the total amount of the 

hysteretic energy hE : 

)( max yyeqh uuFnE −=                                          (3.2.2a) 
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E
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=                                            (3.2.2b) 

where hE  is the total dissipated energy, yF  is the maximum force of the structure, maxu  

is the maximum displacement and yu  is the displacement at the elastic limit. 

Furthermore, in order to characterize the non-linear behavior of a SDF system, the 

reduction factor R  can be represented referring to the elastic spectral acceleration 

)(TSa  as 

µ
1)(

==
y
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F
TmS

R                                                (3.2.3 

where m is the mass of the structure.  

The values of eqn  close to 1 indicate that the nonlinear system undergoes a large plastic 

cycle whereas the high values of eqn  indicate many plastic cycles there are in the 

response. Several analysis of eqn  versus the elastic period T  of the system for various 
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reduction factor R  and different earthquakes show that eqn  generally decreases with the 

period in the short period range and increases with the reduction factor. 

Furthermore, it is also observed that the values of eqn  are extensively sensitive to the 

earthquake characteristics. Its values vary from 1 for impulsive earthquakes to nearly 40 

for long-duration earthquakes. This means that there is high correlation between the 

values of eqn  and the characteristics of the earthquake. 

3.2.2 The Assessment of the Equivalent Number of Cycles 

The number of reversal plastic cycles n  with an amplitude of the generic cycle equal to 

iu∆ , maximum amplitude maxu∆  and the dimensionless average amplitude of the 1−n  

cycles cutting of the plastic cycle of maximum amplitude 

∑
−

= ∆
∆

−
=

1

1 max)1(
1 n

i

i

u
u

n
x  

can represent the nonlinear response of an elastoplastic SDF system under an earthquake 

ground motion.  

This results in a different expression of the number of equivalent cycles i.e. 

xnneq )1(1 −+= .                                               (3.2.4) 

Consequently, it is noted that the evaluation of n  and x  defines eqn .  

Fig. 3.2 illustrates the typical calculation of these quantities.  

An extensive statistical analysis has been conducted in order to define n  and x  reliably. 

The procedure of the analysis has been implemented in the analytical formulations 

performing the following steps: 

(1) a set of possible structural (i.e. stiffness, yielding level, damping, etc.) and 

earthquake (i.e. peak ground acceleration (PGA), peak ground velocity (PGV), 

duration, etc.) parameters, correlated with n  and x , has been introduced; 

(2) an exponential type formulation has been selected for n  and x : 
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Figure 3.2 Calculation of n  and x  

γβα
isipie ppApn ,,,1+=           λεδ

isipie ppBpx ,,,1+=  

        where ep , pp  and sp  are the possible earthquake and structural parameters; 

(3) statistical regression was performed comparing the values of n  and x , obtained 

from a nonlinear step by step integration of SDF equation, and the values provided 

by the proposed formulations; 

(4) the optimum parameters were defined choosing the parameters with the higher 

partial correlation factor; 

(5) the optimum coefficients A , B , α , β , γ , δ , ε  and λ  were chosen minimizing 

the standard error.  

Afterwards, as for the structural parameters, the relations by the ratio 0/ξξδ = , where 

ξ  is the proportional damping and 0ξ  is 5% reference damping, and the ratio 1/TT=τ  

(for 1TT < ), where T  is the elastic period of the system and 1T  is the initial period of 

the medium periods range in the Newmark and Hall spectral representation, describes 

the elastic response while )1( −R , where R  is the reduction factor, describes the 

inelastic response. 

A fundamental procedure, the assessment of the seismic characteristics necessary for 

the identification of n  and x  are performed using following parameters, functions and 

indices. A dimensionless index DI  
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PGVPGA
I

PGV
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I

I EE
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== 2                                   (3.2.5) 

where PGA  and PGV  are the peak ground acceleration and peak ground velocity 

respectively, and EI  

∫=
Et

gE dttuI
0

2)(&&                                                (3.2.6) 

where gu&&  is the ground acceleration and Et  is the earthquake duration. EI  is 

proportional to the Arias Intensity. 

The statistical analysis numerically defines n  and x  as follows: 

5/45/43/23/1 )1(05.11 DIRn −+= −− τδ                                 (3.2.7) 

5/15/16/16/1 )1(17.0 DIRx −−= τδ                                   (3.2.8) 

where 

1/TT=τ           1TT ≤ ,          1=τ        1TT >  

0/ξξδ =          0ξξ ≥ ,          1=δ        0ξξ <  

Substituting the expressions of n  and x  in Eq. 3.2.4, eqn  can be expressed as 

2/16/15/3)1(18.01 −−−+= τδDeq IRn                                  (3.2.9) 

In the case of damping equal to 5 per cent and in the medium and long periods ranges 

Eq. 3.2.9 becomes 

Deq IRn 5/3)1(18.01 −+=                                        (3.2.10) 

It can be noticed that Eq. 3.2.9 and Eq. 3.2.10 are linearly dependent on earthquake 

characteristics via the seismic index DI . Consequently, DI  can be regarded as an 

indicator of the cyclic demand of the earthquake. Low values of DI  are obtained from 

impulsive earthquakes whereas high values of it are obtained from the earthquakes with 

long duration. 
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3.2.3 The Assessment of the Hysteretic Energy 

An expression of the dissipated energy is obtained from the definition of the number of 

equivalent cycles eqn  and the reduction factor R  as below: 
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where cµ  is the cyclic ductility, yc uu /1 max∆+=µ , and ω  is the angular frequency of 

the system. 

In an approximate way, Eq. 3.2.11 enables us to construct the hysteretic energy spectra 

by using the elastic spectrum aS  and defining proper expression of the reduction factor 

R . 

As a result of extensive studies related to R , following expression is available for the 

case of rock and low-depth grounds: 

4/35/4)1(5.11 −−+= τµR                                          (3.2.12) 

In evaluating the peak demand of hysteretic energy, another important parameter, 

because the period of peak demand generally takes place in the field of the medium 

periods, it is coincident with the peak value of pseudo-velocity ω/aS . Combining Eq. 

3.2.9, Eq. 3.2.11 and Eq. 3.2.12, the amount of the maximum hysteretic energy for a 

proportional damping ξ  equal to 0.05 is defined by 
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A simplified formulation of Eq. 3.2.13 can be obtained as 
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3.2.4 The Evaluation of Input Energy 

The input energy imparted to a structure during an earthquake is mainly defined by the 

elastic period of the structure and the seismic characteristics of the ground motion, 

whereas it is hardly sensitive to the viscous damping and the previously mentioned 

characteristics of the inelastic response like the hysteresis and the ductility. However, 

the hysteretic energy forms the starting point for the estimation of the input energy. 

Based on the seismic response of the SDF systems, it is observed that the relation 

between the hysteretic energy hE  and the input energy iE  is only sensitive to the 

demanded ductility and it is not significantly dependent on the seismic characteristics of 

the ground motion. The statistical analysis conducted in this issue provides us the 

following expression of this ratio for 05.0=ξ : 
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A formulation of the input energy as a function of the cyclic ductility cµ  can be 

obtained from ih EE /  ratio and Eq. 3.2.13 i.e. 
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This expression implies that the input energy spectra can be obtained from the pseudo-

velocity spectrum by an approximate approach.  

Furthermore, the maximum value of the input energy can be expressed, similarly with 

the expression of the dissipated energy, for 05.0=ξ  as 
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Finally, the following simplified expression is obtained by using the approximate 

formulation of hE : 
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It is worth noting that the input energy iE  in this formulation is lesser sensitive to the 

possible ductility. Consequently, neglecting the influence of the ductility on iE , 

assuming a ductility 2=cµ  which is the minimum value accepted in the statistical 

analysis, more simplified expression can be obtained from Eq. 3.2.18 as 
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3.2.5 A Comparison of Different Expressions for the Input Energy Demand 

The expression of the peak input energy Eq. 3.2.19 can be written in the form 
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The first term of Eq. 3.2.20 represents the amount of energy corresponding to the 

maximum impulse of the ground motion and is similar to Housner’s assumption which is 

valid for the undamped system: 
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The second term of it dependent on the seismic index DI  represents the influence of the 

earthquake duration.  

Based on the other researches, another comparison is possible for the range of medium 

periods as 
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where AV  is the amplification spectral factor. Eq. 3.2.20 then takes the form 
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Substituting the expression of DI  in Eq. 3.2.23, 
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The second term of Eq. 3.2.24 is similar to the formulation proposed by Kuwamura and 

Galambos, which is 
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where the predominant period of earthquake gT , assumed to be equal to 1T , the limit 

period between the short and the medium period range, is offered the value 

)/(3.4 PGAPGV . 

For a medium cyclic demand, if the earthquake is characterized by DI with the typical 

value 15, Eq. 3.2.24 takes the form 
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It is possible to express the seismic index DI  in a different form using the definition of 

effective duration by Trifunac and Brady and the dimensionless time variable dtt / . 
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Substituting Eq. 3.2.26 into Eq. 3.2.20, the input energy demand can be expressed as 
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Consequently, it can be noticed that the input energy demand is really dependent on the 

effective duration, and functionally dependent on the product of the dimensionless Arias 

intensity and the ratio PGVPGA / . 

3.3 Other Energy-Related Empirical Formulations 

3.3.1 The Relation between Amplification Factor of Equivalent Velocity of 

Input Energy and the Strong Motion Duration 

Recalling Eq. 3.1.9, the amplification factor vΩ  of an input energy equivalent velocity 

spectrum for a given ductility ratio µ  and a viscous damping ratio ξ  can be rewritten as  
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Numerous statistical study shows that vΩ and dt  are linearly dependent and the 

following equation is obtained by the least-squares method: 

dv t12.00.1)05.0,5( +===Ω ξµ                                  (3.3.2) 

where the strong ground motion duration dt  is defined by Eq. 3.1.12. 

Therefore, it is possible to assume the maximum energy input to a structure with a 

specified ratio if the strong motion duration for a given earthquake is known. Generally, 

the maximum input energy occurs in the immediate vicinity of the predominant period 

of the earthquake ground motion [6].  

3.3.2 Formulations of Input Energy Proposed by Kuwamura and Galambos 

Predominant period of the ground motions is given by 
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where gu&  and gu&&  are the peak ground velocity and acceleration [11]. 

a) The input energy at the end of the ground motion per unit mass is estimated by 
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where 0t  is the complete ground motion.  

b) A modified formula for input energy per unit mass is proposed as 
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c) The maximum input energy per unit mass is estimated by the formula 
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where dt  is the duration of strong ground motion in seconds defined by Eq. 3.1.12. 

d) Based on observations obtained in the parametric study, the following values are 

proposed as an upper bound for the hysteretic to input energy ratio: 
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           for 2 percent damping 
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PART 4 ENERGY-BASED SEISMIC DESIGN OF 

STRUCTURES 

As mentioned in the previous parts, utilizing the energy concept in structural analysis 

has crucial meaning for the convenience in the seismic designing new structures, 

retrofitting existing structural facilities and the reliable damage assessment. This part is 

devoted to the preliminary presentation on energy-based seismic design of structures. As 

can be estimated, a comprehensive coverage of the topic is beyond the scope of this 

study. 

4.1 Introduction 

Two essential factors, demand and supply, forming the basic design equation are needed 

to be defined in seismic analysis of structures. The basic design equation can be 

interpreted as 

demand ≤  supply 

on 

stiffness, 

strength, 

stability, 

energy absorption and energy 

dissipation capacities 

 of 

stiffness, 

strength, 

stability, 

energy absorption and energy 

dissipation capacities [14]. 

Evaluation of the demand is related to the loading effect on structures while the 

estimation of the supply is related to the characteristics of the structure. Therefore, 

proper determination of loading effect is a fundamental step in seismic analysis. In the 

seismic resistant design, earthquake excitation is accepted as the loading effect. Reliable 

establishment of the design earthquakes comes next. It is necessary to reliably assess the 

damage potential of all the possible earthquake ground motions that can occur at the site 



 54

of the structure. Currently, the Safety or Survival-Level Design Earthquake is defined 

through Smoothed Inelastic Design Response Spectra (SIDRS). Most of the SIDRS used 

in seismic codes have been obtained directly from Smoothed Elastic Design Response 

Spectra (SEDRS) by using the displacement ductility ratio µ  or the reduction factorR . 

SIDRS can be obtained directly as the mean or the mean plus one standard deviation of 

the Inelastic Response Spectra (IRS), corresponding to all the different time histories of 

the severe ground motions induced at the given site from possible earthquakes. 

This approach is necessary for successful design for safety. However, it is not sufficient 

to avoid collapse and/or serious damage that can endanger human life. Although the IRS 

includes the effects of duration of strong motion at certain level, these spectra do not 

provide us the reliable information of the amount of energy due to be dissipated by 

whole structural system by means of hysteretic behavior during the critical ground 

motion. Only the value of maximum global ductility demand is expected from them. In 

other words, the maximum global ductility demand by itself does not give an appropriate 

definition of the damage potential of ground motions. As demonstrated in the previous 

parts, a more reliable and stable parameter than those currently used in assessing damage 

potential is the input energy iE . For the rational earthquake-resistant design procedures, 

however, it is necessary to build the damage criteria on the simultaneous consideration 

of iE , µ  and the hE  [14]. 

4.2 Advantages of Using Energy Concept in Seismic Design of 

Structures 

In addition to the conveniences of using energy concept in seismic analysis of structures 

explained in the previous parts, it has the following fundamental advantages. Absolute 

energy equation is written as 

=iE      eE          +         DE                                       (4.2.1) 

=iE  sk EE +      +      hd EE +                                  (4.2.2) 
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where eE  and DE  can be considered as the stored elastic energy and the dissipated 

energy respectively. If the design equation is recalled, this equation clearly explains that 

iE  represents the demands, and the summation De EE +  represents the supplies. Eq. 

4.2.1 apparently postulates that the first step for conducting an efficient seismic design is 

to estimate the iE  for the critical ground motion correctly; the second step is to analyze 

if it is possible to balance this demand with just the elastic response of the structure to be 

designed or it is proper to attempt to dissipate as much as possible amount of the iE  by 

means of DE . As shown by Eq. 4.2.2, there are three ways of increasing DE : The first is 

to increase linear viscous damping energy dE ; the second is to increase the hysteretic 

energy hE ; and the third is a combination of increasing dE  and hE . For the time being, 

it is usual application to just attempt to increase hE  as much as possible through 

inelastic (plastic) behavior of the structure which means damage of the structural 

members. Recently it has been recognized that it is possible to efficiently increase the 

dE  and the control damage using Energy Dissipation Devices. 

If it is hard to technically and/or economically balance the required input energy iE  

through either eE  alone or De EE + , it is possible to attempt to control (decrease) the iE  

to the structure by applying Base Isolation Techniques. A combination of controlling 

(decreasing) the iE  by base isolation techniques and increasing the DE  by using energy 

dissipation devices is very optimal strategy not only for achieving efficient seismic-

resistant design and construction, but also for the retrofitting of existing hazardous 

structures. To reliably use this energy approach, it is crucial to select the critical ground 

motion (design earthquake) which controls the design, in other words, the ground 

motion that has the largest damage potential for the structure to be designed. However, 

many parameters have been and are being used to decide design earthquakes, most of 

which are not reliable for assessing the damage potential of ground motions. As 

mentioned in the introduction, a suitable parameter for assessing damage potential of 

these motions is the iE  [14]. 
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4.3 Design Principles 

It is possible to define each earthquake-resistant design limit using energy balance 

concept. Based on the energy equation, the condition under which a structure can remain 

almost elastic is 

hdiedes EEEEE −−=≥                                         (4.3.1) 

where esE  is the elastic energy supply and edE  is the elastic energy demand. 

The collapse limit of the structure is defined as 

edihdhs EEEEE −−=≤                                        (4.3.2) 

where hsE  is the hysteretic energy supply and hdE  is the hysteretic energy demand. 

The condition under which the structure can survive without collapse is 

hdhs EE ≥                                                     (4.3.3) 

A required performance level of the structures can be defined based on the comparison 

of corresponding quantity of energy supply and demand [1]. 

4.4 A Procedure for Energy-Based Seismic Design of Structures Using 

Yield Mechanism and Target Drift 

In this section, a procedure for seismic design forces for multistory moment frame 

structures is presented using the energy balance concept. The energy balance concept 

which is used for constructing inelastic design response spectra for single-degree-of-

freedom systems is modified and extended to cover the effects of plastic yield 

mechanism and the distribution of seismic forces along the height of the structure [12].  

4.4.1 Review of Energy Balance Concept 

The energy balance concept used in this study is based on the assumption that the energy 

needed to push a structure monotonically up to the maximum target deformation is equal 
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to the maximum earthquake input energy of an equivalent elastic system iE  which can 

be estimated by 2

2
1

vmS  where vS  is the pseudovelocity. This concept is illustrated in 

Fig. 4.1. Generally, using the energy balance concept in deriving inelastic response 

spectra for elastoplastic systems from the elastic response spectra for the given values of 

displacement ductility factor keeps the results on the conservative side except that the 

structure has a very short period.  
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Figure 4.1 Energy balance concept 

4.4.2 Energy Balance Concept in Multistory Frames 

On a multistory structure with one-bay moment frame and a defined global mechanism 

shown in Fig. 4.2, the plastic deformation of the frame occurs after the structure reaches 

its yield point. In the plastic deformation range, it is assumed that the drift of the frame 

is uniform over the height of the structure and all of the energy is dissipated only in the 

plastic hinges. The inelastic story drift can be approximated by the plastic rotation of the 

frame pθ . It is assumed that the energy balance concept is valid for such structures after 

the energy components are estimated properly.  

Housner showed that the pseudovelocity spectra of typical earthquakes tend to remain 

practically constant over a wide range of periods. This is particularly valid for a 

spectrum obtained by averaging several response spectra of earthquakes with similar 

intensities. Based on this assumption, Housner showed that the maximum earthquake 

input energy for a MDF system, on the average, can be approximated by 
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Figure 4.2 One-bay frame with global mechanism 
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where M  is the total system mass, vS  is the pseudovelocity from the elastic response 

spectrum, a  is the normalized pseudoacceleration with respect to the acceleration due to 

gravity g , W  is the weight and T  is the fundamental period. 

Although Eq. 4.4.1 presents an approximate approach for the estimation of input energy, 

its accuracy is at acceptable level for the seismic design purposes. As known, the 

determination of precise energy demand requires an impractical calculation procedure 

based on the exact characteristics of the structure as well as the exact ground motion to 

be considered in the analysis. Nonetheless, a more comprehensive analysis may be 

needed in the case the structure is subjected to ground motions with much more different 

properties than that of earthquakes such as El Centro which was used in the derivation of 

the above equation.  

Another important component of the energy balance equation is the elastic energy eE . In 

the approximation of eE , for an equivalent single-degree-of-freedom system, an 

empirical formulation has been proposed by Akiyama and Kato as 
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where yV  is the yield base shear.  

Based on Eq. 4.4.1 and Eq. 4.4.2, total plastic or hysteretic energy hE  needs to be 

dissipated during the entire ground motion can be obtained from subtracting Eq. 4.4.2 

from Eq. 4.4.1, that is 
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The plastic energy formulated by Eq. 4.4.3 is equal to the energy dissipated through 

plastic hinges in the structure shown in Fig. 4.3. The proposed yield mechanism of the 

structure in Fig. 4.3 is expressed as 
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where pbiM  is the plastic moment of the beam at level i  and pcM  is the plastic moment 

of the columns at the base of the structure. Furthermore, the equivalent inertia forces 

must be in equilibrium with the internal forces after yielding. The internal work done in 

plastic hinges is equal to the external work done by the equivalent inertia forces, that is 
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where iF  is equivalent inertia force at level i  and ih  is the height of beam level i  from 

the ground. Assuming an inverted triangular force distribution, the inertia force at level 

i  can be related the base shear by 
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where iw  (or jw ) is the weight of the structure ate level i  (or j ). Above assumed 

distribution shape of the force corresponds to the assumed linear shape of the first mode 

of vibration for a structure with global (strong column) yield mechanism.  

Using Eq. 4.4.4, Eq. 4.4.5 and Eq. 4.4.6, Eq. 4.4.3 can be written as  
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Solving Eq. 4.4.7 for 
W
Vy , the solution of the above equation gives 

2
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where α  is a dimensionless parameter which depends on the stiffness of the structure, 

its modal properties and the intended plastic drift, and is given by 
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Now it is possible to define the design base shear by Eq. 4.4.8 demanded by a design 

plastic drift level of the frame pθ . After the base shear has been obtained, the design 

force corresponding to each level can be defined by Eq. 4.4.6.  

Practically, the total target story drift of the structure, the combination of the elastic and 

plastic story drifts, is accepted as the base for an optimal design. Therefore, firstly, it is 

necessary to define the elastic drift of the structure at yield. For example, for a structure 

to be designed, if the estimated yield drift is 1%, and the maximum total drift is 3%, the 

plastic drift then can be defined as 2% (0.02). 

It should be noted that the above procedure is based on the assumption that the plastic 

deformation of the frame is unidirectional and it only takes place during the peak 

deformation. Although it is unlikely the practical case, two research results below 

support the assumption. 
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Firstly, it has been proved that the interstory drift, which is a suitable damage index for 

frame structures, is generally larger than the global (roof) drift assumed in the design 

process. A study conducted by researchers shows that the interstory drift can be as larger 

as 30% than the global drift in reinforced concrete structures. The ratio between 

interstory drift and the global drift can increase up to 1.4 usually and, for some cases, 

even 2.0 for steel structures.  

Secondly, it has been shown that the response of a single-degree-of-freedom system 

induced by the largest earthquake acceleration impulse properly represents the inelastic 

seismic response in a certain period range. The equivalent impulsive loading produces 

mainly unidirectional plastic deformation. Therefore, the unidirectional plastic drift 

representation could give reasonable results in the design procedure. This case is 

especially valid for near field earthquakes.  

4.4.3 Design Provisions 

4.4.3.1 Seismic Design Forces Based on the Spectral Acceleration in Turkish 

Code-1997 

Based on the elastic design pseudoacceleration spectra proposed by many building 

codes, the design input energy level can be estimated by Eq. 4.4.1 in design procedures. 

Consequently, the spectral acceleration coefficient in Turkish Code-1997 which 

corresponds to the normalized pseudoacceleration in Eq. 4.4.1 can be used to evaluate 

the design input energy level. The spectral acceleration coefficient is given by 

)()( 0 TISATA =                                              (4.4.10) 

where 0A  is the effective ground acceleration coefficient defined depending on the 

seismic zone, I  is the building importance factor and )(TS  is the spectrum coefficient. 

4.4.3.2 Plastic Design of Multistory Frames Based on Proposed Energy Concept 

In the conventional design procedure, in which the distribution of internal forces is 

defined by the elastic analysis, the formation of undesirable mechanism may occur. 

Consequently, that case can result in unexpected failure mechanism after the formation 
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of beam hinges which is much different from that predicted. Therefore, in energy-based 

design of structures, the plastic design is more suitable as the primary design 

methodology. In this section, a simple procedure for the derivation of the design forces 

based on the assumption that the selected yield mechanism is maintained during the 

entire excitation as shown in Fig. 4.2. 

Considering the n -story frame in its mechanism state shown in Fig. 4.2, the moment 

equilibrium equation of the frame can be rewritten as 
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where iF  is the known design force at level i  obtained as explained earlier, ih  is the 

height of the beam level i  from the ground, iβ  is the proportioning factor for the beam 

strength at level i , pbrM  is the common reference plastic moment for beams and pcM  is 

the required plastic moment of columns of in the first story. The beam proportioning 

factor iβ  represents the relative beam strength at level i  with respect to a reference 

plastic moment pbrM . The product pbriMβ  is the plastic moment capacity of the beam 

at level i .  

Properly estimating the values of iβ  and pcM , the design can be performed by obtaining 

the only unknown variable pbrM . The determination of the beam proportioning factor 

iβ  will be discussed later. The value of pcM  should be defined so as to eliminate a soft 

story mechanism in the first story. As an approach, assuming plastic hinges at the base 

and the top of the first story column, the required plastic moment capacity of the first 

story columns in one-bay frame should be  

4
1.1 1hVM y

pc =                                                (4.4.12) 

where yV  is the total base shear, 1h  is the height of the first story and the factor 1.1 is the 

overstrength factor to account for possible overstrength due to strain hardening.  
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After obtaining pbrM , the required nominal beam strength at each level can then be 

determined as  

pbripbi MM βφ ≥                                               (4.4.13) 

where φ  is the resistance factor and pbiM  is the nominal plastic moment capacity of the 

beam at level i .  

Now it is possible to design the columns as a cantilever subjected to lateral forces and 

moments provided that the dimensions of the beams are defined. In order to realize a 

strong-column-weak-beam yield mechanism, the columns are needed to be designed on 

the assumption that the beams are fully strain hardened when the complete mechanism 

occurs. The overstrength factor ξ  is introduced to increase the moment of a fully strain 

hardened beam so as to reach the goal of the strong-column-weak-beam yield 

mechanism.  

The design moment of the columns at ultimate state can be estimated provided that the 

overstrength factor ξ  is assigned by a proper value. Considering the corresponding term 

of Turkish Code-1997, the overstrength factor ξ  can be assigned by 1.20 [15]. However, 

for the beam at the roof level, ξ  can be equal to 1 because the global behavior at 

mechanism state is not much influenced by the plastic hinges allowed at that level.  

4.4.3.3 Distribution of Beam Strength 

As mentioned previously, the relative strength at each level represents the variation of 

story strength and stiffness over the height of the structure. The proper choice of the 

beam proportioning factor iξ  ensures that the uniform maximum story drift along the 

height is realized and the input energy is evenly dissipated throughout the structure 

preventing concentrations of damage in any particular part of the structure.  

The criteria to be considered in defining the distribution of beam strengths should be the 

best representation of the story shears generated from a variety of earthquakes. This will 

ensure that the stories with relatively low-input story shears have relatively small 
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strength and stiffness; similarly, the stories with relatively high-input story shears have 

relatively large strength and stiffness.  

As a first approach, the relative distribution of earthquake induced story shears can be 

represented by a function of the relative distribution of static story shears obtained from 

the assumed linear force distribution represented by Eq. 4.4.6. The actual ratio of the 

earthquake induced story shear at any level i  to that at the top level n  is assumed to be 

in the form 
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where iV  and nV  are the static story shears at level i  and the top story obtained from 

linearly distributed design forces given by Eq. 4.4.6 respectively, b  is a numerical factor 

to be determined. This factor can be best estimated by using the least-squares fit of the 

actual shear distributions under representative ground motions of a given site.  

In order to determine the optimum variation of beam strengths along the height of the 

frames, a study has been conducted assigning 0.25, 0.50, 0.75 and 1.0 to b  respectively 

for a six-story moment frames. It has been shown that the variation of beam strengths 

along the height influences the response of these frames significantly. After performing 

the necessary calculation and the least-square fitting procedure on the related data, the 

factor b  has been obtained as 0.527. For practical purposes, the rounded value of 0.50 

was selected. It should be noted that this value of b  may not be applicable to all cases 

due to the uncertain nature of earthquakes. It is assumed in the research study [12] that 

the four earthquakes, El Centro 1940, Northridge 1994 (Sylmar Station), Northridge 

1994 (Newhall Station) and a synthetic ground motion which were used in the study, are 

representative of the earthquakes at a given site.  

4.4.3.4 Verification of the Proposed Energy Concept 

A series of nonlinear analysis including both inelastic static and inelastic time history 

analysis were conducted by the author in order to verify the proposed procedure. The 

results show that the strong-column-weak-beam is maintained on all frames subjected to 
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the study and the yield drifts are in the predicted range. Generally, the results of the 

study show that the proposed energy balance concept is most effective when used with 

structures with moderate heights and target story drifts. For other structures, the results 

are on the conservative side with the exception of the two-story frames where the results 

were rather unconservative.  

4.4.3.5 Comparison with Existing Design Methodology 

At present, classical seismic design approaches are traditionally established on the 

equivalent static force concept. The equivalent static design forces are obtained from the 

expected maximum seismic forces due to elastic behavior through some modifications 

depending on the ductility of the system. The members of the structure are then designed 

to resist the forces. Usually elastic structural analysis including either strength design or 

working stress design forms the base of this procedure. In the strength designing, the 

first significant yield level is considered as the level of forces. However, because an 

explicit check at the ultimate level is not performed, the behavior of the structure at the 

ultimate state can be significantly different from that proposed depending on the reserve 

strength and the failure mechanism. Clearly, if the reserve strength is less then that 

implicitly proposed by the code or the structure performs an unexpected mechanism, the 

response of the structure is affected correspondingly.  

Contrarily, consideration of the structure at the ultimate (maximum deformation) state is 

the matter of issue in the proposed design procedure. A selected yield mechanism at 

ultimate state determines the inelastic design base shear. In another words, the base 

shear is determined based on a target maximum deformation using the energy balance 

concept. Thereby, the expected yield mechanism is maintained with sufficient strength 

conforming to a given ductility.  

The design method introduced here can be suitably used as a general preliminary design 

procedure. It is possible to shorten the design iteration process aiming the capture of 

expected performance level. It is especially useful to apply this procedure when the 

performance-based design framework is concerned in which the structures are designed 

for multiple levels of seismic hazard each with different deformation criteria.  
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Finally, as a general procedure, it could be necessary to conduct more rigorous analysis 

such as nonlinear time-history analysis which covers structural irregularity, specific site 

effects and accurate damage evaluation of critical members.  

4.4.4 Example 

4.4.4.1 Analysis by the Proposed Energy Method 

A six-story reinforced concrete structure with one-bay moment frame having the 

characteristics shown in Fig. 4.3 is analyzed. As shown in Fig. 4.3, the story height is 

4.0m and the bay width is 7.0m. The story weight is given as 400kN. The dimensions of 

columns and beams are m6.040.0 ×  and m60.035.0 ×  respectively. The modules of 

elasticity of concrete 27 /103 mkNE ×= . The inelastic drift pθ  is selected as 0.020 

corresponding approximately to total target drift 3% assuming the yield drift 1%. The 

values needed to evaluate the spectral acceleration coefficient given in Turkish Code-

1997 are selected as 4.00 =A  (seismic zone 1), 0.1=I  and sTA 15.0= , sTB 60.0=  

(soil type S3). The fundamental period, the period of the first mode is estimated as 

sec92.0=T  using SAP2000. 
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Distribution of the base shear and proportioning factor for beam strength are shown in 

Fig. 4.4. 
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Figure 4.3 Six-story, one-bay reinforced concrete structure 
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Figure 4.4 Distribution of the base shear and proportioning factor for beam strength 
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Solving Eq. 4.4.11 for the common reference plastic moment for beams pbrM  for a 

column is expressed as 
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The values of plastic moment capacity of the beam at each level pbiM  are calculated 

using Eq. 4.4.13. Selecting the resistance factor 15.1=φ  and the overstrength factor 

20.1=ξ  except the roof level where 1 is selected, the values of the moment pbiMξφ  

needed to determine the required plastic moment of columns are shown in Fig. 4.5. 

Plastic moment of columns can be computed using the moment equilibrium of hinges. In 

other words, the values of the moment pbiMξφ  are distributed on columns based on their 

rigidity.  
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Figure 4.5 The plastic moment capacity of the beams 
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4.4.4.2 Analysis by the Equivalent Static Force Method of Turkish Code 1997 

The spectral acceleration coefficient is given by 

)()( 0 TISATA =                                              (4.4.15) 

where 0A  is the effective ground acceleration coefficient defined depending on the 

seismic zone, I  is the building importance factor and )(TS  is the spectrum coefficient. 

Total equivalent base shear is given by 

IWATRTWAV at 011 10.0)(/)( ≥=                                (4.4.16) 

where W  is the total building weight and aR  is the seismic load reduction factor. Total 

equivalent base shear is distributed along the elevation of the building based on the first 

mode shape as it is explained within the previously proposed energy-based seismic 

design method.  

Seismic zone 1 →  4.00 =A ,              1=I  

Soil type 3 →  sTA 15.0= , sTB 60.0=               sT 92.01 = ,          BTT >1  

77.1)/(5.2)( 8.0 == TTTS B  

708.0)()( 0 == TISATA  

kNTRTWAV at 4.2128/708.04006)(/)( 11 =××==  

where 8)( 1 =TRa  for the building with high ductility level.  

Comparison of two methods: 

Recalling the proposed energy-based seismic design method, total yield base shear is 

obtained as  

kNWVy 4.350146.0 == . 

In the equivalent static force method, total base shear is obtained as 

kNRWTAV at 4.212/)( 1 ==  considering 8=aR . 
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Based on the comparison of the two results, it can be observed that the value of the 

elastic force reduction factor aR  for the structure with high ductility level is slightly 

exaggerated. Using the result obtained from the example dedicated to the proposed 

energy method, a smaller value for aR  can be approximated as 

58.44.350/2400708.0/)( 1 ≈=×== ya VWTAR  

In the result, the elastic force reduction factor aR  can be more reasonably assigned by 5 

or it might be necessary to conduct rigorous research on 8, the present value of aR . 
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CONCLUSIONS 

From this study dedicated to the energy concept and its effective usage in seismic 

analysis, it is possible to make following conclusive remarks.  

1. In traditional seismic analysis of structures in which the loading effect of the 

earthquake is represented by static equivalent forces, the effect of duration-related 

cumulative damage is neglected. Moreover, the loading effect of the earthquake and 

the resistance of the structure are coupled. 

2. Duration-related cumulative damage can be taken into account using a stable 

parameter input energy as the loading effect, by which, similarly, the characteristics 

of ground motions and those of the structure can be dealt with separately which 

means that coupling is eliminated.  

3. For both SDF systems and MDF systems, two kinds of energy equation, absolute 

energy equation and relative energy equation, are available depending on which one 

of total displacement and relative displacement is used.  

4. Input energy is evaluated as the sum of kinetic energy, damping energy, strain 

energy and hysteretic energy. The energy quantities except the kinetic energy are 

uniquely defined.  

5. For SDF systems, the significant difference in magnitude of iE  and iE ′  can be 

observed for the long period structure, i.e. when sec5>T . 

6. In the extreme cases, 0=iE  and 
2
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7. It is also possible to evaluate the energy quantities of MDF systems using equivalent 

SDF system.  

8. Seismic input energy demand on the structure is assumed to be related to the total 

power of the acceleration of the ground motion.  
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9. In order to determine the peak amplification factor of the equivalent input energy 

velocity spectrum, a spectral shape is proposed for the input energy spectrum.  

10. Through statistical study, the average peak factor representing the relation between 

the peak-ground-acceleration and the root-mean-square of the ground acceleration is 

obtained to be about 4 in order to estimate the peak amplification factor.  

11. It is noted that the peak amplification factor for the input energy spectrum depends 

on the peak-ground-acceleration to peak-ground-velocity ratio and duration of the 

strong motion phase of the ground motion.  

12. By the proposed procedure, it is possible to estimate the hysteretic energy spectra 

and the input energy spectra using the knowledge of the pseudovelocity spectrum 

and the seismic index DI  characterizing the seismic input.  

13. The proposed relations for hE  and iE  gives similar formulations proposed by other 

researchers.  

14. The input energy iE  is a stable parameter to represent the loading effect. However, 

for the rational earthquake-resistant design procedures, it is necessary to build the 

damage criteria on the simultaneous consideration of iE , µ  and hE .  

15. Eq. 4.2.1 clearly explains that iE  represents the demands and the summation of 

De EE +  i.e. the elastic energy plus the dissipated energy, represents the supplies. 

The basic design equation can be interpreted as the supply should be equal to or 

larger than the demand. An effective seismic design can be reached by increasing 

dissipated energy via energy dissipation devices or decreasing the input energy via 

base isolation techniques.  

16. A required performance level of the structures can be defined based on the 

comparison of corresponding quantity of energy supply and demand 

17. Type of yield mechanism is very important in defining the characteristics of 

multistory structures especially in the post yield range such as dominant mode 

shapes and ductility demand. 
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18. In the proposed seismic design procedure, the energy balance concept used in 

deriving inelastic design response spectra for SDF systems is modified and extended 

to include the plastic yield mechanism and the distribution of seismic forces along 

the height of the structure.  

19. Design forces are obtained based on the selected target drift, a selected design 

pseudovelocity spectrum and a selected plastic yield mechanism. 

20. Comparing the proposed energy-based seismic design method with the equivalent 

static force method of Turkish Code 1997 through a numerical example, it can be 

observed that the value 8 of the elastic force reduction factor aR  for the structure 

with high ductility level is slightly exaggerated. The elastic force reduction factor 

aR  can be more reasonably assigned by 5 or it might be necessary to conduct 

rigorous research on the present value of aR . 
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APPENDICES 

Appendix A C Program for Elastic Response 

/* Elastic Dynamic Response: Newmark's average acceleration method */ 
#include<stdio.h> 
#include<math.h> 
#include<conio.h> 
 
void main(void) 
{ 
  int i=0; 
  int n=0; 
  double t, deltap, deltap1, k1, deltau, u, udot, udoubledot; 
  double deltaudot, deltaudoubledot, deltat; 
  double p[6000]; 
  double m=10142.4, c=31847.136, k=10000000.0; 
  double a, b; 
 
 FILE *fin, *fout; 
 if((fin=fopen("load.txt", "r"))==NULL) 
  { 
  printf("fin can not be opened."); 
  } 
  fout=fopen("result.txt", "w"); 
 
  while(!feof(fin)) 
       { 
      fscanf(fin,"%lf", p + n); 
      n++; 
       } 
 
        t=0.0, u=0.0, udot=0.0, deltat=0.005; 
        a=(4/deltat)*m+2*c; 
        b=2*m; 
        udoubledot=(p[i]-c*udot-k*u)/m; 
        deltap=p[i+1]-p[i]; 
        k1=k+(2/deltat)*c+(4/(deltat*deltat))*m; 
 
        deltap1=deltap+a*udot+b*udoubledot; 
        deltau=deltap1/k1; 
        deltaudot=(2/deltat)*deltau-2*udot; 
        deltaudoubledot=(4/(deltat*deltat))*(deltau-deltat*udot)-2*udoubledot; 
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fprintf(fout,"%15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf 
%15.6lf %15.6lf\n", t, p[i], udoubledot, deltap, deltap1, deltau, deltaudot, 
deltaudoubledot, udot, u); 
 
        u=u+deltau; 
        udot=udot+deltaudot; 
        udoubledot=udoubledot+deltaudoubledot; 
 
  for(i=1; i<5183; i=i+1) 
   { 
        t=t+0.005; 
        deltap=p[i+1]-p[i]; 
        deltap1=deltap+a*udot+b*udoubledot; 
        deltau=deltap1/k1; 
        deltaudot=(2/deltat)*deltau-2*udot; 
        deltaudoubledot=(4/(deltat*deltat))*(deltau-deltat*udot)-2*udoubledot; 
 
fprintf(fout,"%15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf 
%15.6lf %15.6lf\n", t, p[i], udoubledot, deltap, deltap1, deltau, deltaudot, 
deltaudoubledot, udot, u); 
 
        u=u+deltau; 
        udot=udot+deltaudot; 
        udoubledot=udoubledot+deltaudoubledot; 
   } 
  fcloseall(); 
} 

Appendix B C Program for Inelastic Response 

/* Inelastic Dynamic Response: Newmark's average acceleration method */ 
#include<stdio.h> 
#include<math.h> 
#include<conio.h> 
 
void main(void) 
{ 
  int i=0; 
  int n=0; 
  double t, fs, udoubledot, deltap, deltap1, k, k1, deltau, u, udot; 
  double deltaudot; 
  double p[6000]; 
  double m=10142.4, c=31847.136, deltat=0.005; 
  double a, b; 
 
 FILE *fin, *fout; 
 if((fin=fopen("load.txt", "r"))==NULL) 
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  { 
  printf("fin can not be opened."); 
  } 
  fout=fopen("result.txt", "w"); 
 
  while(!feof(fin)) 
       { 
      fscanf(fin,"%lf", p + n); 
      n++; 
       } 
 
        t=0.0, u=0.0, udot=0.0, udoubledot=0.0, k=10000000.0, fs=0.0; 
        a=(4/deltat)*m+2*c; 
        b=2*m; 
        deltap=p[i+1]-p[i]; 
        deltap1=deltap+a*udot+b*udoubledot; 
        k1=k+(2/deltat)*c+(4/(deltat*deltat))*m; 
        deltau=deltap1/k1; 
 
fprintf(fout,"%15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf 
%15.6lf %15.6lf\n", t, p[i], fs, udoubledot, deltap1, k, k1, deltau, udot, u); 
 
  for(i=1; i<5183; i=i+1) 
   { 
        t=t+0.005; 
        fs=fs+k*deltau; 
        u=u+deltau; 
        deltaudot=(2/deltat)*deltau-2*udot; 
        udot=udot+deltaudot; 
         
    if (fs>=1636.0 && udot>=0.0 ||  fs<=-1636.0 && udot<=0.0)  k=0.0; 
     else k=10000000.0; 
    if (fs>1636.0) fs=1636.0; 
    if (fs<-1636.0) fs=-1636.0; 
 
        udoubledot=(p[i]-c*udot-fs)/m; 
        deltap=p[i+1]-p[i]; 
        deltap1=deltap+a*udot+b*udoubledot; 
        k1=k+(2/deltat)*c+(4/(deltat*deltat))*m; 
        deltau=deltap1/k1; 
 
fprintf(fout,"%15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf %15.6lf 
%15.6lf %15.6lf\n", t, p[i], fs, udoubledot, deltap1, k, k1, deltau, udot, u); 
   } 
  fcloseall(); 
} 
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Appendix C Absolute dE , hE , sE , kE  time history of the system with sTn 2.0=   

Damping Energy Time History

0

5

10

15

20

0 5 10 15 20 25

Time(s)

E
ne

rg
y(

N
m

)

 

Hysteretic Energy Time History

0
10
20
30
40
50
60

0 5 10 15 20 25

Time(s)

E
ne

rg
y(

N
m

)

 
Strain Energy Time History

0

0.05

0.1

0.15

0 5 10 15 20 25

Time(s)

E
ne

rg
y(

N
m

)

 

Kinetic Energy Time History

0
1000
2000
3000
4000
5000

0 5 10 15 20 25

Time(s)

E
ne

rg
y(

N
m

)

 

Appendix D Absolute dE , hE , sE , kE  time history of system with sTn 5=   
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Appendix E Relative dE , hE , sE , kE ′  time history of the system with sTn 2.0=   
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Appendix F Relative dE , hE , sE , kE ′  time history of the system with sTn 5=   
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