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SUMMARY

In this study, the energy concept which is a current issue of study and provides a
powerful approach in structural analysis is investigated in four parts consisting of the
introductory presentation, analytical and statistical evaluation of energy quantities,
and the preliminary knowledge of energy-based seismic design of structures. In Part
1, it is explained that the drawbacks of the conventional earthquake resistant design
methodologies generated from the force-based or displacement-based analysis of
structures can be eliminated by using energy approach. Additionally, the history of
energy theory is presented. In Part 2, analytical evaluation of energy components in
the single-degree-of-freedom-systems is explained in the absolute energy equation
and the relative energy equation and their properties are compared by a numerical
example. Moreover, the analytical procedures for the evaluation of energy quantities
in the multi-degree-of-freedom systems are briefly presented. In Part 3, utilizing the
results of statistical study, firstly, a procedure for estimating input energy spectra in
terms of the total power of the ground acceleration is introduced; secondly, a method
based on the evaluation of the equivalent number of cycles associated with the
earthquake characteristics is introduced in order to evaluate the hysteretic and input
energy spectra. In Part 4, the basic design procedures, principles as well as an
energy-based seismic design method using yield mechanism and predetermined
deformation are presented.

xi



OZET

Bu calismada giincel arastirma konusu olan ve yapi analizinde giiclii bir yaklasim
saglayan enerji kavrami incelenmistir. Dort boliimden olusan bu c¢aligsma giris, enerji
miktarlarinin analitik ve istatistik yontemlerle elde edilmesi ve yapilarin enerjiye
dayali sismik tasarimi konularmi igermektedir. Birinci boliimde yapilarin kuvvete
veya yerdegistirmeye dayali analizinden meydana gelmis geleneksel depreme
dayanikli yap1 tasariminin giigliikleri anlatilmis ve bu zorluklarin enerji yaklasimi ile
asilabilecegi ortaya konmustur. Ayrica enerji kavraminin olusum siireci anlatilmistir.
Ikinci boliimde tek serbestlik dereceli sistemlerdeki enerji bilesenlerinin analitik
olarak elde edilmesi mutlak enerji denklemi ve nispi enerji denklemi seklinde ifade
edilmis ve Ozellikleri bir sayisal ornekle karsilastirilmistir. Buna ek olarak ¢ok
serbestlik dereceli sistemlerdeki enerji degerlerinin elde edilmesi kisaca anlatilmistir.
Uciincii boliimde istatistik arastirma sonuglarindan yararlanilarak, dnce yer ivmesinin
toplam giicli cinsinden ifade edilmis en biiylik giris enerjisini elde eden bir yontem
tanitilmistir; sonra deprem oOzelliklerine bagli olarak ifade edilmis esdeger ¢evirim
sayisina dayali, en biiyiik plastik enerji ve giris enerjisini elde eden bir yontem daha
tanitilmistir. Dordiincli boliimde temel tasarim agamalari, tasarim ilkeleri ve dnceden
belirlenmis akma mekanizmasi ve yerdegistirmesini esas alan bir enerjiye dayali
sismik tasarim yontemi tanitilmistir.

Xii



PART 1 INTRODUCTION

Present earthquake-resistant design methodologies and the earthquake damage
assessment approaches oriented from the traditional force-based or displacement-based
analysis of structures have many shortcomings. These shortcomings can be eliminated
by utilizing energy approach which has been developed in several stages by different

researchers such as Housner and Akiyama etc.

1.1 Shortcomings of the Conventional Force-Based or Displacement-

Based Analysis of Structures

In the analysis of structural systems, two main issues must be considered: the first is the
interpretation of the load, such as earthquake ground motions, applied to structures and
the objective evaluation of its effects; the second is the evaluation of resistance of

structures to such external loading effects [1].

In traditional seismic analysis of structures, the loading effect of the earthquake is
represented by static equivalent forces, which are obtained from elastic response spectra
representing the relation between the peak ground acceleration and the pseudo-
acceleration [2]. In considering the contribution of ductility in a structure, a seismic
force reduction factor is utilized to reduce the elastic force demand to the design level.
The seismic force reduction factor represents the ductility capacity. However, the effect
of duration-related cumulative damage is neglected in this procedure. Another
alternative approach, displacement-based design procedure is being developed.
Nonetheless, the same drawback still exists [3]. Furthermore, the forces exerted by an
earthquake are defined by the elastic and plastic characteristics of the structure.
Consequently, the loading effect of the earthquake and the resistance of the structure are

coupled, because of which, the seismic design becomes quite complex [2].



1.2 Necessity of Using Energy Concept in Seismic Analysis

In order to eliminate these shortcomings, energy theory has been proposed by
researchers. In the energy theory, the total amount of energy exerted by an earthquake,
input energy, is considered as the external load and the corresponding resistance of the

structure is the energy absorption capacity of the frame [1].

Modern approaches in the seismic design methodologies are established on the
definition of performance-based methods for both the design of new structures and the
assessment of the seismic capacity of existing structures. In this field, utilizing the
energy concept and the energy balance equation enables us to optimize the design and
detailing and to define methodologies and techniques for innovative control or protective
systems such as base isolation and passive energy dissipation devices in the earthquake-

resistant design of new structures or in the seismic retrofitting of existing structures.

Referring to the earthquake demand, different authors consider the input energy £, as an
effective tool in the seismic design pointing out that E, represents a very stable

parameter of the structural response and it hardly depends on the hysteretic properties of
the structure. However, it is necessary to observe that a part of the input energy
transmitted to structure by an earthquake is dissipated by means of damping whereas
another is dissipated by means of the inelastic deformation, which is the hysteretic
energy. Only the part of the dissipated energy due to the inelastic deformation

contributes to the damage of a structure subjected to the seismic excitation.

Particularly, the energy criterion shows that the structure collapses if it is demanded to
dissipate, via inelastic deformations, an amount of energy larger than that supplied.
However, it has the limitation to treat the energy dissipated in all the plastic cycles
regardless of the amplitude of each cycle. On the other hand, it is experimentally shown
that in many cases plastic cycles having a low amplitude do not contribute to the
damage. Therefore, it is necessary that only a fraction of the plastic energy be
considered to cause damage. Nonetheless, despite the limitation, the energy approach is
regarded as a powerful tool in seismic design because of the simplicity and the large

experimental background. Furthermore, if the energy demand is supposed to be equal to



the energy dissipated under monotonic loads, the energy criterion represents a lower
limit of the response capacity of the structure and, therefore, its application is on safe

side leading to a conservative design.

However, reliable assessment of the demand of the dissipated energy that is very
dependent on earthquake characteristics forms the base for energy method. This
assessment is carried out by means of the evaluation of the input energy by many

researchers [4].

One of the significant advantages of representing the loading effect of earthquakes in
terms of energy is that the characteristics of ground motions and those of the structure
can be dealt with separately, that is, earthquake load effect and structural resistance can
be basically uncoupled. The characterization of the loading effect of the earthquake in

terms of energy is the basis of the so-called energy-based seismic design methods [2].

On the damage assessment, generally, the damage potential of ground motions is
measured by its maximum acceleration or velocity. However, the results from high
acceleration and velocity of some recent ground motions show that the relation between
the damage potential of earthquakes and the damage to structures is not so. The
impulsive acceleration of near fault earthquake and the cyclic effect of far source
earthquake cause different damages respectively. Therefore, the dynamic damage

potential of ground motions must be evaluated by the response behavior of structures.

The total input energy (energy spectrum) is a representative estimation concept of the
damage potential of ground motions, in which the earthquake-resistant capacity of
structures is evaluated by means of energy dissipating behavior via viscous damping and

inelastic hysteresis loop [5].

1.3 The history of the Energy Theory

Energy theory has the following history of development:

1. Tanahashi conducted an elastic-plastic analysis of buildings subjected to pulse-like
artificial ground motions and concluded that the square of the maximum velocity of

ground motions can be used as an indicator of the earthquake’s destructive force.



2. Housner made a quantitative evaluation of the total amount of energy input that
contributes to the building’s responses with the use of the velocity response spectra in
the elastic system and assumed that the energy input responsible for the damage in
the elastic-plastic system is identical to that in the elastic system. Housner verified his
hypothesis by examination of several examples of damage. However, these examples
were limited to cases of plastic deformation of anchor-bolts in column bases of steel
structures and of bracings in the frames for which diagonal bracings with a large
slenderness ratio were used for resistance to lateral forces. Housner limited his
examinations to these structures because the amount of energy absorbed by the plastic

deformation can be easily determined in these structures.

3. Velestos and Newmark conducted a response analysis of the one-mass elastic plastic
system. They obtained the ratio of the maximum response deformation in the elastic

perfectly plastic system u, to the maximum response deformation in the elastic
system u, and suggested the possibility of making an estimate of its upper bound

value by assuming the apparent equivalence in strain energy.

4. Penzien drew a similar conclusion through the response analysis of the single-degree-

of-freedom system and the multi-degree-of-freedom elastic-plastic system [1].

5. Akiyama showed that the total amount of input energy FE, exerted by a given

earthquake on a structure is a very stable parameter, governed primarily by the
natural period 7 and the total mass m, and scarcely by other structural

characteristics such as the resistance, damping, hysteretic loop shapes, etc [2].

6. Uang and Bertero have presented the conceptual methodology for earthquake
resistant design of reinforced concrete buildings. In this methodology, total input
energy, inelastic design response spectra, and energy dissipation obtained through
damping energy and hysteretic energy are considered simultaneously, to discuss the

damage potential of ground motions and the damage index of structures.

7. Krawinkler and Nassar have presented that ductility and cumulative damage
considerations can and should be incorporated explicitly into the design process, and

proposed the seismic design procedure using demand spectrum. In this procedure,



demand parameters (strength, ductility, energy) are defined as a quantity that relates

seismic input to structural response.

8. Fajfar has applied damage index that is based on maximum displacement and
dissipated energy to also consider cumulative damage for evaluating structural
damage, and presented examples of inelastic design spectra using equivalent ductility

factor corresponding to given damage index [5].



PART 2 THEORETICAL EVALUATION OF SEISMIC
ENERGY IN STRUCTURES

Various energy quantities in structures are defined as the work done by the
corresponding structural forces such as inertial force, damping force and resisting force.
Seismic energies in structures are theoretically evaluated by integrating the dynamic
equation of motion in the deformation range. In the energy analysis of single-degree-of-
freedom (SDF) systems subjected to earthquake induced ground motions, two types of
equations are available in literature. The first approach uses an absolute energy
formulation while the second approach uses a relative energy formulation. Both energy
formulations can be interpreted as the work done by different forces. For a given
ductility ratio, the input energy demands evaluated by using both methods are identical
in the intermediate period range, however they are different at large extend for the short

and long period ranges [6].

2.1 Evaluation of Energy in Single-Degree-of-Freedom Systems

Energy equations can be evaluated only within the limitation of a linearly elastic-

perfectly plastic, elastoplastic briefly, SDF system.

For a viscous damped SDF system subjected to a horizontal earthquake ground motion,

the equation of motion can be written as
mii, +cu+ f, =0 (2.1.1)
where m = mass, ¢ = viscous damping coefficient, f, = restoring force, u, =u+u g =

absolute (or total) displacement of the mass, u = relative displacement of the mass with

respect to the ground, and u, = earthquake ground displacement.
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Figure 2.1 = Mathematical model of a SDF system subjected to an earthquake ground
motion

It should be noted that f, may be expressed as ku for a linear elastic system where k =

N

stiffness. Substituting #, =i +1,, Eq. 2.1.1 can be written as

mii +cu+ f, =—mii (2.1.2)

g

Consequently, the structural system in Fig. 2.1a can easily be seen as the equivalent
system in Fig. 2.1b with a fixed base and subjected to an effective horizontal dynamic

force of magnitude —mii,. Although the relative displacement which both systems

undergo is identical, the equations result in the input energy and kinetic energy with
different definitions depending on whether Eq. 2.1.1 or Eq. 2.1.2 is used. Corresponding
to the specific equation used to derive energy formulation, two kinds of energy
formulation can be introduced, i.e. absolute energy formulation and relative energy

formulation.

2.1.1 Formulation 1 — Derivation of Absolute Energy Equation

Integrate Eq. 2.1.1 with respect to u from the time that the ground motion excitation

starts:

mii,du+ | cudu+ | f.du=0 (2.1.3)
Jmit [ i+ |



Substituting u = (u, —u,) in the first term of Eq. 2.1.3, then

jmu du—jmu (du, —du,) = Im tdu —Imu du —Imu du, —Imu du, (2.1.4)
M J.mu du,

Substituting Eq. 2.1.4 into Eq. 2.1.3 yields

%,)Z [Jctidu + [ £,du = [ mii,du, 2.1.5)

The first term of the above equation is the absolute kinetic energy E, ,

(2.1.6)

since the absolute velocity #, is used to calculate the kinetic energy. The second term in

Eq. 2.1.5 is the damping energy E,, which is always non-negative because

E, = jcadu = Icuzdt (2.1.7)

The third term in Eq. 2.1.5 is the absorbed energy E,, which consists of recoverable

elastic strain energy E and irrecoverable hysteretic or yielding or plastic energy E, :
E,=|fdu=E, +E, (2.1.8)

[f()]

where E (t) = and E,(t) = '[ f.(u,u)du—E (t) = “uf (u, u)dt]

By definition, the right hand side term in Eq. 2.1.5 is the input energy E;:

E, = [ (mii,)du, (2.1.9)

E, is defined as the absolute input energy in this formulation. This definition is
physically meaningful for that the term mii, represents the inertia force applied to the

structure. The total force applied to the structure foundation is equal to this inertia force



which is composed of restoring force and damping force due to Eq. 2.1.1. Therefore, E,

can be treated as the work done by the total base shear at the foundation on the

foundation displacement. Consequently, the absolute energy equation can be written as
E=E +E,+E, =E +E,+E +E, (2.1.10)

2.1.2 Formulation 2 — Derivation of Relative Energy Equation

Integrate Eq. 2.1.2 with respect to u :

dedu+qudu+Jﬂdu=—jmﬁgdu (2.1.11)

It is observed that the second and third term on the left side of the equation are identical

to the ones of Eq. 2.1.3 and equal to E, and E, respectively. The first term of Eq.

2.1.11 can be written as

[ miich :jm%du — [ midic = m(;l)z

which is the relative kinetic energy E, calculated from the relative velocity:

N2
=) (2.1.12)
2
The right side term of Eq. 2.1.11 is then defined as the input energy E/:
E! :-jmzzgdu (2.1.13)

E! is formulated as the relative input energy in this formulation. This definition
physically represents the work done by the static equivalent lateral force —mii, on the

equivalent fixed-base system. In other words, it neglects the effect of the rigid body
translation of the structure. Consequently, the relative energy equation can be expressed

as

E'=E, +E,+E,=E, +E,+E +E, (2.1.14)



2.2 Comparison of Energy Time Histories

2.2.1 Prerequisite Presentation for Energy Time History

Evaluation of the energy terms requires that the earthquake response analysis of the
system be conducted. Because evaluation of energy quantities is limited to the
elastoplastic system, it is necessary to obtain inelastic dynamic response of the

corresponding system for selected vibration period 7,, damping ratio & and yield force
f, - Obviously, we have to determine firstly the response u() of the linear system in

order to define the peak deformation u, and the peak force f, =ku, which are

necessary for the inelastic dynamic analysis. Evaluation of the response analysis of a

linear system and nonlinear system has been briefly recalled here [7].

2.2.1.1 Response Analysis of a Linear System

The governing equation for an elastic system under the ground motion is
mii(t) + cu(t) + ku(t) = —mii , (¢) (2.2.1)

Deformation response of a linear system to an arbitrary ground motion with zero initial

conditions is given by Duhamel’s integral with dynamic force p(¢) replaced by

Py () = —mii (1) :

u(t) = —LJ‘ Otiig (r)e = sin[a)D (t— r)]dr (2.2.2)
a)D
By differentiating Eq. 2.2.2 under the integral sign
y r.. -, (t-t
i(t) = —Eo u(?) —j il (D)e ) coslw, (1 - 1) |d 7 (2.2.3)
The equation of motion for the system provides us an equation for the acceleration i’ (¢)

i’ () = —o u(t) — 2¢w,1i(t) (2.2.4)

These integrals can be carried out by numerical ways.

10



However, integration of equation of motions under arbitrary force can be easily carried
out by numerical time-stepping methods available in the literature. Newmark’s method
has been presented here. Following procedure summarizes Newmark’s time-stepping

method as it can be implemented on the computer program.
Newmark’s method for linear systems:

Special cases

(1) Average acceleration method (y = % , B :%

(2) Linear acceleration method (y = % , b= é)

1.0 Initial calculations

1.1 i, _ Po=cty —hu,
m

1.2 Select Ar.

2.0 Calculations for each time step, i

2.1 Ap, =Ap, +au, +bii,.

Ap,
22 Au, =2

P

23 Ai, =2 Au, —La + A 1-L i
PAL B 2p

1 1 . 1

24 A, = > Au, — u; i
L(AL) PAt 24




25 u,,, =u;, +Au,, u,, =u, +Au,, i

1

= U, AU

1

3.0 Repetition for the next time step. Replace i by i+1 and implement steps 2.1 to 2.5

for the next time step.

2.2.1.2 Response Analysis of a Nonlinear System

The governing equation for an inelastic system under the ground motion is

mii(t) + cu(t) + f, (u,u) = —mii , (¢) (2.2.5)

Force-deformation relation for an inelastic system can be idealized, for convenience, by
an elastic-perfectly plastic, elastoplastic briefly, or bilinear force-deformation relation.
Under initial loading, this idealized system behaves as linearly elastic system with
stiffness & as long as the force does not exceed yield strength f, . Yielding begins when

the force reaches f,. The deformation at which yielding begins is u,, the yield

deformation. Yielding takes place at constant force i.e. the stiffness is zero. Fig. 2.2

shows a typical cycle of loading, unloading and reloading for an elastoplastic system.
Ss
Sy -

7fy —

Figure 2.2  Elastoplastic force-deformation relation

The normalized yield strength f , of an elastoplastic system is defined as

- f
R p—l —y p—t —y 2 .2 . 6
f} fo ( )

12



where f, and u, are the peak values of the earthquake-induced resisting force and
deformation respectively in the corresponding linear system. f, can be explained as the
strength at which the structure remains within its linearly elastic limit during the
earthquake excitation. It is easy to validate the second part of Eq. 2.2.6 by using
fy =kuy and f, = ku,.

The yield reduction factor R, which defines an alternative relation between f, and f

is presented as
R _So Mo (2.2.7)

Obviously, R, is reciprocal of fy.

The peak, or absolute (without regard to algebraic sign) maximum, deformation of the

elastoplastic system induced by the earthquake excitation is denoted by u,. The

ductility factor & then can be defined as

="t 2.2.8)

uy

which is the normalization of u,, relative to the yield deformation of the system.

The relationship between the peak deformation u, and wu, of the elastoplastic and

corresponding linear system can be explained by their ratio as

u’n 7
= quy =

Nl (2.2.9)
u, R,

Dynamic response of an inelastic system is also obtained by using various numerical
procedures available in the literature. One of them, Newmark’s method has been

presented here.
Newmark’s method for nonlinear systems:

Special cases

13



(1) Average acceleration method (y = % , B = %)
. . 1 1
(2) Linear acceleration method (y = E , B = g)

1.0 Initial calculations

1.1 iio — pO_CuO _(f‘s)o .
m

1.2 Select At.

1.3 a=Lm+lc;and b=Lm+At L—l c.
A 2p 2B

2.0 Calculations for each time step, i
2.1 Ap, = Ap, + au, + bii,.

2.2 Determine the tangent k.

23 k, =k, + — ! ~m.
PAt B(At)

2.4 Solve for Au, from k, and Ap, using the iterative procedure.

25 Au, =L Au,—La + A 1--L i
PAt B 2p

26 Ail, = ——Au, - — L |

YopAant Tt par 2

2.7 u,

g = U AU, g =0+ A,y =1+ A

3.0 Repetition for the next time step. Replace i by i+1 and implement steps 2.1 to 2.7

for the next time step.
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The procedure to evaluate energy time history for an inelastic SDF system can be

summarized as following:

1.

2.2.2

Numerically define the ground motion # (7).

Select the damping ratio & for which the energy time history is defined.

Select a value for 7).

Determine the response u(¢) of the linear system with 7, and & equal to the
values selected. From u(f) determine the peak deformation u, and the peak
force f, = ku,.

Determine the response u(¢) of an elastoplastic system with the same 7, and &,
and yield force f, = fy /o, with a selected fy <l.

Compute the corresponding energy terms by using the obtained response of the

elastoplastic system and show them on a plot.

Numerical Example

2.2.2.1 Elastic response analysis of the system with 7, =0.2sec

An elastic SDF system has the following characteristics:

m=10142.4Ns”> /m =10142.4kg , k=10x10°N/m, (w, =31.4rad /sec), &=0.05.

East-West acceleration component of Diizce earthquake recorded at Diizce Meteorology

Station in Nov. 12, 1999 is used for this analysis. It is shown in Fig. 2.3. Its peak ground

acceleration and magnitude were 0.52g and 7.2 ML respectively.

Dynamic responses of this system to the selected ground motion are evaluated below:

Initial calculations

c=2émow, =31847.136

MOZO,QOZO’ pOZO

. po—ciy —ku,

U, =

=0.
m

At =0.005.
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-0.2 1
-0.4

Ground acceleration(g)
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0 2 4 6 8 10 12 14 16 18 20 22 24 26

Time(s)
Figure 2.3  Acceleration time history of Diizce earthquake in 1999

Above summarized Newmark’s time-stepping method has been implemented on the C

program code given at Appendix A.

The deformation response of this system is presented in Fig. 2.4. As seen in the figure,

u, =0.001309m at t=3.41sec and the corresponding peak resisting force

f, =ku, =13.09x10° N .

Deformation(m)

Time(s)

Figure 2.4  Deformation response of the linear system with 7, = 0.2sec and
£=0.05

2.2.2.2 Elastic response analysis of the system with 7 = 5sec

An elastic SDF system has the following characteristics:

m = 63390Ns> / m = 6338999.55kg , k=10x10°N/m, (w, =1.256rad / sec),
& =0.05. Diizce earthquake in 1999 has been selected for the ground motion. Dynamic

responses of this system to the selected ground motion have been evaluated below.

16



Initial calculations

c=2émw, =796178.27
uy,=0,u,=0, p,=0

.. po—cu,—ku
iy = 2T T _
m

At =0.005.

By the same C program through corresponding changes, the deformation response of

this system is presented in Fig. 2.5. As seen in the figure, u, =0.16283m at

t =13.63sec and the corresponding peak resisting force f, = ku, =1628300N .

0.2
0.15

obs o 7\ JARA 7\
[\ /\ /
-0.05 T~ \ / / \ / \ /
0.15 ~ \/ ~
-0.2 T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time(s)

Deformation(m)
o
LT
™~
Lt

Figure 2.5  Deformation response of the linear system with 7, = 5sec and & =0.05

2.2.2.3 Inelastic response analysis of the system with 7, =0.2sec

For the same system, the selected normalized yield strength f =0.125, the
corresponding  yield  force  f, =1636N  and the yield deformation

u, = % =0.00011636m .

y

Initial calculations
uy,=0,u,=0, p,=0

.. po—cu, —kyu
ii, = Lo "M "ot _ ¢

m

At =0.005.
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Previously summarized Newmark’s time-stepping method for the nonlinear system has

been implemented on the C program code given at Appendix B.

Deformation response, inelastic resisting force response and the force-deformation

relation, hysterics loop, has been shown in Fig. 2.6, Fig. 2.7 and Fig. 2.8 respectively.

0.015

0.01 -~ Arnnnn

0.005 -

Deformation(m)

-0005 L} L} L} L} L} L} L} L} L} L} L} L}
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time(s)

Figure 2.6  Deformation response of the inelastic system with 7, = 0.2sec and
£=0.05 for f=0.125

Force(N)

Figure 2.7  Resisting force response of the inelastic system with 7, = 0.2sec and
£=0.05 for f=0.125

2.2.2.4 Inelastic response analysis of the system with 7 = 5sec

For the same system, the selected normalized yield strength f =0.125, the
corresponding  yield force  f, =203537.5N  and the yield deformation

u, = % =0.0203537m .

y
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2000 -

L) C L) L) ' L) L) 1
-0.004 -0§002 f.OOﬂ/ 0.004 / Of06 0.008 (f12 0.014
-1000

-2000

Force(N)

Deformation(m)

Figure 2.8  Force-deformation relation, hysterics loop, for the inelastic system with
T, =0.2sec and £ =0.05 for /' =0.125

Initial calculations
u,=0,u,=0, p,=0

.. Dpo—cu, —kyu
iy, = Lo M "Rt _ .
m

At =0.005.

By the same C program through corresponding changes, inelastic deformation response,
resisting force response and the force-deformation relation, hysterics loop, has been

obtained and shown on Fig. 2.9, Fig. 2.10 and Fig. 2.11 respectively.

0.2
E 015 ~
é 0.1 A / \‘_/\.——/\v/
g 0.05 / \v/
s /
8 0
-0.05 T T T T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time(s)

Figure 2.9  Deformation response of the inelastic system with 7, = 5sec and
£=0.05 for f=0.125
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Figure 2.10  Resisting force response of the inelastic system with 7, = Ssec and
£=0.05 for f=0.125

300000 -
200000 4
/
z 1000%
8 r & T T T 1
5 005 146006 4 0.% /041 0.15 02
000 4
-300000 A

Deformation(m)

Figure 2.11 Force-deformation relation, hysterics loop, for the inelastic system with
T, =5sec and £=0.05 for f =0.125

2.2.2.5 Numerical Calculation of Energy Quantities

The absolute energy and the relative energy terms of the given system have been
evaluated separately by using the numerical results obtained from the preceding

response analysis. Absolute input energy time histories for the systems with 7, = 0.2sec
and 7, = Ssec are presented in Fig. 2.12, Fig. 2.13, and the separate plotof £,, E,, E,
E, time histories for them are shown at Appendix C and D respectively. Similarly,
relative input energy time histories for the systems with 7, =0.2sec and 7, = 5sec are
presented in Fig. 2.14, Fig. 2.15, and the separate plot of £,, E,, E_, E, time histories

for them are shown at Appendix E and F respectively.
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Energy(Nm)

Figure 2.12

Energy(Nm)

Figure 2.13

Energy(Nm)

Figure 2.14
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4000 4
3500 -
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2500 -
2000 -
1500 4
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10
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——Ed+Eh+Es
Ed+Eh
—Ed

15
Time(s)

20 25 30

Absolute input energy time history of the system with 7, = 0.2sec and
£=0.05 for f=0.125
3000000 -
2500000 -
2000000 A Ed+Eh+Es+Ek
——Ed+Eh+Es
1500000 A
——Ed+Eh

1000000 A —Ed

500000 -

0 4
0 5 10 15 20 25
Time(s)
Absolute input energy time history of the system with 7, = 5sec and
£=0.05 for f=0.125

80 1
70 4
60 1 Ed+Eh+Es+E'k
%01 ——Ed+Eh+Es
40
30 Ed+Eh
20 . Ed
10 -

O L) L) L L L 1

0 5 10 15 20 25 30
Time(s)
Relative input energy time history of the system with 7, = 0.2sec and

£=0.05 for f=0.125
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Figure 2.15 Relative input energy time history of the system with 7, = 5sec and
£=0.05 for f=0.125

Similarly, relative input energy time history of the system with 7, =0.2sec and

£=0.05 for /' =0.25 is presented in Fig. 2.16 in order to show the variation of energy

depending on the normalized yield strength which reflects ductility of the structure. The

value of energy decreases significantly when the ductility of the structure becomes low.

45 1
40 -
35 4
30 Ed+Eh+Es+E'k
25 4 —— Ed+Eh+Es

20 - Ed+Eh

15 4 —Ed
10

Energy(Nm)

0 5 10 15 20 2 30
Time(s)
Figure 2.16 Relative input energy time history of the system with 7, = 0.2sec and
£=0.05 for =025
Input energy defined by either Eq. 2.9 or Eq. 2.13 is a function of time.
Damping energy E,, strain energy E_ and hysteretic energy E, are uniquely defined

regardless of which formulation is used. However, the input energy and kinetic energy
show difference regarding which method is used. The significant difference in

magnitude of E, and E] can be observed for the long period structure. The mass of the

22



structure almost does not move when the period of the structure is significantly larger
than the predominant excitation period of the ground motion. Consequently, as it is

explained in the E, time history, the absolute input energy for the relatively long period

structure should be low.

It is necessary to determine the time at which the input energy is evaluated in order to
build input energy spectra. Mostly, the input energy is proposed to be evaluated at (i) the
end of the ground motion duration, or (ii) this duration plus a time equal to one half the
period of free vibration of the structure, or (iii) this duration plus a time at which the
velocity of the structure changes sign. For short period structures, theses methods can
generate proper results as far as the relative energy equation is used. However, for long
period structures, they can significantly underestimate the maximum input energy that

may occur early in the ground motion shaking.
2.3 Estimation of the Difference between Input Energies from

Different Definitions

Both the absolute energy equation and the relative energy equation have been used by
different authors depending on their purposes. The difference between the input energies

defined by formulation 1 and formulation 2 can be calculated as
E = j (mii, )du,, = j(mii,)(du, —du) = j (mii, )du, —jm(a‘ i, )du
m, . ., m, .., , m ., . 2 .. '
=—W,) ——W) +E =—w,) +muu, +E;
2(,) 2() ; 2(g) « TE
SO

E-g ="

, —E] 2(ug)2+mb‘mg (2.3.1a)

The difference between the kinetic energies due to the different definitions also provides

us the same result i.e.

E, - E| =%(a&,)2 + it (2.3.1b)
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It is hard to evaluate the difference because of the term u in the last term of the previous
equation. However, for the structures having very long and very short period, the value

of E, and E/ are estimated below.

For a structure with very long period (7' — o), the input energy converges to a constant
value depending on which definition of input energy is used. For a structure with

infinitely long period,

u=-u,
u,=u+u, =0; i, =0
therefore,
Formulation 1: ot j ii,du,, = j (0)du, =0 (2.3.2a)
m
. E! } § § (it,)?
Formulation 2: . —jugdu =— j ii, (~du,) = j i, (du,) = % (2.3.2b)

i.e. the difference between the input energies £, and E; for a structure 7 — o is equal

- N2
m(u
o (u,)

. The value of the input energy E; evaluated at the end of duration will be

very small because u, tends to vanish gradually. If E; is evaluated as the maximum
! u’
throughout the duration, — will converge to % for structures with long period.
m
For a structure with very short period (7" — 0), the input energy also converges to a
constant value depending on the different definitions. For a structure with zero period,

1.e. a rigid structure,

therefore,
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. N2
= (i, du, = [ii du, = (”3) (2.3.32)

E.
Formulation 1: —
m

Formulation 2:

E__ i du=—|ii (0)=0 (2.3.3b)
i =i,

i.e. the difference between the input energies for a structure having zero period

-2
mu
js—£m) 161,

2
2.4 The Relation between Energy-Based Velocity Spectrum and the

Fourier Amplitude Spectrum

It 1s well known the energy-based velocity spectrum v, of undamped elastic SDF
systems is perfectly coincident with the Fourier amplitude spectrum, simply denoted by

|F (a))| [8]. The Fourier amplitude spectrum of base acceleration is defined by

=\/U (;Oiig(t)coswtdtj +(j (:Oiig(t)sina)tdtj 2.4.1)

As known, the kinetic energy of the mass is expressed as

|F(o)|= ‘ j 0 ii, (e " dt

E, = mli(o)F (242)

and the potential energy equal to the strain energy E_ is expressed as
1 2
E = Ek[u(t)] (2.4.3)
The energy input consists of these two parts i.e.

Lo 1o
E, —Ek[u(t)] +2m[u(t)] (24.5)

It is obvious that
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1

(27’5) ={ [ouF +[a() (24.6)

where
ou(t) = Oug (r)sin[w, (t - 7)]dz (2.4.7)

a(t) = | Oug (r)cos[w, (t - T)ldt (2.4.8)

Through substituting these expressions and some mathematical manipulations,

\/% = { “ug (7)cos a)nrdr]z + [jiig (7)sin wnrdr]ZF, (2.4.9)

right hand side of which is the Fourier amplitude spectrum |F (a)l If left hand side of

Eq. 2.4.9 is denoted by the equivalent input energy velocity v,,

F(o)=v, = 125 (2.4.10)
m

2.5 Evaluation of Energy in Multi-Degree-of-Freedom-Systems
2.5.1 Energy Equations for the Original MDF Systems

2.5.1.1 Relative Energy Equation for MDF Systems

The governing equation of motion for a MDF system is given by

[m] iy +[e]{us +{f, ()} = ~[m] {1}, 2.5.1)

where [m], [c], {f,({u})} and {u} are the diagonal mass matrix, viscous damping

matrix, restoring force vector and relative displacement vector respectively [9].

Integrating Eq. 2.5.1 in the displacement range, we get

[Im) iy fes™ + [[el i} (™ + [/, ()} ™ = =[[m] {1Yii, {du}” (2.5.2a)
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Considering {du}" = {1i}" dt , we can rewrite Eq. 2.5.2a with respect to time as

[y ) iy + [ (" (e tahele + [ iy f, (Qup) e == Gy [m) {1bii e (2.5.2b)

The first term is the kinetic energy E,, the second term is the damping energy E,, the
third term is the sum of the irrecoverable hysteretic energy E, and the recoverable

elastic strain energy E .. The right hand side term is the input energy E,.

For the purpose of comparison among different systems, it is useful to normalize the

various energy terms to the total mass of the system.

2.5.1.2 Absolute Energy Equation for MDF Systems

The absolute energy equation for multi-degree-of-freedom-systems subjected to an

earthquake excitation has been derived as below:

%{a,}f[m]{a,}+j{a}T[c]d{u}+j{fy}Td{u} = [ mii, du, (2.5.3)

where ii, is the absolute acceleration at the ith floor. The kinetic energy and input

energy are obtained as below.

E, = %{d,}T[m] {u,} = %Zm @,)’ (2.5.4a)

E = (imiiin.)dug (2.5.4b)
i=1

where E, is the summation of the kinetic energy at each floor level due to an absolute
velocity u, at the ith floor, and E, is the summation of the work done by an inertia

force mii, at each floor for ground displacement [6].
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2.5.2 Energy Equations for the Equivalent SDF Systems

2.5.2.1 Seismic Analysis of a MDF System Using SDF Equivalent System

A simplified approach for the seismic analysis of a MDF system using the seismic
response of the corresponding equivalent SDF system has been presented here using the
dimensional form of the equations of motion [8]. Firstly, the multistory building is

assumed to have a constant deflection shape {¢}. Hence the relative displacement vector

{u(t)} can be written as

{fu(n)} ={910(1) (2.5.5)
where O(¢) is the lateral displacement at the roof level.

Substituting Eq. 2.5.5 into the equation of motion of the building subjected to an

earthquake ground motion, we get

S(t)+ 280" 5(t) + % = —ii, (1) (2.5.6)

where " is the fundamental circular frequency of the building, and

M* ={g}" [m]{g} (2.5.7)

R*(t) = {#}" {R(1)} (2.5.8)
r

r=ar (2.5.9)

L = (g [m]{l} (2.5.10)

where [m] is a diagonal mass matrix and {R(¢)} is the resistance vector with terms

associated with each lateral degree of freedom.

Solution of Eq. 2.5.6 in the range 6 <,

Let’s remind the equation of motion of SDF system:
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ii(t) + 22ai(r) + 20
m

=—ii (1) (2.5.11)

The restoring force terms of Eq. 2.5.6 and Eq. 2.5.11 can be written respectively as

RA;(f ) _ 07 5(1) (2.5.12)
LO _ e (2.5.13)
m

Substituting Eq. 2.5.12 into Eq. 2.5.6 leads to

S(t)+ 280" 5(t) + w7 5(t) = i, (1) (2.5.14)

Comparison of Eq. 2.5.14 and the combination of Eq. 2.5.13 and Eq. 2.5.11 shows that
when @ = ", if u(¢) is the solution of Eq. 2.5.11, yu(¢) would be the solution of Eq.
2.5.14. That is

o(t) = () (2.5.15)
From Eq. 2.5.15, we can write
o,=m, (2.5.16)

Combining Eq. 2.5.12, Eq. 2.5.13 and Eq. 2.5.15, we can write

R'(t) [
v (2.5.17)

Solution of Eq. 2.5.6 in the inelastic range

For solving Eq. 2.5.6 in the inelastic range, it is assumed that the global displacement
ductility ratio of the building and the displacement ductility ratio of the SDF system are

equal, i.e.

o) _u@®
= (2.5.18)

y y
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Eq. 2.5.15 can also be obtained by combining Eq. 2.5.16 and Eq. 2.5.18. Therefore, if
u(t) is the solution of the nonlinear Eq. 2.5.11, yu(¢) would be the solution of Eq. 2.5.6

in the inelastic range.

Substituting Eq. 2.5.17 into Eq. 2.5.6, we can get

5(t) + 280" 5(t) + yf ® = i, (1) (2.5.19)

Inspection of the above equation and Eq. 2.5.11 shows that the solution of the equation
of motion of the equivalent nonlinear SDF system is given by Eq. 2.5.15, which proves

that Eq. 2.5.17 is also valid for the inelastic range.

2.5.2.2 Energy Equations for the Equivalent SDF Systems

Integration of the differential equation of motion of the equivalent SDF system, Eq.

2.5.19, with respect to 6 leads to

f()

j 5()ds +2é0° j 5(t)ds + j y 2 gs = —j L(O)dS (2.5.20)

Substituting Eq. 2.5.15 into Eq. 2.5.20, we can get

yzjﬁ(t)du + 2§a)*y2ju(z)du + yzjmdu = —72jag (t)du (2.5.21)
m

The third term on the left hand side of the above equation represents the hysteretic

energy E, plus the strain energy E. of the equivalent SDF system, i.e.

E+E =7 %du (2.5.22)

As known, for a SDF system, the sum of hysteretic energy per unit mass plus the elastic

strain energy per unit mass is given by

E,+E, = J.Mdu (2.5.23)
m

Combining Eq. 2.5.23 and Eq. 2.5.22 yields
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E, +E =y*(E,+E,) (2.5.24)

Using the definition of hysteretic energy, from Eq. 2.5.24 we can write

E, =y’E, (2.5.25)
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PART 3 STATISTICAL EVALUATION OF ENERGY IN
STRUCTURES

It is very cumbersome to calculate the energy quantities by the analytical method
presented in the previous part. In order to eliminate this difficulty, many statistical
approaches for the evaluation of energy components, especially input energy which is a
key parameter in the seismic assessment of structures and earthquakes, have been
proposed by researchers. In this part, two of them proposed by Fajfar [9] and Manfredi

[4] have been introduced respectively.

3.1 A Procedure for Estimating Input Energy Spectra

3.1.1 Introduction

The potential for accumulation of damage that may occur in the structure subjected to an
earthquake with long duration and large magnitude is an important issue in seismic
design of structures. As far as the long-duration ground motions are concerned, yielding
structures experience an increased number of cycles into the inelastic range; the
concerning damage may significantly influence the whole performance of the structure
depending on the damage characteristics of the structure. Formulation of duration-
dependent inelastic seismic design spectra was developed by Fajfar and his colleagues.
This approach uses the suggestion which assumes that the lateral strength of a structure
can be increased to compensate for the cumulative damage associated with an increased
duration of the ground motion. The estimation of seismic demand in the form of an input
energy spectrum forms the main procedure in the formulation of duration-dependent
seismic design spectra. In the recent approach, the input energy is estimated by making
use of the ground motion parameters which include the duration of the ground motion.
An inelastic seismic design spectrum is developed by requiring that the structure has

cyclic plastic strain energy capacity that is larger than or equal to the portion of the
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seismic input energy contributing to cumulative damage. The plastic strain energy

capacity is determined using an energy-based cumulative damage model.
3.1.2 Equivalent Input Energy Velocity Spectrum

3.1.2.1 Basic equations

In seismic design of structures, the damage potential of an earthquake ground motion
can be evaluated in terms of the total power associated with the acceleration of the
ground motion. The total power of an earthquake ground motion can be evaluated by the
similar procedure to the evaluation of the total power of a random signal. Particularly,
the well-known Parseval’s theorem proposes that the total power associated with an

earthquake ground acceleration i, () can be computed by an integral either in the time

domain or the frequency domain i.e.

I 1 0
Total Power= j iy (e dt = o j - IF(o)[ de (3.1.1)

where o =circular frequency, and |F (a))| =Fourier amplitude spectrum of the ground
acceleration i (¢) . The Fourier transform of the ground acceleration i, (¢) is expressed

as:

F(o)= [ ii,(t)e™dt (3.1.2)

where i =+/—1. Because the ground acceleration involves only a real function, the

below property is true for the Fourier transform of the ground acceleration:

F(-0)=F(o)" (3.1.3)

where F(w)" is the complex conjugate of the Fourier transform of the ground

acceleration. Using the special property in Eq. 3.1.3, and replacing the limits of the

integration in the time domain by 1 =0 and ¢ =¢, where ¢, is the length of the digitized

ground accelerogram, and the limits of integration in the frequency domain by @ =0 to

w =, Eq. 3.1.1 can be written as:
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[ i 0t = L [|F)f do. (3.1.4)
0 Y0

The left hand side of Eq. 3.1.4 can also be written as the mean square of the ground

acceleration o; ? times the length of the digitized accelerogram t, . Thus the total power

of the ground acceleration can be written as:

Total Power= o, 2to = lj. w|F(a))|2da) . (3.1.5)
g 790

However, the peak-ground-acceleration (i, ), 1s more often used to define the

intensity of the ground motion rather than the root-mean-square (RMS) of the ground

acceleration o, for seismic design of structures. Therefore, the root-mean-square of the
b4

ground acceleration o, is expressed in terms of the peak-ground-acceleration (i, )

max

using a peak factor Z which estimates the most probable peak-ground-acceleration for a

given RMS value of the ground acceleration, i.e.

(iig)max EZUiig . (3.1.6)
RMS of the ground acceleration can be expressed as o, = }lz [u < (ti)]2 .
¢ nin
Using the above definition for the peak factor Z , Eq. 3.1.5 can be written as:
2
(iig)max 1 *© 2
[T t _;jo IF(o) do. (3.1.7)

The peak factor Z will be discussed later.

It is necessary that the integral on the right hand side of Eq. 3.1.7 be evaluated in order

to build the equivalent input energy velocity spectrum. However, the Fourier amplitude

spectrum of the ground acceleration |F (a))| is highly variable and makes it hard to carry

out the integration directly. However, it is worth noting that the Fourier amplitude

spectrum of ground acceleration |F (a))| is identical to the equivalent input energy

velocity v, for an elastic, undamped SDF system, 1.e.
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IF(w)=v, =,/~— (3.1.8)

It has been shown that the presence of damping in the structure tends to smooth out the
irregular peaks in the input energy spectrum without significantly affecting the average
value of the spectrum. Based on the numerical analyses of inelastic structural response
under earthquake excitations, it has been concluded that the input energy at the end of
the ground motion is not very sensitive to the lateral strength of the structure. Therefore,
Eq. 3.1.8 can be considered to provide a good estimation of the input energy to

structures.

Due to the observation that the maximum input energy per unit mass approaches

. 2
(ug )max

as the period of the structure 7' — oo where (u,),,, Is the peak-ground-

max

velocity, the equivalent input energy velocity v, can be written as a product of an

1.€.

max

amplification factor Q) and the peak-ground-velocity (u,)

v, =Q,(u,) (3.1.9)

max

where the amplification factor 2, depends on the ground motion parameters and the

period of the structure. This approach is commonly used in energy-based seismic design
of structures. The equivalent input energy velocity spectrum can be defined in terms of

the amplification factor Q  using this approach. Relating to the input energy to a

structure, it is necessary to note that the maximum input energy and the input energy
calculated at the end of the ground motion is not identical. At very long period 7 — o,
the maximum input energy does not occur at the end of the ground motion but occurs
well before the end of the ground motion. A large portion of the maximum input energy
is stored as the kinetic energy and elastic strain energy and do not contribute to the

cumulative damage of the structure although the maximum input energy per unit mass

2
g / max

approaches when 7 — . The use of input energy at the end of the ground

motion which includes the energy dissipated by all inelastic cycles, rather than the

maximum input energy, is more proper when the effect of cumulative damage is taken
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into account in seismic designing. The input energy calculated at the end of the ground

motion, and hence the amplification factor Q , should therefore tend to zero when the

period T — .

3.1.2.2 Spectral Shape and Peak Amplification Factor

According to the studies of inelastic dynamic response of SDF systems, for a given
lateral strength of the system, a general shape shown in Fig. 3.1 can be adopted for the
amplification factor €2 characterizing the input energy at the end of the ground motion.
The peak amplification factor Q occurs at the characteristic period 7, of the ground
motion. The characteristic period 7, will be discussed further later in this study.
Defining the spectral shape in Fig. 3.1 in detail, the amplification factor Q  is assumed

to tend to zero when the period 7 — 0, and when 7' — . In this study, below spectrum

is adopted for the amplification factor:

T
Q7 ifO<T<T,
Q =3 - ‘- (3.1.10)
o} T ifT, <T <o

T,

where Q' =peak amplification factor for the equivalent input energy velocity, and >0,
where A defines the spectral shape for period larger than the characteristic period. A
value of 4 =0 defines a bilinear spectrum whereas a large value of 4 defines a spectral
shape having faster rate of decrease for the amplification factor Q in the long period

range. The proposed spectral shape for (2, enables us to integrate the right hand side of

Eq. 3.1.7 to obtain:

(3.1.11)

LI F@f do= 20 ) ()’ (u ¥ 2)
Y0

1, 24+1

c
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Figure 3.1  Amplification factor Q  for equivalent input energy velocity
In the damage assessment of structures subjected to earthquake ground motions, the
duration corresponds to the strong motion phase of the ground motion 7, is more
important than the length of the digitized accelerogram ¢,. Consequently, it is more
proper to replace the length of digitized accelerogram ¢, in Eq. 3.1.7 by the strong
motion duration 7, when the total power of the ground acceleration is calculated.

However, it is necessary to conduct a proper adjustment of the peak factor Z when
performing the replacement. This will be discussed later on. Although various
definitions have been proposed for the duration of strong ground motion, the definition

by Trifunac and Brady will be used here:

Ly =195 —Lops (3.1.12)

where ¢,,; and ¢,, correspond to the times when 5% and 95% of the final Arias
intensity are reached by the ground motion. Replacing ¢, by ¢,, Eq. 3.1.7 and Eq.

2.1.11 can be combined to give the peak amplification factor Q' for the equivalent input

energy velocity:

L y) A+1/2
Q =—=2"" It T here 1>0 3.1.13
Y ZGiy) TN 2042 v ( )

max
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where the peak amplification factor Q| for the equivalent input energy velocity is now

expressed in terms of the ground motion parameters (i, )., (i,) t,, T. and the

peak factor Z . The peak amplification factor defined by Eq. 3.1.13 is not significantly
dependent on the variation of A for large value of 4 (say A >1). Depending on the
variation of A from 1 to 2, the peak amplification factor decreases by about 5%. A value
of A =1 is used unless otherwise stated for discussion results later in this study. It can

also be seen from the resulting expression, Eq. 3.1.13 that the peak amplification factor

Q is only dependent on the square root of the characteristic period T, although is

supposed to occur at the characteristic period T,. The peak amplification factor Q,

which is a key parameter for the spectrum, is not significantly dependent on where the

exact period occurs.

3.1.2.3 Peak-to-RMS Ratio for Ground Acceleration

Presenting the equivalent input energy velocity spectrum requires that the peak factor Z
representing the ratio between peak-ground-acceleration and root-mean-square of the
ground acceleration be estimated. However, for a nonstationary process, it is generally
difficult to estimate the peak factor. In estimating the peak factor Z , one of the various
expressions proposed in the literature based on the assumption of a stationary process,

which has been resulted from a study of wind effects on structures, is presented here:

Z- /21n(wij+; (3.1.14)
2r
2ln( j

t
w-—L
2

where y=Euler constant=0.577, w@=circular frequency of the system, and ¢,

corresponds to a segment of the stationary excitation where the peak factor is to be
determined, and ¢, is usually used to express some measure of the “duration” of the
ground motion when the expression is presented for earthquake excitation. A different
expression for the peak factor has also been proposed for the vibration analysis of

structures under random seismic excitation assumed to have a stationary process:
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Z=\/2ln{—gtd—2} (3.1.15)
7 In(1- p)

where p =probability of exceedance, and ¢,, represents a measure of the “duration” of
the excitation and has identical meaning as ¢,,. For a probability of exceedance in the
range of 0.1 < p < 0.3, the peak factors obtained from Eq. 3.1.14 and Eq. 3.1.15 are very
close to each other, and are not very sensitive to the duration ¢, or ¢,,, nor the circular
frequency @ of the structure. Consequently, a constant value for the peak factor Z =3
has been suggested for use.

It is not proper to use the direct values of the peak factors obtained from Eq. 3.1.14 or
Eq. 3.1.15, or a constant value of Z =3 for the estimation of the peak amplification
factor Q' , because the term ¢, in Eq. 3.1.13 has been defined based on the definition of

the strong motion duration proposed by Trifunac and Brady. However, the appropriate
value of the peak factor can be estimated through the statistical study of the peak factor
using ground motion records. By rewriting Eq. 3.1.4-Eq. 3.1.6, the peak factor can be

expressed as:

(3.1.16)

In estimating the peak factor Z, a statistical study has been conducted by Fajfar
evaluating Eq. 3.1.16 using 118 ground motions recorded in California. Even though the
set of data points tend to be concentrated in the short duration rage (z, < 20sec), the
peak factor varies primarily between 2 and 6, and seems to be insensitive to the duration
of the ground motion, as noted earlier for Eq. 3.1.14 and Eq. 3.1.15. The mean value of
the peak factor is obtained as Z =3.98, and the standard deviation is o =0.81.
Consequently, a constant peak factor of Z =4 is suggested to be used for the estimation

for the peak amplification factor Q in accordance with ¢, defined by Eq. 3.1.12 for the

strong ground motion duration.

39



3.1.3 Characteristic Periods of Ground Motions

The use of input energy spectrum requires an estimation of the characteristic period 7,

which represents the period at which the peak value of the input energy occurs. In the
literature, this period may be called either the characteristic period or predominant
period of the ground motion. The former will be used in this study. However, a given
ground motion does not have a unique characteristic period since it is dependent on the
lateral strength of the system, to a lesser extent, on the damping of the system. The
assumption accepted for the approach proposed in this study is that the characteristic
period corresponds to the transition period between the acceleration-controlled and

velocity controlled elastic response spectrum, and may be defined by:

¢, ()

ca (ug )max

T =2n

c

(3.1.17)

where ¢, corresponds to the ratio of the spectral elastic response velocity to peak-
ground-velocity in the velocity-controlled (medium) period range, and ¢, corresponds to

the ratio of the spectral elastic response acceleration to peak-ground-acceleration in the

acceleration-controlled (short) period range. The coefficients ¢, and ¢, have been taken

as 2.0 and 2.5 respectively in the duration-dependent inelastic seismic design spectra.

3.1.4 Comparison of Peak Amplification Factors Q

3.1.4.1 Comparison with Ground Motions

Using a peak factor of Z =4, and a value of A =1, and substituting the characteristic

period 7, as given by Eq. 3.1.1 into Eq. 3.1.13 with coefficients ¢, =2 and ¢, =2.5,

the expression for the peak amplification factor Q. reduces to:

(iig )max td

(i)

g / max

Q =0.343 (3.1.18)
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Eq. 3.1.18 indicates that the peak amplification factor Q is proportional to the square

root of the a/v ratio and the strong motion duration ¢, of the ground motion.

3.1.4.2 Comparison with Peak Amplification Factor Obtained from Bilinear

Equivalent Input Energy Velocity Spectrum

A bilinear spectrum was proposed by Kuwamura and Galambos for the equivalent input

energy velocity. In this study, the peak equivalent input energy velocity v, is given by:

_1 b .. 2
v, _?/cho ii, (1) dt (3.1.19)

where T, may be taken as the characteristic period of the ground motion, i, (¢) =ground

acceleration time history, and 7, = length of digitized accelerogram. By replacing the
peak equivalent input energy velocity by the product of the peak amplification factor and

the peak-ground-velocity i.e. v, =Q (i ) and the integral of the square of the

max ?

ground acceleration by:

I%"’. (di - (t ) max Zt (3.1.20)
i, oo |, 1.

where the length of the digitized accelerogram ¢, has been replaced by the strong
motion duration ¢,, and the peak factor Z has been defined in conjunction with the
strong motion duration ¢,, the below peak amplification factor for the equivalent input

energy velocity can be obtained from Eq. 3.1.19: i.e.

* _ (i’ig)max
Q,), = m\/tﬂc : (3.1.21)

max

It is worth noting that the peak amplification factor defined by Eq. 3.1.21 is similar with
that obtained from Eq. 3.1.13 for the value of 4 =0 for the bilinear equivalent input
energy velocity spectrum. By the way, it should be noted that a bilinear spectrum
underestimates the peak amplification factor. Therefore, the value of the peak

amplification factor defined by Eq. 3.1.19 for a bilinear spectrum was suggested to be
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increased by 27%. It is also observed that the peak amplification factor resulted from Eq.
3.1.13 with the replacement of 4 =1 is 22% larger that that obtained from Eq. 3.1.21 for

a bilinear spectrum.

3.1.4.3 Comparison with Empirical Formula

In a study by Vidic and Fajfar, an empirical formulation was proposed to estimate the

peak amplification factor i.e.

3/8

* Z:i maxt

(Q)),,, =0.69 (g)—" . (3.1.22)
(ug)max

In comparing the peak amplification factors obtained from Eq. 3.1.18 with that obtained
from Eq. 3.1.22, the peak amplification factors estimated by the two equations are highly

identical to each other for the duration range 10<7, <55 sec. However, for a short

duration range e.g. ¢, <10 sec, the empirical peak amplification factor (), =~ can be

emp
significantly larger than that predicted by the formula, especially for low a/v ratio.
Contrarily, the peak amplification factor predicted by the empirical expression Eq.
3.1.22 is slightly smaller than that predicted by the formula Eq. 3.1.18 for a long
duration e.g. ¢, > 20 sec and for high and ultrahigh a/v ratios. To sum up, the variation

of the peak amplification factor in accordance with strong motion duration ¢, and a/v

ratio can be seen as the major difference between the two peak amplification factors. In
considering the empirical expression Eq. 3.1.22, the peak amplification factor varies
depending on duration and a/v ratio as a power of 3/8, while the peak amplification

factor obtained from Eq. 3.1.18 varies as a square root of the duration and a/v ratio.

3.2 Evaluation of Seismic Energy Demand

3.2.1 Hysteretic Energy and Equivalent Number of Cycles

The amount of the hysteretic energy E, definitely influences the cyclic collapse of

structures with a degrading behavior. This provides us the possibility to define a damage

functional based on the assumption that the structural collapse occurs when the
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hysteretic energy dissipated under seismic actions is equal to the energy dissipated under
monotonic load. We can evaluate the allowable hysteretic energy via a theoretical or
experimental analysis of monotonic tests. If the allowable plastic energy of the structure

analyzed is denoted with £, , the seismic check can be represented as below:

E, <E,, (3.2.1)

As mentioned, the energy criterion has the limitation which requires that all the plastic
cycles be taken into account adding the dissipated energy regardless of the amplitude of
each cycle. Therefore, a measure of the distribution of cycles amplitude is the equivalent

number of cycles n,, which represents the number of cycles at the maximum plastic

displacement that the structure can undergo in order to dissipate the total amount of the

hysteretic energy E, :

E,=n,F (u,, —u,) (3.2.2a)

Eh

n -
“ Fy(umax_uy)

(3.2.2b)

where E, is the total dissipated energy, F, is the maximum force of the structure, u,,,

is the maximum displacement and u, is the displacement at the elastic limit.

Furthermore, in order to characterize the non-linear behavior of a SDF system, the
reduction factor R can be represented referring to the elastic spectral acceleration

S, (T) as

(323

where m 1s the mass of the structure.

The values of n,, close to 1 indicate that the nonlinear system undergoes a large plastic
cycle whereas the high values of n, indicate many plastic cycles there are in the

response. Several analysis of n,, versus the elastic period 7' of the system for various
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reduction factor R and different earthquakes show that n,, generally decreases with the

period in the short period range and increases with the reduction factor.

Furthermore, it is also observed that the values of n,, are extensively sensitive to the

earthquake characteristics. Its values vary from 1 for impulsive earthquakes to nearly 40
for long-duration earthquakes. This means that there is high correlation between the

values of n,, and the characteristics of the earthquake.

3.2.2 The Assessment of the Equivalent Number of Cycles

The number of reversal plastic cycles n with an amplitude of the generic cycle equal to

Au,, maximum amplitude Au _, and the dimensionless average amplitude of the n —1

X

cycles cutting of the plastic cycle of maximum amplitude

n—1 A )
e 1 Z u,
(}’l - 1) i=1 Aumax

can represent the nonlinear response of an elastoplastic SDF system under an earthquake

ground motion.

This results in a different expression of the number of equivalent cycles i.e.
n, =l+(n-Dx. (3.2.4)
Consequently, it is noted that the evaluation of » and x defines n,, .

Fig. 3.2 illustrates the typical calculation of these quantities.

An extensive statistical analysis has been conducted in order to define » and x reliably.
The procedure of the analysis has been implemented in the analytical formulations

performing the following steps:

(1) a set of possible structural (i.e. stiffness, yielding level, damping, etc.) and
earthquake (i.e. peak ground acceleration (PGA), peak ground velocity (PGV),

duration, etc.) parameters, correlated with n» and x, has been introduced,

(2) an exponential type formulation has been selected for » and x:
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Figure 3.2  Calculation of n and x

n:l+ApZipf,ipi/,i x:1+Bpe5,ip;,ips/1,i

where p,, p, and p are the possible earthquake and structural parameters;

(3) statistical regression was performed comparing the values of » and x, obtained
from a nonlinear step by step integration of SDF equation, and the values provided

by the proposed formulations;

(4) the optimum parameters were defined choosing the parameters with the higher
partial correlation factor;
(5) the optimum coefficients 4, B, a, f, v, 0, € and A were chosen minimizing

the standard error.
Afterwards, as for the structural parameters, the relations by the ratio 6 =&/¢&,, where
& is the proportional damping and &, is 5% reference damping, and the ratio 7 =7/T,

(for T'<T,), where T is the elastic period of the system and 7, is the initial period of

the medium periods range in the Newmark and Hall spectral representation, describes

the elastic response while (R—1), where R is the reduction factor, describes the

inelastic response.

A fundamental procedure, the assessment of the seismic characteristics necessary for

the identification of n and x are performed using following parameters, functions and

indices. A dimensionless index /7,

45



I, PGA I,
PGA®> PGV PGAx PGV

(3.2.5)

D
where PGA and PGV are the peak ground acceleration and peak ground velocity
respectively, and /,

e .. 2
I = Vi () dt (3.2.6)

where i, is the ground acceleration and 7, is the earthquake duration. 7, is

proportional to the Arias Intensity.

The statistical analysis numerically defines n» and x as follows:

n=1+1.056""t7?*(R-1)*"1}"° (3.2.7)
x=0.176"7"(R-1)""°1)° (3.2.8)
where
r=T/T, T<T, r=1 T>T

5=£E1¢, E>E,, o=1 &<,

Substituting the expressions of 7 and x in Eq. 3.2.4, n,, can be expressed as

n, =1+0.18(R-1)*" 1,67z 72 (3.2.9)

In the case of damping equal to 5 per cent and in the medium and long periods ranges
Eq. 3.2.9 becomes

n, =1+0.18(R-1)°"°1, (3.2.10)

It can be noticed that Eq. 3.2.9 and Eq. 3.2.10 are linearly dependent on earthquake
characteristics via the seismic index /,. Consequently, /, can be regarded as an
indicator of the cyclic demand of the earthquake. Low values of 7/, are obtained from

impulsive earthquakes whereas high values of it are obtained from the earthquakes with

long duration.
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3.2.3 The Assessment of the Hysteretic Energy

An expression of the dissipated energy is obtained from the definition of the number of

equivalent cycles n,, and the reduction factor R as below:

B -om (20 (1) G211
m w

R

where i, is the cyclic ductility, y, =1+ Au,, /u,, and @ is the angular frequency of
the system.

In an approximate way, Eq. 3.2.11 enables us to construct the hysteretic energy spectra
by using the elastic spectrum S, and defining proper expression of the reduction factor
R.

As a result of extensive studies related to R, following expression is available for the

case of rock and low-depth grounds:

R=1+1.5(u-1)*¢3" (3.2.12)

In evaluating the peak demand of hysteretic energy, another important parameter,
because the period of peak demand generally takes place in the field of the medium

periods, it is coincident with the peak value of pseudo-velocity S, /@ . Combining Eq.

3.2.9, Eq. 3.2.11 and Eq. 3.2.12, the amount of the maximum hysteretic energy for a
proportional damping & equal to 0.05 is defined by

ﬂ _ (1. =1 — S (T) 2
( . jm S50 — )T (140.231,\/, 1)( p ]m (3.2.13)

A simplified formulation of Eq. 3.2.13 can be obtained as

(ﬂ} _ 0_32(—V el 0031, ”—_IJ(wj (3.2.14)

m He H, @

max
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3.2.4 The Evaluation of Input Energy

The input energy imparted to a structure during an earthquake is mainly defined by the
elastic period of the structure and the seismic characteristics of the ground motion,
whereas it is hardly sensitive to the viscous damping and the previously mentioned
characteristics of the inelastic response like the hysteresis and the ductility. However,

the hysteretic energy forms the starting point for the estimation of the input energy.

Based on the seismic response of the SDF systems, it is observed that the relation
between the hysteretic energy E, and the input energy E, is only sensitive to the
demanded ductility and it is not significantly dependent on the seismic characteristics of
the ground motion. The statistical analysis conducted in this issue provides us the

following expression of this ratio for & =0.05:

E -1
Li_ gt (3.2.15a)
E, “,

E, E

Li_qqte B (3.2.15b)
m M. —1m

A formulation of the input energy as a function of the cyclic ductility x,  can be

obtained from E, /E, ratio and Eq. 3.2.13 i.e.

Bt [ 2D ] (3.2.16)
m @ R

This expression implies that the input energy spectra can be obtained from the pseudo-

velocity spectrum by an approximate approach.

Furthermore, the maximum value of the input energy can be expressed, similarly with

the expression of the dissipated energy, for £ =0.05 as

(ﬂ] —14 (1+0.231,/u. )[ (T)j (32.17)

m [1+1. 5(# Dy max
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Finally, the following simplified expression is obtained by using the approximate

formulation of E, :

+0.231, J(S 1 )j (3.2.18)

w

E. 1
— =045
(mjmax (\/:uc -1

It is worth noting that the input energy E; in this formulation is lesser sensitive to the

max

possible ductility. Consequently, neglecting the influence of the ductility on E,,
assuming a ductility x#. =2 which is the minimum value accepted in the statistical

analysis, more simplified expression can be obtained from Eq. 3.2.18 as

(5] =0.45(1+0.231,, )(wj (3.2.19)

m [

max

3.2.5 A Comparison of Different Expressions for the Input Energy Demand

The expression of the peak input energy Eq. 3.2.19 can be written in the form

(ﬂj - 0.45(&”] +0.107, (M] (3.2.20)

m (0 ()

max max

The first term of Eq. 3.2.20 represents the amount of energy corresponding to the
maximum impulse of the ground motion and is similar to Housner’s assumption which is

valid for the undamped system:

(ﬂ} :l(Sa_(T)T (3.221)
m max 2 a) . o

max

The second term of it dependent on the seismic index /,, represents the influence of the

earthquake duration.

Based on the other researches, another comparison is possible for the range of medium

periods as

(Mj = AV - PGV ~2.5PGV (3.2.22)
a) max
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where AV is the amplification spectral factor. Eq. 3.2.20 then takes the form

E,
(—lj =2.81PGV?* +0.631,PGV*. (3.2.23)
m max

Substituting the expression of /,, in Eq. 3.2.23,

E,
(—’j =2.81PGV* +0.631, Per (3.2.24)

m PGA

The second term of Eq. 3.2.24 is similar to the formulation proposed by Kuwamura and

Galambos, which is

E 1 PGV

2ol 2ir, =054l g

where the predominant period of earthquake 7, assumed to be equal to 7, the limit

period between the short and the medium period range, is offered the value

43(PGV | PGA) .

For a medium cyclic demand, if the earthquake is characterized by 7, with the typical

value 15, Eq. 3.2.24 takes the form

E
(_,] =0.191,PGV* +0.631 ,PGV* = 0.821, % (3.2.25)

m

It is possible to express the seismic index /,, in a different form using the definition of

effective duration by Trifunac and Brady and the dimensionless time variable ¢/¢, .

.e 1-.
_PGA 1 L,,”ir(l)df 1y P4 [ iz,
T PGV 09 PGA> PGV PGA*

(3.2.26)

D

Substituting Eq. 3.2.26 into Eq. 3.2.20, the input energy demand can be expressed as

1

2 i2(H)d(t/t)) 2

(EJ =0.45[i] +1.1¢, ﬁ gﬁf 0 gPGA2 a (S_j (3.2.27)
max a) max max

50



Consequently, it can be noticed that the input energy demand is really dependent on the
effective duration, and functionally dependent on the product of the dimensionless Arias

intensity and the ratio PGA/ PGV .

3.3 Other Energy-Related Empirical Formulations

3.3.1 The Relation between Amplification Factor of Equivalent Velocity of
Input Energy and the Strong Motion Duration

Recalling Eq. 3.1.9, the amplification factor Q  of an input energy equivalent velocity

spectrum for a given ductility ratio x and a viscous damping ratio £ can be rewritten as

Q,(u,8)= (3.3.1)

u g (max)

Numerous statistical study shows that Q and ¢, are linearly dependent and the
following equation is obtained by the least-squares method:

Q,(u=5:¢=0.05=1.0+0.12¢, (3.3.2)
where the strong ground motion duration ¢, is defined by Eq. 3.1.12.

Therefore, it is possible to assume the maximum energy input to a structure with a
specified ratio if the strong motion duration for a given earthquake is known. Generally,
the maximum input energy occurs in the immediate vicinity of the predominant period
of the earthquake ground motion [6].

3.3.2 Formulations of Input Energy Proposed by Kuwamura and Galambos
Predominant period of the ground motions is given by

u,
T, =43-=% (3.3.3)
u

4

where u, and i, are the peak ground velocity and acceleration [11].

a) The input energy at the end of the ground motion per unit mass is estimated by
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E,- _ 1 b .. 2
Z_ngjo ii (1) dt (3.34)

where ¢, is the complete ground motion.

b) A modified formula for input energy per unit mass is proposed as

Ei

m

_ I/I_g b .. 2
=0.85 i jo ii, (1) dt (3.3.5)

4

¢) The maximum input energy per unit mass is estimated by the formula

E.
—L=221%u; (3.3.6)
m

where ¢, is the duration of strong ground motion in seconds defined by Eq. 3.1.12.

d) Based on observations obtained in the parametric study, the following values are

proposed as an upper bound for the hysteretic to input energy ratio:

E

Fh =0.8 for 5 percent damping
E, )
i 0.9 for 2 percent damping

1
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PART 4 ENERGY-BASED SEISMIC DESIGN OF
STRUCTURES

As mentioned in the previous parts, utilizing the energy concept in structural analysis
has crucial meaning for the convenience in the seismic designing new structures,
retrofitting existing structural facilities and the reliable damage assessment. This part is
devoted to the preliminary presentation on energy-based seismic design of structures. As
can be estimated, a comprehensive coverage of the topic is beyond the scope of this

study.

4.1 Introduction

Two essential factors, demand and supply, forming the basic design equation are needed
to be defined in seismic analysis of structures. The basic design equation can be

interpreted as

demand <  supply

on of

stiffness, stiffness,

strength, strength,

stability, stability,

energy absorption and energy energy absorption and energy
dissipation capacities dissipation capacities [14].

Evaluation of the demand is related to the loading effect on structures while the
estimation of the supply is related to the characteristics of the structure. Therefore,
proper determination of loading effect is a fundamental step in seismic analysis. In the
seismic resistant design, earthquake excitation is accepted as the loading effect. Reliable
establishment of the design earthquakes comes next. It is necessary to reliably assess the

damage potential of all the possible earthquake ground motions that can occur at the site
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of the structure. Currently, the Safety or Survival-Level Design Earthquake is defined
through Smoothed Inelastic Design Response Spectra (SIDRS). Most of the SIDRS used
in seismic codes have been obtained directly from Smoothed Elastic Design Response
Spectra (SEDRS) by using the displacement ductility ratio x or the reduction factor R .
SIDRS can be obtained directly as the mean or the mean plus one standard deviation of
the Inelastic Response Spectra (IRS), corresponding to all the different time histories of

the severe ground motions induced at the given site from possible earthquakes.

This approach is necessary for successful design for safety. However, it is not sufficient
to avoid collapse and/or serious damage that can endanger human life. Although the IRS
includes the effects of duration of strong motion at certain level, these spectra do not
provide us the reliable information of the amount of energy due to be dissipated by
whole structural system by means of hysteretic behavior during the critical ground
motion. Only the value of maximum global ductility demand is expected from them. In
other words, the maximum global ductility demand by itself does not give an appropriate
definition of the damage potential of ground motions. As demonstrated in the previous
parts, a more reliable and stable parameter than those currently used in assessing damage

potential is the input energy E,. For the rational earthquake-resistant design procedures,

however, it is necessary to build the damage criteria on the simultaneous consideration

of E,, 1 and the E, [14].

4.2 Advantages of Using Energy Concept in Seismic Design of

Structures

In addition to the conveniences of using energy concept in seismic analysis of structures
explained in the previous parts, it has the following fundamental advantages. Absolute

energy equation is written as

E = E + E, (4.2.1)

E=E+E + E,+E, (4.2.2)

54



where E, and E, can be considered as the stored elastic energy and the dissipated
energy respectively. If the design equation is recalled, this equation clearly explains that
E, represents the demands, and the summation E, + E,, represents the supplies. Eq.
4.2.1 apparently postulates that the first step for conducting an efficient seismic design is
to estimate the E, for the critical ground motion correctly; the second step is to analyze
if it is possible to balance this demand with just the elastic response of the structure to be
designed or it is proper to attempt to dissipate as much as possible amount of the E, by
means of E, . As shown by Eq. 4.2.2, there are three ways of increasing E,, : The first is
to increase linear viscous damping energy E,; the second is to increase the hysteretic
energy E,; and the third is a combination of increasing E, and E, . For the time being,
it is usual application to just attempt to increase £, as much as possible through
inelastic (plastic) behavior of the structure which means damage of the structural

members. Recently it has been recognized that it is possible to efficiently increase the

E, and the control damage using Energy Dissipation Devices.

If it is hard to technically and/or economically balance the required input energy E,
through either E, alone or £, + E ), it is possible to attempt to control (decrease) the E,

to the structure by applying Base Isolation Techniques. A combination of controlling

(decreasing) the E, by base isolation techniques and increasing the £, by using energy

dissipation devices is very optimal strategy not only for achieving efficient seismic-
resistant design and construction, but also for the retrofitting of existing hazardous
structures. To reliably use this energy approach, it is crucial to select the critical ground
motion (design earthquake) which controls the design, in other words, the ground
motion that has the largest damage potential for the structure to be designed. However,
many parameters have been and are being used to decide design earthquakes, most of
which are not reliable for assessing the damage potential of ground motions. As
mentioned in the introduction, a suitable parameter for assessing damage potential of

these motions is the E, [14].
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4.3 Design Principles

It is possible to define each earthquake-resistant design limit using energy balance
concept. Based on the energy equation, the condition under which a structure can remain

almost elastic is

E . >E,=E -E,-FE, (4.3.1)
where E, is the elastic energy supply and E,, is the elastic energy demand.

The collapse limit of the structure is defined as

E,<E,=E -E,-E, (4.3.2)
where E,_ is the hysteretic energy supply and E,, is the hysteretic energy demand.

The condition under which the structure can survive without collapse is

E,>E, (4.3.3)

A

A required performance level of the structures can be defined based on the comparison

of corresponding quantity of energy supply and demand [1].

4.4 A Procedure for Energy-Based Seismic Design of Structures Using

Yield Mechanism and Target Drift

In this section, a procedure for seismic design forces for multistory moment frame
structures is presented using the energy balance concept. The energy balance concept
which is used for constructing inelastic design response spectra for single-degree-of-
freedom systems is modified and extended to cover the effects of plastic yield

mechanism and the distribution of seismic forces along the height of the structure [12].

4.4.1 Review of Energy Balance Concept

The energy balance concept used in this study is based on the assumption that the energy

needed to push a structure monotonically up to the maximum target deformation is equal
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to the maximum earthquake input energy of an equivalent elastic system £, which can

be estimated by EmSV2 where S is the pseudovelocity. This concept is illustrated in

Fig. 4.1. Generally, using the energy balance concept in deriving inelastic response
spectra for elastoplastic systems from the elastic response spectra for the given values of
displacement ductility factor keeps the results on the conservative side except that the
structure has a very short period.

A

@
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Figure 4.1  Energy balance concept
4.4.2 Energy Balance Concept in Multistory Frames

On a multistory structure with one-bay moment frame and a defined global mechanism
shown in Fig. 4.2, the plastic deformation of the frame occurs after the structure reaches
its yield point. In the plastic deformation range, it is assumed that the drift of the frame
is uniform over the height of the structure and all of the energy is dissipated only in the
plastic hinges. The inelastic story drift can be approximated by the plastic rotation of the

frame 6, . It is assumed that the energy balance concept is valid for such structures after
the energy components are estimated properly.

Housner showed that the pseudovelocity spectra of typical earthquakes tend to remain
practically constant over a wide range of periods. This is particularly valid for a
spectrum obtained by averaging several response spectra of earthquakes with similar
intensities. Based on this assumption, Housner showed that the maximum earthquake

input energy for a MDF system, on the average, can be approximated by
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E = %Msj = Wg;’—f (4.4.1)
T

where M is the total system mass, S, is the pseudovelocity from the elastic response
spectrum, a is the normalized pseudoacceleration with respect to the acceleration due to

gravity g, W is the weight and 7 is the fundamental period.

Although Eq. 4.4.1 presents an approximate approach for the estimation of input energy,
its accuracy is at acceptable level for the seismic design purposes. As known, the
determination of precise energy demand requires an impractical calculation procedure
based on the exact characteristics of the structure as well as the exact ground motion to
be considered in the analysis. Nonetheless, a more comprehensive analysis may be
needed in the case the structure is subjected to ground motions with much more different

properties than that of earthquakes such as El Centro which was used in the derivation of

the above equation.

Another important component of the energy balance equation is the elastic energy E,. In

the approximation of FE,, for an equivalent single-degree-of-freedom system, an

empirical formulation has been proposed by Akiyama and Kato as
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1 (v, Y
E,=—M|——= 442
e=7 (27[ g] (4.4.2)
where ¥ is the yield base shear.

Based on Eq. 4.4.1 and Eq. 4.4.2, total plastic or hysteretic energy E, needs to be

dissipated during the entire ground motion can be obtained from subtracting Eq. 4.4.2

from Eq. 4.4.1, that is

2
wrigl , [V
E = R 4.43
h 871'2 [ (W ( )
The plastic energy formulated by Eq. 4.4.3 is equal to the energy dissipated through

plastic hinges in the structure shown in Fig. 4.3. The proposed yield mechanism of the

structure in Fig. 4.3 is expressed as

E, = (Z oM, +2M jap (4.4.4)

i=1
where M, is the plastic moment of the beam at level i and M, is the plastic moment

of the columns at the base of the structure. Furthermore, the equivalent inertia forces
must be in equilibrium with the internal forces after yielding. The internal work done in

plastic hinges is equal to the external work done by the equivalent inertia forces, that is

Z": oM, +2M, = Z F.h, (4.4.5)
i=1 i=1

where F; is equivalent inertia force at level i and 4, is the height of beam level i from

the ground. Assuming an inverted triangular force distribution, the inertia force at level

i can be related the base shear by

o W, (4.4.6)
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where w; (or w;) is the weight of the structure ate level i (or j). Above assumed

distribution shape of the force corresponds to the assumed linear shape of the first mode

of vibration for a structure with global (strong column) yield mechanism.

Using Eq. 4.4.4, Eq. 4.4.5 and Eq. 4.4.6, Eq. 4.4.3 can be written as

v (" wh e 8r? 0%
Vs | 2l 6,87 [azi—yl } 4.4.7)

w le Wi hi ng

v,
Solving Eq. 4.4.7 for Wy , the solution of the above equation gives

V, —a+Ja’+4d’
- . (4.4.8)

where « is a dimensionless parameter which depends on the stiffness of the structure,

its modal properties and the intended plastic drift, and is given by

Zil Wi hf2 917 87[2
a=|=5 . (4.4.9)
Z,-:lwihi T g

Now it is possible to define the design base shear by Eq. 4.4.8 demanded by a design

plastic drift level of the frame 6, . After the base shear has been obtained, the design

force corresponding to each level can be defined by Eq. 4.4.6.

Practically, the total target story drift of the structure, the combination of the elastic and
plastic story drifts, is accepted as the base for an optimal design. Therefore, firstly, it is
necessary to define the elastic drift of the structure at yield. For example, for a structure
to be designed, if the estimated yield drift is 1%, and the maximum total drift is 3%, the
plastic drift then can be defined as 2% (0.02).

It should be noted that the above procedure is based on the assumption that the plastic
deformation of the frame is unidirectional and it only takes place during the peak
deformation. Although it is unlikely the practical case, two research results below

support the assumption.
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Firstly, it has been proved that the interstory drift, which is a suitable damage index for
frame structures, is generally larger than the global (roof) drift assumed in the design
process. A study conducted by researchers shows that the interstory drift can be as larger
as 30% than the global drift in reinforced concrete structures. The ratio between
interstory drift and the global drift can increase up to 1.4 usually and, for some cases,

even 2.0 for steel structures.

Secondly, it has been shown that the response of a single-degree-of-freedom system
induced by the largest earthquake acceleration impulse properly represents the inelastic
seismic response in a certain period range. The equivalent impulsive loading produces
mainly unidirectional plastic deformation. Therefore, the unidirectional plastic drift
representation could give reasonable results in the design procedure. This case is

especially valid for near field earthquakes.
4.4.3 Design Provisions
4.4.3.1 Seismic Design Forces Based on the Spectral Acceleration in Turkish

Code-1997

Based on the elastic design pseudoacceleration spectra proposed by many building
codes, the design input energy level can be estimated by Eq. 4.4.1 in design procedures.
Consequently, the spectral acceleration coefficient in Turkish Code-1997 which
corresponds to the normalized pseudoacceleration in Eq. 4.4.1 can be used to evaluate

the design input energy level. The spectral acceleration coefficient is given by

A(T) = 4,IS(T) (4.4.10)

where 4, is the effective ground acceleration coefficient defined depending on the

seismic zone, / is the building importance factor and S(7') is the spectrum coefficient.

4.4.3.2 Plastic Design of Multistory Frames Based on Proposed Energy Concept

In the conventional design procedure, in which the distribution of internal forces is
defined by the elastic analysis, the formation of undesirable mechanism may occur.

Consequently, that case can result in unexpected failure mechanism after the formation
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of beam hinges which is much different from that predicted. Therefore, in energy-based
design of structures, the plastic design is more suitable as the primary design
methodology. In this section, a simple procedure for the derivation of the design forces
based on the assumption that the selected yield mechanism is maintained during the

entire excitation as shown in Fig. 4.2.

Considering the n-story frame in its mechanism state shown in Fig. 4.2, the moment

equilibrium equation of the frame can be rewritten as

D Fh=Y2BM,, +2M, (4.4.11)
i=l i=l

where F; is the known design force at level i obtained as explained earlier, 4, is the
height of the beam level i from the ground, f, is the proportioning factor for the beam
strength at level i, M, is the common reference plastic moment for beams and M, is

the required plastic moment of columns of in the first story. The beam proportioning

factor f, represents the relative beam strength at level i with respect to a reference
plastic moment M, . The product S,M , is the plastic moment capacity of the beam

at level 7.

Properly estimating the values of S, and M _, the design can be performed by obtaining

pc?
the only unknown variable M ,, . The determination of the beam proportioning factor
B, will be discussed later. The value of M ,. should be defined so as to eliminate a soft

story mechanism in the first story. As an approach, assuming plastic hinges at the base
and the top of the first story column, the required plastic moment capacity of the first

story columns in one-bay frame should be

M, =—21" (4.4.12)

where V| is the total base shear, 4, is the height of the first story and the factor 1.1 is the

overstrength factor to account for possible overstrength due to strain hardening.
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After obtaining M ,, , the required nominal beam strength at each level can then be

determined as

M, = BM,, (4.4.13)

where ¢ is the resistance factor and M, is the nominal plastic moment capacity of the

beam at level i.

Now it is possible to design the columns as a cantilever subjected to lateral forces and
moments provided that the dimensions of the beams are defined. In order to realize a
strong-column-weak-beam yield mechanism, the columns are needed to be designed on
the assumption that the beams are fully strain hardened when the complete mechanism
occurs. The overstrength factor & is introduced to increase the moment of a fully strain
hardened beam so as to reach the goal of the strong-column-weak-beam yield

mechanism.

The design moment of the columns at ultimate state can be estimated provided that the

overstrength factor & is assigned by a proper value. Considering the corresponding term
of Turkish Code-1997, the overstrength factor £ can be assigned by 1.20 [15]. However,
for the beam at the roof level, £ can be equal to 1 because the global behavior at

mechanism state is not much influenced by the plastic hinges allowed at that level.

4.4.3.3 Distribution of Beam Strength

As mentioned previously, the relative strength at each level represents the variation of
story strength and stiffness over the height of the structure. The proper choice of the
beam proportioning factor &, ensures that the uniform maximum story drift along the
height is realized and the input energy is evenly dissipated throughout the structure

preventing concentrations of damage in any particular part of the structure.

The criteria to be considered in defining the distribution of beam strengths should be the
best representation of the story shears generated from a variety of earthquakes. This will

ensure that the stories with relatively low-input story shears have relatively small
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strength and stiffness; similarly, the stories with relatively high-input story shears have

relatively large strength and stiffness.

As a first approach, the relative distribution of earthquake induced story shears can be
represented by a function of the relative distribution of static story shears obtained from
the assumed linear force distribution represented by Eq. 4.4.6. The actual ratio of the
earthquake induced story shear at any level i to that at the top level # is assumed to be

in the form

B = (Lj (4.4.14)

where V, and V, are the static story shears at level i and the top story obtained from

linearly distributed design forces given by Eq. 4.4.6 respectively, b is a numerical factor
to be determined. This factor can be best estimated by using the least-squares fit of the

actual shear distributions under representative ground motions of a given site.

In order to determine the optimum variation of beam strengths along the height of the
frames, a study has been conducted assigning 0.25, 0.50, 0.75 and 1.0 to b respectively
for a six-story moment frames. It has been shown that the variation of beam strengths
along the height influences the response of these frames significantly. After performing
the necessary calculation and the least-square fitting procedure on the related data, the
factor b has been obtained as 0.527. For practical purposes, the rounded value of 0.50
was selected. It should be noted that this value of » may not be applicable to all cases
due to the uncertain nature of earthquakes. It is assumed in the research study [12] that
the four earthquakes, El Centro 1940, Northridge 1994 (Sylmar Station), Northridge
1994 (Newhall Station) and a synthetic ground motion which were used in the study, are

representative of the earthquakes at a given site.

4.4.3.4 Verification of the Proposed Energy Concept

A series of nonlinear analysis including both inelastic static and inelastic time history
analysis were conducted by the author in order to verify the proposed procedure. The

results show that the strong-column-weak-beam is maintained on all frames subjected to
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the study and the yield drifts are in the predicted range. Generally, the results of the
study show that the proposed energy balance concept is most effective when used with
structures with moderate heights and target story drifts. For other structures, the results
are on the conservative side with the exception of the two-story frames where the results

were rather unconservative.

4.4.3.5 Comparison with Existing Design Methodology

At present, classical seismic design approaches are traditionally established on the
equivalent static force concept. The equivalent static design forces are obtained from the
expected maximum seismic forces due to elastic behavior through some modifications
depending on the ductility of the system. The members of the structure are then designed
to resist the forces. Usually elastic structural analysis including either strength design or
working stress design forms the base of this procedure. In the strength designing, the
first significant yield level is considered as the level of forces. However, because an
explicit check at the ultimate level is not performed, the behavior of the structure at the
ultimate state can be significantly different from that proposed depending on the reserve
strength and the failure mechanism. Clearly, if the reserve strength is less then that
implicitly proposed by the code or the structure performs an unexpected mechanism, the

response of the structure is affected correspondingly.

Contrarily, consideration of the structure at the ultimate (maximum deformation) state is
the matter of issue in the proposed design procedure. A selected yield mechanism at
ultimate state determines the inelastic design base shear. In another words, the base
shear is determined based on a target maximum deformation using the energy balance
concept. Thereby, the expected yield mechanism is maintained with sufficient strength

conforming to a given ductility.

The design method introduced here can be suitably used as a general preliminary design
procedure. It is possible to shorten the design iteration process aiming the capture of
expected performance level. It is especially useful to apply this procedure when the
performance-based design framework is concerned in which the structures are designed

for multiple levels of seismic hazard each with different deformation criteria.
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Finally, as a general procedure, it could be necessary to conduct more rigorous analysis
such as nonlinear time-history analysis which covers structural irregularity, specific site

effects and accurate damage evaluation of critical members.

4.4.4 Example

4.4.4.1 Analysis by the Proposed Energy Method

A six-story reinforced concrete structure with one-bay moment frame having the
characteristics shown in Fig. 4.3 is analyzed. As shown in Fig. 4.3, the story height is
4.0m and the bay width is 7.0m. The story weight is given as 400kN. The dimensions of

columns and beams are 0.40x0.6m and 0.35x0.60m respectively. The modules of
elasticity of concrete E =3x10"kN/m?>. The inelastic drift 0, is selected as 0.020
corresponding approximately to total target drift 3% assuming the yield drift 1%. The

values needed to evaluate the spectral acceleration coefficient given in Turkish Code-

1997 are selected as 4, =0.4 (seismic zone 1), / =1.0 and 7,=0.15s, 7, =0.60s

(soil type S3). The fundamental period, the period of the first mode is estimated as
T = 0.92sec using SAP2000.

" wh? |60 8x
a=|= L =3293
Z,:l wh, | T°8
T,=0.15s, T, =0.60s T =0.92s, T >T,

S(T)=2.5(T,/T)"* =1.77
a=A(T)= A,IS(T) = 0.708

V, —a+a’+4a’
W: 5 =0.146

Distribution of the base shear and proportioning factor for beam strength are shown in

Fig. 4.4.
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Figure 4.3  Six-story, one-bay reinforced concrete structure
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Figure 4.4  Distribution of the base shear and proportioning factor for beam strength
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The shear force of a column is calculated as

v,
F = 7} =175.2kN

67



Solving Eq. 4.4.11 for the common reference plastic moment for beams M, for a

column is expressed as

ZEhz _Mpc
M, == =27367kN

pbr n
2.5
i=1

The values of plastic moment capacity of the beam at each level M, are calculated
using Eq. 4.4.13. Selecting the resistance factor ¢ =1.15 and the overstrength factor
& =1.20 except the roof level where 1 is selected, the values of the moment SgM

needed to determine the required plastic moment of columns are shown in Fig. 4.5.
Plastic moment of columns can be computed using the moment equilibrium of hinges. In
other words, the values of the moment {gM . are distributed on columns based on their
rigidity.

£ Mpbi

(kNm)

0.286F — = ) 314.7

0.238F — > +) 500.8

0.191F — > +) 59.7

0.143F — ) 653.4

0.095F —* +—) 691.1

0.048F — ) 706.2

F=175.2kN

Figure 4.5  The plastic moment capacity of the beams
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4.4.4.2 Analysis by the Equivalent Static Force Method of Turkish Code 1997
The spectral acceleration coefficient is given by
A(T) = A,IS(T) (4.4.15)

where 4, is the effective ground acceleration coefficient defined depending on the

seismic zone, / is the building importance factor and S(7") is the spectrum coefficient.

Total equivalent base shear is given by

V, =WAT)/ R,(T,) > 0.104,IW (4.4.16)

where W is the total building weight and R, is the seismic load reduction factor. Total

equivalent base shear is distributed along the elevation of the building based on the first

mode shape as it is explained within the previously proposed energy-based seismic

design method.
Seismic zone 1 - 4, =0.4, I=1
Soil type 3 - T, =0.15s, T, =0.60s 7, =092s, 1 >T,

S(T)=2.5(T,/T)"* =1.77

A(T) = A4,IS(T) =0.708

V. =WA(T,)/ R,(T,) = 6x400x0.708/8 = 212.4kN

where R (7)) =8 for the building with high ductility level.

Comparison of two methods:

Recalling the proposed energy-based seismic design method, total yield base shear is

obtained as

V, =0.146/ =350.4kN .

In the equivalent static force method, total base shear is obtained as

V,= AT, )W /R, =212.4kN considering R, =8.
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Based on the comparison of the two results, it can be observed that the value of the

elastic force reduction factor R, for the structure with high ductility level is slightly

exaggerated. Using the result obtained from the example dedicated to the proposed

energy method, a smaller value for R, can be approximated as
R, = AT, )WV, =0.708x2400/350.4=4.8 5

In the result, the elastic force reduction factor R, can be more reasonably assigned by 5

or it might be necessary to conduct rigorous research on 8, the present value of R, .
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CONCLUSIONS

From this study dedicated to the energy concept and its effective usage in seismic

analysis, it is possible to make following conclusive remarks.

1.

In traditional seismic analysis of structures in which the loading effect of the
earthquake is represented by static equivalent forces, the effect of duration-related
cumulative damage is neglected. Moreover, the loading effect of the earthquake and

the resistance of the structure are coupled.

Duration-related cumulative damage can be taken into account using a stable
parameter input energy as the loading effect, by which, similarly, the characteristics
of ground motions and those of the structure can be dealt with separately which

means that coupling is eliminated.

For both SDF systems and MDF systems, two kinds of energy equation, absolute
energy equation and relative energy equation, are available depending on which one

of total displacement and relative displacement is used.

Input energy is evaluated as the sum of kinetic energy, damping energy, strain
energy and hysteretic energy. The energy quantities except the kinetic energy are
uniquely defined.

For SDF systems, the significant difference in magnitude of E, and E/ can be
observed for the long period structure, i.e. when 7 > 5sec.

m(i,)’
2

In the extreme cases, £, =0 and E/ = when 7' > w; E, = and

m(ug)2
2
E/=0when T —0.

It is also possible to evaluate the energy quantities of MDF systems using equivalent

SDF system.

Seismic input energy demand on the structure is assumed to be related to the total

power of the acceleration of the ground motion.
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10.

11.

12.

13.

14.

15.

16.

17.

In order to determine the peak amplification factor of the equivalent input energy

velocity spectrum, a spectral shape is proposed for the input energy spectrum.

Through statistical study, the average peak factor representing the relation between
the peak-ground-acceleration and the root-mean-square of the ground acceleration is

obtained to be about 4 in order to estimate the peak amplification factor.

It is noted that the peak amplification factor for the input energy spectrum depends
on the peak-ground-acceleration to peak-ground-velocity ratio and duration of the

strong motion phase of the ground motion.

By the proposed procedure, it is possible to estimate the hysteretic energy spectra
and the input energy spectra using the knowledge of the pseudovelocity spectrum

and the seismic index /,, characterizing the seismic input.

The proposed relations for £, and E, gives similar formulations proposed by other

researchers.

The input energy E, is a stable parameter to represent the loading effect. However,

for the rational earthquake-resistant design procedures, it is necessary to build the

damage criteria on the simultaneous consideration of £,, x# and E, .

Eq. 4.2.1 clearly explains that E, represents the demands and the summation of
E,+E, ie. the elastic energy plus the dissipated energy, represents the supplies.

The basic design equation can be interpreted as the supply should be equal to or
larger than the demand. An effective seismic design can be reached by increasing
dissipated energy via energy dissipation devices or decreasing the input energy via

base isolation techniques.

A required performance level of the structures can be defined based on the

comparison of corresponding quantity of energy supply and demand

Type of yield mechanism is very important in defining the characteristics of
multistory structures especially in the post yield range such as dominant mode

shapes and ductility demand.
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18.

19.

20.

In the proposed seismic design procedure, the energy balance concept used in
deriving inelastic design response spectra for SDF systems is modified and extended
to include the plastic yield mechanism and the distribution of seismic forces along

the height of the structure.

Design forces are obtained based on the selected target drift, a selected design

pseudovelocity spectrum and a selected plastic yield mechanism.

Comparing the proposed energy-based seismic design method with the equivalent
static force method of Turkish Code 1997 through a numerical example, it can be

observed that the value 8 of the elastic force reduction factor R, for the structure

with high ductility level is slightly exaggerated. The elastic force reduction factor

R, can be more reasonably assigned by 5 or it might be necessary to conduct

a

rigorous research on the present value of R, .
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APPENDICES

Appendix A C Program for Elastic Response

/* Elastic Dynamic Response: Newmark's average acceleration method */
#include<stdio.h>
#include<math.h>
#include<conio.h>

void main(void)
{
int i=0;
int n=0;
double t, deltap, deltapl, k1, deltau, u, udot, udoubledot;
double deltaudot, deltaudoubledot, deltat;
double p[6000];
double m=10142.4, ¢c=31847.136, k=10000000.0;
double a, b;

FILE *fin, *fout;
if((fin=fopen("load.txt", "r"))==NULL)
{

}

fout=fopen("result.txt", "w");

printf("fin can not be opened.");

while(!feof(fin))
{

fscanf(fin,"%If", p + n);

n++;

3

}

t=0.0, u=0.0, udot=0.0, deltat=0.005;
a=(4/deltat)*m+2*c;

b=2*m;
udoubledot=(p[i]-c*udot-k*u)/m;
deltap=pl[i+1]-p[i];
k1=k+(2/deltat)*c+(4/(deltat*deltat))*m,;

deltap I=deltap+a*udot+b*udoubledot;

deltau=deltap1/k1;

deltaudot=(2/deltat)*deltau-2*udot;
deltaudoubledot=(4/(deltat*deltat))*(deltau-deltat*udot)-2*udoubledot;
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fprintf(fout,"%15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f
%15.61f %15.61f\n", t, p[i], udoubledot, deltap, deltap1, deltau, deltaudot,
deltaudoubledot, udot, u);

u=u-+tdeltau;
udot=udot+deltaudot;
udoubledot=udoubledot+deltaudoubledot;

for(i=1; 1<5183; i=i+1)
{
t=t+0.005;
deltap=p[i+1]-p[i];
deltap1=deltap+a*udot+b*udoubledot;
deltau=deltap1/k1;
deltaudot=(2/deltat)*deltau-2*udot;
deltaudoubledot=(4/(deltat*deltat))*(deltau-deltat*udot)-2*udoubledot;

fprintf(fout,"%15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f
%15.61f %15.61f\n", t, p[i], udoubledot, deltap, deltap1, deltau, deltaudot,
deltaudoubledot, udot, u);

u=u-+deltau;
udot=udot+deltaudot;
udoubledot=udoubledot+deltaudoubledot;

}
fcloseall();

}

Appendix B C Program for Inelastic Response

/* Inelastic Dynamic Response: Newmark's average acceleration method */
#include<stdio.h>
#include<math.h>
#include<conio.h>

void main(void)
{
int i=0;
int n=0;
double t, fs, udoubledot, deltap, deltap1, k, k1, deltau, u, udot;
double deltaudot;
double p[6000];
double m=10142.4, ¢c=31847.136, deltat=0.005;
double a, b;

FILE *fin, *fout;
if((fin=fopen("load.txt", "r"))==NULL)
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{
}

fout=fopen("result.txt", "w");

printf("fin can not be opened.");

while(!feof(fin))
{
fscanf(fin,"%If", p + n);
n++;

}

t=0.0, u=0.0, udot=0.0, udoubledot=0.0, k=10000000.0, fs=0.0;
a=(4/deltat)*m+2*c;

b=2*m;

deltap=p[i+1]-p[i];

deltap 1=deltap+a*udot+b*udoubledot;
k1=k+(2/deltat)*c+(4/(deltat*deltat))*m;

deltau=deltap1/k1;

fprintf(fout,"%15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f

%15.61f %15.61f\n", t, p[i], fs, udoubledot, deltapl, k, k1, deltau, udot, u);

for(i=1; 1<5183; i=i+1)
{
t=t+0.005;
fs=fs+k*deltau;
u=utdeltau;
deltaudot=(2/deltat)*deltau-2*udot;
udot=udot+deltaudot;

if (fs>=1636.0 && udot>=0.0 || fs<=-1636.0 && udot<=0.0) k=0.0;
else k=10000000.0;

if (fs>1636.0) fs=1636.0;

if (fs<-1636.0) fs=-1636.0;

udoubledot=(p[i]-c*udot-fs)/m;
deltap=p[i+1]-p[i];

deltap =deltap+a*udot+b*udoubledot;
k1=k+(2/deltat)*c+(4/(deltat*deltat))*m;
deltau=deltap1/k1;

fprintf(fout,"%15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f %15.61f

%15.61f %15.61f\n", t, p[i], fs, udoubledot, deltap1, k, k1, deltau, udot, u);

j
fcloseall();

}
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Appendix C Absolute £, E,, E , E, time history of the system with 7, = 0.2s
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Appendix D Absolute £,, E,, E , E, time history of system with 7, =5s

Damping Energy Time History
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Appendix E Relative E,, E,, E_, E, time history of the system with 7, = 0.2s
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Appendix F  Relative E,, E,, E_, E, time history of the system with 7, = 5s
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