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IMPROVING THE PERFORMANCE OF REMOTE SENSING-BASED
WATER BUDGET COMPONENTS ACROSS MID- AND

SMALL- SCALE BASINS

SUMMARY

In the last few decades, many global basins have been threatened by rapid urban growth
and global warming, resulting in changes in their climate regime. Climate change
has increased the incidence of extreme weather events, uncertain water availability,
water scarcity, and water pollution. Remote sensing (RS) has emerged as a powerful
technique that provides estimations with high spatiotemporal resolution and broad
spatial coverage. In recent years, the efficacy of RS products for water budget
(WB) analysis has been widely tested and implemented in global and regional basins.
Although RS products provide high temporal and spatial resolution images with a
near-global coverage, uncertainty is still a significant problem. The main goal of this
study is to utilize two different approaches to minimize the uncertainty of the products
and to improve RS-based WB estimations in mid- and small- scale basins.

The first approach aims to improve the efficacy of water WB estimations from
various hydrological data products in the Sakarya basin by; (1) Evaluating the
uncertainties of hydrological data products, (2) Merging four precipitation (P) and
six evapotranspiration (ET ) products using the error variances, and (3) Employing
the Constrained Kalman Filter (CKF) method to distribute residual errors (r) among
WB components based on their relative uncertainties. The results showed that
applying bias correction before the merging process improved estimations of P
products with decreasing root mean square error (RMSE), except PERSIANN. VIC
and bias-corrected CMORPH products outperformed other ET and bias-corrected P
products, respectively, in terms of mean merging weights. The terrestrial water storage
change (∆S) is the primary reason for non-closure errors. This is mainly caused by
the two facts. First, the Sakarya basin is a relatively small basin that GRACE can
not simply resolve. Second, while P, ET , and Q mostly describe the surface water
dynamics, ∆S includes both the surface water and ground water. It is well known that
surface water and ground water have completely different dynamic behaviors. The
change in surface water is much faster than the change in groundwater. The CKF
results were insensitive to variations in uncertainties of runoff (Q). P derived from the
CKF was the best output, with the highest correlation coefficient (CC) and the smallest
root mean square deviation (RMSD).

In the second approach, the annual r in the WB equation arising from the uncertainties
of the RS products was minimized by applying fuzzy correction coefficients to each
WB component. For analysis, three different fuzzy linear regression (FLR) models
with fourteen different sub-models were used in the two basins having different spatial
characteristics, namely Sakarya and Cyprus basins. The performance of sub-models is
better in the Sakarya basin than that in the Cyprus basin, which has a higher leakage
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error due to across ocean/land boundary. Moreover, the Cyprus basin is too small for
some low-resolution RS-based products to resolve. The Zeng and Hojati sub-models
outperformed Tanaka sub-models in the Sakarya basin, whereas Zeng Case-I, Zeng
Case-II, and Hojati (degree of fitting index (h) =0.9) sub-models showed the best
performance in the Cyprus basin. The best fuzzy sub-models reduced the error up
to 68% and 52% in terms of mean absolute error compared to non-fuzzy model in
the Sakarya and Cyprus basins, respectively. Further evaluations showed that the best
sub-model P well captured the temporal patterns of gauge observations in both basins.
Moreover, they have the best consistency with gauge observations in terms of RMSE,
Kling-Gupta efficiency (KGE), and percent bias (PBIAS) in the both basins. The
results proved that the second approach will provide valuable insights into WB analysis
in ungauged basins by incorporating the fuzzy logic approach into hydrological RS
products.

In general, the FLR and CKF derived P, ET , and Q showed similar seasonal variation
with peak and bottom values appeared in nearly the same years. In terms of CC,
RMSE, and bias, fuzzy outputs show closest agreement with CKF outputs for Q, with
slightly less agreement for P and ET , and much less agreement for ∆S. It can be
concluded that the majority of the errors in the second approach are caused by fuzzy
∆S.
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KÜÇÜK VE ORTA ÖLÇEKLİ HAVZALARDA UZAKTAN ALGILAMA
TABANLI SU BÜTÇESİ DEĞİŞKENLERİNİN İYİLEŞTİRİLMESİ

ÖZET

Su, tüm canlıların yaşamlarını idame ettirebilmeleri için gerekli en önemli doğal
kaynaktır. Son yıllarda, artan kentleşme ve küresel iklim değişikliğine bağlı
karbon salımındaki artış gibi etkenler birçok global ölçekteki havzanın iklimlerinde
değişikliklere neden olmaktadır. İklim değişikliği ise ekstrem hava olaylarının
(sel, kuraklık), su kıtlığının ve su kirliliğinin görülme sıklığını artırarak havzalar
üzerinde büyük bir tehdit olmaya başlamıştır. Bunun yanında aşırı yeraltı suyu
çekimi nedeniyle birçok akifer tuzlanma nedeniyle kullanılamaz hale gelmiştir. Bu
sebepler göz önünde bulundurulduğunda havza su bütçesi bileşenlerinin miktarını
tahmin etmek, su kaynakları planlaması, sel ve kuraklık tahmini, atık su arıtma ve
enerji temini için oldukça çok önemlidir. Su bütçesi bileşenleri, temel olarak, yağış
(P), evapotranspirasyon (ET ), akış (Q) ve karasal su depolamasındaki değişikliktir
(∆S).

Yersel gözlem istasyonları su bütçesi bileşenlerini izlemenin en doğru yöntemi olarak
kabul edilmiştir. Bununla birlikte, gözlem istasyonlarının yüksek yapım ve bakım
maliyetleri nedeniyle dünyanın birçok yerinde, özellikle gelişmekte olan ülkelerde,
çok az hatta hiç gözlem istasyonu bulunmamaktadır. Öte yandan, su bütçesinin ET
gibi bazı bileşenleri, bölgenin iklim koşullarını doğru bir şekilde tahmin etmek için,
yoğun ölçü ağlarına ihtiyaç duymaktadır. Bitki örtüsü heterojenliği ET ’yi doğrudan
etkilediğinden, seyrek noktalardaki ölçüler büyük havzaların gerçek ET değerlerini
yansıtamaz.

Son zamanlarda, su bütçesi çalışmaları gelişmiş uydu uzaktan algılama teknikleri
ile yeni bir döneme girmiştir. Çeşitli uydu ürünleri kullanılarak Dünya üzerindeki
uzak ve hatta erişilemeyen yerleri düzenli olarak izlemek artık mümkündür. Uydu
gözlemlerinin güvenilirliği henüz yersel ölçümler kadar iyi olmasa da, uydu uzaktan
algılama tekniği yersel istasyonlara göre daha az maliyetlidir ve politik durumlardan
etkilenmeden dünyanın her yerinden veri toplayabilir. Uydu uzaktan algılama tekniği,
neredeyse tüm dünya için yüksek zamansal ve mekansal çözünürlüğe sahip veriler
sağlamaktadır. GRACE misyonunun başlatılmasından sonra, özellikle gelişmekte olan
bölgelerde, uzaktan algılama tabanlı su bütçesi çalışmaları önemli ölçüde artmıştır.
GRACE misyonu, 2002’den beri yüksek hassasiyetle aylık verileri sunmaktadır.
GRACE misyonunda önce, P ve ET için birkaç uzaktan algılama ürünü halihazırda
bulunmaktaydı (P için TRMM ve PERSIANN ve ET için MODIS). Günümüzde uydu
uzaktan algılama ile sadece Q ölçülememektedir; ancak Surface Water and Ocean
Topography (SWOT) misyonu, Kasım 2022’den itibaren büyük ölçekli havzaların Q
verilerini sağlayarak bu talebi yerine getirecektir.
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Uzaktan algılama ürünleri, küresel ölçekte yüksek zamansal ve mekansal çözünürlüklü
görüntüler sağlasa da, uydu verilerindeki belirsizlik hala önemli bir sorundur. Bu
çalışmanın temel amacı, orta ve küçük ölçekli havzalarda uzaktan algılama tabanlı
su bütçesi tahminlerini iyileştirmek için iki farklı yaklaşımı kullanmaktır.

Birinci yaklaşım Sakarya havzasına uygulanmıştır ve bu yaklaşımda üç temel adım
izlenmiştir. İlk olarak hidrolojik veri ürünlerinin belirsizlikleri değerlendirilmiştir.
P verilerinin belirsizliklerinin hesaplanmasında yersel istasyon ölçüleri referans
olarak kullanılırken, ET için yersel ölçü verileri bulunmadığından ET verilerinin
belirsizliklerinin hesaplanmasında generalized three-cornered hat (GTCH) metodu
kullanılmıştır. GTCH metodu, herhangi bir ön bilgi gerektirmeden çeşitli
hidrometeorolojik veri ürünlerinin göreceli belirsizliğini tahmin etmede oldukça
başarılı bir yöntemdir. ∆S için belirsizlik değerleri veri sağlayıcısından (Jet Propulsion
Laboratory) temin edilmiştir. Q belirsizliği için herhangi bir ön bilgi bulunmamaktadır.
Dolayısıyla büyük (42.8 %) ve küçük (6.2 %) belirsizlik değerlerinin sonuçlara
etkisini anlamak için iki farklı belirsizlik değeri kullanılmıştır. Hidrolojik verilerin
belirsizliklerinin değerlendirilmesinden sonra hata varyansları doğrultusunda dört P
ve altı ET ürünü birleştirilmiştir. Son adımda ise Constrained Kalman Filter (CKF)
yöntemi ile artık hataları su bütçesi bileşenleri arasında göreceli belirsizliklerine
dağıtılmıştır. Sonuçlar, birleştirme işleminden önce bias düzeltmesi uygulanmasının,
PERSIANN hariç, P ürünlerinin tahminlerini iyileştirdiğini (düşen RMSE ile)
göstermiştir. Ortalama birleştirme ağırlıkları açısından VIC ve bias düzeltmeli
CMORPH ürünleri sırasıyla diğer ET ve bias düzeltmeli P ürünlerinden daha iyi
performans ortaya koymuştur. Sonuçlar ∆S’nin kapanmama hatalarının birincil nedeni
olduğunu göstermiştir. Bu durum iki nedene bağlanabilir. Birincisi, Sakarya havzası,
GRACE’in basitçe çözemeyeceği nispeten küçük bir havzadır. İkincisi, P, ET ve Q
çoğunlukla yüzey suyu dinamiklerini yansıtırken, ∆S ise hem yüzey suyu hem de
yeraltı suyu dinamiklerini yansıtmaktadır. Bilinmektedir ki, yüzey suyu ve yeraltı
suyunun mekanizması birbirinden oldukça farklıdır. Yüzey suyundaki değişimler,
yeraltı suyu değişimlere göre oldukça hızlıdır. CKF sonuçlarının, Q belirsizliklerindeki
değişikliklere karşı duyarsız olduğu gözlemlenmiştir. Yapılan ileri değerlendirmelerde
CKF’den türetilen P, en yüksek CC ve en düşük RMSD değerlerine (referans veriye
göre) sahip olduğundan en iyi P çıktısı olarak kabul edilebilir.

İkinci yaklaşımda ise uzaktan algılama ürünlerinin belirsizliklerinden kaynaklanan su
bütçesi denklemindeki yıllık hata, her bir su bütçesi bileşenine uygulanan bulanık
düzeltme katsayıları ile minimize edilmiştir. İkinci yaklaşım Sakarya ve Kıbrıs
havzalarına uygulanmıştır. Bu yaklaşımda on dört farklı alt modele sahip üç farklı
bulanık doğrusal regresyon modeli kullanılmıştır. Kıbrıs’ın Sakarya havzasına kıyasla
hem daha küçük olmasından hem de ada ülkesi olduğu için denizden kaynaklı sızma
hatasına sahip olmasından dolayı, Kıbrıs havzası için alt modellerin performansı
daha düşük çıkmıştır. Sakarya havzasında Zeng ve Hojati alt modelleri Tanaka alt
modellerinden daha iyi performans gösterirken, Kıbrıs havzasında Zeng Case-I, Zeng
Case-II ve Hojati (h=0,9) alt modelleri en iyi performansı göstermiştir. En iyi bulanık
alt modeller, Sakarya ve Kıbrıs havzalarında bulanık olmayan modele göre ortalama
mutlak hata açısından hatayı sırasıyla 67% ve 52%’ye kadar azaltmıştır. Daha sonraki
değerlendirmeler ise, her iki havzadaki en iyi alt model P’nin yersel gözlemlerin zaman
serisini iyi yakaladığını göstermiştir. Ayrıca, her iki havzada da bulanık P’nin RMSE,
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Kling-Gupta efficiency (KGE) ve yüzde sapma (PBIAS) açısından yersel istasyon
gözlemleriyle en iyi tutarlılığa sahip olduğu gözlemlenmiştir. Sonuçlar, bulanık mantık
yaklaşımının hidrolojik uzaktan algılama ürünlerine uygulanmasıyla, yersel istasyon
ölçüsü yapılmayan havzalarda su bütçesi analizine ilişkin değerli bilgiler sağlayacağını
göstermiştir.

Genel olarak, bulanık ve CKF’den türetilen yıllık P, ET ve Q değerlerinin benzer
zaman serilerine sahip olduğu gözlemlenmiştir. CC, RMSE ve sapma açısından,
bulanık çıktılar ile CKF çıktıları arasındaki en yakın ilişki Q için gözlemlenirken en
uzak ilişki ise ∆S için gözlemlenmiştir. Bu durum bulanık yaklaşımda sıfırlanmayan
artık hataların bulanık ∆S’den kaynaklandığını işaret etmektedir.
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1. INTRODUCTION

Water is the most crucial natural resource for all living beings. Living beings can not

survive without water, and it maintains the equilibrium of all living organisms on Earth

with one another. Water covers most of the Earth’s surface in the form of solid, liquid,

and gas. However, among all, 97.5% is saltwater from the oceans and seas, and only

2.5% consists of fresh water from rivers and lakes. Furthermore, 75% of such low

freshwater is trapped as glacial ice on mountains and at the polar regions. When these

rates are considered, it is clear that the amount of freshwater that may be used is quite

restricted.

In the last few decades, many global basins have been threatened by rapid urban growth

and global warming, resulting in changes in their climate regime. Climate change

has increased the incidence of extreme weather events, uncertain water availability,

water scarcity, and water pollution. Water-related disasters accounted for about 74%

of all-natural disasters in the previous 20 years, with a cumulative death toll of over

166,000 people killed by floods and droughts, affecting over three billion people and

causing nearly $700 billion in damage [1]. According to the Global Water Institute,

700 million people globally might be relocated due to severe water scarcity by 2030

[2].

Considering the factors mentioned above, predicting the availability and pattern of

terrestrial water budget (WB) components are crucial for water resources planning,

flood and drought forecasting, wastewater treatment, and energy supply [3,4]. The

WB is a continuity equation that quantifies the mass of water entering and leaving the

system over time to illustrate water storage changes. The simplified form of the WB

equation can be written as:

∆S = P−ET −Q (1.1)
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where ∆S is the change in terrestrial water storage (soil moisture, groundwater storage,

snow, ice, lakes, etc.), P is precipitation, ET is evapotranspiration, and Q is runoff. All

units within Equation (1.1) are [length]. Gauge measurements have traditionally been

considered to be the most accurate method of monitoring WB components. However,

most parts of the world, especially developing regions, have very few or even no gauge

stations due to high construction and maintenance costs. On the other hand, some

components of the WB, such as ET , need dense gauge networks to accurately forecast

the region’s climatic conditions. Since subsurface heterogeneity and vegetation type

directly impact the ET , sparse point measurements can not reflect the actual ET of

large basins [5,6].

Recently, WB studies have reached to a new era with advanced satellite remote sensing

(RS) techniques. It is now possible to monitor remote or even inaccessible locations

on Earth on a regular basis by using various RS products. Although satellite RS

observations are less accurate than gauge measurements, they are also less expensive

and may gather data from all around the world without being affected by political

situations. RS products provide unprecedented temporal (up to sub-hourly) and

spatial resolutions (up to 4 km) of WB components with a near-global coverage

[7]. The remotely sensed WB studies have dramatically increased after the launch

of the Gravity Recovery and Climate Experiment (GRACE) mission, especially in

developing regions. The GRACE mission has provided monthly ∆S solutions with

high precision since April 2002. Prior to the GRACE mission, several RS products

were already available for P and ET (e.g., Tropical Rainfall Measuring Mission

(TRMM) and Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks (PERSIANN) for P and Moderate Resolution Imaging

Spectroradiometer (MODIS) for ET ). Only Q can not be measured from satellite RS,

but the prospective Surface Water and Ocean Topography (SWOT) mission will fulfill

this demand by providing the first view of lakes and rivers from space after November

2022 [8].
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1.1 Literature Review

1.1.1 Previous efforts to close the water budget (WB) equation

Although the researchers appreciate the contributions of satellite RS to basin

hydrology, RS products face considerable uncertainty due to orbit shifting, sampling

infrequency, retrieval algorithm imperfections, complex topography, and cloud top

reflectance [6,9,10]. Several studies evaluated the degree of closure based on the

deviation of Q estimated in Equation (1.1) from gauge Q data [11]–[16]. The lower

the deviation from gauge Q data, the higher the degree of closure. Firstly, [11]

attempted to close the WB equation using RS data over the Mississippi River basin.

They validated RS products against reference data (in-situ measurements, land surface

models (LSMs), reanalysis). It is found that the estimated Q overestimated gauge

Q due to high positive bias in RS P, especially in the summer season. The WB

non-closure was greatly decreased after bias removal RS P. Similarly, RS-based

P was the leading cause of non-closure errors over the thirteen major US river

basins in the [12] study. The authors compared RS-based P products with gauge

observations, whereas the Variable Infiltration Capacity (VIC) model was used to

determine uncertainties in RS-based ET and ∆S products due to the lack of in-situ

measurements for ET and ∆S. The estimated Q overestimated gauge Q due to

overestimation of P and underestimation of ET and ∆S. Then the sharp increase

in the number of RS retrievals from different research centers let researchers select

the best data combinations for each WB component. [13] used four different P and

two different ET datasets in order to find the optimal combinations that minimized

the WB non-closure. They found that the best agreement between estimated and

gauge Q was within 1 mm/day when the Global Precipitation Climatology Project

(GPCP) product for P and the University of Montana (MON) product for ET were

used. [14] investigated the potential of purely RS products to achieve WB closure in

the data-scarce Rufiji basin, Tanzania. There was low correlation between estimated

and observed Q, and estimated Q generally underestimated observed Q. They also

concluded that the long-term water resources assessment produce more consistent
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results than the short-term water resource assessment. [15] found that estimated Q

greatly overestimated observed Q due to underestimation of RS-based ET . As reported

in [11] and [12], [16] also demonstrated that RS-based P is the main contributor

to WB errors in South America. The WB non-closure errors are lowest when the

Multi-Source Weighted-Ensemble Precipitation (MSWEP) for P and the the Global

Land Evaporation Amsterdam Model (GLEAM) for ET were used.

More recently, several studies merged different RS products that belong to the same

WB component according to their merging weights, and a single “best estimate” for

each component was obtained [17]–[23]. Error variances calculated with respect to

reference data were used to assign a merging weight of each RS product. After merging

process, the residual error (r) of the WB equation was calculated by,

r = P−ET −Q−∆S (1.2)

and it was redistributed back into the WB components by dynamic modeling, namely

Constrained Kalman Filter (CKF).

The key findings of various studies working on closing the WB with RS-based data are

summarized in Table 1.1

Table 1.1 : Summary of RS-based studies testing WB closure.
Reference Data products Key findings Study Area

P ET Q ∆S

[11] TRMM-CMORPH PM Gauge GRACE
High positive bias in RS P, especially in the
summer, was the leading cause of non-closure
errors.

Mississippi river
basin

[12]
TRMM-CMORPH- PER-
SIANN

MODIS Gauge GRACE-VIC
WB closure was not achieved due to the
overestimation of P and underestimation of
ET and ∆S

9 major US river
basins

[20]
GPCP-TRMM-
CMORPH-PERSIANN

PM-PT-SEBS Gauge GRACE
It was not possible to close the WB with
errors of 5-25% of the average annual P. CKF
technique was used to close the WB equation.

10 global river
basins

[13]
GPCP-TRMM-
CMORPH-PERSIANN

MON-PRI Gauge GRACE

The best spatiotemporal agreement between
estimated and observed Q was within 1
mm/day when the GPCP product for P and
MON for ET were used.

Amazon basin

[19] CPC-CRU-WM-GPCC SEBS-ERA-MPI-VIC Gauge GRACE-LSM

Error variances calculated with respect to
reference data were used to assign a merging
weight of each RS product. After the merging
process, errors were redistributed back into
the WB components by CKF.

32 global river
basins

[24] TRMM MODIS Gauge GRACE
Estimated Q was overestimated primarily due
to TRMM P overestimation.

3 largest Brazilian
river basins

[6] TRMM MODIS - GRACE
GRACE-TWSC was significantly lower than
P-ET where annual mean Q was below 10
mm/year.

Australia

[15] TRMM MODIS Gauge GRACE
Negative bias in RS ET was the main source
of non-closure errors.

Upper Paraguay
river basin
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1.1.2 Fuzzy logic approach in remote sensing (RS) and hydrology

Several studies have used fuzzy logic in various topics of hydrology [25]–[31]. [31]

combined the Inverse Distance Weighted (IDW) method with fuzzy logic to interpolate

P in the Feitsui basin, Taiwan. Although they did not examine the impact of the

distribution of the P stations on their method, the suggested method outperformed

traditional interpolation tehniques (e.g., arithmetic mean, thiessen polygon, IDW) for

estimating P. [25] tried to reduce annual WB r for the Azghand catchment, Iran, by

applying fuzzy coefficients to the WB components derived from the gauge stations

and empirical equations. Their model was able to reduce the mean absolute r by

79%. [28] suggested a neuro-fuzzy stacking approach to estimate Q from gauge P.

The suggested method provided better Q estimations than other stacking models. In

the field of RS, fuzzy logic was frequently used for image classification [32]–[34]. [32]

evaluated the accuracy of land cover maps derived from fuzzy classification with

respect to ground data. He demonstrated that fuzzy classification-based land cover

maps are the most accurate representations compared to others. More recently, [34]

tried to reduce the uncertainty in image classification resulting from the heterogeneity

of similar ground objects. They utilized an interval type-2 fuzzy sets generation

method, and their method was able to suppress heterogeneity of the similar objects

at RS images, increasing the accuracy of image classification. their method was able

to suppress heterogeneity of the similar objects at RS images, increasing the accuracy

of image classification. In a different study, [26] merged elevation, slope, distance

from the coast, aspect, and P data obtained from weather radar by using a fuzzy joint

membership function (JMF) to get accurate P grids for the Mediterranean region. The

results show that JMF P grids have a higher correlation with in-situ data than original

radar grids. [27] delineated potential groundwater zones in the Shanxi region, China,

with the help of fuzzy logic, RS, and Geographic Information Systems (GIS). The

generated maps were extremely close to the ground-truth data.

1.1.3 Literature research on the study area

Two basins with different basin characteristics and climatic conditions were used in

this study: i) Sakarya basin; ii) Cyprus basin.
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The Sakarya basin is being studied for a variety of reasons. It has significant water

potential and is well suited to the construction and operation of multifunctional

hydraulic and water resources projects, such as hydroelectric power plants, water

supply and diversion, and flood control. The water capacity of the Sakarya basin is

sufficient to meet not just the region’s domestic and industrial water requirements but

also the water needs of neighboring basins through inter-basin water transfer projects,

such as supplying a large portion of the mega city Istanbul’s water demand. Recently,

the basin has been suffering from water pollution due to increasing population and

industry [35]–[37]. The water pollution in the Sakarya basin was found to be

greater above the United Nations Educational, Scientific and Cultural Organization

(UNESCO) standards in a research conducted by [35].

Unfortunately, despite its strategic importance, there is no comprehensive WB study

in the Sakarya basin. Moreover, RS-based hydrological data products have never been

evaluated in the basin. The majority of work done in the basin has mostly focused on

the Q [38]–[42]. [39] showed that the Q in the Sakarya basin experienced a significant

decreasing trend starting from 1970. Similar trends were also reported in [38,42].

Another study conducted by [43] tried to show how the spatial distribution of P in

the Sakarya basin has changed over the years. He found that although the P was

in an increasing trend in the coastal parts of the basin, it was in a decreasing trend

in the inner parts. The study conducted by the [44] is the only one that employed

all WB components simultaneously. They implemented the Water Evaluation and

Planning System—Plant Growth Model (WEAP-PGM) to estimate WB components

in the Sakarya basin at annual scale. The proposed model estimated Q as 4747 million

m3/year, ET as 23011 million m3/year, and flow to groundwater as 3065 million

m3/year. They showed that the estimated Q was in good agreement with observed

Q.

There are very few gauge stations available in the Cyprus basin. Several studies have

used RS products to estimate WB components in the Cyprus basin [3,45]–[49]. [45]

evaluated the ability of the Climate Hazards Group Infrared Precipitation with Station

(CHIRPS) data to predict P extremes in the Cyprus. In terms of mean daily values, the

CHIRPS data correlated well with the available station data; however, no correlation
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was found when estimating maximum values. [47] compared the TRMM 3B43 and the

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG)

products over the Cyprus. It was observed that IMERG captured the temporal pattern

of gauge observations slightly better than TRMM 3B43. However, both products

underestimated gauge P, especially in the winter. In Cyprus, RS-based ET studies

have primarily focused on crop ET instead of actual ET [48,50]. By neglecting the Q

in the Cyprus basin, [3] has attempted to estimate other WB components using various

RS data and models. It was found that the peaks of GRACE ∆S estimations were about

2 months later than the peaks of P estimations. Another important finding was that the

equivalent water height measured by GRACE experienced a strong downward trend,

with average rate of -1.56 mm/year.

1.2 Novelity and Objective of Thesis

So far, WB studies have been mainly conducted in large-scale global basins due

to the low spatial resolution of the GRACE satellite gravimetry mission. Several

studies have shown that GRACE errors are inversely proportional to the size of the

basin [16,51]–[55]. GRACE errors were found to reach up to 130% in basins with

smaller than 100,000 km2 [16]. [54] also mentioned that the GRACE ∆S estimations

are likely to have large errors in basins with areas of less than 150,000 km2. However,

researchers need to improve WB outputs in small or mid-scale basins.

The early studies commented that ET is poorly observed from the ground in

comparison to P and Q. Therefore, the uncertainty in RS-based ET was mainly

evaluated using LSMs or simple empirical formulas [11,12,20,24]. However, both

LSMs and the empirical techniques also hold substantial uncertainties for ET

estimation [56]–[58]. The generalized three-cornered hat (GTCH) method is highly

successful in estimating the relative uncertainty of various hydrometeorological data

products without requiring any prior knowledge [6,59]–[64]. [65] indicated that

the GTCH-integrated ET is closer to the FLUXNET ET observations than other

techniques.
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Additionally, there is still no method to improve the reliability of RS data for ungauged

basins. Fuzzy logic, first suggested by [66], has emerged as a powerful technique

to model various engineering problems that deal with vagueness and uncertainty

[25,67,68]. The basic concept is to think of system parameters as fuzzy numbers

rather than crisp (exact) numbers to capture the total uncertainty of the parameters,

and each parameter is defined by its membership function. Although several studies

have already used fuzzy logic in various topics of RS and hydrology (Section (1.1.2)), it

has never been applied to RS-based hydrological data products containing a significant

uncertainty level. Considering the uncertainty in RS products, incorporating fuzzy

logic into RS can provide valuable outputs for the ungauged basins.

Considering the factors mentioned above, we followed two different approaches to

improve WB estimations in two basins, namely Cyprus and Sakarya basins. In the first

approach, we used rainfall gauge measurements and the GTCH method to determine

error variances of each P and ET product, respectively. Error variances were used to

merge P and ET products separately into a single best estimate. CKF was then applied

to enforce WB closure. Due to the lack of Q observations in the Cyprus basin, the first

approach was only applied to the Sakarya basin. In the second approach, Fuzzy linear

regression was used to decrease WB closure errors in both the Cyprus and Sakarya

basins without the need for gauge observations.
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2. STUDY AREA AND DATASETS

2.1 Study Area

Two basins were used in this study to examine the feasibility and effectiveness of the

RS-based fuzzy logic method in different scaled basins: i) mid-scaled Sakarya basin;

ii) small-scaled Cyprus basin.

The Sakarya basin is located in northwest Anatolia, Turkey, between 37° 96’ - 41°

20’ North latitudes and 29° 26’ - 33° 24’ East longitudes (Figure 2.1(a)). Due to its

geographic location, the Sakarya basin is of extreme importance for transportation,

cultural, industrial and agricultural activities, and economic amenities. The basin

features a diverse range of geographical formations. As a result, the basin can be

evaluated geographically as a whole, considering all of the features of the territories

it encompasses. The basin’s drainage area is roughly 58160 km2, encompassing

approximately 7% of Turkey. It comprises 52% agricultural land, 45% forest and

semi-natural terrain, and 2.2% urban territory, among other minor land-use types.

Wetlands cover around 0.2% of the basin, whereas surface waters cover approximately

0.4% [69]. The majority of the basin has a typical continental climate, with a mean

annual P of about 500 mm. The maximum long-term daily measured P in the basin

is 127.7 mm, whereas the maximum evaporation is recorded as 60 mm. The Sakarya

river potentially constitutes 3.4% of all rivers that originate in Turkey. The mean annual

flow rate is 6400 million m3/year. The long-term temperature fluctuations depict that

-28°C can be measured in winter while up to 44° C can be felt in summer.

The Cyprus basin covers almost half of the Cyprus island, whose total geographical

area is 9251 km2. The study area is located in between 34° 54’ - 35° 41’ North latitudes

and 32° 35’ - 34° 35’ East longitudes (Figure 2.1(b)). Cyprus is located in the eastern

Mediterranean Sea and is one of the major basins under frequent droughts [70]. Due

to its geographic location, it is of extreme importance for agricultural and cultural
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activities as well as the touristic amenities. Contrary to Sakarya Basin, water shortages

are evident, and the problem is lately solved by an inter-basin water transfer project

through the Mediterranean Sea from Turkey. Within the basin, the Kyrenia Range lays

parallel to the Mediterranean Sea, generating significant spatial variations on climatic

factors. The Cyprus basin consists of ephemeral rivers that have not been flowing in

some winter seasons. The maximum altitude of the basin is 1981 m above mean sea

level, and the maximum hydraulic flow length is estimated to be 68 kilometers with

varying watershed slopes ranging from 2% to 56% [71]. The basin’s drainage area

is roughly 4990 km2, encompassing approximately 54% of Cyprus. The majority of

the basin has a typical Mediterranean climate, with a mean annual P of about 385.2

mm [72]. P in general increases from east to west. The mean temperature varies from

5 to 15°C in the winter months, whereas it reaches up to 40°C during summer.

Figure 2.1 : The spatial resolution of RS products over (a) Sakarya and (b) Cyprus
basins. The pink point represents the Adatepe Q station at the outlet of the Sakarya
basin, and the green points indicate meteorological stations used in both basins. The
color scale represents the topography of Sakarya basin and the Mediterranean island

Cyprus.

2.2 Datasets

2.2.1 First approach

2.2.1.1 RS, land surface model (LSM), and reanalysis products

The first approach was applied to the Sakarya basin. For the first approach,

we used four RS-based P products: PERSIANN, the CPC Morphing Technique
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(CMORPH), TRMM, and GPCP. For ET , we considered six products, including the

three RS-based ET , two Global Land Data Assimilation System (GLDAS) LSMs,

and reanalysis. The three RS-based ET products are MODIS, GLEAM, and the

Numerical Terradynamic Simulation Group (NTSG). The two GLDAS LSMs are the

VIC and the Neural Optimization Applied Hydrology (NOAH). The only reanalysis

product is the TERRACLIMATE. The Jet Propulsion Laboratory (JPL) provides raw

Mass Concentration (MASCON) ∆S solutions. The land-grid-scaling has been applied

to the MASCON ∆S solutions to decrease the noise caused by the sampling and

post-processing of GRACE observations.

2.2.1.2 Gauge observations

We used monthly P data from 27 recording-type rainfall stations provided by the

Turkish State Meteorological Service to determine the uncertainties of the each P

product. The consistency of 27 rainfall stations was checked using the Double Mass

Curve method. Consequently, no station was eliminated, and the mean monthly P of

the Sakarya basin was calculated using the Kriging Interpolation Technique [73,74].

The daily long-term measured Q data at the outlet of the Sakarya basin were provided

by the State Hydraulic Works of Turkey. There are no missing data during the study

period. We aggregated daily Q measurements to the monthly temporal resolution to be

consistent with the time interval of other products used in the first approach. The Q

data is available at https://www.dsi.gov.tr/.

The temporal coverage of the first approach is from January 2005 to December 2011

at a monthly interval. Therefore, all products considered in this approach were

aggregated to monthly temporal resolution and remapped to the basin scale by pixel

averaging. The summary of the datasets used for the first approach is shown in Table

2.1.

2.2.2 Second approach

The second approach was used in both the Sakarya and Cyprus Basins. All of the

products used in the second approach (except Q) are RS-based products. For ∆S,

GRACE MASCON solutions were used in both basins. For the Sakarya basin, in-situ Q
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Table 2.1 : Summary of the datasets used in the first approach.

Product Source Spatial and
Temporal Resolution Reference Study period

Precipitation (P)
PERSIANN Satellite Monthly, 0.25° [75] 2005-2011
CMORPH Satellite Monthly, 0.5° [76]

TRMM Satellite Daily, 0.25° [77]
GPCP Satellite Monthly, 0.5° [78]

Rainfall gauges In-situ Monthly, point scale
Turkish State

Meteorological Service
Evapotranspiration (ET)

MODIS Satellite Monthly, 0.05° [79]
GLEAM Satellite Monthly, 0.25° [80]
NTSG Satellite Monthly, 8 km [81]
NOAH LSM Monthly, 0.25° [82]

VIC LSM Monthly, 1° [83]
TERRACLIMATE Reanalysis Monthly, 0.05° [84]

Water Storage Change (∆S)
JPL MASCON Satellite Monthly, 0.5° [85]

Runoff (Q)

Runoff gauge In-situ Daily, point scale
State Hydraulic Works

of Turkey

measurements were used. For the Cyprus basin, the Soil Conservation Service (SCS)

Curve Number (CN) method based Q estimations were used as there are no in-situ

Q observations. SCS-CN method combines watershed characteristics (soil type, land

cover) with climatic events to derive CN of the watershed [86]. The higher the CN, the

greater the Q capacity. SCS-CN based Q can be calculated by the following equation:

QSCS =
(Psta −0.2SR)

2

(Psta +0.8SR)
(2.1)

where Psta is the mean of the daily P from four gauge stations in the Cyprus basin

(Figure 2.1(b)). SR is the potential maximum retention, and it is calculated as:

SR =
1000
CN

−10 (2.2)

For Q calculations, the Cyprus basin was divided into 366 sub-basins (Figure 2.3(a))

using a digital elevation model (DEM) (Figure 2.1(b)) with a spatial resolution of

12 meters [71]. DEM is integrated with the GIS technique to delineate watersheds

and corresponding stream networks (Figure 2.3(b)) to create a database of sub-basin

characteristics (e.g., slope, area, hydraulic flow length). Land cover data are

obtained from the Copernicus Land Monitoring Service (https://land.copernicus.eu/)
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and the soil map was taken from the Ministry of Agriculture and Natural Resources

(http://tarim.gov.ct.tr/). The soil data are classified into four different hydrologic

groups as A, B, C, and D based on their Q potential (Figure 2.2). The Q potential

increases from A to D. The CN of each of the 366 sub-basins is then determined by

overlapping the land cover map and the hydrologic soil map (Figure 2.3(c)). QSCS was

calculated for 366 sub-basins separately and (QSCS)mean , the mean of the calculated

QSCS values, was used for WB analysis in Cyprus basin.

Figure 2.2 : The hydrologic soil groups in the Cyprus basin.

Figure 2.3 : Spatial distribution of all the (a) sub-basins; (b) stream-flows and (c)
CN’s in the Cyprus.

In total, five P products, three ET products, one ∆S product, and two Q data (in-situ

measurements for the Sakarya basin and empirical estimations for the Cyprus basin)

were considered in the second approach. Five P products contain CHIRPS, the Global

Satellite Mapping of Precipitation (GSMaP), PERSIANN, CMORPH, and IMERG.

Three ET products contain GLEAM, MODIS, and NOAH.
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All products considered in the second approach were aggregated to annual temporal

resolution and remapped to the basin scale by pixel averaging over 2003-2016 and

2019-2020. There is an 11-month data gap in GRACE data, from July 2017 to

May 2018. Although some studies have used different approaches to fill the data

gap [87,88], no centers have provided universally accepted solutions. Therefore, the

years 2017 and 2018 were excluded from the analysis. Summary of the considered

datasets for the second approach is presented in Table 2.2.

Details of all the datasets for each WB component are given in the Appendix A.

Table 2.2 : Summary of the datasets used in the second approach.

Product Study basins Spatial and
Temporal Resolution Reference Study period

Precipitation (P)
CHIRPS Sakarya, Cyprus Annual, 0.05° [89] 2003-2020
GSMaP Sakarya, Cyprus Monthly, 0.1° [90]

PERSIANN Sakarya, Cyprus Monthly, 0.25° [75]
CMORPH Sakarya, Cyprus Monthly, 0.5° [76]

IMERG Sakarya, Cyprus Monthly, 0.1° [91]
Evapotranspiration (ET)

GLEAM Sakarya, Cyprus Monthly, 0.25° [80]
MODIS Sakarya, Cyprus Annual, 500 m [79]
NOAH Sakarya, Cyprus Monthly, 0.25° [82]

Water Storage Change (∆S)
JPL MASCON Sakarya, Cyprus Monthly, 0.5° [85]

Runoff (Q)

In-situ Sakarya Daily, basin scale
State Hydraulic Works

of Turkey
SCS-CN Cyprus Daily, basin scale [86]
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3. METHODOLOGY

3.1 First Approach

The following three-step process was applied in this approach (Figure 3.1). First, we

evaluated the uncertainties of different P and ET products. Rainfall gauge observations

were used to calculate error variances of P products, whereas the GTCH method was

used for ET products since there is no ground-truth data. Second, P and ET products

were merged separately according to their estimated error variances. Finally, WB

closure was performed using the CKF.

Figure 3.1 : A flow chart of the first approach.

3.1.1 Uncertainty analysis

3.1.1.1 Precipitation (P) uncertainty

Firstly, we applied a monthly bias correction on the raw RS-based P products for each

month using the linear scaling bias correction method [92,93]. This method generates
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monthly correction values based on the ratio of observed and estimated values:

P∗
est(m) = Pest(m)

(
µm (Pobs(m))

µm (Pest(m))

)
(3.1)

where P∗
est(m) is the bias-corrected (BC) P at month m, Pest(m) is the estimated

P at month m, µm(Pest(m)) is the long term monthly mean of estimated P, and

µm(Pobs(m)) is the long term monthly mean of observed P. After bias removal, error

variances of each product were calculated against the best data (Considering that gauge

observations indicate our best datasets, they were used to assess the uncertainties of

each raw RS-based P product). Since the error of products may change from month

to month, error variance calculations were carried out separately for each of the 12

months. Therefore, 12 different error variances were generated for each product.

Let’s consider we have M products for the P, {Pi}i=1,2,. . . .,M. The error variance of the

product i is then calculated by,

σ
2
i =

∑
t
k=1 (Pk −Pa)

2

t
, i = 1,2, . . . ,M (3.2)

where σ2
i is the error variance of the ith product, Pk is the ith product estimation, Pa is

the actual P, and t refers to the total number of observations.

3.1.1.2 Evapotranspiration (ET ) uncertainty and GTCH method

Because there is no actual ET data in the Sakarya basin, we employed the GTCH

method to quantify the uncertainties of ET products. GTCH method, first developed

by [94], allows an estimation of the relative uncertainties of different products without

a priori knowledge. This method considers cross-correlation across different products

and does not need the products to be independent [94,95]. In the first approach, the

GTCH method was applied to six ET products for separate months. The GTCH

method divides N (6 in first approach) ET time series {ETi}i=1,2,. . . .,N into

ETi = ETA +ηi (3.3)

where ETA represents the actual ET and ηi is the true error of the ith product.

Since the actual ET is not available, the differences between a reference ET product

(TERRACLIMATE (ETN) was chosen arbitrarily) and the remaining N − 1 ET
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products are calculated as follows:

Yi,t = ETi −ETN = ηi −ηN , i = 1,2, . . . ,N −1 (3.4)

where Yi,t is the tx(N−1) differences matrix, and t denotes the time samples. It should

be noted that the results are insensitive to the arbitrarily chosen reference data. The

covariance matrix (S) of Y is shown by,

S = cov(Y ) (3.5)

The unknown NXN covariance matrix V of the individual noises is then described as,

V =


v11 v12 · · · · · · v1N
v21 v22 · · · · · · v2N
...

... . . . · · · ...
...

...
... . . . ...

vN1 vN2 · · · · · · vNN

 (3.6)

where vi j = v ji(i, j = 1,2, . . . ,N) is the covariance between the individual noises εi and

ε j, and vii is the unknown error variance of the ith product. To compute unknown vii

values, V is related to the S by,

S = J.V.JT (3.7)

where (N −1)xN matrix J is defined as,

J =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
...

...
...

0 0 · · · · · · −1

 (3.8)

However, the unknown vii values can not be solved by Equation (3.7) since the number

of equations is smaller than the number of unknowns. [96] proposed the following

minimization problem based on the Kuhn–Tucker theorem to compute unknown

elements. The aim is to minimize the objective function shown as,

F (v1N , . . . ,vNN) =
1

( n−1
√

det(S))2

N

∑
i< j

v2
i j (3.9)

subject to

H (v1N , . . . ,vNN) =− det(V )

det(S) · n−1
√

det(S)
< 0 (3.10)
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v(0)iN = 0, i < N and v(0)NN =
1

2 ·S∗
, S∗ = [1, . . . ,1] ·S−1 · (1, . . . ,1)T (3.11)

where det(•) is the matrix determinant, and T is the transpose. Finally, the diagonal

vii values (same as σ2
i ) are obtained by solving the minimization problem. The square

root of the diagonal vii values represents the standard error of evaluated ET products.

3.1.1.3 Uncertainty of change in terrestrial water storage (∆S) and runoff (Q)

The data producer, JPL, provides the pixel-based uncertainties of the MASCON ∆S

solutions. The basin mean of the ∆S uncertainties was used for the calculations in the

first approach. To the best of our knowledge, there is no uncertainty quantification

for Q in the Sakarya basin. [11] assumed that gauge Q observations have 5% to 10%

errors. The uncertainty of Q data was found to range from 6.2% to 42.8% in another

study conducted by [97]. In order to test the impact of different Q error values on

the CKF outputs, both Q uncertainty of 6.2% and 42.8% were considered in the first

approach.

3.1.2 P, ET merging

Error variances of each P and ET product were calculated in Sections (3.1.1.1-3.1.1.2).

Now, our objective is to find the best-merged estimate for each month, m = 1,2 . . . ,12

,

MEm,t =
M,N

∑
i=1

wi,m ∗ESTi,m (3.12)

in which MEm,t is the merged estimate for the mth month time series, wi,m is the

merging weight of product i (i= 1,2, . . . ,M for P, and i= 1,2, . . . ,N for ET ) in month

m, and ESTi,m is the ith product estimation in month m. Merging weight can be

calculated by the following equation:

wi,m =
1/σ2

i,m

∑
M,N
j=1 1/σ2

j,m

(3.13)

where σ2
i,m is the error variance of i th product for month m. ∑wi,m should be equal to

1. The error variance of the merged estimate in month m can then be calculated as

σ
2
m =

1

∑
M,N
j=1 1/σ2

j,m

(3.14)

It should be noted that the above equations are valid for uncorrelated Gaussian errors.

18



3.1.3 Constrained Kalman Filter (CKF) algorithm for WB closure

3.1.3.1 Closure residual

Suppose

XT =
[

P ET Q ∆S
]

(3.15)

shows the vector of WB variables for any month. Symbol T refers to the transpose

of the vector. As described before, closure is generally not possible due to the

uncertainties of products. Therefore, the WB residual, r, may not be equal to 0:

r = P−ET −Q−∆S ̸= 0 (3.16)

However, the law of conservation of mass tells us that the water entering the basin

must be equal to the sum of the water leaving the basin and the water stored in the

basin unless there is a mass exchange between the neighboring basins. From this

knowledge,

r = LX = 0 (3.17)

must be satisfied and

L =
[

1 −1 −1 −1
]

(3.18)

is the linear closure constraint.

3.1.3.2 Kalman filter

Kalman filter is an optimal estimation algorithm that predicts system states from

inaccurate and uncertain measurements [98]. It consists of two processes: predict and

update Figure 3.2. The prediction process uses the previous state estimation (x̂k−1) to

generate the a priori state estimation (x̂k
−) and its error covariance (Pk

−). The second

step of the algorithm uses the a priori state estimate calculated in the prediction step

and update it to find the a posteriori state estimate and its error covariance. The a

priori state estimate is subtracted from the corresponding measurement (yk) and the

resulting difference is then multiplied by the Kalman gain (K) to obtain the a posteriori

state estimate. The Kalman gain is computed such that it minimizes the a posteriori

error covariance (R). The Kalman filter has the advantage of being recursive, which

means that it only uses the current measurements, the a priori state estimate, and its

uncertainty matrix rather than storing all previous measurements.
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Figure 3.2 : Framework of the Kalman filter algorithm.

3.1.3.3 CKF

The data merging process merges variables according to their error variances without

considering WB constraint. In the first approach, CKF was used after the merging step

to enforce the closure. CKF is a type of Kalman filter that is used when the system

constraints are known. The CKF algorithm may be described as follows. Let

Xmerged =
[

Pmerged ETmerged Q ∆S
]T (3.19)

be the vector of WB variables at hand after merging step for any month. rmerged =

L.Xmerged is not necessarily equal to zero, and new datasets are needed to make residual

error zero. New closure-constrained estimates can be derived from

XCKF = Xmerged +K
(
0−LXmerged

)
(3.20)

in which K =CLT (LCLT)−1 is the Kalman gain and C is the error covariance matrix.

Here, the measured WB error and its error covariance are both equal to zero. Given

rmerged = L.Xmerged , Equation (3.20) can be rewritten as

XCKF = Xmerged −CLT (LCLT)−1
rmerged (3.21)
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XCKF represents the “perfect” estimations that close the WB. The error covariance

matrix is given by

C =


σ2

m,P 0 0 0
0 σ2

m,ET 0 0
0 0 σ2

m,Q 0
0 0 0 σ2

m,∆S

 (3.22)

σ2
m,P and σ2

m,ET have already been derived from Section (3.1.2), and σ2
m,∆S was

provided by the data producer. As previously described in Section (3.1.1.3), the

uncertainty of 6.2% and 42.8% were considered for Q. Error covariances among

different components were assumed to be 0.

3.2 Second Approach

3.2.1 Fuzzy logic approach

Fuzzy logic has been proven to work effectively against complex structures with

uncertain and imprecise measurements [99]–[101]. It uses “degree of membership”

rather than the classical "true or false" (1 or 0) approach to define system parameters.

Therefore, crisp numbers are converted to fuzzy numbers with fuzzification in the

sense that fuzzy number refers to a connected set of possible elements, each with

its degree of membership between 0 and 1, rather than a single element. A degree

of membership value closer to 1 means that an element is absolutely a member of the

fuzzy set, while membership values closer to 0 show that the element is not a member

of the fuzzy set. The degree to which a given element belongs to a fuzzy set is defined

by the membership function. Various types of membership functions are available:

triangular, trapezoidal, piecewise linear, Gaussian, etc. In this study, the triangular

fuzzy membership function was selected as it is the most widely used. A triangular

fuzzy membership function has the following formulation:

µÃ(x) =


0, x ≤ a

(x−a)/(m−a), a < x ≤ m
(b− x)/(b−m), m < x < b

0, x ≥ b

(3.23)

in which µÃ(x) is the degree of membership of the element x to the fuzzy set Ã. a, b,

and m represent the lower value, upper value, and center of the triangular membership
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function on the x-axis, respectively. Figure 3.3 illustrates the graphical representation

of the triangular membership function.

Figure 3.3 : A typical triangular membership function. Bold horizontal line
represents the hi-cut interval.

3.2.2 Symmetric triangular fuzzy linear regression

The fuzzy linear regression (FLR) model used to estimate the behavior of system

output is one of the significant subjects of fuzzy logic. The FLR model is given by:

Yi = Ã0xi0 + Ã1xi1 + Ã2xi2 + . . . . . . .+ Ãmxim i = 1,2, . . . . . . ,n (3.24)

where n is the number of observations of m-dimensional independent variables

xi = [xi0,xi1, . . . ,xim]
T , Yi is the estimated one-dimensional dependent variable and

Ã =
[
Ã0, Ã1, . . . , Ãm

]
is a vector of the unknown fuzzy coefficients in the form of the

symmetric triangular fuzzy number, denoted as Ã j =
(
α j,c j

)
, j = 0,1, . . . ,m. Here, α j

and c j are the center and spread values of the jth fuzzy coefficient, respectively (Figure

3.4(a)). FLR models can be divided into two categories depending on the type of input

variables.

1. FLR with crisp independent variables (xi) and crisp dependent variable (Yi)

2. FLR with crisp independent variables (xi) and fuzzy dependent variable (Ỹi)

In Case-I, dependent variables (xi) and dependent variable (Yi) are both crisp numbers,

and fuzziness is reflected by the fuzzy coefficients. In Case-II, in addition to fuzzy
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coefficients, output (Ỹi) is also a symmetric triangular fuzzy number with center yi and

spread si (Figure 3.4(b)). Both cases were considered in the second approach.

Figure 3.4 : The symmetric triangular fuzzy numbers showing, (a) the fuzzy
regression coefficient; (b) the dependent variable. Bold horizontal line (b) represents

the h-cut interval of yi.

As there is no consensus in the literature on the exact value of h, h values (0.5, 0.7, and

0.9) previously offered by two hydrologic studies [25,102] were chosen for this study.

In the following, we described three FLR models that were used in this study.

3.2.2.1 Tanaka model

The first FLR model was developed by [103] to estimate fuzzy coefficients Ã j, j =

0,1, . . . ,m by minimizing the total spread of the estimated intervals, as follows:

min
n

∑
i=1

m

∑
j=0

c j
∣∣xi j

∣∣ (3.25)

subject to

yi +(1−h)si ≤
m

∑
j=0

α jxi j +(1−h)
m

∑
j=0

c jxi j (3.26)

yi − (1−h)si ≥
m

∑
j=0

α jxi j − (1−h)
m

∑
j=0

c jxi j (3.27)

c j ≥ 0, α j = free , i = 1,2, . . . . . . ,n j = 0,1, . . . ,m (3.28)
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The above conditions force the h-cut estimated intervals to capture the h-cut observed

intervals (Figure 3.5(a)). It should be noted that si is zero for Case-I as output Yi is

assumed to be a crisp number.

Figure 3.5 : Illustration of (a) Tanaka (b) Hojati FLR models. Bold vertical lines
indicate h-cut observed interval. Dotted vertical lines represent the h-cut estimated

interval.

3.2.2.2 Hojati model

[104] suggested a FLR model to estimate fuzzy coefficients Ã j, j = 0,1, . . . ,m in such

a way that the total distance between the upper value of h-cut estimated interval and

the upper value of h-cut observed interval represented as
∣∣d+

iU −d−
iU

∣∣, and the distance

between lower value of h-cut estimated interval and the lower value of h-cut observed

interval shown as
∣∣d+

iL −d−
iL

∣∣ are minimized. Therefore, the objective function of the

model is formulated as follows:

min
n

∑
i=1

(
d+

iU +d−
iU +d+

iL +d−
iL
)

(3.29)

subject to

yi +(1−h)si =
m

∑
j=0

α jxi j +(1−h)
m

∑
j=0

c jxi j +d+
iU −d−

iU (3.30)

yi − (1−h)si ≥
m

∑
j=0

α jxi j − (1−h)
m

∑
j=0

c jxi j +d+
iL −d−

iL (3.31)

c j ≥ 0, d+
iU ,d

−
iU ,d

+
iL,d

−
iL ≥ 0, α j = free

i = 1,2, . . . . . . ,n j = 0,1, . . . ,m
(3.32)
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Note that for each i, at least one of d+
iU and d−

iU will be zero, and at least one of d+
iL and

d−
iL will be zero. The estimated intervals can include points that aren’t in the observed

intervals according to the Hojati model (Figure 3.5(b)). For Case-I, si is expected to be

zero because output Yi is a crisp number.

3.2.2.3 Zeng model

[105] proposed a least absolute FLR model to predict fuzzy coefficients Ã j, j =

0,1, . . . ,m by minimizing the overall least absolute distance between estimated values

and corresponding observed ones, which is formulated as:

min
n

∑
i=1

(µi +ϑi +ωi +ϕi) (3.33)

subject to

yi =
m

∑
j=0

α jxi j +µi −ϑi (3.34)

si =
m

∑
j=0

c jxi j +ωi −ϕi (3.35)

c j ≥ 0, µi,ϑi,ωi,ϕi ≥ 0, α j = free

i = 1,2, . . . . . . ,n j = 0,1, . . . ,m
(3.36)

where µi −ϑi is the distance between the center of the estimated fuzzy number and

the center of the observed fuzzy number. ωi −ϕi represents the distance between the

spread of the estimated fuzzy number and the spread of the observed fuzzy number.

The main aim is to minimize the sum of these two distances. h-cut intervals are not

defined in the Zeng model. Similar to the other two models, the value of si is not taken

into a consideration for Case-I as the dependent value is a crisp number.

3.2.3 Uncertainty in WB components

When there are no groundwater and surface water interactions between neighbor

basins, the terrestrial WB equation of a basin is simply considered as Equation (1.1).

The uncertainty in all WB components must be zero to achieve “perfect closure” (i.e.,

zero r), but it is highly unlikely for many cases as RS measurements suffer from a

significant degree of uncertainty. Therefore, in the second approach, we applied fuzzy

correction coefficients to each WB component in order to reduce the magnitude of r.
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The following two-step process was used to obtain the correction coefficients: Firstly,

annual percentage errors of each budget component for 12 years (2003-2014) were

calculated to define the upper bounds error levels. Secondly, three above-mentioned

FLR models were applied to estimate fuzzy correction coefficients (Figure 3.6).

Figure 3.6 : A flow chart of the second approach.

3.2.3.1 Percentage error calculation

The first 12 years (2003-2014) of the annual observations were used in the calibration

process to assign correction coefficients for each budget component. The remaining

four years were used for validating and testing the model.

Since multiple products were chosen for ET and P, the same steps were followed

for these components to calculate annual percentage errors. Let’s consider we have n

observations for the same budget component v,{vi}i = 1,2,...,n, the mean value of all

the observations (v̄) are:

v̄ =
1
n

n

∑
i=1

vi (3.37)

and the deviation of each observation, which is the absolute difference between

corresponding observation and the mean value, is calculated as:

v̈i = vi − v̄ (3.38)
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Then, the mean deviation is obtained by:

v̈′ =
1
n

n

∑
i=1

v̈i (3.39)

Finally, the percentage error of the budget component for the corresponding year is

computed by:

P,ET error(%) =
v̈′

v̄
∗100 (3.40)

For ∆S, the uncertainty values of MASCON solutions are provided by the JPL.

Therefore, the annual percentage errors were obtained by:

∆Serror(%) =
Uncertainty
Observation

∗100 (3.41)

In the second approach, we assumed an error of 10% for Q in the Sakarya basin. . For

the Cyprus basin, the mean percentage error value of 25%, previously calculated for

SCS-CN based Q by [106], was used.

Tables 3.1-3.2 show the annual WB components for the Sakarya and Cyprus basins,

and their corresponding r for the 16 years period. For P and ET , mean values of the

multiple RS products are given (monthly and annual time series of WB components

averaged over the Sakarya and Cyprus basins are shown in Appendix B). Figure 3.7

shows the mean annual estimates of the P and ET products from 2003 to 2020 for

Sakarya and Cyprus basins. The RS-based P estimates differ significantly for both

basins, though the order of the P magnitudes in the two basins agrees well. IMERG

P estimates are higher than the other P products for both basins. CMORPH has the

lowest mean P in the Sakarya basin, and PERSIANN has the lowest mean P in the

Cyprus basin. GLDAS estimates the highest ET over the Sakarya basin among the

three ET products, whereas GLEAM estimates the highest ET over the Cyprus basin.

MODIS has the lowest mean ET in both basins.

The annual percentage error values of the four WB components, and some key statistics

are also presented in Tables 3.3-3.4 for two basins. It is clearly seen that the Cyprus

basin has higher percentage error values than the Sakarya basin for all components,

especially for ∆S. This could be because the Cyprus basin has relatively small spatial

coverage and RS products with a smaller spatial resolution (0.5°, 0.25°) exceed the

boundaries of the Cyprus basin (Figure 2.1(b)). The JPL MASCON solutions used
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Table 3.1 : Estimated annual WB components of the Sakarya basin for 16 years.

Year P (mm) Q (mm) ET (mm) ∆S (mm) r (mm)
2003 381.37 70.54 388.64 22.68 -100.49
2004 343.69 93.59 409.79 -80 -79.7
2005 417.06 68.97 447.89 40.83 -140.63
2006 389.23 76.79 417.11 -72.76 -31.91
2007 423.47 49.04 382.54 34.24 -42.34
2008 337.9 52.01 392.59 -29.66 -77.04
2009 473.18 84.76 445.13 95.34 -152.04
2010 542.1 99.4 451.09 -37.97 29.57
2011 403.09 86.17 460.35 6.77 -150.2
2012 425.18 92.65 420.9 42.02 -130.38
2013 356.69 74.68 419.08 -126.47 -10.6
2014 484.37 54.17 465.62 124.36 -159.78
2015 520.62 122 530.54 -104.19 -27.73
2016 424.53 78 455.96 4.61 -114.03
2019 455.47 78.04 478.37 -61.02 -39.93
2020 375.97 69.21 456.16 -88.82 -60.58

Table 3.2 : Estimated annual WB components of the Cyprus basin for 16 years.

Year P (mm) Q (mm) ET (mm) ∆S (mm) r (mm)
2003 371.55 19.65 464.45 24.05 -136.6
2004 411.82 35.43 406.63 -67.1 36.86
2005 278.52 9.51 411.03 -4.41 -137.6
2006 285.95 16.96 410.45 29.83 -171.3
2007 376.96 39.17 404.8 8.18 -75.2
2008 198.5 4.87 338.27 -35.16 -109.48
2009 436.47 13.07 424.45 108.64 -109.69
2010 333.05 56.87 413 -33.54 -103.28
2011 360.65 10.85 448.01 -73.87 -24.33
2012 512.58 10.77 465.41 88.82 -52.42
2013 221.58 0.98 424.88 -39.69 -164.6
2014 303.01 6 397.5 -69.02 -31.47
2015 366.32 3.2 457.5 86.71 -181.09
2016 299.51 11.02 362.49 -43.1 -30.89
2019 520.5 21.99 476.24 -58.98 81.25
2020 388.25 9.34 428.19 53.13 -102.41

for ∆S have the lowest spatial resolution among others. Since there is no RS-based

∆S product with a higher spatial resolution, the largest errors were observed for ∆S in

the Cyprus basin. Also, ∆S estimations face leakage error due to across ocean/land

boundary.
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Figure 3.7 : Mean annual P and ET estimates in Sakarya and Cyprus basins.

Table 3.3 : Percentage error values of WB components in the Sakarya basin at annual
scale.

Year P(%) Q(%) ET (%) ∆S(%)

2003 34.89 10 9.17 47.66
2004 31.44 10 13.93 32.81
2005 39.03 10 10.97 49.38
2006 26.95 10 10.6 48.88
2007 14.57 10 13.24 43.05
2008 26.9 10 15.65 42.84
2009 28.31 10 13.04 55.43
2010 24.16 10 13.52 41.54
2011 27.17 10 7.72 42.45
2012 39.53 10 12.88 35.86
2013 17.32 10 14.2 30.45
2014 26.24 10 16.75 53.49

Mean 28.04 10 12.64 43.29
St.dev (σ ) 7.56 0 2.6 8.08

0 Percentage error (%) 60

3.2.3.2 Correction coefficient criteria and error boundaries

If the WB components have “perfect” measurements, the correction coefficient would

be “one” for each component. As this is not possible for many cases, the primary

goal of this study is applying fuzzy correction coefficients, Ã j, j=P,Q,ET,∆S =
(
α j,c j

)
,

to each component of the WB equation to minimize r in Sakarya and Cyprus basins.

α j represents the center of the fuzzy correction coefficient numbers assigned to WB
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Table 3.4 : Percentage error values of WB components in the Cyprus basin at annual
scale.

Year P(%) Q(%) ET (%) ∆S(%)

2003 40.86 25 18.01 125.06
2004 47.25 25 15.83 145.42
2005 40.86 25 18.25 214.97
2006 38.62 25 18.87 103.54
2007 23.65 25 16.45 110.83
2008 36.1 25 15.67 93.3
2009 38.19 25 16.12 106.02
2010 41.51 25 16.48 58.76
2011 40.76 25 17.48 103.14
2012 31.62 25 19.22 112.15
2013 44.27 25 17.43 92.16
2014 36.61 25 21.46 109.74

Mean 38.36 25 17.61 113.64
St.dev (σ ) 6.12 1.69 39.32 8.08

0 Percentage error (%) 240

components. c j represents the spread of the fuzzy correction coefficient numbers

assigned to WB components. Therefore, Equation (1.1) can be rewritten as

ÃPP− ÃQQ− ÃET ET − Ã∆S∆S = r̂ (3.42)

where r̂ is the revised WB error after FLR.

Constraint boundaries in the three FLR models should be well defined, and there

are several criteria to determine the boundaries of the Equations (3.28),(3.32), and

(3.36). Two important statistics (mean and standard deviation) of the percentage

errors illustrated in Tables 3.3-3.4 were used as decision criteria to define constraint

boundaries for both basins. The mean of the percentage errors plus one standard

deviation was considered to indicate the deviation of α j from “one” and the mean

of the percentage errors plus three times the standard deviations was considered to

indicate the minimum boundary of c j [25]. From a statistical point of view, 68.3% and

99.7% of the normally distributed data fall within one and three standard deviations

of the mean, respectively. Table 3.5 shows the considered boundaries for α j and c j

fuzzy coefficients of each WB component for the Sakarya and Cyprus basins. sε is the

standard deviation of the estimated r values, given in Tables 3.1-3.2, between 2003 and
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2014 for both basins. As the Cyprus basin has higher percentage error values than the

Sakarya basin for all components (Tables 3.3-3.4), constraint boundaries considered

for the Cyprus basin are wider than those of the Sakarya basin. The minimum boundary

of the α∆S was computed negative in the Cyprus basin since there are large percentage

error values for ∆S. However, negative α∆S is not possible, so the negative value was

readjusted to zero.

Table 3.5 : Considered boundaries for α j and c j fuzzy coefficients of each WB
component in both basins.

Fuzzy coefficient P Q ET ∆S
Sakarya basin

α j 0.644 ≤ αP ≤ 1.356 0.900 ≤ αQ ≤ 1.100 0.848 ≤ αET ≤ 1.152 0.486 ≤ α∆S ≤ 1.514
c j cP ≥ 0.507 cQ ≥ 0.100 cET ≥ 0.205 c∆S ≥ 0.675

sε=62.57 mm
Cyprus basin

α j 0.555 ≤ αP ≤ 1.445 0.750 ≤ αQ ≤ 1.250 0.807 ≤ αET ≤ 1.193 0 ≤ α∆S ≤ 2.530
c j cP ≥ 0.567 cQ ≥ 0.250 cET ≥ 0.227 c∆S ≥ 2.316

sε=62.54 mm

3.2.3.3 Adapting FLR models to the WB equation

Three FLR models with two cases were chosen for this study, as described in Section

(3.2.2). Also, three different h-cut values, 0.5, 0.7, 0.9, were considered for Tanaka

and Hojati FLR models.

Referring to the Equations (3.25-3.28), Tanaka FLR model for WB of the Sakarya and

Cyprus basins is formulated as:

min
12

∑
i=1

cP |Pi|+ cQ |Qi|+ cET |ETi|+ c∆S |∆Si| (3.43)

subject to

εi +(1−h)sεi ≤ [αP (Pi)−αQ (Qi)−αET (ETi)−α∆S (∆Si)]+

(1−h) [cP (Pi)− cQ (Qi)− cET (ETi)− c∆S (∆Si)]
(3.44)

εi − (1−h)sεi ≥ [αP (Pi)−αQ (Qi)−αET (ETi)−α∆S (∆Si)]−

(1−h) [cP (Pi)− cQ (Qi)− cET (ETi)− c∆S (∆Si)]

i = 1,2, . . . . . . ,12

(3.45)

where εi is the observed r for the corresponding year. εi is considered as symmetric

triangular fuzzy number with center zero and spread sεi . For Case-I, sεi is zero since εi
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is a crisp number. For Case-II, sεi is considered equal to sε (Table 3.5). Boundaries of

α j and c j are taken from Table 3.5 for both basins.

Referring to the Equations (3.29-3.32), Hojati FLR model for WB of the Sakarya and

Cyprus basins can be expressed as follows:

min
12

∑
i=1

(
d+

iU +d−
iU +d+

iL +d−
iL
)

(3.46)

subject to

εi +(1−h)sεi = [αP (Pi)−αQ (Qi)−αET (ETi)−α∆S (∆Si)]+

(1−h) [cP (Pi)− cQ (Qi)− cET (ETi)− c∆S (∆Si)]+d+
iU −d−

iU

(3.47)

εi − (1−h)sεi = [αP (Pi)−αQ (Qi)−αET (ETi)−α∆S (∆Si)]−

(1−h) [cP (Pi)− cQ (Qi)− cET (ETi)− c∆S (∆Si)]+d+
iL −d−

iL

(3.48)

d+
iU ,d

−
iU ,d

+
iL,d

−
iL ≥ 0, i = 1,2, . . . . . . ,12 (3.49)

in which
∣∣d+

iU −d−
iU

∣∣ is the distance between the upper value of h-cut estimated WB r

interval and the upper value of h-cut observed r interval. Similarly,
∣∣d+

iL −d−
iL

∣∣ is the

distance between the lower value of h-cut estimated WB r interval and the upper value

of h-cut observed r interval. The definitions of the variables used in Case-I and Case-II

are the same as those used in the Tanaka WB model.

Referring to the Equations (3.33-3.36), the following Zeng FLR formulation can be

written for WB of the Sakarya and Cyprus basins.

min
n

∑
i=1

(µi +ϑi +ωi +ϕi) (3.50)

εi = [αP (Pi)−αQ (Qi)−αET (ETi)−α∆S (∆Si)]+µi −ϑi (3.51)

sεi = [cP (Pi)− cQ (Qi)− cET (ETi)− c∆S (∆Si)]+ωi −ϕi (3.52)

sεi = 56.22 mm, µi,ϑi,ωi,ϕi ≥ 0, i = 1,2, . . . . . . ,12 (3.53)

where |µi −ϑi| is the distance between the center of estimated WB r and the center of

observed WB r. |ωi −ϕi| is the distance between the spread of estimated WB r and the

spread of observed WB r. The definitions of the variables used in Case-I and Case-II

are the same as those used in Tanaka and Hojati models. However, the Zeng model

does not include h-cut intervals.
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3.3 Comparison and Evaluation Metrics

Six performance metrics were used, namely the mean absolute error (MAE), the root

mean square error (RMSE), the Kling-Gupta efficiency (KGE), the bias, the percent

bias (PBIAS), and the correlation coefficient (CC). The equations of each metric are

as follows:

MAE =
∑

n
i=1 |

(
Vest,i −Vobs,i |

n
(3.54)

RMSE =

√
∑

n
i=1

(
Vest,i −Vobs,i

)2

n
(3.55)

KGE = 1−
√

(1−CC)2 +(1−β )2 +(1−α)2 where α =
σest

σobs
,β =

µest

µobs
(3.56)

bias =
∑

n
i=1

(
Vest,i −Vobs,i

)
n

(3.57)

PBIAS =
∑

n
i=1

(
Vest,i −Vobs,i

)
∑

n
i=1

(
Vobs,i

) X100 (3.58)

CC =
∑

n
i=1

(
Vest,i −Vest

)(
Vobs,i −Vobs

)√
∑

n
i=1

(
Vest,i −Vest

)2
∑

n
i=1

(
Vobs,i −Vobs

)2
(3.59)

where Vest,i and Vobs,i are the estimated and observed data, respectively. n is the

total number of years during the study period. µobs and µest are the mean of the

observations and estimations, respectively. σobs and σest are the standard deviation

of the observations and estimations, respectively. The optimal values of the five

performance metrics, namely MAE, RMSE, KGE, bias, PBIAS, and CC, are 0, 0,

1, 0, 0%, and 1, respectively.

In the first approach, bias, RMSE, and CC were used to compare RS-based P

estimations, while MAE, RMSE, KGE, PBIAS, and CC were used to compare FLR

outputs in the second approach.
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4. RESULTS

4.1 First Approach

4.1.1 Uncertainty assessment of data products

4.1.1.1 Uncertainties in P products

The time series of the P derived from four RS-based P products and product error

metrics over the Sakarya basin during the study period were shown in Figure 4.1.

P products followed a similar temporal pattern; however, they performed reasonably

better in the July-December period than in the January-June. High monthly P occurs

in winter, and low monthly P occurs in summer. The annual mean P is 730.0 mm for

TRMM, 472.7 mm for GPCP, 286.9 mm for PERSIANN, 283.1 mm for CMORPH,

and 427.2 mm for gauge measurements. TRMM (Bias = 25.2 mm/month) and GPCP

(Bias = 3.8 mm/month) overestimated gauge P, whereas PERSIANN (Bias= -11.7

mm/month) and CMORPH (Bias = -12.0 mm/month) showed underestimation. [67]

showed that PERSIANN and CMORPH underestimated P with a bias value of 0.12

mm/day and 0.07 mm/day for the Meichuan basin in China, respectively. The

underestimation of P by PERSIANN and CMORPH were also reported in [107].

TRMM has the highest RMSE with a value of 39.22 mm/month, followed by the

GPCP (26.16 mm/month), CMORPH (25.16 mm/month), and PERSIANN (23.67

mm/month). This shows that PERSIANN outperformed other products in capturing

the P magnitude during the study period. However, it should be mentioned that bias

has a significant impact on RMSE. The TRMM’s poor RMSE performance was mainly

due to high bias. Additionally, TRMM has the highest CC value of 0.68, indicating

the best linear agreement with the gauge P. The CC values of GPCP, PERSIANN, and

CMORPH are 0.49, 0.56, and 0.48, respectively.
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Bias removal decreased the RMSE of four RS-based products, except PERSIANN. The

RMSE of BC-TRMM, BC-CMORPH, BC-GPCP, and BC-PERSIANN was calculated

as 14.05 mm/month, 15.32 mm/month, 16.98 mm/month, and 24.15 mm/month,

respectively. The boxplots of the four BC P products over the Sakarya basin (Figure

4.2) indicate all BC product medians being close to each other. The median P is lowest

for the BC-PERSIANN (25.71 mm/month), whereas BC-TRMM has the highest

median P (35.90 mm/month). BC-GPCP median P (31.79 mm/month) is closest to

the Gauge P median (31.55 mm/month). The range of P is greatest in BC-PERSIANN

and smallest in BC-TRMM. This indicates that BC-PERSIANN has high variability of

P, whereas BC-TRMM has less variability of P over the Sakarya basin.

Figure 4.1 : Time series of the P derived from four RS-based P products and product
error metrics over the Sakarya basin.

4.1.1.2 Uncertainties in ET products

The annual mean ET is 364.3 mm for MODIS, 391.2 mm for GLEAM, 487.0 mm for

NTSG, 302.1 mm for VIC, 505.2 mm for NOAH, and 417.5 mm for TERRACLIMATE

(Figure 4.3(a)). High monthly ET values were observed in hot seasons, while low

monthly ET values were observed in cold seasons. The seasonal pattern of ET

products, except TERRACLIMATE, is generally consistent with each other. Peak

ET values for TERRACLIMATE were recorded in the spring, whereas peak ET for

other products was observed in the summer. Figure 4.3(b) shows the boxplots of the

36



Figure 4.2 : The boxplots of the four BC P products over the Sakarya basin. The
bottom and top edges of each box are the first (Q1) and third (Q3) quartiles,

respectively. The range between the two quartiles is called the interquartile range
(IQR). The horizontal red line in the box indicates the median, and the whiskers

extend to the minimum and maximum range of data not considered outliers. The data
points exceeding Q1-1.5×IQR or Q3+1.5×IQR indicate the outliers, shown by blue

marks.

six ET products over the Sakarya basin. VIC has the lowest median ET with 18.89

mm/month, whereas NTSG has the highest median ET with 36.80 mm/month. The

range of ET is smallest in MODIS, indicating that MODIS has less variability of ET

over the Sakarya basin.

Table 4.1 shows the GTCH-based monthly uncertainties of ET products over the

Sakarya basin. Most products generally perform better in cooler seasons (from

November to February) than in hot seasons (from March to October). This might

be because ET estimations have larger magnitudes in warmer months. Overall, the

monthly uncertainties in ET products vary from 0.89 mm/month to 15.62 mm/month.

The mean monthly ET uncertainties are lowest in LSMs (2.76–3.72 mm/month),

moderate in RS-based products (3.27–4.67 mm/month), and highest in a reanalysis

product (9.28 mm/month). VIC LSM has the lowest mean monthly ET uncertainty

(2.76 mm/month). In contrast, TERRACLIMATE reanalysis product has the highest

mean monthly ET uncertainty (9.28 mm/month).
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Figure 4.3 : (a) Time series of the six ET products during the study period, (b)
Boxplot distributions of the six ET products.

Table 4.1 : The uncertainties of six ET products with the GTCH method.

MODIS GLEAM NTSG VIC NOAH
TERRACLI

MATE
January 1.42 1.71 1.47 1.14 3.41 7.66
February 1.62 2.79 1.33 1.64 3.33 7.87
March 4.98 2.24 2.44 1.28 2.43 5.38
April 2.97 2.32 4.32 3.2 4.87 7.39
May 2.69 5.29 6.33 4.14 4.52 10.67
June 4.51 9.76 7.46 3.75 4 13.56
July 5.79 8.39 6.35 4.98 5.17 6.15

August 2.47 2.14 7.23 2.5 4.59 4.97
September 3.12 3.96 9.09 2.31 2.87 15.62

October 2.09 1.97 3.14 4.8 4.1 13.93
November 4.31 1.37 4.74 2.43 3.92 12.13
December 3.29 1.88 2.18 0.89 1.39 6.07

0 Uncertainty (mm/month) 16

4.1.1.3 Uncertainties in JPL ∆S

Figure 4.4 shows the monthly variations of JPL ∆S and its uncertainties over the

Sakarya basin. The distinct seasonality was observed for JPL ∆S, in which negative

values occurred in summer and positive values occurred in winter. Overall, the monthly

JPL ∆S ranges from -80.98 mm/month to 79.45 mm/month. There is no seasonality
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in product uncertainty, and the level of uncertainty is nearly constant during the study

period. The mean monthly uncertainty was calculated as 26.78 mm/month.

Figure 4.4 : The monthly variations of JPL ∆S and its uncertainties over the Sakarya
basin.

4.1.2 Merging of P and ET estimations

For P, the mean monthly merging weights of BC-CMORPH, BC-TRMM, BC-GPCP,

and BC-PERSIANN are 32%, 31%, 25%, and 12%, respectively (Figure 4.5(a)).

The monthly merging weights of BC-TRMM range from 16% to 59%. BC-TRMM

performed better than the other P products in the summer and spring seasons. The

monthly merging weights of BC-CMORPH range from 15% to 44%, and it has the

best performance in autumn with a mean merging weight of 43%. BC-GPCP has the

highest merging weight in winter (34%). The overall performance of BC-PERSIANN

is worse than other products, indicating that it has a higher deviation from the gauge

data than other P products. The merged P remarkably captures the seasonal cycle of

the gauge observations (Figure 4.6(c)). Compared to RS-based P products, merged P

has the best consistency with the gauge observations, with the lowest RMSE (10.48

mm/month) and the highest CC (0.89).

As described in Section 4.1.2, VIC and TERRACLIMATE are the least and most

uncertain ET products over the Sakarya basin, respectively (Figure 4.5(b)). Therefore,

VIC has the greatest mean monthly merging weight, while TERRACLIMATE has the
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lowest. The mean monthly merging weights of the six ET products, namely MODIS,

GLEAM, NTSG, VIC, NOAH, and TERRACLIMATE, are 20%, 22%, 12%, 29%,

14%, and 3%, respectively. The distinct seasonality was observed for merged ET ,

in which high ET values occurred in summer and low ET values occurred in winter

(Figure 4.6(d)).

Figure 4.5 : Merging weights, assigned to four P and six ET products.

4.1.3 Residual error and CKF

The estimated monthly values of WB components and residual errors for the

unconstrained system are shown in the left column of Figures 4.7-4.8. The

unconstrained WB components are merged P and ET products, JPL ∆S , and gauge Q

data. Q is relatively small compared to other components. The unconstrained system

residual error values vary between -65 and 78 mm/month. These residual error values

were then distributed among WB components based on their relative uncertainties

using CKF. As a result, the “perfect” WB estimates were obtained, zeroing the residual

errors.

The CKF was applied to WB components using two different uncertainty values of Q

(6.2% and 42.8%). The results of the constrained system with a Q uncertainty value

of 6.2% are presented in the right column of Figure 4.7. When CKF estimates are
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Figure 4.6 : The first row (a,b) shows the time series of P and ET products during the
study period. The second row (c,d) shows the merged estimations. Pie charts indicate

the mean merging weights of each product.

compared to unconstrained ones, ∆S is the most altered WB component, as shown in

Figure 4.7(b,d). Although the magnitudes of ∆S changed significantly after CKF, the

seasonal pattern was conserved. The pie chart in Figure 4.7(f) shows that ∆S has the

largest non-closure error attribution with a mean error attribution of 93%, followed by

P (7%). This is mainly caused by the two facts. First, the Sakarya basin is a relatively

small basin that GRACE can not simply resolve. Second, while P, ET , and Q mostly

describe the surface water dynamics, ∆S incudes both the surface water and ground

water. It is well known that surface water and ground water have completely different

dynamic behaviours. The change in surface water is much faster than the change in

groundwater.

The right column of Figure 4.8 shows the results of the constrained system with a Q

uncertainty value of 42.8%. ∆S is again the most altered component of the WB (Figure

4.8 (b,d)). With a mean error attribution of 92% (Figure 4.8(f)), ∆S has the highest

non-closure error attribution, followed by P (7%) and Q (1%). Comparing the two

CKF estimates in Figures 4.7-4.8, it was found that the change in Q uncertainty had

only a negligible impact on results. It can be concluded that the CKF estimates are

insensitive to the different levels of Q uncertainty values.
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Figure 4.7 : The unconstrained (a, c, e) and constrained (b, d, f) systems. The first
two row shows the time series of water budget variables in unconstrained and

constrained systems. The last row indicates the residual error values of the two
systems. Q uncertainty of 6.2% was considered for the constrained system.

Figure 4.8 : The unconstrained (a, c, e) and constrained (b, d, f) systems. The first
two row shows the time series of water budget variables in unconstrained and

constrained systems. The last row indicates the residual errors of the two systems. Q
uncertainty of 42.8% was considered for the constrained system.

We further compared CKF P output (CKF-P) with various P estimates. The CKF-P

output, which is assumed to have 6.2% Q uncertainty, was used for comparison since

the CKF outputs generated using different Q uncertainty values are nearly the same.

Figure 4.9 shows the comparison of monthly CKF-P, the ensemble mean, merged
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P, and the four BC-P products with gauge observations using the Taylor diagram.

Compared to other P estimates, CKF-P is closer to the gauge observations. The

CKF-P output has higher CC and lower root mean square deviation (RMSD) than

other products. The RMSD of CKF-P output is 9.95 mm/month, which is 5.06% lower

than the RMSD of 10.48 mm/month from the merged P, and 29.18% lower than the

RMSD of 14.05 mm/month from the ensemble mean.

Figure 4.9 : The comparison of monthly CKF-P, the ensemble mean, merged P, and
the four BC-P products with gauge observations using the Taylor diagram.

4.2 Second Approach

4.2.1 Fuzzy correction coefficients

The fuzzy correction coefficients obtained from three FLR models with fourteen

different sub-models are given in Tables 4.2-4.3 for the two basins.

For the Sakarya basin, the αP obtained from the Tanaka and Zeng models is sensitive to

changes in the h value and type of cases (Table 4.2). It is seen that αP slightly decreases

with increasing h in both Case-I and Case-II in the Tanaka model. Overall, it is almost

equal to one for all FLR sub-models. This indicates that mean of the five RS-based
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P products accurately estimates P in the Sakarya basin. All the FLR sub-models

calculated αQ as 0.90. 0.90 value depicted that gauge estimations overestimated Q in

the Sakarya basin. The αET and α∆S values were calculated as 0.848 and 0.486 in all

FLR sub-models, respectively. It can be inferred that RS-based ET (mean of the three

ET products) and ∆S products overestimated ET and ∆S, respectively, in the Sakarya

basin. Compared to the α values, c values are more sensitive to different cases and h

values. In terms of spreads, cP has the highest magnitude for most FLR sub-models,

which means P is the most uncertain component among others in the Sakarya basin.

The least uncertain component varies depending on the model type.

For the Cyprus basin, αP was calculated above one in all Tanaka sub-models, while

it was below one in Hojati (except Case-I (h =0.5) and Case-II (h =0.5) sub-models)

and Zeng sub-models (Table 4.3). It was observed that αP decreased with increasing

h in the Tanaka and Hojati models. Moreover, αP of the Hojati model approaches the

αP calculated in the Zeng model (αP=0.958) when h increases. For αQ, two values,

0.750 and 1.250, were obtained in the FLR sub-models. αET was calculated as 0.807

in all FLR sub-models. It indicates that mean of the three RS-based ET products

overestimates ET in the Cyprus basin. The α∆S ranges between 0.604-1.403, and it is

the most sensitive parameter in the Cyprus basin, in terms of centers. Additionally, the

spread of the correction coefficients indicates that ET is the least uncertain component

for the Cyprus basin.

4.2.2 FLR outputs

Tables 4.4-4.6 compare the r̂ values generated from three FLR models with fourteen

different sub-models (for different hvalues) in the Sakarya basin. Compared to the

non-fuzzy model, FLR sub-models provide more accurate results, in terms of MAE and

RMSE. Moreover, the r̂ values obtained from FLR sub-models are in good agreement

with each other. Although the Zeng and Hojati sub-models have a slightly smaller

MAE (27.57 mm) than Tanaka sub-models, Tanaka Case-I (h =0.7) sub-model slightly

outperformed other models, in terms of RMSE (37.63 mm). Since RMSE is highly

sensitive to the outlier values, MAE is better suited for comparison in this study [108].

Therefore, the Zeng and Hojati sub-models were selected as the best model for the
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Table 4.2 : Fuzzy correction coefficients obtained from three FLR models with
fourteen different sub-models in the Sakarya basin.

Model h P Q ET ∆S
αP cP αQ cQ αET cET α∆S c∆S

Tanaka Case-I 0.5 1.034 0.537 0.9 0.1 0.848 0.205 0.486 0.675
0.7 1.022 0.758 0.9 0.1 0.848 0.205 0.486 0.675
0.9 1.009 1.866 0.9 0.1 0.848 0.205 0.486 0.675

Case-II 0.5 1.044 0.672 0.9 0.1 0.848 0.205 0.486 0.675
0.7 1.028 0.894 0.9 0.1 0.848 0.205 0.486 0.675
0.9 1.011 2.002 0.9 0.1 0.848 0.205 0.486 0.675

Hojati Case-I 0.5 1.057 1.504 0.9 1.401 0.848 1.188 0.486 0.675
0.7 1.057 1.363 0.9 1.662 0.848 0.988 0.486 0.675
0.9 1.057 5.425 0.9 1.479 0.848 4.859 0.486 2.927

Case-II 0.5 1.057 1.318 0.9 1.26 0.848 0.876 0.486 0.675
0.7 1.057 1.095 0.9 1.496 0.848 0.594 0.486 0.675
0.9 1.057 4.17 0.9 0.666 0.848 3.642 0.486 2.448

Zeng Case-I 1.057 0.731 0.9 0.706 0.848 0.498 0.486 0.675
Case-II 1.057 0.971 0.9 0.875 0.848 0.594 0.486 0.675

Table 4.3 : Fuzzy correction coefficients obtained from three FLR models with
fourteen different sub-models in the Cyprus basin.

Model h P Q ET ∆S
αP cP αQ cQ αET cET α∆S c∆S

Tanaka Case-I 0.5 1.168 0.952 0.75 0.25 0.807 0.227 1.443 2.316
0.7 1.128 1.529 0.75 0.25 0.807 0.227 0.955 2.316
0.9 1.1 2.885 1.25 0.25 0.807 0.227 0.793 3.71

Case-II 0.5 1.186 1.126 0.75 0.25 0.807 0.227 1.398 2.316
0.7 1.121 1.413 0.75 0.25 0.807 0.227 0.973 2.316
0.9 1.105 3.075 1.25 0.25 0.807 0.227 0.8 3.867

Hojati Case-I 0.5 1.098 2.195 1.25 2.499 0.807 1.614 1.158 2.316
0.7 0.98 3.266 0.75 2.499 0.807 2.689 0.695 2.316
0.9 0.958 4.464 0.75 1.709 0.807 3.945 0.604 2.316

Case-II 0.5 1.099 2.161 1.25 2.512 0.807 1.433 1.144 2.316
0.7 0.985 3.15 0.75 2.545 0.807 2.421 0.713 2.316
0.9 0.958 4.424 0.75 1.66 0.807 3.758 0.604 2.316

Zeng Case-I 0.958 1.122 0.75 4.976 0.807 0.408 0.604 2.316
Case-II 0.958 1.122 0.75 4.976 0.807 0.408 0.604 2.316

Sakarya basin. Given that model evaluation is possible only with gauge observations,

we compared best Fuzzy P (the Zeng and Hojati sub-models) data with gauge P data to

show the reliability of the estimated sub-model. Firstly, the Thiessen polygon method

was applied to annual P measurements of the homogeneously distributed 23 gauge

stations to derive the gauge-based areal mean P in the Sakarya basin. Then, a scatter

plot was used to determine the relationship between Fuzzy P and gauge P (Figure

4.10(left column)). It should be noted that RS P is available for the years 2017 and
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2018, so these years were also included in the evaluation. It is seen that Fuzzy P is in

good agreement with gauge P, in terms of CC=0.921, KGE=0.881, and RMSE=29.52

mm.

Table 4.4 : Comparison of the r̂ values obtained from three FLR models with
fourteen different sub-models in the Sakarya basin (h=0.5).

r̂
Tanaka Hojati ZengYear

r before
FLR model

(mm) Case-I Case-II Case-I Case-II Case-I Case-II
2003 -100.49 -9.7 -5.9 -1.02 -1.02 -1.02 -1.02
2004 -79.7 -37.45 -34.03 -29.63 -29.63 -29.63 -29.63
2005 -140.63 -30.44 -26.29 -20.95 -20.95 -20.96 -20.96
2006 -31.91 15.05 18.92 23.9 23.9 23.9 23.9
2007 -42.34 52.75 56.97 62.39 62.39 62.38 62.38
2008 -77.04 -15.88 -12.52 -8.19 -8.19 -8.2 -8.2
2009 -152.04 -10.76 -6.05 0 0 0 0
2010 29.57 107.06 112.45 119.39 119.39 119.39 119.39
2011 -150.2 -54.38 -50.37 -45.21 -45.21 -45.21 -45.21
2012 -130.38 -21.04 -16.81 -11.36 -11.36 -11.37 -11.37
2013 -10.6 7.73 11.28 15.84 15.84 15.84 15.84
2014 -162.388 -3.14 1.68 7.88 7.88 7.88 7.88
2015 -27.73 29.32 34.5 41.17 41.17 41.16 41.16
2016 -114.03 -20.08 -15.85 -10.42 -10.42 -10.42 -10.42
2019 -39.93 24.77 29.3 35.13 35.13 35.13 35.13
2020 -60.58 -17.15 -13.4 -8.59 -8.59 -8.59 -8.59

Total absolute error (mm) 1346.96 456.69 446.32 441.08 441.08 441.08 441.08
MAE (mm) 84.19 28.54 27.9 27.57 27.57 27.57 27.57

RMSE (mm) 97.85 37.83 38.53 40.08 40.08 40.08 40.08

160 80 0
Absolute error (mm)

For the Cyprus basin, the model outputs are shown in Tables 4.7-4.9. The MAE and

RMSE of the non-fuzzy model are 96.78 mm and 109.23 mm, respectively. There are

significant differences in the values of performance metrics among the various FLR

sub-models, mainly due to the high uncertainty of RS products over the Cyprus basin.

The MAE values range from 83.25 mm to 50.46 mm. The RMSE values range from

118.93 mm to 63.87 mm. Tanaka models have the worst performance, particularly for

small h values. Zeng Case-I, Zeng Case-II, and Hojati (h =0.9) sub-models showed

the best performance, given an MAE of 50.46 mm, and RMSE of 63.87mm. The

CC, KGE, and RMSE of Fuzzy P were calculated as 0.885, 0.810, and 50.17 mm,

respectively (Figure 4.10(right column)). This suggests that the Fuzzy P well captured

the temporal pattern of gauge P in general.
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Table 4.5 : Comparison of the r̂ values obtained from three FLR models with
fourteen different sub-models in the Sakarya basin (h=0.7).

r̂
Tanaka Hojati ZengYear

r before
FLR model

(mm) Case-I Case-II Case-I Case-II Case-I Case-II
2003 -100.49 -14.47 -12.19 -1.02 -1.02 -1.02 -1.02
2004 -79.7 -41.75 -39.7 -29.63 -29.63 -29.63 -29.63
2005 -140.63 -35.66 -33.17 -20.95 -20.95 -20.96 -20.96
2006 -31.91 10.17 12.5 23.9 23.9 23.9 23.9
2007 -42.34 47.45 49.98 62.39 62.39 62.38 62.38
2008 -77.04 -20.11 -18.09 -8.19 -8.19 -8.2 -8.2
2009 -152.04 -16.69 -13.86 0 0 0 0
2010 29.57 100.27 103.51 119.39 119.39 119.39 119.39
2011 -150.2 -59.43 -57.02 -45.21 -45.21 -45.21 -45.21
2012 -130.38 -26.36 -23.82 -11.36 -11.36 -11.37 -11.37
2013 -10.6 3.26 5.39 15.84 15.84 15.84 15.84
2014 -162.388 -9.21 -6.31 7.88 7.88 7.88 7.88
2015 -27.73 22.8 25.91 41.17 41.17 41.16 41.16
2016 -114.03 -25.39 -22.86 -10.42 -10.42 -10.42 -10.42
2019 -39.93 19.06 21.78 35.13 35.13 35.13 35.13
2020 -60.58 -21.85 -19.61 -8.59 -8.59 -8.59 -8.59

Total absolute error (mm) 1346.96 473.95 465.72 441.08 441.08 441.08 441.08
MAE (mm) 84.19 29.62 29.11 27.57 27.57 27.57 27.57

RMSE (mm) 97.85 37.62 37.63 40.08 40.08 40.08 40.08

160 80 0
Absolute error (mm)

Figure 4.10 : Comparison of the best FLR model P against gauge P: (a) Sakarya
basin, (b) Cyprus basin.

4.2.3 Sensitivity analysis

In the second approach, three h-cut values (0.5, 0.7, and 0.9) were considered for

Tanaka and Hojati FLR models to understand the sensitivity of the results to different

h values. In terms of α coefficients (Tables 4.2-4.3), the Tanaka model is more sensitive
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Table 4.6 : Comparison of the r̂ values obtained from three FLR models with
fourteen different sub-models in the Sakarya basin (h=0.9).

r̂
Tanaka Hojati ZengYear

r before
FLR model

(mm) Case-I Case-II Case-I Case-II Case-I Case-II
2003 -100.49 -19.24 -18.48 -1.02 -1.02 -1.02 -1.02
2004 -79.7 -46.05 -45.37 -29.63 -29.63 -29.63 -29.63
2005 -140.63 -40.88 -40.05 -20.95 -20.95 -20.96 -20.96
2006 -31.91 5.3 6.08 23.9 23.9 23.9 23.9
2007 -42.34 42.15 42.99 62.39 62.39 62.38 62.38
2008 -77.04 -24.34 -23.67 -8.19 -8.19 -8.2 -8.2
2009 -152.04 -22.61 -21.67 0 0 0 0
2010 29.57 93.49 94.57 119.39 119.39 119.39 119.39
2011 -150.2 -64.47 -63.67 -45.21 -45.21 -45.21 -45.21
2012 -130.38 -31.68 -30.84 -11.36 -11.36 -11.37 -11.37
2013 -10.6 -1.2 -0.49 15.84 15.84 15.84 15.84
2014 -162.388 -15.27 -14.3 7.88 7.88 7.88 7.88
2015 -27.73 16.29 17.33 41.17 41.17 41.16 41.16
2016 -114.03 -30.7 -29.86 -10.42 -10.42 -10.42 -10.42
2019 -39.93 13.36 14.27 35.13 35.13 35.13 35.13
2020 -60.58 -26.56 -25.81 -8.59 -8.59 -8.59 -8.59

Total absolute error (mm) 1346.96 493.6 489.44 441.08 441.08 441.08 441.08
MAE (mm) 84.19 30.85 30.59 27.57 27.57 27.57 27.57

RMSE (mm) 97.85 38.16 38.02 40.08 40.08 40.08 40.08

160 80 0
Absolute error (mm)

to different h values than the Hojati model in both basins. The result is consistent with

study conducted by [25], which compared Tanaka and Hojati models over Azghand

catchment, Iran. P and ∆S are the most sensitive parameters to different h values in

both basins among the four WB components. This is mainly caused by the higher

uncertainties of these two components (Tables 3.3-3.4). The higher the amount of

uncertainty, the higher the degree of sensitivity. For the Cyprus basin, the fuzzy

correction coefficients are highly sensitive to different h values and cases in Tanaka and

Hojati models. Therefore, the FLR outputs in the Cyprus basin are more unstable than

those in the Sakarya basin (Tables 4.4-4.9). This result is not surprising as the Cyprus

basin is too small for some RS-based products, especially GRACE ∆S, to resolve.

Several studies have shown that GRACE errors are inversely proportional to the size

of the basin [16,51,54]. [16] found that ∆S errors can reach up to 130% in basins with

areas of less than 100,000 km2. In this study, the maximum ∆S error in the Cyprus

basin was calculated as 214.97%.
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Table 4.7 : Comparison of the r̂ values obtained from three FLR models with
fourteen different sub-models in the Cyprus basin (h=0.5).

r̂
Tanaka Hojati ZengYear

r before
FLR model

(mm) Case-I Case-II Case-I Case-II Case-I Case-II
2003 -136.6 9.85 17.61 -19.45 -18.57 -48.27 -48.27
2004 36.86 223.23 227.67 157.27 156.9 80.21 80.21
2005 -137.6 -7.06 -2.24 -32.79 -32.45 -69.44 -69.44
2006 -171.3 -52.92 -46.44 -73.16 -72.33 -88.15 -88.15
2007 -75.2 72.56 79.71 28.61 29.26 -0.01 -0.01
2008 -109.48 6 8.02 -20.49 -20.71 -65.3 -65.3
2009 -109.69 0.88 13.57 -5.66 -3.49 0 0
2010 -103.28 61.57 66.08 0 0 -36.73 -36.73
2011 -24.33 158.26 161.47 106.28 105.75 20.34 20.34
2012 -52.42 87.07 100.25 70.65 72.65 53.54 53.54
2013 -164.6 -27.48 -25.25 -54.95 -55.2 -107.44 -107.44
2014 -31.47 128.31 130.71 84.22 83.67 6.6 6.6
2015 -181.09 -68.71 -58.26 -71.59 -69.83 -73.19 -73.19
2016 -30.89 111.32 114.81 72.35 72.16 12.08 12.08
2019 81.25 292.4 299.16 227.76 227.67 133.28 133.28
2020 -102.41 24.41 33.76 7.35 8.67 -12.85 -12.85

Total absolute error (mm) 1548.48 1332.02 1384.99 1032.58 1029.31 807.42 807.42
MAE (mm) 96.78 83.25 86.56 64.54 64.33 50.46 50.46

RMSE (mm) 109.23 115.9 118.93 87.14 86.98 63.87 63.87

300 150 0
Absolute error (mm)

Table 4.8 : Comparison of the r̂ values obtained from three FLR models with
fourteen different sub-models in the Cyprus basin (h=0.7).

r̂
Tanaka Hojati ZengYear

r before
FLR model

(mm) Case-I Case-II Case-I Case-II Case-I Case-II
2003 -136.6 6.55 3.45 -42.06 -40.84 -48.27 -48.27
2004 36.86 173.9 172.12 95.6 98.63 80.21 80.21
2005 -137.6 -20.46 -22.39 -62.75 -61.43 -69.44 -69.44
2006 -171.3 -49.94 -52.53 -84.4 -83.66 -88.15 -88.15
2007 -75.2 61.31 58.45 7.77 9.3 -0.01 -0.01
2008 -109.48 -19.15 -19.96 -57.62 -56.11 -65.3 -65.3
2009 -109.69 36.17 31.1 0 0 0 0
2010 -103.28 31.76 29.96 -26.16 -24.08 -36.73 -36.73
2011 -24.33 107.69 106.4 35.19 38.11 20.34 20.34
2012 -52.42 109.63 104.36 57.05 57.75 53.54 53.54
2013 -164.6 -55.77 -56.66 -98.83 -97.14 -107.44 -107.44
2014 -31.47 82.44 81.48 19.71 22.29 6.6 6.6
2015 -181.09 -41.26 -45.44 -72.78 -72.71 -73.19 -73.19
2016 -30.89 78.22 76.83 22.76 24.87 12.08 12.08
2019 81.25 242.63 239.92 150.39 153.76 133.28 133.28
2020 -102.41 34.6 30.86 -8.9 -8.13 -12.85 -12.85

Total absolute error (mm) 1548.48 1151.48 1131.91 841.99 848.8 807.42 807.42
MAE (mm) 96.78 71.97 70.74 52.62 53.05 50.46 50.46

RMSE (mm) 109.23 93.89 92.57 65.76 66.29 63.87 63.87

250 125 0
Absolute error (mm)
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Table 4.9 : Comparison of the r̂ values obtained from three FLR models with
fourteen different sub-models in the Cyprus basin (h=0.9).

r̂
Tanaka Hojati ZengYear

r before
FLR model

(mm) Case-I Case-II Case-I Case-II Case-I Case-II
2003 -136.6 -9.92 -8.14 -48.27 -48.27 -48.27 -48.27
2004 36.86 133.59 136.2 80.21 80.21 80.21 80.21
2005 -137.6 -33.84 -32.36 -69.44 -69.44 -69.44 -69.44
2006 -171.3 -61.7 -60.4 -88.15 -88.15 -88.15 -88.15
2007 -75.2 32.35 34.27 -0.01 -0.01 -0.01 -0.01
2008 -109.48 -32.93 -31.65 -65.3 -65.3 -65.3 -65.3
2009 -109.69 34.88 36.43 0 0 0 0
2010 -103.28 -11.58 -9.61 -36.73 -36.73 -36.73 -36.73
2011 -24.33 80.03 82.42 20.34 20.34 20.34 20.34
2012 -52.42 104.11 106.19 53.54 53.54 53.54 53.54
2013 -164.6 -69 -67.57 -107.44 -107.44 -107.44 -107.44
2014 -31.47 59.62 61.67 6.6 6.6 6.6 6.6
2015 -181.09 -39.19 -37.86 -73.19 -73.19 -73.19 -73.19
2016 -30.89 57.21 59.07 12.08 12.08 12.08 12.08
2019 81.25 207.27 210.39 133.28 133.28 133.28 133.28
2020 -102.41 27.53 29.2 -12.85 -12.85 -12.85 -12.85

Total absolute error (mm) 1548.48 994.75 1003.43 807.42 807.42 807.42 807.42
MAE (mm) 96.78 62.17 62.71 50.46 50.46 50.46 50.46

RMSE (mm) 109.23 79.24 80.38 63.87 63.87 63.87 63.87

210 105 0
Absolute error (mm)

4.2.4 The comparison of Fuzzy P with five RS-based products

In both basins, further work has been made to evaluate the precision and accuracy

of the FLR method by comparing Fuzzy P with five RS-based P products. Figure

4.11 shows the time series of six P products, namely GSMaP, IMERG, CMORPH,

PERSIANN, CHIRPS, and Fuzzy P in the Sakarya and Cyprus basins. The temporal

variations of the P products are similar to that of the gauge observations in the two

basins. However, there are significant differences in the magnitudes of annual P

among the six P products. The values of the performance metrics for all the P

products are shown in Table 4.10. PERSIANN performed the worst among the six

products in both basins. Its average PBIAS and RMSE are -44.18% and 189.35 mm,

respectively, indicating significant underestimation of the P in both basins. GSMaP

scores the highest correlation (0.960) in the Sakarya basin, and IMERG scores the

highest correlation (0.956) in the Cyprus basin. In both basins, Fuzzy P has the lowest

RMSE (29.52 mm and 50.17 mm), the largest KGE (0.881 and 0.810), and the lowest
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PBIAS (2.88% and -4.03%) value among the six P products. The results strongly

indicated that Fuzzy P has the best consistency with gauge observations in both basins.

Figure 4.11 : The annual time series of the six P products in the Sakarya and Cyprus
basins.

Table 4.10 : The performance metrics of the six P products in the Sakarya and
Cyprus basins.

Product
Sakarya basin Cyprus basin

CC
RMSE
(mm)

KGE
PBIAS

(%)
CC

RMSE
(mm)

KGE
PBIAS

(%)
GSMaP 0.96 52.75 0.869 11.21 0.635 96.75 0.616 -11.8
IMERG 0.954 145.14 0.708 33.11 0.956 178.92 0.452 48.97

CMORPH 0.762 158.27 0.403 -34.61 0.839 90.86 0.723 -20.07
PERSIANN 0.201 164.86 0.049 -33.17 0.558 213.83 0.161 -55.19

CHIRPS 0.92 84.52 0.815 18.55 0.889 150.62 0.541 39.18

Fuzzy P 0.921 29.52 0.881 2.88 0.885 50.17 0.81 -4.03

4.3 Comparison of the Results from the First and Second Approaches for the

Sakarya Basin

The time series of the fuzzy and CKF derived WB outputs at the annual scale

from 2005 to 2011 over the Sakarya basin are presented in Figure 4.12 (Since CKF

eliminates the r, CKF-derived data is accepted as a reference in calculations). The

P, ET , and Q values of the both approaches showed similar seasonal variation
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with peak and bottom values appeared in nearly the same years. In terms of CC,

RMSE, and bias, fuzzy outputs show closest agreement with CKF outputs for Q

(CC=0.996, RMSE=8.18 mm/year, bias=-7.70 mm/year) , with slightly less agreement

for P (CC=0.984, RMSE=32.23 mm/year, bias=26.69 mm/year) and ET (CC=0.974,

RMSE=13.80 mm/year, bias=-12.52 mm/year), and much less agreement for ∆S

(CC=0.300, RMSE=62.82 mm/year, bias=28.14 mm/year). In terms of PBIAS, ET

(PBIAS=-3.33%) outperforms other WB components followed by P (PBIAS=6.29%),

Q (PBIAS=-10.3%) and ∆S (PBIAS=-109.98%). It is worth noting that although the

bias between the fuzzy and the CKF-derived ∆S is close to that for P (26.69 mm/year

for P and 28.14 mm/year for ∆S), we computed high PBIAS for ∆S as a result of a

low mean ∆S. According to these performance measures, it can be concluded that the

majority of the errors in the second approach are caused by fuzzy ∆S.

Figure 4.12 : The time series of the fuzzy and CKF derived WB outputs at the annual
scale from 2005 to 2011 over the Sakarya basin.
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5. DISCUSSIONS AND RECOMMENDATIONS

This study aims to improve WB estimations in two smaller scale basins using two

different approaches. The first approach enforces the WB components to close the

WB equation. In other words, the r was distributed among the WB components in

accordance with their error variances, and the r was zeroed. On the other hand, there

is no such necessity in the second approach. The main goal of the second approach

is to reduce the magnitude of residual errors on an annual scale by applying fuzzy

correction coefficients to each WB component.

5.1 Comprehensive Evaluation of the Hydrological Data Products

It should be noted that the estimated coefficients are basin-specific as the performance

of products is highly affected by basin characteristics (e.g., slope, elevation, land

cover). For instance, [109] stated that, probably as a result of orographic cloud

dynamics, TRMM tends to underestimate P in mountainous regions. In contrast,

TRMM greatly overestimated gauge P in the Sakarya basin, especially in rainy

seasons. It has the highest bias (25.83 mm/month) and RMSE (39.22 mm/month)

compared to other RS-based products (Figure 4.2). This is mainly because the

TRMM version (TRMM-3B42RT V7) used in this study was not gauge-corrected.

It includes purely RS observations. Despite having the greatest RMSE and bias

levels, TRMM improved the most after bias correction. This is because TRMM

has the best CC (0.69) with gauge observations. The CC is concerned with linear

connections between variables and, the bias correction method used in this study is

also linear. Although TRMM’s general tendency was to overestimate gauge P in rainy

seasons, it underestimated P in summer. The relatively high positive bias in TRMM

estimations during the rainy seasons is compatible with other reports [110,111].

The underestimation of TRMM during the summer season can be attributed to the
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rainfall intensity during the summer months. The rainfall duration is shorter, and the

rainfall intensity is higher in the Sakarya basin during the summer. [112] pointed out

that TRMM can overestimate total P for mild and moderate rainfall intensities and

underestimate for high rainfall intensities.

For both approaches, PERSIANN has the poorest performance among RS products.

The weak performance of PERSIANN might be due to the fact that it primarily uses

infrared (IR) data rather than passive microwave (PMW) data. In general, PMW

has a stronger ability in detecting P than IR data [67,113]. IR technique tries to

estimate P using the temperature and brightness of the cloud top, however complex

mechanisms exist to transform cloud information into P, particularly in places with

dense cloudiness and heavy rainfall [114]. The newer generation P product, GSMaP,

outperformed other RS-based P products in terms of CC, RMSE, KGE, and PBIAS,

especially in the Sakarya basin (Table 4.10). This could be due to its ability to combine

P estimates from multiple satellites, as well as gauge analyses [115,116]. Additionally,

the high spatial resolution of GSMaP may have made it possible to more efficiently

capture the temporal variations of P. The performance of GSMaP in the Cyprus basin

is poorer than in the Sakarya basin. The Sakarya basin has a more complex and

mountainous surface compared to the Cyprus basin. [117] stated that the performance

of GSMaP is comparatively better at higher altitudes due to the inclusion of the terrain

correction algorithm. Similar to TRMM, newer generation P product, IMERG, greatly

overestimated P in both basins. However, it has a very strong linear correlation with

gauge observations, indicating that the IMERG estimations can be better enhanced by

using the linear scaling bias correction method.

For ET , TERRACLIMATE reanalysis product showed the worst performance (Table

4.1) among all ET products which is likely due to the inability of TERRACLIMATE

to represent actual surface vegetation [118]. The accuracy of TERRACLIMATE ET

has not been rigorously verified in global basins. [119] reported that the performance

of TERRACLIMATE ET was inferior to that of other TERRACLIMATE products.

Although both LSM products (VIC and NOAH) and RS products (MODIS, GLEAM,

and NTSG) perform reasonably well in the Sakarya basin, LSM products has generally

lower uncertainty than RS products. The lower uncertainty in LSM ET is most likely
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because LSM ET is constrained by meteorological forcing inputs and soil water budget

balance. On the contrary, without taking into account the soil water budget balance,

the key parameter influencing ET in RS is net radiation. Similar to the GTCH method,

the triple collocation (TC) method is also used to determine the relative uncertainty

of three products when there is no actual observations [120]–[122]. The GTCH

approach allows for simultaneous evaluation of all products, whereas the TC method

only allows for comparison of up to three products. Several studies showed that

the TC method is superior to GTCH method when products include multiplicative

bias [123]–[125]. TC method can also be applied to ET products. However, the

error variances of the products must be uncorrelated in the TC method. As the RS

products generally use similar algorithms, the error variances of these products are

likely correlated. Therefore, users should employ TC method with caution. Using

products with different types of algorithms (one RS, one LSM, one reanalysis) will

produce more reliable results.

It is found that CKF estimates are insensitive to the different levels of Q uncertainty

in the Sakarya basin (Figures 4.7-4.8). In CKF, the redistribution of the WB r among

WB components is proportional to component magnitude. The Q in Sakarya basin is

quite low compared to other WB components (Figure 5.1). Therefore, in basins with

high Q potential, changes in Q uncertainty may impact CKF outcomes.

Figure 5.1 : Comparison of the fluxes of WB components.

The results point out that ∆S is the most uncertain component in the WB equation.

However, this outcome contradicts the other WB studies, which indicate P as the most
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uncertain component [11,12,20]. This is mainly because the previous WB studies were

conducted in large basins where GRACE products can sufficiently capture the basin

geometry. The Sakarya basin, however, is a relatively small basin that GRACE cannot

simply resolve. In light of this information, large errors in ∆S estimations in smaller

basins like Sakarya are unavoidable, as previously reported by [16,53,54]. The planned

high-resolution satellite gravity missions, such as Next Generation Gravity Mission,

may provide improved ∆S estimates in smaller scale basins for future studies.

5.2 Potential causes of large errors in the FLR outputs

Overall, Tanaka sub-models performed the worst among the FLR models. This is

mainly because the Tanaka model forces the h-cut estimated intervals to capture the

h-cut observed intervals (Figure 3.5(a)). Due to this forcing, the Tanaka model is

susceptible to outliers in data. The best fuzzy sub-models reduced the error up to 68%

and 52% in terms of mean absolute error compared to non-fuzzy model in the Sakarya

and Cyprus basins, respectively.

For the Sakarya basin, the highest annual r̂ was observed in 2010 (ranging from 93.49

mm to 119.39 mm in all sub-models). While gauge P was 542.65 mm in 2010, Fuzzy

P was 563.21 mm (Figure 4.11). This indicates that Fuzzy P has a low contribution to

r̂. For the Cyprus basin, the highest annual r̂ was observed in 2019 (compared to the

non-fuzzy model). Gauge P was 527.00 mm in 2019. On the other hand, the Fuzzy P

was 498.46 mm in 2019. This implies that the contribution of Fuzzy P to r̂ was low in

2019.

Interestingly, high r was observed in the years when peak P occurred in both basins.

[25] also found that the largest r̂ occurred in the wettest year. This might be because

the impact of P on ∆S appeared later, as ∆S includes groundwater storage. [3,49] also

stated that there are 2 months lag between P and ∆S.
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6. CONCLUSIONS

WB estimations are essential for determining the amount of water flowing into

and out of a basin. Recently, RS has provided unprecedented estimations with

high spatiotemporal resolution and broad spatial coverage. However, significant

uncertainties are inevitable in RS products due to sampling infrequency, retrieval

algorithm imperfections, orbit shifting, complex topography, and cloud top reflectance.

This study evaluated the potential of the two approaches to minimize r in the WB

equation. In the first approach, we assessed the uncertainty of various P and ET

products using rainfall gauge observations and the GTCH method. Following that, the

P and ET products were merged independently based on their error variances. Finally,

we employed the CKF method to obtain reliable water budget estimations, zeroing the

residual error. The first approach was performed at the Sakarya basin. In the second

approach, two main steps were followed. First, the uncertainty of RS products was

quantified using a percentage error approach. Second, fuzzy correction coefficients

obtained from three FLR models were assigned to each WB component to minimize r.

The main conclusions of this study can be summarized as follows.

First approach:

1. The performance of RS-based P products, except PERSIANN, was significantly

improved after bias removal. Bias removal reduced the RMSE of TRMM up to

64% (39.22 mm/month to 14.05 mm/month). The RMSE of PERSIANN was

calculated as 23.67 mm/month and 24.15 mm/month, respectively, before and after

bias correction.

2. In terms of mean monthly merging weights, CMORPH performed the best among

the four RS-based P products. Since the performance of PERSIANN did not

improve after bias adjustment, it received the lowest weight.
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3. The uncertainties from the GTCH method show that VIC ET has the lowest

uncertainty (2.76mm/month) compared to other ET products. On the other hand,

TERRACLIMATE ET has the highest uncertainty (9.28 mm/month), which may be

caused by the inability of TERRACLIMATE to represent actual surface vegetation.

4. The results show that CKF estimates are insensitive to the different levels of

Q uncertainty values. Compared to other WB components, ∆S has the highest

non-closure error attribution. This is mainly caused by the fact that GRACE

estimations are likely to have high inaccuracies in small basins due to coarse spatial

resolution.

5. For the validation of CKF-P, the Taylor diagram was analyzed. It was found

that CKF-P is closer to the gauge observations than other products, indicating that

CKF-P is the most reliable product among the seven P products.

Second approach:

1. All sub-models impressively reduced the errors in the Sakarya basin, but the Zeng

and Hojati sub-models performed better than the Tanaka sub-models. The annual

MAE and RMSE were reduced from 84.19 mm and 97.85 mm from the non-fuzzy

model to 27.57 mm and 39.82 mm with the Zeng Case-I sub-model.

2. Fuzzy correction coefficients calculated for each WB component in the Sakarya

basin showed that mean of the five RS-based P products accurately estimated P.

On the other hand, Q, ET , and ∆S are overestimated.

3. Tanaka and Hojati models are sensitive to different h values in the Cyprus basin.

The error metrics of these models decrease with increasing h value. Zeng Case-I,

Zeng Case-II, and Hojati (h =0.9) sub-models performed the best, in terms of MAE

and RMSE.

4. Fuzzy correction coefficients calculated for the Cyprus basin vary significantly

among the different sub-models. This is due to the fact that the Cyprus basin is

too small for some low-resolution RS-based products to resolve.
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5. Fuzzy P outperforms other P products in both basins, in terms of RMSE, KGE, and

PBIAS.

The P, ET , and Q values of the both approaches are in agreement with each other.

In terms of CC, RMSE, and bias, fuzzy outputs show closest agreement with CKF

outputs for Q, with slightly less agreement for P and ET , and much less agreement for

∆S. Therefore, it can be said that ∆S has made the largest contribution to the errors in

the fuzzy approach.

In summary, the outcomes of this study suggest that two approaches can be applied

to hydrological RS products for obtaining improved estimations of WB components,

especially in small and ungauged basins. It should be noted that the error covariances

of the P products are assumed to be zero in this study. However, error covariances

might exist as products often use similar techniques like the same radiative transfer

model or retrieval algorithms. If such complex error knowledge is provided, this

prior information can also be considered in the P merging process. The planned

high-resolution satellite gravity missions, such as Next Generation Gravity Mission,

may provide improved S estimates in small basins for future studies. In regions with

data scarcity, P products can also be integrated with the GTCH method as an alternative

solution to replace observed rainfall data.
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APPENDIX A : Datasets

Appendix A.1. Precipitation

Appendix A.1.1. PERSIANN

PERSIANN was developed by the University of California. It uses infrared (IR)
brightness temperature estimates from global geostationary satellites as the primary
source of P. These estimates are then calibrated against low-orbit satellites using
an artificial neural network [75]. PERSIANN provides monthly P at a spatial
resolution of 0.25° with a quasi-global overage of 60°S-60°N. The data is available
at https://chrsdata.eng.uci.edu/.

Appendix A.1.2. CMORPH

CMORPH, developed by the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC), uses microwave (MW) data from low orbit
satellites to derive P [76]. Then, it merges the retrieval accuracy of MW data with
IR data which presents higher temporal resolution. We used monthly CMORPH V1
estimates with a spatial resolution of 0.5°. The data can be downloaded from the
website https://climexp.knmi.nl/select.cgi?field=cmorph_monthly.

Appendix A.1.3. TRMM

TRMM, launched in 1997, was initially designed to monitor tropical and subtropical
rainfall [77]. The TRMM dataset was created by blending the passive MW data from
low earth orbit satellites with IR data collected by geostationary satellites. TRMM
provides estimations with a high temporal resolution, including three hourly, daily,
and monthly. In this study, TRMM-3B42RT V7 was used, with a spatial resolution of
0.25° at monthly time scale. It is available at https://giovanni.gsfc.nasa.gov.

Appendix A.1.4. GPCP

GPCP, a global dataset with a spatial resolution of 0.5° and monthly temporal
resolution, consists of three inputs: MW, IR, and in-situ observations [78]. GPCP
V3 was selected for this study. The dataset is freely available on the website
https://disc.gsfc.nasa.gov/.

Appendix A.1.5. CHIRPS

CHIRPS product was initially created by the United States Geological Survey (USGS)
and Climate Hazards Group (CHG) for trend analysis and drought monitoring with
a quasi-global coverage (50°S-50°N, 180°E-180°W). CHIRPS combines P data
estimates from high-resolution infrared cold cloud duration (CCD) calibrated using
TRMM and in-situ observations [89]. 0.05° annual CHIRPS V2.0 estimates were
chosen for this study, downloaded from the University of California, Santa Barbara
(USA) website https://www.chc.ucsb.edu/data/chirps.
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Appendix A.1.6. GSMaP

GSMaP, developed by the Japan Science and Technology Agency, is a quasi-global
(60°S-60°N, 180°E-180°W) P dataset with a spatial resolution of 0.1° [90]. GSMaP
dataset was generated blending passive microwave (PMW) retrievals from low-Earth
orbit satellite with infrared IR retrievals from geostationary-Earth orbit satellite.
GSMaP data is available from 2000 to the near-present, and monthly estimations were
acquired through the website ftp://rainmap:Niskur+1404@hokusai.eorc.jaxa.jp/.

Appendix A.1.7. IMERG

As the successor of the TRMM, Global Precipitation Measurement (GPM) mission
was launched in 2014 [91]. The GPM has some significant improvements over
TRMM. First, GPM has wider spatial coverage from 65°S to 65°N, whereas TRMM
has coverage from 50°S to 50°N. Second, GPM can detect light and solid P
more accurately with the help of high-frequency PMW sensors. The Integrated
Multi-satellitE Retrievals for GPM (IMERG) V06, one of GPM’s products, which
has 0.1° spatial resolution and monthly temporal resolution, were used in this study.
IMERG V06 data can be downloaded from the website https://disc.gsfc.nasa.gov/.

Appendix A.2. Evapotranspiration

Appendix A.2.1. MODIS

MODIS is based on the Penman-Monteith (PM) equation. The PM algorithm
calculates the daily sum of evaporation from the wet soil and canopy surfaces,
along with vegetation transpiration, to provide 8-day, monthly and annual solutions
[79]. Monthly MODIS MOD16 estimations with a spatial resolution of 0.05°
were used in this study. The data can be downloaded from the website
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php.

Appendix A.2.2. GLEAM

GLEAM is based on the Priestly-Taylor (PT) equation. GLEAM differentiates
the terrestrial components of ET into the soil and open-water evaporation, snow
sublimation, canopy transpiration, and interception losses [80]. All components,
except interception losses, are calculated using the PT equation. Interception losses
are computed using Gash analytical model. A monthly GLEAM V5.a dataset with
a spatial resolution of 0.25° was used in this study. The product is available at
https://www.gleam.eu/.

Appendix A.2.3. NTSG

NTSG combines both PM and PT approaches [81]. Soil evaporation and canopy
transpiration is calculated using the PM algorithm. The stomatal conductance
required for the PM equation is derived from the satellite-based normalized
difference vegetation index (NDVI). On the other hand, open-water evaporation
is quantified using the PT equation. NTSG product provides monthly ET
solutions with a spatial resolution of 8 km. The data was obtained from the
https://www.ntsg.umt.edu/project/global-et.php.
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Appendix A.2.4. NOAH

NOAH simulates ET using a PM approach by forcing with the Global Land Data
Assimilation System (GLDAS) [82]. GLDAS NOAH V2.1 with a spatial resolution of
0.25° and temporal resolution of monthly was used in this study. The data was obtained
from the https://disc.sci.gsfc.nasa.gov/.

Appendix A.2.5. VIC

GLDAS VIC was simulated using the VIC LSM. VIC is a semi-distributed,
physically-based, macro-scale LSM that solves water and surface energy balances
to estimate the ET [83]. GLDAS VIC provides global ET on 3-hour and monthly
temporal scales. GLDAS VIC V2.1 was used in this study. The spatial and temporal
resolution of the dataset is 1° and monthly, respectively, and available on the website
https://disc.sci.gsfc.nasa.gov/.

Appendix A.2.6. TERRACLIMATE

TERRACLIMATE utilizes the Thornthwaite-Mather climatic water-balance model to
estimate monthly ET from 1958-2015 [84]. It makes the assumption that there is a
reference grass surface everywhere across the earth. TERRACLIMATE provides the
global ET at 0.05° spatial resolution and monthly temporal resolution. The data is
available at https://earlywarning.usgs.gov/fews/product/460.

Appendix A.3. Terrestrial water storage change

Appendix A.3.1. JPL MASCON

Since the launch of the mission in March 2002, GRACE data have been widely
used to estimate monthly global ∆S, including groundwater, soil moisture content,
surface water, and ice, by monitoring the distance between twin satellites. GRACE
data mainly consist of two solutions obtained from three research centers (Jet
Propulsion Laboratory (JPL), Center for Space Research at University of Texas (CSR),
Geoforschungs Zentrum Potsdam (GFZ)): spherical harmonics (SH) and MASCON.
The SH solutions, which were the backbone of the GRACE observations during the
first decade of the GRACE mission, utilize global spherical harmonics to map Earth’s
gravity field. The MASCON solutions are more recent form of GRACE produced
by using regional MASCON functions [85,126]. The key advantages to MASCON
solutions over SH solutions are that MASCON solutions have lower leakage errors,
and they need fewer post-processing filters. In addition, they provide better spatial
resolution images compared to SH solutions. GRACE data has been missing for some
months due to battery issues, and its mission was completed in June 2017. After the
great success of the GRACE mission, GRACE Follow-On (GRACE-FO) has been in
operation since May 2018. In this study, monthly JPL MASCON RL06_v02 solutions
downloaded from https://grace.jpl.nasa.gov, with a spatial resolution of 0.5°×0.5°,
were used.
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APPENDIX B : Monthly and annual time series of WB components averaged over
the Sakarya and Cyprus basins

Figure B.1 : Monthly PERSIANN P time series over the Sakarya and Cyprus basins.

Figure B.2 : Monthly CMORPH P time series over the Sakarya and Cyprus basins.
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Figure B.3 : Monthly GSMaP P time series over the Sakarya and Cyprus basins.

Figure B.4 : Monthly IMERG P time series over the Sakarya and Cyprus basins.

Figure B.5 : Annual CHIRPS P time series over the Sakarya and Cyprus basins.
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Figure B.6 : Monthly NOAH ET time series over the Sakarya and Cyprus basins.

Figure B.7 : Annual GLEAM ET time series over the Sakarya and Cyprus basins.

Figure B.8 : Annual MODIS ET time series over the Sakarya and Cyprus basins.
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Figure B.9 : Monthly JPL MASCON ∆S time series over the Sakarya basin.

Figure B.10 : Monthly JPL MASCON ∆S time series over the Cyprus basin.

Figure B.11 : Annual Q time series over the Sakarya and Cyprus basins.
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