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FAST FACE DETECTION AND RECOGNITION
ON GRAPHICS PROCESSING UNITS

SUMMARY

Real-time face detection and recognition have been very active topics of research in the
last decade. The main reason of this interest on these subjects is the number of their
possible real-world applications both in commercial and non-commercial systems.
Most of the complicated real-world applications like virtual reality, traffic and urban
surveillance, video conferencing, robotics and entertainment systems make use of
these algorithms at some point. Nearly all of these applications require the system
to be able to run on real-time video streams. Therefore for these kind of applications,
the speed of the algorithms used in the system is as important as the accuracy.

In the last decade, researchers have found faster and better face detection and
recognition algorithms suitable for real-world applications. Even though these
algorithms are fast, they are still not fast enough to run in real time in some cases.
For example, even the fastest face detection algorithms developed to date are not fast
enough to run in real-time on video streams having a high resolution as 1280 × 720
or above, which have become increasingly common, unless all processing power is
dedicated for that task. For a system involving additional algorithms, like facial
feature detection, face alignment and face recognition, it is not possible to dedicate
all processing power to the face detection task. Therefore, in order to make these
algorithms run on such high resolution video streams in real-time, one has to either
sacrifice accuracy or use very application specific cues to limit the processing required,
which will in turn limit the generalization ability of the system in question. While the
same problem exists for the face recognition algorithms, the main problem for them is
the number of people in the database and not the resolution. Even though some face
recognition algorithms can run in real-time on relatively small database sizes, they
are not able to do so on larger databases required by some real-world applications.
Speed is a problem not only for applications that process video streams, but also for
the ones that process still images. If the number of images that need to be processed is
very high, the time needed to complete the processing can quickly become impractical,
regardless of the resolution of images.

Considerable amount of effort has been made to speed up core face detection
and recognition algorithms by eliminating or modifying some of their steps, but
algorithmic modifications by themselves are proven to be insufficient to achieve the
drastic speed improvements required.

Another approach to accelerate face detection and recognition algorithms is modifying
their structure and developing parallelized versions of them. This can be done either
on a CPU (Central Processing Unit) by taking advantage of its multiple cores and/or
hyper-threading capability if exists, or on a GPU (Graphics Processing Unit) by
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using one of the GPGPU (General-Purpose Computing on Graphics Processing Units)
frameworks available. Even though it is much easier to develop the parallelized version
of an algorithm on a CPU, putting more effort in development and implementing it on
a GPU has very important advantages that make up for the additional effort required.

The most important property of a GPU is its ability to execute hundreds of threads
concurrently and perform all the scheduling purely on hardware, in contrast to the
CPUs that require software scheduling. GPU hardware is optimized for performing
computer graphics computations and have excellent floating point performance. A
modern GPU, for example a GTX 580, can reach very high computing rates up to
1581 GFLOPS. These properties make GPUs very suitable for demanding image
processing, computer vision and pattern recognition algorithms. Also by offloading
some compute intensive, parallelizable tasks to GPU, it becomes possible to use
the CPU cores for other non-parallelizable tasks that involve less computation and
more logic, leading to much more efficient usage of the hardware that already exist
in a computer and hence to drastic speed improvements. This approach, which is
called heterogeneous computing, is not only a very cost-effective way to implement
computationally demanding high-performance algorithms, but also the best way to
make these algorithms accessible to common users.

The purpose of this thesis is to present efficient, massively parallel GPU
implementations of two different algorithms: A boosting based face detection
algorithm that utilizes MCT (Modified Census Transform) based weak classifiers, and
a feature based face recognition algorithm that uses weighted regional histograms of
LBPs (Local Binary Patterns) as features. All steps of these algorithms are parallelized
in a GPU firendly manner and efficient GPU implementations of them are given
using the CUDA (Compute Unified Device Architecture) platform of NVIDIA. Some
alternative methods for parallelization on the GPU and the problems with them are also
discussed. The GPU implementations are further extended to utilize multiple GPUs.

For the sake of comparison, single and multi-threaded CPU implementations of
the same algorithms are developed and compared with their corresponding GPU
implementations both in terms of speed and accuracy. These comparisons showed that
the GPU implementations, while generating the exact same results, run much faster
than the CPU implementations, proving that a GPU is more suitable for executing
these algorithms than a CPU.

For the face detection algorithm, comparisons are made both on video streams having
5 different input resolutions and on still images from the MIT+CMU frontal face
detection test set. The implementations of the face recognition algorithm are compared
for different feature vector lengths and database sizes using the images from the
FERET database generated by the CSU Face Identification Evaluation System. It is
observed that the difference between the speed of the GPU and CPU implementations
increases as the resolution gets higher, feature vectors get longer or database size gets
larger. In other words, the advantage of using GPUs became more apparent as the
amount of data processed by the application got larger.
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GRAFİK İŞLEMCİLER ÜZERİNDE
HIZLI YÜZ SAPTAMA VE TANIMA

ÖZET

Gerçek zamanda yüz saptama ve tanıma, son yıllarda üzerinde en çok çalışılan
konular arasındadır. Konulara karşı olan bu ilginin sebebi gerek ticari alanda, gerek
ticari olmayan alandaki uygulamalarının fazlalığıdır. Sanal gerçeklik, trafik-yol
gözlem ve güvenlik, görüntülü konferans, robotik ve eğlence sistemleri gibi bir çok
uygulama da belli bir bölümlerinde yüz saptama ve/veya saptama algoritmalarından
yararlanmaktadır. Bu örnek uygulamlardan büyük çoğunluğunun sabit bir resimden
çok, hareketli bir video görüntüsü üzerinde gerçek zamanlı olarak çalışması
gerekmektedir. Bu da söz konusu olan bu algoritmalar için hızın da en az başarım
kadar önemli olduğu anlamına gelmektedir.

Son yıllarda araştırmacılar, uygulama geliştiricilerinin gerçek hayattaki bir problemi
çözmek amacıyla kullanabilmeleri için daha hızlı ve daha yüksek başarımlı yüz
saptama ve tanıma algoritmaları geliştirmişlerdir. Bu algoritmalar her ne kadar
hızlılarsa da, bazı durumlarda gerçek zamanlı çalışamamaktadırlar. Örneğin yüz
saptama algoritmaları günümüzde ucuzlaşan hızlı donanım fiyatlarının da etkisiyle
kullanımı sıradan bilgisayar kullanıcıları arasında bile fazlasıyla yaygınlaşmış olan
1280 × 720 ve 1920 × 1080 gibi yüksek çözünürlüklerde ancak çok hızlı bir
işlemcinin tüm işlem hesaplama gücü bu işlem için ayrılırsa gerçek zamanlı olarak
çalışabilmektedir. Eğer birden fazla algoritmanın bir arada kullanılmasını gerektiren,
örneğin yüz saptamaya ek olarak yüzdeki nitelikleri saptama, hizalama ve yüz tanıma
gibi birden fazla algoritmayı içeren bir sistem söz konusu olduğunda, işlemcinin
tüm hesaplama gücünün yüz saptama işlemi için ayrılması söz konusu değildir.
Böyle durumlarda gerçek zamanlı çalışma elde edebilmek için ya başarımdan feragat
edilmesi, ya da sistemin genelleştirilme kabiliyetini kısıtlayacak uygulamaya yönelik
ip uçlarının kullanılması gerekmektedir. Yüz tanıma algoritmaları için en büyük
problem ise veritabanındaki kişi sayısıdır. Günümüzde kullanılan bazı yüz tanıma
algoritmaları her ne kadar az sayıda kişi içerden veri tabanlarında gerçek zamanda
çalışabileseler de, gerçek hayattaki uygulamaların bazılarının gerektirdiği çok sayıda
kişi içeren büyük veritabanları üzerinde gerçek zamanlı olarak çalışamamaktadırlar.

Yüz saptama ve tanıma algoritmaları için hız, sadece canlı görüntüler ya da videolar
üzerinde gerçek-zamanlı çalışması gereken sistemler için değil, sabit görüntüler
üzerinde çalışan uygulamalar için de sorun olabilmektedir. Örneğin çok sayıda
yüksek çözünürlüklü görüntünün işlenmesini gerektiren bir uygulamada, işlemin
saatler, hatta günler sürmesi bile söz konusudur. Böyle durumlarda algoritmaların
hızlarının olabildiğince yüksek olması, uygulamanın pratikte kullanılabilirliği
açısından çok büyük önem taşımaktadır. Bugüne kadar yüz saptama ve tanıma
algoritmalarını hızlandırabilmek için önemli miktarda çaba sarfedilmiş olsa da,
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algoritmik değişikliklerin tek başına önemli miktarda hızlanmayı sağlayabilmek için
yeterli olmadığı görülmüştür.

Yüz saptama ve tanıma algoritmalarını hızlandırmak için başka bir yöntem de
algoritmaların yapısını değiştirerek paralelleştirmektir. Bu, varsa çekirdekleri/çoklu
iplik desteği kullanılarak bir MİB (Merkezi işlem birimi) üzerinde yapılabileceği gibi,
mevcut olan GAGİB (Grafik işlem birimleri üzerinde genel amaçlı işlem) platformları
yardımıyla bir GİB (Grafik işlem birimi) üzerinde yapılabilir.

Günümüzde işlem yükü fazla olan bir çok uygulama, çok çekirdekli MİB’ler üzerinde
tüm çekirdekleri birden kullanacak şekilde yazılmaktadır. Ancak MİB ile birlikte
GİB kullanan uygulamaların sayısı ise çok azdır. Bunun sebebi MİB üzerinde, çok
iplikli uygulama geliştirmenin, GİB üzerinde uygulama geliştirmeye kıyasla çok daha
kolay olmasıdır. Her ne kadar bir algoritmanın paralelleştirilmiş halini MİB üzerinde
geliştirmek çok daha kolay olsa da, daha fazla çaba harcayıp algoritmayı GİB üzerinde
çalışacak şekilde yazmanın harcanan fazladan vakti fazlasıyla karşılayacak kadar
avantajı vardır.

Bir GİB’in en önemli özelliği aynı anda yüzlerce ipliği paralel olarak çalıştırabilmesi
ve MİB’nin aksine tüm zamanlama işlemlerini donanımsal olarak yapmasıdır. Bu
özelliği bir GİB içerisinde iplik yaratma, silme, başlatma ve durdurma gibi işlemlerin
görmezden gelinebilecek kadar kısa sürelerde yapılabilmesini sağlamaktadır. GİB
mimarisi bilgisayarla grafik işlemleri yapmak üzere tasarlanmıştır ve bu yüzden kayar
noktalı sayılarla işlem performansı çok yüksektir. Modern bir GİB, örneğin bir GTX
580, 1581 GFLOPS gibi yüksek işlem hızlarına ulaşabilmektedir. Bu işlem kapasitesi,
her yeni nesilde önemli miktarda yükselmektedir. Bunlara ek olarak, görüntüler
üzerinde lineer interpolasyon ve adres sınırlama gibi bazı işlemleri yapabilmek için
adanmış donanımlara sahip olmaları, görüntü yeniden boyutlandırma gibi işlemlerle
bazı ikili işlemleri çok hızlı bir şekilde yapabilmelerini sağlamaktadır.

Bu özellikleri GİB’leri işlem yükü ağır olan görüntü işleme, bilgisayarla görü ve
örüntü tanıma algoritmaları için çok uygun hale getirmektedir. Ayrıca matematiksel
işlem ağırlıklı, paralelleştirilebilir olan işlemleri GİB’e yüklemek, MİB’i diğer, daha
az matematiksel, daha çok mantıksal işlem ve bellek erişimi gerektiren, seri olarak
yapılması gereken işlemler için kullanmaya olanak vermektedir. Bu şekilde hem MİB
hem de GİB’e kendilerine en uygun olan tipte işlemlerin yaptırılmasıyla, bilgisayar
içerisinde bulunmakta olan donanımlar daha verimli şekilde kullanılmakta ve çok
büyük performans artışları elde edilmektedir. Modern GİB’lerin de günümüzde çoğu
bilgisayarda bulunduğu göz önüne alınırsa, bu yöntemle MİB’lerde çalışması çok uzun
süren bazı uygulamalar sıradan kullanıcılar için de bilgisayardaki tüm işlem gücünün
kullanılması sayesinde kullanılabilir hale gelmektedir.

Bu tezin amacı iki farklı algoritmanın verimli ve yoğun bir şekilde paralelleştirerek
bir GİB mimarisi üzerinde çalışacak şekilde nasıl gerçeklenebileceğini göstermektir.
Ele alınan algoritmalardan ilki MCT (Değiştirilmiş Census Dönüşümü) temelli zayıf
sınıflandırıcılar kullanan iteleme temelli bir yüz saptama algoritmasıdır. Diğeri ise
bölgesel YİD (Yerel İkili Desenler) niteliklerinin ağırlıklandırılmış histogramlarını
kullanan nitelik temelli bir yüz tanıma algoritmasıdır. Her iki algoritmanın da
tüm adımları bir GİB’in mimarisine ve bu mimarinin dayattığı kurallara uygun
şekilde paralleleştirilmiş ve NVIDIA tarafından geliştirilmiş olan CUDA (Compute
Unified Device Architecture) platformu kullanılarak GİB üzerinde gerçeklenmiştir.

xx



Parallelleştirme için alternatif yöntemler üzerinde de durulmuş ve bu yöntemlerdeki
problemlerden bahsedilmiştir. Gerçeklenmiş olan uygulamalar daha da geliştirilmiş ve
sistem üzerinde birden fazla GİB kullanacak hale getirilmiştir.

Karşılaştırma amacıyla algoritmaların tek ve çok iplikli halleri MİB üzerinde de
gerçeklenmiş ve elde edilen sonuçlar ilgili GİB sonuçlarıyla hem başarım hem de hız
açısından karşılaştırılmıştır. Yapılan bu karşılaştırmalar, algoritmaların GİB üzerinde
çalışan sürümlerinin, MİB üzerinde çalışan sürümleriyle aynı sonuçları ürettiklerini
ancak çok daha hızlı olduklarını göstermiştir. Bu da söz konusu olan algoritmalar için
GİB kullanmanın MİB kullanmaktan daha mantıklı olduğunu kanıtlar niteliktedir.

Yüz saptama algoritması için karşılaştırmalar hem 5 farklı çözünürlükteki video
görüntüleri üzerinde, hem de CMU+MIT önden yüz saptama test veritabanındaki sabit
resimler üzerinde yapılmıştır. Yüz tanıma algoritmasının MİB ve GİB versiyonları
arasındaki karşılaştırma da farklı nitelik vektörü uzunlukları ve veritabanı boyutları
için "CSU Face Identification Evaluation System" tarafından FERET veritabanındaki
resimlerden oluşturulmuş olan görüntüler üzerinde yapılmıştır. GİB ve MİB arasındaki
hız farkının, çözünürlük yükseldikçe, nitelik vektörleri uzadıkça ve veritabanı
büyüdükçe arttığı gözlemlenmiştir. Diğer bir deyişle, GİB kullanmanın avantajının
işlenen veri miktarı büyüdükçe daha belirginleştiği görülmüştür. GİB’lerin aynı anda
çok büyük miktarda veri üzerinde aynı işlemi yapmak üzere tasarlanmış donanımlar
olduğu göz önüne alındığında, bu zaten beklenen bir sonuçtur.
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1. INTRODUCTION

Real-time face detection and recognition have been very active topics of research in the

last few years. The main reason of this interest on these subjects is the number of their

possible real-world applications both in commercial and non-commercial systems.

Most of the complicated real-world applications like virtual reality, traffic and urban

surveillance, video conferencing, robotics and entertainment systems make use of

these algorithms at some point. Nearly all of these applications require the system

to be able to run on real-time video streams. Therefore for these kind of applications,

the speed of the algorithms used in the system is as important as the accuracy.

In the last decade, researchers have found faster and better face detection and

recognition algorithms that are suitable for practical real-world applications. Even

though these algorithms are fast, they are not fast enough to run in real time in some

cases. For example, even the fastest face detection algorithms developed to date are not

fast enough to run in real-time on video streams having a high resolution as 1280×720

or above, which have become increasingly common, unless the whole processing

power is dedicated for that task. To use these algorithms on such high resolution video

streams in real-time, one either has to sacrifice accuracy or use very application specific

cues to limit the processing required, which in turn limits the generalization ability of

the system in question. For the face recognition algorithms, the main problem is the

number of persons in the database. Even though some face recognition algorithms can

run in real-time on relatively small database sizes, they are not able to do so on larger

databases required by some real-world applications. Speed is a problem not only for

applications that process video streams, but also for the ones that process still images.

If the number of images that need to be processed is very high, the time needed to

complete the processing can quickly become impractical, regardless of the resolution

of images.
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Considerable amount of effort has been made to speed up core face detection and

recognition algorithms, but algorithmic modifications by themselves are proven to be

insufficient to achieve the drastic speed improvements required.

Another approach to accelerate face detection and recognition algorithms is modifying

their structure and developing parallelized versions of them. This can be done either

on a CPU (Central Processing Unit) by taking advantage of its multiple cores and/or

hyper-threading capability if exists, or on a GPU (Graphics Processing Unit) by

using one of the GPGPU (General-Purpose Computing on Graphics Processing Units)

frameworks available.

Even though it is much easier to develop the parallelized version of an algorithm on

a CPU, putting more effort in development and implementing it on a GPU has very

important advantages that make up for the additional time required for implementation.

The most important property of a GPU is its ability to execute hundreds of threads

concurrently and perform all the scheduling purely on hardware, in contrast to the

CPUs that require software scheduling. GPU hardware is optimized for performing

computer graphics computations and have excellent floating point performance. A

modern GPU, for example a GTX 580, can reach very high computing rates up to

1581 GFLOPS. These properties make GPUs very suitable especially for demanding

image processing, computer vision and pattern recognition algorithms. Also by

offloading some compute intensive, parallelizable tasks to GPU, it becomes possible

to use the CPU cores for other non-parallelizable tasks that involve less computation

and more logic, leading to much more efficient usage of the hardware that already

exist in a computer and hence to drastic speed improvements. This not only makes

heterogeneous computing a very cost-effective way to implement computationally

demanding high-performance algorithms, but also makes it the best way to make these

algorithms accessible to common users.

In the scope of this thesis, efficient, massively parallel GPU implementations for two

different algorithms are developed. First one of these algorithms is a boosting [2]

based object detection algorithm that uses MCT (Modified Census Transform) [1]

based weak classifiers. The reasons for using MCT based weak classifiers rather then

Haar based ones are their superior distinguishing ability, structure suitable for GPU

implementation and robustness to illumination variations. A cascade consisting of
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these weak classifiers is also significantly faster to compute than the cascade in [3]

because it has very small number of stages and MCT based weak classifiers are

much easier to evaluate than Haar based ones. The other algorithm for which a

GPU implementation is developed is a feature based face recognition algorithm [4]

that uses weighted regional histograms of LBPs (Local Binary Patterns) as features.

All steps of these algorithms are parallelized in a GPU firendly manner and efficient

GPU implementations of them are given using the CUDA (Compute Unified Device

Architecture) platform of NVIDIA. Some alternative methods for parallelization on

the GPU are also discussed and the problems with them are explained. The GPU

implementations are further extended to utilize multiple GPUs.

1.1 Literature Review

In this section, most important developments about face detection and recognition

algorithms in the last several years are covered separately, with a focus on attempts

to accelerate the algorithms. GPU implementations proposed prior to this work are

also mentioned.

1.1.1 Face detection

Earlier face detection methods that have good accuracy include [5], [6] and [7]. Even

though these methods had good accuracy, they were too slow to be used in a real time

application. Hence the researchers continued to look for faster face detection methods.

The first face detector that has both good detection speed and high accuracy at the

same time has been proposed by Viola and Jones [3]. In this method, faces are

detected using a cascade of classifiers. Each classifier in the cascade contains a set of

Haar-like features that can be computed very efficiently using an intermediate image

representation called integral image. The stages of the cascade are trained using a

high number of positive and negative samples. Since the development of [3], various

methods based on the same approach have been proposed that use either different

features, different boosting algorithms or different detector structures.

The first example of the methods using different features is given in [8], in which

the authors extended the original Haar-like feature set in [3] to include 45◦ rotated
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rectangular features and center-surround features. These features are computed

efficiently using a rotated summed area table. An implementation of this algorithm can

be found in the OpenCV [9] library. Li et al. [8] pointed out that the Haar-like feature

set in [3] is limited for multi-view face detection and introduced another set of features

that allows more flexible combination of rectangular regions. Viola and Jones [10]

proposed the addition of diagonal features to the feature set. Another feature set for

multi-view detection called sparse granular features is introduced by [11]. In their

work, each feature contains various number of rectangles (granules) having different

sizes and locations. They used heuristic search to select features from an overcomplete

set. Maximum number of granules a feature can have is limited to 8. Mita et al. [12]

proposed the usage of joint Haar-like features, which utilize the co-occurences of

Haar-like features rather than the features themselves. In [13], a new type of feature

called Local Rank Patterns is introduced. Another set of features called LAB (Locally

Assembled Binary) features are proposed in [14].

The original Haar-like features required each window to be normalized for reducing

the illumination sensitivity of the proposed method, but normalization alone is

not sufficient for handling even moderate illumination variations. To make the

method more robust to illumination variations, [1] proposed the usage of MCT

(Modified Census Transform) based features. MCT involves comparing the pixels

in a neighbourhood with their mean and obtaining a binary number, which is then

used as an index number representing the structure of the neighbourhood. Learning

is performed by examining te distributions of the index numbers on a high number of

sample face and non-face images. A similar operator to MCT is the LBP (Local Binary

Patterns), which is also used for face detection in [15] and [16] under a Bayesian and

boosting framework, respectively.

Viola and Jones [3] used the Adaboost [2] algorithm to learn cascaded face detectors.

Some of the follow-up works aimed to improve the detectors performance by utilizing

different boosting methods and cascade decision structures. In [17], [18] and [12],

the authors used the Realboost algorithm. In [19] and [20], a comparison between

various boosting algorithms is performed. Both agreed on that Adaboost is inferior but

they made different conclusions about Realboost and Gentleboost. [17] proposed the

usage of Floatboost to overcome the monotonicity problem of the Adaboost algorithm.
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Floatboost brings the ability to not only add features during learning, but also remove

insignificant ones.

Viola and Jones [3] trained each stage of the cascade independently and hence did

not incorparate the information learned by the previous cascades. In [21], the authors

proposed to use a chain structure to incorparate the information learned before during

training. At each node, the partial classifier learned is used as a prefix for further

training. The resulting classifier has better performance than the original one. [18] also

improved the performance of the original detector structure by using the confidence

output of the partial classifier to build the first weak classifier of the next classifier.

Sochman and and Matas [22] proposed using a monolithic classifier rather than a

cascade and setting a rejection threshold after each weak classifier using a ratio test.

They showed that the resulting classifier has less features than a cascade and faster to

evaluate, yet still has better performance. Bourdev and Brandt [23] proposed using a

parameterized exponential curve to set the rejection thresholds. Zhang and Viola used a

data-driven scheme for setting the intermediate thresholds [16]. In their method, which

is called multiple instance prunning, they took advantage of the fact that there are more

than one rectangle around each face that can be considered a correct detection but only

a single one of them is needed. Their scheme, while allowing to train classifiers with

less features than cascades, guarantees the same detection rate.

There are also various efforts solely aiming to increase the speed of the detector. For

instance, in [24], a feature centric cascade is designed based on the idea that many

feature values computed are shared among multiple windows. By computing the

feature values over the image beforehand, it is possible to prevent re-computing of

the same values multiple times and achieving gains in speed. A similar approach is

followed in [14].

For the scope of this thesis, of particular importance is the research done to accelerate

face detection algorithms using GPU. The GPU implementation of Viola-Jones

algorithm in [25] achieved detection rates of 19 and 46 Frames Per Second (FPS)

on video streams of resolutions 1280 × 960 and 640 × 480, respectively, on a

GTX 285 GPU. This implementation is 12-38x faster than the corresponding CPU

implementation that runs on a Intel Xeon 3.33 GHz. Although there is an important

increase in speed, having %81 accuracy and 16 false positives on the CMU test set
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shows that a sacrifice has been made in the accuracy during the parallelization process.

In [26], a multi-GPU implementation of the Viola-Jones algorithm is presented that

runs at 15.2 FPS at 640 × 480 resolution on 4 Tesla GPUs. No information is given

about the scanning parameters or accuracy. In [27], the author implemented the

Viola-Jones algorithm using CUDA and modified the OpenCV implementation to be

able to make a fair comparison. The resulting detector performs at 30, 14 and 8 FPS

on a GTX 480 for resolutions 640 × 480, 1280 × 720 and 1920 × 1080, respectively.

The modified OpenCV implementation runs at 15, 6 and 3 FPS at the same resolutions

on a Intel Core i7-965. The scaling factors used to create the image pyramid before

detection process is limited to be integers, which means that the detector will skip

lower scales and will not be able to detect small faces accurately. In [28], the author

achieved 2.8 FPS on a single GTX 280 GPU and 4.3 FPS on a dual GTX 295 GPU on

VGA image sizes with another CUDA implementation of the Viola-Jones algorithm.

[29] is the only GPU accelerated object detection algorithm to date that uses a different

feature and different classifier structure than [3]. It is based on the Waldboost [22]

algorithm that uses a single monolithic classifier rather than a cascade with the ability

to terminate the evaluation process of the classifier after any number of features.

The features used by the weak classifiers are called Local Rank Patterns [13]. The

reported detection speeds for 1280×720 and 720×540 resolutions are 58 and 97 FPS,

respectively, on a GTX 280 GPU with no information about the scanning parameters

or accuracy.

1.1.2 Face recognition

Numerous methods have been proposed to solve this difficult problem. Important ones

among these methods can be categorized into two groups in general. These are holistic

methods and feature based methods. Holistic methods have the advantage of using a

global representation of the face that is not much sensitive to noise caused by partial

occlusions, blurring and changes in the background. The most well-known holistic

method that achieves relatively good performance is the Eigenfaces [30] method.

This method involves projecting the face images into a lower dimensional subspace

(the face space) using PCA (Principal Component Analysis) and obtaining a vector

of weights that represent a point in the face space. The idea is, every face can
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be represented with such a vector of weights in the database. The classification is

performed by comparing the distances of the points in the face space to the projection

of the test image. A follow-up to the Eigenfaces method is the Fisherface [31]

method, that projects the images using LDA (Linear Discriminant Analysis) instead

of PCA. Since LDA is a supervised algorithm that takes into account the class labels

of the images when determining the face space and tries to maximize the inter-person

variance while minimizing the within-person variance, vectors belonging to different

persons are easier to seperate after projection. Therefore the LDA results in better

recognition rates than LDA. The main problem with LDA is, just as in PCA, the

euclidean consideration of the data space. This property causes the method to fail

in cases the data points lie in a non-linear subspace, which is most of the time

the case in face data. Another holistic approach, which is called ICA (Independent

Component Analysis) [32], minimizes higher order dependencies and finds a subspace

along which the data becomes statistically independent after projection. In [33],

authors used the neighbourhood structure of the original data space to determine the

underlying non-linear subspaces. They generated Laplacianfaces using LPP (Locality

Preserving Projections) and obtained better results under varying pose, expression and

illumination.

In [34], a (SVM) Support Vector Machine is used with a binary tree recognition

strategy. Heisele et al. [35] presented a component based method in which facial

features are located, extracted and then combined into a single vector, which is then

classified by a SVM. They also propose two global methods, both of which are

outperformed by the component based method.

Another common approach for face recognition has been to use feature based methods.

These methods involve extracting local descriptors from the images and using them for

classification. An earlier example to these methods is Local Feature Analysis [36], in

which local features are extracted using a dense set of local-topological fields. In

another well-known feature based method called Elastic Bunch Graph Matching [37],

a face is represented as a topological graph. Each node of this graph is a facial

landmark (e.g. eye, nose, etc.) and the edges are labeled with 2D distance vectors.

At each node, Gabor filter responses, which are called jets, are computed to obtain

a local descriptor. T. Ahonen et al. [4] proposed another feature based method that
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uses weighted regional histograms of Local Binary Patterns (LBP) [38], which yielded

impressive results on the FERET [39] database. They used a nearest neighbor classifier

as the classification algorithm and Chi-square distance as the distance metric. In [40],

face recognition is transformed into a two-class problem by classifying every two face

images as intra-personal and extra-personeal ones. Adaboost algorithm is used to learn

a similarity for every image pair. The Chi-square distance between corresponding LBP

histograms of two face images is used as discriminative feature for intra/extra-personal

classification. In [41], another set of features called Local Derivative Patterns (LDP)

are proposed, that takes into account higher-order local patterns. Baochang et. al [42]

introduced a novel descriptor called HGPP (Histogram of Gabor Phase Patterns) to

represent faces. In HGPP, the quadrant-bit codes are first extracted from faces based

on the Gabor transformation. Global Gabor phase pattern (GGPP) and local Gabor

phase pattern (LGPP) are then proposed to encode the phase variations. They are both

divided into the nonoverlapping rectangular regions, from which spatial histograms

are extracted and concatenated into an extended histogram feature to represent the

original image. Recognition is performed by using a nearest-neighbour classifier. In

another recent work given in [43], the authors analyzed two moment based feature

extraction methods, namely, Zernike moments and Complex Zernike moments for face

recognition. They found that Complex Zernike moments perform not only better than

Zernike moments, but also it is the descriptor that gives best recognition rate amongst

the descriptors well known for face recognition.

There were no serious attempts to accelarate the feature extraction methods utilized by

the face recognition algorithms using GPUs to date. On the other hand, there have been

efforts to accelerate some of the classification algorithms, which are used during the

classification process of face recognition algorithms. One example of these algorithms

is the k-nearest neighbour (k-NN) algorithm. Different k-NN algorithms attempted

to reduce the number of distance calculations to be performed. In [44] and [45], this

is performed by constructing kd-tree where each node is a training point. Once the

tree is constructed, a search can be performed very efficiently over only the closest

neighbours of a point. The problem with this approach is that it reqires complex data

structures and recursive traversal algorithms, none of which is suitable for a GPU

implementation. In [46], the authors pointed out that if the number of dimensions
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exceeds 10 to 20, searching in kd-trees and related structures involves the inspection of

a large fraction of the database, thereby doing no better than brute-force linear search.

They proposed a scheme for approximate similarity search based on hashing. During

training, a method called locality sensitive hashing (LSH) uses several hash functions

to bin similar training points together. Classification of a query point can then be

accomplished by hashing the point and retrieving elements stored in the bin that would

contain the hashed query point.

CUDA accelerated implementations of the brute-force k-NN algorithm are given in

[47] [48]. Both authors reported better results than a CPU using a GPU.

1.2 Organization of the Thesis

This thesis is organized in the following manner: Chapter 2 provides the background

information required to understand the rest of the thesis. Details about both the face

detection and face recognition algorithms are given along with an introduction to GPU

architecture and the CUDA platform. Brief information about some other GPGPU

frameworks are also given for the sake of completeness. Chapter 3 contains detailed

information about the GPU implementations of the algorithms covered in this work.

Alternative approaches for parallelization are also discussed, along with the extension

of the GPU implementations to make use of multiple GPUs. Chapter 4 discusses

the experimental results obtained from all implementations and compares the results

obtained using GPU with those obtained using CPU to show how accurate and fast the

proposed GPU implementations are. Chapter 5 concludes the thesis, provides closing

remarks and shows future directions.
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2. BACKGROUND

This chapter includes all the background information required to understand the rest of

the thesis. Detailed information about the implemented face detection and recognition

algorithm are given in relevant subsections. An introduction to the GPU architecture,

CUDA and other GPGPU frameworks are also given so that the jargon used and

explanations given in the following sections can be understood and the thesis becomes

self-contained.

2.1 MCT Based Face Detection

This section includes the information required to understand the testing phase of the

face detection algorithm for which a CUDA implementation is developed.

2.1.1 MCT based weak classifiers

MCT [1] is a transform that generates a binary number from the pixel values in a given

neighbourhood N . The binary value corresponding to a pixel location is obtained by

comparing all pixel values on a neighbourhood centered on that pixel with the mean

of all pixel values in the neighbourhood in row-major order. Let N(x) be a spatial

neighbourhood centered at the pixel location x and I(x) be the mean of the pixel

intensity values on this neighbourhood. If
⊗

is the concatenation operator, then the

MCT can be defined as follows:

Γ(x) =
⊗
y∈N

ζ(I(x), I(y)) (2.1)

where the comparison function ζ(I(x), I(y)) is defined as

ζ(I(x), I(y)) =

{
1, I(x) < I(y)

0, otherwise
(2.2)

The definition of MCT does not put any restrictions on the size of the neighbourhood,

but for the purposes of object detection, the size of the neighbourhood is chosen as
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3×3, because using larger sizes lead to memory inefficient weak classifiers as one can

see later in this section. When a 3×3 neighbourhood is considered, the resulting MCT

value becomes a 9 bit string that can take values in the range [0, 510] when converted

to a decimal value. These values correspond to local structure kernels, some of which

are shown in Figure 2.1.

Figure 2.1: Some of the possible local structure kernels in a 3× 3 neighbourhood [1].

These kernels can code information about the structures like edges, ridges, etc. in

the image in binary form. An example of computing the MCT value from a 3 × 3

neighbourhood is shown in Figure 2.2.

Figure 2.2: MCT Computation example in a 3× 3 neighbourhood.

A MCT based weak classifier hx consists of a coordinate pair x = (x, y) relative to

the origin of the scanning window and a 511 element lookup table. The coordinates

specify the center location of the neighbourhood that needs to be used when calculating
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the MCT value. The detector uses a base resolution of 24× 24 and since MCT values

cannot be calculated at the edges and corners, total number of different values x can

take is limited to 22 × 22 = 484. The lookup table contains a weight for each kernel

index γ such that 0 ≤ γ ≤ 510. The output of a weak classifier on a window in the

input image is determined by defining a 3 × 3 neighbourhood centered at the location

x, calculating the MCT value which is equal to the γ index, and getting the value from

the lookup table that corresponds to γ.

An important advantage of MCT based weak classifiers is their robustness to

illumination variations, which are commonly simulated by smooth, linear monotonic

transformations [1]. Since the MCT is defined in a small neighbourhood, the order of

its bits does not change after the application of such a transform and makes the detector

more robust to illumination variations without bringing additional computational

overhead. This property can be seen clearly from Figure 2.3 that shows the fact that

results of applying MCT to two face images having very different illumination levels

are nearly identical. Also, MCT based features are very easy to compute, because once

MCT is applied to the grayscale input image, computing the value a weak classifier

takes on a window becomes a matter of doing a single memory lookup.

Figure 2.3: Illumination invariance of the MCT.

2.1.2 Classifier cascade

The detector has a cascaded structure as in [3], but has fewer stages because of the

superior distinguishing ability of MCT based weak classifiers and a different learning

algorithm. Each stage contains a strong classifier containing a number of weak

classifiers, each of which having a different x position. Maximum number of allowed
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different positions in each stage is given as input to the training algorithm as explained

in [1]. Hj(Γ), the strong classifier of the j. stage, is defined as follows:

Hj(Γ) =
∑
x∈W ′

hx(Γ(x)) (2.3)

where W ′ ⊆ W is the set of unique positions used by the weak classifiers hx in the

strong classifier. A window W passes the j. stage if the sum of the responses of

the weak classifiers on that window is less than or equal to the stage threshold Tj .

Formally, stage j allows the window to pass if Hj(Γ) ≤ Tj . Stage thresholds Tj are

tuned after the strong classifiers are trained using a set of samples not used during

training. A window is classified as the searched object by the algorithm when it passes

all stages.

The cascade used in this work has 5 stages utilizing 10, 20, 40, 80, and 217 positions,

respectively, as shown in Figure 2.4. The maximum number of possible positions

allowed for the stages were 10, 20, 40, 80 and 484 for the stages in question. It should

be noted that even though all 484 positions were allowed to be used in the last stage,

only 217 of them are utilized by the training algorithm. During training, all stages

were trained on the same positive set consisting of 8400 manually collected and scaled

images of frontal faces with limited variance in pose, expression and illumination.

40000 negative samples were used for training each stage. These samples were

obtained by using the partial cascade trained after each stage on 10000 large images

collected from the internet that do not contain any faces and selecting the windows

that are misclassified. This training method, which is adopted from [3], is the only

difference between the implementation used in this work and the one explained in [1].

Since the focus on this thesis is on the testing algorithm and not the training stage,

things explained this thesis can be used with a cascade trained using the method in [1]

as well.

Figure 2.4: The 5-stage cascade used in this work.
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2.1.3 Scanning process

The scanning process starts with the construction of an image pyramid from the input

image. Then MCT is applied to every image in the pyramid to obtain the transformed

image pyramid. The whole image pyramid is scanned with a sliding window and at

each location the classifier cascade is used to find out whether the window contains the

searched object or not. Then multiple detections whose area of intersection is close

to the total area of the detections are grouped and merged into a single detection. As

in any other sliding window approach, there are scanning parameters like horizontal

and vertical step sizes (Δx and Δy), the ratio between consecutive scales, or the scale

factor (s) and the starting scale. In this work, we choose Δx = Δy = 1, s = 1.15 and

use a starting scale of 1, which results in a computationally demanding, fine-grained

scanning process and makes it possible to detect faces as small as 24× 24 accurately.

2.2 LBP Based Face Recognition

This section includes the necessary information required to understand the face

recognition algorithm for which a CUDA implementation is developed.

2.2.1 The LBP operator and its extensions

The original LBP operator [49] generates a 8 bit binary number by thresholding

the pixels in a 3 × 3 neighbourhood with the center pixel as shown in Figure 2.5.

The operator is later extended to handle different neighbourhood sizes by using

circular neighbourhoods and bilinear interpolation [38]. The recommended notation to

describe such neighbourhoods is (P,R), where P is the number of sampling points on

the circle and R is the radius of the circle. Figure 2.6 shows the location of the sampling

points in a (8, 2) neighbourhood. Values at non-integer coordinates are computed using

bilinear interpolation.

Another extension to the LBP operator is the usage of uniform patterns [38]. A

binary pattern is called uniform if it contains at most two bitwise transitions when

the bit sequence is considered to be circular. For example, the patterns 00000000

(0 transitions), 01110000 (2 transitions) and 11001111 (2 transitions) are uniform

whereas the patterns 11001001 (4 transitions) and 01010011 (6 transitions) are not.
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Figure 2.5: Example LBP computation.

Figure 2.6: A circular (8, 2) neighbourhood.

With 8 sampling points, the number of different uniform patterns is 58. This leads

to a 59 bin histogram when all the non-uniform patterns are considered to be in the

same bin. When 16 sampling points are used, the number of bins becomes 243. The

usage of uniform patterns is motivated by the fact that most patterns in facial images

are uniform. In [4], the authors have found that, 90.6% of the patterns in the (8,1)

neighbourhood and 85.2% of the patterns in the (8,2) neighbourhood are uniform in

case of preprocessed FERET [39] facial images. The usage of uniform patterns is

indicated with the notation (P,R)u2.

2.2.2 Construction of the feature vector and classification

In [4], to obtain a global description of the face that also contains information on

a regional level, the input image is divided into m regions: Rj, j = 1, ..., m. The

regions may overlap or have different sizes. A histogram is generated from each region

and then all histograms are combined to obtain the final feature vector. Classification

is performed with a nearest neighbour classifier and the distance metric used is the

chi-square distance. Furthermore, a weight wj is determined for each region Rj

according to its importance in classification, which are then utilized during the distance

computation. A straightforward way to determine these weights is measuring the

classification performances in cases when only a single region is used when creating
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the feature vector. The weighted chi-square distance is defined as

χ2

w(S,M) =
∑
i,j

wj

(Si,j −Mi,j)
2

(Si,j +Mi,j)
(2.4)

where S and M are the histograms to be compared and i and j denote the i-th bin in

the histogram corresponding to the j-th region.

2.3 A Brief Overview of the GPU Architecture and the CUDA Platform

This section contains information about the GPU hardware, CUDA and GPGPU

frameworks in general, that are required to understand the details of the CUDA

implementationd developed in the following sections.

2.3.1 GPU architecture

With the increasing demand in real-time, high-definition 3D graphics, the GPU has

evolved into a highly parallel, multithreaded, manycore processor with tremendous

computational power as shown in Figure 2.7 that compares the floating performances

of CPUs and GPUs released in the last few years. The reason behind the discrepancy in

floating-point capability between the CPU and the GPU is that the GPU is specialized

for compute-intensive, highly parallel computations and therefore designed such that

more transistors are devoted to data processing rather than data caching and flow

control [50].

The massively parallel structure of the GPU resembles a supercomputer. The GPU

consists of a set of streaming multiprocessors (SMs) that contain a number of Single

Instruction Multiple Data (SIMD) cores called "CUDA cores". The number of SMs

vary between different GPUs. For example a GTX 580, which is the GPU used as a

testbed for this research, contains 16 SMs, each of which contains 32 CUDA cores,

resulting in a total of 512 CUDA cores [50]. These CUDA cores enable the GPU

to execute hundreds of threads concurrently, making the GPU well-suited to solve

problems that can be expressed as data-parallel computations. The GPU is targeted

for data-parallel applications that involve massive parallelism, heavy computation and

little logic. Therefore, as stated before, most of its die area is devoted to computational

units rather than memory and hence it hides the memory access latencies with

calculations instead of big data caches. Because of the very limited area devoted
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Figure 2.7: Floating point performances of various CPUs and GPUs (Courtesy of
NVIDIA).

for memory, each SM in the GPU has very limited amount of registers and on-chip

memory (shared memory) available to be shared among the threads that reside in it.

Since these on-chip resources are very limited, they need to be used very efficiently.

There are also off-chip, global resources available to all SMs. These include the

texture, constant and the global memory. All three of them are implemented as off-chip

high-latency DRAM, but both the texture memory and the read-only constant memory

are cached and therefore they are faster to access if used properly. This memory

arrangement is visualized in Figure 2.8.

2.3.2 CUDA platform

The CUDA platform exposes the processing power of a GPU to the developers and

allow them to write massively parallel code for general purpose applications that can

take advantage of the properties of a GPU like massively parallel structure, great

floating point performance, transparent scalability and hardware scheduling with zero

overhead. The CUDA platform refers the GPU and CPU as the "host" and "device",
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Figure 2.8: CUDA memory hierarchy (Courtesy of NVIDIA).

respectively. A CUDA program consist of the host code that runs on the CPU and the

device code that runs on the GPU. In CUDA terminology, a kernel refers to a chunk

of code that gets executed on the GPU. Parallel processing is started by launching a

kernel from a CPU thread as a grid containing a 1D or 2D array of thread blocks, each

of which contains a 1D, 2D or 3D array of threads. Figure 2.9 shows a sample 3 × 2

grid containing 4 × 3 sized blocks. Each thread in the grid executes the same chunk

of code and is identified by its block index and thread index, which together form a

unique thread id. If the total number of blocks in the grid is denoted by grid_size and

the total number of threads in a block is denoted by block_size, then the total number

of threads in the grid can be calculated as grid_size × block_size.

When a kernel is launched, the thread blocks are distributed to SMs with available

resources. Threads of a block execute concurrently on one SM and a single SM can

execute up to 8 blocks concurrently, depending on the resource requirements of each

block. As thread blocks terminate, new blocks are launched on the vacated SMs. The

hardware further divides consecutive threads with increasing indices in each block to

groups of 32 threads called warps. A SM manages and schedules threads using warps

19



Figure 2.9: A sample launch grid (Courtesy of NVIDIA).

as the smallest unit. Threads in a warp execute the exact same instruction. In cases

where the threads in a warp diverge because of a data dependent branch, the hardware

groups the threads according to the path they will take and execute these groups serially

until reaching a point where both groups can join and continue to execute the exact

same instructions.

These abstractions provide fine-grained data and thread parallelism, nested within

coarse-grained data and task parallelism. They guide the programmer to partition

the problem into coarse sub-problems that can be solved independently in parallel

by blocks of threads, and each sub-problem into finer pieces that can be solved

cooperatively in parallel by all threads within the block. Another result of this

abstraction is transparent (or automatic) scalability to future GPUs. Since blocks

are independent from each other and can be executed any time in the available

SMs, concurrently or sequentially, a CUDA program can execute on any number
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of processor cores as illustrated by Figure 2.10. The CUDA runtime takes care of

the distribution of the blocks to the available cores therefore and only the runtime

system needs to know the physical processor count and not the developers themselves.

This feature makes it possible for the applications written in CUDA to run faster

automatically in faster devices, even in the ones that are not yet released.

Figure 2.10: Transparent scalability demonstrated (Courtesy of NVIDIA).

2.3.3 Memory types in CUDA

The CUDA platform provides 5 types of memory to be used in GPGPU applications.

The fastest one among them are the registers, which are on-chip. When a kernel is

launched, the runtime distributes the registers available in each SM to the threads

belonging to the blocks running on that SM. Each thread has its own set of registers

and cannot write to or read from the registers belonging to other threads. Registers are

the scarcest resource in the GPU and therefore are most of the time the limiting factor

on the maximum number of threads that can reside in a SM.
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Next comes the shared memory, which is also on-chip. Shared memory is banked

and as long as there are no bank conflicts in the access patterns, it is as fast as the

registers. Even though the size of the shared memory is larger than the register space,

it is still very limited (16KB per SM in devices of compute capability 2.0). The most

important property of the shared memory is that it is shared among the threads of a

block. Therefore it is very useful for tasks like caching the data required by all threads

in the block or for accumulating temporary results.

The other type of memory is global memory, which is implemented as off-chip high

latency DRAM. The size of the global memory is very large (in the order of GBs), but

its access latency is about 100-400 times longer than that of the shared memory. In

order to make use of the global memory efficiently, accesses to it should be coalesced.

Simultaneous memory accesses by threads in a half-warp can be coalesced into a single

memory transaction of memory segments. On devices with compute capability 1.3 and

higher, coalescing is achieved for any pattern of addresses requested by the half-warp

as long as the words accessed by all threads lie in the same segment. In older devices,

not only all words have to be in the same segment, but also consecutive threads should

access consecutive words. The segment size is 32,64 and 128 bytes for accessing

8-bit, 16-bit and 32/64-bit words, respectively. If the accesses are not coalesced, for

instance, if the threads in a half-warp access n different segments, then n different

memory transactions will be issued, leading to poor memory bandwidth utilization.

In cases when performing coalesced memory accesses is not possible, one can use

one of the two alternatives to global memory. The first one is the texture memory.

Texture memory is not exactly a new memory location but a special memory layout.

The data resides still in the global memory, but it has a cache associated with it

that is called the texture-cache. Texture cache has about 6-8kb size per SM and is

optimized for 2D spatial locality, which prevents unnecesarry memory transactions

when accesses are spatially local. Since the main purpose of the texture-memory is

storing 2D textures, it has dedicated hardware to perform texture caching with the

options of bilinear interpolation, clamping and range normalization, all of which can

be very beneficial in some applications. A similar memory location is the constant

memory, which has another cache, the constant-cache associated with it. This memory

space is typically used for storing constant data that will not change during the lifetime
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of the application. The global, texture and constant memories have application-wide

lifetime, meaning that data stored in any of them will persist during any number of grid

launches until the application terminates.

The last type of memory is the local memory, which is essentially a location in global

memory that is used to store local arrays and additional variables if there are not enough

registers available. Table 2.1 summarizes the properties of the memory types in the

GPU.

Table 2.1: Memory types in CUDA.

Memory Location Cached Access Lifetime
Registers On-chip No Read/Write Thread
Shared On-chip No Read/Write Block
Global Off-chip No Read/Write Application
Constant Off-chip Yes Read-only Application
Texture Off-chip Yes Read-only Application
Local Off-chip No Read/Write Thread

2.3.4 Compute capability

Each new generation of NVIDIA GPUs have additional capabilities resulting from

architectural improvements and more resources compared to the older generation

devices. The capabilities of a device can be determined from its compute capability,

which is a major revision number, followed by a minor revision number. Currently, the

newest devices have the compute capability 2.0 and 2.1 (Fermi architecture) which are

very suitable for GPGPU applications. The CUDA implementations proposed in this

thesis do not assume anything about the GPUs the algorithms will be executed on and

do not use any property introduced after compute capability 1.0. GTX 580, the GPU

used in this thesis is of compute capability 2.0.

2.3.5 Occupancy

Occupancy is a measure of utilization of the SMs in the GPU. It is affected by many

factors, such as the selected block and grid dimensions, registers and shared memory

used by a block and the compute capability of the device.

Occupancy is defined as the ratio of the number of active warps per SM to the

maximum number of active warps. A higher occupancy results in the hardware being
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better utilized and the memory latency being better hidden. Even though increasing the

occupancy improves the performance of the CUDA applications in general, there can

be cases where higher occupancy may lead to lower performance. Therefore achieving

%100 occupancy is not the primary concern during CUDA application development.

As stated in Section 2.3.1, each SM has a limited number of registers and shared

memory that are shared among the blocks being executed in it. The maximum number

of threads and blocks that can reside in a SM is also limited, latter of which is 8 in the

current GPUs. All these properties, which change with the compute capability of the

GPU, limit the maximum occupancy a kernel can have in a given GPU. It is up to the

developer to select the block and grid dimensions with care and pay close attention to

the register and shared memory usage of each kernel.

2.3.6 Multiple GPUs

CUDA supports the use of multiple GPUs in a single application. The GPUs are

completely independent of each other, with their own memory space and instructions.

Each GPU must be programmed and setup separately. Generally, a CPU thread is

launched to manage each GPU. Starting from CUDA Toolkit 4.0, it is possible to use

multiple GPUs with a unified address space.

2.3.7 Heterogeneous programming

A CUDA program consist of the combination of host and device code. Typically the

host code performs sequential tasks that exhibit little to none parallelism and calls

functions from the CUDA runtime or driver API to send commands to the GPU or

perform memory transfers, while the device code performs other tasks that involve high

amount of parallel computation. A CUDA application can contain arbitrary number of

kernels and can launch them on the GPU at any time, in any order. Since kernels

are launched asynchronously, the CPU can either wait for the GPU to finish its job or

continue to do processing until reaching a point where results from the GPU are needed

to continue execution. Table 2.11 shows the flow of an example CUDA application.

Host code is written in standard C/C++, while kernels and other device code are written

in CUDA C, an extended version of the C language. Both the host and device code are

sent to NVCC (NVIDIA Compiler Collection) for compilation. NVCC seperates the
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Figure 2.11: Heterogeneous programming with CUDA (Courtesy of NVIDIA).

host and device sections of the code, compiles the device code to be run on the GPU
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and sends the host code to the hosts compiler for further compilation. The host code

runs as an ordinary CPU process.

2.4 Other GPGPU Frameworks

2.4.1 OpenCL

OpenCL (Open Computing Language) is an open specification developed by Apple for

developing applications for heterogeneous platforms containing CPUs, GPUs DSPs

and other processors. It is maintained by the Khronos Group. It provides a C99 based

language with some extensions for writing kernels and a runtime API for managing

the data transfers and execution in paralel processors. The most important property

of OpenCL is that it is a truly cross-platform GPGPU framework. Each vendor (e.g.

NVIDIA, AMD) develops its own implementation of the OpenCL specification and

provides the developers with the necessary tools to develop GPGPU applications with

them. OpenCL is similar to CUDA in many ways, but has lower level programming

constructs and hence is harder to use. Also, even though it is an open platform that has

been available since 2008, it has not developed as fast as CUDA. Therefore it is not

used in the work done in this thesis.

2.4.2 DirectCompute

DirectCompute is a dedicated subset of the DirectX 11 API (Application programming

interface) developed by Microsoft for GPGPU programming. Similar to OpenCL

and CUDA, this API is used on the CPU side, to set up and execute the kernels on

the GPU. The kernels are written in a high level language called HLSL (High Level

Shader Language) very similar to C++, which is then compiled and sent to the GPU

to utilize its compute shader stage. Since DirectCompute is a part of the DirectX API,

it is currently only supported on Windows Vista and Windows 7. Linux or any other

operating systems are not supported.
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3. GPU IMPLEMENTATION

In this section, details about the GPU implementations proposed in this thesis are

given. The steps followed during the parallelization and CUDA implementation

process are given for both the detection and recognition algorithm in the relevant

subsections. Detailed explanations are provided about some important decisions that

need to be made during the design and development process along with the reasoning

behind them and their final impact on the performance of the resulting system.

3.1 Face Detection

This section contains detailed information about the CUDA implementation developed

for the MCT based face detection algorithm.

3.1.1 Preprocessing

In order for the detector to detect objects at various sizes, the input image needs to be

scanned in multiple scales. In [3], this is performed by scanning the same input image

with up-scaled classifiers. Even though this approach is very efficient for a CPU based

implementation, it is not suitable for a GPU based one. The most important reason of

this is that, as the classifiers get scaled up, the access pattern to the images in the GPU

memory becomes very sparse. As described in Section 2.3.3, sparse memory accesses

to global memory cannot be coalesced and therefore are very slow. Storing the input

image in the texture memory does not help either, because of the very high number

of cache misses resulting from the memory accesses that are not spatially local in the

2D space. Therefore the approach followed in this implementation is to scale the input

image down multiple times and construct an image pyramid that will be scanned only

once by the detector using a fixed size window.

The whole image pyramid is stored as a single large image as shown in Figure 3.1.

Even though this layout has empty regions that increase the number of windows
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scanned, it greatly simplifies the scanning process described in the next section. Also

the regions having a constant gray level are easily eliminated by the first stage of the

cascade. Therefore the performance loss that comes with the increased number of

windows is eliminated by the performance gain from the simple yet efficient scanning

process that this sacrifice makes possible.

Figure 3.1: Image pyramid.
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The texture memory of the GPU has the ability to make linear interpolation

automatically when the memory is addressed using floating point coordinates. This

proves to be very useful for constructing the image pyramid quickly. At each level

of the pyramid, the downscaled image is constructed by binding the image from the

previous level to a texture and then sampling it according to the scale factor.

As described in Section 2.1.1, evaluation of a MCT based weak classifier becomes a

simple memory lookup when the MCT values are precomputed. This is achieved by

applying MCT to the whole image pyramid. Application of MCT is performed by

launching a grid of thread blocks with a block size of 16 × 16 that operate on the

image pyramid. Rather than binding the original image pyramid that resides in global

memory to a texture, shared memory, which is on-chip hence as fast as the registers,

is utilized as a custom managed cache to further speed up the processing. Each thread

block pulls in a patch from the global memory to its dedicated shared memory before

further processing. This is performed by making each thread in a block pull in a single

pixel from the global memory. Since the MCT computation at the edges and corners

requires additional pixels, threads at the edges pull in one additional pixel, and threads

at the corners pull in three additional pixels. After getting the data to shared memory,

threads in each block are synchronized with each other using the __syncthreads()

primitive of CUDA to make sure that all the required data is pulled in to the shared

memory before the beginning of the MCT computation. Then all threads compute

the value corresponding to their location and write the result to the device memory

allocated for the transformed image pyramid. At this point, the original image pyramid

is no longer needed and hence can be discarded. In the remaining section of this

section, the term "image pyramid" refers to the one containing the result of the MCT,

which is shown in Figure 3.2.

The other preparation that needs to be done before beginning the scanning process is

loading the classifier cascade into the device memory. During the scanning process,

the cascade data will be heavily accessed and therefore the speed of accessing them

is crucial for the performance. Since every thread will access the classifier data

sequentially in the same order until the classification ends, the best location for the

cascade would be the constant memory because of its broadcasting ability that allows

it to serve multiple threads when all of them issue a read request from the same
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Figure 3.2: Result of applying MCT to the image pyramid.

memory address. Unfortunately, the size of the constant memory is too small store

a cascade containing more than 32 weak classifiers. Therefore the cascade is stored in

the texture memory as a 2D floating point texture. Each row starts with a single floating

point value containing the x and y coordinate of the weak classifier in its upper and

lower 2 bytes, respectively. Rest of the row contains the weights of the lookup table.

Visualization of this layout can be seen in Figure 3.3. This approach helps to reduce
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texture cache misses by making the accesses to the feature weights as spatially local as

possible in the 2D space.

Figure 3.3: Memory layout of the the cascade data in texture memory.

3.1.2 Detection

The detection process involves scanning the image pyramid with a sliding window of

fixed dimension, classifying the window at each location and writing results back to

the device memory. There are various ways to parallelize this process and map it to

the resources of the GPU. We experimented with various methods and thread/block

arrangements as detailed in section 3.1.4 and found that the best performance overall

is obtained when making each GPU thread classify a single window on the image

pyramid. In this arrangement, a kernel is launched with a grid having as many threads

as the number of windows that needs to be classified. The block size is selected as

16 × 16 because it results in the highest occupancy, hence in the best utilization of

the GPU. Figure 3.4 shows the arrangement of the thread blocks on a sample image

pyramid.

One should immediately notice that this arrangement implicitly introduces a limitation.

If dw and dh is the width and height of the image containing the pyramid and ds denotes

the width or height of the square window size at the base resolution, the following

conditions should be satisfied:

dw − ds + 1

16Δx
= an integer (3.1)

dh − ds + 1

16Δy
= an integer (3.2)

If this is not the case, then the image containing the pyramid needs to be padded

accordingly. Otherwise, thread blocks at the right and bottom edges would have more
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Figure 3.4: Arrangements of the thread blocks during the scanning process.

threads than the number of windows they need to classify and therefore the kernel

would have to check whether the window corresponding to a thread exists or not.

This conditional check would result in warp divergence and since the execution of

the threads in such warps gets separated to 2 groups by the runtime and serialized, the

performance would slightly decrease.

32



When a window is classified as the searched object, its coordinates are written to

the corresponding location in a preallocated 1D array of floats that resides in global

memory and has the same number of elements as the number of windows classified.

Each element of this array can store the x and y coordinates of a window in its upper

and lower two bytes, respectively. It is not known beforehand to which elements in

this array the results will be written to. Therefore it is not possible to coalesce these

global memory accesses, leading to long memory access latencies. Since the windows

classified as positive is so rare, the GPU hardware easily finds another warps to execute

until the memory access is finished, hiding the memory latency. Therefore the effect

these access times have on the performance of the system is negligible.

3.1.3 Splitting the cascade into groups

As a natural consequence of using a cascaded classifier structure, the number of stages

that will be evaluated in a window cannot be predetermined. Threads that classify their

windows as negative in early stages have to wait idle until all other threads in the same

block finish their tasks, after which the processing of a new block can be started. This

results in under-utilization of GPU resources, especially in cases where vast majority

of the threads in a block terminate early and wait for a small number of threads to

finish. It also leads to divergence within warps because threads are grouped by the

hardware according to the stage after which they terminate the classification process

and the execution of these groups are serialized.

This problem can be dealt with by means of splitting the cascade into several smaller

groups containing one or more stages and performing a separate kernel launch for each

one of them. Deciding on how many times and at which locations the split should made

is an optimization problem, which is easier to solve in the case of MCT based cascades

because of their low stage numbers. Experiments showed that it is not beneficial to

split the 5-stage cascade used in this work to more than 2 groups. Figure 3.5 shows

the detection times according to the index of the stage after which the split is done.

These timings do not include preprocessing times, because they are irrelevant for the

comparison in question.
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Figure 3.5: The effect of split location on the detection times.

Values in Figure 3.5 shows that the best location for the split is after the 2nd stage.

Figure 3.6 shows the 2 partial cascades obtained after splitting the cascade into 2 parts.

Each kernel launch utilizes only one of the cascade parts.

Figure 3.6: 2 partial cascades obtained after doing the split. Each kernel uses a
separate part for classification.

Implementing the scanning process using two smaller cascades requires two different

kernel launches. The first kernel, which is the same as the one before, classifies all

windows using the first part of the cascade and writes the coordinates of the detections

to a preallocated array containing dummy values in the global memory. Then another

kernel is launched with a 1D grid of thread blocks, each one containing a 1D array

of 256 threads. Each thread in the grid classifies a single window whose coordinates

are fetched from the array filled by the first kernel. The final classification results are

written back to another array containing dummy values in global memory.

This new scheme introduces another problem. The array generated by the first kernel

contains sparse data. Most of its elements still contain dummy values that were set

when it is first allocated. A good solution to this problem is using a stream compaction
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algorithm that copies all elements having meaningful values to the beginning of the

array. Stream compaction can be performed on the GPU in 3 steps as shown in Figure

3.7. In the first step, each element in the input array is tested using a predicate and a

mask array is obtained. In the case of object detection, this predicate is a function that

checks whether the value of the cell is different than the dummy value. In the next step,

the mask array is prefix summed. The elements of the resulting array show to which

location each element should be copied. The final step involves doing a copy operation

according to the indices found in the previous step and obtaining an array containing

the meaningful values at its beginning.

Figure 3.7: Steps of the stream compaction algorithm. Each element in the input array
contains either a dummy value (shown as a dash), or a (x, y) coordinate
pair.

This new approach does not completely eliminate the problem, but reduces it

significantly. Vast majority of the windows get eliminated after the first 2 stages and

therefore by launching a new kernel after the 2nd stage, the performance of the system

is significantly improved, especially for larger resolutions. Figure 3.8 shows the steps

of the whole scanning process for the first 10 windows in the input image.
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Figure 3.8: Steps of scanning with 2 kernels. Window locations that are detected as
positive by the corresponding threads are highlighted.

3.1.4 Alternative approaches

One possible alternative to parallelizing by assigning each window to a single thread

is, to make each thread classify multiple windows. The most important issue with this

approach is the distribution of the windows to the threads, because it requires either

inter-thread communication, or large amount of shared memory to be done properly,

both of which is expensive in CUDA. The performance is somewhat improved when

using smaller block sizes, but the results are not as fast as the other approach. Therefore

it is preferred to use the simpler solution.

Another alternative is increasing the granularity of the parallelism by assigning each

block to a single window location and making the threads in a block evaluate different

weak classifiers. This approach completely eliminates the under-utilization problem as

long as the number of weak classifiers in the stage is more than the number of CUDA

threads. This immediately shows that the MCT based cascades are not suitable for

this approach because unlike Haar based classifier cascades, even the last stage of the

cascade has at most 484 weak classifiers when the base resolution of the classifiers is

24. Hence no matter how the grid and block sizes are chosen, the resources available

in the GPU becomes heavily under-utilized.
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3.1.5 Utilizing multiple GPUs

The implementation is extended to reduce the detection times even further on the

devices that have multiple GPUs. Starting from CUDA Toolkit 4.0, it is possible to use

multiple GPUs with a unified address space [50]. In order to support older platforms,

the traditional approach is followed and spawn and M + 1 CPU threads are spawned,

where M is the number of GPUs in the system. The task of the main CPU thread is

acquiring frames from the video stream and doing preliminary computations. Each one

of the other CPU threads performs CUDA runtime calls and memory transfers between

the GPU assigned to it and the host. Each GPU generates several levels of the image

pyramid and scans only those levels. This prevents unnecessary memory transfers

between the host and the device. Since all GPUs need the original image to generate

the levels assigned to them, and the whole cascade data to process these levels, both

the original image and the cascade is copied to the memories of each GPU separately.

Distributing different levels of the pyramid to different GPUs makes it possible to

achieve nearly linear speed-up when the number of levels each GPU will process is

carefully determined. This is achieved by pre-computing the total number of levels the

pyramid will have and size of each of its levels and performing the distribution of the

work according to these values.

3.2 Face Recognition

This section contains detailed information about the CUDA implementation developed

for the LBP based face recognition algorithm.

3.2.1 Feature extraction

Feature extraction involves the computation of LBP values from the input image and

the construction of regional histograms. These two operations can be done in a single

kernel, without requiring to temporarily store the LBP values in the GPUs global

memory, which has very high access latency.

In the proposed arrangement, each thread block computes the histogram of a single

region Rj . This is achieved by making each warp in a thread block compute a per-warp
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histogram in shared memory, which are then combined by the threads in the block to

obtain the regional, per-block histogram. By constructing the histograms in shared

memory, this method eliminates the need of doing expensive atomic operations in

global memory. The arrangement of the thread blocks for a 130 × 150 input image

generated by the CSU face identification evaluation system (FIES) [51] divided to

7× 7 regions is shown on the left side of Figure 3.9.

Figure 3.9: Arrangement of the thread blocks for a sample image divided to 7 × 7
regions. Each warp in a thread block constructs a per-warp histogram for
a 32 pixel area in the corresponding region as shown on the right side of
the figure.

If the number of warps in a block is Nw, and the number of bins in the histogram is

Nb, the size of the shared memory required for a single block is Nw ∗ Nb ∗ 2 bytes,

provided that the histogram values are chosen to be 16 bit integers. Figure 3.10 shows

this memory layout for a single block.

The construction of a per-warp histogram is performed as follows: Each thread in the

block applies the LBP operator to the neighbourhood centered at its location in the

input image. In order to take advantage of the hardware linear interpolation capability

of the GPU during the computation of LBP values, the input image is stored in the

texture memory. The computed LBP value is converted to a uniform LBP value with

the help of a look-up table stored in constant memory. This uniform LBP value is

38



Figure 3.10: Shared memory layout for histogram computation

immediately used to update the corresponding per-warp histogram residing in shared

memory. Since more than one thread in the same warp may try to increment the same

bin, the increment operation needs to be atomic. In the case of using a GPU that does

not have the capability to do atomic operations in shared memory, one can fall back to

an alternative method called "tagging" as explained in [52]. Arrangement of the warps

in a sample region is shown on the right side of Figure 3.9.

Before starting to construct the per-block histogram, to make sure that the construction

of all per-warp histograms are finished, the threads in the block are synchronized with

each other using the __syncthreads() primitive of CUDA. Then each block combines

all of its per-warp histograms to obtain the regional histogram and writes the result to

global memory.

3.2.2 Classification using the k-NN algorithm

The simplest approach to implement the k-NN algorithm in GPU is to make each

GPU thread compute distances between two or more feature vectors as in [47]. This

approach leads to good performance when the dimensionality is low. However, in LBP

based face recognition, the dimensionality of the feature vector is high. For example,

using a 7 × 7 grid and (8, 2)u2 neighbourhoods (which results in a 59 bin histogram

for each region) for LBP leads to a feature vector length of 2891. Because of this fact,

a different approach is followed that is optimized for working with high dimensional

feature vectors.
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In order to utilize the GPU resources as much as possible even in cases where the

number of vectors in the database is small, the feature vectors are split to p sub-vectors.

The block sizes are set to be 32×p and a 1D grid of thread blocks that contains �N/32�

blocks is launched, where N is the number of reference points in the database. The

reason of selecting the block width as 32 is to make sure that a block contains exactly

p warps and each row of threads in the block belongs to a single warp. i-th thread

of the j-th warp computes the distance between the j-th sub-vector of a query point

and j-th sub-vector of the i-th reference point. The computed partial distances are

stored in shared memory. To make sure that all partial distances are computed before

proceeding, the threads are synchronized with each other. Then, the threads in the first

warp of each block sum the p partial distances computed by the p warps in the block

and write the results to global memory. After all distances are computed, another

kernel is launched that finds the index of the minimum (nearest) value. For k > 1,

one can easily construct a loop in which the value at the index found by the previous

iteration is replaced with a very high value and then the index of the new minimum

value is found using the same kernel. However, as far as face recognition is concerned,

the value of k will in most cases be set to 1.

The query point and region weights are stored in texture memory and constant memory,

respectively, because they are heavily accessed by all threads and their small sizes lead

to nearly %100 cache hit ratio. Accesses to the reference points are coalesced, which

eliminates the need for them to be stored in a cached memory by utilizing the memory

bandwidth very effectively. Therefore the reference points are stored in global memory.

It is possible to extend the implementation to handle multiple query points at once by

making each thread compute distances between a reference point and all query points,

in which case the amount of shared memory requirement will increase. One can also

simply launch the distance calculation and reduction kernels one time for each query

point without doing any modifications in the algorithm, if the number of query points

is small.
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4. RESULTS

In this section, the performances of the proposed GPU implementations are evaluated

by comparing their speed and accuracy with those of the corresponding CPU

implementations. All comparions are performed on a desktop PC containing a Intel

Core i5-2500k processor, 3 GTX 580 GPUs and 8GB RAM. The operating system on

the test PC is Windows 7 and the version of the CUDA Toolkit is 4.0.

4.1 Face Detection

The performance of the CPU and GPU implementations are tested both on video

streams of 5 different resolutions and on still images in the CMU+MIT frontal face

test set f [5]. All measurements include memory transfers between the host and the

device.

4.1.1 GPU vs CPU comparison on video streams

Figure 4.1 shows the average number of frames processed per second by the GPU

and CPU implementations on video streams of various sizes. These measurements

include the time required to perform preprocessing and memory copies between the

host and the device, but not the time required for video decoding or displaying.

The multi-threaded CPU implementation uses OpenMP to distribute the processing

to different cores.

As it can be seen from Figure 4.1, even the single-GPU implementation outperforms

the single-threaded and multi-threaded CPU implementations by a factor of 12-18x

and 4-6x, respectively. As the resolution increases, so does the difference between

the speed of the GPU and CPU implementations, clearly showing that a GPU is better

suited to process high resolution videos than a CPU. These results also show that the

performance of the GPU based implementation scales nearly linearly with the number

41



Figure 4.1: Frame rates of GPU and CPU implementations on various input
resolutions.

of GPUs, in contrast to the CPU which wastes considerable amount of time because of

the overhead involved with software scheduling.

In Table 4.1, the preprocessing and scanning times are listed separately for the

single-GPU case. Values in the table show that for smaller resolutions, the

preprocessing time is comparable to that of the scanning time. As the resolution gets

higher, the difference between the time required to scan the pyramid and perform the

preprocessing increases.

Table 4.1: The preprocessing and scanning times for the single-GPU case.

Resolution Preprocessing Scan Total
[ms] [ms] [ms]

320× 240 0.54 2.25 2.79
640× 480 1.32 4.52 5.84
720× 540 1.54 5.61 7.15
1280× 720 3.74 11.94 15.68
1920× 1080 3.88 24.64 28.52

It should be noted that these measurements have been done when using the scanning

parameters given in Section 2.1.3. It is possible to increase the detection speed

drastically just by increasing starting scale to 2, in which case the system will not

be able to detect faces smaller than 48 × 48. This might not be important for some

applications running on high resolution video streams.
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4.1.2 GPU vs CPU comparison on still images

The performance of the single-GPU and single-threaded CPU implementations are

tested on the still images in the CMU+MIT frontal face test set. The total time the

GPU needed to process all 132 images in the dataset, excluding the time required to

read the images from disk, is measured as 1.82 seconds, while it took 22.1 seconds

for the CPU to do the same processing. According to the measurements performed,

because of the empty regions in the image pyramid, the GPU implementation had to

evaluate %20 more windows, but still managed to finish its job 12x quicker than the

CPU implementation. The reason that the GPU did perform only 12x faster is the fact

that most of the images in the dataset have low resolutions. The detection rate for both

implementations are measured as %90.8, while the total number of false positives is

32. This proves that the GPU implementation has the exact same detection accuracy

with the CPU implementation.

4.2 Face Recognition

The performance of the single-threaded CPU and GPU implementations are tested on

the FERET [39] face database using the 130 × 150 sized images generated by CSU

FIES [51]. Fa and Fb subsets are used as the gallery and test sets, respectively, when

measuring the average processing times. All measurements include memory transfers

between the host and the device.

4.2.1 Feature extraction

Table 4.2 shows the feature extraction times of the GPU and CPU implementations for

various cases including the ones that give the best accuracy according to [4]. Length of

the resulting feature vector (d) is also listed for each case. Values in the table indicate

that the GPU performs 23-44x faster than CPU. When using a GPU that supports

concurrent kernel execution, one can use multiple streams to compute feature vectors

of multiple input images concurrently as long as the number of SMs in the GPU is

sufficient. Results listed in the table are obtained using a single stream. It should

be noted that, because of its hardware interpolation capability, the performance of the
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GPU decreases only by %5 when the number of sampling points is doubled, in contrast

to the performance of the CPU that decreases by %75.

Table 4.2: Feature extraction times of the GPU and CPU implementations for various
cases using a single stream.

LBP Region Feature GPU CPU
Type Size Length [ms] [ms]
(8, 2)u2 11× 13 8496 0.17 4.25
(8, 2)u2 18× 21 2891 0.17 3.85
(8, 2)u2 26× 30 1475 0.17 4.01
(16, 2)u2 18× 21 11907 0.18 7.45
(16, 2)u2 26× 30 6075 0.18 7.86

4.2.2 Classification

Table 4.3 compares the performance of the proposed k-NN implementation (denoted

as GPU) with those of the CUDA implementation of k-NN in [47] (denoted as GPUX)

and the ANN C++ library [53] for some of the feature lengths (d) listed in Table 4.2

and various numbers of reference points (N).

Table 4.3: 1-NN search times (in ms) of GPU and CPU implementations for various
values of d and N when p=8.

Size Method d=2891 d=8496 d=11907

N=1000
GPU 0.88 1.12 1.52
GPUX 2.06 2.78 3.65
ANN 2.55 7.47 10.46

N=5000
GPU 1.09 1.61 2.15
GPUX 7.48 10.13 13.32
ANN 12.72 37.32 52.32

N=10000
GPU 1.52 2.77 3.72
GPUX 13.68 19.44 25.44
ANN 25.46 74.71 104.51

N=20000
GPU 2.21 5.18 7.38
GPUX 18.55 37.40 51.72
ANN 52.47 151.13 210.46

In order to increase the number of reference points in the database when needed, some

of the images in the Fa subset are duplicated. Parameters of the ANN library are set

to give the exact nearest neighbours and best performance. For all implementations,

k is selected as 1 because it is most of the time the case due to the limited number

of reference images in real-world applications. Finally, the value of p in the GPU

44



implementation is set to 8 because it results in the best performance overall. The

results indicate that the proposed GPU implementation performs 3-29x faster than

ANN and 2-9x faster than GPUX. The speed difference between the CPU and GPU

implementations increases with both the number of reference points and the length of

the feature vector.

Combining the computation times given Table 4.2 and Table 4.3 shows that the

proposed GPU implementation performs the whole recognition process 6-29x faster

than the CPU implementation that uses ANN and 2-8x faster than the GPU

implementation that uses GPUX.
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5. CONCLUSIONS AND FUTURE WORK

In this thesis, efficient GPU implementations for a boosting based, real-time face

detection algorithm and a feature based face recognition algorithm is presented. For

the sake of comparison, efficient CPU implementations of the same algorithms are also

developed.

The performances of the CPU and GPU implementations of the face detection

algorithm are evaluated on video streams with resolutions ranging from 640 × 480 to

1920× 1080 and on a widely used face database containing still images. Comparisons

between the performances of the single-GPU, multi-GPU, single-threaded CPU and

multi-threaded-CPU implementations are performed. The results showed that even the

single-GPU implementation is able to detect faces up to 6x and 18x faster than the

single-threaded and multi-threaded CPU implementations running on a modern CPU,

respectively. It is pointed out that, because of the GPUs massively parallel architecture,

the speed difference between the GPU and CPU implementations increases with the

resolution of the input image and therefore GPUs are more suitable for working with

high resolution videos or images than CPUs. The proposed implementation, with its

ability to detect objects in a video stream having resolutions as high as 1920 × 1080

in real-time, can easily be used in modern multimedia, entertainment and surveillance

systems.

The frontal face detection system implemented in this thesis can be extended to detect

multi-view faces. Each GPU or CPU core can be used for detecting faces from a

specific angle or better arrangements could be found as a subject of future research. In

any similar object detection application requiring the evaluation of multiple cascades,

implementing a heterogeneous system utilizing all CPU cores and all GPUs at the same

time can lead to even more improvements in the speed, leaving more processing time

for the other algorithms that will follow.
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In addition to the face detection, efficient GPU implementations for LBP computation,

regional histogram construction and k-NN classification, are also presented, which are

the 3 steps of a LBP based face recognition algorithm. By utilizing the GPU in the

face recognition process, recognizing faces in real time ceases being an issue even on

large databases.

The increase in the speed and more efficient use of the resources of the computer will

prove much more useful when the face processing is done in a multi-view and rotation

invariant manner, which involves much higher amount of computations. Development

of such heterogeneous systems that take advantage of not only the GPU cores, but also

all cores the CPU are the subject of future research.

With the price of fast computing hardware going down, the number of cores in

processors are going up and high definition videos becoming increasingly common,

the need for fast, heterogeneous algorithms that can utilize all available processors in

the system and run real-time on these high resolution streams will certainly increase

in the future and the development of such systems will become an important research

topic.
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Best Student Paper Award in IEEE 20th Conference on Signal Processing and
Communications Applications (SIU 2012)

List of Publications and Patents:
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