ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

FAST FACE DETECTION AND RECOGNITION
ON GRAPHICS PROCESSING UNITS

M.Sc. THESIS

Salih Cihan TEK

Department of Computer Engineering

Computer Engineering Programme

JUNE 2012

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

FAST FACE DETECTION AND RECOGNITION
ON GRAPHICS PROCESSING UNITS

M.Sc. THESIS

Salih Cihan TEK
(504081510)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Prof. Dr. Muhittin GOKMEN

JUNE 2012

ISTANBUL TEKNIK UNIiVERSITESI * FEN BILIMLERIi ENSTITUSU

GRAFIK ISLEMCILER UZERINDE
HIZLI YUZ SAPTAMA VE TANIMA

YUKSEK LiSANS TEZi

Salih Cihan TEK
(504081510)

Bilgisayar Miihendisligi Anabilim Dal

Bilgisayar Miihendisligi Program

Tez Damismani: Prof. Dr. Muhittin GOKMEN

HAZIRAN 2012

Salih Cihan TEK, a M.Sc. student of ITU Graduate School of Science
Engineering and Technology 504081510, successfully defended the thesis entitled
“FAST FACE DETECTION AND RECOGNITION ON GRAPHICS
PROCESSING UNITS”, which he prepared after fulfilling the requirements
specified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. Muhittin GOKMEN ...
Istanbul Technical University

Jury Members : Asst. Prof. Dr. Mustafa KAMASAK ...,
Istanbul Technical University

Asst. Prof. Dr. llker BAYRAM ...
Istanbul Technical University

Date of Submission : 2 May 2012
Date of Defense : 8 June 2012

vi

FOREWORD

I would like to express my gratitude to my thesis advisor Prof. Dr. Muhittin G6kmen
for his interest, guidance and encouragement during the development of this thesis.
I would like to thank my family for always being there for me and supporting all of
my endeavours throughout the years. I am also grateful to my friends at the CVIP
Lab, especially to Birkan Tung, Volkan Dagli, Evangelos Sariyanidi, Bora Akaydin
and Mighty Itauma for their friendship, support and valuable comments during my
research.

I would like to thank to The Scientific and Technological Research Council of Turkey
(TUBITAK) for its financial support via the National Scholarship Programme for
M.Sc. Students and via the research project 109E268. Finally, I would like to
thank the Scientific Research Project Unit of Istanbul Technical University (ITU-BAP)
for providing financial support for the acquisition of the hardware required for the
development of this thesis under the grant number 34120.

June 2012 Salih Cihan TEK

vil

viii

TABLE OF CONTENTS

Page
FOREWORD.....uitiitiiitintinsnnisnississsnsssiesssssssissssssssissssssssssssssssssssasssssssssssssssssss vii
TABLE OF CONTENTS ix
ABBREVIATIONSouuiiiiinninniinnissnncsssssssssssoss xi
LIST OF TABLESccuviiviniinsnincnicsnrcsnsssssssssesssssane xiii
LIST OF FIGURESccoutiiiiiiisiinsnnnsnnnssesssisssnssssnsssisssssssssssssssssssssssssssssssssses XV
SUMMARY xvii
OZET ounirsircnncisscnsscnss Xix
1. INTRODUCTIONcceceeeuvrecnneene 1

1.1 Literature REVIEWccoviiiiiiieiiieecieecite ettt 3
1.1.1 Face deteCTiONccueeeuiiiiiiiieeiiecieeiee ettt 3
1.1.2 Face reCOZNIIONeevuiiieiiiiiiiieiiieeit ettt ettt s e s 6

1.2 Organization of the ThesiS........c.cerieriiiiiiiiiiiiiieee e 9

2. BACKGROUND ...ccciuiieinicssnnicsnncssssncssncsssssssssessssssssssesssssssss 11

2.1 MCT Based Face DeteCtion..........cccueeeuieeriiieeiiieeeiieeiieeeseee e eveeeiaeesevee e 11
2.1.1 MCT based weak ClasSIfIerscceeevveeriieeiieeiieeeiie e eiee e e 11
2.1.2 ClasSifier CASCAAE.cuvieruriiiiiieniieeiieeit ettt 13
2.1.3 SCANNING PIOCESS ..veeeuvrrerreeeireeitieeeiieetteeeireessreessseeessreesnsseessseesseeessseeas 14

2.2 LBP Based Face Recognitionccccueeeviieriieeriiesiee e 15
2.2.1 The LBP operator and itS €XtENSIONScccveererrueerrienierreeneeneeesieeneenee 15
2.2.2 Construction of the feature vector and classification............cccceeuveenneen. 16

2.3 A Brief Overview of the GPU Architecture and the CUDA Platform 16
2.3.1 GPU archit@Cturec..eevuveeiniiiiiiieeiiieeite ettt 16
2.3.2 CUDA PlatfOrmcccuvieiiiieeiiieniie ettt e 17
2.3.3 Memory types in CUDA.........cccoiiiiiiiiceeeeeeeeeee e 19
2.3.4 Compute Capability.......cccceevviriiiriiiiniiniceieereeeeeee e 20
2.3.5 OCCUPANCY ...vvvtieiiiiiieeeiiieeeeiteeeeittee e ettt eeeeeiteeessatteeessabeeeeesssaeessnnseeeennnns 21
2.3.6 MUltiple GPUS.....coouiiiiiiieeee e 21
2.3.7 Heterogeneous programimingcoceeceeereereersueenseenseeneeenseenneeseeseeenne 21

2.4 Other GPGPU Frameworkscoooiiiiiiiiiiieiiiiieeeieee et 22
2.4.1 OPENCL ..ottt 22
2.4.2 DIreCtCOMPULEoouvieiieirieirienteeniteete ettt e st sreesaeesaeeneeee 23

3. GPU IMPLEMENTATIONcccceevuecsurcsuenens 25

3.1 FaCe DELECION ...ttt ettt et 25
3,11 PreprOCESSING .. cecviieiiieeiieeeiie ettt e et e e e e e e s e eaaeeeaaeenseee s 25
T N B 1< 1o 5 o) § PO SRS POPPUPPURRPRRRR 29
3.1.3 Splitting the cascade INLO GLOUPScc..erveerueerieriieeniienieereeneesee e 30
3.1.4 Alternative appProachesc.cecveeeeuieeiireeiieesieeesieesreeesveesveeeseeeeneneas 33

X

3.1.5 Utilizing Multiple GPUSovvveeeeeeeeeeeeeeeseseeeeeeeoeseseeeeseeeeseeeseeeeenee 34

3.2 Face RECOZNITIONeeeiiiiiiiieiiiieiiee ettt sttt ettt e 34
3.2.1 Feature eXtraCtionc.eeiueeiieeriienieniieeieesie ettt 34
3.2.2 Classification using the k-NN algorithmcccccoceeviiniiniiiniincnen 36

4. RESULTS uciitiiiinninninnnissnisssncsssssicsses 39

4.1 FACE DELECLION ...ttt 39
4.1.1 GPU vs CPU comparison on video SIreamscccceerverurervueenueeneeneens 39
4.1.2 GPU vs CPU comparison on still images.........ccceevveeevvienieeeneeenieeennenn 41

4.2 FaCe RECOZNITION ...ccuvvieeiiiieiiieeiieeitee et et e et eesiteeeeaeeiveeeaaeeseseeennaeennseeennes 41
4.2.1 Feature eXIraCtioncccueerueeenieeeiieeiteeeite et e siee et e st e e esbeeesaeeas 41
4.2.2 ClasSTICALION ...covutiiiieiieiiieeite ettt 42

5. CONCLUSIONS AND FUTURE WORK......cccccveruicsenssnsseessecsasssecsssssecsasssassns 45
REFERENCES.......iniininnninnnnnensnnisnisssissssssssssssssssnns 47
CURRICULUM VITAE. 53

ABBREVIATIONS

API
CPU
CUDA
FLOPS
GPGPU
GPU
HLSL
LBP
LPP
MCT
NVCC
OpenCL
SIMD
SIMT
SM
SVM

: Application Programming Interface

: Cental Processing Unit

: Compute Unified Device Architecture
: Floating-point operations per second

: General-Purpose Computing on Graphics Processing Units
: Graphics Processing Unit

: High Level Shader Language

: Local Binary Patterns

: Locality Preserving Projections

: Modified Census Transform

: NVIDIA Compiler Collection

: Open Computing Language

: Single Instruction Multiple Data

: Single Instruction Multiple Thread

: Streaming Multiprocessor

: Support Vector Machine

X1

X1l

LIST OF TABLES

Table 2.1
Table 4.1
Table 4.2

Table 4.3

Page
: Memory types in CUDA.cciiiiieeee e 20
: The preprocessing and scanning times for the single-GPU case. 40
: Feature extraction times of the GPU and CPU implementations for
various cases using a single Stream.cccveevvueeeiveeniiieeneeeniieeneeens 42
: 1-NN search times (in ms) of GPU and CPU implementations for
various values of d and N when p=8.........ccccooiiiiiiiiiiiiiniiiiieees 42

X1il

X1V

LIST OF FIGURES

Page

Figure 2.1 : Some of the possible local structure kernels in a 3 x 3
Neighbourhood [1]...ccocveeiiiiiiiiiiiieie e 12
Figure 2.2 : MCT Computation example in a 3 x 3 neighbourhood. 12
Figure 2.3 : Illumination invariance of the MCT.cccceevviiniiiiniieeieeeee e, 13
Figure 2.4 : The 5-stage cascade used in this WOTK..........ccecceevviiiiiiinnieennieneen. 14
Figure 2.5 : Example LBP computation............cccceeeviieriiieeniieniieeceeeeee e 15
Figure 2.6 : A circular (8,2) neighbourhood.c.ccceueueirinninieccnirinnecccenen, 15
Figure 2.7 : Floating point performances of various CPUs and GPUs. 16
Figure 2.8 : CUDA memory hierarchy...........cccoeevvieriiieeiiieeieeriee e 17
Figure 2.9 : A sample launch grid..........cccceeviiiiiiieniiiecieeeeceecee e 18
Figure 2.10: Transparent scalability demonstrated.ccoccevvveeriiennieeniiennneen. 19
Figure 2.11: Heterogeneous programming with CUDA.c.ccccovvvviienciveennenn. 22
Figure 3.1 : Image pyramid.........cccceeviiiiiiieiiieiiie et e 26
Figure 3.2 : Result of applying MCT to the image pyramid.cccoceeruennennne. 28
Figure 3.3 : Memory layout of the the cascade data in texture memory............... 29
Figure 3.4 : Arrangements of the thread blocks during the scanning process. 29
Figure 3.5 : The effect of split location on the detection times.............cccoceeeueenee. 31

Figure 3.6 : 2 partial cascades obtained after doing the split. Each kernel uses
a separate part for classification.cceeeevieeriieeiiieeniie e 31
Figure 3.7 : Steps of the stream compaction algorithm.c...cccecveviiiiniinennneen. 31
Figure 3.8 : Steps of scanning with 2 kernels.ccccoevveeviiinniieinieeniie e 32

Figure 3.9 : Arrangement of the thread blocks for a sample image divided to
T X T TEZIOMS. wneviiieeieeiee ettt ettt et ettt set et e st et e b e saeesaneens 35
Figure 3.10: Shared memory layout for histogram computationc.ccccueneee. 35

Figure 4.1 : Frame rates of GPU and CPU implementations on various input

TESOLULIONS. vt e e e ee ettt e et e e e e e e e e e e tee e e aeeeseeeeeeeeeenannaas 39

XV

XVi

FAST FACE DETECTION AND RECOGNITION
ON GRAPHICS PROCESSING UNITS

SUMMARY

Real-time face detection and recognition have been very active topics of research in the
last decade. The main reason of this interest on these subjects is the number of their
possible real-world applications both in commercial and non-commercial systems.
Most of the complicated real-world applications like virtual reality, traffic and urban
surveillance, video conferencing, robotics and entertainment systems make use of
these algorithms at some point. Nearly all of these applications require the system
to be able to run on real-time video streams. Therefore for these kind of applications,
the speed of the algorithms used in the system is as important as the accuracy.

In the last decade, researchers have found faster and better face detection and
recognition algorithms suitable for real-world applications. Even though these
algorithms are fast, they are still not fast enough to run in real time in some cases.
For example, even the fastest face detection algorithms developed to date are not fast
enough to run in real-time on video streams having a high resolution as 1280 x 720
or above, which have become increasingly common, unless all processing power is
dedicated for that task. For a system involving additional algorithms, like facial
feature detection, face alignment and face recognition, it is not possible to dedicate
all processing power to the face detection task. Therefore, in order to make these
algorithms run on such high resolution video streams in real-time, one has to either
sacrifice accuracy or use very application specific cues to limit the processing required,
which will in turn limit the generalization ability of the system in question. While the
same problem exists for the face recognition algorithms, the main problem for them is
the number of people in the database and not the resolution. Even though some face
recognition algorithms can run in real-time on relatively small database sizes, they
are not able to do so on larger databases required by some real-world applications.
Speed is a problem not only for applications that process video streams, but also for
the ones that process still images. If the number of images that need to be processed is
very high, the time needed to complete the processing can quickly become impractical,
regardless of the resolution of images.

Considerable amount of effort has been made to speed up core face detection
and recognition algorithms by eliminating or modifying some of their steps, but
algorithmic modifications by themselves are proven to be insufficient to achieve the
drastic speed improvements required.

Another approach to accelerate face detection and recognition algorithms is modifying
their structure and developing parallelized versions of them. This can be done either
on a CPU (Central Processing Unit) by taking advantage of its multiple cores and/or
hyper-threading capability if exists, or on a GPU (Graphics Processing Unit) by

Xvil

using one of the GPGPU (General-Purpose Computing on Graphics Processing Units)
frameworks available. Even though it is much easier to develop the parallelized version
of an algorithm on a CPU, putting more effort in development and implementing it on
a GPU has very important advantages that make up for the additional effort required.

The most important property of a GPU is its ability to execute hundreds of threads
concurrently and perform all the scheduling purely on hardware, in contrast to the
CPUs that require software scheduling. GPU hardware is optimized for performing
computer graphics computations and have excellent floating point performance. A
modern GPU, for example a GTX 580, can reach very high computing rates up to
1581 GFLOPS. These properties make GPUs very suitable for demanding image
processing, computer vision and pattern recognition algorithms. Also by offloading
some compute intensive, parallelizable tasks to GPU, it becomes possible to use
the CPU cores for other non-parallelizable tasks that involve less computation and
more logic, leading to much more efficient usage of the hardware that already exist
in a computer and hence to drastic speed improvements. This approach, which is
called heterogeneous computing, is not only a very cost-effective way to implement
computationally demanding high-performance algorithms, but also the best way to
make these algorithms accessible to common users.

The purpose of this thesis is to present efficient, massively parallel GPU
implementations of two different algorithms: A boosting based face detection
algorithm that utilizes MCT (Modified Census Transform) based weak classifiers, and
a feature based face recognition algorithm that uses weighted regional histograms of
LBPs (Local Binary Patterns) as features. All steps of these algorithms are parallelized
in a GPU firendly manner and efficient GPU implementations of them are given
using the CUDA (Compute Unified Device Architecture) platform of NVIDIA. Some
alternative methods for parallelization on the GPU and the problems with them are also
discussed. The GPU implementations are further extended to utilize multiple GPUs.

For the sake of comparison, single and multi-threaded CPU implementations of
the same algorithms are developed and compared with their corresponding GPU
implementations both in terms of speed and accuracy. These comparisons showed that
the GPU implementations, while generating the exact same results, run much faster
than the CPU implementations, proving that a GPU is more suitable for executing
these algorithms than a CPU.

For the face detection algorithm, comparisons are made both on video streams having
5 different input resolutions and on still images from the MIT+CMU frontal face
detection test set. The implementations of the face recognition algorithm are compared
for different feature vector lengths and database sizes using the images from the
FERET database generated by the CSU Face Identification Evaluation System. It is
observed that the difference between the speed of the GPU and CPU implementations
increases as the resolution gets higher, feature vectors get longer or database size gets
larger. In other words, the advantage of using GPUs became more apparent as the
amount of data processed by the application got larger.

XViil

GRAFIK ISLEMCILER UZERINDE
HIZLI YUZ SAPTAMA VE TANIMA

OZET

Gercek zamanda yiiz saptama ve tanima, son yillarda ilizerinde en cok caligilan
konular arasindadir. Konulara kars1 olan bu ilginin sebebi gerek ticari alanda, gerek
ticari olmayan alandaki uygulamalarinin fazlaligidir. Sanal gerceklik, trafik-yol
gozlem ve giivenlik, goriintiilii konferans, robotik ve eglence sistemleri gibi bir ¢cok
uygulama da belli bir boliimlerinde yiiz saptama ve/veya saptama algoritmalarindan
yararlanmaktadir. Bu 6rnek uygulamlardan biiyiik ¢ogunlugunun sabit bir resimden
cok, hareketli bir video goriintiisii lizerinde gercek zamanli olarak caligsmasi
gerekmektedir. Bu da s6z konusu olan bu algoritmalar icin hizin da en az bagarim
kadar onemli oldugu anlamina gelmektedir.

Son yillarda arastirmacilar, uygulama gelistiricilerinin gercek hayattaki bir problemi
cozmek amaciyla kullanabilmeleri i¢in daha hizli ve daha yiiksek basarimli yiiz
saptama ve tanima algoritmalar1 gelistirmiglerdir. Bu algoritmalar her ne kadar
hizlilarsa da, bazi durumlarda gercek zamanli ¢alisamamaktadirlar. Ornegin yiiz
saptama algoritmalar1 giiniimiizde ucuzlagsan hizli donanim fiyatlarinin da etkisiyle
kullanim1 siradan bilgisayar kullanicilar1 arasinda bile fazlasiyla yayginlagsmis olan
1280 x 720 ve 1920 x 1080 gibi yiiksek c¢oziiniirliiklerde ancak ¢ok hizli bir
islemcinin tiim iglem hesaplama giicii bu islem i¢in ayrilirsa ger¢ek zamanli olarak
calisabilmektedir. Eger birden fazla algoritmanin bir arada kullanilmasini gerektiren,
ornegin yliz saptamaya ek olarak yiizdeki nitelikleri saptama, hizalama ve yiiz tanima
gibi birden fazla algoritmay1 iceren bir sistem soz konusu oldugunda, islemcinin
tim hesaplama giiciiniin yiiz saptama islemi i¢in ayrilmasi soz konusu degildir.
Boyle durumlarda gercek zamanl calisma elde edebilmek i¢in ya basarimdan feragat
edilmesi, ya da sistemin genellestirilme kabiliyetini kisitlayacak uygulamaya yonelik
ip uglarmin kullanilmasi gerekmektedir. Yiiz tanima algoritmalari icin en biiyiik
problem ise veritabanindaki kisi sayisidir. Giiniimiizde kullanilan bazi yiiz tanima
algoritmalar1 her ne kadar az sayida kisi icerden veri tabanlarinda gercek zamanda
caligabileseler de, gercek hayattaki uygulamalarin bazilarinin gerektirdigi cok sayida
kisi iceren biiyiik veritabanlar: iizerinde gercek zamanl olarak calisamamaktadirlar.

Yiiz saptama ve tanima algoritmalar1 i¢in hiz, sadece canli goriintiiler ya da videolar
tizerinde gercek-zamanli calismasi gereken sistemler icin degil, sabit goriintiiler
iizerinde calisan uygulamalar icin de sorun olabilmektedir. Ornegin ¢ok sayida
yiiksek ¢oOziiniirliiklii goriintiiniin islenmesini gerektiren bir uygulamada, islemin
saatler, hatta giinler siirmesi bile s6z konusudur. Bdyle durumlarda algoritmalarin
hizlarinin olabildigince yiiksek olmasi, uygulamanin pratikte kullanilabilirligi
acisindan c¢ok biiylikk onem tagimaktadir. Bugiine kadar yiiz saptama ve tanima
algoritmalarin1 hizlandirabilmek icin 6nemli miktarda caba sarfedilmis olsa da,

XiX

algoritmik degisikliklerin tek basina onemli miktarda hizlanmayi saglayabilmek icin
yeterli olmadig1 goriilmiigtiir.

Yiiz saptama ve tamima algoritmalarini hizlandirmak i¢in bagka bir yontem de
algoritmalarin yapisini degistirerek paralellestirmektir. Bu, varsa ¢ekirdekleri/coklu
iplik destegi kullanilarak bir MIB (Merkezi islem birimi) iizerinde yapilabilecegi gibi,
mevcut olan GAGIB (Grafik islem birimleri iizerinde genel amach islem) platformlari
yardimiyla bir GIB (Grafik islem birimi) iizerinde yapilabilir.

Giiniimiizde islem yiikii fazla olan bir cok uygulama, ¢cok ¢ekirdekli MIB’ler iizerinde
tiim cekirdekleri birden kullanacak sekilde yazilmaktadir. Ancak MIB ile birlikte
GIB kullanan uygulamalarin sayisi ise cok azdir. Bunun sebebi MIB iizerinde, ¢ok
iplikli uygulama gelistirmenin, GIB iizerinde uygulama gelistirmeye kiyasla cok daha
kolay olmasidir. Her ne kadar bir algoritmanin paralellestirilmis halini MiB iizerinde
gelistirmek ¢ok daha kolay olsa da, daha fazla ¢aba harcayip algoritmay1 GIB iizerinde
calisacak sekilde yazmanin harcanan fazladan vakti fazlasiyla karsilayacak kadar
avantaji1 vardir.

Bir GIB’in en 6nemli 6zelligi ayn1 anda yiizlerce ipligi paralel olarak calistirabilmesi
ve MIB’nin aksine tiim zamanlama islemlerini donanimsal olarak yapmasidir. Bu
ozelligi bir GIB icerisinde iplik yaratma, silme, baslatma ve durdurma gibi islemlerin
gormezden gelinebilecek kadar kisa siirelerde yapilabilmesini saglamaktadir. GIB
mimarisi bilgisayarla grafik islemleri yapmak iizere tasarlanmistir ve bu yiizden kayar
noktali sayilarla islem performansi ¢ok yiiksektir. Modern bir GIB, 6rnegin bir GTX
580, 1581 GFLOPS gibi yiiksek islem hizlarina ulagsabilmektedir. Bu islem kapasitesi,
her yeni nesilde onemli miktarda yiikselmektedir. Bunlara ek olarak, goriintiiler
tizerinde lineer interpolasyon ve adres sinirlama gibi bazi islemleri yapabilmek icin
adanmis donanimlara sahip olmalari, goriintii yeniden boyutlandirma gibi iglemlerle
bazi ikili islemleri ¢ok hizli bir sekilde yapabilmelerini saglamaktadir.

Bu ozellikleri GIB’leri islem yiikii agir olan goriintii isleme, bilgisayarla gorii ve
Oriintli tanima algoritmalar1 icin ¢ok uygun hale getirmektedir. Ayrica matematiksel
islem agirlikli, paralellestirilebilir olan islemleri GIB’e yiiklemek, MIB’i diger, daha
az matematiksel, daha ¢cok mantiksal islem ve bellek erisimi gerektiren, seri olarak
yapilmasi gereken islemler i¢in kullanmaya olanak vermektedir. Bu sekilde hem MIB
hem de GIB’e kendilerine en uygun olan tipte islemlerin yaptirilmasiyla, bilgisayar
icerisinde bulunmakta olan donanimlar daha verimli sekilde kullanilmakta ve ¢ok
biiyiik performans artislari elde edilmektedir. Modern GIB’lerin de giiniimiizde cogu
bilgisayarda bulundugu goz éniine alinirsa, bu yontemle MIB’lerde calismasi ¢ok uzun
stiren bazi uygulamalar siradan kullanicilar icin de bilgisayardaki tiim islem giiciiniin
kullanilmas1 sayesinde kullanilabilir hale gelmektedir.

Bu tezin amaci iki farkli algoritmanin verimli ve yogun bir sekilde paralellestirerek
bir GIB mimarisi iizerinde calisacak sekilde nasil gerceklenebilecegini gostermektir.
Ele alinan algoritmalardan ilki MCT (Degistirilmis Census Doniisiimii) temelli zayif
siniflandiricilar kullanan iteleme temelli bir yiiz saptama algoritmasidir. Digeri ise
bolgesel YID (Yerel Ikili Desenler) niteliklerinin agirliklandirilmis histogramlarini
kullanan nitelik temelli bir yiiz tamima algoritmasidir. Her iki algoritmanin da
tiim adimlar1 bir GIB’in mimarisine ve bu mimarinin dayattig1 kurallara uygun
sekilde parallelestirilmis ve NVIDIA tarafindan gelistirilmis olan CUDA (Compute
Unified Device Architecture) platformu kullanilarak GIB iizerinde gergeklenmistir.

XX

Parallellestirme icin alternatif yontemler iizerinde de durulmus ve bu yontemlerdeki
problemlerden bahsedilmistir. Ger¢ceklenmis olan uygulamalar daha da gelistirilmis ve
sistem iizerinde birden fazla GIB kullanacak hale getirilmistir.

Karsilastirma amaciyla algoritmalarin tek ve c¢ok iplikli halleri MIB iizerinde de
gerceklenmis ve elde edilen sonuglar ilgili GIB sonuclariyla hem basarim hem de hiz
acisindan karsilastirilmistir. Yapilan bu karsilastirmalar, algoritmalarin GIB iizerinde
calisan siiriimlerinin, MIB iizerinde galisan siiriimleriyle ayn1 sonuglari iirettiklerini
ancak ¢ok daha hizli olduklarini gostermistir. Bu da s6z konusu olan algoritmalar i¢in
GIB kullanmanin MiB kullanmaktan daha mantikli oldugunu kamitlar niteliktedir.

Yiiz saptama algoritmasi icin karsilastirmalar hem 5 farkli ¢oziiniirliikteki video
goriintiileri iizerinde, hem de CMU+MIT 6nden yiiz saptama test veritabanindaki sabit
resimler iizerinde yapilmistir. Yiiz tanima algoritmasinin MIB ve GIB versiyonlari
arasindaki karsilagtirma da farkli nitelik vektorii uzunluklart ve veritabani boyutlari
icin "CSU Face Identification Evaluation System" tarafindan FERET veritabanindaki
resimlerden olusturulmus olan gériintiiler iizerinde yapilmistir. GIB ve MIB arasindaki
hiz farkinin, coziiniirlik yiikseldikce, nitelik vektorleri uzadikca ve veritabani
biiyiidiikce arttig1 gozlemlenmistir. Diger bir deyisle, GIB kullanmanin avantajinin
islenen veri miktar: biyiidiikce daha belirginlestigi goriilmiistiir. GIB’lerin aym anda
cok biiyiik miktarda veri iizerinde ayni islemi yapmak iizere tasarlanmis donanimlar
oldugu goz oniine alindiginda, bu zaten beklenen bir sonuctur.

xx1

XXil

1. INTRODUCTION

Real-time face detection and recognition have been very active topics of research in the
last few years. The main reason of this interest on these subjects is the number of their
possible real-world applications both in commercial and non-commercial systems.
Most of the complicated real-world applications like virtual reality, traffic and urban
surveillance, video conferencing, robotics and entertainment systems make use of
these algorithms at some point. Nearly all of these applications require the system
to be able to run on real-time video streams. Therefore for these kind of applications,

the speed of the algorithms used in the system is as important as the accuracy.

In the last decade, researchers have found faster and better face detection and
recognition algorithms that are suitable for practical real-world applications. Even
though these algorithms are fast, they are not fast enough to run in real time in some
cases. For example, even the fastest face detection algorithms developed to date are not
fast enough to run in real-time on video streams having a high resolution as 1280 x 720
or above, which have become increasingly common, unless the whole processing
power is dedicated for that task. To use these algorithms on such high resolution video
streams in real-time, one either has to sacrifice accuracy or use very application specific
cues to limit the processing required, which in turn limits the generalization ability of
the system in question. For the face recognition algorithms, the main problem is the
number of persons in the database. Even though some face recognition algorithms can
run in real-time on relatively small database sizes, they are not able to do so on larger
databases required by some real-world applications. Speed is a problem not only for
applications that process video streams, but also for the ones that process still images.
If the number of images that need to be processed is very high, the time needed to
complete the processing can quickly become impractical, regardless of the resolution

of images.

Considerable amount of effort has been made to speed up core face detection and
recognition algorithms, but algorithmic modifications by themselves are proven to be

insufficient to achieve the drastic speed improvements required.

Another approach to accelerate face detection and recognition algorithms is modifying
their structure and developing parallelized versions of them. This can be done either
on a CPU (Central Processing Unit) by taking advantage of its multiple cores and/or
hyper-threading capability if exists, or on a GPU (Graphics Processing Unit) by
using one of the GPGPU (General-Purpose Computing on Graphics Processing Units)

frameworks available.

Even though it is much easier to develop the parallelized version of an algorithm on
a CPU, putting more effort in development and implementing it on a GPU has very
important advantages that make up for the additional time required for implementation.
The most important property of a GPU is its ability to execute hundreds of threads
concurrently and perform all the scheduling purely on hardware, in contrast to the
CPUs that require software scheduling. GPU hardware is optimized for performing
computer graphics computations and have excellent floating point performance. A
modern GPU, for example a GTX 580, can reach very high computing rates up to
1581 GFLOPS. These properties make GPUs very suitable especially for demanding
image processing, computer vision and pattern recognition algorithms. Also by
offloading some compute intensive, parallelizable tasks to GPU, it becomes possible
to use the CPU cores for other non-parallelizable tasks that involve less computation
and more logic, leading to much more efficient usage of the hardware that already
exist in a computer and hence to drastic speed improvements. This not only makes
heterogeneous computing a very cost-effective way to implement computationally
demanding high-performance algorithms, but also makes it the best way to make these

algorithms accessible to common users.

In the scope of this thesis, efficient, massively parallel GPU implementations for two
different algorithms are developed. First one of these algorithms is a boosting [2]
based object detection algorithm that uses MCT (Modified Census Transform) [1]
based weak classifiers. The reasons for using MCT based weak classifiers rather then
Haar based ones are their superior distinguishing ability, structure suitable for GPU

implementation and robustness to illumination variations. A cascade consisting of

2

these weak classifiers is also significantly faster to compute than the cascade in [3]
because it has very small number of stages and MCT based weak classifiers are
much easier to evaluate than Haar based ones. The other algorithm for which a
GPU implementation is developed is a feature based face recognition algorithm [4]
that uses weighted regional histograms of LBPs (Local Binary Patterns) as features.
All steps of these algorithms are parallelized in a GPU firendly manner and efficient
GPU implementations of them are given using the CUDA (Compute Unified Device
Architecture) platform of NVIDIA. Some alternative methods for parallelization on
the GPU are also discussed and the problems with them are explained. The GPU

implementations are further extended to utilize multiple GPUs.

1.1 Literature Review

In this section, most important developments about face detection and recognition
algorithms in the last several years are covered separately, with a focus on attempts
to accelerate the algorithms. GPU implementations proposed prior to this work are

also mentioned.

1.1.1 Face detection

Earlier face detection methods that have good accuracy include [5], [6] and [7]. Even
though these methods had good accuracy, they were too slow to be used in a real time

application. Hence the researchers continued to look for faster face detection methods.

The first face detector that has both good detection speed and high accuracy at the
same time has been proposed by Viola and Jones [3]. In this method, faces are
detected using a cascade of classifiers. Each classifier in the cascade contains a set of
Haar-like features that can be computed very efficiently using an intermediate image
representation called integral image. The stages of the cascade are trained using a
high number of positive and negative samples. Since the development of [3], various
methods based on the same approach have been proposed that use either different

features, different boosting algorithms or different detector structures.

The first example of the methods using different features is given in [8], in which

the authors extended the original Haar-like feature set in [3] to include 45° rotated

rectangular features and center-surround features. These features are computed
efficiently using a rotated summed area table. An implementation of this algorithm can
be found in the OpenCV [9] library. Li et al. [8] pointed out that the Haar-like feature
set in [3] is limited for multi-view face detection and introduced another set of features
that allows more flexible combination of rectangular regions. Viola and Jones [10]
proposed the addition of diagonal features to the feature set. Another feature set for
multi-view detection called sparse granular features is introduced by [11]. In their
work, each feature contains various number of rectangles (granules) having different
sizes and locations. They used heuristic search to select features from an overcomplete
set. Maximum number of granules a feature can have is limited to 8. Mita et al. [12]
proposed the usage of joint Haar-like features, which utilize the co-occurences of
Haar-like features rather than the features themselves. In [13], a new type of feature
called Local Rank Patterns is introduced. Another set of features called LAB (Locally

Assembled Binary) features are proposed in [14].

The original Haar-like features required each window to be normalized for reducing
the illumination sensitivity of the proposed method, but normalization alone is
not sufficient for handling even moderate illumination variations. To make the
method more robust to illumination variations, [1] proposed the usage of MCT
(Modified Census Transform) based features. MCT involves comparing the pixels
in a neighbourhood with their mean and obtaining a binary number, which is then
used as an index number representing the structure of the neighbourhood. Learning
is performed by examining te distributions of the index numbers on a high number of
sample face and non-face images. A similar operator to MCT is the LBP (Local Binary
Patterns), which is also used for face detection in [15] and [16] under a Bayesian and

boosting framework, respectively.

Viola and Jones [3] used the Adaboost [2] algorithm to learn cascaded face detectors.
Some of the follow-up works aimed to improve the detectors performance by utilizing
different boosting methods and cascade decision structures. In [17], [18] and [12],
the authors used the Realboost algorithm. In [19] and [20], a comparison between
various boosting algorithms is performed. Both agreed on that Adaboost is inferior but
they made different conclusions about Realboost and Gentleboost. [17] proposed the

usage of Floatboost to overcome the monotonicity problem of the Adaboost algorithm.

Floatboost brings the ability to not only add features during learning, but also remove

insignificant ones.

Viola and Jones [3] trained each stage of the cascade independently and hence did
not incorparate the information learned by the previous cascades. In [21], the authors
proposed to use a chain structure to incorparate the information learned before during
training. At each node, the partial classifier learned is used as a prefix for further
training. The resulting classifier has better performance than the original one. [18] also
improved the performance of the original detector structure by using the confidence
output of the partial classifier to build the first weak classifier of the next classifier.
Sochman and and Matas [22] proposed using a monolithic classifier rather than a
cascade and setting a rejection threshold after each weak classifier using a ratio test.
They showed that the resulting classifier has less features than a cascade and faster to
evaluate, yet still has better performance. Bourdev and Brandt [23] proposed using a
parameterized exponential curve to set the rejection thresholds. Zhang and Viola used a
data-driven scheme for setting the intermediate thresholds [16]. In their method, which
is called multiple instance prunning, they took advantage of the fact that there are more
than one rectangle around each face that can be considered a correct detection but only
a single one of them is needed. Their scheme, while allowing to train classifiers with

less features than cascades, guarantees the same detection rate.

There are also various efforts solely aiming to increase the speed of the detector. For
instance, in [24], a feature centric cascade is designed based on the idea that many
feature values computed are shared among multiple windows. By computing the
feature values over the image beforehand, it is possible to prevent re-computing of
the same values multiple times and achieving gains in speed. A similar approach is

followed in [14].

For the scope of this thesis, of particular importance is the research done to accelerate
face detection algorithms using GPU. The GPU implementation of Viola-Jones
algorithm in [25] achieved detection rates of 19 and 46 Frames Per Second (FPS)
on video streams of resolutions 1280 x 960 and 640 x 480, respectively, on a
GTX 285 GPU. This implementation is 12-38x faster than the corresponding CPU
implementation that runs on a Intel Xeon 3.33 GHz. Although there is an important

increase in speed, having %81 accuracy and 16 false positives on the CMU test set

shows that a sacrifice has been made in the accuracy during the parallelization process.
In [26], a multi-GPU implementation of the Viola-Jones algorithm is presented that
runs at 15.2 FPS at 640 x 480 resolution on 4 Tesla GPUs. No information is given
about the scanning parameters or accuracy. In [27], the author implemented the
Viola-Jones algorithm using CUDA and modified the OpenCV implementation to be
able to make a fair comparison. The resulting detector performs at 30, 14 and 8 FPS
on a GTX 480 for resolutions 640 x 480, 1280 x 720 and 1920 x 1080, respectively.
The modified OpenCV implementation runs at 15, 6 and 3 FPS at the same resolutions
on a Intel Core 17-965. The scaling factors used to create the image pyramid before
detection process is limited to be integers, which means that the detector will skip
lower scales and will not be able to detect small faces accurately. In [28], the author
achieved 2.8 FPS on a single GTX 280 GPU and 4.3 FPS on a dual GTX 295 GPU on

VGA image sizes with another CUDA implementation of the Viola-Jones algorithm.

[29] is the only GPU accelerated object detection algorithm to date that uses a different
feature and different classifier structure than [3]. It is based on the Waldboost [22]
algorithm that uses a single monolithic classifier rather than a cascade with the ability
to terminate the evaluation process of the classifier after any number of features.
The features used by the weak classifiers are called Local Rank Patterns [13]. The
reported detection speeds for 1280 x 720 and 720 x 540 resolutions are 58 and 97 FPS,
respectively, on a GTX 280 GPU with no information about the scanning parameters

or accuracy.

1.1.2 Face recognition

Numerous methods have been proposed to solve this difficult problem. Important ones
among these methods can be categorized into two groups in general. These are holistic
methods and feature based methods. Holistic methods have the advantage of using a
global representation of the face that is not much sensitive to noise caused by partial
occlusions, blurring and changes in the background. The most well-known holistic
method that achieves relatively good performance is the Eigenfaces [30] method.
This method involves projecting the face images into a lower dimensional subspace
(the face space) using PCA (Principal Component Analysis) and obtaining a vector

of weights that represent a point in the face space. The idea is, every face can

be represented with such a vector of weights in the database. The classification is
performed by comparing the distances of the points in the face space to the projection
of the test image. A follow-up to the Eigenfaces method is the Fisherface [31]
method, that projects the images using LDA (Linear Discriminant Analysis) instead
of PCA. Since LDA is a supervised algorithm that takes into account the class labels
of the images when determining the face space and tries to maximize the inter-person
variance while minimizing the within-person variance, vectors belonging to different
persons are easier to seperate after projection. Therefore the LDA results in better
recognition rates than LDA. The main problem with LDA is, just as in PCA, the
euclidean consideration of the data space. This property causes the method to fail
in cases the data points lie in a non-linear subspace, which is most of the time
the case in face data. Another holistic approach, which is called ICA (Independent
Component Analysis) [32], minimizes higher order dependencies and finds a subspace
along which the data becomes statistically independent after projection. In [33],
authors used the neighbourhood structure of the original data space to determine the
underlying non-linear subspaces. They generated Laplacianfaces using LPP (Locality
Preserving Projections) and obtained better results under varying pose, expression and

illumination.

In [34], a (SVM) Support Vector Machine is used with a binary tree recognition
strategy. Heisele et al. [35] presented a component based method in which facial
features are located, extracted and then combined into a single vector, which is then
classified by a SVM. They also propose two global methods, both of which are

outperformed by the component based method.

Another common approach for face recognition has been to use feature based methods.
These methods involve extracting local descriptors from the images and using them for
classification. An earlier example to these methods is Local Feature Analysis [36], in
which local features are extracted using a dense set of local-topological fields. In
another well-known feature based method called Elastic Bunch Graph Matching [37],
a face is represented as a topological graph. Each node of this graph is a facial
landmark (e.g. eye, nose, etc.) and the edges are labeled with 2D distance vectors.
At each node, Gabor filter responses, which are called jets, are computed to obtain

a local descriptor. T. Ahonen et al. [4] proposed another feature based method that

uses weighted regional histograms of Local Binary Patterns (LBP) [38], which yielded
impressive results on the FERET [39] database. They used a nearest neighbor classifier
as the classification algorithm and Chi-square distance as the distance metric. In [40],
face recognition is transformed into a two-class problem by classifying every two face
images as intra-personal and extra-personeal ones. Adaboost algorithm is used to learn
a similarity for every image pair. The Chi-square distance between corresponding LBP
histograms of two face images is used as discriminative feature for intra/extra-personal
classification. In [41], another set of features called Local Derivative Patterns (LDP)
are proposed, that takes into account higher-order local patterns. Baochang et. al [42]
introduced a novel descriptor called HGPP (Histogram of Gabor Phase Patterns) to
represent faces. In HGPP, the quadrant-bit codes are first extracted from faces based
on the Gabor transformation. Global Gabor phase pattern (GGPP) and local Gabor
phase pattern (LGPP) are then proposed to encode the phase variations. They are both
divided into the nonoverlapping rectangular regions, from which spatial histograms
are extracted and concatenated into an extended histogram feature to represent the
original image. Recognition is performed by using a nearest-neighbour classifier. In
another recent work given in [43], the authors analyzed two moment based feature
extraction methods, namely, Zernike moments and Complex Zernike moments for face
recognition. They found that Complex Zernike moments perform not only better than
Zernike moments, but also it is the descriptor that gives best recognition rate amongst

the descriptors well known for face recognition.

There were no serious attempts to accelarate the feature extraction methods utilized by
the face recognition algorithms using GPUs to date. On the other hand, there have been
efforts to accelerate some of the classification algorithms, which are used during the
classification process of face recognition algorithms. One example of these algorithms
is the k-nearest neighbour (k-NN) algorithm. Different k-NN algorithms attempted
to reduce the number of distance calculations to be performed. In [44] and [45], this
is performed by constructing kd-tree where each node is a training point. Once the
tree is constructed, a search can be performed very efficiently over only the closest
neighbours of a point. The problem with this approach is that it reqires complex data
structures and recursive traversal algorithms, none of which is suitable for a GPU

implementation. In [46], the authors pointed out that if the number of dimensions

exceeds 10 to 20, searching in kd-trees and related structures involves the inspection of
a large fraction of the database, thereby doing no better than brute-force linear search.
They proposed a scheme for approximate similarity search based on hashing. During
training, a method called locality sensitive hashing (LSH) uses several hash functions
to bin similar training points together. Classification of a query point can then be
accomplished by hashing the point and retrieving elements stored in the bin that would

contain the hashed query point.

CUDA accelerated implementations of the brute-force k-NN algorithm are given in

[47] [48]. Both authors reported better results than a CPU using a GPU.

1.2 Organization of the Thesis

This thesis is organized in the following manner: Chapter 2 provides the background
information required to understand the rest of the thesis. Details about both the face
detection and face recognition algorithms are given along with an introduction to GPU
architecture and the CUDA platform. Brief information about some other GPGPU
frameworks are also given for the sake of completeness. Chapter 3 contains detailed
information about the GPU implementations of the algorithms covered in this work.
Alternative approaches for parallelization are also discussed, along with the extension
of the GPU implementations to make use of multiple GPUs. Chapter 4 discusses
the experimental results obtained from all implementations and compares the results
obtained using GPU with those obtained using CPU to show how accurate and fast the
proposed GPU implementations are. Chapter 5 concludes the thesis, provides closing

remarks and shows future directions.

10

2. BACKGROUND

This chapter includes all the background information required to understand the rest of
the thesis. Detailed information about the implemented face detection and recognition
algorithm are given in relevant subsections. An introduction to the GPU architecture,
CUDA and other GPGPU frameworks are also given so that the jargon used and
explanations given in the following sections can be understood and the thesis becomes

self-contained.

2.1 MCT Based Face Detection

This section includes the information required to understand the testing phase of the

face detection algorithm for which a CUDA implementation is developed.

2.1.1 MCT based weak classifiers

MCT [1] is a transform that generates a binary number from the pixel values in a given
neighbourhood N. The binary value corresponding to a pixel location is obtained by
comparing all pixel values on a neighbourhood centered on that pixel with the mean
of all pixel values in the neighbourhood in row-major order. Let N(x) be a spatial
neighbourhood centered at the pixel location x and I(x) be the mean of the pixel
intensity values on this neighbourhood. If () is the concatenation operator, then the

MCT can be defined as follows:

L(x) = Q) ¢I(x),1(y)) (2.1)

yeN

where the comparison function ¢ (I(x),I(y)) is defined as

1, I(x) < I(y)

) (2.2)
0, otherwise

The definition of MCT does not put any restrictions on the size of the neighbourhood,

but for the purposes of object detection, the size of the neighbourhood is chosen as

11

3 x 3, because using larger sizes lead to memory inefficient weak classifiers as one can

see later in this section. When a 3 x 3 neighbourhood is considered, the resulting MCT

value becomes a 9 bit string that can take values in the range [0, 510] when converted

to a decimal value. These values correspond to local structure kernels, some of which

are shown in Figure 2.1.

el

.
al
-

Figure 2.1: Some of the possible local structure kernels in a 3 x 3 neighbourhood [1].

These kernels can code information about the structures like edges, ridges, etc. in

the image in binary form. An example of computing the MCT value from a 3 x 3

neighbourhood is shown in Figure 2.2.

29 | 19 | 46
28 | 25 | 5
15| 9 | 76

Mean = 28

1 0 1
e -
0 0 0
R -->
0 0 1

-

—> (101000001), = 321

Figure 2.2: MCT Computation example in a 3 X 3 neighbourhood.

A MCT based weak classifier hy consists of a coordinate pair x = (z,y) relative to

the origin of the scanning window and a 511 element lookup table. The coordinates

specify the center location of the neighbourhood that needs to be used when calculating

12

the MCT value. The detector uses a base resolution of 24 x 24 and since MCT values
cannot be calculated at the edges and corners, total number of different values x can
take is limited to 22 x 22 = 484. The lookup table contains a weight for each kernel
index 7y such that 0 < v < 510. The output of a weak classifier on a window in the
input image is determined by defining a 3 x 3 neighbourhood centered at the location
x, calculating the MCT value which is equal to the v index, and getting the value from

the lookup table that corresponds to 7.

An important advantage of MCT based weak classifiers is their robustness to
illumination variations, which are commonly simulated by smooth, linear monotonic
transformations [1]. Since the MCT is defined in a small neighbourhood, the order of
its bits does not change after the application of such a transform and makes the detector
more robust to illumination variations without bringing additional computational
overhead. This property can be seen clearly from Figure 2.3 that shows the fact that
results of applying MCT to two face images having very different illumination levels
are nearly identical. Also, MCT based features are very easy to compute, because once
MCT is applied to the grayscale input image, computing the value a weak classifier

takes on a window becomes a matter of doing a single memory lookup.

Figure 2.3: Illumination invariance of the MCT.

2.1.2 Classifier cascade

The detector has a cascaded structure as in [3], but has fewer stages because of the
superior distinguishing ability of MCT based weak classifiers and a different learning
algorithm. Each stage contains a strong classifier containing a number of weak

classifiers, each of which having a different x position. Maximum number of allowed

13

different positions in each stage is given as input to the training algorithm as explained

in [1]. H;(I"), the strong classifier of the j. stage, is defined as follows:

Hi(D) =) h(T(x)) 2.3)

xEW'
where W’ C W is the set of unique positions used by the weak classifiers hy in the
strong classifier. A window W passes the j. stage if the sum of the responses of
the weak classifiers on that window is less than or equal to the stage threshold T}.
Formally, stage j allows the window to pass if H;(I') < T;. Stage thresholds 7 are
tuned after the strong classifiers are trained using a set of samples not used during
training. A window is classified as the searched object by the algorithm when it passes

all stages.

The cascade used in this work has 5 stages utilizing 10, 20, 40, 80, and 217 positions,
respectively, as shown in Figure 2.4. The maximum number of possible positions
allowed for the stages were 10, 20, 40, 80 and 484 for the stages in question. It should
be noted that even though all 484 positions were allowed to be used in the last stage,
only 217 of them are utilized by the training algorithm. During training, all stages
were trained on the same positive set consisting of 8400 manually collected and scaled
images of frontal faces with limited variance in pose, expression and illumination.
40000 negative samples were used for training each stage. These samples were
obtained by using the partial cascade trained after each stage on 10000 large images
collected from the internet that do not contain any faces and selecting the windows
that are misclassified. This training method, which is adopted from [3], is the only
difference between the implementation used in this work and the one explained in [1].
Since the focus on this thesis is on the testing algorithm and not the training stage,

things explained this thesis can be used with a cascade trained using the method in [1]

as well.
Test Window 5-Stage Classifier Cascade
: . ..-" . !::-...'.: E': E..:-: | F..! == =
>l < o Ml il P A T Face
R i i W
Reject Reject Reject Reject Reject

Figure 2.4: The 5-stage cascade used in this work.

14

2.1.3 Scanning process

The scanning process starts with the construction of an image pyramid from the input
image. Then MCT is applied to every image in the pyramid to obtain the transformed
image pyramid. The whole image pyramid is scanned with a sliding window and at
each location the classifier cascade is used to find out whether the window contains the
searched object or not. Then multiple detections whose area of intersection is close
to the total area of the detections are grouped and merged into a single detection. As
in any other sliding window approach, there are scanning parameters like horizontal
and vertical step sizes (Az and Ay), the ratio between consecutive scales, or the scale
factor (s) and the starting scale. In this work, we choose Az = Ay =1, s = 1.15 and
use a starting scale of 1, which results in a computationally demanding, fine-grained

scanning process and makes it possible to detect faces as small as 24 x 24 accurately.

2.2 LBP Based Face Recognition

This section includes the necessary information required to understand the face

recognition algorithm for which a CUDA implementation is developed.

2.2.1 The LBP operator and its extensions

The original LBP operator [49] generates a 8 bit binary number by thresholding
the pixels in a 3 x 3 neighbourhood with the center pixel as shown in Figure 2.5.
The operator is later extended to handle different neighbourhood sizes by using
circular neighbourhoods and bilinear interpolation [38]. The recommended notation to
describe such neighbourhoods is (P, R), where P is the number of sampling points on
the circle and R is the radius of the circle. Figure 2.6 shows the location of the sampling
points in a (8, 2) neighbourhood. Values at non-integer coordinates are computed using

bilinear interpolation.

Another extension to the LBP operator is the usage of uniform patterns [38]. A
binary pattern is called uniform if it contains at most two bitwise transitions when
the bit sequence is considered to be circular. For example, the patterns 00000000
(0 transitions), 01110000 (2 transitions) and 11001111 (2 transitions) are uniform

whereas the patterns 11001001 (4 transitions) and 01010011 (6 transitions) are not.

15

32 | 19 | 48 1 0 1
Threshold
25 | 25 5 |—— 1 0 —J) (10101001), =169
15 9 76 t 0 0 1
/

Figure 2.5: Example LBP computation.

=
R3NES

@]

Figure 2.6: A circular (8, 2) neighbourhood.

With 8 sampling points, the number of different uniform patterns is 58. This leads
to a 59 bin histogram when all the non-uniform patterns are considered to be in the
same bin. When 16 sampling points are used, the number of bins becomes 243. The
usage of uniform patterns is motivated by the fact that most patterns in facial images
are uniform. In [4], the authors have found that, 90.6% of the patterns in the (8,1)
neighbourhood and 85.2% of the patterns in the (8,2) neighbourhood are uniform in
case of preprocessed FERET [39] facial images. The usage of uniform patterns is

indicated with the notation (P, R)“2.

2.2.2 Construction of the feature vector and classification

In [4], to obtain a global description of the face that also contains information on
a regional level, the input image is divided into m regions: R;,j = 1,...,m. The
regions may overlap or have different sizes. A histogram is generated from each region
and then all histograms are combined to obtain the final feature vector. Classification
is performed with a nearest neighbour classifier and the distance metric used is the
chi-square distance. Furthermore, a weight w; is determined for each region R;
according to its importance in classification, which are then utilized during the distance
computation. A straightforward way to determine these weights is measuring the

classification performances in cases when only a single region is used when creating

16

the feature vector. The weighted chi-square distance is defined as

)2
Y2 (S, M) Zw] 5” +M”) (2.4)

where S and M are the histograms to be compared and 7 and j denote the i-th bin in

the histogram corresponding to the j-th region.

2.3 A Brief Overview of the GPU Architecture and the CUDA Platform

This section contains information about the GPU hardware, CUDA and GPGPU
frameworks in general, that are required to understand the details of the CUDA

implementationd developed in the following sections.

2.3.1 GPU architecture

With the increasing demand in real-time, high-definition 3D graphics, the GPU has
evolved into a highly parallel, multithreaded, manycore processor with tremendous
computational power as shown in Figure 2.7 that compares the floating performances
of CPUs and GPUs released in the last few years. The reason behind the discrepancy in
floating-point capability between the CPU and the GPU is that the GPU is specialized
for compute-intensive, highly parallel computations and therefore designed such that
more transistors are devoted to data processing rather than data caching and flow

control [50].

The massively parallel structure of the GPU resembles a supercomputer. The GPU
consists of a set of streaming multiprocessors (SMs) that contain a number of Single
Instruction Multiple Data (SIMD) cores called "CUDA cores". The number of SMs
vary between different GPUs. For example a GTX 580, which is the GPU used as a
testbed for this research, contains 16 SMs, each of which contains 32 CUDA cores,
resulting in a total of 512 CUDA cores [50]. These CUDA cores enable the GPU
to execute hundreds of threads concurrently, making the GPU well-suited to solve
problems that can be expressed as data-parallel computations. The GPU is targeted
for data-parallel applications that involve massive parallelism, heavy computation and
little logic. Therefore, as stated before, most of its die area is devoted to computational
units rather than memory and hence it hides the memory access latencies with

calculations instead of big data caches. Because of the very limited area devoted

17

Theoretical
GFLOP/s
3250

3000
NVIDIA GPU Single Predsion

2750 =g NVIDIA GPU Double Predsion
2500 =g==|nitel CPU Single Predsion
=t [tel CPU Double Predsion

Tesla C2050 Sandy Bridee

TeslaC1060

- Westmere
Sep-FENtUM4 0 04 Mar-071aPertown o 59 Aug-12

Figure 2.7: Floating point performances of various CPUs and GPUs (Courtesy of
NVIDIA).
for memory, each SM in the GPU has very limited amount of registers and on-chip
memory (shared memory) available to be shared among the threads that reside in it.
Since these on-chip resources are very limited, they need to be used very efficiently.
There are also off-chip, global resources available to all SMs. These include the
texture, constant and the global memory. All three of them are implemented as off-chip
high-latency DRAM, but both the texture memory and the read-only constant memory
are cached and therefore they are faster to access if used properly. This memory

arrangement is visualized in Figure 2.8.

2.3.2 CUDA platform

The CUDA platform exposes the processing power of a GPU to the developers and
allow them to write massively parallel code for general purpose applications that can
take advantage of the properties of a GPU like massively parallel structure, great
floating point performance, transparent scalability and hardware scheduling with zero

overhead. The CUDA platform refers the GPU and CPU as the "host" and "device",

18

Grid

Block (0, 0) Block (1, 0)

Host

Figure 2.8: CUDA memory hierarchy (Courtesy of NVIDIA).

respectively. A CUDA program consist of the host code that runs on the CPU and the
device code that runs on the GPU. In CUDA terminology, a kernel refers to a chunk
of code that gets executed on the GPU. Parallel processing is started by launching a
kernel from a CPU thread as a grid containing a 1D or 2D array of thread blocks, each
of which contains a 1D, 2D or 3D array of threads. Figure 2.9 shows a sample 3 x 2
grid containing 4 x 3 sized blocks. Each thread in the grid executes the same chunk
of code and is identified by its block index and thread index, which together form a
unique thread id. If the total number of blocks in the grid is denoted by grid_size and
the total number of threads in a block is denoted by block_size, then the total number

of threads in the grid can be calculated as grid_size x block_size.

When a kernel is launched, the thread blocks are distributed to SMs with available
resources. Threads of a block execute concurrently on one SM and a single SM can
execute up to 8 blocks concurrently, depending on the resource requirements of each
block. As thread blocks terminate, new blocks are launched on the vacated SMs. The
hardware further divides consecutive threads with increasing indices in each block to

groups of 32 threads called warps. A SM manages and schedules threads using warps

19

Grid

Block (0, 0) = Block (1, 0) | Block (2, 0)

Block (0, 1) Block (1, 1) ‘Block (2, 1)

Block (1, 1)

Figure 2.9: A sample launch grid (Courtesy of NVIDIA).

as the smallest unit. Threads in a warp execute the exact same instruction. In cases
where the threads in a warp diverge because of a data dependent branch, the hardware
groups the threads according to the path they will take and execute these groups serially
until reaching a point where both groups can join and continue to execute the exact

same instructions.

These abstractions provide fine-grained data and thread parallelism, nested within
coarse-grained data and task parallelism. They guide the programmer to partition
the problem into coarse sub-problems that can be solved independently in parallel
by blocks of threads, and each sub-problem into finer pieces that can be solved
cooperatively in parallel by all threads within the block. Another result of this
abstraction is transparent (or automatic) scalability to future GPUs. Since blocks
are independent from each other and can be executed any time in the available

SMs, concurrently or sequentially, a CUDA program can execute on any number

20

of processor cores as illustrated by Figure 2.10. The CUDA runtime takes care of
the distribution of the blocks to the available cores therefore and only the runtime
system needs to know the physical processor count and not the developers themselves.
This feature makes it possible for the applications written in CUDA to run faster

automatically in faster devices, even in the ones that are not yet released.

GPU with 2 Cores GPU with 4 Cores

Core 0 Core 1 Core 0 Core 1

Core 3

il

Figure 2.10: Transparent scalability demonstrated (Courtesy of NVIDIA).

2.3.3 Memory types in CUDA

The CUDA platform provides 5 types of memory to be used in GPGPU applications.
The fastest one among them are the registers, which are on-chip. When a kernel is
launched, the runtime distributes the registers available in each SM to the threads
belonging to the blocks running on that SM. Each thread has its own set of registers
and cannot write to or read from the registers belonging to other threads. Registers are
the scarcest resource in the GPU and therefore are most of the time the limiting factor

on the maximum number of threads that can reside in a SM.

21

Next comes the shared memory, which is also on-chip. Shared memory is banked
and as long as there are no bank conflicts in the access patterns, it is as fast as the
registers. Even though the size of the shared memory is larger than the register space,
it is still very limited (16KB per SM in devices of compute capability 2.0). The most
important property of the shared memory is that it is shared among the threads of a
block. Therefore it is very useful for tasks like caching the data required by all threads

in the block or for accumulating temporary results.

The other type of memory is global memory, which is implemented as off-chip high
latency DRAM. The size of the global memory is very large (in the order of GBs), but
its access latency is about 100-400 times longer than that of the shared memory. In
order to make use of the global memory efficiently, accesses to it should be coalesced.
Simultaneous memory accesses by threads in a half-warp can be coalesced into a single
memory transaction of memory segments. On devices with compute capability 1.3 and
higher, coalescing is achieved for any pattern of addresses requested by the half-warp
as long as the words accessed by all threads lie in the same segment. In older devices,
not only all words have to be in the same segment, but also consecutive threads should
access consecutive words. The segment size is 32,64 and 128 bytes for accessing
8-bit, 16-bit and 32/64-bit words, respectively. If the accesses are not coalesced, for
instance, if the threads in a half-warp access n different segments, then n different

memory transactions will be issued, leading to poor memory bandwidth utilization.

In cases when performing coalesced memory accesses is not possible, one can use
one of the two alternatives to global memory. The first one is the texture memory.
Texture memory is not exactly a new memory location but a special memory layout.
The data resides still in the global memory, but it has a cache associated with it
that is called the texture-cache. Texture cache has about 6-8kb size per SM and is
optimized for 2D spatial locality, which prevents unnecesarry memory transactions
when accesses are spatially local. Since the main purpose of the texture-memory is
storing 2D textures, it has dedicated hardware to perform texture caching with the
options of bilinear interpolation, clamping and range normalization, all of which can
be very beneficial in some applications. A similar memory location is the constant
memory, which has another cache, the constant-cache associated with it. This memory

space is typically used for storing constant data that will not change during the lifetime

22

of the application. The global, texture and constant memories have application-wide
lifetime, meaning that data stored in any of them will persist during any number of grid

launches until the application terminates.

The last type of memory is the local memory, which is essentially a location in global
memory that is used to store local arrays and additional variables if there are not enough
registers available. Table 2.1 summarizes the properties of the memory types in the

GPU.

Table 2.1: Memory types in CUDA.

Memory Location Cached Access Lifetime
Registers On-chip No Read/Write Thread
Shared On-chip No Read/Write Block
Global Off-chip No Read/Write Application
Constant Off-chip Yes Read-only Application
Texture Off-chip Yes Read-only Application
Local Off-chip No Read/Write Thread

2.3.4 Compute capability

Each new generation of NVIDIA GPUs have additional capabilities resulting from
architectural improvements and more resources compared to the older generation
devices. The capabilities of a device can be determined from its compute capability,
which is a major revision number, followed by a minor revision number. Currently, the
newest devices have the compute capability 2.0 and 2.1 (Fermi architecture) which are
very suitable for GPGPU applications. The CUDA implementations proposed in this
thesis do not assume anything about the GPUs the algorithms will be executed on and
do not use any property introduced after compute capability 1.0. GTX 580, the GPU

used in this thesis is of compute capability 2.0.

2.3.5 Occupancy

Occupancy is a measure of utilization of the SMs in the GPU. It is affected by many
factors, such as the selected block and grid dimensions, registers and shared memory

used by a block and the compute capability of the device.

Occupancy is defined as the ratio of the number of active warps per SM to the

maximum number of active warps. A higher occupancy results in the hardware being

23

better utilized and the memory latency being better hidden. Even though increasing the
occupancy improves the performance of the CUDA applications in general, there can
be cases where higher occupancy may lead to lower performance. Therefore achieving

%100 occupancy is not the primary concern during CUDA application development.

As stated in Section 2.3.1, each SM has a limited number of registers and shared
memory that are shared among the blocks being executed in it. The maximum number
of threads and blocks that can reside in a SM is also limited, latter of which is 8 in the
current GPUs. All these properties, which change with the compute capability of the
GPU, limit the maximum occupancy a kernel can have in a given GPU. It is up to the
developer to select the block and grid dimensions with care and pay close attention to

the register and shared memory usage of each kernel.

2.3.6 Multiple GPUs

CUDA supports the use of multiple GPUs in a single application. The GPUs are
completely independent of each other, with their own memory space and instructions.
Each GPU must be programmed and setup separately. Generally, a CPU thread is
launched to manage each GPU. Starting from CUDA Toolkit 4.0, it is possible to use

multiple GPUs with a unified address space.

2.3.7 Heterogeneous programming

A CUDA program consist of the combination of host and device code. Typically the
host code performs sequential tasks that exhibit little to none parallelism and calls
functions from the CUDA runtime or driver API to send commands to the GPU or
perform memory transfers, while the device code performs other tasks that involve high
amount of parallel computation. A CUDA application can contain arbitrary number of
kernels and can launch them on the GPU at any time, in any order. Since kernels
are launched asynchronously, the CPU can either wait for the GPU to finish its job or
continue to do processing until reaching a point where results from the GPU are needed

to continue execution. Table 2.11 shows the flow of an example CUDA application.

Host code is written in standard C/C++, while kernels and other device code are written
in CUDA C, an extended version of the C language. Both the host and device code are
sent to NVCC (NVIDIA Compiler Collection) for compilation. NVCC seperates the

24

C Program
Sequential
Execution

Serial code

Parallel kernel

Eernell<<<>>> ()

Serial code

Parallel kernel

Eernell<<<s>>>()

Y

Figure 2.11: Heterogeneous programming with CUDA (Courtesy of NVIDIA).

host and device sections of the code, compiles the device code to be run on the GPU

and sends the host code to the hosts compiler for further compilation. The host code

runs as an ordinary CPU process.

2.4 Other GPGPU Frameworks

2.4.1 OpenCL

OpenCL (Open Computing Language) is an open specification developed by Apple for
developing applications for heterogeneous platforms containing CPUs, GPUs DSPs
and other processors. It is maintained by the Khronos Group. It provides a C99 based
language with some extensions for writing kernels and a runtime API for managing
the data transfers and execution in paralel processors. The most important property
of OpenCL is that it is a truly cross-platform GPGPU framework. Each vendor (e.g.
NVIDIA, AMD) develops its own implementation of the OpenCL specification and
provides the developers with the necessary tools to develop GPGPU applications with
them. OpenCL is similar to CUDA in many ways, but has lower level programming
constructs and hence is harder to use. Also, even though it is an open platform that has
been available since 2008, it has not developed as fast as CUDA. Therefore it is not

used in the work done in this thesis.

2.4.2 DirectCompute

DirectCompute is a dedicated subset of the DirectX 11 API (Application programming
interface) developed by Microsoft for GPGPU programming. Similar to OpenCL
and CUDA, this API is used on the CPU side, to set up and execute the kernels on
the GPU. The kernels are written in a high level language called HLSL (High Level
Shader Language) very similar to C++, which is then compiled and sent to the GPU
to utilize its compute shader stage. Since DirectCompute is a part of the DirectX API,
it is currently only supported on Windows Vista and Windows 7. Linux or any other

operating systems are not supported.

26

3. GPU IMPLEMENTATION

In this section, details about the GPU implementations proposed in this thesis are
given. The steps followed during the parallelization and CUDA implementation
process are given for both the detection and recognition algorithm in the relevant
subsections. Detailed explanations are provided about some important decisions that
need to be made during the design and development process along with the reasoning

behind them and their final impact on the performance of the resulting system.

3.1 Face Detection

This section contains detailed information about the CUDA implementation developed

for the MCT based face detection algorithm.

3.1.1 Preprocessing

In order for the detector to detect objects at various sizes, the input image needs to be
scanned in multiple scales. In [3], this is performed by scanning the same input image
with up-scaled classifiers. Even though this approach is very efficient for a CPU based
implementation, it is not suitable for a GPU based one. The most important reason of
this is that, as the classifiers get scaled up, the access pattern to the images in the GPU
memory becomes very sparse. As described in Section 2.3.3, sparse memory accesses
to global memory cannot be coalesced and therefore are very slow. Storing the input
image in the texture memory does not help either, because of the very high number
of cache misses resulting from the memory accesses that are not spatially local in the
2D space. Therefore the approach followed in this implementation is to scale the input
image down multiple times and construct an image pyramid that will be scanned only

once by the detector using a fixed size window.

The whole image pyramid is stored as a single large image as shown in Figure 3.1.

Even though this layout has empty regions that increase the number of windows

27

scanned, it greatly simplifies the scanning process described in the next section. Also
the regions having a constant gray level are easily eliminated by the first stage of the
cascade. Therefore the performance loss that comes with the increased number of
windows is eliminated by the performance gain from the simple yet efficient scanning

process that this sacrifice makes possible.

Figure 3.1: Image pyramid.

28

The texture memory of the GPU has the ability to make linear interpolation
automatically when the memory is addressed using floating point coordinates. This
proves to be very useful for constructing the image pyramid quickly. At each level
of the pyramid, the downscaled image is constructed by binding the image from the

previous level to a texture and then sampling it according to the scale factor.

As described in Section 2.1.1, evaluation of a MCT based weak classifier becomes a
simple memory lookup when the MCT values are precomputed. This is achieved by
applying MCT to the whole image pyramid. Application of MCT is performed by
launching a grid of thread blocks with a block size of 16 x 16 that operate on the
image pyramid. Rather than binding the original image pyramid that resides in global
memory to a texture, shared memory, which is on-chip hence as fast as the registers,
is utilized as a custom managed cache to further speed up the processing. Each thread
block pulls in a patch from the global memory to its dedicated shared memory before
further processing. This is performed by making each thread in a block pull in a single
pixel from the global memory. Since the MCT computation at the edges and corners
requires additional pixels, threads at the edges pull in one additional pixel, and threads
at the corners pull in three additional pixels. After getting the data to shared memory,
threads in each block are synchronized with each other using the __syncthreads()
primitive of CUDA to make sure that all the required data is pulled in to the shared
memory before the beginning of the MCT computation. Then all threads compute
the value corresponding to their location and write the result to the device memory
allocated for the transformed image pyramid. At this point, the original image pyramid
is no longer needed and hence can be discarded. In the remaining section of this
section, the term "image pyramid" refers to the one containing the result of the MCT,

which is shown in Figure 3.2.

The other preparation that needs to be done before beginning the scanning process is
loading the classifier cascade into the device memory. During the scanning process,
the cascade data will be heavily accessed and therefore the speed of accessing them
is crucial for the performance. Since every thread will access the classifier data
sequentially in the same order until the classification ends, the best location for the
cascade would be the constant memory because of its broadcasting ability that allows

it to serve multiple threads when all of them issue a read request from the same

29

Figure 3.2: Result of applying MCT to the image pyramid.

memory address. Unfortunately, the size of the constant memory is too small store
a cascade containing more than 32 weak classifiers. Therefore the cascade is stored in
the texture memory as a 2D floating point texture. Each row starts with a single floating
point value containing the = and y coordinate of the weak classifier in its upper and
lower 2 bytes, respectively. Rest of the row contains the weights of the lookup table.

Visualization of this layout can be seen in Figure 3.3. This approach helps to reduce

30

texture cache misses by making the accesses to the feature weights as spatially local as

possible in the 2D space.

N stage cascade in : A stage containing M

texture memory / weak classifiers
i

I

:

Stage 1] HE? 511 weights :
Stage 2 Lo X2 511 weights :
: i : |

I

Stage N i Xm 511 weights :
U

\

Weak cIassifieAr'"}’ ''''''''''' l __________ ‘
Look-up tables

positions

Figure 3.3: Memory layout of the the cascade data in texture memory.

3.1.2 Detection

The detection process involves scanning the image pyramid with a sliding window of
fixed dimension, classifying the window at each location and writing results back to
the device memory. There are various ways to parallelize this process and map it to
the resources of the GPU. We experimented with various methods and thread/block
arrangements as detailed in section 3.1.4 and found that the best performance overall
is obtained when making each GPU thread classify a single window on the image
pyramid. In this arrangement, a kernel is launched with a grid having as many threads
as the number of windows that needs to be classified. The block size is selected as
16 x 16 because it results in the highest occupancy, hence in the best utilization of
the GPU. Figure 3.4 shows the arrangement of the thread blocks on a sample image

pyramid.

One should immediately notice that this arrangement implicitly introduces a limitation.
If d,, and d}, is the width and height of the image containing the pyramid and d denotes
the width or height of the square window size at the base resolution, the following

conditions should be satisfied:

dy —ds+1 .
“16Ar an integer 3.1
dh - ds +1 . .
W = an integer 3.2)

If this is not the case, then the image containing the pyramid needs to be padded

accordingly. Otherwise, thread blocks at the right and bottom edges would have more

31

Figure 3.4: Arrangements of the thread blocks during the scanning process.

threads than the number of windows they need to classify and therefore the kernel
would have to check whether the window corresponding to a thread exists or not.
This conditional check would result in warp divergence and since the execution of
the threads in such warps gets separated to 2 groups by the runtime and serialized, the

performance would slightly decrease.

32

When a window is classified as the searched object, its coordinates are written to
the corresponding location in a preallocated 1D array of floats that resides in global
memory and has the same number of elements as the number of windows classified.
Each element of this array can store the x and y coordinates of a window in its upper
and lower two bytes, respectively. It is not known beforehand to which elements in
this array the results will be written to. Therefore it is not possible to coalesce these
global memory accesses, leading to long memory access latencies. Since the windows
classified as positive is so rare, the GPU hardware easily finds another warps to execute
until the memory access is finished, hiding the memory latency. Therefore the effect

these access times have on the performance of the system is negligible.

3.1.3 Splitting the cascade into groups

As a natural consequence of using a cascaded classifier structure, the number of stages
that will be evaluated in a window cannot be predetermined. Threads that classify their
windows as negative in early stages have to wait idle until all other threads in the same
block finish their tasks, after which the processing of a new block can be started. This
results in under-utilization of GPU resources, especially in cases where vast majority
of the threads in a block terminate early and wait for a small number of threads to
finish. It also leads to divergence within warps because threads are grouped by the
hardware according to the stage after which they terminate the classification process

and the execution of these groups are serialized.

This problem can be dealt with by means of splitting the cascade into several smaller
groups containing one or more stages and performing a separate kernel launch for each
one of them. Deciding on how many times and at which locations the split should made
is an optimization problem, which is easier to solve in the case of MCT based cascades
because of their low stage numbers. Experiments showed that it is not beneficial to
split the 5-stage cascade used in this work to more than 2 groups. Figure 3.5 shows
the detection times according to the index of the stage after which the split is done.
These timings do not include preprocessing times, because they are irrelevant for the

comparison in question.

33

w
wv

“n 30 * Tee., essee
2'0 oo--o-oo-co.oooo..ot‘
é 25 ..."oa.-o-OO"’
g = 320x240
£ 20
' - — - 640x480
'E --_---_________------- - = 720x540
210
3 - - === 1280x720
5 e e 1920x1080
0 } } |
1 2 3 4

Split Location

Figure 3.5: The effect of split location on the detection times.

Values in Figure 3.5 shows that the best location for the split is after the 2nd stage.
Figure 3.6 shows the 2 partial cascades obtained after splitting the cascade into 2 parts.

Each kernel launch utilizes only one of the cascade parts.

Kernel 1 :_’ I l
! - Lt . . =" !
\ l /
Kemel2 — ¥ - I :
ermne ; i AT i
N . . " m, T e .
|. = =" - l :"‘- " 1 ;% _'
N L

Figure 3.6: 2 partial cascades obtained after doing the split. Each kernel uses a
separate part for classification.

Implementing the scanning process using two smaller cascades requires two different
kernel launches. The first kernel, which is the same as the one before, classifies all
windows using the first part of the cascade and writes the coordinates of the detections
to a preallocated array containing dummy values in the global memory. Then another
kernel is launched with a 1D grid of thread blocks, each one containing a 1D array
of 256 threads. Each thread in the grid classifies a single window whose coordinates
are fetched from the array filled by the first kernel. The final classification results are

written back to another array containing dummy values in global memory.

This new scheme introduces another problem. The array generated by the first kernel
contains sparse data. Most of its elements still contain dummy values that were set

when it is first allocated. A good solution to this problem is using a stream compaction

34

algorithm that copies all elements having meaningful values to the beginning of the
array. Stream compaction can be performed on the GPU in 3 steps as shown in Figure
3.7. In the first step, each element in the input array is tested using a predicate and a
mask array is obtained. In the case of object detection, this predicate is a function that
checks whether the value of the cell is different than the dummy value. In the next step,
the mask array is prefix summed. The elements of the resulting array show to which
location each element should be copied. The final step involves doing a copy operation
according to the indices found in the previous step and obtaining an array containing

the meaningful values at its beginning.

Step 1

Step 2

Step 3

Figure 3.7: Steps of the stream compaction algorithm. Each element in the input array
contains either a dummy value (shown as a dash), or a (z,y) coordinate
pair.

This new approach does not completely eliminate the problem, but reduces it
significantly. Vast majority of the windows get eliminated after the first 2 stages and
therefore by launching a new kernel after the 2nd stage, the performance of the system
is significantly improved, especially for larger resolutions. Figure 3.8 shows the steps

of the whole scanning process for the first 10 windows in the input image.

35

Kernel 1 Compacted Kernel 2
- Output -
Window |Thread Array Output Window | Thread
Origin Id SC* Array Origin Id |SC*
0,0 0) - > 1,0 a 1,0 0)
1,0 3,0
- 4,0
3,0 8,0
4,0 -
5,0 5 - -
38 (75 - - *Stream
80 - Compaction
2 9 - .
10,0 10 - -

Figure 3.8: Steps of scanning with 2 kernels. Window locations that are detected as
positive by the corresponding threads are highlighted.

3.1.4 Alternative approaches

One possible alternative to parallelizing by assigning each window to a single thread
is, to make each thread classify multiple windows. The most important issue with this
approach is the distribution of the windows to the threads, because it requires either
inter-thread communication, or large amount of shared memory to be done properly,
both of which is expensive in CUDA. The performance is somewhat improved when
using smaller block sizes, but the results are not as fast as the other approach. Therefore

it is preferred to use the simpler solution.

Another alternative is increasing the granularity of the parallelism by assigning each
block to a single window location and making the threads in a block evaluate different
weak classifiers. This approach completely eliminates the under-utilization problem as
long as the number of weak classifiers in the stage is more than the number of CUDA
threads. This immediately shows that the MCT based cascades are not suitable for
this approach because unlike Haar based classifier cascades, even the last stage of the
cascade has at most 484 weak classifiers when the base resolution of the classifiers is
24. Hence no matter how the grid and block sizes are chosen, the resources available

in the GPU becomes heavily under-utilized.

36

3.1.5 Utilizing multiple GPUs

The implementation is extended to reduce the detection times even further on the
devices that have multiple GPUs. Starting from CUDA Toolkit 4.0, it is possible to use
multiple GPUs with a unified address space [50]. In order to support older platforms,
the traditional approach is followed and spawn and M + 1 CPU threads are spawned,
where M is the number of GPUs in the system. The task of the main CPU thread is
acquiring frames from the video stream and doing preliminary computations. Each one
of the other CPU threads performs CUDA runtime calls and memory transfers between
the GPU assigned to it and the host. Each GPU generates several levels of the image
pyramid and scans only those levels. This prevents unnecessary memory transfers
between the host and the device. Since all GPUs need the original image to generate
the levels assigned to them, and the whole cascade data to process these levels, both
the original image and the cascade is copied to the memories of each GPU separately.
Distributing different levels of the pyramid to different GPUs makes it possible to
achieve nearly linear speed-up when the number of levels each GPU will process is
carefully determined. This is achieved by pre-computing the total number of levels the
pyramid will have and size of each of its levels and performing the distribution of the

work according to these values.

3.2 Face Recognition

This section contains detailed information about the CUDA implementation developed

for the LBP based face recognition algorithm.

3.2.1 Feature extraction

Feature extraction involves the computation of LBP values from the input image and
the construction of regional histograms. These two operations can be done in a single
kernel, without requiring to temporarily store the LBP values in the GPUs global

memory, which has very high access latency.

In the proposed arrangement, each thread block computes the histogram of a single

region I7;. This is achieved by making each warp in a thread block compute a per-warp

37

histogram in shared memory, which are then combined by the threads in the block to
obtain the regional, per-block histogram. By constructing the histograms in shared
memory, this method eliminates the need of doing expensive atomic operations in
global memory. The arrangement of the thread blocks for a 130 x 150 input image
generated by the CSU face identification evaluation system (FIES) [51] divided to

7 x 7 regions is shown on the left side of Figure 3.9.

yd WARP 1 ——""/J/IL A
’,,,4—"’WKR§‘2’ |
WARP 3
I
WARP 4
. WARP 5 — 1
.. WARP 6 m—
WARP 7" | o
~ WARP 8
— WARP 9
WARP10 ™
WARP 11 | e
WARP 12" |y

4————18 pixels—————>p

Figure 3.9: Arrangement of the thread blocks for a sample image divided to 7 x 7
regions. Each warp in a thread block constructs a per-warp histogram for
a 32 pixel area in the corresponding region as shown on the right side of
the figure.

If the number of warps in a block is N, and the number of bins in the histogram is
N, the size of the shared memory required for a single block is NV, x IV}, * 2 bytes,
provided that the histogram values are chosen to be 16 bit integers. Figure 3.10 shows

this memory layout for a single block.

The construction of a per-warp histogram is performed as follows: Each thread in the
block applies the LBP operator to the neighbourhood centered at its location in the
input image. In order to take advantage of the hardware linear interpolation capability
of the GPU during the computation of LBP values, the input image is stored in the
texture memory. The computed LBP value is converted to a uniform LBP value with

the help of a look-up table stored in constant memory. This uniform LBP value is

38

- N, bins >

PER-WARP HISTOGRAM 1
PER-WARP HISTOGRAM 2

N,, warps—»

PER-WARP HISTOGRAM N,-1
PER-WARP HISTOGRAM N,,

Figure 3.10: Shared memory layout for histogram computation

immediately used to update the corresponding per-warp histogram residing in shared
memory. Since more than one thread in the same warp may try to increment the same
bin, the increment operation needs to be atomic. In the case of using a GPU that does
not have the capability to do atomic operations in shared memory, one can fall back to
an alternative method called "tagging" as explained in [52]. Arrangement of the warps

in a sample region is shown on the right side of Figure 3.9.

Before starting to construct the per-block histogram, to make sure that the construction
of all per-warp histograms are finished, the threads in the block are synchronized with
each other using the __syncthreads() primitive of CUDA. Then each block combines
all of its per-warp histograms to obtain the regional histogram and writes the result to

global memory.

3.2.2 Classification using the k-NN algorithm

The simplest approach to implement the k-NN algorithm in GPU is to make each
GPU thread compute distances between two or more feature vectors as in [47]. This
approach leads to good performance when the dimensionality is low. However, in LBP
based face recognition, the dimensionality of the feature vector is high. For example,
using a 7 x 7 grid and (8, 2)“? neighbourhoods (which results in a 59 bin histogram
for each region) for LBP leads to a feature vector length of 2891. Because of this fact,
a different approach is followed that is optimized for working with high dimensional

feature vectors.

39

In order to utilize the GPU resources as much as possible even in cases where the
number of vectors in the database is small, the feature vectors are split to p sub-vectors.
The block sizes are set to be 32 x p and a 1D grid of thread blocks that contains [N/32]
blocks is launched, where N is the number of reference points in the database. The
reason of selecting the block width as 32 is to make sure that a block contains exactly
p warps and each row of threads in the block belongs to a single warp. i-th thread
of the j-th warp computes the distance between the j-th sub-vector of a query point
and j-th sub-vector of the i-th reference point. The computed partial distances are
stored in shared memory. To make sure that all partial distances are computed before
proceeding, the threads are synchronized with each other. Then, the threads in the first
warp of each block sum the p partial distances computed by the p warps in the block
and write the results to global memory. After all distances are computed, another
kernel is launched that finds the index of the minimum (nearest) value. For k > 1,
one can easily construct a loop in which the value at the index found by the previous
iteration is replaced with a very high value and then the index of the new minimum
value is found using the same kernel. However, as far as face recognition is concerned,

the value of k& will in most cases be set to 1.

The query point and region weights are stored in texture memory and constant memory,
respectively, because they are heavily accessed by all threads and their small sizes lead
to nearly %100 cache hit ratio. Accesses to the reference points are coalesced, which
eliminates the need for them to be stored in a cached memory by utilizing the memory

bandwidth very effectively. Therefore the reference points are stored in global memory.

It is possible to extend the implementation to handle multiple query points at once by
making each thread compute distances between a reference point and all query points,
in which case the amount of shared memory requirement will increase. One can also
simply launch the distance calculation and reduction kernels one time for each query
point without doing any modifications in the algorithm, if the number of query points

1s small.

40

4. RESULTS

In this section, the performances of the proposed GPU implementations are evaluated
by comparing their speed and accuracy with those of the corresponding CPU
implementations. All comparions are performed on a desktop PC containing a Intel
Core 15-2500k processor, 3 GTX 580 GPUs and 8GB RAM. The operating system on
the test PC is Windows 7 and the version of the CUDA Toolkit is 4.0.

4.1 Face Detection

The performance of the CPU and GPU implementations are tested both on video
streams of 5 different resolutions and on still images in the CMU+MIT frontal face
test set f [5]. All measurements include memory transfers between the host and the

device.

4.1.1 GPU vs CPU comparison on video streams

Figure 4.1 shows the average number of frames processed per second by the GPU
and CPU implementations on video streams of various sizes. These measurements
include the time required to perform preprocessing and memory copies between the
host and the device, but not the time required for video decoding or displaying.
The multi-threaded CPU implementation uses OpenMP to distribute the processing

to different cores.

As it can be seen from Figure 4.1, even the single-GPU implementation outperforms
the single-threaded and multi-threaded CPU implementations by a factor of 12-18x
and 4-6x, respectively. As the resolution increases, so does the difference between
the speed of the GPU and CPU implementations, clearly showing that a GPU is better
suited to process high resolution videos than a CPU. These results also show that the

performance of the GPU based implementation scales nearly linearly with the number

41

450
400
]
§ 350 320
3 300 i
3 250
a
& 200
© 150
100
42
50 14
0 ;

640x480

3959
5%

S
5%

L
255
b

o
5

=
=

7

e
B

G
5

Fram

S50
fodetetsts

Figure 4.1: Frame rates of GPU and CPU implementations on various input

resolutions.

of GPUs, in contrast to the CPU which wastes considerable amount of time because of

e
<

i
fotele

T
5
s

R
SRS
RS

0

SHIH

ot

F

%3
fotetetetel

Y

B

4

121

Ty

64

14

B CPU (1 thread)
[J cPU (4 threads)
1GPU

B4 2 GPUs

3 GPUs

99
68
35 [y

720x540

1280x720

Resolution

the overhead involved with software scheduling.

In Table 4.1, the preprocessing and scanning times are listed separately for the

single-GPU case.

preprocessing time is comparable to that of the scanning time. As the resolution gets

higher, the difference between the time required to scan the pyramid and perform the

preprocessing increases.

Table 4.1: The preprocessing and scanning times for the single-GPU case.

1920x1080

Values in the table show that for smaller resolutions, the

Resolution Preprocessing Scan Total

[ms] [ms] [ms]
320 x 240 0.54 2.25 2.79
640 x 480 1.32 4.52 5.84
720 x 540 1.54 5.61 7.15
1280 x 720 3.74 11.94 15.68
1920 x 1080 3.88 24.64 28.52

It should be noted that these measurements have been done when using the scanning
parameters given in Section 2.1.3.
drastically just by increasing starting scale to 2, in which case the system will not

be able to detect faces smaller than 48 x 48. This might not be important for some

It is possible to increase the detection speed

applications running on high resolution video streams.

42

4.1.2 GPU vs CPU comparison on still images

The performance of the single-GPU and single-threaded CPU implementations are
tested on the still images in the CMU+MIT frontal face test set. The total time the
GPU needed to process all 132 images in the dataset, excluding the time required to
read the images from disk, is measured as 1.82 seconds, while it took 22.1 seconds
for the CPU to do the same processing. According to the measurements performed,
because of the empty regions in the image pyramid, the GPU implementation had to
evaluate %20 more windows, but still managed to finish its job 12x quicker than the
CPU implementation. The reason that the GPU did perform only 12x faster is the fact
that most of the images in the dataset have low resolutions. The detection rate for both
implementations are measured as %90.8, while the total number of false positives is
32. This proves that the GPU implementation has the exact same detection accuracy

with the CPU implementation.

4.2 Face Recognition

The performance of the single-threaded CPU and GPU implementations are tested on
the FERET [39] face database using the 130 x 150 sized images generated by CSU
FIES [51]. Fa and Fb subsets are used as the gallery and test sets, respectively, when
measuring the average processing times. All measurements include memory transfers

between the host and the device.

4.2.1 Feature extraction

Table 4.2 shows the feature extraction times of the GPU and CPU implementations for
various cases including the ones that give the best accuracy according to [4]. Length of
the resulting feature vector (d) is also listed for each case. Values in the table indicate
that the GPU performs 23-44x faster than CPU. When using a GPU that supports
concurrent kernel execution, one can use multiple streams to compute feature vectors
of multiple input images concurrently as long as the number of SMs in the GPU is
sufficient. Results listed in the table are obtained using a single stream. It should

be noted that, because of its hardware interpolation capability, the performance of the

43

GPU decreases only by %5 when the number of sampling points is doubled, in contrast

to the performance of the CPU that decreases by %75.

Table 4.2: Feature extraction times of the GPU and CPU implementations for various
cases using a single stream.

LBP Region Feature GPU CPU

Type Size Length [ms] [ms]
(8,2)u2 11 x 13 8496 0.17 4.25
(8,2)u2 18 x 21 2891 0.17 3.85
(8,2)u2 26 x 30 1475 0.17 4.01
(16,2)“2 18 x 21 11907 0.18 7.45
(16,2)4? 26 x 30 6075 0.18 7.86

4.2.2 Classification

Table 4.3 compares the performance of the proposed k-NN implementation (denoted
as GPU) with those of the CUDA implementation of k-NN in [47] (denoted as GPUX)
and the ANN C++ library [53] for some of the feature lengths (d) listed in Table 4.2

and various numbers of reference points (N).

Table 4.3: 1-NN search times (in ms) of GPU and CPU implementations for various
values of d and N when p=8.

Size Method d=2891 d=8496 d=11907
GPU 0.88 1.12 1.52
N=1000 GPUX 2.06 278 3.65
ANN 2.55 7.47 10.46
GPU 1.09 1.61 2.15
N=5000 GPUX 7.48 10.13 13.32
ANN 12.72 37.32 52.32
GPU 1.52 2.77 3.72
N=10000 GPUX 13.68 19.44 25.44
ANN 25.46 74.71 104.51
GPU 2.21 5.18 7.38
N=20000 GPUX 18.55 37.40 51.72
ANN 52.47 151.13 210.46

In order to increase the number of reference points in the database when needed, some
of the images in the Fa subset are duplicated. Parameters of the ANN library are set
to give the exact nearest neighbours and best performance. For all implementations,
k is selected as 1 because it is most of the time the case due to the limited number

of reference images in real-world applications. Finally, the value of p in the GPU

44

implementation is set to 8 because it results in the best performance overall. The
results indicate that the proposed GPU implementation performs 3-29x faster than
ANN and 2-9x faster than GPUX. The speed difference between the CPU and GPU
implementations increases with both the number of reference points and the length of

the feature vector.

Combining the computation times given Table 4.2 and Table 4.3 shows that the
proposed GPU implementation performs the whole recognition process 6-29x faster
than the CPU implementation that uses ANN and 2-8x faster than the GPU

implementation that uses GPUX.

45

46

S. CONCLUSIONS AND FUTURE WORK

In this thesis, efficient GPU implementations for a boosting based, real-time face
detection algorithm and a feature based face recognition algorithm is presented. For
the sake of comparison, efficient CPU implementations of the same algorithms are also

developed.

The performances of the CPU and GPU implementations of the face detection
algorithm are evaluated on video streams with resolutions ranging from 640 x 480 to
1920 x 1080 and on a widely used face database containing still images. Comparisons
between the performances of the single-GPU, multi-GPU, single-threaded CPU and
multi-threaded-CPU implementations are performed. The results showed that even the
single-GPU implementation is able to detect faces up to 6x and 18x faster than the
single-threaded and multi-threaded CPU implementations running on a modern CPU,
respectively. It is pointed out that, because of the GPUs massively parallel architecture,
the speed difference between the GPU and CPU implementations increases with the
resolution of the input image and therefore GPUs are more suitable for working with
high resolution videos or images than CPUs. The proposed implementation, with its
ability to detect objects in a video stream having resolutions as high as 1920 x 1080
in real-time, can easily be used in modern multimedia, entertainment and surveillance

systems.

The frontal face detection system implemented in this thesis can be extended to detect
multi-view faces. Each GPU or CPU core can be used for detecting faces from a
specific angle or better arrangements could be found as a subject of future research. In
any similar object detection application requiring the evaluation of multiple cascades,
implementing a heterogeneous system utilizing all CPU cores and all GPUs at the same
time can lead to even more improvements in the speed, leaving more processing time

for the other algorithms that will follow.

47

In addition to the face detection, efficient GPU implementations for LBP computation,
regional histogram construction and k-NN classification, are also presented, which are
the 3 steps of a LBP based face recognition algorithm. By utilizing the GPU in the
face recognition process, recognizing faces in real time ceases being an issue even on

large databases.

The increase in the speed and more efficient use of the resources of the computer will
prove much more useful when the face processing is done in a multi-view and rotation
invariant manner, which involves much higher amount of computations. Development
of such heterogeneous systems that take advantage of not only the GPU cores, but also

all cores the CPU are the subject of future research.

With the price of fast computing hardware going down, the number of cores in
processors are going up and high definition videos becoming increasingly common,
the need for fast, heterogeneous algorithms that can utilize all available processors in
the system and run real-time on these high resolution streams will certainly increase
in the future and the development of such systems will become an important research

topic.

48

REFERENCES

[1] Froba, B. and Ernst, A., (2004). Face detection with the modified census
transform, Proceedings of the Sixth IEEE international conference on

Automatic face and gesture recognition, FGR’ 04, 1IEEE Computer
Society, Washington, DC, USA, pp.91-96.

[2] Freund, Y. and Schapire, R.E., (1995). A Decision-theoretic Generalization
of On-line Learning and an Application to Boosting, Proceedings of
the Second European Conference on Computational Learning Theory,
Springer-Verlag, London, UK, pp.23-37.

[3] Viola, P. and Jones, M., (2001). Rapid Object Detection using a Boosted Cascade
of Simple Features, volume 1, IEEE Computer Society, Los Alamitos, CA,
USA, pp.511-518.

[4] Ahonen, T., Hadid, A. and Pietikainen, M., (2006). Face Description with Local
Binary Patterns: Application to Face Recognition, /[EEE Transactions on
Pattern Analysis and Machine Intelligence, 28, 2037-2041.

[5] Rowley, H.A., Baluja, S. and Kanade, T., (1998). Neural Network-Based Face
Detection, IEEE Trans. Pattern Anal. Mach. Intell., 20, 23-38.

[6] Schneiderman, H. and Kanade, T., (2000). A statistical method for 3D object
detection applied to faces and cars, Proceedings IEEE Conference on
Computer Vision and Pattern Recognition CVPR 2000, 1, 746-751.

[7] Sung, K.K. and Poggio, T., (1998). Example-Based Learning for View-Based
Human Face Detection, IEEE Trans. Pattern Anal. Mach. Intell., 20,
39-51.

[8] Lienhart, R. and Maydt, J., (2002). An Extended Set of Haar-Like Features
for Rapid Object Detection, Proceedings of the IEEE 2002 International
Conference on Image Processing, pp.900-903.

[9] Bradski, G., (2000). The OpenCV Library, Dr. Dobb’s Journal of Software Tools.

[10] Viola, M., Jones, M.J. and Viola, P., (2003). Fast Multi-view Face Detection,
Proc. of Computer Vision and Pattern Recognition.

[11] Huang, C., Ai, H., Li, Y. and Lao, S., (2006). Learning Sparse Features in
Granular Space for Multi-View Face Detection, Proceedings of the 7th

International Conference on Automatic Face and Gesture Recognition,
FGR ’06, IEEE Computer Society, Washington, DC, USA, pp.401-407.

49

[12] Mita, T., Kaneko, T. and Hori, O., (2005). Joint Haar-like Features for
Face Detection, Proceedings of the Tenth IEEE International Conference
on Computer Vision - Volume 2, ICCV °05, IEEE Computer Society,
Washington, DC, USA, pp.1619-1626.

[13] Hradis, M., Herout, A. and Zemcik, P. Local Rank Patterns — Novel Features
for Rapid Object Detection, Proceedings of the International Conference
on Computer Vision and Graphics: Revised Papers, ICCVG °08.

[14] Yan, S., Shan, S., Chen, X. and Gao, W. Computer Vision and Pattern
Recognition, IEEE Conference on.

[15] Jin, H., Liu, Q., Lu, H. and Tong, X., (2004). Face Detection Using Improved
LBP under Bayesian Framework, Proceedings of the Third International
Conference on Image and Graphics, ICIG *04, IEEE Computer Society,
Washington, DC, USA, pp.306-309.

[16] Zhang, L., Chu, R., Xiang, S., Liao, S. and Li, S.Z. Face Detection Based on
Multi-Block LBP Representation, Advances in Biometrics: International
Conference, Proceedings of.

[17] Li, S.Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H. and Shum, H., (2002).
Statistical Learning of Multi-view Face Detection, Proceedings of the
7th European Conference on Computer Vision-Part IV, ECCV 02,
Springer-Verlag, London, UK, pp.67-81.

[18] Wu, B., Ai, H., Huang, C. and Lao, S., (2004). Fast rotation invariant multi-view
face detection based on real adaboost, Proceedings of the Sixth IEEE

International Conference on Automatic Face and Gesture Recognition,
FGR 04, IEEE Computer Society, Washington, DC, USA, pp.79-84.

[19] Lienhart, R., Kuranov, A. and Pisarevsky, V., (2003). Empirical Analysis of
Detection Cascades of Boosted Classifiers for Rapid Object Detection,
pp-297-304.

[20] Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D. and Rehg, J.M., (2008). On
the Design of Cascades of Boosted Ensembles for Face Detection, Int.
J. Comput. Vision, 77, 65-86.

[21] Xiao, R., Zhu, L. and Zhang, H.J., (2003). Boosting Chain Learning for Object
Detection, Proceedings of the Ninth IEEE International Conference
on Computer Vision - Volume 2, ICCV ’03, IEEE Computer Society,
Washington, DC, USA, pp.709-715.

[22] Sochman, J. and Matas, J., (2005). WaldBoost - Learning for Time Constrained
Sequential Detection, Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition - Volume 2,
CVPR 05, IEEE Computer Society, Washington, DC, USA, pp.150-156.

[23] Bourdev, L. and Brandt, J., (2005). Robust Object Detection via Soft Cascade,
Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Volume 2, CVPR 05, IEEE Computer
Society, Washington, DC, USA, pp.236-243.

50

[24] Schneiderman, H., (2004). Feature-centric evaluation for efficient cascaded object
detection, Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR’04, IEEE Computer
Society, Washington, DC, USA, pp.29-36.

[25] Sharma, B., Thota, R., Vydyanathan, N. and Kale, A., (2009). Towards a robust,
real-time face processing system using CUDA-enabled GPUs., HiPC 09,
pp-368-377.

[26] Hefenbrock, D., Oberg, J., Thanh, N.T.N., Kastner, R. and Baden, S.B., (2010).
Accelerating Viola-Jones Face Detection to FPGA-Level Using GPUs,
Proceedings of the 2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM °10, IEEE
Computer Society, Washington, DC, USA, pp.11-18.

[27] Obukhov, A., (2004). Haar Classifiers for Object Detection with CUDA,
R. Fernando, editor, GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics, chapter 33, Addison Wesley, pp.517-544.

[28] Harvey, J.P., (2009), GPU Acceleration of Object Classification Algorithms Using
NVIDIA CUDA.

[29] Herout, A., Josth, R., Juranek, R., Havel, J., HradiS, M. and Zemcik, P.,
(2010). Real-time Object Detection on CUDA, Journal of Real-Time
Image Processing, 2010(1), 1-12.

[30] Turk, M. and Pentland, A., (1991). Eigenfaces for recognition, J. Cognitive
Neuroscience, 3, 71-86.

[31] Belhumeur, P.N., Hespanha, J.a.P. and Kriegman, D.J., (1997). Eigenfaces vs.
Fisherfaces: Recognition Using Class Specific Linear Projection, /EEE
Transactions on Pattern Analysis and Machine Intelligence, 19, 711-720.

[32] Bartlett, M., Movellan, J. and Sejnowski, T., (2002). Face Recognition by
Independent Component Analysis, Neural Networks, IEEE Transactions
on, 13(6), 1450-1464.

[33] He, X., Yan, S., Hu, Y., Niyogi, P. and Zhang, H.J., (2005). Face
Recognition using Laplacianfaces, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27, 328-340.

[34] Guo, G., Li, S. and Chan, K., (2000). Face Recognition by Support Vector
Machines, Proceedings of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, FGR *00, pp.196-201.

[35] Heisele, B., Ho, P. and Poggio, T., (2001). Face Eecognition with Support Vector
Machines: Global versus Component-based Approach, Proceedings of the

Eighth IEEE International Conference on Computer Vision, volume 2 of
ICCV °01, pp.688—694.

[36] Penev, P. and Atick, J., (1996). Local Feature Analysis: A General Statistical
Theory for Object Representation, Network Computation in Neural
Systems, 7, 477-500.

51

[37] Wiskott, L., Fellous, J.M., Kriiger, N. and von der Malsburg, C., (1997). Face
Recognition by Elastic Bunch Graph Matching, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, 775-779.

[38] Ojala, T., Pietikidinen, M. and Mienpai, T., (2002). Multiresolution Gray-Scale
and Rotation Invariant Texture Classification with Local Binary Patterns,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24,
971-987.

[39] Phillips, P.J., Moon, H., Rizvi, S.A. and Rauss, P.J., (2000). The FERET Evalu-
ation Methodology for Face-Recognition Algorithms, /IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22, 1090-1104.

[40] Zhang, G., Huang, X., Li, S., Wang, Y. and Wu, X., (2005). Boosting
Local Binary Pattern (LBP)-Based Face Recognition, S. Li, J. Lai,
T. Tan, G. Feng and Y. Wang, editors, Advances in Biometric Person
Authentication, volume3338 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp.179-186.

[41] Zhang, B., Gao, Y., Zhao, S. and Liu, J., (2010). Local Derivative Pattern versus
Local Binary Pattern: Face Recognition with High-order Local Pattern
Descriptor, IEEE Transactions on Image Processing, 19, 533-544.

[42] Zhang, B., Shan, S., Chen, X. and Gao, W., (2007). Histogram of Gabor
Phase Patterns (HGPP): A Novel Object Representation Approach for
Face Recognition, IEEE Transactions on Image Processing, 16(1), 57-68.

[43] Singh, C., Mittal, N. and Walia, E., (2011). Face Recognition using Zernike
and Complex Zernike Moment Features, Pattern Recognition and Image
Analysis, 21, 71-81.

[44] Bentley, J.L., (1975). Multidimensional Binary Search Trees used for Associative
Searching, Commun. ACM, 18, 509-517.

[45] Muja, M. and Lowe, D.G., (2009). Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration, Proceedings of the International

Conference on Computer Vision Theory and Applications, VISAPP ’09,
INSTICC Press, pp.331-340.

[46] Gionis, A., Indyk, P. and Motwani, R., (1999). Similarity Search in
High Dimensions via Hashing, Proceedings of the 25th International
Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, pp.518-529.

[47] Garcia, V., Debreuve, E. and Barlaud, M., (2008). Fast k Nearest Neighbor
Search using GPU, CVPR Workshop on Computer Vision on GPU,
Anchorage, Alaska, USA, pp.1-6.

[48] Liang, S., Wang, C., Liu, Y. and Jian, L., (2009). CUKNN: A Parallel
Implementation of k-Nearest Neighbor on CUDA-enabled GPU, IEEE

Youth Conference on Information, Computing and Telecommunication,
pp-415 —418.

52

[49] Ojala, T., Pietikdinen, M. and Harwood, D., (1996). A comparative study
of texture measures with classification based on featured distributions,
Pattern Recognition, 51-59.

[50] NVIDIA, (2011), NVIDIA CUDA C Programming Guide
Version 4.0, http://developer.download.nvidia.com/
compute/DevZone/docs/html/C/doc/CUDA

[51] Beveridge, J.R., Bolme, D., Draper, B.A. and Teixeira, M., (2005). The CSU
Face Identification Evaluation System, Machine Vision and Applications,
16, 128-138.

[52] Shams, R. and Kennedy, R.A., (2007). Efficient Histogram Algorithms
for NVIDIA CUDA Compatible Devices, Proc. Int. Conf. on Signal
Processing and Communications Systems, pp.418—422.

[53] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R. and Wu, A.Y., (1998).
An optimal algorithm for approximate nearest neighbor searching fixed
dimensions, J. ACM, 45, 891-923.

53

54

CURRICULUM VITAE

Name Surname: Salih Cihan TEK

Place and Date of Birth: Istanbul, 1986

Adress: ITU, Fen Bilimleri Enstitiisil, Ayazaga Kampiisii, 34469, Maslak, Istanbul
E-Mail: tek@itu.edu.tr

B.Sc.: Istanbul Technical University, Faculty of Electrical and Electronics
Engineering, Department of Electrical Engineering, 2008

Professional Experience and Rewards:
National Scholarship for M.Sc. Students, The Scientific and Technological Research
Council of Turkey (TUBITAK)

Best Student Paper Award in IEEE 20th Conference on Signal Processing and
Communications Applications (SIU 2012)

List of Publications and Patents:

= Sartyanidi E., Dagh V., Tek S. C., Tun¢ B., and Gokmen M. (2012). Local Zernike
Moments: A New Representation for Face Recognition. [EEE 19th International
Conference on Image Processing (ICIP), Accepted.

= Sartyanidi E., Dagh V., Tek S. C., Tun¢ B., and Goékmen M. (2012). A Novel
Face Representation using Local Zernik Moments. IEEE 20th Conference on Signal
Processing and Communications Applications (SIU 2012), 18-20 April, Mugla,
Turkey.

= Saryanidi E., Tek S. C., and Gokmen M. (2011). Efficient Face Detection using
Coarse Sampling. IEEE 19th Conference on Signal Processing and Communications
Applications (SIU 2011), 20-22 April, Antalya, Turkey.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

= Tek S. C., and Gokmen M. (2012). GPU Accelerated Real-Time Object Detection
on High Resolution Videos using Modified Census Transform, Proceedings of the

International Conference on Computer Vision Theory and Applications - Volume 1,
VISAPP *12, SciTePress, pp.685-688.

55

	Covers
	tez

