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ANALYSIS AND DESIGN OF A LONG SPAN CABLE-STAYED BRIDGE 

SUMMARY 

In this study, the behaviour of long span cable-stayed bridges under the effect of 

static and dynamic loads is investigated. 

First, a cable-stayed bridge configuration with 105+245+700+245+105 m span 

lengths is decided to represent today’s trend which based on the knowledge and 

experience of the latest long span cable-stayed bridge projects.  Preliminary design is 

carried out, and then the bridge is analysed under its own weight with the effects of 

the nonlinearities which cable-stayed bridges have inherently. Pretension 

optimization of cables is carried out and then the bridge is analysed under the effect 

of the vehicular live loads.   

Near-fault ground motion datas are selected considering the appropriate criterias and 

nonlinear time history analysis is carried out to obtain the response of the bridge 

under the effects of only horizontal components of these selected ground motions.  

Analyses with the contibution of the vertical components of the ground motions are 

also carried out. Change of internal forces and the rotational displacements are 

compared.    
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KABLO ASKILI KÖPRÜLERİN ANALİZ VE TASARIMI  

ÖZET 

Bu çalışmada, uzun açıklıklı kablo askılı köprülerin statik ve dinamik yükler etkisi 

altında davranışı incelenmiştir.  

Öncelikle, son yıllarda inşaa edilmiş uzun açıklıklı kablo askılı köprü projeleri ve 

deneyimleri esas alınarak günümüz trendlerini temsil eden 105+245+750+245+105 

açıklıklarına sahip bir köprü konfigürasyonuna karar verilmiştir. Köprünün ön 

tasarımı yapılmış kendi ağırlığı etkisinde lineer olmayan analizi yapılmıştır. Kablo 

ön çekme kuvvetlerinin optimizasyonu yapılmış ve hareketli araç yükleri etkisinde 

analizi yapılarak statik yükler etkisindeki tasarımı tamamlanmıştır.  

Statik yüler etkisi altında tasarımı yapılan köprünün, lineer olmayan zaman tanım 

alanı yöntemi ile çeşitli deprem kayıtları kullanılarak yer hareketinin sadece yatay iki 

bileşeni etkisi altında analizi yapılmıştır. Yatay bileşenlere düşey bileşen de katılarak 

analiz tekrarlanmıştır. Yukarıda belirtilmiş olan iki dinamik etki altındaki iç kuvvet 

ve dönme yerdeğiştirme değerlerindeki değişim karşılaştırılmıştır. 
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1. INTRODUCTION 

1.1 The Origin of the Thesis 

Cable-stayed bridges has been a research subject for about two decades. One of the 

earlier research projects was conducted by Nazmy and Abdel-Ghaffar [1]. This 

report comprised two different span lengths with same bridge configuration which 

the shorter span was representing the 1980’s trend and longer span was representing 

the future trend in design of cable-stayed bridges.  

Multi-support excitation and the uniform excitation were considered. Nonlinearities 

due to different types of sources are included in analysis. In addition, a comparison 

between linear and nonlinear earthquake response analysis were carried out.  

In this study, the  configuration of the bridge is selected based on the latest long span 

cable stayed bridge projects, Incheon Bridge (Korea) and Tatara Bridge (Japan) to 

represent the current trend of long span cable stayed bridge projects.  

The behavior of the bridges compared under the effects of only horizontal 

component near field ground motions and with the contribution of the vertical 

component to only horizontal case.  

Especially the flexural moment and rotational displacement variations due to 

contribution of the vertical component of near fault strong ground motions are 

studied.  

1.2 Incheon Bridge, Korea 

Incheon Bridge is a long span cable stayed bridge with 80 + 260 + 800 + 260 + 80 m. 

span lenghts which is a part of Korean Expressway Link as shown in Figure 1.1.  

 
A streamlined orthotropic box girder was adopted. Y shape concrete pylons with 

semi-fan type cable arrangement was employed. Cable stays were installed in two-

sided with the spacing of 15m. The supplementary piers are separate hollow section 

twin columns and 58m in height. Counterweights are installed to resist the uplift 

forces at the end piers. [2], [3]. The elevation of the bridge is shown in Figure 1.2. 
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Figure 1.1 : The Expressway Link (Korea) [2]. 

 

Figure 1.2 : Incheon Bridge Elevation [2]. 

 

Figure 1.3 : Incheon Bridge (Korea) [2].  
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1.3 Tatara Bridge, Japan 

Tatara Bridge is linking Ikuchijima Island in Hiroshima Prefecture and Ohmishima 

Island in Ehime Prefecture [4].  

 

Figure 1.4 : Tatara Bridge (Japan) [4]. 

 

Its total lenght is 1480m with 50 + 50 + 170 + 890 + 270 + 50m span lenghts.  Main 

girder is a streamlined orthotropic boz girder. Y shape concrete pylons with semi-fan 

type cable arrangement was employed [4]. The elevation of the bridge is shown in 

Figure 1.5.  

 

Figure 1.5 : Tatara Bridge Elevation [4]. 
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2. CABLE-STAYED BRIDGES CONFIGURATION 

2.1 Configuration of Cable Stayed Bridges  

In this section the different structural configuration types of cable-stayed bridges and 

their effect on structural behavior under static and dynamic loads with the long span 

bridges perspective is given.  Since all long span bridge projects are unique, their 

solutions are unique. Hence, the full understanding and consideration should be 

provided to choose the best solution for the specific configuration of these cable 

systems.  

2.1.1 General Layout 

Cable stayed bridges are three dimensional structures that consist towers, cables, 

girders. They primarly resist to vertical forces acting on the main girder and also to 

earthquake and wind induced forces horizontally.  

 

Figure 2.1 : Concept of a cable stayed bridge [5]. 

From Figure 2.1, it can be inferred that all structure parts are mainly under the effect 

of axial force. Girders transfer the vertical load to cables and transfer carry them to 

pylons. Inclination of the cables cause horizontal internal forces which are balanced 

at the pylon section and axial compression at the girder section.  

Three of the longitudinal cable arrangement types are depicted in Figure 2.2.  

The anchorage detailing at the top of the pylon for radial arrangement is very 

complex due to very large vertical axial force on the pylon. However, it is considered 

as the best structural solution for girder and cables. Because the inclination to the 
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girder of cables are very high and the minimum horizontal component of the loads 

are carried by the girders. [6] 

Harp type arrangement cause bending moments in the pylon but the stiffness of the 

main girder is improved in comparison with the radial type. [6] 

Fan type longitudinal cable arrangement is the combination of other two types and 

gives the optimum solution for the very long spans.  

 

Figure 2.2 : Radial, harp and semi-fan (modified fan) arrangements for cable-stayed  

                    bridge systems [7]. 

It should be noted that the cable arrangement has no significant effect on the bridge 

structures except very long span bridges.  

The superstructure transfers horizontal loads caused by ground motion and wind to 

both pylons and piers by bending.  

2.1.2 Towers and Spatial Cable Layout 

Types of arrangements are shown in Figure 2.3. Among these types two inclined 

plane arrangement is preferable for long span cable stayed bridges because of its 

torsional rigidity against wind loads.  
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The role of the towers is to provide support for cables and transfer the loads on 

bridge to its foundations. They are subjected to high axial forces. Also, bending 

moment can arise as explained in harp type cable arrangement.  

The shape of towers are mainly dependent on the cable arrangemet. H and I type 

towers allow vertical planes of cables while the A and diamond shape towers provide 

inclined cable planes.  

For single plane system wider girder width is needed because of the position of 

pylons at the centre of the roadway. In addition, the girder itself has to have the 

adequate torsional rigidity to resist the eccentric live load loading within the 

allowable limits. Besides, low fatigue loading on cables is achieved due to the load 

transferring capability of the rigid girder. Also the second order moments are reduced 

by the contribution of the rigid girder.  

 

Figure 2.3 : a) Two vertical plane b) Two inclined planes c) Single plane systems[6]. 

Vertical lateral suspension as in H type pylons provide more rigid links between the 

girder and the pylon.  
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Figure 2.4 : A, H and Diamond configurations of Towers. 

A and diamond shaped towers provide better structural stiffness and stability. Under 

the effect of bending moment the inclined cables and the girder behaves as a closed 

rigid form. In addition, the rotations  deformations are minimized which points out 

better torsional rigidity in contrast with H and I shape pylons.These type of pylons 

are especially employed when the aerodynamic effects are a concern as in very long 

span bridges [8]. 

2.1.3 Stiffening Girder 

The cable system introduces the considerable amount of axial compression forces to 

the girder. Also, the vertical bending moment arise due to dead load and live load 

acting on the girder.   

The moment of inertia of the girder and the spacing between cables are the 

controlling parameters of the vertical bending moment.  

The girder is supported by cables, which provide longer spans to achieve and 

minimum internal forces. It can be considered as an elastically supported beam. The 

global component of this type girder moment is approximately [9] 

𝑀 = 𝑎 × 𝑝 × �𝐼/𝑘                                                                                                 (2.1) 
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where 

𝑎: a coefficient dependent to load type p  

𝐼: moment of inertia of the girder 

𝑘: elastic support constant derived from the cable stiffness 

 

 

 

Figure 2.5 : Cable span length –  force relation [5]. 

The relation between the span of cables and force acting on it is given by Figure 2.5. 

the local bending moment of the girder is dependent to the square of spacing between 

cables. [5] 

According to above given information the smaller spacing between cables provide 

smaller bending moments and so, slender girder sections.  

Slender girder sections are susceptible for buckling phenomenon. However, 

according to Tang [10]. 

Cable stiffness is more related to the buckling stability of the girder than the stiffness 

of the girder itself. The formulation is given in Equation 2.2.  

𝑃𝑐𝑟 =  {∫𝐸𝐼𝑤 ′′2𝑑𝑠 + ∑𝐸𝐶 × 𝐴𝑐 × 𝐿𝑐} [∫(𝑃𝑠 𝑃𝑐⁄ )𝑤 ′2𝑑𝑠]⁄                                  (2.2) 

A cable-stayed bridge is still can be stable even if the stiffness of the girder is not 

considered. Experience shows that even for the most flexible girder, the 

critical load against elastic buckling is well over 400% of the actual loads of the 

bridge [5]. 
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Prestressed concrete, composite, steel I girder are the most used girder types for 

moderate span lenghts. Orthotropic steel girders are the most adopted type for long 

span bridges.  

2.1.4 Cables and Anchorages 

Cables are the main structural elements that transfer the loads from main girder to 

towers. Development of the stay cable technology leads to the successful long span 

bridge projects.  

Three categories of the cable types; paralel-wire cables, stranded cables and locked 

coil strands. They are of high strength and have a satisfactory fatigue behavior.  

Paralel wires consists of 50 to 350 number of 7 mm diameter wires and they are of 

high strenght.  Each strand consists of seven twisted wires and their quality is widely 

varied.  

 

Figure 2.6 : Parallel wire cable [8]. 

 

Figure 2.7 : Strand Cable [8]. 

Locked-coil cable consist a core of parallel wires and S and Z shaped elongated 

sections which are overlapping outside of the core. Due to their %30 higher density 
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and slimmer sections may be achieved which lead to better aerodynamic behavior. In 

addition, they are less susceptible to corrosion and their elasticity modulus is about 

%50 higher than the other types of cables.  

 

Figure 2.8 : Locked-coil cable [8]. 

To achieve the allowable stress of cables the capacity and fatigue are should be 

significantly considered at the the weakest parts of the cables, anchorages.   

Three solutions for acnhoring the cables to the concrete pylon is depicted in Figure 

2.9.  Cables anchored inside of the hollow concrete pylon section in (a) which the 

forces transffering form the one face to another face of the pylon. In (b) the cable is 

continous. The horizontal force can be transferred without any effect on pylon. In 

figure (c) the cables cross through the pylon and mutual bearings sockets can be 

achieved. Also the axial force arise from the horizontal component of cable. [7] 

The torsion caused by the eccentric overlapping of cables (Figure 2.10 a) can be 

avoided by the use of a detail shown in Figure 2.10 (b). 

Fixed supports at the pylon may be provided by devices like pin or socket and 

movable supports are provided by roller or rocker.  

The configuration of deck anchorages depend on the type of cable used. Special 

threaded sockets are used for connection and bolts are used to adjust the pretension 

on cables. Further information can be found in literature [6], [7], [8], [11]. 
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Figure 2.9 : anchoring of mono-strand cables to a concrete pylon [7]. 

 

 

 

 

 

 

(a)                                                 (b) 

Figure 2.10 : Overlapping of stay cable anchorages with and without eccentricity[7]. 

2.1.5 Foundations 

Foundations  are the structural elements where the loads acting on bridge is 

tranferred to ground. Pile foundations are the most utilized type of foundation for 

cable stayed bridges. Also caissons are employed when the foundation is at the sea 

level.  
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3. STATE OF THE RESEARCH ON CABLE-STAYED BRIDGES 

3.1 Nonlinearities in Cable Stayed Bridges 

Nonlinearities in cable-stayed bridges are identified by many investigators [12], [13], 

[14], [15]. These are; 

a) cable sag effect 

b) Axial force and moment interaction in pylons and girders 

c) The effect of relatively large deformations of whole system due to its flexibility – 

P-∆ effects. 

d) Material nonlinearity 

Cable weight itself lead to sagging of a cable to a catenary shape, and the external 

tension force results in a reduction of this out of plane deformation. Hence, the actual 

stiffness of cable varies with the applied tension force and the total weight of the 

cable as well as its cross-sectional area and inclination angle. Ernst has been the first 

who explain this stiffness change with a nonlinear formulation [16].    

 
𝐸𝑒𝑞 = 𝐸0

1+𝛾
2×𝐿2×𝐸0
12×𝜎3

                                                                                                      (3.1) 

Formulation given in Eq. (3.1) represents the tangential value of the equivalent 

modulus of elasticity when stress on the cable is equal to σ.  

If the stress on cable is changing form an inital value of σi to a final value of σf 

during an incremental loading, then the equivalent modulus of elasticity, which 

represents the secantial value, is given by Eq (3.2).  

𝐸𝑒𝑞 = 𝐸0

1+
𝛾2×𝐿2×�𝜎𝑖+𝜎𝑓�𝐸0

24×𝜎𝑖
2×𝜎𝑓

2

                                                                                            (3.2) 

The stress-strain relationships in cases of tangential and secantial values of 𝐸𝑒𝑞 are 

depicted in Figure 2.1. 
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Figure 3.1 : Nonlinear stress-strain relationship for a cable-stay [1]. 

Equivalent modulus of elasticity should be defined by using the cable pretresses 

resulting from the nonlinear dead load analysis of the structure for accurate results in 

dynamic analysis [13]. 

Since equivalent elasticity modulus approach is suggesting the stiffness of the 

structure is increasing as tension forces increase, cable-stayed bridges are defined as 

geometric-hardening type of structure. This behaviour is depicted in Figure 3.2 [17], 

[18], [19]. 

 

Figure 3.2 : Geometric hardening type (adapted from [17]). 
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Nonlinear behaviour of bending members, towers and girders, caused by interaction 

of axial and bending forces. [13] Flexural and axial stiffnesses of the members alter 

under these combined effects and these nonlinear element formulations can be found 

in [20]. 

The stiffness matrix of the structure should be updated due to deformed state of these 

flexible bridges to represent the relatively large geometry changes in overall structure 

[14], [15]. 

Material nonlinearity is not considered in this study. Information on this subject can 

be found in literature.  

2.2 Dynamic Characteristics and Response 

Two major dynamic loads, aerodynamic and seismic, are in contradict when their 

demands on structure is considered. Stiffer structures are better for stability of the 

aerodynamic behavior and it is a well known fact that the seismic response will have 

less demand when more flexible structure is considered.  

It is essential to obtain natural periods, natural mode shapes and damping 

characteristics accurately in seismic and aerodynamic analysis and design of cable-

stayed bridges.  

3D modelling is mandatory to obtain reasonable and accurate results, since Abdel-

ghaffar and Nazmy found that there were significant coupling of modes in the three 

orthogonal directions [1], [21]. 

Supporting conditions of the structure is an important consideration which affects the 

dynamic response of the structure. Nazmy and Abdel-Ghaffar [22] investigated the 

mode distribution depending on support conditions. The bridge with movable 

supports have the longest period due to higher flexibility. Servicability limits should 

also be taken into account to choose the supporting conditions.  

Many full scale tests and numerical analysis were conducted to obtain accurate mode 

shapes and natural frequencies of cable-stayed bridges. From these researches it can 

be said that the linear analysis that assume appropriate mass and stiffness properties 
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distribution is capable of obtaining these results. [23]  Eigen value analysis were 

carried out to understand the dynamic response characteristics of cable-stayed 

bridges by many researchers which will be given in this section. Many researchers 

stated that the fundamental period of a cable-stayed bridge is very long compared 

with other structures. First modes are usually deck modes, followed by coupled cable 

and deck modes and coupled tower and deck modes [18].  

Most of the excitation test were conducted by means of vertical flexural and torsional  

ocsilaions to verify the aerodynamic stability of the cable-stayed bridges. Kawashima 

and his co-workers were conducted several excitation tests on Meiko-nishi Bridge 

not only for vertical flexural ocsillations but also for transverse flexural oscilations 

which are as important as the vertical flexural and torsional oscillations. The cable 

arrangement is fan type and the deck is a steel box girder. Obtained frequencies from 

the excitation tests are depicted in Table 3.1 [24]. 

Table 3.1 : Natural Frequcies of Meiko-nishi Bridge (adapted from [24]). 

  Vertical 
Flexural Torsion Transverse 

Flexure 

1st 0.33 1.31 0.26 
2nd 0.41 

 
0.71 

3rd 0.73 
 

0.76 
4th 0.81 

 
1.01 

5th 0.85     

Daniell and MacDonald also conducted series of ambient vibration tests, among 

other issues, to verify the natural frequencies which are computed by linear and 

geometric nonlinear analysis procedures [25]. These values are depicted in Figure 

3.3.  

It is essential to perform a nonlinear dynamic analysis for spans longer than 450 m 

[13]. For spans up to 450 m a linear dynamic analysis may be adequate to obtain 

peak structural responses, but it must be preceeded by a nonlinear dead load analysis.  

Linear and nonlinear analyses were also investigated by abdel-ghaffar [18] and three 

analysis methods, which are explained below, were compared for dynamic anaylsis 

of two bridges with center span lenghts 335 m (1100 ft) and 670 m (2200 ft).  
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Figure 3.3 : Correspondence between modes from ambient vibration tests and from 

FE model 1C (linear analysis) and 17C (Geometric Nonlinear Analysis) [25]. 

L-L: Linear static analysis followed by linear earthquake analysis 

NL-L: Nonlinear static analysis followed by linear earthquake analysis 

NL-NL: Nonlinear static analysis followed by nonlinear earthquake analysis 

Results suggested that for structure with 335 m center span (model 1), response 

difference between the  NL-L case and NL-NL case is small. However, L-L case was 

considerably differ from the other two in response manner. The response 

characteristics are depicted in Figure 3.4.  

For the model with 670 m center span at the same study the nonlinear dynamic 

analysis response was found more pronounced than model 1. Hence, geometric, as 

well as general nonlinear dynamic analysis is necessary for calculating the response 

of long span bridges subjected to strong ground excitation.  
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Figure 3.4 : Response comparison between linear and nonlinear analysis[18]. 

Multi support excitations should also be carried out in dynamic analysis of long span 

bridges to take into account the spatial variability of the ground motion on the 

structural response. They can have a significant effect on the response displacements 

and member forces and these response quantities may be substantially increased by 

non uniform ground motion [18], [26]. The authors also stated that at least three 

diffrent types of ground motions consistent with the location of the bridge should be 

considered in the calculation of the time history response to make realistic seismic 

design. 

Response characteristics under the effect of vertical component of ground motions 

will be discussed in detail in Section 4.4. 

3.3 Damping Characteristics 

Cable-stayed bridges have inherently low values of damping and it is difficult to 

generalize damping values because it varies significantly with the bridge 

configuration as demonstrated by many field-forced vibration tests.  

Kawashima stated that damping ratio of cable-stayed bridges is predominantly 

dependent on material nonlinearity, structural damping mechanisms, radiation of 

energy from foundation to ground and friction with air [27] 
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Fleming & Egeseli stated that the damping can have significant effect upon the 

response of the bridge structures and should be considered and realistic values of 

damping should be investigated for further analysis [13]. 

Two ways to consider damping in the analysis. First, material nonlinearity and 

special energy dissipation devices may be included in the analysis  with nonlinear, 

elastic-plastic, hysteretic modeling of the elements. However, most commonly, 

although the damping in cable-stayed bridges is not viscous; an equivalent viscous 

damping can be utilized in the analysis. Rayleigh damping, which is a linear 

combination of mass and stiffness matrix, is empoyed to form damping matrix. It 

enables satisfying damping ratio exactly for 2 modes [28]. Damping ratios of 2-3% 

have been employed by many researchers [29], [30].  

Extensive experiments are carried out by Kawashima and his co-workers [27], [31], 

[32]. A cable-stayed bridge is analysed with strong motion records and it was found 

that the damping ratio is dependent on the mode shapes in [33] . For further research,  

an analytical approach which consider several substructures to evaluate the damping 

ration is adopted by Kawashima et al. in [27]. These could be cables, deck, bearing 

supports and etc. The summation of the energy dissipation of each individual 

substructure result in the total energy dissipation of the bridge structure. An 

experimental model of Meiko-nishi Bridge, depicted in Figure 3.5, was fabricated 

and model oscillation tests were made. Cable arrangement, amplitude of oscillation 

and the mode shapes are the most significant factors that effect the damping values. 

Damping values predicted by the derived enery dissipation functions and the 

experimantal results are compared in [27]. These comparisons are depicted in figures 

3.6 and 3.7. 

Kawashima et al. [33] also investigated the damping values under the effect of real 

strong motion excitation. Results suggested that the values were higher than values 

resulted from forced vibration tests. %2 and 0-1% in both directions for towers and 

%5 in both directions for deck are obtained when the strong ground motion was 

considered.   
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Figure 3.5 : Meiko-nishi Bridge experiment model [27]. 

 

Figure 3.6 : Comparison of damping ratio versus oscillation amplitude relation for  

                        longitudinal oscillation [27]. 

Wilson et al. [34] obtained %2-2.6 and %0.9-1.8 upper and lower bound damping 

ratio values of Quincy Bayview Bridge were obtained for the first coupled 

transverse/torsion mode.  
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Figure 3.7 : Comparison of damping ratio versus oscillation amplitude relation for  

                        vertical oscillation [27]. 
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4. BRIDGE CONFIGURATION 

4.1 Structure Description 

The bridge considered in this study is a hypothetical example which reflects the 

contemporary trend of long span cable-stayed bridges. The choice of structural 

properties of the elements in the mathematical model was based on examining 

several recently constructed long span cable-stayed bridges. [2], [3], [4]. 

A cable stayed bridge with the span arrangements 100+250+700+250+100, which 

will be named as IY 700 here after, is considered to represent the current trend of 

long span bridge projects. The preliminary analysis is carried out and design limit 

states are checked. These calculation results will be given in Chapter 5. 

Vertical profile of the bridge consists of a precamber with %1.5 vertical slope, to 

compensate the dead and live load deflections. Also counterweights are arranged in 

the back spans to resist uplift forces in the mid piers. Semi-fan arrangement of cables 

is adopted. The general dimensions of IY 700 are depicted in Figure 4.1.  

                                     Figure 4.1 : Elevation of IY 700 Bridge. 

Material Properties Table for the structural components is shown in Table 4.1. 
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Table 4.1 : Material properties  

  
Material σy 

(Mpa) 
σult. 
(Mpa) E (GPa) 

Weigth 
Density 
(kN/m3) 

Poisson's 
Ratio 

Deck 
A572 Gr. 
50 345  450 210 77.09 0.30 

Cable ASTM   - 1770 210 77.09 0.30 
Pylon C70  -  - 37 23.50 0.20 
Cross 
Beam C70  -  - 37 23.50 0.20 

4.1.1 The Deck 

As mentioned in Section 3.1.3, orthotropic steel box girders are preferable because of 

their lightweight, torsional rigidity and streamlined cross section shapes. The box 

girder is 14 m wide by 3 m deep and the central span is 700 m. The deck considered 

in this study is depicted in Figure 4.2. 

 

Figure 4.2 : Section of orthotropic steel box girder. 

The proportions of the streamlined deck shape are decided based upon the given 

experimental results by various authors [6], [7], [8], [11]. 

The torsional moments and lateral forces from box to the bearings are transferred by 

provided external diaphragms at end and internal supports with a 1.875 m spacing. 

Intermediate internal plate diaphragms are provided with 3.75 m spacing to ensure 

the sufficient torsional rigidity and continuity of the stiffening girder. All diaphragms 

are fully connected to top and bottom flanges and also webs.  

Both inner and outer webs are adequately stiffened longitudinally. Access holes 

within the diaphragms are not taken into consideration.  
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Since standardization of ribs is not available in AASHTO, the table provided by an 

American steel company is used. [5]  

 

 

 

 

Figure 4.3 : Section of ribs. 

Table 4.2 : Rib cross-section properties 

a (cm)  d (cm) tf (cm) h' (cm) Yxx (cm) Ixx (cm4) 

30.79 22.86 1.1 23.95 9.17 3612.9 

Stiffening ribs are continous along the bridge. The deck plate is acting as the 

common flange of both longitudinal ribs, diaphragms and webs. 

Wheel load distribution on deck plate is calculated according to AASHTO-LRFD 

[35]. The tire contact area is calculated as in Article 3.6.1.2.5. 

Main girders of the steel orthotropic decks have been modelled either by using 

equivalent beam elements or complete shell model and also by specific box girder 

element formulations.  

Equivalent beam element models consist beam elements with the actual stiffness 

properties of the actual girder and fictitious rigid link elements are extended to cable 

anchorage points which are eccentric to longitudinal center axis of the girder. This 

model is named as “spine beam” and used effectively in many studies.  

Complete shell model and specific box girder element formulation are the other 

options to model girder which they could result in more accurate response 

characteristics.  
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4.1.2 The Pylons and Piers 

Diamond shape pylons are employed to improve the overall torsional stiffness of the 

structure. The pylons are 208 m high with a 140 m height above the main span deck 

elevation.  

Beam elements are utilized to model the pylons, and piers are respresented by 

supports. Solid elements may be used for more refined analysis to consider the shear 

force effects accurately. These effects are not taken into account in this study for 

simplicity.  

4.1.3 The Stay Cables 

Two inclined stay cable plane arrangement is of semi-fan type which is utilized. 

There are total 184 units of cable with 92 units per each side. Cable spacing is small 

in comparison with the length of the spans due to the considerations explained in 

Section 3.1.3. The longest stay cable is about 360 m with an approximate weight of 

300 kN.  

Material properties of cables given in Table 4.1 are adopted from the VSL 

International, Ltd. brochure to reflect the modern trend of the stay cable technology. 

Parallel wire stand consisting of 7 mm diameter strands, each with a cross sectional 

area of 38.48 mm2 is adopted for the analysis. Cables sizes range from a maximum of 

0.0154 m2 for the back span cable to a minimum of 0.0054 m2 for the cables near the 

pylons.   

One straight chord truss element may be used to represent each cable only if the 

equivalent elasticity modulus approach is utilized. Tangential modulus obtained as 

explained in Section 3 is used for computing the tangent stiffness matrix of the stay 

cable. 

Multi element model is another option to represent cables to investigate the cable 

vibration and its interaction with deck and tower modes which is not considered in 

this study.  
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5. FINITE ELEMENT MODEL OF THE BRIDGE 

5.1 Introduction  

3D finite element model of IY 700 was set up with COSMOS-M [36] for the 

purposes  of static and dynamic analysis and it is depicted in Figure 5.1. In this 

chapter, properties of the structural model of the bridge and assumptions made are 

given in detail.  

 

Figure 5.1 : Finite element model of the bridge. 

5.2 Description of the finite element model 

5.2.1 The deck 

Since the dynamic behaviour of the bridge is considered, it is important to set up a 

model to simulate the coupling of modes in the three orthogonal directions 

accurately. Hence, 3D analysis is necessary [21]. 

The modelling approach given by Wilson and Gravelle [37], is adapted to model the 

deck. The model consist a linear elastic beam elements which form the single central 

spine and rigid links extending to the cable anchor and lumped mass points of the 

deck. Mechanical properties of the equivalent beam is calculated by establishing an 

exact cross section of the girder. The cross section is uniform along the bridge.  

Also, a model which consist the exact shell representation of the girder to check the 

accuracy of the equivalent beam model under static load conditions. Since the two 

models are in good accordance by all means of deflections, moment distribution etc., 
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the equivalent beam model is used for the rest of the analysis. The mechanical 

properties of the cross section is depicted in Table 5.1. 

 

 

Figure 5.2 : Finite element modelling of the cross section of the deck. 

 

Figure 5.3 : Finite element model of the deck. 

The finite element model of the deck is depicted in Figure 5.3. The spine has 96 

beam elements spanning between the cable anchor points and the supports with a 15 

m or 5 m intervals along the longitudinal (x) direction of the bridge.  

Table 5.1 : Stiffness properties of the box girder 

A (m2) Iy (m4) Iz (m4) Iyz (m4) 

2.21 2.63E+00 1.37E+02 9.70E+00 

Equivalent plate thickness of the ribs is taken into account to calculate the vertical 

(Iy), transverse (Iz) and torsional stiffness (Iyz) properties. Both pure and warping 
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torsional stiffnesses are taken into account to calculate the overall torsional stiffness 

of the cross section.  

The mass of the deck consist both contribution from the cross section and the mass of 

the utilities assumed distributed along the bridge. The weight properties are depicted 

in Table 5.2.  

Table 5.2 : Weight properties of the deck 

Back Span 
(kN/m) Side Span (kN/m) Main Span 

(kN/m) 

189.08 169.08 169.08 

Translational mass is calculated from the total weight of each segment either 15 m or 

5 m including the contributions from ribs, plates, webs, and utilities assumed 

distributed along the bridge. Total mass is divided into three concentrated masses and 

allocated equally to the spine itself and points of rigid link extensions as can be seen 

from Figure 5.2.  

The distance between the shear center and the neutral axis of bending is taken into 

account in the finite element model to allow torsional and coupled modes of 

vibration. 

The shear center of the cross section is 0.30 m below the centroid of the bridge which 

is taken as the vertical distance between rigid links. In the finite element model the 

spine is placed at the elevation of the roadway and at the shear center. Hence the 

masses are placed 0.30 m above the spine and also the rotational mass properties are 

calculated with the contributions of this assumption. The distance between the center 

of rigidity and center of mass allows producing the coupling between the torsional 

and transverse modes.  

 

Figure 5.4 : Distribution of lumped masses used in calculating the total 

                    lumped masses. 
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Table 5.3 : Distances between the distributed lumped masses and the shear centre 

    ri (m.) 

m1 7.19 

m2 14.60 

m3 11.78 

m4 4.29 

m5 6.20 

m6 12.93 

The mass moments of inertia are calculated using the formula 

𝐼𝑀𝑖 = 𝛴(𝐼𝑚𝑖 + 𝑚𝑖𝑟𝑖2)                                                                                              (5.1) 

where; 

𝐼𝑚𝑖: mass moment of inertia of the ith element about its own centroidal axis 

𝑚: mass of ith element 

𝑟𝑖: distance from centre of mass of ith element to the shear centre as depicted in 

Figure 5.4.  

The mass moment of inertia of the elements about their own centroidal axis are 

calculated with the formulation given for plate elements (Eq. 5.3) and rod elements 

(Eq. 5.4) where necessary.  

𝐼𝑚𝑖 : 𝑚𝑖
12

× �𝐿𝑥2 + 𝐿𝑦2 �                                                                                                (5.2) 

𝐼𝑚𝑖 : 𝑚𝑖
12

× �𝐿𝑦2 �                                                                                                         (5.3) 

Calculated mass properties are corrected to represent the actual mass moments of 

inertia in the spine model as indicated in Wilson and Gravelle [37]. These corrected 

values of translational and rotational mass are depicted in Table 5.4. 
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Table 5.4 : Mass properties of the deck 

Mass Properties  15 m segment 7.5 m segment 12.5 m segment 

Translational masses (kN/g) (kN/g) (kN/g) 

Main Span 87.78 - 81.40 

Side Span 87.78 - 81.40 

Back Span 97.97 50.51961575 - 

Rotational Inertia (kN/g x m2) (kN/g x m2) (kN/g x m2) 

Main Span IMx 26641.92 - 17305.14 

 IMy 8991.99 - 4379.50 

 IMx 23273.65 - 15304.73 

Side Span IMx 26641.92 - 17305.14 

 IMy 8991.99 - 4379.50 

 IMx 23273.65 - 15304.73 

Back Span IMx 29984.03 12902.98 - 

 IMy 12334.10 5028.46 - 

  IMx 26615.76 12405.81 - 

5.2.2 The Cables 

The sectional properties and the arrangement of the cable planes are given in Section 

4. One truss element is utilized to model each cable with the equivalent elasticity 

modulus approach. The tangential stiffness matrix is calculated by means of 

nonlinear dead load analysis and the required cable pretension forces are obtained 

depending on this analysis. The force – displacement relationship of cables is 

depicted in Figure 5.5 and the calculated equivalent modulus of elasticity is given in 

Table 5.5. 

 

 

 

 

Figure 5.5 : Force – displacement relationship of cables. 

Force 

Displacement 
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Table 5.5 : The calculated equivalent modulus of elasticity of the cables 

Cable 
Group  E (kN/m2) 

1 1,55E+08 
2 1,46E+08 
3 1,71E+08 
4 1,74E+08 
5 1,84E+08 
6 1,94E+08 
7 1,79E+08 
8 1,71E+08 
9 1,60E+08 

Ave.  1,70E+08 

5.2.3 The Pylons and Piers 

Beam elements are used to model pylons and finite element model of a pylon is 

depicted in Figure 5.6. Intermediate and end piers are represented as supports since 

the behaviour of these components is not a concern for this study.  

5.2.4 The foundations 

The interaction between soil and the structure is not taken into account.  

 

Figure 5.6 : Finite element model of a pylon. 
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5.3 Static Loading Conditions 

The loading conditions which are considered in this study are given in Table 5.6. 

Table 5.6 : Loading Conditions 

Load               
DC  dead load of structural components and non-structural attachments 
DW dead load of wearing surfaces and utilities 
PS Cable prestress 
LL vehicular live load 
IM vehicular dynamic load allowance 
EQ earthquake 

    
Load factors considered are given in Table 5.7. 

Table 5.7 : Load Combinations and load factors 

Limit State DC          
DD 

LL            
IM EQ 

STRENGTH I γp 1.75   
STRENGTH II γp 1.35 

         EXTREME I γp γEQ 1 
    SERVICE II 1 1.3 

     
 

Table 5.8 : Load factors for permanent loads, γp 

Type of Load Maximum Minimum 

DC: Component and Attachements 1.25 0.90 
DW: Wearing Surfaces and    
         Utilities 1.5 0.65 

5.3.1 Optimization of Cable Pretension  

There are infinite number of combinations concerning the pretension forces of any 

cable stayed bridge. Obtaining the adequate and effective initial shape and internal 

forces is the most significant task in the analysis of cable-stayed bridges since the 

structure’s behaviour is dependent to it.  
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Although it is a well known fact that some of the cable pretension forces may differ 

from the final form during the construction stage, in this study the final form of the 

bridge is considered for the optimization process.  

Three commonly used methods for obtaining the cable pretension forces have been 

proposed to adjust the internal force and displacement conditions of cable-stayed 

bridges. These methods are; 

1. Optimization method 

2. Zero displacement method 

3. Force equilibrium method 

There are many factors that affect the volume/cost and the safety of the structure 

related to optimization process. Optimization method utilizes objective functions to 

reach the ideal state of the bridge structure concerning the economy and the safety. 

Deflection limits, material allowable stresses and the cost of the structure are the 

primary objective function variables in this method. The constraints should be 

selected very carefully or the result may be impractical.  

Optimization Method 

Negrao and Simoes [38] considered a multi objective function formulation consists 

stress constraints on matearils used, concrete for pylons, and cost of materials.  

Maximum/minimum stresses in stays, geometry control for box girder and 

deflections under dead load are set as constraints by Simoes and Negrao [38], [39] to 

optimize two cable-stayed bridges with box-girder decks.  

The zero displacement method assumes that if the structure reaches the continuous 

beam deflection after construction, the ideal state of is reached and the initial cable 

forces are determined. The method is described by Wang et al. [40], [41]. The 

straight and horizontal bridge decks are considered in this method, in which the 

horizontal components of the cable forces will have no contribution on the bending 

Zero Displacement Method 
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moment. Hence, the bending moment distribution of the structure with zero 

displacements and the equivalent continuous beam will resemble each other.   

According to Chen et al. [42], the bending moment distribution at the initial stage is 

more important than the displacements whether zero or not as it affects the long term 

behaviour of the bridge by the redistribution of internal forces.  

Force Equilibrium Method 

Since the method deal only with the force equilibrium, the nonlinearities arising 

from cable sag does not need to be involved in the process. Hence, the cable weights 

can be neglected. However, it is necessary take them into account to define the 

appropriate final geometry and decide for an appropriate precamber.  

Cable anchor points are involved in the calculation as control parameters which are 

girder and tower anchor points. The bending moment distribution of the equivalent 

continuous beam is the target for this method with zero bending moments at tower 

section. [6], [7], [42]. 

Effective modulus of elasticity approach is utilized for the consideration of the 

nonlinear cable sag effect. The stays are modelled by single truss elements. 

Analysis Results  

The followings are considered for the analysis to find the initial tension forces. 

a. Excessive changes in cable forces should be avoided. 

b. Bending moment of steel girders should be reduced and made uniform 

c. The main tower should have little displacement in longitudinal direction 

(bending moment of the main tower M → 0). 

d. There should be no void of cable tension 

e. Cable section should be uniform 

The bending moments of the girder and the pylons are depicted in Figure 5.7. 
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Figure 5.7 : Bending moment distribution in deck  (dead load). 

The bending moment distribution of the final state of the bridge deck and pylons and 

the equivalent continuous beam are in satisfactory accordance. The maximum 

moment of the pylons is 16.3 MNm which is very small.  

The deformed shape, Figure 5.8, under the effect of dead load and superimposed 

dead load after applying the pretension forces on each cable. The maximum 

deflection at the deck is 0.1405 m in vertical direction which is compensated by the 

precamber. The maximum deflection of the pylons is 0.01 m in the longitudinal 

direction of the bridge which is converging to zero as intended.    

 

 

Figure 5.8: Dead load deformed shape (scaled). 

Cables are grouped due to their installation order on the bridge. These are depicted in 

Figure 5.9. 

 

Figure 5.9 : Cable Groups. 
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5.3.2 Vehicular Live Load 

There are six traffic lanes with 3600 mm width of each. Influence lines are obtained 

to determine the live load forces.  

AASHTO design vehicular live load, HL93, is a combination of a “design truck” or 

“design tandem” and a “design lane”. A permit vehicle, P13 according to 

CALTRANS, loading is also considered. 

Simultaneous lane occupation of the live load is taken into account by multipresence 

factors defined in AASHTO-LRFD [35] which are depicted in Table 5.9. 

Application of the design vehicular live load is considered as in AASHTO-LRFD 

Article 3.6.1.3 [35].  

The maximum effect is resulted from the loading that considers the negative moment 

between points of contraflexure under a uniform load on all spans and the reaction at 

interior piers only.  

Table 5.9 : Multiple Presence Factors m 

Number of 
Loaded Lanes 

Multiple Presence 
Factors m 

1 1.20 
2 1.00 
3 0.85 

> 3 0.65 

 

Figure 5.10 : AASHTO-LRFD design truck. 
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Figure 5.11 : Maximum and minimum bending moments in deck. 

Maximum moment in the deck under live load conditions is 276.5 MNm at 

maximum and – 114.8 MNm which are depicted in Figure 5.11 for STRENGHT I 

combinations.   

Deflection criteria is checked according to the SERVICE I combination. The 

maximum vertical deflection is 0.86 m. For most long-span cable-stayed bridges it is 

acceptable limits for the deflection between 1/400 and 1/500 of the central span 

length.  

5.4 Earthquake Records 

The effect of vertical component of ground motions on steel box girder of long span 

cable-stayed bridges is the main objective of this study. Vertical component of 

ground motions have been studied for two decades on the contrary of horizontal 

component which is extensively studied by many researchers.  

First research concerning the effects of vertical component on bridges was conducted 

by Saadeghvaziri and Foutch [43]. They studied the inelastic behaviour of reinforced 

concrete columns using artificial horizontal and vertical ground motion records. The 

research showed that including vertical component in analysis resulted in 

considerably more damage when effective peak accelerations of 0.7 g than 

earthquake motions with effective peak acceleration equal to 0.4 g or less.  

Some failure modes depending resulting from the vertical ground motion were 

reported by Broderick and Elnashai [44] and Papazoglou and Elnashai [45].  

Yu [46] and Yu et al. [47]  conducted a research on the effects of vertical component 

of ground motion on piers. Sylmar Hospital, Northridge record was used in analysis 

and the results reported as %21 increase in axial force and a %7 increase in the 

longitudinal moment on pier.  
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Button et al. [48], conducted a study with six different bridges covering variety of 

structural system parameters subjected to several ground motions. However, these 

studies were limited to linear response spectrum and linear time history analysis.  

Veletzos et al. [49] investigated the effects of vertical component on precast 

segmental superstructures and they concluded the average positive bending rotations 

increase about 400% percent.  

Recently Kunnath et al. [50], studied the effect of vertical component of several 

configurations of typical highway overcrossing. They carried out nonlinear response 

history analysis and concluded that the vertical component of ground motion cause 

significant amplification in the axial force demand in the columns and moment 

demands in the girder at both the midspan and at the face of the bent cap. Midspan 

moments in the girder found to exceed the capacity which lead to severe damage.  

S waves which are the main cause of horizontal components are longer than P waves 

which cause propagation of the vertical component hence, vertical component has 

much higher frequency content. In result, vertical component lead to large 

amplifications in the short period range.  [45], [51]. 

Unlike short-to-medium span bridges, there no code specified criteria to select 

ground motions for long-span bridges. To obtain accurate and meaningful response, 

selection of earthquake records for use of analysis is very important. Three criteria is 

utilized as described below. 

A selection criteria for the non-specific region applications suggested by Broderick 

and Elnashai [44]. The ratio peak ground acceleration to peak ground velocity, 

PGA/PGV (Zhu et.al) is employed for this study. Records will have high acceleration 

peaks of short duration which cause low velocity cycles when they measured on rock 

or resulted from near-source shallow earthquakes. This leads high values of 

PGA/PGV ratios. On the contrary, records will have lower acceleration values, but 

individual cycles are of longer duration which cause high velocity waves when they 

measured on soft ground or resulted from deep earthquakes, and this leads low 

values of PGA/PGV ratios. Hence, the records have high acceleration periods with 

PGA/PGV Ratio: 



 

40 
 

longer duration periods tend to impose higher demand on long period structures [52]. 

The PGA/PGV ratio ranges are depicted in Table 5.10. 

Table 5.10 : PGA/PGV Ratio Range (adapted from [52]) 

  Range 
low PGA/PGV < 0.8 

medium 0.8 ≤ PGA/PGV ≤ 1.2 
high  1.2 < PGA/PGV 

Many design codes using a 2/3 ratio of vertical component to horizontal component 

of ground motion, which was first suggested by Newmark [53]. Studies conducted by 

Abrahamson and Litehiser  [54], Ambraseys and Simpson [55], Elgamal and He [56], 

Bozorgnia and Campbell [57], showed that V/H ratio of 2/3 is an underestimated 

value. In addition Elnashai and Papazoglou [45]  stated that this value of V/H ratio is 

unconservative in the near-field while it is overconservative in the far-field.  

V / H (Peak Ground Acceleration Ratio):  

Relationship between the timing of peak responses in the vertical and horizontal 

components of ground motion is also have a significant effect on response of 

structures in two ways. First, shakedown may be caused by earlier arrival of vertical 

component than the horizontal component of ground motion. Secondly, coincidence 

of these two components may cause significant amplification of the response of 

structural elements [51]. 

Time interval between horizontal and vertical peak values: 

A study including 452 earthquake records was carried out by Kim et al. [51] to 

obtain the above mentioned V/H ratio and time interval characteristics with respect 

to distance to source and earthquakes. The results of this study are depicted in Figure 

5.12.  
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Figure 5.12 : (a) Distribution of V/H Ratio; (b) time interval [51]. 

 

In light of the above mentioned three criteria, two near-source earthquake records are 

selected from Pacific Earthquake Engineering Research Center Ground Motion 

Database. Ground motion records, depicted in Table 5.11, are selected to evaluate the 

performance of the long-span bridge. Fundamental periods of the bridge is given in 

Table 5.12. 

Table 5.11 : Selected Ground Motions 

      Distance   
(km) 

PGA                                       
(g) 

      

   
PGV 
(m/s) 

PGA/
PGV V/H 

Earthquake Mw Station  CD* Long  Trans  Vert 
Imperial 
Valley 
(1979)  7.62 

Array 
#6 0.3 0.439 0.410 1.660 1.098 0.40 3.78 

Kocaeli 
(1999) 7 Yarimca 4.8 0.349 0.268 0.242 0.690 0.51 0.69 
Chi Chi 
(1999) 6.53 TCU068 1.4 0.566 0.462 0.486 1.873 0.30 0.86 

* CD=closest distance to fault 

Table 5.12 : Fundamental Periods of IY 700 

Fundamental Periods 
Vertical Longitudinal Transverse 

(sec) (sec) (sec) 
5.04 3.97 6.55 

Both fast Fourier transform (FFT) and response spectral analysis are studied to 

define the predominant frequency of the selected ground motions with SeismoSignal 

[58]. 2% damping is utilized for the response spectral analysis. Figures from 5.13 to 

5.21 and Table 5.12 show the period characteristics and frequency contents of the 

selected records.  
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Figure 5.13 : Time – acceleration of Imperial Valley vertical component. 

 

Figure 5.14 : El Centro Array #6 – Vertical Component Response Spectrum. 

 

 

Figure 5.15 : El Centro Array #6 – Vertical Component FFT. 
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Figure 5.16 : Time – acceleration of Chi Chi vertical component. 

 

Figure 5.17 : Chi Chi Taiwan, TCU068 – Vertical Component Response Spectrum. 

 

Figure 5.18 : Chi Chi Taiwan, TCU068 – Vertical Component FFT. 
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Figure 5.19 : Time – acceleration of Kocaeli vertical component. 

 

Figure 5.20 : Kocaeli, Yarimca – Vertical Component Response Spectrum. 

 

Figure 5.21 : Kocaeli, Yarimca – Vertical Component FFT. 
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1 - El Centro Array #6 is the most commonly used earthquake record for the studies 

of long-span cable-stayed bridges by many researchers.  

2 - The Chi Chi ground motion is a not only near-fault but  also pulse-type ground 

motion. Pulse-type ground motions are not considered in any seismic codes except 

UBC 1997. 

3 - Kocaeli, Yarimca record is representing the mediocre ground motion event on the 

basis of comparison of these selected ground motions.   

5.5 Damping Characteristics 

A structural damping of %2 is applied as Rayleigh damping and used for all analysis. 

Damping characteristics of cable-stayed bridges were explained in extend in Section 

2. Besides that, later Elnashai and Papazoglou [45] and Collier and Elnashai [59] 

explained that the vertical component of ground motion is associated with higher 

frequencies, hence suggested to limit the damping ratio of %2.  

Rayleigh coefficients are computed depending on a deck mode and a tower mode 

with high mass participation. 
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6.CHARACTERISTICS OF THE BRIDGE  

6.1 Static Characteristics of the Bridge  

Cable supported long span bridges are distinguished from most of the structures 

because of their long spans and flexibility.  

The bridge which is considered in this study found to satisfy all strength and service 

limit states that considered among the relative displacements.  

6.2 Dynamic Characteristics of the Bridge 

The eigen value analysis is performed to obtain dynamic behaviour characteristics 

with utilization of the tangent stiffness matrix of the dead load deformed state [4], 

[24]. Boundary conditions considered for the modal analysis are given in Table 6.1. 

Table 6.1 : Boundary Conditions 

  x - direction  (longitudinal) y - direction (transverse) 
Deck - Pylon free fixed 
Intermediate Piers  fixed fixed 
End Piers fixed fixed 

First fifteen modes, their nature, periods, frequencies and mass participation ratios 

are depicted in Table 6.2. First modes are all deck modes and first two mode shapes 

are depicted in Figures 6.1 and 6.2. 

The fundamental mode with period 6.55 s is a torsional lateral mode as depicted in 

Figure 6.1.  

 

Figure 6.1 : Fundamental Mode, TL 1 
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Table 6.2 : First 15 modes 

Mode 
No 

f 
[cyc/sec.] T [sec.] 

Modal 
mass x 

[%] 

Modal 
mass y 

[%] 

Modal 
mass z 

[%] 
Nature Dir. 

1 0.15 6.55 0.00 20.20 0.00 TL 1 y 
2 0.20 5.04 0.00 0.00 7.19 V 1 z 
3 0.25 3.97 4.39 0.00 0.00 V 2 x 
4 0.34 2.95 0.00 0.00 0.00 TL 2 y 
5 0.35 2.90 0.00 1.80 0.00 TL 3 y 
6 0.35 2.87 0.00 1.12 0.00 TL 4 y 
7 0.36 2.78 0.00 0.00 0.00 TL 5 y 
8 0.37 2.72 0.00 0.00 0.22 V 3 z 
9 0.39 2.59 0.00 48.40 0.00 TL 6 y 
10 0.43 2.34 19.96 0.00 0.00 V 4 x 
11 0.48 2.07 0.00 0.00 0.00 TL 7 x 
12 0.50 2.01 0.00 0.00 3.94 V 5 z 
13 0.56 1.77 0.00 0.00 0.00 TL 8 y 
14 0.58 1.73 6.75 0.00 0.00 V 6 x 
15 0.62 1.62 6.41 0.00 3.63 TL 9 x 

*TL identifies torsional lateral modes, V identifies vertical modes 

 

Figure 6.2 : 2nd Mode, V 1. 

Period distribution of the structure is depicted in Figure 6.4. First 11 modes have 

periods above 2s and periods below 2s are closely spaced.  

 

Figure 6.3 : 4th Mode, TL 2. 
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Figure 6.4 : Period distribution. 

 

Figure 6.5 : Modal mass participation in longitudinal direction. 

If model support conditions are selected as free in transverse (lateral) direction, then 

the fundamental period of the bridge will result in the period of a pendulum which is 

formulated by Galileo Galilei  and the nature of this mode will be transverse sway. 

𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 2𝜋�𝑙
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                                                                                                  (6.1) 
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𝑙 ∶ the distance between pylon top and deck 

𝑔 ∶ acceleration of gravity 

𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 2𝜋�139𝑚
𝑔

 = 23.651  sec. 

Since the period is calculated as 22.394 sec. by modal analysis, the deck is a bit 

stiffer than the equivalent system.   
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7. EARTHQUAKE RESPONSE 

7.1 Introduction 

Nonlinear time history analysis is carried out, after a nonlinear static load analysis 

under dead load, to obtain seismic response characteristics of the bridge.  

Bending moment change at midspan, at the face of crossbeam of the pylon, and 

intermediate pier are investigated among the rotation displacements.  

7.2 Nonlinear Time History Analysis 

Nonlinear direct integration method is adopted for dynamic analysis of the bridge.  

• Newmark implicit integration sheme (δ = 0.5, α = 0.25) 

• Time step, ∆t = 0.02  which allows high frequency modes to participate in 

response. A sensitivity analysis should be carried out usually, however the 

value suggested by many researchers is used in this study. 

• Geometric nonlinearity is considered 

7.3 Results 

The results obtained by nonlinear time history analysis will be given in this section. 

My refers to the longitudinal bending moment and Ry refers to rotational 

deformations on the girder. Figure 7.1 showing elements and nodes in consideration.  

H+L is representing values resulting from only horizontal ground motion excitation, 

H+L+V is representing values obtained by including the vertical component of 

ground motion to horizontal components in the following figures. 

A parametric study is carried out depending upon PGA/PGV ratios and V/H ratios. 

Response of bridge which is subjected to only horizontal components and both 

horizontal and vertical components are given below in detail.  
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Figure 7.1 : Element and node of girder considered at midspan for response. 

 

Figure 7.2 : Element and node considered at pylon section of girder for response. 

 

Kocaeli, Yarimca: 

Figure 7.3 : E134 – My Moment. 
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Figure 7.4 : N94 – Ry Displacement. 

 

 

Figure 7.5 : E112 – My Moment. 
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Figure 7.6 : N70 – Ry Displacement. 

Moments resulting from the excitation of ground motion including vertical 

component are seriously amplified when they compared with moments resulted from 

only horizontal ground motion excitation at the midspan, Element 134. It is depicted 

in Figure 7.3. 

On the contrary, rotations about y axis of the bridge do not change due to 

participation of the vertical component of earthquake at the midspan, Node 94. As 

can be seen from Figure 7.4 change of rotation deformations in time resulting from 

both cases are exactly same.  

At the pylon section of stiffening girder, Element 112, moments resulting from the 

excitation of ground motion including vertical component are also found to be 

increased they compared with moments resulted from only horizontal ground motion. 

The rate of amplification is depicted in Figure 7.5. 

In addition, rotations about y axis of the girder are amplified by the contribution of 

vertical component of earthquake.  
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ElCentro, Array # 6: 

Figure 7.7 : E134 – My Moment. 

 

Figure 7.8 : N94 – Ry Displacement. 
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Figure 7.9 : E112 – My Moment. 

 

Figure 7.10 : N70 – Ry Displacement. 
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Chi Chi, TCU068: 

Figure 7.11 : E134 – My Moment. 

 

 

Figure 7.12 : N94 – Ry Displacement. 
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Figure 7.13 : E112 – My Moment. 

 

Figure 7.14 : N70 – Ry Displacement . 

Experience show that, seismic load seldom controls the design except in extremely 

high seismic areas.  

All results presented in Table 7.1 and Table 7.2 compare the code specified load 

combinations for design and the internal forces obtained from the contribution of the 

vertical component of the ground motions. The results in Table 7.1 and 7.2 are also 

include the normalized values by the corresponding response of the live load and 

dead load combination. 
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Table 7.1 : Comparison of moment values for element 134 between code specified    

                   load combinations 

  Load Elem. No. Mmax. Mmin. 

  DL 134 (N94) 
22677   

 
DL + 1.75LL 137964 -2333 

Kocaeli DL + (TH- H)  134 (N94) 
27746 -2836 

DL + (TH- HV)  85723 -91890 
Imperial 

Valley 
DL + (TH- H)  134 (N94) 

27746 -3781 
DL + (TH- HV)  93368 -64653 

Chi Chi DL + (TH- H)  134 (N94) 
27746 -4562 

DL + (TH- HV)  152500 -208404 

 
Table 7.2 : Comparison of moment values for element 112 between code specified           

                   load combinations 

  Load 
Elem. 
No. 

Mmax. Mmin. Mmax./DL Mmin./LL 

  DL 112 
(N70) 

22677   1,00 
 

 
DL + 1.75LL -35079 -106726 -1,55 1,00 

Kocaeli 
DL + (TH- H)  112 

(N70) 
10575 -49382 0,47 0,46 

DL + (TH- HV)  46887 -49382 2,07 0,46 
Imperial 

Valley 
DL + (TH- H)  112 

(N70) 
8948 -49382 0,39 0,46 

DL + (TH- HV)  92663 -49382 4,09 0,46 

Chi Chi 
DL + (TH- H)  112 

(N70) 
17703 -49382 0,78 0,46 

DL + (TH- HV)  68960 -90492 3,04 0,85 

 
Table 7.3 : Increment ratio for rotational displacement of  node 70. 

  N70 time (s.) 

Kocaeli 71% 23 

Imperial Valley 143% 31 

Chi Chi 522% 40 
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8. CONCLUSIONS 

Vertical component of ground motions and its effects on structures has not been 

investigated in depth as much as the horizontal components. More research is needed 

on the subject of vertical component of ground motions, especially for the near fault 

strong motions.  

Negative moment demand at the centre of the main span is considerably increased as 

depicted in Table 7.1. No variation observed at the deck negative moment demand at 

the face of pylon. Positive moment demand is increased as depicted in Table 7.2. 

Rotational displacement demand of the deck at the face of the pylons is increased 

with 71% ratio at least as depicted in Table 7.3. This may be further studied in 

manner of ductility capacity of the deck. 

These conclusions are in parallel manner with the conclusions derived by Kunnath et 

al. [50] for short span crossover bridges. Also, it has been concluded that vertical 

component effects may be uncoupled from the horizontal component effects as 

depicted in Figures 7.3, 7.5, 7.7, 7.9, 7.11, 7.12. 

In addition to above stated, it has been concluded that the impulse character of the 

vertical component of ground motion, as in Chi Chi, Taiwan record, impose the most 

demand on midspan deck negative moment and rotational displacement capacity of 

the deck at the face of the pylon.  

Selection of the ground motions by means of predominant frequency of the ground 

motion is also an important criteria for obtaining effects of the vertical component. 

Due to these results, the effect of the vertical component of the selected ground 

motion should carefully examined, especially for the near fault ground motions.  
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Isolation devices may be used to reduce the response of cable-stayed bridges. In 

addition support conditions may be revised to provide more flexible structure as 

concluded by many researchers before.  

It is obvious that due to exceptional and unique nature of each long span cable-stayed 

project, a code specification is not possible. However, since the behaviour of the 

structure in earthquake prone areas has been the major source of concern, guidance 

for selection of ground motions is necessary for use of design firms.  

As investigated by many researchers before, the effect of the vertical component of 

the ground motion can cause severe amplification in the bridge response. Hence, it 

should be included in dynamic analysis of long span bridges with appropriate 

earthquake records selected to result in accurate and meaningful response 

characteristics.  
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