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SYNTHESIS OF NANOCOMPOSITES THIN FILMS AND 

CHARACTERIZATION OF MECHANICAL  

SUMMARY 

Thin film technology has been studied extensively because of its ease of use. 

Moreover, it is inexpensive way to synthesis composites materials. It consumes less 

material, thus it is more environmental solution for fabrication of advanced 

materials. 

Mechanical strength is quite important feature for any material and any application 

area. Mechanical properties affect all design parameters. Therefore, it is important to 

know or predict behavior of materials before using them in our system.  

Ultimate strength, wear resistance and chemical resistance are some features that can 

be improved via thin film technology. Also the optical properties such as 

transmittance, reflectance can be altered.  

In principle, both inorganic and organic materials can be coated on different 

substrates. Toxicity is the biggest problem for various usages. Tantalum, titanium 

and their oxide forms are quite popular materials because of their compatibility with 

human body. The main reason is the chemical inertness of these materials. Titanium 

is used in surgeries since 1950s and it is not affected by body fluids. Besides, it 

withstands external forces very well.  

Tantalum and tantalum oxide are well known as their great chemical stability and 

high refractive index but theirs superior mechanical properties have not drawn so 

much attention. Moreover, it is extremely transparent that is a necessary feature 

when working with glass. These incredible features make tantalum oxide a perfect 

coating material for glass substrates. 

Improving mechanical strength of glass has been worked for many years. Many 

scientists have tried reinforcing glass with both inorganic and organic materials. 

Polyvinyl butyral (PVB) is the most popular organic material for both ultimate 

strength and toughness. Additionally, it holds glass particles together that provides 

extra safety. Thus, PVB is often used in many applications such as cars, buildings 

and household goods. However, the negative effects (degradation, etc.) of sunshine 

on organic materials are well known in the literature. Therefore, PVB may not be the 

best selection for materials in touch with human body like glasses, plates, etc. 

Inorganic materials are generally more stable in the rough environmental conditions. 

In this work, we tried to improve the mechanical properties of glass with inorganic 

materials.  

All these properties mentioned above depend on the deposition techniques. Coating 

techniques should be cheap and compatible with batch processes. Sol-gel process 

offers an efficient platform to scientists to coat the glass, because of numerous 

reasons: it requires relatively simpler laboratory equipment and offers a large 

portfolio of starting materials and lastly. Moreover, it allows modification of 
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surfaces quite effortlessly. With the use of this process, the preparation of binary and 

ternary inorganic materials and nanostructures have been studied considerably to 

date. In this work, dip and spin coating were separately used to deposit the glass 

substrates and the results were compared. Mechanical properties change with 

different coating methods because it affects final film thickness directly. Firstly, the 

binary and ternary films were deposited by spin and dip coatings. Subsequently, 

detailed characterization of the films and the properties - especially the mechanical 

properties - of the sol-gel derived films are discussed aiming to improve mechanical 

properties with great potential in the glass technology.  

There are huge number of organic and inorganic materials. The mechanical and 

optical properties are changed in nano scale and composite materials. Therefore, it is 

nearly impossible to try out every material with each other in nano or macro scales. 

Sometimes we need the analytical calculation and/or computer simulations to 

analyze final behavior. Both of them need the properties of materials and boundary 

conditions for given situations. Finite element method (FEM) is very popular and 

quite successful for many different analyze types. It gives quick information about 

our system. Using these kinds of computer programs (which use FEM) help us to 

select the right materials for our purpose and design our systems.  

In this work, we used titanium dioxide (TiO2) – silicon dioxide (SiO2) binary system 

and tantalum pentoxide (Ta2O5) as coating materials with different additives. Two 

different titanium dioxide – silicon dioxide recipes were used. As additive agent 

single-walled carbon nanotubes (SWCNTs) and cerium dioxide (CeO2) nano 

particles were used. For phase characterization and chemical composition of the 

samples, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) 

were used, respectively. Scanning electron microscope (SEM), atomic force 

microscopy (AFM) and optical microscopy were used for examining film surfaces. 

UV-visible spectroscopy and NKD analyzer were used to measure transmittance and 

reflectance of samples. Contact angle was measured by tensiometer. 

Ring-on-ring tests were used as main mechanical test. It is a biaxial test, which gives 

better results for the brittle materials. The second mechanical test was scratch test. It 

gives information about surface hardness directly and wear resistance indirectly. 

Finally, all results of the deposited films were compared to each other.  

Ta2O5 thin films represent the best results. They demonstrated around 200% 

improvement for ultimate strength and huge increase in scratch resistance. Adding 

CeO2 nano particles to TiO2 – SiO2 binary sol gave poor results in terms of the 

mechanical properties. SWCNT shows some improvement especially on hardness. 

Very small amount of SWCNT leads 7% improvement on ultimate strength and 

100% on hardness. Nevertheless, the positive effects of SWCNT decreases by 

increasing content. FEM gave nearly perfect results for all samples. It is obvious 

that, Ansys could easily apply to analyze bilayer or multilayer materials. 
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NANOKOMPOZİT İNCE FİLMLERİN SENTEZİ VE MEKANİK 

ÖZELLİKLERİNİN KARAKTERİZASYONU 

ÖZET 

İnce film teknolojisi, kolay uygulanmasından ötürü son zamanlarda giderek 

yaygınlaşmıştır. Ayrıca tüm yapıyı kompozit üretmekten daha ucuza mal olmaktadır. 

Daha az malzeme tüketimi olduğundan, yüksek teknolojik malzemelerin üretiminde 

daha çevreci çözümler sunar.  

Mukavemet, her malzeme için, tüm kullanım alanlarında en önemli özelliklerden 

biridir. Mekanik özellikler tüm tasarım parametrelerini etkiler. Bu sebeple 

sistemimizde kullanmadan önce malzemelerin davranışlarını bilmek ya da tahmin 

etmek çok önemlidir. 

Kopma dayanımı, aşınma dayanımı ve kimyasallara karşı direnç gibi özellikler ince 

film teknolojisi ile geliştirilebileceği gibi geçirgenlik ve yansıtıcılık gibi optik 

özellikler de değiştirilebilir. 

Prensipte hem inorganik hem de organik malzemeler farklı altlıklara kaplanabilir. 

Birçok kullanım alanı için zehirlilik en büyük problemlerden biridir. Tantalum, 

titanyum ve oksitleri insan vücuduyla uyumlu olmalarından dolayı son derece yaygın 

kullanımı olan malzemelerdir. En büyük sebep bu malzemelerin kimyasal olarak 

tepkime vermemesidir. Titanyum 1950’lerden beri ameliyatlarda kullanılır ve vücut 

sıvıları ile tepkimeye girmez. Bununla beraber dış kuvvetlere karşı gayet iyi dayanır.  

Tantalum ve oksidi müthiş kimyasal kararlılığı ve yüksek yansıtıcılık özellikleri iyi 

bilinse de mükemmel mekanik özellikleri bu zaman kadar fazla dikkat çekmemiştir. 

Buna ilaveten tantalum filmler son derece transparandır ve bu camlar ile çalışmak 

için son derece önemli bir parametredir. Bu inanılmaz özellikler tantalumu cam 

altlıklar için mükemmel bir kaplama malzemesi yapar.  

Camın mekanik özelliklerini iyileştirmek için uzun yılladır çalışılmıştır. Birçok bilim 

adamı camı hem inorganik hem de organik malzeme ile takviye etmeyi denemiştir. 

Polyvinyl butyral (PVB) hem kopma mukavemeti hem de tokluk açısından en yaygın 

olarak kullanılan organik takviye malzemesidir. Aynı zamanda kırılma durumlarında, 

cam parçalarını bir arada tutarak daha yüksek güvenlik sunar. Bu özelliklerinden 

dolayı PVB, araba camları ve inşaat sektörü gibi birçok kullanım alanına sahiptir. 

Lakin, güneş ışığının organik malzemeler üzerindeki negatif etkileri (degredasyon, 

vb.) bilinmektedir. Bu nedenle PVB bardak, tabak gibi insan ile temasta bulanan 

malzemelerde en iyi seçim olmayabilir. Genel olarak inorganik malzemeler zorlu 

çevre koşullarına karşı daha dayanıklıdır. Bu sebeplerden ötürü camın mekanik 

özellikleri inorganik malzemeler ve katkı maddeleri ile iyileştirilmeye çalışılmıştır.  

Yukarıda belirtilen bütün özellikler üretim metoduyla bağlantılıdır. Yöntem ucuz ve 

seri üretime elverişli olmalıdır. Birçok farklı özellik sunmasıyla beraber göreceli 

olarak küçük bir laboratuvar ekipmanı olan, sol-gel metodu, bilim insanlarına, cam 

kaplama için etkili bir yöntem sunmaktadır. Ayrıca yüzey özellikleriyle kolayca 
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oynanabilmektedir. İkili, üçlü inorganik ve nano yapılı malzemelerin sentezi, bu 

yöntemin kullanılmasıyla günümüze kadar gelmiştir. Bu çalışmada, döndürerek ve 

daldırarak kaplama yöntemleri ayrı ayrı kullanılarak cam altlıklar kaplanmış ve 

sonuçlar incelenmiştir. Mekanik özellikler kaplama yöntemine bağlı olarak değişir, 

çünkü yöntem film kalınlığını doğrudan etkiler. İlk olarak, ikili ve üçlü sistemdeki 

filmler döndürerek ve daldırarak kaplama metotlarıyla kaplanmıştır. Daha sonra, 

mekanik özellikler başta olmak üzere, filmlerin detaylı karakterizasyonu yapılmıştır. 

Sol-gel yöntemiyle elde edilen filmlerde, gelişmeye açık olan camların mekanik 

özelliklerini iyileştirmek amaçlanmıştır.  

Dünyada binlerce farklı organik ve inorganik malzeme vardır. Kompozit 

teknolojisinde ise iki veya daha fazla malzeme bir arada kullanılır. Buna ek olarak 

mekanik ve optik özellikler nano boyutta tamamen değişir. Yani her bir malzemeyi, 

birbiriyle nano veya makro boyutta denemek neredeyse imkânsızdır. Bazen analitik 

çözümler ve/veya bilgisayar simülasyonları bitmiş yapının davranışlarını analiz 

etmek için gereklidir. İki yöntemde malzemenin mekanik özelliklerine ve verilen 

problem için sınır koşullarına ihtiyaç duyar. Sonlu elemanlar yöntemi son derece 

yaygındır ve farklı analiz tipleri için oldukça başarılı sonuçlar vermektedir. Bu çeşit 

bilgisayar programları doğru malzemeyi seçmemizde ve sistemimizi tasarlamamızda 

bize yardım eder.  

Bu çalışmada titanyum dioksit (TiO2) – silisyum dioksit (SiO2) karışımı ve tantalum 

pentoksit (Ta2O5) farklı katkı maddeleri ile kaplama malzemesi olarak kullanılmıştır. 

İki farklı TiO2 – SiO2 reçetesi denenmiştir. Katkı malzemesi olarak da tek duvarlı 

karbon nanotüp (SWCNTs) ve ceryum dioksit (CeO2) nano parçacıklar 

kullanılmıştır.  

Örneklerin faz karakterizasyonu için, x-ışını spektroskopisi (XRD) ve x-ışını 

fotoelektron spektroskopisi kullanılmıştır. Film yüzeylerinin incelenmesi için ise 

taramalı elektron mikroskopundan (SEM), atomik kuvvet mikroskopu (AFM) ve 

optik mikroskoptan yararlanılmıştır. UV-görünür bölge spektroskopisi ve NKD 

analizör ile örneklerin optik geçirgenlik ve yansıtıcılık özelliklerini saptamak için 

kullanılmıştır. Suyun kontak açısı, tensiyometre ile ölçülerek, yüzeylerin hidrofiliklik 

ve hidrofobiklik özellikleri incelenmiştir. 

Halka üzerinde halka testi asıl olan mekanik testtir. Bu test gevrek malzemeler için 

daha iyi sonuç veren, çift eksenli gerilme uygulayan bir yöntemdir. Numuneler iki 

farklı çaptaki halka arasına konarak, kırılıncaya kadar basma gerilmesi uygulanır. 

Camlar gevrek yapıda olduklarından akma gerilmesi, maksimum çekme gerilmesi ve 

kopma gerilmesi değerlerinin hepsi birbirine yakındır. Cihaz gerilme ve sehim 

değerlerini kaydeder. Böylece kaplanan farklı filmlerin, mekanik özelliklere olan 

etkisi güvenilir biçimde ölçülmüş olunur. Gevrek malzemelerde testin tekrarı, 

güvenilirlik için son derece önemlidir. 

Uygulanan ikinci test ise çizilme testidir. Bu yöntem yüzey sertliği ile ilgili direkt; 

aşınma direnci ile ilgili dolaylı yönden bilgi verir. Aynı zamanda sertlik ile akma 

dayanımı arasında da bir bağıntı vardır. Son olarak, tüm sonuçlar birbiri ile 

karşılaştırılmıştır. 

Tantalum pentoksit, optik ve yarı-iletken uygulamalarında yaygın olarak kullanılan 

bir malzemedir. Ancak yapılan testlerde, aynı zamanda mekanik özellikleri oldukça 

iyileştirdiği gözlemlenmiştir. Kopma mukavemetini yaklaşık olarak 3.5 katına 

çıkarmıştır. Mekanik özelliklerdeki bu iyileşmenin yanı sıra, transparan camın optik 

özelliklerini de bozmamıştır. Aynı zamanda insan sağlığına olumsuz etkileri de 
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olmaması sebebiyle, tantalum pentoksit, mukavemet gerektiren birçok alanda 

kullanılabilir. Aynı zamanda kaplanan film oldukça incedir. Böylece malzeme 

verimli bir şekilde kullanılabilir.  

Üçlü sol sistemi denemesi ise, başarısız olmuştur. Sebebi hatalı kimyasal 

reaksiyonlar olabilir. Solleri karıştırmak yerine tabakalı film uygulaması mekanik 

açıdan daha iyi sonuç verebilir. Öte yandan, titanyum ve silisyum oksit ikili sistemi 

de gerek mekanik gerek optik açıdan iyi sonuçlar vermiştir. Optik geçirgenlik 

özelliği, tantalum filmlerden yaklaşık olarak 20 kat daha kalın olmasına rağmen, 

daha iyidir. Aynı zamanda daha sünek ve tok bir film oluşturarak, darbe direncinin 

de artmasına yardımcı olur. Lakin, kalın film seri üretim söz konusu olduğunda, 

maliyet açısından olumsuz olabilir.  

Mekanik özellikler bakımından, bilinen en iyi malzeme olan tek duvarlı karbon 

nanotüp katkısı ise beklenen etkiyi verememiştir. Sebebi sol içinde çözülmeme ve 

düzgün dağılmama sorunlarıdır. İlerleyen teknoloji seviyesi ile bu malzemenin 

istenildiği gibi kullanılmasına olanak sağlanacaktır.  

Analitik çözüm, tek tabaka için oldukça başarılı sonuçlar verse de çok katmanlı 

yapılarda hassasiyetini kaybetmektedir. Sonlu elemanlar yöntemi ise, çok katmanlı 

yapıları da oldukça hassas şekilde analiz edebilmiştir ve ince film araştırma ve 

geliştirme çalışmalarında yaygın olarak kullanılması gerektiğini göstermiştir. Hata 

payı %10’un altındadır.  
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1. INTRODUCTION 

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) 

to several micrometers in thickness [1]. Electronic semiconductor devices and optical 

coatings are the main applications benefiting from thin-film construction. 

Thin film materials have become technologically important recently, some examples 

are: 

 Microelectronic Integrated Circuits 

 Magnetic Information Storage Systems 

 Optical Coatings 

 Wear Resistant Coatings 

 Corrosion Resistant Coatings. 

Ability to make small-scale devices (magnetic storage), physical properties those are 

scale-dependent (optical filters), cost benefits (use small amounts of expensive 

materials for coatings) are the main points for using materials in thin film form [2-

10]. 

Generally, we think thin films based devices in terms of their electronic, magnetic or 

optical properties, however in many applications mechanical properties can be 

improved significantly with thin film technology. 

We named them thin because, the thicknesses of these substrates are usually much 

smaller than their lateral dimensions. In addition, deposited film thickness is 

generally much thinner than the thickness of the substrate. Figure 1.1 shows 

schematic view of a thin film and the substrate. 

 

Figure 1.1: Simple schematic view of a thin film. 
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In the following section, a general introduction to applicable fabrication techniques 

of thin layers will be provided (see, 1.2). The materials used for this aim are 

introduced (see, 1.4). Measurement techniques related to thin films - that are utilized 

in this work - are listed (see, 1.5). After that, mechanics of materials, thin films and 

substrates are described in detail (see, 2) and optics of thin films are described (see, 

3). 

1.1.  Microstructure 

      Grain size = d, 

Dislocation spacing = 1/√  

Film thickness is always comparable to microstructural dimension. 

tf ≈ d, 

tf ≈ 1/√  

The main purpose is getting finer microstructure than in bulk form. This causes 

mechanical properties of thin films to be different from those of bulk materials [10].  

1.2. Thin Film Deposition 

Thin films are grown by the deposition of material atoms on any substrate. The thin 

film growth exhibits the following features: 

 The birth of thin films of all materials starts with a random nucleation 

process followed by nucleation and growth stages. 

 The nucleation and growth stages are dependent upon various deposition 

conditions, such as growth temperature, growth rate, and substrate surface 

chemistry. 

 The nucleation stage can be modified by external agencies, such as electron 

or ion bombardments. 

 Film microstructure that is associated defect structure, and film stress depend 

on the deposition condition of the nuclear stage. 

 Crystal phase and crystal orientation of the thin films are governed by the 

deposition conditions [11]. 



3 

Figure 1.2 shows the growth mechanism for thin films. 

 

Figure 1.2: The growth model of the thin films. 

By controlling deposition conditions, basic properties of thin films can be altered 

such as film chemical composition, structural properties, and film thickness. Thin 

films show very different characteristic properties than bulk materials: 

 Unique material properties depend on the atomic growth process on the 

growing substrate. 

 By including quantum size effects, size effects characterized by crystal 

orientation, thickness and multilayer aspects [11]. 

Generally, bulk materials are sintered from the powder of source material. Diameter 

of the powder is of the order of 1 µm. On the other hand, thin films are synthesized 

from ultrafine particles like atoms or a cluster of atoms. Figure 1.3 shows thin film 

deposition process in vacuum. 

 

Figure 1.3: Typical thin film deposition system in vacuum. 

There are two main categories for deposition process, physical and chemical. Figure 

1.4 shows thin deposition techniques. 
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Figure 1.4: Typical deposition methods of thin films. 

Plating, chemical solution deposition, spin coating, dip coating, spray-up, chemical 

vapor deposition and atomic layer deposition are chemical deposition techniques.  

On the other hand, physical vapor deposition, sputtering, pulsed laser deposition, 

cathodic arc deposition and electro hydrodynamic deposition are physical techniques 

for deposition technology.  

1.3. Sol-gel Process  

Sol-gel process is used for production of solid materials from small molecules. 

Oxides of silicon and titanium are the most popular materials for this process. The 

process involves conversion of monomers into a colloidal solution (sol) that acts as 

the precursor for an integrated network (or gel) of either discrete particles or network 

polymers [12]. 

Materials prepared by sol-gel technology can range from relatively simple inorganic 

glasses to more complex hybrid composites [13]. By using composite thin films, 

advantages of both materials can be gained. Because of unique properties of sol-gel 

process, it has gained particular attention. Molecular scale homogeneity, low cost 

and easy control parameters are some advantages of sol-gel process. In addition, thin 

films that made by sol-gel process, shows excellent antiwear and friction reduction 

performances and low loads [14-16]. Figure 1.5 shows sol-gel technology scheme. 



5 

 

Figure 1.5: Sol-gel technology scheme. 

Two of the most common ways used in analytical applications are monolithic gels 

and thin films. Monolithic gels can be easily prepared by pouring sol into appropriate 

container. After gelation and drying, the monolithic piece is shaped by the container 

in which it was poured [17]. Thin films can be prepared by spin coating, dip coating 

and spray-up techniques.  

The chemical reactions that occur during the formation of the sol, gel, and xerogel 

strongly influence the composition and properties of the final product [18]. The 

hydrolysis and condensation process of sol material should be known well. Rate of 

aging and drying, temperature, added dopants, the type and concentration of co-

solvents, the type and concentration of catalyst and pH are known as factors that 

influence hydrolysis [19].  

The viscosity of the sol increases until a specific point as hydrolysis and 

condensation proceed, the solution ceases the flow and gelation has occurred. At this 

point whole mass has become interconnected with a liquid phase trapped within [20]. 

It is very important to know that, in contrast to many polymeric reactions, the sol-gel 

transition is irreversible. As the gel sits in its pore liquid, the structure of the gel 

continues to change via additional condensation reactions between neighboring 
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unreacted groups. As the gel ages, the connectivity of the network increases, the pore 

size decreases, and solvent is expelled from the pores. Temperature, time and pH 

affect the aging process and thus the final structure of the gel [21]. 

Solvent (i.e., alcohol) and water evaporate from the pores leading the solid matrix to 

shrink and pores to collapse during drying process. Xerogels, or fully dried gels, 

have final volumes that are approximately 1/8 their original volume and are 

considerably less porous then their "wet" counterpart. During drying, internal 

pressures can be built up in the gel due to surface tension forces that generates stress 

cracks and fractures to occur [21]. These cracks can be eliminated by drying 

monolithic gel slowly, in high humidity environment or by producing thin films [22].  

The structure of the thin films can be very different from the structure of monolith, 

which prepared from the same sol because gelation and aging occur simultaneously 

with drying. In contrast, the aging and drying process in monolithic gels typically 

occurs over a period of several days to several weeks. As a result, thin films are often 

considerably denser and less porous than corresponding monolithic materials [23]. 

Materials that produced via sol-gel method have found various applications in the 

area of chemistry, biochemistry, engineering and materials science [24]. This 

particular attention comes from easy preparation and modification parameters of sol-

gel technology. For example, the silicate glasses can be formed in different forms 

(thin films, monoliths, powders, fibers) and sizes, different physical and chemical 

properties (pore size, shape, distribution, surface area, refractive index, polarity). In 

addition, they can be readily doped with various polymers for any application [25].  

These are the main usage area of materials that produced by sol-gel method: 

 Chemical sensors (pH sensors, sensors for ions and neutral species, sensors 

for gases and vapors, biosensors) 

 Chromatography 

 Fabrication of selective materials 

 Optical applications (nonlinear optical materials, optical waveguides, solid-

state lasers, electroluminescent devices) [13]. 
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1.3.1. Spin coating 

It is the simplest method for fabricating a film on a substrate. Spin coating is a very 

practical way to deposit uniform thin films to flat substrate. The substrate is rotated 

at high speed in order to spread coating material by centrifugal force. The higher the 

angular speed of substrate, the thinner the film. The final thickness also depends on 

the concentration, surface tension and viscosity of the coating material. Even 

thicknesses below 15 nm films can be produced by this method [26]. Figure 1.6 

shows the steps of spin coating process. 

Thin resist layers for photolithography are coated with this technique. Some of the 

solvent is removed during spinning process due to evaporation and some by baking 

at elevated temperatures. This technique is often used for planarization purposes 

because it results relatively planar surfaces [27]. The advantages of spin coating: 

 Fast process time and cost effective 

 Highly uniform surfaces even curved parts can be achieved 

 Lenses with different curvatures might be coated uniformly with minimal 

thickness edge effects or variation. 

 Sol is used once for each coating so avoiding contamination is easier then dip 

coating. 

 Fewer amounts of sol is needed for experimental use, also it is better for 

expensive materials [28]. 

 

Figure 1.6: Spin coating process. a) Acceleration b) Dispensation c) Flow dominated   

    d) Evaporation dominated. 
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1.3.2. Dip coating  

In this method, the substrate is normally withdrawn vertically from a desired coating 

solution, which causes a complex process involving gravitational draining with 

concurrent drying and continued condensation reactions. Environmental conditions 

(temperature, humidity, airflow) are very important parameters as much as 

withdrawn speed. They all affect film parameters. The formation of thin films occurs 

through solvents evaporation (mainly ethanol and water), which concentrates 

nonvolatile species in the system, then leading to aggregation and gelation. The 

resulting film depends on these parameters:  

 Withdrawal speed 

 Capillary pressure 

 Size and structure of precursors 

 Condensation and evaporation rates 

 Substrate surface [29] 

It is the oldest and the most widely used deposition technique in industry because its 

ease of use, high coating quality, flexibility and cost efficiency [30]. Figure 1.7 

shows schematic view of dip coating process.  

 

Figure 1.7: Schematic view of dip coating process. 

1.4. Materials 

Selection of proper materials for given situation is important. Both mechanical and 

physical properties should be known to predict final body behavior. There are more 

parameters to take into account like toxicity, cost, etc. Engineering is to find 

optimum point for every perspective. Selecting right materials is more complex for 

composite technology, because the behavior of one or more material may change 

during merging process.  
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Glass is very common material for different applications and it is amorphous solid. 

Generally, they are brittle and transparent. It has been traditionally used for bowls, 

vases, bottles, jars and glasses. Moreover, glass is very durable, even glass fragments 

can be found from early glass-making cultures. After suitable production method 

(poured, formed, extruded, and molded) finished glass product is brittle and will 

fracture, unless treated specially or laminated.  

Improving mechanical strength of glass has been worked for many years. Many 

scientists have tried reinforcing glass with both inorganic and organic materials. 

Both ultimate strength and toughness properties are improved via polyvinyl butyral 

(PVB) which is an organic resin, also it provides safer breaking conditions by means 

of holding glass particles together. Laminated safety glass for cars and architectural 

fields are the main applications area. However, the negative effects (degradation, 

etc.) of sunshine on organic materials are well known. Therefore, PVB may not be 

the best selection for materials in touch with human body like glasses, plates, etc. 

Inorganic materials are generally more stable in rough environmental conditions.  

1.4.1. TiO2 – SiO2  

Silicon dioxide (SiO2) is also known as silica. Generally, it is found as quartz. SiO2 

displays variable specific properties, which contribute to their wide usage area such 

as composites, biomaterials, sensory materials and coatings. SiOx is promising 

additive because of porous structure and adsorption properties. SiO2 has extremely 

high surface activity and adsorbs various ions and molecules [31]. Figure 1.8 shows 

pure silicon dioxide powder. 

 

Figure 1.8: Pure silicon dioxide. 
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The major part of produced silica is consumed by construction industry. Precursor to 

glass and silicon metal, food and pharmaceutical applications are the other common 

areas. Table 1.1 shows the mechanical properties of SiO2. 

Table 1.1: Mechanical properties of SiO2 

Mechanical Properties  SI Value 

Density 2.2 gr/cm
3
 

Elastic modulus 73 GPa 

Shear modulus 31 GPa 

Bulk Modulus 41 GPa 

Poisson’s ratio 0.17 

Compressive strength 1100 MPa 

Hardness 5900 MPa 

Titanium dioxide (TiO2) is also known as titania. Rutile, anatase and brookite are the 

most known minerals that occur in nature of TiO2. Figure 1.9 shows pure titanium 

dioxide powder. 

 

Figure 1.9: Pure titanium dioxide. 

TiO2 is used in composites for the increase of optical, electrical and mechanical 

properties. In addition, TiO2 has been used as additives to biomaterials in order to 

induce antimicrobial properties [32-33]. Besides, it shows photo-catalytic properties 

in presence of photons with wavelength lower than 388 nm [34]. There are many 

advantages of TiO2 such as white color, low toxicity, high stability, low cost have 

made this material an appropriate additive for many applications. TiO2 additive has 
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been added various composition to enhance their mechanical properties [35]. Table 

1.2 shows the mechanical properties of titanium dioxide. 

Table 1.2: Mechanical properties of TiO2. 

Mechanical Properties SI Value 

Density 4.01 gr/cm
3
 

Elastic modulus 250 GPa 

Shear modulus 101 GPa 

Bulk Modulus 213 GPa 

Poisson’s ratio 0.27 

Compressive strength 2100 MPa 

Hardness 9750 MPa 

Thus, combination of TiO2 – SiO2 binary system has been attracted many attentions 

recently [36]. 

1.4.2. Ta2O5 

Tantalum pentoxide (Ta2O5) is an inorganic white solid that is insoluble in all 

solvents but strong bases and hydrofluoric acid. The crystal structure Ta2O5 is little 

bit complicated. Disordered bulk material can be either amorphous or 

polycrystalline, however it is difficult to grow single crystals. Generally, it is hard to 

get crystal information via X-rays but powder diffraction. Figure 1.10 shows pure 

tantalum pentoxide. 

 

Figure 1.10: Pure tantalum pentoxide. 



12 

Ta2O5 has various precious properties such as chemical inertness [37], extremely 

high corrosion resistance [38], high surface sensitivity [39], high refractive index 

[40], high dielectric constant and compatibility with silicon [41-42]. 

With these unique properties, Ta2O5 can be used different areas such as biomedical 

implants, surgical instruments, optical sensors, antireflective coating for lenses and 

solar panels, band-pass filters, mechanical sensors, transistor technology, ion sensors, 

and storage capacitors for dynamic random-access memory. Table 1.3 shows the 

mechanical properties of tantalum pentoxide. 

Table 1.3: Mechanical properties of Ta2O5. 

Mechanical Properties SI Value 

Density 8,25 gr/cm
3
 

Elastic modulus 140 GPa 

Shear modulus 54 GPa 

Bulk Modulus 156 GPa 

Poisson’s ratio 0.23 

Compressive strength 1900 MPa 

Hardness 8750 MPa 

1.4.3. Carbon nanotube  

Carbon nanotube (CNT) is an allotrope of carbon with significant properties. It is 

known as strongest and stiffest material yet discovered. It has attracted a lot of 

attention due to mechanical and electrical properties and they are valuable for 

nanotechnology, electronics, optics and other materials science. CNTs are members 

of fullerene structural family [43].  

There are two types of CNTs, single-walled carbon nanotubes (SWCNTs) and multi-

walled carbon nanotubes (MWCNTs). Figure 1.11 shows single-walled and multi-

walled carbon nanotubes. 
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Figure 1.11: A) Single-walled carbon nanotube      B) Multi-walled carbon nanotube 

It can be produced with different techniques including arc discharge, laser ablation, 

high-pressure carbon monoxide disproportionation, and chemical vapor deposition 

(CVD). The most suitable method for batch production is CVD [44]. Table 1.4 

shows the mechanical properties of single-walled carbon nanotubes. 

Table 1.4: Mechanical Properties of SWCNTs. 

Mechanical Properties SI Value 

Density 1,9 gr/cm
3
 

Elastic modulus 1000 GPa 

Shear modulus 478 GPa 

Bulk Modulus 442 GPa 

Poisson’s ratio 0.1 

Hardness 25 GPa 

1.4.4. Cerium (IV) oxide nanoparticles  

Cerium (IV) oxide is also known as ceric oxide, ceria, cerium oxide and cerium 

dioxide (CeO2). It is pale yellow-white. CeO2 is technologically important and rare 

earth material because of its different application areas such as polishing material 

[45], fuel cells [46], catalysts [47], UV blockers [48], protection against oxidative 

stress [49-53], neurodegeneration [54] and confers radiation protection [55]. Figure 

1.12 shows pure cerium dioxide powder. 
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Figure 1.12: Pure CeO2. 

For its most stable phase, bulk CeO2 adopts a fluorite-type Fm3m crystal structure in 

which metal caution is surrounded by eight oxygen atoms [56-57]. The band gap of 

pure CeO2 nano particle is  5 eV [58-59]. Beside these optical properties, CeO2 

nano particles have some effect on mechanical properties especially on hardness and 

scratch resistance. It is also used in PP matrix for different applications [60]. Table 

1.5 shows the mechanical properties of cerium dioxide. 

Table 1.5: Mechanical properties of CeO2. 

Mechanical Properties SI Value 

Density 7,2 gr/cm
3
 

Elastic modulus 220 GPa 

Shear modulus 66,2 GPa 

Poisson’s ratio 0.29 

1.5. Measurement Systems 

XRD and XPS have been used for phase analyses. UV-visible spectroscopy and 

NKD analyzer have been used to measure the optical transmittance and reflectance 

of thin films. SEM and AFM were used to examine the microstructure and the 

surface morphology of the films deposited on glass substrates. Ring-on-ring and 

scratch test were used to obtain mechanical properties of thin films and substrates. 

Profilometer was used to measure thickness of the films mechanically.   
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1.5.1. Mechanical tests 

Ring on ring, which was the main mechanical test, was carried out at room 

temperature with Instron Corporation Series IX Automated Materials Testing System 

8.33.00 testing machine at Şişecam Company. For brittle materials yield strength, 

ultimate strength and failure strength are pretty close to each other. Coated and 

uncoated glass substrates are compressed via two rings with different radius until 

they break. Failure strength was obtained for all samples via ring on ring test. The 

supporter ring radius was 21 mm and the indenter ring radius was 9,5 mm. Figure 

1.13 shows the application of ring-on-ring test. 

 

Figure 1.13: Application of ring-on-ring test to different glasses. 

Second mechanical test in this paper was scratch test. It was done via sharp steel tip 

pen. The principle is that a harder object will scratch a softer object. Scratch hardness 

means the force require cutting through the film to the substrate for coating 

technology.  

There are different measurements of hardness because the behavior of solids under 

force is complex. 

 Scratch hardness 

 Indentation hardness 

 Rebound hardness 

Ductility, plasticity, elastic stiffness, strain, strength, toughness, viscoelasticity and 

viscosity are the parameters that affect hardness [61].  
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1.5.2. X-Ray diffractometer (XRD) 

X-rays are electromagnetic radiations, which lie between gamma rays and ultraviolet 

light in the electromagnetic spectrum. They are characterized by their wavelength. 

Excitation or scattering are the interaction between X-rays and matter.  

XRD technique reveals information about the chemical composition and 

crystallographic structure of materials. In addition, it is a versatile and non-

destructive.  It is based on the elastic scattering, which causes only directional 

change of electromagnetic waves without energy loss. The detector will give a peak 

only and only if Bragg’s Law (2dsin (θ) = nλ) is satisfied for θ direction. Figure 1.14 

shows the working scheme of XRD. 

 

Figure 1.14: XRD working scheme. 

In addition, the average crystalline size Cs can be estimated by Scherr’s formula [62] 

showed in eq. (1.1).  

Cs = 
     

     
   (1.1)  

where λ is X-ray wavelength, β is the full width at half maximum (FWHM) of the 

main peak of XRD spectrum and θ is the Bragg angle. However, we should take into 

account line broadening due to the equipment and subtract from the experimental 

peak width.  
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The strain (ε) in the film is calculated by [63], 

                                               ε = (
 

 
)       (1.2) 

Additionally chemical and structural analysis of the samples were done with Cu 

source (CuKalpha: 1.5418 Angstrom) in Bruker D8 Advance by X-ray diffractometer 

(XRD) device. The samples were measured directly on the Si holder by making solid 

samples into their powder and film states. Phase identification was achieved through 

International Centre for Diffraction Data (ICDD). 

1.5.3. X-ray photoelectron spectroscopy (XPS) 

XPS is a surface sensitive quantitative spectroscopy technique. It measures empirical 

formula, electronic state and chemical state of elements that exists in given material. 

The data is obtained by irradiating material with a beam of X-rays while 

simultaneously measuring the kinetic energy and number of escaping electrons from 

the top 0 to 10 nm. XPS needs vacuum or ultra-high vacuum conditions and it is a 

surface chemical analysis technique that is becoming a standard in order to 

understand the properties of solid surface. Figure 1.15 shows the working scheme of 

XPS. 

 
Figure 1.15: XPS working scheme. 

X-ray photoelectron spectroscopy (XPS) measurements were performed using a 

Thermo Scientific K-Alpha spectrometer using an aluminum anode (Al Kα = 1468.3 

eV) at electron take-off angle of 90
o
 (between the film surface and the axis of the 

analyzer lens). Spectra were processed using Thermo Avantage 5.903 software. All 
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spectra were calibrated with C1s residual peak at a binding energy of 285 eV to 

correct for the energy shift caused by charging. 

1.5.4. Scanning electron microscopy (SEM) 

SEM enables the investigation of specimen with a resolution even to the nanometer 

scale. It is possible to obtain an image up to 25 Å detail with a high resolution SEM.  

The composition of individual crystals can be determined via SEM in conjunction 

with EDS. Regular SEM requires high vacuum environment.  

Generally, a tungsten filament or a field emission gun is used as electron source. The 

electron beam is accelerated through high voltage like 20 kV. Afterwards accelerated 

electrons pass through apparatus and electromagnetic lenses to produce a thinner 

beam of electron. Scan coils lead the beam scanning the surface of specimen. 

Secondary electron detector collects the electron emitted from the specimen. The test 

finishes when the beam scans given surface area completely. Figure 1.16 shows the 

working scheme of scanning electron microscopy. 

 

Figure 1.16: Working scheme of SEM. 

A JEOL 6320 FV FE-SEM was used to examine the microstructure and the surface 

morphology of the films deposited on glass substrates. 

1.5.5. Ultraviolet-visible spectroscopy 

Ultraviolet-visible spectroscopy uses light in the visible and very neighbor (near-UV 

and near infrared) ranges. It gives information about reflectance and transmittance of 

sample for different wavelengths. UV and visible light have adequate energy to 

excite electrons towards outer shells. This technique is applied on transition metal 
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ions, highly conjugated organic compounds and biological macromolecules. 

Generally, solutions are investigated but solids and gases may be also studied. UV-

vis is not the best method for characterization. Hydrogen or deuterium bulb is used 

for UV measurements; tungsten bulb is used for visible region. Figure 1.17 shows the 

working scheme of UV-vis. 

 

Figure 1.17: UV-vis working scheme. 

1.5.6. NKD analyzer 

NKD-7000 UV-vis spectrophotometer was used to measure transmittance (T) and 

reflectance (R) of thin films for p and s polarization, separately. Wavelength was 

ranged 300-1000 nm. Quartz is used as reference material. The light excites the 

sample with 30
o
 and the device measures transmittance and reflectance at the same 

time by comparing them with the results of quartz. 

1.5.7. Atomic force microscopy 

Atomic force microscopy (AFM) is also known as scanning force microscopy 

(SFM), is a very high-resolution technique for scanning probe microscopy. 

Resolution can be on the order of nanometers. The precursor to the AFM is the 

scanning tunneling microscopy. Mechanical probe feels the surface in order to give 

information about it. Piezoelectric element moves very tiny but accurate and precise 

for extremely precise scanning. It consists of a cantilever and a sharp tip (probe) that 

scans sample surface. When the probe and sample surface approximate very closely, 

forces between them cause cantilever to deflect according to Hooke’s Law. 

Deflection is measured by photodiodes that detect laser spot reflected from the top 
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surface of cantilever. Contact, tapping and non-contact are the types of AFM. It gives 

3-dimensional surface profile and Figure 1.18 shows schematic of AFM. 

 

Figure 1.18: Schematic view of AFM. 

Shimadzu SPM-9500J3 was used to examine surface profile of thin films.  

1.5.8. Tensiometer 

Tensiometers measure contact angle, surface free energy and drop volume. Surface 

tension and interfacial tension can also be measured. Tensiometers measure 

advancing and receding angles that is another key feature for contact angle 

measurements. Figure 1.19 shows the wetting types and the contact angle between 

surface and liquid. 

 
Figure 1.19: Wetting types and contact angle. 
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KSV Theta Lite Optical Tensionmeter was used to measure contact angle of pure 

water on thin films. 

1.5.9. Finite element method  

Finite element method (FEM) is a numerical method and it has been commonly used 

for various multiphysics problems recently. FEM is applied for: 

 Solid mechanics (gear, automotive power train) 

 Structure analysis (cantilever, bridge, oil platform) 

 Thermal analysis (thermal stress of brake discs, heat radiation of finned surface) 

 Dynamics (earthquake, bullet ,impact) 

 Electrical analysis (electrical signal propagation, piezo actuator) 

 Biomaterials (human tissues and organs) 

FEM is developed for solving solid mechanics problem. It seeks the answer for 

values of the stress, strain and displacement at each material point. Dividing the 

interval of integration and choosing proper simple functions to approximate the true 

function in each sub-interval are the two key steps. The numerical results are an 

approximation to real solution. Number of sub-interval and approximate function are 

the main parameters for the accuracy of numerical result [64]. 

Ansys is engineering simulation software, which uses FEM to understand behavior of 

materials in any situation. Ansys 15 was used in this paper.  
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2. MECHANICS OF MATERIALS, THIN FILMS AND SUBSTRATES 

In this section, brief information about general mechanics will be given. It is very 

important to know the basics before going further. After that, mechanics of thin films 

and substrates will be given in detail.  

2.1. Stress 

The easiest explanation is, internal force acting on given area of cross section. There 

are two types: pulling forces are named as tension and pushing forces along to its 

axis as compression. It is also expressed as force intensity. Eq. (2.1) gives the 

relation between stress and force and Figure 2.1 shows axial stress types. 

Stress = (
     

    
) (2.1) 

 

Figure 2.1: (a) Object under tension, (b) object under compression. 

It is expressed as Newton per square meter or Pascal in SI units and pounds per 

square inch or psi in CGS units. It has two components, normal and shear stress. 

                                  Normal Stress = 
                          

                            
 (2.2) 

Greek letter sigma (σ) is used to express normal stress. For tensile stress σ is 

indicated by positive value; for compression stress, it is negative.  

                                    Shear Stress = 
              

                            
 (2.3) 
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Greek letter tau (τ) is used to express shear stress. If the applied force has two 

components, which are equal, and opposite parallel forces that is not applied on same 

line of action, there will be a tendency for sliding between bodies. Figure 2.2 shows 

the schematic application of shear stress. 

 

Figure 2.2: Shear stress because of two equal and opposite parallel forces. 

Shear stress has same unit as normal stress [65]. 

2.2. Strain 

When external forces act on a body, there will be position change for each individual 

point, which means deformation for entire body. The movement of given point from 

the initial position is called strain. External forces cause body to deform as well as 

temperature change. Elongation per unit length is defined as normal strain and it is 

dimensionless. Strains are categorized as normal and shear strain. Figure 2.3 shows 

different strain types. 

 

Figure 2.3: (a) Normal strain in the x-direction, (b) normal strain in the y-direction, (c) shear strain in 

the x-y plane. 

Greek letter epsilon (ε) is used to express normal strain.  

                                                Normal strain 
          

               
= 

 

 
 (2.4) 
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Shear strain is defined as angular change in given directions and expressed with γxy. 

XY means the direction of deformation [65].  

2.3. Hooke’s Law for Elastic Materials 

Elastic material means it returns its original position with removal of external forces. 

In elastic region, applied loads are always proportional to deformations. Thus, if 

materials are elastic, 

                                                      
      

      
 = constant (2.5) 

For elastic materials, any deformation produced by external forces will be 

completely recovered when the load is removed.  

If a material shows uniform properties throughout in all directions, it is called 

isotropic, conversely if it is not uniform, it is called anisotropic. 

Orthotropic material means having different properties in different planes [66]. 

2.4. Modulus of Elasticity (Young Modulus) 

Equation (2.5) shows ratio of stress to strain is constant in elastic deformation region. 

So that eq. turns into, 

E = 
 

 
 (2.6) 

This constant E is usually assumed to be the same in tension or compression. It is one 

of the most important properties of materials. For most of engineering materials it 

has a high numerical number i.e., E = 200x10
9
 N/m

2
 for steel. 

It is determined by carrying out a standard tensile test on specimen. The nominal 

stress at failure is called ultimate tensile stress for given material. Stress - strain 

curves are given in Figure 2.4. 
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Figure 2.4: Stress - strain curves. 

There is huge difference between the graphs of two different materials in Figure 2.3. 

For the first sample, plastic deformation range covers much wider part of strain axis 

than elastic part. Total capacity for plastic deformation, material to allow large 

extensions is termed its ductility. Materials with high ductility are called ductile 

materials; on the other hand, materials with low ductility are termed as brittle 

materials. Quantitative value of ductility is determined by both eq. (2.7) and (2.8)  

Percentage elongation = 
                                    

                     
 x 100     (2.7) 

          Percentage reduction in area = 
                                 

             
 x 100     (2.8) 

Brittle materials show very little plastic deformation before failure and there is little 

or no necking at fracture [66]. 

2.5. Poisson’s Ratio 

If biaxial tensile stress is applied to a bar, it also exhibits a reduction in dimension 

laterally. The ratio of longitudinal extension to breadth and depth contraction is 

termed as Poisson’s Ratio. Greek letter nu (ν) is used to express and it has always 

negative value between – 0.5< ν<0 [37]. Eq. (2.9) gives Poisson’s Ratio by, 

                                        ν = 
              

                   
            (2.9) 
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2.6. Mechanics of Nano Crystalline Materials 

The main purpose of miniaturization is creating perfect, defect free materials. As we 

know, various defects affect final properties. If we could arrange final material atom 

by atom, many things would be different. This is the main reason why 

nanotechnology has become so popular recently.  

Materials are produced with grain size in the range of nanometers led to expectation 

to have extremely high strength. The empirical Hall-Petch equation predicts that, 

           σy = σ0 + 
 

√ 
                      (2.10) 

where σy is yield strength, σ0 is friction stress, k is a material constant and d is the 

grain size of material.  According to this equation, yield strength goes extremely high 

values for very fine grain size. However, many experiments show that yield strength 

falls well below that calculated by Hall-Petch equation [67]. 

2.6.1. Density, pores and microcracks 

Previous nanocrystalline researches show that, for given samples, density 

measurements gave values ranging only about 70% to >90% of the single crystal 

density [68-69]. The density shortfall was caused by nanocrystalline grain boundaries 

having extremely low densities [68] or primarily by the presence of pores [70]. 

Porosity has significant effect on the elastic modulus and the other mechanical 

properties as well, so it is very important to detect number and size of the pores.   

Generally, positron spectroscopy is used to identify voids in nanocrystalline sample. 

The smallest ones are presumed to be located at grain interfaces. The middle-sized 

voids are located at grain triple junctions. The largest ones are identified with 

missing grain pores [67]. 

2.7. Thin Films and Substrates Mechanics 

Many studies have been done in order to calculate mechanical behavior of films so 

far. We can consider thin film problem as biaxial bending of a thin plate. Figure 2.5 

shows biaxial bending of a thin plate. 

M = moment per unit length applied along edges of plate. 
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Figure 2.5: Biaxial bending of a thin plate. 

2.7.1. Bending stresses 

The biaxial stress distribution is (for pure bending): 

σxx = αy (= σzz)            (2.11) 

as shown in the Figure 2.6. 

 

Figure 2.6: Bending moments and stress distribution. 

The stresses in the beam are related to the bending moment. The moment (per unit 

length along the edge) is related to the stresses in the plate by, 

M = ∫  
   

    xxydy = ∫  
   

    
y

2
dy = 

   

  
           (2.12) 

  =  
   

  
                          (2.13) 
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Thus the stresses are: 

     σxx = σzz =  
   

  
 y             (2.14) 

with all other stress components being zero [10].  

2.7.2. Curvature of radius 

The relation between bending stress and curvature (for pure bending), 

      εxx (y) =  
(   )    

  
 = 

 

 
 = -κy            (2.15) 

If we want to obtain relation between curvature and strain, 

    κ =  
 

 
 = 

    ( )

 
          (2.16) 

2.7.3. Curvature associated with a biaxial bending moment 

We must calculate εxx (y) to obtain curvatures. If we apply Hooke’s Law (isotropic), 

the strain is, 

         εxx =  
 

 
 [σxx – ν (σyy + σzz)]            (2.17) 

where, 

σyy = 0 and σzz = 0. 

Then we can obtain biaxial stress-strain relation, 

      εxx =  
(   )

 
 σxx             (2.18) 

Specifically, the strain and stress are, 

 εxx (y) =  
(   )

 
 σxx (y)            (2.19) 

The stress is related to the moment by eq. (2.14) so that, 

 εxx (y) =  
(   )

 
 
   

  
 y             (2.20) 
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Finally, the relation between the applied moment and the resulting curvature is, 

      κ =   
(   )

 
 
   

  
                                  (2.21)  

2.7.4. Deflection associated with biaxial bending 

It can be considered as negative curvatures ~ negative displacement. From eq. (2.21) 

and Figure 2.7 shows plate deflection due to moment. 

    

   
 = κ =   

(   )

 
 
   

  
 = constant 

 

Figure 2.7: Plate deflection. 

The curvature is constant for pure bending. Integrate the equation to obtain, 

   

  
 = κr +c1             (2.22) 

If we apply boundary conditions, 

   

  
 = 0 at r = 0 to obtain c1 = 0. 

If we integrate again to find, 

 uy = 
   

 
 + c2             (2.23) 

with boundary conditions, 

uy = 0 at r = 0 to obtain c2 = 0. 
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The final equation is, 

        uy = κ 
  

 
 =  

(   )

 
 
   

  

  

 
         (2.24) 

If we need cartesian coordinates, 

         uy =  
(   )

 
 
   

  

(     )

 
              (2.25) 

Finally, at the edge of the plate (r = L), 

           uy (r = L) =  
(   )

 
 
    

  
         (2.26) 

We should that a positive moment creates a negative curvature and also negative 

displacements [10]. 

2.7.5. Thin Film Stresses 

A stress free film of thickness tf bonded to stress free substrate of ts>>tf . Figure 2.8 

shows the schematic view of film on a substrate. 

 

Figure 2.8: Thin film on a substrate. 

If we consider the typical case in which L>>ts, so the substrate behave as a plate. If 

we attach any thin film on a stress free substrate, every thin film stresses are caused 

by the elastic accommodation of an incompatibility between the film and the 

substrate. If that film is removed from substrate and allowed to change its 

dimensions, that is, become incompatible with the substrate. The film is then 

elastically strained to again match the substrate via phase transformation. 

It is considered as the stress in the film can be caused by incompatibilities or misfit 

between the film and the substrate: 

 Differences in thermal expansion, 

 Phase transformations with volume changes, 
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 Densification of the film, 

 Epitaxial effects. 

It is easier to make calculations, if it is thought as film is free of the substrate. Then 

allow the film to shrink or expand relative to the substrate. The final state is then 

achieved by deforming both the film and substrate so that they again fit together 

perfectly [10]. Figure 2.9-2.11 shows thin film stress and its effect on substrate. 

 

Figure 2.9: The film and substrate in a stress free state. 

To fit the film, we should apply biaxial tension force to the film. 

 

Figure 2.10: Stretching the film. 

An equal and opposite directional force must be applied to the edge of the substrate.  

 

Figure 2.11: Substrate forces. 

Biaxial tension stresses are created by the tension forces in the film, on the other 

hand biaxial compression and biaxial bending are produced by the compressive force 

on the substrate [10]. 

2.7.6. Film stress - curvature relation 

Assume that a biaxial tension stress, 

       σxx = σzz =  σf 

exist in the film as shown in Figure 2.12. So, 
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Figure 2.12: Film forces. 

and for the substrate in Figure 2.13, 

 

Figure 2.13: Substrate forces. 

which leads to a moment is shown in Figure 2.14, 

 

Figure 2.14: Moment effect due to external forces. 

This moment bends the substrate eq. (2.21), 

      κ =  
(   )

 
 
   

  
  =  

(   )

 
 
  

  
  (      

  

 
)         (2.27) 

 κ =  
(    )

  
 
     

  
              (2.28) 

thus, the stress in film is eq. (2.16) and (2.28), 

    = (
  

    
) 

  
 

   
 κ = (

  

    
) 

  
 

    
               (2.29) 

Eq. (2.29) is called Stoney Relation. It was derived first for beams but then 

generalized for plate.  

We can obtain that from the film stress-curvature relation: 

 To find film stress, we must measure the curvature of the substrate. 

 Substrate, the elastic properties of substrate and the dimension of film are the 

only parameters that affect the results, not the properties of the film [10]. 
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2.7.7. Stresses in film and substrate (far from the edges of the film) 

The stresses in the film are biaxial and all other components are zero. 

σxx = σzz =  σf 

This biaxial stress include both biaxial compression (or tension) and biaxial bending 

stresses.  

σxx = σzz =  σcompression + σbending 

The forces acting on the substrate can be used to calculate these components is 

shown in Figure 2.15, 

 

Figure 2.15: Calculation of stresses. 

2.7.8. Stress diagram 

Stresses at the interface between film and substrate is shown Figure 2.16, where 

y=ts/2 are, 

in the film, 

σxx = σf 

in the substrate, 

σxx = σcompression + σbending 

    σxx (  
  

 
) =  

  

  
 σf  

   

  
 σf = =  

   

  
 σf             (2.30) 
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Figure 2.16: Stresses in film and substrate. 

For example,  

tf = 1 μm and ts = 500 μm, stress in substrate eq. (2.30), 

σxx (            
  

 
) =  

   

  
    =  

 

   
   

As we can see here, the substrate stresses are about 100 times smaller than the film 

stresses. The forces transmitted between the film and the substrate act through the 

interface only near the edges of the film. 

If there are two or more films on a substrate, each film deposited imposes a separate 

bending moment, which produces a curvature [10].  

2.7.9. Interfacial stresses 

Stresses in the film cause stresses to develop in the substrate. Thus, across the 

film/substrate interface there should be some forces that are transmitted. If we 

consider part of the film far from the edges in Figure 2.17, 

 

Figure 2.17: Stresses in film and substrate. 
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Because the film thickness is much smaller than the substrate thickness; on the film 

substrate interface, very little normal traction is observed. Figure 2.18 shows the 

force balance. 

 

Figure 2.18: Force balance. 

Free body analysis, 

Fup = 2π(Rθ)σf tf sinθ 

Fdown = = σnπ(Rθ)
2
 

By equaling the forces, 

2π(Rθ)σf tf sinθ = σnπ(Rθ)
2
 

We can find the normal stress on the interface by, 

σn = 
   

 
 σn 

for example, 

tf = 10
-6

 m, 

R = 100 m 

then we obtain the normal stress on the interface, 

σn = 2x10
-8 σf 
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It is very small stress [10]. 

2.7.10.  Edge effects and interfacial shear stresses 

Thin film stresses apply forces on the substrate and it is known that interfacial forces 

can be negligible among far regions from the edges. Therefore, these interfacial 

forces are important only near the edges of the film. Figure 2.19 shows the misfit 

strain. 

 

Figure 2.19: Misfit strain. 

Biaxial tensile stress should apply to align film to substrate like shown in Figure 

2.20.  

 

Figure 2.20: Film with external loading. 

Internal forces inside the surface element on the edge are shown in Figure 2.21. 

 

Figure 2.21: External edge loading. 

To find final stress, we should add edge forces to remove the external forces. Figure 

2.22 shows removal of edge forces. 
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Figure 2.22: Removal of edge forces. 

The stresses of the film near the edge can be calculated by summing the stresses 

Figure 2.21 and 2.22. Figure 2.23 shows the interfacial stress distribution. 

 

Figure 2.23: Interfacial stress distribution. 

Assume, 

   τ = A 
 

 
 exp(  

 

 
) = Aα exp (   )         (2.31) 

If we apply force equilibrium, 

      ∫  
 

 
   = σh  or  ∫  

 

 
   = σ         (2.32) 

  

  
 = 0 for maximum  , 

  

  
 = A  exp(   ) (  ) + A exp(   ) = 0 

(    ) A exp(   ) = 0 

so we obtain, 

                        max = 
 

 
                           (2.33) 
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We should apply force equilibrium again, 

                                     ∫       (   )   
 

 
 = σ          (2.34) 

or 

∫       (   )   
 

 
 = 

 

 
 

By partial integration, 

∫       (   )   
 

 
 = 

 

  
 = 

 

 
 

so we have, 

                                                         A = σB
2
 = 

 

    
             (2.35) 

or 

τ =  
  

    
  exp( 

 

    
) 

The maximum interfacial shear stress is, 

                  τmax = τ (      ) = 
 

     
        (2.36) 

Exact placement of maximum shear stress depends on the rigidity of the substrate. 

Maximum shear stress moves toward edges, on the other hand for compliant 

substrates, it reaches maximum father from edges [10]. Figure 2.24 and 2.25 shows 

the shear stress distribution for a rigid and compliant body, respectively. 

 

Figure 2.24: Shear stress distribution for a rigid substrate. 
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Figure 2.25: Shear stress distribution for a compliant substrate. 

2.7.11. Theoretical mechanical analyses of multi layers with ring-on-ring test 

Multi layered systems are used in various applications. Thus, it is so important to 

keep reliability and stability. Generally, ceramic materials have high compressive 

strength but because of low ductility, they cannot resist high tensile loadings [71-72]. 

There are two main tests are used to measure flexure strength of ceramics. Three-

point bending of beam and four-point bending of beam are the measurement 

techniques for uniaxial flexure tests and ball-on-ring, ball-on-three-ball, piston-on-

ring and ring-on-ring tests are biaxial flexure tests. The maximum tensile stress, 

which is biaxial, is appeared at the center of the disk [73]. The flexural strength 

would be the same as the tensile strength if the material were homogeneous. 

The piston-three-balls test has been standardized as ISO 6872 (ISO 6872:2008 

specifies the requirements and the corresponding test methods for dental ceramic 

materials for fixed all-ceramic and metal-ceramic restorations and prostheses.) for 

ceramic materials [74]. Biaxial flexure tests have some advantages over uniaxial 

flexure tests such as independency from edge conditions [75]. Real materials are 

faced multiple loadings during applications so results which is obtained from biaxial 

tests become more meaningful [73]. 

The flexural stress analyses are so complicated and hard to solve. It requires solving 

a biharmonic equation to understand relations between the transverse displacement 

and the load. In addition, there are boundary conditions to satisfy. Figure 2.26 shows 

the layer-by-layer stacking process. 
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Figure 2.26: Schematic of an axial symmetry of a thin elastic multilayered disc showing. 

The disc in Figure 2.26 is made up of n layers, which individually have ti thickness. 

Subscript i represent the layer number starts from 1. The interface between i and i+1 

is expressed as hi. Thus, h means the thickness of the disk is given in eq. (2.34).  

     hi = ∑   
 
    (i = 1 to n)            (2.37) 

The interface between discs is supposed to keep bonded during test. z = 0 represents 

supporting ring and z = hn shows loading ring surfaces. 

The strains are proportional to the curvature of the disk also the distance between 

neutral axes and middle plane of the disc for mono layered structures. On the other 

hand, the neutral surface can derive from the mid plane due to different elastic 

properties.  

The radial and tangential strains, εr and εh are [76]: 

εr = 
     

  
    (0     )            (2.38) 

εh = 
     

  
   (0     )            (2.39) 

znr and znθ shows the position of the neutral surfaces in radial and tangential 

directions, respectively, rr and rθ are the radius of curvatures. Eq. (2.38) and (2.39) 

show the strain distribution, while the stress normal can be ignored for a thin disc.  

                                    σri =    
 
 (εr + νiεθ) (i = 1 to n),           (2.40) 
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σθi =    
 
 (εθ + νiεr) (i = 1 to n),                      (2.41) 

where   
 
= Ei / (1     

 ) is the plane strain modulus, E is Young’s modulus, ν is 

Poisson’s ratio and i means the layer number. 

The relationships between bending moment and stress are, 

σri = 
   

 
(     

 )  

  
                        (2.42) 

σθi =  
   

 
(     

 )  

  
                    (2.43) 

where Mr and Mθ are the bending moments at two directions and D
m
 is the flexural 

rigidity of layer. D
m
 is obtained by providing the force and the bending moment’s 

equilibrium conditions.  

D
m
 = ∑   

 
  [    

         
  
 

 
   

 (     
  

 
)] 

      (2.44) 

The neutral surface position can be obtained by solving the force equilibrium 

conditions; however, expressions of znr and znθ become very complex. If the 

difference between νi is ignored in eq. (2.40) and (2.41), the znr’s description is 

simplified significantly. So if we assume νi = ν, the expression of znr and znθ are, 

  
           

∑   
 
  (     

  
 
) 

   

∑   
 
  

 
   

          (2.45) 

Radial and tangential neutral surfaces are equal and it is redefined as   
 . If we have 

a monolayer disc with uniform material properties, Ei = E and νi = ν, so for 

monolayer disc, stress and bending moment relations are eq. (2.14), 

      σr = 
  (    )  

  
               (2.46) 

      σθ = 
  (    )  

  
             (2.47) 

So, eq. (2.44) and (2.45) become, 
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D = 
   

 

  (    )
           (2.48) 

     zn = 
  

 
             (2.49) 

Stress distribution in multilayered discs must have some relations with monolayer 

discs. If we compare eq. (2.42) and (2.43) with Eq. (2.46) and (2.47) we find that, 

      σ = 
  
 
  
 

∑    
 
  [     

             
     

 (        )]
 
   

   (i = 1 to n)   (2.50) 

σ*
 and σ are the stresses in monolayer and multilayer discs, respectively. A 

schematic view of ring-on-ring tests is shown in Figure 2.27 and the top view is 

shown in Figure 2.28. 

 

Figure 2.27: Schematic view of multilayered discs subjected to ring-on-ring test. 

The specimen is supported by outer ring and loaded by smaller inner ring. Biaxial 

stress is decomposed into tangential θ and radial r directions in the center area for 

monolayer discs.  The stresses on the tensile surface are [75,77,78], 

        σr = σθ = 
  

    
 [ (   )  (

  

  
)  

(   )(  
    

 )

  
]  (r     and z = 0)  (2.51) 

         σr = 
  

    
 [ (   )  (

  

 
)  

(   )  
 (  

    )

(  ) 
]     (r     and z = 0)  (2.52) 

σθ = 
  

    
 [ (   )  (

  

 
)  

(   )  
 (  

    )

(  ) 
  (   ) (

  

 
)
 

]   (r     and 

z = 0)                             (2.53) 
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where l2, l1 and R are the radius of outer, inner ring and the disc, respectively. P 

represents applied load. For converting this solution from monolayer to multilayer, 

we have to consider the eq. (2.40) and (2.41) again. It is a must to satisfy the 

condition of biaxial stress εr = εθ so, 

σri = σθi =  
   (    )             (2.54) 

In eq. (2.48) νi = ν is used for the neutral surface of multilayer discs, where ν is the 

average Poisson’s ratio and given by, 

ν = νavg = 
 

  
∑     

 
               (2.55) 

 

Figure 2.28: Schematic drawing on top view of ring-on-ring test. 

So eq. (2.54) becomes, 

σri = σθi =  
   (   )    (i = 1 to n).           (2.56) 

If we compare eq. (2.54) to (2.56), we realize that eq. (2.54) is more accurate. By 

multiplying eq. (2.56) with (1 + νi) / (1 + ν), the stress distribution for multilayer 

discs can be express more accurately. 

σri = σθi = 
    (    

 )

    (    )
[    (

  

  
)  

(   )(  
    

 )

(   )  
]   (r     and i = 1 to n)    (2.57) 

σr = 
    (    

 )

    (    )
[    (

  

 
)  

(   )  
 (  

    )

(   )(  ) 
]        (r     and i = 1 to n)    (2.58) 
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σθ = 
    (    

 )

    (    )
[    (

  

 
)  

(   )  
 (  

    )

(   )(  ) 
 

 (   )

(   )
(
  

 
)
 

]           (r     and 

i = 1 to n)                              (2.59) 

where D
m
 and   

  are obtained by eq. (2.44) and (2.45). Fracture cannot occur at any 

layer until the stress exceeds its tensile strength during test. Other biaxial flexure 

tests can be evaluated by this method for multilayer material like ring-on-ring test 

[73]. 
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3. THIN FILM OPTICS 

The magnitude of light beam that propagates one or more medium should be known. 

We apply boundary conditions to Maxwell Equation for that. These equations are so 

complicated and needs complex solutions. Thus, we use assumptions. In this section, 

brief information about thin film optics will be given. 

3.1. Absorbing Mediums 

Equation of propagating light in permeable medium can be used in absorbing 

medium as well, if we use refractive index as complex number. The imaginary part is 

related to absorbance in medium. If we have a wave in a permeable medium that 

refractive index n, towards (λ, µ, ν) directions and rotational frequency ω, so the field 

vector is shown in eq. (3.1), 

    E = E0expiω(   
 (        )

 
)           (3.1) 

where c is speed of light in vacuum. 

In absorbing medium this equation evaluates, 

E = E0expiω(   
 (        )

 
 

  (           )

 
)              (3.2) 

where (        ) is the direction of maximum reduction (damping). 

For a incident wave in normal direction, 

E = E0expiω(   
(    )(        )

 
)           (3.3) 

α and β from Eq. (3.2) are related to the direction of propagation and angle of 

incidence (θ).  

        α
2
 – β

2
 = n

2
 – k

2
               (3.4) 
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αβcosφ = nk               (3.5) 

sinθ = αsinφ               (3.6) 

These equations give the relation between θ, φ and n, also they are more detailed 

than Snell Law. 

3.2. Transmittance and Reflectance in Permeable Medium 

For an isotropic medium, electromagnetic laws represent these equations, 

    div D = εdiv E = 4πρ              (3.7) 

      div B = µdiv H = 0              (3.8) 

                                                         curlE =  
 

 

  

  
                        (3.9) 

    curlH = 
    

 
 

 

 

  

  
          (3.10) 

Propagation of electromagnetic waves in uncharged medium represent with Maxwell 

equations are given in eq. (3.11)-(3.14). 

  

  

   

   
 

    

  

  

  
                (3.11) 

  

  

   

   
 

    

  

  

  
                (3.12) 

For non-conducting medium (σ = 0) equations turns, 

        
  

  

   

   
                 (3.13) 

        
  

  

   

   
                 (3.14) 

Waves propagates at speed of c /√  . Almost every material, value of µ is nearly 

equals to unity at optical frequencies. Thus, the final speed turns into c /√ . ε is the 

dielectric constant. By using refractive index, we obtain n = √ . Finally, 

transmittance and reflectance are obtained by applying boundary conditions to 

Maxwell equations. Coordinate system is shown in Figure 3.1.    
  and    

 ,    
  and 

   
 ,    

  and    
  are the component of incident, reflected and transmitted wave, 

respectively. 
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expi(   
          

 
 

          

 
)         (3.15) 

expi(   
          

 
 

          

 
)         (3.16) 

However, the equation evaluates for propagating wave, 

expi(   
          

 
 

          

 
)         (3.17)  

where   is the wavelength in vacuum. 

 

Figure 3.1: Incident, transmitted and reflected wave. 

E0x = (   
      

 )cosφ0 

E0y =    
      

  

          H0x =   (    
      

 )cosφ0                (3.18) 

H0y =   (   
      

 ) 

and for first medium, 

E1x =    
 cosφ1 

E1y =    
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     H1x =       
 cosφ1            (3.19) 

H1y =      
  

If we apply boundary conditions for transmitted and reflected wave, 

       
    

 

    
  

               

               
               (3.20) 

       
    

 

    
  

        

               
              (3.21) 

        
    

 

    
  

               

               
               (3.22) 

        
    

 

    
  

        

               
              (3.23) 

where r1p, r1s and t1p, t1s are the coefficients of Fresnel reflectance and transmittance, 

respectively. We need these coefficients to solve multilayer systems. From eq. (3.20) 

- (3.23) we obtain, 

t1p = 1 + r1p 

t1s = 1 + r1s 

and if n0>n1, t1p and t1s approach to 1. Figure 3.2 shows the reflectivity values for 

different incident angle. 

 

Figure 3.2: Reflectivity values. 
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Poynting vector represents with S and if we apply energy conservation and Poynting 

law, 

      |S| = 
 

  
[   ]             (3.24) 

                       |S| = 
 

  
 [ ]2

             (3.25) 

Therefore reflectance, 

    Rp = 
 (   

 ) 

(   
 ) 

    
              (3.26) 

    Rs = 
 (   

 ) 

(   
 ) 

    
      

                       

and transmittance, 

Tp = 
  (   

 ) 

  (   
 ) 

 
  

  
   
                       (3.27) 

 Ts = 
  (   

 ) 

  (   
 ) 

 
  

  
   
  

For an incident normal wave, transmittance and reflectance values are, 

     Rp = Rs = (
     

     
)
 

            (3.28) 

     Tp = Ts = 
     

(     )
 
            (3.29) 

If we apply Snell Law, we obtain Fresnel coefficients, 

     r1p = 
   (     )

   (     )
             (3.30) 

      r1s = 
   (     )

   (     )
             (3.31) 
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        t1p = 
           

   (     )   (     )
            (3.32) 

      t1p = 
           

   (     )
             (3.33) 

These equations are very popular for a layer but not so much for multilayers. 

3.3. Reflection at Surface of Absorbing Medium  

As done in previous section, we can obtain propagation equations in absorbing 

medium by using complex refractive index. Thus, Eq. (3.20)-(3.23) evaluates, 

        Sinφ1 = 
       

      
                    (3.34) 

So φ1 becomes complex and does not represent refractive index unless φ0 = φ1 = 0. 

This is a special condition that we can easily find Fresnel refractive coefficients. 

    r1p = r1s = 
         

         
            (3.35) 

   Rp = Rs = 
(     )

    
 

(     )
    

             (3.36) 

Except normal incident, reflection term becomes too complicated and needs 

assumption. Major part of absorbing materials, especially metals, shows n
2
 + k

2
  1 

in visible spectrum. With this assumption, 

    Rp = 
(     )                

(     )                
            (3.37) 

     Rs = 
(     )               

(     )               
                  (3.38) 

We obtain eq. (3.36) and (3.37). The Fresnel transmittance coefficients are non-

effective by the interaction between the amplitude of wave and propagation in 

absorbing medium. Figure 3.3 shows reflected and transmitted rays. So complex 

Fresnel transmittance coefficients are, 

rip = σip 
                 (3.39) 
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ris = σis                  (3.40) 

where σip, σis are the amplitude of reflected waves and β1p, β1p represent phase 

transformation at the surface. σ and β values represents as, 

       
      

      
 

          

[(    )        ]
   

          (3.41) 

 

Figure 3.3: Light waves reflected and transmitted. 

3.4. Transmittance and Reflectance of Single Layer 

We can use results that obtained in section (3.3) to evaluate transmittance 

coefficients for non-absorbing single layer, which is limited by half infinitive non-

absorbing mediums at both sides. Incident light beam is separated to reflected and 

transmitted parts. We pile up both parts separately and this method is very useful for 

single layer. Results are represents via Fresnel coefficients.  

Fresnel coefficients from Eq. (3.20)-(3.23) will be represented as r1, t1 for 

propagation n0 to n1;   
  and   

  for propagation n1 to n0. Since, these coefficients are 

hold for both directions of polarization; it gives appropriate values to r and t. Thus, 

Second index (p or s) will be ignored. From Fresnel reflectance coefficients, we can 

evaluate that   
  equals to   

 . So, the amplitude of reflected consecutive rays are 

represented as r1, t1  
 r2, -t1  

 r1  
 , t1  

   
   

 , … and transmitted consecutive rays are 

represented as t1t2, -t1t2r1r2, t1t2  
   

 , … . δ1 is the phase transition of transmitted 

rays, 



54 

δ1 = 
  

 
                      (3.42) 

so, the reflected amplitude, 

R = r1 + t1  
 r2       

 - t1  
 r1  

        +… 

        R = r1 + 
    

    
      

       
    

      
          (3.43) 

This term is independent of time. For non-absorbing mediums, representing Fresnel 

transmittance coefficients is easier with r1 and r2 terms. From energy conservation 

and Eq. (3.20) and (3.23), 

       t1  
     

 
             (3.44) 

so, Eq. (3.42) evaluates, 

R = 
      

      

        
      

           (3.45) 

and the amplitude of transmitted rays are given in eq. (3.46), 

T = t1t2       - t1t2r1r2       + t1t2  
   

        -… 

     T = 
     

     

        
      

           (3.46) 

Eq. (3.45) and (3.46) are general. For not normal incident, there are two possibilities 

due to polarization of incident light. For parallel coefficient Eq. (3.20) and (3.21) are 

used; for perpendicular coefficient Eq. (3.22) and (3.23) are used. 

If the layer is absorbing or is limited by absorbing mediums, we use complex values 

for n0, n1, and n2. Thus, Fresnel coefficients become complex and calculating R and T 

values become complicated. The total energy of rays, 

    n0RR
*
 = 

  (  
                

 )

(                
   

 )
            (3.47) 

     n2TT
*
 = 

    
   

 

(                
   

 )
            (3.48) 
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then reflectance and transmittance evaluates to eq. (3.49) and (3.50), 

R = 
  
                

 

                
   

           (3.49) 

T = 
  

  

  
   

 

                
   

           (3.50) 

From Eq. (3.20) - (3.23) Fresnel coefficients, 

         r1 = 
     

     
   and   t1 = 

   

     
            (3.51) 

         r2 = 
     

     
   and   t2 = 

   

     
                    (3.52) 

so, Eq. (3.45) and (3.46) becomes, 

  R = 
(     )(     ) 

     (     )(     ) 
     

(     )(     ) 
     (     )(     ) 

     
         (3.53) 

  T = 
     

(     )(     ) 
     (     )(     ) 

     
         (3.54) 

and finally reflectance and transmittance is given by eq. (3.55) and (3.56), 

R = 
(  

    
 )(  

    
 )      

    (  
    

 )(  
    

 )      

(  
    

 )(  
    

 )      
    (  

    
 )(  

    
 )      

        (3.55) 

T = 
     

   

(  
    

 )(  
    

 )      
    (  

    
 )(  

    
 )      

        (3.56) 

These terms can be easily evaluated for non-absorbing mediums. If the film or the 

limiting mediums are absorbing, then we should change n0, n1 and n2 values to n = n-

ik.  

In this section, we have tried to obtain optical constants of film by transmittance 

relation. We have measured transmittance due to wavelength and we have already 

known the refractive index of substrate and air, so we can calculate the refractive 

index, absorbing and damping coefficients of film.  
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4. EXPERIMENTAL PROCEDURES 

Two types of glass substrates were used in these experiments. Indented (300 g for 5 

seconds) glass and Corning glass 2947 were used for the mechanical and the optical 

characterizations, respectively. Figure 4.1 shows the glass substrate for mechanic 

tests. 

 

Figure 4.1: Uncoated glass substrates for the mechanical tests (8 x 8 mm plain, thickness: 3.2 mm). 

Corning glass substrates has approximately 89% transparency at visible light 

spectrum. Figure 4.2 shows coated glass substrate. 

 

Figure 4.2: Ta2O5 thin film coated Corning glass 2947 (7.62x2.54 mm plain, thickness: 1mm). 

Titanium oxide and silicon oxide (TiO2 – SiO2) binary films were deposited by spin 

coater at 1500 rpm for 60 seconds. Tantalum pentoxide (Ta2O5) thin films were 

coated on the glass substrates at 1000 rpm for 60 seconds. All as-deposited films 

were heated at 120 
o
C for 30 minutes. Each prepared sols were dried at 150 

o
C on the 

magnetic stirrer in order to get powder forms. Later, heat treatment was applied the 

obtained powders at 450 
o
C for 1 hour as calcination process. 
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4.1. Cleaning Procedure of Glass Substrates 

Cleanliness of glass substrates surface is key element for the quality of coating. If 

any contamination exists, it negatively affects both the optical and the mechanical 

properties. Prior to the deposition of film on the glass substrate, the substrates were 

first flushed with a liquid detergent and then washed with de-ionized water. Next, the 

surface is washed ultrasonically in acetone, methanol and ethanol, respectively.  

4.2. Preparation of Sols 

Two different recipes were used for TiO2 – SiO2 binary system. The first one, which 

was developed by Şişecam Company, was obtained and used directly. The ratio of 

TiO2 to SiO2 is 5%. Figure 4.3 shows preparation process of traditional titanium 

dioxide sol. 

 

Figure 4.3: Preparation of traditional TiO2 sol. 

On the other hand, the well-known flowchart of TiO2 – SiO2 in the literature was also 

used. TiO2 sol was prepared by adding 180 µl acetic acid (CH3OOH) to 15 ml 

ethanol (C2H5OH), after that 1.2 ml titanium (IV) butoxide (Ti(OCH2CH2CH2CH3)4) 

was added to mixture very slowly and stirred for 30 minutes. Eventually, 10 ml 

ethanol was added and stirred for 60 minutes.  

SiO2 sol was prepared by stirring 5 ml tetraethyl orthosilicate (Si(OC2H5)4), 55 ml 

isopropyl alcohol (C3H8O or C3H7OH), 12 ml hydrochloric acid (HCl) and 0.5 ml 

distilled water for 20 minutes at 70
o 

C. After that, the mixture was stirred for 60 
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minutes at room temperature. The ratio of TiO2 to SiO2 is 50% by volume. Figure 4.4 

shows preparation process of traditional silicon dioxide sol. 

 

Figure 4.4: Preparation of SiO2 sol. 

For Ta2O5 sol, 35 ml ethanol and 0.5 ml acetic acid were stirred in first beaker and 

then 1.8 ml tantalum ethoxide (Ta2(OC2H5)5 and 99.98% pure) which was obtained 

from Sigma-Aldrich Co. LLC. and used without any purification, was poured into 

this solution and stirred for 30 minutes. Meanwhile in second beaker 15 ml pure 

water and 0.5 ml acetic acid were stirred for a while. 0.75 ml of second beaker 

solution was added into third beaker with 7.5 ml ethanol and were stirred for 20 

minutes.  2.5 ml of third beaker solution was added into first beaker and were stirred 

for 18 hours slowly with magnetic stirrer. Figure 4.5 shows the preparation process 

of tantalum pentoxide sol. 

Cerium nanoparticles were used directly without any purification process. SWCNTs 

(purity 98.3% and diameter ~ 1 nm, produced via CVD and purified via 6 molar 

HNO3 for 6 hours) were dissolved in N-Methyl-2-pyrrolidone (NMP) and stirred for 

one hour in ultrasonic cleaner.  
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Figure 4.5: Preparation of Ta2O5 sol. 

4.3. Preparation of Films 

All films were deposited on glass substrates by a sol-gel technique. The films were 

prepared on glass substrates by spin and dip coating. Tantalum pentoxide films are 

deposited at 1000 rpm; titanium and silicon dioxide binary films are deposited at 

1500 rpm for 60 seconds by spin coater. All as-deposited films were heated at 120 
o
C 

for 30 minutes in order to get film formation on the glass substrates. 
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5. RESULTS  

In this section, all gathered data are listed and compared to each other. For 

mechanical properties of the deposited films, analytical calculations, finite element 

method and experimental results were obtained separately and the obtained results of 

every method was compared and discussed. It is obvious that experimental data is the 

most trustable and useful one. However, it is impossible to try out every possibility 

for design and material selection. Therefore, we need analytical solutions and 

computer simulations. Especially computer simulations, which use FEM like Ansys, 

give promising results for understanding behavior of materials.  

XRD and XPS were used for phase characterization and chemical composition. 

SEM, AFM and optical microscopy were used to examine surface properties of thin 

films. UV-vis and NKD analyzer were used to obtain transmittance and reflectance 

curves of films as a function of wavelength. Profilometer was used to measure the 

thickness on films. Tensiometer was used to examine contact angle of film surfaces.  

5.1. Analytical Solution Results 

Mechanical properties of materials have to be known in order to calculate final 

structure’s behavior. Table 5.1 shows some mechanical properties of glass substrates 

and metal oxides [79].  

Table 5.1: Mechanical property of various oxide films and glass substrate. 

Material 
Young’s Modulus 

(GPa) 

Poisson’s 

Ratio 

Yield Strength 

(MPa) 

Glass Substrate 70 0,22 70 

TiO2 250 0,27 340 

Ta2O5 140 0,23 300 

SiO2 73 0,17 100 
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All materials are assumed isotropic during analytical calculations. The thickness of 

glass substrate and the deposited film are tg = 3.2 mm and tf = 10
-3

 mm, respectively. 

D
m
 and   

  values are obtained from eq. (2.44) and (2.45). Herein, the stress 

distribution upon the glass substrate and the obtained film were calculated easily 

from eq. (2.57)-(2.59). The radial and tangential stresses are equal where r   l1. Total 

magnitude of stress is decreased while increasing r value. Table 5.2 shows the 

interaction between the applied force (P) and the stress (σ). 

Table 5.2: Interaction between P and σ. 

TiO2-SiO2 Ta2O5 

Samples σr = σθ (MPa) Samples σr = σθ (MPa) 

Glass Substrate -0.04839P Glass Substrate -0.04831P 

Film -0.05144P Film -0.09841P 

In overall, tantalum pentoxide coated films diminishes the stress within the glass 

substrate in order to resist extra external forces. Hence, tantalum pentoxide coated 

films can be used in many applications. Moreover, the inorganic materials such as 

tantalum pentoxide can be eliminated the negative effects (degradation, corrosion, 

etc.) of sunshine on the materials. 

Typical glasses have approximately same yield and ultimate strength that is around 

70 MPa. Therefore, the glass substrate should stand up to, 

σr = σθ = 70 = -0,04839 P, 

P = -1446,579 N 

Herein, negative sign represents compression force. The same calculations were used 

to obtain other samples’ ultimate forces and their results are given in the Table 5.3.  
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Table 5.3: Ultimate forces for various materials. 

Samples Ultimate Force (N) 

Uncoated Glass 1446 

TiO2 + SiO2 2177 

Ta2O5 3048 

5.2. Finite Element Method (FEM) Results 

Ansys is an engineering simulation software, which uses finite element method. 

Besides, it gives nearly perfect results for analyzing substrates and thin films under 

external loads. Table 5.4. shows the results of uncoated and coated glass substrates 

separately.  

FEM methodology provided an effective means to explore and predict the behavior 

of high-performance thin film systems. The use of FEM design could reduce the total 

number of experimental trials, while still maintaining high accuracy of analysis. The 

identification of the critical process factors via a screening experiment was essential 

for method optimization and resulted in a reduced number of system components 

greatly simplifying the technological process. 

Table 5.4: FEM results of the samples. 

Samples Deflection (mm) Ultimate Stress (MPa) 

Glass substrate 0.215 74.4 

TiO2-SiO2 0.307 145.3 

Ta2O5 0.437 205.6 

These are the evaluated results of uncoated and coated glass substrates. Figures 5.1-

5.6 show the detailed information about stress distribution and deflection. 

Comparison of the results in Figure 5.3 and Figure 5.5, the stress distribution is more 

uniform for Ta2O5 coated samples. It is the main reason why tantalum oxide films 

withstand more forces that are external. Uncoated glass substrates shows non-

uniform distribution, which causes failure at low loads as shown in Figure 5.1. The 

middle point of the glass substrates shows maximum deflection due the position of 

the indenter ring.  
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Figure 5.1 and 5.2 show the stress distribution and the deflection of uncoated glass 

substrate, respectively.  

 

Figure 5.1: Stress distribution of glass substrate. 

 

Figure 5.2: Deflection of glass substrate. 
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Figure 5.3 and 5.4 show the stress distribution and the deflection of TiO2 – SiO2 thin 

film coated glass substrate, respectively.  

 

Figure 5.3: Stress distribution of TiO2 - SiO2 coated glass substrate. 

 

Figure 5.4: Deflection of TiO2 - SiO2 coated glass substrate. 
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Figure 5.5 and 5.6 show the stress distribution and the deflection of Ta2O5 thin film 

coated glass substrate, respectively.  

 

Figure 5.5: Stress distribution of Ta2O5 coated glass substrate. 

 

Figure 5.6: Deflection of Ta2O5 coated glass substrate. 
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5.3. Experimental Results 

Table 5.5 shows experimental results that obtained from ring-on-ring and scratch 

tests for various coatings. Fortunately, theoretical and experimental results of 

uncoated glass substrates are quite similar. However, there is a reasonable difference 

between theoretical and experimental results of the deposited films up to 30%. The 

main reason for difference is the mechanical properties that alter from nano to bulk 

form. There are other parameters that affect film’s final structure and behavior too: 

 Inclusion, impurities in the solutions, 

 Inadequate or imperfect chemical transformation, 

 Residual stresses among film structure, 

 Imperfect bonding between substrate and thin film, 

 Internal micro cracks, 

 Imperfect gelation process and phase transformation. 

Traditional recipe of TiO2 - SiO2 leads very frustrating results. Şişecam’s recipe 

shows promising results, although the ratio of TiO2 to SiO2 is 5:95 in volume. 

Additionally, there is reasonable difference in spin coated and dip coated samples. 

The method affects final film thickness directly, so dip coated samples have thicker 

film that leads better mechanical results.  

Ta2O5 thin films represent the best results. They demonstrated around 200% 

improvement for ultimate strength and huge increase in scratch resistance. However, 

the preparation process of tantalum pentoxide film is very critical. We could not 

achieve the same success when the powder form of tantalum ethoxide was used as 

precursor. Figure 5.7 shows image of coated glass substrate after ring-on-ring test. 

 

Figure 5.7: Broken glasses with different coatings and three different failure types. 
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Adding CeO2 nano particles to TiO2 – SiO2 binary sol gave poor results in terms of 

the mechanical properties. SWCNT shows some improvement especially on 

hardness. Very small amount of SWCNT leads 7% improvement on ultimate strength 

and 100% on hardness. Nevertheless, the positive effects of SWCNT decreases by 

increasing content. Table 5.5 shows experimental results that obtained from ring-on-

ring and scratch tests for various coatings. 

Table 5.5: Experimental results obtained from ring-on-ring and scratch tests. 

 

CHEMICAL 

INGREDIENTS 

ULTIMATE 

FORCE (N) 

DEFLECTION 

(mm) 

FAILURE 

STRENGTH 

(MPa) 

SCRATCH 

RESISTANCE 

(N) 

NUMBER OF 

EXPERIMENTS 

1) Uncoated Glass 

(3,2 mm) 
1363,9 0,225 74,8  42 

2) 100% TiO2-SiO2 2554,8 0,319 140,2 2-3 40 

3) 94,5% TiO2-SiO2 

- 5,5% Ta2O5 
2585,5 0,330 141,9 2 22 

4) 100% TiO2-SiO2 

(II) 
1425,3 0,227 78,2 0-1 22 

5) 94,5% TiO2-SiO2 

(II) - 5,5% Ta2O5 
1429,9 0,223 78,5 0-1 18 

6) 100% Ta2O5 4107,0 0,452 225,3 18 7 

7) 50% TiO2-SiO2 - 

50% Ta2O5 (powder) 
1822,7 0,285 100,0 2 11 

8) 100% Ta2O5 

(powder) 
1496,6 0,236 82,1 0-1 11 

9) 50% TiO2-SiO2  - 

50% Ta2O5 
1583,9 0,241 86,9 0-1 22 

10) 80% TiO2-SiO2 - 

20% Ce NP 
2525,4 0,331 138,6 1 8 

11) 99% TiO2-SiO2  

- 1% NMP (0,025gr 

SWCNT) 

2728,3 0,336 149,7 5-6 11 

12) 99% TiO2-SiO2  

- 1% NMP (0,035gr 

SWCNT) 

2561,5 0,330 140,5 3-4 11 

13) 100% TiO2-SiO2 

(dip coated) 
3121,8 0,390 171,3 4 22 
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Figure 5.8 and 5.9 show the comparison for both mechanical tests results. Ta2O5 

samples give incredible results, especially on surface resistance.  

 

Figure 5.8: Comparison for ultimate strength. 

 

Figure 5.9: Comparison for scratch resistance. 
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FEM results are summarized on Table 5.4 FEM gave nearly perfect results for all 

samples. It is obvious that, Ansys could easily apply to analyze bilayer or multilayer 

materials. Table 5.6 shows difference between Ansys and experimental results. 

Table 5.6: Comparing experimental and FEM results. 

Samples Experimental Results FEM Results Difference 

Uncoated Glass    

Deflection (mm) 0,225 0,215 -4,5% 

Maximum Stress (MPa) 74,8 74,4 -0,5% 

TiO2-SiO2    

Deflection (mm) 0,319 0,307 -3,7% 

Maximum Stress (MPa) 140,2 145,4 3,7% 

TA2O5    

Deflection (mm) 0,452 0,437 -3,3% 

Maximum Stress (MPa) 225,3 205,6 -8,7% 

5.4. Optical Microscopy Results 

Optical microscopy was used to examine surface properties of the samples. The 

method was applied to regions after scratch test in order to investigate adhesion 

properties of the films. Wide and deep trails mean the coating film is ductile and easy 

to remove. Distinctive trails of TiO2 – SiO2 film can be easily seen in Figure 5.10. 

Actually, the adhesion properties of the sol was quite well during coating process, 

but Figure 5.10 shows that the film can be easily removed from glass substrate. 

 

Figure 5.10: Optical microscopy image of TiO2 - SiO2 film with different magnification. 
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Figure 5.11 shows excellent adhesion of tantalum pentoxide thin films as well as 

hardness. Hardness values are given in previous section (5.3) and optical microscopy 

image supports results. Samples gave quite obscure trails, which hard to distinguish.  

 

Figure 5.11: Optical microscopy image of Ta2O5 thin film. 

Figure 5.12 shows unfavorable effects of CeO2 nanoparticles in TiO2 – SiO2 binary 

system for both adhesion and hardness.  

 

Figure 5.12: Optical microscopy image of TiO2 - SiO2 with CeO2 nanoparticles film with   different                        

magnification. 

5.5. Scanning Electron Microscopy Results 

SEM images examine the surface properties of the thin films. The images were taken 

with 2 kV and different magnification factors. Figure 5.13-5.15 show the SEM image 

of Ta2O5 film with different magnifications. The thicknesses of tantalum pentoxide 

thin films are around 90 nm. SEM images represent that films are deposited on glass 

substrates uniformly. 
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Figure 5.13: SEM image of Ta2O5 thin film (50X). 

 

 

 

 

Figure 5.14: SEM image of Ta2O5 thin film (50X). 
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Figure 5.15: SEM image of Ta2O5 thin film (90X). 

Figure 5.16 and 5.17 show the SEM images of TiO2 - SiO2 composite film. 

 

Figure 5.16: SEM image of TiO2 - SiO2 film (20X). 
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Figure 5.17: SEM image of TiO2 - SiO2 film (50X). 

SEM images of TiO2 – SiO2 composite films show that all the films were coated 

uniformly. The thicknesses of the composite films are around 2200 nm. There are 

some contamination on the glass substrates as shown in Figure 5.16 easily. Figure 

5.18 and 5.19 show the SEM image of TiO2 - SiO2 + SWCNT film. 

 

Figure 5.18: SEM image of SWCNT (less) reinforced TiO2 - SiO2. 
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Figure 5.19: SEM image of SWCNT (more) reinforced TiO2 - SiO2. 

Figure 5.18 and 5.19 show that, the transparency decreases with increasing carbon 

nanotube percentage. Besides, ultimate strength and hardness are going worse with 

higher amount of CNTs.  

5.6. Atomic Force Microscopy Results 

Surface roughness of samples was obtained with AFM. Roughness affects fatigue 

limit, so materials having more uniform surfaces can last longer. Figure 5.20 shows 

AFM image of Ta2O5 sample. 

 

Figure 5.20: AFM image of Ta2O5 thin film. 
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AFM results of Ta2O5 thin film are seemed quite uniform. Table 5.7 shows AFM 

results of Ta2O5 sample. 

 

Table 5.7: AFM results of Ta2O5 thin film. 

All Area Ry:20.704 [nm] 

X:500.000 [nm] Rz:10.169 [nm] 

Y:500.000 [nm] Rms:3.092 [nm] 

Area:250000.000 [(nm)
2
] Rp:8.478 [nm] 

Ra:2.451 [nm] Rv:12.226 [nm] 

Figure 5.21 and table 5.8 show the AFM image and results of TiO2 – SiO2 sample, 

respectively. 

 

Figure 5.21: AFM images of TiO2 - SiO2 film. 

TiO2 – SiO2 films are much thicker than tantalum oxide ones. However, average 

roughness is quite well. This leads enhancement on both optical and mechanical 

properties.  

Table 5.8: AFM results of TiO2 - SiO2 film. 

All Area Ry:41.933 [nm] 

X:2.500 [um] Rz:19.546 [nm] 

Y:2.500 [um] Rms:4.315 [nm] 

Area:6.250 [(um)
2
] Rp:24.013 [nm] 

Ra:3.318 [nm] Rv:17.920 [nm] 
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5.7. Profilometer Results 

Film thicknesses were obtained by Veeco Dektak 150 Profilometer mechanically. 

The results for the thickness of the films were incomparable. The average thickness 

was 90 nm and very uniform for tantalum pentoxide. However, the average thickness 

was 2200 nm and slightly uniform for TiO2 – SiO2 samples. That means, we need 

less material to coat Ta2O5 on glass substrate. Figure 5.22 shows profilometer results 

of Ta2O5 sample.  

 

Figure 5.22: Profilometer result image of Ta2O5 thin film. 

Figure 5.22 and 5.23 show removing Ta2O5 on glass substrate is harder than TiO2 – 

SiO2 binary system. The step was created on the film surface in order to get uncoated 

and coated parts. Figure 5.23 shows profilometer results of TiO2 – SiO2 sample. 

 

Figure 5.23: Profilometer result image of TiO2 - SiO2 film. 
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5.8. Tensiometer Results 

Contact angle determines the surface whether hydrophobic or hydrophilic. Table 5.9 

shows the contact angle values for different coatings. 

Table 5.9: Contact angle for different coatings. 

Material Contact Angle (θ) 

TiO2 – SiO2 58   1 

94,5% TiO2 – SiO2 – 5,5% Ta2O5 47   1 

Ta2O5 84   1 

50% TiO2 – SiO2 – 50% Ta2O5 52   1 

80% TiO2 – SiO2 – 20% CeO2 NP 71   1 

99% TiO2 – SiO2 – 1% SWCNT 51   1 

According to results, Ta2O5 coating is the most hydrophobic surface and adding 

CeO2 nanoparticles reduces the contact angle. Beside, adding small amount of carbon 

nanotubes completely changes the behavior. Ternary system of TiO2, SiO2 and Ta2O5 

behaves like hydrophilic. Figure 5.24 shows the behavior of pure water droplet on 

different surfaces.  

 

Figure 5.24: Tensiometer pictures of different coatings. 
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5.9. Ultraviolet-Visible Spectroscopy Results 

UV-vis was used to investigate transmittance of the films. Since we have been 

working with glasses, optical transparency is crucial parameter. Figure 5.25 and 5.26 

shows the transmittance values for different coatings against wavelength and energy, 

respectively. TiO2 – SiO2 samples have the highest transmittance values despite the 

thicker film thicknesses. Adding CeO2 nanoparticles reduces transmittance 

dramatically.  
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Figure 5.25: Transmittance for different coatings with respect to wavelength. 
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Figure 5.26: Transmittance for different coatings with respect to energy. 
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First derivation of transmittance values against energy are given in Figure 5.27 in 

order to define band gaps of the films.  
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Figure 5.27: First derivation of transmittance with respect to photon energy. 

A NKD 7000 model spectrophotometer (Aquila, UK) has been used to measure the 

optical transmittance and reflectance of the films over the spectral range from 280 to 

1000 nm at 30
o
 angle of incidence. The optical constants such as refractive indices 

and the extinction coefficients of the films were calculated using the Pro-Optix 

software. The s and p polarization of transmittance and reflectance values of the 

deposited films were measured by spectrophotometer analyses over the spectral 

range of 350-1000 nm. Results are shown in Figures 5.28-5.31. As can be seen from 

Figure 5.28-5.29, p and s polarization values of transmittance of the films are quite 

high values for all the films. Their transmittance values alter from 85 to 95 %. 

Although tantalum pentoxide films are transparent and reflect light well in all over 

the spectrum. Ta2O5 has ~12.5% reflectance in the visible range. The transmittance 

values of Ta2O5 thin film reaches about ~75% and 95 % in the all-region. Although 

Ta2O5 film has a slightly low transmittance value in the visible range, the refractive 

indices of the films are higher. The average transmittance values of all films ranged 

from ~89% to ~95% in the visible range. It can be concluded that the film 

compositions and additives have no significant difference for the transmittance 
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values. Optical properties especially the transparency of the films obtained are in 

good agreement with the literature.  

It is thus possible, in chosen conditions, to synthesize the films of optimal optical 

properties as reflective/antireflective and protective coatings for different 

applications. These films demonstrated excellent transparency, characteristic for 

wide band gap materials. 
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Figure 5.28: Transmittance of deposited films with respect to wavelength (p polarization). 
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Figure 5.29: Transmittance of deposited films with respect to wavelength (s polarization). 
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Figure 5.30: Reflectance of deposited films with respect to wavelength (p polarization). 
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Figure 5.31: Reflectance of deposited films with respect to wavelength (s polarization). 

5.10. X-ray Photoelectron Spectroscopy Results 

Compositional elemental characterization of the deposited films carried out by X-

Ray Photoelectron Spectroscopy (XPS) measurements. It was aimed to determine the 

constituents of the coatings, as well as binding structures. Figures 5.32-5.40 show the 

spectra of the coated films obtained from XPS where a general surface survey was 

performed. 
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There are visible peaks that belong to Si, Ti, Ta and C elements. Several windows 

(C1s, Si2p, O1s, Ta4f, Ti2p) were rescanned to get detailed information about 

elemental peaks. Carbon peaks may come from contaminations. Nevertheless, the 

peaks require further fitting analysis for exact determination of phase compositions 

and stoichiometry. 

 
Figure 5.32: XPS survey scan spectra of calcined TiO2 - SiO2 film at 450 

o
C. 

 
Figure 5.33: XPS Si2p scan spectra of calcined TiO2 - SiO2 film at 450 

o
C. 
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Figure 5.34: XPS C1s scan spectra of calcined TiO2 - SiO2 film at 450 

o
C. 

 

 
Figure 5.35: XPS Ti2p scan spectra of calcined TiO2 - SiO2 film at 450 

o
C. 
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Figure 5.36: XPS O1s scan spectra of calcined TiO2 - SiO2 film at 450 

o
C. 

 

Table 5.10: Detailed XPS spectra of calcined TiO2 - SiO2 film at 450 
o
C. 

Name  Peak BE FWHM eV Area (P) CPS.eV Atomic % Q  

Si2p Scan A 103.43 1.79 18964.17 31.66 1 

Ti2p3 Scan A 458.68 1.59 2429.09 0.76 1 

Ti2p3 Scan B 459.89 1.84 2299.72 0.72 1 

O1s Scan A 532.72 1.80 114916.78 66.86 1 

 

Figure 5.37-5.40 and table 5.11 show the XPS scans for Ta2O5 samples. 

 
Figure 5.37: XPS survey scan spectra of calcined Ta2O5 film at 450 

o
C. 



86 

 
Figure 5.38: XPS Ta4f scan spectra of calcined Ta2O5 film at 450 

o
C. 

 

 
Figure 5.39: XPS O1s scan spectra of calcined Ta2O5 film at 450 

o
C. 
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Figure 5.40: XPS C1s scan spectra of calcined Ta2O5 film at 450 

o
C. 

Table 5.11: Detailed XPS spectra of calcined Ta2O5 film at 450 
o
C. 

Name  Peak BE FWHM eV Area (P) CPS.eV Atomic % Q  

Ta4f7 Scan A 26,19 1.24 15724.66 27.75 1 

O1s Scan A 530,40 1.43 14487.96 53.94 1 

O1s Scan B 531,87 2.40 4689.88 18.31 1 

5.11. X-ray Diffractometer Results 

Additionally chemical and structural analysis of the samples were done with Cu 

source (CuKalpha: 1.5418 Angstrom) by X-ray diffractometer (XRD) device. To 

obtain this structural and physical information from nanostructures and thin films, 

XRD instruments and techniques are designed to maximize the diffracted X-ray 

intensities, since the diffracting power of thin films is small. Also as mentioned 

before, the crystal structure Ta2O5 is little bit complicated. Disordered bulk material 

can be either amorphous or polycrystalline, however it is difficult to grow single 

crystals. Generally, it is hard to get crystal information via X-rays but powder 

diffraction.  

XRD results show powder forms of calcined Ta2O5 and TiO2 – SiO2 binary systems 

are amorphous and do not represent any characteristic peaks as shown in Figure 5.41 

and 5.42. 
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Figure 5.41: XRD pattern of  Ta2O5 thin film on glass substrate. 

10 20 30 40 50 60 70 80 90

 

 

In
te

n
s
it
y
 (

a
.u

.)

2 (degree)

TiO
2
 - SiO

2
 powder

Figure 5.42: XRD pattern of TiO2 – SiO2 film on glass substrate. 
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6. CONCLUSIONS 

TiO2, Ta2O5, SiO2, their binary and ternary systems are extensively used oxide thin 

film for optical interference coatings. They are stiff and chemically resistant, 

transparent in the visible range and have a stability refractive index, and shows 

excellent mechanical and environmental stability and non-toxicity. Thin film 

structures find very wide applications in microelectronics, optics, semiconductor 

multi-layer, superconducting systems, data storage systems, projection display and 

solar cell. 

All films are deposited by sol-gel techniques on the glass substrates. Dense, well 

adherent and homogenous oxide films were successfully deposited onto the 

substrates. 

Almost every system is affected by external loads even more than one direction. 

There are main two parameters, which can be adjust, design and material selection. 

Design is so important because of stress concentration that damages your complete 

system. Therefore, scientists have to avoid designs causing stress concentration. 

After the optimum design processes, selecting proper materials is another crucial 

step. Cost and performance both affect selecting criteria. Individual materials has 

been investigated for a long times. Their composites systems are often preferred to 

examine the superior properties depending on the application areas. Nevertheless, the 

respond of material under specific loads has to be known in any situation because of 

reliability of the systems.  

Stress analysis for thin-film structures can be performed using analytical methods. 

However, with the development of computing technology, more researchers are 

using numerical methods. The finite element analysis is a very powerful technique to 

model thin-film structures and to carry out processing, static, and dynamic analyses. 

The film materials used often have properties that are quite different from those of 

bulk materials, and they even vary from component to component. The main purpose 
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of this thesis was to use analytical solution and finite element method to analyze the 

ultimate tensile stress in the oxide films (TiO2, Ta2O5 and SiO2) with different 

compositions. The use of FEM design and analytical solution could reduce the total 

number of experimental trials, while still maintaining high accuracy of analysis. 

Later, Obtained results from theoretical calculations were compared to the 

experimental tests. FEM gave nearly perfect results for all samples. It is obvious that, 

Ansys could easily apply to analyze bilayer or multilayer materials. Theoretical and 

experimental results of uncoated glass substrates are matched well to each other. 

However, there is a reasonable difference between theoretical and experimental 

results of the deposited films up to 30%. As it is impossible to experience each 

material individually or in a composite system, also in nano or macro scale, we need 

computers to analyze and predict responds of materials. Section 5 shows that Ansys 

gives almost perfect results. Experiments have to be applied on to most promising 

candidates to save money and time. Beside, repetition of experiments improves 

success rates, especially on brittle materials like glass.  

Traditional recipe of TiO2 - SiO2 in the literature leads very frustrating results. 

Şişecam’s recipe shows promising results, although the ratio of TiO2 to SiO2 is 5:95 

in volume. Ta2O5 thin films represent the best results. They demonstrated around 

200% improvement for ultimate strength and huge increase in scratch resistance. 

Adding CeO2 nano particles to TiO2 – SiO2 binary sol gave poor results in terms of 

the mechanical properties. SWCNT shows some improvement especially on 

hardness. Very small amount of SWCNT leads 7% improvement on ultimate strength 

and 100% on hardness. Nevertheless, the positive effects of SWCNT decreases by 

increasing content. 

The mechanical improvement of thin films has not been drawn so much attention like 

as optical properties. However, thin films showed incredible improvement on both 

tensile strength and scratch resistance, especially Ta2O5 ones. Ta2O5 are nearly 

transparent and chemically extremely stable with these unique properties, it is 

valuable coating material for transparent substrates in rough environmental 

conditions. Many application areas can be suitable like solar cell technology. In 

addition, it is not toxic, so it can be used in biomedical industry more frequently.  
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SWCNTs and CeO2 nanoparticles were not very effective as expected. More studies 

can be done on solving dispersion problems of CNTs. CNTs are the most amazing 

materials but extremely toxic as well. Solving toxicity and dispersion problem will 

make CNTs indispensable material for high tech industries.  

Ta2O5 coating is the most hydrophobic surface within the samples. Ternary system of 

TiO2, SiO2 and Ta2O5 behaves like hydrophilic.  

These films demonstrated excellent transparency, characteristic for wide band gap 

materials. 
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