ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

ITU-PRP: PARALLEL RUNNING PLATFORM
A PARALLEL PROGRAMMING FRAMEWORK FOR JAVA

M.Sc. THESIS

Enis SPAHI

Department of Computer Engineering

Computer Engineering Programme

NOVEMBER 2014

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

ITU-PRP: PARALLEL RUNNING PLATFORM
A PARALLEL PROGRAMMING FRAMEWORK FOR JAVA

M.Sc. THESIS

Enis SPAHI
(504091531)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. D. Turgay ALTILAR

NOVEMBER 2014

ISTANBUL TEKNIK UNIiVERSITESI % FEN BIiLIMLERI ENSTITUSU

ITU-PRP : PARALEL iSLEM PLATFORMU
JAVA ICIN PARALEL PROGRAMLAMA ARACI

YUKSEK LiSANS TEZI

Enis SPAHI
(504091531)

Bilgisayar Miihendisligi Anabilim Dali Dah

Bilgisayar Miihendisligi Programm

Tez Damismani: Dog. Dr. D. Turgay ALTILAR

KASIM 2014

Enis SPAHI, a M.Sc. student of ITU Graduate School of Science student ID
504091531, successfully defended the thesis entitled “ITU-PRP: Parallel Running
Platform A Parallel Programming Framework for Java”, which he prepared after
fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Assoc.Prof. Dr. D. Turgay ALTILAR ..
Istanbul Technical University

Jury Members: Prof. Dr. Nadia ERDOGAN ...,
Istanbul Technical University

Assist.Prof. Dr. Yunus Emre SELCUK ...
Yildiz Technical University

Date of Submission : 9 October 2014
Date of Defense : 13 November 2014

Vi

FOREWORD

This thesis was written for my Master degree in Computer Engineering Department

at Istanbul Technical University.

I would like to take this opportunity to thank following people, who helped and
supported me during the writing process of this thesis. First | would like to express
my gratitude to my supervisor Assoc. Prof. Dr. D. Turgay Altilar, for his patience

and encouragement during different phases of this process.

Finally, I am grateful to my family and my girlfriend, without whose support this

thesis would not be possible.

November 2014 Enis SPAHI

vii

viii

TABLE OF CONTENTS

Page

FOREWORD ...ttt sttt e et e e e na e e e neeeaneeeas Vil
TABLE OF CONTENTS ..ottt e IX
ABBREVIATIONSottt sttt Xi
LIST OF TABLES ... Xiii
LIST OF FIGUREScoooieee ettt XV
SUMMALRY ettt XVii
OZET ..ottt ettt ettt XiX
1. INTRODUCTION......ctiiiiiiiie ettt ettt sttt st 1
1.1 Parallel Programming Framework ..., 3
1.2 Task Execution MIddIEBWArE............ccccviiiiiieiiieie e 3

2. RELATED WORK AND MOTIVATION ...ccocotiiiieicieesese e 7
2.1 API Interfaces Derived From Native Interfaces..........ccocvvvviieiiinninnenierieen, 7
2.2 API Interfaces Derived From Java Jative Thread Modelscccccovvvervninnen, 8
2.3 Java Applet Based Parallel SYystems..........cccooeiieiiiiiiicce e 8
2.3.1 JAVEIIN 1ot et ne e 8
2.3 2 JAVM ..ot 10

2.4 IMOTIVALION ...ttt ettt te e e sreeteeneenreenne e 12
3. ITU-PRP ARCHITECTURE AND DESIGNcccoviiiiiiiieiese e, 15
1 T8 1 1= o S 17
Be2 HOSE e 17
TR B = 0] 1 USSR 17
3.3 L HOSE FEOISIIY ..ottt sre s 18
3.3.2 Host registry operations 0N BroKerc.ccocviiiiiienencneeseseseeiee 20
3.3.3 Broker-to-Host Ping PONQ MESSAJES.......cccveivieieiieeiieeiesieesie e sreesre e 21
3.3.4 Client and host state tranSItionscccevevereerenieeneee e 23

3.4 TASK EXECULION ...t sttt 24
3.4.1 Task (application) rePOSItOrYccocerereririnisieiee e 24
3.4.2 HOSE FESOUICE FEUESTeeevieeeiiiieesiiee ettt e ettt et e et e e eebee e baeeanee e 25
3.4.3 Scoring for NSt SEIECTION.ccovviiiiiii e 26
A A TaSK PIAN .o 28
3.4.5 Parallel application XECULIONcccooiiiiiiininicee e 29

3.5 Client, Host and Broker CONNECLIVILYcocvveviieiiieiiie e 33
3.5.1 Approaches on communication flOWccoceviiiiininiiee, 34
3.5.2 NAT issues of peer-to-peer COMMUNICALIONcceevvvevieiieeiie e 35
3.5.3 NAT Traversal techniques for peer-to-peer CONNECIoNcccvvveeenee. 37
3.5.4 Peer-to-peer Protocol designed for ITU-PRP ..o 39

3.6 Data TranSMISSIONc..ccuiiueriiiiirieiiieieie ettt 42
4. ITU-PRP FRAMEWORK IMPLEMENTATION ...cccoiiiiieieie e, 45
4.1 ITU-PRP Web APPHICALIONcviiiecieie et 45
4.2 Parallel Programming LiDrary ... 48
4.2.1 Content of ParallelPatternFramework.jar library file...........c.cccoovevvennne. 48
4.2.2 Implementation guidelines for developers.........ccoovvveieiienenie e 50

5. EXPERIMENTAL RESULTS ...t 53

6. CONCLUSION ...t 59
REFERENCESo 61
APPENDICESo 63
DEPLOYMENT OF ITU-PRP.....cooiiiiiiii 65
SOURCES AND DEVELOPMENT ENVIRONMENT SETUPccccccoiiiennns 67
CURRICULUM VITA . s 69

ABBREVIATIONS

PRP : Parallel Running Platform
TP : Task Plan

NAT : Network Address Translation
ITU - Istanbul Technical University

Xi

xii

LIST OF TABLES

Page
Table 3.1: Record 0n HOSt REQISTIY.coouiiiiiieiiiie e 19
Table 3.2: Entry on Task REPOSItONY.cceiieiiiiieiiesiecec e 25
Table 3.3: Task plan example. ..o, 28
Table 5.1 : Hosts used for experimental results.ccccoevvveiiiieiicce e, 54
Table 5.2 : SHA-256 processing tIMeS.cccceoiriririnininieieene e 55

Xiii

Xiv

LIST OF FIGURES

Page
Figure 1.1 : ITU-PRP framework SEIVICES.cccoreiiririiieieieiesie s 2
Figure 2.1 : Javelin — Steps involved for applet execution [9].cccevvvievieieiiennn, 9
Figure 2.2 : Interaction among JAVM entities [11]......cccovveiiieieninininiseeeees 11
Figure 3.1 : ITU-PRP architeCture.coooviieiiee e 15
Figure 3.2 : ITU-PRP AESIGN. ...cc.oiiiiiiiiiiiieieieese et 16
Figure 3.3 : HOSt regiStration.cccocoveiieiiiic e 20
Figure 3.4 1 HOSt UNTegiStration.ccoieieiirieieniesie e 21
Figure 3.5 : Host list 0n HOSt REQISIIY. ...veoviiieiiiee e 21
Figure 3.6 : Ping PONG MECRANISM.ooiiiiiiieieie s 22
Figure 3.7 : Host Registry reSponse Status.c.coveveieerieiieie e 23
Figure 3.8 : Client and host state transSitions.c.covvririeiiiienene e 23
Figure 3.9 : Activity during host reSOUrCe reqUESL.cevuveeeveeriecieie e 26
Figure 3.10 : Parallel task eXeCUtION SLEPS.ccveiveriiriiriiriiieiee s 30
Figure 3.11 : Approach 1 suggestion for communication protocol. 34
Figure 3.12 : Approach 2 suggestion for communication protocol.cc.cceceee.e. 35
Figure 3.13 : NAT private to public IP translation.ccccoeveveiieiiece e 36
Figure 3.14 : Peer-to-peer connection failure of hosts behind different NATSs. 37
Figure 3.15 : UDP Hole Punching technique [12].......cccccoovivieiiieieiieie e 39
Figure 3.16 : Peer-to-peer CONNECLION STEPS.ovveiviriiriirieieieie et 41
Figure 3.17 : ITU-PRP peer-to-peer NEtWOrK.cceevveveieeiieie e 42
Figure 3.18 : ITU-PRP Peer-to-peer NEtWOIK.ccovvriririiienesc e 42
Figure 3.19 : ITU-PRP generiC MESSAQE.cvecveiveeieeriesieeieiteesteeseeseesreeseesee e enne e 43
Figure 4.1 : ITU PRP Web application 10gon SCreen...........ccceverenirenenesineieenes 45
Figure 4.2 : Java Applet on ITU PRP Web application.c.ccccoevveieiicieennene, 46
Figure 4.3 : Task execution in ITU PRP Web application............cc.ccocvvnvninniinnnnnn, 47
Figure 4.4 : Actual hosts connected t0 SYStEM..........cccveiiiiiie i 47
FIQUIre 4.5 2 USEI STALISTICS. ..c.veveiiiieiiisiciieeie e 47
Figure 4.6 : Task eXeCULION 10QSeciiiiiiieiiiciie et 48
Figure 4.7 : Parallel Programming Library implementation.cccccoovviviinienn, 50
Figure 4.8 : Main Task implementation example.cccooevii i 51
Figure 4.9 : Sub Task implementation example.ccocovieiiiinineeees 51
Figure 5.1 : Performance gain achieved on experiments.c.ccccevveevvevieciieesnenn 56

XV

XVi

ITU-PRP: PARALLEL RUNNING PLATFOM, A PARALLEL
PROGRAMMING FRAMEWORK FOR JAVA DEVELOPERS

SUMMARY

During past decades, developments on Web technologies have brought various new
concepts on Distributed and Parallel Computing systems. Increased Internet usage
along with evolved capabilities of high level programming technologies, leaded to
new concepts such as Multi-Host parallel computing, task distribution, peer-to-peer
programming, etc. Especially, Java as the leading programming environment used on
Internet basis systems, attracted the attention of Parallel Programming Studies, which
resulted with the invention of many Parallel Programming Frameworks. The lack of
native Parallel Programming Frameworks to provide High-Scale Parallel systems,
oriented parallel programmers to develop various solutions. Also, multi-host parallel
systems have become reasonable alternative solutions over multi-core parallel
systems.

The System built in these study aims providing a Parallel Programming Framework
for Java Developers on which they can adapt their sequential application code to
operate on a heterogeneous multi-host parallel environment. Developers would
implement parallel models, by the help of an API Library provided under framework.
Produced parallel applications would be submitted to a middleware called Parallel
Running Platform (PRP), on which parallel resources for parallel processing are
being organized and performed. The middleware creates Task Plans (TP) according
to application’s parallel model, assigns best available resource hosts, in order to
perform fast parallel processing. Task Plans will be created dynamically in real time
according to resources actual utilization status or availability, instead of
predefined/preconfigured task plans. ITU-PRP achieves better efficiency on parallel
processing over big data sets and distributes divided base data to multiple hosts to be
operated by Coarse-Grained parallelism. According to this model distributed parallel
tasks would operate independently with minimal interaction until processing ends.

XVii

xviii

ITU-PRP: PARALEL iSLEM PLATFORMU, JAVA ICIN PARALEL
PROGRAMLAMA ARACI

OZET

Son yillarda, Web teknolojilerinin kaydettigi gelisim ile birlikte Dagitik ve Paralel
Isleme sistemlerinde yeni kavramlar ortaya ¢ikmustir. Artan internet kullanimi ve
gelisen Ust seviye programlama dilleri sayesinde, Mutli-Host Parallel Computing,
Task Distribution, Peer-to-peer programlama gibi yeni kavramlar ortaya ¢ikmustir.
Ozellikle Internet tabanl sistemlerin gelistirilmesinde 6ncii gelistrme ortamlarindan
biri olan Java, Paralel Programlama ile ilgili ¢alismalarda yerini almaya baslayip, ¢ok
sayida Paralel Programlama arayiiziiniin ortaya c¢ikmasinda rol oynamustir. Ilkel
paralel programlama dillerinin kapsam genisletme ile ilgili yasanan eksiklikler,
paralel programlama uzmanlarinin degisik ¢ozlimler iizerinde c¢alismalarina yol
acmistir. Ayrica, Multi-Host paralel sistemler Multi-Core (¢ok ¢ekirdekli) paralel
sistemler karsisinda alternatif ¢6zlim olarak degerlendirilmeye baglamistir.

Tez kapsaminda tasarlanan sistem, Java Gelistiricilerine uygulamalarini heterojen ve
Multi-Host calisan bir paralel paralel platforma tasiyabilecekleri bir framework
sunmayi amaglamaktadir. Bu sisteme gore gelistirilen uygulamalar Multi-Host bir
ortamda paralel c¢alisarak performans 1iyilestirme saglanacaktir. Framework
kapsaminda sunulan bir API kiitiiphanesi, paralel modellerin ger¢eklenmesini
saglayacaktir. Uretilen paralel uygulamalar Parallel Running Platform (PRP) olarak
adlandirilan bir ara katmana yiiklenerek kayit altina almacaktir. Ilgili ara katman
paralel islemlerin gerceklenebilmesi adina kaynak yonetimi ve tahsis etme siireclerini
gerceklestirmektedir. Bu ara katman, uygulamanin paralel modeline gore hizli paralel
islem gerceklestirebilme adina, eldeki en miisait durumdaki kaynak Host’lardan
olusan bir Gorev Plan1 (Task Plan) olusturmaktadir. Gorev Plan1 6nceden belirlenmis
bir plandan ziyade, kaynaklarin anlik durum ve miisaitligine dikkate alinarak gergek
zamanda dinamik olarak olusturulacaktir. ITU-PRP sistemi esas performans artigini
biiyiikk data kiimelerini bolerek coklu hostlara dagitip isleyerek elde etmektedir.
Coarse-Grained Parallelism olarak adlandirilan bu modele gore dagitilmig paralel
gorevler birbirinden bagimsiz bir sekilde islem sonuglanana kadar islem
yapacaklardir.

ITU-PRP paralel uygulama gelistiricilerine hem paralel c¢alisan uygulama
gelistirebilecekleri hem de uygulamalarin paralel ¢alismasini saglayan ortak bir
¢oziim sunmacaktir. ITU-PRP paralel yazilim gelistirme siirecinin basit, kolayca
gerceklenebilecegi bir kiitiiphane saglamayr amaglamaktadir. llgili kiitiiphane
kullanicilara bir JAR paketi halinde sunulmaktadr. Ilgili kiitiiphane, implementasyon
icin gerekli araylizlerden olugmaktadir, ki bu arayiizler sirali kodlamaya benzeyen
Ozerk paralel gorevler yazmaya imkan taniyacaktir. Ek olarak, ITU-PRP paralel
isleme i¢in gerekli kaynaklar1 hazirlayan bir ara katman saglamaktadir. Task
Execution Middleware olarak isimlendirilen bu ara katman sistemdeki degisken
sartlar1 gbz Oniine alarak dinamik kaynaklar saglayacaktir.

XiX

Paralel Programlama Framework’ii paralel islemleri soyutlayarak kullanicidan
gizlemektedir. Multi-Host paralel islemler de yine kullanicilara yansitilmayan paralel
islemlerdir. Kullanic1 parallel gorevlerin dagidimi, ¢alistirilmasi, paralel gorevlerin
birlestirilmesi, sonu¢ toplam, senkronizasyon ve baglantt konularula
ugragsmayacaktir. Sadece uygulamaya ve gergeklenen implementasyona ait bazi
parametre giriglerini yapacaktir. Kullanicilar gelistirdikleri uygulamalar1 sisteme
yiiklemektedirler. Sonrasinda ¢alistirma islemlerini gelecekte yapacaklardir. Sisteme
yiiklenen uygulamalar Task olarak adlandirilip gorev olarak degerlendirileceklerdir.

Kullanicilar ITU-PRP sistemine kullanici bilgileriyle web tabanli bir arayiiz
tizerinden giris yapmaktadirlar. Bu web uygulama kullanicilara Task Execution
Middleware katmaninin hizmetlerini saglayacaktir. Yetkili kullanicilar gorev
islemlerini baslatmakta, ayrica sonuglari ilgili ekranlardan goriintiileyebilmektedirler.

ITU-PRP sistemi web tabanli bir sistem olarak tasarlanmustir. Ilgili web sayfalarinda
Java Applet teknolojisi kullanilarak Java eklentisi ve prosesi c¢alistirllmaktadir ve
paralel iglemler bu proses i¢inde baslatilmaktadirlar. Sisteme giris sonrasi, yaratilan
applet prosesleri kullaniciya ait lokal verileri toplayarak Task Execution Middleware
katmanmna iletirler ve kayit altinda tutulurlar. ilgili Proses ve Thread’ler bosta
olduklar siirece kaynak Host olarak davranmaktadirlar ve gérev atamasi i¢in hazirda
beklemektedirler. Kullanici gorev talebinde bulundugunda ise ilgili proses Client
olarak davranacaktir ve gerekli islemleri yapacaktir.

ITU-PRP paralel ¢alistirma kaynaklarinin saglanabilmesi i¢in kullanicilardan katki
beklemektedir. ITU-PRP sistemine bagli biitiin kullanicilar potansiyel kaynak
durumundadirlar. Sisteme bagli Client’lar Host olarak kayithidirlar, diger
kullanicilara gorev islem talepleri i¢in yardimecir gorevini yiiriitmektedirler.
Kullanimda olmadiklar1 siire i¢inde potansiyel kaynak durumunda kalacaklardir.
Bircok bilgisayarin ¢ogunlukla bosta oldugu, tiim kaynaklarin1 kullanmadigi
diistintildiiglinde, bu yaklasim yiiksek performans paralel uygulama gergeklenmesi
i¢in bir yontem olarak diistiniilmiistiir.

Proje kapsamindaki Paralel Processing yontemi Multi-Threaded task dagitim
modeline gore gerceklenmektedir. ITU-PRP tasarimi, bir ana gorevin ¢ok sayidaki
alt gorevi paralel bir dongli ile Host’lara dagittigi, nesne yonelimli paralel
modellerden olusmaktadir. Bu tasarima gore alt gorevler paralel islenmektedir.
Sistemin nesne yonelimli olmasi, diger ilkel paralel modellere gore bir art1 olma
ozelligi tasimaktadir.

ITU-PRP’nin veri paralellestirme yaklagimi kullaniciya Ozellestirilebilir bir yap:
sunma yoniindedir. Veri dagitimi isleminin alt sinifa Object Serialization yapilarak
uygulanmas1 kullanicinin veri paralellestirme {izerinde kontroliinii saglamaktadir.
Veri dagitimin nesne bazli olmasi, mesaj bazli yapiya kiyasla kullaniciya alt goérev
veri tiplerini belirlemesi agisindan esneklik saglamaktadir.

ITU-PRP i¢in tasaralanan peer-to-peer protokolil proje kapsamini belirleyen 6nemli
bir unsur olmustur. Internet {izerinde ag erisim kisitlamalar1 gdz oniine alindiginda
farkli peer’lerin birbirlerine baglanmasi zorlayict bir ¢alisma olmustur ve bu konuda
derin literatlir arastirmasi yapilmistir. 3 farkli NAT traversal teknigi olarak bilinen
Relaying, Connection Reversal ve UDP Hole Punch Teknikleri kombine edilip
internet ierindeki farkli Host’larin birbirine baglanmasi saglanmistir. Yapilan
tasarima gore, biitlin Host’lar birbirine baglanacaktir ve baglantilarin1 sisteme bagl
olduklar siirece aktif tutacaklardir. Ek olarak, Peer gruplama kavrami bolgesel host
gruplarinin ~ olusturmayr veya belirli gorev gruplarmin olusturulabilmeyi

XX

amclamaktadir. Ancak, bu uygulama sistemde kullanici sayisinin artmasiyla daha
anlamli olacaktir, gelecekte yapilmak tizere simdilik kapsam disinda birakilmistir.

Deney sonuglar1 minimal sayida kaynak Host’la yapilan Paralel Uygulama
calistirmanin bir performans artis1 saglamadigini gstermistir. Ancak, kaynak Host
sayisinin artmasiyla birlikte deney sonuglarinin istenilen performans artigin
sagladig gozlemlenmistir. Ek olarak, kaynak sayis1 attikca ag iletisim gecikmelerinin
etkisinin azaldigini gostermistir. Ayrica, Sequential calistirilma siireleri nispeten
yiikksek olan uygulamalarin ITU-PRP’ye uyarlanmasinin daha olumlu performans
tyilestirme saglayacagi gorilmiistiir.

Deneyler sirasinda en yliksek Client-to-Host baglanti gecikmesi 360ms olarak
hesaplanmistir. Ancak, ger¢ek Diinya’daki ag iletisim sorunlar1 gbz Oniine
alindiginda bu degerin daha yiiksek olabilecegi diisiiniilmektedir. Prensip olarak 2
saniye lizerinde sequential ¢aligtirma siiresi olan uygulamalarin ITU-PRP’nin paralel
kaliplarina uyarlanmasi Onerilmektedir. Calistirma siiresi arttikga, ITU-PRP’ye
tizerinde basarim artis1 daha fazla beklenmektedir. Her ne kadar ITU-PRP bir paralel
programlama araci olsa da, performans i¢in diger paralel programlama araglariyla
yarismamaktadir. ITU-PRP’nin asil amaci global bir ortamda yiiksek basarimli
uygulamalarin ¢alistirilabilecegi Multi-Host ve heterojen bir sistem saglamaktir.
Ayrica, kullanicilar i¢in bireysel isemci kaynaklarinin global islemci kaynagina
donistiiriilmesi amaglanmaktadir.

Farkli Paralel programalama framework’lerinin performans karsilastirmalarinin
yapilmasi i¢in kullanilan Benchmark araclarinin ITU-PRP’nin performans 6l¢timleri
icin kullanilabilmesi s6zkonusu olamamaktadir. Bunun nedeni heterojen ve Multi-
Host calisan ve global peer-to-peer protokoliiyle ¢alisan farkli karakterli bir sistem
olmasidir. Ayrica, list kisimda da bahsedildigi {izere, ITU-PRP’nin amac1 baska
triinlerin performanslart ile yarismak degil, farkli karakteristikleri olan 6zgiin bir
sistem saglayarak, maliyetsiz, yliksek basarimli ve global bir sistem saglamaktir.

Daha etkin bir sistem ancak yeterli sayida kullanicinin katilimiyla saglanabilecektir.
Bu amagla bir kullanici katilim o6diillendirme sistemi kurulacaktir. Kullanici
sayilarinin artmastyla birlikte daha gergekc¢i performans olctimleri yapilim gelecege
yonelik sonuglar incelenecektir ve ona gore sistemde iyilestirmeler yapilacaktir.

XXi

XX1i

1. INTRODUCTION

ITU-PRP provides an all-in-one solution for Parallel Programmers, with a Parallel
Programming Framework and a Task Execution Middleware within a single system.
ITU-PRP intends a simple way for Parallel Application Development, which makes
Parallel Code easy to implement through a Java Library released as JAR Package.
The regarded library contains implementable interfaces, which would generate
autonomous parallel tasks written as sequential code blocks. Parallel tasks are
operated according to Loop Parallelism and Divide and Conguer parallel models [1].
Additionally, ITU-PRP’s distributed middleware provides resources for parallel
processing and ensures execution of tasks. Computing resources are assigned

dynamically according to System’s real time conditions.

Parallel Programming Framework mostly encapsulates parallel operations and
provides abstraction to developer. Multi-Host parallel operations are handled by the
encapsulated package. Developer will not deal with Parallel Task Distribution, Task
Execution, Task Reunification, Result Collection, Synchronization and Connection
issues. Only some initial parameters regarding to task execution are required to be set
as configuration on the implemented code. User will configure his application on the
regarded platform with parameters specified for parallel task execution. Any user
submits its produced applications for future task execution, request for task execution
and collect execution results. Submitted applications are treated as tasks in the

system, so once an application is submitted to system, it will be named as Task.

Users with their accounts for ITU-PRP System will connect to system through a web
based graphical user interface. This web application would serve users for their
operations on ITU-PRP System, especially on Task Execution Middleware.
Authenticated user initializes task execution and views the results of parallel

processing through a specified screen.

ITU-PRP system is designed as a web based system, which mainly utilizes Java
Based Applet technology and does parallel processing operations on user’s Web
Browser. Prior to system log on, initialized Applets processes gather user

information and are registered to Task Execution Middleware. The Process and
Threads created on user’s process behave as hosts during their idle states and wait
assignments of a task execution. If user requests for Task Execution, main process

will behave as client and do operations accordingly.

ITU-PRP expects contribution in terms of execution resources from any user using
the platform. Any user logged in to ITU-PRP will be considered as potential
resource. Connected clients are registered as hosts as well, in order to make possible
serving other Task Execution Requestor clients. Hosts will be available as potential
computational resources during their idle times. Considering that many computers
are mostly idle, the approach of this research has been utilization of non-used

executional power in order to achieve high performance parallel applications.

ITU-PRP System provides Parallel Programming Framework and Task Execution

Middleware. Figure 1.1 illustrates operations within these two main entities.

7

ITU-PRP
Parallel Programming Framework Task Execution Middleware
| JAR Library | | User Account / Log on |
| Parallel Application Development | [ITU-PRP Web Application |
| Produced Parallel App. I I Application Submission |

Task Execution Request |

Task Plan Creation |

|
| TR ok B Ii//l Main Task Initialization |

$| Task Distribution |

| Sub Task Execution on Parallel |€

| Execution Result I

Execution Result |

Figure 1.1 : ITU-PRP framework services.

Code parallelization for clients is achieved via a JAR Library provided to Java
developers. This library would function as a framework implementable on

development tools like Eclipse and etc.

1.1 Parallel Programming Framework

Parallel Programming Framework basically provides parallel code blocks for
application developers. User adapts his application code to patterns specified by this
framework. Provided JAR Package is named as Parallel Programming Library,
which is implementable by the user according to specifications on Implementation
Guidelines. The produced application will be uploaded to ITU-PRP Web
Application, which is a unit of Task Execution Middleware. Besides the
implementation, execution of Main Task, Parallelized Sub Task Execution and result

generation are background operations hidden from the user.
The essential concerns of Application Framework can be listed as follows:

e Easy Implementation: Provide an easy to implement Parallel Programming
Library to users. User’s application is developed as sequential code blocks,

but operate on parallel.

e Simplicity: Framework aims simplicity for parallel developers not being too

much familiar with parallel programming.

e Scalability: Task executions running parallel on 2 hosts or on 10 hosts would
not make any difference on implementation. This would be a configuration

issue on Task Execution Middleware.

e Performance: Even performance is much more a concern of Task Execution
Middleware, Application Framework also has some optimizations for getting
better results during executions. Especially data sizes during task distribution
are kept in small pieces. Caching mechanism of Java during applet execution
also makes application execution faster after first time execution. Peer-to-peer
communication instead of Centralized communication also optimizes the

performance.

1.2 Task Execution Middleware

Applications developed on Parallel Programming Framework are uploaded to Task
Execution Middleware. Once an Application is submitted to Parallel Running
Framework, it becomes a registered application on the repository. Authorized users

which have credentials are able to request execution for their application. Task

execution requests are processed by the Broker and responded to client with a Task

Execution Plan with assigned hosts and peers providing multi-host parallel

execution. As soon as the Task Execution Plan is prepared, Broker calls the main

task of the application executed on client’s Java Applet process. Client’s main task

will distribute parameter information to assigned host’s by communicating on peer-

to-peer protocol. This is the Task Distribution phase specified by Task Execution

Middleware but operated by Parallel Programming Framework. After the finalization

of task execution, the main task will respond with an execution result to the user.

The essential concerns of Execution Framework:

Security: Task repository is controlled under a permission mechanism. The
user is able to execute only its own applications, check the results of its own
task execution requests. Other users serving as hosts during their idle times
would notice activity on their Java Applet processes, but calculation data and
results are hided, unless the owner of application has put some output logs

during development of it.

Performance: Broker as coordinator of Task Execution should prepare such
Task Execution Plans that it should predict the behavior of hosts in terms of
performance and network delays during task distributions. Task Repository
has got complexity information about the application. Also information
regarding to available hosts are available on Host Registry. IP Addresses,
Country, City, Location Info, Response Time, intensity, CPU and
Configuration information are registered and updated initially and
periodically. Broker does consider both information regarding to Applications
and hosts, in order to prepare the best available Task Execution Plan to the

client.

System Learning: It’s mentioned that information kept on Host Registry and
Task Registry will guide the Broker to prepare the best possible task plan. But
on some cases the prepared Task Plan may work better or worse than
expected. System will also keep classified statistical information like
execution time, host based individual execution times, network latency times
or host based cooperation times. Multiple occurrences of executions will

more valuable information on Task Execution performances. After multiple

executions of a Task, System will prioritize statistical information over Host
Registry and Task Registry during Task Execution Plan creation.

2. RELATED WORK AND MOTIVATION

Java with its capability in developing Client-Server, Internet Based and Peer-to-peer
application systems has been widespread in past few years. Growth of Java attracted
the attention of Parallel Programming community to develop Parallel Programming
frameworks adaptable in Java. The tendency of making Java programs to do parallel
operations, aimed taking the advantage of Java capabilities, create Internet Based
Parallel Applications easily. Parallel API Interfaces like Message Passing Interface
(MPI), Parallel Virtual Machine (PVM), OpenMP [4] implementable in native
languages (C/C++, Fortran) were lacking on wide range distribution over internet.
On the other hand, also Java community needing for capability of Parallel

Computing, in order to benefit computational resources over internet.

Several parallel programming API interfaces have shown up during recent few years.
Mainly, existing parallel programming API interfaces are categorized in 3 main
groups:

e API Interfaces Derived From Native Interfaces
o API Interfaces derived from Java native thread models

o Java Applet Based Parallel Systems

2.1 API Interfaces Derived From Native Interfaces

This category involves API interfaces derived from native C/C++, Fortran interfaces
like MPI [4], PVM. Wrappers over MPI, PVM implement directives, provide
adapted implementations. JPVM, MPJ-Express [5], Java MPI [6] are some of the

existing ones.

API Interfaces provided under this category may face some issues regarding to
heterogeneous platforms. Due to implementations requiring the explicit use of
C/C++ or Fortran native libraries, platform dependency may be an issue or custom

configurations may be required to run the same implementations on different

platforms. This argument is considered against Java’s platform independence feature.
Also, error handling and security may be another issue due to lack of control over

Native methods.

2.2 API Interfaces Derived From Java Jative Thread Models

This category involves interface models developed from Java native Threads and
communication protocols provided by Java. JOMP and JaMP [7] API interfaces have
their directives adopted from OpenMP. JADE (Java Agent Development
Framework) [8] as another specific Framework implemented on Java, provides a
framework for Parallel Processing. It provides implementation of multi-agent
systems through a middleware specified by FIPA. FIPA is the organization of
standards for agents and multi-agent systems. Users create Agents, which will be
able to run on remote hosts. Agents are task entities able to travel between hosts, do
autonomus operations and get the results back to the initiator hosts. This
methodology is especially suitable for Coarse-Grained Parallelism.

2.3 Java Applet Based Parallel Systems

This category involves Internet Based technologies utilized to use distributed parallel
resources. Java Applets are application structures running on Browser. Embedded
Java Applets on Web based Applications, create processes running on client
computers. Applets are downloaded from the regarded URL to browser’s cache
during first initialization and will behave like applications installed on client’s
computer. Systems like Javelin [9][10], JAVM [11] implement Java Applets in order

to use computational resource on a wide range network over Internet.

The drawbacks of using Java Applet based Parallel Systems may be limitations and
security constraints on client computers. However, scalability is considered the main

benefit of utilization of Java Applets.

2.3.1 Javelin

Javelin as a Java-Based parallel Infrastructure, provides a Java Applet based
architecture for parallel computing. Javelin has 3 main entities of design for parallel
processing, clients, Hosts and Brokers. Client is a process seeking computing

resources, Host is a process offering computing resources and the Broker coordinates

computing resources for clients. Client opens a URL on the Web Browser, on which
an applet is created on client’s computer. Applet initializes listener for tasks
incoming from the broker. Client and Host may transform to each other, depending
on activity, in case when client is idle it transforms to a host waiting for incoming
tasks from broker. During task assignments, broker sends URL of the Applet process
to be executed on host computer. Check Figure 2.1 for steps involved during Applet

execution cycle.

1. Upload applet 2. Register URL
6. Retl ieve result
CONE

4. Retl 1eve applet
5. Store result 3. Retrieve URL

Figure 2.1 : Javelin — Steps involved for applet execution [9].

According to applet execution scenario on Figure 2.1, Javelin goes through this

steps:
1. Client uploads the applet to HTTP Server.
2. Client registers the corresponding URL with Broker.
3. Host getting task notification retrieves the URL for execution.
4. Host downloads applet from server and makes the execution.
5. Host stores the result to server after execution.
6. Client gets the result of execution.

According to the opinion of authors in [9], server is required to function as a gateway
for communicating client with hosts. This is a consequence of Applet security, of
which its stated that applet cannot open a network connection to any computer other
than the server where applet is downloaded. That’s the reason why client does not
communicate directly the listeners on hosts, instead Broker notifies Hosts for task

assignment and sends the URL of the executable task in Applet form. All

communication is routed through server, which is a potential single server a
bottleneck. In order to minimize bottleneck in centralized server communication,
applets communicate Broker based on HTTP connection to server. Applet connects

to servlets implemented on the broker.

A newer version of Javelin, Javelin 2.0 [10] has some optimization compared with
Javelin [9]. For instance multiple Brokers are utilized in order to achieve scalability
and to prevent single server bottleneck. On the other hand host availability graph is
sent to all hosts on response of the Broker. Hosts have information about other
Brokers in cases when they ask for execution resource in case becoming clients.
Mentioned graph consists state information on status of hosts and the status of task

execution. The regarded graph is sent as multicast messages to hosts.

2.3.2JAVM

JAVM (Java Astra Virtual Machine) [11] is an Internet-based parallel computing
framework designed with pure Java implementation. JAVM is implementable on
standalone Java applications. JAVM aims connecting users over Internet, which may
be available as computational power. JAVM considers computational power as pool
of machines, which are idle most of the time, offering more computational power
than what a central parallel supercomputer can offer. JAVM involves 2 groups of
users, the programmers who develop the parallel applications and the volunteers who

contribute their machines for the computations.

Scenario of JAVM System interaction between entities is represented on Figure 2.2.

10

Client Volunteer Coordinator Director

— &
o
&
o
—)
o —
®;
—_ ©)
— &
&
— &

Figure 2.2 : Interaction among JAVM entities [11].

According to interaction scenario represented on Figure 2.3:

Coordinator entity registers itself to Director

Director responds to Coordinators registration request

Volunteer during initializing itself, asks director for active coordinators.
Director gives back information of active coordinates.

o > 0 E

Volunteer selects one of the coordinators and provides its hardware
information as computational resource information.

6. Coordinator assigns a Volunteer ID to the volunteer and informs the
Volunteer.

7. Client asks director for available coordinators during start up.
8. Director provides active coordinators.

9. Client will select a coordinator and ask for Volunteers for computational
purposes.

10. Coordinator will check available volunteers and will inform any assigned
volunteers with the session information of client.

11. Volunteers will acknowledge the coordinator for assignment.

12. Coordinator will send the list of assigned volunteers to client.

13. Client will send task assignments to VVolunteers in terms of application to run.
14. Volunteer will run the task and send the execution result to the client.

11

According to the opinion of the authors on [11], the design of the JAVM handles
only master-slave style of parallelism. This implies that tasks executed on
participating volunteers, would not be able to communicate with each other during
computation. This means that coarse-grained parallel computing model is being
implemented. However, the authors of [11] have mentioned on further enhanced to
support peer-to-peer communications among volunteers and parallel applications

based on tree computing model.

2.4 Motivation

As stated on the beginning of this section, Internet based parallel computing systems
have become trending studies among the community. What arguments motivated us

for developing ITU-PRP, in common with existing systems are as follows:

e Various Internet based Parallel Programming Frameworks implemented on
Java, have the main idea of benefitting hosts as potential computational
power during their idle states, providing computational power during their
request for parallel execution. Considering that hosts would be idle on the
most of their lifecycle, which is reasonable for using as computational power.

e Java applet is another useful model utilized for running tasks on distributed
hosts. Applets are downloadable form of applications, which are initialized on
web browsers of the user and run on the users computer just as described on

section 2.2.

e Java as platform independent environment will also make possible make the
parallel applications run on any platform with the philosophy of “write once,

run anywhere” [11].

e Another concern of such Frameworks is to provide opportunity of
implementing parallel applications easily, with the concept of Automatic
Parallelization. User should be able to parallelize its sequential code through

Parallel Framework’s capability.

The arguments that motivated and made us excited about ITU-PRP study, differently

from other existing systems are:

12

ITU-PRP’s model of execution involves assigned computational hosts to
communicate each other via peer-to-peer protocol during Parallel task
execution, instead of a centralized Server coordinating communication traffic.
Our design of peer-to-peer principal of communicating hosts with each other

optimizes performance during Parallel Computing operations.
Adaptability for heterogeneous and scalable platforms
A low-cost global processing power

Automatic parallelization is implemented via an object-oriented pattern
prepared for parallelization.

ITU-PRP offers implementations both for applet based and standalone

applications.

Java Applet security restrictions regarding to peer-to-peer communication

may be overcome by doing policy configuration on Java.

Broker as the coordinator entity makes real time decision for computational
resource assignment by a special scoring system, which uses value factors
such as host IP address locations, response times, declared computational

power and retrieved computational power.

Priority and special scoring for contributor clients named as Volunteer
Reward System and additional scoring on Statistical Performance Records for

recent executions.

13

14

3. ITU-PRP ARCHITECTURE AND DESIGN

ITU-PRP System is designed with the goal to provide users an all-in-one platform
with separate self-functioning components integrated for a single purpose, realizing
high performance parallel execution by easy implementation. ITU-PRP as an
integrated Web Based System is implemented under layered architecture with several
components. Figure 3.1 illustrates components and the technologies used for

implementation within layered architecture.

(" CLIENT / HOST N)
[HTML]
Presentation [JVASCRIPT] >‘ Angl-lﬁlfgg']’sljgg
Layer [JAVA APPLET]
[TCP/UDP SOCKETS]
_ J p.
BROKER ITU-PRP Web Application
TCP/UDP SOCKETS PRIMEFACES
Controller [] []
JAVA THREADS [JSF
Business Layer [SPRING FRAMEWORK] > ApRVERSIDE
Data Access [HIBERNATE]
Layer
Data Layer MYSQL |

Figure 3.1 : ITU-PRP architecture.

The key point for creating the regarded architecture was selection of open source and
standard technologies. Especially, various Java technologies such as Spring
Framework, Hibernate, JSF, PrimeFaces, Java Threads, Java Socket programming
methods and Java Applets are utilized for realization of the Web Based integrated
system. MySQL was also utilized as the Relational Database tool, which is also an

open source product. Hibernate is selected as the component on on data access layer

15

in order to benefit its Object-Relational Mapping feature which makes possible
mapping MySQL tables to Java classes. Java Spring Framework was utilized due to
its features, which make accessing data access layer from upper layers easy. Front
end of ITU-PRP Web Application is implemented by JSF framework and
PrimeFaces component library. Broker, which is one of the key entities within the
system, is implemented with Java’s TCP/UDP Socket components and Thread based
operations are realized by Java standard Threading libraries. Client side operations

which consist Presentation Layer are realized by Java Applet technology.

Server-Side Architecture is hosted and deployed on Apache Tomcat Web Server
hosted on a globally accessible Server. Client-Side architecture works on Web
Browser, usable without installing any additional application on client or host’s
computer, which totally fits ITU-PRP’s vision of wide usage and scalability.
Application will work on any Java enabled Web Browser which is active in default,
unless user or any security application disables Java Applets. These structure aims

the system to make widely used without special requirements.

ITU-PRP consists three main entities in terms of system design, which are shown on

the diagram in Figure 3.2:

e Clients
e Hosts
e Broker
[CCLIENT | BROKER

REGISTRY

Figure 3.2 : ITU-PRP design.

Broker, Client and Hosts operate within an integrated Web Based System, each one
with its own role. The system will assign a role to each user that connects the system.
Initially, user will be redirected to a web based application, on which a Java Applet
will be initialized and will create a process and a set of threads for parallel processing

16

interaction. Broker as the coordinator entity, manages hosts and client activities.
Broker is implemented as a set of Java Threads with active TCP socket connections
to client and hosts. On the other hand clients and hosts are implemented through Java
Applet technology. In order to make Java Applet to function, some security
configuration on client’s java configuration files is required. Java.policy file set up is
the most known security policy configurations for Java Applets. Detailed

configuration is explained on appendix.

3.1 Client

Application requesting Parallel execution will send parameters to Broker, which may
be usable as decisive information about Task Planning. Client getting Task Plan as
response will through the regarded parts of application code, divide data to fractions,
send to hosts which are interconnected as P2P. Client creates Threads as subtasks,
which will wait for the calculation results from other hosts. Distributed tasks sent to
hosts are collected and reunited on Threads created during task distribution. Clients
and hosts communicate with P2P sockets. In order to make less overhead

interchanged data streams are kept as small byte buffers.

3.2 Host

Hosts are registered on Host Registry during the initial connection to System. IP
Addresses, Country, City, Location Info, Response Time, intensity, CPU and
Configuration information of hosts are saved on Host Registry in order to be
considered for decision purposes during Task Plan creation phase. This information
will be retrieved by Broker and saved to Host Registry, in this case there host will

not be sending its information to Broker which will reduce overhead on host.

3.3 Broker

Serves clients requesting parallel operation by providing assigned resources and task
plans. Clients complete their initialization by creating subscription requests to
Broker. Incoming connection requests from clients are processed, by creating a
record for each of them. Records are added to Host Registry, which is characterized
as collection of available hosts for Task Executor clients. Records on Host Registry

17

may behave both as client or hosts depending on the activity status of the client. If a
client is on the state of requesting an execution plan, acts as client. On the other
hand, if any subscribed client is on idle state, it acts as host available for Parallel
Execution resource for other clients. Client connecting to Broker during the
initialization is registered as Host-to-Host Registry. Also, hosts leaving the system
are removed from Host Registry. Clients requesting parallel resource from Broker,
should have provided required parameters about application’s complexity, data size,
its own resource power and parallel task model, so that Broker may decide on
assigned resources. Sufficient number of qualified hosts according to the
requirements with given parameters are provided to requesting client as Task Plan.
The initial execution of the Application running on client, will be followed by the
distribution of tasks to hosts on the regarded parts of the application code, then
execution results will be collected on initial client. Client and hosts will do task
distribution and result collection operations through a special P2P messaging
protocol designed for this system. Broker may refuse request of client, if it decides
that a Multi-Processor or Sequential execution would be more optimal rather than the
Multi-Host task execution. This usually may occur on the cases when clients own
resource power would make execution more optimal rather than a Multi-Host task
execution or there are no sufficient available host resources. Broker is implemented
as a Java Thread listening to incoming TCP socket connections from Clients/Hosts

and keeps active socket connections for interactions during host activities.

3.3.1 Host registry

Registered hosts on Host Registry go through some information retrieval phases
during their lifetime. This is achieved by some threads, which collect periodic

information.

e Broker adds host name information generated by the host. This would be hash

information of the host while doing operations on the Broker.

e Broker registers the host session for the user name which is logged on to the

System

e Broker retrieves IP address of hosts and clients connected.

18

e Broker sends tiny TCP/IP messages to hosts on periodic intervals, so that
potential response times of resource hosts can be calculated. A kind of Ping

and Pong messaging are sent in order to calculate response times..

e Based on Host’s registered IP numbers Country, City, Region,
Longitude/Latitude, Time information is collected from a third party IP
Information Service provider. Check below URL for information about IP
Information provider.

e http://api.ipinfodb.com/v3/ip-
city/?key=24e8ee217d936586072aa698e044c75ec56300801da99373def22955h76h8468&ip

=78.180.100.160&format=xml

e Information about host’s hardware is sent by host itself. Free memory and
number of processors are registered as host hardware information to the

Broker.

Check Data Structure of a Record on Host Registry on Table 3.1.

Table 3.1: Record on Host Registry.

Information Explanation Example
Host Name This information is generated 26951e56-3b18-4efd-
by the Host and sent to Broker 82de-ef2c¢3f339b8d
during Host registration
User User Name of the Client or genericuser
Host
IP Address Broker Retrieves the IP 127.0.0.1
Address of the Host doing the
registration
Country Got from IP Address
City Got from IP Address
Lattitude / Longitude ~ Got from IP Address
Time Zone Got from IP Address
Response Time Renewed Periodically through 1 ms
PING / PONG messages
Free Memory Free memory declared by Host 111720208 (Byte)
Available Processors ~ Awvailable Processor count 4 (core)
declared by Host
Active Broker switches the Host to true/false

Client or Client to Host
depending on the active role of
Host

19

3.3.2 Host registry operations on Broker

Broker accepts host registration and host unregistration requests from clients and
updates Host Registry accordingly. A client sends a registration request to the Broker
as soon as the Java Applet is initialized on the client computer and the initial process
is created. The Broker will create a host instance and register to mapped list on Host
Registry according to the sequence diagram in Figure 3.3.

HOST
|

hostUID =
enerateHostUID()

]I

registerHost(hostUID, user,
freeMemory, ipAddress =

processorCount) > etClientIP()
——

b ipLocationInfo =
] LocationInfo(ipAddress)

HOST

<<create>>

I
I
I
addToRegistry(HOST) J

¢
I
I
I

Y

Figure 3.3 : Host registration.

Unregistration of hosts is another operation performed by Broker in order to keep
Host Registry up-to-date for task assignment operations. Client Applet initiates
Unregister host operation during destroy event of Applet, which is triggered prior
applet process ending. Check Figure 3.4 for the sequence of operation performed

during unregister host operation.

20

HOST
CLIENT BROKER REGISTRY
I

e

—

unregisterHost(hostUID

removeHost(hostUID)

T T
|
|

Figure 3.4 : Host unregistration.

List of available hosts is updated frequently and considered as the list of potential
resource hosts for task assignments. A snapshot of Host Registry logged by the
Broker’s Application Server during different phases of operations would as on Figure

3.5.

1. HOSTNAME:e3a08936-5a92-4d70-96£f8-17b5b3f5cb2e, ACTIVE:true, RESPONSETIME:1
Free Memory: 1516880, availableProcessors: 1

IP:192.168.56.102, COUNTRY:- (-), CITY:- -, LATTITUDE:0, LONGITUDE:0, TIMEZONE:-
2. HOSTNAME: 6b2ead25-4014-47fl-abae-52fe7b9192ae, ACTIVE:true, RESPONSETIME:1l
Free Memory: 110477432, availableProcessors: 4

IP:127.0.0.1, COUNTRY:- (-), CITY:- -, LATTITUDE:0, LONGITUDE:0, TIMEZONE:-

Figure 3.5 : Host list on Host Registry.
3.3.3 Broker-to-Host Ping Pong messages

Broker updates information regarding to hosts periodically and modifies them on
Host Registry. Response Time is the key information on this point. Broker sends
special PING messages to any host on the Host Registry and expects a special type of
message called as PONG message. Host Listener Thread on the host listens for
incoming Ping messages from Broker anytime and responds with a Pong message
accordingly. The interval between Ping and Pong messages gives the response time

of communication between Broker and host.

21

HOST REGISTRY
H1 W42 [[H3 || H4 |
HOST1
1.1 Ping H1
1.2 H1 Pongs Broker in
5ms
BROKER 2.1 Ping H2
X' 71 HOST2
4.1 Ping H4 2.2 H2 Pong Message Lost
4.2 Pong 3.1 Ping Message to H3 Lost
declaring busy
state HOST3
HOST4

Figure 3.6 : Ping Pong mechanism.

As illustrated on Figure 3.6, Broker sends Ping messages to hosts in order to
calculate response times, check the availability and reachability of hosts via sockets
connected to host addresses. 4 different possible cases regarding to Ping Pong
messaging are being considered. Figure 3.6 shows examples of these 4 cases, on

which 4 hosts are registered to Host Registry, each one showing a different case.

1. Step 1.1 and 1.2 shows Broker sending Ping message to Host 1 and getting
Pong response from Host 1. Broker Updates response the entry of Host 1 on
Host Registry and set the response time to 5ms as on example on 1.2.

2. Broker sends Ping message to Host 2, according to Host 2 entry on Host
Registry. Example on Step 2.2 expresses the case when the Pong message not
able to be sent to Broker due to communication issues. Broker in this case
considers Host 2 as unavailable. In this case, Response Time is set as -1 and

active status as false.

3. Step 3.1 shows the case of which Broker is not able to send Ping message to

Host 3. In this case, Response Time is set as -1 and active status as false also.

4. Step 4.1 and 4.2 shows the case of which Broker gets the Pong feedback from
Host 4, but host Host 4 declares itself on busy state. In this case Broker sets

the busy parameter to true for Host Registry entry of Host 4.

22

As explained above, response status of host entries in Host Registry is updated
periodically. The actual status regarding to 4 cases above would be logged as on

Figure 3.7.

1- HOST1 -- active: true -- busy: false -- response time: 5 ms
2- HOST?2 -- active: false -- busy: false -- response time: -1 ms
3- HOSTS3 -- active: false -- busy: false -- response time: -1 ms
4- HOST4 -- active: true -- busy: true -- response time: 7 ms

Figure 3.7 : Host Registry response status.
3.3.4 Client and host state transitions

A Java Applet process created on client computer may behave as client or host
depending on its activity status. Client User during its initialization connects Broker
and registers itself as host on the Host Registry. By default the client remains in
available host state unless the user requests for a Task Execution or serves as
execution resource to other requester clients. Check Figure 3.8 for illustrated state

transitions of client and host.

l Initial

Requested for Task
Execution Assigned to Serve

other Client

Completed Tas
Execution

Go through Execution

Figure 3.8 : Client and host state transitions.

Initially Java Applet is on available host. It may remain on Available state unless 2
possible cases trigger status change to client or busy host states. In case of user
selecting an application for execution the state of available host will be transformed
to client state. Another transition occurs when Broker assigns the host with a task for
serving some other client in terms of executional power. In this case available host
will be transformed to busy host state. Whenever the host completes its task process

will return to its original state, available host in this case. Also, client while doing

23

parallel task execution it will be transformed to busy host during the execution and

return to original available host state on finalization.

3.4 Task Execution

Task execution involves a set of operations under Task Execution Middleware, in
order to complete parallel processing. Initially, users do request for execution of their
Applications. Then Broker would respond to requests with a set of assigned resource
hosts. The decision for assigning hosts is made according to a scoring mechanism
performed by the Broker. As a result, high rated available hosts are provided to
requestor clients. In the meantime client will be responsible for initiating the main
task, distributing the fragmented data to sub-tasks, sending divided data sets to each

task and collecting back after each hosts execution is finalized.

Data messaging between client and hosts are made via peer-to-peer protocol instead
of a centralized protocol. On the other hand, idle hosts, which are on the available
host state, have their dedicated Listener Threads, which wait for incoming Task
assignments. Both client and hosts download and cache packaged JAR application
from the Task Repository during execution. Java Reflection API, Remote Class
Loading and Object Serialization are the technologies implemented for these
purposes. Also, Remote Jar Packages executed under the Context of Java Applet, are
cached and executed from the local cache unless the JAR is modified or the Cache is

cleared.

3.4.1 Task (application) repository

Task Repository consists entries of uploaded parallel applications. Users, which have
developed their application implemented on Parallel Programming Library, submit
their JAR packaged applications on ITU-PRP Web application. Any submitted
application will be registered to Task Repository and will be available for execution
by the client and hosts. User submitting its application should provide parameter
information as on Table 3.2.

24

Table 3.2: Entry on Task Repository.

Information Explanation Example

A unique key assigned by the broker 37
from a sequence
Task name defined by the user. This is
the identity name of the task on ITU-PRP Parallel Sums
web application
Main task name defined for Reflection
API to initialize the Main Task on Client
Applet. Main task involves Java
implementation of the main method
executed by Requestor Client.
Task name defined for Reflection API to
execute the implementation code of sub-
Callable Task Name task on Host Applet. Callable Task com.itu.ppp.examples.Su
involves the implementation of the work m
of the parallel task performed on the
assigned Host.
Suggested host count for parallel
processing. This value is defined by user,
but is not the fixed value, may be defined
by Broker on real time.
The URL Path of the JAR application http://parallelpattern:80
Parallel Task JAR uploaded by the user. The JAR name is 80/AppletParallelProgl
URL given by the user before the submission, mplementation/jars/Par
the path is defined by ITU-PRP system. allelProgram.jar
Revision number of the application
submitted. The version number should be
increased according to versioning
standards and defined by the user.
Is defined by the System with the
username of the Task uploader. User
User information is defined for security genericuser
purposes, to set the owner of the Task
and restrict the usage for the

Application ID

Parallel Task Name

Main Task Name com.itu.ppp.examples.Su

msWithFuture

Required Host Count

Parallel Task Version 1.00

3.4.2 Host resource request

Users requesting for host resources contact Broker Service to get Task Execution
Plan for parallel operation. User transforms its state from available host to client
during this operation. The set of activities performed during Host Resource Request

are shown on the Sequence Diagram illustrated on Figure 3.9.

25

TASK HOST
I BROKER] [REPOSITORY II REGISTRY

taskPlan := resourceRequest|
hostuID, user, application|D)]

applicationino := getApplicationinfo(
appl|

» | | application IIs)
=

I
|
|
|
| hostList[i] :
| HostEntry
|
|
|
|

taskPlan .= createTaskPlan(hostU!D user, icati

|

|

|

|

|
L

assignedHosts[1..n] =

| hosts[1..n]:=assignedHostListByScare()

|

l hostStal 't as by
osiStatuses are set as bus

| ‘—l—- Y

|

|

Figure 3.9 : Activity during host resource request.

At first step, client asks Broker to provide the required Task Execution Plan in order
to perform Parallel Processing. On the following steps, Broker will get the
information regarded to requested Application for execution from Task Repository.
This information is named as applicationIinfo, which contains parameters like
required host count, main task name, callable task name, Task URL and so on.
Especially required host count an important information, on which Host Registry
assigns a number of assigned hosts resources according to this. Although required
host count is predefined, Broker may assign for a different number of hosts
depending on the actual available hosts the measured experimental results during

recent Task Executions.

Just after application Info retrieval, Broker contacts Host Registry and calls
createTaskPlan function, in which Host Registry will create a Task plan for the
requested Application with the required number of host resources. The combination
of the results for both application and host resources is called as Task Plan. Host
Registry decides for the assigned hosts from the list of available hosts. Host Registry
makes this decision by scoring available hosts and assigning the highest ones.
Assigned hosts will become resources to be provided to the client and their states

will be set as busy hosts during Parallel Processing lifecycle.

3.4.3 Scoring for host selection

Broker should provide the best possible resource in order to achieve worth parallel
performance over sequential performance. This is achieved by a scoring algorithm

performed by Host Registry. Information like client’s location, host’s location, Host

26

Response Time, Free Memory and number of CPU cores are being considered. The

scoring algorithm is cost based, the hosts with lowest costs are being selected.

Geographical information of hosts, which involves Longitude and Latitude are
special prioritized parameters during Score calculation. Considering that Parallel
Processing is made by peer-to-peer protocol between client and hosts, the assumption
that hosts with close location to each other will spend less time on network latencies
may be a reasonable consideration. Longitude and Latitude information is effectively
used, unless location information is not be provided by IP Location information
provider. In case of missing location information, distance consideration will be
ignored. On the other hand, Host Response Time, which is the measured time
difference between Ping/Pong messages gives idea about response status of the host.
Other additional information regarding to host’s computational power, which are
Free Memory and number of CPU cores are other considerations during scoring
operation.

Below pseudo code shows the formula of cost calculation that express that distance
between client and hosts are calculated geometrically and the reference point is
client’s location. So the client should be ideally the center of selected hosts. Higher
CPU and Free Memory are the measures, which decrease the cost.

Pseudo Code:

function calculateCost (clientLongitude, clientLattitude, hostLattitude,
hostLongitude, respTime, freeMem, cpu)
begin

distance = sqgrt(abs (hostLattitude-clientLattitude)”2 + abs (hostLongitude-
clientLongitude) "2);
cost = respTime/10 + distance - cpu* (freeMem/1000000) ;

return cost;

end

The calculated cost values for each host are compared to each other and the lowest
ones are picked and provided for Task Plan creation. Additional scoring mechanisms,
like Volunteer Reward System and Statistical Performance Records for recent

executions are future works to be implemented on the scoring system.

27

3.4.4 Task plan

Task plan, which is generated as a response for Host Resource Request, is structured
from a list of assigned Resource Hosts for the requested task. Assigned hosts are
assumed to be on available host status and waiting for client’s contact in order to
perform their task. Length of resource host entries within Task Plan would be
number of Parallel CPU’s doing the Task Execution for Parallel Processing.

Table 3.3 gives an example of a Task Plan provided by Broker to client. Client Host
Address, Host Name, JAR URL, Callable Task Name information on its disposition.
Host Address contains IP Address and port number of resources host, to which client
will connect and notify for an execution request. Host name is the information used
for Task Execution Report, which will be sent as a performance feedback to Broker.
Also, host name is used for logging purposes. On the other hand, JAR URL and
Callable Task Name is sent to host to specify which application and function will be
executed by the host. Host’s Task Listener thread getting those parameters will know
that its assigned task is to run com.itu.ppp.examples.Sum task on the
http://parallelpattern:8080/AppletParallelProgImplementation/jars/ParallelProgra

m.jar application as shown on the example on Table 3.3.

Table 3.3: Task plan example.

Resource

Host Resource Detail

Host Address: 192.168.56.103:2049
Host Name: b4b45ff2-04e3-4af5-blaf-19d62d711807

1 JAR URL:
http://parallelpattern:8080/AppletParallelProgIlmplementation/jars/ParallelProgram.jar
Callable Task Name: com.itu.ppp.examples.Sum
Host Address: 192.168.56.101:2049
Host Name: ¢3e37603-45cc-43fh-8e6b-be55e104286e

2 JAR URL:
http://parallelpattern:8080/AppletParallelProglmplementation/jars/ParallelProgram.jar
Callable Task Name: com.itu.ppp.examples.Sum
Host Address: 192.168.56.104:2049

3 Host Name: 6dc711e3-33b5-4a3c-b3cd-73135a0d050a

JAR URL:
http://parallelpattern:8080/AppletParallelProglmplementation/jars/ParallelProgram.jar
Callable Task Name: com.itu.ppp.examples.Sum
Host Address: 192.168.56.102:2049
Host Name: 2496f352-260e-4799-8790-8eaea4b7109b

4 JAR URL:
http://parallelpattern:8080/AppletParallelProgIlmplementation/jars/ParallelProgram.jar
Callable Task Name: com.itu.ppp.examples.Sum

28

3.4.5 Parallel application execution

Client Applet that requests for the execution of an Application by user’s directive
will act according to Task Execution Plan provided by the Broker. Task will be
completed without presence of the Broker, client will communicate resource hosts
directly via peer-to-peer protocol and will not contact Broker until the end of the
Task. By the finalization of the task, client will generate a Task Execution Report as
a feedback of Task status and send to Broker. Steps performed during the Task
Execution, are illustrated on Figure 3.9, on which Main Task, Sub Tasks, Thread

Pool and hosts are the performers of the Task Execution cycle.

Parallel Applications are developed according to implementation pattern of Parallel
Programming Library, of which implementation details are described on section 4.2.
Developer implements Main Task and Sub Task code blocks, specifies the work to
be done on client and hosts. While Main Task is created and executed on the client,
Sub Task is created on the client but performed on the host. User would know that
Sub Task is executed on the host. Main Task is specified by implementation of
runMainTask method of Parallelizable interface. On the other hand, Sub Task is
specified by implementing calculate method of TaskHandler abstract class.
Developer also sets data variables to constructor of the implemented TaskHandler
object. The mentioned data variables are used as Data set for execution of Sub Task
on the host. Main Task Name and Callable Task Name parameters are required to be
configured during result application upload to Task Repository. While Main Task
Name represents full package presentation of the class to be executed as the Main
Task, Callable Task Name is the full package presentation of the class to be executed
as Sub Task.

29

Main Task : Sub Tasks [1..n] : Executor Hosts [1..n] :
MainTask SubTask TaskListener
L I I
|
1. Initialize Main Task |

I

|

|

2. subTasks[1..n}:= | |
<<create>> I

|

3. execute(subTasks)

4. nofity(subTasks)

Parallel LnopJ 5. [1..n] : execute(subTasks)

8. Execution
Result

6. [1.n]: |
Result Barrier

7. [1..n] : Result Collection

A
1
|
Client |
|
|
|
|

Figure 3.10 : Parallel task execution steps.

Steps illustrated on Figure 3.10 describe the sequence of operations performed

during Parallel Task Execution cycle. More detailed information about these steps

are as follows.

1.

Initialization of the Main Task: By selecting the Application from Task
Repository, the user gives the directive for the execution of a Task, which
will be initiated on client Applet. The execution mechanism is realized by
client’s Java Applet, on which application’s JAR URL is injected to Applet’s
Class Loader. Then the object of Main Task is created via Reflection API
referencing to the regarded Class on the injected JAR package. By calling
runMainTask method of created Main Task object, user’s Application is
initiated and started for execution. A case example of runMainTask is shown

on Figure 4.8 on Implementation section.

Create a Sub Task Object for each available host: Developer specifies the
work of host by implementing SubTask interface and its calculate method.
Calculate method (Figure 4.9) of the implementation should be filled by
parallel developer in order to set result field on termination. Sub Task’s data
may be set even by constructor or explicitly depending on requirement. User
creates a list of Sub Tasks within the scope of runMainTask method as shown
on Figure 4.8. User may also set even same data to all sub tasks, which makes

shared memory model applicable.

30

Main loop should have its number of iterations equal to available numbers of
resource hosts which will ensure one Sub Task per host as the ideal condition.

. Submit Sub Tasks to Task Executor: User submits SubTask list by calling
execute method of TaskExecutor component within the scope of
runMainTask in order to submit Sub Tasks to be processed in parallel.
Executor Service and Thread Pool mechanism of Java Concurrent API is
utilized for Thread based operations within Task Executor component. In
default, Parallel Programming Framework sets Thread Pool size to number of
available resource hosts and it should be ideally equal to number of Sub
Tasks, which will create parallel threads per host. However, the framework
may set Thread Pool size to another value depending on execution type for
these cases: Sequential execution; Lack of sufficient resource hosts;
Speculative Execution Type. Due to this reason, user should set a proper
required host count value to Task Repository entry of the application. In case
of available host count being lower than Sub Task count, at least one Sub
Task will be processed sequentially. As example, the case when the there are
8 sub tasks, but number of available resource hosts are 4, means that 8 Sub
Tasks will be sent to 4 hosts in 2 occurrences, so each host will operate twice.
The case of available host count being higher than Sub Tasks, would make

some of assigned hosts doing no operation, remaining idle.

Notify each host for task processing by sending the Sub Task to each one:
By the submission of a Sub Task to executor service, notification service
makes a connection check to resource host’s TaskListener Thread via UDP
socket connection to the regarded host’s IP Address and Port. Connection
check is important in order to prevent connection faults. In case of failed
connection check, Task Executor sends the sub task to a backup resource
host, performs sub task locally or notifies client as failed for failed execution.
If the connection check succeeds, notification service will send Application’s
JAR URL, Callable Task Name of the Sub Task and Serialized Object Stream
of the Sub Task to resource host. Sending object stream of the Sub Task
instead of parameter specific messaging ensures maintaining application state

in both ends.

31

5.

6.

Sub Task execution on each host: TaskListener Thread on the available host
has an active UDP socket waiting continuously for incoming Task
assignments. In case when Task Listener gets an incoming Task Message
from a client, where a JAR URL and a Callable Task Name parameter that
will specify the Application and the regarded Sub Task to be executed. The
execution mechanism is realized by Java Applet, application’s JAR URL is
injected to the Class Loader like on step 1. But differently from step 1, host’s
Applet will get the incoming Sub Task Object stream and get the Sub Task
with the state and data, which was created on step 2. Task Listener executes
its task by calling calculate method of the Sub Task. By the finalization of
processing, Task Listener Thread will respond back to client with the
Serialized Object Stream of the Sub Task. Note that response Sub Task will
have its result set on the result field.

Wait until parallel processing is completed on each notified host (Result
Barrier): Host Task Notify Service, which has sent the Sub Task to the host,
this time will wait for the response from host, modified Sub Task object with
its result field set. In order to finalize Parallel Processing, Executor Service
should ensure all Sub Tasks to be processed. A barrier mechanism provided
by the Executor Service expects all the results back from the hosts. Shutdown
function of the executor service releases the Barrier and makes the Main Task
to continue through its normal flow. Depending on the design of the
developer, barrier release operation may be issued without getting all results
also. If developer implements speculative parallelism where same data and
same Sub Task is sent to all hosts, developer rely onto a single result from the
Host which has processed the Task faster than others. In this case Executor

service will release the barrier as it receives the first processing result.

Result collection: Developer may decide how to manipulate with Sub Task
results collected from each Sub Task’s Handlers. Final result may be
collected by an aggregate operation (Sum, Average, etc) from result sets or
may be manipulated depending on its design. Perhaps any comparison or a
matching operation would be a result of the parallel processing. Result

collection is flexible in terms of result data manipulation. For instance,

32

example on Figure 4.8 shows a case where the final result is the sum of
collected result sets.

8. Provide execution result to client: As final step, Main Task will return the
final Result to client Applet, on which the result will be presented to the user.
Also the result is included to Task Execution Report, which is sent to Broker
after the finalization of Task Execution. Execution Reports are the basis of
execution details and results to be viewed in ITU-PRP Web Application on a
later time. While user is notified for the final result, Broker is notified with an

execution report in order to transform hosts to available state.

3.5 Client, Host and Broker Connectivity

Any host that connects Broker is required to maintain an active connection during its
lifecycle. Broker keeps sessions of hosts on Host Registry and updates tracked
information on any activity. Due to the nature of the session based design, active
connection should be mandatory. A TCP Socket connection with Broker is
maintained during initialization of the host and remains active until host terminates
its session. On normal conditions, a TCP Socket terminates the connection and
remains idle. Stability is ensured by sending Keep-Alive Sockets [12] and Ping
messages periodically. The frequency for sending Ping messages to hosts is 20

seconds, which is beyond the timeout of a TCP socket.

Client and hosts, assigned for Task Execution, would communicate each other in
order to exchange data parameters required for task execution and result retrieval.
Connectivity and delay time during transmission of data between hosts is the key

point and delays should be minimal in order to achieve efficient parallel execution.

Achieving optimal delay is very challenging due to heterogeneity of the system.
Designed protocol for communication between client and hosts, data sizes sent to
hosts affect directly on delay times. Client which request for Task Execution gets a
response with ID and addresses of available hosts for execution. This phase of delay
is followed with distribution of data parameters to hosts, which is a bigger deal

compared to task plan retrieval request.

33

3.5.1 Approaches on communication flow
Assume communication protocol is designed according Approach 1.

Approach 1: According to this approach, client requests for Task Execution Plan
from Broker and gets the list of available hosts with its addresses. On the phase of
task distribution to hosts, client will send required parameter data to Broker then
Broker will forward data to the regarded hosts. After independent execution and
result generation on hosts, hosts will be sending the calculated results to Broker.
Then Broker will send the results back to client. According to this centralized
protocol, client and hosts are dependent to a centralized Broker service, which will
coordinate data forwarding. Check Figure 3.11, for representative schema of this
approach. There would be totally 6 hops of communication within task execution
cycle, 2 hops for Task Plan retrieval (1, 2), 4 hops for sending and receiving data
between client and hosts (3, 4, 5, 6). Also, depending on the intensity on Broker
Service and the data size of host parameters, 4 hops of data exchange phase may

have additional latencies.

1. Task Plan Request

CLIENT 2. Task Plan Response BROKER

3.Send DATAto n 4. Send Parameter Data to Hosts 1..n

Hosts Request
HOST 1 HOST n

6. Send Results to

Client 5. Send Results Back to Broker

v

t (time) : 6 hops
Figure 3.11 : Approach 1 suggestion for communication protocol.

Protocol on the first approach can be optimized in terms of hop count for sending
Data parameters to hosts. A slight reduction may be if client is able to
communication hosts directly instead of data distribution through presence of Broker.
Assume suggestion in approach 2.

Approach 2: Client requests for Task Execution Plan from Broker and gets the list
of available hosts with its accessible addresses. On the phase of task distribution to
hosts, client will attempt to establish connections to hosts directly. In case of
successful connection, client will send data and get result data after execution on

hosts. This method of communication will work without presence of broker during

34

data exchange, in decentralized manner. Check Figure 3.12 for representative schema
of this approach. There would be totally 4 hops, 2 hops for Task Plan retrieval (1, 2),
2 hops for sending and receiving data between client and hosts (3, 4). Compared with
first approach, there would be no additional latencies caused by intensity on Broker
will be reduced. Broker will remain responsible for Task Plan assignment in

dedication.

1. Task Plan Request

CLIENT 2. Task Plan Response BROKER

3. Send Parameter

Data to Hosts 1..n HOST 1
>| HOST 2 }

>[HOSTn |

4. Send Results Back to Broker

\ 4

t (time) : 4 hops
Figure 3.12 : Approach 2 suggestion for communication protocol.

In conclusion, protocol in second approach is much more optimized then the design
in first approach. Clients and hosts will communicate through peer-to-peer protocol.
Network latencies related to centralized Server bandwidth usage, will be reduced.

High throughput on Server processing power will be prevented.

3.5.2 NAT issues of peer-to-peer communication

Peer-to-peer communication between hosts and clients has taken a remarkable part
within this research. Peer-to-peer communication is difficult, due to Network
Address Translation (NAT) and global accessibility between nodes. Two nodes
within a local network would access each other’s IP Address and ports. On the other
hand, NATs assign public IP addresses to packets during Internet access. Host’s IP
address and port is changed during intra network connections and NAT creates
address/port translations maps on Gateway Routers. Figure 3.13 would illustrate this

case, on which a client with 192.168.1.10 local IP Address and Port will be translated

35

to a public IP address and the port of the session when reaching another node on a
different network. NAT Protocol on the router assigns a global 212.252.140.70 IP
Address and another port and adds IP/Port pairs to port mapping. Depending on NAT
type some routers may preserve local port number and not change the source port of
the IP packet. A connection made to a Server (5.101.107.102) has different IP and
Port information on both sides. While client knows its address and port number as
192.168.1.10:31000, Server knows client’s address/port pairs as
212.252.140.70:2571.

NAT
(212.252.140.70)

SESSION C1-S
SESSION C1-S 5.101.107.102:62000

5.101.107.102:62000 212.252.140.70:2571
192.168.1.10:31000

C1 S
(192.168.1.10) (5.101.107.102)

Figure 3.13 : NAT private to public IP translation.

Considering the nature of NAT, two hosts on different networks should know each
others global IP address and port number in order to maintain a direct connection. A
central server that collects each host’s public IP address and ports may perform this
task and would coordinate hosts on different networks to connect each other. In fact,
such a server may be called “Rendezvous Server”. Broker would be the most likely
entity within ITU-PRP to perform rendezvous role. Considering that Broker takes
part in activities, like accepting initial connections, retrieving Host IP addresses and
ports, monitors hosts’ connectivity status and processes requests from clients, it
obviously would have all required information in order interconnect hosts. In that
case, connection attempt between two hosts would be as illustrated as in Figure 3.14.
The regarded figure illustrates a case where H1 which is one of 2 registered hosts on
Broker will try to connect another H2 host registered to Broker as well. The first
assumption is that Broker has collected global ip address and port information of
each hosts during initialization. Second assumption is that H1 requests Broker for a
host resource for task processing during a time of its lifecycle. Then Broker would
respond H1 with a task plan where H2 is the host to connect for task processing. H1

36

tries to connect H2 through given global 91.42.131.123 ip and 14422 port number.
Due to the fact that H2 is in another network behind NAT2 and 91.42.131.123 is
global IP address of NAT2 router, the packet will be send to NAT2 router, on which
NAT2 will check the source address and port on its port mapping table in order to
decide to which endpoint should incomming packet routed. In fact, NAT2 has the
information that a previous outgoing message of H2 (10.1.1.2:60493) has been
mapped to 14422 port number. So, NAT2 would make the incomming message to be
sent to 10.1.1.2. However, most routers perform strict security checks and ensure that
incomming packets source ip is available on port mapping table. In our case, the
recent port mapping which has set 92.42.131.123:14422 pairs for 10.1.1.2:60493
endpoint was set for Broker’s (5.101.107.102) output traffic and only incomming
traffic from Broker would be recognized by NAT 2. So, H1’s connection attempt to
H2 mostly fails, except for some cases: NATs which behave with non-strict rules;
hosts which are assigned with a global IP by ISP.

HOST REGISTRY

H1: 212.252.140.70:2571
H2:91.42.131.123:14422

SESSION H1-BROKER
5.101.107.102:62000
192‘168‘1.1013100%

BROKER
(5.101.107.102)

\ SESSION H2-BROKER
5.101.107.102:62000
10.1.1.2:60493

\

\
NAT 2
(91.42.131.123)

2. NAT2 drops non-recognized
H1(212.252.140.70)

H2

H1 (10.1.1.2)
(192.168.1.10)

3. H1 fails connecting H2

Figure 3.14 : Peer-to-peer connection failure of hosts behind different NATS.
3.5.3 NAT Traversal techniques for peer-to-peer connection

Methods used to overcome NAT difficulties are specified as NAT Traversal
Techniques [12]. Relaying, Connection Reversal, Hole Punching are analyzed NAT

Traversal Techniques on during literature research.

Relaying is the technique where server handles traffic between peers. Packets are

sent to server, then server forwards packets to destination peer. In fact, this technique

37

is the most reliable one and NAT issues do not affect connectivity. However delay

times are higher, since messages are sent via server.

Connection Reversal is the technique where at least one of two peers is not behind a
NAT and has a public IP. Assuming that a peer is behind NAT is named as P1 and
tries to connect another peer with a public IP named P2, the connection would be
successful. However, the first connection should be initiated from P1 to P2. If P2

tries to connect P1 initially, P1’s NAT will drop the connection and it will fail.

UDP Hole Punching technique enables two peers to connect each other directly, even
they are behind NATSs. A rendezvous server that collects endpoint information of
peers, coordinates peers to connect with each other. The key characteristic of this
tehcnique is the fact that rendezvous server collects both public and private ip/port
pairs. Peers send their private ip/port pairs to rendezvous server during initialization
phase, also server gets the public ip/port of the peers. The reason of collecting private
ip/ports is establishing connections of endpoints within same NATS. Peers behind
same NAT would be able to connect each other directly, since they are on the same
network. On the other hand, server keeps public ip/port of endpoints to make peers
behind different NATs connecting each other. The working principle of UDP Hole
Punching is a bit tricky which forms a flexible architecture that makes possible
internal and global connectivity. Figure 3.15 taken from [12] illustrates a case, on
which Client A and Client B create sessions to server. If Client A is supposed to
connect Client B, the rendez vous server sends notification to both Client A and
Client B on the same time. The notification message send to Client A consists public
and private ip/port of Client B. A will send 2 UDP packet to B, one packet to B’s
public address, one to B’s private address. On the other side, Client B gets peer
information of Client A and performs the same process. It is supposed that both
clients will send UDP packets to each other within a common time slot. Let’s assume
that first message is sent by Client A. A’s UDP packet to B’s private address never
reaches, because Client B is behind another NAT. On the other hand, Client A’s
message to Client B’s public ip reaches to B’s NAT, but the router drops the UDP
packet, because the because the source IP of Client A is not known on the port
mappint table on NAT B. So Client A’s first attempt fales. Anyway, even Client A
has failed sending UDP packet to B, A’s attempt will create a Hole on its NAT. As

described on above quotes, a NAT accepts only incomming messages which are

38

coming from an IP and Port of which a recent message was sent. So, in our case
Client B’s incomming UDP packet which is sent from the opposite side, is coming
from an known known source IP and Port, in fact the first packet of Client A was a
fake message to create a hole and make its NAT to treat the incomming B’s message
as the response of outgoing A’s message. Although, the principle makes sense, the
mehtod does not guarantee success on real world. While some routers will accept
hole punching, some other routers have strict NAT rules especially on port
mappings. Such routers do not preserve outgoing port numbers and alter them on

every sent message. Such behavior of routers make UDP Hole Punching non-

Server § Server § Server S
(8.181.031) (2) Farward H's (IB.181.031) (2) Farward A% (8.181.031)
I HMMM‘ A I]ﬂlﬁplﬂﬂlﬂ wh 111
138.76,29.7:310M0 : 155.99.25.11:62000
Session A-§ Session B-5 11134321 10.00.1:4321 Session A-S Session B-5
18.161.0.31:1234— —I8.181L031:12}4 18.181.0.31:1234— —18.1810.31:1234
155.00.25.11:62000 138.76.29.7:31000 155.90.25.1 1:62000 138.76.29,7: 31000
L £ Session A-B
S —— ¢ —— 15599.25.11:6200 7 o b
136.76.29.7:31000

NAT NAT NAT NAT NAT NAT

(155.99.25.11) (138.76.29.7) (155.99.25.11) (138.76.29.7) (155.99.25.11) (138.76.29.7)
e N 'L
Session A-§ Session B-§ (3) Send to B at Send to A at Session A-§ | Session A-B Session A-B | Session B-§
1B 1BLO3EI234 1B IBLO31I234 (@) 138.76.20.7:31000 () 155.90.25 1 1:62000 18.181.0.31:1234 1387629731000 155:99.35.1 162000 18.181.0.31:1234
100.07:4321 LCL432 b) 10.1.1.3:4321 () 1000.1:4321 100014321 | 100014321 s |y 34301
] (1) Request J
Connection U N (H‘ ¥
_ w [Ll Ml _
Client A Client 8 Client A Client B Client A Client B
(10.00.1) (10.1.1.3) (10.0.0.1) (10.1.1.3) (10.00.1) (10.1.1.3)
Before Hole Punching The Hole Punching Process After Hole Punching

Figure 3.15 : UDP Hole Punching technique [12].
3.5.4 Peer-to-peer Protocol designed for ITU-PRP

Peer-to-peer connectivity is one of the key motivations of ITU-PRP. A widely used
and more effective system would be possible only with a perfect peer-to-peer
protocol design. ITU-PRP’s peer-to-peer protocol combines Relaying, Connection
Reversal and UDP Hole Punching techniques in order to cover different types of
connectivity challenges. UDP Hole Punching characteristics are adopted to ITU-PRP
for connecting hosts within same NAT or behind different NATSs if applicable. Also,
charasteristics of Connection Reversal are adopted and performs well if one of hosts
has public accessibility. Additionally, a relaying mechanism is performed for the
cases where Hole Punching and Connection Reversal is not applicable. For all this
three techniques, ITU-PRP’s Broker takes the role of Rendez Vous Server, hosts and
clients fit to the role of peers. The characteristics of the combined design are as

follows.

39

Peer registration: As mentioned on previous units, hosts subscribe to the
system during their initialization. host connects Broker via TCP Socket and
UDP socket connections. Host-to-Broker session is kept active by using TCP
Socket connection. On the other hand, UDP Hole Punching is applicable with
UDP Sockets, because it makes possible connecting ends with the same
socket.

Peer information update: Hosts, send their private IP address and port
number to Broker each time they get a ping message. Host’s public IP and
ports are retrieved by Broker, along with incoming port update message. Port
update messages are UDP based. Host binds a UDP socket locally and waits
for incoming connections from other peers. On the contrary, TCP socket
would not be applicable, because active TCP session would not allow the

same port to accept connections from other ends.

Relay pipes: Rendez vous Server, in fact Broker creates pipes on Server for
peer pairs, which will perform relaying. A pipe performs the task of message
transmission through Broker. Creation of pipes is made just before
notification of peers to connect each other. A logical pipe is created with two
physical UDP sockets, of which one will listen for incoming relay messages

and server will send to destination peer through other UDP socket.

Peer notification: All hosts are expected to connect each other in order to
form a network of hosts. In order to achieve this, Broker performs Rendez
Vous operation during subscription o0 a new host. Broker sends the list of all
hosts to new registered host. Also, peer information of new registered host
would be sent to all other recently registered hosts as well. Peer grouping
would be implementable in case of increased number of users. Peer group
principal would revise the load on Server and also make more specific groups

to perform specific tasks. However Peer grouping was kept out of the scope.

Perform punching: A peer notification message contains three different ip
address and port pairs for destination peer, Private Peer address/port; Public
Peer address/port; Relay Address/Port. Notified host will initiate 3 messages
(private, public, relay) and will keep sending until connection establishment.

Figure 3.16 illustrates the set of steps.

40

-
Relay Hole Punch
HOST REGISTRY =l a8 y_
Relay H1: 212.252.140.70:2571 Public Hole Punch
]

. H2: 91.42.131.123:14422 PIPE
Connetion Private Hole Punch

PIPE

Global
Network <
Connetion

Local
Network
Connection H1(192.168.1.10) H2(10.1.1.2)

NETWORK 1 NETWORK 2

Figure 3.16 : Peer-to-peer connection steps.

6. Connection establishment: Hosts which get hole punch messages from its
assigned pairs will send acknowledge messages back and will expect
acknowledge from the same pair. As soon as two-way handshake is
completed, hosts stop sending punch messages. Within 3 punching attempt
types, host may connect to private or public or relay address/ports. However,
one of established connections will be selected according to prioritization, 1)
private; 2) public; 3) relay ip/port connection. The reason of private
connectivity being first option lower delay within private networks. For the
hosts behind different networks public connectivity is preferred, relay
connection would be the last option due to increased delay of centralized

connection.

7. Beacon messages: Hosts, which have established connection with each other,
will send beacon messages during their lifecycle. Beacons would be small
UDP packets sent periodically, for keeping inter-host communications active.
Beacon exchange will keep host’s peer-to-peer connection state information
up to date. Also connection checks during task distribution and executions are
performed by beacon exchange, in order to reduce faults during Task

Execution.

Peer-to-peer design of ITU-PRP intends creating a network of all registered hosts to
connect each other, as showed in Figure 3.17. However heterogenity and conditions

of the real World would make any nodes not missing connection with each other. For

41

such cases, Task Execution process performs connection checks and fault prevention

steps.

Figure 3.17 : ITU-PRP peer-to-peer network.
3.6 Data Transmission

Data transmission is an important matter which affects delays and performance of
Task Executions. Established peer-to-peer connections exchange a wide range of
message types with each other, including task notification, beacon or hole punch
messages. Also hosts exchange messages with Broker, such as host registration, Peer
Information Update, Ping/Pong Messages, etc. A brief schema showing all message

time exchanged within system are illustrated on figure 3.18.

REGISTER_HOST———p»
——RESOURCE_REQUEST—»
l—HOLE_PUNCH—» PONG_BROKER——p»!
¢—ACKNOWLEDGE—p» PORT_UPDATE———»t

HOST |e—TASK MESSAGE—{ HOST | execuTioN REPORT—p BROKER

l—TASK_RESULT—m
q——PING_HOST.

l¢—RESOURCE_RESPONSE—
lg——PEER_NOTIFICATION——

j——BEACON—p»

Figure 3.18 : ITU-PRP Peer-to-peer network.

In order to cover all message types a generic messaging type has been implemented.

This aims performing a common handling for messaging. Messages contain message

42

header and data sections. Message header contains information about message type,
sender Host ID, data length, buffer count, buffer index and message sequence. While
header section is 176 Byes long, data section is 400 bytes long, which makes a total
of 576 Bytes during message transmission. However data transmitted to another host
may exceed 400 Bytes. In this case, data will be devided to multiple buffers. In
Figure 3.19 a case for 520 Bytes is given. Buffer count would be 2 and two separate
messages will be sent, with 1 and 2 buffer indexes. This principal is same with the

Sliding windows protocol of Transport Layer.

HEADER (176 Bytes) DATA (400 Bytes)
| \ {)
Message Host Data Buffer Buffer Message
Type D Length Count__ Index Seq
I |
HP | la779aec-a294-4640- : 520 | 2 } :
(Hole Punch) | Beda-2e8047a€7f5f | : 1 18
| | |

Figure 3.19 : ITU-PRP generic message.

43

44

4. ITU-PRP FRAMEWORK IMPLEMENTATION

ITU-PRP’s framework has two entities in terms of implementation. While the web
application is where user does its operations on his account, Parallel Programming
Library is the implementation where the framework for parallel programming has

been made possible.

4.1 ITU-PRP Web Application

ITU PRP operations like user subscription, client logon, application upload and
modification on repository, task execution are made through a Web application
designed in the system. ITU PRP Web application is hosted on an Apache Tomcat
Web Server located on the same location with Broker and P2P Server. User logs on

to a web based application as showed on screenshot on Figure 4.1.

ITU-PRP

A PARALLEL PROGRAMMING FRAMEWORK FOR JAVA
DEVELOPERS

User Name : Password : Login | Create User

Figure 4.1 : ITU PRP Web application logon screen.

User logs on or signs up on the initial page of ITU PRP Framework. As the user logs
on to Web Application, a Java Applet embedded to the web page will initialize and
run. The regarded Java Applet creates a host listener thread, which will process as an
available host for the system on client’s computer. Check Figure 4.2 for Java Applet

Console, which shows the activity client/host.

45

8006 Java Console
display this help message

dump classloader list

print memory usage

trigger logging

hide console

reload policy configuration

dump system and deployment properties
dump thread list

dump thread stack

clear classloader cache

-5: set trace level to <n>

@xX <003~

a

Initialize host

Broker Address : http://parallelpattern:80808/AppletParallelProgImplementation/Broker

Current dir:/System/Library/PrivateFrameworks/WebKit2.framework/PluginProcess.app

Current dir using System:/System/Library/PrivateFrameworks/WebKit2. framework/PluginProcess.app

HOST : 5ac5clc6-992f-4c40-a646-F4d561844515

Free Memory : 112136504

availableProcessors : 4
http://parallelpattern:8080/AppletParallelProgImplementation/Broker?operation=registerHost&hostUID=5ac5
sun.net.www.protocol.http.HttpURLConnection:http://parallelpattern:8080/AppletParallelProgImplementatior
java.io.OutputStreamWriter@sb5441b

requestData :
yes2
response :

Clear Copy Close

Figure 4.2 : Java Applet on ITU PRP Web application.

User is able to view and select task on its repository with uploaded applications.
Application submission to system is made by the user, by filling Application
information such as Application/Task name, Java class name with package hierarchy,
suggested host count for execution, application version which will be considered
base information for Task Execution. User may also select its application from

repository and modify its information.

In case of selection of the task from the list of repository, the user will see a screen as
shown on Figure 4.3. Task information filled during task creation will be displayed
the user. User is able to trigger the execution of the task Sequentially on its own host

or in Parallel according to Task Plan created by Broker.

46

ITU-PRP

A PARALLEL PROGRAMMING FRAMEWORK FOR JAVA DEVELOPERS

User Info Task Repository of (ENIS)

Update

SUMS_HOST_NEW_1HOST_V3 | ParallelProgram jar com.itu.ppp.example:

Host Registr
i KeyBreaker 20141013172548KeyBreaker.jar prp.sample.KeyBreakerMainTask prp.sample.KeyB:

Actual Host List
2 Tasks on Repository

User Statistics

Task Management Application Info x
Task Repositary
Jar File: 20141013172548KeyBreakerjar| 8 Update Jar
Parallel
Development Application Name: KeyBreaker
Documentation
Main-Task Class prp.sample.KeyBreakerl

Download APL

Sub-Task Class:

Required Hosts: 3
Version: 1.01
Execute Task View Execution Logs Remove Task Update Task

Figure 4.3 : Task execution in ITU PRP Web application.

In addition to task operations, user is able to view actual hosts connected to the
system as shown on Figure 4.4. Detailed information such as Host ID, user name,
Client IP Address, activity and busy status, response times, location information and

additional information regarding system resources are available for user’s inspection.

Hosts on Registry

Host UID Username 1P Address Active Busy RESD?T‘"S::T'““ Processors Free Mem. Location Latitude/Longitude
bdchcb25-d9b7-4d26-B61c-ddcfaadf37cS | USERL 212.252.141.106 | true false | 771 4 43079552 | SISLI/TURKEY 41.0605/28.9872
f2589fb1-ef1b-dbe3-Bdca-2de7792dd2e6 | USER4 212.252.141.106 | true false | 77 8 10163712 | SISLI/TURKEY 41.0605/28.9872
b07580dd-dcdf-dcca-adfc-679bd7d6c177 | USERS 212.252.141.106 | true false | 109 4 55000112 | SISLI/TURKEY 41.0605/28.9872
bf4dbS8e-88f0-497b-93a4-a03dead4c2723 | USER2 92.45.23.114 true false | 53 8 8727344 ISTANBUL/TURKEY | 41.0138/28.9497
fa2a751a-bd01-4b2a-8005-ad5df49a9345 ENIS 212.252.141.106 true false 85 4 104053304 SISLI/TURKEY 41.0605/28.9872
ef71056b-028e-4bea-aBc5-f0240a976ab8 USER3 92.45.23.114 true false 56 4 8888016 ISTANBUL/TURKEY 41.0138/28.9497

Figure 4.4 : Actual hosts connected to system.

System, also provides viewable information regarding statistical information for
recent activities of users as showed on Figure 4.5. User Based classified data shows
total time of activity and assignment/execution counts in total.

User Statistics

User Total Time as Host Total Assignments Total Executions

USER3 19:55:57 1016 1016
USER2 03:13:57 985 985
USER4 06:19:23 559 559
ENIS 14:07:51 192 192
USER1 17:41:06 222 222
ADMIN 01:23:53 115 115
USERS5 13:24:40 68 68

Figure 4.5 : User statistics.

Authenticated user is able to view recent executions and task plans of host executions

with detailed information. Check Figure 4.6 for the screenshot of task execution logs.

47

Task Execution Logs x

Execution logs of (KeyBreaker)

Hosts Execution Date EXECU(':-IUSW) by Result Success

0 2014-10-14 19:30:06.0 -1 false
(] 2014-10-14 19:31:34.0 -1 false
[~] 2014-10-14 19:38:17.0 1564 871367 true
IP Address User Country City Latitude/Longitude
92.45.23.114 USER3 | TURKEY | ISTANBUL 28.9497/41.0138
92.45.23.114 USER2 | TURKEY | ISTANBUL 28.9497/41.0138
212.252.141,106 = USER5S | TURKEY SISLI 28.9872/41.0605
212.252.141.106 = USER4 | TURKEY SISLI 28.9872/41.0605
212.252.141,106 = USER1 | TURKEY SISLI 28.,9872/41.0605
[+] 2014-10-14 19:39:00.0 -1 false

101 Executions

Figure 4.6 : Task execution logs
4.2 Parallel Programming Library

A Java library is provided to Parallel Developers to adapt their application codes for
Parallel Running Platform. ParallelPatternFramework.jar can be downloaded from
ITU PRP Web Site. A parallel developer must include the provided library file to
Java project and implement its program code according to specifications. Result
implementation will be uploaded to ITU PRP Web Site to application repository.
Result application should be packaged as Jar file as well. Application developer is
required to fill Application/Task name, Java class name with package hierarchy,
suggested host count for execution, application version. Library also does consist
task distribution, barrier and result collection functions, which are transparent to

developer.

4.2.1 Content of ParallelPatternFramework.jar library file

e MainTask : Interface which specifies the main task to be execution on initial
execution of main task. Developer overrides runMainTask method on which

routines of main task are implemented.

e SubTask<GenericResult> : Interface is implemented in order to specify
operation of sub tasks. GenericResult generic type is defined in order to make
declaration of result type of sub task. GenericResult is applicable for Java
primitive object types, such as String, Integer, Long, Double, byte arrays, etc.

Overrided calculate method would consist the operations to be performed on

48

sub task. On the other hand, getResult method implementation would return
the result of execution.

TaskExecutor : Consists task distribution and result collection routines
which are performed during task execution. Those operations are hided by
user and the library takes care of this operations. The only visible
execute(TaskList,ExecutionType) method is called on MainTask in order to
trigger task operations. TaskList and ExecutionType are two parameters set by
user in order to specify the execution work to be performed and the way how

they are performed.

TaskHandler : Consists routines performed during sub task distribution.
TaskHandler converts sub task objects to byte arrays and initializes
transmission streams of them to established host connections. Results of
transmitted object streams are expected to be received when remote hosts
terminate and send back result object streams. Task handler will unmarshal
result bytes, extract SubTask result object and send back to caller. Task

send/receive operations are made synchronously.

TaskL.ist : Holds the list of sub tasks. TaskList is prepared by user within the
scope of MainTask and is send to TaskExecutor for execution.

ExecutionType : Enumeration on which task execution type is defined.
Parallel application developer decides one of five execution types for task
processing. PARALLEL_MULTIHOST_STRICT is set for the cases where
developer sets the rule of subtasks to be executed only parallel on multiple
hosts. This execution type fails in case of any host fails processing the sub
task. PARALLEL_MULTIHOST_ADAPTIVE is also execution type processed
on multiple hosts with a more flexible execution plan in cases of any host
fails. If any host fails on subtask execution, main task executes the task on
client CPU. SPECULATIVELY_PARALLEL_MULTIHOST is defined for a
single host to be processed on multiple hosts. First incoming execution result
is considered as the final result. SEQUENTIAL_LOCALHOST is defined for
sequential execution on localhost. MULTITHREAD LOCALHOST is defined
if tasks would be executed parallel within multiple threads on client’s local

workstation.

49

Relations between classes of Parallel Programming Library and implementation

model is illustrated on the UML diagram on figure 4.7.

6 0.n

TaskList <<interface>>
java.util.concurrent.Callable<v>

+ subTaskList : List<SubTask>

_,
|
I

+ addTask(SubTask)

+ getSubTaskList() : List<SubTask> +call): v
T r
1
TaskExecutor TaskHandler <SubTask> {Abstract}

+ taskData : SubTask

+ availableHostAddresses : List<String> - assignedTaskHostName : String
+ parallelClassName : String - paraIIeICIa.ssName :.String
—_ 9 + jarURLAddress : String - jartURLAddress : String

- executeLocal : boolean

= == + call() : SubTask

+ execute(TaskList,ExecutionType) + calculate()
- notifyHostForTaskProcessing()

? o.n

<<interface>> <<interface>>
MainTask SubTask<GenericResult>

+ calculate()

+ runMainTask() + getResult():GenericResult
| |
MainTaskimplementation SubTaskimplementation<T>
+ Result: T

= + calculate()
+ runMainTask() + getResult():T

Figure 4.7 : Parallel Programming Library implementation.

4.2.2 Implementation guidelines for developers

Developers using Parallel Programming Framework should follow below guidelines.

Include ParallelPatternFramework.jar to Java Project

Create a main class which implements MainTask interface. Developer should
fill overrided runMainTask method. Check Figure 4.8. for implementation

example.

Create a class which implements SubTask interface. Calculate method is
required to be implemented, which will consist the autonomous calculation
task made on the distributed task. Check Figure 4.9. for SubTask

implementation example.

50

e Developer should export a JAR package form its application, which will be

deployed to PRP Repository.

e Parallel Programming Library would be implemented as illustrated on UML

in Figure 4.7.

@Override
public String runMainTask() {
TaskExecutor executorInstance = TaskExecutor.getInstance();
TaskList taskList = new TaskList();
for (int i = 0; 1 < 4; i++) {
long min = 100000000 * 1 + 1;
long max = 100000000 * (i+1);
Sum sum = new Sum(min, max);
taskList.addTask (sum) ;
}

long sum = 0;
List<SubTask> resultlList =
executorInstance.execute (taskList,ExecutionType.PARALLEL MULTIHOST STRICT) ;

// Now retrieve the result
for (SubTask<Long> resultlItem : resultList)

{
sum += (Long)resultItem.getResult();

}

System.out.println ("MAIN TASK RESULT : " + sum
return String.valueOf (sum);

Figure 4.8 : Main Task implementation example.

@Override
public void calculate() {
sumResult = 01;
long tempResult = 0;
for (long i = from; i <= to; i++) {
tempResult = tempResult + i;
}
sumResult = tempResult;
System.out.println ("SUM between " + from + " " + to + " is " + sumResult);

Figure 4.9 : Sub Task implementation example.

51

52

5. EXPERIMENTAL RESULTS

This section describes the results of experimental tests performed on ITU-PRP.
Experiments were conducted on parallel applications developed according Parallel
Programing Framework specifications. Multiple hosts located on different networks
over Internet have joined and participated the testing sessions. Also, computers with
various configuration and computational power were used as hosts. By Task
Execution Middleware coordination, a Multi-Host heterogeneous platform was

created.

SHA-256 Hash Decoding as a characteristic example for High Performance
Computing was selected for case study. Application was developed according
Parallel Programming Framework and was uploaded to Task Execution Middleware.
As a test scenario, a 6 letter numeric pin encoded with SHA-256 Hash algorithm,
will be decoded/decrypted. SHA-256 is a function that encodes a set of characters.
However the algorithm has not a reverse function and encoded hash cannot be
decoded. In order to decode the Hash, decode function should anticipate the hashed
pin by hashing all available combinations and comparing the results with the hashed
pin. For example, a pin number 871367 will get below result after performing SHA-
256 Hash function.

5513cbf6f4112774fb01961e107714a9f96bee0234a12401f21aef088ac8cle9

Let’s assume that there is a requirement to decode the hash and get the pin code
871367. Another assumption is that the pin is a 6 letter numeric characters set. In
order to find the pin from the hash, hashing function will be performed for all
guesses from 100000 to 999999. Decoding function should be implemented like in

pseudo code given below.

53

begin
hash €5513cbf6f4112774fb01961e107714a9f96bee0234a12401f21aef088ac8cle9
found€false;
i € 100000
while found=false and 1i<=999999 do
begin
tempHash € SHA256 (i)
if tempHash = hash then
begin
found€true
decodedPin€i
end
i € i+l
end
end

A sequential java console application has decoded SHA-256 hash in 2265
milliseconds. Application was executed on a MacBook Pro laptop with Intel Core i5
2,5 GHz Processor and 8 GB Memory.

SHA-256 Hash decoding application uploaded on ITU-PRP. A client that distributes
sub tasks to be executed on resource hosts has performed executions according 4
different task plans provided by Broker. During first test, client process has separated
all pin combinations to 2 subtasks, which was executed parallel on 2 resource hosts.
Then during each further testing phase an additional resource host has joined the
system until a desired result was achieved. Table 5.2 shows resource hosts used for
experiments. System details, computational power and operating system of hosts
vary and belong to various configurations. These 5 hosts are placed behind different
NATSs, 3 on a local network, the other 2 on a remote network. All these varieties of
hosts form a heterogeneous system, which expresses a typical platform described on

this research.

Table 5.1 : Hosts used for experimental results.

Host System Info CPU Memory Public IP/ Operating
Private IP System
1 Dell Lattitude Intel Core i7- 8GB 92.45.23.114/ Windows 7
E6430 3630QM 2,4GHz 10.1.3.200
2 Asus N550JV- Intel Core i7- 16GB 212.252.141.106/ Windows 8
CN127H 4700HQ 2,4 GHz 192.168.2.107
3 MacBook Air 4,2 Intel Core i5 1,7 4GB 212.252.141.106/ Mac OS X
GHz 192.168.2.155 Mavericks
4 Dell Lattitude Intel Core i5- 4GB 92.45.23.114/ Windows 7
E5440 4210U 1,7 GHz 10.1.3.175
5 MacBook Pro 10,2 Intel Core i5 2,5 8GB 212.252.141.106/ Mac OS X
GHz 192.168.2.103 Mavericks

54

Client, which performed main task, was a member of 212.252.141.106 network, like
other 3 members within same network. Measurement was made based on processing
times obtained for 2, 3, 4 and 5 hosts. Detailed results are shown on Table 5.2. While
sequential decoding has taken 2265 milliseconds, a first challenge of ITU-PRP with
2 resource hosts was not able to beat an ordinary sequential execution. 2 resources
have got a 2358 ms processing time, which is higher than sequential processing. In
fact, a sequential process enhanced to 2 parallel processes should achieve a
performance gain. However, host 1 is on a remote network far from Client 1 and
Host 2 is another end within 212.252.141.106 network. Network delays during
message transmissions have caused such a disadvantage. By the attendance of 3"
host, the processing time became head-to-head with sequential processing with a
2253ms of processing time. However, the goal is to beat the sequential processing
and this is not achieved yet. Anyway, if the 3™ host would be a resource with
stronger computational power, the overall processing time would be lower than the
occurred one. According to Parallel Application Execution principals of ITU-PRP,
all subtasks should be processed in order to terminate overall processing power. Host
3, which had less computational power and performance compared with others took
longer than the others and affected overall processing time by providing the task
result later than others. However, this is a good example for impact of heterogeneity

over parallel processing on ITU-PRP.

Table 5.2 : SHA-256 processing times.

Application Model Hosts Repeated Avg. Speed Up Performance

Tests Processing Gain (%)
Time (ms)

Sequential Java 1 5 2265 - e

Console App.

ITU-PRP 2 Hosts 2 5 2358 0.96 -4,11

ITU-PRP 3 Hosts 3 5 2253 1.01 0.53

ITU-PRP 4 Hosts 4 5 1636 1.38 27.77

ITU-PRP 5 Hosts 5 5 1270 1.78 43.92

A performance optimization was achieved by addition of 4™ host, which gave
1636ms of processing times and 1.38 speed up. 5" host also affected positively,
which resulted to 1270ms processing time, 1.78 speed up and 43.92 percent
performance gain over sequential processing. Figure 5.1. also shows a graphical

chart of experimental results for Hash decoding. The overall progress on chart

55

reveals that higher available resource hosts will reduce processing times remarkably.
But the processing time would not be beyond network/message transmission delays.
So, minimal processing time would be near to network delay times on ideal
conditions. And the user should not expect a performance gain for applications that

processing times takes less than an ordinary Client-to-Host delay times.

2500 |

[y
(=
o
o

1500

1000

Processing Time (ms)

500

1 2 3 4 5

Number of Hosts

Figure 5.1 : Performance gain achieved on experiments.

Even the performance gain achieved for Hash Decoding reflects a comprehensive
performance analysis, any other application implemented and deployed on ITU-PRP
may give different performance results. Depending on characteristics of application,
the parallel processing performance may be better or worse. The main principal
should be applying problems with high processing time or data, for which ITU-PRP

promises performance gain.

As mentioned above, minimal processing time would be the maximum delay time
within two-way Client-to-Host data transmissions. However, such a delay was not
possible to be measured during experiments. In order to measure a delay between
two ends, a global synchronized time should be set, which will make possible
calculating time differences during transmissions. However, in a heterogeneous
platform such as ITU-PRP a global synchronized time is not applicable, so network
delay time cannot be extracted from total sub task processing time. Anyway, some
estimation can be made to give a delay time during Client-to-Host transmission.
Ping tests with 1MB packet data were made in order to get estimated delay times.
Ping tests from Istanbul to arbitrary IP addresses to different locations shows that a
1MB ping, to an IP address on New York return in 170-180ms. Other 1MB pings

56

have been measured as, Istanbul-London 110-120ms, Istanbul-Ankara 65-75ms,
Istanbul-Istanbul 30-40ms. Which shows the fact that worst case delay time of two
way 180ms sub task exchange will affect a round trip delay of 2 x 180ms to a worst

case delay of 360ms.

On Data Transmission section, it was mentioned that a buffer size of a transmission
message sent to any component of system is defined as 576 Bytes. The regarded
buffer size was decided according test results conducted in this section. The
observation during the tests was that Multi-Host messages within a local network or
between different networks, were affecting transmission performance differently.
Within local networks, higher buffer sizes and lower data separation was causing less
delays. But transmission during transmissions over Internet, higher buffer sizes were
suffering higher packet loss, which was causing unexpected packet loss during
Parallel Execution. The highest buffer sizes preserving the reliability of transmission
was monitored as 576 Bytes. This value seemed to balance minimal packet loss and

higher possible transmission performance.

Another noticeable factor affecting execution performance was power saving modes
of laptops used as resource hosts. Especially, laptops performing power saving
strategies during their battery consuming mode, were reducing their CPU power. In
these cases, reduced CPU power causes higher processing time. However, usage of
smaller number of resource hosts during execution is affected by this. Higher

available resource hosts absorb such an impact.

57

58

6. CONCLUSION

The methodology of Parallel Processing is based on Multi-Threaded task distribution
model. ITU-PRP’s design on Parallel Processing, in which Main Task creates and
sends Sub Tasks to hosts in a within a loop mechanism, aims to provide an object
oriented pattern to combine with parallel models. Object oriented pattern and
adaptability of this design is also another noticeable feature, compared to

conventional native parallel development tools.

ITU-PRP’s approach on Data Parallelization is based on user’s customization and
user is able to define data of Sub Tasks accordingly. Data distribution via Sub Task
object serialization ensures users control over data parallelization. Object-based data
distribution, instead of message-based distribution is also another feature, which

provides flexibility to user to specify data types for distribution.

Peer-to-peer protocol designed for ITU-PRP has been an important issue that defined
the scope of the project. Considering the restrictions of maintaining connections
between peers over Internet, implementation of peer-to-peer was difficult and
required a lot of literature research. A combined protocol with 3 different NAT
traversal techniques, such as Relaying, Connection Reversal, UDP Hole Punch made
possible connecting hosts over Internet. System was designed that all hosts to
connect each other, keep their connection active during their lifecycle. Also, Peer
grouping principal aims grouping creating location groups, specific task groups.
However, Peer grouping would be possible with the increased number of users and it

was kept out of scope, for a future scale increasing of project.

Experimental results have revealed that minimal number of assigned resource hosts
have not make a noticeable performance gain during Parallel Application Executions.
But higher available resource hosts have achieved remarkable performance
optimization results. Tests have also showed that network delays have less impact for
negative performances during executions with higher available hosts. Also,
applications with higher sequential processing times are more likely applicable to
ITU-PRP and easier to achieve a performance optimizations.

59

Calculated maximum Client-to-Host delay time in Experimental Results section was
360ms. However, real world network problems, may impact to higher delays.
Principally the suggestion of ITU-PRP is performing parallelization for sequential
applications that take longer processing time then 2 seconds. A higher performance
gain is achievable if sequential application with higher processing times is
implemented on ITU-PRP. In fact, ITU-PRP does not intend to beat up any multi-
core framework and achieve higher performance. The goal of ITU-PRP is providing
a heterogeneous Multi-Host parallel processing platform, where some specific High
Performance Applications would work on a global environment. And users will be
able to benefit a low cost parallel computing environment, which transforms

individual idle processing power to a global processing power.

Benchmarking tools applied for performance comparison of other Parallel
Programming Frameworks were not applicable to ITU-PRP, due to the
heterogeneous Multi-Host architecture formed with a global peer-to-peer protocol.
Also, as described above, ITU-PRP has not the goal to challenge the performance of
any other parallel framework. Instead it provides a characteristic architecture with
specific dynamics in order to achieve a low-cost global parallel processing

environment.

Statistics for Parallel Application executions and performance measures will be
saved and logged. Any applications statistical information for their recent activity in
terms of performance measures would be considered for future executions, so that

higher utilization can be achieved on future execution plans.

Higher effective system will be achieved by higher volunteer attendance. A volunteer
reward system is provided in order to increase the host numbers in the system. By the
increase of available hosts, additional experiments will be done in the future for more
concrete measures. Additionally, an established community would get feedbacks

from users, in terms of discussions about system’s performance and issues.

60

REFERENCES

[1] Thomas Rauber, Gudula Riinger (2010), Parallel Programming for Multicore
and Cluster Systems. 2nd Edition, Springer Heidelberg Dordrecht,
London, New York

[2] Sartaj Sahni, George Vairaktarakis, 1996: The Master-Slave Paradigm in
Parallel Computer and Industrial Settings, Journal of Global
Optimization, Springer

[3] URL-1 <http://www.oracle.com/technetwork/articles/java/fork-join-
422606.html>

[4] Michael J. Quinn, (2004), Parallel Programming in C with MPI and OpenMP,
1st Edition, McGrawHill, New York

[5] URL-2 <http://mpj-express.org/docs/guides/windowsguide.pdf> accessed at
04.04.2013

[6] URL-3 < https://code.google.com/p/javampi/>, accessed at 04.04.2013

[7] M. Klemm, M. Bezold, R. Valdema and M. Philippsen, (2007) : JaMP: An
Implementation of OpenMP for a Java DSM, University of Erlangen-
Nuremberg, Computer Science Department, Erlangen, Germany

[8] URL-4 <http://jade.tilab.com/doc/index.html>, accessed at 16.03.2014.

[9] Peter Cappello, Bernd Christiansen, Mihai F. lonescu, Michael O. Neary,
Klaus E. Schauser and Daniel Wu, 1997: Javelin: Internet-Based
Parallel Computing Using Java, University of Bristol, Department of
Computer Science, University of California, Santa Barbara.

[10] Michael O. Neary, Alan Phipps, Steven Richman and Peter Cappello, 2000:
Javelin 2.0: Java-based parallel computing on the Internet, University
of California, Santa Barbara

[11] L. F. Lau, A. L. Ananda, G. Tan, W. F. Wong, 2000: JAVM: Internet-based
Parallel Computing Using Java, School of Computing, National
University of Singapore.

[12] Bryan Ford, Pyda Srisuresh, Dan Kegel, 2005: Peer-to-Peer Communication
Across Network Address Translators, Massachusetts Institute of
Technology, Caymas Systems, Inc..

61

62

APPENDICES

APPENDIX A: Deployment of ITU-PRP
APPENDIX B: Sources and Development Environment Setup

63

64

APPENDIX A
DEPLOYMENT OF ITU-PRP
The related files for deployment of Task Execution Environment are given under
DEPLOYMENT folder of attached CD:
- war/itu_prp.war
- tomcat/apache-tomcat-7.0.39
- database/ituprp_test.sql

In order to setup a Server for providing the hosting service of ITU-PRP System, the
deployable war package and database backup files are provided. itu_prp.war will be
deployed to an Apache Tomcat Web Server. The Web Server may be downloaded

from http://tomcat.apache.org/download-70.cqgi but is provided on attachment CD as

well. ituprp_test.sgl is MySQL database backup file for ITU-PRP Database. A
MySQL Server should be installed and set up on a Server where Database will be
hosted. ITU-PRP Database is deployed by running “mysql —u root —p ituprp_test <

ituprp_test.sql” command. This command will create ituprp_test database to Server.

Apache Tomcat may be set up to any of Linux, Windows or Mac OS X operating
systems. The regarded folder of apache-tomcat-7.0.39 may be placed to a preferable
folder within the file system. The bin folder contains startup and shutdown (.bat for
Windows, .sh for the rest) files, which start and terminate the Server Service. The
conf folder contains server.xml and other files on which Tomcat is configured.

Connector port of installed server may be changed from server.xml, which is 8080 as

default. The webapps folder is the location where applications are deployed.

itu_prp.war file will be copied to webapps folder in order to deploy the Application.
Then startup (.bat or .sh) file is executed in order to start the Web Server. In order to
verify if Tomcat Server is started successfully, http://localhost:8080/ is opened on a

Web Browser and the default page of the Tomcat is expected to show up. For
verification if Task Execution Environment has been deployed successfully
http://localhost:8080/itu_prp/Login.xhtml would be opened on a Web Browser,

where the Web Application of Task Execution environment is showed up.

Deployed ITU-PRP application is configured by modifying below files:

65

Application.properties: IP, port and ping intervals of Broker are set on this file. Also

uploaded jar file path is set withing this configuration file.

Persistence-mysgl.properties: MySQL connection parameters are set in this

configuration file.

The key point about Task Execution Environment is the connectivity of the Web
Application globally. Due to frequent TCP Socket operations between Server and
hosts, a global IP address should be assigned to the Server where the Task Execution
Environment is deployed, in order to serve globally for parallel processing. The
second alternative is providing parallel processing within a network subnet. In this
case, a private IP of Task Execution Environment Server is assigned and parallel

processing is performed within a local network scope.

66

APPENDIX B
SOURCES AND DEVELOPMENT ENVIRONMENT SETUP

The related files of Development Environment of the project are provided under
SOURCES folder CD:

ITU_PRP Maven Project

Eclipse Installation Files

ParallelPatternFramework.jar Parallel Programming Environment API

ITU_PRP_IMPLEMENTATION Eclipse Project

The source codes of ITU _PRP project are in SOURCES/ITU-PRP folder of
attachment CD. The related project is developed under Eclipse development
environment and should be imported to Eclipse for further development. In order to
work on the project the latest version of Eclipse can be downloaded on
wwwe.eclipse.org. The Eclipse IDE for Java EE Developers is preferable, which

already contains configuration and plug-ins for Java EE Web Applications. Also,
Eclipse installation with all required project is provided in APPLICATIONS folder

of attached CD. It is preferred to use provided Eclipse installation.

The Parallel Programming Environment API is provided on the SOURCES folder as
well. This the JAR Library to be used by Parallel Application developers which will
create Parallel Applications according to specifications of ITU-PRP given on the
implementation section. The source code of a sample implementation for Parallel
Programming Framework is given as an Eclipse Project in
SOURCES/ITU_PRP_IMPLEMENTATION folder. The project contains source

code of SHA256 Hash Decoding example shown on experimental results section.

67

68

CURRICULUM VITA

Name Surname: Enis SPAHI
Place and Date of Birth: Prizren / Kosova, 16.09.1985
Address: Giilbahar Mah, Bildircin Sk. 14/6, Mecidiyekdy/istanbul

E-Mail: enisspahi@gmail.com

B.Sc.: Yildiz Technical University, Computer Engineering

Professional Experience and Rewards: Garanti Teknoloji (July, 2008 — February,
2009); AEC Teknoloji (March, 2009 — October, 2009); Hitit Computer Services
(November, 2009 - Present)

List of Publications and Patents:

PUBLICATIONS/PRESENTATIONS ON THE THESIS

= Enis Spahi and D. Turgay Altilar, 2014: ITU-PRP: Parallel and Distributed
Middleware for Java Developers. 1% International Conference in Computer Science,
Information System and Telecommunication (ICCSIST 2014), November 7-8, 2014,
Durres, Albania.

69

mailto:enisspahi@gmail.com

