bébblU

ISTANBUL TEKNIK UNIVERSITESI * FEN BILIMLERI ENSTITUS(J

IKILI YAPAY SINIR AGLARI ICIN
BiR OGRENME ALGORITMASI

YUKSEK LISANS TEZi

Miih. Ersan ALFAN

Tezin Enstitliye Verildigi Tarih : 9 Haziran 1997

Tezin Savunuldugu Tarih : 18 Haziran 1997

Tez Damismam : Prof. Dr. Ugur CILINGIROGLU — 2o~ — ———

Diger Jiiri Uyeleri : Dog. Dr. Ciineyt GUZELIS
: Dog. Dr. Acar SAVACI

)

HAZIRAN 1997

ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

A LEARNING ALGORITHM FOR
BINARY NEURAL NETWORKS

M. Sc. THESIS

Ersan ALFAN, B. Sc.

Date of Submission : 9 June 1997

Date of Defense : 18 June 1997

Supervisor : Prof. Dr. Ugur CILINGIROGLU ~ 7 =< ==,

Other Members : Assoc. Prof, Ciineyt GUZELIS
: Assoc. Prof. Acar SAVACI

f

JUNE 1997

FOREWORD

Capacitive Threshold Logic (CTL) is an evolving technique for use in neural
networks. For realizing boolean functions by CTL based binary neural networks, an
efficient learning algorithm is needed. This study describes an efficient learning
algorithm for binary neural networks.

I would like to show my gratitude to Prof Dr. Ugur CILINGIROGLU for his
support. I also would like to thank to my all family for their helps and support, to
Emanuel ABACI for his understanding and for his financial support, to all personnel
in IMA Miihendislik A.S., and to my friend Onder OZTURK for their helps during the
preparation of this study. I would like to be grateful to Providence for just in time
support.

June 1997

Ersan ALFAN, B.Sc.

CONTENTS

WORD

NT iv
CONTENTS............... cersenne teaceececestiencensenns ceesecctennanes cvesereserersrrrestsrsesassasearsossesreraovensl

.

LIST OF FIGURES ii

.
SUMMARYccceveveeenns D G P PP S PN X

Py

OZET .. oeeeeetetieercrrneetreeesesestserraesssossnsessesssssssessesssssnsssssessssssssesssnssassssssnnses veeeeene X

CHAPTER 1 INTRODUCTIONcooverueererurnrunsressuessesssessessessassasensessessesses R |

CHAPTER 2 MATHEMATICAL BACKGROUND OF THRESHOLD LOGIC......3

W

2.1 Introductioneeeeeeveeeeccreerennnnen teeeraseneeessesasntetesessttratesssanaetsesnrasasesssssstans

2.2 Switching FUNCLIONScccoeierireeereenirenenseeissreesrunessseesesessessssasssasesssesssnsssassasses
2.2.1 ThE 7-CUDE Oooeeeeveererrrreeeeereereressesesssesssssessessesesessessessensessssessassasses
2.2.2 Switching FUNCLIONS......ccccireeeecnrrererssereccrsenesssenssssesssssssssssnssssanssssssesosssd
2.2.3 Cubical COMPIEXEScccceeevrerrrrnirrreenrrresrencesenessasseseessssessnseeseessssssscssosss O

2.3 Threshold FUNCHONScocveereeecrireiensnnecessiniesnesansssecsssssassscssssssssosesssessssssssesse 1 2
2.3.1 Linear Separabilityccccceeereecsseanccrerersseccueasseonsscssessasssnsesacssssnossasssssesss 12
2.3.2 Characterizing Parameters.........ccceoreveecreoscerersssrssssessasnssnsassasssssnosssssssssss 1 8
2.3.3 UDALENESS ..cccceereeveerrrecrsrenerrecessssssssassssassssasasssesosrsssssssssssssnsesasesssssssasses D2

CHAPTER 3 LEARNING ALGORITHMS FOR BINARY NEURAL
NETWORKS.ooecveeerernrenne revessensssessesnsssnsessaeessssassssssareransessesssssssnes OO
3.1 PrElMINATIES .eeeeeereeeriereeeeeeeessesesessrssaionssssssssassnsssns D4

.

v

3.2 Goemetrical Learning (ETL) AlZOrithim.........ccccovevuevevrererevveeirreceneeveesesnnes 25

3.2.1 Learning The Hidden Layercccceeevenieerennereecrereereernessnsnessssessessesnennas 27
3.2.2 Learning The Output Layer.........cccccevvreverrerrereerenseessernesesessessessossessoscsens 39

3.3 Modified ETL AlGOTIthIn.........coceereeerrerrereereeerieenenteneessessessessessessesneseosesseses 47
3.3.1 Modification Of INPUt VECLOTS......ccccevrererrrereerenrenrersersessessassersersessosessenens 48
3.3.2 Prediction of Maximum Required Number of Neurons..............cceeveunenee. 55
3.3.3 Starting VErteX TYPEc.cecererrerirrenreneereriessesennsessasessesessesessessesessossssosens 62
3.3.4 Selection of Core Vertex and Determining the Initial Weights.................. 64
3.3.5 Arranging The Weights When fmin < fmax 80d fmin = fraxeeeseerersereereeresessens 67
3.3.6 Learning The Output Layer........c.ccoceerveerrereerrrrrresererserereesseessnssnessessessense 70
3.3.7 Determination of Appropriate Starting Vertex TYpe......cceoverververeereernnnni. 72
3.3.8 METL AIZOTithim StEPScceveerrvrerirenerrrenreesuessessnessessnesessessessssseoseosesses 72

3.4 Realization Performance of METL Algorithm.........c..ooeeuveiieerneennemeeeeereeneees 73
CONCLUSIONSutiitiitictencevrenressssssessesseassessasssesssssasssssssesssssesssessesssssssssessesnes 77
REFERENUC ESoiiiiiiteetitieeeentrneestrsnesesssssssessessssssesssensessasssessesssessessesssessossosse 78
APPENDICESitiiieruierrentestestecesseessesssesesssnssesssessessesssesssssnsssssssssssssossessesss 79
CURRICULUM VITAEcooitiiirinnienrineesrcaseessesssessesssessessassssssasssessassesssosssssens 110

*nCOnBOY

@ 2
x 9

S -
~

£

t
O

LIST OF SYMBOLS

implies

end of proof

if and only iff

is a member of

intersection

union

is contained in

don’t care symbol

power of the set

sum of i coordinates of K

the set of the two integers 0 and 1
Cartesian product of » copies of O
Euclidean »-space

the real n-cube

n-input switching function

net function

™ input

™ weight of net function
threshold of net function
threshold of net function

set of true vertices

minimum value of net function among all vertices in SITV

maximum value of net function among vertices that are not in SITV

the core vertex
i bit of the core vertex

desired output of minor vertices

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure B.1

LIST OF FIGURES

The structure of a three-layer BNN for the given example.coueeee. 39
Input vectors are partitioned by ETL........ccccovvvrvevrmnniciinnineceennennnnne 44
Karnaugh-map of the given example........cccccevuerruicrensuccnninnvnsincscnnennees 57
Karnaugh-map of the given example........ccccceverrcenvirnrensensncninsennnennnes 59
Decomposition of the Karnaugh-map of the given example

INTO 4 LS fUNCHIONS. cevvrrrernierreniiereeenseeereessssseessssessosssssesesssessssasesessssnssenee 61

Decomposition of the Karnaugh-map of a switching function

INtO 2 LS fUNCLIONS.uueiervereereercrneernreecssesesnnsessesssssessessossessssansssssssesns 61
Karnaugh-map of the given example.........cccccceeivmernnriirvininniniienienennnnen. 63
Karnaugh-map of the given example..........cccoccevverrrueiceerinniiiiennsnennnn. 63
Karnaugh-map of the given example.........ccccccevimvinnriiinnienniniiecsiennnnn. 69
The positive canonic linearly separable map patterns of n <4. 84

Tablo 1.

Tablo 2.

Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table A.1

LIST OF TABLES

Verilen Ornegin Komsular TabloSU..........c.cveeeueeeucuieerereeenressesesessscens xiii
Verilen Ornegin Indirgenmis Komsular Tablosu............ccevuveeeuivereeannes Xiv
Truth Table of The Switching Function.......ccccceeevveeceeenineeneeceeeereenenne 22
Chow Parameters of The Given EXamplecocceveeveeceeruenecressrennenenns 22
The Analysis Of The Hidden Layer For The Given Example................... 38
Truth Tables of Threshold Functions.........ccccceceeeucevccneenennernneneerenneennens 49
Original Switching Function and Reduced Switching Function............... 51
Table of Neighbors of The Given EXamplecccceeeevererenreereenennenens 58
Table of Neighbors After The Elimination Processcccceeveeveevervennen. 58
Table of Neighbors of The Given Examplecccoeeveereeecreecreevereeennen. 59
Table of Neighbors After The Elimination Processcccceeeveerveeveennen. 59
Test Results of METL AlZorithm......cccceceeeeeeieecceecreeceereeersesesecseesseens 76
Test Results of 5-Dimensional Switching Functions...........ccccceeveevnneee. 76
Table of Chow Parameterscoeevveeerenncessensessecsesenseeseesessnesessesssssens 80

SUMMARY

This study describes a learning algorithm called modified expand and truncate
learning algorithm (METL) to train multilayer binary neural networks with
guaranteed convergence for any binary-to-binary mapping. The most significant
contribution of this study is the development of learning algorithm for three-layer
binary neural networks which guarantees the convergence, automatically determining
a required number of neurons in the hidden layer. This algorithm can realize any #»-
dimensional binary-to-binary mapping by a binary neural network that has maximum
n-neurons in the hidden layer. Furthermore, the learning speed of the METL
algorithm is much faster than that of other learning algorithms in a binary field.
Neurons in the binary neural network employ a hard-limiting activation function, with
only integer weights and integer thresholds. Therefore, this will greatly facilitate
actual hardware implementation of binary neural network using currently available
digital VLSI technology.

Chapter 1 gives a short history of neural networks.

Chapter 2 includes mathematical background of threshold logic that is necessary for
describing the learning algorithm.

Chapter 3 describes METL algorithm. The most important advantages of METL are
explained with examples.

In the conclusion part, the advantages of METL algorithm are mentioned.

In the appendices, some necessary information and the source code of computer
program that is used to test METL algorithm are listed.

OZET

IKiLi YAPAY SINiR AGLARI iGiN BiR OGRENME
ALGORITMASI

Tiimdevre teknolojisi son yillarda, 6zellikle CMOS prosesinde, biiylik gelismeler
gostermigtir [1]. Tranzist6r boyutlarmin giderek kiiciilmesi, tlimdevre yogunlugunu
olduk¢a arttrrmugtir. Ancak, kii¢lik boyutlara inildik¢ce tasarimm siiresi uzamakta ve
verim diismektedir. Bu nedenle, tiimdevre iiretimindeki ekonomik kisitlar kirnuk
yogunlugu ve maliyet i¢in bir optimum ¢6zlim gerektirir. Kapasitif esik lojigi (CTL)
yapilar1 serim agisindan oldukga sistematiktir ve bu yapilarm serim alam geleneksel
lojik ile ger¢eklenen devrelerden daha kiigiik olmaktadir [1], [2].

Boole fonksiyonlarimn egik lojigi kullamilarak gerceklestirilmesi 1960°dan bu yana
yogun aragtirmalar yapilan bir konudur. Egik lojiginin ¢ok girisli sistemlerdeki
kapasitesi ve karmagik sayisal sistemlerin tasariminda yararlamlabilir bir alan oldugu
ortaya konmustur [1]. Herhangi bir boole fonksiyonu klasik AND - OR kap1 dizisiyle
gerceklenebilmektedir. Benzer sekilde, AND ve OR kapis1 gérevi géren esik lojigi
yapilar1 ile de bu fonksiyonlar gergeklenebilmektedir. Bu tiir yapilar, yapay sinir
aglarmm bir alt kiimesidir ve bu tiir aglar ii¢ tabakadan olugmaktadir: Girig tabakasi,
gizli tabaka ve gikis tabakasi. BSyle bir tasarim esik lojiginin avantajlarim kullanmadig:
i¢in 6nerilmemektedir.

Bir yapay sinir agimn CTL yapilar ile gergeklenebilmesi i¢in agirliklarin ve esiklerin
pozitif tamsay1 olmasi ve ndronun transfer fonksiyonunun kesin smrlayict olmasi
gerekmektedir. Ancak, dijital VLSI teknolojisiyle ger¢eklemeye uygun olabilecek
tamsay1 esik ve afirhklara sahip yapay sinir af1 modeli Sneren etkili bir 6grenme
algoritmasi bulunmamaktadir.

Bu ¢aliymada, li¢ tabakal ikili yapay sinir aglar1 i¢in ndron sayisiu otomatik tespit
eden bir 6grenme algoritmas: tanttilmugtir. Bu algoritma genel olarak negatif ve pozitif
agirliklarla ¢gahsmaktadir. Bir néral agi CTL devrelerle gergeklemek gerekirse, bu
algoritmamn buldugu negatif agirliklara karsi diisen girisin tiimleyeni ahnarak bu
negatif agwhklar pozitif degerlerine doniistiiriilmelidir. Bu algoritma, asagida
Rosenblatt tarafindan tamimlanan néron modelini kullanmaktadir [3], [4]:

y=r(%)
§=iwixi — @

i=1

Burada x;, i = 1,...,n, girisleri, @, i = 1,...,n, agrliklar, ay, esigi ve y, ¢ikisi
gostermektedir. Néronun transfer fonksiyonu f{&) su sekilde tanimlanmaktadir:

f(§=0 iff<0
f(@=1 if&>0

& = 0 ile tanimlanan (n-1)-boyutlu bir hiperdiizlem, lineer ayrlabilir bir boole
fonksiyonunu simiflayabilir. Ag fonksiyonu olarak da adlandirilan bu hiperdiizlem su
sekilde tammlanmaktadar:

net(x, wy) =ax; + apxs + ... + @xXn-ap =0

Lineer aynlabilirlik O6zellifine sahip bir boole fonksiyonu, yukardaki ndron
modelindeki agirhklar ve esik hesaplanarak tek bir néronla gergeklenebilmektedir.

xi

Eger verilen bir boole fonksiyonu bu 6zellie sahip degilse, bu fonksiyonun birkag
lineer ayrilabilir fonksiyonlara pargalanarak bir yapay sinir a1 ile gergeklenmesi
gerekmektedir. Bu amagla, gelistirilmis geniglet-ve-kes Ogrenme algoritmas:
(modified expand-and-truncate learning algorithm, METL) gelistirilmistir.

Algoritma, fonksiyonun ‘1’ oldugu ve ‘0’ oldugu giris vektorlerinin sayilarmn
belirlenmesi ile baglamaktadir. Eger fonksiyonun ‘1’ oldugu vektorlerin sayisi, ‘0’
oldugu vektorlerin sayisindan az ise Vminor=1, aksi takdirde Vmino=0 sekilde tanimlanan
bir azinlk gdsterici tespit edilir. Istenen ¢ikig1 Viminor'a €sit olan giris vektorleri, azmmlik
vektorleri; diger vektorler de gogunluk vektorleri olarak adlandiriimaktadir.

Girig vektorleri gerektigi gibi smiflandirildiktan sonra, fonksiyonun hangi boyuta
indirgenebilecegi test edilir. Bunun i¢in, azinhk vektorleri kiimesi incelemeye alinir. Bu
kiimedeki her bir eleman incelenerek degeri degismeyen bir giris aranir. Ornek olarak
su fonksiyonu dikkate alalm. {xix,x;} = {000, 001, 010} giris vektérleri icin f
fonksiyonu ‘1’ degerini alsin ve diger giris vektorleri i¢in de f fonksiyonu ‘0’ degerini
alsin. Burada, azinlik vektSrlerinin sayis1 3°tiir ve bu vektorler incelendiginde x; girisi
hep ‘0’ degerinde kaldig1 goriilmektedir. Boyle degismeyen girisler tespit edildikten
sonra Vminor degeri ve degismeyen giriglerin degeri not edilir. Verilen 6rnekte Viinor = 1
ve x3 = 0 olarak tespit edilir. Daha sonra, bu giris azinlik vekt6rlerinden atilir ve
gogunluk vektorleri arasinda, bu girigin degeri, not edilen degere esit olmayan
vektorler, cogunluk vektodrleri kiimesinden atilir. Verilen Srnekte, bu elemeden sonra
ilk durumdaki azinlik vektorleri kiimesi, {00, 01, 11} sekline doniigiir ve gogunltuk
vektorleri kiimesi de sadece {11} vektOriinii icerir. Elemeden sonra elde edilen
fonksiyon 2-boyutlu bir fonksiyondur ve benzer islemler yapilarak bu fonksiyon da
indirgenebilir. Bu indirgeme iglemi fonksiyon indirgenemez bir duruma gelene kadar
devam edilir.

Fonksiyon indirgendikten sonra fonksiyonun gergeklenebilecegi maksimum ndron
sayis1 belirlenir. Klasik lojik ailelerden bildigimiz gibi herhangi bir n-boyutlu boole
fonksiyonu 2" noron ile gergeklenebilir. Bu limit, Karnaugh diyagramlarinda agikga

xii

goriilebilmektedir. Fonksiyonun yapismi bildigimiz takdirde, bu smir azmnlk
vektérlerinin sayis1 kadar olmaktadir ve su sekilde ifade edilir:

N,

e =i 2317632770

i=1 i=1

Lineer Aynstirma (LS Decomposition, LSD) adi verilen bir metod, gergeklenebilecek
maksimum néron sayisim bulmak i¢in kullamlabilir. Bunun i¢in azmlik vektorlerinden
olugan bir kiime almir. Her bir kiime elemam, alt alta bir tablo olusturacak gekilde
yaziir ve bunlar grup liderleri olarak adlandirhrlar. Sonra, her elemanmn komsu
vektorleri tespit edilir. Bunun i¢in Hamming uzakhig1 ‘1’ olan vektérler tespit edilir ve
grup liderinin yanina yazilir. Bu gekilde tablo olusturulduktan sonra sifirdan farkli en
az komsulara sahip vektorler tespit edilir. Bu vektorlerin komsularmmn grup lideri
oldugu gruplar listelenir ve en ¢gok komsuya sahip olan grup ilk Lineer Ayrilabilir (LA)
fonksiyon olarak segilir. Bu segilen grubun elemanlar tablodan tamamen silinir ve geri
kalan vektorler igin bu islemler yenilenir. Ornek olarak, 4-girisli bir fonksiyon
diigtinelim. Bu fonksiyon {4, 5, 6, 7, 15} giris vektorleri i¢in ‘1°, digerleri i¢in ‘0’
degerini alsin. Bu vektérlerin komsularinm olusturdugu tablo, Tablo 1°deki gibidir.

Tablo 1. Verilen Ornegin Komsular Tablosu

Grup Lideri Komgular Komsu Sayisi
4 5,6 2
5 4,7 2
6 4,7 2
7 5,6,15 3
15 7 1

Tablo 1°de goriildiigii gibi vektdr 15, en az komsuya sahiptir. Bunun komsusunu
incelersek, vekt6r 7°nin en fazla komguya sahip oldugunu gériirtiz. Sonugta, bu grubu
LA fonksiyonu olarak seg¢ip bu elemanlan tablodan kaldirirsak Tablo 2 olugur:

Tablo 2. Verilen Ornegin indirgenmis Komsular Tablosu

Grup Lideri Komsular Komsu Sayisi
4 0

Buradaki vektér 4 de, ikinci LA fonksiyon olur ve sonugta ana fonksiyon, 2 alt LA
fonksiyona aynistirilmig bulunmaktadir. Bu gekilde elde edilen néron sayisimi Nispmax
ile gosterelim.

Son olarak, herhangi bir n-boyutlu boole fonksiyonu maksimum » ndron ile
gerceklenebilmektedir. Bunun i¢in su 4-girisli fonksiyonu dikkate alalm. {0, 3, 5, 6, 9,
10, 12, 15} icin fonksiyon °1°, diger vektérler i¢in de ‘0’ degerini alsm. Bu, girig
vektorlerinin en k6tli dagihmudir. Eger {1} ve {14} vektorleri, ¢ikis1 ‘1° olacak sekilde
doniistiiriiliirse, elde edilen fonksiyon, 2 noron ile gergeklenebilmektedir. Esas
fonksiyona dénmek i¢in bu degisikliji geri almamiz gerektiginden bu islem igin de 2
néron gerekmektedir. Sonugta, sh+hshs seklinde gergeklenecek bu fonksiyon igin
toplam 4 néron gerekmektedir. Bu sayr da girig vektoriiniin boyutuna esittir.
Genellestirirsek, eger n-girigli bir boole fonksiyonu, m-girigli bir fonksiyona
indirgenebiliyorsa, gereken maksimum néron sayisi su sekilde bulunur:

Biitiin bu smirlamalar birlestirilirse bir boole fonksiyonunu gergeklemek igin gereken
maksimum ndron sayis1 su sekilde bulunur:

Nmax =mjn[Nvmax9NISDmax’Ndimmax]

Temel vektoriin tipini (dogru veya yanls) belirlemek igin su yontem kullanilabilir: 11k
6nce tiim vektorlerin (dogru ve yanhs) komsularinin sayisi belirlenir. Komsu sayisi en
fazla olan vektdriin tipi, baglangi¢ tipi olarak segilir. Eger tipleri farkh iki vektér en
fazla komsu sayisina sahipse, azinhk vektorlerinin tipi baslangic tipi olarak segilir.
Belirlenen baglangic tipi 0 (yanhs) ise dogru vektorler yanhs vektre ve yanlhg
vektorler de dogru vektére doniistiiriiliir. Baglangig tipini belirleyen vektor temel
vektdr olarak segilerek su formiile gore ilk agirhiklar bulunur:

X1+ oyt ...+ X - =0,

@ =2, Eger f(v)=1vev! =1,
o =-2, Eger f(v)=1vev.=0,
a = 4, Eger f(v)=0ve v. =1,
o = -4, Eger f(v)=0vev. =0,

n
k
W, = Zcokvc -3
k=1

Burada, v., temel vekt6rii; v;, temel vektSre Hamming uzakhi: ‘1° olan vektérleri; a,
esigi; v. ise temel vektoriin i-nci bitini gostermektedir. Temel vektor ile aym tipteki v;
vektorleri bir kiimede toplanur.

Ik agirhiklar hesaplandiktan sonra temel vektdre en yakm aym tipteki bir vektor
secilerek kiimeye yerlestirilir ve agagidaki bagmntilar geregince agirhklar hesaplanir:

o, =(4C,-2C,) i=l..n

mm ml:imlv;] b4 fmax = max[iwiv:jl

timin + S e

Eger tmin > fmax kosulu gergeklesiyorsa, bu denenen vektor kiimeye dahil edilebilir ve
bulunan agirhklar bu kiimedeki vektorler ile diger vektorleri birbirinden kesin olarak
aymr. Bu sart gergeklesmedigi takdirde agirhklan degistirerek bu sart saglanmaya
¢aligihr. Bunun i¢in #i’1 saglayan kiime i¢indeki en az ‘1’ sayisina sahip vektSr (Vimin)
Ve fmax 1 Saglayan en az ‘1’ sayisina sahip, kiime i¢inde olmayan vektdr (vnax) belirlenir
ve asagidaki bagmti geregince agirliklar degistirilir.

Imin < fmax durumunda frax - fmin < Dif gart1 aranir. Dif degiskeni, ilk deger olarak +oo
olarak segilir ve bu iki sart saglandifinda agirhklar degistirilir ve Dif = fuax - min Olarak
secilir. Agirhklar degistirildikten sonra fmin Ve fmax tekrar hesaplanir ve bu islemler
Imin > fmax Oluncaya veya hicbir sart saglanmaymcaya kadar devam ettirilir. Eger
yukaridaki higbir sart saglanmiyorsa, o zaman bu denenen vektér kiimeye dahil
edilemez ve hesaplanmig agirhklar iptal edilerek bir 6nceki agirhk degerlerine doniiliir.

Bu kosullar uyarinca her dogru vekt6r kiimeye yerlestiriimeye gahisiir. Eger geriye
kalan hicbir dogru vektﬁr kiimeye yerlestirilemiyorsa, en son hesaplanan agirliklar,
birinci néronun agihklar1 olarak kabul edilir ve tlim geriye kalan vektorler
doniigtiiriiliir (dogrular yanhglara ve yanhglar da dogrulara). Bu doniigtiirmeden sonra

xvi

dogru vektérler tekrar kiimeye yerlestirilmeye ¢ahgihir. Bu sekilde devam edilerek tiim
dogru vektorler kiimeye dahil edilir. Islem sonunda otomatik olarak gerekli néron
sayisi da belirlenmis olmaktadir.

Tiim noronlar belirlendikten sonra indirgenmis fonksiyon, su bagmntilar geregince ana
fonksiyona doniistiirtiliir:

netf,, (X,co'o) = m,X, + net (xl’xza”'9xi-1ax1+1a'“ax,,,wo)+wo -,

fn-l

o, =—mi.n[net ,,_,(x1 b STLN JEVS ARPLLLI 4 ,a)o)]-i-l . .
f » B 12%Vi+l? sNn , Egel‘ meor=0VCle=0,
o'y= o,

W, = min[netf,,_l (xl,xz,u-,x,._l,xm,---,x,,,a)o)] -1

, Eger Vainar=0ve Vo =1,

' —
, =—max[net "_l(xl,xz,u-,x,_l,x. RIS 4 ,(oo)]—l .

! 4 " g , Eger Vainor=1ve vn =0,
@'y = o,

W, = max[netf,-, (xl,xz,~-,x,_1,x,+l,~~,x,,,wo)] +1

@'y =, + o,

, Eger Vapor=1vevy =1,

Burada f ", n-girisli fonksiyonu; v, f “nin azmhk vektérlerinin i-nci bitini; Vninor =
f "(Ww); xi, f “nin azmlk vektdrlerinin degeri degismeyen girigini gostermektedir.
Fonksiyon kag kere indirgenmigse o kadar bu bagmtilar uygulanarak ana fonksiyona
do6niiliir.

Tiim agrhklar bulunduktan sonra gikis nronunun agirhklarm hesaplamak igin bir T
vektorli tammlanr. Bu vektdriin elemanlan su sekilde belirlenir: Eger i-nci ndron
gercek dogru vektorlere dayamlarak olusturulduysa T = 1, doniigtiiriilmiis dogru
vektdrlere (gergekte yanhs vektorler) dayamlarak olusturulduysa T' = 0 olarak segilir.

Bu vektér bulunduktan sonra tiim doniistiirtilmiis n6éronlarm agwhklann -1 ile
carpilarak esas formlarina dondiiriiliir ve », gizli tabaka igindeki toplam néron sayisim
gostermek sartiyla ¢ikis néronunun agirhklan su sistematik metod ile bulunur.

Metod, en igteki fonksiyon olan net,’den baslamaktadir. net, = 2h, - 1 olarak segilerek
su bagntilar geregince nef,.; bulunur:

net,_, = (- min[net, |+ h,., +ret,, Eger T*! =1 ise,

net, , = (max[net,,] + l)h,,_l + net,, — (max[net,,] + 1) , Eger T*' =0 ise.

Bu metoda, net; bulunana kadar devam edilir. Bulunan bu ag fonksiyonunda A’ler i-
nci néronun ¢ikigmi; A’lerin katsayilari, ¢ikis néronunun bu gizli noronlara ait
agirhiklan ve sondaki negatif say1 da ¢ikis néronunun esigini géstermektedir.

Cikis n6ronunun agirliklarmin bulunmas: ile METL algoritmasi, verilen bir boole
fonksiyonunu 3 tabakah bir yapay sinir ag: ile gergeklemis olmaktadir.

METL algoritmasnin en Onemli &zellifi, elde edilen yapay sinir agmm, negatif
agirliklar doniistiirilmek suretiyle CTL devreleri ile VLSI teknolojisi kullamlarak
gerceklemenin miimkiin olmasi ve 6nerilen bu agin gizli tabakadaki nSron sayisinin, en
fazla girig vektoriiniin boyutuna esit olmasidir. Bu son 6zellik, bize n-girigli genel
amagh CTL tabanh bir PLA devresinin, » tane gizli nérona sahip olabilecegini
gostermektedir. Ornegin; 16-girisli genel amagh NOR-NOR PLA devresinin ilk NOR
dizisinde 32768 tane hat bulunurken, aym giris sayisma sahip CTL-CTL PLA
devresinde bu say1 sadece 16’dir. Sonugta, tiimlestirme bakimindan ¢ok biiylik bir yer
kazanc1 saglanmaktadw. METL algoritmasi, bazen bu smin agan sonuglar
tretebilmektedir. Farkh baglangic noktalan segilerek her zaman n-girigli bir boole
fonksiyonu, gizli tabakasmda maksimum » néron bulunduran 3 tabakali, tlim

agrrhiklarn ve egiklerin tamsay1 oldugu bir yapay sinir ag1 ile ger¢eklenebilmektedir.

CHAPTER 1

INTRODUCTION

Capacitive Threshold Logic (CTL, [2]) is an evolving technique for use in neural
networks. The increasing importance of CTL requires the realization of boolean
functions (switching functions) by CTL circuits since threshold logic gates have some
advantages on traditional logic gates [2]. One of the important advantages of
threshold logic gates is that the realization of a switching function by threshold logic
gates requires smaller layout area than that of the traditional one.

Linear separability of a switching function is a very important property for the
realization of switching functions by threshold logic. A switching function that has the
property of linear separability can be realized by using one threshold logic gate. If a
switching function does not have this property, then more than one threshold logic
gates are required to realize the switching function. To realize these linearly
inseparable functions, first, the function must be decomposed into multiple linearly
separable (LS) functions and each LS function must be realized by a threshold logic
gate. Then, these gates must be combined by another threshold logic gate to produce
the desired output. We call this kind of topology as binary neural network.

The threshold logic gates can be called as neurons since the neuron model uses the
principles of threshold logic. To realize a LS switching function by threshold logic
gate, we must determine the weights and threshold of corresponding neuron. The
weights and threshold of a neuron can be determined by using learning algorithms for
neural networks.

Any switching function can be realized by three-layer binary neural network. To
realize binary neural networks by CTL, the weights and thresholds of the neurons

must be positive integer numbers and the activation function of a neuron must be
hard-limiting [2]. Since there has not been an efficient learning algorithm for three-
layer neural networks which employs a hard-limiting activation function, realization of
switching functions causes some optimization problems. In recent years, the back
propagation learning (BPL) algorithm has been applied to many binary-to-binary
mapping problems [5], [3]. However, since the BPL algorithm searches the solution in
continuous space, the BPL algorithm applied to switching functions results in long
training time and inefficient performance. Also in the BPL algorithm, the number of
neurons in the hidden layer required to solve a given problem is not known a priori. It
has been widely recognized that Stone-Weierstrass’s theorem does not give a
practical guideline in determining the required number of neurons [6], [7]. Boolean-
like training algorithm (BLTA, [5]) solves binary-to-binary mapping problems by
using four-layer binary feedforward neural network (BFNN) which is not an optimal
solution. The expand-and-truncate learning algorithm (ETL, [6]) solves any binary-to-
binary mapping problems by using three-layer binary neural network which is
sufficient for VLSI implementations. The ETL algorithm has some weak concepts
that cause unoptimal solutions. The ETL algorithm can not realize some linearly
separable functions by only one neuron. This weakness causes high number of

neurons in the hidden layer.

In this study, a geometrical learning algorithm called modified expand-and-truncate
learning algorithm (METL) is described to train a three-layer binary neural network
for the generation of binary-to-binary mapping. The neurons in this binary neural
network employ hard-limiting activation functions and the weights and thresholds of
the neurons are integer numbers. This will greatly facilitate hardware implementation
of the binary neural network using CTL circuits. METL algorithm solves the
weakness problem of ETL algorithm. In the next chapter, the fundamentals of
threshold logic are described. Then, in Chapter 3, the learning algorithms (ETL and
METL) for the binary neural networks are described.

CHAPTER 2

MATHEMATICAL BACKGROUND OF THRESHOLD LOGIC

2.1 Introduction

In this chapter, the fundamentals of threshold logic are described. In the first part, the
switching functions that are used in boolean logic, are described and necessary
definitions and theorems are given. In the second part, special switching functions that
are called threshold functions, are described and definitions and theorems related to
threshold functions are given.

2.2 Switching Functions

A switching function of »-variables is a two-valued function f defined on the vertices
of the unit cube in the n-dimensional space [8, p.1-55]. The two values of f are always
denoted by the integers 1 and 0 with 0 < 1 as usual. The theory of switching functions

is given next.

2.2.1 The n-Cube Q"

Let Q denote the set which consists of the two values of the classical two-valued
logic. The two elements in Q are denoted by various notations such as TRUE (7T) and
FALSE (F), 1 and -1, or 1 and 0. For definiteness, we will denote the two elements in
Q by the two integers 1 and 0 throughout the thesis.

For any given positive integer », consider the Cartesian power

which is the Cartesian product of n copies of Q. Thus, the elements of Q" are the 2
ordered n-tuples.

(xl, X2y oes s x,,),

where the & coordinate x; is an element in Q for everyk=1,2,...,n.
Hereafter, Q" will be called the n-cube and its 2" elements its points or vertices.
Since the coordinates x, of the points of Q" are either 1 or 0, there is no danger of

ambiguity if we delete the commas between the coordinates as well as the parentheses

at both ends. Then each point of Q" may be represented by a sequence

X1X2...Xn

of n juxtaposed binary digits, and hence corresponds to an integer x satisfying

0<x<2"-1.

On the other hand, since Q is a subset of the R of all real numbers, the n-cube Q" can
be considered as a subset of the Euclidean n-space R". In fact, Q" consists of the 2"

vertices of the real n-cube

which is the Cartesian product of n copies of the closed unit interval / = [0, 1] of real
numbers r satisfying 0 <r < 1.

2.2.2 Switching Functions

By a switching function, we mean a function

f:@—-90

from the n-cube Q" into Q. In other words, a switching function f(xi,...,x;) of n-
variables x1,...,x, is defined by assigning one of the two integers in Q to each of the 2"
points (x,...,x,) of O". Thus, there are

#n) =27

switching functions of #-variables.

The table of correspondence of a switching function f: Q" — Q is called the truth
table of f.

A switching function f: 0" — Q is completely determined by either of its two inverse
images

FiW={xegrx =1,
£ ={xe0|f(x) =0},

which can be called the on-set and the off-set of the switching function f respectively.
When the coordinates of the points in £ (1) are fully displayed in the form of an array,
£1(1) is usually called the on-array or the on-matrix of the switching function £, In a
similar situation, £~'(0) is usually called the off-array or the off-matrix of f.

Since Q consists of two elements 1 and 0, there are exactly two constant functions of
n variables: the switching function f: Q" — Q with f{x) = 1 for all x € Q" is called the
unit function and that with f{x) = 0 for all x € Q" is called the zero function. These
constant functions of n variables are denoted by 1 and 0 respectively when there is no
danger of ambiguity.

Let i be any integer satisfying 0 < i < n. By the /™ elementary function of n-variables,

we mean the switching function

ei:Q“—)Q

defined by ei(x) = x; for every point x = x;x;...x, of the n-cube Q". Thus the value of
the function e; at an arbitrary point x of Q" is exactly the i coordinate x; of the point
x. Because of this, we will denote the i® elementary function of n-variables by the

symbol x;.
2.2.3 Cubical Complexes

Let n be a given positive integer and consider the n-cube @". We will define the notion
of a cube in @". For this purpose, let us consider the set

Q0 ={1,0,*}

which consists of three elements, namely, the integers 1 and 0 together with the
“don’t care” symbol *. Thus, we have

QcQ, 0’ =0u {*.

On the other hand, let

L={1,2,...,n}

denote the set of the first » positive integers.

To define the notion of a cube in O, let

$:L>Q

be an arbitrarily given function defined on the set / with values in Q". Then ¢
determines a subset C of the n-cube Q" as follows: A point x = x;...x, of 0" is in the
subset C if and only if (iff)

Xi = ﬂl)

for every integer i € L such that ¢(7) # *. This subset C of §" will be called the cube
in Q" defined by the function ¢, which will be referred to as the coordinate function of
the cube C. For each integer i € L, the element ¢(}) € Q" will be called the i*
coordinate of the cube C. Since the cube C is completely determined by its
coordinates ¢(1)#(2)... g(n), we can denote the cube C in O" as

C=DH2)... dn).

Let C be an arbitrarily given cube in Q" defined by its coordinate function ¢: L — Q'
By the dimension of the cube C, we mean the cardinality of the subset ¢™'(*) of C; in

other words, the dimension of C is the number of *’s in its coordinates

HDE2)... §n).

The dimension of C is denoted by the symbol dim(C) and obviously satisfies the
inequalities

0 < dim (C) <.

If dim(C) = r, then C will be called an r-cube in Q". In this case, C consists of the 2°
points of Q" which can be obtained by replacing the r *’s in the coordinates of C by

the integers 1 or 0.

Since the correspondence between the functions ¢ : L — Q" and the cubes

C=gDH2)... n)

is obviously one to one, there are 3" cubes in the n-cube Q"

The cubes C and D in @" of the same dimension are said to be consecutive iff they
differ in one and only one coordinate. Since C and D are of the same dimension, it is
quite clear that the lone disagreeing coordinate of C and D can never be a *. For

example, the cubes 0**1 and 0**0 in O* are consecutive.

A 0-cube C in Q" consists of a single point x € Q" and may be identified with the point
x. Hereafter, the 0-cubes in Q" will be called the vertices of O°.

The 1-cubes in Q" will be called the edges of O". An arbitrary edge e of Q" consists of
two consecutive vertices of Q" called the end points of e. Conversely, any two
consecutive vertices # and v of Q" form an edge of Q" obtained by replacing the
disagreeing coordinate in u# and v by the “don’t care” symbol *. For example, the edge
of O’ formed by the vertices 0111 and 0101 is 01*1.

The 2-cubes in Q" will be called the squares of Q. An arbitrary square s of Q"
consists of four points of Q" called the vertices of s. If we replace one of the two *’s
in the coordinates of the square s by the integers 1 or 0 respectively, we obtain two
consecutive edges d and e of O°, called a pair of opposite sides of the square s.

Besides, we have

s=due

10

in words, the square s is the union of any pair of opposite sides. Conversely, any two
consecutive edges d and e of Q" form a square of Q" obtained by replacing the
disagreeing coordinate (which clearly can never be a *) by *. For example, the square
of 0" formed by the edges 01*1 and 00*1 is 0**1.

Now let r > 3 and consider any given r-cube C in Q". If we replace one of the » *’s in
the coordinates of C by the integers 1 or 0 respectively, we obtain two consecutive
(r-1)-cubes D and E, called a pair of opposite faces of the r-cube C. Besides, C is the
union of any pair of opposite faces; in symbols,

C=DUE.

Conversely, any two consecutive (7-1)-cubes D and E in Q" form a pair of opposite
faces of an r-cube C whose coordinates are obtained by replacing the disagreeing
coordinates are obtained by replacing the disagreeing coordinate in D or E by the
“don’t care” symbol *. For example, the 3-cube in Q* formed by the consecutive

squares 0**1 and 0**0 is 0***,

Let F be an arbitrarily given subset of the n-cube Q". By the cubical complex of the
set F in 0", we mean the collection K(F) of all cubes in Q" contained in the set F. For
each non-negative integer r < n, let K{F) denote the collection of all r-cubes in Q"

contained in the set F. Then K(F) is the union of these collections; in symbols,

K(F)=Ko(F) U Ky (F) U ... U Ko(F).

To construct the cubical complex K(F) of a set F in O, it suffices to construct the

collections,

11

KO(F)s KI(F)’ e KH(F)

by the following algorithm.

By definition, Ko(F) is the set of all points in F, that is

Ko(F)=F.

Let » > 0 and assume that K. ;(F) has already been constructed. Consider all possible
pairs of consecutive (r-1)-cubes in K..;(F). If D and E is such a pair, then D and £
form a pair of opposite faces of an r-cube C(D, E) whose coordinates are obtained by
replacing the lone disagreeing coordinate in D or F by *. Since D < F and E c F, we
have

C(D,E)=DUECF.

Then K(F) is the collection of all »-cubes C(D, E) for all possible pairs of consecutive
(r-1)-cubes D and E in K.,(F). This completes the inductive description of the
algorithm for constructing K(F).

By a cubical cover of the set F in (", we mean a sub-collection y of the cubical
complex K(F) such that F is the union of all cubes in y. Thus, a sub-collection y of
K(F) is a cubical cover of F iff every point of F is contained in at least one cube of y.
In particular, Ko(F) is a cubical cover of F.

Now let us consider an arbitrarily given switching function

12

[:@-0

of n variables. By the cubical complex K(f), we mean K(F) for the on-set F = f'(1)
of fin O and every cubical cover y of F will be called a cubical cover of the
switching function f.

For example, suppose that » = 4 and f (1) = {0000, 1001, 1100, 1110}. By
definition, Ko(f) = F =f'(1) consists of these 4 vertices. Among these vertices, there
is only one pair of consecutive vertices 1100 and 1110. This pair forms an edge 11*0.
Thus, X(f) consists of a single edge 11*0 and, consequently, Ki(f) is empty for every
r =2, 3 and 4. Hence K(f) consists of four vertices and one edge. Besides, one can see

that 0000, 1001, 11*0 constitute a cubical cover of the switching cover.

2.3 Threshold Functions

Threshold functions are special switching functions that have the property of linear
separability. In this section, the properties of threshold functions are described.

2.3.1 Linear Separability

A switching function f : O" — Q of n variables is said to be linearly separable
provided there exist a hyperplane (ie. an (n-1)-dimensional linear variety) z in the
Euclidean n-space R" which strictly separates f'(1) from f~'(0); that is to say, the on-
set £(1) of f lies on one side of 7, the off-set £'(0) of f lies on the other side of 7,
and the intersection 7 N Q" is empty. The hypetplane z will be called a strict
separating hyperplane of the given linearly separable switching function £,

Let z be any strict separating hyperplane of a given linearly separable switching
functionf: 0" — Q and let

13

ox1tax;+ ... taxn=T

be an equation of the hyperplane 7 in the » variables x, ..., x,. Multiplying both sides
of the equation by -1 if necessary, we may always assume that, for an arbitrary point

X =Xp.. %
of the n-cube ", we have
@ax; + ax; + ... + x> T, iffix)=1,
ox; + apxa + ... + axn < T, if fix) = 0.
In this case, the system
(@, ..., & T)

of n + 1 real numbers is called a strict separating system for the linearly separable
function f. The first n real numbers @, ... , a in this system are called the weights,
and the last real number T is referred to as the threshold.

The definition of linear separability given above implies the following theorem.

14

Theorem 2.1: A switching function f: 0" — Q of n variables is linearly separable iff,
for each subset X of n + 2 points of O, there exists a hyperplane 7k in the Euclidean
n-space R which strictly separates K n f(1) from K N £(0).

Preposition 2.2: For an arbitrarily given switching function f: " — Q of n variables,
the following five conditions are equivalent:

(1) fis linearly separable.

(ii) There exist real numbers a;, ... , a, and 4 such that, for an arbitrary point

X=X ... x, of 0", we have

ax; +ax;+ ... +ax, 2 A, iffix)=1,
aix; +ax;+ ... +ax, <A, if Ax) =0,
(iii) There exist real numbers b, ... , b, and B such that, for an arbitrary point

X=X ... X of @, we have

bix; + byx2 + ... + bpxn £ B, iffix)=1,

bix; + bxx: + ... + bxn> B, if Ax) =0,

(iv) There exist real numbers ¢, ... , ¢n and C such that, for an arbitrary point

X=1Xx... X, of @", we have

cixytcexa+ ... +exn<C, iffix)y=1,

cixp+ex+ ... tepxn2C, ifflx)=0,

15

(v) There exist real numbers dy, ... , dy and D such that, for an arbitrary point

X=x1... Xy of 0", we have

dix; +dxz; + ... +dwxn> D, iffix)=1,
dix; +dx; + ... +dxn <D, if ix)=0,

Proof: (i) = (ii). Assume that f is linearly separable Then, by definition, / admits a
strict separating system (@, ... , an;). Take 4 = T and a; = @ for every i = 1,...,n.
Then the condition (ii) holds.

(ii) = (iii). Assume that f satisfies the condition (ii). Take B = - 4 and b; = - g; for
every i = 1,...,n. Then we obtain (iii) by multiplying the inequalities in (ii) by -1.

(iii) = (iv). Assume that f satisfies the condition (iii). Consider the off-set F *=f"'(0)

of f. Then for each point x = x;...x, in F'° , we have

px)=bix; + ... +byx, - B> 0.

Define a positive real number 7 as follows: If F° is empty, set r = 1; otherwise set r to
be the smallest of the real numbers p(x) for all x € F °. Then we obtain (iv) by taking

C=B+randci=biforeveryi=1,...,n.

(iv) = (v). Assume that f satisfies the condition (iv). Take D = - C and d; = - ¢; for
every i =1, ..., n. Then we obtain (v) by multiplying the inequalities in (iv) by -1.

(iif) = (iv). Assume that f satisfies the condition (iii). Consider the on-set F =f"'(1) of

Jf- Then for each point x = x;...x, in F, we have

16

gx)=dwx1+ ... +dpxn-D>0.

Define a positive real number s as follows: If F is empty, set.s = 1; otherwise set s to

be the smallest of the real numbers g(x) forallx € F. Let T = D + %s and @ = d; for

everyi=1,...,n Then

(B, ..., o0 1)

is clearly a strict separating system for /. Hence (i) holds. Q.E.D.

For an arbitrary point x = x;...x, of the #n-cube ", if we have

X+ apx2 + ...+ oxn 2 T, ifx)=1,

x; t apx; + ...+ ox, < T, if flx) =0,

then, the system (@, ... , an; T) of n + 1 real numbers is called a separating system
for the linearly separable function f. Hence, every strict separating system for f is

always a separating system for /' but the converse is not always true.

Theorem 2.3: If weights and threshold are integer numbers, every separating system
(@, ..., an; T) can be transformed into a strict separating system (@’, ... , &’; T”) by
setting

@i =260i,

T’=2T-1.

17
Proof: As (a, ..., an; T) is a separating system, the following inequalities are satisfied

@x; + oxs + ... + @xn2T>T-1, iffx) =1,

ox; +ax;t+ .. toaxn<T-1<T, if ix) =0,

By multiplying these two equations by 2, we obtain

2001 + 2amx2 + ... + 200x, 22T > 2T -2, iffix)=1,
200x1 + 20px2 + ... + 2%, 2T -2 < 2T, iffix)=0,

As2T-2<2T-1<2T, we obtain

2a0x1 + 2apx2 t+ ... + 200, > 2T - 1, ifflx)=1,

2a0x; + 2apx; + ... + 2@, <2T -1, if ix) =0,

Ifweset @ =2wand T°>=2T -1 for every i = 1, ... , n, we have the strict

separating system (@’, ... , a’; T"). Q.E.D.

Corollary 2.4: If a switching function f: Q" — Q is linearly separable, so is its
complement 1 : 0" — Q.

Proof: Since f is linearly séparable, it admits a separating system (@, ... , an; 7).
Then, the condition (iv) in Preposition 2.2 holds for its complement f * with C = T and

ci=aforeveryi=1, ..., n. Hence f’ is lincarly separable. Q.E.D.

Definition: Linearly separable switching functions are called threshold functions.

18

2.3.2 Characterizing Parameters

Let K be any subset of the n-cube Q". By the power n(K), we mean the number of
points in K. The sum of the i coordinates of K is defined as

hY (K) = in .

The n + 1 non-negative integers

ﬂ(K)’ SI(K)a see s SH(K)

will be called the parameters of the set K — (. These can be easily computed as

follows: For each point x € X, consider the (n + 1)-vector
Vi=(1,%1, ... 5 Xn)

of the Euclidean (n + 1)-space R™". Then the parameters of K are the coordinates of

the vector sum

n:én.

19

Two sets are K and L in Q" are said to be equipollent iff they have the same

parameters; that is,

oK) = (L), S(K)=S8(L)

foreveryi=1, ..., n.

Let f: Q" — Q be an arbitrarily given switching function of » variables. Then the
parameters of the on-set F = f~'(1) will be called the parameters of the function £: in
symbols,

xf) = a(F), Si(f)=Si(F)

for every i = 1, ... , n. Two switching functions f, g : Q" — Q are said to be
equipollent iff their on-sets F = f'(1) and G = g"'(1) are equipollent. In other words,
Jfand g are equipollent iff they have the same parameters.

Theorem 2.5: If a switching function f: 0" — Q is equipollent to a threshold function
g:Q" > O thenf=g.

Proof: To prove the theorem by contradiction, let us assume f'# g and consider the
following sets in Q™

F=f'(1), G=g'(), F’=f'0), G’ =g"0).

20

Since f# g, we have F# G and F'* # G . Since 2(F) = #(G), it is clear that
MGNAF)Y=a(G N F)=k>0.

Let 31, ... , Jx denote the & points of G N F *and let zi, ... , zx denote the X points of
G’ N F. Consider the intersection G N F. If G N F is not empty, denote the points of
G N Fbyuxy, ..., x;. Then we have

G={X15 e s X | V15 «ev s Vi)

F={xy,...,x| 21, ... , 2x}.

Since F and G are equipollent, we have

J k J ¢
Dx, + 2.y, =%, +§;z, :
i=1 i=

i=1 i=1

Hence we obtain the equality

& k
Zyi = Zzi .
i=1 i=1

On the other hand, if G N F is empty, then we have

21

G={yl, ...,yk}, F= {zl,...,zk}.

In this case, the equipollence of G and F directly implies the equality

k k
2= Yz, Q.E.D.

Corollary 2.6: If two distinct switching functions £, g : 0" — Q are equipollent, then

neither of them is linearly separable.

Corollary 2.7: A threshold function f: Q" — Q is completely determined by its

parameters.

The Chow label of fis a set of parameters of fand it is defined by

bo = 2(f) - 2°

b, =2-(25,(r)-(f)).
Chow label of f can also be found by following equations,

»=1,
»i=2x-1,
POV =2"®) -1, Y=y X=X1.Jn
b, = Zf”(y)y,, i=0,...n

xe(FUF)

22

These labels provide simple means to ascertain whether or not an arbitrarily given
switching function is one of the known threshold functions. The ordered absolute
value of Chow labels (parameters) of threshold functions (n < 6) are listed in
Appendix A. |

Example: Consider a switching function as shown in Table 2.1. The Chow label of
this function is found as shown in Table 2.2.

Table 2.1 Truth Table of The Switching Function

xixzx3 | 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111

1o 1110}l 1] o1

Table 2.2 Chow Parameters of The Given Example

Yo »n » » SO | n)y)

0 +1 -1 -1 -1 -1 -1 +1 +1 +1
1 +1 -1 -1 +1 +1 +1 -1 -1 +1
2 +1 -1 Sl -1 +1 +1 -1 +1 -1
3 +1 -1 +1 +1 +1 +1 -1 +1 +1
4 +1 +1 -1 -1 -1 -1 -1 +1 +1
5 +1 +1 -1 +1 +1 +1 +1 -1 +1
6 +1 +1 +1 -1 -1 -1 -1 -1 +1
7 +1 +1 +1 +1 +1 +1 +1 +1 +1

b= 20w 22 26

x FUF')

2.3.3 Unateness

A switching function f: " — Q of n variables is said to be positive in its i" variable
iff fhas a polynomial expression in which no term contains x;’ as a factor [8, p.68-70].
Similarly, f is said to be negative in its i* variable iff it has a polynomial expression in

23

which no term contains x; as a factor. The switching function f is said to be unate in

its i variable provided that it is positive or negative in its /" variable.

A switching function f: 0" — Q is said to be unate iff it is unate in each of its
variables. Positive and negative switching functions are defined similarly.

A unate switching function f: 0" — Q is positive iff

28i(H = ()

foreveryi=1,...,n.

CHAPTER 3

LEARNING ALGORITHMS FOR BINARY NEURAL NETWORKS
3.1 Preliminaries

Rosenblatt introduced a learning algorithm to accompany a mathematical model which
had previously been presented to account for phenomena observed in a biological
neural setting [3], [4]. This perceptron model of neuron has inputs x;, and connection
weights @, i = 1,...,n, a threshold ap, a neural transfer characteristic f{£), and an
output y. This model of neuron is described by

y=f() (3.1a)
§=iwixi — (3.1b)

i=]

where x;, i = 1,...,n, represent inputs, @, i = 1,...,n, represent weights, ay denotes a
threshold and y denotes the output of a neuron. For the binary outputs, the most
useful activation function f{4) is described by

f(9=0 if£<0

F@O=1 if£20 G-

This function is called hard-limiting activation function. &= 0 represents a hyperplane
which separates the input space into two classes.

25

The perceptrons whose activation function is hard-limiting, are called hard-limiting
perceptrons. The neuron in the Binary Neural Networks (BNN) employs a hard-
limiting activation function that only integer weights and integer threshold are
accepted. This property give chance to facilitate hardware implementation by using
Capacitive Threshold Logic (CTL) circuits and other VLSI technologies.

The perceptrons whose activation function is soft-limiting, are called soft-limiting
perceptrons. Sigmoid is an example of soft-limiting activation function and it is
described by

= 3.3
1+e# 33

This activation function turns a perceptron into a classifier with graded decision
boundaries [3]. This kind of functions mostly use in back propagation learning
algorithms.

Each neuron in BNN represents a hyperplane which separates the input vectors whose
desired output is 1 from the other input vectors whose desired output is 0. Hence
training inputs located between two neighboring hyperplanes have the same desired

output.

3.2 Geometrical Learning (ETL) Algorithm

The geometrical learning algorithm called expand-and-truncate learning (ETL) is used
to train a three-layer binary neural network (BNN) for the generation of binary to
binary mapping. The ETL algorithm finds a set of required separating hyperplanes and
determines the integer weights and integer thresholds of neurons, based on a
geometrical analysis of given training inputs. ETL algoritbm always guarantees
convergence for any binary-to-binary mapping, automatically determining the required

26

number of neurons in the hidden layer, while back propagation learning algorithm [3]
can not guarantee convergence and can not determine the required number of hidden
neurons. Before the description of the algorithm, some preliminary concepts will be
explained.

Assume that a set of »-bit input training vectors is given and desired binary output of
each training vector is known. An n-bit input vector can be also considered as a
vertex of an n-dimensional hypercube [6]. As mentioned before, the two classes of
training input vectors (desired output of 1 and 0) can be separated by an (n-1)-
dimensional hyperplane which is expressed as a net function,

net(x, @y = @x; + @px; + ... + @Xn-a» =0 (34)

where the a's are constant. In this case, the set of training inputs is said to be linearly
separable, and the (n-1)-dimensional hyperplane is the separating hyperplane. This
kind of hyperplane can be realized by »-input neuron with a hard-limiting activation
function.

If a given binary-to-binary mapping function has the property of linear separability,
then, this function can be realized by only one neuron; otherwise, more than one
neurons are required to realize the function. To realize linearly inseparable switching
functions, they must be decomposed into two or more linearly separable (LS)
switching functions and all these LS switching functions must be combined to form
the desired output.

This algorithm shows how to decompose linearly inseparable switching functions into
multiple LS switching functions based on geometrical approach and combine these LS
switching functions to form desired output. With this algorithm, any binary-to-binary

27

mapping functions can be realized by three-layer Binary Neural Network (BNN) with
one hidden layer.

3.2.1 Learning The Hidden Layer

Geometrical learning algorithm is called as expand-and-truncate learning (ETL). ETL
is used to separate an arbitrarily linearly inseparable switching function into multiple
LS switching functions. ETL will determine the required number of LS switching
functions, each of which is realized by a neuron in the hidden layer.

Based on a geometrical analysis of the training inputs, ETL finds a set of hyperplanes
so that inputs located between two neighboring hyperplanes have the same desired
outputs. The number of neurons in the hidden layer is equal to the number of
hyperplanes since separating hyperplane can be realized by a neuron with hard-limiting
activation function. Fundamental ideas of the algorithm is explained by using a simple
example. For this example, let us consider a switching function of three input variables
S(x3,x2,x1). If the inputs are {001, 010, 100, 101}, then the desired output of the
function is 1. If the inputs are {000, 111}, then the desired output of the function is 0.
For the inputs {011, 110}, the desired output values are not cared. So there are only
six training input vectors to realize the function.

An n-bit input can be considered as a vertex in an n-dimensional hypercube [6]. In our
example these input vectors are the vertex of a unit cube. The vertex whose desired
output is 1 is called true vertex. If the desired output of the vertex is 0, then this
vertex is called false vertex.

Definition: A set of included true vertices (SITV) is a set of true vertices which can
be separated from the rest vertices by a hyperplane [6].

ETL algorithm starts by selecting a true vertex. The first selected true vertex is called
as a core vertex. The first vertex can be selected based on the clustering center found

28

by the modified k-nearest neighboring algorithm [6]. For this example, the first
selected vertex is {001}.

Theorem 3.1: Let a set of n-bit vertices consist of a core vertex v, and the vertices
v’s for i = 1...n, whose i bit is different from that of v. (i.e., whose Hamming
distance from the core vertex is 1). The following hyperplane always separates the
true vertices in this set from other training vertices (i.e., false vertices in this set as
well as false and true vertices whose Hamming distance from the core vertex is more
than 1):

ox] + apx2 + ... + BXn - ap =0,

where

a=1, if f=landv.=1,
@=-1, if f)=1and v. =0,
@ =2, if f) =0and v, =1,
@ =2, if fv)=0and v’ =0,

k
@y = Zco,,vc -1
k=1

v! indicates the i bit of the vertex v.. The weights are assigned such that if v. =1

then @, > 0, else w, < 0.

Proof: The proof can be done by using the given weights (@’s) and threshold (ay),

29

Z @V —w, 20 for any true vertex v, in the set,
k=1
and

n
Z oV —w, <0 for any other training vertex v, .
k=1

Case 1: The core true vertex v, :

n n n

k k k
E DV, — @y = E WDV, —(E DV, —1) >0
k=1 k=1 k=1

Case 2: f(v) = 1 and v. =1 (v] =0):

n n
k k i
Za)kvi —@y = Zwkvc — @V, — @,
k=1 k=1

= iw,,vf —1—(iwkvf - 1) >0
k=1 k=1

Case 3: f(v) =1 and v. =0 (v, =1):

n n
k k '
2o~y =2 oy + oy -,
k=1 k=1 ‘

= ia)kvf —1—(ia)kvf —l) 20

=1 k=1

Case 4: f(v) = 0and v. =1 (v, = 0):

30

n n
k k i
Zwkv‘ —0)0 = Za’kvc —G)ivc _wo
k=1

k=1
=Zw,,vf —2—(ia)kvf —1) <0

k=1 k=1

Case 5: f(v) =0and v. =0 (v} =1):

n n
k k ‘
Za)kv, —@y = Zwkvc +@,v; — @y,
=1 k=1

=Y ovF —2—(2n:a>,,vf —1) <0
k=1

k=1

Case 6: Let v, be a vertex whose Hamming distance from the core vertex is more than

1. As the weights are assigned such that if v =1 then @ > 0, else @ <0,

Z WV~ < Z oV -2- (Z o vE - 1) <0 Q.E.D.
k=1 k=1

k=1

By using Theorem 3.1, the hyperplane - x3 - 2x; + 2x; - 1 = 0 will separate SITV
{001, 101} from the other training vertices {000, 010, 100, 111}. The “don’t care”
vertex {011} is assumed as a false vertex while calculating the weights according to
the core vertex. This hyperplane will be expanded to add to SITV possible more input
vertices which produce the same output, while keeping linear separability. To choose
an input vertex to be included in SITV, it is more useful to select the nearest true
vertex to the vertices in SITV in the Euclidean distance sense. By selecting the nearest
vertex, the probability of existing hyperplane that separates the vertices in SITV from
the rest vertices, becomes higher. The nearest vertex can be easily found by

31

considering Hamming distance from the vertices in SITV. In the given example, the
nearest vertex is selected as {100}. This vertex is called #rial vertex. This trail vertex
is added to SITV such that the hyperplane can separate the true vertices {001, 101,
100} from the other training vertices {000,010,111}. To determine whether such a
hyperplane exists and find the hyperplane, a geometrical approach is used.

Theorem 3.2: Consider a switching function £ : {0,1}" — {0,1}. The value of f
divides the 2" points of n-tuples (i.e. 2" vertices of n-cube) into two classes: those for
which the function is 0 and those for which it is 1. A function fis linearly separable if
and only if there exist a hypersphere such that all true vertices lie inside or on the
hypersphere, and all false vertices lie outside, vice versa [6].

Proof: Consider a reference hypersphere (RHS).

1)’ 1)’ 1\ n
(xl—gj +(x2_5) o +(x,,—5) -2 (3.5)

Notice that the center of the RHS is the center of the n-dimensional hypercube, and all
the 2" vertices are on the RHS.

Sufficiency: Suppose that only k vertices lie inside or on the hyperspace,
Zn (x, —-c)2 =r? and the other vertices lie outside the hypersphere. This implies

i=1

that for the k& vertices,

(=, —c,)2 <r? (3.6)

32

and for the other vertices lying outside,

n

Y (x, —c) > (.7)

i=1

Unless k£ = 2" or 0, the hypersphere must intersect with the RHS. If k£ = 2" or 0, all or
none are true vertices. In these cases, f becomes trivial. For the nontrivial f, the
intersection of the two hyperspheres must be found. When Equation (3.5) is
subtracted from the Equation (3.6), the following expression will be obtained,

i(l—zc,)x, <r? —z":cf (3.8)

i=1 i=1

Equation (3.8) indicates that the & vertices lie on a side of or on the hyperplane,
2. (1-2¢,)x,=r* =3 c}. Also, by subtracting Equation (3.5) from Equation

(3.7), we can show that the other vertices lie in the other side of the same hyperplane.
Therefore, the sufficiency of the theorem has been proved.

Necessity: Suppose that k true vertices lie in one side of or on the hyperplane,

Y o,%, =, (3.9)
i=]

where the a’s (i = 0,...,n) are arbitrary constant, and the false vertices lie in the other

side.

33
First suppose that

Y wx, <o, (3.10)

i=]

for the k true vertices and Z; o,x, > w, for the false vertices. As Equation (3.5) is

true for any vertex, adding Equation (3.5) to Equation (3.10), we obtain

n

4 (02, +x2 —x,) < @, . (3.11)

i=1

Equation (3.11) is true only for the k true vertices. This equation is modified to
obtain,

z 1 ? | 2
Z(x,—a(l—w,)) Swo+zz(l—a),) : (3.12)

i=] i=1

This equation indicates that these k true vertices are lie inside or on the hypersphere.

Secondly, consider that

D ox, >, (3.13)

i=1

34

for the £ false vertices. Adding Equation (3.5) to Equation (3.13) we obtain

AT SO T SR

i=1

This indicates that the & true vertices lie inside or on the hypersphere, and the false
vertices lie outside the hypersphere.

QE.D.

Consider RHS and an »-dimensional hypersphere which has its radius 7 and its center

C C C
at (C_l’ Fz" -, F") . Cy is the number of elements in SITV including trial vertex and
0 0 0

C; is calculated as follows:

c, =Y (3.15)

where v; is an element in SITV, and v' is the /™ bit of v . The point

C C
(Fl,%—,---,zf’—J in the n-dimensional space represents the center of gravity of all
0 0 0

elements in SITV.

If SITV is linearly separated from the other training vertices, there must exist a
hyperspace as shown in Theorem 3.2, to include SITV and exclude the other training
vertices. To find such a hypersphere, consider the hypersphere whose center is located
at the center of gravity of all elements in SITV. If this hypersphere separates, this one

35

can do with the minimum radius. On the other hand, a hypersphere with its center
away from it must have a longer radius in order to include all the elements in SITV.
This will obviously increase the chance of including non-SITV elements. Hence the
hypersphere with its center at the center of gravity is selected and is called as a

separating hypersphere which is expressed as

When this separating hyperspace intersects RHS, an (» - 1)-dimensional hyperplane is
found as shown in Theorem 3.2. By subtracting Equation (3.16) from Equation (3.5)
and multiplying by Cy, the following hyperplane is obtained (a is a constant number):

(2C, - Cy)x, +(2C, = Co)x, + ++ +(2C, = Co)x, @, =0 (3.17)

If there exists a separating hyperplane,

n

> (2C, - Cy)v! —w, 20 for each vertex v, in SITV,

i=1

and,

>(2¢, -C)vi ~@, <0 for each vertex v, from the rest vertices.

i=1

36

Therefore, each vertex v; in SITV and each vertex v, satisfy the following equation:

n

>(2¢,-C)vi > i(zc,. ~Cy)v! (3.18)

i=]

Let tmi» be the minimum value of Z;l (2C, —Co)v,‘ among all vertices in SITV and

Jfmax be the maximum of Z:;l (2C, -C,)v: among the rest vertices.

If tmin > fmax, then there exist a separating hyperplane which is
(2€, = Cy)x, +(2C, = Cy)xy + -+ +(2C, = Cy)x, — 0, =0

tmin+fmax

where @, = [> —l and [x] is the smallest integer greater than or equal to x.

If tmin < fmax, then there does not exist a separating hyperplane, thus the trial vertex is
removed from SITV. For the given example, #mi» = Minimum(x3 - 3x; + x;) for SITV
{001, 101, 100}, thus tmin = 1; frme = Maximum(x; - 3x; + x;) for the vertices {000,
010, 111}, thus fmex = 0. Since fmin > fmax and ay = 1, the hyperplane, x; - 3x; + x; -1=0
separates the vertices in SITV {001, 101, 100} from the rest vertices.

To include more true vertices, another true vertex is selected using the same criteria
as earlier, and tested whether the new trial vertex can be added to SITV or not. This
procedure continues until no more true vertices can be added to SITV. For the given
example, the elements of SITV are only {001, 101, 100}. If all the true vertices are
included in SITV, the given switching function is an LS switching function and only

37

one neuron is required for realizing the function. However, if all true vertices can not

be included in SITV, more than one neurons are required for the given function.

The reason why the first hyperplane could not expand to add more true vertices to
SITV, is due to the existence of false vertices around the hypersphere. That is, these
false vertices prevent the expansion of the first hypersphere. In order to train more
vertices, the expanded hypersphere must include the false vertices in addition to the
true vertices in SITV of the first hypersphere. For this reason, false vertices are
converted into true vertices, and true vertices which are not in SITV are converted
into false vertices. Here the desired output for each vertex is only temporarily
converted. The conversion is needed only to obtain the separating hyperplane. Now,
expand the first hypersphere to add more true vertices to SITV, until no more true
vertices can be added to SITV. When the expanded hypersphere meets with RHS, the

second hyperplane (i.e. neuron) is found.

If SITV includes all true vertices, then the geometrical learning is converged.
Otherwise, the training vertices which are not in SITV are converted again, and the
same procedure repeats again. The above procedure can get stuck even when there
are more true vertices still left to be included. Consider the case that when ETL tries
to add any true vertex to SITV, no true vertex can be included. At this point, ETL
converts the not-included true vertices and false vertices into the false vertices and
true vertices, respectively. When ETL tries to include any true vertex, no true vertex
can be included even after conversion. Hence the procedure is trapped and it can not
proceed any more. This situation is due to the limited degree of freedom in separating
hyperplanes using only integer coefficients (i.e. weights). If this situation does not
occur until SITV includes all true vertices, the ETL algorithm is converged with
finding all required neurons in the hidden layer.

If the above situation occurs, ETL declares these vertices in SITV as “don’t care”
vertices in order to consider these vertices no more in the finding of other required

neurons. Then ETL continues by selecting a new core vertex based on the clustering

38

center among the remaining true vertices. Until all true vertices are included, ETL
proceeds in the same way as explained before. Therefore the convergence of the ETL
algorithm is always guaranteed. The selection of core vertex is not unique in the
process of finding separating hyperplanes. Accordingly, the number of separating
hyperplanes for a given problem can vary depending upon the selection of the core
vertex and the orderings of adding trial vertices. By trying all possible selections, the
minimal number of separating hyperplanes can always be found.

Let us discuss on the 3-bit switching function example given before. As SITV of the
first neuron includes only {001, 101, 100}, the remaining vertices are converted to
expand the first hypersphere. That is, the false vertices {000, 111} are converted into
true vertices, and the remaining true vertex {010} converted into a false vertex.
Choose one true vertex, (for example {000}) and test if this trial vertex can be added
to SITV. It turns out that SITV includes all currently declared true vertices {001,
101, 100, 000, 111}. Therefore, the algorithm is converged finding two separating
hyperplanes, that is two required neurons in the hidden layer. The second required
hyperplane is x; - 3x; + x; + 2 = 0. Figure 3.1 shows the structure of BNN for the
given example. Table 3.1 shows the outputs of the neurons in the hidden layer for
input vertices. In Table 3.1, notice that linearly inseparable input vertices are
transformed into linearly separable switching function at the output of the hidden
layer.

Table 3.1 The Analysis Of The Hidden Layer For The Given Example

Input Desired Hidden Layer Output

Vectors Output 1¥ Neuron 2 Neuron Neuron
{001, 100, 101} 1 1 1 1
{000, 111} 0 0 1 0
{010} 1 0 0 1

39

Figure 3.1 The structure of a three-layer BNN for the given
example. The numbers inside circles indicate
thresholds.

3.2.2 Learning The Output Layer

After all required hyperplanes (i.e., all required neurons on the hidden layer) are
found, one output neuron is required in the output layer to combine the outputs of the
neurons in the hidden layer. To find the weights and threshold of output neuron, the
following definition will be used:

Definition: A hidden neuron is defined as a converted hidden neuron, if the neuron
was determined based on converted true vertices which are originally given as false
vertices and converted false vertices which are originally given as true vertices. If all
necessary hidden neurons are found using only one core vertex, then every even-
numbered hidden neuron is a converted hidden neuron, such as the second neuron in

Figure 3.1.

40

If ETL finds all necessary separating hyperplanes with only true core vertex, the
weights and threshold of the output neuron are set as follows. The weight of the link
from the odd-numbered hidden neuron to the output neuron is set to 1. The weight of
the link from the even-numbered neuron to the output neuron is set to -1, as each
even-numbered neuron is a converted hidden neuron. By setting the threshold of the
output neuron to 0 (1) if the hidden layer has an even (0dd) number of neurons, the
three-layer BNN always produce the desired output to each training input. Figure 3.1
shows the weights and the threshold of the output neuron for the given example.

If ETL uses more than one core vertex to find all necessary hyperplanes, the weights
and threshold of the output neuron can not be determined directly as mentioned
above. In this case, to find the weights and threshold of the output neuron, the

following definition must be used:

Deﬁnition: A positive successive product (PSP) function is defined as a boolean

function can be expressed as

B{hy by, 1) = O(R,O(--O(h, ,OR,)} (3.19)

where the operator O is either logical AND or logical OR. A PSP function can also be

expressed as

By, hyy++,h,) = O(B(hy o,y)) (3.20)

and

41

B(h, ,h,)=h

n-12"*n n—1

Oh, (3.21)

An example of a PSP function is

B{l ey} = by + (B + (s + hhy))

From the definition of a PSP function, it can be easily shown that a PSP function is
always a positive unate function. Note that an LS switching function is always a unate
function, but a unate function is not always an LS function.

Theorem 3.3: A PSP function is an LS switching function [6].

Proof: Express a PSP function as

B(hl,hz,'”ahn) = th(B(hz,h3,~'-,h,,))

then the function in the inner most nest is

B (hn—l * hn) = hn-thn

First, consider the case that the operator O is logical OR, i.e., B(h,,_l,h,,) =h,,+h,.

B(h,,_l ,h,,) is obviously an LS function. Second, consider the case that the operator O

42

is logical AND, ie., B(h,_,,4,) = B, _ih,. B(h,.,,h,) is also an LS function. Therefore,

the function in the inner most nest, B(h,,_l,h,,) is always an LS function. Since the

function in the inner most nest can be consider as a binary variable to the function in

the in the next nest, the function in next nest is also an LS function. Continuing this

process, a PSP function can be expressed as B(hl,hz,---,h,,) =hOz, where z is a

binary variable corresponding to B(hl Jhy e -,h,,) . Q.ED.

Theorem 3.3 means that a neuron with a hard-limiting activation function can map any
PSP function since a PSP function is a LS function. Using a PSP function, an output

neuron function can be expressed as the function of the outputs of the hidden neurons.

A neuron is supposed to assign one to the side of a hyperplane having true vertices,
and zero to the other side. However, in ETL, a converted hidden neuron assigns one
to the side of a hyperplane having original false vertices and zero to the other side
having original true vertices. Therefore, without transforming the outputs of
converted hidden neurons, an output neuron function can not be a PSP function of the
outputs of hidden neurons. In order to make a PSP function, the output of each
converted hidden neuron is complemented and fed into the output neuron.
Complementing the output of a converted hidden neuron is identical to multiplying by
(-1) the weight from this neuron to the output neuron and subtracting this weight
from the threshold of the output neuron. That is, if the output neuron is realized by
the weight-threshold {an, @, ...,®, ..., &, ap} whose inputs are hy,hy, ..., A, ..., s, than
the output neuron is also realized by weight-threshold {ay,a,...,-@, ..., % -3}

whose inputs are Ay, hy, ..., b ..., hn.

Theorem 3.4: After the hidden neurons are determined by ETL, an output neuron
function can always be expressed as PSP function of the outputs of hidden neurons if
the output of each converted hidden neuron is complemented.

43

Proof: Without loss of generality, let us assume that ETL finds i; hidden neurons

{nu,nu, ,nl,.l}from the first core vertex, i; hidden neurons {nm,nzz, ,nziz}

from the second core vertex, and i; hidden neurons {n,n,nkz, ,nhk} from the ™

core vertex. Let 4; be either the output of the #; neuron if j is an odd number, or the
complemented output of the »n; neuron if j is an even number (i.e. n; is a converted
hidden neuron). The first neuron »,; separates only true vertices. Hence if 4;; = 1,
then the output of the output neuron should be one regardless of the outputs of other

hidden neurons. Therefore, the output neuron function can be expressed as
B(huahlza ’hkz‘,,)=hll "‘(B(hm oo P,))a

representing a logical OR operation.

The second neuron »;, separates only false vertices. Thus the side of a hyperplane for
hi2 = 1 includes true vertices as well as false vertices, and true vertices will be
separated by the following hidden neurons. Note that the true vertices which are not -
separated by ny are located only in the side of a hyperplane for 41, = 1. Therefore, the

output neuron function can be expressed as

B(hushlza ’h*#)=h“ +(B(h12’ oy,))
=y + g By, <)

representing a logical AND operation.

Now this expressions can be generalized for a neuron »n;; as follows.

44

If j is an odd number, then B(hij,hw, ,hk,.k) =h, + B(h,jm =SBy) , representing
a logical OR operation, and if j is an even number, then B(hy,h,m, ,h,dk)=

h,j(B(h,m, e by,)) , representing a logical AND operation.

Therefore, the output neuron function can always be expressed as a PSP function

B{hyyshigs -+ oy,)= huo(huo(...o(hhk_l Ok,)))

where the operator O following A indicates logical OR if j is an odd number, or
indicates logical AND if; is an even number. Q.E.D.

Figure 3.2 Input vectors are partitioned by ETL.

45

As an example, consider Figure 3.2 where only the dashed region requires the desired
output as one. In Figure 3.2, & separates ones, thus the OR operation follows. The
same thing is true for hs. As h, separates zero in Figure 3.2, the AND operation
follows. The same things are true for ;. Therefore, the output can be expressed by
PSP function as

Bty oy By) = by + (s (e + 1)) (3.22)

Theorem 3.4 shows that an output neuron function is an LS function of the outputs of
hidden neurons. The way to determine the weights of the output neuron is to find a
PSP function, and then transform the PSP function into the net function. For an n
variable PSP function {1, h,, ..., h»), there exist a systematic method to generate a
net function, net(H, a). The systematic method is given next.

First, the method starts from the innermost net function net,. The net, is set to 7, - 1
since net, > 0 if b, = 1 and net, < 0 if h, = 0. Let us find the next net function net,.;. If
the operation between A, and A,.; is a logical OR, then

net, , = (— min[net,,])h,,_l + net,,, (3.23)

where min[ret,] is the minimum value of #ef,. Since min[net;] = minfh, - 1] = -1,

netn.] = hn..] + hn - l.

If the operation between A, and A,., is a logical AND, then

46

net, , = (max[net,,] + l)h,,_1 + net,, — (max[net,,] + 1) , (3.24)

where max[net,] is the maximum value of net,. Since max[net,] = max[h, - 1] = 0,
netn.l = hn.l + hn - 2.

Continuing this process until #» becomes one, the net function nef(H,ay) is determined.
The connection weight between the output neuron and the i® hidden neuron is the
coefficient of A; in the net function, and the threshold of the output neuron is the

constant in the net function.
Let us consider Equation (3.22) to generate a net function from a PSP function,
nets=hs - 1
net, = (-min[nets])hs + nets = hs + hs - 1
net; = (max[nets]+1)h; + nets - (max[nets}+1)=2h3 + hs + hs - 3

net, = (max[net;1+1)h, + net; - (max[nets]+1) =2h, + 2hs + hy + hs - 5

net, = (-min[ret,))h; + nety = Shy + 2hy + 2hs + ha + hs - 5.

Therefore, the net function for Equation (3.22) is expressed as

net(H,w,) = 5h, +2h, +2h, +h, +hs =5

Notice that if B(x, x2, ..., Xa) = 1, then net(X,an) = 0, else net(X,a) < 0.

From the above discussion the following theorem can be stated:

47

Theorem 3.5: For any generation of binary-to-binary mapping, the ETL algorithm
always converges and finds the three-layer BNN whose hidden layer has as many

neurons as separating hyperplanes.

3.3 Modified ETL Algorithm

The ETL algorithm has some algorithmic restrictions. In some cases, the ETL
algorithm could not find the desired number of neurons even if a very efficient core
selection algorithm is used. For example, consider the 5-input switching function
69631 (i.e. if the input vertices are {0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16}, then the
desired output is 1; otherwise, the desired output is 0). The Chow parameters of this

function are

b5= -22, b4= -10, b3= -10, b2= -2, b1 = -2, b0= -6.

The ordered absolute value of these parameters are (22,10,10,6,2,2) which indicates
that this switching function has the property of linear separability (see Appendix A),
thus, it must be realized by only one neuron. ETL can realize this switching function
by two neurons, even if it is linearly separable. Core vertex selection does not effect
the determining of the weights of the neuron when realizing the linear separable
switching functions. To overcome this algorithmic restriction and to improve the
ability of finding possible minimum number of neurons of ETL, we must modify some
fundamentals of the algorithm. This new algorithm is called as modified expand-and-
truncate learning algorithm (METL).

METL contains the following modifications:

1. Arranging and reducing the switching function to obtain its equivalent
reduced switching function that is called as minfunction.

48

2. Prediction of maximum number of neurons that the minfunction can be
realized by.

3. Determining the starting vertex type.
4. Determining the core vertex and calculating initial weights.
5. Modification of weights in the cases tmin < fmax and tmin = fonax -

6. Determining the weights of output neuron by using a reuron-type

vector.

METL can realize n-dimensional binary-to-binary mapping by maximum n-hidden
neurons. The possibility of realizing n-dimensional switching functions by more than
n-hidden neurons is smaller than 1% and the reason of this case depends on the
selection of the core vertex and the starting point. In the next section, all these
modifications are explained in detail.

3.3.1 Modification of Input Vectors

Assume that an n-dimensional net function net P (X, m,) =oxrtapx,t.. . +apx-an=0 is

given. Consider the case of increasing input dimension so that if x,+1=1, the f ™) =
0 and if xp+1=0, the ™ (x;) = f"(x;). This (r+1)-dimensional switching function can be
realized by setting @+ = -max(net , (X,w,))-1 and the a’s i = 1,...,n equal to the

weights of net P (X,m,) . So, if some of the inputs of the input vectors that have the

same desired outputs, do not change (all 0 or 1), these inputs do not effect the linear
separability and the weights of the neurons can be determined without considering
into these inputs. To determine such an (n+1)-dimensional reducible functions the
following definitions will be used.

Definition: Vi is a indicator of minority of vertices of a switching function. If the
number of true vertices is less than or equal to the number of false vertices, than Vinor
= 1, otherwise Vuinor = 0. In symbols,

49

Vninor = 1 if 2(/(1)) < 2(f(0)),

Vininor = 0 if 2(7 (1)) > (£ (0)),
Definition: Minor vertex is a kind of vertex whose desired output is equal to Viinor.
Definition: Major vertex is a kind of vertex whose desired output is equal to 1-Vinor.
Consider an n-dimensional switching function. If the order of inputs and their
corresponding desired outputs are changed, a new function will be obtained. This new
function has the same characteristics with the first function and can be realized by the
same weights and thresholds after the corresponding changes are made. These two
functions are called equivalent functions.

Example: Consider two threshold functions as shown in Table 3.2.

Table 3.2 Truth Tables of Threshold Functions

x| £° xxx | £
000 1 000 1
001 1 001 1
010 1 010 0
011 0 011 0
100 0 100 1
101 0 101 0
110 0 110 0
111 0 111 0

If the order of inputs of the function f;* are changed as x,xsx; , the desired outputs of
the functions become identical, so these functions are equivalent functions. The net
function of £;? is calculated as

50

netfl,(X,coo) =-4x3-2%, -2 +3=0.

As desired output of the function f;’ is identical with the desired output of the
function f;° when the order of inputs changed, the net function of the function £ can
be obtained by making the same order changes to the weights. The net function of 5
is obtained as

netfzs(X,a)o) =-2x3-4x2-2x,+3=0.

For determining whether or not a given n-dimensional switching function can be
reduced to (n-1)-dimensional reduced switching function, first, find cubical complex
of major vertices. If there is (#-1)-cube in the cubical complex of major vertices, then,
this function can be reduced, otherwise it can not be reduced. In the given example,
cubical complex of major vertices of f;* is {011, 1**}. Since this cubical complex

contains 2-cube, this function can be reduced to 2-dimensional switching function.

We can also determine this property by taken minor vertices into consideration. First,
form a set of »n-bit minor vertices. If some of the bits of all these vertices in the set do
not change, then this function can be arranged and reduced; otherwise, the function
can not be reduced. In the given above example, this set is formed as {000,001,010}.
In this set, only the input x; remains the same (x3 = 0) so this function can be reduced.

For reducing process, first, determine the unchanged bits (i.e. inputs) of minor
vertices and note their values. Then, eliminate these inputs from the input vectors. In
the given example, this input is x; and its value is 0. After the elimination, the set has
the elements of {00,01,10} which belong to 2-dimensional switching function, thus,
the dimension of the function is reduced. Table 3.3 shows the original switching
function and the reduced switching function.

51

Table 3.3 Original Switching Function and Reduced Switching Function

x| i xp | A
000 1 00 1
001 1 01 1
010 1 10 1
011 0 11 0
100 0
101 0
110 0
111 0

After all these reducing processes, determine the net function of the reduced function.
In the given example, the net function is net(X, ay) = - 2x; - 2x; + 3 = 0. Notice that
this net function realizes only the reduced function. To realize the original function,
we must calculate the weights of the inputs that are eliminated. The following

theorem describes the way of calculation.
Theorem 3.6: Consider an n-dimensional linearly separable switching function that
can be reduced to (»-1)-dimensional linearly separable switching function. If the

eliminated input is x; and the desired output of the minor vertices is Vminor, then the

following net function always realizes the n-dimensional switching function.
net , (X,a)'o) =o,x, +nel ., (xl,xz,---,xi_l,xm,'--,x,,,a)o) +w, -0, (3.25)

where

), =—min[net X X5 s Xy X5t "5 Xy s Wy]+1] .
f"'(* ") Py lfmeor=Oandel=0,
@'y =,

52

@, = min{netf,_, (x1 S SACELIS NIV A ,---,x,,,coo)] -1

@'\ =0, + o,

if Viine =0 and vy = 1,

b

), =—m“[net n=1 (xl,xZ,"‘,x,_l,x 19°° 9 X awo)]_l . i
f = " N lf meor=]. andvml=0,
@'y =

W, = m.ax[netf,,_1 (xl,x2,---,x,_l,x,+l,---,x,,,a)0)] +1

o'y = o, + o,

b

vy indicates the i bit of the minor vertex v,

Proof: The proof can be done by showing that with the given weights (a’s). As the
function £ can be reduced to the function f™' the desired output of minor vertices of
™ is equal to the desired output of the corresponding vertices of ™. Note that vn

indicates »-bit minor vertex, v, indicates any r-bit input vector.

n
net ,, (X,®,) = éa)jv,{ -,

i-1 n
net .. (X,0,) = Zw,v,{ + Zcojv,{ -,
J=1 J=i+l

Case 1: Vginor = 0 and vy’ = 0, (Le. if v’ =0, then f*(vy) =™ (Va1), else f*(vy) = 1).

a. v, =0.

n i-1 n
— — i — m!
netfu (Xaa)'o) - Za)j\’,{ - m'o - Z wjvr{ + wlvn + Z GJJV'{ - a’o + a’o o 0
Jj=1 Jj=1 Joi+l

i-1 n
= Za)jv,{ + Za)]v,{ —w, = netf,,_,(X,a)o).
j=l J=i+1

53

b. v, = 1.
n) [nd)) n]
net ., (X,0'y) = Yoy -a'y=D 0y +oy+ Y oY -0, +o, -
Jj=1 J=1 J=itl
i—1) n)
= Za)jv; —rn.in[net -]+1+ Za)jv,’, — @y + @y — D,
J=1 J=i+1

=net ., — min[net =] +1 > min{net p=] - min[net P] +1>0.

Case 2: Vainr = 0 and vy, = 1, (ie. if v = 1, then f°(vo) =™ (va.1), else f7(vy) = 1).

a. v, =0.

n i-1 n
net ., (X,0'y) = ZC‘UV; -0'y= Za)jvrjt +o,v, + Za’jvrjz ~ 0y + @, — @'y

=1 =l Jj=iel
i-1 i n)

=D oy + Y ovi- mj.n[netf,,l] +1-w,
Jj=1 J=i+l

=net ., — min[net P] +12> min[net g] - min{net -] +1>0.

n i-1 n
rN J r J i J_ —m
net , (X,0'y)= Zcojv,, -0'y= Za)jv,, + o, + Za)jv,, W, + 0, — o',
=1 j=1 J=i+l

i-1

n
= Za)jv,{ +w, + Za)jv,{ -, + o, —(mo +co,) =net ., (X,®,).
J=1 J=i+l

Case 3: Vainor = 1 and vy =0, (Le. if v, = 0, then (Vo) =™ (Va1), else f*(v) = 0).

a. v, =0,

54

i-1

n
U J L J J '
netf,(X,a)O)—Zcojv,, -wo—Za)v +wv, + Za)jv,,—a)0+wo—wo
Jj=1 Jj=1 J=i+l
i-1

—Zcojv + ijv’ - @, —netf,_l(X @y)-

J=i+l

b. v, = 1.

n n
4 , ,
net . (X,0'y) = Za)jv,’, -0y = E @V, + oY, + Za)jvj -y + 0y — @',
J=1 j=1 J=i+l

i-1
=D oy max[netf"_.] 1+ D ov] -0, + 0, — 0,
=

_]—H-l

= net . = max[net o] -1< max[net e] - max[net el] -1<0.

Case 4: Vinor = 1 and vy’ = 1, (L. if o = 1, then f*(va) =™ (Va1), else f(vy) = 0).

a. v, =0.

n i-1 n
net ,, (X, 0'y) = Zcojvj -0'\= Za)jvj + @, + Zcojv,’, -0, +w, -~

J=1 J=i+l
= Za) Vi + Za} Vi max[net ,,_,]—l—coo
J=i+l
= net P max[net g] -1< max[net s] - max[net e] -1<0.
b. v = 1.
i-1
J
net ,(X,0'y)= Zcojv,, Z v +ov) +Za)v -0y + @, — @',

J=1 J=1 J=i+l
i-1

=Za1 v +w, + ij -, + @, — (w°+a>,)=netf,,_l(X,wo).
J=1 - J=i+l

QE.D.

55

Theorem 3.6 can be also applied to ™" if it can be reduced to £ ™. This reduction
process stops when the last net function can not be reduced. Since the linearly
inseparable switching functions can be decomposed into multiple LS switching
functions, Theorem 3.6 can be applied to all these LS functions in the same way.

In the given above example, f12 can also be reduced to fll. To do this, first, form the
set of minor vertices. Since this set has only the element of {11}, we can not
“determine the unchanged bit. In this case, select the first input on the left as
unchanged input. Here, this unchanged input is x, and eliminate this input after setting
Viinor = 0 and > = 1. Since f1’ can not be reduced, calculate the weights and
threshold of neuron that realizes ﬁl. Then, in accordance with the Theorem 3.6, find
the net function of /i°.

This process help us to calculate the weights and thresholds of the neurons that realize
n-dimensional binary-to-binary mapping quickly and to find possible minimum number
of neurons. In some cases, ETL algorithm finds the required number of neurons that
realize £ °, more than the required number of neurons that realize £ ' if " can be
reduced to f™'. METL algorithm always guarantees the same required number of
neurons that realize /™ and f™'.

3.3.2 Prediction of Maximum Required Number of Neurons

METL uses three starting vertex type to find optimal required number of neurons to
realize any n-dimensional binary-to-binary mapping. For the determination of starting
vertex type, the maximum number of neurons must be known. This section describes
the way of finding the maximum required number of neurons that can realize n-
dimensional binary-to-binary mapping.

By using Karnaugh-maps any n-dimensional binary-to-binary mapping can be realized
by 2" neurons. This is the general limit of number of neurons. According to the

56

structure of an n-dimensional switching function, the maximum required number of

neurons can be expressed by the following equation.

N, = min[Z" -2:: f”(vi),i f”(v,)] (3.26)

i=1

The Equation (3.26) indicates that the maximum number of neurons is equal to the
total number of minor vertices. This is true as anybody can form the neurons each for
the minor vertices and combine all these neurons with an output neuron behaves as

AND gate if Viinor = 0 or as OR gate if Viinor = 1.

The following method can be used to find the maximum number of neurons. This
method can also be used to decompose the linearly inseparable switching functions
into multiple LS switching functions. The method is formed based on Karnaugh-maps,
and is called as LS Decomposition Method (LSD). LSD method decomposes any
switching function into one or multiple LS switching functions. After the
decomposition process, the net functions of these LS functions can be calculated by
using one of learning algorithms for binary-to-binary mappings.

The LSD method starts by forming a set of minor vertices. After this set is formed,
find consecutive pairs of each vertex in this set. To do this, first, select the first minor
vertex as group leader and find other minor vertices whose Hamming distance from
the group leader is 1 and group all these vertices. These vertices can be called as
neighbors of group leader. Then, select the next minor vertex to form a new group
and find its neighbors. Continue this process until the last minor vertex is selected and
grouped. List these groups in an order and determine the number of elements in each
group without considering the group leader (i.e. the number of neighbors of each
group leader). After all the number of neighbors are determined, find the group whose
number of neighbors is the smallest and positive (i.e. not equal to zero). Analyze all
the vertex in that group to find a group that has the maximum number of neighbors

57

and whose group leader is the element of analyzed group. Then, note the group leader
and the number of neighbors of this group and analyze the next group if there are
more than 1 groups that have the minimum number of neighbors. Repeat this process
until all the groups that have the minimum positive number of neighbors, are analyzed.
Select a group leader that has the maximum number of neighbors among the noted
vertices. The selected group is the first LS function and can be realized by one
neuron. To find the next LS function, eliminate all the elements of the found group
from the other groups and repeat these processes until no minor vertices left. If the
number of elements of some of the groups is 0 (i.e. the group has the element of only
the group leader), these vertices must be realized by individual neurons. In some
cases, selecting the group that has the maximum number of neighbors causes the
required number of neurons to increase, thus, LSD method can not find the minimum

number of neurons but limits the required number of neurons.

Example 1: Consider a 4-dimensional switching function as shown in Figure 3.3.

x?’ x’ x2 x

x4 x3’ Minor Vertices

x| 1 1 1 1 X3 {4,5,6,7,15}

X4 1 X3 Major Vertices

X4 x3’ {0,1,2,3,8,9,10,11,12,13,14}
x’ x1 x x

Figure 3.3 Karnaugh-map of the given example.

According to the structure of this function, we can see that Vi = 1 and minor
vertices are {4, 5, 6, ’), 15}. The minor vertices whose Hamming distance from the
group leader is 1, are grouped. HD(4,5) = HD(5,7) = HD(7,15) = HD(6,7) = HD(4,6)
= 1, If all these groups are written on a table, Table 3.4 is formed.

58

In Table 3.4, select the vertex 15 whose number of neighbors is 1. Note the number of
neighbors of the vertex 7 that is the neighbor of the vertex 15. Since there are no
other vertices that has the minimum number of neighbors, the group, whose group
leader is the vertex 7, is selected as the first LS function. Then, remove the vertices
{7,5,6,15} from the table. After that process, we obtain Table 3.5.

Table 3.4 Table of Neighbors of The Given Example

Group Leader Neighbors Number of Neighbors
4 5,6 2
5 4,7 2
6 4,7 2
7 5,6,15 3
15 7 1

Table 3.5 Table of Neighbors After The Elimination Process

Group Leader Neighbors Number of Neighbors
4 0

Since there is only one group leader, select this group to form the second LS function.
Thus, the function is decomposed into two LS functions {7,5,6,15} and {4}. As
mentioned before, LSD method can not find the minimum number of neurons. If these
two LS functions are analyzed, it can be seen that only one neuron is sufficient to
realize this function, thus, this function has the property of linear separability.

Example 2: Consider a 4-dimensional function as shown in Figure 3.4. According to
the structure of this function, we can see that Vpye = 1 and minor vertices are
{0,2,3,5,7,9,10}. The minor vertices whose Hamming distance from the group leader
is 1, are grouped. If all these groups are written on a table, Table 3.6 is formed.

59

In Table 3.6, select the vertex 0 whose number of neighbors is 1. Note the number of
neighbors of the vertex 2 which is the neighbor of the vertex 0. Then, select the group
leader 5 and note the number of neighbors of the vertex 7 which is the neighbor the
vertex 5. Selection of the vertex 10 is not hecessary as the neighbor of the vertex 10 is
equal to the neighbor of the vertex 0. Since the number of neighbors of the vertex 2 is
greater than the number of neighbors of the vertex 7, the group, whose group leader
is the vertex 2, is selected as first LS function. Then, remove the vertices {2,0,3,10}
from the table. After that process, we obtain Table 3.7.

x' x’ x2 X

x| 1 1 1 | xs’ Minor Vertices

x4’ 1 1 X3 {0,2,3,5,7,9,10}

X4 1 1 X3 Major Vertices

x4 x;’ {1,4,6,8,11,12,13,14,15}
x;’ xp X x’

Figure 3.4 Karnaugh-map of the given example

Table 3.6 Table of Neighbors of The Given Example

Group Leader Neighbors Number of Neighbors

2
0,3,10
2,7
7
3,5

[a—y
c\D\IUIDJNO
_—O N =N W

2

60

Table 3.7 Table of Neighbors After The Elimination Process

Group Leader Neighbors Number of Neighbors
5 7 1
7 5 1
9 0

After the similar processes, the second LS function is found as {5,7} and the third LS
function is found as {9} since the vertex 9 has no neighbors. Thus, the function can be
realized by 3 neurons.

By using LSD method, the maximum number of neurons that can realize the known

function is expressed as Ny spmax.

The last limitation of required number of neurons depends on the tests on METL
algorithm. According to the results of tests on METL, any n-dimensional binary-to-
binary mapping can be realized by maximum »-neurons. To prove this limitation,
consider the following example whose Karnaugh-map is given in Figure 3.5.

This is the worst case of distribution of true vertices. If the vertices {0001} and
{1110} are converted into true vertices, the new function can be realized by 2
neurons. We must remove the changes we made and this can be done by another 2
neurons. Thus, the function can be realized by 4 neurons which is equal to the
dimension of input vectors. Linearly separable blocks on Karnaugh-maps are listed in
Appendix B.

From the above discussion this limitation can be expressed as

Ndimmax =n (3.27)

61

If the switching function can be reduced to m-dimensional switching function, then,
Equation (3.27) becomes

Ndimmax =y (3'28)
1 1
1 1| = 15 o
1 1 1 141 0
1 1 1
Can be realized by Can be realized by
2 neurons 2 neurons

Figure 3.5 Decomposition of the Karnaugh-map of the given
example into 4 LS functions.

1 1
1 1 = = d=t=1=] o 0
1 s = 0 0|0
1 1 1 =11 0
Can be realized by Can be realized by
1 neuron 1 neuron

Figure 3.6 Decomposition of the Karnaugh-map of a switching
function into 2 LS functions.

62

When all these limitations are combined, the following maximum number of neurons

that can realize the function will be obtained:

N e = 180] N, > N 15pmge> N | (3.29)

3.3.3 Starting Vertex Type

ETL algorithm selects the core vertex among the true vertices. In some cases, this
selection increases the number of neurons and also increases the calculation time.
Consider the following switching function whose Karnaugh-map is given in Figure
3.7.

If we select the core vertex among true vertices, we can select {0010} as core vertex
(red vertex in yellow part in Figure 3.7). (Core selection method will be given in the
next section). Since Hamming distance of this vertex from the other true vertices is
greater than 1, only the core vertex is included in SITV. After the weights of the first
neuron is calculated, the false vertices are converted into true vertices and true
vertices into false vertices. Now the vertices, whose Hamming distance from the core
vertex is 1, can be included in SITV. At the end, SITV has the vertices {0010, 0011,
0110, 0000, 0001, 1010} (yellow and blue parts in Figure 3.7) and again ETL
converts the vertices into original values after the weights of second neuron are
caiculated. Now all the true vertices can be included in SITV (yellow, blue and red
parts in Figure 3.7). Thus, this function is realized by 3 neurons if we select the core

vertex among true vertices.

If we select the core vertex among false vertices, we can select {1110} as core vertex
(red vertex in yellow parts in Figure 3.8). As there are many vertices, whose
Hamming distance from the core vertex is 1, the vertices {1110, 0110, 1010, 1111,
1100, 1101} can be included in SITV (yellow parts in Figure 3.8). After the weights

63

of the first neuron are calculated, all the remaining vertices are converted into
opposite type. In this case, all the false vertices that are originally true vertices can be
included in SITV (yellow and blue parts in Figure 3.8). Thus, the function is realized

by 2 neurons.

As shown in the above example, selection of vertex type effects the number of
neurons. To realize a switching function by possible minimum number of neurons, the

following method can be used.

s Minor Vertices

{2,4,7,8,11}

Major Vertices

X3

X {0,1,3,5,6,9,10,12,13,14,15}

’

x’ x X1 X

Figure 3.7 XKarnaugh-map of the given example.

Minor Vertices

{2,4,7,8,11}

Major Vertices

£0,1,3,5,6,9,10,12,13,14,15}

x;’ Xy X X1

Figure 3.8 Karnaugh-map of the given example.

64

First of all, find the number of neighbors of all vertices. Then, find the vertex that the
number of neighbors is the highest. The starting vertex type is the type of the found
vertex. If the found vertex is a false vertex, then the starting vertex type is false,
otherwise, the starting vertex type is true. If there are more than one vertices that the
number of neighbors is the highest, and these vertices have the different desired
outputs, then, select the starting vertex type as the type of minor vertices.

After the starting vertex type is determined, the core vertex must be selected and

several core vertex selection methods are mentioned in the next section.

3.3.4 Selection of Core Vertex and Determining the Initial Weights

There are several methods to select the core vertex. Each of them has some benefits
to realize the switching function by minimum number of neurons. According to the
structure of the switching function, an appropriate method can be used to reach the

minimum number of neurons.
Method 1. Popular Vertex

The method that is used for finding starting vertex type can be used to select the core
vertex. In this method, we select the vertex that has the highest number of neighbors
as a core vertex. First of all, find the number of neighbors of all vertices, then find the
vertex that the number of neighbors is the highest. If there are more than 1 vertices
that the number of neighbors is the highest and these vertices have different desired
outputs, then, select the smallest minor vertex as the core vertex. This method help us

to realize some of the functions by minimum number of neurons but not all of them.

65
Method 2. Quick LSD

This method is formed based on LSD method (Section 4.3.2) but the method stops
when the first LS function is found. The group leader of this LS function is selected as

the core vertex.
Method 3. Center of Gravity

After the starting vertex type is determined, find the center of gravity of these type of
vertices in accordance with the following equation.

C =) (3.30)

where £ is the total number of the vertices and assign the bits of the core vertex as

ve=1 if 2Ci-k20
ve =0 if 2C;-k<0

If the formed core vertex is not in the set, then find the nearest vertex whose
Hamming distance from the formed core vertex and select this vertex as the core

vertex.

After the selection of the core vertex by using one of these methods or another one,
the initial weights can be found in accordance with the following equations. In VLSI
applications, to prevent the effects of device tolerances, the weights are set so that

none of the vertices lie on the hyperplane.

66

The modified net function is formed as

ox; + apxz + ... + @Xn- ap=0, (3.31)
where

o =2, if fv)=1land v{=1,

@ = -2, if f) =1and v. =0,

=4, if S =0and v} =1,

@ = -4, if S =0and v! =0,

n
@, = Zw,,vf -3
k=1

v! indicates the i bit of the vertex v. The weights are assigned such that if v’ =1

then @, > 0, else @, < 0. Note that HD(w;, v.) = 1 and v, is the core vertex.
The parameters (i.e. weights) of the hyperplane that separates expanded SITV from
the rest of the vertices, are also modified. ETL finds the center of gravity of expanded

SITV and forms the hyperplane in accordance with the Equation (3.17). To separate
SITV from the rest vertices strictly, this Equation (3.17) is modified as

(4C, =2C,)x, +(4C, =2C,)x, + -+ +(4C, -2C))x, @, =0 (3.32)

If there exists a separating hyperplane, the weights and threshold are assigned as

67

o, =(4C,-2C,) i=l..n (3.332)
t,., =min Zw,v:] (3.33b)
L i=1
fom = max[Z m,.v;] (3.33¢)
i=1
t . +
@, = zf — (3.33d)

3.3.5 Arranging The Weights When tnin < finax and fmin = finax

ETL algorithm excludes the trial vertex from the SITV in the cases fpin < fmax and
Imin = fmax. This process causes some linearly separable functions to be realized by two
neurons. While realizing linearly separable functions, the selection of the core vertex
and determining the starting vertex type do not effect the results since all the true or
false vertices must be included in SITV, and calculations for previous trial vertices do
not effect the calculations of next trial vertices. The reason that ETL can not realize
some linearly separable functions by one neuron is due to the restriction of ETL

algorithm. To overcome this restriction, the following method must be used in the

€ases fmin < fmax A0 fmin = fmax.

First, find minimum value of Z:;I w,v; among all vertices in SITV, note the vertices

that realize this minimum value (fmn) and select the vertex which realizes fm, and
which has the minimum number of ones (i.e. Hamming distance from the vertex 0 is

minimum) among all the vertices that realize fmn. Then find maximum value of
::1 o,v! among the rest vertices, note the vertices that realize this maximum value

(fmex) and select the vertex which realizes fnax and which has the minimum number of
ones among all the vertices that realize fn.x. We call the selected vertex that realizes
Imin S Vimin and the selected vertex that realizes fnax @S Vimax. The modification of the
weights in the cases fimin < fimax a0d Zmin = fuax is described next.

68
Case 1: tmin = fmax

In this case, modify all the weights in accordance with the following equation.

®,'= o, + 2V, — 2V (3.34)

Equation (3.34) forces fmin to increase and fm.x to decrease so that we can place the

hyperplane between the vertices in SITV and the rest vertices.
Case 2: tmin < fmax and |fm—tm|<Dif

In this case, we define a new variable to hold the difference between fmax and fmin.
When a new trial vertex is included in SITV, Dif is set to + . If | fpax = fmin | < Dif
then set Dif = fuax - tmn and modify the weights in accordance with the Equation
(3.34), otherwise this trial vertex can not be included in SITV.

If the weights are modified, find the minimum value of Z;lw,vf and the maximum

value of Z:;l ®,v. and repeat the modification process until fmin > fusx OF the trial

vertex can not be included in SITV.

To realize a function by possible minimum number of neurons, this modification must
be applied if no true vertices can be included in SITV. If this modification method
manages to include a trial vertex, then try all true vertices to include in SITV without
using this method and repeat this process until the next neuron is required.

69

Example: Consider a 5-dimensional switching function as shown in Figure 3.9.

Suppose that SITV has included all the true vertices except the vertex 7 and the
algorithm starts to include the trial vertex 7. C’s are calculated as

CO = 13’ Cl =-13 C2=-1$ C3 =-59 C4='53 CS =“11

and the net function of SITV is

-2xl-2x2-10x3-10x4-22x5-a1>=0.

xs’ Xs

x?’ x’ x2 x; x2’ x” x2 x;
x| 1|11} 1 x5 x| 1[0} 0]| 0 |x5
x| 11111 1]|xs x| 00] 0] 0 |x;
xXs | 010 {00 |x; x| 000} 0 |x;s
x| 1|11 11|x x| 0] 0 [0} 0 |xs

x’ x1 xi x x’ xi1 x1 x
True Vertices : {0,1,2,3,4,5,6,7,8,9,10,11,16}
False Vertices : {12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}

Figure 3.9 Karnaugh-map of the given example.

Since tnin=-22<fmax=-20, ETL algorithm excludes the vertex 7 from SITV and realizes
the function by 2 neurons. In this case, modify the weights in accordance with the
Equation (3.34). Note that vimix=16 and vemsx=12. The new net function is obtained as

70

= 2x1 = 2x3 ~ 12x3 ~ 12x4 - 20x5 - a» = 0.

If we calculate fmin and fmay, We can see that fmin = -20 > frex = -22. Thus, all true
vertices can be included in SITV and the function can be realized by only one neuron
whose weights are equal to the modified weights.

3.3.6 Learning The Output Layer

After all required hyperplanes (i.e. neurons) are found, the weights and threshold of
the output neuron must be determined. ETL uses a PSP function and a systematic
method to calculate the weights. However, METL uses a neuron-type vector T
instead of PSP function and a modified systematic method. Neuron-type vector is
formed based on the type of hidden neurons. To form the vector T = (i%,...1,), the
following definition is used.

Definition: If a neuron is determined based on true vertices, this neuron is called as
true-type neuron. If a neuron is determined based on false vertices then this neuron is

called as false-type neuron.

If i neuron is a true-type neuron then set T' = 1. If /* neuron is a false-type neuron

then set T' = 0. After forming the vector T, apply the following systematic method.
First, the method starts from the innermost net function net,. The net, is set to 24, -~ 1

since net, 2 0 if h, = 1 and net, < 0 if A, = 0. Let us find the next net function net,.;. If
T*! =1, then

net, , = (— min[net,,] + l)h,,_l + net,,, (3.35)

71

where min[ret,] is the minimum value of net,. Since min[ret,] = min[2h, - 1] = -1,

netn-] = zhn.] + 2hn - 1.

If T"' =0, then

net, | = (max[net,,] + l)h,,_1 + net,, —~ (max[net,,] + l) R (3.36)

where max([nef,] is the maximum value of »et,. Since max[net,] = max[2h, - 1] = 1,
nety.1= 2hyy + 2h, - 3.

Continuing this process until » becomes one, the net function net(H,a) is determined.
The connection weight between the output neuron and the /* hidden neuron is the
coefficient of A; in the net function, and the threshold of the output neuron is the
constant in the net function. This systematic method is formed based on Theorem 3.6.

Example: Suppose that a 6-dimensional switching function is realized by 6 neurons
and its neuron-type vector is (fif2fstalsts) = (010110). This vector indicates that the
core vertex is selected among the false vertices. The net function of output neuron of
this function is calculated as

nets = 2he - 1
nets = (max{nets]+1)hs + nets - (max[nets|+1)= 2hs + 2h - 3
nety = (max[nets}+1)h, + nets - (max[nets]+1)=2hs + 2hs + 2hs - 5
net; = (-min[nets]+1)hs + nety = 6hs + 2hy + 2hs + 2hg - 5
net, = (max[net;]1+1)h; + net; - (max[net;]+1)= 8h, + 6hs + 2hs + 2hs + 2hs - 13
net, = (-min[net;]+1)hy + net, = 14h, + 8hy + 6h3 + 2hs + 2hs + 2hs - 13

72

3.3.7 Determination of Appropriate Starting Vertex Type

Starting vertex type can be changed if the selected type can not manage to realize an
n-bit binary-to-binary mapping by maximum » neurons. If the core vertex is selected
among the minor vertices (Minor Start METL) and this function can not be realized
by maximum number of neurons by which this function must be realized, then, select a
core vertex among the major vertices (Major Start METL) and start the algorithm at
the beginning. If again the function can not be realized by maximum number of
neurons, then select the core vertex among the minor vertices by using Quick LSD
method, and apply the algorithm until SITV can not be expanded to include trial
vertices. Find the weights of the first neuron and switch to second neuron. For the
second neuron, reset SITV and select another core vertex by using Quick LSD among
the remaining minor vertices and expand SITV to include trial vertices. Continue this

process until no more minor vertices left.

If a switching function can be realized by more than Nmx by using Quick LSD
method, this switching function must be realized by using Major Start METL or
Minor Start METL.

3.3.8 METL Algorithm Steps

Step 1) Find the number of true vertices and false vertices.

Step 2) Determine the type and unchanged bits of minor vertices.
Step 3) Reduce the switching function.

Step 4) Repeat Step 1 to Step 3 until the function can not be reduced.
Step 5) Find Ny, that must realize the switching function.

Step 6) Find the number of neighbors of minor vertices and the rest

vertices.

Step 7) Determine the appropriate starting vertex type.

73

Step 8) Select a core vertex by using one of selection methods and find
initial weights in accordance with the Equation (3.31).

Step 9) Select a nearest true vertex as a trial vertex and calculate the
weights. Since the false vertices are converted into true vertices

to include in SITV, the trial vertex is always a true vertex.

Step 10) Find #min and frax in accordance with the Equations (3.33b) and
(3.33c¢).

Step 11) Modify the weights in accordance with the Equation (3.34) if

Step 12) Repeat Step 10 and Step 11 until #min > fmax Or modification can
not be done.

Step 13) If #min > fmax, include the trial vertex in SITV and calculate the
weights in accordance with the Equations (3.33a) and (3.33d). If
min < fmax, then, exclude the trial vertex from SITV.

Step 14) Repeat the steps 9 to 13 until no more trial vertices can be
included in SITV or all the true vertices are included in SITV.

Step 15) If all the true vertices (original or converted) are not included in
SITV, then, convert all the vertices that are not in SITV and

switch to next neuron.

Step 16) Repeat the steps 9 to 15 until all the original or converted true

vertices are included in SITV.

Step 17) Return to original function from the reduced one by arranging
and calculating the corresponding weights by using Theorem 3.6.

Step 18) Determine the weights of output neuron.

3.4 Realization Performance of METL Algorithm

A computer program is used to find the realization performance of METL Algorithm.
The whole program code, which is written in Turbo Pascal, is listed in Appendix C.

74

Program uses the following neuron model during the calculations of weights and
thresholds:

y=f(&)

n
E=D ox, +ay
i=1

where x;, i = 1,...,n, represent inputs, @, i = 1,...,n, represent weights, ap denotes a
threshold and y denotes the output of a neuron. The activation function f(é is
described by

f(©=0 ifé<0
fO=1 ife>0

Since computers have memory limits and Turbo Pascal denotes the numbers by
maximum 32 bits, program can realize maximum 11-dimensional switching functions

by required number of neurons.

Program has three starting type algorithm. These are Minor Start METL, Major Start
METL and Eliminating METL. Minor Start METL algorithm selects the core vertex
among minor vertices. Major Start METL algorithm selects the core vertex among
major vertices. Eliminating METL selects the core vertex by using Quick LSD
method and expand SITV to include more minor vertices. this algorithm do not
convert any of the vertices. If no minor vertices can be included in SITV, the elements
of SITV are assigned as “don’t care” and a new SITV is formed among the rest

vertices by using the same criteria.

75

Table 3.8 shows the total test results of METL Algorithm and Table 3.9 shows the
test results of 5-dimensional switching functions. According to the test results, METL
managed to realize over 1,000,000 switching functions by maximum 5 neurons that is
equal to the dimension of input vectors. The worst cases of distribution of true
vertices of 5-dimensional, 6-dimensional, 7-dimensional and 8-dimensional switching
functions are also tested and METL can manage to realize these functions by 5, 6, 7,

and 8 hidden neurons, respectively.

According to the programming structure, program may realize a switching function by
number of neurons that is greater than the dimension of its input vectors. This case
may be occur as the program uses strict rules for selecting core vertex and this

selection may not be an optimal one.

0sz'0ze’l G 005°'8¥ 00z 80Z'CL 188'2€ SOZ'E) 005°8y 005'8Y 005'89€°L 100'02€'L
068'660°L g sev'eee 0S4 €/0'vr €09'9GL 1180 88l T4 FA XA P TAAANA 000'0ZE'L 9.6'/80°)
67£'1L86] G£€'904 oLt 6ob'sl viLb'0L 180'0Z 192 SE€'901 G£€'901 G2G'180°L L¥2'186
026'zLL] ove'80z 604 69Z'St ¥86'GEL 09L'9Z 8iT ove'80e ove'80z ovzZ'186 106'222
199'965 g 00S'161 1574 86.'6€ 8G9°/2Z1 88L'ET €LL 005’161 005'161 006'2.L Lov'18g
819'69¥] 808'GL} 0.€ £.8'6L 62¢'.L 980'8L 0S} 808'SL1 808'GL1 00¥'186 €65'G9Y
118'6.2] 788'261 L2 vG8'8€ 8G€'LEl 95L'2Z €2 288'/61 788'261 Z6g'sop b2'292
G26'691 g os¥'iLoL 18 PpR'SL /25'99 68.'8) €12 0S¥’ L0} 0sy'1L0L oLL'29z 192'09)
8ve'c0L g 622'001 €2 l22'6 822'/9 196'2Z 082 §22'001 gz.'00L 09Z'09L 9€5'69
6£6'6 14 9£5'69 - 161 $9.'.Z €el'se zeg')L 9£5'69 9£4'69 665's9 0
ONJUnquoinayN UOINONXEW [€}0) SUING SWNEF SUNE SUINZ UN|§ dUON MO soun4y jejoj] pu3z uels
suonoung wanzBm JeuoisuawWI(J-G JO SINSAY 1S9], 6°€ 9[qeL
2
8ve'e0l g 962'196'v62 Y 18'e29'l £99'G hL'Le 929'950'1 z0L'ove £0L'e - 1¥8'e29’l Q9
6£6'6 v 9£5'69 9£6'69 = S voL'iz £el'se 88t - 96669 v
coL £ 74 (> 74 : = 4 0sL oL - 96z £
9 r4 gl gl - = - 4 1 - 9l 4
I I Py ¥ = = - - 4 - ¥y b
uomanxep SUQJ| Pajso suogauny
TN suogaun4g L SuoInaN SUOINON SUOINSN suomapN oUoN 3O wiq
JOJOQUNN — JOSSMUNN 5 roqunpy egoy SUOBOUN G » £ g OM9%EOSS imos uopmos andy
uogouny wmupew 40 JoquUNN fejor Apreaury

unpLo3[y LA JO SHNsaY I3 8°€ [qeL

CONCLUSIONS

In this study, a learning algorithm called Modified Expand-and-Truncate Learning
(METL) Algorithm is developed to train three-layer BNN for any binary-to-binary
mapping problem (switching function). This algorithm always converges and finds a
solution to realize any n-dimensional switching function by maximum » neurons. The
learning speed of METL is much faster than the other learning algorithms for the
generation of switching functions since METL calculates the weights and thresholds
directly. The other algorithms require high number of iterations for each training
vector while METL requires usually 1 or 2 iterations for each training vector. The
neuron in the BNN employs a hard-limiting activation function, only integer weights
and integer thresholds. Therefore, this will greatly facilitate actual hardware
implementation of the BNN using currently available VLSI technology.

Since METL finds a solution to realize any n-dimensional switching function by
maximum » neurons, CTL based programmable logic arrays (CTL-CTL PLA) can be
implemented on a very small layout area. Traditional NOR-NOR PLA requires 2"
lines in the first NOR array to realize any n-dimensional switching function, thus the
layout area exponentially increases with the dimension of the inputs. For example, 32-
bit general purpose NOR-NOR PLA requires 2,147,483,648 lines in the first NOR
array, but 32-bit general purpose CTL-CTL PLA (three-layer binary neural network)

requires only 32 neurons in the hidden layer.

The learning speed of METL decreases as the dimension of input vectors increases
since the training vectors increases exponentially. For example, a 32-input switching
function has 4,294,967,296 training vectors which require long time to calculate the
weights and thresholds. Several dedicated machines that work in parallel can be used
to calculate these weights and thresholds. This algorithm can be modified to use for
higher-valued logic (for example 3-valued logic).

REFERENCES

[1] GOKDUMAN, 1.; CTL Kap: Tasarim, ITU Elektrik - Elektronik Fakiiltesi
Elektronik ve Haberlesme Boliimii, Bitirme Odevi, 1994

[2] OZDEMIR, H.; KEPKEP, A.; PAMIR, B.; LEBLEBICi Y.;
CILINGiROGLU, U.; A Capacitive Threshold-Logic Gate, Journal
of Solid State Circuits, pp. 1141-1150, Vol. 31, No. 8, August 1996.

[3] CILINGIROGLU, U.; Neural Networks and Fuzzy Systems, istanbul Teknik
Universitesi Ileri Elektronik Teknolojileri Aragtirma Gelistirme Vakfi,
15 Arahk 1993.

[4] ROSENBLATT, R.; Principles of Neurodynamics, New York, Spartan Books,
1959.

[5] GRAY, D. L.; MICHEL, A. N.; 4 Training Algorithm for Binary Feedforward
Neural Networks, IEEE Transactions on Neural Networks, pp. 176-
194, Vol. 3, No. 2, (March 1992).

[6] KIM, J. H.; PARK, S.; The Geometrical Learning of Binary Neural Networks,
IEEE Transactions on Neural Networks, pp. 237-247, Vol. 6, No. 1,
(January 1995).

[7] COTTER, N. E.; The Stone-Weierstrass Theorem and its Application to Neural
Networks, IEEE Transactions on Neural Networks, Dec. 1990.

[8] HU, S.; Threshold Logic, University of California Press, Berkeley and Los
Angeles 1965.

[91 HURST, S.L.; The Logical Processing of Digital Signals, Crane, Russak &
Company, Inc., New York, 1978.

APPENDIX A

CHOW PARAMETER CLASSIFICATIONS FOR ALL LINEARLY
SEPARABLE BINARY FUNCTIONS OF n<6

Notes

(1) For any n-binary function f{y) with binary inputs y;, i = 1,...,n, fy), i € {-1,1},
the Chow parameters are defined as

b = Zf(y)y,, i=0,..,n

xeg FUFY)
where yo =1".

(2) The canonic tables list the |bj| values for all the linearly separable functions in
descending magnitude order. Each entry uniquely defines one and only one
standard (or “representative”) function. If the Chow parameters for any non-
linearly-separable function are computed, the resultant parameter values will not be
found in these standard tabulations.

(3) The minimum integer realizing weight/threshold values |ai|, i = 1,...,n, are
tabulated against each |b;| classification entry. Although the maximum, co-equal,
and minimum values of the |ai|’s reflect the maximum, co-equal, and minimum
values of the |j|’s, there is no simple arithmetic relationship between them.

(4) For any chosen set of gate input weights a; to a,, the resultant gate-threshold
value is given by taking the remaining tabulated a;, value (=ao) and evaluating

! HURST, S.L., The Logical Processing of Digital Signals, Crane, Russak & Company, Inc., New
York, 1978. pS30 - 536.

80

1{(Ee)-weth

(5) Notice that all the entries for any » appear in the subsequent tabulation for n + 1,
but with all values multiplied by 2 in the latter and with a further zero-valued
component. The multiplication by 2 is because there are twice the number of
minterms present in the n + 1 case compared with the »- valued-case.

Table A.1 Table of Chow Parameters

n L lail
n<3
1] 8 0 0 0 1 0 0 0
2| 6 2 2 2 2 1 1 1
34 4 4 0 1 1 1 0
n<4
1116 0 0 0 0 1 0 0 0 0
2114 2 2 2 2 3 1 1 1 1
3[]12 4 4 4 0 2 1 1 1 0
4110 6 6 2 2 3 2 2 1 1
5] 8 8 8 0 0 1 1 1 0 0
6| 8 8 4 4 4 2 2 1 1 1
71 6 6 6 6 6 1 1 1 1 1
n<s
1132 0 0 0 0 0 1 0 0 0 o0 0
2130 2 2 2 2 2 4 1 1 1 1 1
3128 4 4 4 4 0 3 1 1 1 1 0
4126 6 6 6 2 2 5 2 2 2 1 1
5124 8 8 4 4 4 4 2 2 1 1 1
6124 8 8 8 0 0 2 1 1 1 0 0
7122 10 10 6 2 2 5 3 3 2 1 1
8122 10 6 6 6 6 3 2 1 1 1 1
9120 12 12 4 4 0 3 2 2 1 1 0
10{20 12 8 8 4 4 4 3 2 2 1 1
11120 8 8 8 8 8 2 1 1 1 1 1
12118 14 14 2 2 2 4 3 3 1 1 1
13118 14 10 6 6 2 5 4 3 2 2 1
1418 10 10 10 6 6 3 2 2 2 1 1
15{16 16 16 0 0 0 1 1 1 0 0 0
16|16 16 12 4 4 4 3 3 2 1 1 1
17|16 16 8 8 8 0 2 2 1 1 1 0
1816 12 12 § 8 4 4 3 3 2 2 1
19114 14 14 6 6 6 2 2 2 1 1 1
2014 14 10 10 10 2 3 3 2 2 2 1
21112 12 12 12 12 0O 1 1 1 1 1 0

81

Table A.1 Continued

lai|

010101110111111010111111101110111111111101110111101

011101111111211011211212211121121121212201111221211

011211211211221011221212212121122122212211211322212

01121231221332.I.121323322322331223142333212312342312

011212322313421132324523334341235353334224422453315

0111212322323431132424534334452235364534324533653415

154736855747963264857957757683468596757536744885627

B

O NN O TN O TN AN O T O TN N O N OO T T TON TN O NOCNOONOTLTRO Tt 0FON
02420426448266m04888266wm444810..8&2666m6m.m..044888882m2

vl

0246846648826ww0488&266mw4848u8u666ww6mM84888u8

12
12
16
6

oNT VoS o

8
14
10
10
10
16
12
8
12
12
14
10
14
10
14
12
8
16
12
12
16
12
10
6
14
10
14
18
14
14
8
8
12
8
16
12
16
12
16
16
6

0
2
4
6
8
8
0
0
12
12
8
14
14
10
10
16
16
16
12
12
18
18
14
14
14
16
16
12
16
16
18
18
14
18
18
14
16
16
16
16

1
1
16
38 26 26

10
10
12
12
12
14
14
14
10
16
16
16
16
12
18
18
18
18
14

O N T O o0 oo

16
16
18
18
18
40 24 24

52

n<é6

33142 22 22
34142 22 22

35142 22
36 | 42 22
37142 22
38| 42
39| 42

40 | 42
42140 24 24

43140 24 20

64
2| 62
3] 60
4|58
51 56
6| 56
7] 54
8| 54
9|52
10 | 52
12 | 50
13 | 50
14 | 50
15 { 50
16 | 48
17| 48
18 | 48
19 | 48
20 | 48
46
26|44 20 20
27|44 20 20
28|44 20
29|44 20
30|44 20
44
32| 4
4440 24 20
45| 40 24
46 | 40 24
4740 20 20
48|40 20 20
49|40 20
50 | 40
51

21
231 46

1

11

22 | 46
24 | 46
25| 46
31
41

82

Table A.1 Continued

|54

52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

38
38
38
38
38
38
38
38
38
38
36
36
36
36
36
36
36
36
36
36
36
36
36
34
34
34
34
34
34
34
34
34
34
34
34
34
34
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32

26
26
26
26
26
22

22
22
18
28
28
28
28
28
28
24
24
24
24
24
20
20
30
30
30
30
30
30
26
26
26
26
26
22
22
22
32
32
32
32
32
32
32
28
28
28
28
28
24
24
24

22
22
18
18
14
22
22
18
18
18
28
24
20
20
16
16
24
24
20
20
16
20
20
30
26
22
18
18
14
26
22
22
18
18
22
22
18
32
28
24
20
16
16
12
28
24
20
20
16
24
24
20

10
10
14
10
14
14
10
18
14
18
4
8
12
12
16
12
12
12
16
12
16
20
16
2
6
10
14
14
14
10
14
14
18
14
18
14
18
0
4
8
12
16
16
12
8
12
16
16
16
16
16
20

10

10
10
14
10
10
10
14
14

12

12
12
12

12
12
16
12
16

10
14
10
10
10
14
10
14
14
14
14
18

12
16

12

12
16
12
12
16
12
16

- o
SN

—
[=

Pt et — — f—
NSNS ANAANDT RS0 o s ARE

b ket
OCPrOO

00500 oo 50O o0ho

PPOLRLPEGRNOPROROONONT AN SANNNNRAO®ROLAONROERORONOANSAAOARANON

UL PAUNYIONAWREANUVMWA RS UAEIAUNMAODUNIOIRINAWERWNEAENIOATUVNARNIIWAUNAO WK

MAWLEOODUOVMWLANWVWVLAEFRL,AMAWLWULLMPAPNIAEAIRAIEANARLRPNWLEAEALUNUUARNWWULLINARWUVILO

B WLWLLRARUNUUENEFELVONWSWWULMBAUWLWDAAARWLWUMAWUMWUVAE ALDANDNDMWLWLWWLMEAEWLREWRWLWWLRRENLSNWWLMEWWL

PAWLWNWAWLWWNFRN=NEFERFOWNABALWWERERNWAWWIN=WNNNEBNWWWWODN=WW.LE=WNDNLDSNWR

WOMNMNMNWWOLWN - RPN =2 OWNWWLWNNDLBENNWWLWWNNRE,WLWEREDNWEREWLWLWNNNDNNES,NWD=SNDNDND W= W

NN~ NMNNE RO =SSO NNNNN=RNNENNENN =R == NN == NN NN - N

— ek D NN et e et e e O et D O bt ek N bt e et DD R e bt el et ek D) ek ek et ek e DD bk bk £ it D bt i b e b b e e e e

83

Table A.1 Continued

n L] lai
10432 24 20 16 16 12 817 6 5 4 4 3 2
10532 20 20 20 20 8 84{3 2 2 2 2 1 1
10630 30 30 6 6 6 63 3 3 1 1 1 1
107130 30 26 10 10 10 25 5 4 2 2 2 1
108130 30 22 14 14 6 6|4 4 3 2 2 1 1
109130 30 18 18 18 2 2|5 5 3 3 3 1 1
11030 3 18 18 10 10 103 3 2 2 1 1 1
111730 30 14 14 14 14 142 2 1 1 1 1 1
11230 26 26 14 14 10 216 5 5 3 3 2 1
1133 26 22 18 18 6 217 6 5 4 4 2 1
114130 26 22 18 14 10 6|8 7 6 5 4 3 2
115130 26 18 18 14 14 106 5 4 4 3 3 2
116 {30 22 22 22 18 6 64 3 3 3 2 1 1
117130 22 22 18 18 10 105 4 4 3 3 2 2
118128 28 28 12 12 12 0|2 2 2 1 1 1 0
119128 28 24 16 16 8 45 5 4 3 3 2 1
12028 28 20 20 20 4 O3 3 2 2 2 1 o0
121128 28 20 20 12 12 8|4 4 3 3 2 2 1
122128 28 16 16 16 16 123 3 2 2 2 2 1
123128 24 24 20 20 4 45 4 4 3 3 1 1
124 | 28 24 24 20 16 8 8{6 5 5 4 3 2 2
125|128 24 20 20 16 12 1217 6 S5 5 4 3 3
126 |26 26 26 18 18 6 6 {3 3 3 2 2 1 1
127126 26 22 22 22 2 2}4 4 3 3 3 1 1
128126 26 22 22 14 10 105 S5 4 4 3 2 2
129126 26 18 18 18 14 14,4 4 3 3 3 2 2
130126 22 22 22 14 14 1414 3 3 3 2 2 2
13124 24 24 24 24 0 0} 1 1 1 1 1 0 0
132124 24 24 24 12 12 1212 2 2 2 1 1 1
133{24 24 20 20 16 16 16(5 5 4 4 3 3 3
134122 22 22 18 18 18 1813 3 3 2 2 2 2
135/20 20 20 20 20 20 20(1 1 1 1 1 1 1

APPENDIX B

THE CHARACTERISTIC KARNAUGH MAP PATTERNS FOR
ALL LINEARLY SEPARABLE FUNCTIONS OF n<4

Figure B.1 The positive canonic linearly separable map patterns
of n < 4. The position may be anywhere and with any
orientation within the map layout.

APPENDIX C

SOURCE CODE OF THE COMPUTER PROGRAM

{$G+} {286 instructions are on}
{$1FDEF CPU87}

{$N+} {80x87 support is on}
{SELSE}

{$N~} {B0x87 support is off}
{$ENDIF}

{$E~} {B0x87 emulation is off}
{SR-} {Range checking is off}

program METL;

uses crt, dos;

const
max_dimension = 11;
power_of max dimension = 2048;
BackUpFregquency : word = 500;
FileChangeFrequency = 1000000;

type
one_dimension = array[0..power of max dimension-1] of byte;
dimension_string = string[max_dimension+l];
input_array = array{0..power_of max_dimension-1] of dimension_string;
var
dimension : byte;
OriginalDim : byte;
zin : byte;
n : byte;
number_width : byte;
control_value : byte;
N_Of Zeros ¢ byte;
Output : byte;
MaxNeurons : byte;
neuron : byte;
MinNeuron : byte;
NeuronLimit : byte;
errcode : integer;
WTCount : word;
one_counter ¢ word;
zerc_counter : word;
MaxNrn ¢ longint;
MaxFuncNo : longint:
SolutionOK : longint;
SolutionNone : longint;
FuncNo : longint;
StartFuncNo : longint;
EndFuncNo : longint;
error : Boolean;
OverFlow : Boolean;
LinearSeparable : Boolean;
NewTry : Boolean:;
FirstOptimize : Boolean;
NeuronOpti : Boolean;
Algorithm : char;
MinAlgo : char;
OriginalAlgo s char;
question : char;
MinRealize : char;
auto : char;
FastRnalyze ¢ char;
BackupProcess : char;
TmpChar : char;
NeuronFileName s Text;
ResultFileName s Text;
inputs + input_array;
dimenstr s string[2};
Number s string(31;
desired : one_dimension;
NeuronWeight s array[0..2*max_dimension] of integer;
weight : array{l..2*max_dimension,0..max_dimension] of longint;
SITV s array[0..2,0..1,1..power_of max dimension] of word;
MaxNrnDim : array[0..max dimension] of longint;

function ipower(base, pow : byte) : longint;

86

begin
ipower := trunc(exp{ pow * ln(base})):
end;

function sgn(inp : integer) : byte;
begin
if inp >= 0 then
sgn := 1
else
sgn := 0;
end;

function bit (number:word;ix:byte) :byte;
var
i : byte;
code : integer;
begin
val (inputs[number, Originaldim-ix+1],1i,code);
bit:=i;
end;

procedure ask_yes_no(var answer : char);
begin
repeat
answer := upcase (readkey);
until (answer = 'N') or (answer = 'Y'});
if answer = 'Y' then
writeln('Yes')
else
writeln('No'};
end;

procedure ToFile (process:char);

var
i : byte;
3 : word;
Present : PathStr;
begin
case process of
'I': begin
i:=0;
repeat
str(i,Number);
if i<10 then
insert ('00°',Number, 1)
else
if i<100 then
insert('0',Number,1l);
Present:=fsearch('FAR-'+Number+'.txt',*.");
inc(i):
until (Present='') or (i=0);

Assign(ResultFileName, ' FAR-"'+Number+'.txt');

Rewrite (ResultFileName);

Close (ResultFileName) ;

Assign(NeuronFileName, 'Nrn-'+Number+'.txt');

Present:=fsearch('Nrn-"+Number+',.txt','.");

if Present='"' then

begin
ReWrite (NeuronFileName) ;
writeln(NeuronFileName, ' [Synonyms]'});
writeln(NeuronFileName);
writeln(NeuronFileName, '<FuncNo> = <Neuron> cf <NeuronLimit>');
writeln(NeuronFileName, ‘<FuncNo> has Wrong Trial Process !! ');
writeln(NeuronFileName, '<FuncNo> exceeds the Neuron Limit !!!! *);
writeln (NeuronFileName, '<FuncNo> has No Neural NetWork !! It must have
maximum <NeuronLimit> neurons..');

writeln(NeuronFileName);
writeln(NeuronFileName, ' [Results]');
writeln(NeuronFileName);
Close (NeuronFileName) ;

end;
end;
'W': begin
if Auto = 'Y' then
begin

Rewrite (ResultFileName);
writeln(ResultFileName, ' [Auto Bnalyze Result]');
writeln (ResultFileName);

writeln(ResultFileName, 'Dimension = ',dimension:10);
writeln(ResultFileName, 'Heuristic Analyze = ' ,MinRealize:10);
write (ResultFileName, 'Algorithm Used = ');

case Algorithm of

'J* : writeln(ResultFileName, '"Major Start':10);
'N' : writeln(ResultFileName, 'Minor Start':10);
'E' : writeln(ResultFileName, 'Eliminate':10)};

'A' : writeln(ResultFileName, 'Auto Select':10);

end;

87

writeln(ResultFileName);

writeln(ResultFileName, 'Start Function No = ', StartFuncNec:10);
writeln(ResultFileName, 'End Function No = ', EndFuncNo:10};
writeln(ResultFileName);
writeln(ResultFileName, 'Last Function No = ',FuncNo:10);
writeln(ResultFileName) ;

writeln(ResultFileName, 'Total Functions Test = ',FuncNo~-StartFuncNo+1:10);
writeln(ResultFileName);
writeln(ResultFileName, 'Solution OK = ',80lutionOK:10);
writeln(ResultFileName, 'Solution None = ',So0lutionNone:10};

end
else

writeln(ResultFileName);
writeln(ResultFileName, 'Linear Separable Funcs = ',MaxNrnDim{1]:10);
writeln(ResultFileName, '# of MaxNeuron Error = ',MaxNrn:10);
writeln(ResultFileName, 'Wrong Trial Numbers = 1 ¥§TCount:10);
writeln{ResultFileName);
writeln(ResultFileName, 'Max Number of Neurons = ',MaxNeurons:10);
writeln(ResultFileName, '"Max Neuron Func No = ', ,MaxFuncNo:10);
writeln(ResultFileName);
if dimension < MaxNeurons then
for i:=1 to MaxNeurons do
writeln(ResultFileName,i:2,' Neurons

' ,MaxNrnDim[i]):10)
else
for i:=1 to dimension do
writeln(ResultFileName,i:2,' Neurons = ' ,MaxNrnDim{[i]:10};
Close (ResultFileName) ;

begin

end;
end;
end;
end;

procedure Initialization;
var

i : word;
begin

Rewrite (ResultFileName) ;
writeln({ResultFileName, ' [Function Analyze Result]');
writeln(ResultFileName);
writeln(ResultFileName, 'Dimension = ',dimension:10);
writeln(ResultFileName, 'Heuristic Analyze=~ ',MinRealize:10};
write (ResultFileName, 'Algorithm Used = ');
case Algorithm of
*J' : writeln(ResultFileName, 'Major Start':10);
'N' : writeln{ResultFileName, 'Minor Start':10);
'E' : writeln(ResultFileName, 'Eliminate’':10);
'TA' : begin
if Not FirstOptimize then
writeln (ResultFileName, 'Major Start':10)
else
if Not NeuronOpti then
writeln(ResultFileName, 'Minor Start':10)
else
writeln(ResultFileName, 'Eliminate’:10};
end;
end;
writeln{ResultFileName) ;
write (ResultFileName, 'Function Output = [');
for 1 := ipower{2,dimension)-1 downto 0 do
write (ResultFileName,desired(i]);
writeln(ResultFileName,']');
writeln(ResultFileName);
writeln(ResultFileName, 'Linear Separable = ',LinearSeparable:10);
writeln(ResultFileName);
writeln(ResultFileName, 'Number of Neurons= ',neuron:10};
writeln(ResultFileName);
if Not error then
begin
writeln(ResultFileName);
for j := 1 to neuron do
begin
for 1 := 0 to dimension do
writeln{ResultFileName, '‘Weight[',3j:2,',',1:2,']= ',weight[j,1]1:10);
writeln{ResultFileName);
end;
for j:=0 to neuron do
writeln(ResultFileName, 'NeuronWeight[*,5:2,']= ',NeuronWeight[j]1:10);
end
else
begin
writeln(ResultFileName);
writeln(ResultFileName, 'This function can not be expressed');

end;
Close (ResultFileName) ;

BackupProcess = 'N';

88

SolutionOK 1= 0
SolutionNone = 0;
MaxNeurons = 0;

MaxNrn 1= 0;

NewTry := False;
EndFuncNo t= 2147483647;

for i:=1 to dimension do
MaxNrnDim([i] := 0;
write('Please enter the dimension of the inputs (0 < x <= ',max_dimension:2,') : ');
readln{dimenstr);
val (dimenstr,dimension, errcode);
str(dimension,dimenstr);
number width := length(dimenstr);
if (dimension>max dimension) or (dimension<0) then
dimension:=max_dimension;
gotoxy(60,1);
writeln(dimension:number_ width);
if dimension = 0 then

begin
clrscr;
writeln('Thanks for using this program.');:
halt;
end
else
OriginalDim := dimension;
writeln;
write('Do you want to activate the fast analyzer 2 ');

ask_yes_no(FastAnalyze);
if FastAnalyze='N' then
begin
writeln;
write('Do you want to activate the automatic input generator 2 '):
ask_yes_no{auto):
end
else
auto:='Y*;
writeln;
write('Please select the algorithm (maJor -~ miNor - Eliminate - Auto) ? *):
repeat
Algorithm := Upcase (Readkey);
if Algorithm = Chr(13) then
Algorithm := 'A';
until (Algorithm = 'J') or (Algorithm = 'N') or (Algorithm = 'E')} or (Rlgorithm = 'A'};
case Algorithm of
*J' ; writeln('Major Start'):;
'N' : writeln('Minor Start');
'E' : writeln('Eliminate'};

.

'A' : writeln('Auto Select');
end;
writeln;
if auto='Y' then
begin

write('Please enter the starting function number : ');
readln(StartFfuncNo) ;
if (dimension<5)} and (StartFuncNo > ipower(2,ipower(2,dimension))} then
StartFuncNo:= StartFuncNo and (ipower(2,ipower(2,dimension))-1});
if StartFuncNo = -2 then
if dimension < 5 then
StartFuncNo:=ipower (2, ipower (2, dimension)-1)
else
StartFuncNo:=ipower (2, 30) -1+ipower (2, 30)
else
if StartFuncNo<0 then
StartFuncNo:=0;
writeln;
write('Please enter the ending function number : '};
readln (EndFuncNo) ;
if (dimension < 5) and (EndFuncNo > ipower(2,ipower(2,dimension))) then
EndFuncNo:= EndFuncNo and (ipower (2,ipower(2,dimension))-1);
if EndFuncNo=-1 then
if dimension < $5 then
EndFuncNo:=ipower (2, ipower (2,dimension))~1
else
EndFuncNo:=ipower (2, 30) -1+ipower(2, 30}
else
1f EndfuncNo=-2 then
if dimension < 6 then
EndFuncNo:=ipower (2, ipower (2, dimension)~2)-1+ipower (2, ipower (2, dimension)-2)
else
EndFuncNo:=ipower (2, 30)-1+ipower(2,30)
else .
if (EndFuncNo<StartFuncNo) and (StartFuncNo <> ipower(2,30)-l+ipower(2,30)) then
EndFuncNo := StartFuncNo;
writeln;
if EndFuncNo - StartFuncNo > FileChangeFrequency then
begin
write('Do you want to activate the backup process ? ');

end

89

ask_yes_no (BackupProcess);
writeln;
end
else
BackupProcess := 'N';
end;

write('Do you want a Heuristic analyze ? '};
ask_yes_no(MinRealize);
ToFile('I');

.
;

procedure find_output;

var
i : byte;
3 : word;
k : word;
history : word;
ksi : integer;
OutputKsi : integer;
begin
history := ipower(2,dimension)-1;
error := false;
for 3 := 0 to history do
begin
OutputKsi := NeuronWeight([0];
for k := 1 to neuron do
begin
ksi := weight[k,0];
for 1 := 1 to dimension do
ksi := ksi + bit(j,1i)*weight{k,i];
OutputKsi := OutputKsi + sgn(ksi)*NeuronWeight[k];
end;
if (desired[j] = 0) or (desired[j] = 1) then
error := error or {sgn(OutputKsi) <> desired[j]):
end;
end;
function binary(numberl:longint; dim:byte):string;
var
TmpString : string;
counter : byte;
holder : string:
negative : boolean;
begin
holder:='"";

negative := numberl < O;
if numberl < 0 then
numberl := numberl and (not (1 shl 31)});
if dim = 32 then
counter := dim - 1
else
counter := dim;
while counter > 0 do
begin
str(numberl mod 2, TmpString):
insert (TmpString,holder,1);
numberl := numberl div 2;
dec{counter) ;
end;
if dim = 32 then
if negative then
insert('l',holder,1)
else
insert('0’',holder,1);
binary:=holder;

end;

fun
var

Temp

beg

NumberOfOnes : byte:;

ction HD(a,b:word):byte;
word;

1
TmpStr

byte;
dimension_string;

in
NumberOfOnes := 0;
Temp := a or b;
TmpStr := Binary(Temp,OriginalDim);
For i := 1 to length(TmpStr) do
if copy(TmpStr,i,1l)="1' then
inc (NumberOfOnes) ;
Temp := a and b;
TmpStr := Binary(Temp,OriginalDim);
For i := 1 to length(TmpStr) do
if copy{TmpStr,i,1)='1' then
dec (NumberQ£fOnes) ;
HD := NumberOfOnes:

90

end;

Function Nearest (Base,bit:woxrd):word;
begin

Nearest := Base xor ipower(2,bit-1);
end;

procedure TrainCGeometrically;

var
c : array[0..max_dimension] of longint;
Element s array{0..2] of word;
NeuronMatrix : array[0..1] of worxd;
SmallVertex : array(l..max_dimension] of byte:
Dim : arrayl[l..max_dimension] of byte;

OriginalMask : array[l..max_dimension] of word;

Modi fiedMask : array(l..max_dimension] of word;
MaskMask : array(l..max_dimension] of word;
NewDesired : one_dimension;
core ¢ word;
i : word;
j : word;
k : word;
1 : word;
m : word;
n : word;
klimit : word;
tminNo : word;
fmaxNo : word;
Minl ¢ word;
Mink : word;
Minj s word;
Maxk ¢ word;
ZeroK s word;
ZeroRD : word;
NeuronOptilimit : word;
NeuronDimLimit : word;
NeuronVertexLimit : word;
Dif : word;
Tempo : longint;
Max : longint;
Min : longint;
tmin : longint;
fmax : longint;
hold : longint;
MaxNet : longint;
Tmp2 : longint;
Center : longint;
Finish : Boolean;
Expand : Boolean;
ClassControl : Boolean;
WrongTrial : Boolean;
HDControl : Boolean;
TopStart : Boolean;
FastFind : Boolean;
NewCore : Boolean;
Equal : Boolean;
Small : Boolean;
CanBeOptimized : Boolean;
Reduce : Boolean:
Reduced : Boolean:
WeightOpti : Boolean;
SequentialSearch : Boolean;
MaxHD : Byte;
MinHD : Byte;
Tmp : Byte;
Vertex :+ Byte;
MinkVertexType : Byte;
VertexType : Byte;
VertexStart : Byte;
VerySmallVertex : Byte;
OriginalVertexStart : Byte;
TempA : Byte;
MaskBit : Byte;
ReduceProcess : Byte;
RP ¢ Byte:
begin
Element [0} := zero_counter;
Element([1] 1= one_counter;
Element(2] = 0;
TmpChar =t
MaxHD s= 1
NewCore := False;
NeuronOpti := False;
FirstOptimize := False;
WeightOpti := False;
SequentialSearch := False:
Dif := 65535;

91

NeuronDimLimit := dimension;
OriginalDim := dimension;
for i:=0 to 1 do
NeuronMatrix[i] := 0;
NeuronWeight[0] :=-1;
NeuronWeight[1]:=2;
neuron = 1;
if (one_counter = 0) or (zero_counter = 0) then
begin
NeuronDimLimit := 1
Neuronlimit 1= 1;
if one_counter = 0 then
weight[1,0] := -1
else
weight{1,0] := 1;
for i:= 1 to dimension do
weight[1l,i] := 0;

. .

exit;
end
else
begin
ReduceProcess := 0;
repeat

inc (ReduceProcess);
if Element([l] <= Element[0] then
begin
if Element[1] > O then
SmallVertex [ReduceProcess] := 1
else
SmallVertex[ReduceProcess] := 0;
end
else
if Element(C] > O then
SmallVertex [ReduceProcess] := 0
else
SmallVertex [ReduceProcess] := 1;
VerySmallVertex := SmallVertex[ReduceProcess);
if Element{VerySmallVertex] > 1 then
begin
OriginalMask[ReduceProcess] := 0;
for i := 1 to Element[VerySmallVertex]-1 do
for j := i+l to Element[VerySmallVertex] do
OriginalMask [ReduceProcess] := OriginalMask[ReduceProcess]
or (SITV[VerySmallVertex,l,i] xor SITV[VerySmallVertex,1,j]l);
end
else
OriginalMask[ReduceProcess] := 1;
if HD(0,OriginalMask[ReduceProcess]) <> 0 then
NeuronDimLimit := HD{0,OriginalMask([ReduceProcess])
else
NeuronDimLimit := 1;
NeuronVertexLimit := Element(VerySmallVertex]:
ModifiedMask[ReduceProcess] := OriginalMask[ReduceProcess];
Dim[ReduceProcess] := Dimension;
if ((Algorithm = 'J') or {(Algorithm = 'A')) and (Element[l-VerySmallVertex]>0) then
begin
VertexStart := 1-VerySmallVertex;
OriginalVertexStart := VertexStart;
FirstOptimize := False;
end
else
begin
OriginalVertexStart := VerySmallVertex;
VertexStart := VerySmallVertex;
FirstOptimize := True;
if Algorithm = 'E' then
NeuronOpti := True;
end;
Vertex := VertexStart;
if (HD(0,OriginalMask[ReduceProcess])<Dim[ReduceProcess]) and (Element[Vertex]>=l) then

begin
i:=1;
k = 1;
repeat
if (bit (ModifiedMask[ReduceProcess],Dim[ReduceProcess]~i+1}=0) then
begin
if i <> k then

begin
for 1 := 0 to 1 do
for m := 1 to Element([l] do
begin
TempA := bit(SITV{l,1,m],Dim{ReduceProcess]-i+1};
for j := i-1 downto k do
begin
if bit(SITV[1l,1,m],Dim[ReduceProcess]-j+1) = 1 then
begin
tmp := Dim[ReduceProcess}-j-1;

92

SITV(1,1,m]l:=SITV[1,1,m] or (1 shl tmp);
end
else
begin
s= Dim[ReduceProcess]-j-1;
SITV[1,1,m]:=8ITV([1,1,m] and (not (1 shl tmp)):

end;
end;
if TempA = 1 then
begin

tmp := Dim[ReduceProcess]-k;
SITV(l,1,m]:=SITV({1l,1,m] or (1 shl tmp);
end
else
begin
tmp := Dim[ReduceProcess]-k;
SITV(1,1,m]:=8ITV[1,1,m] and (not (1 shl tmp));
end;
end;
tmp := Dim[ReduceProcess]-k;
ModifiedMask[ReduceProcess] :=ModifiedMask[ReduceProcess] and (not (1 shl tmp));
tmp := Dim[ReduceProcess]-i;
ModifiedMask[ReduceProcess] :=ModifiedMask[ReduceProcess] or (1 shl tmp);

inc(k);
inc(i);
end
else
begin
inc(k);
inc(iy;
end;
end
else
inc(i):

until i > Dim[ReduceProcess];

if HD(0,OriginalMask[ReduceProcess]) > 0 then
dimension := HD(0,OriginalMask([ReduceProcess]);

MaskMask [ReduceProcess] := 0;

for i:=1 to Dim[ReduceProcegs]-dimension do

begin

if bit(SITV[VerySmallVertex,1,1],Dim[ReduceProcess]-i+l) = 1 then

begin
tmp := Dim{ReduceProcess]-i;

MaskMask([ReduceProcess] := MaskMask[ReduceProcess] or (1 shl tmp);
end

else
begin

tmp := Dim[ReduceProcess}-i;
MaskMask [ReduceProcess] := MaskMask[ReduceProcess] and (not (1 shl tmp));
end;
end;
for j := 1 to Element[VerySmallVertex] do
for k:=1 to Dim[ReduceProcess]-dimension do
begin
tmp := Dim[ReduceProcess]-k;
SITV[VerySmallVertex,1,j] :=8ITV[VerySmallVertex,1,j] and (not(l shi tmp));
end;
ji=1;
repeat
Reduce := True;
for i:=1 to Dim[ReduceProcess]-dimension do
Reduce:=Reduce and (bit(SITV[1l-VerySmallVertex,1,j],Dim[ReduceProcess]-i+l)
=hit (MaskMask[ReduceProcess],Dim[ReduceProcess]-i+1));
if Reduce then
begin
' for k:=1 to Dim[ReduceProcess]-dimension do
begin
tmp := Dim[ReduceProcess]~k:
SITV[1-VerySmallVertex,1,3]:=SITV[1-VerySmallVertex,1,3j] and {not(l shl tmp))};
. Reduced := True;

end;
inc(3);
end
else
begin

SITV[1-VerySmallVertex,1,j] := SITV[1-VerySmallVertex,l,Element[1-VerySmallVertex]]:
dec{Element [1-VerySmallVertex]);
Reduced := True;
end;
until j > Element[1-VerySmallVertex];
end;
until Dim[ReduceProcess] = HD(0,OriginalMask[ReduceProcess]);
for 1:=0 to 1 do
for § := 1 to Element[i] do
NewDesired{SITV{i,1,3]] := i;
NeuronLimit := NeuronDimLimit;
if NeuronVertexlimit < NeuronLimit then

93

NeuronlLimit := NeuronVertexLimit;
NeuronOptilimit := 0;
for i:=1 to Element[VerySmallVertex]-1l do
begin
if SITV[VerySmallVertex,0,i] = 0 then
begin
inc(NeuronOptiLimit):
for j:=i+l to Element[VerySmallVertex] do
begin
if HD(SITV[VerySmallVertex,1,i],SITV[VerySmallVertex,1,3j]) = 1 then
begin
inc(SITV[VerySmallVertex,0,1]);
inc(SITV[VerySmallVertex,0,j});
end;
end;
end;
end;
if SITV[VerySmallVertex,0,Element{VerySmallVertex]] = 0 then
inc(NeuronOptiLimit);
for i:= 1 to Element[VerySmallVertex] do
SITVIVerySmallVertex,0,i] := 0;
CanBeOptimized := True;
if (Algorithm = 'A') or (Algorithm = 'E'} then
if (NeuronOptilimit <= NeuronLimit)} then
begin
NeuronlLimit := NeuronOptilimit;
CanBeOptimized := True;
end;
ZeroHD := 0;
VertexType := 0;
Maxk := 0;
Minj := 1;
Mink := Element[Vertex]:;
for 1 := 0 to 1 do
begin
Vertex := l*VerySmallVertex + (1-1)*(l-VerySmallVertex);
ZeroK := 0;
if Element[Vertex] > 0 then
begin
SITV{Vertex,0,Element[Vertex])] := 0;
for i:=1 to Element[Vertex]-1 do
begin
SITV([Vertex,0,i] := 0;
for j:=1i+1 to Element[Vertex] do

begin
gotoxy (OriginalDim+8,20);
write{'i = *,1:5," 7= ',3:5);
if keypressed then
begin
TmpChar := readkey:
if TmpChar = 'S' then
halt;
end;
if HD{SITV[Vertex,1,i],SITV[Vertex,1,3]) = 1 then
begin
inc{SITV[Vertex,0,1]):
inc{SITVI[Vertex,0,3l};
end;
end;

if (SITV[Vertex,0,i] > Maxk) and ((Algorithm = °*A') or ((Algorithm='J")
and (Vertex<>VerySmallVertex)) or ({Algorithm='N') and (Vertex=VerySmallVertex))) then
begin
Maxk := SITV(Vertex,0,il;
VertexType := Vertex;
Minj := i;
end;
if (SITV([Vertex,0,i] < Mink) and (SITV{Vertex,0,i]>0) then
begin
Mink := SITV[Vertex,0,i}l;
MinkVertexType := Vertex;
end
else
if SITVi{Vertex,0,i]=0 then
inc(ZeroK);
end;
if (SITV[Vertex,0O,Element(Vertex]] > Maxk) and ((Algorithm = *A') or ((Algorithm='J")
and (Vertex<>VerySmallVertex)) or ({(Algorithm='N') and (Vertex=VerySmallVertex))) then
begin
Maxk := SITV(Vertex,0,Element([Vertexl];
VertexType := Vertex;
Minj := Element[Vertex]:
end;
if (SITV[Vertex,0,Element[Vertex}] < Mink) and {SITV[Vertex,O,Element[Vertex]]>0) then
begin
Mink := SITV[Vertex,0,Element[Vertex]];
MinkVertexType := Vertex;
end

94

else
if SITV{Vertex,0,Element[Vertex]]=0 then
inc(ZeroK);
end;
if ZeroK > ZeroHD then
ZeroHD := ZeroK;
end;
if Algorithm = 'A' then
begin
VertexStart := VertexType;
FirstOptimize := False;
end;
Vertex := VertexStart;
Minl := Minj:;
if (Algorithm ='E') or (Element([0] = Element[l]) then
begin
Vertex := VerySmallVertex;
VertexStart := VerySmallVertex;
if NeuronlLimit = NeuronOptilimit then
core := SITV[Vertex,1,1]

else
if (Mink = 1) then
begin
Minj := Minl;
Maxk := Element([Vertex];
core := SITV[Vertex,1,1];
for i := 1 to Element[Vertex] do
begin
if SITV[Vertex,0,i] = 1 then
begin
if i=1 then
3 = 2
else
j = 1;
FastFind := False;
repeat
begin
if (HD(SITV[Vertex,1,i],SITV[Vertex,1,j])=1) then
begin
FastFind := True;
if (SITV{[Vertex,0,3] < Maxk) then
begin
Minj := 3j;
Maxk := SITV([Vertex,0,3]:
end
else
if (SITV[Vertex,0,j] = Maxk)
and (((HD(0,SITV[Vertex,1,j]) = HD(0,SITV[Vertex, 1,Minjl})
and (SITV[Vertex,1,j] < SITV[Vertex,1,Minj})) or
(HD(0, SITV[Vertex,1,3j]) > HD(0,SITV[Vertex,1,Minj}}))) then
Minj := j;
end;
if 3 + 1 =1 then
inc(},2)
else
inci(i):
end;
until FastFind;
core := SITV[Vertex,l,Minj];
end;
end;
end
else
begin
core := SITV[Vertex,1,Minjl;
end;
end
else

core := SITV[Vertex,l,Minjl;
CanBeOptimized := CanBeOptimized and (ZeroHD<=NeuronLimit) and ((Mink<>Element[Vertex])
or (Element[VerySmallVertex] <= NeuronLlimit));
if vertex = 1 then
NeuronMatrix|[(neuron-1} div 16]:=1 shl 15;

Je=l;
repeat
if SITV[Vertex,1,j] = core then
begin
inc(Element[2]);
dec (Element [Vertex]);
SITV[2,1,Element[2)] := core;
SITV[2,0,Element{2]] := SITV[Vertex,O0,jl;
SITV[Vertex,1,3] := SITV{Vertex,1,Element[Vertex]+l];
SITV([Vertex,0,3] := SITV[Vertex,0,Element[Vertex]+1];
end
else
inc(j);

until (Element[2] = 1) or (j>Element[Vertex]);

95

if Element[2] = O then
begin
MinHD := dimension+l;
FastFind := False;

k :=1;
Mink := 1;
repeat
if HD(core,SITVIVertex,1l,k]) <= MinHD then
begin
if (HD(core,SITV[Vertex,1l,k])=MinED) then
begin
if ((HD{0,SITV[Vertex,1,k])=HD(0,SITV(Vertex,1,Mink]})
and (SITV[Vertex,1,k]<SITV[Vertex,1,Minj]))
or (HD(O,SITV{Vertex,l,k])<HD(0Q,SITV[Vertex,1,Mink])) then
Mink := k;
end
else
begin
Mink := k;
MinHD := HD(core,SITV[Vertex,1,k]};
end;
end;
inc(k);
until (k > Element([Vertex])} or FastFind;
k := Mink;

core:;=SITV([Vertex,1,k];
inc(Element([2]);
dec(Element [Vertex]);
SITV[2,1,Element(2]] := core;
SITV(2,0,Element[2]] := SITV[Vertex,0,k];
SITV([Vertex,1,k] := SITV[Vertex,l,Element[Vertex]+l];
SITV([Vertex,0,k] := SITV[Vertex,(,Element[Vertex]+l];
k:=1;
Mink := 1;
end;
for i := 1 to dimension do
if NewDesired[Nearest (core,i)] = Vertex then
begin
inc(Element[2]);
dec(Element [Vertex]}:
SITV(2,1,Element[2]] := Nearest(core,i);

j o= 13
repeat
if SITV([Vertex,1,j] = SITV(2,1,Element[2]] then
begin
SITV[Vertex,1,3] := SITV[Vertex,1l,Element([Vertex]+1];
SITV([2,0,Element(2]] := SITV[Vertex,0,jl;
SITV[Vertex,0,j] := SITV[Vertex,0,Element[Vertex]+l];
break;
end;
inc(3);

until (j > Element([Vertex]+1);
if bit{core,i) = Vertex then
weight[neuron,i] := 2
else
weight[neuron,i] := -2;
end
else
if bit(core,i) = Vertex then
weight{neuron,i] := 4
else
weight[neuron,i] := -4;
weight [neuron, 0] := 3*(2*Vertex-1};
for i := 1 to dimension do
weight [neuron, 0] := weight[neuron,0] - weight([neuron,i]*bit(core,i);
if Element[1-Vertex] = 0 then
begin
Neuronlimit := 1;
if Vertex=0 then
weight[1,0] := ~1
else
weight[1,0] := 1;
for i:= 1 to dimension do
weight([1,i] := O;
Finish := True;
end
else
Finish := False;
WrongTrial := False;
repeat
k =17
kLimit := O;
Expand := False;
TopStart := True;
while (Element{Vertex] <> 0) and (k <= Element[Vertex]) and (Not Finish) do
begin
if keypressed then

96

begin
TmpChar := readkey:
case TmpChar of
’ '0* : Question := 'N';
*1' : Finish := True;

end;
end;
gotoxy (OriginalDim+8,7);
write('k = ',k:5);

gotoxy (OriginalDim+8,8);
write('SITV = ',Element[2]:53);
gotoxy (OriginalDim+8,10);
write{'Neuron = ',Neuron:5);
gotoxy (OriginalDim+8,14);
write('WrongT = ',WTCount:5);
if Element{2] = 0 then
begin
WrongTrial := False;
for i:=1 to Element[Vertex] do
SITV(Vertex,0,i] := 0;
Mink := Element{Vertex];
Maxk := 0;
for i:=1 to Element{Vertex]-1 do
begin
for j:=i+l to Element(Vertex] do
begin
gotoxy (OriginalDim+8,20);
write('i = ',1:5,"' j = ',3:5);
if keypressed then
begin
TmpChar := readkey;
if TmpChar = '5' then
halt:
end;
if HD(SITV[Vertex,1,1i],SITV[Vertex,1,3]) = 1 then
begin
inc(SITV([Vertex,0,1i]1);
inc(SITV([Vertex,0,31);
end;
end;
if (SITV[Vertex,0,i] > Maxk) and ({Algorithm = 'A') or ({Algorithm='J")
and (Vertex<>VerySmallVertex)) or ((Algorithm='N")
and (Vertex=VerySmallVertex))})} then
begin
Maxk := SITV[Vertex,0,i};
VertexType := Vertex;
if ((SITV{Vertex,1,i] < SITV[Vertex,1,Minj])
and (SITV[Vertex,0,i]=Maxk))
or (SITV{Vertex,0,Element[Vertex]]>Maxk) then
Minj := i;
end;
if (SITV[Vertex,0,i) < Mink) and (SITV{Vertex,0,ij>0) then
Mink := SITV([Vertex,0,1];
end;
if (SITV[Vertex,0,Element{Vertex]] >= Maxk)} and ((Algorithm = 'A*) or ((Algorithm='J")
and (Vertex<>VerySmallVertex)) or ({Algorithm='N') and (Vertex=VerySmallVertex})) then
begin
Maxk := SITV[Vertex,0,Element([Vertex]];
VertexType := Vertex;
if ((SITV{Vertex,1,Element[Vertex]] < SITV[Vertex,1,Minj])
and (SITV[Vertex,0,Element{Vertex]]=Maxk})
or (SITV[Vertex,(,Element{Vertex]]>Maxk) then
Minj := Element(Vertex];
end;
if (SITV[Vertex,0,Element[Vertex]] < Mink) and (SITV(Vertex,O,Element[Vertex]]>0) then
Mink := SITV([Vertex,0,Element[Vertex]]:
Minl := Minj;
if (Algorithm ='E') or NeuronOpti then
begin
if NeuronlLimit = NeuronOptilimit then
core := SITV[Vertex,1,1]

else
if (Mink = 1) then
begin
Minj := Minl;
Maxk := Element[Vertex];
core := SITV[Vertex,1,1];
for i := 1 to Element{Vertex] do
begin
if SI1TV[Vertex,0,i} = 1 then
begin
if i=1 then
j =2
else
i =1;

FastFind := False;
repeat

97

begin
if (HD({SITV(Vertex,1,i],8ITV{Vertex,1,3])=1) then
begin
FastFind := True;
if (SITV[Vertex,0,j]) < Maxk) then
begin
Minj := j3;
Maxk := SITV[Vertex,0,j];
end
else
if (SITV[Vertex,0,j] = Maxk) and
{{(HD(0,SITV[Vertex,1,3]) =
HD{0, SITV[Vertex, 1,Minj]))
and (SITV[Vertex,1,jl<
SITV(Vertex,1,Minjl)) or
(HD(0, SITV[Vertex,1,3])>
HD{G,SITV[Vertex,1,Minjl))) then
Minj := J;
end;
if j+l=i then
inc(j:Z)
else
inc(j):
end;
until FastFind;
core := SITV[Vertex,1,Minj];:

end;
end;

end
else

begin

core := SITV[Vertex,1,Minj};

end;
end
else

core := SITV[Vertex,1,Minj}l;
je=l;
repeat
if SITV[Vertex,1,3j] = core then

begin
inc(Element[2]}:
dec(Element[Vertex]);
SITV(2,1,Element([2]] := core;
SITV(2,0,Element[2]] := SITV([Vertex,0,3];
SITV([Vertex,1,j] := SITV[Vertex,l,Element[Vertex]+1];
SITV[Vertex,0,j] := SITV[Vertex,0,Element[Vertex]+1];
end
else
inc(j);
until (Element([2] = 1) or (j>Element[Vertex]};
if Element(2] = 0, then
begin
MinHD := dimension+1;
FastFind := False;

Jo=1;
Mink := 1;
repeat
if HD(core,SITV[Vertex,1,j]) <= MinHD then
begin
if HD(core,SITV[Vertex,1,3]) = MinHD then
begin
if ((HD(0,SITV[Vertex,1,jl)=
HD(0,SITV[Vertex,1,Mink])) and
(SITV([Vertex,1l,j]<SITV[Vertex,1,Mink]))
or (HD(0,SITV[Vertex,1,3]1}>
HD(0,SITV[Vertex, 1,Mink})) then
Mink := j;
end
else
begin
MinHD := HD(core,SITV[Vertex,1,jl):
Mink := j;
end;
end;
inc(i);
until (j > Element(Vertex]) or FastFind;
j := Mink;

core:=SITV[Vertex,1,3];
inc(Element{2));
dec(Element[Vertex]);
SITV[2,1,Element{2]] := core;
SITV{2,0,Element{2]] := SITV[Vertex,0,j]:
SITV{Vertex,1,3j] := SITV[Vertex,1,Element[Vertex]+1];
SITV[Vertex,0,j] := SITV[Vertex,(0,Element[Vertex]+1];
Je=1;
Mink := 1;

end;

98

for i := 1 to dimension do
1f NewDesired{Nearest(core,i)} = Vertex then
begin
J = 1;
repeat
if SITV[Vertex,1l,j] = Nearest(core,i) then
begin
inc{Element(2]);
SITV(2,1,Element[2]] := Nearest(core,i):
SITV([2,0,Element[2]] := SITV[Vertex,0,3];:
dec(Element [Vertex]);
SITV([Vertex,1,j] := SITV([Vertex,l,Element{Vertex]+1];
SITV[Vertex,0,j] := SITV(Vertex,0,Element[Vertex]+1];
break;
end;
inc(i);
until (j > Element{Vertexl+l);
if bit{core,i) = Vertex then
weight[neuron,i] := 2
else
weight [neuron,i] := -2;
end
else
if bit{core,i) = Vertex then
weight[neuron,i] := 4
else
weight [neuron,i] := -4;
weight{neuron, 0] := 3*(2*Vertex~1};
for 1 := 1 to dimension do
weight [neuron, 0] := weight{neuron,0] - weight[neuron,i]*bit(core,i);
end;
c{0] := Element[2]:
if Element[Vertex] <> 0 then
begin
inc{Element[2])}:
dec{Element [Vertex]):;
c{0] := Element([2];
center := core;
if not SequentialSearch then
begin
MinHD := dimension+l;
FastFind := False;
repeat
if (HD(center,SITV[Vertex,1,k]) <= MaxHD) then
begin
Mink := k;
FastFind := True;
MinHD := HD(center, SITV([Vertex,1,k]}:
MaxHD := MinHD:
end
else
begin
if (HD(center,SITV{Vertex,1,k]) < MinHD} then
begin
MinHD := HD({center,SITV[Vertex,1,k]);
Mink := k:
end;
end;
inc(k);
if (k > Element[Vertex]+1l) and {Not FastFind) and (Not TopStart)
and HDControl then
begin
=17
klimit := 0O;
TopStart := True;
HDControl := False;
inc(MaxHD);
end;
until (k > Element{Vertex]+l) or FastFind;
if Not FastFind then

begin
MaxHD ;= MinHD;
klimit := O;
end;
k:=Mink;

end;
SITV(2,1,Element(2]}] := SITV[Vertex,1,k];
SITV[2,0,Element([2]] := SITV[Vertex,0,k];
SITV[Vertex,1l,k] := SITV{Vertex,1l,Element[Vertex]+1];
SITV([Vertex,0,k] := SITV[Vertex,(,Element[Vertex]+1];
end;
for 1 := 1 to dimension do
begin
c[i] := 0;
for j := 1 to Element[2] do
inc(cfi],bit(SITV(2,1,3),1));:
c[i] := 2%#(2%*c[i] - c[0]};

99

end;
Equal := False;
Small := False;
repeat
tmin := 0;
for i := 1 to dimension do
tmin := tmin + c¢{i]*bit(SITV{2,1,Element[2]],1i};
tminno := SITV{2,1,Element(2]];
for i := 1 to Element([2]~1 do
begin
hold := 0;
for j := 1 to dimension do
hold := hold + c[j]*bit(SITV[2,1,i],3);
if hold < tmin then
begin
tmin := hold:
tminNo := SITV{2,1,1i};
end
else
if (hold = tmin) and (HD(0,SITV([2,1,1]} < HD(O,tminNo)) then
tminno := SITV(2,1,il:
end;
fmax := 0;
if Element([Vertex] <> 0 Then
begin
for 1 := 1 to dimension do
fmax := fmax + c[i]*bit(SITV[Vertex,l,Element[Vertex]],i);
fmaxNo := SITV[Vertex,l,Element[Vertex]];
end
else
begin
for 1 := 1 to dimension do
fmax := fmax + c[i]*bit(SITV[1l-Vertex,1,Element[l-Vertex]],1);
fmaxNo := SITV[l-Vertex,l,Element[l-Vertex]];
end;
for i := 1 to Element{Vertex] do
begin
hold := 0;
for j := 1 to dimension do
hold := hold + c(j]*bit(SITV[Vertex,1,i]},3):
if hold > fmax then
begin
fmax := hold:
fmaxNo := SITV[Vertex,1,1i];
end
else
if (hold = fmax) and (HD(0,SITV[Vertex,1,i]} < HD(O,fmaxNo)) then
fmaxno := SITV[Vertex,1,i];
end;
for i := 1 to Element[l-Vertex] do
begin
hold := Q;
for j := 1 to dimension do
hold := hold + c¢[j]*bit(SITV[1l-Vertex,1,i],3):
if hold > fmax then
begin
fmax := hold;
fmaxNo := SITV[1-Vertex,1,i];
end
else
if (hold = fmax) and (HD(Q,SITV[l-Vertex,1,i]} < HD(0,fmaxNo)} then
fmaxno := SITV[1l-Vertex,1,i]:
end;
ClassControl := True;
if WeightOpti and (((tmin=fmax)} or ((tmin<fmax)
and (fmax-tmin<Dif})) then
begin
ClassControl := False;
Equal := Equal or (tmin = fmax};
Small := Small or (tmin < fmax):;
if Small then
Dif := fmax - tmin;
for i:=1 to dimension do
if (bit(fmaxNo,i)=1} then
dec(c{i],2);
for i := 1 to dimension do
if bit(tminNo,i)=1 then
inc{cl[i],2);
end;
until ClassControl;
Dif := 65535;
if (tmin > fmax) or (Element[l-Vertex]=0) then -
begin
for i:=1 to dimension do
weight[neuron,i] := {2*Vertex-l}*c[i];:
if Element(l-Vertex] <> 0 then
weight [neuron, 0] := (1-2*Vertex)*((tmin + fmax) div 2)

100

else
weight[neuron,0] := Vertex;
Expand := True;
HDControl := True;
WrongTrial := False;
weightOpti := False;
if k = klimit then
klimit := 0
else
if klimit <> 0 then
k := klimit;
if (k > Element{Vertex]) and (Not TopStart) then
begin
1=1;
Expand := False;
TopStart := True;
klimit := O;
HDControl := False;

end
else
if TopStart then
begin
MaxHD := MinHD;
TopStart := False;
end;
end
else
begin

dec{Element(2]):
inc(Element [Vertex]);
SITV(Vertex,l,Element[Vertex]] := SITV{Vertex,1,k];:
SITV{Vertex, 0,Element[Vertex]] := SITV{Vertex,0,k];
SITV[Vertex,1,k] := SITV([2,1,Element{2]+1];
SITV([Vertex,0,k] := SITV[2,0,Element([2]+1];
if klimit = O then
klimit := k;
if (MinHD > MaxHD) and (Not HDControl) and (Not TopStart) then
k := Element[Vertex]+1

else
inc(k);
if TopStart then
begin
MaxHD := MinHD;
TopStart := False;
end;
end;
if (Expand or (Not WeightOpti) or (Not SequentialSearch)) and (k > Element[Vertex]) then
begin
k = 1;
klimit := 0;

Expand := False;
HDControl := False;
TopStart := True;
if Not Weightopti then
WeightOpti := (Not Expand)
else
begin
SequentialSearch := True;
weightOpti := False;
end;
end;
end;
if (Element{Vertex] = 0) or {(Finish) Then
Finish := True
else
if WrongTrial and (((Algorithm='R') and FirstOptimize and
Not CanBeOptimized) or (Algorithm<>‘*A')) then
begin
inc(WTCount);
gotoxy(OriginalDim+8,14);
write{'WrongT = ',WTICount:5);
Append (NeuronFileName) ;
writeln (NeuronFileName, FuncNo,' has Wrong Trial Process !! '):
Close (NeuronFileName) ;
if Not NeuronOpti then
if (VertexStart <> Vertex) then
begin
Vertex := 1 - Vertex;
Element[2] := 0;
NewCore := True;
WeightOpti:= False;
SequentialSearch := False;

MaxHD := 1;
if vertex = 1 then
begin
tmp := 15 - {(neuron-1) mod 16);

NeuronMatrix[(neuron-1) div 16]:=(1 shl tmp)

101

or NeuronMatrix[(neuron-1) div 16];

end
else
begin
tmp := 15 - {(neuron-1) mod 16);
NeuronMatrix[(neuron-~1) div 16]:=(not (1 shl tmp))
and NeuronMatrix[(neuron-1l} div 16};
end;
end
else
begin
repeat

= 8ITV{2,1,Element[2]

SITV([1-Vertex,1,Element{l-Vertex]+1] 1:
= SITV[2,0,Element[2]];

SITV([1-Vertex,0,Element [1-Vertex]+1]
inc(Element [1-Vertex]):
dec(Element(2]));

until NewDesired[SITV([2,1,Element(2]]] = Vertex;
Element[2] := 0;

NewCore := True;

WeightOpti := False;

SequentialSearch := False;

dec(neuron) ;

.
H

MaxHD := 1;
if vertex = 1 then
begin
tmp := 15 ~ ((neuron-l) mod 16);

NeuronMatrix|[(neuron~1) div 16]:=(1 shl tmp)
or NeuronMatrix([(neuron-1} div 16];

end
else
begin
tmp := 15 - ({{neuron-1) mod 16);
NeuronMatrix[(neuron-1) div 16]:={not (1 shl tmp})
and NeuronMatrix[(neuron~1) div 16];
end;
end
else
begin
Element([2]:=0;
SequentialSearch := False;
WeightOpti := False;
end;
end
else
begin
if neuron = 22 then
begin
repeat
TextBackGround (red) ;
TextColor (White);
clrscr;
gotoxy (25,10} ;
write('Program Limit OverFlow - Funcno : ',FuncNo);
gotoxy({17,12);
write('Number of Neurons Exceed 22 Which Is Not Optimal');:
for zin := 7 to 9 do
begin
sound {zin*450) ;
delay(200);
nosound;
delay(10};
end;
until keypressed;
halt;
end;
inc(neuron)};
MaxHD := 1;

WrongTrial := True;
WeightOpti := False;
SequentialSearch := False;
Finish := False;
if ((Element[VertexStart]<>1l} and (Not NeuronOpti) and (Neuron<=NeuronLimit))
or {Algorithm='J') or {Algorithm='N') then
Vertex := 1 - Vertex
else
begin
if (neuron=Neuronlimit) and (FirstOptimize)
and {(Element[VertexStart]<>l) and (neuron<NeuronVertexLimit) then
Vertex := l-Vertex
else
if Not (NeuronOpti or NewCore) then
if (Neuron>=NeuronLimit) then
begin
if FirstOptimize then
begin
if CanbeOptimized then
begin

16);

102

repeat
SITV{NewDesired[SITV{2,1,Element[2]]],1,Element]
NewDesired[SITV(2,1,Element[2]]]]+1]
:=8ITV(2,1,Element([2]];
SITV([NewDesired[SITV{2,1,Element{2]]],0,Element|
NewDesired[SITV[2,1,Element[2]]1]]+1]
:=SITV(2,0,Element(2]];
inc(Element [NewDesired[SITV[2,1,Element[2]]1]);
dec(Element[2]};
until Element[2] = 0;
Neuron := 1;
VertexStart := VerySmallVertex;
Vertex := VertexStart;
NeuronOpti := True;
end
else
if Element([VertexStart] <> 1 then
Vertex := 1 - Vertex

else
begin
Element (2] := 0;
Vertex := VertexStart;
end;
end
else
begin
repeat

SITV([NewDesired[SITV(2,1,Element([2]]],1,Element|
NewDesired{SITV([2,1,Element{2]]}]1]+1]
:=8ITV[2,1,Element[2]];
S1TV[NewDesired[SITV[2,1,Element([2}]],0,Element|
NewDesired(SITV[2,1,Element{2]1]]+1]
+=SITV(2,0,Element[2]];
inc{Element [NewDesired[SITV([2,1,Element(2)]]]};:
dec(Element[2]);
until Element[2] = 0;
Neuron := 1;
VertexStart := l-VertexStart;
Vertex := VertexStart;
FirstOptimize := True;
end
end
else
if Element[VertexStart] <> 1 then
Vertex := 1 - Vertex

else
begin
Element[2] := 0;
Vertex := VertexStart;
end
else
begin
if (VertexStart = Vertex) then
begin

Element[2] := 0;
NewCore := True:

MaxHD := 1;
if vertex = 1 then
begin
tmp := 15 ~ ((neuron-l) mod 16);

NeuronMatrix((neuron-~l) div 16]:={(1 shl tmp)
or NeuronMatrix[(neuron-1) div 16];
end
else
begin
tmp := 15 - {{neuron-1) mod 16);
NeuronMatrix([(neuron-1) div 16]:=(not (1 shl tmp})
and NeuronMatrix[(neuron-1) div 16];

end;
end
else
begin
repeat

SITV[Vertex,l,Element [Vertex]+1] := SITV[2,1,Element[2]];
SITV([Vertex,0,Element [Vertex]+1] := SITV[2,0,Element[2]]:
inc{Element (Vertex]);
dec{Element(2]);
until NewDesired{SITVI[2,1,Element[2]]] = l-Vertex;
Element([2] := O;
NewCore := True;
dec{neuron) ;
MaxHD := 1;
Vertex := VertexStart;
if vertex = 1 then
begin
tmp := 15 - ({neuron-1) mod

103

NeuronMatrix[(neuron-1) div 16]:=(1 shl tmp)
or NeuronMatrix[(neuron-1) div 16];
end
else
begin
¢= 15 ~ ((neuron-1) mod 16);
NeuronMatrix[(neuron-1) div 16]:=(not (1 shl tmp))
and NeuronMatrix[{neuron-1) div 16];

end;
end;
end;
end;
if vertex = 1 then
begin
tmp := 15 - ((neuron-1l) mod 16);
NeuronMatrix [(neuron-1) div 16]:={(1 shl tmp) or NeuronMatrix (neuron-l) div 16];
end
else
begin
tmp := 15 - ((neuron-1) mod 16);

end;
if (neuron >= MinNeuron) and (Algorithm <> 'A*) then

Finish := True;

until Finish;

NeuronMatrix[(neuron-1) div 16]:=(not (1 shl tmp))
and NeuronMatrix[(neurcn-1) div 16];
end;

for RP := ReduceProcess-1 downto 1 do

begin

m := Dim[RP]~-HD(0,OriginalMask[RP])+1;
k :=HD(0,OriginalMask[RP]);
if (HD(0,OriginalMask[RP]) < Dim[RP]) and (HD(0,OriginalMask[RP]} > 0) then

for j:=1 to neuron do

begin

max := weight[j,0];
min := weight[j,0];
for i := 1 to HD(0,OriginalMask[RP]) do

begin

if weight[4,1] >= O then

inc(max,weight(j,1])

else
dec(min, -weight({j,1]):
end;
i = 1;
k :=m;

while i<>k do

begin
if bit(OriginalMask{RP],Dim{RP]~i+1)=1 then
begin
if bit(ModifiedMask([RP],Dim[RP]-k+1)=1 then
begin
Tempo := weight[j,Dim[RP]-k+1};
for 1 := k-1 downto i do
weight(§,Dim[RP]-1] := weight[j,Dim[RP]-1+1];
weight[j,Dim[RP]-i+1] := Tempo;
inc(i);
ine(k);
end
else
inc(k):
end
else
inc(i);
end;
k 1= 1;
for 1:=1 to Dim[RP] do
begin
if bit(OriginalMask{RP],Dim[RP]~-1+1)=0 then
begin

MaskBit := bit(MaskMask[RP],Dim{RP]-k+1};

weight[j,Dim[RP]-1+1]:=(2*MaskBit-1)*({1~SmallVertex[RP]) *min+SmallVertex [RP]*max)+

end;
end;

end;

(1-2*MaskBit)* (1-2*SmallVertex[RP]);

weight{j, 0] := weight[j,0] -~ (MaskBit)* (weight[j,Dim{RP]-1+1]);

if Maskbit = 1 then
if weight[j,Dim[RP]}-1+1] >= 0 then
inc(max,weight[3j, Dim{RP]-1+1])
else
dec(min, ~weight[j,Dim[RP]~1+1]);
inc(k):
end;

dimension := OriginalDim;
NeuronOpti := False;

NeuronWeight[0]

t= =1

NeuronWeight [neuron] := 2;

104

MaxNet := 1;
for i := neuron-1 downto 1 do
begin
tmp := 15 - ((i-1) mod 16);
if NeuronMatrix[{i-1) div 16] and (1 shl tmp) <> 0 then
begin
NeuronWeight[i] := -NeuronWeight([0]+1;
inc (MaxNet,NeuronWeight[il};
end
else
begin
NeuronWeight[i] := MaxNet+1l;
dec (NeuronWeight[0] ,NeuronWeight[il):
end;
end;
end;
end;

procedure input_generator;

var
i : Word;
k : Byte:
1 : Byte;
AutoFill : Byte;
q ¢ Char;
Manualkdit : Char;
code : Integer;
3 : LongInt;
begin

AutoFill := 3;
ManualEdit := ' ';
if auto='N' then
begin
writeln;
write('Do you want to edit the outputs ? '};
ask_yes_no(q):
if g='Y' then
begin
writeln;
write{'Do you want to edit the outputs manually ? '};
ask_yes_no(ManualEdit});
if ManualEdit='N' then
begin
writeln;
write('Please enter the number of functien : ');
readln (StartFuncNo) ;
for j:= 0 to ipower(2,dimension)-1 do
desired([j] := 0;
FuncNo := StartFuncNo;
While (FuncNo <> 0) do
begin
j:=Trunc{ ln (FuncNo+0.5) / 1ln (2)):
desired[j] := 1;
FuncNo := FuncNo mod ipower(2,3):
end;
end;
end;
ClrScr;
end
else
q:va;
one_counter := 0;
zero_counter := 0;
for 1 := 0 to ipower(2,dimension) - 1 do
begin
inputs{i] := binary(i,dimension};
if (dimension < 5) or (auto<>'Y') then
begin
gotoxy (1, (1 mod 23)+1};
write(' ‘+inputs{i]+' ');
end;
inputs([i] := inputs[i]+'l";
if ManualEdit='Y' then
begin
repeat
if AutoFill = 3 then
readln(desired[i])
else
desired[i] := AutoFill;
if (desired[i] > 2) and (desired[i]<6) then
begin
AutoFill := desired[il - 3;
desired[i] := RAutoFill;
end;
until (desired[i]>=0) and (desired[i]<6):
end

105

else
if (auto='N') and (g='N') then
begin
desired[i] := bit(i,dimension) and (bit(i,dimension-1} or bit(i,dimension-2));
end;
if (dimension < 5) or (auto <> 'Y') then
begin
gotoxy (dimension+3, (1 mod 23)+1);
write (desired{i]);
end;
if desired([i] = 1 then
begin
inc(one_counter):
SITV(1,1,0ne_counter] := i;
SITV([1,0,one_counter] := 0;
end
else
if desired{i] = 0 then

begin
inc(zero_counter);
SITV(0,1, zero_counter] := i;
SITV{0,0,zero_counter] := 0;
end;
if auto<>'Y' then
if ((i1+1) mod 23 = 0) then
begin
if FastAnalyze='N' then
TmpChar := readkey;
for k:=1 to 24 do
begin
gotoxy(l, k);
write(' ':dimension+4);
end;
end;
end;
end;

procedure analyzer:
var
i : byte:;
3 : word;
begin
if auto='N' then NewTry := True;
input_generator;
gotoxy (dimension+8,1);

write('Number of ones = ',one_counter:5§);
gotoxy{dimension+8,2);
write ('Number of zeros = ',zero_counter:5};

MinAlgo := 'J';

MinNeuron := 2*Max_dimension+1;

OriginalAlgo := Algorithm;

if (Algorithm = ‘A') and (MinRealize='Y') then

begin
i:=1;
repeat
case i of
1 : Algorithm := 'A’;
2 : Algorithm := 'J';
3 : Algorithm := 'N';
4 : Rlgorithm := ‘E‘';
end;
TrainGeometrically;

one_counter := 0;
zero_counter := 0;
for j := 0 to ipower(2,dimension)-1 do
begin
if desired[j] = 1 then
begin
inc{one_counter);
SITVI[1,1,0ne_counter] := j;
SITV[1,0,0ne_counter] := 0;
end;
if desired(j) = 0 then
begin
inc(zero_counter);
SITV(O,1, zero_counter] := j;
SITV(O0,0, zero_counter] := 0;
end;
end;
if MinNeuron > Neuron then
begin
MinAlgo := Algorithm;
MinNeuron := Neuron:
end;
inc(i);
until (i>4) or (MinNeuron < 3);
Algorithm := MinAlgo;

106

MinNeuron:=2*max_dimension+l;

TrainGeometrically:
end
else
TrainGeometrically;

if auto='Y' then

Algorithm := OriginalAlgo:
find_output;
if Not Error then

begin

inec(MaxNrnDim[neuron]):
if (neuron > NeuronLimit) and (Auto='Y'} then
begin
inc(MaxNrn});
Append (NeuronFileName) ;

writeln(NeuronFileName, FuncNo, ' exceeds the Neuron Limit [!!! *);

Close (NeuronFileName) ;
end;
if neuron = 1 then
begin
LinearSeparable := True;
gotoxry (dimension+40,7);
write('LinSeparable = ' ,MaxNrnDim(1]:10);
end;
if auto='Y' Then
begin
inc(SolutionOK) :
Append (NeuronFileName) ;

writeln{NeuronFileName, FuncNo, ' = ',Neuron,' of *',Neuronlimit):;

Close (NeuronFileName} ;
gotoxy{(dimension+40,4);
write{'Sol OK = ',80lutionOK:10);
gotoxy (dimension+40,9);
write ('MxNeuron Error = °',MaxNrn:10);
if neuron = 1 then

begin

gotoxy{dimension+40,11+1);

write(' 1 Neuron = !, ,MaxNrnDim[11:10);

end
else
begin
if neuron > dimension then
TextColor(yellow);
gotoxy (dimension+40, 114+neuron);

write (Neuron:2,' Neurons = ',MaxNrnDim{neuron]:10);

TextColor{white);
end;
if neuron > MaxNeurons then
begin
MaxNeurons := neuron;
MaxFuncNo := FuncNo;
gotoxy{(dimension+8,4);

write('Max No of Neurons = *,MaxNeurons:10);

gotoxy(dimension+8,5);
write('Func No of Neuron = ',MaxFuncNo:10);
end;
end
else
begin
Append (NeuronFileName) ;

writeln (NeuronFileName, 'This Function = ',Neuron,®' of

Close {NeuronFileName) ;

end;

if FastAnalyze='N' then

begin
gotoxy (dimension+11,22};
write('Press any key to see the weights...');
TmpChar := ReadKey;
clrscr;
gotoxy(1,1);
write('Neuron':6);
for i:= 0 to dimension do

write(*'w[*:4,i,']1%);

for j := 1 to neuron do

begin
if ((2*j+1) mod 21) = O then
begin
readln;
clrser;
end;
gotoxy (1, (2*3+1) mod 21};
write(j:6);

for i := 0 to dimension do
write (weight[j,i]1:6);
end;
if neuron > 8 then
begin

',NeuronLimit);

107

readln;
clrscr;
i:=1;
end
else

i:= wherey+2;
gotoxy({l,1):
write{*Qutput Weights are');
gotoxy(1,i+2);
write('OW([10y+x]':9,'0':6);
inc(i,4);
for ji=1 to 9 do
write(3:7);
for j := 0 to neuron do

begin
if (j mod 10 = 0) then
begin
if j<>0 then
inc(i,1);
if i>23 then
begin
readln;
i:=1;
clrscr;
end;

gotoxy(1l,1);
write(j div 10 : 6);
end;
gotoxy (10+7* (3 mod 10),1);
write (NeuronWeight([j]:6);
end;
for zin := 0 to 5 do
begin
sound (700) ;
delay(120);
nosgound;
delay(60);
end;
end;
end
else
begin
gotoxy (dimension+40,1);
write('No neural network ');
Append (NeuronFileName) ;
writeln(NeuronFileName, FuncNo, ' has No Neural NetWork
It must have maximum ',NeuronLimit,' neurons..
Close (NeuronFileName) ;
if auto='Y' Then
begin
inc(SolutionNone) ;
gotoxy (dimension+40,5);
write(*'Sol None = ',S8clutionNone:10);
end;
end;
if FastAnalyze='N' then
begin
gotoxy (dimension+8, 25);
write ('FAR~'+Number};
gotoxy (dimension+8,23);
write(' ':32);
gotoxy(dimension+8,23);
write('Do you want to try again ? '};
ask_yes_no(question);
if question='Y' then
clrscr;
end
else
if TmpChar <> '0' then
begin
question:='Y";
if TmpChar = '2' then
begin
ToFile('W');
ToFile('I*);
TmpChar := ' *';
end;
end
else
question:='N"';
end;

procedure auto_input_generator;

var
carrier : byte;
3 : longint;
z : char;

1!

"Y:

108

i : word;

begin
FuncNo 3= 0;
OverFlow := False;
for j:= 0 to ipower{2,dimension}-1 do
desired(j}] := 0;
FuncNo := StartFuncNo;
While (FuncNo <> 0) do
begin
j:=Trunc(1ln (FuncNo+0.5) / ln (2));
desired[j] := 1;
FuncNo := FuncNo mod ipower(2,7);
end;
if StartFuncNo = ipower({2,30)-l+ipower(2,30) then
begin
FuncNo := 0;
carrier := 1;

end
else
begin
FuncNo := StartFuncNo:;
carrier := 0;
end;
while (question<>'N') and (not OverFlow) and (not NewTry) do
begin
for j:=0 to ipower{2,dimension)-1 do
begin

desired{j] := (l-desired{j]) * carrier + desired{j] * (l-carrier);
if carrier = 1 then
if desired(j] = 0 then
carrier := 1
else
carrier := 0;
end;
OverFlow := Carrier=1;
carrier:=1;
if Not OverFlow then
begin
gotoxy (dimension+40,2);
write('Function No = ',FuncNo:10);
gotoxy (dimension+40,4);

write('Sol OK = ',80lutionOK:10);
gotoxy (dimension+40,5);
write('Sol None = ',SolutionNone:10);

gotoxy (dimension+40,7);
write{'LinSeparable = ',MaxNrnDim{1]:10);
gotoxy (dimension+40,9);
write('MzNeuron Error = ',MaxNrn:10);
gotoxy (dimension+4C,11+1});
write(' 1 Neuron = ',MaxNrnDim{1]:10);
for i := 2 to dimension do
begin
gotoxy{dimension+40,11+1i};
write(i:2,' Neurons = ',MaxNrnDim({i]:10);
end;
gotoxy (dimension+8,4);
write('Max No of Neurons = ',MaxNeurons:10);
gotoxy (dimension+8,8);
write('Func No of Neuron = ',MaxFuncNo:10};
TextColor(yellow);
TextBackground (blue) ;
gotoxy(15,24);
write ('Program] Durdurmak ~$in 0 TuYuna BasOn[z... FAR-'+Number) ;
TextColor (white);
TextBackGround(blue) ;
gotoxy(1l,1);
analyzer;
if keypressed then
begin
TmpChar := readkey;
if TmpChar <> '0' then
question := 'Y'
else
question := 'N';
end;
if (FuncNo mod (BackUpFrequency-dimension*((BackupFrequency div 10)-1)}) = 0)
or (FuncNo=EndFuncNo) or (question='N') or OverFlow or NewTry then
ToFile('W');
if ((FuncNo mod FileChangeFrequency=0) and (FuncNo<>0) and
(BackupProcess='Y"')) or (TmpChar='2"} then
begin
ToFile('W');
ToFile('I'");
TmpChar:=' *';
end;
end

else
NewTry := auto='N';
inc(FuncNo};
if FuncNo > EndFuncNec then
break;
end;
end;

{Main Program}
begin
clrscr;
question := ' ';
repeat
TextColor (white);
TextBackGround (blue) ;
clrscr;
initialization;
clrscr;
if auto='Y' then
auto_input_generator
else
begin
analyzer;
Tofile('W');
end;

until {question = 'N') or (not NewTry);

gotoxy(1,25);
for zin := 7 to 9 do
begin
sound (zin*450) ;
delay(200);
nosound;
delay(10);
end;
end.

109

CURRICULUM VITAE

Ersan ALFAN was born in Istanbul on June 22, 1971. Having completed primary
school education in Istanbul, 1982, he was graduated from Dogug College in 1989. In
1989, he became the championship of Marmara region in TUBITAK Mathematics
Competition.

In 1993, he has been graduated from Istanbul Technical University, Electronics and
Communication Department with a good degree. In 1994, he began to pursue his
master of science education in Istanbul Technical University Electronics and
Communication Department.

