ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

UNSCENTED KALMAN FILTER BASED
SATELLITE ORBIT DETERMINATION
ON THE GPS AND SINGLE STATION ANTENNA MEASUREMENTS

M.Sc. THESIS

Melih ATA

Department of Aeronautics and Astronautics Engineering

Aeronautics and Astronautics Engineering Programme

JUNE 2013






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

UNSCENTED KALMAN FILTER BASED
SATELLITE ORBIT DETERMINATION
ON THE GPS AND SINGLE STATION ANTENNA MEASUREMENTS

M.Sc. THESIS

Melih Ata
(511111124)

Department of Aeronautics and Astronautics Engineering

Aeronautics and Astronautics Engineering Programme

Thesis Advisor: Prof. Dr. Cengiz HACIZADE

JUNE 2013






ISTANBUL TEKNIK UNIVERSITESI * FEN BiLIMLERI ENSTITUSU

UYDU YORUNGELERININ GPS VE TEK YER iSTASYONU
OLCUMLERIYLE SEZGiSiZ KALMAN SUZGECIi TEMELLI
BELIiRLENMESI

YUKSEK LiSANS TEZi

Melih ATA
(511111124)

Ucak ve Uzay Miihendisligi Anabilim Dah

Ucak ve Uzay Miihendisligi Programm

Tez Damismani: Prof. Dr. Cengiz HACIZADE

HAZIRAN 2013






Melih Ata, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology 511111124, successfully defended the thesis entitled “UNSCENTED
KALMAN FILTER BASED SATELLITE ORBIT DETERMINATION ON THE
GPS AND SINGLE STATION ANTENNA MEASUREMENTS”, which he
prepared after fulfilling the requirements specified in the associated legislations,
before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. Cengiz HACIZADE ...,
Istanbul Technical University

Jury Members : Assist. Prof. Dr. Turgut Berat KARYOT ............................
Istanbul Technical University

Assist. Prof. Dr. Ali Fuat ERGENC ...
Istanbul Technical University

Date of Submission : 02 May 2013
Date of Defense : 06 June 2013



vi



To my family,

vil



viil



FOREWORD

The purpose of the study is actualizing orbit determination of satellites by using
different system measurements such as single ground station antenna and Global
Positioning System via estimation mechanisms as Unscented and Robust Unscented
Kalman Filters. Antenna measurement bias estimation mechanism with Linear
Kalman Filter by using antenna and Global Positioning System measurements is also
an important object for the study.
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UNSCENTED KALMAN FILTER BASED SATELLITE ORBIT
DETERMINATION ON THE GPS AND SINGLE STATION ANTENNA
MEASUREMENTS

SUMMARY

Orbits of satellites can be determined via usage of position or velocity measurements
of navigation systems with respect to the dynamic models of the satellites.
Measurement of satellite parameters such as positions, velocities or angles requires
to use navigation equipments such as Global Positioning System (GPS) and Earth
stations which include single or multiple antenna systems. For orbit determination, it
is needed to apply an estimation method for orbit determination parameters, too. One
of the most well-known estimation methods is Kalman Filter.

Study basically involves five main estimation procedures. First estimation procedure
is a two-stage approach for estimation of Geostationary Orbit (GEO) satellite’s
position and velocity by single station antenna tracking data with Unscented Kalman
Filter (UKF). Second procedure is the estimation of Low Earth Orbit (LEO)
satellite’s position and velocity by direct GPS measurements with Unscented Kalman
Filter. Third and fourth estimation procedures are using Robust Unscented Kalman
Filters with Single Measurement Noise Scale Factor and Multiple Measurement
Noise Scale Factors in case of measurement malfunctions such as continuous bias,
noise increment and zero output for both of the antenna and GPS measurements. The
last procedure is to estimate antenna measurement bias via integration of antenna and
GPS measurements with Linear Kalman Filter.

In this study, a two-stage approach for estimation of satellite’s position and velocity
by single station antenna tracking data with UKF is proposed. In the first stage, direct
nonlinear antenna measurements are transformed to linear x-y-z coordinate
measurements of satellite’s position, and statistical characteristics of orbit
determination errors are analyzed. Variances of orbit parameters’ errors are chosen
as the accuracy criteria. In the second stage, the outputs of the first stage are
improved by the designed Unscented Kalman Filter (UKF) for estimation of the
satellite’s position and velocity on indirect linear x-y-z measurements. In
simulations, position and velocity values of a geostationary satellite are found via
proposed two-stage procedure. Simulations proved that two-stage estimation method
straightened the single station antenna tracking data very well.

Unscented Kalman Filter which uses position and velocity measurements of GPS for
estimation of LEO satellite parameters is proposed. The difference of this application
from UKF with indirect single station antenna measurements, is using the direct
measurements. GPS directly measures the position and velocities of the satellite.
Therefore, UKF uses the directly obtained measurements and it does not require hard
transformations to obtain indirect measurements from real antenna measurements.
Simulations showed that the method straightened the GPS tracking data successfully.
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Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction
for the case of measurement malfunctions are introduced. By the use of defined
variables named as measurement noise scale factor, the faulty measurements are
taken into the consideration with a small weight and the estimations are corrected
without affecting the characteristic of the accurate ones. In the presented RUKFs, the
filter gain correction is performed only in the case of malfunctions in the
measurement system and in all other cases procedure is run optimally with regular
UKEF. Checkout is satisfied via a kind of statistical information. In order to achieve
that, the fault detection procedure is introduced.

Two different RUKF algorithms, one with single scale factor and one with multiple
scale factors, are proposed and applied for the two-stage approach to estimate
position and velocity parameters of Geostationary Orbit satellite with indirect single
station antenna measurements and estimate the position and velocity parameters of
Low Earth Orbit Satellite with GPS measurements. The results of these algorithms
are compared for different types of measurement faults in different estimation
scenarios and recommendations about their applications are given. For two-stage
approach application with antenna measurements, simulation results showed that the
effect of azimuth angle on all indirect measurements caused an unexpected result as
RUKF with SMNSF and MMNSF results are close to each other. On the other hand,
simulation results showed that, the performance of RUKF with MMNSF is better
than RUKF with SMNSF for application with GPS measurements.

Complementary Kalman Filter which integrates single station antenna system and
GPS is proposed to estimate antenna position bias. A constant bias which affects
indirect position measurements of antenna is added to azimuth measurement. Then,
X, y and z position biases are estimated. According to results, complementary
Kalman Filter successfully estimated antenna measurement biases. Simulations
indicated that the integration of single station antenna and GPS via Complementary
Kalman Filter is a reliable procedure to estimate antenna measurement biases.
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UYDU YORUNGELERININ GPS VE TEK YER iSTASYONU
OLCUMLERIYLE SEZGiSiZ KALMAN SUZGECi TEMELLI
BELIiRLENMESI

OZET

Uydularin yoriingeleri, navigasyon sistemlerinin konum ve hiz Olglimlerinin
kullanilmasiyla, uydu dinamik modeline gore belirlenebilir. Konum ve hiz gibi uydu
parametrelerinin 6lciilmesi, Kiiresel Konumlandirma Sistemi (GPS) ve tek ya da
coklu anten sistemleri igeren yer istasyonlart gibi navigasyon sistemlerinin
kullanilmasmi gerektirir.  Bunun yaninda, yoOriinge parametrelerinin ilerideki
degerlerini tahmin edebilmek i¢in kestirim yontemleri uygulamak gereklidir. En ¢ok
bilinen kestirim yontemlerinden biri Kalman Stizgeci’dir.

Kalman Siizgeci’ni lineer olmayan sistemlere uygulamak zordur. Genisletilmis
Kalman Siizgeci otuz yildan fazladir filtreleme ¢6ziim metodu olarak
kullanilmaktadir.  Geleneksel Kalman  Siizgeci’nin  nonlineer modellerde
kullanilabilmesini saglayan Genisletilmis Kalman Siizgeci, nonlineer modelleri
lineerlestirmek i¢in bir ¢oziimdiir. Fakat bu siirecin iki tane sorunu vardir. Yerel
dogrusallik kabulleri kirilirsa, stabil olmayan siizgecler {iiretilebilir. Genigletilmis
Kalman Siizgeci’nin 6nemli siireclerinden biri olan Jakobian matrisi hesaplamasi zor
bir uygulamadir. Ustelik, Genisletilmis Kalman Siizgeci’nin uygulanmasi ve
ayarlanmasi da zordur. Genisletilmis Kalman Siizgeci’nin kisitlama ve zorluklariyla
basa ¢ikabilmek i¢in Sezgisiz donilisiimii isimli yeni bir metod gelistirilmistir. Bu
metod, nonlineer doniisiimleri ile ortalama ve kovaryansi ¢ogaltir. Genisletilmis
Kalman Stiizgeci ile kiyaslandiginda Sezgisiz Kalman Siizgeci’nin daha 1yi sonuglar
verdigi ve uygulanmasinin daha kolay oldugu belirlenmistir. Calismada da Sezgisiz
doniisiimiinii kullanan Sezgisiz Kalman Siizgeci onerilerek algoritmalar: tanitilmis ve
ve yorlinge belirleme siireglerinde kestirim teknigi olarak kullanilmastir.

Calismada, yoriinge belirlemede kullanilan enstrumanlar olan yer istasyonlari
antenleri ile Kiiresel Konumlandirma Sistemi (GPS)’nin Ozellikleri, calisma
prensipleri ve sistem elemanlar1 ile ilgili teorik bilgiler verilmistir. Yer istasyonu
anteni yer sabit yoriinge uydusu i¢in kullanilmistir. Yer sabit yoriinge uydular1 35786
kilometre irtifada, dairesel yoriingeli uydulardir ve yoriinge periyodu Diinya’nin bir
yildiz glinii i¢in doniis periyoduna esittir. GPS ise diisiik Diinya yoriingesi uydusu
icin kullanilmistir. Diigiik Diinya yoriingesi uydulari, yaklasik olarak 2000 kilometre
alt1 irtifada bulunan uydulardir.

Calismada kullanilacak olan kestirim yontemlerinin se¢cimi Onemlidir. Bunun
yaninda, yoriinge takibinde kullanilacak yoriinge belirleme sistemleri ve bu
sistemlerin hangi tip uydular i¢in kullanilacagi da 6nemlidir. Secilen sistem tiirli ve
takip edilecek uydu tiirline gore sistemlerden birden fazla sayida kullanilmasi
gerekebilir. Ornegin, bir diisiik Diinya ydriinge uydusu Diinya’nin déniisiine gore
hizl1 hareket edeceginden tek yer istasyonu ile takibi zordur. Bu nedenle birden ¢ok
yer istasyonu kullanimi1 daha uygun olur. istasyoner yoriingeli uydularm takibi ise
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daha kolaydir. Tek yer istasyonu veya farkli bir sistem tek basia bu tip uydular icin
kullanilabilir. Calismada yer sabit yoriinge uydusu icin tek yer istasyonu kullanimi
buna bir 6rnektir.

Calisma, ana hatlariyla ve temel olarak bes kestirim siirecinden olusur. ilk kestirim
islemi, yer sabit yoriinge uydusunun konum ve hizlarinin tek yer istasyonundan
alman veriler kullanilarak Sezgisiz Kalman Siizgeci (UKF) yardimiyla iki asamali
yaklasimla kestirilmesidir. Ikinci kestirim siireci, algak ydriinge uydusunun konum
ve hizlarmin direkt olarak GPS’den alinan dlgiimlerle yine Sezgisiz Kalman Siizgeci
tabanli olarak belirlenmesidir. Ugiincii ve dordiincii kestirim siiregleri sirastyla anten
ve GPS olciimleri i¢in tek Ol¢tim giiriiltii 6lgek faktorlii ve ¢oklu dlgiim giirtiltii 6lgek
faktorlii dayanikli Sezgisiz Kalman Siizgeclerinin, 6l¢iimlerde stirekli sapma, 6lgiim
giiriiltiisii artmas1 ve sifir ¢ikis hatalar1 durumunda kullanilmasidir. Besinci ve son
kestirim stireci ise tek yer istasyonu ve GPS dGlgiimlerinin Lineer Kalman Siizgeci
temelinde birlestirilmesiyle, anten dlglimlerindeki sapma hatalarinin kestirilmesidir.

Calismada ilk olarak, uydunun konum ve hizlarinmn tek yer istasyonu Olglim
verileriyle Sezgisiz Kalman Siizgeci temelinde kestirilebilmesi i¢in iki asamali
yaklasim onerilmistir. Ilk asamada, direkt lineer olmayan anten dlgiimleri uydunun
endirek Olglimleri olan lineer x-y-z konum koordinatlarina ¢evrilmistir ve yoriinge
belirleme hatalarinin  istatistiksel karakteristigi analiz edilmistir.  YOriinge
parametrelerinin varyanslar1 dogruluk kriteri olarak segilmistir. ikinci asamada, ilk
asamada elde edilen sonuclar, uydunun konum ve hizlarmin endirek x-y-z konum
Olgtimleriyle kestirilebilmesi icin tasarlanan Sezgisiz Kalman Siizgeci vasitasiyla
tyilestirilmis ve gelistirilmistir. Simulasyonlarda, yer sabit yoriinge uydusunun
konum ve hizlar1 Onerilen iki asamali siire¢ ile bulunmustur. Simulasyonlar, iki
asamali yontemin tek yer istasyonu izleme verisini iyi bir sekilde diizelttigini
gostermistir. Siizgecin kestirilen parametreler icin hata ve varyans miktarlar1 antenle
takip edilen bir yer sabit yoriinge uydusu i¢in makul diizeydedir.

Ikinci olarak, GPS konum ve hiz dlgiimlerini algak yoriinge uydusunun parametre
kestirimi i¢in kullanan Sezgisiz Kalman Siizgeci Onerilmistir. Bu uygulamanin
endirek tek yer istasyonu anteni Olglimleri ile Sezgisiz Kalman Siizgeci temelinde
yapilan uygulamadan farki, direk 6l¢timleri kullanmaktir. GPS uydularin konum ve
hizlarmi direk olarak kendisi dlger. Bu nedenle, Sezgisiz Kalman Siizgeci direk
olarak elde edilmis Ol¢iimleri kullanir ve antende oldugu gibi endirek Sl¢ciim elde
etmek i¢in yapilan doniisiim islemlerine ihtiya¢ duymaz. Simulasyonlar, yontemin
GPS olgtimlerini 1yilestirerek alcak yoriinge uydusunun konum ve hizlarmni 1yi bir
dogrulukla kestirdigini gostermistir. Stizgecin kestirilen parametreler i¢in hata ve
varyans miktarlar1 GPS ile takip edilen bir algak yoriinge uydusu i¢in gayet iyidir.
Anten ile yer sabit yOriinge takibi uygulamasinda elde edilen hata ile varyans
sonuglar1 ile GPS ile algak yoriinge uydusuna yapilan uygulamanim hata ve varyans
sonuclar1 kiyaslandiginda, GPS’nin direk Olctimleriyle yapilan kestirimin daha iyi
sonuglar verdigi goriilmiistiir.

Calismada, 6l¢iim arizalar1 durumu igin siizge¢ kazanci diizeltimli dayanikli Sezgisiz
Kalman Siizge¢ algoritmalar1 tamtilmistir. Olgiim giiriiltii 6lcek faktorii olarak
adlandirilan degiskenlerin kullanilmasiyla, hatali 6l¢timler kiiciikk agirlikla dikkate
almir ve kestirimler dogru olanlarin karakteristigini etkilemeyecek sekilde diizeltilir.
Tek olgtim giirtiltii olgek faktorii slizge¢ kazancina eklenen bir adet terimden
olusurken, ¢oklu 6l¢iim giirtiltii 6lgek faktorii bir¢ok degiskenden olusan ve siizgec
kazancinin gerekli ve onemli terimlerini diizelten bir lgek matrisidir. Onerilen
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dayanikli Sezgisiz Kalman Siizge¢lerinde, siizge¢ kazang diizeltmesi yalniz 6lgiim
sisteminde hata olmasi durumu i¢in uygulanmistir ve diger tiim durumlarda siireg
optimal olarak normal Sezgisiz Kalman Stizgeci ile ¢calismistir. Kontrol islemi, bir tiir
istatistiksel veri yardimiyla yerine getirilmistir. Bunu yapabilmek amaciyla, hata
belirleme islemi tanitilmistir.

Biri tek 6lgek faktorlii ve digeri de coklu 6lcek faktorlii olma tlizere iki adet dayanikl
Sezgisiz Kalman Siizgeci algoritmalar1 onerilmis ve sirasiyla once endirek tek yer
istasyonu anten Olclimleriyle iki agsamali yaklasimla yer sabit yoriinge uydusunun ve
sonra GPS Olciimleriyle alcak yoriinge uydusunun konum ve hizlarinin
kestirilebilmesi i¢in uygulanmistir. Algoritmalarin  sonuglar1 farkli  kestirim
senaryolarinda oOl¢timlerde siirekli sapma, 6lgiim giiriiltiisiinlin artis1 ve sifir 6l¢iim
cikist gibi farkli tip Olglim hatalar1 i¢in karsilastirilmis ve uygulamalar: ile ilgili
oneriler verilmistir. Anten Olglimleri ile yapilan iki asamali yaklasim igin,
simulasyon sonuglari, agiklik acisina eklenen sapmanm tiim endirek Olgiimler
iizerinde beklenmeyen kotii bir etki yarattigini gostermistir. Buna gore tek Olgiim
giiriiltiic 6lgek faktorlii ve coklu olciim giiriiltii 6lgek faktorlii dayanikli Sezgisiz
Kalman Siizgecleri birbirine yakin sonuglar vermistir. Normalde ¢oklu 6lgek faktorlii
algoritmanm tek Olcek faktorlii algoritmaya kiyasla daha iyi sonu¢ vermesi
beklenebilirdi. Bu sonu¢ ile bu uygulamada karsilasiimamasmin sebebi 6l¢iim
hatalarinin direk Olciim olan ag¢iklik agismma uygulanmasi, fakat adaptif filtrenin
aciklik acismin dolayli olarak etkiledigi ve endirek dl¢limler olan konum ve hizlara
uygulanmis olmasidir Diger taraftan, GPS O0lglimleri ile yapilan uygulama
sonuglarina gore, coklu dlciim giiriiltii 6lgek faktorli siizgeg tek Oleiim giiriiltii 6lgek
faktorlii stizgece kiyasla daha 1yi sonug vermistir. Tek olctim 6lgek faktorlii dayanikl
Sezgisiz Kalman Siizgecinin ¢ok degiskenli ve siizge¢ performansinin her bir
parametre icin farklilik gosterdigi kompleks sistemler i¢in saglikli bir ¢oziim
olmadig1 gozlemlenmistir. Burada normalde beklenebilecegi iizere, ¢oklu olgcek
faktorlii algoritma tek Olgek faktorlii algoritmaya kiyasla daha iyi sonug¢ vermistir.
Ciinkii ol¢tim arizas1 da direk dl¢iimlere uygulamis, stizgecte direk olarak arizanin
verildigi parametreleri diizeltmeye ¢aligmistir.

Onerilen dayanikli Sezgisiz Kalman Siizgeci yaklasimlar1 hatalarm prior istatistiksel
karakteristigini gerektirmez ve bu yaklagimlar hem lineer hem de lineer olmayan
sistemler icin kullanilabilir. Ayrica, sunulan dayanikli Sezgisiz Kalman Siizgeci
algoritmalar1 daha Onceden var olan dayanikli Sezgisiz Kalman Siizgeci
algoritmalarina gore pratik uygulamalar i¢in daha kolaydir. Bu karakteristikler,
tanimlanan dayanikli Sezgisiz Kalman Siizgeci algoritmalarint uydu hizlar1 ve
konumlari i¢in glivenilir parametre kestirimi saglama noktasinda son derece dnemli
yapar.

Anten konum 0l¢limii sapmalarini kestirebilmek amaciyla, tek yer istasyonu anten
sistemi ile GPS’yi birlestiren Lineer Kalman Siizgeci tabanli tiimlestirici Kalman
Stizgeci Onerilmistir. Anten agiklik agist Ol¢limiine, endirek Olgiimler olan konum
bilesenlerini de etkileyen sabit miktarl bir sapma eklenmistir. Daha sonra, x, y ve z
konumlar1 i¢in sapma miktarlar1 kestirilmistir. Simulasyon sonuglarmna gore,
tiimlestirici Kalman Siizgeci anten 6l¢iim sapmalarini basaril bir sekilde kestirmistir
ve tek yer istasyonu anteni ile GPS ol¢iimlerinin tiimlestirici Kalman Siizgeci ile
birlestirilmesinin anten 6l¢lim sapmalar1 kestirimi i¢in giivenilir bir stire¢ oldugunu
gostermistir.
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1. INTRODUCTION

Orbit determination is the process of finding the best approximation of a satellite or
spacecraft’s position over time using observations of its position or velocity, where

its motion is described by imperfect dynamic models.

In orbit determination of a spacecraft, the dynamic system and the measurement
equations are of nonlinear nature. It is a nonlinear problem, in which the disturbing
forces are not easily modeled. The problem consists of estimating variables that
completely describe the body’s trajectory in space, processing a set of information
related to the considered body [1]. A tracking antenna on Earth or sensors as GPS

receivers, magnetometers, etc. can perform such observations.

The work [2] describes an optimal iterative algorithm capable of determining the
orbital parameters by using the antenna pointing angles, which are recorded in the
tracking of the passing satellite. The algorithm is optimal in the sense that it
minimizes the noise effects of the noisy measurements and the numerical
uncertainties of the propagation. The method is originated from the Least Squares
Estimation (LSE) algorithm, which, by using the theory of the Extended Kalman

Filter (EKF), is suitably modified to reduce the disturbances on the estimation error.

Orbit determination accuracy improvement for a geostationary satellite with single
station antenna tracking data is investigated in [3]. In this study, an operational orbit
determination (OD) system for the geostationary satellite mission requires accurate
satellite positioning data to accomplish image navigation registration on the ground.
Ranging and tracking data, which is provided by a single ground station, is used to
determine the orbit of the geostationary satellite in normal operation. However, the
orbital longitude of the geostationary satellite is so close to those of satellite tracking
sites that emerging geometric singularity affects observability [4]. Applying an
azimuth bias estimation using the ranging and tracking data provided by two stations

is a method to solve for the azimuth bias of a single station in singularity. Using only



single-station data with the correction of the azimuth bias, OD succeeds to achieve

three-sigma position accuracy of the order of 1.5 km root-sum square.

Localization of spacecraft is usually very accurate when GPS measurements are
available [5]. The problem becomes more challenging when GPS signals are not
available, for instance in high-Earth orbits or in long range missions such as Earth-
to-Moon transfers. In these cases, spacecraft navigation is often handled by ground-
based tracking stations, thus making it unfeasible for low-cost spacecraft missions. In
order to make spacecraft fully autonomous, it is necessary to devise self-localization
and navigation algorithms relying on measurements provided by onboard sensors. In
[6], the problem of spacecraft self-localization is addressed using angular
measurements. A dynamic model of the spacecraft accounting for several perturbing
effects, such as Earth and Moon gravitational field asymmetry and errors associated
with the Moon ephemerides, is employed. It is assumed that the navigation system is
able to estimate the spacecraft’s attitude (by using a star tracker sensor), and the
spacecraft 1s equipped with line-of-sight sensors providing measurements of
elevation and azimuth of the Moon and the Earth with respect to the spacecraft
reference system. Range measurements, which are often difficult to obtain or are not

sufficiently reliable, are not required.

In [7], a comparison of Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF) for spacecraft localization via angle measurements is performed. In the study,
performances of two nonlinear estimators are compared for the localization of a
spacecraft. It is assumed that range measurements are not available, and the
localization problem is tackled on the basis of angle-only measurements. The
dynamic model of the spacecraft is the same as in [6]. The measurement process is
based on elevation and azimuth of Moon and Earth with respect to the spacecraft
reference system. The position and velocity of the spacecraft are estimated using
both EKF and UKF. The behaviors of the filters are compared on two sample

missions: Earth-to-Moon transfer and geostationary orbit raising.

Orbit determination techniques in [8] are used to estimate the position and velocity of
a debris object in orbit using range, azimuth, and elevation measurements obtained
from Space Surveillance Network (SSN) sensors. The continuous-discrete Extended

Kalman filter is used to estimate the debris’ orbit.



In [9], the non-recursive batch filter has been presented and utilized for satellite orbit
determination. Using the unscented transformation, a non-recursive batch filter is
developed without any traditional linearization process. For the orbit determination
system, the range, azimuth, and elevation angles of the satellite measured by ground
tracking stations are used as observations. For evaluation and verification of the
presented batch filter’s performance, the results are compared with those of the batch
least squares filter for various initial errors in position and velocity, measurement
sampling periods, and measurement errors. For relatively small initial errors or short
measurement sampling periods or small measurement errors, the accuracy of the
orbit determination is similar in both the filters. Under large initial errors or long
measurement sampling periods or large measurement errors, the presented non-
recursive batch filter yields more robust and stable convergence than the existing

batch least squares filter.

A robustly adaptive Kalman filter based on variance component estimation is
proposed for orbit determination of a maneuvered Geostationary Orbit (GEO)
satellite [10]. The main idea is to use robust estimation to resist the influence of
measurement outliers and use an adaptive factor to control the effect of dynamic
model errors. Simulations with the Chinese ground tracking network for a
maneuvered GEO satellite were conducted to verify the performance of the proposed
orbit determination technique. The results show that it can efficiently control both the
influence of outliers and that of thrust force, and can provide high and reliable orbit

accuracy.

The Global Positioning System (GPS) offers an attractive alternative to ground-based
tracking systems for use in many Earth satellite orbit determination applications [11].
Many missions require an accuracy on the order of 100-200 m. The current civilian
version of GPS can determine instantaneous position with an accuracy on the order
of 10 meters when operating in stand-alone mode. This performance is available for
virtually all users up to an altitude of 3,200 km. These facts give rise to the
possibility of doing autonomous GPS-based satellite navigation for many Earth
orbiting missions. The accuracy depends on the level of uncertainty in the orbital
dynamics model. The system can also operate in a geosynchronous orbit, but its peak
per-axis error degrades to 7 km if the filter neglects Solar and Lunar gravity terms,

and the geosynchronous receiver must use an ovenized crystal oscillator as its clock.



In [12], Spaceborne GPS receivers are used for real-time navigation by most low
Earth orbit (LEO) satellites. In general, the position and velocity accuracy of GPS
navigation solutions without a dynamic filter are 25 m (Ir) and 0.5 m/s (Ir),
respectively. However, GPS navigation solutions, which consist of position, velocity,
and GPS receiver clock bias, have many abnormal excursions from the normal error
range for space operation. These excursions lessen the accuracy of attitude control
and onboard time synchronization. In the research, a new onboard orbit
determination algorithm designed with the Unscented Kalman filter (UKF) was
developed to improve the performance. Because the UKF is able to obtain the
posterior mean and covariance accurately by using the second-order Taylor series
expansion through the sampled sigma points that are propagated by using the true
nonlinear system, its performance can be better than that of the Extended Kalman
filter (EKF), which uses the linearized state transition matrix to predict the
covariance. The comparison of the orbit determination results using EKF and UKF
shows that orbit determination using the UKF yields better results than that using the
EKF.

The purpose of the [13] was to determine the accuracy of GPS use for a
Geostationary Orbit (GEO) satellite. Current missions at GEO altitude mainly use
traditional ranging for orbit determination. With changing mission requirements and
the increase in the number of GEO missions, utilizing GPS signals is becoming an
increasingly attractive alternative for position and timing determination. GPS use at
GEO is primarily limited by the availability of the spillover from the GPS earth
coverage signal. The availability of the GPS signal at GEO is determined by the GPS
block specific antenna patterns and the GEO satellite’s receiver antenna. This
analysis specifically examined the effects of the GPS constellation availability
antenna gain patterns, and GPS receiver clock stability on position and timing

accuracies at GEO.

The purpose of the [14] is to present a development of a non linear Kalman filter,
based on the sigma point unscented transformation, aiming at real time satellite orbit
determination using actual GPS measurements. If the dynamic system and the
observation model are linear, the conventional Kalman filter may be used as an
estimation algorithm. However, not rarely, the dynamic systems and the

measurements equations are of non linear nature. For solving such problems,



convenient extensions of the Kalman filter have been sought. In this work, the
differential equations describing the orbital motion and the GPS measurements
equations will be placed in a suitable form. They will be adapted for the unscented

filter, using the sigma point Kalman filter.

A positioning method for the GPS receiver used in fuse with single antenna as
compared to the traditional multi-antenna model is proposed in [15] . For that
purpose, the intermediate frequency signal received by the single antenna is modeled
and simulated, and a positioning method with partial GPS signals is proposed. Based
on the positioning method with partial GPS signals and Kalman filter theory,
positioning mechanisms for the GPS receiver used in fuse with single antenna are
researched. The simulation result shows that the method can avoid the complicated
design and fixing of the multi-antenna needed in traditional GPS receivers used in
fuse, can reduce the difficulty of designing the tracking loop, and can also improve

the anti-jamming ability in the practical application.

In general, for the orbit determination purpose, the Kalman filtering technique is
used. Antenna tracking data can be processed by Kalman filter in various methods
[1-10]. Because the antenna measurements (azimuth, elevation, and range) are non-
linear with respect to the state variables, the process of location estimation of
spacecraft by using antenna tracking data is non-linear and can only be solved by
EKF or UKF. UKF can also be used to determine orbits with GPS [12,14]. Mostly,
Low Earth Orbit (LEO) satellites are used in studies about GPS. Some studies
research the availability of GPS usage for GEO satellites [11,13]. GPS can be used
for LEO and GEO satellites. The reason of the search for GPS usage for GEO
satellites is to obtain more accurate orbit parameters and reduce the orbit
determination errors. Some researchs about GPS accuracy are given in [11]. There
are also studies which fuse or integrate two different navigation sources such as
antenna and GPS or multiplying the number of ground stations to increase accuracy

and tracking ability [15].

In this study, orbit determination systems such as ground station antenna and GPS
are introduced in chapter 2. In chapter 3, Kalman Filter is defined and the type of
Kalman Filter algorithms as Linear Discrete Kalman Filter, Unscented Kalman Filter
and Robust Unscented Kalman Filters with adaptive factors are presented. = Two-

stage estimation of satellite’s position and velocity by single station antenna tracking



data is proposed in chapter 4. UKF application for estimation of position and velocity
parameters of LEO satellite with GPS measurements is also presented. Robust
Unscented Kalman Filters (RUKF) with Single Measurement Noise Scale Factor
(SMNSF) and Multiple Measurement Noise Scale Factor (MMNSF) are introduced
and applied to orbit determination with single station and antenna measurements for
three fault scenarios such as continuous bias, noise increment and zero output.
Results and comparisons of Regular UKF and Robust filters are actualized in chapter
4, too. In chapter 5, Linear Kalman Filter is used to estimate antenna measurement
bias for positions via using integration of single station antenna and GPS. All results

are summarized in conclusion section in chapter 6.



2. ORBIT DETERMINATION SYSTEMS

2.1 Earth Station and Antenna

An earth station system includes an antenna, tracking system, receiver, transmitter,

multiplexer (combiner), and terrestrial links via a modem (or codec) (figure 2.1).
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Figure 2.1: Block diagram of an earth station.

An antenna is a transducer between electromagnetic waves in space and voltages or
currents in a transmission line. When transmitting, the antenna converts electrical
signals into radio waves; a receiving antenna reverses the process and transforms
radio waves back into electrical signals. Most antennas are passive, simply metal

structures that launch or collect radio waves [17].

An essential operation in communicating by satellite is the acquisition (locating) of
the satellite by the earth terminal antenna and the subsequent tracking of the satellite.
Initial acquisition depends upon an exact knowledge of the position of the satellite.
In combination with the geographic location of the earth terminal, knowing the
position of the satellite enables you to compute accurate antenna pointing
information. The degree of difficulty in locating and tracking a satellite is determined

largely by what type orbit the satellite is in [18].

The locating and tracking of a synchronous satellite is relatively simple. This is

because the satellite appears to be stationary. Locating a near-synchronous satellite is



also relatively simple because of the slow relative motion of the satellite. However,
the movement of a near-synchronous satellite is enough that accurate tracking is
required to keep the narrow beam antenna pointed toward the satellite. Satellites in
medium altitude circular orbits or in elliptical orbits are more difficult to acquire and

to track because of the rapid changes in position [18].

There are many types of antennas and many different variations on the basic types,
but their mode of operation is essentially the same [16]. That is, a radiofrequency
transmitter excites electric currents in the conductive surface layers of the antenna
and radiates an electromagnetic wave. If the same antenna is used with a receiver, the
converse process applies; that is, an incident radiowave excites currents in the
antenna, which are conducted to the receiver. The ability of an antenna to work both

ways is termed the principle of reciprocity.

Three basic types of antennas are the reflector, lens, and phased array. A reflector
antenna is the most desirable candidate for satellite antennas because of its light
weight, structural simplicity, and design maturity [16]. Horns are frequently used as
feeds to illuminate reflector antennas, which typically provide narrow beams. A lens
antenna is the counterpart of the reflector from the optical property point of view. It
can be made rotationally symmetric to preserve good optical characteristics. It has no
feed blockage and compactness; however, it is heavier at low-frequency applications
and has lens surface mismatch. A phased-array antenna is a class of array antennas
that provides beam agility by effecting a progressive change of phase between
successive radiators. An antenna array is a family of individual radiators whose
characteristics are determined by the geometric position of the radiators and the
amplitude and phase of their excitation. A phased-array antenna has a number of
advantages over a lens or reflector antenna. This is due to the distribution of power
amplification at the elementary radiation level, higher aperture efficiency, no
spillover loss, no aperture (feed) blockage, and better reliability. The helical antenna
has inherent broadband properties, possessing desirable pattern, polarization, and
impedance characteristics over a relatively wide frequency range and may radiate in

several modes [16].

The antenna subsystem requires separate tracking equipment, which provides
precise pointing of the antenna at the satellite. With small earth stations where the

antenna’s bandwidth is large, precision tracking equipment is not necessary. The



antenna tracking system can be programmed to point to preassigned direction(s)

automatically and can also be directed manually.

Earth stations with large antennas 10 to 60m in diameter are called long earth
stations [16]. This type is often required to provide for high-capacity telephone, data,
or television transmission. In general, the larger the antenna, the greater the traffic
capacity of the station. Small earth stations are antennas with diameters between 1
and 10 m. They are commonly sighted on the roofs or in the gardens of domestic and
commercial buildings. Small earth stations provide capabilities for reception of
broadcast television and or connection for thin-route telephony systems in remote
regions. Very small aperture (VSAT) earth stations are networks of satellite earth
terminals, each of which has an antenna diameter between 0.3 and 0.9 m: hence the
name very small. VSAT networks are usually arranged in a star configuration in
which small aperture terminals each communicate via the satellite to a large central
earth station known as a hub station. Any aperture smaller than VSAT is called an
ultra-small aperture terminal (USAT). Nearly all earth station antennas with a

diameter greater than 4m are of the paraboloidal-reflector Cassegrain type.

Three commonly used direction-finding systems in earth stations are monopulse, step
track, and programmable steering. The operating principle of all direction-finding
systems is based on a comparison of the actual beam axis, aligned in the direction of
arrival of signals, with two received radiation patterns: one of the actual beam axis

and the other from a satellite.

There are subtle differences in the operation of the three direction finding systems

[16].

1. Monopulse: In monopulse tracking, multiple feed elements are used to obtain
multiple received signals. The relative signal levels the various feed elements receive
are compared to provide azimuth and elevation pointing error signals. The error
signals are then used to activate the servo control system controlling antenna
pointing. The monopulse method is used in systems that utilize polarization isolation,
when greater satellite tracking precision is necessary, for example, in INTELSAT

antennas.

2. Step track method: In the step track method, the radiation pattern of the antenna is

shifted discretely in small steps. The position corresponding to the peak signal is



determined by measuring the sign of the difference of the signal levels before and
after a step. The differential yields the step size for the next change in position
alternately in azimuth and elevation. The iteration process is interrupted when the
position is optimum, that is, when the differential is negligibly small. The advantages
of the step track method are its simplicity and relative low cost. Its disadvantage is its

low speed.

3. Programmable steering method: In this technique, antenna pointing is based upon
knowledge of the relative motion of the satellite with respect to the earth station. A
mathematical function, together with the known geographical coordinates of the
earth station, is programmed and used to update the antenna pointing without
reference to a signal received from the satellite. This technique is independent of
earth station’s performance and link parameters, yet it is relatively complex to

achieve considerable precision accuracy.

In general, whichever scheme is implemented and in order to prevent the pointing
loss, the main lobe of the earth station’s antenna must be pointed automatically or
manually at the satellite with the greatest possible accuracy [16]. This operation is
performed by the tracking system that, by means of its various control loops, ensures
that the position errors of the antenna main beam (e.g., due to wind or satellite drift)
from the ideal satellite position are compensated. The antenna tracking system
together with the tracking servo system, the drive electronics, the electric drives, and
the antenna form a closed control loop. The servo system processes the error signals
supplied by the tracking receiver and prepares them for the drive electronics that
control the dc motors on the antenna axis. The electric drive supplies the drive torque
through mechanical gears to the antenna axis and compensates the gears’ backlash by

producing bias torque.

2.2 Global Positioning System (GPS)

The NAVSTAR ( Navigation Signal Time and Range) Global Positioning System is
a space based navigation system. Users from whole Earth can access to the system
during all day. GPS was designed for solutions to global navigation aims such as
terrestrial, near terrestrial or on orbit. Users can access position and velocity
estimations in three dimension via GPS. User must have a GPS receiver to be able to

use the system. In brief, GPS receiver takes the range estimation data from at least
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four GPS satellites. These range estimations are usually used in Kalman Filter to

determine the position of GPS receiver and estimate the clock bias [19].

Developer of the GPS system is United States Department of Defense [19].
Maintenance services for GPS are also performed by Department of Defense. Origin
of GPS system bases on U.S. Navy Transit program. Object of this program is to use
a satellite consellation for navigation and positioning via transmission of radio
signals with satellites. U.S. Navy Transit program started in the 1950’s and U.S. Air
Force began to work on its own research in the 1960’s. At the end of the Navy
Transit program, Navy Navigation Satellite System was released to nonmilitary users
in 1976. It supplied the desired space based navigation system but system had some
drawbacks such as large time gaps in coverage and inaccurate position estimation.
Due to these unexpected problems, U.S. Navy and Air Force decided to make
additional researchs for more advanced navigation system. Then, Navy developed
TIMATION (time and navigation). It was two dimensional and it could not estimate
highly dynamic situations. Air Force developed proram 621B, too. It could estimate
positions in high dynamic environments but it had some drawbacks again. Both of
efforts performed by Navy and Air Force were integrated into a single program
performed by Air Force in 1973. New program is named as Defense Navigation
Satellite System. In December 1973, this program was accepted and renamed as

Navstar/Global Positioning System..

GPS can be used for military applications such as inertial guidance systems, weapon
delivery, targeting operations, guidance, rendezvous, command and control,
antisubmarine warfare and reconnaissance. GPS can also be used for civilian
purposes such as precision aircraft and general aviation navigation, land vehicle and
ship navigation, search and rescue, geodesy, geology, mapping, surveying and

mineral exploration [19].

GPS consists of three parts as space segment, control segment and user segment [20].
Space segment includes 24 operational satellites and 3 on orbit spares. 24 operational
satellites are spread over six orbital planes (four satellites in each plane). These orbits
are circular orbits with 20200 kilometers altitude and 55 degree inclination angle.
Period of these orbits are around 11 hours 56 minutes. Feature of these orbits is
allowing at least four satellites to be visible permanently from everywhere on the

Earth.
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Eight Block II satellites, 18 Block IIA satellites and a Block IIR satellite create the
total 27 orbit configuration. Block I satellites which are the first generation satellites
are not in service. The second generation Block II satellites provided GPS
consellation to serve fully. Block IIA and Block IIR are the sequential generation

satellites that started to work in the GPS system in 1989 [20].

Control segment includes five monitoring stations, three ground antennas and a
Master Control Station (located in Colorado Springs at Falcon Air Force Base)
(figure 2.2). Master Control Station handles the data obtained and transmitted by
monitoring stations and determines satellite orbits. It also updates each satellite’s
navigation message. Ground antennas transmit the updated navigation messages to
each satellites once per day. User segment includes [20] antennas and receivers to

use for determination of position , velocity and precise time for user.

One way ranging from GPS satellites which are also spreading their estimated
positions, is the basic navigation method of the GPS. Ranges are measured to four
GPS satellites at the same time. This is done via matching the coming signal with
user generated replica signal and measuring the received phase against the user’s
crystal clock. Latitude, longitude, altitude and user clock correction can be
determined by measurement with four satellites. Future positions of satellites are
estimated via range measurements obtained by monitoring stations. The master
control station estimates satellite positions and clock corrections by using prediction

algorithms [21].
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Figure 2.2: GPS system configuration [21].
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GPS signal is broadcast on two frequencies in the L-band. These frequencies are L1
(1565.42 Mhz) and L2 (1227.60 Mhz). Coarse acquisition (C/A) code and the precise
P code are carried by L1.

The C/A code is modulated at a frequency of 1.023 MHz and it is 1023 bits long
[21]. It is the principal civilian ranging signal. It is always broadcast clearly (not
encrypted). It is also used to obtain much longer P-code. Usage is this type of signal
is named as Standard Positioning Service which is always available. The C/A code is

only available on L1.

P or Precise Code is a very long code ( nearly segments of a 200 day code). It is
broadcast ten times at the level of C/A as 10.23 Mhz. The code ranging signal is
more precise than the C/A’s because of its higher modulation bandwidth. This
provides to decrease the level of noise in the received signal. However, it can not fix
the faults caused by biases. Using the P signal is called as Precise Positioning
Service. This signal is encrypted via military service not to be used by unconfirmed
people. This supplied that the unpredictable code can not be spoofed. Name of this
feature is antispoof. After encrypting, P code takes the form of Y code. P/Y code
receivers are the receivers which can decrypt Y code. As a result, most of the

civilian people can only use Standard Positioning Service.

In addition, military operators can be able to reduce the accuracy of the C/A code by
desynchronizing the satellite clock or incorporating the small errors in broadcast
ephemeris. This process is called as Selective Availability. Amount of these range
errors are around 20m and they results in rms horizontal position errors of about

50m, one sigma [21].

Broadcast ephemeris includes the orbits of satellites and parameters which define
satellite positions in a specific time interval [22]. System satellites are continuously
tracked via five satellite control stations (Ascension, Diego Garcia, Kwajalein,
Hawaii, Colorado Springs) . They locate on available positions on Earth and they
have very precious clocks. Data collected by each station is transmitted to main
control station (Colorado Springs). Satellite orbits are calculated by evaluation of
collected data and positions of them are estimated for specific time in the future.

Main control station sends the ephemeris data to satellites with ground antennas.
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Precise ephemeris is used to determine satellite orbits and positions with observation
data obtained by tracking stations apart from GPS control stations. For instance; one
of the satellite tracking networks CIGNET has Earth tracking stations which provide
to obtain satellite orbit data precisely in the specific time. This data is transmitted to
permanent tracking stations via international computer links. Data obtained by this
ephemeris can only be used by official institutions. The main difference between
broadcast ephemeris and precise ephemeris is data acquisition times. Broadcast
ephemeris obtains the data at the same time with observation. Precise ephemeris

obtains data a few weeks after observations [22].
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3. KALMAN FILTER

Within the significant toolbox of mathematical tools that can be used for stochastic
estimation from noisy sensor measurements, one of the most well-known and often-
used tools is what is known as the Kalman filter [23]. The Kalman filter takes it’s

name from the founder Rudolph E. Kalman.

The Kalman filter is essentially a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in the sense that it minimizes the
estimated error covariance when some presumed conditions are met. Since the time
of its introduction, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation. This is
likely due in large part to advances in digital computing that made the use of the
filter practical, but also to the relative simplicity and robust nature of the filter itself.
Rarely do the conditions necessary for optimality actually exist, and yet the filter

apparently works well for many applications in spite of this situation [23].

Kalman Filter can be used for [22] decreasing measurement errors and determination
of better values of measured parameters, integration of multiple data sources (sensor
fusion), estimation of unknown system parameters or state vector and detection of

system faults.

Depending on the process, it can be required to know the estimation of state value. If
state is estimated in future time, this process is named as prediction. If estimation is
done via using the all existing measurements, this process is called as filtering [22].

Kalman filtering includes two steps;

1) Time update: Estimation of state vector and error covariance by using system

model and statistics.

2) Measurement update: Developing the estimation which gives the filtered state.
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3.1 The Discrete Kalman Filter

When a discrete linear system is handled, system’s dynamic state equation defines
the system mobility and measurement equation expresses the manufacturing system

of measurement [22].
Equations of a linear system;
State equation;

x(k+ 1) =0k + 1,k)x(k) + G(k+ 1,k)w(k) @3.1)
Measurement equation;

y(k) = H(k)x(k) + v(k) (3.2)

Here, x(k) is the n dimensional state vector, @(k + 1,k) is nxn dimensional system
transition matrix , w(k) is r dimensional random Gauss noise vector with zero mean
and E[w(&wT()] = Q(k)8(kj) covariance matrix, E is statistical expected value
operator , 8(kj) is Cronecker symbol [23].

1,k =]
6(Kj ={ ’ . .
) =10 % (33)
G(k+ 1,k) is nxr dimensional transition matrix of system noise, y(k)is s
dimensional measurement vector, H(k) is sxn dimensional measurement matrix of
system, v(k) is s dimensional measurement noise vector with zero mean and

E[vikvT(j)] = R(k)8(kj) covariance matrix [22].

Initially, mean of x(0) is X(0) and covariance matrix of x(0) is P(0). There is not

any correlation between system noise w(k) and measurement noise v(Kk).
E[w(vT ()] = 0,vk,j 3.4

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of
(noisy) measurements. As such, the equations for the Kalman filter fall into two
groups: time update equations and measurement update equations. The time update
equations are responsible for projecting forward (in time) the current state and error

covariance estimates to obtain the a priori estimates for the next time step [23].
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The algorithm of discrete Kalman Filter can be written as [22];
Estimation value equation,;
R (KK) = Bk k- DRk — 1]k — 1) + K[y(k) —
HK)O(k k— Dx(k— 1]k —1)] 3.5
% (klk) = % (k|lk — 1) + K(k)Z(k|k — 1) 3.6)
Here, K(Kk) is the optimal gain matrix of the filter.
K(k) = P(k|k)HT(k)R™*(k) 3.7
K(k) = P(k|k — DHT(k)[HK)P(k|k — 1)HT (k) + R(k)]? (3.8)
Correlation matrix of filtering error;

P(k|k) = P(k|k — 1) — P(k|k — DHT (K [HK)Pk|k — 1)P(k|k — DHT(K) +
R(K)]~! xH(K)P(k|k — 1) (3.9)

Correlation matrix of extrapolation error;
P(klk—1) =0k k—1P(k—1k— 18" (k,k—1) +
Gk k—1)Qk—-1)G"(kk—1) 3.10)
With initial conditions; & (0]0) = X(0),P(0]0) = P(0).

The equations below can also be written for Kalman Gain K(k) and correlation

matrix of filtering error P(k|k)as;

K(k) = P(k|K)HT (KR (k) (3.11)
P(k|k) = (I — K(k)H(K))P(klk — 1) (3.12)
P(k|k) = [P~1(k|k — 1) + HT(K)R1(K)H(K)]* (3.13)

P(k|k) = P(k|k — D[l + HTWR*(HK)P(k|k — 1)]* (3.14)

k|k — 1 directory shows the values which are predicted in the previous step,
k, k directory shows the estimation via using all measurements including y(k) at k
time. Initial values of X(0) and P(0), Q(k) system noise correlation matrix and R(Kk)

measurement noise correlation matrix must be given to run the filter.
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3.2 Unscented Kalman Filter

Simplicity, optimality, tractability and robustness are the main features for Kalman
Filter to be used as a method to track and estimate [24]. It is difficult to implement
Kalman Filter to the nonlinear systems. Extended Kalman Filter (EKF) has been
using as a filtering solution for over thirty years. Extended Kalman Filter that
provides to use traditional Kalman Filter for nonlinear models, is a solution to
linearise the nonlinear models. However, this process has two well-known
drawbacks [24]. If local linearity assumptions are broken, unstable filters can be
produced. As a difficult application, computation of Jacobian matrices is one of the
significant processes of EKF. Moreover, application and tuning of EKF are difficult.
It is also dependable for systems which are almost linear on the time scale of the

update intervals.

To cope with the EKF’s constraints, a new method named as the unscented
transformation (UT) was developed [25]. It 1s as a method to propagate mean and
covariance information through nonlinear transformations. When it is compared with
the EKF applications, it can be seen that UT is more accurate, easier to implement,

and uses the same order of calculations as linearization.

The unscented transformation is a new, novel method for calculating the statistics of
a random variable which undergoes a nonlinear transformation [24]. It is founded on
the intuition that it is easier to approximate a Gaussian distribution than it is to
approximate an arbitrary nonlinear function or transformation. The approach is
illustrated in Figure 3.1 [24]. A setof points (or sigma points) are chosen so that their
sample mean and sample covariance are X and P,. The nonlinear function is applied
to each point in turn to yield a cloud of transformed points and y and Py are the

statistics of the transformed points.

Although this method bares a superficial resemblance to Monte Carlo-type methods,
there is an extremely important and fundamental difference. The samples are not
drawn at random but rather according to a specific, deterministic algorithm. Since the
problems of statistical convergence are not an issue, high order information about the

distribution can be captured using only a very small number of points.
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Figure 3.1: The principle of the unscented transform [24].

The n dimensional random variable x with mean X and covariance P, 1is

approximated by 2n + 1 weighted points given by,

Xo = X W, = k/(n + K) (3.15)
Xi =X+ (y/(ﬂ"‘K)PXX )i Wi = 1/2(n+K) (3.16)
Xi+n =X — (\/ (n + K)PXX )i Wisn = 1/2(11 + K) (3.17)

Where keR, (y/(n + k)P ); is the ith row or column of the matrix square root of
(n+ k)P, and W; is the weight which is associated with the ith point. The

transformation procedure is as follows:

1. Instantiate each point through the function to yield the set of transformed sigma

points,
yi = flx] (3.18)
2. The mean is given by the weighted average of the transformed points,
¥ = Xt Wiy (3.19)
3. The covariance is the weighted outer product of the transformed points,

Py = Xt Wilys = 73y — 93" (3.20)

Given its properties of superior estimation accuracy and ease of implementation, the
unscented transform is better suited than linearisation for filtering applications as

shown in figure 3.2 [26].

As seen in the figure 3.2, mean and covariance computed via Extended Kalman Filter
have not very good convergence characteristics. Results found by Unscented
transformation have better convergence characteristics than the results determined

with EKF.
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Figure 3.2: Example of mean and covariance propagation [26].

In order to utilize Kalman filter for nonlinear systems without any linearization step,
the unscented transform and so Unscented Kalman Filter is one of the techniques.
UKEF uses the unscented transform, a deterministic sampling technique, to determine
a minimal set of sample points (or sigma points) from the a priori mean and
covariance of the state. Then, these sigma points go through nonlinear
transformation. The posterior mean and the covariance are obtained from these

transformed sigma points [27,28].

As it is stated, UKF procedure begins with the determination of 2n + 1 sigma points
with a mean of X(k|k) and a covariance of P(k|k). For an n dimensional state vector,

these sigma points are obtained by,

Xo(k|k) = X(klk) 3.21)
Xi(klk) = X(KIK) + (/(n + ©[P(k[k) + Q(K)]); (3.22)
Xien (KIK) = X(KIK) — (v (n + ©[P(k[K) + Q(K)]); (3:23)

where, X, (k|k), X;(k|k)and X, ,(k|k) are sigma points, Q(k) is the process noise
covariance matrix, n is the state number and Kk is the scaling parameter which is used
for fine tuning and the heuristic is to chose that parameter as n + k = 3 [27]. Also,

iisgivenasi=1...n.

Next step of the UKF process is transforming each sigma point by using system

dynamics,

X (k + 1|k) = f[X;(k[K), k], (3.24)
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Then these transformed values are utilized for gaining the predicted mean and the

covariance [29],

Rk + 11k) = ——{iXo (e + 1[K) + 2 220 X, (k + 1]k}, (3.25)

n+k

P(k+1|k) = ﬁ{[m(o(k +1]k) =X (k+ 1| [Xo(k + 1]k) — X (k + 1|1<)]T

132X (e + 1/K) — K (k+ /011X (k+ 1/ - K (k+ 1/K)]"}  (3.26)

Here, X (k + 1|k) is the predicted mean and P(k + 1|k) is the predicted covariance.
As the measurement equation is linear, measurement update can be performed with
the same equations as the classical Kalman filter. The predicted observation vector
1S,

Y(k+1|k) = H(k + DX (k + 1|k) (3.27)

Where, H(k + 1) is the measurement matrix. After that, observation covariance

matrix is determined as,
Pyy(k+ 1]k) = H(k + DP(k + 1|k HT (k + 1) (3.28)
On the other hand the cross correlation matrix can be obtained as,
Pyy(k + 1]k) = P(k + 1|[k)HT(k + 1) (3.29)

Following part is the update phase of UKF algorithm. At that phase, first by using
measurements, Y(k + 1), residual term (or innovation sequence) v(k + 1) is found as

the difference between the actual observation and the predicted observation:
vik+1) =Y(k+1) - Y&+ 1/k), (3.30)
The innovation covariance is,
P,y (k + 1|k) = Byy(k + 1]k) + R(k + 1)
= H(k+ 1)P(k+ 1]k)HT(k+ 1) + R(k + 1) (3.31)

Here R(k+ 1)is the measurement noise covariance matrix. Kalman gain is

computed via equation of,
K(k + 1) = Pyy(k + 1|k)Piit (k + 1]k) (3.32)
At last, updated states and covariance matrix are determined by,

Xk+1k+1) =X&k+1|k) + K&+ Dvk + 1), (3.33)
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P(k+ 1]k + 1) = P(k + 1]k) — Pey(k + 1|K)Pi (k + 1[K)PLk + 1]k) (3.34)
or
P(k+ 1k + 1) = P(k + 1|k) — K(k + DPyy(k + 1|]K) KT(k + 1) (3.35)

Here, X(k+ 1|k + 1)is the estimated state vector and P(k+ 1|k+ 1)is the

estimated covariance matrix.

3.3 Robust Unscented Kalman Filter with Single Measurement Noise Scale

Factor

In case of normal operation of the measurement system, filter works correctly.
However when there is a malfunction in the estimation system such as abnormal
measurements, step-like changes or sudden shifts in the measurement channel etc.

filter fails and estimation outputs become faulty [30].

Therefore, a robust algorithm must be introduced such that the filter makes itself
insensitive to measurements in case of malfunctions and corrects estimation process

without affecting good estimation behaviour.

Robust algorithm affects characteristic of filter only when the condition of the
measurement system does not correspond to the model used in the synthesis of the
filter. Otherwise, filter works with regular algorithm (3.24- 3.35) in an optimal way.

Adaptation occurs as a change in the covariance matrix of the innovation sequence,
P,y (k+ 1|k) = Pyy(k + 1]k) + S(k)R(k + 1) (3.36)

where S(k) is the scale factor calculated in the base of innovation sequence,

v(k + 1), analyses. In robust case filter gain becomes,
K(k + 1) = Pyy(k+ 1|K)[Pyy(k + 1|k) + S(KR(k + 1)]71, 3.37)
The gain matrix is changed when the condition of,
tr{v(k + DvT(k+ 1)} = tr{Pyy(k + 1|k) + R(k + 1)} (3.38)

is the point at issue. Here tr(.) is the trace of the related matrix. Left hand side of
(3.38) represents the real filtration error while the right hand side is the accuracy of
the innovation sequence known as a result of priori information [30]. When the
predicted observation vector §(k + 1|k) is reasonably different from measurement

vector, y(k + 1), real filtration error exceeds the theoretical one. Hence, gain matrix
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must be fixed hereafter by the use of robust algorithm and so scale factor S(k). In

order to calculate the measurement noise scale factor equality of,
trlv(k + DvT(k + 1)] = tr[Pyy(k + 1|k) + S(k)R(k + 1)] 3.39)
is used. Equation (3.39) can be rewritten as,
trlv(k + DvT(k + 1)] = tr[Pyy (k + 1|k)] + S(K)tr[R(k + 1)] (3.40)
If the knowledge of,
tr[v(k+ Dvi(k+ 1)] =vi(k+ Dv(k+ 1) (3.41)
1s taken into consideration, (3.40) becomes,
vik+ Dv(k+ 1) = tr[Pyy(k + 1]k)] + S(k)tr[R(k + 1)] (3.42)
As a result, single noise measurement scale factor (SMNSF) can be obtained as,

_ vI(k+Dv(k+1D)—tr[Pyy(k+1]k)] _ vT(k+1)v(k+1)—tr[H(k+1)P(k+1|K)HT (k+1)]
S(k) = tr[R(k+1)] - tr[R(k+1)] (3.43)

Scale factor increases in case of malfunctions. As it can be seen from (3.36) and
(3.37), that makes up an increment in covariance matrix of innovation sequence and
a decrement in Kalman gain. Consequently, faulty measurements are regarded with a

small weight in the estimation process and filter outputs are not affected.

3.4 Robust Unscented Kalman Filter with Multiple Measurement Noise Scale

Factors

As it 1s discussed, robustness of the filter may be secured by using single
measurement noise scale factor as a corrective term on the filter gain. However that
is not a healthy procedure as long as the filter performance differs for each state for
the complex systems with multivariable [31]. The preferred method is using a matrix
built of multiple measurement noise scale factors (MMNSF) to fix the relevant term

of the Kalman gain matrix, individually [32].

Robust algorithm affects characteristic of filter only when the condition of the
measurement system does not correspond to the model used in the synthesis of the
filter. Otherwise, filter works with regular algorithm (3.24)-(3.35) in an optimal way.

However, when there is a measurement malfunction in the estimation system, the
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real error will exceed the theoretical one. Hence, if the matrix built of MMNSEF,

S(k), is added into the algorithm as,

ﬁ epr VIR + Dvk + 1) = By (k+ 1]K) + SRk + 1),  (3.44)

where, p is the width of the moving window.

Then, S(k) can be determined by the formula of,

S(k) = {ﬁ K e VO DVT(k + 1) — Py (k + 1|k)} R1(k+1) (3.45)

k
1
= 1= Z vk + DvT(k+ 1) — HK + 1Pk + 1[K)HT(k + 1) LR (k + 1)
j=k—p+1
In case of normal operation, the scale matrix will be a unit matrix as S(k) = I. Here I

represents the unit matrix.

Nonetheless, as | is a limited number because of the number of the measurements
and the computations performed with computer implies errors such as the
approximation errors and the round off errors; S(k) matrix, found by using (3.45)
may not be diagonal and may have diagonal elements which are “negative” or less

than “one” (actually, that is physically impossible).

Therefore, in order to avoid such situation, composing scale matrix by the following

rule is suggested:
S* = diag(s], S5, .-+, Sn) (3.46)
where,
si = max{1,S;;} i=1,n. (3.47)

Here, S;; represents the i diagonal element of the matrix S(k). Apart from that
point, if the measurements are faulty, S*(k) will change and so affect the Kalman

gain matrix;
K(k +1) = Pyy(k+ 1|K) [Py (k + 1]k) + S* KRk + 1)]* (3.48)

In case of any kinds of malfunctions, the related element of the scale matrix, which
corresponds to the faulty component of the measurement vector, increases and that

brings out a smaller Kalman gain, which reduces the effect of the faulty innovation
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term on the state update process (3.34). As a result, accurate estimation results can be

obtained even in case of measurement malfunctions.

Remark that, the covariance of the estimation error of RUKF increases in comparison
with regular UKF due to the scale factor Sy. Therefore, robust algorithms are used
only in case of faulty measurements and in all other cases procedure is run optimally
with regular Unscented Kalman filter. Checkout is satisfied via a kind of statistical

information. In order to achieve that, following two hypotheses may be introduced:

® Y,; the system is normally operating

e vy;; there is a malfunction in the estimation system.
Failure detection is realized by the use of following statistical function,

Bk+ 1) = Xk mer{vT(k + D[Py (k + 1]k) + Rk + D] vk + 1)}  (3.49)
where m is the width of the moving window.

This statistical function has x? distribution with s degree of freedom where s is the

dimension of the innovation vector.
If the level of significance, a is selected as,
P2 >xisl=0 O0<a<l, (3.50)

the threshold value, x%s can be determined. Hence, when the hypothesis y; is
correct, the statistical value of B(k + 1) will be greater than the threshold value x3 s,

Le.:
Yo:B(k+1) < xﬁ,s vk 3.51)

v1i:Bk+1) > xi, 3k 3.52)
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4. UNSCENTED AND ROBUST UNSCENTED KALMAN FILTER
APPLICATIONS FOR ORBIT DETERMINATION

4.1 The Mathematical Model of the Spacecraft Orbital Motion

Kepler equations system is one of the systems that can define elliptic orbits of

spacecraft. This equations system includes 3 equations in differential form [33]:

dZ

== "YM3 4.1)
d?y y

ﬁ = —YMr—3 (4.2)
d?z _ zZ

ﬁ = —YMr—3 (4.3)

where Y = 6.67x10711m3 /kgs? is the Kepler constant, X, y, and z are the Descartes

coordinates of the spacecraft in Earth-Centered-Inertial (ECI) coordinate frame,
r =.,/x2 +y?+1z? is the range between spacecraft’s center of mass and Earth’s

center of mass, M = 5.976x10** kg is the mass of the Earth. Write the equations

(4.1)-(4.3) in form of six difference equations as;

Ujpq = Uy — At ny—i; + wy, (4.4)
Vis1 = V; — AtyM ry—s +wy 4.5)
Wiz, = w; — AtyM rZ—l; tWyy (4.6)
Xjy1 = Xj + Aty; + wy 4.7
Vis1 = Xj + Atv; + wy 4.8)
Ziv1 = Xj + Atw; + w, 4.9)

In the equations; At is the sampling time, u, v, and w are the velocities in x, y, and z

directions, respectively, w, is the Gaussian white noise with zero mean. As a result,
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it is possible to propagate the orbital position of the spacecraft for a desired time

period by using these 6 equations.

By means of a ground tracking antenna, the distance from the antenna to the
spacecraft (p), and the azimuth () and elevation () angles of the spacecraft are

measured. The measurement equations are expressed as follows,

p=vpE+0%k+0 (4.10)

a = tan 1 PE 4.11)
PN
B =sin! %U (4.12)

Here, pg, py and py are the components of p in the East-North- Up (Zenith) (ENU)

coordinate system.

4.2 Unscented Kalman Filter For Estimation Of Satellite Position and Velocity
Based on Indirect Position Mesurements via Single Station Antenna
4.2.1 Problem statement
Consider the mathematical model of satellite’s orbital motion in matrix form as;
X(k + 1) = f(X(K) + GW(Kk) (4.13)

Where X(k) is the state vector, W(K) is the system noise, G is the transition matrix

of the system noise.

The state vector of the orbital motion of satellite can be written in the following

form;
X=[xyzuv wl, (4.14)
The non-linear measurement equation is,
Z(k) = h(x(k),k) + V(k) (4.15)

where Z(k) is the measurement vector, h(x(k), k) is a nonlinear measurement model
mapping current state to measurements, V(K) is the random measurement noise. It is

assumed that both noise vectors W(k) and V(k) are white Gaussian.

As seen from (4.13) and (4.15), both the equations of system and measurements are

nonlinear. Inputting the position components of the satellite in ECI reference frame
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calculated from the real range measurements in ENU reference frame to the filter
leads to a linear measurement function. The conventional approach of inputting
directly the real range-azimuth-elevation measurements to the filter results in a
highly nonlinear measurement function, which increases the computational load

significantly.

Below, two-stage estimation of satellite’s position and velocity by single station
antenna tracking data, where the measurement nonlinearities are eliminated, is
proposed. In first stage, the direct nonlinear antenna measurements are transformed
to the linear x-y-z coordinate measurements of satellite’s position, and their errors’
variances are evaluated. In the second stage, the solutions of the first stage are
improved by UKF for estimation of the satellite position and velocity on indirect
linear x-y-z measurements. The simulation results show that the proposed two-stage

procedure satisfies both better estimation accuracy and convergence characteristics.

4.2.2 Determination of the satellite position by single station antenna tracking

data

In general, for the orbit determination purpose, the Kalman filtering technique is
used. Accuracy of the Kalman filter depends on the measurement accuracy
significantly. Therefore, it is important to derive formulas for the accuracy

(variances) of indirect x-y-z position measurements.

Satellite coordinates are determined with single point (ground station) by the help of
this method and difficult calculations are not needed. Following formulas are used to

calculate satellite’s coordinates in the ENU coordinate frame [22,34];

pg = pcosfPsina (4.16)
pn = pcosfcosa 4.17)
py = psinf (4.18)

Range p, azimuth o and elevation B angles are determined by radiolocation
measurements. After accomplishing the successive coordinate transformations on the
measured position between ENU and Earth-Centered-Earth-Fixed (ECEF) and
between ECEF and ECI [34,35], the calculated indirect position measurements X, y, z
of the satellite in ECI is obtained as a function of the real measurements p, o, B in

ENU coordinate frame as follows;
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X = —pcosPsinasin® — pcosBcosasinAcosd + psinfBcosAcosO + RgcosAcosd(4.19)
y = pcosfBsinacosB — pcosBcosasinAsin® + psinfcosAsin® + RgcosAsin® (4.20)

z = pcosPcosacosA + psinBsinA + RgsinA (4.21)

4.2.3 Variance analysis of the position errors

In this sub-section, formulas for the error analysis of the satellite’s orbit
determination will be presented. Variances of orbit parameters are chosen as the
accuracy criteria, and the accuracy of algorithm (4.19-4.21) is considered for

construction of the covariance matrix of measurement noise, R in EKF.

The method to calculate the accuracy of satellite’s position enables determining
possibility characteristics of the position data’s error depending on the type of
ground station, location of ground station, and measurement accuracy of navigation
parameters [22,36]. Establishing ground stations optimally and choosing the most
accurate position determining area are possible as a result of the needed calculations.
In some cases, due to the difficulty of the calculations and the need for huge
preparations, approximate accuracy values of the coordinates are used to determine
the accuracy of the position data. The coordinates of the satellite are calculated by
formulas (4.19-4.21). Because, X, y, z coordinates of the satellite are non-linear
functions of the navigation parameters, range (p), azimuth angle (a), elevation angle
(B) measured by single ground station antenna, by accepting that the navigation
parameters’ measurement errors are independent and errors of parameters local
sidereal time, latitude and radius of the Earth 0, A, Ry are negligible, the variances

of coordinates’ calculation errors are determined as [22];

o2 = (Z—’;)Z o2 + (Z—z)z o2 + (Z—’g)z o3 (4.22)
3= () ob+ () i+ (5) i 42
02 = (Z—z)z o3 + (Z—z)z o + (Z—E)z og (4.24)

where o2, Gf,, o are the variances of the calculated x, y, z coordinates’ errors,
respectively, Gf), o2, 0[23 are the variances of the measurement errors of navigation

parameters p, a, B respectively. The expressions for the partial derivatives in (4.22-

4.24) are presented in Appendix A.
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4.2.4 UKF based estimation of satellite position and velocity on linear position

measurements
In this approach, the measurement vector can be presented as,
Y=[xy Z]T 4.25)

This new approach aims to simplify the measurement matrix as;

100 0 0 0
H=|0 1 0 0 0 0 (4.26)
001 00 0

by deriving the components of the discrete measurement vector Y(k) from the

directly measured range, azimuth, and elevation.

The UKF algorithm (3.21-3.35) is implemented for estimation procedure. The
structural scheme of the proposed UKF for estimation of satellite’s position and

velocity on indirect linear x-y-z measurements is given in Figure 4.1.

| 0 e e S T T T e W e R L T B . T e e e S M Y o A 1
i i ints and Predicted Stat
Calcglatlon of‘S|gma pom S én re |c/ ! é es Next Timel
X, (k[k). X, (k|k). X... (k[x) X, (k+1k) [ step

v

Calculation of Predicted Mean and Covariance
X (k+1[k), P(k+1|k)

v

I

|

I

I

I

!

I

I

I

! Calculation of Predicted Observation Vector
| and Observation Covariance
I

I

I

I

I

I

I

I

I

Direct Measurements
P o, P

Y(k+1/k) ,Py(k+1/k)

Antenna Latitude A , Calculation of Indirect | ,

&
1
1
|
Angle between ECEF  [— Measurements Calculation of Cross Correlation Matrix
and ECI 6 . X,y.Z | j
! ; Py (k+1/k)
! ! ¥
I
! ; Calculation of Residual
|
i ! v(k+1)
I
: Evalution of Indirect | |
I .
| Mec::;?::ts ! Calculation of Innovation Covariance
| 2,02,02 R B, (k+1Jk)
! and R Matrix ;
! Construction ; v
: STAGE 1 ; Calculation of Kalman Gain
----------- ' K(k+1)

Update Estimation and Covariance
X(k+1kc+1) 5 P(k+1]k+1)

STAGE 2 I

Figure 4.1: The structural scheme of the UKF based two-stage satellite’s position
and velocity estimation procedure via antenna.
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4.3 UKF For Estimation Of Satellite Position and Velocity Based on Direct

Position and Velocity Measurements via GPS

In the previous section which has the purpose of the calculation of indirect antenna
measurements, inputting the position components of the satellite in ECI reference
frame calculated from the real range measurements in ENU reference frame to the
filter leads to a linear measurement function. The conventional approach of inputting
directly the real range-azimuth-elevation measurements to the filter results in a
highly nonlinear measurement function, which increases the computational load
significantly. In conclusion, two-stage estimation of satellite’s position and velocity
by single station antenna tracking data, where the measurement nonlinearities are
eliminated, is proposed. However, in this section which aims to measure direct GPS

measurements, there is no need to imply a two-stage mechanism.

Mathematical model of the satellite motion and the state vector is the same with
ground station in GPS. However, while two-stage estimation of satellite’s position
and velocity is used in antenna, GPS directly measures the positions and velocities.
Therefore, it is not required to use a transformation between angles and positions as
done in the antenna system. GPS obtains the needed linear x,y,z position and velocity
measurements in the ECEF coordinate system. In this approach, the measurement

vector can be presented as,
Y=[xyzuvw| 4.27)

In this case, the transition matrix;

100 0 0 0f

|010000I

0010 0 0
H= 4.2
|0001ooi (4.28)
l000010J

0000 0 1

The components of the measurement vector Y(k) are obtained directly via GPS
measurements. The UKF algorithm (3.21-3.35) is implemented for estimation
procedure. The structural scheme of the proposed UKF for estimation of satellite’s
position and velocity on linear position and velocity measurements is given in

Figure 4.2.
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Figure 4.2 : The structural scheme of the UKF based satellite’s position and
velocity estimation procedure via GPS.

4.4 Simulation Results for Unscented Kalman Filter Application to Orbit

Determination with Single Station Antenna

This subsection will give the steps to be followed to simulate the estimation of the
position and velocity of a geostationary satellite by using its range, azimuth angle,

and elevation angle with respect to a ground antenna.

The ground antenna is assumed to be located in the Daejeon, South Korea, so its
latitude angle is taken as A= 36.4°. The standard deviation values of the range,
azimuth and elevation measurements are accepted to be

0, = 10m,0, = 0.01°, og = 0.01° respectively.

The Range-Azimuth-Elevation are measured in the East-North- Up (Zenith)- (ENU)
coordinate system. Because the position and velocity components of the spacecraft,
which are the states of the estimation problem, are defined in the Earth-Centered

Inertial (ECI) coordinate system. The measured variables has to be expressed as
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function of the states. The range vector’s components can be written in ECI

coordinate frame as follows;

Px
py =
Pz

Here, x, y, z are the inertial position components of the spacecraft, Re is the Earth’s

y — RgcosAsin®
z — RgsinA

X — RgcosAcosB
] 4.29)

radius at equator, and 0 is the rotation angle of the Earth-Centered Earth-Fixed
(ECEF) reference system around the Earth’s rotation axis with respect to the ECI

coordinate systems. It is calculated according to;
6 = 280.46061837 + 360.9854736628d,¢0 (4.30)

in degrees. daooo 1s the duration from the epoch at the beginning of the year 2000 till

the starting moment of the estimation process and calculated by the formula,

7{y + INT[(m + 9)/12
dyos = 367y INT{ {y [(4 )/ ]}}
275m)  h+l4s/3600
+INT {220} s 2 44— 7305315 (4.31)

in days [34]. The starting moment for the work is input to the simulation as year

(y=2006), month (m=1), day (d=1), hour (h=0), minute (m=0), second (s=0).
The transformation matrix from the ECI system to the ECEF system is;

—sin@ cos6 O
cosO sin6 O
0 0 1

TECI—ECEF — (4.32)

whereas the transformation matrix from the ECEF system to the ENU system is as

follows;

1 0 0
] (4.33)

TECEF‘ENU=[O —sinA  cosA
0 cosA sinA

Therefore, the quantities measured in the ENU system can be related to the position

components defined in the ECI system through the following transformation;

PE Px
pn| = (TECEF—ENU)( TECI—ECEF) py (4.34)
Pu Pz
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The following relation between the inertial position components of the satellite and

[px Py p.]" is obvious from (4.29);

X Px cosAcosO
[Yl = [Py| + Rg | cosAsin® (4.35)
Z Pz sinA

By performing the inverse of the transformation given in (4.34), [px py p,]T can be
expressed in terms of the variables measured in the ENU coordinate system. Because
the related transformation matrices defined in (4.32) and (4.33) are orthogonal, their

inverses are equal to their transposes, so;
Px PE
py| = ( TECI-ECEF)T (TECEF-ENUNT |py (4.36)
Pz Pu

holds. By substituting (4.36) in (4.35), the elements of the measurement vector (4.25)

that will be input to the UKF can be obtained as in (4.19-4.21).

Because the measurement vector of the UKF consists the indirect x-y-z
measurements Y = [x y z]T the measurement covariance matrix resulting from

(4.22-4.24), can be written as follows,

o2 0 0
R=[0 o2 0 4.37)
0 0 o2

The initial state vector is input to filter as,
Xo = [—20000000 m — 25000000 m 3400 m
1800 m/s —1700m/s — 1.5m/s]T (4.38)

The system noise covariance matrix is selected as,

o000 0 0
|010000I

0010 0 0

- 4.
Q|0001ooi (4.39)
l000010J

0000 0 1

with At = 10 s simulation step interval in 5000 steps.

Simulation results are given in figure 4.3, figures C.1-C.8 in appendix C and in tables
4.1 and 4.2. First part of figures gives UKF state estimation results and the actual

values in a comparing way. Second part of the figures shows the error of estimation
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process as the difference between the actual and estimated values of satellite states.
The last part indicates the variance of the estimation. In graphics, dashed line refers
to the actual value and solid line refers to estimation value. The results for the x
component of the position is given in figure 4.3. For y, z position, X, y, z velocities
and range, azimuth and elevation results are into appendix C (figures C.1-C.8). The
method based on indirect measurements provides an unnoticeably short transient

duration.
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Figure 4.3 : X position est. of satellite by indirect measurements via antenna.

In the conventional method, calculation of predicted observation vector, observation
covariance matrix and cross correlation matrix consists of complex terms which

increase the computational load significantly.

In the proposed method, predicted observation vector, observation covariance matrix
and cross correlation matrix are calculated via expressions (3.27), (3.28) and (3.29)
respectively. This process is very simple and it does not increase the computational

load significantly, which is an important advantage of the designed method.

The estimation accuracy of the proposed indirect method, which can be clearly
observed from the figures 4.3, C.1-C.8 and tables 4.1 and 4.2, is good. Furthermore,
the indirect method is able to make the filter output to converge. Error and variance

values are adequate for a geostationary satellite tracked by ground station antenna.
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Table 4.1 : Absolute estimation errors, SSA.

Parameter 1000 2000 3000 4000 5000
x position(m)  123.5995 207.0492 1.1165  120.2725 628.2238
yposition(m)  117.5316 136.7559 147.9225 74.3314  281.952
z position(m) 1.13E+03 2.23E+03 63.4589 1.28E+03 1.47E+03
x velocity(m/s)  2.0479  0.9526 04429  0.8161  2.6127
y velocity(m/s)  0.064 0.0679  0.7506  0.7972  0.6712
zvelocity(m/s)  6.84E-04 6.4693  2.8559  1.2426  1.0577
Range (m) 10.0502  7.8612  14.5074 41.6537  14.7946
Azimuth (rad) ~ 2.58E-04 1.18B-05 1.51E-04 7.16E-05 1.47E-04
Elevation (rad)  4.32E-04 2.72B-04 1.40E-04 6.90E-05 3.34E-04

Table 4.2 : Variances of estimation errors, SSA.

Parameter 1000 2000 3000 4000 5000

X position(m) 9.58E+05 9.59E+05 9.61E+05 9.62E+05 9.64E+05
y position(m) I.L1IE+06 1.11E+06 1.11E+06 1.11E+06 1.12E+06
z position(m) 9.58E+05 9.59E+05 9.60E+05 9.62E+05 9.64E+05

x velocity(m/s)  12.6414  12.6511  12.6611  12.6657  12.6692
y velocity(m/s)  13.2838  13.2833  13.2895 133086  13.3319
zvelocity(m/s)  12.641  12.6475 12.6538  12.6609  12.6688
Range (m) 2.01E+04 2.02E+04 2.18E+04 2.59E+04 3.26E+04
Azimuth (rad) 9.26E-04 8.99E-04 8.11E-04 6.16E-04 2.78E-04
Elevation (rad)  0.0388  0.0388  0.0389  0.039 0.0393

4.5 Simulation Results for Unscented Kalman Filter Application to Orbit
Determination with GPS

This subsection will give the steps to be followed to simulate the estimation of the
position and velocity of a low earth orbit satellite by GPS mesurements. The GPS
receiver is assumed to be located in the Daejeon, South Korea, so its latitude angle is
taken as A= 36.4°. The standard deviation values of the position and velocity
components are accepted to be 25 m for oy, 0y,0, and 0.3 m/s for oyy, Oyy, Oy,

respectively.

The positions and velocities are measured in the Earth-Centered Earth-Fixed (ECEF)
coordinate system in GPS. Transformation between ECI and ECEF coordinates can
be done as presented in (4.32). The rotation angle 6 of the Earth-Centered Earth-
Fixed (ECEF) reference system around the Earth’s rotation axis with respect to the
ECI coordinate systems can also be calculated via (4.30) and (4.31). The starting

moment for the work is input to the simulation as year (y=2012), month (m=1), day
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(d=3), hour (h=23), minute (m=05), second (s=28) for the LEO satellite to be used
with GPS.

The measurement vector of the UKF consists the position and velocity
measurements  including  six ~ parameters as Y =[xy z Vx Vy Vz]l.

The measurement covariance matrix, can be written as follows,

ox 0 0 0 00
0 o 0 0 0 0
R0 0 o 0 0 0
10 0 0 o2 0 0
00 00 Oy O
| 0 O 0 0 0 o2,
252 0 0 0 0 0
0 252 0 0 0 0
0 0 252 0 0 0
R= 4.4
0 0 0 0.3? 0 0 (4.40)
0 0 0 0 032 0
0 0 0 0 0 032
The initial state vector is input to filter as,
Xo = [1000000m 100000m 1000000m
1000m/s 1000m/s — 1000 m/s]T (4.41)
The system noise covariance matrix is selected as,
1 0 0 0 0 0]
IO 1 0 0 0 O I
0 01 0 0O
=0.1 4.42
QOX|0001001 (442)
lO 0 0 0 1 OJ
0 0 00 01

with At = 1 s simulation step interval in 5000 steps.

Simulation results are given in figure 4.4, figures C.81-C.85 and tables 4.3 and 4.4.
First part of figures gives UKF state estimation results and the actual values in a
comparing way. Second part of the figures shows the error of estimation process as
the difference between the actual and estimated values of satellite states. The last
part indicates the variance of the estimation. In graphics, dashed line refers to the

actual value and solid line refers to estimation value. The result for x position is
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given in figure 4.4 and the other positions and velocities are given in appendix C

(C.81-C.85).
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Figure 4.4 : X position estimation of satellite by measurements via GPS.

The estimation accuracy of the proposed method, which can be clearly observed
from the figures 4.4, C.81-C.85 and tables 4.3 and 4.4, is very good. Estimation
accuracy is better than the accuracy of estimations by indirect measurements of
ground station. Estimation of parameters with GPS measurements are more accurate
than the antenna. Estimation of low earth orbit satellite parameters is easier and
more accurate when compared with geostationary satellites. Consequently, this
method is able to make the filter output to converge, too. Error and variance values

are reliable for estimations with GPS measurements of a low earth orbit satellite.

When both of the study results with antenna and GPS are compared with the
previous study results in the literature, both of the application done via indirect
antenna measurements and direct GPS measurements provide reliable results. For the
application with indirect antenna measurements, standard deviation between 1000-
1500 meters is normal for position components. GPS results are also in dependable

interval.
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Table 4.3 : Absolute estimation errors, GPS.

Parameter 1000 2000 3000 4000 5000
x position(m)  9.23E100 8.72E+00 8.7344  8.7186  8.72E+00
yposition(m)  8.8377  8.72E+00 8.7289  8.72E+00 8.7173
zposition(m)  9.24E+00 8.75E+00 8.74E+00 8.73E+00 8.74E+00
x velocity(m/s) ~ 0.0556  5.55E-02 0.0553  0.0556  0.0555
y velocity(m/s)  0.0556  5.56E-02 0.0554  0.0555  0.0556
z velocity(m/s)  5.52E-02  0.055 0.0553  0.0554  0.0551

Table 4.4 : Variances of estimation errors, GPS.

Parameter 1000 2000 3000 4000 5000

X position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E-+00
y position(m) 8.72B+00 8.72E+00 8.72E+00 8.72E+00 8.72E-+00
z position(m) 8.72B+00 8.72E+00 8.72E+00 8.72E+00 8.72E-+00

x velocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
yvelocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
zvelocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406

4.6 Application of Adaptive Robust Unscented Kalman Filters to Orbit

Determination via Single Station Antenna

In order to understand the efficiency of the proposed robust unscented Kalman filter
algorithms and examine the advantages of each algorithm, Robust Unscented
Kalman Filter (RUKF) with single measurement noise scale factor (SMNSF) (3.36,
3.37) and RUKF with multiple measurement noise scale factors (MMNSF) (3.45,
3.48), various estimation scenarios are performed. Simulations are realized for 50000
seconds with a sampling time At = 10sec. Simulations are also done with regular
UKEF (3.21-3.35) so as to compare results with both RUKF algorithms. For robust
Kalman filters x4 s is taken as 7.8 and this value comes from chi-square distribution
when the degree of freedom is 3 (three measurement parameters for antenna, X, y

and z).

First part of figures gives UKF or RUKF state estimation results and the actual
values in a comparing way. Dashed line refers to actual values and solid line
symbolizes the estimations. Second part of the figures shows the error of estimation
process based on the actual values of the satellite. The last part indicates the variance

of the estimation.
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4.6.1 Continuous bias at measurements

For the first scenario, continuous bias term is formed by adding a constant term to
the azimuth angle in between 15000™ and 25000™ seconds (between 1500™ and
2500 steps). Normally, the variances which form the covariance matrix (R) are
related to azimuth, elevation angles and range. So, when continuous bias is added to
azimuth angle, variances are affected from continuous bias and they are
automatically changed in case of faults. Therefore, there is no need to implement
RUKF with SMNSF and MMNSF in this case. Because, the aim of the application of
RUKF with SMNSF and MMNSF is tuning the covariance matrix of innovation
sequence. Automatic adaptation of R matrix makes the filter adaptive. Changes of
variances forming the R matrix can be seen in figure 4.5 in case of continuous bias in
azimuth. To apply the RUKF with SMNSF and MMNSF, covariance matrix R must
be formed by constant values. To do this, variances of mean values of x, y and z
position differences between actual and indirect measurement values are obtained
and located in R matrix. After that, RUKF with SMNSF and MMNSF can be
applied. As figure 4.6 for x parameter and figures C.9- C.16 for other parameters in
appendix C and tables B.1, B.2 show that the regular UKF fails about estimating the
parameters of geostationary satellite accurately. Continuous bias is added to the
azimuth angle. However, after transformation from topocentric to ECI coordinates,
cont bias added to azimuth, affects all of the position and velocity parameters.

Therefore, RUKF fails for estimation.

Figures 4.7 for x position, C.17-C.24 for others are the graphics for RUKF with
SMNSF and figures 4.8 for x position, C.25-C.32 for others are the graphics for
RUKF with MMNSF for other parameters in appendix C. Results are summarized at
tables B.1-B.6. Tables B.1 and B.2 present the errors of estimations and variances of
estimation errors for Regular UKF in case of continuous bias. Tables B.3 and B.4
present the errors of estimations and variances of estimation errors for RUKF with
SMNSF in case of continuous bias. Tables B.5 and B.6 present the errors of
estimations and variances of estimation errors for RUKF with MMNSF in case of
continuous bias. 2000th step can be examined to compare the filters in faulty
interval. As seen from obtained results, some of the parameters are estimated better
in RUKF with SMNSF and the others are estimated in RUKF with MMNSF. For

example, x, y positions and velocities are better in RUKF with SMNSF where z
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position and velocities are better in RUKF with MMNSF. It can be said that Regular
UKF obtains better results for x, y parameters in faulty interval. However, RUKF
with SMNSF and MMNSEF results are close to each other. As a consequence, RUKF
with SMNSF and MMNSF reduce the fault in small amounts for some parameters
and they obtain close results for this case. Moreover, Regular UKF can sometimes
give better results, too. Normally, it is expected that the RUKF with MMNSF gives
better results when compared with RUKF with SMNSF in general. This is not valid
in this state. The reason is effect of azimuth angles on all indirect measurements. All
position and velocity parameters are affected via azimuth with continuous bias. Bias
is implemented to real measurement, but the measurement noise scale factors try to

correct the indirect measurements.
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Figure 4.5: Variance changes in three dimension in case of cont. bias.

As seen in the figure 4.5, continuous bias is added to azimuth angle measurement
between 15000" and 25000™ seconds. Variances are also changed with respect to
azimuth bias. For the variance X, variance increases in the 15000™ and 25000™
interval. For the variance y, variance decreases in the 15000™ and 25000™ interval.
For the variance z, variance is nearly constant in the 15000™ and 25000™ interval.

Because, azimuth angle affects the x and y variances.
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Figure 4.6: X position est. via Regular UKF in case of cont. bias, SSA.
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Figure 4.7: X position est. via RUKF with SMNSF in case of cont.bias, SSA.
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Figure 4.8: X position est. via RUKF with MMNSF in case of cont.bias, SSA.
4.6.2 Measurement noise increment

In that second measurement malfunction scenario, measurement fault is
characterized by multiplying the variance of the measurement noise of the azimuth
angle in between 15000™ and 25000™ seconds (between 1500™ and 2500 steps). As
in the first scenario, multiplying the variance of the measurement noise of the
azimuth angle affects the variances. Therefore, there is no need to implement RUKF
with SMNSF and MMNSF in this case. Changes of variances forming the R matrix
can be seen in figure 4.9 in case of noise increment in azimuth. After constructing the
constant R matrix, RUKF with SMNSF and MMNSF can be applied. As figure 4.10
for x parameter and figures C.33- C.40 for other parameters in appendix C and tables
B.7, B.8 show that the regular UKF fails about estimating the parameters of

geostationary satellite accurately.

Figures 4.11 for x position and C.41-C.48 are the graphics for RUKF with SMNSF
and figures 4.12 for x position and C.49-C.56 are the graphics for RUKF with
MMNSF for other parameters in appendix C. Results are summarized at tables B.7-
B.12. Tables B.7 and B.8 present the errors of estimations and variances of
estimation errors for Regular UKF in case of noise increment. Tables B.9 and B.10

present the errors of estimations and variances of estimation errors for RUKF with
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SMNSF in case of noise increment. Tables B.11 and B.12 present the errors of
estimations and variances of estimation errors for RUKF with MMNSF in case of
noise increment. 2000th step can be examined to compare the filters in faulty
interval. As seen from obtained results, X, y position estimations are better in
Regular UKF. For velocities, RUKF with MMNSEF is the best. Z position is better in
RUKF with SMNSF. However, both of the robust algorithms reduce amount of fault
a little in faulty interval for parameters which they give better results. Estimation
results of RUKF with SMNSF and MMNSF are close to each other. Effect of
azimuth angle on all indirect measurements impresses estimation characteristics

badly.
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Figure 4.9: Variance changes in three dimension in case of noise inc.

As seen in the figure 4.9, noise increment is implemented to azimuth angle
measurement between 15000™ and 25000" seconds by multiplying the azimuth
measurement noise value. Variances are also changed with respect to azimuth bias.
For the variance x, variance increases in the 15000™ and 25000 interval. For the
variance y, variance decreases in the 15000™ and 25000"™ interval. For the variance z,
variance is nearly constant in the 15000™ and 25000™ interval. Because, azimuth

angle affects the x and y variances.
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Figure 4.10: X position est. via Regular UKF in case of noise inc, SSA.
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Figure 4.11: X position est. via RUKF with SMNSF in case of noise inc, SSA.
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Figure 4.12: X position est. via RUKF with MMNSF in case of noise inc, SSA.

4.6.3 Zero output

In that third measurement malfunction scenario, there is not any azimuth angle
measurement between 15000™ and 25000™ seconds (between 1500™ and 2500
steps). Changes of variances forming the R matrix can be seen in figure 4.13 in case
of zero output in azimuth. After constructing the constant R matrix, RUKF with
SMNSF and MMNSF can be applied. As figure 4.14 for x parameter and figures
C.57- C.64 for other parameters in appendix C and tables B.13, B.14 show that the
regular UKF fails about estimating the parameters of geostationary satellite

accurately.

Figures 4.15 for x position and C.65-C.72 are the graphics for RUKF with SMNSF
and figures 4.16 for x position and C.73-C.80 are the graphics for RUKF with
MMNSF for other parameters in appendix C. Results are summarized at tables B.13-
B.18. Tables B.13 and B.14 present the errors of estimations and variances of
estimation errors for Regular UKF in case of noise increment. Tables B.15 and B.16
present the errors of estimations and variances of estimation errors for RUKF with
SMNSF in case of zero output. Tables B.17 and B.18 present the errors of

estimations and variances of estimation errors for RUKF with MMNSF in case of
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zero output. 2000th step can be examined to compare the filters in faulty interval. As
seen from obtained results, RUKF algorithms with SMNSF and MMNSF reduce the
effect of the innovation sequence and decrease the estimation error. Generally,
estimation results of RUKF with SMNSF and MMNSF are close to each other and
better than the normal RUKF. Effect of azimuth angles on all indirect measurements

impresses estimation characteristics badly.
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Figure 4.13: Variance changes in three dimension in case of zero output.
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Figure 4.14: X position est. via Regular UKF in case of zero out, SSA.
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Figure 4.15: X position est. via RUKF with SMNSF in case of zero out, SSA.
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Figure 4.16: X position est. via RUKF with MMNSF in case of zero out, SSA.

In general, when the measurements are faulty, RUKF with SMNSF compensates that
by increasing its single scale factor. As a result, all of the measurements for these

time steps are scaled. That is not a healthy procedure as long as the filter
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performance differs for each state for the complex systems with multivariable. On
the other hand RUKF with MMNSF secures the robustness of the filter by increasing
related factors of the scale matrix individually. Increment of the related scale factors
brings out a decrement in the related components of the Kalman gain, so as to reduce
the corrective effect of the innovation sequences of the faulty measurements on the
state estimation process (3.33). That makes RUKF with MMNSF more
advantageous. However, this rule is not valid in this case. Because, measurement
faults are implemented to direct measurement azimuth and adaptive algorithms are
applied for indirect measurement estimations. Due to effect of azimuth on all indirect
measurements, results of RUKF with SMNSF and RUKF with MMNSF are close.
Both of them reduce the errors but, advantage of MMNSF can not be seen in here.
To realise the advantage of RUKF with MMNSF to RUKF with SMNSF, both of the
faults and adaptive algorithms must be applied to indirect measurements. In the next

section, this type of implementation will be done via GPS.

4.7 Application of Adaptive Robust Unscented Kalman Filters to Orbit

Determination via GPS

In order to understand the efficiency of the proposed robust unscented Kalman filter
algorithms and examine the advantages of each algorithm, Robust Unscented
Kalman Filter (RUKF) with single measurement noise scale factor (SMNSF) and
RUKF with multiple measurement noise scale factors (MMNSF), various estimation
scenarios are performed for orbit deternination via GPS, too. Simulations are realized
for 5000 seconds with a sampling time At = 1sec. Simulations are also done with
regular UKF so as to compare results with both RUKF algorithms. For robust
Kalman filters 3¢ 1is taken as 12.6 and this value comes from chi-square
distribution when the degree of freedom is 6 (six measurement parameters for GPS,

position and velocities in three dimension).

First part of figures gives UKF or RUKF state estimation results and the actual
values in a comparing way. Dashed line refers to actual values and solid line
symbolizes the estimations. Second part of the figures shows the error of estimation
process based on the actual values of the satellite. The last part indicates the variance

of the estimation.
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4.7.1 Continuous bias at measurements

For the first scenario, continuous bias term is formed by adding a constant term to
the x position measurement of the GPS in between 1750™ and 2250™ seconds and
the x velocity measurement of the GPS in between 3750™ and 4250™ seconds. As
Figure 4.17 for x position and for the other paramaters Figures C.86-C.90 and Tables
B.19-B.20 show, regular UKF fails about estimating the x position and x velocity
accurately in the faulty intervals. Per contra, RUKF algorithms with SMNSF
(Figures. 4.18, C.91-C.95) and MMNSF (Figures 4.19, C.96-C.100) reduce the effect
of the innovation sequence and eliminate the estimation error which is caused by the

biased measurements of GPS.

Figures 4.18 for x position and C.91-C.95 are the graphics for RUKF with SMNSF
and figure 4.19 for x position figures C.96-C.100 are the graphics for RUKF with
MMNSF in appendix C. Results are summarized at tables B.19-B.24. Tables B.19
and B.20 present the errors of estimations and variances of estimation errors for
Regular UKF in case of continuous bias. Tables B.21 and B.22 present the errors of
estimations and variances of estimation errors for RUKF with SMNSF in case of
continuous bias. Tables B.23 and B.24 present the errors of estimations and variances
of estimation errors for RUKF with MMNSF in case of continuous bias. 2000th and
4000th points can be examined in faulty intervals. As seen from obtained results,
RUKF with MMNSF generally has a better estimation accuracy, where absolute
errors are significantly smaller than Regular UKF and RUKF with SMNSF. The
regular UKF gives better estimation results for parameters apart from x position in
first faulty interval and x velocity in the second faulty interval which the faults are
direcly applied, than the RUKF with SMNSF. RUKF with SMNSF only reduces
errors for the bias implemented parameters in the faulty intervals. RUKF with
SMNSEF is not a healthy procedure as long as the filter performance differs for each
state measurement for the complex systems with multivariable. RUKF with MMNSF
gives the best results in the faulty intervals for bias implemented parameters. RUKF
with MMNSF has smaller variance values than SMNSF. RUKF algorithm with
MMNSF reduces the effect of the innovation sequence and decreases the estimation
error. The similar results are obtained when the continuous bias is implemented to

the other measurement channels.
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Figure 4.17: X position est. via Regular UKF in case of cont. bias, GPS.
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Figure 4.18: X position est. via RUKF with SMNSF in case of cont. bias, GPS.
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4.7.2 Measurement noise increment

In that second measurement malfunction scenario, measurement fault is
characterized by multiplying the variance of the measurement noise of the x position
with a constant term in between 1750™ and 2250"™ seconds and the x velocity with a
constant term in between 3750 and 4250"™ seconds. As it is seen from Figs. (4.20-
4.21-4.22, C.101-C.115), the both RUKF algorithms (with SMNSF and MMNSF)
give more accurate estimation results than Regular UKF about estimating the x
position and x velocity in case of the measurement noise increment in the faulty
intervals. RUKF algorithms with SMNSF and MMNSF reduce the effect of the

innovation sequence and decrease the estimation error.

Results are summarized at tables B.25-B.30. Tables B.25 and B.26 present the errors
of estimations and variances of estimation errors for Regular UKF in case of noise
increment. Tables B.27 and B.28 present the errors of estimations and variances of
estimation errors for RUKF with SMNSF in case of noise increment. Tables B.29
and B.30 present the errors of estimations and variances of estimation errors for
RUKF with MMNSF in case of noise increment. 2000th and 4000th points can be
examined in faulty intervals. As seen from obtained results, the RUKF with MMNSF

53



provides the most accurate estimation results. RUKF with MMNSF has smaller
variance values than SMNSF. Simulations give similar results when the noise

increment is implemented to other measurement channels.
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Figure 4.20: X position est. via Regular UKF in case of noise inc, GPS.
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4.7.3 Zero output

In that third measurement malfunction scenario, there is not any x position
measurement between 1750™ and 2250™ seconds and any X velocity measurement
between 3750™ and 4250™ seconds. As it is seen from Figures (4.23-4.24-4.25,
C.115-C.130), the both RUKF algorithms (with SMNSF and MMNSF) give more
accurate estimation results than Regular UKF about estimating the x position and x

velocity in case of the zero output in the faulty intervals.

Results are summarized at tables B.31-B.36. Tables B.31 and B.32 present the errors
of estimations and variances of estimation errors for Regular UKF in case of zero
output. Tables B.33 and B.34 present the errors of estimations and variances of
estimation errors for RUKF with SMNSF in case of zero output. Tables B.35 and
B.36 present the errors of estimations and variances of estimation errors for RUKF
with MMNSF in case of zero output. 2000th and 4000th points can be examined in
faulty intervals. As seen from obtained results, the RUKF with MMNSF provides
the most accurate estimation results. RUKF with MMNSF has smaller variance
values than SMNSF. Regular UKF is better than RUKF with SMNSF for the
parameters which faults are not added to in the faulty interval. Simulations give

similar results when the zero output is implemented to other measurement channels.
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When the measurements are faulty, RUKF with SMNSF compensates that by
increasing its single scale factor. As a result, all of the measurements for these time
steps are scaled. That is not a healthy procedure as long as the filter performance
differs for each state for the complex systems with multivariable. On the other hand
RUKF with MMNSF secures the robustness of the filter by increasing related factors
of the scale matrix individually. Increment of the related scale factors brings out a
decrement in the related components of the Kalman gain, so as to reduce the
corrective effect of the innovation sequences of the faulty measurements on the state
estimation process (3.33). That makes RUKF with MMNSF more advantageous. For
all three scenarios estimation characteristic of the RUKF with SMNSF is worse than
RUKF with MMNSEF in faulty interval. Hence, utilizing RUKF with MMNSF may

be more meaningful despite the increased computational demands.
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5. COMPLEMENTARY KALMAN FILTER TO INTEGRATE ANTENNA
AND GPS FOR BIAS ESTIMATION

The purpose of this study is to integrate two navigation sources in the base of a
Linear Kalman Filter (3.1-3.14) [22]. Instead of system state variable estimates, the
system’s error estimates will be obtained by the Kalman Filter. The single station
antenna and the GPS are summed together in the integrated navigation system shown

in figure (5.1).
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Antenna System s D
. Measurements » } >
Direct Measurements Xy.2 + N
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GPS /‘ N Linear Kalman =
e < U m— 3
NS Filter e

Figure 5.1: Integration of GPS and single station antenna schematics.

As seen in Figure (5.1), the difference of positions obtained from antenna and GPS is
introduced into the Linear Kalman Filter. Kalman Filter estimates the position biases
which are the indirect measurements. A bias is added to the one of the direct antenna
measurements such as azimuth angle. After reverse transformation from topocentric
coordinates to ECI coordinates to calculate indirect measurements, azimuth angle
bias affects the x, y and z position values. Linear Kalman Filter is used to determine

these indirect measurement biases.

The information we need for this filtering process are the system error models and

the measurement error model.
The system error vector with required parameters is as follows,

X =[Ax Ay Az]T (5.1)
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In here, the Ax, Ay, Az are the position errors of antenna system.

The bias model used with Linear Kalman Filter to estimate position errors caused by

azimuth angle bias, presented below;

X(k) = AX(k — 1) + W(k — 1) (5.2)
Ax(k) 1 0 () [Ax(k — 1) AtW, (k — 1)
Ay(k)| = [o 1 o Ay(k — 1) | + |AtwW, (k — 1) (5.3)
az(9)| lo o ul|azk—1)| |atw,k- 1)
Ax(K)]
X(k) = [Ay(k) 54
| Az(K) |
1 0 O]
A=[0 1 O (5.5)
0 0 1.
AW, (k — 1)
Wk —1) = |AtW,(k—1) (5.6)
AW, (k — 1)

In (5.3), Wy, Wy, W, are the Gauss distributed noises with standard deviations 1000m
in three position dimension. At is sampling time interval taken as 1 second. Initial

values for state matrix as input to filter; X(0) = [0.1 0.1 0.1]7.

Using the indirect antenna position and GPS position measurement differences as

measurements observation vector in the Kalman Filter, the observation vector can be

stated as;
Z=[Zax Zpy Zp,]" (5.7)
Zax = XGps — Xantenna (3.8
Zpy = YGPs — Yantenna (5.9)
Zpz = ZGPs — Zantenna (3.10)

In (5.8, 5.9, 5.10), Xgps,Ygps, Zgps are the direct GPS position mesurements and
Xantennar Yantenna» Zantenna INdirect antenna measurements. The difference between
the GPS position measurement and the antenna position measurement gives us the
antenna position error. Standard deviations for antenna position components are
taken as 100m to calculate random noises. For GPS, they are taken as 25m. If

measurement statements of (5.8, 5.9, 5.10) are written in matrix form;
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ZAX 1 0 O0][¥cps — Xantenna
Z(k) = |Zay =[0 1 0] [prs—yantenna] (5.11)
L, 0 O 1llZgps — Zantenna
1 00
H(k)=[0 1 o] (5.12)
0 0 1

Zpx Lay, L, are error measurement vector components in three dimension and H is

the transition matrix. To obtain the antenna true error values that will be used in the

simulation, the system error model is used. The system’s error vector for the error

values;
Xm = [A%y Ay, Az ]T (5.13)
The system error values;
AXm = X — Xantenna (5.14)
Aym =Y ~ Yantenna (5.15)
AZp = Z = Zantenna (3.16)

In here, the Ax,,, Ay, Az, are the system errors in terms of  position
components. X, y, z are the position values calculated by equations of motion of

satellite and Xaptennar Yantennar Zantenna INdirect antenna measurements.

As seen on figure(5.1), the output of the Kalman Filter gives antenna position error
estimates. Subtracting these error values from the measured position values of the
antenna, the estimated positions Xantennar Yantennar Zantenna ODbtained. After
obtaining these values, antenna angles can be calculated via using ECI to
topocentric transformation and the difference between true azimuth and azimuth with

bias can be realized. And the position estimates can be written as:

Xantenna = Xantenna — AX (5.17)
Yantenna = Yantenna — AY (5.18)
Zantenna = Zantenna — AZ (5.19)

Standard deviations (oty,, 0%y, 0fy,) of Gauss distributed noises Wy, Wy, W, are

taken as 1000m and At is sampling time interval taken as 1 second. Then, the noise
correlation matrix Q(k) and measurement error correlation matrix R(k) can be taken

as;
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Qk =| 0  Atfoy, 0 (5.20)
0 0 At?cd,
)z(antenna + G)Z(GPS O O
R(k) = 0 Gf’antenna + Gf’GPS 0 (5.21)
O O G%antenna + G%GPS

As seen in (5.21) measurement error correlation matrix is a diagonal matrix, with; the
sum of the random measurement variants of antenna and those of GPS composing

the diagonal elements.

Bias estimations for indirect measurements of antenna, X, y and z positions are
presented below in figures 5.2, 5.3 and 5.4 respectively. Simulations are done for 500
seconds with 500 steps. First part of figures gives state estimation results and the
actual values in a comparing way. Blue line refers to actual values and red line
symbolizes the bias estimations. Second part of the figures shows the error of
estimation process based on the actual values of the bias. The last part indicates the
variance of the estimation. Figure 5.5 presents the comparison of azimuth angles.
First part of the Figure 5.5 shows biased azimuth ( black line), actual azimuth (blue
line) and the azimuth ( red line) which is calculated after substracting the estimated
bias values from X, y and z positions. Second part of the figure 5.5, introduces the
difference between actual azimuth (blue line) and the azimuth ( red line) which is

calculated after substracting the estimated bias values from X, y and z positions.

Firstly, 0.1 degree bias is added to the antenna azimuth measurement. After
transformation to ECI coordinates, azimuth bias affects the x, y and z positions
which are indirect antenna measurements. The actual bias values are calculated by
using the difference between real position values and faulty positions. Estimations
are done by using Linear Kalman Filter with the model given in (5.3). As seen from
the results (figures 5.2-5.3-5.4), bias estimation values converge to the actual values.
They reduce and fluctuate around zero. Second, estimated bias values are substracted
from the position values affected by faulty azimuth angle. Thus, positions in three
dimension are cleared from the bias. After that, new position values are again

transformed to topocentric coordinates to compute new azimuth angle.
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Figure 5.2: X position bias estimation with Linear Kalman Filter.
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Figure 5.3: Y position bias estimation with Linear Kalman Filter.
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Figure 5.4: Z position bias estimation with Linear Kalman Filter.
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64

500



0.835 \ \ \ \ \
0.834 ) - . . N

0.833 " | a ]

elevation(rad)

0_ 832 I | I | I | I | I
0 50 100 150 200 250 300 350 400 450 500

time(s)

0.5+

error(rad)
o

_1 L | L | L | L | L
0 50 100 150 200 250 300 350 400 450 500
time(s)
Figure 5.6: Comparison of elevation angles.

As seen from (figure 5.5), new azimuth calculated with unbiased positions converge
to the actual azimuth value. Difference between biased and unbiased azimuths can

also be realized.

As seen from (figure 5.6), elevation calculated with unbiased positions converge to
the actual elevation angle value, too. Difference between elevation calculated by

unbiased positions and actual elevation angle can also be realized.

Third, unbiased x, y and z positions after estimated bias values are substracted, and
actual position values are compared in figures 5.7, 5.8 and 5.9 respectively. First part
of figures gives biased position results and the actual values in a comparing way.
Black line refers to actual values and red line symbolizes the unbiased values.
Second part of the figures shows the error between unbiased and actual values of
positions. The last part indicates the total variances. They are calculated by sum of
measurement covariance matrix of antenna and correlation matrix of filtering error of
estimated biases ( total of diagonal elements of R(k)(4.37) and P(k|k)). As seen from
the results, unbiased position values converge to actual values. Errors converge to

Z€10.
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6. CONCLUSION

A new Unscented Kalman filter that uses indirect position measurements to estimate
the position and velocity components of GEO satellite is developed. Inputting the
position components of the satellite in ECI reference frame calculated from real
range measurements in ENU reference frame to the filter leads to a linear
measurement function. The conventional approach of inputting directly the real
range-azimuth-elevation measurements results in a highly nonlinear measurement
function. The corresponding calculation of predicted observation vector, observation
covariance matrix and cross correlation matrix consists of complex terms which

increases the computational load significantly.

UKEF based two-stage estimation of satellite’s position and velocity by single station
antenna tracking data, where the measurement nonlinearities are eliminated, is
proposed. In the first stage, the direct nonlinear antenna measurements are
transformed to the linear x-y-z coordinate measurements of satellite’s position, and
their errors’ variances are evaluated. In the second stage, the solutions of the first
stage are improved by UKF for estimation of the satellite position and velocity on

indirect linear x-y-z measurements.

The simulation results show that the proposed UKF based two-stage procedure
performs good estimation accuracy and good convergence characteristics.
Furthermore, the method based on indirect measurements provides an unnoticeably

short transient duration.

Unscented Kalman Filter which uses position and velocity measurements of GPS for
LEO satellite in three dimension is also proposed. The difference of this application
from UKF for single station antenna implementation, is using the direct
measurements. GPS directly measures the position and velocities of the satellite.
Therefore, UKF uses the directly obtained measurements and it does not require hard

transformations to obtain indirect measurements from real antenna measurements.
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The simulation results show that the proposed UKF based orbit determination on
GPS measurements has better estimation accuracy and convergence characteristics

than the UKF based two-stage estimation procedure.

Robust Unscented Kalman Filter algorithms with single and multiple measurement
noise scale factors for the case of measurement malfunctions are developed. By the
use of defined variables named as scale factor, faulty measurements are taken into
consideration with small weight and the estimations are corrected without affecting
the characteristic of the accurate ones. In the presented RUKFs, the filter gain

correction is performed only in the case of malfunctions in the measurement system.

RUKF algorithms with single (SMNSF) and multiple measurement noise scale
factors (MMNSF) are proposed. In the first case filter is adapted by using single
scale factor as a corrective term on the filter gain, and in the second one, a scale
matrix built of multiple factors is used to fix the relevant term of the Kalman gain

matrix, individually.

Proposed RUKF algorithms with single and multiple MNSF are applied for the
parameters of GEO satellite estimations by indirect measurements of ground station
and parameters of LEO satellite estimations by measurements of GPS. Algorithms
are tested for three types of measurement faults such as continuous bias, noise
increment, zero output and results are compared with the outputs of UKF for the
same cases. As seen from the results, RUKF with SMNSF and MMNSF results are
close to each other for two stage estimation procedure with antenna measurements.
For GPS measurements, simulation results show that RUKF with MMNSEF is better
than RUKF with SMNSF.

For the purpose of antenna bias estimation the Complementary Kalman Filter which
integrates single station antenna system and GPS is developed. GEO satellite’s
position measurement biases caused by constant bias addition to azimuth angle are
estimated via proposed Kalman Filter algorithm. The simulation results show that the
bias estimation values converge to the actual values for all three x, y and z position
biases and the Complementary Kalman Filter can successfully be able to estimate

antenna measurement biases.
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APPENDIX A

0x . . . .

rrie —cosfsinasin® — cosBcosasinAcosO + sinf3cosAcosO
0x . . .
Pl —pcosBcosasin® + pcosfsinasinAcosO

o _ psinfsinasin® + psinfcosasinicosd + pcosfcosicosO

B
] : o : :
a—z = cosfBsinacosB — cosfBcosasinAsin® + sinf3cosAsin®
] o
ﬁ = pcosfcosacosB + pcosPBsinasinAsin®
] o : o :
a_}[; = —psinBsinacosO + psinfcosasinAsin® + pcosfcosAsin®
0z . .
rree cosBcosacosA + sinBsinA
0z .
— = —pcosfsinacosA
da
0z . .
i —psinfcosacosA + pcosfsinA
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APPENDIX B

Table B.1 : Abs. est. errors via Regular UKF in case of cont. bias, SSA.

Parameter 1000 2000 3000 4000 5000
X position(m) _ 693.4597 3.27E+05 142.1083 274.8157 306.0897
yposition(m) 957669  2.93E+05 1.26E+03 141.5185 26.8624
z position(m) 5.96E+02 5.65E+03 208.4127 6.02E+02 8.25E+02
x velocity(m/s)  2.9474  19.0766  0.714 0.5754  0.3419
y velocity(m/s)  0.4587  25.8599  4.3259 03244  0.2164
zvelocity(m/s)  2.80E+00 0.9341  0.5569  3.1966  1.2994
Range (m) 522141  14.1597 294756  69.8962  10.594
Azimuth (rad)  1.96E-04 1.76E-02 1.42E-04 1.04E-04 8.68E-05
Elevation (rad)  7.43E-05 5.09E-06 2.88E-05 3.94E-04 1.58E-04

Table B.2 : Variances via Regular UKF in case of cont. bias, SSA.

Parameter 1000 2000 3000 4000 5000
X position(m) 6.18E+05 6.18E+05 6.19E+05 6.18E+05 6.18E+05
y position(m) 5.32E+05 5.31E+05 5.31E+05 5.31E+05 5.31E+05
Z position(m) 1.79E+06 1.79E+06 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s) 10.8962  10.8982  10.9006  10.8991 10.8964
y velocity(m/s) 10.3521 10.3504  10.3483 10.3495 10.3518
z velocity(m/s) 15.6231 15.6231 15.6231 15.6231 15.6231
Range (m) 9.77E+05 9.69E+05 9.76E+05 9.75E+05 9.73E+05
Azimuth (rad) 6.00E-04 1.48E-04 5.21E-04 3.96E-04 1.78E-04
Elevation (rad) 0.0426 0.0428 0.0425 0.0425 0.0425
Table B.3 : Abs. est. errors via RUKF with SMNSF in case of cont. bias, SSA.
Parameter 1000 2000 3000 4000 5000
X position(m) 1.21E+03 3.24E+05 164.9988 296.8449 140.1359
y position(m) 118.9716 2.91E+05 2.28E+03 133.338  128.8219
Z position(m) 7.39E+02 5.87E+03 631.911 1.23E+03 1.34E+03
x velocity(m/s) 5.1929 249672  0.4752 0.0099 0.084
y velocity(m/s) 0.4873 23.7322  6.4352 0.9116 0.1987
z velocity(m/s) 2.82E+00 2.0695 0.9081 3.8301 2.5237
Range (m) 54.4305  743.8875 10.125 38.3697  21.0621
Azimuth (rad) 4.89E-05 1.74E-02 9.07E-05 1.05E-05 3.96E-06
Elevation (rad) 1.95E-05 1.61E-05 1.81E-05 3.32E-05 3.61E-05
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Table B.4 : Variances via RUKF with SMNSF in case of cont. bias, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 6.87E+05 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 5.85E+05 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 2.04E+06 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s) ~ 10.8962  11.7191  10.9006  10.8991  10.8964
y velocity(m/s)  10.3521  10.9406  10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231 195113  15.6231  15.6231  15.6231
Range (m) 9.77E+05 1.12E+06 9.76E+05 9.75E+05 9.72E+05
Azimuth (rad) ~ 5.98E-04 1.68E-04 5.21E-04 3.96E-04 1.79E-04
Elevation (rad)  0.0426  0.0483  0.0425  0.0425  0.0425

Table B.5 : Abs. est. errors via RUKF with MMNSF in case of cont. bias, SSA.

Parameter 1000 2000 3000 4000 5000
x position(m)  2.33E+02 4.47E+05 363634  792.1788 86.3431
yposition(m)  77.9961  2.92E+05 5.20E+02 1.17E+03 53.8812
z position(m) 1.37E+01 2.90E+03 128.3762 3.27E+01 5.51E+02
x velocity(m/s)  0.361 73.2929  0.214 0.7207 12482
y velocity(m/s)  0.5588  21.9763 17563  1.2236  0.6235
zvelocity(m/s)  2.12E+00 3.0556  0.5482  0.5516  1.2441
Range (m) 81.1876  8.04E+04 5.1046  36.9604  16.0227
Azimuth (rad)  9.26E-06 2.10E-02 2.07E-05 5.61E-05 2.73E-06
Elevation (rad)  2.67E-07 1.52E-04 3.71E-06 1.27E-06 1.48E-05

Table B.6 : Variances via RUKF with MMNSF in case of cont. bias, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 5.63E+07 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 7.09E+05 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 1.98E+06 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s)  10.8962  60.531  10.9006  10.8991  10.8964
y velocity(m/s)  10.3521  11.7248  10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231  16.2421  15.6231  15.6231  15.6231
Range (m) 9.77E+05 1.08E+06 9.76E+05 9.75E+05 9.72E+05
Azimuth (rad)  5.99E-04 5.50E-03 5.22E-04 3.95E-04 1.79E-04
Elevation (rad)  0.0426  0.0472  0.0425  0.0425  0.0425
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Table B.7 : Abs. est. errors via Regular UKF in case of noise inc, SSA.

Parameter 1000 2000 3000 4000 5000
x position(m)  1.48E+03 2.72E+04 102.532  908.5613 921.6779
yposition(m)  163.4444 1.82E+04 386.3203 1.65E+03 217.5169
z position(m) 1.43B+03 6.12E+03 5.89E+02 1.60E+03 3.15E+01
x velocity(m/s)  1.8218  19.9206  0.0352  0.5853  1.3615
y velocity(m/s) ~ 0.1818  11.041  0.7735  1.6808  0.2946
zvelocity(m/s)  1.04E+00 7.5745  0.2834  3.6158  0.1046
Range (m) 3.1015  5.45E+03 1.0609  58.1626  7.9354
Azimuth (rad) ~ 5.79E-05 1.30E-03 1.61E-05 7.53E-05 3.76E-05
Elevation (rad)  3.93E-05 1.66E-04 1.57E-05 4.25E-05 9.72E-07

Table B.8 : Variances via Regular UKF in case of noise inc, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 6.18E+05 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 S5.31E+05 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 1.79E+06 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s) ~ 10.8962  10.8982  10.9006  10.8991  10.8964
y velocity(m/s)  10.3521  10.3503  10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231  15.6231  15.6231  15.6231  15.6231
Range (m) 9.77E+05 9.77E+05 9.76E+05 9.75E+05 9.73E+05
Azimuth (rad)  6.01E-04 5.48E-04 5.22E-04 3.98E-04 1.80E-04
Elevation (rad)  0.0426  0.0426  0.0425  0.0425  0.0425

Table B.9 : Abs. est. errors via RUKF with SMNSF in case of noise inc, SSA.

Parameter 1000 2000 3000 4000 5000
x position(m)  582.0079 4.07E+04 346.0941 440.2823 6.78E+02
yposition(m)  29.2638  3.61E+04 290.9508 1.06E+03 31.1554
zposition(m)  2.52E+02 8.24B+02 2.69E+03 2.01E+03 1.24E+03
x velocity(m/s)  0.449 32337 02283 0.0495  1.2734
y velocity(m/s)  0.0967  6.6448  0.8007  0.8021  0.0434
zvelocity(m/s)  1.08E+00 0.1316  2.2356  4.2663  2.2762
Range (m) 2.0696  7.02E+02 37.3881  53.198  3.5343
Azimuth (rad) ~ 2.30E-05 2.20E-03 1.48E-05 4.56E-05 2.62E-05
Elevation (rad)  7.09E-06 4.67E-05 7.24E-05 5.39E-05 3.34E-05
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Table B.10 : Variances via RUKF with SMNSF in case of noise inc, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 9.24B+06 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 7.95E+06 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 2.67E+07 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s)  10.8962  28.9557  10.9006  10.8991  10.8964
y velocity(m/s) ~ 10.3521  27.3774  10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231 41329  15.6231  15.6231  15.6231
Range (m) 9.77E+05 1.46E+07 9.76E+05 9.75E+05 9.73E+05
Azimuth (rad) ~ 5.99E-04 7.90E-03 5.22E-04 3.95E-04 1.78E-04
Elevation (rad)  0.0426  0.6364  0.0425  0.0425  0.0425

Table B.11 : Abs. est. errors via RUKF with MMNSEF in case of noise inc, SSA.

Parameter 1000 2000 3000 4000 5000
x position(m)  7.79E+02 4.11E+04 75.1432  418.0522 2.86E+02
yposition(m)  97.1167  3.60E+04 1.49E+03 476.0609 88.2118
zposition(m)  8.39E+02 1.58E+03 7.12E+02 7.35E+02 2.64E+02
x velocity(m/s) ~ 5.1797  0.721 0.009 0.054 1.3756
y velocity(m/s)  0.0879  4.9805  2.7919  0.1248  0.4996
zvelocity(m/s) ~ 3.71E-02 0.1329 22755  0.2486  0.1896
Range (m) 3.6707  9.28E+02 83846  11.794 482429
Azimuth (rad)  3.05E-05 2.20E-03 5.89E-05 2.47E-05 1.18E-05
Elevation (rad)  2.31E-05 1.59E-05 1.99E-05 1.99E-05 7.00E-06

Table B.12 : Variances via RUKF with MMNSF in case of noise inc, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 1.43E+07 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 1.19E+07 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 3.15E+06 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s)  10.8962  32.4771  10.9006  10.8991  10.8964
y velocity(m/s)  10.3521  31.1754  10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231  18.9184  15.6231  15.6231  15.6231
Range (m) 9.77E+05 5.39E+06 9.76E+05 9.75E+05 9.72E+05
Azimuth (rad)  5.99E-04 1.46E-02 5.24E-04 3.97E-04 1.78E-04
Elevation (rad)  0.0426  0.2849  0.0425  0.0425  0.0425
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Table B.13 : Abs. est. errors via Regular UKF in case of zero out, SSA.

Parameter 1000 2000 3000 4000 5000
X position(m) 6.72E+02 2.01E+07 157.7604 198.5877 1.94E+03
y position(m) 150.7859 2.19E+07 1.35E+03 355.4185 624.4834
Z position(m) 1.48E+03 4.03E+07 3.81E+02 3.28E+02 1.24E+03
x velocity(m/s) 4.0687 1.60E+03 0.179 0.0881 4.4484
y velocity(m/s) 0.2042 1.46E+03 1.0981 0.111 1.3893
z velocity(m/s) 1.08E+00 101.9057 4.2286 0.8918 1.3129
Range (m) 49677 2.40E+04 54.7299 11.715 45.9615
Azimuth (rad) 2.79E-05 3.12E+00 5.37E-05 1.63E-05 &.11E-05
Elevation (rad) 3.97E-05 9.10E-05 1.07E-05 &.70E-06 3.32E-05
Table B.14 : Variances via Regular UKF in case of zero out, SSA.
Parameter 1000 2000 3000 4000 5000
X position(m) 6.18E+05 6.18E+05 6.19E+05 6.18E+05 6.18E+05
y position(m) 5.32E+05 5.31E+05 5.31E+05 5.31E+05 5.31E+05
Z position(m) 1.79E+06 1.79E+06 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s) 10.8962  10.8964  10.9006  10.8991 10.8964
y velocity(m/s) 10.3521 10.3484  10.3483 10.3495 10.3518
z velocity(m/s) 15.6231 15.6354  15.6231 15.6231 15.6231
Range (m) 9.77E+05 1.68E+06 9.76E+05 9.75E+05 9.73E+05
Azimuth (rad) 6.00E-04 4.37E-07 5.21E-04 3.96E-04 1.81E-04
Elevation (rad) 0.0426 0.0218 0.0425 0.0425 0.0425

Table B.15 : Abs. est. errors via RUKF with SMNSF in case of zero out, SSA.

Parameter 1000 2000 3000 4000 5000
X position(m) 1.29E+03 6.37E+02 298.4114 39.6455  4.03E+02
yposition(m)  85.6831  2.82E+04 772.5601 1.37E+01 83.5772
zposition(m)  6.80E+02 1.07E+04 1.57E+03 2.53E+02 1.11E+03
x velocity(m/s) ~ 0.9745  1.43E+00 0.8376 12112  0.7791
y velocity(m/s)  0.0126  6.98E+00 2.2702  1.4072  0.3643
zvelocity(m/s) ~ 7.48E-01 2.4914  3.2356  1.6972  2.6445
Range (m) 28.0505 2.23E+04 54.8835 143477  58.9535
Azimuth (rad) ~ 5.19E-05 7.45E-04 3.29E-05 3.43E-07 1.46E-05
Elevation (rad)  1.77E-05 2.17E-04 4.20E-05 6.84E-06 3.01E-05
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Table B.16 : Variances via RUKF with SMNSF in case of zero out, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 1.74B+09 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 1.79E+09 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 1.83E+09 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s) ~ 10.8962  188.2909 10.9006  10.8991  10.8964
y velocity(m/s)  10.3521  195.9924 10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231  182.6072 15.6231  15.6231  15.6231
Range (m) 9.77E+05 1.83E+08 9.76E+05 9.75E+05 9.72E+05
Azimuth (rad)  5.98E-04 1.68E+00 5.24E-04 3.96E-04 1.79E-04
Elevation (rad)  0.0426 677513  0.0425  0.0425  0.0425

Table B.17 : Abs. est. errors via RUKF with MMNSF in case of zero out, SSA.

Parameter 1000 2000 3000 4000 5000
X position(m) 1.74E+02 1.78E+04 103.5007 104.551  6.66E+02
yposition(m)  97.4905  1.48E+04 312.4885 2.09E+02 422.0709
z position(m) 9.77E+02 1.72E+04 1.05E+03 4.08E+02 2.54E+03
x velocity(m/s)  0.3717  4.95E+00 0.4228  0.892 2.2321
y velocity(m/s)  0.0647  3.99E+00 1.6519  1.0886  0.9165
zvelocity(m/s)  4.58E-01 3.4721 13193 03613  3.3109
Range (m) 43493  245E+04 27.769  5.0517  4.0894
Azimuth (rad)  6.21E-06 1.19E-04 1.12E-05 9.40E-06 3.02E-05
Elevation (rad)  2.64E-05 3.97E-04 2.85E-05 1.09E-05 6.81E-05

Table B.18 : Variances via RUKF with MMNSF in case of zero out, SSA.

Parameter 1000 2000 3000 4000 5000

x position(m)  6.18E+05 1.74E+09 6.19E+05 6.18E+05 6.18E+05
yposition(m)  5.32E+05 1.79E+09 5.31E+05 5.31E+05 5.31E+05
z position(m) 1.79E+06 1.83E+09 1.79E+06 1.79E+06 1.79E+06
x velocity(m/s)  10.8962  188.267  10.9006  10.8991  10.8964
y velocity(m/s)  10.3521  196.0325 10.3483  10.3495  10.3518
zvelocity(m/s)  15.6231  182.6062 15.6231  15.6231  15.6231
Range (m) 9.77E+05 1.82E+08 9.76E+05 9.75E+05 9.73E+05
Azimuth (rad)  5.99E-04 1.62E+00 5.23E-04 3.96E-04 1.79E-04
Elevation (rad)  0.0426  67.7937  0.0425  0.0425  0.0425
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Table B.19 : Abs. est. errors via Regular UKF in case of cont. bias, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 1.57E+01 9.71E+05 42.6835  6.86E+04 1.81E+01
y position(m) 16.0833  5.95E+00 16.1937  1.80E+01 16.2057
z position(m) 1.57E+01 5.69E+01 1.62E+01 1.67E+01 1.62E+01
x velocity(m/s)  0.1027  8.49E+00 0.0945  978.6551 0.1021
y velocity(m/s)  0.1026  4.04E-01 0.1028  0.2032  0.1026
z velocity(m/s)  1.03E-01 0.5039  0.103 0.0976  0.1031

Table B.20 : Variances via Regular UKF in case of cont. bias, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E-+00
y position(m) 8.72B+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00
z position(m) 8.72B+00 8.72E+00 8.72E+00 8.72E+00 8.72E-+00
x velocity(m/s) ~ 0.0406  0.0406  0.0406  0.0406  0.0406
y velocity(m/s) ~ 0.0406  0.0406  0.0406  0.0406  0.0406
zvelocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406

Table B.21 : Abs. est. errors via RUKF with SMNSF in case of cont. bias, GPS.

Parameter 1000 2000 3000 4000 5000
x position(m)  2.26E+01 7.17E+04 23.1031  1.16E+05 2.31E+01
yposition(m)  23.0008  4.34E+02 23.1111  1.52E+03 23.1229
zposition(m)  2.26E+01 5.75E+02 2.31E+01 3.17E+02 2.31E+01
x velocity(m/s)  0.1466  2.48E+02 0.1469  471.9688 0.1466
y velocity(m/s)  0.1466  3.38E+00 0.1467  18.2468  0.1465
zvelocity(m/s)  1.47E-01 5.6157  0.1469  1.866 0.147

Table B.22 : Variances via RUKF with SMNSF in case of cont. bias, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 1.72E+05 8.72E+00 1.78E+05 8.72E-+00
y position(m) 8.72E+00 1.73E+05 8.72E+00 1.75E+05 8.72E+00
z position(m) 8.72E+00 1.76E+05 8.72E+00 1.73E+05 8.72E+00
x velocity(m/s)  0.0406  8.1138  0.0406  8.538 0.0406
y velocity(m/s)  0.0406 82036  0.0406  8.2951  0.0406
zvelocity(m/s)  0.0406  8.48 0.0406  8.1583  0.0406

Table B.23 : Abs. est. errors via RUKF with MMNSF in case of cont. bias, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 1LI3E+01 5.71E+04 11.7815  1.15E+05 1.18E+01
y position(m) 11.6787  1.10E+01 11.7888  4.54E+00 11.8003
z position(m) .I3E+01 1.32E+01 1.18E+01 1.16E+01 1.18E+01
x velocity(m/s) ~ 0.0747  1.76E+02 0.075 468.6794 0.0747
y velocity(m/s)  0.0747  8.75E-02 0.0749  0.2596  0.0746
zvelocity(m/s) ~ 7.51E-02 0.0493  0.075 0.0658  0.0751
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Table B.24 : Variances via RUKF with MMNSF in case of cont. bias, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 1.69E+05 8.72E+00 1.79E+05 8.72E+00
y position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00
z position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00
x velocity(m/s) ~ 0.0406  7.9887  0.0406  8.5445  0.0406
y velocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
zvelocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406

Table B.25 : Abs. est. errors via Regular UKF in case of noise inc, GPS.

Parameter 1000 2000 3000 4000 5000
x position(m)  2.42E+00 4.71E+05 12.5732  1.64E+04 2.81E+00
yposition(m)  2.8137  3.63E+01 2.9799  6.35E+00 2.8974
zposition(m)  2.41E+00 7.21E+01 2.97E+00 7.32E+00 2.92E+00
x velocity(m/s)  0.0642  1.17E+03 0.3259  52.4835  0.1333
y velocity(m/s) ~ 0.0642  1.24E-02 03208  0.0193  0.1333
zvelocity(m/s)  6.38E-02 02612 03209  0.0136  0.1328

Table B.26 : Variances via Regular UKF in case of noise inc, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E-+00
y position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00
z position(m) 8.72E+00 8.71E+00 8.72E+00 8.72E+00 8.72E+00
x velocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
y velocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
zvelocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406

Table B.27 : Abs. est. errors via RUKF with SMNSF in case of noise inc, GPS.

Parameter 1000 2000 3000 4000 5000
x position(m)  7.55E+00 1.70E+01 1.9518  1.22E+04 5.05E-01
yposition(m)  7.1636  1.44E+01 1.958 1.02E+02  0.5082
zposition(m)  7.57E+00 3.14E+01 1.95E+00 2.48E+01 4.81E-01
x velocity(m/s) ~ 0.1326  3.70E-02 0.2615  46.2907  0.0444
y velocity(m/s)  0.1326  1.33E-02 02614  1.5569  0.0444
zvelocity(m/s)  1.33E-01 0.1508  0.2615  0.1325  0.0439

Table B.28 : Variances via RUKF with SMNSF in case of noise inc, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 1.77E+05 8.72E+00 1.07E+05 8.72E+00
y position(m) 8.72E+00 1.79E+05 8.72E+00 1.06E+05 8.72E+00
z position(m) 8.72E+00 1.82E+05 8.72E+00 1.05E+05 8.72E+00
x velocity(m/s)  0.0406 82516  0.0406  6.4698  0.0406
y velocity(m/s)  0.0406  8.347 0.0406 63407  0.0406
zvelocity(m/s)  0.0406  8.6363  0.0406  6.2691  0.0406
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Table B.29 : Abs. est. errors via RUKF with MMNSF in case of noise inc, GPS.

Parameter 1000 2000 3000 4000 5000

X position(m) 1.53E+00 2.17E+00 4.698 1.07E+01 3.25E+00
y position(m) 1.1394 2.11E+00 4.7045 1.60E+00 3.2534

Z position(m) 1.55E+00 2.12E+00 4.70E+00 1.60E+00 3.23E+00
x velocity(m/s)  0.1501 1.29E-01 0.1701 0.3527 0.2017

y velocity(m/s)  0.1501 1.31E-01 0.17 0.1444 0.2016

z velocity(m/s) 1.50E-01 0.1298 0.1702 0.1447 0.2021

Table B.30 : Variances via RUKF with MMNSF in case of noise inc, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 4.32E+01 8.72E+00 7.95E+01 8.72E+00
y position(m) 8.72E+00 9.88E+00 8.72E+00 1.00E+01 8.72E+00
z position(m) 8.72E+00 9.88E+00 8.72E+00 1.00E+01 8.72E+00
x velocity(m/s) ~ 0.0406  0.0585  0.0406  0.5464  0.0406
y velocity(m/s) ~ 0.0406  0.0585  0.0406  0.052 0.0406
zvelocity(m/s)  0.0406  0.0586  0.0406  0.052 0.0406

Table B.31 : Abs. est. errors via Regular UKF in case of zero out, GPS.

Parameter 1000 2000 3000 4000 5000

X position(m) 3.41E+01 1.34E+06 29.5043  7.39E+04 3.83E+01

y position(m) 33.7145  1.72E+01 33.6072  3.49E+01 33.5965

Z position(m) 3.41E+01 6.26E+01 3.36E+01 3.39E+01 3.36E+01

x velocity(m/s)  0.2136 1.11E+02 0.2146 1.43E+03 0.2119

y velocity(m/s)  0.2136 3.20E-01 0.2133 0.3141 0.2135

z velocity(m/s)  2.13E-01 0.0018 0.2133 0.2082 0.213
Table B.32 : Variances via Regular UKF in case of zero out, GPS.

Parameter 1000 2000 3000 4000 5000

X position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00

y position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00

Z position(m) 8.72E+00 8.71E+00 8.72E+00 8.72E+00 8.72E+00

x velocity(m/s) 0.0406 0.0406 0.0406 0.0406 0.0406

y velocity(m/s) 0.0406 0.0406 0.0406 0.0406 0.0406

z velocity(m/s) 0.0406 0.0406 0.0406 0.0406 0.0406

Table B.33 : Abs. est. errors via RUKF with SMNSF in case of zero out, GPS.

Parameter 1000 2000 3000 4000 5000

X position(m) 3.19E+01 1.21E+02 31.3677  2.88E+04 3.14E+01
y position(m) 31.4722  8.62E+01 31.364 3.41E+02 31.3526
Z position(m) 3.19E+01 6.93E+01 3.14E+01 1.07E+02 3.14E+01
x velocity(m/s)  0.1994 4.10E-01 0.1991 1.45E+02 0.1992

y velocity(m/s)  0.1994 2.33E-01 0.1991 3.9088 0.1993

z velocity(m/s)  1.99E-01 0.102 0.1991 0.4132 0.1988
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Table B.34 : Variances via RUKF with SMNSF in case of zero out, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 1.77E+05 8.72E+00 1.13E+05 8.72E+00
y position(m) 8.72E+00 1.79E+05 8.72E+00 1.11E+05 8.72E+00
z position(m) 8.72E+00 1.82E+05 8.72E+00 1.10E+05 8.72E+00
x velocity(m/s) ~ 0.0406 82514  0.0406  7.0523  0.0406
y velocity(m/s) ~ 0.0406 83469  0.0406  6.9056  0.0406
zvelocity(m/s)  0.0406  8.6362  0.0406  6.8256  0.0406

Table B.35 : Abs. est. errors via RUKF with MMNSF in case of zero out, GPS.

Parameter 1000 2000 3000 4000 5000
x position(m)  8.84E+00 2.46E+01 9.3377  4.99E+00 9.35E+00
yposition(m)  9.2347  9.36E+00 9.3446  9.35E+00 9.3563
z position(m) 8.83E+00 9.32E+00 9.34E+00 9.35E+00 9.33E+00
x velocity(m/s)  0.0592  6.06E-02 0.0595  5.10E-03 0.0592
y velocity(m/s)  0.0591  5.91E-02 0.0593  0.0592  0.0591
zvelocity(m/s)  5.96E-02 0.0597  0.0595  0.0593  0.0596

Table B.36 : Variances via RUKF with MMNSF in case of zero out, GPS.

Parameter 1000 2000 3000 4000 5000
X position(m) 8.72E+00 3.97E+01 8.72E+00 7.13E+01 8.72E+00
y position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00
z position(m) 8.72E+00 8.72E+00 8.72E+00 8.72E+00 8.72E+00
x velocity(m/s)  0.0406  0.0406  0.0406  0.5198  0.0406
y velocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
zvelocity(m/s)  0.0406  0.0406  0.0406  0.0406  0.0406
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Figure C.1 : Y position est. of satellite by indirect measurements via antenna.
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Figure C.2 : Z position est. of satellite by indirect measurements via antenna.
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Figure C.3 : X velocity est. of satellite by indirect measurements via antenna.
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Figure C.4 : Y velocity est. of satellite by indirect measurements via antenna.
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Figure C.20 : Y velocity est. via RUKF with SMNSF in case of cont bias, SSA.
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Figure C.21 : Z velocity est. via RUKF with SMNSF in case of cont bias, SSA.
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Figure C.22 : Range via RUKF with SMNSF in case of cont bias, SSA.
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Figure C.24 : Elevation via RUKF with SMNSF in case of cont bias, SSA.
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Figure C.26 : Z position est. via RUKF with MMNSF in case of cont bias, SSA.
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Figure C.27 : X velocity est. via RUKF with MMNSF in case of cont bias, SSA.
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Figure C.28 : Y velocity est. via RUKF with MMNSEF in case of cont bias, SSA.
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Figure C.29 : Z velocity est. via RUKF with MMNSF in case of cont bias, SSA.
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Figure C.30 : Range via RUKF with MMNSF in case of cont bias, SSA.
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Figure C.31 : Azimuth via RUKF with MMNSF in case of cont bias, SSA.
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Figure C.32 : Elevation via RUKF with MMNSEF in case of cont bias, SSA.

102



position y(m)

x 10
X 107
1 T T T T T T T T T
= ol
=z 0
o
fw
o _1 [ [ [ [ [ [ [ [ [
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
X 104
X 105
(\]A 10 T T T T T T T T T
g
3 5 =
g
E; 0 [ [ [ [ [ [ [ [ [
” 0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
tiIne(S) X 104

Figure C.33 : Y position est. via Regular UKF in case of noise inc, SSA.

position z(m)

E
1
=
0)_5 [ [ | [ | [ [ [
o 05 1 15 2 25 3 35 4 45 5
x 10
x106
NAZ T T T T T T
£
8 1 |
g
EO [ [ | [ | [ [ [
70 05 1 15 2 25 3 35 4 45 5
time(s) X1O4

Figure C.34 : Z position est. via Regular UKF in case of noise inc, SSA.
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Figure C.36 : Y velocity est. via Regular UKF in case of noise inc, SSA.
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Figure C.38 : Range via Regular UKF in case of noise inc, SSA.
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Figure C.39 : Azimuth via Regular UKF in case of noise inc, SSA.
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Figure C.40 : Elevation via Regular UKF in case of noise inc, SSA.
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Figure C.42 : Z position est. via RUKF with SMNSF in case of noise inc, SSA.
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Figure C.43 : X velocity est. via RUKF with SMNSF in case of noise inc, SSA.
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Figure C.44 : Y velocity est. via RUKF with SMNSF in case of noise inc, SSA.
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Figure C.46 : Range via RUKF with SMNSF in case of noise inc, SSA.
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Figure C.47 : Azimuth via RUKF with SMNSF in case of noise inc, SSA.
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Figure C.48 : Elevation via RUKF with SMNSF in case of noise inc, SSA.
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Figure C.49 : Y position est. via RUKF with MMNSF in case of noise inc, SSA.
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Figure C.50 : Z position est. via RUKF with MMNSF in case of noise inc, SSA.
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Figure C.51 : X velocity est. via RUKF with MMNSF in case of noise inc, SSA.
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Figure C.52 : Y velocity est. via RUKF with MMNSEF in case of noise inc, SSA.
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Figure C.53 : Z velocity est. via RUKF with MMNSF in case of noise inc, SSA.
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Figure C.54 : Range via RUKF with MMNSF in case of noise inc, SSA.
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Figure C.55 : Azimuth via RUKF with MMNSF in case of noise inc, SSA.
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Figure C.56 : Elevation via RUKF with MMNSEF in case of noise inc, SSA.
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Figure C.58 : Z position est. via Regular UKF in case of zero out, SSA.
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Figure C.59 : X velocity est. via Regular UKF in case of zero out, SSA.
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Figure C.60 : Y velocity est. via Regular UKF in case of zero out, SSA.
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Figure C.61 : Z velocity est. via Regular UKF in case of zero out, SSA.
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Figure C.62 : Range via Regular UKF in case of zero out, SSA.
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Figure C.63 : Azimuth via Regular UKF in case of zero out, SSA.
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Figure C.64 : Elevation via Regular UKF in case of zero out, SSA.
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Figure C.66 : Z position est. via RUKF with SMNSF in case of zero out, SSA.
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Figure C.67 : X velocity est. via RUKF with SMNSF in case of zero out, SSA.
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Figure C.68 : Y velocity est. via RUKF with SMNSF in case of zero out, SSA.
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Figure C.69 : Z velocity est. via RUKF with SMNSF in case of zero out, SSA.
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Figure C.70 : Range via RUKF with SMNSF in case of zero out, SSA.
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Figure C.71 : Azimuth via RUKF with SMNSF in case of zero out, SSA.

< 0.85 \ \ :
8 N\
£ osf
S 08 ]
<
>
[
E 0.75 | | | | | | |
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5
x 10*
0.05 \ \ \
=)
s
= 0
S
o)
_005 | | [ [ [ | |
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5
x 10*
t\lA 1000 T T T
el
£
g 500 .
§ 0 | | T [ | |
0 0.5 1.5 2 2.5 3 3.5 4.5 5
time(s) x 10*

Figure C.72 : Elevation via RUKF with SMNSF in case of zero out, SSA.
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Figure C.73 : Y position est. via RUKF with MMNSF in case of zero out, SSA.
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Figure C.74 : Z position est. via RUKF with MMNSF in case of zero out, SSA.
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Figure C.75 : X velocity est. via RUKF with MMNSF in case of zero out, SSA.
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Figure C.76 : Y velocity est. via RUKF with MMNSF in case of zero out, SSA.
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Figure C.77 : Z velocity est. via RUKF with MMNSF in case of zero out, SSA.
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Figure C.78 : Range via RUKF with MMNSF in case of zero out, SSA.
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Figure C.79 : Azimuth via RUKF with MMNSF in case of zero out, SSA.
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Figure C.80 : Elevation via RUKF with MMNSEF in case of zero out, SSA.
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Figure C.81 : Y position estimation of spacecraft by measurements via GPS.
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Figure C.82 : Z position estimation of spacecraft by measurements via GPS.
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Figure C.83 : X velocity estimation of spacecraft by measurements via GPS.
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Figure C.84 : Y velocity estimation of spacecraft by measurements via GPS.
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Figure C.85 : Z velocity estimation of spacecraft by measurements via GPS.
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Figure C.86 : Y position est. via Regular UKF in case of cont. bias, GPS.
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Figure C.87 : Z position est. via Regular UKF in case of cont. bias, GPS.
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Figure C.88 : X velocity est. via Regular UKF in case of cont. bias, GPS.
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Figure C.89 : Y velocity est. via Regular UKF in case of cont. bias, GPS.
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Figure C.90 : Z velocity est. via Regular UKF in case of cont. bias, GPS.
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Figure C.91 : Y position est. via RUKF with SMNSF in case of cont. bias, GPS.

00 4500 5000

position z(m)
o
<

error(m)
o
w

[ [ [ [ [ 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N

Variance(mz)
N
T
1

| | | | | 1 |

0 [ [
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time(s)

Figure C.92 : Z position est. via RUKF with SMNSF in case of cont. bias, GPS.
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Figure C.93 : X velocity est. via RUKF with SMNSF in case of cont. bias, GPS.
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Figure C.94 : Y velocity est. via RUKF with SMNSF in case of cont. bias, GPS.

133



x104
1

velocity z(m/s)
o

1
—

1 1 [ [ [ [ 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

o

N
o
o
o

T T T T

500 |-

error(m/s)
o

_500 | | L L L L | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
o

T T T T

Variance(mz/ sz)
—
o
T

l

0 | | [ [ [ | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time(s)

Figure C.95 : Z velocity est. via RUKF with SMNSF in case of cont. bias, GPS.
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Figure C.96 : Y position est. via RUKF with MMNSF in case of cont. bias, GPS.
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Figure C.97 : Z position est. via RUKF with MMNSF in case of cont. bias, GPS.
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Figure C.98 : X velocity est. via RUKF with MMNSF in case of cont. bias, GPS.
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Figure C.99 : Y velocity est. via RUKF with MMNSF in case of cont. bias, GPS.
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Figure C.100 : Z velocity est. via RUKF with MMNSF in case of cont. bias, GPS.
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Figure C.101 : Y position est. via Regular UKF in case of noise inc, GPS.
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Figure C.102 : Z position est. via Regular UKF in case of noise inc, GPS.
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Figure C.103 : X velocity est. via Regular UKF in case of noise inc, GPS.
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Figure C.104 : Y velocity est. via Regular UKF in case of noise inc, GPS.
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Figure C.105 : Z velocity est. via Regular UKF in case of noise inc, GPS.
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Figure C.106 : Y position est. via RUKF with SMNSF in case of noise inc, GPS.
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Figure C.107 : Z position est. via RUKF with SMNSF in case of noise inc, GPS.

x 10*
— 1F T T T T 7
£
>
z 0F §
S
=t
[5)
| | | I I I I | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1000 \ \ \ \
2 500 .
-
=
S o Y —
5}
-500 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
,_\20 T T T T
N(IJ
(\l\
£
5 10+ -
o
8
> 0 | | [ [ [ [ | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time(s)

Figure C.108 : X velocity est. via RUKF with SMNSF in case of noise inc, GPS.

140



5000

T

velocity y(m/s)
o

-5000
0

1 1 [ [ [
500 1000 1500 2000 2500

[ 1 1
3000 3500 4000

1
4500

5000

200

error(m/s)

100EkH
0+

T T

-100
0

| | L L L
500 1000 1500 2000 2500

L |
3000 3500

|
4000

!
4500

5000

N
o

Variance(nnz/sz)
—
o
T

T T

l

/Y

0
0

500 1000 1500 2

000 2500 3000 3500

time(s)

4000 4500

5000

Figure C.109 : Y velocity est. via RUKF with SMNSF in case of noise inc, GPS.

x104

— 1 T T T T =
£
R3]
2
o
| I I I I I | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1000 T T T T T
=
S o
5}
_500 [ [ [ [ [ 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
—_ 20 T T T T T
N
g
% 10 -
Q
S
> 0 [ [ [ [ [ | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time(s)

Figure C.110 : Z velocity est. via RUKF with SMNSF in case of noise inc, GPS.
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Figure C.111 : Y position est. via RUKF with MMNSF in case of noise inc, GPS.
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Figure C.112 : Z position est. via RUKF with MMNSF in case of noise inc, GPS.
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Figure C.113 : X velocity est. via RUKF with MMNSF in case of noise inc, GPS.
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Figure C.114 : Y velocity est. via RUKF with MMNSF in case of noise inc, GPS.
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Figure C.115 : Z velocity est. via RUKF with MMNSF in case of noise inc, GPS.
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Figure C.116 : Y position est. via Regular UKF in case of zero out, GPS.
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Figure C.117 : Z position est. via Regular UKF in case of zero out, GPS.
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Figure C.118 : X velocity est. via Regular UKF in case of zero out, GPS.
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Figure C.119 : Y velocity est. via Regular UKF in case of zero out, GPS.
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Figure C.120 : Z velocity est. via Regular UKF in case of zero out, GPS.
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Figure C.123 : X velocity est. via RUKF with SMNSF in case of zero out, GPS.
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Figure C.124 : Y velocity est. via RUKF with SMNSF in case of zero out, GPS.

148



—_
|

velocity z(m/s)
o
|

1
—

[ [ [ 1 1 1 [ [
1000 1500 2000 2500 3000 3500 4000 4500 5000

o
(o)
o -
o

N
o
o
o

T T T T T

[ [ [ [ 1 1 1 [ [
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1 5 T T T T T T

(&)}
T
1

l

00 2500 3000 3500 4000 4500 5000
time(s)

Figure C.125 : Z velocity est. via RUKF with SMNSF in case of zero out, GPS.
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Figure C.126 : Y position est. via RUKF with MMNSF in case of zero out, GPS.
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Figure C.127 : Z position est. via RUKF with MMNSF in case of zero out, GPS.
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Figure C.128 : X velocity est. via RUKF with MMNSF in case of zero out, GPS.
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Figure C.129 : Y velocity est. via RUKF with MMNSF in case of zero out, GPS.
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Figure C.130 : Z velocity est. via RUKF with MMNSF in case of zero out, GPS.
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