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THE FRACTIONAL DERIVATIVE APPROACH TO THE SOLUTION OF 

DIFFRACTION PROBLEM FOR THE STRIP 

SUMMARY 

In the thesis, it is aimed to solve the problem of diffraction by two-dimensional thin 

strip and double strips with a new method. The actual problem has already a solution. 

The purpose of the research is to develop a new approach to the problems. In previous 

studies, perfect electrical or magnetic conducting strips and impedance strips under 

specified conditions were performed. The fractional derivative method, as stated in its 

name, allows researchers to generalize boundary conditions and solve the existing 

problem in the most general way by using the fractional derivative approach. In this 

thesis, a new approach will be introduced that is simpler, faster to calculate, and can 

solve for different materials compared to existing methods in the literature where 

the fractional approach has been used in electromagnetics for 30 years. The method, 

which is generally used for metamaterial and materials with memory, is employed by 

many scientists in the area of electromagnetics. The first studies on the implementation 

of the fractional approach to the electromagnetic theory in the 1990s were done by 

Nader Engheta. He presented the idea of "fractionalization in electromagnetic" in the 

90s, stating that there are continuous intermediate stages between the two canonical 

states of the electromagnetic field. Since then, several studies have been carried out on 

scattering problems. In the thesis, using the features of the fractional derivative 

approach, the intermediate stages of the boundary conditions between the two 

canonical states will be explained by the means of electric field distribution, radiation 

pattern, radar cross-sections, and current distribution. However, there are many 

different geometries in the literature that have not been studied yet by the proposed 

method. The fractional boundary condition (or integral boundary condition) that 

corresponds to an intermediate boundary condition between Dirichlet and Neumann 

boundary conditions is used to describe the scattering properties of different 

geometries. By determining the fractional-order, scattering properties of different 

materials are examined in the thesis. The new proposed boundary conditions describe 

a new material property (between Perfect Electric Conductor (PEC) and Perfect 

Magnetic Conductor (PMC)). The fractional boundary condition is the generalization 

of the Dirichlet and Neumann boundary conditions. In this case, the fractional 

derivative of the tangential component of the total electric field in the direction of the 

surface normal is zero on the surface of the scatterer. When the fractional-order 

becomes zero, this corresponds to Dirichlet Boundary Condition whereas, while the 

fractional-order is equal to one, this means the boundary condition is equal to 

Neumann Boundary Condition. In the middle, the boundary condition corresponds to 

different materials between perfectly electric conducting (PEC) and perfectly magnetic 

conducting (PMC) surfaces. The method for the solution of the diffraction problem 

satisfying the fractional boundary condition in this thesis is one of the hybrid methods 

which is employed and developed as presented in Veliev’s previous studies. The 

reason why a hybrid method is preferred is that both analytical and numerical methods 

have some drawbacks.  They have some limitations. Especially, the desired accuracy 
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and the electrical dimension of the scatterer puts a limit on the applicability of the 

numerical solution for a specific problem because higher frequency source and 

electrically large objects require a greater number of discretizing. This yields to 

demand computation power. On the other hand, analytical methods, in general, are 

applicable to some finite numbers of geometry. Therefore, hybrid methods are 

developed to combine the advantageous sides of both analytical and numerical 

approaches.  In analytical methods, some closed expressions can only be obtained for 

the high-frequency regime whereas Hybrid methods can calculate the field expressions 

by wider frequency regimes. This property leads to investigating resonances for double 

strip problems with Hybrid methods. In this thesis, the orthogonal polynomials method 

is employed to solve the diffraction problems. The main approach to solving the 

diffraction problem as follows. First, the scattered field is defined as an integral. To 

obtain this integral, Green’s Theorem and Fourier analysis are employed. Then, the 

total field is forced to satisfy the fractional boundary condition. Then, the integral 

equation is obtained. For the fractional-order 0.5 case, the problem is solved 

analytically with some approximation. For the general solution, to solve the integral 

equation or coupled integral equations (double strip case), the current density on the 

strips is expressed as the summation of the special orthogonal functions regarding the 

geometry and edge condition. The current distribution is expanded as the summation 

of Gegenbauer polynomials with unknown constant coefficients regarding geometry. 

This manipulation allows one to convert the integral equation into a system of linear 

algebraic equations with unknown constant coefficients. These coefficients are 

obtained by employing the orthogonality and other important properties of 

corresponding orthogonal functions such as Gegenbauer or Laguerre polynomials. 

After that, numerical experiments and verification are done. To verify these findings, 

a comparison with another method and previous outcomes are investigated.  
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KESİRLİ TÜREV YAKLAŞIMIYLA ŞERİTTEN SAÇILMA PROBLEMİNİN 

ÇÖZÜMÜ 

ÖZET 

Tezde iki boyutlu ince şerit ve çift şeritlerde kırınım probleminin yeni bir 

yöntemle çözülmesi amaçlanmıştır. Bu problemlerin mükemmel iletken ve 

magnetik iletken için çözümleri literatürde vardır. Araştırmanın amacı, 

problemlere yeni bir yaklaşım geliştirmektir ve genelleştirmektir. Literatürdeki 

önceki çalışmalarda, belirtilen koşullar altında mükemmel elektriksel veya 

manyetik iletken şeritlerden veya empedans şeritlerinden saçılma problemleri 

üzerine çalışmalar mevcuttur. Kesirli türev yöntemi, isminde de belirtildiği 

gibi, sınır koşullarını genelleştirmemize ve kesirli türev yaklaşımını kullanarak 

mevcut problemi en genel şekilde çözmemize olanak tanır. Bu araştırma ile 

literatürdeki mevcut yöntemlere göre daha basit, hesaplaması daha hızlı ve 

farklı malzemeler için çözülebilen yeni bir yaklaşım tanıtılacaktır. Kesirsel 

yaklaşım elektromanyetikte 30 yıldır kullanılmaktadır. Genellikle 

metamalzeme ve hafızalı malzemeler için kullanılan yöntem elektromanyetik 

alanında birçok bilim insanı tarafından kullanılmaktadır. Elektromanyetik 

teoriye kesirli yaklaşımın uygulanmasına ilişkin ilk çalışmalar, 1990'larda 

Nader Engheta tarafından yapılmıştır. Engheta, elektromanyetik alanın iki 

kanonik durumu arasında sürekli ara aşamalar olduğunu belirterek 90'larda 

"elektromanyetikte fraksiyonelleşme" fikrini sundu. O zamandan beri saçılma 

problemleri üzerine çeşitli çalışmalar yapılmıştır.  

 

Tezde, kesirli türev yaklaşımının özellikleri kullanılarak, iki kanonik durum 

arasındaki sınır koşullarının ara aşamaları; elektrik alan dağılımı, ışıma 

örüntüsü, radar kesitleri ve akım dağılımı ile açıklanacaktır. Bununla birlikte, 

literatürde önerilen yöntemle henüz çalışılmamış birçok farklı geometri vardır. 

Dirichlet ve Neumann sınır koşulları arasındaki bir ara sınır koşuluna karşılık 

gelen kesirli sınır koşulu (veya integral sınır koşulu), farklı geometrilerdeki 

yüzeylerin saçılma özelliklerini tanımlamak için kullanılır. Kesir mertebesi 

belirlenerek, farklı malzemelerin saçılma özellikleri tezde incelenmiştir. Yeni 

önerilen sınır koşulları, yeni bir malzeme özelliğini (Mükemmel elektrik 

iletken (PEC), mükemmel manyetik iletken (PMC) veya bunlar arasında) 

tanımlar. Kesirli sınır koşulu, Dirichlet ve Neumann sınır koşullarının 

genelleştirilmesidir. Bu durumda, kesirli sınır koşulu kısaca şu şekilde 

özetlenebilir: toplam elektrik alanın teğetsel bileşeninin yüzey normal 

yönündeki kesirli türevi, saçıcının yüzeyinde sıfırdır. Kesirli mertebe sıfır 

olduğunda, bu Dirichlet Sınır Koşuluna karşılık gelirken, kesirli mertebe bire 

eşitken, sınır koşulunun Neumann Sınır Koşuluna eşit olduğu anlamına gelir. 

Ortada, sınır koşulu, mükemmel elektrik ileten ve mükemmel manyetik iletken 

yüzeyler arasındaki farklı malzemelere karşılık gelir.  

 



xxii 

 

Çalışmamızda, Veliev'in önceki çalışmalarında sunulduğu gibi melez yöntem 

kullanılacaktır. Melez yöntem kullanılmasının birtakım sebepleri vardır. Hem 

analitik hem de sayısal yöntemlerin bazı dezavantajları ve bazı sınırlamaları 

vardır. Arzu edilen doğruluk ve saçıcının elektriksel boyutu, belirli bir problem 

için sayısal çözümün uygulanabilirliğine bir sınır getirir çünkü daha yüksek 

frekans kaynağı ve elektriksel olarak büyük nesneler daha fazla sayıda 

ayrıklaştırma gerektirir. Bu, hesaplama gücü talebini doğurur. Öte yandan, 

analitik yöntemler genel olarak bazı sonlu sayıdaki geometriler için 

uygulanabilir. Bu nedenle, hem analitik hem de sayısal yaklaşımların avantajlı 

yönlerini birleştirmek için melez yöntemler geliştirilmiştir. Analitik 

yöntemlerde, bazı kapalı ifadeler yalnızca yüksek frekans rejimi için elde 

edilebilirken, melez yöntemler, alan ifadelerini daha geniş frekans rejimlerinde 

hesaplayabilir. Bu özellik, melez yöntemlerle çift şerit problemleri için 

rezonansların araştırılmasına imkan tanır. Bu tezde, kırınım problemlerini 

çözmek için ortogonal polinomlar yöntemi kullanılmıştır. Kırınım problemini 

çözmek için ana yaklaşımı kısaca şöyle ifade edebiliriz. İlk olarak, saçılan alan 

bir integral olarak tanımlanır. Bu integrali elde etmek için Green Teoremi ve 

Fourier analizi kullanılır. Ardından, toplam alan, kesirli sınır koşulunu 

sağlamaya zorlanır. Ardından integral denklem elde edilir. Kesirli mertebeden 

0.5 durumu için, problem analitik olarak bazı yaklaşımlarla çözülür. Genel 

çözüm için, integral denklemi veya kuple integral denklemleri (çift şerit 

durumu) çözmek için, şeritlerin üzerindeki akım yoğunluğu, geometri ve ayrıt 

koşulu dikkate alınarak özel ortogonal fonksiyonların toplamı olarak ifade 

edilir. Buradaki problemlerde, akım dağılımı, geometri ile ilgili bilinmeyen 

sabit katsayılara sahip Gegenbauer polinomlarının toplamı olarak genişletilir. 

Bu manipülasyon, integral denklemini, diklik bağıntıları kullanılarak, 

bilinmeyen sabit katsayılara sahip bir doğrusal cebirsel denklem sistemine 

dönüştürmeyi sağlar. Katsayıların bulunması, elde edilen lineer denklem 

sisteminin tersinin alınması ile gerçeklenir. 

 

Çalışmanın tek şerit için ana odağı, şerit üzerindeki akım dağılımını incelemek 

olup, yapılan çalışmada kesirli derecenin 0.5 olması durumu detaylı olarak 

incelenmiştir. Bu kesirli türevde akımın yüzey üzerinde diğer derecelere gere 

daha homojen dağıldığı gözlenmiş olup, dağılıma etki eden en önemli 

parametrenin, gelen dalganın açısı olduğu gözlenmiştir. Tek şeritten saçılmada, 

belli yaklaşıklılarla analitik ifadeler elde edilmiş ve önceki yapılmış 

çalışmalarla kıyaslamalar gerçeklenmiştir. Çizgisel kaynağın, uzak alana 

yerleştirilmesi ve saçılan alanın uzak alanda incelenmesi için yapılan 

yaklaşıklıklarla, 0.5 kesirli derece için, analitik ifadeler elde edilmiştir. Aynı 

zamanda, mükemmel elektriksel iletken tek şerit için, çizgisel kaynaktan 

saçılan alanın oluşturduğu yüzey akımlarını, Fiziksel Optik ve Momentler 

Yöntemi ile de modelleyip, bu tezde öne sürülen yöntemle kıyaslaması 

yapılmıştır. Bulgular, Momentler Yöntemin ve Tezde kullanılan yöntemin, 

Fiziksel Optiğe göre daha iyi sonuç verdiğini ortaya koymuştur. Önceden 

belirtildiği gibi, tezde aynı zamanda birbirine paralel, genişlikleri değişebilen 

çift şeritten saçılma da incelenmiştir. Burada ise ana amaç, oluşan rezonansları 

gözlemlemek ve analitik sonuçlarla kıyaslamak olmuştur. Bunun için radar 

kesit alanı incelemeleri yapılmıştır ve saçılan alanda belli dalgaboyları için 

yüksek artışlar ve doruk noktaları gözlenmiştir. Buradaki dalgaboylarında 

incelemeler yapıldığında, saçılan alanın değerinde diğer dalgaboylarına göre 
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artış dikkat çekmiştir. Bu dalgaboylarındaki araştırmalarda, kaynaklar 

şeritlerin arasında olmamasına rağmen, toplam alan şeritler arasında diğer 

bölgelere kıyasla yüksek değerler almıştır. Bu tür rezonanslar, farklı sınır 

koşullarına sahip şeritler için önem teşkil etmektedir. Bu çalışmada, kesirli 

derecenin 0 ile 1 arasındaki değişimine göre, rezonansların genlik 

değerlerindeki değişimleri ve rezonansların şeritler arasındaki dağılımı detaylı 

bir şekilde incelenmiştir. Belli şartlar altında, kesirli derecenin 0.5 olduğu 

durumda, rezonans değerleri diğer kesirli derecelere göre daha yüksek çıktığı 

gözlenmiştir. Bu kuramsal yüzey, ileride rezonatör, anten veya 

elektromanyetik dalgaların yönlendirilmesinde kullanılan aletlerin tasarımında 

kullanılmak için uygun olabileceği düşünülmektedir. Bu tür bir yapı, anten 

sentezinde, dalga kılavuzlarında ve rezonatör probleminde kullanılabilir. 

Çalışmanın bir diğer önemli çıktısı ise, kesirli derecenin sıfıra yakın olduğu 

durumda (0-0.5 arasında), yüzeyin; mükemmel elektrik iletken yüzeye yakın 

bir karakteristiğe sahip olduğu, kesirli derecenin bire yakın olduğu durumlarda 

(0.5-1) ise mükemmel manyetik iletken yüzeye yakın bir karakteristiğe sahip 

olduğu gözlenmiştir.  
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1. INTRODUCTION 

This study contains the investigation of electromagnetic wave diffraction by a single 

strip and the two-dimensional double-strip. For the double-strip case, some important 

resonance characteristics and mode analysis are also considered. The surplus-value of 

the thesis is to solve the two-dimensional diffraction problems for generalized 

boundary conditions. In the thesis, double strips with different lengths and the same 

boundary conditions and both different length and boundary conditions are 

investigated mainly. Also, for the single strip, important outcomes are highlighted for 

specific cases. Since the diffraction problems are one of the essential and important 

research areas in the electromagnetic theory and its applications, the solution of the 

problems are employed in antenna theory, antenna design, guided wave structures, 

resonators, artificial surface design, and validation of the computation tools specified 

for electromagnetic waves and its application In the section, the Purpose of the Thesis, 

Literature Review, and Original Contribution of the Thesis are presented, respectively. 

1.1 Purpose of the Thesis 

The thesis aims to obtain the mathematical expression and distribution of the 

electromagnetic field mainly in the vicinity of two-dimensional double strips for 

different scenarios such as different sizes of strip widths, the variable distance between 

the strips, the angle of incidence, wavenumber, and the boundary conditions. For the 

double-strip investigation, the resonances occur for a specific wavenumber. The study 

for the resonances and validation of the resonance frequencies with different methods 

are valuable and important scientific research topics because the field distribution at 

the resonance frequency is critical for different guiding structures (double-strip). In 

other words, since the different surfaces mean different boundary conditions, a wide 

range of frequency investigation is required for different boundary conditions.  In the 

thesis, it is aimed to solve the problem of diffraction by two-dimensional thin strip and 

double strips, with a new method. The actual problems have already solutions for the 

Dirichlet, Neumann, and Impedance boundary conditions [1]. The purpose of the 



2 

research is to develop a new approach to the problems and generalize the boundary 

conditions. In previous studies, perfect electrical or magnetic conducting strips and 

impedance strips under specified conditions were performed. This method, as stated 

in its name, allows us to generalize boundary conditions and solve the existing problem 

in the most general way by using the fractional derivative approach where the 

fractional-order determines the surface properties. With this research, a new approach 

will be introduced that is simpler, faster to calculate, and can solve for different 

materials compared to existing methods in the literature.  

The fractional approach has been used in electromagnetics for 30 years [2-4]. The 

method, which is generally used for metamaterial and materials with memory, is 

employed by many scientists in the area of electromagnetics. The first study on the 

implementation of the fractional approach to the electromagnetic theory was done in 

the 1990s by Engheta. Engheta presented the idea of " fractionalization 

in electromagnetic " in the 90s, stating that there are continuous intermediate stages 

between the two canonical states of the electromagnetic field. Since then, several 

studies have been carried out on scattering problems. In the thesis, using the features 

of the fractional derivative approach, the intermediate stages of the fields or sources 

between the two canonical states will be explained [5,6]. However, there are many 

different geometries in the literature that have not been studied yet by the proposed 

method. The fractional boundary condition (or integral boundary condition) 

corresponds to an intermediate boundary condition between Dirichlet and Neumann 

boundary conditions which is used to describe the scattering properties of different 

surfaces. By determining the fractional-order, scattering properties of different 

materials will be examined in the thesis. The new proposed boundary conditions 

describe a new material property (Perfect Electric Conductor (PEC), Perfect Magnetic 

Conductor (PMC), or between them) [7,8]. In the thesis, theoretical and numerical 

results for one strip, two strips will be obtained. In the thesis, the electromagnetic plane 

wave diffraction of double strips with different widths satisfying the fractional 

boundary condition is analyzed in detail. Various situations such as different operating 

frequencies, strip lengths, and fractional order will be studied both theoretically and 

numerically. Then, solutions obtained by the hybrid method presented in this thesis are 

compared with other methods (Moments Method and Physical Optics). 
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1.2 Literature Review 

Like all the branches of science such as physics and engineering, electromagnetic 

theory is built upon mathematical modeling. The models in electromagnetics in general 

have the unknowns as electric and magnetic fields which are satisfying specific partial 

differential equations such as the Laplace, Poisson, Helmholtz, and wave equations in 

general. The main aim is to solve these differential equations and find the unknowns 

by including radiation, edge, and boundary conditions [9,10]. In other words,  the main 

interest in electromagnetic scattering can be summarized as the following. Under 

predefined conditions, the problem itself is modeled with mathematics and its tools. 

Here, the modeling is done by the partial differential equations, integral equations in 

general. Then, the solution is required. For this, throughout many years, the solution 

to partial differential equations and the integral equations have been studied by many 

researchers. The approaches can be categorized by methodology as the following. The 

solution can be obtained by analytical, numerical-analytical, and numerical methods 

[9,10]. In the analytical methods, the exact solution of the problem can be obtained 

whereas the number of the problem which can be solved by analytical methods is very 

limited since the analytical approach can be applied for only canonical geometries. For 

the analytical approaches, the following methods can be listed. The separation of 

variables, series expansion, conformal mapping, and perturbation methods [9]. During 

the 1960s and 1970s, asymptotic techniques are intensively studied. For the higher 

frequency regime, the approximate field expressions can be achieved by analytical 

tools. Well-known examples of these techniques are the Geometrical and Physical 

Optics, mainly [9,10]. Improved versions of these techniques are namely the 

Geometrical, Physical, and Uniform Theories of Diffraction. After the 1970s, the fast 

and enormous developments in computational tools, the numerical methods are 

developed in a very concrete manner. The main advantage of numerical techniques is 

to have the ability to employ in any arbitrary shape with the desired accuracy. On the 

other hand, for the electrically large objects, still, the computation power is challenging 

nowadays for specific problems and, approximate analytical techniques are employed 

in such cases in order to overcome challenges. In the numerical, first differential or 

integral equations are discretized, then, in the time domain or frequency domain, the 

equation is tried to be solved to find the field distribution over the required region with 

the given conditions. For this, well-known techniques can be listed as the Method of 
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Moments (MoM), Finite Element Method (FEM), Finite Difference Time Domain 

Method (FDTD), and Method of Auxiliary Sources (MAS). Since these techniques 

require tremendous computation power, the researchers develop a new approach to 

reduce computation costs. These techniques are the fast multipole method (FMM) 

(frequency domain), the multi-level fast multipole algorithm (MLFMA) (frequency 

domain), the plane wave time-domain (PWTD) method (time-domain) [9-11]. 

Even though the solution approach for different techniques is quite distinct, the 

purpose always the same. The aim in general is to obtain the scattered field and the 

induced current due to obstacles. The curiosity and interest due to the existence of the 

obstacles which are finite or having the edges like in the real-life lead researchers to 

have studied on the subject, especially in 20𝑡ℎ century due to the need for radar 

technologies, aviation, remote control, and sensing [9].  

Due to the progress in microwave communication systems and circuits, 

electromagnetic waves with high frequency have become the interest of scientists since 

the 20th century. Note that, for the electromagnetic diffraction, the high frequency is a 

relative term and corresponds to the incidence wavelength is smaller than the obstacle 

itself in the region of interest. The questions related to the total field in the vicinity of 

the obstacles and the distribution of the fields in the region of interest have arisen. 

Here, the electrically small obstacles, edges, and discontinuities cannot be ignored. 

The investigation of the total field in the region of interest becomes hard to evaluate. 

Therefore, a general approach is to divide the problem fundamental parts and to 

approach them separately.  Then, the real problem can be thought of as a combination 

of canonical problems. This yields to formulate the problem without losing the 

physical structure of the obstacle and space by solving the diffracted waves in the high-

frequency regime asymptotically in general. In other words, the problem reduced to 

the combination of the canonical problems is in general, a boundary value problem for 

the Helmholtz equation with mixed boundary conditions [9, 10]. By having the 

boundary, edge, and radiation condition, the field distribution can be found by 

employing different techniques such as Wiener Hopf, Orthogonal Polynomials, The 

geometrical theory of the diffraction, the physical theory of the diffraction and 

Maliuzhinets, etc. [12-19].  

In the 1950s, the analytical solutions for electromagnetic diffraction by some canonical 

objects such as half-plane, wedge, strips, and cylinders are studied intensively. During 
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the first half of the previous century, all studies done in the electromagnetic diffraction 

problem consist of perfectly conducting structures such as half-plane, wedge, and 

cylinder [12-14]. However, in 1952, the first study by Senior is done for the diffraction 

of an E-polarized plane wave by the metallic half-plane with finite conductance 

[13,14]. In these studies, the impedance condition, which is the combination of 

Dirichlet and Neumann boundary conditions, is used. The approach for the solution of 

the diffraction problem in these studies is to express the scattered field by the re-

radiation of the induced current on the surface of the objects which comes from the 

boundary conditions. For the edges of the object, special treatment is required. The 

current behavior changes depending on the polarization and the boundary conditions 

to have a unique solution to the Helmholtz equation. For this, the edge condition is 

introduced by Senior and Meixner for the asymptotic behavior of the current and also 

field expression at the edges [14,15,17]. As an example, assume that there is an edge 

at 𝑥 = 0  for the half-plane located at 𝑦 = 0 and 𝑥 ∈ [0,∞).  The electric and magnetic 

current densities behave as 𝑂(𝑥−
1

2) and 𝑂(𝑥
1

2), respectively for 𝑥 → 0. By taking 

account of these facts, the solution for the scattered field and then, the total field can 

be found uniquely.  

After having the solution of the half-plane, wedge, and cylinder structures with 

different polarization and finite conductance, the researchers seek more complex 

structures such as aperture, slits, or gratings. To solve these geometries, some 

approximations and modifications in the solution of the half-plane are employed. They 

are mainly ignoring the edge-to-edge interaction in the diffraction. Later, the many 

geometries, such as strip, slit, half-plane, wedge, truncated waveguide, stepped strips 

with different boundary conditions such as Dirichlet, Neumann Impedance, and Mixed 

Boundary Conditions are obtained by different types of modified Wiener-Hopf 

techniques [20-22]. 

After fast and huge developments in computational technology, many problems in 

electromagnetic diffraction including non-conical problems, arbitrary shapes, and 

moving materials are investigated [20-22]. As it is mentioned above, discretizing is the 

key point of the numerical tools. After that, solving the governing differential or 

integral equations by applying the required conditions is followed. To solve the 

equations, in general, a system of linear algebraic equations is solved which required 

computational power. For example, in the Method of Moments, the surface currents 
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induced on the object are expanded as the summation of the base function and 

corresponding integral equation obtained by applying the boundary condition. The 

integral equation includes the unknown coefficients for the current densities. To solve 

the integral equation, the integral equation is converted into the system of linear 

algebraic equations. After inversion, the coefficients corresponding to the current 

density on the surface are obtained. Then, post-processing for the field distributions 

and other physical characteristics can be achieved [10].  

Both analytical and numerical methods have some drawbacks.  They have some 

limitations. Especially, the desired accuracy and the electrical dimension of the 

scatterer puts a limit on the applicability of the numerical solution for a specific 

problem because higher frequency source and electrically large objects require a 

greater number of discretizing. This yields to demand computation power. On the other 

hand, analytical methods, in general, are applicable to some finite numbers of 

geometry. Therefore, hybrid methods are developed to combine the advantageous 

sides of both analytical and numerical approaches.  In analytical methods, some closed 

expressions can only be obtained for the high-frequency regime whereas Hybrid 

methods can calculate the field expressions by wider frequency regimes. Hybrid 

methods may have the expression for electrical small, resonance, and electrical large 

regions by utilizing tools of the analytical and numerical methods under some 

circumstances [23-26]. For instance, apart from the Method of Moments, the integral 

equation with an unknown induced current on the finite object can be expanded as the 

summation of the Chebyshev polynomials including the edge condition. In this way, 

the convergence of the Chebyshev polynomials will be faster and the requirement of 

the computation power will be less for the solution with the desired accuracy. After 

expanding, the orthogonality of the polynomials and Fourier transform properties are 

employed to find the unknown weighting constant coefficient in the current expansion. 

Then, the required current density is obtained with the desired accuracy by tuning the 

truncation in the summation [23-28]. First, Butler and then, Veliev suggest the idea of 

stating the induced current on the scatterer as the summation of the orthogonal 

polynomials, which are chosen depending on the geometry of the problem. For 

instance, for the strip problems, Chebyshev or Gegenbauer polynomials are preferred 

because the polynomials are defined in a finite region, whereas, in half-plane or wedge 
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problems, Laguerre Polynomial are preferred due to being defined between [0,∞) [27-

29]. 

In this thesis, the hybrid method will be employed as presented in Veliev’s previous 

studies [26-28,30,31]. The current distribution is expanded as the summation of 

Gegenbauer polynomials with unknown constant coefficients regarding geometry.  

Besides, the boundary condition is different from the well-known boundary 

conditions. Here, the boundary condition is called the fractional boundary condition 

[30-39]. The fractional boundary condition is the generalization of the Dirichlet and 

Neumann boundary conditions. In this case, the fractional derivative of the tangential 

component of the total electric field in the direction of the surface normal is zero on 

the surface of the scatterer. When the fractional-order becomes zero, this corresponds 

to Dirichlet Boundary Condition whereas, the fractional-order is one means that the 

boundary condition is equal to Neumann Boundary Condition. In the middle, the 

boundary condition corresponds to different materials between perfectly electric 

conducting and perfectly magnetic conducting surfaces.  

The history of the fractional calculus is considerably aged. The differential and 

integration are assumed to be the same operator for the fractional-order operator. In 

other words, one unified notation corresponds to both differentiation and integration 

of arbitrary real order is defined. First, it is argued between famous mathematicians  

Guillaume de L'Hôpital and Gottfried Wilhelm Leibniz in 1695. However, employing 

the fractional calculus in fundamental sciences and engineering problems is not as 

early as the first discussion [39-43]. The huge steps are taken in fractional calculus are 

in the second half of the 20th century. In the last decades, it is getting widely used in 

chemical processes, signal processing, finance, economics, electromagnetics, 

bioengineering, mathematical modeling, and control [39-45]. The main advantage of 

fractional calculus is to have the ability to explain the hereditary phenomena with 

memory because the fractional derivative has a non-locality property contrary to the 

conventional derivative operator. Therefore, such topics related to memory are 

intensively studied with the fractional calculus. Besides, the cases between two known 

canonical states are related to the fractional calculus since the intermediate cases 

between two known states can be analyzed and clarified [41,44,45]. First studies 

employing the fractional calculus in the electromagnetic theory and its applications 

were achieved by Nader Engheta [2-4]. In these studies, it has been shown that there 
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are infinite continuous states between two canonical states of the electromagnetic 

fields. Using the properties and tools of the fractional calculus, the intermediate stages 

of fields, sources, and operators such as Curl, the divergence between two known states 

can be depicted [2-4,32]. Furthermore, related to this thesis, the generalization of the 

boundary condition (Dirichlet and Neumann) for the electromagnetic wave was 

studied [33-38]. The generalization is achieved by changing the fractional order in the 

derivative operator from 0 to 1. When the fractional-order (FO) becomes 0, the 

derivative operator takes the derivative of the total tangential electric field on the 

surface in the order of zero (i.e. not taking the derivative). This corresponds to the 

Dirichlet boundary condition. On the other hand, the Neumann boundary condition is 

obtained when the fractional order is equal to 1. For the fractional-order between 0 and 

1, the material is assumed to be between the perfect electric and magnetic conducting 

surfaces. In [46], the first time, the Wiener-Hopf Technique is used including the 

fractional boundary condition in the solution of diffraction by the strip. By changing 

the fractional-order (FO), the investigation of scattering properties of the strip can be 

obtained.  

1.3 The Original Contribution of the Thesis 

The thesis focuses on the electromagnetic plane wave diffraction by the parallel-

located double strips and single strip. Previously, the electromagnetic plane and 

cylindrical wave diffraction by single strip, the electromagnetic plane wave by double-

strip with the same width and boundary conditions are considered mathematically. In 

this thesis, for the first time, double strips with variable boundary conditions and 

widths are taken into account, and one strip with a detailed explanation of the radar 

cross-section and current distributions. The comparison with the previous findings is 

included in the study and for future studies, a road map will be given. The comparison 

with the previous finding and the method moment solution will be presented in the 

thesis to show the accuracy of the study. For the fractional-order 0.5 case, the field 

expressions are obtained analytically under the high-frequency regime assumption. 

Therefore, cylindrical wave diffraction by a single strip in the case of 0.5 fractional 

order is also included in the thesis because the cylindrical wave diffraction can be 

validated with previous studies. Also, in the literature, it is the first study of the 

cylindrical wave diffraction by the strip with the fractional boundary condition. 
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2. FORMULATION OF THE PROBLEMS 

2.1 Fractional Calculus 

Before starting the problem statement, it is better to investigate the definition of the 

fractional derivative and the fractional derivative of the exponential function. The main 

reason is to focus on the derivative of the exponential function because there is an 

ability to express the incidence wave and the scattered electromagnetic waves in terms 

of exponential. Then, the fractional boundary condition on the surface of the scatterer 

can be satisfied easily if the fractional derivative of the exponential functions is known. 

In (2.1), the  Riemann-Liouville definition of the fractional derivative is given [44,45]. 

𝐷𝑥
𝛼𝑓(𝑥) ≝

1

Γ(1 − 𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)

(𝑥 − 𝑡)𝛼

𝑥

−∞

𝑑𝑡 
 

(2.1) 

Here, Γ(1 − 𝛼) is the Gamma function, and 𝐷𝑥
𝛼 is the fractional derivative operator 

which states that the derivative is taken with respect to 𝑥 in the order of 𝛼 which is 

between (0, 1) including the edges. 

To solve the diffraction problem, the boundary value problem needs to be solved where 

the boundary condition is the fraction boundary condition [7,8]. The fractional 

boundary condition, which requires the fractional derivative of the total tangential field 

component with respect to the direction of the surface normal, is the generalization of 

the Dirichlet and Neumann boundary conditions. Then, it is important to obtain the 

fractional derivative of the exponential function 𝑒−𝑖𝑘𝑥 where 𝑖 is equal to √−1 

(imaginary unit) and 𝑘 is a real number. It is time to find the expression when  𝑓(𝑥) =

𝑒−𝑖𝑘𝑥. 

First, it is required to apply the change of variable as 𝑥 − 𝑡 = 𝑢. Note that, in the 

integrand of (2.1), 𝑡 is a dummy variable. 

𝐷𝑥
𝛼𝑓(𝑥) =

𝑑𝛼𝑓(𝑥)

𝑑𝑥𝛼
=

1

Γ(1 − 𝛼)

𝑑

𝑑𝑥
∫
𝑓(𝑥 − 𝑢)

𝑢𝛼
𝑑𝑢

∞

0

 

 

 

(2.2) 
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After having (2.2), put 𝑓(𝑥) = 𝑒−𝑖𝑘𝑥 in the same equation. 

𝑑𝛼𝑒−𝑖𝑘𝑥

𝑑𝑥𝛼
=

1

Γ(1 − 𝛼)

𝑑

𝑑𝑥
∫
𝑒−𝑖𝑘(𝑥−𝑢)

𝑢𝛼
𝑑𝑢

∞

0

 

                   =
1

Γ(1 − 𝛼)

𝑑

𝑑𝑥
𝑒−𝑖𝑘𝑥∫

𝑒𝑖𝑘𝑢

𝑢𝛼
𝑑𝑢

∞

0

 

                     =
1

Γ(1 − 𝛼)
(−𝑖𝑘)𝑒−𝑖𝑘𝑥∫

𝑒𝑖𝑘𝑢

𝑢𝛼
𝑑𝑢

∞

0

 

 

 

 

 

 

 

(2.3) 

For simplicity, call 𝐼 = ∫
𝑒𝑖𝑘𝑢

𝑢𝛼
𝑑𝑢

∞

0
. 

After defining 𝐼, the change of variable (𝑢 =
𝑖𝑦

𝑘
) is required to make a resemblance 

between function 𝐼 and Gamma function.  

Then, 𝐼 becomes as 

𝐼 = (
1

−𝑖𝑘
)
−𝛼+1

∫ 𝑒−𝑦𝑦−𝛼𝑑𝑦

−𝑖∞

0

 

(2.4) 

For further manipulation, it is better to express the definition of Gamma Function (Γ) 

which is given in (2.5). 

Γ(𝑥) = ∫ 𝑦𝑥−1𝑒−𝑦𝑑𝑦

∞

0

 

 

(2.5) 

Then, Γ(1 − 𝛼) = ∫ 𝑒−𝑦𝑦−𝛼𝑑𝑦
∞

0
. 

Note that, the integral part of 𝐼 in (2.4) and Γ(1 − 𝛼) have the same integrand. Here, 

we have the same integral but with different boundaries. As we know from Complex 

Integral, We can choose a closed-loop and if there is no singularity inside, the closed-

loop integral is zero from Cauchy’s Principle on the complex plane [47,48]. Due to 

having 0 <  𝛼 <  1, there is a singularity at zero. In Figure 2.1, we can see the 

integration path. Here, path 2 stands for the path of Gamma function by definition with 

the argument (1 − 𝛼). Note that, the reverse direction of path 1 is needed for our 

purpose (the integral 𝐼). 
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Figure 2.1 :  Integration Path. 

From Cauchy’s Principle [47,48], 

∮𝑒−𝑧𝑧−𝛼𝑑𝑧 = ∫𝑒−𝑧𝑧−𝛼𝑑𝑧 +

1

∫𝑒−𝑧𝑧−𝛼𝑑𝑧 +

2

∫𝑒−𝑧𝑧−𝛼𝑑𝑧 +

3

∫𝑒−𝑧𝑧−𝛼𝑑𝑧

𝜖

= 0 

(2.6) 

From Jordan Theorems [47,48]: 

lim
𝑧→0

𝑧𝑓(𝑧) = 0 ,     𝑡ℎ𝑒𝑛   ∫ 𝑓(𝑧)𝑑𝑧 = 0

𝜖

  

lim
𝑧→∞

𝑧𝑓(𝑧) = 0 ,     𝑡ℎ𝑒𝑛   ∫ 𝑓(𝑧)𝑑𝑧 = 0

3

 

By Jordan Theorems, ∫ 𝑒−𝑧𝑧−𝛼𝑑𝑧
𝜖

 and ∫ 𝑒−𝑧𝑧−𝛼𝑑𝑧
3

 go to zero. Then,  

∫𝑒−𝑧𝑧−𝛼𝑑𝑧 = −∫𝑒−𝑧𝑧−𝛼𝑑𝑧

21

 
(2.7) 

Note that ∫ 𝑒−𝑧𝑧−𝛼𝑑𝑧
2

= Γ(1 − 𝛼) and ∫ 𝑒−𝑧𝑧−𝛼𝑑𝑧
1

= −𝐼 

This yields that  

𝑑𝛼𝑒−𝑖𝑘𝑥

𝑑𝑥𝛼
=

1

Γ(1 − 𝛼)
(−𝑖𝑘)𝑒−𝑖𝑘𝑥 (

1

−𝑖𝑘
)
−𝛼+1

∫ 𝑒−𝑦𝑦−𝛼𝑑𝑦

−𝑖∞

0

 

                                                            =
1

Γ(1 − 𝛼)
(−𝑖𝑘)𝛼𝑒−𝑖𝑘𝑥Γ(1 − 𝛼) 

 

 

 

(2.8) 
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                                                           = (−𝑖𝑘)𝛼𝑒−𝑖𝑘𝑥 

As it is seen in (2.8), the fractional derivative of the exponential function is obtained. 

With this property, one can obtain the fractional derivative of an exponential function 

without going through the formal definition given in (2.1). 

2.2 Double-strips with the Same Boundary Conditions 

In this section, the plane wave diffraction by double-strips satisfying the same 

boundary condition is investigated. Here, there exist two strips located parallel with 

respect to the x-axis with different widths. They are two-dimensional structures. In 

other words, the strips have infinite lengths on the z-axis and infinitesimal height on 

the y-axis. The width of the strips are 2𝑎1 and 2𝑎2 respectively. In Figure 2.2, the 

geometry of the problem is given. Due to having the infinite extension in the z-axis, 

the problem has no dependency on the z-axis. Therefore, the field distributions are the 

function of (𝑥, 𝑦). 

 

Figure 2.2 :  The geometry of the problem. 

The excitation is done by 𝐸𝑧
𝑖 = 𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑦𝑠𝑖𝑛 ) which is called the incidence electric 

field. Here, 𝑘 is the wavenumber and 휃 is the angle of incidence. Note that, the 

incidence electric field has only 𝑧-directed field component. In other words, the 

incidence wave is said to be 𝐸-polarized. The total electric field can be written as the 

summation of the incidence and the components of the scattered fields as 𝐸𝑧 = 𝐸𝑧
𝑖 +

𝐸𝑧
𝑠 where 𝐸𝑧 is the total electric field and 𝐸𝑧

𝑠 stands for the scattered field. Note that, it 

should be highlighted that, the scattering field has two components resulting from the 

upper and lower strips in the space, respectively. These corresponding fields result 

from the induced currents on each strip. In other words, 𝐸𝑧
𝑠(𝑥, 𝑦) = 𝐸𝑧

𝑠1(𝑥, 𝑦) +

𝐸𝑧
𝑠2(𝑥, 𝑦) where 𝐸𝑧

𝑠1(𝑥, 𝑦) stands for the scattered field from the upper strip and 
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𝐸𝑧
𝑠2(𝑥, 𝑦) corresponds to the scattered field from the lower strip [5,35,37]. Before 

going through mathematical manipulations, it is better to highlight that throughout the 

formulation, the time dependency is 𝑒−𝑖𝜔𝑡  where 𝜔 is the angular frequency (𝑟𝑎𝑑/

𝑠𝑒𝑐). Due to having a sinusoidal excitation, throughout the solution, time dependency 

is omitted. After defining the notation and the mathematical expression for the 

incidence wave, the boundary condition needed to be mentioned. In the fractional 

boundary condition, the fractional derivative of the total tangential electric field 

component with respect to the dimensionless parameter of 𝑘𝑦 should be zero on the 

scatterer surface. Here 𝑦-direction is the normal direction of the strips as given in (2.9) 

[5,35,37]. The fractional boundary condition (FBC) is the generalization of the 

Dirichlet and Neumann boundary conditions. For different values of fractional order 

𝛼, the boundary condition is changing which leads to having surfaces with different 

features.  

 

𝐷𝑘𝑦
𝛼 𝐸𝑧(𝑥, 𝑦) = 0, 𝑦 → ±𝑙, 𝑥 ∈ (−𝑎𝑖, 𝑎𝑖), 𝑖 = 1,2          

 

(2.9) 

 

where 𝛼 is a fractional-order (FO). Here, fractional derivative in (2.9) 𝐷𝑘𝑦
𝛼  is the 

fractional derivative operator and the derivative is taken with respect to 𝑘𝑦 in the order 

of 𝛼. It is better to express again the fractional derivative operator, here for the sake of 

completeness. The formal expression of the fractional derivative for the Riemann-

Liouville definition is given in (2.10) [34-38]. 

 

𝐷𝑦
𝛼𝑓(𝑦) =

1

Γ(1 − 𝛼)

𝑑

𝑑𝑦
∫

𝑓(𝑡)

(𝑦 − 𝑡)𝛼

𝑦

−∞

𝑑𝑡 

 

(2.10) 

where, Γ(1 − 𝛼) is Gamma Function and, 𝛼 𝜖 (0,1).  

When 𝛼 = 0, the surface stands for the perfect electric conductor (PEC).  On PEC, the 

total tangential electric field vanishes. When 𝛼 = 1, it corresponds to the Perfect 

Magnetic Conductor (PMC). The total tangential magnetic field becomes zero in that 

case or the normal derivative of the electric field vanishes. For FO between 0 < 𝛼 <

1, FBC coincides with the intermediate case between the PEC and PMC [34-38]. 
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Previous studies indicate that when fractional order is between 0 and 1, the strip has 

an imaginary impedance which we can call fractional impedance [30,31], and the 

relation between the fractional-order and approximate fractional impedance  can be 

found with the following formula 휂𝛼 = −
𝑖

sin
𝑡𝑎𝑛 (

𝜋

2
𝛼) for any incidence angle. 

Also, it is easily found that the relation between the fractional-order and the fractional 

impedance can be deduced from the previous formula as 𝛼 =
1

𝑖𝜋
ln (

1− 𝛼 𝑠𝑖𝑛

1+ 𝛼𝑠𝑖𝑛
) [34-38]. 

Note that, there 휂𝛼 corresponds to the relative impedance of the one strip. It should be 

highlighted that the formula for expressing the relation between the relative impedance 

and the fractional-order is an approximate formula and obtained for the electrically 

large strips [30,31]. 

To go further, the scattered electric field for each strip can be written as the convolution 

of the current density with Green’s function as given in (2.11). Note that here, 

𝐺𝛼(𝑥 − 𝑥′, 𝑦𝑗) is the fractional green function and  𝑓𝑗
1−𝛼(𝑥′) is the fractional current 

density which has only non-zero values on the strips [30,31]. Physically, (2.11) states 

that all the induced current on the strip is summed to find the overall effect of the 

corresponding scatterer in the space.  

 𝐸𝑧
𝑠𝑗(𝑥, 𝑦) = ∫ 𝑓𝑗

1−𝛼(𝑥′)𝐺𝛼(𝑥 − 𝑥′, 𝑦𝑗)𝑑𝑥
′,    𝑗 = 1,2, 𝑦1 = 𝑦 − 𝑙,

∞

−∞

𝑦2 = 𝑦 + 𝑙, 

 

 

(2.11) 

 

 

where, 

𝐺𝛼(𝑥 − 𝑥′, 𝑦) = 𝑖
1

4𝜋
𝐷𝑘𝑦
𝛼 ∫ 𝑒𝑖𝑘[𝑞

(𝑥−𝑥′)+|𝑦|√1−𝑞2](1 − 𝑞2)
𝛼−1
2 𝑑𝑞.

∞

−∞

 

Here, 𝑗 = 1,2 corresponds to upper or lower strip, respectively and 𝐺𝛼(𝑥 − 𝑥′, 𝑦) =

−
𝑖

4
𝐷𝑘𝑦
𝛼 𝐻0

(1)(𝑘√(𝑥 − 𝑥′)2 + 𝑦2) [5, 8]. Note that, 𝐻0
(1)(𝑧) is the Hankel function of 

the first kind and zero-order. The reason why the plane wave expansion of the Hankel 

function is employed is to have the ability to take the fractional derivative of the 

exponential functions easily as mentioned in the previous section. If the fractional 

Green’s function expression is put into (2.11) and represent 𝑓𝑗
1−𝛼(𝑥′) with its 

corresponding Fourier transform   𝐹𝑗
1−𝛼(𝑞) as it is accomplished in the works [8-10], 

(2.12) is obtained. 
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𝐸𝑧
𝑠𝑗(𝑥, 𝑦) = −𝑖

𝑒±𝑖
𝜋
2
𝛼

4𝜋
∫ 𝐹𝑗

1−𝛼(𝑞)𝑒𝑖𝑘(𝑥𝑞+
|𝑦𝑗|√1−𝑞

2)(1 − 𝑞2)
𝛼−1
2 𝑑𝑞

∞

−∞

, 

 

 

(2.12) 

 

where, 𝑦1 = 𝑦 − 𝑙,  𝑦2 = 𝑦 + 𝑙, 𝑗 = 1,2 and 

𝐹𝑗
1−𝛼(𝑞) = ∫𝑓�̃�

1−𝛼
(𝜉)𝑒−𝑖 𝑞𝜉𝑑𝜉,

1

−1

 

𝑓�̃�
1−𝛼

(𝜉) =
휀𝑗

2𝜋
∫ 𝐹𝑗

1−𝛼(𝑞)𝑒𝑖 𝑗𝑞𝜉𝑑𝑞,

∞

−∞

 

𝑓�̃�
1−𝛼

(𝜉) = 𝑎𝑓𝑗
1−𝛼(𝜉),   𝜖𝑗 = 𝑘𝑎𝑗 , 𝜉 =

𝑥

𝑎𝑗
. 

Note that, (2.11) and (2.12) satisfy the Helmholtz equation and Sommerfeld radiation 

condition at the infinity [30,31]. After expressing the incidence and the scattered 

electric fields in a mathematical form, the FBC is applied for each strip. First, the FBC 

is applied on the upper strip for each field component as  

𝐷𝑘𝑦
𝛼 𝐸𝑧

𝑖(𝑥, 𝑦)|𝑦1=0 = 𝐷𝑘𝑦
𝛼 𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +(𝑦1+𝑙)𝑠𝑖𝑛 )|𝑦1=0 

= (−𝑖)𝛼𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑙𝑠𝑖𝑛 ) sin𝛼 휃 

 

𝐷𝑘𝑦
𝛼 𝐸𝑧

𝑠1(𝑥, 𝑦)|𝑦1=0 = −𝑖
𝑒−𝑖

𝜋
2
𝛼(−𝑖)𝛼

4𝜋
∫ 𝐹1

1−𝛼(𝑞)𝑒𝑖𝑘𝑥𝑞(1 − 𝑞2)𝛼−1/2𝑑𝑞
∞

−∞

 

 

𝐷𝑘𝑦
𝛼 𝐸𝑧

𝑠2(𝑥, 𝑦)|𝑦1=0 = −𝑖
𝑒+𝑖

𝜋
2
𝛼(𝑖)𝛼

4𝜋
∫ 𝐹2

1−𝛼(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)𝛼−

1
2𝑑𝑞

∞

−∞

  

(2.13) 

Then, (2.14) is obtained by employing (2.9). 

∫ 𝐹1
1−𝛼(𝑞)𝑒𝑖𝑘𝑥𝑞(1 − 𝑞2)𝛼−

1
2𝑑𝑞

∞

−∞

 

= −𝑖4𝜋𝑒+𝑖
𝜋
2
𝛼𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑙𝑠𝑖𝑛 ) sin𝛼 휃

−𝑒+2𝜋𝑖𝛼∫ 𝐹2
1−𝛼(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙

√1−𝑞2)(1 − 𝑞2)𝛼−
1
2𝑑𝑞

∞

−∞

 
 

 

 

(2.14) 
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The same procedure is applied for the lower strip as  

𝐷𝑘𝑦
𝛼 𝐸𝑧

𝑖(𝑥, 𝑦)|𝑦2=0 = 𝐷𝑘𝑦
𝛼 𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +(𝑦2−𝑙)𝑠𝑖𝑛 )|𝑦2=0 

 

= (−𝑖)𝛼𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 −𝑙𝑠𝑖𝑛 ) sin𝛼 휃 

 

𝐷𝑘𝑦
𝛼 𝐸𝑧

𝑠2(𝑥, 𝑦)|𝑦2=0 = −𝑖
𝑒+𝑖

𝜋
2
𝛼(𝑖)𝛼

4𝜋
∫ 𝐹2

1−𝛼(𝑞)𝑒𝑖𝑘𝑥𝑞(1 − 𝑞2)𝛼−1/2𝑑𝑞
∞

−∞

 

 

𝐷𝑘𝑦
𝛼 𝐸𝑧

𝑠1(𝑥, 𝑦)|𝑦2=0 = −𝑖
𝑒−𝑖

𝜋
2
𝛼(−𝑖)𝛼

4𝜋
∫ 𝐹1

1−𝛼(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)𝛼−

1
2𝑑𝑞

∞

−∞

 

(2.15) 

Then, (2.16) is obtained by employing (2.9). 

∫ 𝐹2
1−𝛼(𝑞)𝑒𝑖𝑘𝑥𝑞(1 − 𝑞2)𝛼−

1
2𝑑𝑞

∞

−∞

= −𝑖4𝜋𝑒−𝑖
3𝜋
2
𝛼𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 −𝑙𝑠𝑖𝑛 ) sin𝛼 휃 

−𝑒−2𝜋𝑖𝛼∫ 𝐹1
1−𝛼(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙

√1−𝑞2)(1 − 𝑞2)𝛼−
1
2𝑑𝑞

∞

−∞

 

 

(2.16) 

 

After applying the FBC to the total field and multiplying both sides of the integral 

equation with ∫ 𝑒−𝑖𝑘𝑥𝜏
𝑎𝑖
−𝑎𝑖

𝑑𝑥 for each corresponding strip, the integral equation system 

becomes as (2.17) where for 𝑖 = 1, upper sign, and for 𝑖 = 2, the lower sign should be 

taken into account. Different signs in the exponentials (𝑒∓𝑖𝑘𝑙𝑠𝑖𝑛 ) stand for the upper 

and lower strip, respectively. However, for (±𝑖) which is resulting from the fractional 

boundary condition, (+) sign is taken for the upper part of each strip and the (–) sign 

stands for the lower part of each strip due to the absolute value operator in the 

integrand. For each strip, there exists one integral equation. When (2.17) is 

investigated, the left-hand side of the integral equation stands for the scattered field 

due to the corresponding strip whereas, the last term at the right-hand side of the 

integral equation stands for the interaction term corresponding to the effect of the 

scattering field due to the other strip. Finally, the first term at the right-hand side of 

(2.17) is for incidence wave.   
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∫ 𝐹𝑖
1−𝛼(𝑞)

sin(𝑘𝑎𝑖(𝑞 − 𝜏))

(𝑞 − 𝜏)
(1 − 𝑞2)𝛼−

1
2𝑑𝑞

∞

−∞

= −𝑖4𝜋(±𝑖)𝛼𝑒∓𝑖𝑘𝑙𝑠𝑖𝑛 sin𝛼 휃
sin (𝑘𝑎𝑖(𝜏 + 𝑐𝑜𝑠휃))

(𝜏 + 𝑐𝑜𝑠휃)
− 

−∫ 𝐹𝑗
1−𝛼(𝑞)

sin(𝑘𝑎𝚤(𝑞 − 𝜏))

(𝑞 − 𝜏)
𝑒𝑖𝑘2𝑙√1−𝑞

2
(1 − 𝑞2)𝛼−

1
2𝑑𝑞 

∞

−∞

 

 

 

 

 

 

 

(2.17) 

Here,   𝑖, 𝑗 = 1,2, 𝑖 ≠ 𝑗 

After having (2.17), it is required to solve the integral equations for each strip. To solve 

the set of integral equations (IE) in (2.17), the fractional current density should be 

expressed as the summation of special orthogonal polynomials by taking into account 

the edge conditions. IE can be reduced to the system of linear algebraic equation 

(SLAE) by expanding the fractional current density as the summation of  Gegenbauer 

polynomials 𝐶𝑛 
𝛼  with the unknown constant coefficients 휁𝑛𝑖

𝛼   as given in (2.18) [17,34-

38,49]. The reason why Gegenbauer polynomials are employed is that they are defined 

in a finite interval which is suitable for the strip geometry. For different geometries, 

optimum and suitable polynomials can vary. To have better convergence and edge 

condition satisfaction, weightings can be included for the expression of the current 

density function. Note that, the weighting function (1 − 𝜉𝑖
2)𝛼−

1

2 in the equation is not 

only for satisfying the edge condition and also for increasing the convergence [34]. 

The details of the edge condition are expressed in Appendix A [17,34-38,49]. 

𝑓𝑖
1−𝛼(𝜉𝑖) = (1 − 𝜉𝑖

2)𝛼−
1
2∑휁𝑛𝑖

𝛼
𝐶𝑛 
𝛼(𝜉𝑖)

𝛼
 

∞

𝑛=0

 
 

(2.18) 

Note that 휁𝑛𝑖
𝛼  is the unknown constant coefficients. Keep in mind that lim

𝛼→0

𝐶𝑛 
𝛼(𝜉𝑖)

𝛼
=

{
2

𝑛
𝑇𝑛(𝜉𝑖), 𝑛 ≠ 0

1, 𝑛 = 0
} [31,32]. Here, 𝑇𝑛 is the Chebyshev polynomials. The corresponding 

Fourier transform [50]. Also, the derivation can be found in Appendix B:  

𝐹𝑖
1−𝛼(𝑞)   =

2𝜋

Γ(𝛼 + 1)
∑(−𝑖)𝑛휁𝑛𝑖

𝛼𝛽𝑛
𝛼
𝐽𝑛+𝛼(𝜖𝑖𝑞)

(2𝜖𝑖𝑞)𝛼
 ,

∞

𝑛=0

 
   

(2.19) 
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where,  

𝜖𝑖 = 𝑘𝑎𝑖  ,   𝛽𝑛
𝛼 =

Γ(𝑛 + 2𝛼)

Γ(𝑛 + 1)
 , 𝑖 = 1,2. 

Note that, 𝐽𝑛+𝛼(𝑥) is the Bessel function. Then, (2.19) is inserted in (2.17) for each 

integral equation corresponding to the upper and lower strips.  

2𝜋

Γ(𝛼 + 1)
∑(−𝑖)𝑛휁𝑛𝑖

𝛼𝛽𝑛
𝛼 ∫

𝐽𝑛+𝛼(𝜖𝑖𝑞)

(2𝜖𝑖𝑞)𝛼
 
sin(𝑘𝑎𝑖(𝑞 − 𝜏))

(𝑞 − 𝜏)

∞

−∞

 

∞

𝑛=0

(1 − 𝑞2)𝛼−
1
2𝑑𝑞 

= −𝑖4𝜋𝑒+𝑖
𝜋
2
𝛼𝑒∓𝑖𝑘𝑙𝑠𝑖𝑛 sin𝛼 휃

sin (𝑘𝑎𝑖(𝜏 + 𝑐𝑜𝑠휃))

(𝜏 + 𝑐𝑜𝑠휃)

−
2𝜋

Γ(𝛼 + 1)
∑(−𝑖)𝑛휁𝑛𝑗

𝛼 𝛽𝑛
𝛼 ∫

𝐽𝑛+𝛼(𝜖𝑗𝑞)

(2𝜖𝑗𝑞)
𝛼  
sin (𝑘𝑎𝑗(𝑞 − 𝜏))

(𝑞 − 𝜏)

∞

−∞

 𝑒𝑖𝑘2𝑙√1−𝑞
2
(1

∞

𝑛=0

− 𝑞2)𝛼−
1
2𝑑𝑞 

 

 

 

 

 

 

(2.20) 

 

where 𝑖, 𝑗 = 1,2, and 𝑖 ≠ 𝑗. 

After multiplying (2.20) by 
𝐽𝑘+𝛼(𝜖1𝜏)

𝜏𝛼
 and 

𝐽𝑘+𝛼(𝜖2𝜏)

𝜏𝛼
  for each strip, respectively and then, 

(2.20) is integrated with parameter 𝜏 between (−∞,∞), overall results for the upper 

and lower strips become as 

∑(−𝑖)𝑛휁𝑛𝑖
𝛼𝛽𝑛

𝛼𝐶𝑘𝑛
𝛼 (𝑖,𝑖)

 

∞

𝑛=0

+ (
𝜖𝑖
𝜖𝑗
)

𝛼

∑(−𝑖)𝑛휁𝑛𝑗
𝛼 𝛽𝑛

𝛼𝐶𝑘𝑛
𝛼 (𝑖,𝑗)

∞

𝑛=0

= 𝛾𝑘
𝑖,𝛼  

 

(2.21) 

 

Here,  𝑖, 𝑗 = 1,2  𝑖 ≠ 𝑗, and 

𝐶𝑘𝑛
𝛼 (𝑖,𝑖)

= ∫ 𝐽𝑛+𝛼(𝜖𝑖𝑞)𝐽𝑘+𝛼(𝜖𝑖𝑞) 
(1 − 𝑞2)𝛼−

1
2

𝑞2𝛼
𝑑𝑞

∞

−∞

, 

        𝐶𝑘𝑛
𝛼 (𝑖,𝑗)

= ∫ 𝐽𝑛+𝛼(𝜖𝑗𝑞)𝐽𝑘+𝛼(𝜖𝑖𝑞) 𝑒
𝑖𝑘2𝑙√1−𝑞2

(1 − 𝑞2)𝛼−
1
2

𝑞2𝛼
𝑑𝑞

∞

−∞

, 𝑖 ≠ 𝑗,   

        𝛾𝑘
𝑖,𝛼 = −𝑖2(±𝑖)𝛼(2𝜖𝑖)

αΓ(𝛼 + 1)𝑒∓𝑖𝑘𝑙𝑠𝑖𝑛 𝑡𝑎𝑛𝛼 휃 (−1)𝑘𝐽𝑘+𝛼(𝜖𝑖𝑐𝑜𝑠휃). 

Note that, during integration, the following property is utilized [31,50]. 

1

𝜋
∫
𝐽𝑛+𝛼(𝜖𝑞)

𝑞𝛼

∞

−∞

sin 𝜖(𝑞 ∓ 𝛽)

𝑞 ∓ 𝛽
𝑑𝑞 = (±1)𝑛

𝐽𝑛+𝛼(𝜖𝛽)

𝛽𝛼
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After having (2.21), the unknowns 휁𝑛𝑖
𝛼  and 휁𝑛𝑗

𝛼  can be found by the inversion of SLAE. 

Then, by utilizing (2.18) and (2.19), the current density on the strips and the scattered 

electric field distribution can be obtained. Note that, for the fractional-order 𝛼 = 0.5 

case, the approximate analytical solution can be found for 𝑘𝑎𝑖 ≫ 1 [34-38]. In (2.16), 

the term (1 − 𝑞2)𝛼−
1

2 is dropped for 𝛼 =
1

2
 and the term 

sin(𝑘𝑎𝑖(𝑞−𝜏))

(𝑞−𝜏)
 behaves like a 

Dirac delta function for 𝑘𝑎𝑖 ≫ 1. This leads to having the Fourier Transform of the 

current density directly with an approximation. In (2.17), the analytical expression of 

the Fourier transform of the current density  for 𝑘𝑎𝑖 ≫ 1 is given.  

𝐹𝑖
0.5(𝜏) = Δ(

(
sin (𝑘𝑎𝑖(𝜏 + 𝑐𝑜𝑠휃))

(𝜏 + 𝑐𝑜𝑠휃)
𝑒∓𝑖𝑘𝑙𝑠𝑖𝑛  )

[1 − 𝑒𝑖𝑘4𝑙√1−𝜏
2
]

−
(
sin (𝑘𝑎𝑗(𝜏 + 𝑐𝑜𝑠휃))

(𝜏 + 𝑐𝑜𝑠휃)
𝑒±𝑖𝑘𝑙𝑠𝑖𝑛 𝑒𝑖𝑘2𝑙√1−𝜏

2
)

[1 − 𝑒𝑖𝑘4𝑙√1−𝜏
2
]

) 

 

 

 

 

(2.22) 

  

Here, Δ = −𝑖4𝑒
𝑖𝜋

4√𝑠𝑖𝑛휃, 𝑖, 𝑗 = 1, 2, and 𝑖 ≠ 𝑗. 

Having the expressions for 𝐹𝑖
1−𝛼 in (2.15), the radiation pattern of the total scattered 

field in the far zone can be found by using (2.23) by the steepest descent method 

[51,52]. The formulation can be found in Appendix C. Note that, 𝜌 = √𝑥2 + 𝑦2 and 

𝜑 is the angle between  the ê𝜌 unit vector along in 𝜌 and ê𝑥. 

Using the steepest descent method for 𝑘𝑎 → ∞, the scattered electric field gets the 

following form (detail can be found in Appendix C): 

𝐸𝑧
𝑠(𝑥, 𝑦) = 𝐴(𝑘𝑟) Φ𝛼(𝜑) 

 

(2.23) 

Here, 

𝐴(𝑘𝑟) = √
2

𝜋𝑘𝑟
𝑒𝑖𝑘𝑟−

𝑖𝜋

4 , and Φ𝛼 = Φ1
𝛼(𝜑) + Φ2

𝛼(𝜑), 

where 

Φ1
𝛼(𝜑) = −

𝑖

4
𝑒±

𝑖𝜋𝛼
2 𝐹1

1−𝛼(𝑐𝑜𝑠𝜑)(sin𝛼𝜑)𝑒−𝑖𝑘𝑙𝑠𝑖𝑛𝜑 , 
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Φ2
𝛼(𝜑) = −

𝑖

4
𝑒±

𝑖𝜋𝛼
2 𝐹2

1−𝛼(𝑐𝑜𝑠𝜑)(sin𝛼𝜑)𝑒+𝑖𝑘𝑙𝑠𝑖𝑛𝜑 . 

In (2.23), 𝜙 is the observation angle in the space in the cylindrical coordinates. The 

upper sign stands for  𝜑 ∈ [0, 𝜋], and the lower sign is for  𝜑 ∈ [𝜋, 2𝜋]. Here, 𝐴(𝑘𝑟) 

and Φ𝛼(𝜑) is the radial and the angular parts of the scattered electric field at the far 

zone, respectively. For the angular variation at the far zone, the expression of radiation 

pattern (RP) Φ𝛼(𝜑) is used. To analyze the resonance characteristics of the scattered 

field, (2.24) will be used for total radar cross-section estimation. Total Radar Cross 

Section (𝜎𝑡) can be obtained as [53] 

𝜎𝑡 =
1

4𝜖1
∫ |Φ𝛼|2𝑑𝜑

2𝜋

0

 

 

(2.24) 

Here, for the normalization, the upper strip is chosen (
1

4𝜖1
). 

To investigate the power flow in the vicinity of the scatterer, the Poynting vector 𝑆 is 

found. As the electric field has only the z component, 𝑆 has x and y components 𝑆𝑥 

and 𝑆𝑦, respectively and can be found as (2.25) [51,52]. 

𝑆 =
1

2
𝑅𝑒[�⃗⃗� × �⃗⃗⃗�∗],  𝑆𝑥 = −

1

2
𝑅𝑒[𝐸𝑧𝐻𝑦

∗],    𝑆𝑦 =
1

2
𝑅𝑒[𝐸𝑧𝐻𝑥

∗]. 

 

(2.25) 

Here, (×) is a cross product, (*) denotes complex conjugate and �⃗⃗⃗� is the magnetic 

field. 

2.3 Double-strips with Different Boundary Conditions 

This section is the continuation of the previous section. Here, also fractional order of 

each strip is variable. In other words, the boundary condition for each strip can differ. 

As it was in the previous section, the strips have infinite lengths on the z-axis, 

infinitesimal height on the y-axis, and the distance between the strips is 2𝑙. In Figure 

2.3, the geometry of the problem is presented. The upper and the lower strip has a 

width of 2𝑎1 and 2𝑎2 and located at 𝑦 = 𝑙, and 𝑦 = −𝑙, respectively. This is a more 

general solution of electromagnetic plane wave diffraction by double strips with 

variable widths and boundary conditions.  
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Figure 2.3 :  The geometry of the problem. 

After expressing the geometry of the problem, again, the definition of the fractional 

boundary condition which is the generalization of Dirichlet and Neumann Boundary 

Conditions is done more formally. The fractional boundary condition (FBC) is defined 

by the fractional derivatives of the tangential electric field components 𝑈(𝑥, 𝑦) on an 

infinitely thin surface S located in the plane 𝑦 = ±𝑙 in the direction of normal of the 

surface. FBC, mathematically, defined as [34-38]  

 

𝐷𝑦
𝛼𝑈(𝑥, 𝑦)|

𝑦𝜖𝑆
= 0,    𝑦 → ±𝑙  (2.26) 

 

 In this section, as the incidence wave, the uniform plane wave is investigated. The 

mathematical expression for the incidence wave can be represented as 

𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑦𝑠𝑖𝑛 )ê𝑧 where 𝑘 is the wavenumber in the free space (𝑘 =
2𝜋

𝜆
), 휃 is the 

angle of incidence, ê𝑧 is the unit vector directed through the z-axis and 𝜆 is the 

wavelength. 𝐸𝑧ê𝑧 is the total electric field in the space and the total tangential field 

satisfies the fractional boundary condition on the surface. In our problem, the total 

electric field is already tangential to the strips [34-38]. For our problem, the boundary 

condition is a fractional boundary condition and the total field on the surface is 

required to satisfy the boundary condition. The fractional-order for  the boundary 

condition is defined in the range of 0 ≤ 𝛼𝑖 ≤ 1 as 

𝐷𝑘𝑦
𝛼𝑖𝐸𝑧(𝑥, 𝑦𝑗) = 0  (2.27) 

 

For: 𝑦𝑗 → 0, 𝑥 ∈ [−𝑎𝑖, 𝑎𝑖] 

Here, 𝑖 takes the value of 1 and 2 correspondence with the upper strip and the lower 

strips, respectively. Each strip has its own different boundary conditions regarding 𝛼𝑖. 

For example, one strip may be the perfectly electric conducting surface whereas the 
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other one could be the perfectly magnetic conducting surface or vice versa. Another 

important point here is that the derivative is taken with respect to 𝑘𝑦 which is a 

dimensionless parameter where 𝑦 is the normal direction of the surface. Due to having 

two strips leading to two corresponding scattering fields, the total field has three 

components as the following. 

𝐸𝑧(𝑥, y) = 𝐸𝑧
i(𝑥, y) + 𝐸𝑧

𝑠1(𝑥, y) + 𝐸𝑧
𝑠2(𝑥, y)  (2.28) 

 

In (2.28), 𝐸𝑧
𝑠1(𝑥, 𝑦) and 𝐸𝑧

𝑠2(𝑥, 𝑦) correspond to the scattered fields for the upper and 

the lower strips, respectively.  The total scattered electric field is denoted as 𝐸𝑧
𝑠(𝑥, 𝑦) 

and is the sum of two parts, as mentioned above. Before going into details, time 

dependency should be highlighted again to proceed easily. Here, the incidence wave 

is a sinusoidal signal and, the dependency on time throughout the study is determined 

as 𝑒−𝑖𝜔𝑡. We can express the scattered field as the convolution of the current density 

on the strip with the fractional Green’s function. This yields to find the scattered 

electric field of the corresponding strips. The mathematical expression is given in 

(2.29) [5-7]. 

𝐸𝑧
𝑠𝑗(𝑥, 𝑦) = ∫ 𝑓

𝑗

1−𝛼𝑗(𝑥′)𝐺𝛼𝑗(𝑥 − 𝑥′, 𝑦𝑗)𝑑𝑥
′,   𝑗 = 1,2, 𝑦1 = 𝑦 − 𝑙, 𝑦2

∞

−∞

= 𝑦 + 𝑙, 

 

(2.29) 

where, 𝐺𝛼𝑗(𝑥 − 𝑥′, 𝑦) = −
𝑖

4
𝐷𝑘𝑦
𝛼𝑗𝐻0

(1)(𝑘√(𝑥 − 𝑥′)2 + 𝑦2). 

Here, 𝑓1−𝛼𝑗(𝑥′) is the fractional surface current density on the strip. In (2.29), 𝑗 = 1,2 

stands for the upper or lower strip, respectively. Note that, 𝐺𝛼𝑗(𝑥 − 𝑥′, 𝑦) is the 

fractional Green's function which is, in the two-dimensional case (for this problem); 

𝐻0
(1)(𝑧) is the Hankel function of the first kind and zero-order. Due to the requirement 

of taking derivative, it is better to express the functions in terms of the exponential 

function because its fractional derivative is easier. Therefore, the plane wave 

expansion of the Hankel function is employed as given in (2.30). 

𝐺𝛼(𝑥 − 𝑥′, 𝑦) = −𝑖
1

4𝜋
𝐷𝑘𝑦
𝛼 ∫ 𝑒𝑖𝑘[𝑞

(𝑥−𝑥′)+|𝑦|√1−𝑞2](1 − 𝑞2)
𝛼−1
2 𝑑𝑞.

∞

−∞

 

(2.30) 

                      = −𝑖
±𝑖

4𝜋
∫ 𝑒𝑖𝑘[𝑞

(𝑥−𝑥′)+|𝑦|√1−𝑞2](1 − 𝑞2)𝛼−
1
2𝑑𝑞.

∞

−∞
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where, + (-) for 𝑦 >0 (𝑦 < 0). 

Then, (2.30) is put into (2.31) and Fourier transforms properties are used to obtain the 

final form of the scattered electric field expression for each strip [34-38]. 

𝐸𝑧
𝑠𝑗(𝑥, 𝑦) = −

𝑒±
𝑖𝜋
2
𝛼𝑗 

4𝜋
𝑖 ∫ ∫ 𝑓

𝑗

1−𝛼𝑗(𝑥′)𝑒𝑖𝑘[𝑞
(𝑥−𝑥′)+|𝑦|√1−𝑞2](1 − 𝑞2)𝛼𝑗−

1
2𝑑𝑞 

∞

−∞

𝑑𝑥′ 

∞

−∞

 

(2.31) 

where 𝑗 = 1,2, 𝑦1 = 𝑦 − 𝑙, 𝑦2 = 𝑦 + 𝑙, 

𝐹
𝑗

1−𝛼𝑗(𝑞) = ∫𝑓�̃�
1−𝛼𝑗(𝜉)𝑒−𝑖 𝑗𝑞𝜉𝑑𝜉,

1

−1

 𝑓�̃�
1−𝛼𝑗(𝜉) =

휀𝑗

2𝜋
∫ 𝐹

𝑗

1−𝛼𝑗(𝑞)𝑒𝑖 𝑗𝑞𝜉𝑑𝑞,

∞

−∞

 

𝑓�̃�
1−𝛼𝑗(𝜉) = 𝑎𝑗𝑓𝑗

1−𝛼𝑗(𝜉),   𝜖𝑗 = 𝑘𝑎𝑗 , 𝜉 =
𝑥

𝑎𝑗
 

Here, 𝐹
𝑗

1−𝛼𝑗
 is the Fourier transform of the normalized fractional current density 

𝑓�̃�
1−𝛼𝑗

. By changing the integration order in (2.31), the scattering electric field is 

obtained as: 

𝐸𝑧
𝑠𝑗(𝑥, 𝑦) = −𝑖

𝑒±
𝑖𝜋
2
𝛼𝑗 

4𝜋
∫ 𝐹

𝑗

1−𝛼𝑗(𝑞)𝑒𝑖𝑘(𝑥𝑞+
|𝑦𝑗|√1−𝑞

2)(1 − 𝑞2)
𝛼𝑗−1

2 𝑑𝑞

+∞

−∞

 

(2.32) 

After (2.32), the total field has complete mathematical expression. This yields to apply 

the fractional boundary condition easily because all the components of the field 

expressions are obtained in terms of exponentials. Note that, each strip has a different 

fractional-order boundary condition as 𝛼1 and 𝛼2. Then, the boundary condition should 

be taken for each surface. First, take the derivative on the upper surface in the order of 

𝛼1 for each field component [33-38]. 

 

𝐷𝑘𝑦1
𝛼1 𝐸𝑧

𝑖(𝑥, 𝑦)|𝑦1=0 = (−𝑖)𝛼1𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑙𝑠𝑖𝑛 )(𝑠𝑖𝑛휃)𝛼1 

𝐷𝑘𝑦1
𝛼1 𝐸𝑧

𝑠1(𝑥, 𝑦)|𝑦1=0 = −𝑖
𝑒±

𝑖𝜋
2
𝛼1 

4𝜋
(𝑖)𝛼1 ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(𝑥𝑞)(1 − 𝑞2)𝛼1−
1
2𝑑𝑞

+∞

−∞

 

𝐷𝑘𝑦1
𝛼1 𝐸𝑧

𝑠2(𝑥, 𝑦)|𝑦1=0 

= −𝑖
𝑒±

𝑖𝜋
2
𝛼2 

4𝜋
(𝑖)𝛼1 ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)

𝛼1+𝛼2−1
2 𝑑𝑞

+∞

−∞
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Apply Boundary condition on the upper strip as (2.33) 

 

(−𝑖)𝛼1𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑙𝑠𝑖𝑛 )(𝑠𝑖𝑛휃)𝛼1

= 𝑖
(𝑖)𝛼1

4𝜋
𝑒
𝑖𝜋
2
𝛼1 [ ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(𝑥𝑞)(1 − 𝑞2)𝛼1−
1
2𝑑𝑞

+∞

−∞

+ 𝑒
𝑖𝜋
2
(𝛼2−𝛼1) ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)

𝛼1+𝛼2−1
2 𝑑𝑞 

+∞

−∞

] 

(2.33) 

Second, take the derivative on the lower surface in the order of 𝛼2 for each field 

component. 

𝐷𝑘𝑦2
𝛼2 𝐸𝑧

𝑖(𝑥, 𝑦)|𝑦2=0 = (−𝑖)𝛼2𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 −𝑙𝑠𝑖𝑛 )(𝑠𝑖𝑛휃)𝛼2 

𝐷𝑘𝑦2
𝛼2 𝐸𝑧

𝑠1(𝑥, 𝑦)|𝑦2=0 

= −𝑖
𝑒±

𝑖𝜋
2
𝛼1 

4𝜋
(𝑖)𝛼2 ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)

𝛼1+𝛼2−1
2 𝑑𝑞

+∞

−∞

 

𝐷𝑘𝑦1
𝛼1 𝐸𝑧

𝑠2(𝑥, 𝑦)|𝑦1=0 = −𝑖
𝑒±

𝑖𝜋
2
𝛼2 

4𝜋
(𝑖)𝛼2 ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(𝑥𝑞)(1 − 𝑞2)𝛼2−
1
2𝑑𝑞

+∞

−∞

 

 

Apply Boundary condition on the lower strip as (2.34) 

(−𝑖)𝛼2𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 −𝑙𝑠𝑖𝑛 )(𝑠𝑖𝑛휃)𝛼2

= 𝑖
𝑒
𝑖𝜋
2
𝛼2 

4𝜋
(𝑖)𝛼2 [ ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(𝑥𝑞)(1 − 𝑞2)𝛼2−
1
2𝑑𝑞

+∞

−∞

+ 𝑒−
𝑖𝜋
2
(𝛼2+𝛼1) ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)

𝛼1+𝛼2−1
2 𝑑𝑞

+∞

−∞

] 

(2.34) 

After having the integral equation for the upper strip, (2.33) is multiplied by 𝑒−𝑖𝑘𝜏𝑥 

and take the integral from −𝑎1 to 𝑎1 as [22-24] 
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∫  𝑒−𝑖𝑘𝜏𝑥𝑑𝑥

𝑎1

−𝑎1

(−𝑖)𝛼1𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 +𝑙𝑠𝑖𝑛 )(𝑠𝑖𝑛휃)𝛼1

= ∫  𝑒−𝑖𝑘𝜏𝑥𝑑𝑥

𝑎1

−𝑎1

𝑖
(𝑖)𝛼1

4𝜋
𝑒
𝑖𝜋
2
𝛼1 [ ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(𝑥𝑞)(1 − 𝑞2)𝛼1−
1
2𝑑𝑞

+∞

−∞

+ 𝑒
𝑖𝜋
2
(𝛼2−𝛼1) ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)

𝛼1+𝛼2−1
2 𝑑𝑞

+∞

−∞

] 

(2.35) 

After having the integral equation for the lower strip, (2.36) is multiplied by 𝑒−𝑖𝑘𝜏𝑥 

and take the integral from −𝑎2 to 𝑎2 as 

∫  𝑒−𝑖𝑘𝜏𝑥𝑑𝑥

𝑎2

−𝑎2

(−𝑖)𝛼2𝑒−𝑖𝑘(𝑥𝑐𝑜𝑠 −𝑙𝑠𝑖𝑛 )(𝑠𝑖𝑛휃)𝛼2

= ∫  𝑒−𝑖𝑘𝜏𝑥𝑑𝑥

𝑎2

−𝑎2

𝑖
𝑒
𝑖𝜋
2
𝛼2 

4𝜋
(𝑖)𝛼2 [ ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(𝑥𝑞)(1 − 𝑞2)𝛼2−
1
2𝑑𝑞

+∞

−∞

+ 𝑒−
𝑖𝜋
2
(𝛼2+𝛼1) ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(𝑥𝑞+2𝑙
√1−𝑞2)(1 − 𝑞2)

𝛼1+𝛼2−1
2 𝑑𝑞

+∞

−∞

] 

(2.36) 

Then, (2.35) and (2.36) become (2.37) and (2.38), respectively. 

 

∫ 𝐹1
1−𝛼1

∞

−∞

sin(𝑘𝑎1(𝑞 − 𝜏))

𝑞 − 𝜏
 (1 − 𝑞2)𝛼1−

1
2𝑑𝑞

= −4𝑖𝜋𝑒𝑖
𝜋
2
𝛼1𝑒−𝑖𝑘𝑙𝑠𝑖𝑛 (𝑠𝑖𝑛휃)𝛼1

sin(𝑘𝑎1(𝑐𝑜𝑠휃 + 𝜏))

𝑐𝑜𝑠휃 + 𝜏

− 𝑒
𝑖𝜋
2
(𝛼2−𝛼1) ∫ 𝐹2

1−𝛼2(𝑞)𝑒𝑖𝑘(2𝑙
√1−𝑞2) sin(𝑘𝑎1(𝑞 − 𝜏))

𝑞 − 𝜏
(1

+∞

−∞

− 𝑞2)
𝛼1+𝛼2−1

2 𝑑𝑞  

 

 

 

 

 

 

(2.37) 
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∫ 𝐹2
1−𝛼2

∞

−∞

sin(𝑘𝑎2(𝑞 − 𝜏))

𝑞 − 𝜏
 (1 − 𝑞2)𝛼2−

1
2𝑑𝑞

= −4𝑖𝜋𝑒𝑖
𝜋
2
𝛼2𝑒+𝑖𝑘𝑙𝑠𝑖𝑛 (𝑠𝑖𝑛휃)𝛼2

sin(𝑘𝑎2(𝑐𝑜𝑠휃 + 𝜏))

𝑐𝑜𝑠휃 + 𝜏

− 𝑒−
𝑖𝜋
2
(𝛼2−𝛼1) ∫ 𝐹1

1−𝛼1(𝑞)𝑒𝑖𝑘(2𝑙
√1−𝑞2) sin(𝑘𝑎2(𝑞 − 𝜏))

𝑞 − 𝜏
(1

+∞

−∞

− 𝑞2)
𝛼1+𝛼2−1

2 𝑑𝑞 

 

 

 

 

 

 

(2.38) 

To solve the set of integral equations given in (2.37) and (2.38), the fractional current 

density is expressed as given in (2.39) (see Appendix A) [17,34-38,49,54].  

𝑓
𝑗

1−𝛼𝑗(𝜉𝑗) = (1 − 𝜉𝑗
2)
𝛼𝑗−

1
2∑𝑓𝑛𝑗

𝛼𝑗 𝐶𝑛 
𝛼𝑗(𝜉𝑗)

𝛼𝑗
 

∞

𝑛=0

, 𝑗 = 1,2 
 

(2.39) 

Here, 𝐶𝑛 
𝛼𝑗(𝜉𝑗) is the Gegenbauer polynomials. The corresponding Fourier transform 

of the fractional current density is given as follows (2.40).  By introducing an unknown 

coefficient 𝑓n
𝛼𝑗

 for the fractional current density and substituting (2.40) into IE (2.37) 

and (2.38), the IE is converted into the system of linear algebraic equations SLAE (see 

Appendix B) [17,34-38,49,50].  

𝐹
𝑗

1−𝛼𝑗(𝑞) =
2𝜋

Γ(𝛼𝑗 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼𝑗𝛽𝑛
𝛼𝑗
𝐽𝑛+𝛼𝑗(𝜖𝑗𝑞)

(2𝜖𝑗𝑞)
𝛼𝑗

∞

𝑛=0

, 𝑗 = 1,2 

 

 

(2.40) 

Here, 𝐽𝑛+𝛼𝑗(𝜖𝑗𝑞) is the Bessel function. After inserting (2.40) into IE (2.37) and (2.38), 

the following equations are obtained, respectively. 
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2𝜋

2𝛼1Γ(𝛼1 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼1𝛽𝑛
𝛼1

∞

𝑛=0

∫
𝐽𝑛+𝛼1(𝜖1𝑞)

(𝜖1𝑞)𝛼1

∞

−∞

sin(𝜖1(𝑞 − 𝜏))

𝑞 − 𝜏
 (1

− 𝑞2)𝛼1−
1
2𝑑𝑞

= −4𝑖𝜋𝑒𝑖
𝜋
2
𝛼1𝑒−𝑖𝑘𝑙𝑠𝑖𝑛 (𝑠𝑖𝑛휃)𝛼1

sin(𝜖1(𝑐𝑜𝑠휃 + 𝜏))

𝑐𝑜𝑠휃 + 𝜏

− Ω1∑(−𝑖)𝑛𝑓𝑛
𝛼2𝛽𝑛

𝛼2

∞

𝑛=0

∫
𝐽𝑛+𝛼2(𝜖2𝑞)

(𝜖2𝑞)𝛼2
𝑒𝑖𝑘(2𝑙

√1−𝑞2) sin(𝜖1(𝑞 − 𝜏))

𝑞 − 𝜏
(1

+∞

−∞

− 𝑞2)
𝛼1+𝛼2−1

2 𝑑𝑞 

 

 

 

 

 

 

 

(2.41) 

 

Here, Ω1 = 𝑒
𝑖𝜋

2
(𝛼2−𝛼1) 2𝜋

2𝛼2Γ(𝛼2+1)
 

2𝜋

Γ(𝛼2 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼2𝛽𝑛
𝛼2

∞

𝑛=0

∫
𝐽𝑛+𝛼2(𝜖2𝑞)

(2𝜖2𝑞)𝛼2

∞

−∞

sin(𝜖2(𝑞 − 𝜏))

𝑞 − 𝜏
 (1

− 𝑞2)𝛼2−
1
2𝑑𝑞

= −4𝑖𝜋𝑒𝑖
𝜋
2
𝛼2𝑒+𝑖𝑘𝑙𝑠𝑖𝑛 (𝑠𝑖𝑛휃)𝛼2

sin(𝜖2(𝑐𝑜𝑠휃 + 𝜏))

𝑐𝑜𝑠휃 + 𝜏

− Ω2∑(−𝑖)𝑛𝑓𝑛
𝛼1𝛽𝑛

𝛼1

∞

𝑛=0

∫
𝐽𝑛+𝛼1(𝜖1𝑞)

(2𝜖1𝑞)𝛼1
𝑒𝑖𝑘(2𝑙

√1−𝑞2) sin(𝜖2(𝑞 − 𝜏))

𝑞 − 𝜏
(1

+∞

−∞

− 𝑞2)
𝛼1+𝛼2−1

2 𝑑𝑞 

 

 

 

 

 

 

 

 

 

(2.42) 

Here, Ω2 = 𝑒−
𝑖𝜋

2
(𝛼2−𝛼1) 2𝜋

2𝛼1Γ(𝛼1+1)
 

Then, The following property is used [21-24]. To use, equations (2.41) and (2.42) are 

multiplied by 
𝐽𝑛+𝛼1(𝜖1𝜏)

𝜏𝛼1
 and 

𝐽𝑛+𝛼2(𝜖2𝜏)

𝜏𝛼2
, respectively and integrate from −∞ to ∞ with 

respect to 𝜏 [17,34-38,49, 54]. 

1

𝜋
∫
𝐽𝑛+𝛼(𝜖𝑞)

𝑞𝛼

∞

−∞

sin 𝜖(𝑞 ∓ 𝛽)

𝑞 ∓ 𝛽
𝑑𝑞 =

𝐽𝑛+𝛼(𝜖𝛽)

𝛽𝛼
(±1)𝑛 

The procedure is given as follows.  
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2𝜋

2𝛼1Γ(𝛼1 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼1𝛽𝑛
𝛼1

∞

𝑛=0

1

𝜋
∫
𝐽𝑛+𝛼1(𝜖1𝜏)

𝜏𝛼1

∞

−∞

∫
𝐽𝑛+𝛼1(𝜖1𝑞)

(𝜖1𝑞)𝛼1

∞

−∞

sin(𝜖1(𝑞 − 𝜏))

𝑞 − 𝜏
 (1

− 𝑞2)𝛼1−
1
2𝑑𝑞𝑑𝜏

= −4𝑖𝜋𝑒𝑖
𝜋
2
𝛼1𝑒−𝑖𝑘𝑙𝑠𝑖𝑛 (𝑠𝑖𝑛휃)𝛼1

1

𝜋
∫
𝐽𝑛+𝛼1(𝜖1𝜏)

𝜏𝛼1

∞

−∞

sin(𝜖1(𝑐𝑜𝑠휃 + 𝜏))

𝑐𝑜𝑠휃 + 𝜏
𝑑𝜏

− Ω1∑(−𝑖)𝑛𝑓𝑛
𝛼2𝛽𝑛

𝛼2
1

𝜋
∫
𝐽𝑛+𝛼1(𝜖1𝜏)

𝜏𝛼1

∞

−∞

∞

𝑛=0

∫
𝐽𝑛+𝛼2(𝜖2𝑞)

(𝜖2𝑞)𝛼2
𝑒𝑖𝑘(2𝑙

√1−𝑞2) sin(𝜖1(𝑞 − 𝜏))

𝑞 − 𝜏
(1

+∞

−∞

− 𝑞2)
𝛼1+𝛼2−1

2 𝑑𝑞𝑑𝜏  

 

2𝜋

Γ(𝛼2 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼2𝛽𝑛
𝛼2

∞

𝑛=0

1

𝜋
∫
𝐽𝑛+𝛼2(𝜖2𝜏)

𝜏𝛼2

∞

−∞

∫
𝐽𝑛+𝛼2(𝜖2𝑞)

(2𝜖2𝑞)𝛼2

∞

−∞

sin(𝑘𝑎2(𝑞 − 𝜏))

𝑞 − 𝜏
 (1

− 𝑞2)𝛼2−
1
2𝑑𝑞𝑑𝜏

= −4𝑖𝜋𝑒𝑖
𝜋
2
𝛼2𝑒+𝑖𝑘𝑙𝑠𝑖𝑛 (𝑠𝑖𝑛휃)𝛼2

1

𝜋
∫
𝐽𝑛+𝛼2(𝜖2𝜏)

𝜏𝛼2

∞

−∞

sin(𝑘𝑎2(𝑐𝑜𝑠휃 + 𝜏))

𝑐𝑜𝑠휃 + 𝜏
𝑑𝜏

− Ω2∑(−𝑖)𝑛𝑓𝑛
𝛼1𝛽𝑛

𝛼1

∞

𝑛=0

1

𝜋
∫
𝐽𝑛+𝛼2(𝜖2𝜏)

𝜏𝛼2

∞

−∞

∫
𝐽𝑛+𝛼1(𝜖1𝑞)

(2𝜖1𝑞)𝛼1
(𝑞)𝑒𝑖𝑘(2𝑙

√1−𝑞2) sin(𝑘𝑎2(𝑞 − 𝜏))

𝑞 − 𝜏
(1

+∞

−∞

− 𝑞2)
𝛼1+𝛼2−1

2 𝑑𝑞𝑑𝜏 

 After all, the final expression for the coupled system of linear algebraic equations is 

given in (2.43) and (2.44), respectively. 

∑(−𝑖)𝑛𝑓𝑛
𝛼1𝛽𝑛

𝛼1𝐶𝑘𝑛
𝛼1 +

(2𝜖1)
𝛼1

(2𝜖2)𝛼2

Γ(𝛼1 + 1)

Γ(𝛼2 + 1)
 𝑒−

𝑖𝜋
2
(𝛼2−𝛼1) 

∞

𝑛=0

∑(−𝑖)𝑛𝑓𝑛
𝛼2𝛽𝑛

𝛼2

∞

𝑛=0

𝐶𝑘𝑛
𝛼1𝛼2

= −2𝑖(−1)𝑘(2𝜖1)
𝛼1Γ(𝛼1 + 1)𝑒

−𝑖𝑘𝑙𝑠𝑖𝑛 (tanθ)𝛼1𝐽𝑘+𝛼1(𝜖1𝑐𝑜𝑠휃)  

(2.43) 

∑(−𝑖)𝑛𝑓𝑛
𝛼2𝛽𝑛

𝛼2𝐶𝑘𝑛
𝛼2 +

(2𝜖2)
𝛼2

(2𝜖1)𝛼1

Γ(𝛼2 + 1)

Γ(𝛼1 + 1)
 𝑒
𝑖𝜋
2
(𝛼2−𝛼1) 

∞

𝑛=0

∑(−𝑖)𝑛𝑓𝑛
𝛼1𝛽𝑛

𝛼1

∞

𝑛=0

𝐶𝑘𝑛
𝛼2𝛼1

= −2𝑖(−1)𝑘(2𝜖2)
𝛼2Γ(𝛼2 + 1)𝑒

+𝑖𝑘𝑙𝑠𝑖𝑛 (tanθ)𝛼2𝐽𝑘+𝛼2(𝜖2𝑐𝑜𝑠휃)  

(2.44) 

where, 



31 

𝐶𝑘𝑛
𝛼𝑗𝛼𝑗 = ∫ 𝐽𝑛+𝛼𝑗(𝜖𝑗𝑞)𝐽𝑘+𝛼𝑗(𝜖𝑗𝑞) 

(1 − 𝑞2)𝛼𝑗−
1
2

𝑞2𝛼𝑗
𝑑𝑞

∞

−∞

, 

𝐶𝑘𝑛
𝛼𝑗𝛼𝑖 = ∫ 𝐽𝑛+𝛼𝑖(𝜖𝑖𝑞)𝐽𝑘+𝛼𝑗(𝜖𝑗𝑞)𝑒

2𝑖𝑘𝑙√1−𝑞2  
(1 − 𝑞2)

𝛼𝑗+𝛼𝑖−1

2

𝑞𝛼𝑗+𝛼𝑖
𝑑𝑞.

∞

−∞

 

To get the physical characteristic of the geometry, the far-field pattern is required. 

After finding the expression for 𝐹
𝑗

1−𝛼𝑗  in (2.40), the radiation pattern of the scattered 

field at the far zone can be calculated by using (2.45) in which the steepest descent 

method for 𝑘𝑎 → ∞ is used [51,52] (see Appendix C). 

𝐸𝑧
𝑠(𝑥, 𝑦) = 𝐴(𝑘𝑟)Φ𝛼(𝜙). (2.45) 

 

Here,             𝐴(𝑘𝑟) = √
2

𝜋𝑘𝑟
𝑒𝑖𝑘𝑟−

𝑖𝜋

4 , and Φ𝛼(𝜙) = Φ1
𝛼1(𝜙) + Φ2

𝛼2(𝜙), 
 

 

where, 

Φ1
𝛼1(𝜙) = −

𝑖

4
𝑒±

𝑖𝜋𝛼1
2 𝐹1

1−𝛼1(𝑐𝑜𝑠𝜙)(sin𝛼𝜙)𝑒−𝑖𝑘𝑙𝑠𝑖𝑛𝜙, 

Φ2
𝛼2(𝜙) = −

𝑖

4
𝑒±

𝑖𝜋𝛼2
2 𝐹2

1−𝛼2(𝑐𝑜𝑠𝜙)(sin𝛼2𝜙)𝑒+𝑖𝑘𝑙𝑠𝑖𝑛𝜙. 

In (2.45), the upper sign is chosen for 𝜙 𝜖 [0, 𝜋], and the lower sign corresponds to  

𝜙 𝜖 [𝜋, 2𝜋] where 𝜙 is the observation angle. 𝐴(𝑘𝑟) is the radial part and Φ𝛼(𝜙) is 

the angular part of the scattered electric field in the far zone [38,54].  The radiation 

Pattern (RP) which is expressed as Φ𝛼(𝜙) in (2.45) is also used for the Total Radar 

Cross Section which can be found as follows (2.46) [53]. 

𝜎𝑡 =
1

4𝜖1
∫ |Φ𝛼|2𝑑𝜙.

2𝜋

0

 

 

(2.46) 

2.4 Single-strip with Fractional Boundary Conditions 

Final investigation in the thesis, the current distribution analysis for the one strip with 

a cylindrical wave excitation for the fractional-order 0.5 is done. Previously, the 

diffraction by a strip with the fractional boundary condition is studied [6,33,34,38].  

The solution approach is the same. Therefore, a brief explanation is given in this 

section. Here, the current distribution, near electric field distribution, bi-static radar 
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cross-section are investigated. Previously, the mathematical analysis and the numerical 

investigation of the diffraction of a line source by the strip with the fractional order 0.5 

has not been investigated yet.  In this section, the mathematical derivation and the 

definition of the radar cross-sections are given [6,33,34,38,54].  

In Figure 2.4, the geometry of the problem is given. As it is seen at the point (𝑥𝑜, 𝑦𝑜), 

there exists a line source 𝐽𝑒 = êz𝐽𝑒𝛿(𝑥 − 𝑥𝑜)𝛿(𝑦 − 𝑦𝑜) where 𝛿 is the Dirac 

distribution, êz is the unit vector along the z-direction, and 𝐽𝑒 is a constant amplitude 

for electric the current density. The problem is two-dimensional. The strip with 2a and 

is located on the plane 𝑦 = 0. The strip has an infinite extension along the z-axis and 

infinitesimal height along the y-axis.   

The problem is to investigate what is the current distribution on the surface of the strip, 

the near electric field, and the bi-static radar cross-section which has not been studied 

yet. A two-dimensional strip of width 2a on the plane y = 0 is located.  The strip along 

the z-axis is infinite. The source of the cylindrical wave is located at the point (𝑥𝑜, 𝑦𝑜) 

as shown in Figure 2.4. The time dependency is given as 𝑒−𝑖𝜔𝑡  and throughout the 

problem, it will be omitted. Apart from the previous problems, in this problem, the 

incidence wave is a cylindrical wave. Therefore, also the incidence wave should be 

expressed in terms of the exponential function to take the fractional derivative more 

easily for the further procedure [6,33,34,38]. 

 

Figure 2.4 :  The geometry of the problem. 

The incidence electric field �⃗⃗�𝑧
𝑖  mathematically can be represented as (2.47) under the 

condition of 𝑒−𝑖𝜔𝑡  time dependency [6,33,34,38,51]. 

�⃗⃗�𝑧
𝑖(𝑥, 𝑦) = −𝐽𝑒⃗⃗⃗ ⃗

휂0𝑘

4
𝐻0
(1) (𝑘√(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2)   

(2.47) 
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Here, 𝐻0
(1)(𝑘х) stands for the Hankel function of the first kind and zero-order, 휂0 

corresponds to the impedance of free space, and 𝑘 =
2𝜋

𝜆
  is the wavenumber. Then, the 

total electric field can be represented as a superposition of the incidence and the 

scattered electric fields as given in (2.48). 

�⃗⃗�𝑧 = �⃗⃗�𝑧
𝑖 + �⃗⃗�𝑧

𝑠  (2.48) 

After having (2), there are two main steps to be achieved. The first is to express the 

scattered field mathematically and then, to apply the fractional boundary condition to 

obtain an equation to solve with mathematical techniques. As shown previously, the 

scattered electric field can be expressed as the convolution of the required Green’s 

function with the induced current density on the strip as (2.49) [6,33,34,38,54]. 

𝐸𝑧
𝑠(𝑥, 𝑦) = ∫ 𝑓1−𝛼(𝑥′)𝐺𝛼(𝑥 − 𝑥′, 𝑦)𝑑𝑥′

∞

−∞

  

 

(2.49) 

 

Here, 𝑓1−𝜈(𝑥′) is  called the fractional current density existing only on the strip and 

𝐺𝜈(𝑥) is the fractional Green’s function which has the following form [6,33,34,38]. 

As explained previously, the main motivation is to express everything in terms of 

exponential functions. Therefore, the spectral representation of the Hankel function 

will be employed to apply the fractional boundary condition easily.  

𝐺𝛼(𝑥 − 𝑥′, 𝑦) = −
𝑖

4
𝔇𝑘𝑦
𝛼 𝐻0

(1) (𝑘√(𝑥 − 𝑥′)2 + 𝑦2)  
(2.50) 

 where, 

𝐻0
(1) (𝑘√(𝑥 − 𝑥′)2 + 𝑦2) =

1

𝜋
∫ 𝑒𝑖𝑘((𝑥−𝑥

′)𝑞+|𝑦|√1−𝑞2)
𝑑𝑞

√1 − 𝑞2

∞

−∞

 

Note that, 𝐼𝑚{√1 − 𝛼2 > 0} is assumed. 𝐼𝑚 is the imaginary operator which gives the 

imaginary part of the function of a function. By using (2.49) in (2.50) and taking into 

account the Fourier transform, the scattered field is obtained as follows. 

 𝐸𝑧
𝑠(𝑥, 𝑦) = −𝑖

𝑒𝑖
𝜋
2
𝛼

4𝜋
∫ 𝐹1−𝛼(𝜏)𝑒𝑖𝑘[𝜏𝑥+𝑦√1−𝜏

2](1 − 𝜏2)
𝛼−1
2 𝑑𝜏

∞

−∞

  

 

(2.51) 
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where, 

𝐹1−𝛼(𝜏) = ∫ 𝑓1−𝛼(𝜉)𝑒−𝑖 𝜏𝜉𝑑𝜉
1

−1
, 𝑓1−𝛼(𝜉) = 𝑎𝑓1−𝛼(𝑎𝜉) 

휀 = 𝑘𝑎,   𝜉 =
𝑥

𝑎
 ,     𝑓1−𝛼(𝜉) =

2𝜋
∫ 𝐹1−𝛼(𝜏)𝑒𝑖 𝜏𝜉𝑑𝜏
∞

−∞
 

Here, 𝐹1−𝛼(𝜏) is the Fourier transform of 𝑓1−𝛼(𝜉) which is the normalized current 

density between 𝑥 ∈ [−1, 1] on the strip. As mentioned above, the second step is to 

apply the fractional boundary condition after having the mathematical expression for 

each component of the total electric fields. In (2.52), the fractional boundary condition 

is given [6,33,34,38]. 

𝔇𝑘𝑦
𝛼 𝐸𝑧(𝑥, 𝑦)|𝑦=±0

= 0  (2.52) 

where,  𝑥,   − 𝑎 < 𝑥 < 𝑎, 𝑘𝑦 is a dimensionless parameter and 𝛼 is a fractional-order 

(FO). 

After applying FBC on the surface of the strip for the total tangential electric field, the 

following integral equation (IE) is obtained. 

−𝑖
𝑒𝑖𝜋𝛼

4𝜋
∫ 𝐹1−𝛼(𝛼)𝑒𝑖𝑘𝜏𝑥(1 − 𝜏2)𝛼−1 2⁄ 𝑑𝜏

∞

−∞

=

𝐽𝑒
휂0𝑘

4𝜋
𝑒𝑖
𝜋
2
𝛼 ∫ 𝑒𝑖𝑘(

(𝑥−𝑥0)𝜏−𝑦0√1−𝜏2)(1 − 𝜏2)
𝛼−1
2 𝑑𝜏

∞

−∞

 

 

 

 

(2.53) 

 

To obtain a general solution for an arbitrary fractional order, both sides of (2.53) with 

𝑒−𝑖𝑘𝑥𝛽 needs to be multiplied and then, an integration from – 𝑎 to +𝑎 with respect to 

𝑥 variable for this new expression is done. Then, (2.53) is converted into (2.54). Then, 

the current distribution is expressed as the summation of the Gegenbauer polynomials 

and the integral equation is converted into a system of linear algebraic equations to 

solve. 

∫ 𝐹1−𝛼(𝜏)
sin ε(𝜏 − 𝛽)

𝜏 − 𝛽
(1 − 𝜏2)𝛼−

1
2𝑑𝜏 =  

∞

−∞

−4𝑖𝐵𝜋𝑒−𝑖
𝜋
2
𝛼 ∫ 𝑒𝑖𝑘[−𝑥0𝜏+𝑦0√1−𝜏

2]
sinε(𝜏 − 𝛽)

𝜏 − 𝛽
(1 − 𝜏2)

𝛼−1
2 𝑑𝜏

∞

−∞

 

 

 

 

(2.54) 

 

where 𝐵 = −𝐽𝑒
0𝑘

4𝜋
. 
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The investigation for this thesis only focuses on the case where the fractional order is 

equal to 0.5. Apart from (2.54), for the fractional-order 0.5 case, the left-hand side of 

(2.53) becomes inverse Fourier Transform. Then, the fractional current density 

becomes as (2.55). 

𝑓0.5(𝜉) = −𝑖2휀𝐵𝑒∓𝑖
𝜋
4 ∫ 𝑒𝑖[( 𝜏𝜉−𝑘𝑥0𝜏)+𝑘𝑦0√1−𝜏

2](1 − 𝜏2)−
1
4𝑑𝜏 

∞

−∞

 

(2.55) 

and, from (2.54), the Fourier Transform of the current density becomes (2.56) under 

the condition of 𝑘𝑎 ≫ 1 because  the term 
sin (𝛽−𝜏)

(𝛽−𝜏)
 behaves as a Dirac distribution for 

high values of 𝑘𝑎. 

𝐹0.5(𝜏) ≅ −𝑖4𝐵𝑒∓𝑖
𝜋
4 ∫

sin 휀(𝛽 − 𝜏)

(𝛽 − 𝜏)
𝑒𝑖[

(−𝑘𝑥0𝛽)+𝑘𝑦0√1−𝛽2](1 − 𝛽2)−
1
4𝑑𝛽

∞

−∞

 

 

(2.56) 

 

Equations (2.55) are the special case where the normalized current density 𝑓0.5 and 

the Fourier transform of the current density 𝐹0.5 have been found analytically. Note 

that, by the steepest descent method [51], (2.56) can be evaluated for the large values 

of 𝑘𝜌0. To do this, the Cartesian coordinate system (𝑥, 𝑦) is converted into a cylindrical 

coordinate system as (𝜌𝑐𝑜𝑠𝜑, 𝜌𝑠𝑖𝑛𝜑). Then, (2.57) is obtained for 𝑘𝜌0 → ∞ (see 

Appendix C). 

𝐹0.5(𝛼) = −𝑖4𝐵𝑒∓𝑖
𝜋
4√

2𝜋

𝑘𝜌0
√𝑠𝑖𝑛휃0

sin (𝜖(𝑐𝑜𝑠휃0 + 𝛼))

(𝑐𝑜𝑠휃0 + 𝛼)
𝑒𝑖𝑘𝜌0−

𝑖𝜋
4   

(2.57) 

In order to solve IE (2.56) for any fractional order, discretization is required. In this 

way, the integral equation is converted into SLAE. To do so, the fractional current 

density is expressed as (see Appendix A) [17,38,49,50]: 

    𝑓1−𝛼(𝜉) = (1 − 𝜉2)𝛼−
1
2∑𝑓𝑛

𝛼
𝐶𝑛
𝛼(𝜉)

𝛼

∞

𝑛=0

  
(2.58) 

 

 where, 𝐶𝑛
𝛼(𝜉) stands for Gegenbauer polynomials. At the edges, the edge condition 

needs to be satisfied. Therefore, the weighing (1 − 𝜉2)𝛼−
1

2 is inserted in (2.58). The 

behaviors of the current should act as [6,33,34,38]: 
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    𝑓1−𝛼(𝜉) = 𝑂 ((1 − 𝜉2)𝛼−
1
2) , 𝜉 → ±1  

(2.59) 

The Fourier Transform of (2.58), 𝐹1−𝛼(𝜏) can be obtained as (see Appendix B)[50,54].  

𝐹1−𝛼(𝜏) =
2𝜋

Γ(𝛼 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼𝛽𝑛
𝛼
𝒥𝑛+𝛼(휀𝜏)

(2휀𝜏)𝛼
 

∞

𝑛=0

 
(2.60) 

 

Here, 𝛽𝑛
𝛼 = Γ (n +2 𝛼) / Γ (n + 1) and 𝒥𝑛+𝛼(휀𝜏) stands for the Bessel functions. If 

(2.60) is put into IE (2.54), one can obtain a system of linear algebraic equations 

(SLAE). Then, by inversion, the unknown coefficients 𝑓𝑛
𝛼 can be obtained.  

∑(−𝑖)𝑛𝑓𝑛
𝛼𝛽𝑛

𝛼𝐶𝑚𝑛
𝛼 = 𝛾𝑚

𝛼

∞

𝑛=0

 
(2.61) 

Here, 

𝐶𝑚𝑛
𝛼 = ∫ 𝒥𝑛+𝛼(휀𝜏)𝒥𝑚+𝛼(휀𝜏)(1 − 𝜏

2)𝛼−
1
2
𝑑𝜏

𝜏2𝛼

∞

−∞

 

and 

𝛾𝑚
𝛼 = Ω ∫

 𝒥𝑚+𝛼(휀𝜏)

𝜏𝛼
𝑒𝑖[−𝑘𝑥0𝜏+𝑘𝑦0√1−𝜏

2](1 − 𝜏2)
𝛼−1
2  𝑑𝜏

∞

−∞

 

 

where Ω =
𝑖

2𝜋
Γ(𝛼 + 1)𝑒−𝑖

𝜋

2
𝛼

 

Then, the far-field expression of the scattered field can be obtained by assuming  k𝜌→ 

∞. This time, the steepest descent method is utilized  to derive the expression for the 

far-field 𝐸𝑧
𝑠(𝜌, φ) as follows [6,33,34,38,51]. Note that, 𝜌 = √𝑥2 + 𝑦2 and 𝜑 is the 

angle between  the ê𝜌 unit vector along in 𝜌 and ê𝑥. 

𝐸𝑧
𝑠(𝜌, φ) = 𝐴(𝑘𝜌)Φ𝛼(φ)  (2.62) 

where, 

𝐴(𝑘𝜌) = √
2

𝜋𝑘𝜌
𝑒𝑖𝑘𝜌−𝑖𝜋/4 

 

Φ0.5(φ) = −
𝑖

4
(±𝑖)0.5𝐹0.5(𝑐𝑜𝑠φ)√𝑠𝑖𝑛φ  
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Here, 𝐴(𝑘𝜌) and Φ𝛼(φ) stand for the radial and the angular parts of the scattered 

electric field at the far zone, respectively. Angular variation of the field is the main 

concern of the scattered field. Therefore, Φ𝛼(φ) is called the scattered radiation 

pattern. For (2.62), (+) sign is for 0 < φ < 𝜋, ), and (-) sign is for 𝜋 < φ < 2𝜋 [38,54].   

As given in [9, 10], the fractional-order is related to the impedance. Affiliation between 

the fractional-order 𝛼 and the impedance 휂𝛼 can be obtained for the normal incidence 

plane wave as shown in (2.63).  

𝛼 =
1

𝑖𝜋
𝑙𝑛
1 − 휂𝛼
1 + 휂𝛼

,    휂𝛼 =
1

𝑖
tan (

𝜋𝛼

2
) 

(2.63) 

 

Here, it should be highlighted that this result is derived for the plane wae as an 

incidence wave. On the other hand, for the large values of 𝑘𝜌0,  it is a valid 

approximation to utilize the formula. Note that, for the values of the fractional-order 

0 < 𝛼 < 1, 휂𝛼 is always pure imaginary. The value 𝛼 = 0 stands for the impedance 휂𝛼 

= 0 (PEC) and ν = 1 is equal to to 휂𝛼= −𝑖∞ (PMC). For the fractional-order between 

(0,1), the impedance has pure imaginary values between 0 and − 𝑖∞. For a special case,  

under the condition of 𝑘𝜌0 → ∞ and 𝛼 = 0.5, the strip’s impedance becomes – 𝑖 

[6,33,34,38]. 

Finally, to understand scattering phenomena for a strip, radar cross-sections (RCS) are 

investigated. In this thesis, bi-static radar cross-section (𝜎2d) of a strip is numerically 

investigated. In order to calculate radar cross-sections, (2.64) is used for the bi-static 

and the monostatic radar cross-section, respectively [33,34]. 

𝜎2d
λ
(φ) =

2

π
|Φ(φ)|2  

(2.64) 
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3. NUMERICAL RESULTS 

3.1 Purpose of Analysis 

In this chapter, the numerical results are presented. Here, depending on the problem, 

radar cross-sections, radiation patterns, electric field distributions, current distribution, 

power flow diagrams are given. First, the results of diffraction by double strips with 

the same boundary conditions, then, diffraction by double strips with different 

boundary conditions, and finally line source diffraction by single strip for the 

fractional-order 0.5 cases are given. For calculations, the MatLab simulation tool is 

employed whereas, for the illustrations, both LAE Service and MatLab Simulation 

Tools are utilized. Expressing the current density on the obstacles in terms of the 

Gegenbauer polynomials with the weighting factor (1 − 𝜉2)𝛼−
1

2  leads to having fastly 

converging series to the actual values of the current density found by analytical or 

numerical methods for the same problem because the edge condition is satisfied with 

that factor by default [1,5,17,49]. In this study, the summations are calculated up to 

𝜖 + 5 values. For higher accuracy demand, this value can be increased. For more than 

95% accuracy, the predefined value 𝜖 + 5 is enough. Note that 𝜖 is equal to 𝑘𝑎 which 

inherently, gives the information about the relative dimension of the scattered with 

respect to the wavelength of the incidence wave (i.e. electrical length) [8]. 

I the thesis, the hybrid method is employed for the diffraction problem. This method 

is called also, the numerical-analytical method which stems from the combination of 

the analytical and numerical methods. The first steps of the method start with analytical 

manipulations. The field components are expressed as analytical forms as summations 

or integrals regarding the geometry. Then, by the boundary conditions, the problem is 

reduced to a boundary value problem. After that, the initial operator equation is 

converted to an infinite system of a linear algebraic equation which is truncated for the 

numerical calculation as expected by introducing the orthogonal polynomials 

concerning the geometry. Here, the important point is that obtained SLAE utilizing 

analytical manipulations is much better than full numerical approaches for computing 
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due to the requirement of less size of the inverted matrix and highly converting trends 

in the summations or integrals standing for the field components [7,24,34].  

3.2 Double-strips with the Same Boundary Conditions 

For the double strip problems, the resonance characteristics and radiation mechanism 

is investigated via total radar cross-section analysis. In Figure 3.1, the geometry of the 

problem is given. 

 

Figure 3.1 : The geometry of the problem. 

To observe the resonances for the structure, the total radar cross-section is investigated. 

The peaks at the total radar cross-section calculation show the resonances where the 

total field is mainly captured between the strips. For different fractional-order, the 

values of the  For Figure 3.2, the Total Radar Cross Section (𝜎𝑇) is obtained for the 

strips with the same lengths.  The total radar cross-section is drawn with respect to 

𝜖1 = 𝑘𝑎1 for different Fractional orders (𝛼 = 0.5, 0.75, 1) (normal incidence). As it is 

seen in Figure 3.2, the strips have resonance frequencies for all fractional-order values. 

For different values of the fractional-order combinations, the resonance values differ. 

Therefore, TRCS investigation is very crucial for resonator-like structures in order to 

observe resonance behavior for different boundary conditions. Note that, for the 

parallel plates, there exists an analytical expression to obtain the resonant frequencies. 

The resonant frequencies can be found for such quasi – resonators as 𝑘𝑙 ≈
𝑛𝜋

2
 (n=1, 2, 

3, …) [5,35,37,48,51] Then, the first and second resonance wavenumbers are 
𝜋

2
 and 𝜋 

for the theoretical formulation. Note that, there exists a deviation between the 

numerical and theoretical results. The deviation from the analytical expression with 

the fractional approach is because the analytical expression is obtained when the width 

of the strip is much  larger than the wavelength of the incidence wave (𝑎 ≫ 𝜆 =
2𝜋

𝑘
). 
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Figure 3.2 : 𝜎𝑇 when 𝑎 = 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 휃 =
𝜋

2
  for 𝛼 = 0.5, 0.75, 1 . 

 

Figure 3.3 : 𝜎𝑇  when 𝑎 = 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 1 and 휃 =
𝜋

6
,
𝜋

4
,
𝜋

3
,
𝜋

2
. 

In Figure 3.3, for the different angles of incidence, the TRCS is calculated. Except for 

휃 =
𝜋

3
, the resonances are at 𝑘𝑎 ≈ 1.9 and 𝑘𝑎 ≈ 3.4 as in Figure 3.2. Note that, the 

highest value in Figure 3.3 stands for 휃 =
𝜋

2
. 

 

  

 

 

 

Figure 3.4 : 𝜎𝑇 when 𝑎 = 𝑎1 = 𝑎2 = 1, 𝑙 = 0.5, 𝛼 = 1 for 휃 =
𝜋

6
,
𝜋

4
,
𝜋

3
,
𝜋

2
. 

 

 

 

 

𝛼 = 1 
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Figure 3.5 : 𝜎𝑇 when 𝑎 = 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 0.5 and 휃 =
𝜋

6
,
𝜋

4
,
𝜋

3
,
𝜋

2
. 

In Figure 3.4, the distance between the strips (𝑙) is decreased in Figure 3.3. The 

resonance characteristic has changed. The resonance at 𝑘𝑎 ≈ 1.9 is disappeared. In 

Figure 3.5, the fractional-order is equal to 0.5. This yields to have greater resonance 

values for the same parameters. As a common comment, the higher resonance 

characteristics can be obtained by normal incidence (900) regarding all figures above 

in this section. In the following figures, the electric field distributions are investigated 

for the resonant and non-resonant frequencies with different parameters [5,35,37].  

Figure 3.6 stands for the total field 𝐸𝑧  distribution. This field is obtained for the 

resonant value (𝑘 = 3.4) and as it is seen between the strips, there are high field values 

between the strips even though the source is not located between the strips. The high 

field values are inside the strip due to resonance. Inside the strips, there exist standing 

waves. Figure 3.7 is for the total field 𝐸𝑧 distribution at the first resonance, (𝑘 = 1.9). 

As it is seen, the field maximum in Figure 3.7 is higher than in Figure 3.6 

(approximately 6 versus 4) as it was expected from Figure 3.3. When Figures 3.6 and 

3.7 are compared, it can be easily noticed that different modes are excited between the 

strips. Figure 3.7 stands for the exciting first mode whereas Figure 3.6 corresponds to 

the second mode for this geometry. In these figures, it is easily noticed that the 

boundary conditions are satisfied. The total field’s normal derivative with respect to 

the normal of the strip surface is zero [5,35,37].  
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Figure 3.6 :  Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1, 𝑙 = 1,  𝛼 = 1, 𝑘𝑎1 = 3.4, 휃 =
𝜋

2
. 

 

Figure 3.7 : Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 1, 𝑘𝑎1 = 1.9, 휃 =
𝜋

2
. 

Figure 3.8 represents the total field 𝐸𝑧  distribution at a non-resonant frequency(𝑘 =

1.5). As it is seen, the high field values are not observed inside the strips because the 

electric field is not accumulated between the strips.  
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Figure 3.8 : Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 1, 𝑘𝑎1 = 1.5, 휃 =
𝜋

2
. 

In Figures 3.9 and 3.10, the total field 𝐸𝑧  distribution for the intermediate fractional 

order is calculated at the resonance frequency. As it is noticed, the field maximum is 

9 which is higher than Figure 3.6. In Figure 3.10, the field maximum reaches 10 for 

α=0.75. 

 

Figure 3.9 : Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 0.5, 𝑘𝑎1 = 3.4, 휃 =
𝜋

2
. 
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Figure 3.10 : Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 0.75, 𝑘𝑎1 = 3.4, 휃 =
𝜋

2
. 

For the incidence angle θ=π/3 instead of θ=π/2 (oblique incidence), the result is given 

in Figure 3.11. The resonant field inside the strip has a smaller amplitude with respect 

to the normal incidence case as given in Figure 3.10. If we change again the incident 

angle and take it as θ=π/4, the following result is obtained. The resonance disappears. 

Inside the strips, there are no high field values and standing waves between the strips. 

In Figure 3.12, the total electric field distribution is provided. 

 

Figure 3.11 : Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1,  𝑙 = 1, 𝛼 = 0.75, 𝑘𝑎1 = 3.4, 휃 =
𝜋

3
. 
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Figure 3.12 : Total Field 𝐸𝑧 , 𝑎1 = 𝑎2 = 1, 𝑙 = 1, 𝛼 = 0.75, 𝑘𝑎1 = 3.4, 휃 =
𝜋

4
. 

After analyzing the equal length strips, it is better to analyze for 𝑎1 = 3; 𝑎2 = 4. 

 

 

 

 

 

Figure 3.13 : 𝜎𝑇 for 𝑎 = 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 휃 =
𝜋

2
. 

 

 

 

 

Figure 3.14 : 𝜎𝑇 for 𝑎 = 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 휃 =
𝜋

4
. 

In Figure 3.14, the incidence angle is changed to 휃 =
𝜋

4
. In this case, the resonance 

behavior change and the resonance wavenumber are broadened.  

After having the TRCS values, it is better to investigate the total field 𝐸𝑧 distribution 

at the resonance frequencies. Figure 3.15 illustrates the total field distribution at the 
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second resonance wavenumber. The field maximum is more than 70. The total field 

dominates inside the strips. 

 

Figure 3.15 : Total Field 𝐸𝑧 ,  𝑎1 = 3, 𝑎2 = 4,  𝑙 = 1, 𝛼 = 0.25, 𝑘𝑎1 = 9.5.  

For the fractional-order 𝛼 = 0.75, the total field 𝐸𝑧 distribution is given in Figure 3.16. 

 

Figure 3.16 : Total Field 𝐸𝑧 , 𝑎1 = 3, 𝑎2 = 4,  𝑙 = 1, 𝛼 = 0.75, 𝑘𝑎1 = 9.5. 

The fields characteristics of Figures 3.10 and 3.16 are the same. The only difference is 

the high field amplitudes in this case. If the incidence angle is changed and taken as 

휃 =
𝜋

3
, the total field distribution gets the following form as Figure 3.17. Still, there is 

a resonance inside the strip with smaller field values. 
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Figure 3.17 : Total Field 𝐸𝑧 , 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 𝛼 = 0.75, 𝑘𝑎1 = 9, 휃 =
𝜋

3
. 

 

Figure 3.18 : Total Field 𝐸𝑧 , 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 𝛼 = 0.01, 𝑘𝑎1 = 9.5, 휃 =
𝜋

2
. 

Figure 3.18 stands for the total field 𝐸𝑧  distribution for the fractional-order 𝛼 = 0.01. 

This fractional-order is very close to the perfect electric conductor. The maximum field 

value is 3.5 which is smaller than 𝛼 = 0.25 and 𝛼 = 0.75 cases considered above. As 

it is seen, below the strips, there exists a shadow region and inside the strips, there is 

a resonance. 

In Figures 3.19-3.22, the TRCS for different values of the fractional order and the 

distance between the strip are investigated. As expected, the resonance for the closer 

distance between the strips is at the higher values of 𝑘𝑎. On the other hand, for this 

range of 𝑘𝑎, more numbers of resonance values exist for the larger distance between 
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the strips. As a general comment, the resonance has the highest value when the 

incidence wave is from the normal [5,35,37].  

 

Figure 3.19 : 𝜎𝑇 for 𝑎1 = 1, 𝑎2 = 2, 𝑙 = 0.5, 𝛼 = 1. 

 

Figure 3.20 : 𝜎𝑇 for 𝑎1 = 1, 𝑎2 = 2, 𝑙 = 1, 𝛼 = 1. 

 

Figure 3.21 : 𝜎𝑇 for 𝑎1 = 1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 = 0.5. 
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Figure 3.22 : 𝜎𝑇 for 𝑎1 = 1, 𝑎2 = 1, 𝑙 = 1, 𝛼 = 0.5. 

In Figures 3.23 and 3.24, the total electric field values are given. In Figure 3.23, a 

resonance is observed. The field values are greater between the strips compared to the 

outside. Notice that, the fractional-order is closer to the PMC case. The boundary 

condition is similar to the Neumann boundary condition because the fractional-order 

is much closer to 1 which stands for the Neumann boundary condition.  

 

Figure 3.23 : Total Field 𝐸𝑧 , 𝑎1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 = 0.75, 𝑘 = 3.4. 

In Figure 3.24, a resonance is observed. The field values are greater between the strips 

compared to the outside. Notice that, the fractional-order corresponds to a PMC 

surface. 
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Figure 3.24 : Total Field 𝐸𝑧 , 𝑎1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 = 1, 𝑘 = 3.4. 

In Figures 3.25-3.27, normalized radiation patterns for different configurations are 

presented. In Figures 3.25 and 3.27, there is a normal incidence. For Figure 3.26, the 

incidence angle is 450. 

 

Figure 3.25 : RP for 𝑎1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 = 1 𝑘 = 3. 

 

Figure 3.26 : RP for 𝑎1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 = 1 𝑘 = 3. 
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Figure 3.27 : RP for 𝑎1, 𝑎2 = 2, 𝑙 = 0.5, 𝛼 = 0.5, 𝑘 = 3. 

Finally, in Figures 3.28 - 3.34, the distribution of the Poynting vectors in the vicinity 

of the strips for different scenarios is given by taking into account (13). Note that, the 

Poynting vectors are calculated by total fields. In Figure 3.28, the surfaces of the strips 

behave as PMC (𝛼 = 1). In this case, energy flow penetrates through the strips 

whereas, in Figure 3.29, the energy goes around the strips since the boundary condition 

in the figure corresponds to the Dirichlet boundary condition. In Figure 3.29, the power 

behind the strips is low as expected because the strips create a shadow region behind 

when the strips behave as PEC [5,35,37] 

 

Figure 3.28 : Poynting Vector Distribution for 𝑎1 = 1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 =

      1, 𝑘𝑎1 = 1, 휃 =
𝜋

2
. 



53 

 

Figure 3.29 : Poynting Vector Distribution for 𝑎1 = 1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 =

            0.01, 𝑘𝑎1 = 1, 휃 =
𝜋

2
. 

Figures 30 and 31 stand for the Poynting vector distribution in the cases of 𝛼 = 0.5  

and  𝛼 = 0.75  respectively. In Figure 3.30, energy both goes around and penetrates 

through the strips from both sides. In the case of Figure 3.31, it is close to PMC due to 

having fractional-order 𝛼 = 0.75, so the flow of the energy resembles Figure 3.28. 

 

Figure 3.30 : Poynting Vector Distribution for 𝑎1 = 1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 =

          0.5, 𝑘𝑎1 = 1, 휃 =
𝜋

2
. 
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Figure 3.31 : Poynting Vector Distribution for 𝑎1 = 1, 𝑎2 = 1, 𝑙 = 0.5, 𝛼 =

            0.75, 𝑘𝑎1 = 1, 휃 =
𝜋

2
. 

The Poynting vector distributions are also obtained while having different strip 

dimensions and distances between. Figures 3.32 and 3.33 illustrate the Poynting vector 

distribution when 𝑎1 = 3, 𝑎2 = 4 for 𝛼 = 1  and  𝛼 = 0.01, respectively. In Figures 

3.32 and 3.33, the propagation cannot penetrate between the strips much [5,35,37]. 

 

Figure 3.32 : Poynting Vector Distribution for 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 𝛼 =

     1, 𝑘𝑎1, 3, 휃 =
𝜋

2
. 
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Figure 3.33 : Poynting Vector Distribution for 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 𝛼 =

                0.01, 𝑘𝑎1 = 3, 휃 =
𝜋

2
 

The Poynting vector distribution when 𝑎1 = 3, 𝑎2 = 4 for 𝛼 = 0.5 is given in Figure 

3.34.  Here, vortexes on the upper part are observed. 

 

Figure 3.34 : Poynting Vector Distribution for 𝑎1 = 3, 𝑎2 = 4, 𝑙 = 1, 𝛼 =

                0.5, 𝑘𝑎1 = 3, 휃 =
𝜋

2
.  

3.3 Double-strips with Different Boundary Conditions  

In this section, the computational results of the diffraction by double strips with 

variable fractional boundary conditions are investigated. Here, the comparison with 

previous findings and Method of Moments is done for the total radar cross-section, 

field distributions, and radiation patterns. Apart from the previous section, here, the 

radiation patterns for different combinations of the parameters are presented. This 

problem is a more general version of the previous problem because, in this problem, 
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the boundary condition for each strip can differ [35]. In Figure 3.35, the geometry of 

the problem is given 

 

Figure 3.35 : The geometry of the problem. 

For different parameters such as the fractional order, 𝑎1, 𝑎2, 𝑙 and 𝑘, the investigations 

are done on the total near electric field, the far-field radiation pattern, and the total 

radar cross-section. For the total radar cross-section, the figures are drawn with respect 

to 𝑘𝑎1. In Figure 3.36, TRCS is obtained when the fractional orders are 𝛼1 = 1, 𝛼2 =

0.01. In this case, the upper strip satisfies the Neumann boundary condition for the 

electric field, which yields that the surface, behaves as the perfect magnetic conductor 

and the lower one behaves as the perfect electric conductor. Note that, in all figures, 

the normal incidence cases are studied. 

 

Figure 3.36 : Total radar cross section for 𝑎1 = 1, a2 = 1, l = 1, 𝛼1 = 1, 𝛼2 = 0.01. 

From Figure 3.36, there are two resonance peaks in the given frequency range. In the 

following figure, the near and the far-field distributions for the first resonant peaks are 

given. As it can be seen from Figure 3.37, the boundary conditions for the electric field 

are satisfied. For the upper strips, the Neumann boundary condition is satisfied and the 

field’s derivative becomes zero while approaching the strip whereas, for the lower 
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strip, the Dirichlet boundary condition is satisfied and the field itself becomes zero 

while approaching the strip. Due to the resonance, the high amplitude electric field 

values occur around the upper strip.  The reason why field distribution is not 

symmetrical is due to having two strips with different fraction orders. Note that, below 

the lower strip, there is a shadow region as expected because the lower strip 

corresponds to PEC material [35].  

 

Figure 3.37 : Total near electric field and radiation pattern (RP) for a1 = 1, a2 =
                                                                      1, l = 1, 𝛼1 = 1, 𝛼2 = 0.01 at the first resonance k = 1.2. 

In Figure 3.38, the near and the far electric fields for the second resonance are 

illustrated (for a1 = 1, a2 = 1, l = 1, 𝛼1 = 1, 𝛼2 = 0.01). As it is seen from the far-

field pattern, most of the scattered field is radiated below with a small back lobe. The 

comment on Figures 3.37 and 3.38 may be as the following. The radiation pattern is 

the far-field pattern that corresponds to the scattered field. The scattered field is 

directed through one direction mainly with small back lobes [35].  

 

Figure 3.38 : Total near electric field and radiation pattern (RP at the second           

aaaaresonance k = 2.6. 
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Then, the fractional orders are flipped as 𝛼1 = 0.01, 𝛼2 = 1, respectively. In this case, 

the upper strip behaves as PEC and the lower strip is made up of PMC. Note that, the 

incidence angle is still the same. The corresponding TRCS and field distributions are 

given in Figures 3.39 and 3.40, respectively. 

 

Figure 3.39 : Total radar cross-section for 𝑎1 = 1, a2 = 1, l = 1, 𝛼1 = 0.01, 𝛼2 = 1. 

 The results are very different compared to Figure 3.36.  Here, only one sharp 

resonance exists in the 𝑘𝑎 range. A different result is expected because for this 

configuration, the upper strip is PEC and the field cannot penetrate through the strip. 

This case yields the lower field values between the strips. Furthermore, the lower strip 

satisfied the Neumann boundary condition. That is why the field between the strips 

has a lower amplitude distribution [35].   

The resonance phenomena, in general, are related to the multiple reflections and 

diffraction of the electromagnetic wave between the strips. There exist the values of 

the frequencies for which the reflected and diffracted waves are in-phase and it 

increases the field value inside the strips from the superposition principle. This leads 

to having resonance peaks. The phase of the diffracted and reflected waves is different 

for different materials. Therefore, there is a difference between the TRCS graphs 

(Figure 3.36 and Figure 3.39). Figure 3.36 and Figure 3.39 illustrate quite different 

results because the incidence wave comes from above in both cases. If the angle of 

incidence is such that, it comes from below, the results would be the same but in a 

different order. In Figure 3.40, the near and far-field distributions of the electric field 

at the resonant wavenumber are obtained. Note that, the radiation pattern is directed 

mainly through the upper region (for a1 = 1, a2 = 1, l = 1, 𝛼1 = 0.01, 𝛼2 = 1) [35]. 
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Figure 3.40 : Total near electric field and radiation pattern (RP) at the first     

aaaaaaaresonance k = 2.64. 

After analyzing and comparing the strips with PEC or PMC properties and their 

location dependency, the case with 𝛼1 = 0.5, 𝛼2 = 1 is studied. The corresponding 

TRCS is illustrated in Figure 3.41. 

 

Figure 3.41 : Total radar cross section for a1 = 1, a2 = 1, l = 1,𝛼1 = 0.5, 𝛼2 = 1. 

In Figure 3.41, there are two resonances in the range. At the first and the second 

resonances, the near and the far electric field distributions are given in Figure 3.42 and 

Figure 3.43, respectively (for a1 = 1, a2 = 1, l = 1,𝛼1 = 0.5, 𝛼2 = 1). Note that, for 

the PMC case, the Neumann Boundary condition is satisfied (lower strip) and for the 

upper strip, the boundary condition shows the intermediate case for the Dirichlet and 

the Neumann conditions [37].   
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Figure 3.42 : Total near electric field and radiation pattern (RP) at the first 

aaaaaaaresonance k = 1.35. 

 

Figure 3.43 : Total near electric field and radiation pattern (RP) at the second 

aaresonance k = 3. 

Here, the fractional orders are 𝛼1 = 1, 𝛼2 = 0.5, respectively. The resultant TRCS is 

illustrated in Figure 3.44. 

 

Figure 3.44 : Total radar cross section for a1 = 1, a2 = 1, l = 1, 𝛼1 = 1, 𝛼2 = 0.5. 
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In Figure 3.44, there are two noticeable resonances in the interval. However, they are 

sharper and narrower compared to previous cases. The resonator with the sharp 

resonance characteristics may have an application in high-quality factor resonators for 

a narrow band apparatus [37]. Note that, also the TRCS value has a quite higher value 

compared to previous outcomes. Again, it can be used as a high-quality factor 

resonator for this wavenumber range. The corresponding near and far electric field 

distributions on the first resonance are given in Figure 3.45 (for a1 = 1, a2 = 1, l =

1, 𝛼1 = 1, 𝛼2 = 0.5).  

 

Figure 3.45 : Total near electric field and radiation pattern (RP) at the first 

aaaaaaaresonance k = 2.23. 

 

Figure 3.46 : Total near electric field and radiation pattern (RP) at the second 

aaaaaresonance k = 3.72. 

Now, it is better to investigate the second resonance for the same configuration above. 

The near and the far electric field distributions for the second case are illustrated in 

Figure 3.46 (for a1 = 1, a2 = 1, l = 1, 𝛼1 = 1, 𝛼2 = 0.5). The radiation patterns in 
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Figures 3.45 and 3.46 are similar to each other. As expected, scattering by the plane 

wave with a higher frequency is more directive as noticed in both figures. 

The comparison between cases 𝛼1 = 1, 𝛼2 = 0.01 and 𝛼1 = 1, 𝛼2 = 1 is shown in 

Figure 3.47. The results are very different. In the first case,  𝛼1 = 1, 𝛼2 = 0.01 is 

compared with previous findings [18, 19]. The deviation is less than 2%. 

The result for fractional orders 𝛼1 = 1, 𝛼2 = 1 corresponds to double strips with the 

PMC surface (surface satisfies the Neumann Boundary condition for the total 

tangential electric field) and the previous studies coincide with new results [35]. The 

deviation between previous findings [35] and our study is less than 2%. In Figure 3.47, 

the previous findings are given as blue circles whereas the dashed line is obtained with 

the fractional derivative method [35]. 

Figure 3.48 illustrates the comparison of two cases for the values of different boundary 

condition (fractional orders) 𝛼1 = 0.01, 𝛼2 = 0.01 and  𝛼1 = 0.01, 𝛼2 = 1. The 

results are quite different as expected. Note that, when Figure 3.47 and Figure 3.48 are 

compared, there is a noticeable difference between the two sequences of fractional 

boundary condition choices. 

 

Figure 3.47 : Total radar cross section for a1 = 1, a2 = 1, l = 1 and comparison with 

aaaaprevious findings [18, 19]. 

In other words, choices as 𝛼1 = 1, 𝛼2 = 0.01 in Figure 3.47 and 𝛼1 = 0.01, 𝛼2 = 1 in 

Figure 3.48 behaves distinctly. Note that the angle of incidence is the same (the normal 

incidence). In Figure 3.48, the sharp resonances are not noticed for this 𝑘𝑎 range. As 

the upper strip is a perfect electric conducting surface, the field cannot penetrate 

𝛼1 𝛼2 

𝛼1 𝛼2 

𝝈𝒕 

1 

0.01 1 

1 
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through the strip. This creates a shadow region below the strip with a perfectly electric 

conducting surface. 

 

Figure 3.48 : Total radar cross section for a1 = 1, a2 = 1, l = 1. 

In Figure 3.49, the analogy between the Method of Moments (MoM) and the fractional 

approach is obtained for the case that both strips are PEC (for a1 = 1, a2 = 1, l =

0.5, 𝛼1 = 0.01, 𝛼2 = 0.01 at k = 3.). This figure is done to compare the method with 

other well-known methods. As it is seen in these figures, the total electric field and 

normalized radiation patterns are very similar to each other. The error between the two 

results obtained by MoM and the fractional derivative method is less than 3%. In the 

radiation pattern, the blue line corresponds to the MoM solution whereas; the red line 

stands for the result employed by the fractional method.  

 

Figure 3.49 : Total near electric field with MoM (a), with Fractional approach (b) 

aaa and radiation pattern (c)  

In Figure 3.50, two important scenarios are shown. In the first one (a), the lower strip 

is larger than the upper strip compared to the electrical length (a1 = 0.5, a2 = 2, k =

1, l = 1, 𝛼1 = 0.01, 𝛼2 = 1). The field distribution is dominated by the characteristics 

(a)                         (b)                                           (c) 

 

𝛼1 𝛼2 𝛼1 𝛼2 𝝈𝒕 
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of the lower strip corresponding to PMC material. It is an expected result since the 

width of the small strip and the distance between the two strips are comparable with 

the wavenumber. Therefore, the larger strip dominates the field characteristics. In the 

second one (b), the width of the two strips is chosen very similarly to each other to 

check the stability of the solution (a1 = 1, a2 = 1.1, l = 1,  k = 1.2, 𝛼1 = 1, 𝛼2 =

0.01). The same parameters in Figure 3.37 are employed for that figure to compare. 

As can be seen from Figure 50(b), the field distributions are quite similar to Figure 

3.37. The amplitudes are slightly different as expected because Figure 3.37 is obtained 

at resonance wavenumber [35].  

 

Figure 3.50 : Total near electric field for the case (a),  a2 ≫ a1  and for the 

aaaaacase (b), a1 ≈ a2 . 

In Figure 3.51, the investigation is done on the width of the strips. The widths of strips 

are chosen very similarly to each other and the field distribution and the amplitude of 

the electric total electric field are approximately the same as expected because this is 

the non-resonance case. The parameters are given as follows. For Figure 3.51(a), the 

parameters are (a1 = 2, a2 = 2, l = 0.5,  k = 1, 𝛼1 = 1, 𝛼2 = 0.01) and for Figure 

3.51(b), parameters are (a1 = 1.95, a2 = 2, l = 0.5,  k = 1, 𝛼1 = 1, 𝛼2 = 0.01). 

                     (a)                                                                 (b)                                                   
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Figure 3.51 :  Total near electric field for the case (a),  a2 = a1 and for the aaaaa 

case (b), a1 ≈ a2. 

3.4  Single-strip with Fractional Boundary Conditions 

In previous sections, the analytical and the numerical analysis have been studied for 

double strips. In this chapter, the investigation would be on the diffraction by one strip 

only for the fractional-order 0.5 case. Previously, diffraction by a strip by plane and 

cylindrical waves is investigated [6,33,38]. However, numerical and detailed analyses 

for the fractional-order 0.5 cases are not studied yet. In Figure 3.52, the geometry of 

the problem is given. 

 

Figure 3.52 : The geometry of the problem. 

The importance of the case when the fractional order is equal to 0.5 is that the 

analytical expression can be obtained for the plane wave case and also for the 

cylindrical wave as an incidence wave, closed-form of the induced current and the 

Fourier transform of the current can be found by some approximations [33,35,38]. 

Here, an investigation is done on the field, current distribution, and the bistatic radar 

cross-section. Note that, for the numerical analysis 𝐵 = −𝐽𝑒
0𝑘

4𝜋
 used in (2.47) is 

                           (a)                                                                    (b)                                                   
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assumed to be 1. In Figures 3.53 and 3.54, the amplitudes of scattered and total electric 

fields for the same configuration are obtained. 

 

Figure 3.53 : The Amplitude of the Scattered Electric Field �⃗⃗�𝑧
𝑠 for 𝑎 = 1, 𝜖 =

               2𝜋, 𝑥0 = 0 and 𝑦0 = 2𝜋. 

 

Figure 3.54 : The Amplitude of the Total Electric Field �⃗⃗�𝑧
𝑖  for 𝑎 = 1, 𝜖 = 2𝜋,      

aaa  𝑥0 = 0 and 𝑦0 = 2𝜋. 

In Figures 3.55 and 3.56, the amplitudes of scattered and total electric fields for the 

same configuration are obtained. Note that, this is the oblique incidence (휃0 =
𝜋

4
). 

 

Figure 3.55 : The Amplitude of  the Scattered Electric Field �⃗⃗�𝑧
𝑠 for 𝑎 = 1, 𝜖 =

               𝜋, 𝑥0 = 2𝜋 and 𝑦0 = 2𝜋. 
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Figure 3.56 : The Amplitude of the Total Electric Field �⃗⃗�𝑧
𝑖  for 𝑎 = 1, 𝜖 = 𝜋, 

               𝑥0 = 2𝜋 and 𝑦0 = 2𝜋. 

In Figures 3.57 and 3.58, the amplitudes of the total electric fields are given for 

different parameters. 

 

Figure 3.57 : The Amplitude of the Total Electric Field �⃗⃗�𝑧
𝑖  for 𝑎 = 1, 𝜖 = 2𝜋,        

     𝑥0 = 0 and 𝑦0 = 6. 

 

Figure 3.58 : The Amplitude of the Total Electric Field �⃗⃗�𝑧
𝑖  for 𝑎 = 3, 𝜖 = 2𝜋, 

        𝑥0 = 0 and 𝑦0 = 2𝜋. 

In Figures 3.59 and 3.60, Bi-static RCS with different frequency parameters 𝜖 = 𝑘𝑎 

values is given. The main motivation for investigation on bi-static radar cross-section 

is to analyze the scattering properties of the surface and radiation characteristics 

depending on the angle.  For bi-static radar cross-section studies, the source is located 

at one specific angle and the scattered field is found with this given angle for the 
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incidence wave. The position of the source line and the angle with respect to the x-axis 

are presented. On the figures, Curve 1 stands for 휃0 = 90
0, 𝑥0 = 0, 𝑦0 = 𝜖, Curve 2 

corresponds to 휃0 = 90
0, 𝑥0 = 0, 𝑦0 = 20𝜖, Curve 3 is responsible for 휃0 = 45

0, 

𝑥0 = 3𝜖, 𝑦0 = 3𝜖 and finally Curve 4 stands for 휃0 = 600, 𝑥0 = 3𝜖, 𝑦0 = 3√3𝜖 

[6,33,38]. As it can be seen in the figures, for some specific angles, the amplitude of 

the scattered field is very low compared to other angle directions. 

 

Figure 3.59 : Bi-static Radar Cross Section for 𝜖 = 𝜋. 

 

Figure 3.60 : Bi-static Radar Cross Section for 𝜖 = 2𝜋. 

For the fractional-order 𝛼 = 0.5, the weighting function is given in the theoretical 

section is diminished. Therefore, it is a very special case worth investigating. The 

normalized fractional current density induced on the strip are given for the different 𝜖  

parameter in Figures 3.61, 3.62, and 3.63. The source position is given as 𝜌0. Curves 

1, 2, and 3 on the figures stand for different incidence angle 휃0 = 900, 휃0 = 45
0, 휃0 =

600, respectively. As it is seen, for the normal incidence case, the current distribution 

is symmetric. On the other hand, for the oblique incidence cases, they are asymmetric 

as expected because the incidence source is closer to the right side of the strip 

[6,33,38]. 
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Figure 3.61 : The normalized Fractional Current Density |𝑓1−𝛼(𝜉)| for 𝜖 =
 𝜋 and 𝜌0 = 3. 

 

Figure 3.62 : The normalized Fractional Current Density |𝑓1−𝛼(𝜉)| for 𝜖 =
    𝜋 and 𝜌0 = 30. 

   

Figure 3.63 : The normalized Fractional Current Density |𝑓1−𝛼(𝜉)| for 𝜖 =
   3𝜋 and 𝜌0 = 3. 

The comparison for the current density on perfectly conducting one strip is obtained 

in Figure 3.64. Note that in Figure 64, there is a comparison obtained by Physical 

Optics (PO), Method of Moments (MOM), and fractional derivative approach. All 

methods are almost coincident except the edges. The reason why there is a deviation 

for 𝑃𝑂 is that physical optics current density (𝐽𝑠
𝑃𝑂) is found using  𝐽𝑠

𝑃𝑂 ≅ 2ê𝑛 × �⃗⃗⃗�
𝑖. 
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Here, �⃗⃗⃗�𝑖 is the incidence magnetic field, ê𝑛 is the normal vector of the surface, and 

(×) is the cross product [51,52].  

 

Figure 3.64 : Comparison of induced currents by one conducting strip induced for 

                                                        𝑥0  =  0, 𝑦0  =  0.5, 𝑘 =  2𝜋 , 𝑎 =  1 and 𝜆 =  1.
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4. CONCLUSION 

Three different electromagnetic scattering problems have been analyzed with the 

hybrid method and compared with previous findings and the method of moments. 

Here, the investigations are done mainly on the diffraction by double strips with 

variable widths and boundary conditions. Besides, for a single strip, specifically, the 

fractional-order 0.5 case is analyzed. The fractional boundary condition (or integral 

boundary condition) that corresponds to an intermediate boundary condition between 

Dirichlet and Neumann boundary conditions is used to describe the scattering 

properties of different geometries. By determining the fractional-order, scattering 

properties of different materials are examined in the thesis. The new proposed 

boundary conditions describe a new material property (between Perfect Electric 

Conductor (PEC) and Perfect Magnetic Conductor (PMC)). The fractional boundary 

condition is the generalization of the Dirichlet and Neumann boundary conditions. In 

this case, the fractional derivative of the tangential component of the total electric field 

in the direction of the surface normal is zero on the surface of the scatterer. When the 

fractional-order becomes zero, this corresponds to Dirichlet Boundary Condition 

whereas, while the fractional-order is equal to one, this means the boundary condition 

is equal to Neumann Boundary Condition. In the middle, the boundary condition 

corresponds to different materials between perfectly electric conducting and perfectly 

magnetic conducting surfaces. 

The problems are two-dimensional and for the solution of Helmholtz equations, the 

related Green’s function is the Hankel function. To obtain the total field in the vicinity 

of the scatterer or far-fields, the scattered field is expressed in terms of an integral 

where the integrand is the Fourier transform of the current density on the strip 

multiplied by the Fourier transform of the Green’s function. After that, the fractional 

boundary condition is employed in order to obtain an integral equation. Then, the 

Fourier transform of the current density on the strip needs to be determined. To achieve 

this goal, the integral equation is required to solve. For this, the current density is 

expressed at the summation of orthogonal polynomials. In our case, this orthogonal 

polynomial is chosen as Gegenbauer polynomial because the Gegenbauer polynomials 
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are defined in a finite region since the problems solved in the thesis are strip geometries 

which are finite in the 𝑥 − 𝑦 plane. To take into account the edge condition of the 

current density and fast converging of the polynomials to the actual value of the current 

density on the strip, the weighting is also inserted in the Gegenbauer polynomial 

expression. Then, orthogonality is employed to uniquely determine the unknown 

coefficients in the expression of the current density. After inversion of the system of 

linear algebraic equations, the coefficients are found. Finally, the current density, 

Fourier transform of the current density are obtained. This leads to finding electric 

field distribution for any desired accuracy. For the fractional-order 0.5 case, these 

expressions are achieved directly through analytical manipulations under some 

approximations (high-frequency regime). For the single strip problem, the current 

distribution and the bistatic radar cross-section investigations are done and analytical 

results are obtained when the source is put far-field and the field values are obtained 

for far-field. The results are similar to the same problem with the electromagnetic plane 

wave as a source. For a perfect electrical conducting single strip, the induced surface 

current due to the line source is also modeled by Physical Optics and Moments Method 

and compared with the method proposed in this thesis. The findings revealed that the 

Moments Method and the method used in the thesis give better results than Physical 

Optics. In the theoretical derivation, special functions, orthogonality properties of 

special functions, fractional derivative definition and fractional derivative of 

exponentials, Fourier analysis, boundary, radiation, and edge conditions in 

electromagnetics, the theory of the function with a complex variable and the steepest 

descent method are used not only for analyzing the integral equations but also, many 

of them are used to have the physical aspect of the electromagnetic scattering. 

In the thesis, numerical simulations for the electromagnetic diffraction problem is 

reliable and fast converging. The results are compared with previous findings and the 

Method of Moment. The advantages of the fractional derivative approach can be 

summarized in the following sentence regarding the numerical analysis. Once, the 

theoretical part is completed for any given fractional-order, the numerical part is 

always the same. The only change is the fractional order. Therefore, one integral 

equation or one set of the coupled integral equation are solved for any fractional order. 

In other words, the fractional derivative approach is the generalization of the boundary 

condition and simplifies the computation load. One kind of current density can express 
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the problem whereas, for the other methods, two different current densities are required 

to solve the same problem [8]. This hybrid method is very reliable and accurate for the 

0 < 𝑘𝑎 < 15 where 𝑎 is the half-width of the strip and 𝑘 is the wavenumber [8].  Even 

though in the summation expression of the fractional current density, 𝑘𝑎 + 5 terms are 

enough to obtain highly accurate results. For greater 𝑘𝑎 (𝑘𝑎 > 15), to have a highly 

accurate result, terms in the summation expression of the fractional current density 

needs to be increased.  For greater 𝑘𝑎, the method gives approximate results. In the 

numerical analysis for problems, in general, the electric field distribution is presented. 

For double strip problems, the main focus is to investigate the total radar cross-section 

which allows one to analyze the resonance of the structure with given parameters. The 

resonance for the fractional-order 0.5 case is a very important outcome of these 

investigations. For some cases, the resonance values for this order is higher than the 

PEC and PMC surfaces. This is an important result that, such theoretical surfaces in 

the future can be employed in resonator or antenna structure for better performance. 

For the PEC double strips, resonance frequencies have an approximate analytical 

expression in the case of large strip widths compared to the distance between the strip 

and wavelength. The results coincide with the analytical formulation for the wide 

strips. Apart from this, several cases of different fractional orders are investigated. 

Also, the comparison between double strips with the same fractional-order and double 

strips with the different fractional orders is obtained. The choice of the fractional 

orders for each strip is very crucial for the radiation characteristics of the scattered 

field. The results demonstrate that the direction of the radiation pattern is highly 

correlated with the choice of fractional order. This kind of structure may be used in 

the antenna synthesis, waveguides, and resonators problem. Another important 

outcome of the study is that the field characteristics behave similarly to the field 

characteristic in the case of having PEC surface instead of PMC surface in the region 

of interest when the fractional order is closer to 0 (between 0-0.5) whereas, in the case 

of having the fractional-order between 0.5-1, the field characteristics is closer to the 

case when the surfaces PMC. In other words, the fractional-order 0.25 case 

demonstrates a similar outcome to the fractional-order 0 case, rather than the 

fractional-order 1 case.  

For the future, the diffraction by arbitrarily located double strips with different 

boundary conditions and widths would be investigated.  
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APPENDIX A: Edge Condition for the Current Density 

The first time, the edge condition is studied by Senior and Meixner in the 20th century 

[14,17]. Their studies focus on the perfectly conducting half-plane and wedges at the 

first step. Then, the same structures are investigated with finite conductivity. The 

current behavior at the edge of the half-planes is the concern of this appendix. Here, 

some predefined solutions for the perfectly conducting wedges are taken and go 

through it. The solution for the diffraction by the wedge problem can be easily found 

in any electromagnetic graduate-level coursebooks [1]. In Figure A.1, the geometry of 

the problem is given. Note that, the electric current density (𝐽𝑠) in this problem is taken 

as 𝐽𝑠 = ê𝑧𝐼
𝛿(𝜙−𝜙0)

𝜌0
 where 𝛿 is the Dirac-delta function and 𝐼 is a constant. The general 

procedure is to divide the space (𝜌 > 𝜌0 and 𝜌 < 𝜌0) into two regions and solve the 

boundary value problem. Each space has source-free. This yields to express the total 

field as the summation of non-uniform cylindrical waves. Then, the boundary 

condition for the total field on the surface of the wedge is applied. After that, the 

boundary condition coming from Green’s Theorem for the 𝜌 = 𝜌0 is applied. Finally, 

the unknown coefficients are obtained. The detailed information can be found in [1]. 

Here, the motivation is to show the edge condition for the half-plane for different 

current densities flowing on the perfect electric conducting surfaces or perfect 

magnetic currents depending on the boundary conditions.  

 

Figure A.1 : The geometry of the problem. 

After the boundary condition satisfaction, the total electric field for this problem is 

found as (A.1) [1] 

𝐸𝑧(𝜌, 𝜙, 𝜔) =

{
 
 

 
 −∑𝐼

휂0
2𝜓

𝜋𝑘𝜖�̃�

∞

𝑛=0

𝐽𝜈𝑛(𝑘𝜌)𝐻𝜈𝑛
(1)(𝑘𝜌0) sin 𝜈𝑛𝜙 sin 𝜈𝑛𝜙0,   𝜌 < 𝜌0

−∑𝐼
휂0
2𝜓

𝜋𝑘𝜖�̃�

∞

𝑛=0

𝐽𝜈𝑛(𝑘𝜌0)𝐻𝜈𝑛
(1)(𝑘𝜌) sin 𝜈𝑛𝜙 sin 𝜈𝑛𝜙0,   𝜌 > 𝜌0

 

(A.1) 

where 𝜌 and 𝜙 is the radial and angular direction for cylindrical coordinates, 

respectively, 𝑘 is the wavenumber, 휂0 is the free-space impedance, 𝜈𝑛 = 𝑛𝜋/𝜓, 

𝐽𝜈𝑛(𝑘𝜌) is the Bessel function, 𝐻𝜈𝑛
(1)(𝑘𝜌0) is the Hankel function of the first kind, and 

𝜖�̃� is Neumann’s number 
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𝜖�̃� = {
1,   𝑛 = 0
2,   𝑛 > 0

 
(A.2) 

 

Here the incidence wave has only z-independency and the incidence wave is the line 

source excitation. The reason why the incidence wave is chosen as the line source is 

that the line source at the far-field can be approaching the plane wave. Thus, a more 

general solution we can have by solving the line source diffraction by the wedge. In 

our problem, the field has TM polarization. Since the Total electric field is tangential 

to the surface of the scatterer, the form of the field needs to satisfy the boundary 

condition at 𝜙 = 0 and 𝜙 = 𝜓. Then, the total electric field can be expressed as (A.3) 

in the vicinity of the wedge. This is a very suitable assumption because both incidence 

wave and the scattered field are cylindrical waves for 𝜌 < 𝜌0. 

𝐸𝑧 =∑𝐴𝑛 sin 𝜈𝑛𝜙 𝐽𝜈𝑛(𝑘0𝜌)

∞

𝑛=0

 

 

(A.3) 

 

where 𝜈𝑛 = 𝑛𝜋/𝜓.  

We are interested in how the current behaves while approaching 𝜌 → 0 on the surface 

of the wedge. From the boundary condition, the total current on the surface can be 

found as 

𝐽𝑠(𝜌, 𝜔) = ê𝜙 × [ê𝜙𝐻𝜙 + ê𝜌𝐻𝜌]𝜙=0
= −ê𝑧𝐻𝜌(𝜌, 0, 𝜔) (A.5) 

 

 

Here, ê𝜙 and ê𝜌 are the unit vectors in the angular and radial directions in the 

cylindrical coordinate system, respectively. Also, 𝐻 is the magnetic field. For 𝜌 → 0, 

a small argument approximation for the Bessel function is taken into account by the 

following property [1]. 

𝐽𝜈(𝑧) ≈
1

Γ(𝜈 + 1)
(
𝑧

2
)
𝜈

,    |𝑧| ≪ 1 

Then,  

𝐽𝑠(𝜌, 𝜔) = −ê𝑧
1

𝑍𝑇𝑀𝑘0
∑𝐴𝑛 𝜈𝑛

∞

𝑛=0

1

Γ(𝜈𝑛 + 1)
(
𝑘0
2
)
𝜈𝑛

𝜌𝜈𝑛−1 

where, 𝑍𝑇𝑀 is the wave impedance for transverse magnetic polarization. 

For 𝜌 → 0, a small argument approximation for the Bessel function is taken into 

account. Then, 

𝐽𝑠(𝜌, 𝜔)~ 𝜌
𝜋
𝜓
−1
    (𝜌 → 0) 

For the half-plane (𝜓 = 2𝜋) 

𝐽𝑠(𝜌, 𝜔)~
1

√𝜌
, 𝜌 → 0 

As it can be seen, for the perfectly electric conducting surfaces, square root singularity 

dominates for the edges. With the same approach, for the perfectly magnetic 

conducting case, the singularity is given below. 

For 𝜌 → 0 

�⃗⃗⃗�𝑠(𝜌, 𝜔)~√𝜌  

�⃗⃗⃗�𝑠 is the magnetic current the density. 
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APPENDIX B: Fourier Transform of the Current Density 

Here, the derivation of the fractional current density’s Fourier transform will be given. 

Since the current density only exists on the surface of the strips, the fractional current 

density has only non-zero values on the strips. The Fourier transform of the fractional 

current density is given in (B.1) [50]. 

𝐹(𝛽) = ∫𝑓(휁)𝑒−𝑖𝜉𝛽 𝑑휁

1

−1

 

 

 

(B.1) 

 

The fractional current density is denoted as  

𝑓1−𝛼(휁) = (1 − 휁2)𝛼−
1
2∑𝑓𝑛

𝛼
𝐶𝑛 
𝛼(휁)

𝛼
 

∞

𝑛=0

 
(B.2) 

 

 

Where 𝐶𝑛 
𝛼(휁) is the Gegenbauer polynomials. Here, 𝑓𝑛

𝛼 is the unknown constant-

coefficient and the edge condition for the surface is satisfied by (1 − 휁2)𝛼−
1

2 

weighting. For different fractional-order 𝛼, the asymptotic behaviors of the current 

density at the edges of the strips changes.  

After expressing the fractional current density, (B.1) is divided into two parts for 

further manipulations 

  

𝐹(𝛽) = ∫𝑓(휁)𝑒−𝑖𝜉𝛽 𝑑휁

0

−1

+∫𝑓(휁)𝑒−𝑖𝜉𝛽 𝑑휁

1

0

  

 

 

(B.3) 

 

In the right part of the integral by replacing the 휁 with – 휁, the limits can change and 

the integration could be combined as (B.4).  

𝐹(𝛽) = ∫𝑓(−휁)𝑒𝑖𝜉𝛽 𝑑휁

1

0

+∫𝑓(휁)𝑒−𝑖𝜉𝛽 𝑑휁

1

0

 

 

 

(B.4) 

 

 

 

From [24,50], the following property is employed 

𝐶𝑛 
𝛼(−휁) = (−1)𝑛𝐶𝑛 

𝛼(휁)  
 

(B.5) 

 

 

 

Then, 𝑓(−휁) becomes as 

𝑓1−𝛼(−휁) = (1 − 휁2)𝛼−
1
2∑𝑓𝑛

𝛼
(−1)𝑛𝐶𝑛 

𝛼(휁)

𝛼
 

∞

𝑛=0

 
(B.6) 

 

 

After putting (B.2) and (B.6) into (B.4) and separating the equations into even and odd 

parts, the following expressions are obtained. Note that 𝐹(𝛽) = 𝐹𝑒𝑣𝑒𝑛(𝛽) + 𝐹𝑜𝑑𝑑(𝛽). 

𝐹𝑒𝑣𝑒𝑛(𝛽) = ∫(1 − 휁
2)𝛼−

1
2∑𝑓2𝑝

𝛼
𝐶2𝑝 
𝛼 (휁)

𝛼
 

∞

𝑝=0

1

0

{𝑒𝑖𝜉𝛽 + 𝑒−𝑖𝜉𝛽 }𝑑휁  

 

 

(B.7) 
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Here, 𝑛 = 2𝑝 and 𝐹𝑒𝑣𝑒𝑛(𝛽) is the even part of the Fourier transform of the fractional 

current density. 

𝐹𝑜𝑑𝑑(𝛽) = ∫(1 − 휁
2)𝛼−

1
2∑𝑓2𝑝+1

𝛼
𝐶2𝑝+1 
𝛼 (휁)

𝛼
 

∞

𝑝=0

1

0

{𝑒𝑖𝜉𝛽 − 𝑒−𝑖𝜉𝛽 }𝑑휁  

 

 

(B.8) 

 

 

Here, 𝑛 = 2𝑝 + 1 and 𝐹𝑒𝑣𝑒𝑛(𝛽) is the odd part of the Fourier transform of the 

fractional current density. 

(B.7) and (B.8) can be written in a more convenient form as (B.9) and (B.10), 

respectively. 

𝐹𝑒𝑣𝑒𝑛(𝛽) = 2∫(1 − 휁2)𝛼−
1
2∑𝑓2𝑝

𝛼
𝐶2𝑝 
𝛼 (휁)

𝛼
 

∞

𝑝=0

1

0

cos(𝜉𝛽휁)𝑑휁  

𝐹𝑜𝑑𝑑(𝛽) = −2𝑖 ∫(1 − 휁2)𝛼−
1
2∑𝑓2𝑝+1

𝛼
𝐶2𝑝+1 
𝛼 (휁)

𝛼
 

∞

𝑝=0

1

0

sin(𝜉𝛽휁) 𝑑휁  

 

(B.9) 

 

 

 

(B.10) 

 

 

To proceed easily, the constants and the summations in (B.9) and (B.10) are taken 

outside of the integrand and the integral denoted as 𝐾𝑛. 

𝐾𝑛=2𝑝 = ∫𝐶2𝑝 
𝛼 (휁)(1 − 휁2)𝛼−

1
2 cos(𝜉𝛽휁)𝑑휁

1

0

 

(B.11) 

 

 

𝐾𝑛=2𝑝+1 = ∫𝐶2𝑝+1 
𝛼 (휁)(1 − 휁2)𝛼−

1
2 sin(𝜉𝛽휁)𝑑휁

1

0

 

 

(B.12) 

  

From [24,50], 𝐾2𝑝 and 𝐾2𝑝+1 have the analytical solution as 

 

 

∫(𝑎2 − 𝑥2)𝜆−
1
2 {
sin 𝑏𝑥 𝐶2𝑛+1

𝜆 (
𝑥

𝑎
) 𝑑𝑥

cos 𝑏𝑥  𝐶2𝑛+1
𝜆 (

𝑥

𝑎
)𝑑𝑥

} =
(−1)𝑛𝜋

(2𝑛 + 𝛿)!
(
𝑎

2𝑏
)
𝜆

Γ [
2𝜆 + 2𝑛 + 𝛿

𝜆
]

𝑎

0

𝐽2𝑛+𝜆+𝛿(𝑎𝑏) 

(B.13) 

 

where 𝛿 = {
1
0
}. 

After using (13) and arranging the Gamma function in the expression, the Fourier 

transform of the fractional current density function is found as (B.14). 

𝐹(𝛽) =
2𝜋

Γ(𝛼 + 1)
∑(−𝑖)𝑛𝑓𝑛

𝛼
Γ(𝑛 + 2𝛼)

Γ(𝑛 + 1)
  
𝐽𝑛+𝛼(𝜉𝛽)

(2𝜉𝛽)𝛼

∞

𝑛=0

 

 

(B.14) 
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APPENDIX C: Formulation of the Steepest Descent Method 

In this appendix, the steepest descent method is given. The final result is presented 

directly. The procedure can be bound from [51]. Note that, the notation and the 

formulation are taken from this reference book. This method is utilized for taking some 

integrals with some approximation under some conditions.  

 

For large values of 𝛽, the value of the following integral can be found approximately.  

𝐼(𝛽) = ∫𝐹(𝑧)𝑒𝛽𝑓(𝑧)𝑑𝑧

𝐶

 
(C.1) 

 

  

where 𝑓(𝑧) is an analytical function and the path of integration 𝐶 is on the complex 

plane [51]. 𝐼(𝛽) can be found as follows if there exists one saddle point.  

𝐼(𝛽) ≅ √
2𝜋

−𝛽𝑓′′(𝑧𝑠)
𝐹(𝑧𝑠)𝑒

𝛽𝑓(𝑧𝑠) 

(C.2) 

 

 

where 𝑧𝑠 = 𝑥𝑠 + 𝑖𝑦𝑠 and 
𝑑𝑓

𝑑𝑧
|
𝑧=𝑧𝑠

= 𝑓′(𝑧 = 𝑧𝑠) = 0. 
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