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8-MANIFOLD UZERINDEKI SPIN® YAPILARI

oZET

Bu caligmada, oncelikli olarak vektor demeti tanim ve yapisi hakkinda temel
bilgiler verilmis, vektor demetlerinin karakteristik siniflarinin egrilik 2-formunun
invariyant polinomlar: cinsinden ifadesi incelenmis ve egrilik 2-formunun cesitli
kuvvetlerinin izleri ile invariyant polinomlar arasindaki sayisal bagintilar agik
olarak hesaplanmigtir.

Daha sonra spin® yapisi ve tanimi hakkinda temel bilgiler verilmis, spin®
yapilarinin reel ve kompleks temsilleri incelenerek, A? + A*] = 0 kosulunu
saglayan anti-hermitsel matrisler kiimesi icindeki maksimal lineer alt uzaylarin
boyutlar1 incelenmistir.



SPIN® STRUCTURES ON 8-MANIFOLDS

SUMMARY

In this study, basic information on the definition and structure of vector bundles
are given, the expression of the characteristic classes of vector bundles in terms
of the invariant polynomials of the curvature 2-form of a connection is reviewed,
the numerical relations between the traces of powers of the curvature 2-form
matrix and it’s invariant polynomials are explicitly obtained.

Then we give basic information on spin® structures. The real and complex
representations of spin® structures are reviewed and the dimension of maximal
linear subspaces of the skew-hermitian matrices satisfying the condition, A? +
A?] = 0 is determined.

vi



1. INTRODUCTION

1.1 Introduction and Aim of the Thesis

In this thesis we shall study spin® structures on even dimensional spaces and
in particular spin® structures on 8-manifolds. We will concentrate on complex
representation of a Clifford algebra and the main result of the thesis is the
computation of the dimension of maximal linear subspaces lying in the set of

n x n skew-hermitian matrices satisfying A% + A2 = 0.

In Chapter 2, we present a very short overview of manifolds and vector bundles.
Some well-known examples of manifolds and illustrative examples of vector

bundles are also given in Chapter 2.

In Chapter 3, we will introduce certain notions related to the characteristic
classes of a vector bundle. We will define the connection and curvature on a
vector bundle as Lie algebra valued 1-forms and 2-forms respectively. Then we
will define the invariant polynomials of the curvature 2-form matrix denoted by
o, and we will obtain the relations between the o,,’s and traces of the powers of

the curvature 2-form matrix.

In Chapter 4, we present Clifford algebras, giving their basic properties, their real
and complex representations and we discuss spin® structures and the periodicity
properties of the representation Clifford algebras. In particular if a £-dimensional
Clifford algebra has a representation on skew-Hermitian or skew-symmetric
matrices, the set of such nxn matrices satisfying A?>+\*I = 0 has a k-dimensional
subspace. Here we study a related problem, namely we look for the maximal

linear subspaces in the set of n x n skew-Hermitian or skew-symmetric matrices



satisfying A2+ A\*I = 0. For (real) skew-symmetric matrices the answer is known
to be equal to the Radon-Hurwitz number, defined to be the number of linearly
independent vector fields on the sphere S"~!. We obtain here the corresponding

numbers in the case (complex) skew-Hermitian matrices.



2. MANIFOLDS AND VECTOR BUNDLES

2.1 Manifolds and Vector Bundles: Basic Definitions

2.1.1 Manifolds

An n-dimensional manifold M is a topological space such that each point has
a neighborhood homeomorphic to an open subset of the Euclidean space R™.
In addition, we assume that M is also a Hausdorff space. We note that, the
Hausdorff condition is an essential part of the definition, because there are locally

Euclidean spaces which are non-Hausdorff. (Munkres, 2000)

Let M be a manifold, a pair (U, ¢) is called an n-dimensional chart or coordinate
neighorhood of M if U C M is an open set and ¢ is a homeomorphism of U
to an open subset ¢(U) C R". Two charts (U, ¢1) and (U, ¢2) are called
C*-compatible if whenever U; N U, is non-empty, the mapping

$10 ¢y o(Un NU) — ¢4 (U N U) (2.1)
is a diffeomorphism.

An atlas is a family of charts (U,, ¢,) where any two are C'*-compatible and
M = UaerUs, where I is an index set. The manifold M with a smooth
differentiable structure is called a differentiable manifold. (Abraham, 1988).

We give below some well-known examples of manifolds.

Example 1. ( The Euclidean space R™ ). Taking the open subset U = R",
and using the identity mapping, (R",¢ = [I) gives an atlas for R". Hence the

Euclidean space is an n-dimensional manifold.

Example 2. (The sphere S™). For n=1, the circle S' can be thought of as

3



the subset {(z,y) € R* : 2* + y*> = 1} of the Euclidean space R*. By using
stereographic projection it can be shown that it is a one dimensional manifold.

Similarly the n-sphere can be regarded as the subset,
S ={(z1, %2, s 1) €E R 2l 2+ 2l =1}

of the Euclidean space R"™!. By the stereographic projection, we can see that

S™ is an n-dimensional manifold. Let us take an atlas for S™ such that
(Ur,é1) where Uy = §" — {1}, t=(0,0,..., 1) € R"*",
(Un, ¢2) where Uy = S™ — {s}, 5=(0,0,..., —1) € ™,

then S™ = (U; U U,), and

1 T2 Ty,
= R"
P12 225 Tuta) (1_xn+171_$n+17 71_$n+1) =
X X X
¢2($1,$2, ...,$n+1) = ( ! 2 = ) € Rn,

1 + $n+17 1 + xn—l—lwu7 1 + Tn41

where x,11 = —I—\/l — i —ad— . — 2.

Example 3. (Torus T™). For n=2, the torus is defined to be the Cartesian
product S! x ST of two circles. Since the product of manifolds is a manifold, It

follows that the torus 72 is a two dimensional manifold. Generally the n-torus;

T =S" % ... x St
~——_—
n—times

is an n-dimensional manifold.

Example 4. (The general linear group G'L(n, R)). It is defined as the group
of non-singular R-linear transformations of R" into itself. Let M = M(n, R) be
the set of n x n matrices on R. As M(n, R) = R™ | it follows that M(n, R) is an
n? dimensional manifold. Let U=GL(n, R),

U=GL(n,R)={AeMn,R)|detA#0}
Define f: U — R

f(A) = (an,alg, ceey A1py A27, ...,Clnn) - Rn2

4



Note that as the det function is continuous, det™(0) is a closed subset of M,
hence its complement U is open in M. Thus U = G'L(n, R) as an open subset of

2 . . . .
R™ is an n? dimensional manifold.

Example 5. (Real Projective space P"(R)). For n=2, the projective plane P?
is the space obtained from S? by identifying each point z of S? with its antipodal
point —z. We define an equivalence relation on S? by setting v ~ (—z) then
P? is the set of equivalence classes. If p:S* — P? maps each point = to its
equivalence class, we topologize P? by defining V' be open in P? if and only if
p~'(v) is open in 52

(2] = 7 (x)
ria = w(e) =[] = {y|y~a}

The Real Projective space P"(R) denotes the set of straight lines of R"*' which
pass through the origin (0,0,...,0) € R"™'. Let =,y € R"t, 2 and y are

equivalent, x ~ y, if y = Az, A #£ 0.
[x] € P"(R),[x] = [#1, 22, vy Tpy1]
P'(R) = (™ —{0})/ ~

We will now show that it is an n-dimensional manifold. (Nakahara,1991)

Let x; £ 0 = [21, 29, ooy Xpp] =[5, 22,0, 1, ...,w—’;—l], and take the open subsets

of P(R") as follows,

Ui = {[x1, 22, ooy tpya] | 2 £ 0} C P(R")

If we define yy = $typ = 2,y = wzl,yi = %,...,yn = x—’;—l, then the
map
n T1 T Tp+41
Y2 Ui— R ’ S‘Qi([_v_v"'vlv"'v ]) = (y17y27"'7yn)

is continuous and bijective. It can be shown that the ;s are smooth and have

smooth inverses, hence (U;, ¢;) constitute an atlas for P(R").
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2.1.2 Vector Bundles

A vector bundle on a manifold M locally looks like a product space U x R",

where U is an open subset of M. We now give the formal definition of a vector

bundle.

Definition 1. A real vector bundle £ over M consists of the following elements:
i) A topological space F called the total space,
ii) A topological space M called the base space,
iii) A continuous map 7 : ¥ — M called projection map,

iv) The structure of a vector space over the real numbers is the set #7!(b)

for each b € M.

We often use a shorthand notation £ —— M or simply E to denote a real vector

bundle (£, 7, M). These elements must satisfy the following condition:

Condition of local triviality: For each b € M there must exist some neighborhood

U C M of b, an integer n > 0 and a homeomorphism
h:Ux R"— 77 Y(U) (2.2)

such that, for all b € U, the correspondence x — h(b, x) defines an isomorphism
between the vector space R™ and the vector space 77(b). (Milnor, Stasheff,
1974). The product manifold M x R" = F is the simplest example of a vector
bundle, that is, if it is possible to choose U equal to the entire base space, then

FE is called a trivial bundle over M or product bundle.

For each b € M, the vector space 77'(b) is called the fibre over b. This is
denoted by Fj, or Fj(F). Because 7 is an onto map, Fy is never empty. If F}, has
n-dimensional real vector space structure, then E is called n-dimensional real

vector bundle over M.

The concept of a smooth vector bundle can be defined similarly. E and M are

smooth manifolds, 7 is a smooth map, for all b of M there exists a neighborhood
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U C M, and a diffeomorphism h such that (U, h) is a local coordinate system
with b € U. Changing R" with C™ in the definition, we can obtain the definition
of a complex vector bundle. Algebraic operations on vector spaces such as taking
duals or tensor products can be carried over to vector bundles by applying these

operations in each fiber and globalizing (Milnor, Stasheff, 1974).

It we have two bundles £ and G over the same base space M we can define their

isomorphism as follows.

Definition 2. (Bundle isomorphism) Let £ and G be two vector bundles over

M. If there exist a homoemorphism

f:E—G

between the total spaces which maps each vector space Fy(FE) isomorphically

onto the corresponding vector space F3((), then E is said to be isomorphic to

(. This is denoted as F = .

Definition 3. A cross-section of a vector bundle I with base space M is a

continuous function

s M—> L (2.3)

which takes each b € M into the corresponding fiber F3(F). A cross-section is
nowhere zero if s(b) is a non-zero vector of Fj(FE) for all b € M. For example
if M is a smooth manifold, then a vector field on M is a cross-section of the

tangent bundle.

Now consider a collection {s1,...,s,} of cross-section of a vector bundle F. The
cross-sections $i, Sg, ..., 8, are nowhere dependent if, for all b € B, the vectors
51(b), $2(b), ..., s,(b) are linearly independent.

2.2 Illustrative Examples

Example 1. Tangent Bundle:

Tangent vector: Let M be a manifold, p € M, and f,g € C*(M). A tangent
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vector v at p is a real valued function such that,
v:C%(M)— R
which satisfies the following conditions (Kobayashi,v1,1996);
Do(af + bg) = av(f) + bu(g) (linearity)

io(fg)=v(flg+vig)f (Leibniz rule)

Tangent space: Let M be a manifold, p € M, then the set of tangent vectors
at p on M is called a tangent space at p.

ToM ={v, |v,: C*(M)— R}. (2.4)
The tangent space at p is a vector space. Let v,w € T,M, A € R then

i) (v 4 w)p =v(p) + w(p)

) (\o)p = Aolp)
Now we will give the definition of the tangent bundle.

Tangent Bundle: The set of all tangent spaces of a manifold is called
the tangent bundle. If M is an n-dimensional manifold, then it is known

(Warner,1983) that the tangent bundle is a 2n-dimensional manifold.

TM = UpenT,M = {(p,v) |p€ M,v € T,M } (2.5)
Remarks.
1-) A vector bundle whose fibre is one-dimensional (F = R) is called a line
bundle.

2-) A cylinder S' x R is a trivial R-line bundle. As we see below, the Mobius

band can be viewed as a non-trivial line bundle over S*':

i-) Total space E is obtained from [0,27x] x R by identifying the left side
boundary [0] x R with the right side boundary [27] x R under the transformation
(0,1) — (27, —1).



ii-) Base space M is a circle obtained from a line segment (8,0) C E by identifying
its end points.

iii-) The projecton map, = : £ — M which maps (0,¢) — (6,0).

iv-) The fibre is 77'(b) © R, b€ B.

To check the local triviality condition, let us take two open subsets of base space
such that U = (7/4,7x/4), V = (=37/4,37/4). L : U x R — = YU) and
k:V x R— 77! (v) are two transformations.

h: (t,x) — [t,z]. E = [t,z], [t,e] = (t,2) if 0 < t < 27, [t,z] =
{(07 l’), (27‘—7 —l‘)}

ke (s,y) = [s,9]. B =[s,yl [s,9] = (s,9),if s 20, [s,y] = (s + 27, —y) if

s < 0.

h and k are homeomorphism which h(b,z) and k(b,y) define an isomorphism
between the vector space R and the vector space 77*(b), b € M. Hence the
condition of local triviality is satisfied. We shall see in the next example that
the canonical line bundle +! is a non-trivial vector bundle. In fact for n=1, this

bundle is a M6bius band (Milnor, Stasheff, 1974) hence the Mébius band is

a non-trivial vector bundle.

Example 2. The Canonical Real Line Bundle

The canonical real line bundle 7, or 4} is a one-dimensional real vector bundle

over the projective space P"(R) with total space
E(y) ={([x],v) € P"(R) x R"' :v =Xz for some \€ R} (2.6)

where [z] denotes the line that passes through x € R"*'. The projection map
7: E(y}) — P"(R) is defined by 7([z],v) = [z]. Thus each fiber #7!([z]) is the
line in R"*! that passes through = and —x. Each such a line is to be given by

its usual vector space structure.

Let us show the condition of local triviality. If /' C S™ is any open set that is

sufficiently small, and this set contains no pair of antipodal points, and also if

9



U’ is corresponding set n(U) in P"(R), then a local homeomorphism,
h:U x R— 7 YU
can be defined by
h([z], A) = ([=], Ax)

for all (x,A) € U x R. By this homeomorphism, the condition of local triviality
is satified.

Now we want to show that the canonical real line bundle ~! is not trivial.
To prove this, we show that 4! has no nowhere zero section. Let us take a

cross-section from base space to total space
s: P"(R) = E(v,)

and think about the composition from S™ to total space E(4})
ST — PT35S By,

In this composition, the image of every x € S™ in total space is

([2], f(x)x) € E(7,)

where f(x) is a continuous real valued funtion which satifies

S™ is connected space and by the intermediate value theorem that f(xo) = 0 for
some f(xq). Hence s([xo]) = ([x0],0). This shows that there is no nowhere zero

cross-section for the canonical real line bundle. Hence +! is not a trivial bundle.

(Milnor, Stasheff, 1974).

Now we give an example for sections of a vector bundle.

Example 3. We will show that the unit sphere S™ admits a vector field which

is nowhere zero provided that n is odd.

10



For n=1, the tangent bundle of the circle S' C R? admits one nowhere zero

cross-section. The arrows lead from = € S to x + v, where
5(1’) = (xvv) = ((51?1751?2)7 (—51?2,51?1))-

For n=3, the 3-sphere S® C R* admits three nowhere dependent vector fields

si(z) = (z,v;(x)) where
vi(x) = (=2, ¥1, —24, T3),

vo(a) = (—x3, 4, T1, —Tg),

1)3(1') = (—1’4, —$3,$2,$1).
For n=2m-1, then
U(l’) = (—1’2, L1y, =Lay L3y ...y —L2m, x?m—l)

is a nowhere zero vector field on S™.

11



3. CHARACTERISTIC CLASSES OF A VECTOR BUNDLE

3.1 Connections and Curvature on Vector Bundle

We consider E as a smooth complex vector bundle with smooth base space M. We
know that a cross-section of the smooth complex bundle £ with the smooth base
space M is a continuous function s : M — F. Let S be the set of cross-sections
s: M — FE, then S has the structure of a vector space over ' with addition and

scalar multiplication defined by
i) (81 + s2)(2) = s1(2) + s2(2), 81,82 € 9, r e M,
i) (As)() = A(s(2) sesAeC,  wel

The vector space of smooth sections of F is denoted by C*°(F). As noted
before, algebraic operations among vector spaces can be used to define new vector
bundles from old ones, as described for example in ( Milnor, Statsheff, 1974).

In particular, we have the dual of the tangent bundle T'M
TM* = Homgr(TM, R), (3.1)

which is also called the cotangent bundle. Its sections are 1-forms. Then one can
obtain new bundles by taking tensor products and k-th exterior products. The

sections of these latter bundles will be called k-forms.
Definition 1. The complexification of the cotangent bundle is defined as

Homp(TM,R) @r C = Hompr(TM,C). (3.2)

It is known that this complexification of the cotangent bundle of M is also vector

bundle. (Milnor, Stasheff, 1974) that we denote as
TM; = Hompr(TM,C).

12



Since T'M¢ and E are complex vector bundles over the same base space M, the
tensor product of TM¢ @ E is also a complex vector bundle over M. Similarly,
the cross-sections of the complex vector bundle TM} @ E form a vector space.

The vector space of smooth sections of TM{ @ E is denoted by C*(TM} @ F).

Definition 2. A connection on the vector bundle F is a complex-linear

transformation
V:C¥E)— C*(ITM:®E)

such that

Vi(fs)=df @ s+ fV(s), (3.3)
for any s € C*(F) and for all f € C*.
It is well known that if the base manifold is paracompact, the connection can be
defined by

V(si) =D wi ®s; (3.4)

where {s;} is a local basis of sections and [w;;] is an arbitrary n x n matrix of
1-forms on U. When the base space is paracompact, these local connections can

be patched by a partition of unity, leading to a globally defined connection on

the vector bundle.

The image of the sections under V is called covariant derivative of s € C*(F),
that is, V(s). Since the connection V is a C-linear mapping, the following

properties are satisfied;
1) V(SZ + S]‘) = V(SZ) + V(S]‘), Siy S5 € COO(E),

We defined above a connection V on the complex vector bundle E. Similarly,
we will define another connection V on the complex vector bundle TM @ E by

using V and the exterior differentiation operator.

Definition 3. For a given connection V, the complex-linear transformation @;
V:C®(TML @ E) — C¥(ANTM; @ E)

13



is defined by

A

Vie®s)=dp®@s—pAV(s) (3.5)
for all 1-forms ¢ and for all sections s € C*(F). Therefore V satisfies the
equality, V(f(p @ s)) = df A (¢ @ 5) + [V(p @ s).

Let us consider the composition of two complex-linear transformation V and \Y%
on complex vector bundle and use K to be the composition K = VoV such that

(Milnor, Stasheff, 1974)

Co(E) s C(TME @ B) s C®(N T M} © E). (3.6)

Before giving the definition of the curvature tensor, the value of K(s) is defined
K(s) = @(V(S)) for any s € C*°(FE). Here s(z) — K(s)(z) defines a smooth
section of the complex vector bundle Hom(E, A*T M} @ E).

Definition 4. The curvature tensor of the connection V is the section of Ky of

the complex vector bundle Hom(E, N*TM} @ E) = A*TM; @ Hom(E, E).

Lemma 1. K is a C*(M, C')-linear operator.

Proof. We must show that K(fs) = fK(s), for every f € C°(M, (). Let us
compute K(fs) = V(V(fs)). Using definition of the connection, we show this
as follows,

K(fs)=V(V(fs)) = V(df @ s+ fV(s)) = d>f @ s —df ANV(s)+df NV(s)+
FV(V(s) = [V(V(s)) = [K(s).

Let {s1,82,...,8,} be a local basis of the section of the vector bundle, and let

V(s;) = w;; @ s;. Then K(s;) = @(V(Si),
st S wi; @ sp —= Y [dwy @ 55— (wig A wir) @ sel.
Hence

[X’(Sz) == Zdwij X S5 — (wij A w]‘k) X Sk

14



=Y dwy @ s — (wij N wj) @ s
= > (dwy — wi; ANwjp) @ s
=2 0@ s

where Q;; = dwy — w;; A wj is the n X n matrix of 2-forms. That is,
K(si) =Y Q4@ s (3.7)

Similiarly, V is described by the matrix w = [w;;] of 1-forms. Finally, in matrix

notation

Q=dw—wAw. (3.8)

3.2 Invariant Polynomials and Characteristic Classes

An invariant polynomial on n x n complex matrices M, (C) is a function
P:M,(C)—C

which can be expressed as a complex polynomial in the entries of the matrix,

and which satisfies

P(XY) = P(YX), (3.9)

where XY € M,(C). (Milnor, Stasheff, 1974)

Example 1. The trace function [z;;] — > x;;, and the determinant function are

well known examples of invariant polynomials on M, (C).

Theorem 1. For any invariant polynomial P, the exterior form P(K) is closed,

that is dP(K)=0, where K is the curvature matrix.

Proof. Let P(A) = P([a;;]) where the a;;’s are indeterminates, be an invariant

polynomial of the matrix A. We form the matrix of the first derivatives as

15



The exterior derivative dP(A) is equal to the expression,

We write these expressions in matrix form as

P11 P12 Ce Pln dan dCl12 Ce daln

P21 P22 Ce Pgn da21 da22 Ce dazn
[0P[Dais) = . |adlagl=] . T

Pnl Png Ce Pnn danl danz Ce dam

dP(A) == Z(@P/@a”)da” == Pndan + Plzdalg + ...+ Pmdam

If we denote the transpose of the first derivative matrix by the symbol P’(A)

then ;

dP(A) = Pndan + Plzdalg + ...+ Pmdam = tT(P/(A)dCl”)
Now let @ = [Q;;] be the curvature matrix (3.8), then the exterior derivative
dP(Q) is

dP(Q) =D _(0P/0%;)dSY;;,

which can be written in matrix form as

dP(Q) = tr(P'(Q)dQ).

As the curvature matrix is () = dw—w Aw, taking the exterior derivative of 1, we
compute the 3-form dQ) as dQ) = d(dw—wAw) = 0—d(wAw) = —dwAw+wAdw =
WA (Q+wAw)—(Q+wAw)Aw, which implies

dY=wAN Q-0 ANw. (3.11)

This equality is called the Bianchi identity. We now need to prove the following

claim.

Claim: For any invariant polynominal P, the transposed matrix of first derivatives

P'(A) commutes with A.

16



Proof of the Claim: Let E;; denote the matrix with entry 1 in the (j,i)-th place
and zero elsewhere. As P is an invariant polynomial, P(BA) = P(AB), and
taking B = (I 4+ tEj;) we obtain,

P((I +tE;)A) = P(A(I + tEji))

Let C =((I+tE;)A), D =(A(I 4+ tEji)). Their components are respectively
Cap = [ + 1Ejilan[Alyp = [0ar + 1600;04i] Ay = Aap + 160 Aig
Dap = Aol + 1Ejilyp = Aay[byp 4 161;05] = Aap + 1A;0pi

Differentiating the equality P(C') = P(D) with respect to ¢ we obtain

dP QP dCos P dDys
dt — 0C,; dt — 0D,p dt

0P 0P
—— 00 Aig = =——AL;0p;
acaﬁ J g aDaﬁ v
0P 0P
— A= —A,;
9C, " 0D Y

Finally if we set t = 0, then A = C' = D, hence the last equality gives

0P 0P
o T g
or
0P 0P
Aw[aAm] = [aAM]Aay‘-

Thus the transposed matrix of the first derivatives [aaAP | commutes with A. Now
iy

replacing A with €, it follows that;
QAP () =P (Q)AQ
dP(Q) = trace( P'(2)dQ)

Using the Bianchi identity we have

dP(Q) = trace(P' () A (wAQ—QAwW))
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As tr(AB) = tr(BA) for any A, B, we can write

dP(Q) = trace(w ANQ A P'(Q) —w AQA P'(Q))

Now using the claim above we obtain

dP(Q) = trace(w ANQAP'(Q) —w AQAP(Q)) =0,

which proves the theorem.

In deRham cohomology theory (Warner, 1983), closed forms on a manifold
define cohomology classes. Thus invariant polynomials of the curvature 2-form
of the bundle define deRham cohomology classes of the base manifold. It is
known that the deRham cohomology classes defined above are related to Chern

classes and Pontrjagin classes as follows (Milnor and Stasheff, 1974).
[0:] & ¢, ¢;: Chern class of the bundle,
[02:] & coi & pi p;: Pontrjagin class of the bundle.

We will now concentrate on the computation of the invariant polynomials of
the curvature 2-form matrix. For any n x n matrix A, we can compute the

characteristic polynomial equation for A as follows;

det(A+ M) = A"+ o A" oA 4o

Note that whenever the entries of a matrix are even forms, it makes sense to
take the determinant. Hence taking A= (3.8), we obtain the characteristic
polynomial of the curvature matrix 2. The o,’s are representatives of the
characteristic classes that we are interested in. In the next subsection we shall

obtain the expression of the o,,’s above in terms of the traces of the powers of ().

3.3 Relations Between o, and #r(A")
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Let us take any n X n matrix A and write it’s Jordan canonical form.
Ji

Jo
A=PJP ' J=

Jk

where J;’s are the Jordan blocks of J. Note that as each Jordan block is lower
triangular, det(A+AT) is independent of the canonical form but depends only on
the eigenvalues. We compute det(A+AT) as follows;

det(A+ M) = det(PJP™" + APP™Y) = det(P(J + AXI)P™)

= (detP)det(J + N )(det P~) = det(J + \).
But det(J+ A)= [T1det(J; + AI) =[1(\; + )\)k", where k; is the size of the

Jordan block J;. Hence we get the equality below.

det(A+ A = A"+ o A"+ o+ o " 4 o, =[O+ AT (3.12)

It is well known that the o,’s can be calculated either in terms of eigenvalues of

A (Hungerford, 1987);

0; = Zl§i1<i2...<ijgn )\il )\iz---)\ija j!Uj = Zilgézé...;éij )\il )\zé---)\ija
or in terms of the entries of A as

oj = Y j’th principal minors. (Gantmacher,1960)

Let us compute the o,,’s for a 3 x 3 matrix.

Let
a b ¢
A=1d e f (3.13)
m n p

A has one of the following Jordan forms,

A A A
Jl - )\2 ,JQ - )\1 ,Jg - 1 )\1
Az Az Az
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A A A
J4: )\ ,J5: 1 )\ ,JGZ 1 )\
A A 1A

and in all of the 6 cases, o,’s are
o= M= Ay + As,
02221{’9@33 Aidj=A1 A 4+ A As + A2 s,
03=Y 1 i< jckes MM A=A A2 A,

where the eigenvalues may coincide.

On the other hand, we can find ¢,’s by using n-th principal minors as follows;

o1= la[ + e[+ pl=a+e+p,

a b a c e

Oo= + + =ae —bd+ap—cm+ep—nf,
d e m p nop
a b ¢

o3=|d e fl=aep—afn+bdp—>bfm+ cdn — cem.

m n p

Now let us find the relation between o, and tr(A™).
For n=1, o1=a + ¢4+ p =X + Ay + A3=tr J=tr A.
For n=2, o9=ae —bd + ap — em + ep — nf= A2 + A\ A3 + A As.
trJ?=X + X2+ M2 tr J= A + Ay + A3, on the other hand we can see that
200 2 + MAs 4+ Xhs) = —(AT + A3+ A3) + (M + Ao + As)%

Hence,

Aoy = —(trA?) + (trA)*. (3.14)

For n=3, o3 = det(A) = A X2A3. We will express this in terms of trA® = ¢r.J° =
A4 A3+ A3, trA? and ir(A). We write

AMAAs3 = 041()\? + )\g + Ai) + 042()\% + )\3 + )\;23)()\1 + A+ As) +as(A + A2+ )\3)3
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Equating the coefficients of various terms in the A;’s, we can see that oy + a9 +

053:07 Oé2—|—3063:0, 60[3:1.

Hence

3log = 2(trA3) — 3(trA2)(trA) + (trA)3. (3.15)

We will now give a general method for the computation of the o, in terms of

tr(A¥)’s. For this let us first rewrite o, n = 1,...,4 as below.

lloy = CfjtrA,

2oy = CO) 1 (trA?) 4+ CF 4 (trA)?,

Blog = O3, (trA%) 4+ C5,(tr A%)(trA) + C3,(tr A)?,

Moy = O (trA*) + CF(tr A®)(trA) + CF ,(tr A%)? + CF, (tr A%)(tr A)* +
Cii(trA)

where () are constants. We will determine these constants by assigning specific
values to the eigenvalues. At the first stage we take A\; = 1, all others zero, then
A1 = Ay = 1, the rest zero, and so on. We will see that this procedure will be

insufficient to determine C7

o «» Whenever a > 2.

iLLet \y=1, Mo=X=...=X,=0, trA* =1, oy=1, 0, =0 k> 1.
Ccty=1
0=0C3,+C34
0=0C4,+ 03+ 05y
0=Ci1+Ci+Ci,+C +Cy
. Let y=X=1, s=X =...=X, =0, trd¥ =2, o, =1, 0, =0 k> 2.
20 =324 C3,(2)?
0= 1,24 C3,(2)(2) + C3,(2)°
0=C112+CF(2)(2) + CF,(2)7 + CF1(2%)(2) + O, (2)*
iii.Let \y =Xy =X3=1, \y=...=X, =0, trA" =3, o5=1, 0, =0 k> 3.
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31 =C5,03) + C5,3)(3) + €5, 3)°
0=Ci33+C13)3) + CL,(3)" + €7, (3%)(3) + €1, (3)*

iV.Let)\lz)\gz)\gz)\4:1, )\5::)\71:07 tTAk:4, 0'4:17 O —
0 k>4

A= 34 (4) + O3, (H)(4) + G5, (4)°
0= Ciyd+ Ci(4)(4) + CF,(4)* + CF, (49)(4) + C4 (1)

Note that for n = 1,2,3 we can determine the C7 ’s from the equations above,
but this procedure gives only the sum €7, 4+ C7,. To determine the coefficients

C7, for same v but different o, we could take for example A\; = Ay = ... =

A1 = A, A, = [ then,

() (5T A+ (51X = CLaltnd ) 4 CRatr o) (trA) + C ()2 +
Cil(trJZ)(trJ)z + Cff’l(tr{])‘l, Vn € N,

()5 M) N8 = Chy((n— DX + B + C2y ((n = DA + 52)(n —
DA+ 8)+Cia(n— )N+ 5%+ CF (n— DA+ 5%)(n — 1)A+ 8)* + Cf 4 ((n —
DA+ B4, VYn € N,

Equating the coefficients of A* and A? in the both sides of this equation we obtain
AL((3)- (3D A = [Chan =)+ (CF 02 ) (1= 1)+ Oy (n= 1P 40y (n =1,
AL(("31) W8 = (O3 + 203, +4CE)(n — 1°X5.

Combining these equations with the previous ones we can determine the
coefficients of C} , as Cj, = —6,CF, =8,CF, =3,07, = —6,Cf, = 1. Hence

Yoy = —6(trA4) + 8(trA3)(trA) + 3(trA2)2 — 6(trA2)(trA)2 + (trA)4 (3.16)

The expressions of o, & = 5,6,7 are obtained similarly by using Mathematica.

We give these explicit expressions below.

Slos = 24(trA°) — 30(trAY)(trA) — 20(trA®)(trA?) + 20(trA®)(trA)?* +
15(trA2)2(trA) — 1O(trA2)(trA)3 + (trA)S.
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6log = —120(trA®)  +  U4@rA®)(irA)  +  90(trAY)(trA*)  +
40(tr A%)*—=90(tr A*)(tr A)2—120(tr A®) (tr A?)(tr A)—15(tr A2)>+40(¢r A%) (tr A)*+
45(tr A% (trA)? — 15(tr A%)(trA)* + (trA)°.

oy = T20(trA7) — T35(trA®)(trA) — 189(trA%)(trA%) — 840(itr A*)(irA%) +
189(tr A®)(tr A)2+1050(tr A*) (tr A?)(tr A) 4+ 385(tr A%)?(tr A) — 210(tr A*) (trA)°* —
420(tr A®)(tr A%)(tr A)? = 105(tr A2)?(tr A) + 70(tr A) (tr A)* 4+ 105(tr A% (tr A)° —
21(tr A)(tr A)® + (trA)T.

We will now write the expression of o, in terms of the partitions of the integer
n. In the expression given by Eq. (3.17), the coefficients are to be determined

by assigning specific values to the A;’s as above.

Definition 4. A partition of an integer n > 0 is an unordered sequence riry...r;
of positive integers with sum n. The number of partitions of n is denoted by
p(n). Let i, be the number of distinct partition of n into o summands. Let us

give below partition of integers, n=1,2,...5.

p(l):L n=1= {1}7
S~~~
11=1
p(2)=2,n=2= {2}, {1+1},
21:1 22:1
p(3)=3,n =3 = {3}, 241} {1+1+1},
= ——
11=1 =1 13=1
p(4)=5,n=4= {4}, {3+ 1,242}, {2+ 1+ 1}, {1 +1+1+4+1},
S~~~
11=1 =2 13=1 1g=1

p(B)="T,n=5= {5}, {4+1,3+2},{3+1+1,2+2+1},
~—~

11=1 =2 13=2
{24 1+1+1} {14+14+1+1+1},

1a=1 15=1

Note that p(n)=3>0_; 7. The numbers in the braces will be denoted by J] ;. For
simplicity of notation we will not indicate the dependency of J on n. Comparing

with the table above we can write the first few J ;’s as below, with a = 1,...,n,
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1, as in the table above and f=1,....,a v=1,...,2,.

, 1 =1, J11,1 =1
, 1 =1, J11,1 =2
19 =1, J2171 = 1,]2172 =1
n=3 2 =1, J1171:3
19 =1, J2171 = 2,]2172 =1
13 =1, J§71 = 1,J§72 = 1,J§73 =1
, 1 =1, J11,1 =4
19 = 2, J2171 =3, J2172 =1
J22,1 = 27J22,2 =2
13 =1, J§,1 = 2,]1)}72 = 1,J§73 =1
1y =1, Jil = 1,]}72 = 1,]}73 = 1,]}74 =1

With the notations above, the general expression of o, in terms of trA™ is as

follows,

nlo, =Y Za: (11 trAJgﬁ) (3.17)

a=1~y=1 /=1

We note that a method for iterative computation of the o, known as the method

of Faddeev, is given in (Gantmacher, 1960).

3.4 Topological Invariants and The Yang-Mills Action

Let E be a vector bundle over an 2n-dimensional smooth manifold without
boundary M and let o;’s be the invariant polynomials the curvature 2-form
of E. If P is a polynomial in the o’s such that P(o}) is a homogeneous 2n-form,

then the integral of P(oy) over M will be a topological invariant of the bundle.
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For example in 4-dim, P(0;) = ao? + boy is a 4-form and the integral

/M4 (aa% + boy)

is a topological invariant.
In 8-dim, one can choose P(c;) = ac} + boioy + coy03 + doj + eoy and obtain

the topological invariant,

/Mg(aai1 + ba%ag + coqyo5 + da% + eoy)

If the connection on the bundle F is compatible with an inner product, then
the connection and the curvature takes their values in the Lie algebra o(n), i.e.
A = |wi;] is a skew-symmetric matrix of 1-forms. This can be seen easily as

follows. If the connection V is compatible with an inner product, then
V<Y, Z>=<VY,Z>+<Y VZ>

where < Y, Z > is the inner product of X and Y. For X = s; and Y = s;, we

have Vis; = Y wip @ s, < 84,8, >= ;5.
V < 54,8 >=V(6;) =0=<Vs;,5; >+ < 5;,Vs; >
=< Wik Sk, S; > + < S5, Wwj8; >
= Wy T Wji

which implies A = [w;;] is a skew-symmetric matrix. Similarly the curvature

2-form matrix [£);;] is also skew-symmetric, since
[Qir]" = (dwi, — wij Awjp)!
= dwii — wi; A wj;
= —dwir, —wji N wyj
= —dwi + wij A wik
= —Qyy,

Thus, if the connection is compatible with a metric, then TrQ}=c,=0. Then the

topological invariants of a bundle with a metric connection on four and eight

25



manifolds reduce respectively to,

/M4 (02),
/M8 (aa% + boy).

In gauge theories, vector bundles may be used to represent potentials for physical
forces. In this context, one is interested in determining the connection on the
vector bundle in such a way that certain quantities called the "action integrals”

are minimized. A widely used action integral is the expression
/ <P F>dV (3.18)
My

known as the Yang-Mills action. It can be seen that the Yang-Mills action
satisfies the inequality

Trik? < < FF>dV
M,y M,y

As the integral at the left hand side of the inequality is a topological invariant, it
can be altered by changing the connection, hence it is a topological lower bound

for the Yang-Mills action.

In eight dimensions, the search of suitable actions with topological lower bounds
is an ongoing research problem. (Bilge, Dereli, Kogak, 1999). In particular
on eight manifolds admitting a spin® structure, it is possible to write down a
topological lower bound for the Yang-Mills action. In the next section we shall

study spin® structures in detail.
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4.CLIFFORD ALGEBRAS AND SPINY STRUCTURES

4.1 Clifford Algebras: Basic Definitions

Let V be an n-dimensional real vector space with inner product < .,. > and
choose an orthonormal basis {eq, ez,...,e,}. A Clifford algebra of V., CI(V) is a
2"-dimensional real vector space and an associative algebra with unit element 1.

CI(V) is generated by the basis elements {eq, e, ..., €, } with multiplication rules

ii-) e;e; +eje, =0 for ¢ # j.
A basis of Cl(V) as a real vector space is given by the elements

1, €1, €9, ceny €y €1€2, vuvy € 1€, E1E€9E3, ..., E1€2€3...€, (4.1)
or

eo =1, er=e;e;,...€

for I = {i1,29,....ix} C {1,...,n} with 1 <3 <113 < ... <1 < n. We denote k=

|I|= deg(es). Any element of CI(V) can be written @ = Y xzey.

The Clifford algebras have been studied in the literature and the following

isomorphism are well known. ( Salamon, 1996).
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CZ(R7) o~ R8><8 —I-RSXS,
CZ(RS) o R16X16.

After 8-dimension, there is a periodicity situation (Porteous, 1995) such that;

Cl(n +8) = Cl(n) @ R'1. (4.2)

4.2 Spin® Structures: Basic Definitions

Let V be a 2n-dimensional real vector space, and W be a 2"-dimensional

Hermitian vector space. We can define an algebra homomorphism from CI(V)

to End(W) such that;

i-) F(Ul + 1)2) = F(Ul) + F(UQ),

ii-) ['(v1vg) = L(v1)I'(v2),

iii-) ['(v) = I'(v)*,

where @ is an involution of the v € C'I(V'). An involution of C'l(V) is a one-to-one

transformation within CI(V) v — v € CI(V) and whose square is unity: v

» = v. An involution of CI(V) is defined by
Cl(V) — Cl(V): v D
17:2611)161, q:(—l)k, k=|I|.
T
For example; let us take v € C'I(V) as follows,
U = ag + d1€1 + a2€a + A23€23 + 1236123
then the involution of v is

V=g — d1€] — a2€3 + (23€23 — @123€123

This algebra homomorphism is determined by the restriction of I' to V. Now we

can define this spin®-structure as follows.
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Definition: A spin®-structure on 2n(even)-dimensional real vector space V is
a pair (W.T'), where W is a 2"-dimensional Hermitian vector space and I is a

linear map from V to End(W) satisfying following conditions;
i-) I'(v)* 4 I'(v) = 0,

ii-) T(v)*T(v) = |[v]]* forve V.

4.3 Real and Complex Representations of Clifford Algebras

Let V be k-dimensional real vector space spanned by {e1, ez, ..., e}, and I'(v) be

N x N matrix such that I'(e;) = A; ;

A? =1, and A;A; 4+ A;A; =0, for i=1,2...,k (4.3)

A;’s are either skew-symmetric matrix over real numbers, or skew-hermitian
matrix over complex numbers. If we choose real representation of CI(V}),
then A;’s are d(k) x d(k) skew-symmetric matrices, when we choose complex
representation of CI(V), then A; are d.(k) x d.(k) skew-hermitian matrices.

The dimension of the representation is given as follows.

k N=d(k) N =d.(k)
1 2 1
2 4 2
3 4 2
4 8 4
5 8 4
6 8 8
7 8 8
8 16 16

We also know how to compute the d(k) and d.(k) in any other dimension. This
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is given as follows (Lawson, Michelsohn, 1989).
d(m + 8k) = 2*%d(m), d.(m 4 2k) = 2%d.(m). (4.4)

We know that k is the number of vector fields lying on (d(k) — 1)-dimensional
sphere S“¥)=1 " This number k is called Radon-Hurwitz number in the literature.
On the sphere S™V~1 there exist k linearly independent vector fields where & is

computed as follows.
N =2"%2a +1), 0<e<3 then k =8d+2°—1

(Lawson, Michelsohn, 1989). Note that this construction gives three vector

fields on S?, seven on S7, and eight on S1°.

4.4 Dimension of Maximal Linear Subspaces of Matrices Satisfying

A4+ X1 =0
We are interested in the following two problems.

Problem(A): Over the real numbers, what is the dimension of maximal linear
subspaces L of the set Sp = {A: AT + A =0,A? 4+ \*] = 0}. (Bilge, Dereli,
Kocak, 1997)

Problem(B): Over the complex numbers what is the dimension of maximal

linear subspaces L¢ of the set So = {A: A*+ A =0,A? + \?] = 0}.

Solution of Problem(A): A is a skew-symmetric matrix that satisfies A% +
A = 0. This is known from (Bilge, Dereli, Kocak, 1997) that Sg has a
manifold structure. We work locally to determine its dimension. We know that

dimension of manifold is equal to dimension of its tangent space at any point

0 1
-1 0

space at J. This number is the number skew-symmetric matrices anti-commute

on the manifold. Pick a point J = ( ) Study the dimension of tangent

B B
with J. i.e., BJ + JB = 0. Then we can see that B = ,
By —B

dimB = dim By + dim B,
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where Bi, By are skew-symmetric matrices. The dimension of By, By are as
follows, dimBy, = dimBy = n(n — 1)/2. Hence we find dim B= n? — n. Finally,
the number of skew-symmetric matrices which anti-commute with J and the
skew-symmetric matrix J implies the dimension of Sg such that dimSp =

n?—n+1.

Solution of Problem(B): A is a skew-hermitian matrix which satisfies

A?+ X[ = 0. Similarly, we will find the dimension of tangent space at any point

-1 0

The dimension of the tangent space at J is the number of skew-hermitian matrices

0 1
to determine the dimension of the manifold. Pick a point J, i.e., J = ) .

which anti-commute with J. i.e. AJ + JA = 0. This condition implies that

A Ay
A= ( ) , Where A7 and A, are skew-hermitian matrices. We can write
Ay, —A

Ay =Ap+1Ag
where Ajp is a skew-symmetric matrix and Ay is a symmetric matrix. A;p and
Ay show that dimA g = n(n—1)/2, dimAy; = n(n+1)/2. Hence dimA; = n.

Similarly,
Ay = Agp +1Ag

where Asp is a skew-symmetric matrix and A,y is a symmetric matrix. A;r and

Ay show that dimAsgr = n(n—1)/2, dimAy; = n(n+1)/2. Hence dimA; = n.
dimA = dimA; + dimA, = 2n?

The number of skew-symmetric matrices which anti-commute with J is 2n?, and
adding with the skew-symmetric matrix J implies that dimSe = 2n? + 1.
We know from (Bilge, Dereli, Kocak, 1997) that dimLr = Radon-Hurwitz

number. In particular, if

N =2(2a 4+ 1), then dimLgr(N) = 1.

We will give a lemma before calculating the dimension of L.
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Lemma. Let Ay, Ay be skew-hermitian matrices. If A3 = A;. Ay | A? = —1
AZ'A]‘ + A]AZ == 0, BAZ + AZB =0 for 121,2,3. then B=0.

Y

Proof.

BAy;+ A;B=10

A1 (BA; + AB) =0

As3B — BAs = 0 with BAs + A3 B = 0, so this shows that B=0.

If we take A3 = Aj.A; then the linear subspaces spanned by {A;, A, Aj Az} can

not be extended, hence we take A3 # A;.A;. Now pick two points, Jyi, Jo, i.e.,

0 1 0
Jl - 5 J2 — .
-1 0 0 —

0 p
Any matrix B which anti-commutes J; and J; is such that B = (ﬁ ) , where
0

3 is a skew-hermitian matrix. This shows that,

Lo(2n) = Le(n) + 2. (4.5)

The dimensions of maximal linear subspaces of complex-hermitian matrices

satisfying A% + A?21 = 0 are listed below.

2n dim L¢(2n)
0 1 10 0
2 3 — , ,
-1 0 0 — 1 0
4 3+2=5
6 142=3
8 542=T
10 14+2=3
12 3+2=5
14 142=3
16 7+2=9
18 14+2=3
20 3+2=5
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The general formula can be given as follows.
k=220 +1) — La(k) =3,

k=220 +1) — Lo(k) = 5,
k=2"Y2a+1) — Lo(k) =21 — 1.
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5. RESULTS AND DISCUSSIONS

In this study, the numerical relations between the traces of powers of the

curvature 2-form matrix €} and its invariant polynomials o, are obtained.

We present Clifford algebras with their real and complex representations. For
any dimensional Clifford algebras, they have representations on skew-symmetric

and skew-hermitian matrices. These representations are given.

Finally, the dimensions of maximal linear subspaces of the skew-hermitian

matrices satisfying A% + M\2I = 0 are determined.
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