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8-MAN_IFOLD �UZER_INDEK_I SPINC YAPILARI

�oZET

Bu �cal��smada, �oncelikli olarak vekt�or demeti tan�m� ve yap�s� hakk�nda temel

bilgiler verilmi�s, vekt�or demetlerinin karakteristik s�n�
ar�n�n e�grilik 2-formunun

invariyant polinomlar� cinsinden ifadesi incelenmi�s ve e�grilik 2-formunun �ce�sitli

kuvvetlerinin izleri ile invariyant polinomlar aras�ndaki say�sal ba�g�nt�lar a�c�k

olarak hesaplanm��st�r.

Daha sonra spinc yap�s� ve tan�m� hakk�nda temel bilgiler verilmi�s, spinc

yap�lar�n�n reel ve kompleks temsilleri incelenerek, A2 + �2I = 0 ko�sulunu

sa�glayan anti-hermitsel matrisler k�umesi i�cindeki maksimal lineer alt uzaylar�n

boyutlar� incelenmi�stir.
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SPINC STRUCTURES ON 8-MAN_IFOLDS

SUMMARY

In this study, basic information on the de�nition and structure of vector bundles

are given, the expression of the characteristic classes of vector bundles in terms

of the invariant polynomials of the curvature 2-form of a connection is reviewed,

the numerical relations between the traces of powers of the curvature 2-form

matrix and it's invariant polynomials are explicitly obtained.

Then we give basic information on spinc structures. The real and complex

representations of spinc structures are reviewed and the dimension of maximal

linear subspaces of the skew-hermitian matrices satisfying the condition, A2 +

�2I = 0 is determined.
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1. INTRODUCTION

1.1 Introduction and Aim of the Thesis

In this thesis we shall study spinc structures on even dimensional spaces and

in particular spinc structures on 8-manifolds. We will concentrate on complex

representation of a Cli�ord algebra and the main result of the thesis is the

computation of the dimension of maximal linear subspaces lying in the set of

n� n skew-hermitian matrices satisfying A2 + �2I = 0.

In Chapter 2, we present a very short overview of manifolds and vector bundles.

Some well-known examples of manifolds and illustrative examples of vector

bundles are also given in Chapter 2.

In Chapter 3, we will introduce certain notions related to the characteristic

classes of a vector bundle. We will de�ne the connection and curvature on a

vector bundle as Lie algebra valued 1-forms and 2-forms respectively. Then we

will de�ne the invariant polynomials of the curvature 2-form matrix denoted by

�n and we will obtain the relations between the �n's and traces of the powers of

the curvature 2-form matrix.

In Chapter 4, we present Cli�ord algebras, giving their basic properties, their real

and complex representations and we discuss spinc structures and the periodicity

properties of the representation Cli�ord algebras. In particular if a k-dimensional

Cli�ord algebra has a representation on skew-Hermitian or skew-symmetric

matrices, the set of such n�nmatrices satisfyingA2+�2I = 0 has a k-dimensional

subspace. Here we study a related problem, namely we look for the maximal

linear subspaces in the set of n� n skew-Hermitian or skew-symmetric matrices

1



satisfying A2+�2I = 0. For (real) skew-symmetric matrices the answer is known

to be equal to the Radon-Hurwitz number, de�ned to be the number of linearly

independent vector �elds on the sphere Sn�1. We obtain here the corresponding

numbers in the case (complex) skew-Hermitian matrices.

2



2. MANIFOLDS AND VECTOR BUNDLES

2.1 Manifolds and Vector Bundles: Basic De�nitions

2.1.1 Manifolds

An n-dimensional manifold M is a topological space such that each point has

a neighborhood homeomorphic to an open subset of the Euclidean space Rn.

In addition, we assume that M is also a Hausdor� space. We note that, the

Hausdor� condition is an essential part of the de�nition, because there are locally

Euclidean spaces which are non-Hausdor�. (Munkres, 2000)

Let M be a manifold, a pair (U; �) is called an n-dimensional chart or coordinate

neigborhood of M if U � M is an open set and � is a homeomorphism of U

to an open subset �(U) � Rn. Two charts (U1; �1) and (U2; �2) are called

C1-compatible if whenever U1 \ U2 is non-empty, the mapping

�1 � �
�1
2 : �2(U1 \ U2)! �1(U1 \ U2) (2.1)

is a di�eomorphism.

An atlas is a family of charts (U�; ��) where any two are C1-compatible and

M =
S
�2I U�, where I is an index set. The manifold M with a smooth

di�erentiable structure is called a di�erentiable manifold. (Abraham, 1988).

We give below some well-known examples of manifolds.

Example 1. ( The Euclidean space Rn ). Taking the open subset U = Rn,

and using the identity mapping, (Rn; � = I) gives an atlas for Rn. Hence the

Euclidean space is an n-dimensional manifold.

Example 2. (The sphere Sn). For n=1, the circle S1 can be thought of as

3



the subset f(x; y) 2 R2 : x2 + y2 = 1g of the Euclidean space R2. By using

stereographic projection it can be shown that it is a one dimensional manifold.

Similarly the n-sphere can be regarded as the subset,

Sn = f(x1; x2; :::; xn+1) 2 Rn+1 : x21 + x22 + :::+ x2n+1 = 1g

of the Euclidean space Rn+1. By the stereographic projection, we can see that

Sn is an n-dimensional manifold. Let us take an atlas for Sn such that

(U1; �1) where U1 = Sn � ftg; t=(0; 0; :::; 1) 2 Rn+1;

(U2; �2) where U1 = Sn � fsg; s=(0; 0; :::;�1) 2 Rn+1;

then Sn = (U1 [ U2), and

�1(x1; x2; :::; xn+1) = (
x1

1� xn+1
;

x2

1� xn+1
; :::;

xn

1� xn+1
) 2 Rn;

�2(x1; x2; :::; xn+1) = (
x1

1 + xn+1
;

x2

1 + xn+1
; :::;

xn

1 + xn+1
) 2 Rn;

where xn+1 = +
q
1 � x21 � x22 � :::� x2n.

Example 3. (Torus T n). For n=2, the torus is de�ned to be the Cartesian

product S1 � S1 of two circles. Since the product of manifolds is a manifold, It

follows that the torus T 2 is a two dimensional manifold. Generally the n-torus;

T n = S1
� � � � � S1| {z }
n�times

is an n-dimensional manifold.

Example 4. (The general linear group GL(n;R)). It is de�ned as the group

of non-singular R-linear transformations of Rn into itself. Let M = M(n;R) be

the set of n� n matrices on R. As M(n;R) �= Rn2 , it follows that M(n;R) is an

n2 dimensional manifold. Let U=GL(n;R),

U = GL(n;R) = fA 2M(n;R) j detA 6= 0 g

De�ne f : U 7! Rn2

f(A) = (a11; a12; :::; a1n; a21; :::; ann) 2 Rn2

4



Note that as the det function is continuous, det�1(0) is a closed subset of M ,

hence its complement U is open in M . Thus U = GL(n;R) as an open subset of

Rn2 is an n2 dimensional manifold.

Example 5. (Real Projective space P n(R)). For n=2, the projective plane P 2

is the space obtained from S2 by identifying each point x of S2 with its antipodal

point �x. We de�ne an equivalence relation on S2 by setting x � (�x) then

P 2 is the set of equivalence classes. If p:S2
! P 2 maps each point x to its

equivalence class, we topologize P 2 by de�ning V be open in P 2 if and only if

p�1(v) is open in S2.

[x] = �(x)

�:x! �(x) = [x] = f y j y � x g

The Real Projective space P n(R) denotes the set of straight lines of Rn+1 which

pass through the origin (0; 0; :::; 0) 2 Rn+1: Let x; y 2 Rn+1, x and y are

equivalent, x � y, if y = �x; � 6= 0.

[x] 2 P n(R); [x] = [x1; x2; :::; xn+1]

P n(R) = (Rn+1
� f0g)= �

We will now show that it is an n-dimensional manifold. (Nakahara,1991)

Let xi 6= 0) [x1; x2; :::; xn+1] = [x1
xi
; x2
xi
; :::; 1; :::; xn+1

xi
], and take the open subsets

of P (Rn) as follows,

Ui = f[x1; x2; :::; xn+1] j xi 6= 0g � P (Rn)

If we de�ne y1 = x1
xi
; y2 = x2

xi
; :::; yi�1 =

xi�1
xi

; yi =
xi+1
xi
; :::; yn = xn+1

xi
; then the

map

'i : Ui ! Rn; 'i([
x1

xi
;
x2

xi
; :::; 1; :::;

xn+1

xi
]) = (y1; y2; :::; yn)

is continuous and bijective. It can be shown that the 'i's are smooth and have

smooth inverses, hence (Ui; 'i) constitute an atlas for P (Rn).
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2.1.2 Vector Bundles

A vector bundle on a manifold M locally looks like a product space U � Rn,

where U is an open subset of M . We now give the formal de�nition of a vector

bundle.

De�nition 1. A real vector bundle E over M consists of the following elements:

i) A topological space E called the total space,

ii) A topological space M called the base space,

iii) A continuous map � : E !M called projection map,

iv) The structure of a vector space over the real numbers is the set ��1(b)

for each b 2M .

We often use a shorthand notation E
�
�!M or simply E to denote a real vector

bundle (E; �;M). These elements must satisfy the following condition:

Condition of local triviality: For each b 2M there must exist some neighborhood

U �M of b, an integer n � 0 and a homeomorphism

h : U �Rn
! ��1(U) (2.2)

such that, for all b 2 U , the correspondence x 7! h(b; x) de�nes an isomorphism

between the vector space Rn and the vector space ��1(b). (Milnor, Stashe�,

1974). The product manifold M �Rn = E is the simplest example of a vector

bundle, that is, if it is possible to choose U equal to the entire base space, then

E is called a trivial bundle over M or product bundle.

For each b 2 M , the vector space ��1(b) is called the �bre over b. This is

denoted by Fb or Fb(E). Because � is an onto map, Fb is never empty. If Fb has

n-dimensional real vector space structure, then E is called n-dimensional real

vector bundle over M.

The concept of a smooth vector bundle can be de�ned similarly. E and M are

smooth manifolds, � is a smooth map, for all b of M there exists a neighborhood

6



U � M , and a di�eomorphism h such that (U; h) is a local coordinate system

with b 2 U . Changing Rn with Cn in the de�nition, we can obtain the de�nition

of a complex vector bundle. Algebraic operations on vector spaces such as taking

duals or tensor products can be carried over to vector bundles by applying these

operations in each �ber and globalizing (Milnor, Stashe�, 1974).

If we have two bundles E and G over the same base space M we can de�ne their

isomorphism as follows.

De�nition 2. (Bundle isomorphism) Let E and G be two vector bundles over

M. If there exist a homoemorphism

f : E ! G

between the total spaces which maps each vector space Fb(E) isomorphically

onto the corresponding vector space Fb(G), then E is said to be isomorphic to

G. This is denoted as E �= G.

De�nition 3. A cross-section of a vector bundle E with base space M is a

continuous function

s : M ! E (2.3)

which takes each b 2 M into the corresponding �ber Fb(E). A cross-section is

nowhere zero if s(b) is a non-zero vector of Fb(E) for all b 2 M . For example

if M is a smooth manifold, then a vector �eld on M is a cross-section of the

tangent bundle.

Now consider a collection fs1; : : : ; sng of cross-section of a vector bundle E. The

cross-sections s1; s2; :::; sn are nowhere dependent if, for all b 2 B, the vectors

s1(b); s2(b); :::; sn(b) are linearly independent.

2.2 Illustrative Examples

Example 1. Tangent Bundle:

Tangent vector: Let M be a manifold, p 2 M , and f; g 2 C1(M). A tangent

7



vector v at p is a real valued function such that,

v : C1(M)! R

which satis�es the following conditions (Kobayashi,v1,1996);

i)v(af + bg) = av(f) + bv(g) (linearity)

ii)v(fg) = v(f)g + v(g)f (Leibniz rule)

Tangent space: Let M be a manifold, p 2 M , then the set of tangent vectors

at p on M is called a tangent space at p.

TpM = f vp j vp : C
1(M)! R g: (2.4)

The tangent space at p is a vector space. Let v;w 2 TpM , � 2 R then

i) (v + w)p = v(p) + w(p)

ii) (�v)p = �v(p)

Now we will give the de�nition of the tangent bundle.

Tangent Bundle: The set of all tangent spaces of a manifold is called

the tangent bundle. If M is an n-dimensional manifold, then it is known

(Warner,1983) that the tangent bundle is a 2n-dimensional manifold.

TM = [p2MTpM = f (p; v) j p 2M;v 2 TpM g (2.5)

Remarks.

1-) A vector bundle whose �bre is one-dimensional (F = R) is called a line

bundle.

2-) A cylinder S1 � R is a trivial R-line bundle. As we see below, the M�obius

band can be viewed as a non-trivial line bundle over S1:

i-) Total space E is obtained from [0; 2�] � R by identifying the left side

boundary [0]�R with the right side boundary [2�]�R under the transformation

(0; t) 7! (2�;�t).

8



ii-)Base space M is a circle obtained from a line segment (�; 0) � E by identifying

its end points.

iii-) The projecton map, � : E !M which maps (�; t) 7! (�; 0).

iv-) The �bre is ��1(b) �= R, b 2 B.

To check the local triviality condition, let us take two open subsets of base space

such that U = (�=4; 7�=4), V = (�3�=4; 3�=4). h : U � R ! ��1(U) and

k : V �R! ��1(v) are two transformations.

h: (t; x) ! [t; x]. E = [t; x], [t; x] = (t; x) if 0 < t < 2�. [t; x] =

f(0; x); (2�;�x)g.

k: (s; y) ! [s; y]. E = [s; y], [s; y] ! (s; y), if s � 0, [s; y] ! (s + 2�;�y) if

s � 0.

h and k are homeomorphism which h(b; x) and k(b; y) de�ne an isomorphism

between the vector space R and the vector space ��1(b), b 2 M . Hence the

condition of local triviality is satis�ed. We shall see in the next example that

the canonical line bundle 
1n is a non-trivial vector bundle. In fact for n=1, this

bundle is a M�obius band (Milnor, Stashe�, 1974) hence the M�obius band is

a non-trivial vector bundle.

Example 2. The Canonical Real Line Bundle

The canonical real line bundle 
n or 
1n is a one-dimensional real vector bundle

over the projective space P n(R) with total space

E(
1n) = f([x]; v) 2 P n(R) �Rn+1 : v = �x for some � 2 Rg (2.6)

where [x] denotes the line that passes through x 2 Rn+1. The projection map

� : E(
1n)! P n(R) is de�ned by �([x]; v) = [x]. Thus each �ber ��1([x]) is the

line in Rn+1 that passes through x and �x. Each such a line is to be given by

its usual vector space structure.

Let us show the condition of local triviality. If U � Sn is any open set that is

su�ciently small, and this set contains no pair of antipodal points, and also if

9



U 0 is corresponding set �(U) in P n(R), then a local homeomorphism,

h : U 0 �R! ��1(U 0)

can be de�ned by

h([x]; �) = ([x]; �x)

for all (x; �) 2 U �R. By this homeomorphism, the condition of local triviality

is sati�ed.

Now we want to show that the canonical real line bundle 
1n is not trivial.

To prove this, we show that 
1n has no nowhere zero section. Let us take a

cross-section from base space to total space

s : P n(R)! E(
1n)

and think about the composition from Sn to total space E(
1n)

Sn
! P n s

! E(
1n):

In this composition, the image of every x 2 Sn in total space is

([x]; f(x)x) 2 E(
1n)

where f(x) is a continuous real valued funtion which sati�es

f(�x) = �f(x):

Sn is connected space and by the intermediate value theorem that f(x0) = 0 for

some f(x0). Hence s([x0]) = ([x0]; 0). This shows that there is no nowhere zero

cross-section for the canonical real line bundle. Hence 
1n is not a trivial bundle.

(Milnor, Stashe�, 1974).

Now we give an example for sections of a vector bundle.

Example 3. We will show that the unit sphere Sn admits a vector �eld which

is nowhere zero provided that n is odd.

10



For n=1, the tangent bundle of the circle S1 � R2 admits one nowhere zero

cross-section. The arrows lead from x 2 S1 to x+ v, where

s(x) = (x; v) = ((x1; x2); (�x2; x1)):

For n=3, the 3-sphere S3 � R4 admits three nowhere dependent vector �elds

si(x) = (x; vi(x)) where

v1(x) = (�x2; x1;�x4; x3);

v2(x) = (�x3; x4; x1;�x2);

v3(x) = (�x4;�x3; x2; x1):

For n=2m-1, then

v(x) = (�x2; x1;�x4; x3; : : : ;�x2m; x2m�1)

is a nowhere zero vector �eld on Sn:

11



3. CHARACTERISTIC CLASSES OF A VECTOR BUNDLE

3.1 Connections and Curvature on Vector Bundle

We consider E as a smooth complex vector bundle with smooth base space M.We

know that a cross-section of the smooth complex bundle E with the smooth base

space M is a continuous function s : M ! E: Let S be the set of cross-sections

s : M ! E, then S has the structure of a vector space over C with addition and

scalar multiplication de�ned by

i) (s1 + s2)(x) = s1(x) + s2(x); s1; s2 2 S; x 2M;

ii) (�s)(x) = �(s(x)); s 2 S; � 2 C; x 2M:

The vector space of smooth sections of E is denoted by C1(E). As noted

before, algebraic operations among vector spaces can be used to de�ne new vector

bundles from old ones, as described for example in ( Milnor, Statshe�, 1974).

In particular, we have the dual of the tangent bundle TM

TM� = HomR(TM;R); (3.1)

which is also called the cotangent bundle. Its sections are 1-forms. Then one can

obtain new bundles by taking tensor products and k-th exterior products. The

sections of these latter bundles will be called k-forms.

De�nition 1. The complexi�cation of the cotangent bundle is de�ned as

HomR(TM;R)
R C �= HomR(TM;C): (3.2)

It is known that this complexi�cation of the cotangent bundle of M is also vector

bundle. (Milnor, Stashe�, 1974) that we denote as

TM�

C = HomR(TM;C):

12



Since TM�

C and E are complex vector bundles over the same base space M, the

tensor product of TM�

C 
 E is also a complex vector bundle over M. Similarly,

the cross-sections of the complex vector bundle TM�

C 
 E form a vector space.

The vector space of smooth sections of TM�

C 
E is denoted by C1(TM�

C 
E):

De�nition 2. A connection on the vector bundle E is a complex-linear

transformation

r : C1(E)! C1(TM�

C 
E)

such that

r(fs) = df 
 s+ fr(s); (3.3)

for any s 2 C1(E) and for all f 2 C1.

It is well known that if the base manifold is paracompact, the connection can be

de�ned by

r(si) =
X

wij 
 sj (3.4)

where fsig is a local basis of sections and [wij] is an arbitrary n � n matrix of

1-forms on U. When the base space is paracompact, these local connections can

be patched by a partition of unity, leading to a globally de�ned connection on

the vector bundle.

The image of the sections under r is called covariant derivative of s 2 C1(E);

that is, r(s). Since the connection r is a C-linear mapping, the following

properties are satis�ed;

i) r(si + sj) = r(si) +r(sj); si; sj 2 C1(E),

ii) r(ksi) = kr(si) k 2 C:

We de�ned above a connection r on the complex vector bundle E. Similarly,

we will de�ne another connection r̂ on the complex vector bundle TM�

C 
E by

using r and the exterior di�erentiation operator.

De�nition 3. For a given connection r, the complex-linear transformation r̂;

r̂ : C1(TM�

C 
 E)! C1(�2TM�

C 
 E)

13



is de�ned by

r̂('
 s) = d' 
 s� ' ^r(s) (3.5)

for all 1-forms ' and for all sections s 2 C1(E). Therefore r̂ satis�es the

equality, r̂(f('
 s)) = df ^ ('
 s) + fr̂('
 s).

Let us consider the composition of two complex-linear transformation r and r̂

on complex vector bundle and use K to be the composition K = r̂�r such that

(Milnor, Stashe�, 1974)

C1(E)
r

�! C1(TM�

C 
 E)
r̂

�! C1(�2TM�

C 
 E): (3.6)

Before giving the de�nition of the curvature tensor, the value of K(s) is de�ned

K(s) = r̂(r(s)) for any s 2 C1(E). Here s(x) ! K(s)(x) de�nes a smooth

section of the complex vector bundle Hom(E;�2TM�

C 
 E):

De�nition 4. The curvature tensor of the connection r is the section of Kr of

the complex vector bundle Hom(E;�2TM�

C 
 E) �= �2TM�

C 
Hom(E;E).

Lemma 1. K is a C1(M;C)-linear operator.

Proof. We must show that K(fs) = fK(s), for every f 2 C1(M;C). Let us

compute K(fs) = r̂(r(fs)). Using de�nition of the connection, we show this

as follows,

K(fs) = r̂(r(fs)) = r̂(df 
 s+ fr(s)) = d2f 
 s � df ^ r(s) + df ^ r(s) +

fr̂(r(s)) = fr̂(r(s)) = fK(s):

Let fs1; s2; :::; sng be a local basis of the section of the vector bundle, and let

r(si) =
P
wij 
 sj. Then K(si) = r̂(r(si),

si
r

�!
X

wij 
 sj
r̂

�!
X

[dwij 
 sj � (wij ^ wjk)
 sk]:

Hence

K(si) =
P
dwij 
 sj � (wij ^ wjk)
 sk

14



=
P
dwil 
 sl � (wij ^ wjl)
 sl

=
P
(dwil � wij ^ wjl)
 sl

=
P

il 
 sl

where 
il = dwil �wij ^ wjl is the n� n matrix of 2-forms. That is,

K(si) =
X


il 
 sl: (3.7)

Similiarly, r is described by the matrix w = [wij] of 1-forms. Finally, in matrix

notation


 = dw � w ^ w: (3.8)

3.2 Invariant Polynomials and Characteristic Classes

An invariant polynomial on n� n complex matrices Mn(C) is a function

P :Mn(C)! C

which can be expressed as a complex polynomial in the entries of the matrix,

and which satis�es

P (XY ) = P (Y X); (3.9)

where X,Y 2Mn(C): (Milnor, Stashe�, 1974)

Example 1. The trace function [xij] 7!
P
xii; and the determinant function are

well known examples of invariant polynomials on Mn(C).

Theorem 1. For any invariant polynomial P , the exterior form P (K) is closed,

that is dP(K)=0, where K is the curvature matrix.

Proof. Let P (A) = P ([aij]) where the aij's are indeterminates, be an invariant

polynomial of the matrix A. We form the matrix of the �rst derivatives as

[@P=@aij]:

15



The exterior derivative dP (A) is equal to the expression,

dP (A) =
X

(@P=@aij)daij: (3.10)

We write these expressions in matrix form as

[@P=@aij] =

0
BBBBBBB@

P11 P12 : : : P1n

P21 P22 : : : P2n

...
...

. . .
...

Pn1 Pn2 : : : Pnn

1
CCCCCCCA
; d[aij] =

0
BBBBBBB@

da11 da12 : : : da1n

da21 da22 : : : da2n
...

...
. . .

...

dan1 dan2 : : : dann

1
CCCCCCCA
;

dP (A) =
X

(@P=@aij)daij = P11da11 + P12da12 + :::+ Pnndann

If we denote the transpose of the �rst derivative matrix by the symbol P 0(A)

then ;

dP (A) = P11da11 + P12da12 + :::+ Pnndann = tr(P 0(A)daij):

Now let 
 = [
ij] be the curvature matrix (3.8), then the exterior derivative

dP (
) is

dP (
) =
X

(@P=@
ij)d
ij ;

which can be written in matrix form as

dP (
) = tr(P 0(
)d
):

As the curvature matrix is 
 = d!�!^!, taking the exterior derivative of 
, we

compute the 3-form d
 as d
 = d(d!�!^!) = 0�d(!^!) = �d!^!+w^d! =

w ^ (
 + ! ^ !)� (
 + ! ^ !) ^ !, which implies

d
 = ! ^ 
� 
 ^ !: (3.11)

This equality is called the Bianchi identity. We now need to prove the following

claim.

Claim: For any invariant polynominal P, the transposed matrix of �rst derivatives

P 0(A) commutes with A.

16



Proof of the Claim: Let Eji denote the matrix with entry 1 in the (j,i)-th place

and zero elsewhere. As P is an invariant polynomial, P (BA) = P (AB), and

taking B = (I + tEji) we obtain,

P ((I + tEji)A) = P (A(I + tEji))

Let C = ((I + tEji)A) , D = (A(I + tEji)). Their components are respectively

C�� = [I + tEji]�
[A]
� = [��
 + t��j�
i]A
� = A�� + t��jAi�

D�� = A�
[I + tEji]
� = A�
[�
� + t�
j��i] = A�� + tA�j��i

Di�erentiating the equality P (C) = P (D) with respect to t we obtain

dP

dt
=

@P

@C��

dC��

dt
=

@P

@D��

dD��

dt

@P

@C��

��jAi� =
@P

@D��

A�j��i

@P

@Cj�

Ai� =
@P

@D�i

A�j

Finally if we set t = 0, then A = C = D, hence the last equality gives

@P

@Aj�

Ai� =
@P

@A�i

A�j

or

Ai�[
@P

@Aj�

] = [
@P

@A�i

]A�j:

Thus the transposed matrix of the �rst derivatives [ @P
@Aij

] commutes with A. Now

replacing A with 
, it follows that;


 ^ P 0(
) = P 0(
) ^ 


dP (
) = trace(P 0(
)d
)

Using the Bianchi identity we have

dP (
) = trace(P 0(
) ^ (! ^ 
� 
 ^ !))

17



As tr(AB) = tr(BA) for any A, B, we can write

dP (
) = trace(! ^ 
 ^ P 0(
)� ! ^ 
 ^ P 0(
))

Now using the claim above we obtain

dP (
) = trace(! ^ 
 ^ P 0(
)� ! ^ 
 ^ P 0(
)) = 0;

which proves the theorem.

In deRham cohomology theory (Warner, 1983), closed forms on a manifold

de�ne cohomology classes. Thus invariant polynomials of the curvature 2-form

of the bundle de�ne deRham cohomology classes of the base manifold. It is

known that the deRham cohomology classes de�ned above are related to Chern

classes and Pontrjagin classes as follows (Milnor and Stashe�, 1974).

[�i] �= ci, ci: Chern class of the bundle,

[�2i] �= c2i �= pi , pi: Pontrjagin class of the bundle.

We will now concentrate on the computation of the invariant polynomials of

the curvature 2-form matrix. For any n � n matrix A, we can compute the

characteristic polynomial equation for A as follows;

det(A+ �I) = �n + �1�
n�1 + :::+ �j�

n�j + :::+ �n:

Note that whenever the entries of a matrix are even forms, it makes sense to

take the determinant. Hence taking A=
 (3.8), we obtain the characteristic

polynomial of the curvature matrix 
. The �n's are representatives of the

characteristic classes that we are interested in. In the next subsection we shall

obtain the expression of the �n's above in terms of the traces of the powers of 
.

3.3 Relations Between �n and tr(An)
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Let us take any n � n matrix A and write it's Jordan canonical form.

A = PJP�1; J =

0
BBBBBBB@

J1

J2
. . .

Jk

1
CCCCCCCA
;

where Ji's are the Jordan blocks of J. Note that as each Jordan block is lower

triangular, det(A+�I) is independent of the canonical form but depends only on

the eigenvalues. We compute det(A+�I) as follows;

det(A+ �I) = det(PJP�1 + �PP�1) = det(P (J + �I)P�1)

= (detP )det(J + �I)(detP�1) = det(J + �I):

But det(J+ �I)=
Q
det(Ji + �I) =

Q
(�i + �)ki , where ki is the size of the

Jordan block Ji. Hence we get the equality below.

det(A+ �I) = �n + �1�
n�1 + :::+ �j�

n�j + :::+ �n =
Y
i

(� + �i)
ki : (3.12)

It is well known that the �n's can be calculated either in terms of eigenvalues of

A (Hungerford;1987);

�j =
P

1�i1<i2:::<ij�n
�i1�i2:::�ij ; j!�j =

P
i1 6=i2 ::: 6=ij

�i1�i2 :::�ij ;

or in terms of the entries of A as

�j =
P

j'th principal minors. (Gantmacher,1960)

Let us compute the �n's for a 3� 3 matrix.

Let

A =

0
BBB@
a b c

d e f

m n p

1
CCCA (3.13)

A has one of the following Jordan forms,

J1 =

0
BBB@
�1

�2

�3

1
CCCA ; J2 =

0
BBB@
�1

�1

�2

1
CCCA ; J3 =

0
BBB@
�1

1 �1

�2

1
CCCA
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J4 =

0
BBB@
�

�

�

1
CCCA ; J5 =

0
BBB@
�

1 �

�

1
CCCA ; J6 =

0
BBB@
�

1 �

1 �

1
CCCA

and in all of the 6 cases, �n's are

�1=
P3

i=1 �i=�1 + �2 + �3,

�2=
P3

1�i<j�3 �i�j=�1�2 + �1�3 + �2�3,

�3=
P3

1�i<j<k�3 �i�j�k=�1�2�3,

where the eigenvalues may coincide.

On the other hand, we can �nd �n's by using n-th principal minors as follows;

�1= jaj+ jej+ jpj= a+ e+ p ,

�2=

������
a b

d e

������ +
������
a c

m p

������ +
������
e f

n p

������ =ae� bd+ ap� cm+ ep� nf ,

�3=

���������

a b c

d e f

m n p

���������
= aep� afn+ bdp � bfm+ cdn � cem.

Now let us �nd the relation between �n and tr(An).

For n=1, �1=a+ e+ p =�1 + �2 + �3=tr J= tr A.

For n=2, �2= ae� bd+ ap� cm+ ep� nf=�1�2 + �1�3 + �2�3.

trJ2=�21 + �22 + �23, tr J= �1 + �2 + �3, on the other hand we can see that

2(�1�2 + �1�3 + �2�3) = �(�21 + �22 + �23) + (�1 + �2 + �3)
2:

Hence,

2!�2 = �(trA2) + (trA)2: (3.14)

For n=3, �3 = det(A) = �1�2�3. We will express this in terms of trA3 = trJ3 =

�31 + �32 + �33, trA
2 and tr(A). We write

�1�2�3 = �1(�
3
1 + �32 + �33) + �2(�

2
1 + �22 + �23)(�1 + �2 + �3) + �3(�1 + �2 + �3)

3
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Equating the coe�cients of various terms in the �i's, we can see that �1 + �2 +

�3 = 0; �2 + 3�3 = 0; 6�3 = 1.

Hence

3!�3 = 2(trA3)� 3(trA2)(trA) + (trA)3: (3.15)

We will now give a general method for the computation of the �n in terms of

tr(Ak)'s. For this let us �rst rewrite �n, n = 1; : : : ; 4 as below.

1!�1 = C1
1;1trA;

2!�2 = C1
2;1(trA

2) + C2
2;1(trA)

2;

3!�3 = C1
3;1(trA

3) + C2
3;1(trA

2)(trA) + C3
3;1(trA)

3;

4!�4 = C1
4;1(trA

4) + C2
4;1(trA

3)(trA) + C2
4;2(trA

2)2 + C3
4;1(trA

2)(trA)2 +

C4
4;1(trA)

4;

where C

n;� are constants. We will determine these constants by assigning speci�c

values to the eigenvalues. At the �rst stage we take �1 = 1, all others zero, then

�1 = �2 = 1, the rest zero, and so on. We will see that this procedure will be

insu�cient to determine C

n;�, whenever � � 2.

i: Let �1 = 1; �2 = �3 = ::: = �n = 0; trAk = 1; �1 = 1; �k = 0 k > 1.

C1
1;1 = 1

0 = C1
2;1 + C2

2;1

0 = C1
3;1 + C2

3;1 + C3
3;1

0 = C1
4;1 + C2

4;1 + C2
4;2 + C3

4;1 + C4
4;1

ii: Let �1 = �2 = 1; �3 = �4 = ::: = �n = 0; trAk = 2; �2 = 1; �k = 0 k > 2.

2! = C1
2;12 + C2

2;1(2)
2

0 = C1
3;12 + C2

3;1(2)(2) + C3
3;1(2)

3

0 = C1
4;12 + C2

4;1(2)(2) + C2
4;2(2)

2 + C3
4;1(2

2)(2) + C4
4;1(2)

4

iii: Let �1 = �2 = �3 = 1; �4 = ::: = �n = 0; trAk = 3; �3 = 1; �k = 0 k > 3.
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3! = C1
3;1(3) + C2

3;1(3)(3) + C3
3;1(3)

3

0 = C1
4;13 + C2

4;1(3)(3) + C2
4;2(3)

2 + C3
4;1(3

2)(3) + C4
4;1(3)

4

iv: Let �1 = �2 = �3 = �4 = 1; �5 = ::: = �n = 0; trAk = 4; �4 = 1; �k =

0 k > 4.

4! = C1
3;1(4) + C2

3;1(4)(4) + C3
3;1(4)

3

0 = C1
4;14 + C2

4;1(4)(4) + C2
4;2(4)

2 + C3
4;1(4

2)(4) + C4
4;1(4)

4

Note that for n = 1; 2; 3 we can determine the C

n;�'s from the equations above,

but this procedure gives only the sum C2
4;1 + C2

4;2. To determine the coe�cients

C

n;� for same 
 but di�erent �, we could take for example �1 = �2 = ::: =

�n�1 = �; �n = � then,

4!(
�
n

4

�
-
�
n�1

3

�
) �4 + 4!

�
n�1

3

�
�3� = C1

4;1(trJ
4) + C2

4;1(trJ
3)(trA) + C2

4;2(trJ
2)2 +

C3
4;1(trJ

2)(trJ)2 + C4
4;1(trJ)

4; 8n 2 N;

4!(
�
n

4

�
-
�
n�1

3

�
) �4+4!

�
n�1

3

�
�3� = C1

4;1((n� 1)�4+�4)+C2
4;1((n� 1)�3+�3)((n�

1)�+�)+C2
4;2((n� 1)�2+�2)2+C3

4;1((n� 1)�2+�2)((n� 1)�+�)2+C4
4;1((n�

1)�+ �)4; 8n 2 N;

Equating the coe�cients of �4 and �3 in the both sides of this equation we obtain

4! (
�
n

4

�
-
�
n�1

3

�
) �4 = [C1

4;1(n�1)+(C
2
4;1+C

2
4;2)(n�1)

2+C3
4;1(n�1)

3+C4
4;1(n�1)

4]�4;

4! (
�
n�1

3

�
) �3� = (C2

4;1 + 2C3
4;1 + 4C4

4;1)(n� 1)3�3�:

Combining these equations with the previous ones we can determine the

coe�cients of C


4;� as C1

4;1 = �6; C2
4;1 = 8; C2

4;2 = 3; C3
4;1 = �6; C4

4;1 = 1. Hence

4!�4 = �6(trA4) + 8(trA3)(trA) + 3(trA2)2 � 6(trA2)(trA)2 + (trA)4 (3.16)

The expressions of �k, k = 5; 6; 7 are obtained similarly by using Mathematica.

We give these explicit expressions below.

5!�5 = 24(trA5) � 30(trA4)(trA) � 20(trA3)(trA2) + 20(trA3)(trA)2 +

15(trA2)2(trA)� 10(trA2)(trA)3 + (trA)5:
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6!�6 = �120(trA6) + 144(trA5)(trA) + 90(trA4)(trA2) +

40(trA3)2�90(trA4)(trA)2�120(trA3)(trA2)(trA)�15(trA2)3+40(trA3)(trA)3+

45(trA2)2(trA)2 � 15(trA2)(trA)4 + (trA)6:

7!�7 = 720(trA7) � 735(trA6)(trA) � 189(trA5)(trA2) � 840(trA4)(trA3) +

189(trA5)(trA)2+1050(trA4)(trA2)(trA)+385(trA3)2(trA)�210(trA4)(trA)3�

420(trA3)(trA2)(trA)2�105(trA2)3(trA)+70(trA3)(trA)4+105(trA2)2(trA)3�

21(trA2)(trA)5 + (trA)7:

We will now write the expression of �n in terms of the partitions of the integer

n. In the expression given by Eq. (3.17), the coe�cients are to be determined

by assigning speci�c values to the �i's as above.

De�nition 4. A partition of an integer n � 0 is an unordered sequence r1r2:::rs

of positive integers with sum n. The number of partitions of n is denoted by

p(n). Let i� be the number of distinct partition of n into � summands. Let us

give below partition of integers, n=1,2,..,5.

p(1)=1, n = 1) f1g|{z}
i1=1

;

p(2)=2, n = 2) f2g|{z}
i1=1

; f1 + 1g| {z }
i2=1

;

p(3)=3, n = 3) f3g|{z}
i1=1

; f2 + 1g| {z }
i2=1

; f1 + 1 + 1g| {z }
i3=1

;

p(4)=5, n = 4) f4g|{z}
i1=1

; f3 + 1; 2 + 2g| {z }
i2=2

; f2 + 1 + 1g| {z }
i3=1

; f1 + 1 + 1 + 1g| {z }
i4=1

;

p(5)=7, n = 5) f5g|{z}
i1=1

; f4 + 1; 3 + 2g| {z }
i2=2

; f3 + 1 + 1; 2 + 2 + 1g| {z }
i3=2

,

f2 + 1 + 1 + 1g| {z }
i4=1

, f1 + 1 + 1 + 1 + 1g| {z }
i5=1

;

Note that p(n)=
Pn

�=1 i�: The numbers in the braces will be denoted by J



�;�. For

simplicity of notation we will not indicate the dependency of J on n. Comparing

with the table above we can write the �rst few J


�;�'s as below, with � = 1; :::; n,
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i� as in the table above and � = 1; :::; � 
 = 1; :::; i�.

n = 1; i1 = 1; J1
1;1 = 1

n = 2; i1 = 1; J1
1;1 = 2

i2 = 1; J1
2;1 = 1; J1

2;2 = 1

n = 3; i1 = 1; J1
1;1 = 3

i2 = 1; J1
2;1 = 2; J1

2;2 = 1

i3 = 1; J1
3;1 = 1; J1

3;2 = 1; J1
3;3 = 1

n = 4; i1 = 1; J1
1;1 = 4

i2 = 2; J1
2;1 = 3; J1

2;2 = 1

J2
2;1 = 2; J2

2;2 = 2

i3 = 1; J1
3;1 = 2; J1

3;2 = 1; J1
3;3 = 1

i4 = 1; J1
4;1 = 1; J1

4;2 = 1; J1
4;3 = 1; J1

4;4 = 1

With the notations above, the general expression of �n in terms of trAn is as

follows,

n!�n =
nX

�=1

i�X

=1

C

n;�(

�Y
�=1

trAJ



�;� ) (3.17)

We note that a method for iterative computation of the �n, known as the method

of Faddeev, is given in (Gantmacher, 1960).

3.4 Topological Invariants and The Yang-Mills Action

Let E be a vector bundle over an 2n-dimensional smooth manifold without

boundary M and let �k's be the invariant polynomials the curvature 2-form

of E. If P is a polynomial in the �k's such that P (�k) is a homogeneous 2n-form,

then the integral of P (�k) over M will be a topological invariant of the bundle.
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For example in 4-dim, P (�i) = a�21 + b�2 is a 4-form and the integral

Z
M4

(a�21 + b�2)

is a topological invariant.

In 8-dim, one can choose P (�i) = a�41 + b�21�2 + c�1�3 + d�22 + e�4 and obtain

the topological invariant,

Z
M8

(a�41 + b�21�2 + c�1�3 + d�22 + e�4)

If the connection on the bundle E is compatible with an inner product, then

the connection and the curvature takes their values in the Lie algebra o(n), i.e.

A = [!ij] is a skew-symmetric matrix of 1-forms. This can be seen easily as

follows. If the connection r is compatible with an inner product, then

r < Y;Z >=< rY;Z > + < Y;rZ >

where < Y;Z > is the inner product of X and Y . For X = si and Y = sj, we

have rsi =
P
!ik 
 sk, < si; sj >= �ij.

r < si; sj >= r(�ij) = 0 =< rsi; sj > + < si;rsj >

=< !iksk; sj > + < si; !jlsl >

= !ij + !ji

which implies A = [!ij] is a skew-symmetric matrix. Similarly the curvature

2-form matrix [
ij] is also skew-symmetric, since

[
ik]
t = (d!ik � !ij ^ !jk)

t

= d!ki � !kj ^ !ji

= �d!ik � !jk ^ !ij

= �d!ik + !ij ^ !jk

= �
ik

Thus, if the connection is compatible with a metric, then Tr
=�1=0. Then the

topological invariants of a bundle with a metric connection on four and eight
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manifolds reduce respectively to,

Z
M4

(�2);

Z
M8

(a�22 + b�4):

In gauge theories, vector bundles may be used to represent potentials for physical

forces. In this context, one is interested in determining the connection on the

vector bundle in such a way that certain quantities called the "action integrals"

are minimized. A widely used action integral is the expression

Z
M4

< F;F > dV (3.18)

known as the Yang-Mills action. It can be seen that the Yang-Mills action

satis�es the inequality

Z
M4

TrF 2
�

Z
M4

< F;F > dV

As the integral at the left hand side of the inequality is a topological invariant, it

can be altered by changing the connection, hence it is a topological lower bound

for the Yang-Mills action.

In eight dimensions, the search of suitable actions with topological lower bounds

is an ongoing research problem. (Bilge, Dereli, Ko�cak, 1999). In particular

on eight manifolds admitting a spinc structure, it is possible to write down a

topological lower bound for the Yang-Mills action. In the next section we shall

study spinc structures in detail.
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4.CLIFFORD ALGEBRAS AND SPINC STRUCTURES

4.1 Cli�ord Algebras: Basic De�nitions

Let V be an n-dimensional real vector space with inner product < :; : > and

choose an orthonormal basis fe1; e2; :::; eng. A Cli�ord algebra of V , Cl(V ) is a

2n-dimensional real vector space and an associative algebra with unit element 1.

Cl(V ) is generated by the basis elements fe1; e2; :::; eng with multiplication rules

i-) e2i = �1,

ii-) eiej + ejei = 0 for i 6= j.

A basis of Cl(V ) as a real vector space is given by the elements

1; e1; e2; :::; en; e1e2; :::; en�1en; e1e2e3; :::; e1e2e3:::en (4.1)

or

e0 = 1; eI = ei1ei2:::eik

for I = fi1; i2; :::; ikg � f1; :::; ng with 1 � i1 < i2 < ::: < ik � n: We denote k=

jIj= deg(eI). Any element of Cl(V ) can be written x =
P

I xIeI.

The Cli�ord algebras have been studied in the literature and the following

isomorphism are well known. ( Salamon, 1996).

Cl(R1) �= C,

Cl(R2) �= H,

Cl(R3) �= H +H,

Cl(R4) �= H2�2,

Cl(R5) �= C2�2,

Cl(R6) �= R8�8,
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Cl(R7) �= R8�8 +R8�8,

Cl(R8) �= R16�16.

After 8-dimension, there is a periodicity situation (Porteous, 1995) such that;

Cl(n+ 8) = Cl(n)
R16�16: (4.2)

4.2 Spinc Structures: Basic De�nitions

Let V be a 2n-dimensional real vector space, and W be a 2n-dimensional

Hermitian vector space. We can de�ne an algebra homomorphism from Cl(V )

to End(W ) such that;

i-) �(v1 + v2) = �(v1) + �(v2),

ii-) �(v1v2) = �(v1)�(v2),

iii-) �(ev) = �(v)�,

where ev is an involution of the v 2 Cl(V ). An involution of Cl(V ) is a one-to-one

transformation within Cl(V ) v 7! ev 2 Cl(V ) and whose square is unity: ev 7!
eev = v. An involution of Cl(V ) is de�ned by

Cl(V ) �! Cl(V ) : v 7! ev
ev =X

I

�IvIeI ; �I = (�1)k; k = jIj:

For example; let us take v 2 Cl(V ) as follows,

v = a0 + a1e1 + a2e2 + a23e23 + a123e123

then the involution of v is

ev = a0 � a1e1 � a2e2 + a23e23 � a123e123

This algebra homomorphism is determined by the restriction of � to V . Now we

can de�ne this spinc-structure as follows.
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De�nition: A spinc-structure on 2n(even)-dimensional real vector space V is

a pair (W;�), where W is a 2n-dimensional Hermitian vector space and � is a

linear map from V to End(W ) satisfying following conditions;

i-) �(v)� + �(v) = 0;

ii-) �(v)��(v) = kvk2 for v 2 V .

4.3 Real and Complex Representations of Cli�ord Algebras

Let V be k-dimensional real vector space spanned by fe1; e2; :::; ekg, and �(v) be

N �N matrix such that �(ei) = Ai ;

A2
i = �1; and AiAj +AjAi = 0; for i = 1; 2:::; k (4.3)

Ai's are either skew-symmetric matrix over real numbers, or skew-hermitian

matrix over complex numbers. If we choose real representation of Cl(Vk),

then Ai's are d(k) � d(k) skew-symmetric matrices, when we choose complex

representation of Cl(Vk), then Ai are dc(k) � dc(k) skew-hermitian matrices.

The dimension of the representation is given as follows.

k N=d(k) N =dc(k)

1 2 1

2 4 2

3 4 2

4 8 4

5 8 4

6 8 8

7 8 8

8 16 16

We also know how to compute the d(k) and dc(k) in any other dimension. This
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is given as follows (Lawson, Michelsohn, 1989).

d(m+ 8k) = 24kd(m); dc(m+ 2k) = 2kdc(m): (4.4)

We know that k is the number of vector �elds lying on (d(k) � 1)-dimensional

sphere Sd(k)�1. This number k is called Radon-Hurwitz number in the literature.

On the sphere SN�1 there exist k linearly independent vector �elds where k is

computed as follows.

N = 24d+c(2a+ 1); 0 � c � 3 then k = 8d + 2c � 1

(Lawson, Michelsohn, 1989). Note that this construction gives three vector

�elds on S3, seven on S7, and eight on S15.

4.4 Dimension of Maximal Linear Subspaces of Matrices Satisfying

A2 + �2I = 0

We are interested in the following two problems.

Problem(A): Over the real numbers, what is the dimension of maximal linear

subspaces LR of the set SR = fA : AT +A = 0; A2 + �2I = 0g. (Bilge, Dereli,

Kocak, 1997)

Problem(B): Over the complex numbers what is the dimension of maximal

linear subspaces LC of the set SC = fA : A� +A = 0; A2 + �2I = 0g.

Solution of Problem(A): A is a skew-symmetric matrix that satis�es A2 +

�2I = 0. This is known from (Bilge, Dereli, Kocak, 1997) that SR has a

manifold structure. We work locally to determine its dimension. We know that

dimension of manifold is equal to dimension of its tangent space at any point

on the manifold. Pick a point J =

0
@ 0 1

�1 0

1
A. Study the dimension of tangent

space at J . This number is the number skew-symmetric matrices anti-commute

with J . i.e., BJ + JB = 0. Then we can see that B =

0
@B1 B2

B2 �B1

1
A,

dimB = dimB1 + dimB2;
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where B1; B2 are skew-symmetric matrices. The dimension of B1; B2 are as

follows, dimB1 = dimB2 = n(n � 1)=2. Hence we �nd dim B= n2 � n. Finally,

the number of skew-symmetric matrices which anti-commute with J and the

skew-symmetric matrix J implies the dimension of SR such that dimSR =

n2 � n+ 1.

Solution of Problem(B): A is a skew-hermitian matrix which satis�es

A2+�2I = 0. Similarly, we will �nd the dimension of tangent space at any point

to determine the dimension of the manifold. Pick a point J , i.e., J =

0
@ 0 1

�1 0

1
A.

The dimension of the tangent space at J is the number of skew-hermitianmatrices

which anti-commute with J . i.e. AJ + JA = 0. This condition implies that

A =

0
@A1 A2

A2 �A1

1
A, where A1 and A2 are skew-hermitian matrices. We can write

A1 = A1R + iA1I

where A1R is a skew-symmetric matrix and A1I is a symmetric matrix. A1R and

A1I show that dimA1R = n(n� 1)=2, dimA1I = n(n+1)=2. Hence dimA1 = n2.

Similarly,

A2 = A2R + iA2I

where A2R is a skew-symmetric matrix and A2I is a symmetric matrix. A2R and

A2I show that dimA2R = n(n� 1)=2, dimA2I = n(n+1)=2. Hence dimA2 = n2.

dimA = dimA1 + dimA2 = 2n2

The number of skew-symmetric matrices which anti-commute with J is 2n2, and

adding with the skew-symmetric matrix J implies that dimSC = 2n2 + 1.

We know from (Bilge, Dereli, Kocak, 1997) that dimLR = Radon-Hurwitz

number. In particular, if

N = 2(2a + 1); then dimLR(N) = 1:

We will give a lemma before calculating the dimension of LC .
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Lemma. Let A1; A2 be skew-hermitian matrices. If A3 = A1:A2 , A2
i = �1,

AiAj +AjAi = 0, BAi +AiB = 0 for i=1,2,3. then B=0.

Proof.

BA2+A2B = 0

A1(BA2 +A2B) = 0

A3B �BA3 = 0 with BA3 +A3B = 0, so this shows that B=0.

If we take A3 = A1:A2 then the linear subspaces spanned by fA1; A2; A1A2g can

not be extended, hence we take A3 6= A1:A2. Now pick two points, J1; J2, i.e.,

J1 =

0
@ 0 1

�1 0

1
A, J2 =

0
@ i 0

0 �i

1
A.

Any matrix B which anti-commutes J1 and J2 is such that B =

0
@ 0 �

� 0

1
A, where

� is a skew-hermitian matrix. This shows that,

LC(2n) = LC(n) + 2: (4.5)

The dimensions of maximal linear subspaces of complex-hermitian matrices

satisfying A2 + �2I = 0 are listed below.

2n dim LC(2n)

2 3 �!

0
@ 0 1

�1 0

1
A,
0
@ i 0

0 �i

1
A,

0
@ 0 i

i 0

1
A.

4 3+2=5

6 1+2=3

8 5+2=7

10 1+2=3

12 3+2=5

14 1+2=3

16 7+2=9

18 1+2=3

20 3+2=5
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The general formula can be given as follows.

k = 2(2a + 1) �! LC(k) = 3;

k = 22(2a+ 1) �! LC(k) = 5;

k = 2l�1(2a+ 1) �! LC(k) = 2l � 1.

33



5. RESULTS AND DISCUSSIONS

In this study, the numerical relations between the traces of powers of the

curvature 2-form matrix 
 and its invariant polynomials �n are obtained.

We present Cli�ord algebras with their real and complex representations. For

any dimensional Cli�ord algebras, they have representations on skew-symmetric

and skew-hermitian matrices. These representations are given.

Finally, the dimensions of maximal linear subspaces of the skew-hermitian

matrices satisfying A2 + �2I = 0 are determined.
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