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FABRICATION AND CHARACTERIZATION OF NANOTUBULAR Ti AND 

TiAl ANODIC OXIDE FILMS FOR GAS SENSING APPLICATION 

SUMMARY 

Gas sensors are extensively used for effective detection and control of industrial and 

automotive exhaust emissions that mainly consists of CO2, CO, H2, NOx. The 

concentration measurement of these emissions is important for human health, 

ecological balance, industrial safety and efficiency. Selectivity, sensitivity, long term 

stability, responce and recovery time are the most significant properties of gas 

sensors. These properties govern the effectivity on functionality, performance and 

cost of sensors. Industrialization and technological advancements forces the 

development of fast responding better sensors with higher selectivity. Hence, there 

has been on going research and development efforts in this field. 

 

Semiconductor oxide based sensors, known also as chemiresistive sensors, are the 

most investigated and widely used ones for detection of combustible and toxic gases. 

These sensors are advantageous due to their high sensitivity to exhaust gases, low 

cost and relative simplicity. Since hydrogen interacts with the other reducing gases in 

a gas mixture consisting of CO2, CO, H2, sensors with high selectivity and sensitivity 

properties is required for effective hydrogen sensing. However, available sensors are 

still not sufficient to succeed this task and development of highly sensitive hydrogen 

gas sensors using semiconductor oxide based sensor materials is still a challenge.   

TiO2 has gained much attention among semiconductor oxide based sensor materials, 

owing to its high stability at elevated temperatures and in harsh environments, low 

cost, non-toxic properties. TiO2 is one the most promising sensor material for 

development of highly selective hydrogen sensors. The possibility of oxidizing and 

nanotubular structure formation of metallic titanium with electrolytic processess 

opened up new horizons for increasing the sensing and selectivity characteristics of 

titania based gas sensors. 

 

In production and applications of sensor platforms of functional sensor devices that 

are used in harsh environments the sensor material is generally deposited on ceramic 

substrates. In literature, RF sputtering and e-beam evaporation PVD are two 

commonly used techniques to deposit TiO2 or metalic Ti thin films on different 

substrates. However, there are some problems in thin film coatings produced via 

these techniques. The most important boottleneck of these techniques is their 

unability to produce coatings that are well-adherent, dense and resistant to 

electrolytic process.  

 

In the present study, the well-adherent, dense metallic Ti and TiAl thin films were 

deposited on alumina substrates using CAPVD method.  This has been accomplished 

for the first time in this study. The pretreatment process applied before deposition 

generated heat on the surface of substrates by the effect of energetic ions and this 
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heating provided good adhesion between substrate and coating.  The main effects of 

different bias voltage on the resulting coating structures and morphologies were 

investigated. As the deposition bias voltage was increased, the columnar structure of 

coatings became denser and this resulted in a decrease in Ti and TiAl coating 

thicknesses. The aluminum content of the films showed dependence on the bias 

voltage. The high bias voltage applied during post treatment caused a heating on the 

surface of coatings. Post treatment of the coating resulted in the densification of the 

coating structure. The columnar structure of coatings was converted into equiaxed 

structure by the effect of post treatment with high bias voltage. Surface morphologies 

of coatings were improved compared to the coatings without post treatment and 

smoother surfaces were obtained. The rapid heat treatment supplied by the 

application of high bias voltage led to stabilize the meta-stable Ti3Al phase in TiAl 

coatings and the amount of this phase increased with the aluminum content.  

 

All the coatings produced by CAPVD method were anodized in ethylene glycol 

electrolyte without any spalling.  This result shows that CAPVD is a suitable method 

for producing well-adherent coatings which are resistant to electrolytic processes. 

Among the coatings produced, two types of Ti and TiAl coatings were selected for 

the optimization of anodization studies. These are the coatings produced at -100 V 

bias voltage with and without high bias voltage post treatment. The suitability and 

durability of these two different Ti and TiAl coating structures were tested for 

anodization process and the possible effects of post treatment on as grown 

nanoporous structure were investigated. Both these two different coating structures 

promoted the formation of highly ordered nanoporous-nanotubular structures on their 

surfaces.  In post treated coatings crack formation induced by internal stresses was 

observed on the surface of anodized structures. Therefore, the coatings produced 

without post treatment was selected as the most appropriate coating structures for 

anodization process. The optimization studies are mainly conducted by using TiAl 

alloy coatings since there are no studies about the anodization of these coatings in the 

literature. In anodization of both Ti and TiAl thin film coatings, various anodization 

voltages, electrolyte compositions, temperatures, agitation types and durations were 

performed. The effects of these parameters on the morphologies and diameters of as-

grown nanotubes were also investigated and evaluated. The optimal anodization 

parameters for obtaining high thickness of nanotube layer and well-aligned nanotube 

arrays were determined. These produced nanotubes with high thickness are thought 

to be appropriate for using as a sensor material since there is a possibility to occur a 

short circuit between Pt circuits and the conductive layer underneath the nanotubes.  

 

The crystallization behaviors of nanostructured Ti and TiAl anodic oxides were 

investigated after heat treatments conducted at different temperatures from 280 °C to 

720 °C. The anatase-rutile phase transformation was observed at about 720 °C in 

nanostructured Ti anodic oxide. However, this phase transformation was kinetically 

hindered by the addition of Al dopant into TiO2 structure. It was found that the 

presence and absence of metallic layer underneath the nanotube has a considerable 

effect on the phase transformation. The presence of metallic film favors the anatase-

rutile phase transformation in the nanotube structure. In Al-doped TiO2, some of the 

peaks slightly shifted from TiO2 anatase peak positions due to the presence of 

smaller ionic radius of Al3+ ions in TiO2 lattice. It was determined that these peak 

shifts were observed in the planes which are mainly affected from the changes in c 

axis. The anatase TiO2 planes that are affected from “c” lattice parameter in TiAl 
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anodic oxides were determined and the peak positions were calculated using a 

simulation study. For heat treated TiAl anodic oxide, definitely smaller crystallite 

size was calculated compared to the heat treated Ti anodic oxide. The results of heat 

treatment investigations indicated that 3 parameters are mainly effective on anatase 

to rutile transformation. These are; rigid nanostructure form, the presence or absence 

of metallic film underneath the nanotubes and the addition of Al dopant. 

 

The hydrogen sensing performance of nanotubular TiAl oxide sensor was 

investigated. The changes in sensor resistance were measured at various hydrogen 

gas concentrations and operating temperatures. The produced nanotubular TiAl oxide 

sensor exhibited good responses towards H2 gas concentrations at all operating 

temperatures, however, the optimum operating temperature for maximum sensor 

response was determined as 300 °C since high sensitivity with lower response and 

recovery times were obtained at this temperature. The prepared sensor is also 

sensitive to gas concentration and it can detect even lower concentrations (50 ppm) 

of H2 gas. It can be concluded that the electrical resistance of TiO2 decreased to 

lower values by using Al dopant and the electrical conductivity provided by Al 

doping caused an increase in the sensor stability and sensitivity.  
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TİTANYA ESASLI NANOTÜPLÜ İNCE FİLM HİDROJEN GAZ 

SENSÖRLERİNİN ÜRETİMİ VE KARAKTERİZASYONU 

ÖZET 

Endüstriyel ve araç egzoz kirliliklerini kontrol etmek amacı ile ortamdaki CO2, CO, 

H2, NOx, gibi zararlı egzoz gaz emisyonlarının tayin edilmesi ve 

konsantrasyonlarının sensör sistemleri ile ölçülmesi, insan sağlığı, ekolojik denge, iş 

yeri güvenliği ve yanma performanslarının tanımlanması açısından çok önemlidir. 

Sensörlerin maliyet, performans ve işlevsellikleri üzerinde en etkili parametreler 

sensörün seçiciliği ve duyarlılığı, uzun süreli kararlılığı, yanıt verme ve toparlanma 

süreleridir. Teknolojik gelişmeler ile birlikte gerekliliği artan sensörlerin bu 

özelliklerinin geliştirilmesi konusu uzun yıllardır üzerinde çalışılan ve yeni 

gelişmelerin sık sık ortaya konduğu bir çalışma alanıdır. 

 

Egzoz gaz emisyonlarına en duyarlı sensör çeşidi yarı iletken oksit tabanlı 

sensörleridir (kemiresistif sensörler).  Hidrojen diğer egzoz gaz emisyonları ile 

birlikte bulunduğu ortamda, redükleyici gazlar ile girişim yapabilmektedir ve bu 

yüzden bu tür gazları algılamada ayrı ayrı seçiciliği ve duyarlılığı yüksek olan 

sensörlerin kullanılması gereklidir ancak mevcut sensörler ile bu henüz sağlıklı 

olarak başarılamamaktadır. Yarı iletken sensör malzemesi olarak TiO2 yüksek 

sıcaklıktaki termal kararlılığı, zor çevre şartlarına toleransı, düşük maliyeti ile ve 

bilinen toksik bir özelliği olmamasından dolayı günümüzde yanma ve egzoz gazı 

emisyonlarını tayin etmede ve bu emisyonlardaki hidrojene karşı seçiciliği arttırılmış 

sensörlerde önemli bir algılayıcı malzeme haline gelmiştir. Bu yapıların daha sonra 

uygulanan elektrolitik proseslerle hem oksitlenebilme hem de nanotüpler halinde 

oluşturabilme özelliğinde olması da hem duyarlılıklarının hem de seçiciliklerinin 

arttırılması açısından yeni ufuklar açmaktadır.  

 

TiO2 tabanlı sensör malzemesinin seramik karakterli bir altlık üzerinde üretilmesi bu 

sensör malzemesinin değişik uygulamalarda kullanılan ve farklı gereksinimlere 

ihtiyaç duyan cihazlarda kullanılabilmesine olanak sağlamaktadır. TiO2 ince filmini 

veya metalik Ti ince filmini bir altlık üzerinde üretme aşamasında literatürde en çok 

kullanılan 2 yöntem manyetik alanda sıçratma ve e-demeti buharlaştırma FBB 

teknikleridir. Ancak bu konudaki en büyük sıkıntı bu teknikler ile altlık malzeme 

yüzeyine iyi yapışan, yoğun, aynı zamanda daha sonra uygulanan elektrolitik işleme 

dayanıklı kaplamaların üretilememesidir.  

 

Bu çalışmada katodik ark tekniği ile altlık malzemeye çok iyi yapışan, yoğun, eş 

eksenli ve anodizasyon esnasında kullanılan elektrolite dayanıklı metalik Ti ve TiAl 

ince filmler üretilmiştir. Bu çalışmada kullanılan katodik ark kaplama ve 

alaşımlandırma yaklaşımı titanyum tabanlı sensör malzemesi üretiminde ilk defa bu 

çalışma kapsamında kullanılmıştır. Kaplama işleminden önce altlık malzemeler 

önişleme tabi tutulmuştur. Uygulanan bu önişlem sırasında yüksek enerjili iyonların 

etkisi ile altlık malzemenin yüzey sıcaklığı artırılarak altlık malzeme ile kaplama 
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arasında iyi bir yapışma sağlanmıştır. Kaplama bias voltajının üretilen kaplama 

morfolojisi ve mikroyapısal özellikleri üzerindeki etkileri incelenmiştir. Kaplama 

bias voltajı arttıkça daha yoğun yapıda kaplamalar elde edildiği için Ti ve TiAl 

kaplamaların kalınlıklarında azalma gözlenmiştir. TiAl kaplamalarda Al içeriği bias 

voltajına bağlı olarak değişim göstermiştir. Bazı kaplamalara, kaplama sonrasında 

yüksek bias voltajı uygulanmış ve bu işlemin üretilen kaplamalar üzerindeki etkileri 

incelenmiştir. Uygulanan yüksek bias voltajı kaplama yüzey sıcaklığının artmasını 

sağlamıştır. Bu işlem uygulandığında, daha yoğun kaplama yapısı elde edilmekle 

birlikte kaplamanın kolonsal yapısı eşeksenli bir yapıya dönüşmektedir. Ayrıca bu 

işlem sayesinde kaplamaların yüzey morfolojilerinde farkedilir derecede iyileşme 

gözlenmiştir. TiAl kaplamalarda, kaplama sonrası uygulanan yüksek bias voltajı hızlı 

bir ısıl işlem etkisi yarattığı için Al miktarının fazla olduğu kaplamalarda yarı kararlı 

Ti3Al fazının kararlı hale gelmiştir. Katodik ark metodu ile üretilen tüm kaplamalar 

yüzeylerinde dökülme olmaksızın anodize edilebilmiştir. Bu sonuç, katodik ark 

yönteminin, elektrolitik proseslere dayanıklı kaplamaların üretiminde kullanılmaya 

elverişli bir metot olduğunu göstermiştir. Yapılan anodizasyon işlemi ile üretilen 

kaplamaların hem oksit formuna dönüştürülmesi hem de yüzeyinde gaz algılama 

özelliğini fark edilir derecede arttıracak nanotüplerden oluşan genişletilmiş bir yüzey 

elde edilmesi sağlanmıştır.  

 

Anodizasyon optimizasyon çalışmalarında kullanılmak üzere iki farklı Ti ve TiAl 

kaplama türü seçilmiştir. Bunlar; -100 bias voltajında üretilmiş kaplamalar ve yine 

aynı bias voltajında üretildikten sonra yüksek bias voltajına maruz bırakılmış 

kaplamalardır.  Bu iki farklı Ti ve TiAl kaplama yapılarının anodizasyon prosesi 

açısından uygunluğu ve dayanıklılığı test edilmiştir. Ayrıca uygulanan yüksek bias 

uygulamasının elde edilen nanoyapılar üzerindeki olası etkileri incelenmiştir. Her iki 

farklı kaplama yapısı da düzenli dizilime sahip nanogözenekli ve nanotübüler 

yapıların oluşmasını sağlamıştır. Ancak yüksek bias uygulanmış kaplamalarda iç 

gerilme oluşmasınında dolayı anodize edilmiş yüzeylerde çatlaklar gözlenmiştir. Bu 

yüzden, anodizasyon prosesi için yüksek bias uygulanmamış kaplamaların 

kullanılmasının daha uygun olacağı düşünülmüştür. Literatürde TiAl alaşım 

kaplamaların anodizasyonu ile ilgili çalışma olmadığı için daha çok TiAl 

kaplamalarının anodizasyon parametrelerinin optimizasyonu üzerinde 

yoğunlaşılmıştır. Ti ve TiAl ince film kaplamaların anodizasyon parametrelerinin 

optimizasyon çalışmalarında, anodizasyon voltajının, elektrolit konsantrasyonun, 

anodizasyon sıcaklıklığının, karıştırma türünün ve anodizasyon sürelerinin üretilen 

nanoyapıların üzerindeki etkileri incelenmiştir. Düzenli dizilime sahip nanotüp 

yapıları ile uzun nanotüp yapıları içeren anodik oksitler elde etmek için gerekli 

optimum anodizasyon parametreleri belirlenmiştir. Uzun nanotüp yapısına sahip 

anodik oksitler sensör malzemesi olarak kullanıldığında, platin elektrotlar ile 

nanotüplü yapının altında kalan metalik film arasında oluşabilecek kısa devrenin 

oluşmasını engellemektedir. 

 

Nanoyüzeyli Ti ve TiAl anodik oksitlerin kristalizasyon davranışları,  ısıl işlemler 

sonrasında yapılan faz analiz çalışmaları ile belirlenmiştir. Isıl işlemler 280 °C ile 

720 °C arasında sistematik olarak gerçekleştirilmiştir. Nanoyüzeyli Ti anodik 

oksitlerde anatas-rutil faz dönüşümü 720 °C civarında görülmüştür. Ancak, TiAl 

anodik oksitlerde anatas-rutil dönüşümü Al dopantının katkısından dolayı kinetik 

olarak geciktirilmiştir. Anodik oksit yapısında nanotüplerin altında oksitlenmemiş 

metalik filmin varlığının da faz dönüşümü üzerinde önemli etkisi olduğu tespit 
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edilmiştir. Isıl işlem uygulanmış TiAl anodik oksitlerde, bazı anatas pik 

pozisyonlarında kaymalar görülmüştür. Titanyuma kıyasla daha küçük iyonik 

yarıçapa sahip aluminyum iyonun anatas kristal yapısına girerek düzlemler arası 

mesafenin azalmasına ve dolayısı ile anatas pik pozisyonlarının daha yüksek açılara 

doğru kaymasına neden olmuştur. Pik pozisyonlarında kayma görülen düzlemlerin 

“c” kafes parametresindeki değişimlerden etkilenen düzlemler olduğu yapılan 

simulasyon çalışmaları neticesinde belirlenmiştir. Tane boyutu hesaplamaları 

neticesinde, ısıl işlem uygulanmış TiAl anodik oksitlerin nispeten daha küçük tane 

boyutuna sahip olduğu görülmüştür. Tüm yapılan ısıl işlem çalışmaları sonucunda, 

anatas-rutil faz dönüşümü üzerinde genel olarak 3 parametrenin etkili olduğu 

düşünülmüştür. Bunlar; yapının nanoboyutta oluşu, nanotüp yapısının altında metalik 

filmin varlığı ve Al ile katkılanlandırılmasıdır. 

 

Son olarak, üretilen nanoyüzeyli TiAl oksitler sensör malzemesi olarak 

kullanılmıştır. Bu malzemelerin hidrojen algılama özellikleri farklı sıcaklıklarda ve 

farklı hidrojen gaz konsantrasyonunda test edilmiştir. Al katkısı sensörün başlangıç 

direnç değerini Ti oksit sensörlere kıyasla azaltarak sensörün algılama özelliklerini 

iyileştirmiş ve konsantrasyona bağlı ölçümlerde sensörün kullanılmasına olanak 

sağlamıştır. 100°C üzerinde yapılan sensör testlerinde, hidrojenin kimyasal 

adsorpsiyonu için gerekli aktivasyon enerjisi sağlandığı için sensörün hidrojene karşı 

duyarlılığında artış meydana gelmiştir. Duyarlılık 100 °C ile 200 °C arasında hızlı bir 

artış gösterir iken, 200°C ile 350° C arasında duyarlılık artış hızı yavaşlamaya ve 

belli bir limit değere ulaşmaya başlamıştır. Hidrojen atomlarının sensör yüzeyine 

kimyasal olarak adsorpsiyonun tek katman halinde gerçekleştiği için sensörün bu 

şekilde bir davranış gösterdiği düşünülmüştür.    Üretilen sensör, genişletilmiş yüzey 

alanına ve yüksek yüzey/hacim oranına sahip olduğu için, oda sıcaklığında ve 

100°C’de yapılan testlerde de tüm hidrojen konsantrasyonlarını algılayabilmiştir 

ancak duyarlılık değerleri yüksek sıcaklıklarda elde edilen değerler kadar yüksek 

değildir. Nanoyüzeyli TiAl oksit sensörün hidrojen gaz konsantrasyonundaki 

değişimlere duyarlı olduğu ve 50 ppm kadar düşük konsantrasyonlardaki hidrojen 

gazını bile algılayabildiği tespit edilmiştir. Test sıcaklığının artması ile diğer sensör 

parametrelerinde de iyileşme gözlemlenmiştir. 200°C’nin üzerinde yapılan testlerde, 

hesaplanan cevap süreleri 30-100 saniye ve toparlanma süreleri 3-10 saniye 

aralığında değişim göstermektedir. Üretilen nanoyüzeyli TiAl oksit sensör için 

optimum çalışma sıcaklığı ise 300°C olarak belirlenmiştir.   
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1. INTRODUCTION 

1.1 Gas Sensors and Their Operating Principles 

The gas sensor is designed to convert a chemical information (concentration) of a 

particular gas in the ambient into an electrical signal. The main components of gas 

sensor are receptor and transducer. Some interactions such as adsorption, 

electrochemical reactions etc occur between gas molecules and a material acting as a 

receptor and these interactions create some physical or chemical effects (formation of 

reaction products or reaction heat, change in mass, size or surface properties of 

receptors) on receptors. The transducer converts these effects to an electrical signal. 

While the diagnosis of gas is a chemical based process, conversion of a chemical 

information of a gas to an electrical signal is physical based process (Figure 1.1). 

 

Figure 1.1 : Operation prensible of gas sensor [1]. 

1.2 Types of Gas Sensors 

Semiconductors, ionic conductors (solid electrolytes), piezoelectronic crystals, 

catalytic combustion catalysts, optic fibers and many other functional materials have 

been used in gas sensor fabrication [1]. 

There are different types of gas sensors such as solid state sensors, mass and optical 

sensitive sensors. Table 1.1 presents different types of gas sensors and their detection 

principles. Among these sensors, according to their detection principles solid-state 

sensors can be classified as follows; chemiresistive, chemical field effect transistor, 

calorimetric, potansiometric, amperometric sensors.  

receptor 
(chemical) 

transducer 
(physical) 

Gas  

molecules 

 

Signal 
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In this thesis, chemiresistive type gas sensor has been fabricated. In these sensors, the 

resistance change in semiconductor oxide sensor material is measured during the 

analyte gas interact with the semiconductor oxide sensor material [1,2]. 

Table 1.1 : A list of gas sensors and their detection principles [1]. 

Type of 

Sensor 
Gas Sensor Detection Principle 

Solid State 

Sensors 

Chemiresistive 

A change in conductivity of semiconductor is 

measured when it interacts with the analyzing 

gas. 

Chemical field effect 

transistors (chemFET) 

Current-Voltage (I-V) curves of a field effect 

transistor  are sensitive to a gas when it interacts 

with gate. 

Calorimetric 

The concentration of combustible gas is 

measured by detecting the temperature rise 

resulting from the oxidation process on a 

catalytic element. 

Potentiometric 

The signal is measured as the potential 

difference (voltage) between the working 

electrode and the reference electrode. The 

working electrode’s potential must depend on 

the concentration of the analyte in the gas phase. 

Amperometric 
Diffusion limited currentof an ionic conductor is 

proportional to the gas concentration. 

Mass 

Sensitive 

Sensors 

Acoustic 

Change in frequency of surface-acoustic waves 

excited on a quartz or piezoelectric substrate 

upon adsorption or absorption of gas in a 

suitable sorption layer (e.g. metals, polymers). 

Microelectromechanic

al systems based 

sensors 

Change in mechanical bending of micro or 

nanocantilevers upon  adsorption of gas. 

Optical 

Sensors 

Surface Plasmon 

Resonance 

Change in surface plasmon resonance signals is 

proportional to the refractive index close to the 

sensor surface and, is therefore, related to the 

amount of bound gas molecules. 

Optodes 

The change of optical properties measured can 

base on absorbance, reflectance, luminescence, 

light polarization, Raman and others. 

1.3 Semiconductor Based Chemiresistive Sensors 

Semiconductor based chemiresistive sensors are sensitive to atmospheric polluting 

gases [3,4]. This sensor type is frequently used in determination of exhaust gas 

emission due their low-cost, small size and relatively simple to use. Chemiresistive 

materials include metal oxide and non-oxides (such as carbon nanotubes, polymers). 

Some of the chemiresistive materials are given in a representative list in Table 1.2. 

Among these chemiresistive materials, semiconductor metal oxides are mostly used 
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as chemiresistive sensor materials [1]. Semiconductive metal oxides have potential 

interest in gas sensor applications due their higher reactivity against the surrounding 

gas atmosphere [5]. 

Table 1.2 : The representative list of some of the chemiresistive materials [1]. 

Chemiresistive 

Materials 

Base 

Material 

Additives Analyzing Gas 

Metal-oxides Al2O3 Al, SiO2/Si Humidity, CH4, NH3 

Bi2O3 Sb2O3 Smoke, CO, NO 

CdO ZnFe2O4 Ethanol 

CeO2 SnO2 O2, H2S 

Cr2O3 TiO2 NO2, O2, NH3, Humidity 

Co3O4 SiO2 NH3, CO, CH4, C3H8, H2, NO2, Cl2 

CuO SnO2 CO, ethanol, H2S 

Fe2O3 Au, Zn 

(Pt, Pd, RuO2) 

Methane, propane, Benzene, Toluene 

CO, NO2, Methanol, Acetone 

Ga2O3 SnO2, Pd, Ta2O5, 

WO3, NiO 

O2, CO, CH4, NO, NH3 

In2O3 MoO3, Au, Al, 

SnO2 

O3, NO2, H2, CO, C3H8, H2S, Cl2, CO2, 

SO2, NH3, ethanol, acetone 

MoO3 Ti NH3, CO, NO2 

Nb2O5 SnO2 NH3, CO, C2H5OH, H2 

NiO Li, TiOx H2, HCHO, CH4, CH3COOH, CO, 

NO2 

Ta2O5 - Humidity 

SnO2 Pt, Ag, Pd, Os, 

Fe, Au, In, Ru, 

Bi2O3, CeO2, CuO 

CO, CH4, SO2, N2O, CO2, NO2, 

CH3OH, C2H5OH, C3H8, H2, LPG, 

H2S, NH3, CnH2n+2 

TiO2 La, Pt, Cr2O3, 

WO3 

CH3OH, C2H5OH, C3H7OH, O2, H2, 

NH3, NO2 

WO3 Mg, Zn, Mo, Re, 

Au, Pd 

NO2, NH3, H2S, O2 

V2O5 Fe2O3, SnO2, TiO2 NO2, NH3, C2H5OH, Butylamines, 

Propanol, Toluene 

ZnO Al, Sn, Cu, Pd, 

Fe2O3 

NH3, H2, NO2, LPG, CH4, CO, H2S, 

CH3OH, C2H5OH, C3H7OH 

Non-oxides Te Nil H2S, NH3, CO, NO2 

Porous-Si Nil Humidity, NO2 

CuBr Nil NH3 

Carbon 

Nanotube 

  

Polymers   

 

1.3.1 The characteristics of semiconductor based chemiresistive sensors 

The electrical resistance of chemiresistive sensors can be decreased or increased 

depending on the analyte gas molecules. The increase or decrease in resistance 

depends on the type of sensor material (n or p type semiconductor) and analyte gas 
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(reductant or oxidant) [1]. In semiconductive metal oxides, the surface of oxide is 

receptor, grain boundaries are transducer and the change in resistance is signal. 

Transducer converts the change in work function of grains into electrical resistance. 

For this reason, grain size, surface properties, the kinetic factor determined by 

diffusion and surface reactions are effective parameters in terms of gas sensor 

sensitivity [1,2]. In order to record  the gas sensor response curve, the resistance of 

sensor element is measured by a multimeter or electrometer. The resistance 

measurement is performed first in air (or only in the presence of carrier gas such as 

N2) and then in a certain amount of analyte gas mixed with carrier gas. Gases are fed 

to the sensor system with mass flow controllers. In addition, a heater can be used to 

increase the temperature of sensor element in sensor system since the sensing 

characteristics are a function of temperature. [1,2]. 

The response curve of a gas sensor which is schematically depicted in Figure 1.2 can 

be characterized by 5 parameters. These are [1]:  

a) Sensitivity (S): Sensitivity is the ratio of resistivity in the air to the resistivity 

in the analyte gas. Sensitivity can be defined by two formulas:  

            i) S = Rair/ Rgas  (Higher S value for a particular gas indicates that the material 

is good for sensor fabrication.) 

             ii) S (%)= 100x (Rair/ Rgas )/ Rair  (Positive S value indicates that the 

resistivity of gas sensor exposed to analyte gas is decreased.) 

b) Response time: The time interval that the resistivity of sensor reaches 90% 

of it’s constant value after the sensor is exposed to analyte gas concentration. 

The minimum response time is a good indication for gas sensor. 

c) Recovery time: It is the time required for a sensor to switch back its 

resistance to the 10 % of the saturation value. If a sensor has a small recovery 

time, it can be used repeatedly. 

d) Selectivity: It is defined as the ratio of sensitivity towards interfering gas to 

the sensitivity for desired gas.  

e) Long term stability: The ability of the sensor to keep its properties constant 

when operated continuously for a long-term. 
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These 5 parameters are dependent on sensor material, the interaction between gas 

and sensor and operation conditions of sensor. In addition, since the adsorption and 

desorption of gas molecules are temperature dependent processes, the sensitivity, 

selectivity and response time are not dependent only the type of receptor, but also 

dependent on operation temperature. Moreover, the gas reactivity (rate constant) and 

its molecular weight affect the sensor response time. The rate constant (k) determines 

the approximate temperature at which the sensor will operate effectively. In order to 

modify rate constant, foreign receptors (Pd) can be used [1]. 

 

Figure 1.2 : The schematic representation of response curve of a chemiresistive 

sensors [1]. 

1.3.2 Problems associated with metal oxide sensors 

Metal oxides have a lack of selectivity property and this constitutes a disadvantage 

for chemiresistor sensor. However, in order to increase the selectivity property of this 

type of sensors against target gases, suitable dopant elements (Pd, Pt, In, Cu, Nb, 

Mn), noble metals or transition metals, binary oxides, complex multi component 

oxides can be added to metal oxides or the operation temperature of sensor can be 

increased. Dopants are added for exhibiting catalyst effect in a selective reaction. By 

adding dopants to metal oxides, the charge carrier concentration, surface potential, 

barriers between crystals, chemical composition, phase composition and crystal size 

can be changed. Thus the surface reaction rates are increased and the selectivity of 

sensor material towards analyte gas types is provided.  For instance, TiO2 is doped 

with Cr2O3 to become sensitive to NO2 gas [1,2].  
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Metal oxide sensors used today are as follows: SnO2, TiO2, WO3, V2O5, ZnO, Al2O3, 

Bi2O3, CdO, CeO2, Cr2O3, CoO, Co3O4, CuO, FeO, Fe3O4, Fe2O3, Ga2O3, In2O3, 

MoO3, Nb2O5, NiO, Ta2O5. Among these semiconductor oxides, SnO2, TiO2, WO3, 

ZnO have been the most widely used ones in sensor applications [1,2]. 

1.4 TiO2 Based Gas Sensors 

TiO2 has many properties such as good optical properties, high photocatalytic 

activity, high oxidizing properties, etc. owing to these properties, TiO2 has a wide 

range of application areas such as solar cells [6,7], lithium battery, photochromic 

switching [6], photovoltaic cell [8], photocatalytic areas [9,10,11]. Moreover, TiO2 

has high thermal stability at elevated temperature and thus it can exhibit high 

performance as a high temperature sensor material. Although SnO2 based sensors are 

widely used in chemiresistive sensor applications, they show poor gas sensitivity 

above 250 C.  So TiO2 can be utilized in high temperature sensor applications. TiO2 

has also high tolerance to harsh environment conditions, good catalytic activity, lack 

of toxicity and low cost. These properties provide TiO2 to become an important 

sensor material to detect combustion and exhaust gas emissions and also hydrogen 

gas that interfere with other reductant gases existing in environment [11,12].  

1.4.1  n-type and p-type behavior of TiO2 based gas sensors 

n-type and p-type TiO2 exhibit different behavior against oxidizing and reducing 

gases and therefore an increase or decrease in resistance can be observed depending 

on the type of TiO2 sensor material. When n-type TiO2 is exposed to oxidizing gas, 

the resistance increases due to  the oxidizing gas that takes the electrons of n-type 

TiO2.  On the contrary the resistance of p-type TiO2 decreases.  (since the condition 

is kept as follows; pn=constant, n decreases and p increases) In the case of exposure 

of reducing gases, n- type and p-type TiO2 show exactly opposite response compared 

to oxidizing gases [13,14].  It is also possible to alter the electronic carrier from p 

type to n type. For instance, in the case of p-type doped TiO2 with Nb (%10 at.), it 

was assumed that n decreased and p increased, however complicated behavior was 

observed in the slightly doped TiO2 [13-15].  Sharma and his group reported that Cr-

doped TiO2 showed n to p type transition at higher oxygen partial pressures. At low 

oxygen partial pressure the material showed n type behavior and the resistivity of 
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sensor material was increased as the oxygen concentration increased. However, at 

higher oxygen pressure, the material acts as a p type material and the resistivity of 

sensor decreased. This result indicates that the oxygen molecule gets adsorbed on 

TiO2 surface and then it traps the electrons from the conduction band of TiO2, 

thereby the conductivity of Cr-doped TiO2 is decreased. In the case of oxygen 

concentration is increased, the number of electrons in conduction band decreases 

further and conduction is governed by holes. Therefore, the Cr-doped TiO2 starts to 

behave as a p type material [13,15]. There are also other example of transition from 

n- to p-type behavior in Cr doped TiO2 [16].  In some studies, it was found that the 

metal oxide sensor material can exhibit n to p type transition depending on 

temperature and analyte gas concentration. For instance, SnWO4 material was tested 

against CO gas and a variation in resistances was observed in the tests that are 

conducted at 200 C and 300C.  The same tendency was also observed in the 

material as the concentration of CO gas increased. All these variations in resistance 

arised from the n to p type transitions that occurred in the sensor material [17].   

1.4.2  Doped TiO2 Based Gas Sensors 

TiO2 is highly resistive n type semiconductor and due to its low conductivity it is 

generally adapted to analyze oxidant gases [18]. However, TiO2 has been frequently 

used as a reductant gas sensor material after differentiation of the microstructure and 

crystal phase, increasing the surface area, alloying or surface functionalization 

[1,12,19].  In order to improve the sensor properties of TiO2  based sensors, binary 

metal oxide  semiconductor materials have been formed such as TiO2-MoO3, TiO2-

WO3, TiO2-Cr2O3, TiO2-V2O5, Ga2O3-TiO2, TiO2-ErO3, TiO2-Ta2O5 [20,21].  

In literature, Cr [22-25] and Nb [12,26-28] dopants are added to TiO2 for CO, O2, 

NO2 sensitivity,  WO3 [29-31] and V [3] dopants are added for NO2 gas sensitivity,  

Fe [32], Ta [33], Y2O3 [32]  are added for CO sensitivity, NiOx is added for reducing 

gases at 300-400 C [34],  Al dopant is added for O2, CO gas sensitivities [35] and 

Al2O3 is added for H2 or H2S gas sensitivities [36]. 

It should be pointed out that the content and the amount of these dopants constitute 

an importance for sensor material. In the case of altering the amount of dopant 

element, the sensitivity of sensor can be increased or decreased and the sensor may 

become sensitive to different gases. 
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1.4.3 The effects of adding dopant elements into TiO2  

In order to improve the sensitivity of titania sensors, some dopants are added to 

titania such as Nb, Cr, Sn, Pt, Zn, Al, La, Y, etc. [35].  These dopants can be added to 

the titania lattice according to Hume-Rothery Rule and this rule indicates that metal 

ion dopants whose ionic radius are within 15% of that of the host lattice can show 

appreciable solubility [37].   Incorporation of dopants can reduce the band gap in 

TiO2, introduce mid-gap states and improve the charge carrier separation [37].  The 

most important effects of addition of dopant into titania are [35];  

-Delay in anatase-rutile transformation: The anatase phase is more preferable in 

sensor applications owing to it’s higher electron mobility and sensitivity to reducing 

enviroment compared to rutile phase. Therefore, the retardation in anatase-rutile 

transformation can increase the sensitivity of gas sensor towards the analyte gas  

[38]. The effects of various cations on the phase transition temperatures in titania 

were shown in Figure 1.3. 

-Inhibition in grain growth: The small grain structures create more active sites for 

the adsorption of gas molecules [27]. In addition, in the case of the diameter of grain 

is less or comparable than the space charge region, the sensitivity of gas sensor 

towards target gas is increased. When the grain size of titania is less than 80-100 nm, 

chemisorption becomes effective in these grain sizes and the sensing property of 

titania is increased. Therefore, the inhibition in grain growth can cause an increased 

the stability and the sensitivity of the sensing element [39]. 

-An increase in conductivity: The electrical conductivity provided by the dopant 

element can cause an increment in carrier concentration and thereby sensor stability 

and sensitivity can be improved. 

1.4.4 The anatase-rutile phase transition temperatures of TiO2 

The anatase-rutile transformation takes place in the temperature range 600-700C; 

however, the reported temperatures for the transformation can vary from 400C to 

1200C. The wide temperature range can arise from -the type and amount of 

additives, - impurities,- processing methods and conditions used in sample 

preparation, -the thermal treatment atmophere and conditions, -the sample geometry 

(bulk, film, etc.) and use of different methods of determining the transition 
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temperatures [37,16,40-44]. Some of the reported anatase-rutile transition 

temperatures for titania depending on their process methods were summarized in 

Table 1.3. These parameters significantly affect and alter the transformation rate and 

activation energy. Therefore, anatase-rutile transformation occurs at a transition 

temperature either higher or lower than that of pure titania [43].  

Table 1.3 : Some of the reported anatase-rutile transition temperatures for titania 

depending on their process methods [1]. 

Temperature (°C) Fabrication Details 

610 Highly pure powder 

1190, 1138, 1115 Powders from three different suppliers  

610 Commercially available reagent grade powder 

390 Sol-gel synthesized powder 

675 Sol-gel synthesized powder 

787, 720 Sol-gel synthesized powder 

465 
4-6 nm particles prepared through a sol-gel 

method 

616 Sol-gel synthesized powder 

680, 600 Sol-gel synthesized powder 

600 Sol-gel synthesized powder 

700, 600 Sol-gel synthesized powder 

600-700 
Highly pure nanocrystals synthesized from 

TiCl4 sol-gel 

900 Sol-gel synthesized powder 

 

Figure 1.3 : The effects of various cations on the phase transition temperatures in 

titania [40]. 
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1.4.5 The inhibiting and promoting dopants for TiO2 

The dopant elements acting as an inhibitor in anatase-rutile phase transformation of 

TiO2 were shown in periodic table given in Figure 1.4. These inhibiting and 

promoting dopant elements are also categorized depending on their ionic radius and 

valence in Figure 1.5. 

 

Figure 1.4 : Experimental and predicted inhibition of anatase to rutile 

transformation[37]. 

 

Figure 1.5 : The valence-radius plot of anatase to rutile transformation which is 

categorising inhibiting and promoting dopant elements [37]. 
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1.4.6 Modification of the anatase-rutile phase transition temperatures of TiO2 

with various dopant elements 

The ionic radius and the valence of dopant are the most important parameters that 

explain the change in anatase-rutile transformation temperature [40]. The relation 

established between anatase-rutile transition temperatures and ionic radius of dopant 

elements was shown in Figure 1.6.  According to this graph; 

-If the dopant size is smaller than titanium like Al, the presence of the dopant 

produces some empty space in the form of a lattice deformation; this deformation 

energy has to be released before the phase transition takes place. Thereby, the anatase 

phase is stabilized. The anatase phase is less stabilized when the size of the dopant is 

closer to the size of titanium  

-If the dopant size is between titanium and oxygen, a parabolic correlation is occured 

between the anatase-rutile phase transition temperature and the size of dopants. This 

dopant can be introduced substitutionally into the matrix, producing some 

deformation of the lattice structure; this deformation energy has to be released such 

that the anatase-rutile phase transition takes place, producing a stabilization of the 

anatase phase. 

-If the dopant size is bigger than the oxygen, a large local lattice deformation is 

occurred. The anatase-rutile phase transition temperature is much smaller than those 

values that should be obtained if it would follow the same tendency as all the others.  

Depending on the valence and ionic radius of the dopant ion, substitutional solid 

solution or interstitial solid solution can be formed. In literature, there are some 

assumptions about  the resulting effects of substitutional or interstitial solid solution 

formation. These are; 

Substitutional solid solution formation; The incorporation of dopant ions into the 

anatase lattice may either increase or decrease the level of oxygen vacancies through 

valence effects and thereby promote or inhibit the anatase-rutile transformation.  If 

Ti4+ ion substituted by a cation of low valence than 4, charge neutrality is required 

and thus the concentration of oxygen vacancies and/or the formation of Ti 

interstitials of lower valence are increased. The increase in the level of oxygen 

vacancies favors the anatase-rutile transformation.  However, if the dopant cation has 

a valence higher than 4, the formation of Ti interstitials of the same or lower valence 
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is increased whereas the level of existing oxygen vacancies is decreased.  This results 

in  inhibiting the anatase-rutile transformation [37,43,44]. 

In literature, there are many controversial explanations on the anatase-rutile 

transformation mechanism showing that the process is complex and not fully 

understood yet [43]. For instance, although V5+ has a valence higher than 4, it 

accelerates the anatase-rutile transformation [44]. This contradicting and differing 

results may arouse from the different production methods and conditions [44]. 

 

Figure 1.6 : The transition temperature of anatase-rutile is plotted as a function of 

the ionic radius of the dopants [40].  

Interstitial solid solution: In this case, lattice constraint occurrs and this may result 

in destabilisation or stabilisation of anatase phase, depending on size, valence, and 

content effects. The presence of interstitial ions in lattice has no apparent effect on 

the charge neutrality. In literature, it was reported that the presence of interstitial ions 

stabilize the titania lattice and consequently inhibit the rutile transformation. This 

assumption was supported by many findings and there is no report of destabilization 

(from structural instability) and consequent promotion of the transformation [37]. 

The amount of the dopant added to titania is also important as much as the ionic 

radius and the valence of the dopant. If the excess dopant is added to titania,  phase 

transformation can be accelerated owing the lattice stress or the excess dopant can 

precipitate as a second heterogeneous phase [24,25,45,35]. 
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The reported effects of some dopant elements on TiO2 structure and its anatase-rutile 

transformation were summarized below: 

Nb Dopant Element: When certain amount of Nb5+ is doped into titania, the ions 

can go into the lattice as substitutional metal dopant owing to their similar ionic 

sizes. The pentavalent Nb acts as an donor and it leads to decrease in the level of 

oxygen vacancies and thereby the phase transformation to rutile is hindered or 

delayed [25,46,38]. However, it was also assumed that the incorporation of Nb+5 ions 

into TiO2 structure interstitially causes a lattice stress due to the ionic size of Nb+5 

ions is slightly higher than Ti+4 ions. This lattice stress gives rise to a hindering in the 

phase transformation to rutile [46,47]. Similar effects was observed in the case of Ta 

ions are incorporated to TiO2 structure, whereas, Ga ions displayed opposite behavior 

in the same case [46].  

Cr Dopant Element: The ionic size of Cr+3 and Ti+4 are very close to each other, 

therefore Cr+3 may occupy the substitutional positions in TiO2 lattice without 

affecting the the crystallography and an increase in the oxygen vacancy 

concentration in TiO2 is expected. This might be the cause of accelaration of anatase-

rutil transformation and the grain growth [15,47]. On the contrary, some conflicting 

assumptions about the consequent effect of Cr dopant in TiO2 lattice were reported in 

literature. For instance, at lower Cr contents (5-10 at % Cr) TiO2 rutile 

transformation is retarded up to 700 °C, however, the phase transformation can not 

be inhibited effectively at higher Cr contents (20-30 at % Cr) due to the increase in 

lattice stress [16]. Literature also proposed that the incorporation of certain amount 

of trivalent Cr dopant may inhibit the grain growth and delay the anatase-rutile 

transformation up to 900 °C [18].   

Certain cationic dopants may exhibit more than one valence and this can result in; an 

increase in the level of oxygen vacancies and/or the formation of Ti3+ interstitial. An 

increase in the concentration of oxygen vacancies favors the phase transformation 

through increase in lattice relaxation. On the other hand, the formation of Ti3+ 

interstitial hinders the phase transformation through lattice constraint) [37].  In the 

case of TiO2 which is doped with Fe2O3 in reducing atmosphere it is assumed that 

Ti4+ is substituted by Fe3+ and the concentration of oxygen vacancies is increased 

according to following reaction (1.1).  This result arises from three potential 

mechanism [37]:  
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(1) the maintenance of charge balance;  

(2) spontaneous reduction Fe2O3 to Fe3O4 or FeO 

(3) reduction of TiO2 to TiO2-x  

Fe3+ +Ti4+ + 2O2- ( Fe2+ + O2- +  ☐) + Ti3+
interstitial + 1/2 O2                                    (1.1) 

(☐ denotes an oxygen vacancy) [37].  

The increment in the level of oxygen vacancy by the reduction of Fe+3 promotes the 

TiO2 rutile phase transformation.  In the case of MnO2 is used as a dopant, it is 

thought that doping MnO2 has no effect on creating oxygen vacancies. However, 

MnO2 exhibits similar behavior as Fe2O3 since Mn4+  is reduced to Mn3+ and Mn2+ 

spontaneously in air ambient [37].  

1.4.7 The effects of adding Al dopant on gas sensing properties of TiO2 based 

gas sensors  

The addition of certain amount of Al dopant to titania can cause changes in it’s 

microstructural and electrical properties. Literature reported that the presence of 

suitable amount of Al dopant ion in titania can retard the anatase-rutile phase 

transformation and inhibit the grain growth  [35,48-53]. 

 In literature, 5 wt% Al2O3 (with 0.5 wt % Pd) was incorporated to titania for H2S gas 

sensing [50], 10 wt% Al2O3 was doped for H2 selectivity in reducing gas mixture 

(CO, CO2, H2) containing ambient [36], 7.5 wt.% Al was added for O2 and CO 

sensitivity  [35]. In addition, Ti-Ti-2wt% Al thin film was coated on Ti substrate and 

then subjected to potentiostatic electrochemical etching process for removing Al. The 

obtained porous titania was used as a sensor material for hydrogen detection [49].  In 

another study, TiO2 was doped with 20mol% Al2O3 for phase retardation and a 

porous structure was formed in TiO2 material, however, this produced material is not 

suitable to use as a sensor material [54]. 

1.4.8 The effects of Al doping  on TiO2 structure  

In addition, since the fully oxidized Ti and Al ions are not isovalent and have 

different radii and therefore, bulk rutile TiO2 and Al2O3 have no common lattice 

structure at any temperature or pressure and do not form a solid solution as seen in 

phase diagram (Figure 1.7). However, Al2O3 can form a solid solution with anatase. 
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The defect structure of titania is complex as oxygen vacancies, interstitial or 

substitutional Ti3+ ions, and interstitial Ti4+ ions exist in the anatase form [55]. Since 

the ionic radius of Al+3 ion is smaller than Ti+4 ion, Ti+4 ion can be substituted by 

Al+3 ion. However, in literature there are many controversial results and assumptions 

about the location of Al ion in titania lattice [35,43,48-50]. This case was discussed 

in the result and discussion section. 

The literature proposed the mechanism that phase transformation of TiO2 might start 

at the interfaces of contacting anatase particles [56]. It is also believed that Al doping 

stabilizes the anatase phase and thereby inhibits the anatase-to-rutile transformation 

kinetically [44]. The uniform distrubution of alumina phase in titania matrix causes 

the reduction in the anatase-anatase contact points and thereby leading an increase in 

thermal stability. Thus, the activation energy for rutile nucleation is increased and 

rutile nucleation is suppressed. Consequently, this situation is considered as retarding 

effect on anatase-rutile transformation [42,43,56,57]. In addition, the literature 

proposed that the presence of dopant having smaller size than titanium can cause a 

lattice deformation and thereby the anatase phase is stabilized due to this 

deformation energy that  is released before the phase transition [40].  

Moreover, the electrical conductivity of Al doped TiO2 is higher than pure TiO2 [58] 

due to the presence of Al species in TiO2 lattice leads to band gap narrowing [59,60].  

It was suggested that Al doping leads to a compression in the lattice constant and an 

increase in carrier concentration and consequently increases the electrical 

conductivity in the TiO2 [61]. It was also reported that the diffusion rate of oxygen 

ions is faster in Al-doped TiO2 lattice.  The electrical conductivity provided by Al-

doping can cause increase in sensor stability and sensitivity [52]. 

Al dopant restricts the grain growth [35,44,59] and as well as particle growth 

[35,58,62] depending on amount of dopant. However, in the case of the amount of 

dopant is exceeded, the retarding effect of dopant is disappeared [35,48-50]. The 

excess amount of dopant can precipitate as a second phase or form a complete layer 

of Al2O3 on TiO2 Al2O3 on TiO2 [35,48-50,63].  

On the other hand, in a few studies, it was reported that presence of Al ions in titania 

lattice increases the rate of phase transformation from anatase to rutile [43,55,64]. 

Yamaguchi and his group formed solid solution of Al2O3 in anatase and they did not 
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observe any inhibitory effect of alumina on the transformation of anatase to rutile 

[43].  It was also assumed that the presence of Al was responsible for reducing 

particle agglomeration and increasing the rate of anatase-rutile transformation during 

the chloride process [55,64]. These differences might arise from different raw 

materials and preparation methods [43].  It was also determined that depending on 

the type of precursor used for Al doping a inhibiting (AlOOH, Al(OC4H9)3, AlCl3, 

Al(NO3)3) or promoting (AlCl3(g))  effect in anatase-rutile transformation may be 

observed [37].  

 

Figure 1.7 : The binary TiO2-Al2O3 phase diagram [65]. 

1.5 Hydrogen Gas Sensors 

Hydrogen gas has growing importance in many areas like fuel cells, cryogenic 

cooling, transformer oils, rocket fuel, oil distillation. However, a leakage of 

hydrogen may occur during many industrial processes and lead to explosion. In 

addition, hydrogen gas can make interference with other reductant gases. These 
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problems increase the demand of hydrogen sensors with high sensitivity and 

selectivity [18]. 

Literature reported various types of sensor technologies such as Schottky junction, 

fiber optic, catalytic, electrochemical, field effect transistor, oxide semiconductor, 

and combinations of these. Among these technologies, semiconductor oxide 

technology is relatively simple and also cheap [66]. In addition, the semiconductor 

oxide TiO2 has the continued and growing importance in the development of 

hydrogen gas sensors [11,12].  

1.6 The Sensing Mechanism of TiO2 Based Gas Sensors  

In doped semiconductor oxides, there are two types of detection mechanisms, 

namely, chemical sensization and electronic sensization. 

In chemical sensization, analyte gas molecules adsorbed on the surface of sensor and 

then these gas molecules are dissociated or activated with the help of dopant. These 

dissociated molecules interact with semiconductor oxide and this cause a change in 

conductivity of sensor surface. In electronic sensing, direct electron exchange  

electron occurs between the dopant and semiconductor surface. When the analyte gas 

contact with the dopant, a change in the oxidation state of dopant occurs due to the 

electron from dopant to oxygen. This results in a change in the conductivity of the 

sensor surface [50]. 

Some reducing gases can donate electrons to the conduction band of insulating 

oxides and thereby increase their conductivity. For instance, according to gas sensing 

mechanism of CO gas, CO molecules adsorb on the sensor surface and then they 

ionize. This results in releasing a free electron and a subsequent decrease in the 

resistivity of sensor. Since the reactions are surface dominated in CO gas sensing 

mechanism, the reversibility of reactions is better than diffusion controlled reactions 

(such as hydrogen gas) [36].  

1.6.1  H2 sensing mechanism of TiO2 based gas sensors  

The periodicity of the crystal structure is broken at the surface of TiO2 and this 

causes the formation of unsaturated sites and these sites lead to creation of new 

energy levels (surface states) in the band gap, which act as a donor or acceptor. 
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These surface states have an important role in gas sensing mechanism and they 

contribute electron exchange with bulk.  In air ambient, TiO2 conductivity is low 

since the conduction electrons are bound to surface oxygen. When the atmospheric 

oxygen adsorbed on the surface of TiO2, the charge transfer occurs between TiO2 and 

oxygen molecule as in the below reaction. As a result of this reaction (1.2), the 

oxygen molecule dissociates in the form of negatively charged oxygen species (O-, 

O2-, O2
-) by trapping the electrons in the conduction band of TiO2 .  

β/2 O2(g) + αe- ↔Oβ
-α (S)                     (1.2) 

S=denotes sites on TiO2 surface (space charge layer is created) 

The negatively charged chemisorbed oxygen species cause an upward band bending 

of n-type TiO2 as shown in Figure 1.8 and alter the band structure and also it’s Fermi 

level. Thus the transfer of electrons from TiO2 conduction band to oxygen (surface 

states) leads to the formation of a depletion layer (electron depletion zone) or space 

charge layer in the near surface region. In this depletion layer, the charge carrier 

concentration is reduced and only ionized donor or acceptor impurities are left. The 

creation of depletion layer increases the work function of grains and this causes 

formation of Schottky barriers at the grain boundaries (seen in Figure 1.9). During 

the free charge exchange, electrons have to overcome these potential barriers which 

are generated between the surface and the inside of TiO2. These barriers are 

responsible for a very high resistance of TiO2 in air. The resistance changes with a 

change in the barrier height. The heights of these barriers are depending upon the 

oxygen partial pressure in the environment due to the concentration of adsorbed 

oxygen ionic species cause the formation of these barriers. 

Upon exposure to H2 reducing gas, H2 reacts with chemisorbed oxygen species as in 

the below reaction. As a result of this reaction water is formed and the electrons are 

no longer bound to the surface states and the trapped electrons are released back into 

the conduction band of the TiO2. Thereby, the adsorbed oxygen is consumed and 

decreased down to a steady state level depending on concentration of H2, resulting in 

a corresponding decrease in work function and  the potential barrier and  a sharp 

reduction in the electrical resistance [1]. 

H2* + (O2
-,O-,O2-)→H2O + ne-                  (1.3) 
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Figure 1.8 :  Band bending after chemisorption of charged species (here ionosorption 

of oxygen on Ess levels). ɸ denotes the work function, χ is the electron affinity, and μ 

the electrochemical potential, qVs is the band bending and z0 is the depth of depleted 

layer. Evac, ECb, EVb, EF are the vacuum energy level, bottom of the conductive 

band, top of the valence band and Fermi level energies, respectively. ECs, EVs are 

the values of conductive and valence band borders at the surface, Ed and Ess are the 

levels of donors and surface states. [67].  

Depletion layer is characterized by its thickness (Ls) and surface/schottky potential 

(Vs). In the thickness of space charge layer (Ls), charge carrier concentration is 

decreased.  Typical values of Ls are usually in the range 1-100 nm. The relationship 

between the magnitude of crystallite size (D) and Ls determines the control 

mechanism of conductivity and it can be controlled either by of the three different 

cases; grain boundaries, necks or grains. The effect of grain size on gas sensitivity is 

schematically illustrated in Figure 1.10. The highest gas sensitivity value has been 

achieved when the conductivity mechanism is grain size controlled and this situation 

occur when D<2L. In these grain size ranges, chemisorption becomes more effective 

[1,39]. In this case, grains are fully depleted of mobile charge carriers and thus every 

grain is fully involved in space charge region. The energy bands are nearly flat 

throughout the whole structure of the interconnected grains.  Due to there are no 

significant barriers for intercrystallite charge transport, the conductivity is essentially 

grain controlled. So, the decreasing in grain size leads to increase in the sensitivity. 
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Figure 1.9 : Energy barriers formation at the grain boundaries due to the formation 

of space charge layer [67].  

Particularly for the case of D>>2L, the crystallographic orientation of the plane 

strongly affects the gas sensing properties. This is because different crystallographic 

orientations have different atomic arrangements and therefore different electronic 

properties, such as, surface state density, adsorption/desorption energies of interacted 

gas molecules, concentration of adsorption surface states, etc. This leads to the 

different chemisorption characteristics of the crystal surfaces. While some crystal 

faces are highly reactive due to the high number of unsaturated bonds on their 

surface, surface atoms of the other crystal faces are bound to each other strongly and 

this leads to decrease in their reactivity [1]. 

1.7 Nanostructured Gas Sensors 

The sensitivity and selectivity of sensors can be improved by adding catalysts and/or 

dopants. However, the most important development in performance of sensors was 

observed when the crystal size is reduced to nanometer level to get extended specific 

surface area [3]. This is because nanocrystalline metal oxide films show gas sensing 

properties when their crystal sizes approach the Debye length [68,69].  
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Figure 1.10 : The schematic illustration of grain size effect on gas sensitivity [1]. 

1.7.1 Nanostructured TiO2 based gas sensors  

Some surface reactions such as adsorption, chemisorption, reduction/oxidation etc 

occur between gas molecules and a surface of material acting as a receptor. Since the 

surface reactions govern the gas detection, surface of gas sensor material play a a 

distinctive role  in detection of analyte gas [70]. In TiO2 based sensors having 

surface/volume ratio nanoporous/nanotubular structure are the promising sensor type. 

In these sensors, charge transfer is provided by the crystallized nanotube walls and 

the tube connecting points and the current passage from one nanotube to the other is 

easier due to the very low resistance during this transition [71,72]. In additon, their 

nanoporous/nanotubular structure make easier to diffusion of analyte gas to the 

bottom of sensing element and allow for better interaction [73]. This type of sensors 

exhibit higher sensitivity towards analyte gas and an improvement is observed in 

their response and recovery times [73,74]. In literature, many reports are available 

about nanostructured TiO2 based gas sensors [71,72].   
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1.7.2  Nanostructured TiO2 based thin film gas sensors 

In a variety of studies in literature, formation of nanotubular structure on the surface 

of Ti foil sensor material increase the sensitivity of TiO2 sensor material towards the 

hydrogen gas [71,72]. Also, most of the nanotubes and nanopores are formed on the 

surface of Ti foil, this material is restricted in the application of thin film based 

sensor [74]. There are only few studies in literature about nanostructured thin film 

sensor. Such as, Sadek and his group formed nanostructures on Ti thin film coating 

deposited on gold inter-digital transducer and tested this material as a hydrogen 

sensor material [74]. Chu and his group coated ITO with aluminium and formed 

nanopores on aluminium and they deposited TiO2 inside the pores with sol-gel 

method [75]. Grimes and his group produced TiO2 nanotubular structure on thin film 

and used this material for hydrogen sensing [68]. 

1.7.3  H2 sensing mechanism in nanotubular TiO2 based sensors 

The hydrogen sensing mechanism in nanotubular structure is the same as in the bulk 

TiO2, with a few differences. When one dimensional nanostructures are used for gas 

sensing, the effects of bulk are eliminated and the depletion layer extends throughout 

the thickness of the nanostructures.  Since the nanotubes are small enough for the 

adsorption of redox species, a nanotube can change the bulk electronic structure of 

the entire nanotube not merely its surface [1]. In TiO2 nanotubular structure, the 

crystallized nanotube walls and the tube connecting points provide more easier 

charge transfer (current passage) from one nanotube to the other due to the very low 

resistance during this transition[1,71,72]. At these regions, the chemisorption of 

oxygen species leading to formation of depletion layer by trapping the electrons in 

the conduction band of TiO2 . In this depletion layer, the charge carrier concentration 

is reduced and only ionized donor or acceptor impurities are left. The creation of 

depletion layer increases the work function of grains and this causes formation of 

Schottky barriers at the grain boundaries. During the free charge exchange, electrons 

have to overcome these potential barriers and the resistance changes with a change in 

the barrier height [1]. 

The width of the depletion layer in which electron exchange occurs between the bulk 

and surface states is comparable to the diameter of the nanotubes itself If the half-

thickness of nanotube wall (t/2) is comparable or less than the depletion region (t/2 ≤ 
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Ls ), as shown in Figure 1.11, tremendous resistance change can be observed on 

exposure to hydrogen. (flat band condition). The small wall thickness may result in 

the overlap of neighbouring depletion regions, thus the entire volume of the 

intertubular region may experience low resistivity. In literature, it was mentioned that 

nanotube arrays with smaller diameter and thin walled nanotubes showed more 

higher hydrogen sensitivity [66]. TiO2 nanotubes having a wall thickness of ~13 nm 

demonstrated remarkable resistance change [68].   In the case of  t/2 >> Ls,  oxygen 

removal by hydrogen and subsequent hydrogen chemisorption  will have little effect 

on resistance and therefore  high gas detection cannot be  expected [1,66]. 

 

Figure 1.11 : The influence of nanotube wall thickness on band bending due to 

oxygen chemisorption: (a) when nanotube wall half-thickness (t/2) is much greater 

than the space charge layer, (b) when comparable, and (c) when t/2 is less than the 

width of the space charge region. (d) Schematic illustration of nanotubes, top view, 

and the tube-to-tube connecting points corresponding to case shown in (a). [66]. 

When the nanotubular structures are exposed to H2 analyte gas, H2 reacts with 

chemisorbed oxygen species as in the following reaction. Thereby, the adsorbed 

oxygen species are removed by hydrogen atoms and subsequently chemisorption of 

hydrogen atoms occured [1,75]. Consequently, water is formed, the trapped electrons 

are released back into the conduction band of the TiO2 and an electron-rich region 

within the nanotube walls forms [1].  

This resulting in a corresponding decrease in work function and the potential barrier 

and  a sharp reduction in the electrical resistance [1].   

H2* + (O2
-,O-,O2-)→H2O + ne-                     (1.4) 
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1.7.4 The Effects of crystallographic structure of TiO2 nanotubes on sensing 

properties 

Bulk reactions take place at 700-1000C and therefore the rutile phase which is 

stable at high temperatures is used for these reactions. Since the surface reactions do 

not occur at high temperatures (They take place at 400-500C ), the meta-stable 

anatase phase can be used for surface reactions [27]. TiO2 can be prepared as an 

anatase or rutile phase form depending on the analyte gas that will be detected [27].   

Literature proposed that the anatase phase of TiO2 is sensitive to H2 gas and also to 

the other reducing gases [35]. 

In all temperature and pressure ranges, the bulk rutile is thermodynamically more 

stable compared to anatase phase due to its lower free energy. However, the anatase 

phase becomes more stable in extremely small crystallite size (11-45 nm) and high 

surface areas since the planes of anatase phase have lower surface energy. This case 

indicates that the surface energy considerations outweigh those of bulk 

thermodynamics and so, for crystallites below a critical size (11-45 nm), anatase has 

a lower total (bulk and surface) free energy [37]. 

In general, the morphology and the structure of porous layers are affected strongly by 

the electrochemical conditions (particularly the anodization voltage) and the solution 

parameters (in particular the HF concentration, the pH and the water content in the 

electrolyte). After the anodization process, the amorphous TiO2 nanotubular structure 

is obtained [6]. Crystallinity is essential when biocompatible, photocatalytic or 

semiconducting membrane properties are desired or for any application involving 

electrical charge carrier generation and transport/transfer [76].  The nanotubes are 

exposed to thermal annealing at different temperatures to induce crystallinity. The 

annealed TiO2 nanotubular strucutres retain their tubular morphology [6,7,77]. The 

tubes can be converted to anatase at temperatures higher than approximately 280C 

in air [69,77]. The fabricated Ti nanotube structures consist of significant amounts of 

F_ (~1–5 at.%) and a minor contents of hydroxides on the surface of the tube walls. 

Annealing at 300◦, the content of fluorides is almost lost and the amount of surface 

hydroxides is reduced [6]. After annealing at temperatures higher than approximately 

450C, a mixture of anatase and rutile is formed. The structures are completely 

transformed to rutile phase at a temperature range of 620-680˚C [69,77].   
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It should be also pointed out that in gas sensor applications, anatase TiO2 phase is 

more preferable compared to rutile phase owing to its low resistance and fast 

response properties [12]. 

1.7.5 The effects of TiO2 nanotube sizes on gas sensing properties  

Nanotubular TiO2 sensor demonstrate higher gas senstivity compared to TiO2 thin 

film sensors due to their large sensing surface area [69]. In literature, there are few 

reports about the effects of nanotube sizes on gas sensing properties of a sensor.  

It is assumed that the diameter of nanotube has a significant influence on gas sensing 

and a smaller nanotube diameter was found to be more sensitive to hydrogen gas 

[78]. The thickness of nanotube wall is also proposed as a significant  parameter in 

gas sensing mechanism. It was reported that if the  nanotube wall half-thickness t/2 is 

comparable to or  less than the space charge region, the sensitivity of sensor can be 

improved. The highest sensitivity was obtained when the wall thickness and 

nanotube diameter were  ≈13 nm and 30 nm, respectively. The inter- connecting 

points also has an important role in gas sensing since the current passing from 

nanotube to nanotube is more easier at these constricted points. It was also proposed 

that the length of nanotubes mainly affected the response and recovery times of 

sensor [72]. 

1.8 TiO2 Nanotubular Structures 

1.8.1 The nanotube growth mechanism on the surface of Ti metal 

The formation of TiO2 nanotube arrays is a direct consequence of competition 

between three processes. These processes are:  

i) Electrochemical oxidation of Ti into TiO2 

                  Me + 2H2O→MeO+2 + 4H + + 4e-                  (1.5) 

ii) The electrical field induced dissolution of TiO2 

iii) The chemical dissolution of TiO2 by fluorine ion. [6,77] 

                  MeO+2 + 6F-→ [MeF6]
-2                             (1.6) 

In anodization of Ti, the presence or absence of fluoride ions changes the oxide 

growth mechanism (Figure 1.12).  In the electrochemical oxidation stage, Ti metal 

interacts with O-2 ions in the water and the initial oxide layer is growth at the surface.  
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Then O-2  anions transport through the oxide layer and react with Ti metal at the 

metal/oxide interface.  Ti4+ cations are ejected from the metal/oxide interface by the 

electric field and migrate towards the oxide/electrolyte interface. Thus, the growth of 

oxide layer is continued by the transportation of O-2 ve Ti+4 ions through the growing 

oxide under the electric field (1.7 and 1.8) [6,66,79]. Since the Ti–O bonds are 

polarized and are weakened under the applied electric field, field-assisted dissolution 

of TiO2 is occurred at the oxide/electrolyte interface and the metal Ti4+ cations 

dissolve into the electrolyte [79]. 

In the presence of floride ions, TiO2 reacts with floride ions and they form water 

soluble TiF6
2- complex (1.9). This complex formation prevent the precipitation of 

hydroxide layer at the oxide/electrolyte interface by providing a continuous chemical 

dissolution of TiO2 . Moreover fluoride ion with small ionic radius can enter the 

growing TiO2 lattice and move towards the oxide layer by the electrical field and can 

compete with the O-2 transport [6]. 

2H2O→O2+ 4e- + 4H+                                                                                           (1.7) 

Ti + O2→TiO2  (1.8) 

TiO2+6F-+4H+→TiF6
2-+2H2O                                                                               (1.9)       

 

If Ti4+ ions arriving at the oxide/electrolyte interface are not ‘made soluble’ by 

complexation, a hydroxide layer will precipitate in most electrolytes [6]. The 

complex formation ability leads to a permanent chemical dissolution of formed TiO2 

and prevents hydroxide layer precipitation as Ti4+ ions arriving at the oxide/solution 

interface [6]. 

In anodization of Ti, the layer thickness and the current density reach a limiting value 

after a certain polarization time and this behavior can be explained by a steady state 

situation. During Ti anodization, oxide growth occurs continually at the inner 

interface and simultaneously chemical dissolution of oxide layer is occured. Steady 

state is established when the pore growth rate at the metal oxide interface is identical 

to the thickness reducing dissolution rate of the oxide film at the outer interface. It 

should be pointed out that the chemical dissolution of TiO2 occurs over the entire 

tube length, thus the tubes with extended time become increasingly v-shaped in 

morphology. Therefore, after a long duration of anodization process, more thinner 

walls can be obtained at the tops of the tubes compared to their bottoms [7].   
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Figure 1.12 : Schematic representation of the Ti anodization (a) in absence of 

fluorides (results in flat layers), and (b) in presence of fluorides (results in the tube 

growth) [6]. 

1.8.2 Anodization parameters influencing the nanotube morphology 

Several factors strongly influence the morphology of nanotubes and also the degree 

of their ordering. These are; the anodization voltage, the type and composition of 

electrolyte, anodization duration, anodization temperature, the purity of the material, 

stirring, etc. Proper selection of these parameters has enabled to form anodic oxide 

membranes with various variation of pore sizes, outer diameters, wall thicknesses, 

tube-to-tube spacing, lengths [6,66,76]. 

The influence of anodization voltage: 

The tube diameter is controlled by changing the anodization voltage.  The highest 

possible voltage just below dielectric breakdown seems most convenient to improve 

the ordering [2]. It was demonstrated that the sample of 5V presents a nanoporous 

structure and no tubular structure is formed. As the voltage is increased, the porous 

appearance is lost and with discrete, tubelike features appearing. When the voltage 

was further increased, only a spongelike porous structure was formed at 35V and the 

nanotube structure was destroyed completely. At higher voltages, under the effects of 

electric field, the Ti–O bond undergoes polarization and is weakened, promoting 

dissolution of the metal oxide. Therefore, no nanotube structure can be obtained [77]. 

Ge et al. produced highly ordered titania nanotube arrays at anodization voltages 

ranges between 10 V to 25 V ( using fluoride containing acetic acid solution for 

temperatures from 0 °C to 35 °C) As they increased the voltage, the pore diameter 

and the length increased but the wall thickness decreased [36]. 
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The influence of electrolyte: 

Electrochemical oxidation of titanium has been studied in sulfuric acid, phosphoric 

acid, acetic acid with or without HF solution [6]. At lower pH, the length of the 

nano-tube was limited by higher dissolution rate [80]. The nanotubes grown in HF 

electrolytes or acidic HF mixtures showed limited thickness 500–600 nm [6]. By 

using buffered neutral electrolytes containing NaF or NH4F and taking into account 

the importance of the pH gradient within the tube, Ti nanotubes with higher than 2 

μm thickness could be grown.  In addition, Schmuki and co-workers reported 

formation of longer nano-tubes during anodization of Ti in neutral fluoride solutions. 

They achieved nano-porous structure by controlling electrochemical parameters to 

induce acidification at the pore bottom [19]. 

Nonaqueous electrolytes (e.g., glycerol, ethylene glycol, etc.) containing fluorine ion 

was used to form TiO2 nanotube arrays with significantly increased film thickness 

(100 μm in length).  This is because, in the nonaqueous electrolyte, the mobility of 

the fluorine ion was largely suppressed; thus, the chemical dissolution of TiO2 was 

decreased. According to Wang et al. study, in aqueous electrolyte, the anodization 

potential exhibited significant influence on the formation of highly ordered TiO2 

nanotube arrays, while little effect from the electrolyte temperature was observed. In 

nonaqueous electrolyte, the electrolyte temperature markedly affected the TiO2 

nanotube dimensions, while, unlike in the aqueous electrolyte, anodization potential 

exhibited slight influence [7].  

The Ti nanotubes grown in glycerol electrolytes had extremely smooth walls, while 

using CH3COOH electrolytes remarkably small tube diameters could be obtained. 

Meanwhile, in aged ethylene glycol electrolytes and by a further optimization of 

parameters, the length of nanotubes having an almost ideal hexagonal arrangement 

has reached 260 μm [6].  

In 2006, Grimes and co-workers reported the first use of polar organic solvents such 

as dimethyl sulfoxide (DMSO), ethylene glycol, formamide, andN-methylformamide 

to achieve nanotube array lengths of several hundred microns. Recently Paulose et al. 

reported the fabrication of nanotube reached to 1005μm in length to use in bio-

diffusion [76]. 
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1.8.3 The nano structures grown on Ti alloys  

Other than pure Ti, its alloys that can be anodized:  Ti-8Mn, Ti-Nb, TiZr, Ti45Nb,Ti-

28Zr-8Nb, Ti-29Nb-13Ta-4.6Zr, Ti-2Al-1.5Mn, Ti-6Al-4V, Ti-6Al-7Nb [81] For 

instance, nanoporous or nanotubular structures are grown on the surface of Ti-6Al-

4V and Ti-6Al-Nb alloys in order to use in bio-medical applications [82].  There are 

few studies about the nanostructure formation on TiAl. Such as, Bayoumi and his 

group dealloyed TiAl alloy and formed TiO2 nanotubes [83]. Tsuchiya and his group 

produced TiAl alloy including 50at%Al and try to obtain nanoporous structure on 

TiAl alloy [84]. However, these produced nanostructures on TiAl alloys consist 

excess amount of Al and therefore they are not suitable for sensor applications. 

The growth of nanotubes on various alloys increases the potential functionality of the 

tubes (by e.g. incorporation of doping species in the oxide structure). For instance, if 

a binary Ti–Nb alloy, rather than pure Ti, was used as a substrate the range of 

achievable diameters and lengths of TiO2-based nanotubes can be significantly 

expanded. In addition, the morphology of the tubes differs significantly from that of 

the nanostructures grown under the same conditions on pure Ti or Nb substrates: 

only considerably shorter tubes grow on Ti, whereas irregular porous structures grow 

on Nb. Another interesting example is that, if the anodic nanotubes formed on TiZr 

alloys, the oxide nanotubes exhibits a morphology between those of titanium oxide 

and zirconium oxide nanotubes. These nanotubes show a largely expanded structural 

flexibility compared with nanotubes formed on the individual elements [6]. 

Moreover, the attempts have been maintained to grow nanostructures on the surface 

of various Ti alloys. However, compared to pure Ti, many titanium alloys exhibit 

binary phases (-β) which are chemically different from eachother. Therefore, 

formation of nanotubular structure on alloy coatings is mainly suffered from two 

problems [81]; 

i) the selective dissolution of less stable elements,  

ii) the different reaction rates on different phases of an alloy.  

Therefore the creation of nanotube structures on Ti alloys is still challenging task. 

Despite these problems, if the formation of nanotube structures on various Ti alloys 

is achieved successfully, the functionality of nanotubes will be increased and thus 

these structures will  find important application areas [81]. 
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1.9  The Deposition Techniques for Producing Ti or TiO2 Thin Film Coatings  

The most significant characteristics of gas sensing materials are sensitivity, 

selectivity and their stability. An ideal gas sensor gives response to very low analyze 

gas concentrations, it is not affected by interferring gases in the ambient and it has 

long term stability.  The important bottlenecks in the development of an ideal gas 

sensors are the insufficient understanding of gas-film interactions and sensing 

mechanism, and a lack of control on film deposition parameters. For instance, the 

deposition parameters of thin films can affect the microstructure, composition and 

the morphology of semiconductor metal oxide. In order to develop gas sensor with 

high sensitivity and selectivity, it is necessary to improve the production methods of 

gas sensor materials [5]. 

TiO2 based semiconductor oxide gas sensor materials can be produced using two 

routes; 

1. It can be deposited on substrate in the oxide form using sol gel, physical 

vapor deposition (PVD) and chemical vapor deposition (CVD) [30,31,34,85-

88]. 

2. It can be deposited on substrate in the metal form using CVD technique and 

subsequently subjected to an oxidation process [70] 

The production of TiO2 thin films on different substrates can increase their potential 

applications in many functional devices.  In literature, TiO2 thin films deposited on 

substrates such as glass, sapphire, Si [86,87] and metallic Ti thin films deposited on 

Si, ITO, nanoporous AAO, quartz   [69].  

In production and applications of sensor platforms of functional sensor devices that 

are used in harsh environments the sensor material is generally deposited on ceramic 

substrates. In literature, RF sputtering and e-beam evaporation PVD are two 

commonly used techniques to deposit TiO2 or metalic Ti thin films on different 

substrates [85-87].  However, it is difficult to produce dense and well-adherent  and 

thin film coatings on substrates using  these techniques. The deposited thin film 

coatings are not well-adherent to substrates and spall of the surface during the 

electrolytic process (anodization process). 

In Figure 1.13, the surface SEM image of Ti thin film coating produced by RF 

sputtering technique is shown [31]. The grain structure and surface morphology of 
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this produced coating are not suitable to form uniform nanostructures. In the case of 

anodization of the granular surface, because of the large curvatures in the boundary 

of the connected grains, this level of roughness generates inhomogeneous electric 

field distributions on the surface which results in preferential nanopore growths in 

these parts, and randomly distributed nanopores are formed eventually [23].  

 
Figure 1.13 The surface SEM images of a) Ti thin film produced by Rf sputtering 

technique b) the as-anodized surface of Ti thin film by RF sputtering technique [31]. 

Therefore, there is a continued demand for developing methods to produce thin film 

coatings with an equiaxed grain structure that will give well ordered nanotubular 

structure during anodization. In the present study, cathodic arc technique is suggested 

for producing dense, well-adherent and equiaxed grained metallic Ti thin films on 

ceramic and metallic substrates.  It is also possible to produce Ti-Al coatings 

possessing the appropriate structure and desired composition using the cathodic arc 

method. In literature, there is only one study that suggests using cathodic arc 

technique for producing Ti film coating. In this study, filtered cathodic vacuum arc 

deposition technique was used to deposite Ti thin film with a thickness of 300 nm on 

quartz substrate. However, there is no details about this study [69]. 
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2.  EXPERIMENTAL DETAILS 

Ti and TiAl coatings were produced by cathodic arc based technique using a DC 

cathodic arc Physical Vapor Deposition (PVD) instrument (Novatech-SIE, Model: 

NVT-12). Ti and TiAl coatings were deposited on both alumina substrates (Kyocera) 

and pure metallic Ti substrates (50mm x 25mm in size).  For TiAl coatings TiAl (25 

at % Al) cathode was used. Prior to the deposition process, the substrates were 

preheated and also cleaned by applying DC bias voltages of -600 V, -800 V, -1000 

V. During pretreatment, 600 V and 800 V were applied to substrates for 1 min then 

1000 V was applied for 15-45 sec and the substrates were heated until 850-950°C.  

After the pretreatment, Ti and TiAl coatings were deposited on substrates at different 

bias voltages and durations ( the details were given in the corresponding section). All 

Ti and TiAl coatings were produced in direct current (DC) mode, using a cathode 

current of 60 A and 20 sccm argon gas flow rate.  

Nanotubular structures were created on the surface of these coatings via anodization 

process. In anodization process Ti and TiAl layers were anodically oxidized in 

ethylene glycol based electrolyte using various anodization parameters. ( the details 

were given in the corresponding section).  Before anodization process, Ti and TiAl 

coating surfaces were chemically polished for 5 sec in a mixed solution of HF, H2O 

and HNO3.  

Surface investigations of the specimens were characterized using JEOL JSM_7000F 

field emission gun scanning electron microscopy (FEG-SEM). Al contents were 

determined by an energy dispersive spectrometer (EDS) attached to FEG-SEM. The 

phase structure of coatings were analyzed using Philips PW 3710 X-ray 

diffractometer (XRD) and a micro-Raman spectroscope (LabRam 800, Horiba 

Scientific, Jobin Yvon, France). In XRD analysis, Cu Kα was used as the radiation 

source (incident angles 2). Both power X-ray diffraction (PXRD) and glancing 

angle X-ray diffraction (GAXRD) were performed. The incident angles taken as 2 

for GAXRD analyses. In micro-Raman analysis, the excitation source was a He–Ne 

laser with 632.8 nm line and 50× objective was used to focus the laser beam. The 
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beam diameter was approximately 1 μm and the laser power on the sample surface 

was 3 mW.   

The heat treatments were done in tube furnace (Lenton) at 280C, 350C, 420C, 

485C, 550C, 600C, 650C and 720C. These heat treatments were made under 

atmospheric conditions for 1 hour and a separate sample was used for each heat 

treatment temperature. For heat treatment Simulation study was performed In order 

to reveal the anatase TiO2 planes that are affected from “c” lattice parameter, a 

simulation study was performed. The simulation study was performed using Mercury 

3.0 software and the Least Square Regression method.  

In order to complete sensor fabrication two parallel Pt contact pads (13mmx2mm) 

were deposited on the surface of masked nanotubes using magnetron sputtering 

technique.  The spacing between two Pt contact pads is 2 mm. The Pt pads were 

deposited at 100W during 1 min. These samples were used as sensor electrode 

materials.   

 

Figure 2.1 : The image of the sensor measuring system. 

The hydrogen sensing performance of nanotubular TiAl oxide sensors were tested 

using the measuring system shown in Figure 2.1. The results of these sensor tests 

were given and also evaluated in the Section 6. In this sensor measuring system, a 

tube furnace was used as a test chamber and a stainless steel spiral tube was placed in 

this furnace. The fabricated sensor was attached to the stainless steel spiral tube 

placed in the test chamber as shown in Figure 2.2.  
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Figure 2.2 : The fabricated sensor was attached to the spiral stainless steel tube 

placed in the test chamber. 

The furnace temperature was fixed to the operating temperature and the gases were 

fed to the system using mass flow controllers. The target gas was heated inside the 

spiral shaped stainless steel tube which provides a long path to heat the target gas. 

The temperature in the test chamber was measured by using an additional K- type 

thermocouple that was placed close to the samples. During the sensor tests, the 

resistances of sensor elements were measured by computer-controlled high resistance 

electrometer (Keithly 6517B). A constant bias voltage of 1 V was applied to the 

sensors. The resistances of sensor electrodes were measured first under air ambient 

and then in a mixture of predetermined amount of hydrogen gas and carrier gas argon 

(Ar). MKS Mass flow controllers were used to regulate gas flows through the test 

chamber. In every step, the flow rate of carrier gas and gas mixture was 400 ml/min 

and duration was 30 minutes.  The test gas hydrogen was mixed in appropriate ratios 

with argon to create the desired test gas ambient. The concentrations of hydrogen gas 

in carrier gas were 50 ppm, 100 ppm, 300 ppm, 500 ppm, 1000 ppm and 2500 ppm. 

The changes in resistance were recorded in commercial software program supplied 

by Keithley. 
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3.  INVESTIGATION OF THE CAPVD PROCESS PARAMETERS FOR THE 

DEPOSITION OF WELL ADHERENT AND DENSE Ti AND TiAl 

COATINGS 

RF sputtering and e-beam evaporation PVD are the two commonly used techniques 

to deposit TiO2 or metallic Ti thin films on different substrates [5-7]. However, these 

techniques are insufficient to produce coatings that are well-adherent, dense and 

resistant to the electrolytic processes used for producing nanotubular structures. 

In our previous preliminary studies the same observations were verified for Ti and 

TiAl coatings that were produced using magnetron sputtering. It was determined that 

Ti and TiAl coatings produced by magnetron sputtering were not suitable for use in 

the fabrication of nanostructured sensor materials. These coatings were not well-

adherent to substrates and spalled of the surface in the electrolyte used for the 

anodization process. The coatings that spalled of surface partially and completely 

during anodization process were shown in Figure 3.1 and Figure 3.2, respectively. 

 

Figure 3.1 : The surface SEM images of Ti deposited alumina produced by 

magnetron sputtering after anodization process.  

Therefore, it is decided to use cathodic arc PVD method for producing well-adherent 

and durable Ti and TiAl coatings possessing the appropriate structure and desired 

composition Compared to other PVD methods, the high degree of ionization in arc 

plasma can be provided using cathodic arc PVD method.  In pretreatment stage, the 
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heating of the substrates by the effect of energetic ions also provide good adhesion of 

coatings to the substrates.  Hence, it becomes possible to deposit dense and well–

adherent metallic thin films, with denser structure on ceramic and metallic substrates 

with this technique. In addition to that we also used a high bias voltage post 

treatment for producing denser coatings with equiaxed structure (similar to wrought 

titanium).  Therefore Ti and TiAl films were produced with CAPVD by utilizing 

different bias voltages and also by post treatment with high bias voltages for testing 

their suitability for porous anodizing. 

 

Figure 3.2 : The SEM image of TiAl deposited alumina produced by magnetron 

sputtering after anodization process.  

3.1 Investigation of the CAPVD Process Parameters for the Deposition of Ti 

Coatings 

For optimization of the CAPVD process, the main parameter used in the experiments 

was selected as the bias voltage since this voltage exerts the main effect on the 

structure of the deposited coatings. Namely utilization of high bias voltages led to 

denser coatings. After deposition, coatings were characterized with respect to their 

structure and composition by using SEM and XRD investigations. 

3.1.1 The effects of bias voltage on microstructural properties of Ti coating 

Ti coatings were produced at different bias voltages in order to examine the effect of 

bias voltage on the resulting microstructural properties of the produced coatings. 

Before the deposition process, the substrate surfaces were subjected to the effects 
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created by high bias voltages for heating the substrates. This was done by applying 

600 V- 800V- 1000 V sequentially. By this process, substrates were cleaned and 

heated by sputtering and ion bombardment effects. During pretreatment, 600 V and 

800 V were applied to alumina for 1 min then 1000 V was applied for 15-45 sec and 

thereby substrates were heated until 850-950°C.  By this way, good adhesion of 

coatings to the substrates was provided.  

Ti coatings were produced on alumina substrates at 0, 100, 200 V bias voltages. Pure 

titanium targets were used as cathodes during the deposition process. All Ti coatings 

were produced using direct current (DC) bias mode, using a cathode current of 60 A 

and 20 sccm argon gas flow rate. The duration of deposition process is 20 min. The 

SEM images of Ti coatings deposited at 0 V, 100 V, 200 V bias voltages were given 

in Figure 3.3, Figure 3.4 and Figure 3.5, respectively. Among the Ti coatings 

produced at different bias voltages, the smoothest surface was obtained from the Ti 

coating deposited at 0 V. However, in all Ti coating surfaces 1-8 micron sizes 

spherical features were also observed which is typical to CAPVD coatings [89]. 

The cross sectional SEM images of Ti coatings deposited at 0 V, 100 V and 200 V 

illustrated in Figure 3.6, Figure 3.7, and Figure 3.8, respectively. As the deposition 

bias voltage was increased, the thickness of coating decreased from 7.1 micron to 2.8 

micron. Increase of bias during deposition is well known to decrease the deposition 

rate due to re-sputtering effects induced by higher bias voltages. The increase in bias 

voltage led to the conversion of coating to more dense structure and decreased 

thickness of coating.  

 

Figure 3.3 : The surface SEM image of Ti coating deposited on alumina at 0 V bias 

voltage using CAPVD technique. 
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Figure 3.4 : The surface SEM image of Ti coating deposited on alumina at 100 V 

bias voltage using CAPVD technique. 

 

Figure 3.5 : The surface SEM image of Ti coating deposited on alumina at 200 V 

bias voltage using CAPVD technique. 

 

Figure 3.6 : The cross sectional SEM image of Ti coating deposited on alumina at 0 

V bias voltage using CAPVD technique. 
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Figure 3.7 : The cross sectional SEM image of Ti coating deposited on alumina at 

100 V bias voltage using CAPVD technique. 

 

Figure 3.8 : The cross sectional SEM image of Ti coating deposited on alumina at 

200 V bias voltage using CAPVD technique. 

3.1.2 The effects of post treatment with high bias voltage on microstructural 

properties of Ti coating 

At low bias voltages (50-300 V) the deposition process is dominant but at higher bias 

voltages the deposition process is prevented and the substrate is heated rapidly due to 

the momentum transfer processes occur during the collision of the accelerated ions to 

the surface. In order to determine the effect of high bias voltage application on Ti 

coatings, Ti coatings deposited at 0 V, 100 V, 200 V were exposed to -1000 V for 4 

min after the deposition process was completed. High bias voltage application caused 

heating the materials up to 1300 °C. The heat generated on the surface of coating 

resulted in the transformation of coating into a more dense structure. The surface 

SEM images of Ti coatings deposited at 0 V, 100 V, 200 V and successively 
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subjected to 1000 V were given in Figure 3.9, Figure 3.10, and Figure 3.11, 

respectively. In 1000 V applied Ti coatings surface smoothness increased compared 

to the Ti coatings without high voltage application. In addition coating was converted 

into a equiaxed structure and became much more denser when compared to the ones 

produced without the application of high voltages. The amount of droplets on the 

surfaces also decreased with the application of this high bias voltage post treatments. 

As it is seen in cross sectional SEM images of Ti coatings deposited at 0 V, 100 V, 

200 V, the columnar structure was dissapperared and the structure similar to metallic 

materials was observed (Figure 3.12, Figure 3.13 and Figure 3.14). 

 

Figure 3.9 : SEM image of Ti coating which was deposited on alumina at 0 V bias 

voltage and then exposed to 1000 V high voltage.  

 

Figure 3.10 : SEM image of Ti coating which was deposited on alumina at 100 V 

bias voltage and then exposed to 1000 V high voltage.  
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Figure 3.11 : SEM image of Ti coating which was deposited on alumina at 200 V 

bias voltage and then exposed to 1000 V high voltage.  

 

Figure 3.12 : Cross sectional SEM image of Ti coating which was deposited on 

alumina at 0 V bias voltage and then exposed to 1000 V high voltage. 

 

Figure 3.13 : Cross sectional SEM image of Ti coating which was deposited on 

alumina at 100 V bias voltage and then exposed to 1000 V high voltage. 



44 

 

Figure 3.14 : Cross sectional SEM image of Ti coating which was deposited on 

alumina at 200 V bias voltage and then exposed to 1000 V high voltage. 

3.1.3 The effects of bias voltage on structural properties of Ti coating 

In order to determine the structural properties of produced Ti coatings, XRD analyses 

were performed. By utilizing these analyses, the effects of deposition bias voltage on 

structures of coatings were examined.  The normalized XRD paterns of Ti coatings 

deposited on alumina at 0, 100, 200 V were compared in Figure 3. 15. The XRD 

paterns of Ti coatings deposited at 0, 100, 200 V were nearly identical to each other. 

All these coatings showed completely -Ti structure (hexagonal) and without any 

appreciable shift in their original XRD peak positions. The substrate peaks were 

indicated by ‘s’ in the patterns.  

3.1.4 The effects of post treatment with high bias voltage on the structural 

properties of Ti coating  

In order to evaluate the effect of high bias voltage after deposition, the Ti coatings 

produced at 0 V, 100 V, 200 V were exposed to 1000 V during 4 min and the 

normalized X-ray diffraction paterns of these coatings were given in Figure 3. 16. All 

of the coatings subjected to high bias application exhibited similar diffraction 

patterns. These patterns indicate that the structures were completely -Ti.  However, 

in these coatings, the peaks shifted towards lower angles from original -Ti peak 
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positions as seen in Figure 3.17. The most three intense peaks of Ti coatings 

deposited at 100 V with and without post treatment were compared in Figure 3.18 in 

high magnification and the measured shift values were about 0.5°. The reason behind 

this difference aroused from the internal stress formation in high bias voltage applied 

Ti coatings.  
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Figure 3. 15 : The comparison of normalized XRD paterns of Ti coatings deposited 

on alumina at 0 V, 100 V and 200 V bias voltage using CAPVD technique. Red lines 

denote the XRD peak positions taken from PCPDF file 44-1294  
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Figure 3. 16 : The comparison of normalized XRD patterns of Ti coatings deposited 

on alumina at 0 V, 100 V and 200 V bias voltage and successively subjected to 1000 

V. Red lines denote the XRD peak positions taken from PCPDF file 44-1294  
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Figure 3.17 : Comparison of normalized XRD paterns of Ti coating deposited on 

alumina at 100 V and 1000 V high bias voltage applied Ti coating deposited at 100 

V. Red lines denote the XRD peak positions taken from PCPDF file 44-1294  
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Figure 3.18 : Comparison of normalized XRD paterns of Ti coating deposited on 

alumina at 100 V and 1000 V high bias voltage applied Ti coating deposited at 100 V 

in high magnification. Red lines denote the XRD peak positions taken from PCPDF 

file 44-1294  
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3.2 Investigation of the CAPVD Process Parameters for the Deposition of Ti-Al 

Coatings 

3.2.1 The effects of bias voltage on microstructural properties TiAl coating  

As in Ti coatings, a similar pretreatment process was conducted in the initial stage of 

TiAl coating in order to heat and clean the surface of substrate. After pretreatment 

process, the coatings with different properties were produced at 0, 100, 200 bias 

voltages. All coatings were performed in DC mode using 60 A cathode current for 20 

min. During deposition 20 sccm Argon gas flow rate was given to the system. In 

production of TiAl coatings, a TiAl cathode consisting 25 at% Al was used. As seen 

SEM images in Figure 3.19, Figure 3.20, and Figure 3.21, surface morphology of the 

coatings changed depending on the bias voltage. In TiAl coatings deposited at 100V 

and 200 V bias voltages, a smoother surface morphology was obtained. However, in 

all TiAl coating surfaces 1-13 micron sizes droplets were also observed owing to the 

CAPVD method. The droplet amount in TiAl coatings were higher than the ones 

obtained for pure Ti. This can be attributed to the lower melting temperature of TiAl 

compared to pure Ti. It is very well known that the number and sizes of the droplets 

increase in lower melting point elements. 

 

Figure 3.19 : The SEM image of TiAl coating deposited on alumina at 0 V using 

CAPVD technique. 
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Figure 3.20 : The SEM image of TiAl coating deposited on alumina at 100 V using 

CAPVD technique. 

 

Figure 3.21 : The SEM image of TiAl coating deposited on alumina at 200 V using 

CAPVD technique. 

The cross sectional SEM images of coatings deposited at 0 V, 100 V, 200 V were 

seen inFigure 3.22, Figure 3.23, and Figure 3. 24, respectively. According to these 

cross sectional SEM images, as the bias voltage was increased, the columnar 

structure of coating becomes more denser and smoother surfaces were obtained. 

Considering the relationship between the thickness of the coating with the bias 

voltage, a decrease in the thickness of coating was observed as the bias voltage was 

increased.  Since the coating became more denser and the re-sputtering effect was 

increased by increasing the voltage, the thickness of coating was decreased. 
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Figure 3.22 : The cross sectional SEM image of TiAl coating deposited on alumina 

at 0 V using CAPVD technique 

 

Figure 3.23 : The cross sectional SEM image of TiAl coating deposited on alumina 

at 100 V using CAPVD technique 

 

Figure 3. 24 : The cross sectional SEM image of TiAl coating deposited on alumina 

at 200 V using CAPVD technique 
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It was also determined that the applied bias voltage was effective on the coating 

composition.  According to EDS analysis results given in Table 3.1, the amount of Al 

in TiAl coating varies inversely with the applied voltage. The amount of Al in TiAl 

coating deposited at 0 V and the content of the target material used are 

approximately similar. However, as the bias voltage increases the amount of Al in 

TiAl is decreased due to the higher sputtering rate of Al. 

Table 3.1 : The EDS analyses of TiAl coatings deposited at 0 V, 100 V, 200 V bias 

voltages. 

Coating Atomic 

% Al 

Atomic % 

Ti 

TiAl coating deposited at 0 

V bias voltage 
23 77 

TiAl coating deposited at 

100 V bias voltage  
15 85 

TiAl coating deposited at 

200 V bias voltage 
11 89 

3.2.2 The effects of post treatment with high bias voltage on microstructural 

properties TiAl coating 

In order to examine the effects of high bias voltage on produced coatings, TiAl 

coatings were deposited at 0, 100, 200 V bias voltages and 1000 V high voltage was 

applied to these coatings for 4 min at the end of deposition.  The materials were 

heated up to 1300 °C when they were exposed to high bias voltage. The heating 

generated on the coating’s surface allow the coating to turn into a more dense 

structure. In Figure 3.25, Figure 3.26, and Figure 3.27, the SEM images of TiAl 

coatings which were deposited at 0, 100, 200 V and successively exposed to high 

bias voltage were given respectively.  In 1000 V bias voltage applied coatings 

surface morphologies were improved compared to the coatings without high voltage 

application.  

The cross sectional SEM images of  TiAl coating deposited at 0 V, 100 V, 200 V and 

successively subjected to 1000 V high bias voltage were given in Figure 3.28, Figure 

3.29, and Figure 3.30, respectively. The structure of 1000 V applied coatings showed 

a similar structure with metallic materials. 
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Figure 3.25 : The SEM image of TiAl coating deposited on alumina at 0 V and then 

subjected to 1000 V high bias voltage 

 

Figure 3.26 : The SEM image of TiAl coating deposited on alumina at 100 V and 

then exposed to 1000 V high bias voltage 

 

Figure 3.27 : The SEM image of TiAl coating deposited on alumina at 200 V and 

then subjected to 1000 V high bias voltage 
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Figure 3.28 : The cross sectional SEM image of TiAl coating deposited on alumina 

at 0 V and then exposed to 1000 V high bias voltage 

 

Figure 3.29 : The cross sectional SEM image of TiAl coating deposited on alumina 

at 100 V and then exposed to 1000 V high bias voltage 

 

Figure 3.30 : The cross sectional SEM image of TiAl coating deposited on alumina 

at 200 V and then exposed to 1000 V high bias voltage 
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The influence of post treatment on the coating composition was also examined using 

EDS analysis. According to these results given in Table 3.2, the amount of Al in 

TiAl coating varies in the range between 12-15 at % depending on applied bias 

voltage before post treatment, highly probably due to the compositional 

homogenization effects through accerelated diffusion at high temperatures. 

Table 3.2 : The surface EDS analyses of TiAl coatings deposited at 0 V, 100 V, 200 

V bias voltage and successively subjected to post treatment with high bias voltage. 

Coating Atomic 

% Al 

Atomic % 

Ti 

After 1000 V application 

of TiAl coating deposited 

at 0 V bias voltage 

19 85 

After 1000 V application 

of TiAl coating deposited 

at 100 V bias voltage 

12 88 

After 1000 V application 

of TiAl coating deposited 

at 200 V bias voltage 

15 85 

3.2.3 The effects of bias voltage on structural properties TiAl coating 

XRD analyses were performed in order to define the structural properties of TiAl 

coatings. By using these XRD analyses, the effects of deposition bias voltage and 

also the influence of Al alloying on the structure of Ti coating were investigated and 

evaluated. In the XRD spectra of the coatings that were produced with the 

application of 0 V and 100 V, the peaks are broader and additional small peaks 

belonging to Ti3Al phase are present. In the XRD spectrum of the sample produced 

by the application of -200 V bias peaks are sharper and contribution of Ti3Al peaks 

to the spectrum are not as pronounced as the ones produced by using lower bias 

voltages.  According to the Ti-Al binary phase diagram there is 11 at % solubility of 

aluminum in titanium. Beyond this concentration Ti3Al phase should appear in the 

structure under equilibrium conditions as seen in Al-Ti binary diagram (Figure 3.31). 

Samples produced under 0 and 100 V bias voltage have higher that 11 at % Al thus 

presence of Ti3Al phase in their structure is expected. The broad peaks that appear in 

the range of 35°-42° are composed of diffraction belonging to both alpha Ti and 

Ti3Al (Figure 3.32).  We may conclude that the phases are not well crystallized since 

the peaks belonging to different phase are well-defined and broad.  On the other hand 

in cathodic arc PVD deposited alloys the presence of segregation is a very well 
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known fact [62,90,91]. This segregation mainly arouse from the droplets. Droplets 

are macro particles that are converted to vapor during CAPVD thus their 

composition are very close to the target material and not the same as the deposited 

film. Therefore, segregation presence of films with uneven composition should be 

expected for CAPVD metallic alloy films.  

A ssessed  T i - A l  p h ase d i ag r am .

 

Figure 3.31 : Al-Ti binary phase diagram [92]. 
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Figure 3.32 : The normalized XRD patterns of TiAl coatings deposited on alumina 

at 0 V, 100 V and 200 V  bias voltage  using cathodic arc method. Red lines and blue 

lines denote the XRD peak positions taken from PCPDF file 44-1294 and 52-0859, 

respectively. 
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3.2.4 The effects of post treatment with high bias voltage on structural 

properties TiAl coating 

After post treatment of the coatings by the application of high bias voltage the 

crystallinity of the coatings increased and peaks belonging to alpha Ti and Ti3Al 

phases became well defined (Figure 3.33). Since the amount of Al concentration in 

TiAl coating produced at 0 V was higher than 22 at % Al, its structure completely 

transformed into Ti3Al after post treatment. In Figure 3.34, the normalized XRD 

paterns of post treated TiAl coatings deposited at 0 V and 200 V were compared in 

order to indicate Ti3Al phase formation in TiAl coating deposited at 0 V after post 

treatment. Other than that the differences observed in the Al content of untreated 

samples was not present in the post treated samples, since through the heating of the 

samples accerelated diffusion process not only densified the structure but also 

homogenized the chemical composition. The amount of Al in TiAl coatings 

deposited at 100 V and 200 V varies in the range between 12-15 at % after post 

treatment. 
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Figure 3.33 : The comparison of normalized XRD paterns of TiAl coatings 

deposited on alumina at 0 V, 100 V and 200 V bias voltage and successively 

subjected to 1000 V.  Red lines and blue lines denote the XRD peak positions taken 

from PCPDF file 44-1294 and 52-0859, respectively. 

In all produced TiAl coatings, the peaks shifted about 0.2°-0.3° towards higher 

angles from the original -Ti peak positions since addition of Al caused a decrease in 

lattice parameters. However, in post treatment applied TiAl coatings, there were also 

peak shifts towards lower angles due to the internal stress induced from high bias 
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voltage (Figure 3.35). The most three intense peaks of TiAl coatings deposited at 100 

V with and without post treatment were compared in Figure 3.36 in high 

magnification.  In post treatment applied TiAl coatings, the measured peak shift 

values were in the range of 0.1°-0.5° with respect to TiAl coating deposited at 100 V. 
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Figure 3.34 : The comparison of normalized XRD paterns of TiAl coatings 

deposited on alumina at 0 V and 200 V bias voltage and successively subjected to 

1000 V.  Red lines and blue lines denote the XRD peak positions taken from PCPDF 

file 44-1294 and 52-0859, respectively. 

As a result of all these investigations, well-adherent and dense metallic Ti and TiAl 

thin films were deposited on alumina substrates using CAPVD method. In the 

pretreatment process, the heat that was generated on the surface of substrates by the 

effect of energetic ions and this heating provided good adhesion between substrate 

and coating.  The main effects of different deposition bias voltage and post treatment 

applications on the resulting coating structures were summarized as in the below:   

For Ti coatings: 

 The surface morphologies of coatings altered with the increase in bias 

voltage. As the deposition bias voltage was increased, the columnar structure 

of coatings became more denser and a decrease in the thicknesses of Ti 

coatings was observed.  
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Figure 3.35 : Comparison of normalized XRD patterns of TiAl coating deposited at 

100 V and TiAl coating deposited at 100 V successively applied 1000 V high 

voltage. Red lines and blue lines denote the XRD peak positions taken from PCPDF 

file 44-1294 and 52-0859, respectively. 
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Figure 3.36 : Comparison of normalized XRD paterns of TiAl coating deposited on 

alumina at 100 V and 1000 V high bias voltage applied TiAl coating deposited at 100 

V in high magnification. Red lines and blue lines denote the XRD peak positions 

taken from PCPDF file 44-1294 and 52-0859, respectively.  
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 There was no apparent effect of bias voltage increase on XRD patterns of Ti 

coatings.  

 The high bias voltage applied during post treatment caused a heating on the 

surface of Ti. The columnar structure of coatings was converted into 

equiaxed structure by the effect of post treatment with high bias voltage. 

Surface morphologies of coatings were improved compared to the coatings 

without post treatment and smoother surfaces were obtained. However, 

droplet formation was observed on the coating surfaces induced from 

production method.  

 After post treatment the peak positions of Ti shifted to lower angles 

indicating internal stress build up as a result of this treatment. 

Among the coatings produced, two types of Ti coatings are selected for the 

optimization of anodization studies. As the first coating, we have selected coatings 

produced at -100V bias since among the coatings produced without post treatment 

these coatings gave an optimum coating thickness and relatively dense structure. As 

the second coating, we have selected the post treated version of the coating that was 

produced at -100 V. Although the post treated coatings had a denser structure similar 

to metallic titanium, we also wanted to check the possible effects induced by internal 

stresses on the quality of the porous anodized structures.  

For Ti-Al coatings: 

 The aluminum content of the films showed dependence on the bias voltage. 

Coatings produced with 0 V bias voltage had a similar Al content as the 

target material (25 at %). The aluminum content decreased to a level 11-15 

at% by the increase of bias voltage. 

 Similar to Ti coatings increase in bias voltage resulted in decrease in coating 

thickness. 

 In the XRD patterns of these coatings presence of Ti3Al phase was detected. 

The amount of this phase increased with the aluminum content. The rapid 

heat treatment supplied by the application of high bias voltage led to stabilize 

the meta-stable Ti3Al phase in TiAl coatings. 

 Post treatment of the coating resulted in the densification of the coating 

structure. TiAl coatings surface smoothness increased compared to the TiAl 



59 

coatings without post treatment. However, high bias voltage post treatment 

caused an internal stress formation in Ti and TiAl coatings. 

Among the coatings produced, two types of Ti-Al coatings are selected for the 

optimization of anodization studies. As the first coating, we have selected coatings 

produced at -100V bias without post treatment since this coating gave an optimum 

coating thickness, relatively dense structure and also its structure mainly composed 

of alpha Ti (Ti-Al solid solution).  Considering the volume expansion occurs during 

the anodization process, the relatively dense and columnar structure of this coating 

was thought to be better for nanoporous structure formation. As the second coating, 

we have selected the post treated version of the coating that was produced at -100 V.  

This post treated coating had a denser and equiaxed structure that favors the 

formation of highly ordered nanoporous structure, however, we also wanted to check 

the possible effects induced by internal stresses on the quality of the porous anodized 

structures. 
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4.  OPTIMIZATION OF PROCESS PARAMETERS FOR THE 

ANODIZATION OF Ti AND TiAl COATINGS 

As explained in section 3, two types of Ti and TiAl coatings were selected for using 

in the optimization experiments of anodization process parameters of Ti and TiAl 

films. These are the coatings produced at -100 V bias voltage with and without high 

bias voltage post treatment. It was considered that high voltage post treatment 

applied coatings would give well-ordered nanoporous structure due their equiaxed 

structure and smoother surfaces. On the other hand, the columnar structure was 

thought to be better for mechanical integrity of nanoporous structure formation since 

this structure may allow the volume expansion that may occur during the anodization 

process. Therefore, the suitability and durability of these two different Ti and TiAl 

coating structures were tested for anodization process. The influences of different 

coating structures on nanoporous structure formation were examined and the most 

appropriate coating structures for anodization process were determined.   

The denser structure, well adhesion and morphology of the coatings produced by 

cathodic arc technique are expected to favour the homogenous electric field 

distribution on the surface and the formation of ordered nano tubular- porous 

structure [31, 69]. However, droplet formation on the coating surfaces, which is 

typical in CAPVD method, is a drawback for the formation of homogeneous nano 

tubular-porous structures. These defects present as asperities on the surface and 

effect the current distribution during anodization unfavourably leading to an uneven 

surface after anodization as seen in Figure 4.1. 

For overcoming the detrimental effects of droplets on electrochemical reactions 

during anodization process, the coatings were subjected to pretreatments before 

anodization process. The surfaces of Ti and TiAl coatings were chemically polished 

for a few seconds in a mixed solution of HF, H2O and HNO3. This process was 

sufficient for the removal of droplets from Ti surfaces however additional 

mechanical polishing was required for TiAl coatings because of the higher amount of 

droplets on their surfaces. The surface of TiAl coated samples were mechanically 
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polished using 320, 500, 800, 1000, 1200, 2400, 4000 grid SiC sand papers  

sequentially.  

  

Figure 4.1 : The SEM image of anodically oxidized TiAl coatings which have 

higher amount of droplets on their surfaces. 

After anodization process, the Pt is deposited on the surface of nanostructured sensor 

material to serve as electrical contacts. However, in the preliminary studies 

conducted in our group and other studies [68] revealed that  Pt may diffuse through 

the nanotube structure and contact with the metallic thin film underneath the 

nanotubes which may lead to short circuits. Thus the optimization of anodization 

process mainly aimed to overcome this problem by: 

1. Producing long nanotubular structures (above 10 um) for preventing the 

diffusion of Pt to the bottom (barrier layer) of the nanotubes 

2. Total anodization of the metallic films above alumina substrate in order to 

oxidize the metallic film that leads to short-circuiting by the diffusion of Pt.  

4.1 Optimization of Process Parameters for the Anodization of TiAl Coatings 

There are many studies in the literature on porous anodization of titanium (see 

section 1.5). By referring to these studies it is possible to tune the anodization 

parameters in accordance to the desired nanotubular structure. According to these 

studies and our previous experience, for obtaining long tubes usage of ethylene 

glycol based electolytes is required. Thus for the anodization studies this electrolyte 

is selected. Again based on the available literature NH4F and water content, duration, 

temperature and anodization voltages are the other parameters that show effect on the 

formation of nanoporous layers on titanium. However, there are no studies on the 
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literature on the anodization of Ti-Al alloy thin films. A few studies exist on the 

anodizaition of bulk TiAlV and TiAlNb alloys mainly considering the possible usage 

of these anodized materials for biomedical applications. For this purpose, the 

optimization studies are mainly conducted by using TiAl alloy coatings since there 

are no studies about the anodization of these coatings in the literature. In anodization 

of TiAl thin film coatings, various anodization voltages, electrolyte compositions, 

temperatures, agitation types and durations were attempted. The effects of these 

parameters on the morphologies and diameters of nanotubular structures were also 

investigated and evaluated. The optimal anodization parameters for obtaining high 

thickness of nanotube layer and well-aligned nanotube arrays were determined. 

Before starting the optimization, our hypothesis on the durability of Ti based 

coatings produced by CAPVD in anodization electrolyte is tested by anodizing a Ti 

coated sample in ethylene glycol based electrolyte. The results revealed that it is 

possible to anodize titanium coated alumina in this electrolyte without any spalling.  

A continuous metallic film is obtained without any delimination as seen in cross 

sectional SEM image in Figure 4.2. 

 

Figure 4.2 : The cross sectional image of anodically oxidized  Ti coated alumina in 

ethylene glycol without any spalling.   
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4.1.1 The effect of electrolyte composition 

Ethylene glycol consisting NH4F was selected as an anodization electrolyte for 

optimizing the anodization process parameters of TiAl coatings. By using this 

nonaqueous electrolyte, the thickness of TiO2 nanotube arrays can be significantly 

increased. This is because, in the nonaqueous electrolyte, the mobility of the fluorine 

ion was largely suppressed; thus, the chemical dissolution of TiO2 was decreased [7].  

In literature, electrochemical oxidation of titanium has been studied in sulfuric acid, 

phosphoric acid, acetic acid with or without HF solution [6]. However, at lower pH 

(HF electrolytes or acidic HF mixtures), the length of the nanotube length was 

limited by higher dissolution rate [6, 80]. By using buffered neutral electrolytes 

containing NaF or NH4F and taking into account the importance of the pH gradient 

within the tube, the thickness of grown Ti nanotubes can be increased [19]. 

Initially, electrolyte concentration experiments were conducted due to the most 

appropriate electrolyte compositions were required for growing well-ordered 

nanotubes and nanotubes with higher thickness. Since the fluoride concentration 

mainly determines the kinetics of nanotube growth, the ethylene glycol electrolytes 

including vol % 1 H2O and different amounts of NH4F (0.18 wt % , 0.25 wt %, 0.32 

wt % , 0.40 wt % , 0.47 wt % , 0.54 wt % , 0.61 wt %) were prepared. Then TiAl 

coated substrates were anodized by applying constant potential of 40 V at 13 °C for 

120 minutes (In the preliminary studies, the suitable ranges of anodization 

parameters were determined for obtaining the nanotubular/nanoporous structures in 

the used electrolyte compositions).  The resulting average nanotube lengths were  

3.8,  4.5,  4,  3.1,  2.4, 1.9, 1.4 microns respectively for 0.18 wt % , 0.25 wt %, 0.32 

wt % , 0.40 wt % , 0.47 wt % , 0.54 wt % , 0.61 wt % NH4F containing ethylene 

glycol  electrolytes. The relation between nanotube length and NH4F concentration 

was also depicted in Figure 4.3.  Among these concentrations, the highest thickness 

of nanotube layer was obtained in 0.25 wt % NH4F containing electrolyte as shown 

in Figure 4.4.  Above this concentration, the nanotube length began decrease since 

the rate of nanotubes dissolution was higher than their growth rate in high NH4F 

concentration.  Finally, the shortest nanotube length was formed in 0.61 wt % NH4F 

containing electrolyte and  the length of as-grown nanotubes were approximately 1-

1.5 micron as seen in Figure 4.5.  
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Figure 4.3 : The relationship between NH4F concentration in ethylene glycol 

electrolyte and nanotube in anodization process conducted at 40 V and 13°C. 

 

 

Figure 4.4 : The cross sectional SEM image of nanotubular structure formed on TiAl 

coating after the anodization process conducted at 40 V and 13 °C in ethylene glycol 

containing 0.25 wt % NH4F. 
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Figure 4.5 : The cross sectional SEM image of nanotubular structure formed on TiAl 

coating after the anodization process conducted at 40 V and 13 °C in ethylene glycol 

containing 0.61 wt % NH4F. 

The effects of electrolyte concentration on the surface morphology were also 

investigated. Nanoporous structure was dominant in ethylene glycol electrolytes 

consisting 0.18 wt %, 0.25 wt %, 0.32 wt %, 0.40 wt % NH4F and 0.47 wt % 

whereas the structure was nanotubular in electrolytes consisting 0.54 wt % and 0.61 

wt % NH4F.  Among these concentrations, well-aligned nanotubular structure was 

obtained on the surface of coatings in the electrolyte consisting 0.61 wt % NH4F at 

40 V as seen in Figure 4.6.  The tube diameters and wall thickness of these structures 

were about 70-90nm and 13-15 nm, respectively. However, a porous layer was also 

formed on top of the grown nanotubes during the anodization of TiAl coating. This 

porous layer covered the surface of nanotubular structure partially or entirely 

depending on the parameters used in anodization process. In the beginning of 

anodization process, the initial anodic oxide forms at the surface of the metallic 

coating and then the oxide grows at the metal-oxide interface. Therefore, the porous 

initial oxide layer is the replica of coating surface morphology since the grain 

structure and grain boundaries of coating were obviously seen on the surface of this 

porous layer.  After the formation of this porous initial layer, nanotubular layer forms 

underneath this porous layer.  EDS analyses in Table 4.1. indicated that this porous 

layer has higher concentration of fluoride compared to nanotubular layer. This porous 
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layer formation can be attributed to the formation of AlF3 compound during 

anodization of TiAl coatings and this compound may have a hinderence effect on the 

progress of anodization process.  

In order to remove this porous layer on the surfaces of nanotubes, second anodization 

was conducted using electrolytes with different HF concentrations and durations. The 

optimized conditions for second anodization were determined as 15 V in 0.6 v % HF 

containing electrolyte. By the application of second anodization for 30 sec, the 

porous layer was etched as in Figure 4.7 and the resulting surface shown in Figure 

4.8 was obtained.  However, 30 sec was insufficient to etch the porous layer formed 

on the surface of anodized coatings produced in 0.25 wt % NH4F consisting 

electrolyte at 21 °C and also homogeneous nanotube length could not be obtained 

when the duration was increased. 

 

Figure 4.6 : The SEM image of nanotubular structure formed on TiAl coating after 

the first anodization process conducted at 40 V and 13 °C in ethylene glycol 

containing 0.61 wt % NH4F. 

Consequently, the optimal NH4F concentration in etylene glycole was determined as 

0.61 wt % and 0.25 wt % for well-aligned and high thickness of nanotubes, 

respectively. Therefore, these electrolyte concentrations were used in the following 

detailed investigations about anodization of Ti and TiAl thin film coatings. 
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Table 4.1 : EDS analyses of porous and nanotubular layer formed on the surface of 

TiAl coating after anodization process. 

 
Porous Layer Nanotubular Layer 

Weight % Atomic % Weight % Atomic % 

Ti 32 15 43 21 

O 38 53 38 56 

F 24 28 14 17 

Al 4.2 3.5 4.1 3.6 

 

Figure 4.7 : The SEM image of etched  nanoporous structure using second 

anodization process conducted at 40 V in 0.6 v % HF containing electrolyte.  

 

Figure 4.8 : The SEM image of resulting nanotubular structure formed on TiAl 

coating after the second anodization process  
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4.1.2 The effects of potential in TiAl coating anodization 

The applied voltage affects the surface morphology and also dimensions of 

nanotubes. The effects of anodization potential on nanostructure growth were 

investigated in 0.25 wt % and 0.61 wt % NH4F containing electrolytes. The 

anodization processes were conducted at the voltages of 40, 50, 60, 65, 70 V.  In 0.25 

wt % NH4F containing ethylene glycol, nanotubular structure was successfully 

fabricated in a voltage window from 40 to 70 V.  The diameter and the length of the 

nanotubes increased gradually with increasing anodization voltage until 65 V.  

Above 65 V, the nanotube length began to decrease slightly and their structures 

began to deteriorate. At this high voltage, the dissolution rate may increase the 

growth rate of nanotubes since the F- ions diffusion through the bottoms of nanotubes 

becomes difficult as the nanotube length increases. In addition as the titanium 

dissolves in electrolyte, the conductivity of electrolyte also increases and this may 

lead to an increase in dissolution rate of grown nanotubes. So, the optimal 

anodization potential was determined as 60 V for growing longer nanotubes and the 

cross sectional SEM image of nanotubular structure produced at 60 V for 250 min in 

0.25 wt % NH4F ethylene glycol containing was shown in Figure 4.9.  

 

Figure 4.9 : The cross sectional SEM image of nanotubular structure formed on TiAl 

coating after the anodization process conducted at 60V and 13°C for 250 min in 0.25 

wt % NH4F containing electrolyte.  
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The effect of anodization potential on the structure of nanotubes grown in 0.61 wt %   

NH4F consisting electrolyte was also investigated.  In the range of anodizing 

potentials from 40 V to 70 V, well-aligned nanotube arrays were obtained at 40 V in 

this electrolyte concentration. As the voltage increased from 40 V to 50 V, these 

arrays became irregular and nanotubular structure was distorted as seen in Figure 

4.10. Therefore 40 V was determined as the highest potential for producing well-

ordered nanostructures in the electrolyte concentration used.  

 

Figure 4.10 : The SEM image of nanotubular structure formed on TiAl coating after 

the anodization process conducted at 50V and 13°C for 120 min in 0.61 wt % NH4F 

containing electrolyte.  

4.1.3 The effects of temperature in TiAl coating anodization 

The optimal anodization voltage and NH4F concentration for obtaining high 

thickness of nanotube length were determined as 60 V and 0.25 wt % NH4F, 

respectively. The effects of temperature on nanotube length were investigated using 

these anodization parameters. When the all parameters were constant, the 

anodization temperature was increased from 13 °C to 21 °C and as a result, the 

nanotube length rised from 11 micron to 14 microns (seen in Figures 4.11 and 4.12). 

With further increasing the temperature up to 29°C, the nanotube length was 

increased to 16 microns as seen in Figure 4.13.  Anodization temperature has a 

significant effect on the morphology of the as-anodized coatings. In the case of 

anodization process conducted at 21°C, only the porous layer was observed on the 
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anodized surfaces. However, as the temperature increased, highly disordered 

nanostructures were obtained on the anodized surfaces. Therefore, the optimal 

anodization temperature for obtaining highly ordered and as well as longer nanotubes 

was determined as 21 °C and the subsequent anodization experiments were 

conducted at this temperature.   

 

Figure 4.11 : The cross sectional SEM image of nanotubular structure formed on 

TiAl surface after 250 min anodic oxidation at 60 V in 0.25 wt % NH4F containing 

electrolyte at 13°C.  

 

Figure 4.12 : The cross sectional SEM image of nanotubular structure formed on 

TiAl surface after 250 min anodic oxidation at 60 V in 0.25 wt % NH4F containing 

electrolyte at 21°C.  
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Figure 4.13 : The cross section SEM image of nanotubular structure formed on TiAl 

surface after 250 min anodic oxidation at 60 V in 0.25 wt % NH4F containing 

electrolyte at 29°C.  

4.1.4 The effects of water content in electrolyte in TiAl coating anodization 

A key parameter that influences the growth of nanotubes is water content in the 

electrolyte. In these experiments 0.25 wt % NH4F was dissolved in 1 vol % water 

then mixed with ethylene glycol. When the water volume in electrolyte was 

increased to 1.6 vol %, it was observed that the nanotube length was increased from 

4.8 microns to 5.7 microns for 40 min at 60 V and 21°C.  

The surface SEM image of this nanostructure produced at 60 V and 21°C for 40 min 

in 1.6 vol % water and 0.7g NH4F containing electrolyte was shown in Figure 4.14.  

At these conditions, the porous layer covered the entire surface of as-grown 

nanotubular structure. The measured nanotube diameters from surface and cross 

sectional images were 60-80nm and 145-155nm, respectively (Figure 4.15). By the 

increasing of water content, the nanotube diameters were slightly increased.  

Additionally, water content was increased to 2 vol %, however, a slight decrease was 

observed in the lengths of nanotubes. Therefore, 1.6 vol % water content was taken 

to be the highest water content for producing high thickness of nanotubes in the 

following anodization experiments. 
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Figure 4.14 : The surface SEM image of nanotubular structure formed on TiAl 

surface after anodic oxidation at 60 V in 1.6 vol % water and 0.25 wt %  NH4F 

containing electrolyte at 21°C.  

  

Figure 4.15 : The cross sectional SEM image of nanotubular structure formed on 

TiAl surface after anodic oxidation at 60 V in 1.6 vol % water and 0.25 wt %  NH4F 

containing electrolyte at 21°C.  

4.1.5 The effects of anodization duration in TiAl coating anodization 

The influence of different anodization times on the growth rate of nanotubes was 

investigated in a range from 30 min to 270 min as shown in Fig 4.16.  For these 

experiments, TiAl coatings were anodically oxidized at 60 V in 1.6 vol % water and 

0.25 wt % NH4F containing electrolyte at 21°C. In the earlier stages of anodization, 

nanotubes grow on TiAl surface more rapidly and then the growth rate slows down. 

While the length of nanotubes was 3.9 micron after 30 min anodic oxidation, their 

length was reached to 18.5 microns after 270 min as seen in Figure 4.16.a. and 

Figure 4.16.f, respectively. The relation established between anodization time and 

nanotube growth length was depicted in Figure 4.17. Additionally, the metallic film 

above alumina can be anodized totally using these conditions. These produced 

nanotubes with high thickness are thought to be appropriate for using as a sensor 
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material since there is a possibility to occur a short circuit between Pt circuits and the 

conductive layer underneath the nanotubes. 

   
 

   
 

   

Figure 4.16 : The cross sectional images of nanotubular structures with different 

lengths formed on TiAl coating in 1.6 vol % water and  0.25 wt %  NH4F containing 

electrolyte at 60 V for a) 30 min b) 40 min c) 60 min d) 100 min e) 250 min  

f) 270 min 

a) b) 

c) 

e) 

d) 

f) 
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Figure 4.17 : The relationship between anodization time and nanotube length grown 

in 1.6 vol % water and 0.25 wt %  NH4F containing electrolyte at 60 V and 21°C. 

4.1.6 The effects of agitation in TiAl coating anodization 

In optimization experiments, anodization processes were conducted at 60 V in 0.25 

wt %  NH4F consisting electrolyte for different types of agitation. It was realized that 

there is no difference between the surface SEM images of nanotubes grown in 

magnetically and ultrasonically stirred electrolytes as seen in Figure 4.18.a and 

4.18.b, respectively. Also, it was examined that the type of agitation has no 

considerable effect on nanotube length under the same conditions. 

 

Figure 4.18 : The surface SEM images of TiAl nanotubular structure formed on 

TiAl coated substrate after anodic oxidation at 60 V for 250 min in 0.7g NH4F 

containing electrolyte using Figure 4.18. The SEM images of nanotubular structures 

formed on TiAl coating in 1.6 vol % water and 0.25 wt % NH4F containing 

electrolyte at 60 V for and 21°C using a) magnetron stirring b) ultrasonic stirring. 

 
a

) 

b

) 
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4.2 Optimization of Process Parameters for the Anodization of Ti Coatings 

The optimal anodization parameters for producing nanotubes with high thickness and 

well-aligned nanotubes on TiAl coatings were used in anodization of Ti coatings. 

The metallic Ti coating on alumina was anodized at 40 V in 0.61 wt % NH4F 

consisting ethylene glycol electrolyte for 40 min at 13°C.  The sample was cleaned in 

acetone ultrasonically to remove the residues (dissolved nanotube walls) on the 

nanotubular structure that were formed during anodization. The surface SEM image 

of Ti nanotubular structure on alumina substrate was shown in Figure 4.19. Using the 

anodization conditions mentioned above, highly ordered nanotube arrays were 

created on the surface of Ti coating. 

 

Figure 4.19 : The nanotubular structure which was formed on Ti coated alumina 

substrate after anodization process that conducted at 40 V and 13 °C  in 0.61 wt % 

NH4F consisting ethylene glycol for 40 min  

Anodization process conducted using different conditions in order to examine the 

effects of anodization potential and electrolyte concentration on nanotubular Ti 

anodic oxides. For this purpose, Ti cotings were anodized at 40 V, 50 V, 60 V in 

0.61 wt % NH4F consisting ethylene glycol at a temperature of 13 °C.  The resulting 

nanotube diameters were, respectively, 85-100 nm, 100-120nm, 140-160 nm for 40, 

50, 60 anodization voltages.  It was also determined that the amount of NH4F in 

anodization electrolyte influenced the diameters of nanotubes and as well as their 

lengths. The nanotubular structure seen in Figure 4.20 was formed on Ti coating after 

the anodization process conducted at 60 V in 0.25 wt % NH4F containing ethylene 
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glycol electrolyte during 250 min.  The surface and cross sectional SEM images of 

these nanostructures at different magnifications were given in Figures 4.20 and 4.21, 

respectively. Increasing anodization potential from 40 V to 60 V, reducing the 

amount of NH4F in electrolyte and increasing anodization duration led to formation 

of 9-10 microns nanotubes in length. 

 

Figure 4.20 : The surface SEM image of nanotubular structure formed on Ti coating 

after the anodization process done at 60 V and  13 °C  in 0.25 wt %  NH4F 

containing electrolyte for 250 min. 

 

Figure 4.21 : The cross sectional SEM image of nanotubular structure formed on Ti 

coating after it was anodized at 60 V and 13°C in 0.25 wt % NH4F containing 

electrolyte for 250 min. 

The signficant effects of temperature and water content on the anodized surface were 

also investigated. By increasing the temperature from 13°C to 21°C in 1.6 v % water 

and 0.25 wt % NH4F containing electrolyte, it is possible to grow nanostructures with 

a thickness of 11-12 micron for 120 min (Figure 4.23).  However, nanoporous 
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structure was obtained instead of nanotubular structure in these conditions as seen in 

Figure 4.22.  

  

Figure 4.22 : The SEM image of nanotubular structure formed on Ti coating after it 

was anodized at 60 V and 21°C in 0.25 wt % NH4F and 1.6 v % water containing 

electrolyte for 120 min. 

 

Figure 4.23 : The cross sectional SEM image of nanotubular structure formed on Ti 

coating after it was anodized at 60 V and  21°C  in 0.25 wt %  NH4F and 1.6 v %  

water containing electrolyte for 120 min 

4.3 The Influence of Different Coating Structures on Anodization Process  

Two types of Ti-Al coatings were used in the optimization of anodization studies. 

These are the coatings produced at -100V bias with and without post treatment. The 

possible effects of post treatment on as grown nanoporous structure were 

investigated.  Both these two different coating structures promoted the formation of 

highly ordered nanoporous-nanotubular structures on their surfaces. However, crack 

formation was observed on the surface of the post treated coatings after anodization 
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process as shown in Figure 4.24. This may arise from the internal stress induced by 

high bias voltage application or the volume expansion that may occur during the 

anodization process. Therefore, the coatings produced without post treatment was 

selected as the most appropriate coating structures for anodization process. 

 

Figure 4.24 : The surface SEM image of anodically oxidized TiAl coating deposited 

at  -100 V bias and then subjected to high bias voltage post treatment. 
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5.  INVESTIGATION OF AMORPHOUS TO ANATASE AND ANATASE TO 

RUTILE PHASE TRANSFORMATIONS IN NANOSTRUCTURED Ti AND 

TiAl ANODIC OXIDES 

5.1 The Crystallization Behavior of Nanostructured Ti and TiAl Anodic Oxides 

In chemiresistive type of hydrogen sensors, surface reactions govern the gas 

detection and therefore the physical and chemical properties of sensor surface play a 

distinctive role in detection of analyte gas. TiO2 sensor material used in this study has 

mainly 3 different polymorphic phases (anatase, rutile, brookite) and TiO2 surface 

has to be in the most appropriate phase to detect hydrogen gas.  

The meta-stable anatase phase of titania is more preferrable for hydrogen gas sensor 

owing to its high sensitivity to hydrogen gas [35, 36] and high performance during 

the surface reactions [27].  In addition, anatase TiO2 phase has approximately 10 

times larger electron mobility compared to rutile TiO2 and therefore anatase phase 

has a great importance in gas sensor applications [38, 93].   

Since gas sensors are expected to work at high temperatures, shifting of the anatase-

rutile transformation to higher temperatures is advantageous. By this way, anatase 

may remain stable at higher temperatures and thus the operating temperature range of 

sensor is extended. The anatase-rutile transformation takes place in the temperature 

range 600-700C; however, the reported temperatures for the transformation can vary 

from 400C to 1200C. This wide range can arise from -the type and amount of 

additives, - impurities, - processing methods and conditions used in sample 

preparation, -the thermal treatment atmosphere and conditions, -the sample geometry 

(bulk, film, etc.) and use of different methods of determining the transition 

temperatures [16,37,40-44].  These parameters significantly affect and alter the 

transformation rate and activation energy. Therefore, anatase-rutile transformation 

occurs at a transition temperature either higher or lower than that of pure titania 

depending on the above mentioned parameters [43].    
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There are some studies in the literature [35,37,51]  concerning the effects of  Al 

doping on the phase transformation of bulk titania. However, there are no studies in 

the literature conducted on the phase transformation of nanoporous TiAl-oxide 

produced with anodization. In the present study, the effects of Al doping in TiO2 

lattice were investigated by the phase analyses of the undoped TiO2 and Al-doped 

TiO2 nanostructures after they were subjected to heat treatment processes. The 

crystallization behaviors of nanostructured Ti and TiAl anodic oxides were 

investigated after heat treatments conducted at different temperatures. For these 

experiments, Ti and TiAl (9-10 wt % Al content) coatings were deposited on alumina 

substrates at 100 V bias voltage for 30 min. All thin film coatings were produced 

using a cathode current of 60 A and 20 sccm argon gas flow rate. Then these thin 

film coatings were anodized at 60 V and 21C for 60 min in ethylene glycol 

electrolyte consisting 0.25 wt % NH4F and 1.6 vol % H2O.  

After anodization process, amorphous nanotubular structures were obtained on the 

surfaces of coatings (see section 4).  Then the samples were subjected to heat 

treatments at 280C, 350C, 420C, 485C, 550C, 600C, 650C and 720C in air 

atmosphere for 1 hour and a separate sample was used for each heat treatment. Even 

after the heat treatment at 720 °C, the nanotube architecture remained on the surface 

of Ti and TiAl coatings without deteriorating or collapsing.  

The phase detection and analyses of these anodic oxides were accomplished by XRD 

and micro-Raman measurements. The XRD analyses performed in glancing angle X-

ray diffraction (GAXRD) and theta-2theta (powder) X-ray diffraction (PXRD) 

geometries. A glancing angle of 2° was used for all GAXRD measurements. The 

crystallite size was calculated using the Scherrer method by taking the full width 

half-maximum of some selected intense peaks.  

According to heat treatment results, the crystallization had not yet started at 280 °C 

and completely amorphous structures were observed in both anodic oxides as seen in 

Figure 5.1.   

After heat treatment at 350 °C, the amorph undoped TiO2 structure was crystallized 

into the anatase and sharp anatase peaks appeared. However, anatase crystallization 

in Al-doped TiO2 was retarded and amorphous structure was maintained as seen in 

Figure 5.2. 
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Figure 5.1 : The GAXRD patterns of Ti and TiAl anodic oxides after the heat 

treatment at 280 °C. 
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Figure 5.2 : The GAXRD patterns of Ti and TiAl anodic oxides after heat treatment 

at 350 °C. 

The amorph-anatase phase transformation began to take place in Al-doped TiO2 near 

420 °C as seen in Figure 5.3. (the reflection at 41 degree arises from metallic Ti that 

was underneath the nanotubes) According to the results of heat treatments conducted 

at 350C and 420C, Al doping has a retarding effect on crystallization of TiO2   

structure that is measured in GAXRD mode.  In Ti anodic oxide, the intensities of 

anatase peaks were higher at 420 C compared to 350 C.  When the x-ray diffraction 

patterns of two anodic oxides are compared, it is obviously seen that the anatase TiO2 
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peaks are sharper and their intensities are higher than the peak intensities in Al-doped 

TiO2. This result indicates that the crystallization in TiO2 is kinetically more favored 

than Al-doped TiO2. Literature emphasized that the type of dopant is very effective 

on anatase-rutile transformation and it has no apparent effect on the crystallization of 

anatase [40]. The opposite tendency was observed in this study and this might have 

aroused from different methods used in sample preparation or the amount of Al ions 

doped to TiO2 lattice and duration of heat treatment. This effect can also be explained 

by the grain refinement effects of Al doping which kinetically hinders the 

transformation. 
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Figure 5.3 : The comparison of the GAXRD patterns of Ti and TiAl anodic oxides 

after heat treatment at 420 °C. 

Then Ti and TiAl anodic oxides were subjected to heat treatments at 420 ° C, 485 ° 

C, 550 ° C, 600 ° C and 650 ° C for 1 hour.  The GAXRD patterns of Ti anodic oxide 

obtained after the heat treatments at different temperatures were represented in 

Figure 5.4. The anatase peak intensities of Ti anodic oxide were higher after the heat 

treatment at 485C compared to 420C and therefore the crystallization was further 

improved after heat treating at 485C.  Similar behavior was also seen in the Raman 

spectra given Figure 5.5. As a result of heat treatments conducted at 485C, 550C, 

600C and 650C, in all cases increase in the intensities of the Raman peaks were 

observed.  After the heat treatment processes conducted up to 650 °C, transformation 

to the rutile phase was not detected for both types of samples. For further checking, 

XRD patterns with theta-2 theta (θ-2θ) configuration were also taken. In this mode 
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X-ray penetrate deeper into the structure.  There is also no indication of rutile 

formation in Ti anodic oxides as seen in these XRD patterns (Figure 5.6) 
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Figure 5.4 : The GAXRD patterns of Ti anodic oxide obtained after the heat 

treatments conducted at 420C, 485C, 550C, 600C and 650C. 
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Figure 5.5 : The Raman spectra of Ti anodic oxide obtained after the heat treatments 

conducted at 420C, 485C, 550C, 600C and 650C. 
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Figure 5.6 : The PXRD patterns of Ti anodic oxide obtained after the heat treatments 

conducted at 350C, 485C and 600C. 
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Figure 5.7 : The GAXRD patterns of TiAl anodic oxide obtained after the heat 

treatments conducted at 420C, 485C, 550C, 600C and 650C. 

TiAl anodic oxide was also heat treated at 420C, 485C, 550C, 600C and 650C 

and GAXRD and Raman results were given in Figure 5.7 and 5.8, respectively. 

When the heat treatment temperature was raised to 485C, crystallization was 

significantly increased and the structure was completely transformed into anatase 

phase. After the heat treatment at 485C, 550C, 600C and 650C, very small 

increases were observed in anatase peak intensities as the temperature increases. This 

result indicates the improvement in crystallization with increasing heat treatment 
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temperature. During these heat treatments rutile phase was not detected in neither 

GAXRD nor PXRD patterns as seen in Figure 5.7 and 5.9, respectively. When the 

heat treatment results of TiAl and Ti anodic oxides are compared, it can be 

concluded that slightly smaller peak intensities were observed in TiAl anodic oxide 

owing to the retarding effect of Al on TiO2 crysallization. In addition, slightly 

smaller peak intensity in TiAl anodic oxide may suggest that Al dopant in TiO2 has 

an inhibiting effect on grain growth.  

In order to determine the temperature of anatase-rutile crystallization, Ti and TiAl 

anodic oxides were subjected to heat treatment at 720°C. Successively, PXRD and 

GAXRD analyses were performed for nanotubular Ti and TiAl anodic oxides. These 

anodic oxides exhibited different behaviors in the presence and absence of metallic 

film underneath the nanotube layer as summarized below. 
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Figure 5.8 : The Raman spectra of TiAl anodic oxide obtained after the heat 

treatments conducted at 420C, 485C, 550C, 600C and 650C. 

 

Phase transformation in the presence of metallic film underneath the 

nanotubes; This sample consisted of alumina substrate, metallic film and 

nanotubular layer (seen in Figure 4.2). The θ-2θ X-ray diffraction patterns of Ti and 

TiAl anodic oxides that were heat treated at 720 °C were given and compared in 

Figure 5.10.   These patterns indicate that anatase and rutile phase co-exist in both Ti 

and TiAl anodic oxides at 720 °C.  It was also noticable that (110) rutile peak in Ti 
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anodic has relatively higher intensity compared to TiAl anodic oxide. On the other 

hand, this result is in contrast with those obtained from GAXRD patterns of these 

two anodic oxides. In these GAXRD patterns given in Figure 5.11, while anatase to 

rutile transformation was obviously seen in Ti anodic oxides, TiAl anodic oxide 

remained anatase even after heat treatment at 720 °C. The results of Raman analyses 

given in Figure 5.12 were also compatible with these GAXRD results. When the 

conversion from anatase to rutile began to take place around 720 °C, the rutile bands 

at 446 cm-1 and  609 cm-1 appeared in Raman spectra of Ti anodic oxide which are 

the strongest bands indicating the existence of rutile nucleation [56,94-96]. However, 

in TiAl anodic oxide, the addition of Al ions into TiO2 structure cause a retardation 

in the temperature of anatase-rutile phase transformation and there is no indication of 

rutile nucleation in both GAXRD and Raman results at a temperature of 720 °C. 

These results of XRD measurements in both geometries clearly indicated that during 

the heat treatment at 720 °C anodic oxide structure on titanium is converted to rutile 

in appreciable amounts since its presence is observed both in PXRD and GAXRD 

geometries. On the other hand for TiAl oxides, the presence of rutile phase was only 

observed in θ-2θ geometry indicating both the retarding role of Al on this 

transformation and also where the transformation is initiated. This result indicated 

that the anatase to rutile transformation is highly probably initiated at the metal –

oxide interface as proposed in other studies [97,98].    
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Figure 5.9 : The PXRD patterns of TiAl anodic oxide obtained after the heat 

treatments conducted at 485C, 550C and 600C. 
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Figure 5.10 : The comparison of PXRD patterns of Ti and TiAl anodic oxides in the 

presence of metallic film underneath the nanotube layer which were obtained after 

the heat treatment at 720C. 
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Figure 5.11 : The comparison of GAXRD patterns of Ti and TiAl anodic oxides in 

the presence of metallic film underneath the nanotube layer which were obtained 

after the heat treatment at 720C 
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Figure 5.12 : The comparison of Raman spectra of Ti and TiAl anodic oxides in the 

presence of metallic film underneath the nanotube layer after the heat treatment at 

720 °C. 

Phase transformation in the absence of metallic film underneath the nanotubes;  

This sample consisted of only alumina substrate and nanotube layer since the 

metallic film above the alumina substrate was totally oxidized during anodization 

process (seen in Figure 4.4.). In Figure 5.13, the PXRD and GAXRD patterns of 

nanostructured TiAl anodic oxide were shown, respectively.  According to these 

results, no rutile phase was detected in both PXRD and GAXRD results in TiAl 

anodic oxide samples without a metallic layer.  
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Figure 5.13 : The PXRD pattern of TiAl anodic oxide in the absence of metallic film 

underneath the nanotube layer which were obtained after the heat treatment at 720C. 
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Figure 5.14 : The GAXRD pattern of TiAl anodic oxide in the absence of metallic 

film underneath the nanotube layer which were obtained after the heat treatment at 

720C. 

According to the previous works in the literature [97,98], grain size of anatase 

particles has a critical role on the anatase to rutile transformation since this 

transformation requires a substantial amount of volume change. Thus for the 

transformation of nano scale anatase to rutile first anatase particles must reach to a 

critical size that will allow them to transform into larger volume rutile phase, which 

has a kinetically driven inhibition effect of this transformation. The transformation 

can be accomplished by the grain growth of anatase nano particles that are in contact 

to each other. Therefore during the grain growth of anatase particles transformation 

to rutile initiates at the anatase-anatase contact points. It is stated that the phase 

transformation of anatase nanopowders might start when an anatase particle becomes 

attached to a rutile particle [98].   

Another mechanism is proposed for the case in which nanoscale anatase (such as 

nanotubes) are in contact with metallic titanium. Since metallic titanium does not 

have any volume restriction for the transformation of anatase to rutile, formation of 

rutile on metallic titanium is very easy. The rutile particles that are formed on the 

metallic film below the anodic oxide (barrier layer) when come into contact with the 

anatase, the conversion of anatase to rutile starts at this point. In nanotubular 

structures, anatase crystallites inside the walls are restricted and they have 

insufficient volume to rotate and reorient. Therefore, rutile nucleation inside the 

walls cannot occur easily due to the constraint induced by the nanotube walls. When 

the anatase crystallites inside the walls come into contact with the rutile crystallites at 
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the nanotube-metal film interface, small anatase grains get transformed into large 

rutile grains [97].   

Our experimental results are in accordance with the literature, the phase analyses on 

nanostructured Ti and TiAl anodic oxides with and without a metallic film indicated 

that the presence of metallic film has a major contribution on anatase-rutile phase 

transformation. For samples with a metallic films below the nanoporous titania it 

became possible to initiate anatase to rutile transformation by heat treatment at 720 

°C. The comparison of GAXRD and theta-2theta XRD measurements clearly 

indicated that this transformation has initiated at the barrier layer metal interface. For 

undoped titania the intensity of rutile phase peaks increased by the increase of the 

penetration angle of x-rays. This situation is far more clear for anodized TiAl. In this 

case rutile peaks were only observed in teta-two teta geometery clearly showing that 

the transformation is initiated at the oxide –metal interface. Another important 

conclusion that can be drawn from this result is the kinetic hinderance effect of Al 

doping on anatase-to rutile transformation. Another result supporting the requirement 

of metallic film beyond the anodic oxide for the transformation of anatase to rutile is 

obtained in experiments that are conducted for cases where there was no metallic 

film below the oxide. In this case it was not possible to convert anatase to rutile after 

heat treatment at 720 °C.  

5.2 The Effect of Al Doping on TiO2 Crystal Structure 

In Al-doped TiO2, some of the peaks slightly shifted from TiO2 anatase peak 

positions and these shifts were detected after the all heat treatment temperatures. As 

an example, the XRD pattern obtained after the heat treatment of TiAl anodic oxide 

at 600 °C was given in Figure 5.15.   The shifts in TiO2 anatase peak positions ( 

(103), (004), (112), (105), (204), (116) ) were also shown in high magnification in 

Figure 5.16. These slight shifts to the higher angles with respect to the original peak 

positions are the indication of decrease in d-spacing values. This result indicated that 

Al3+ dopant entered into the anatase lattice owing to its smaller ionic radius 

compared to Ti4+ and a solid solution was formed between Al3+ ions and anatase 

TiO2. The presence of smaller ionic radius of Al3+ ions in TiO2 lattice causes a 

decrease in d value in crystal structure.  
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On the other hand, there was no shift in some of the anatase peak positions ( (101), 

(200), (211), (220), (107) ) and this situation can be explained by considering the 

crystal structure. In the case of Al3+ ions entering the tetragonal anatase crystal 

structure, “c” parameter decreased while “a” lattice parameter remained constant. 

This indicated that the shifts were observed in these planes are mainly affected from 

the changes in the dimensions of “c” axis [43,57]. In order to reveal the anatase 

planes that are affected from “c” lattice parameter, a simulation study was 

performed. For this simulation, Mercury 3.0 software and the Least Square 

Regression method were used. In this simulation “a” lattice parameter of tetragonal 

anatase TiO2 was kept constant and “c” parameter was reduced by 10%. The 

simulated pattern is given in Figure 5.17. Both the experimental XRD pattern of TiAl 

anodic oxide (Fig. 5.15) and the simulated pattern (Fig. 5.17) have the same 

characteristics, while the a-axis related peaks are in the same position, c axis related 

ones shifted to higher angles. 

Using the same method, the experimental XRD pattern of TiAl anodic oxide was 

also simulated and the peak positions were calculated. The simulated and the 

experimental peaks in XRD pattern of TiAl anodic oxide (heat treated at 600 °C) are 

given in Figure 5.18. As a result of this simulation, it is found that Al dopant exhibits 

its main effect on c axis and “c” lattice parameter is decreased from 9.5139 A to 

9.4624 A by the addition of Al dopant. This result also confirms that entry of 

aluminum into the lattice of anatase resulted in changes only on the “c” axis of 

tetragonal phase.  

20 30 40 50 60 70 80

0

100

200

Ti-600°C

TiAl-600°C

 

C
o
u
n
t 
(N

o
rm

a
liz

e
d
)

2 (degree)

21-1272  Anatase

44-1294  Ti

 
Figure 5.15 : The shifts in TiO2 anatase peak positions after the heat treatment of 

TiAl anodic oxide at 600C. 
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Figure 5.16 : The observed shifts in TiO2 anatase peak positions after the heat 

treatment of TiAl anodic oxide at 600C in high magnification. 
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Figure 5.17 : The comparison of original TiO2 anatase peak positions and the 

calculated TiO2 anatase peak positions if “c” parameter is taken 10% less than the 

original values. 
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Figure 5.18 : The comparison of GAXRD pattern of heat treated TiAl anodic oxide 

and the simulated pattern  

5.3 The Role Al Dopant on Grain Size 

Al dopant restricts the grain growth [35,44,59,] and as well as particle growth 

[35,58,62].   depending on amount of dopant. In order to investigate the influence of 

Al doping on grain growth, the crystallite sizes of heat treated Ti and TiAl anodic 

oxides were calculated using the Scherrer formula (given in Equation 5.1). The 

Pseudo Voigt function was used for fitting the most intense anatase peak (101). 

Reasonable peak fits were obtained in both cases as seen in Figure 5.19 and Figure 

5.20. It is directly seen from the FWHM values, that the Al-doped TiO2 sample has 

broader peaks which indicates smaller crystallite size. The calculated values for TiO2 

and Al-doped TiO2 samples are, 23.7 nm and 20.3 nm, respectively. Although, 

results seem close to each other, the Al-doped TiO2 sample has definitely smaller 

crystallite size. The same method was applied for the higher angle peaks and similar 

results were obtained. It can be concluded that addition of Al has an inhibiting effect 

on grain growth. 

                    (5.1) 

 

In equation, D denotes the mean crystallite size (Å), K  is the  shape factor (taken 

0.9), λ is the X-ray Wave Length (Cu Kα = 1.5418 Å), β is FWHM (in radians) and θ 

is the diffraction angle. 
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5.4 The Effect of Al Doping on Anatase-Rutile Transformation 

The results of the investigations showed that the anatase-rutile phase transition 

occured at about 720 °C in nanostructured Ti anodic oxide. However, this phase 

transition was kinetically hindered by the addition of Al doping into TiO2 structure. It 

was also observed that “c” parameter decreased by the entry of Al ions into the 

anatase lattice. These results are closely related to the location of Al3+ ions in TiO2 

lattice structure. Many controversial information have been published about the 

structure of Al or Al2O3 doped TiO2 crystal lattice. According to these studies, there 

are mainly three possibilities for accomodating Al3+ in TiO2 lattice. Since the ionic 

radius of Al3+ (0.050 nm) is smaller than that of Ti+4 (0.068 nm), Al ions may get 

located at Ti substitutional sites [35,55,64,99,100,] interstitial sites [59,64,99,100],  a 

combination of both sites, or substitutional sites in combination with oxygen 

vacancies [64]. If Al3+ ions with lower valence and smaller radius occupy Ti 

substitutional positions in TiO2 anatase lattice, the charge neutrality of lattice is 

affected. In order to compensate the charge neutrality, oxygen vacancy concentration 

is increased and this leads to promotion of the anatase-rutile transformation through 

increase in lattice relaxation [35,37,55,63].  However, our results do not confirm this 

proposed assumption. In the case of Al3+ ions are inserted at the interstitial sites, 

literature suggested that lattice contraction largely in c direction may occur without 

affecting the charge neutrality. This lattice constraint may result in lattice 

stabilization and consequent inhibition the transformation [37].  This assumption 

most likely better describes our experimental results. As in this assumption, lattice 

constraint occurs in c direction in nanostructured TiAl anodic oxides and also anatase 

to rutile transformation is kinetically hindered.  

In addition, there is another study suggesting the inhibiting effect of Al3+ on the 

phase transformation in both cases (Al3+ location at substitutional or interstitial sites). 

According to this study,  if Ti4+ is substituted by Al3+, half an oxygen vacancy 

(lattice relaxation) and a Ti3+  interstitial (lattice constraint) are created as seen in the 

equation 5.2, thereby promoting and inhibiting the phase transformation, 

respectively. However, the promoting effect is bigger than inhibiting effect. On the 

other hand, if Al3+ ions occupy Ti3+ interstitial sites, there is only inhibiting effect 

owing to the lattice constraint [37].  This proposed mechanism may also explain the 

results of investigations on nanostructured TiAl anodic oxides. 
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Figure 5.19 : The peak fitting for the calculation of the crystallite size of Ti anodic 

oxide which was heat treated at 600°C. 
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Figure 5.20 : The peak fitting for the calculation of the crystallite size of TiAl 

anodic oxide which was heat treated at 600°C.  
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The similar mechanism may occur in nanostructured TiAl anodic oxides. 

 Al3+ +Ti4+ + 2O2- ( Al3+ + 3/2 O2- +  ½ ☐) + Ti3+
interstitial + ¼  O2                           (5.2) 

(☐ denotes an oxygen vacancy) [37].   

All these heat treatment investigations showed that 3 parameters mainly affect the 

anatase to rutile transformation in nanostructured anodic oxides. These are; 

 Nano-sized rigid structure  

 The presence or absence of metallic film underneath the nanotubes, 

 Addition of Al dopant. 
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6.  H2 SENSING PROPERTIES OF NANOSTRUCTURED Ti AND TiAl 

ANODIC OXIDES 

6.1  Fabrication and Characterization of Sensor Electrode Materials  

In the fabrication stage of sensors, first, TiAl metallic coatings consisting 9 wt % Al 

were deposited on alumina substrates at 100 V bias voltage using the cathodic arc 

based technique (The SEM image of the corresponding coating is given in Section 3, 

Figure 3.20). Subsequently, nanotubular structures were formed on the surface of  

TiAl thin film coatings by anodizing the coatings at 60 V and 21 °C for 40 minutes 

in ethylene glycole electrolyte consisting 0.25 wt % NH4F and 1.6 vol % water. In 

Figures 6.1. and 6.2, the surface and cross sectional SEM images of nanotubular 

structures formed on TiAl coatings were presented, respectively. This sample 

consisted of only alumina substrate and nanotube layer since the metallic TiAl film 

above the alumina substrate was totally oxidized during anodization process. The 

produced nanotubes have diameters ranging from 60 nm to 80 nm and the lengths of 

nanotubes are approximately 5 microns.  

 

Figure 6.1 : The surface SEM image of nanotubular structure formed on TiAl 

surface after anodic oxidation at 60 V in 1.6 vol % water and 0.25 wt %  NH4F 

containing electrolyte at 21°C. 

Then the porous anodized  TiAl structures were subjected to heat treatment at 450 C 

for 3 hours to obtain crystallized anatase nanostructures. XRD analyses showed that 



100 

the amorphous nanotube structures completely transformed to anatase phase after 

this heat treatment. 

 

Figure 6.2 : The cross sectional SEM image of nanotubular structure formed on TiAl 

surface after anodic oxidation at 60 V in 1.6 vol % water and 0.25 wt %  NH4F 

containing electrolyte at 21°C. 

Finally, the  sensor fabrication was completed by placing Pt electrodes on the surface 

of nanostructured coatings. These Pt electrodes serve as electrical contacts in 

produced gas sensor and exhibits a catalyst effect in activating the adsorption and 

dissociation of hydrogen molecules [1,73,77].   In this step, two parallel Pt contact 

pads (13mm x 2mm in size) were deposited on the surface of masked nanotubes 

using magnetron sputtering technique as presented in Figure 6.3.  The spacing 

between two Pt contact pads is 2 mm. 

6.2. Hydrogen Sensing Behavior of the Nanotubular TiAl Oxide Sensor  

The significant parameters that characterizes the sensing behavior of a sensor 

material are sensitivity, response time and recovery time, selectivity and long term 

stability. 

The sensitivity value of the sensor was calculated from the resistance vs. time graph 

using the following equation. 

              (6.1) 

R
R

S
g

0
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Figure 6.3 : The image of the fabricated nanotubular TiAl oxide sensor after placing 

the Pt electrodes on the surface.  

In this equation, S symbolyzes  sensitivity  and it is the ratio of the resistance zero to 

resistance g.  R0 is the point where the resistance of sensor against recovery gas is 

stable and Rg is the point where the resistance of sensor against the mixture gas 

consisting analyte gas and carrier gas.  

From the resistance vs. time graphs of the sensor, the response times, that required 

to reach 10% of the initial resistance value upon gas exposure was calculated  using 

the following equation (6.2). According to this equation, first the difference between 

Ro and Rg was found and this value was accepted as 100% and then d90%  (90% of 

this difference according to equation) was calculated. The final result was 

substracted from Ro and thus R90% value was found.  The durations of t90%  and t0 

which  corresponds  to R90% and Ro, respectively were determined from the response 

graph.  The difference between t90% and t0 gave the response time. 

 

            (6.2) 
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The recovery time is the time required for a sensor to switch back its resistance to the 

10 % of the saturation value. The recovery times of the sensor was calculated using 

the following equation (6.3).  
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  9.0

 TimeRecovery                        9.0  
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Sensor tests were conducted at different temperatures since the adsorption/desorption 

of gas molecules at the surface of the sensor material are functions of temperature 

and so, sensitivity, selectivity and response time are dependent on not only the type 

of receptor, they also dependent on temperature. Therefore, by varying the operating 

temperature of the sensor, the sensing properties of sensor can be improved. For this 

purpose, the tests were performed at  RT, 100°C, 200°C, 250°C, 300°C and 350°C.   

The calculated sensor parameters for all the operating temperatures were given in 

Table 6.1. 

The room temperature behavior of the sensor on exposure to various concentration of 

H2  (50 ppm, 100 ppm, 300 ppm, 500 ppm, 1000 ppm and 2500 ppm H2) was given 

in Appendix Figure 1.  In this resistance vs. time plot, the initial resistance is of the 

order of 653 kiloohm in dry air and drops to about 623 kiloohm when exposed to 50 

ppm of hydrogen. The magnitude of the gas response increased gradually with 

increasing H2 concentration from 50 ppm to 2500 ppm. According to the calculated 

values given in Table 6.1, the sensitivity value was slightly increased with increasing 

gas concentration at RT. The response times were prolonged at RT, however they 

were getting better for higher concentrations. The recovery times at RT was 

increasing as the gas concentration was increased. This result may be due to the 

desorption mechanism of H2 molecules on the nanotubular TiO2 surface at this 

operating temperature. In addition, some hydrogen atoms may remain in the 

nanotubular structure and these trapped hydrogen atoms may prolong the sensor 

recovery. 

At an operating temperature of 100°C, the sensor exhibited a regular response graph 

when exposed to alternating atmospheres of Ar containing hydrogen and air.  The 

sensitivity values calculated at 100°C were slightly increased compared to the values 

at room temperature. The concentration dependence of the H2 gas response in the 

(6.3) 
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sensor was clearly observed in Figure 6.4. The sensor completely recovers after H2 

flow was terminated and the needed recovery time for the sensor considerably 

decreased.  

Table 6.1 : Calculated sensor parameters for nanotubular TiAl anodic oxide sensor 

for different hydrogen concentrations at RT, 100C, 200C, 250C, 300C and 

350C. 

Temperature 

(°C) 

Gas 

Concentration 

(ppm) 

Sensitivity 
Response 

Time (sec) 

Recovery 

Time (sec) 

RT 

50 1.05 643 120 

100 1.11 576 135 

300 1.12 405 156 

500 1.14 386 177 

1000 1.15 346 185 

2500 1.17 340 196 

100 °C 

50 1.12 638 115 

100 1.45 609 45 

300 1.77 574 90 

500 1.93 526 40 

1000 2.2 475 45 

2500 2.8 429 30 

200 °C 

50 78 357 56 

100 51 261 31 

300 62 181 25 

500 80 190 15 

1000 100 186 11 

2500 152 210 10 

250 °C 

50 48 114 5 

100 93 100 5 

300 140 75 8 

500 158 65 9 

1000 175 45 4 

2500 203 40 4 

300 °C 

50 117 105 7 

100 166 75 10 

300 203 44 10 

500 226 50 3 

1000 239 40 3 

2500 268 40 5 

350 °C 

50 133 109 21 

100 169 60 65 

300 200 65 10 

500 236 35 11 

1000 255 33 5 

2500 305 30 5 
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Figure 6.4 : The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at 100°C. 

At 200°C, the sensitivity values significantly  increased compared to that calculated 

at RT and 100°C. While the calculated sensitivity values were in the range of 1-2.8 at 

RT and 100°C, these values reached to 152 at  200°C. On exposure to 50 ppm 

hydrogen a rapid reduction in resistance from  83 kiloohm to 1 kiloohm was 

observed (The response graph is given in Appendix Figure 2). The response times 

were getting better with increasing gas concentration at 200°C.  The resistance of 

sensor regained its original level after the hydrogen flow shut-off and the recovery 

times decreased to 10 sec at 2500 ppm.  The sensor showed  good repeatability and 

high stability. When the operating temperature was increased to 250°C, the 

sensitivity values significantly increased compared to lower temperatures than 

250°C. The magnitude of the gas response to 2500ppm was 203, which was 

approximately 200 times larger than the values calculated at RT and 100°C.  Figure 

6.5. depicted  the variation of sensor resistance with the variation of hydrogen 

concentration at 250°C. While the concentration dependence behavior of the sensor 

was obviously seen at lower concentrations, this dependence was decreased at higher 

concentrations.  Fast, regular and repetitive response graphs were obtained at this 

temperature. The response time decreased to 40 sec at 2500 ppm and and the 

recovery times varies between 4-9 sec at all H2 concentrations.  It is also a good 

property of this sensor that it completely recovered after H2 flow was terminated.   
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Figure 6.5 : The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at 250°C. 

At an operating temperature of 300°C, higher sensitivity values and significantly 

lower response and recovery times were obtained. According to the response graph 

represented in Figure 6.6,  the sensor exhibited a factor of 268 change in measured 

electrical resistance upon exposure to 2500 ppm hydrogen. The response times 

decreased to 105 sec to 40 sec as the gas concentration increased. The recovery of 

sensor took very short time and the sensor completely recovered for 3-10 sec after H2 

flow was terminated.  
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Figure 6.6 : The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at 300°C. 
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Lastly, hydrogen gas sensing performance of the sensor was tested at 350°C and the 

response graph of the sensor was given in Appendix in Figure 3. Similar to 300°C, 

higher sensitivity values were obtained and the calculated sensitivity value at 2500 

ppm raised to 305. The sensitivity to hydrogen increased with operating temperature 

up to 350°C, however the recover resistance increased gradually at 350°C.   The 

sensor demonstrated quick response and recovery behavior.  In addition the 

concentration dependence behavior of sensor decreased obviously.  

6.3.  Evaluation and Discussion of the Sensor Measurement Results  

In literature there are many studies reporting the H2 sensing performance of the TiO2 

sensors. In Table 6.2. H2 sensing properties of the TiO2 sensors produced by various 

techniques were summarized. These sensors exhibited a wide variation in sensitivity 

values depending on operating temperature, H2 gas concentration, test ambient and 

the fabrication method of the TiO2 sensor material. Among TiO2 sensors, 

nanostructured ones demonstrate high gas sensing performance and improvement in 

the sensor characteristics. However, nanostructured TiO2 sensors exhibit higher 

resistance values in air ambient. The reported resistance values for nanotubular TiO2 

sensors in air ambient are in the range of 50 Megaohm-1Gigaohm at RT and 400 

Megaohm at 290°C [66,68,72]. Although their initial resistances are high and they 

may show very high response towards H2 gas, their resistances can drop below the 

detection limit which may lead to problems in concentration dependent sensing. The 

increase in electrical conductivity of a TiO2 sensor  may cause an increase in sensor 

stability and sensitivity [52].  In order to improve the electrical properties and 

microstructural properties of TiO2, certain amount of suitable dopants have been 

added to TiO2 material [49-51] and  Al dopant can be considered as one of these 

dopants since the presence of Al species in TiO2 lattice leads to band gap narrowing 

[58-60].  In the literature, addition of Al or Al2O3 to bulk TiO2 leads to an increase in 

sensing or selectivity property of TiO2 against different gases. Adding 7.5 wt% Al 

increased the O2 and CO gas sensitivities [35], 5 wt% Al2O3 (with 0.5 wt% Pd) 

increased H2S gas sensitivity [51] and 10 wt% Al2O3 improved the H2 gas sensitivity 

and selectivity of TiO2 sensor [36].  

In the present study, the electrical resistance of TiO2 decreased to lower values by 

using Al dopant and the electrical conductivity provided by Al doping may cause an 
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increase in the sensor stability and sensitivity. The produced nanotubular TiAl oxide 

sensor exhibits good responses towards H2 gas at all opearating temperatures.  The 

sensitivity values of the sensor increase with increasing operating temperature as 

depicted in Figure 6.7. Above 100°C, the sensitivity increases rapidly with 

temperature due to the chemical adsorption (chemisorption) takes place. Since high 

activation energy is required for chemisorption process, this type of adsorption can 

occur at high temperature. This chemisorption process led to generation of high 

amount of electrons in the titania matrix and increased the sensitivity of sensor in the 

beginning. Then the increase in sensitivity with temperature is beginning to reach 

limiting value. This behavior of sensor is also consistent with the temperature 

dependent chemisorption process illustrated in Figure 6.8. (A decrease in sensitivity 

is also expected as the temperature rises according to chemisorption mechanism)  

The produced sensor can also detect the hydrogen gas at low temperatures due to it 

has extended surface area, however, the sensitivity values of sensor at RT and 100°C 

are lower than the values obtained at high temperatures.  
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Figure 6.7 : The temperature dependence of sensor sensitivity upon exposure to 

2500ppm hydrogen. 

The prepared sensor is also sensitive to the variations in hydrogen gas concentration 

and its sensitivity increases as the gas concentration increases. It can detect even 

lower concentrations of H2 gas in carrier gas and demonstrate considerable resistance 

drop upon exposure to 50 ppm H2 gas. While the concentration dependence behavior 

of the sensor was obviously seen at all H2 concentrations up to 250°C, this behavior 

began to dissappear after 250 °C especially at higher concentrations. This result may 
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indicate that monomolecular layers were formed on the sensor surface during the 

chemisorption of hydrogen atoms. When the hydrogen atoms covered all the surface 

of sensor and occupied all the adsorption sites, the sensor saturated the gas 

concentration and the concentration dependence of the sensor began to decrease. 

 

Figure 6.8 : The interactions between the surface and the gas phase depends on 

temperature [101]. 

The response times of nanotubular TiAl oxide sensor are getting better with 

increasing gas concentration and the recovery of the sensor takes very short time at 

all temperatures. After 200°C, the calculated response times and recovery times 

decreased to 30-100 sec and 3-10 sec, respectively, depending on H2 gas 

concentration. It can be concluded that the optimum operating temperature for 

maximum sensor response was determined as 300°C since high sensitivity, lower 

response and recovery times without any hysteresis were obtained at this 

temperature.  It is also a good property of this sensor that it shows good repeatability 

and high stability after a long term usage.  

As a result of the sensor measurements, the hyrogen sensing performance of 

nanotubular TiAl oxide sensor was investigated at operating temperatures in the 

range of 25°C-350°C and the sensor showed sensitivity towards hydrogen gas at all 

temperatures.  The addition of Al caused a decrease in the initial resistance of the 

sensor in air ambient compared to TiO2 sensors. Therefore, the drastical drop in 

sensor resistance is not observed in concentration dependent measurements and the 

sensor can operate successfully. The sensing mechanism is driven by chemisorption 

process and this process leads to rapid increase in sensor sensitivity above 100°C. 

When the hydrogen atoms occupy all adsorption sites on the surface of sensor, the 
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sensor begins to saturate against hydrogen gas and the rapid increase in sensitivity 

slows down. In addition, the sensor shows quick response and recovery as the 

operating temperature rises. It also exhibits repetitive responses and remain stabil 

after a long-term usage. 

Table 6.2 : H2 sensing properties of the TiO2 sensors produced by various 

techniques.  

Sensor Material T(°C) 
Gas 

Concentration 
Sensitivity 

Test 

Ambient 

Response 

Time 

Recover 

Time 

Pd or Pt/ Titanate NT 

supported on gama-Al
2
O

3
 

catalytic gas sensor Han et 

al. 

250 °C 500ppm 0.05 
H

2
+Air / 

Air 
5 sec  

Transparent TiO
2 

NT+10nm Pd layer 

(supported on a glass 

substrate) 

Mor et al. 

RT 1000ppm 10
4
 H

2
+N

2
 / N

2
 30 sec  

Electrochemically etched 

porous titania S.K. Hazra et 

al. 

250°C 1000ppm 0.5-1.5 
H

2
+Air / 

Air 
21-74 sec 119-292 

Nanostrucutred TiO
2
/PtO-

Pt Dual layer films ( on  

glass substrate) X.Du et al. 

180-

200°C 
20.000ppm 8 

H
2
+Air / 

Air 
600 sec 600 sec 

TiO
2
 NT (on Ti 

folyo)G.A.,Grimes et al. 
290°C 500ppm 30 H

2
+N

2
 / N

2
 600sec  

TiO
2
 on AAO (substrate 

wafer coated SiO
2
) 

C. Lu et al. 

500°C 50ppm 50 H
2
+N

2
 / N

2
 10 sec 10 sec 

Tritanate-derived TiO
2
 H.-

S. Kim et al. 
500°C 10.000ppm 10

4
 H

2
+N

2
 / N

2
 1-81 sec  

TiO
2
 NT H. Miyazaki et al. 

250°C 8.000ppm 2-185 
H

2
+Air / 

Air 
60-120sec  

TiO
2
 NT K Gong et al. 

RT 1.000ppm 10
8
 

H
2
+N

2
 / 

Air 
  

TiO
2
 thick film (on 

alumina) G. C. Mather et 

al. 

500°C 100.000ppm 10
3
 

H
2
+N

2
 / 

Air 
  

Porous TiO
2
 thin film T. 

Mukherjee et al. 
300°C 500ppm 0.74 

H
2
+N

2
 / 

Air 
254 sec  

TiO
2
 NT O.K.,Varghese et 

al. 
290°C 500ppm 10

2 
-10

3
 H

2
+N

2
 /Air 200 sec  

TiO
2
 NT (with Pd) G.K. 

Mor et al. 
RT 1.000ppm 10

3
 H

2
+N

2
 /Air 417 sec  

TiO
2
 NT E.Sennik et al. 

RT 1.000ppm 
10-20 

 
H

2
+N

2
 /N

2
 60sec 60sec 

TiO
2
+10 wt% Al

2
O

3
 

mixture L.D., Birkefeld et 

al. 

500°C 20.000ppm 10
3
 H

2
+N

2
 /Air -  

AAO coated Pd thin film 

N.,Tasaltın et al. RT 1.000ppm 1.5 
H

2
+N2 

/Air 
360 sec  

SnO2 nanowire B., Wang 

et al. 300°C 1000ppm 3.25 
H

2
+Air 

/Air 
50-100sec  

Nanoporous Pd film  

D. Ding et al. RT 250ppm %12 
H

2
+N2 

/Air 

240-300 

sec 
600 sec 
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7.  CONCLUSION 

The results of all investigations are summarized as in the below: 

 The well-adherent and dense metallic Ti and TiAl thin films were deposited 

on alumina substrates using CAPVD method.  This has been accomplished 

for the first time in this study. The pretreatment process applied before 

deposition generated heat on the surface of substrates by the effect of 

energetic ions and this heating provided good adhesion between substrate and 

coating.   

 The main effects of different bias voltage on the resulting coating structures 

were investigated. The surface morphologies of all coatings altered with the 

increase in bias voltage. As the deposition bias voltage was increased, the 

columnar structure of coatings became denser and this resulted in a decrease 

in Ti and TiAl coating thicknesses. The aluminum content of the films 

showed dependence on the bias voltage. Coatings deposited at 0 V bias 

voltage had a similar Al content as the target material (25 at %). By the 

increase of bias voltage, the Al content decreased to a level 11-15 at %.  

 The high bias voltage applied during post treatment caused a heating on the 

surface of coatings. Post treatment of the coating resulted in the densification 

of the coating structure. The columnar structure of coatings was converted 

into equiaxed structure by the effect of post treatment with high bias voltage. 

Surface morphologies of coatings were improved compared to the coatings 

without post treatment and smoother surfaces were obtained. However, 

internal stress formation was detected in the post treated Ti and TiAl 

coatings. 

 There was no apparent effect of bias voltage increase on XRD patterns of Ti 

coatings. In the XRD patterns of TiAl coatings presence of Ti3Al phase was 

detected. The amount of this phase increased with the aluminum content. The 
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rapid heat treatment supplied by the application of high bias voltage led to 

stabilize the meta-stable Ti3Al phase in TiAl coatings. 

 The droplet formation was observed on the coating surfaces induced from 

production method. For overcoming the detrimental effects of droplets on 

electrochemical reactions during anodization process, the coatings were 

subjected to pretreatments before anodization process. 

 All the coatings produced by CAPVD method were anodized in ethylene 

glycol electrolyte without any spalling.  This result confirms the assumption 

that CAPVD is a suitable method for producing coatings which are resistant 

to electrolytic processes. 

 Among the coatings produced, two types of Ti and TiAl coatings were 

selected for the optimization of anodization studies. These are the coatings 

produced at -100 V bias voltage with and without high bias voltage post 

treatment. The coatings deposited at -100 V bias were selected due to their 

optimum coating thickness and relatively denser structure. Two versions of 

these coatings, with and without post treatment, were used since they have 

different morphological and structural properties. Therefore, the suitability 

and durability of these two different Ti and TiAl coating structures were 

tested for anodization process and the possible effects of post treatment on as 

grown nanoporous structure were investigated. Both these two different 

coating structures promoted the formation of highly ordered nanoporous-

nanotubular structures on their surfaces.  In post treated coatings crack 

formation induced by internal stresses was observed on the surface of 

anodized structures. Therefore, the coatings produced without post treatment 

was selected as the most appropriate coating structures for anodization 

process.  

 Anodization processes were performed in the ethylene glycol electrolytes 

containing different amount of fluoride since the fluoride concentration is a 

key parameter in determining   the kinetics of nanotube growth. 

Consequently, the optimal NH4F concentration in etylene glycole was 

determined as 0.61 wt % and 0.25 wt % for well-aligned and high thickness 

of nanotubes, respectively. Therefore, these electrolyte concentrations were 
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used in the subsequent detailed investigations about anodization of Ti and 

TiAl thin film coatings. 

 The effects of anodization potential on nanostructure growth were 

investigated in 0.25 wt %   and 0.61 wt % NH4F containing electrolytes.  In 

0.25 wt % NH4F containing ethylene glycol,  nanotubular structure was 

successfully fabricated in a voltage window from 40 to 70 V.  The diameter 

and the length of the nanotubes increased gradually with increasing 

anodization voltage until 65 V. So, the optimal anodization potential was 

determined as 60 V for growing longer nanotubes.  

 The effects of temperature on nanotube length and surface morphology were 

investigated by anodizing the samples in a temperature range from 13 °C to 

29 °C. As a result, extending nanotube length was obtained. Considering the 

effect of temperature on the surface morphology of the as-anodized coatings, 

the optimal anodization temperature was determined as 21 °C for obtaining 

highly ordered and as well as longer nanotubes.  

 The content of water used in electrolyte is also significant parameter in the 

growth of nanotubes. 1.6 vol % is the highest water content for producing 

high thickness of nanotubes. 

 The relation established between anodization time and nanotube growth 

length. In the earlier stages of anodization, nanotubes grow on TiAl surface 

more rapidly and then growth rate slows down. The conditions for total 

anodization of the metallic film above alumina were determined. These 

produced nanotubes with high thickness are thought to be appropriate for 

using as a sensor material since there is a possibility to occur a short circuit 

between Pt circuits and the conductive layer underneath the nanotubes. 

 There was no considerable effect of agitation type on nanotube length under 

the same conditions. 

 The nanotubes with high thickness and well-aligned nanotubes were formed 

on Ti coatings using the optimal anodization parameters for TiAl coatings. 

The effects of anodization parameters on as-grown TiO2 nanotubes were 

examined. 
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 The crystallization behaviors of nanostructured Ti and TiAl anodic oxides 

were investigated after heat treatments conducted at different temperatures 

from 280 °C to 720 °C. 

 In TiAl anodic oxide, the addition of Al ions into TiO2 structure cause a 

retardation in the temperatures of amorph-anatase and anatase-rutile phase 

transformations and there is no indication of rutile nucleation even after 720 

°C. However, rutile peaks were appeared at a temperature of 720 °C in Ti 

anodic oxides.   

 The nanostructured Ti and TiAl anodic oxides exhibited different behaviors 

in the presence and the absence of metallic film underneath the nanotube 

layer. The presence of metallic film favors the anatase-rutile phase 

transformation in the nanotube structure. The initial rutile nucleation occurs 

in the bulk metallic film at about 720 °C and when the anatase crystallites 

inside the nanotube walls come into contact with the rutile crystallites at the 

nanotube-metal film interface, small anatase grains get transformed into large 

rutile grains.  

 In Al-doped TiO2, some of the peaks slightly shifted from TiO2 anatase peak 

positions due to the presence of smaller ionic radius of Al3+ ions in TiO2 

lattice. The indicated peak shifts were observed in the planes which are 

mainly affected from the changes in c axis. The anatase TiO2 planes that are 

affected from “c” lattice parameter were revealed as a result of the simulation 

study. The experimental XRD pattern of TiAl anodic oxide was also 

simulated and the peak positions were calculated. 

 The broader peaks indicating smaller crystallite size were detected in Al-

doped TiO2 sample. The crystallite sizes of heat treated Ti and TiAl anodic 

oxides were calculated using the Scherrer formula and definitely smaller 

crystallite size was calculated for Al-doped TiO2.  

 The anatase-rutile phase transformation was observed at about 720 °C in 

nanostructured Ti anodic oxide. However, this phase transformation was 

kinetically hindered by the addition of Al dopant into TiO2 structure.  

 The heat treatment investigations indicate 3 parameters, which are mainly 

effective on anatase to rutile transformation. These are; rigid nano-sized 
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structure, the presence or absence of metallic film underneath the nanotubes 

and the addition of Al dopant. 

 The resistance changes in nanotubular TiAl oxides were measured upon 

exposure the various concentration of H2 gas in the temperature range of 

25°C-350°C. Although the sensor showed sensitivity towards hydrogen gas at 

all temperatures, the best response graph was obtained at 300°C. 

 The electrical conductivity provided by Al dopant and hence, the sensor 

operated successfully in concentration dependent measurements. The sensor 

sensitivity towards hydrogen gas was also increased by the addition of Al.  

 The sensitivity values of the sensor increase with increasing operating 

temperature, however, the sensitivity increased rapidly above 100°C due to 

the chemisorption process occured at this temperature. During this process, 

the trapped electrons are released back into the conduction band of the TiO2 

and the resistance of the sensor is decreased. When the hydrogen atoms 

occupy all adsorption sites on the surface of sensor, the sensor begins to 

saturate against hydrogen gas and the rapid increase in sensitivity slows 

down.  

 The prepared sensor is also sensitive to the variations in hydrogen gas 

concentration and its sensitivity increases as the gas concentration increases. 

It can detect even lower concentrations of H2 gas in carrier gas.  

 The concentration dependence behavior of the sensor was obviously seen at 

all H2 concentrations up to 250°C, this behavior began to disappear after 250 

°C especially at higher concentrations.  

 The sensor showed quick response and recovery as the operating temperature 

rises.  

 The response times of nanotubular TiAl oxide sensor were getting better with 

increasing gas concentration and the recovery of the sensor took very short 

time at all temperatures.  After 200°C, the calculated response times and 

recovery times decreased to 30-100 sec and 3-10 sec, respectively, depending 

on H2 gas concentration.  

 It is a good property of the sensor that it exhibited good repeatability and high 

stability after a long term usage. 
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APPENDICES 

APPENDIX A: The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at various temperature 
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Figure A.1 : The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at room temperature. 
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Figure A.2 : The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at 200°C. 
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Figure A.3 : The response graph of the nanotubular TiAl anodic oxide against 

different H2 concentrations at 350°C. 
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