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CONDUCTIVE POLYAMIDE/CARBON BLACK, CARBON FIBER AND 

CARBON NANOTUBES COMPOSITES FOR ELECTROSTATIC PAINTING 

SUMMARY 

Conductive polymer composites (CPCs) coming out from the combination of an 

insulating polymer matrix with conductive fillers exhibit several interesting features 

and many applications. In automotive industry  metal parts can be replaced by CPCs 

which means a vehicle with the lower weight and lower fuel consumption.The 

motivation behind this study was to produce an engineering plastic in order to use in 

the automotive industry with cost reduction, to improve mechanical properties and 

production efficiency. For this purpose, this study was aimed to find a conductive 

polyamide compound (CPAC) formula in order to use as raw material to produce 

hubcap (wheel cover) which is suitable for electrostatic painting (EP) system. The 

CPAC was prepared by extrusion methods by using commercial polyamide (Minlon) 

and carbon based conductive materials such as carbon black (CB), carbon fiber (CF), 

and carbon nano-tube (CNT). Compatibilizer was also added to the formula to obtain 

the suitable CPAC, which covers the requirements for the resulting composite. 

Formulations with different carbon filler contents were prepared and then produced 

and tested. They were compared with commercial product of Noryl, which have been 

used for EP applications. The disadvantage of Noryl is poor mechanical properties for 

some applications such as wheel cover. There are types of method to produce the 

conductive polymer composites (CPCs) such as; solution, melt mixing etc. In this 

study, the extrusion, which is one of the melt mixing method, was used. After 

compounding materials, electrical conductivity of composites was measured by a 4-

point probe method. ATR-FTIR, DSC, SEM and mechanical properties tests were also 

performed on the samples. Wheel cover was produced from the samples that have the 

desired properties and after electrostatic painting the basic tests such as cross cut, 

hardness, drop weight impact were carried out on the final product. The results of all 

these tests suggested that, the suitable composites for EP were prepared and these 

composites fit the requirements of the wheel cover.   

 

  



 

xvii 

 

  



 

xviii 

 

ELEKTROSTATİK BOYAMAYA UYGUN İLETKEN POLiAMİD / KARBON  

SİYAHI, KARBON LİF VE KARBON NANO TÜP KOMPOZİTLERİ 

ÖZET 

Son yıllarda plastiklere iletken özellik kazandırmak üzerine çalışmalar önem 

kazanmıştır. İletkenlik özelliğinin yanında mekanik, optik, termal ve fiziksel 

özelliklerinde elde edilmesi için nano katkılar kullanılmaktadır. Örneğin karbon 

nanotüp (CNT) bu özellikleri kompozite kazandırmak için kullanılan katkılardan 

biridir ve  iletkenlik ve sertliği arttırırken elastiklik özelliğini azalttığı yönünde 

bulgular elde edilmiştir. Birden fazla iletken katkı kullanılarak sinerjetik etki 

yaratılması üzerine yapılan çalışmalar da mevcuttur. Karbon yapılı bileşiklerin birlikte 

kullanıldığı matrikslerde sinerjetik etki ile iletken ağ yapısının daha iyi oluştuğu 

görülmüştür. Endüstride de bu amaçla karbon bazlı katkılar kullanılmaktadır.  

İletken kompozitlerin eldesinde düşük miktarlardaki katkılarla iletken ağ yapısının 

oluşumunun sağlanması ve perkolasyon limit değeri düşürülmesi önemlidir. Karbon 

katkıların tek başına ve birlikte kullanılmasıyla ilgili çok sayıda çalışma yapılmış 

olmasına rağmen poliamid (PA) için hepsinin ayrı ayrı ve birlikte kullanıldığı bir 

çalışmaya rastlanmamıştır.  Bu tez çalışmasında da literatürdeki bu eksikliğe katkı 

sağlanması amaçlanmıştır. 

İletken dolgu malzemesinin, yalıtkan polimer matrisi ile birleştirilerek elde iletken 

polimer kompozitler (CPCs) birçok ilginç özelliğe sahip olduklarından çok sayıda 

uygulama alanında kullanılabilmektedir. Örneğin araç ağırlık azaltma çalışmaları 

sonucunda metal parçaların yerini alan mühendislik plastiklerinin ürüne 

dönüştürülmesi aşamalarının iyileştirilmesi gerekmektedir. Parça kalitesi ile direk 

ilgili üretim aşaması olan boyama operasyonunda son teknolojik gelişme olan 

elektrostatik boyama (EP) sisteminin metal malzemelerde olduğu gibi mühendislik 

plastiklerine de uygulanabilir hale getirilebilmesi birçok avantaj sağlayacaktır. 

Otomobil parçalarından biri olan jant kapağının, sadece bir firmada yıllık üretim 

yaklaşık adedi 560 bin ve yıllık cirosu 1,8 M€’dur. Geleneksel ıslak boyama işlemi 

malzeme sarfiyatı, uygulama alanı gereklilikleri, çevreye olan olumsuz etkileri ve 

enerji tüketimi açısından yüksek maliyetli bir operasyondur. Mühendislik plastikleri 

ile üretilen jant kapağı parçasının boya uygulama  işleminde  EP sistemine geçilmesi 

ile %50 boya tasarrufu sağlanacaktır. EB sisteminde kullanılan  boyada kimyasal 

çözücü geleneksel ıslak boyanın içerdiğinden daha az olduğu için üretim sırasında 

tehlikeli kimyasal salınımı en düşük seviyeye inmiş olacaktır.  Malzemenin yüzey 

enerjisi, boyanın homojen dağılımı ve tutunması ile doğrudan etkilidir. Yüzeyin 

temizlenmesi ve yüzey enerjisinin arttırılması için kimyasal temizlik ve flamaj gibi ön 

işlemler boya atımı öncesi parçalara uygulanır. Metal parçaların yağdan arındırılması 

için kimyasal temizlik, plastik parçaların yüzey enerjilerinin arttırılması için flamaj 

işlemi maliyetin arttırılmasına ve verimliliğin düşmesine sebep olmaktadır. 

Mühendislik plastiklerinde EP sistemine başarılı bir şekilde geçilmesi yüzeyin tozdan 

arındırılması için daha düşük maliyetli bir yıkama işlemi olacaktır.  Islak boya atım 

sisteminde kabin yüzeyinde kürlenen boyalar düzenli aralıklarla kabinlerin bakım ve 

onarıma alınmasını gerektirmektedir. Bakım, onarım sırasında kabinin kullanıma 

kapanması ve işçilik maliyetinin artması üretim verimliliğini düşürmektedir. EP 

sistemine geçilmesi ile üretim verimliliğinde %50 artış öngörülmektedir. Bu 
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çalışmanın asıl amacı, otomotiv sektöründe maliyet azaltıcı, iyi mekanik özelliklere ve 

üretim verimliliğine sahip bir mühendislik plastiği üretmektir. Bu amaçla iletken metal 

yüzeylerde başarılı sonuç sağlayan EP sisteminin plastik malzemeler için de 

kullanımını yaygınlaşmak üzere plastik malzemelere iletken özellik kazandırılması ve 

EP uygulaması için uygun hale getirilmesi plânlanmıştır.  

Poliamide iletken özellik kazandırılması ve EP uygulaması için uygun hale getirilmesi 

amacı ile karbon siyahı (CB), karbon fiber (CF) ve CNT ile kompozitleri oluşturularak 

gerekli iletkenlik değerlerine ulaşılmasına çalışılmıştır.  PA matrisi olarak Dupont 

firması tarafından üretilen ve %15 katkı içeren Minlon isimli ticari ürün kullanılmıştır. 

Dolgu olarak ise, ABCR firmasından temin edilen CB ( Acetylene, 50% compressed), 

Grafen firmasından temin edilen, çok duvarlı CNT, (Çap:9.5 nm, Uzunluk: 1.5 m 

Yüzey alanı:250-300m2/g ) ve Dost Kimya çapı 7.2 m uzunluğu 3-12 mm olan 

kırpılmış CF kullanılmıştır. Her bir bileşen ekstruderde kullanılmadan önce 80C’ de 

2 saat kurutulmuştur. 

Deneylerde çift burgulu Scientific marka ekstruder kullanılmıştır. Vida hızı, ön 

denemeler sonucunda 30 rpm olarak belirlenmiştir.  

Ekstrüzyon yapmadan önce başlangıç maddesinin (Minlon), ve nihai ürünün termal 

özellikleri TA Q10 Model DSC cihazında 50 ml/ dak akış hızı ile 0-400 C aralığında 

incelenmiştir. Erime sıcaklığı yaklaşık 260C’de gözlemiştir. Bu sonuca göre 

ekstruderde çalışmak için uygun aralık 260-280C olarak belirlenmiştir.  

Piyasada ticari olarak Noryl (N1) adıyla satılan ve EP boyama için uygun, ancak 

mekanik özellikleri Minlona göre zayıf olan malzeme, elde edilen kompozitlerin 

iletkenliklerini kıyaslamak için referans olarak kullanılmıştır.  4. Nokta probe tekniği 

ile ölçülen iletkenliği 2.310-8 S/cm olarak elde edilmiştir. Bu projede Minlondan 

hareketle elde edilecek kompozitlerin iletkenliği karbon katkılar ile bu degree eşit yada 

yüksek hale getirilmiştir. 

SEM ölçümleri ile karbon katkıların poliamid matrisi içinde dağılımı ve 

uyumlaştırıcının kompozitin homojenliği üzerindeki etkisi incelenmiştir. Sonuçlar, 

karbon dolguların yapıya katıldığı ve homojen olarak dağılabildiği uyumlaştırıcının 

karbon içeriğinin homojen dağılmasına katkısı olduğunu göstermektedir.  

Kompozitlerin mekanik test sonuçlarına göre üretilen kompozitin elastik modülü ve 

23°C ve -30°C’lerdeki darbe dayanımlarında artışlar gözlenmiştir. Diğer özellikleri ise 

kullanım amacına uygun sınırlar içerinde ve Minlon’un özellikleriyle yakın değerlerde 

bulunmuştur.  Bu çalışmada elde edilen kompozitlerin mekanik özellikleri amaca 

uygun olacak şekilde korunurken, iletkenlik kazandırılarak elektrostatik boyamaya 

uygun hale getirilmiştir.  

Bu çalışmada prototip malzeme olarak jant kapağı seçilmiş ve üretimi için hammadde 

olarak kullanılacak iletken poliamid kompozitleri, ticari Minlon ve CB,CF ve CNT 

olmak üzere karbon esaslı iletken dolgular kullanılarak ekstrüzyon metodu ile 

hazırlanmıştır. Komozitleri daha homojen hale getirmek amacıyla kompozit 

formülasyonlarına ayrıca uyumlaştırıcı da ilave edilmiştir. Farklı karbon dolgular 

içeren formüller hazırlanmış, kompozitler üretilip ve test edilmiştir. Elde edilen 

kompozitlerin iletkenlik ve mekanik özellikleri EP uygulamaları için kullanılan ticari 

ürün olan Noryl ile karşılaştırılmıştır. Norly’in dezavantajı jant kapağı gibi EP 

uygulamaları için gerekli olan mekanik özelliklere sahip olmamasıdır. Bu çalışmada 

Noryl’e göre mekanik özelliklerinin amaca uygun olarak iyileştirilmesi hedeflenmiştir. 
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CPC üretmek için çözelti, eriyik karışımı etc. gibi metodlar kullanılmaktadır. Bu 

çalışmada, ekstrüksiyon metodu kullanılmıştır. Ektruksiyondan sonra, kompozitlerin 

elektiriksel iletkenlikleri 4 nokta probe metodu ile ölçülmüştür. Ayrıca ürünler ATR-

FTIR, DSC, SEM ve mekanik özellik testleri ile karakterize edilerek jant kapağı için  

istenen özelliklere sahip kompozit formülasyonları belirlenmiştir. Mekanik, elektrik 

ve maliyet açısından optimum özelliğe sahip kompozit formulasyonu ile enjeksiyon 

yöntemi kullanılarak jant kapağı elde edilmiştir. Jant kapakları elektrostatik olarak 

boyanmış ve daha sonra çapraz kesim, sertlik, ağırlık düşmesi darbe direnci gibi temel 

testlere tabii tutulmuştur. Tüm bu test sonuçları, mevcut ürüne göre yaklaşık aynı 

maliyette mekanik özellikleri iyileştirilmiş, EP için uygun bir kompozit hazırlandığını 

ve jant kapağı üretimi için gerekli özelliklere sahip olduğunu ve ön denemelere göre 

ticari olarak kullanıma uygun olduğunu göstermektedir. 

Geri kazanım EP sisteminin en büyük ekonomik avantajlarından biridir. Diğer 

avantajları ise aşağıdaki şekilde özetlenebilir;  

- Islak boya uygulama kabinlerinde, boyanın kabine tutunmasını önlemek amacı 

ile kabin duvarlarından akan çözücü kimyasal içeren su çevrim ünitesi, EP 

kabinleri için gerekli değildir. 

- Atık kimyasal miktarı EB sisteminde ıslak boyamaya göre oldukça düşüktür.  

- Islak boya sistemi daha sık bakım, temizlik ve onarım gerektirdiği için personel 

maliyeti %38 daha yüksektir.  

- EP sisteminde boya sarfiyatında %60-70 arasında kazanç sağlanmıştır. 

- Kabinlerin temizlik ve bakım masrafları EP sisteminde, geleneksel boya 

yöntemine göre %50 daha azdır. 

Bu avantajlar sayesinde bu endüstride EP sistemine geçilmesi ile sistemin 6 ay içinde 

kendini amorti edebileceği öngerülmektedir.  

Bundan sonraki otomobil parçası üretimlerinde mevcut ithal malzemeye ihtiyaç 

duyulmadan ülkemizde üretilecek iletken kompozit kullanılması mümkün 

olabilecektir. Bunun da önemli bir yaygın etki olduğu düşünülmektedir. 
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1. INTRODUCTION 

Nowadays technical applications of conductive polymer composites are growing so 

fast. Conductive polymer composites (CPCs) coming out from the combination of an 

insulating polymer matrix with conductive fillers exhibit several interesting features. 

However, this important sensitivity of CPC toward its environment also means that a 

good control of final properties is impossible if the numerous influent factors involved 

during the formulation and processing are not identified. The main significant factor is 

the filler distribution within the matrix, which can result from processing conditions 

(temperature, shearing, viscosity, and orientation), formulation (filler content, 

molecular weight and crystallinity of the polymer (Meyer, 1973; Feller et al., 2002), 

solubility parameters, particle/particle and particle/macro-molecule interactions 

(Gubbels et al., 1998; Zhang et al., 1998)) and spatial parameters (shape factor of the 

conducting particles (Vilc̆áková et al., 2000), exclusion domains in which particles 

cannot go (Gubbels et al., 1998; Zhang et al., 1998; Narkis et al., 2000; Feller et al., 

2002)). Whatever the application, the percolation threshold, i.e., the volume fraction 

(ØC) over which the CPC becomes conductive, is very sensitive to variations of any of 

the previously mentioned parameters. For many applications, it is useful to decrease 

the percolation threshold to both reduce the CPC cost and make the processing easier. 

This can be achieved with multiphase CPC matrices (Gubbels et al., 1998; Zhang et 

al., 1998; Feller et al., 2002) which usually can be done with two conventional 

methods: solution and extrusion. Many studies have been carried out on conductive 

polymer composites due to the increasing industrial demands. Different types of 

polyamide were investigated to see the influence of carbon black, carbon fiber and, 

CNTs with different portion on electrical conductivity of the polyamides (Finegan and 

Tibbetts, 2001; Leer et al., 2006; Dasari et al., 2009; Leboeuf et al., 2010; Kim et al., 

2011; Socher et al., 2011; Socher et al., 2011; Caamaño et al., 2012). Also, other 

polymers and blends have been studied to see the electrical conductivity tolerance with 

different portion of conductive fillers (McNally et al., 2005; Alig et al., 2007; Wang et 
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al., 2008; Deng et al., 2009; Etika et al., 2009; Zhang et al., 2009; Farimani and 

Ebrahimi, 2012; Shen et al., 2012). 

In this study, compounding runs followed by injection molding of carbon filled Minlon 

were conducted . volume resistivity, surface resistivity, DSC, and scanning electron 

microscope were used to determine electrical conductivity, aspect ratio and 

homogeneity of distribution of conductive fillers. The investigated carbon fillers 

include carbon fiber (CF) (diameter: 7.2 m, length of fibers: 3-12 mm), Carbon black 

(CB) (Acetylene, 50% compressed) and Multi wall Carbon nano tubes (MWNTs) 

(diameter: 9.5 nm, length: 1.5 m, Surface area: 250-300m2/g). In total, seven nylon 

6,6 (minlon) based formulations with different carbon filler contents were produced 

and tested. These formulations included increasing amounts of single carbon filler. The 

goal of this study was to determine the effect of fillers, both individually and in 

combined form, on the electrical conductivity of the Minlon. 
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2. CONDUCTIVE POLYMERS 

Polymers are normally used in electrical and electronic applications as insulators, 

where advantage is taken of their high resistivities and good dielectric performances.  

Typical  examples  of  this  type  of  application include  cable  sheathing,  capacitor 

films,  printed circuit substrates,  and various  encapsulants  and  conformal  protective  

coatings. However, polymers are also widely exploited because of their other 

advantageous properties,  including mechanical strength,  flexibility,  stability,  low 

cost and  ease  of  processing,  and  it  is  the  promise  of  combining  these properties 

with electrical conductivity that has prompted the now great interest in conductive 

polymers. There are two major categories for conductive polymers. First, intrinsically 

conductive polymers (CPs) in which polymers can be made electrically conducting via 

their own structures and second one is method of introducing conductivity to a 

polymer.  In this method, conductivity is achieved via the incorporation of conductive 

fillers. Although in this case, the conductivity is not related to the chemistry of the 

polymer, but rather to the nature of the filler, these materials have been widely 

exploited commercially to sum up, the categories of conductive can be divided in two; 

intrinsically conductive polymers and conductive polymer composites (Cooper, 1996). 

 2.1 Conductive Polymer Composites  

An alternative method of inducing electrical conductivity in polymers is to make 

polymer composite materials with conductive additives or fillers, which results in 

conductive polymer composites (CPCs). Typical examples of conductive components 

used to prepare this type of conducting polymer include conducting solids (carbon 

black, carbon fibers, carbon nanotubes, aluminum flake, stainless steel fibers, metal-

coated fillers, metal particles, etc.) and conjugated conducting polymers. Because the 

conductivity is introduced through the addition of the conducting components, various 

polymer materials including both amorphous polymers (polystyrene, PVC, PMMA, 

polycarbonate, acrylonitrile butadiene styrene (ABS), polyethersulphone, 

polyetherimides, etc.) and crystalline polymers (nylons, polyethylene, polypropylene, 

polyphenylene sulphide, etc.) can be made electrically conducting. Various processing 

techniques such as extrusion, hot compression, etc. have been used to prepare the CPCs 

(Dai, 2004).  
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Figure 2.1: Conductivities of various elements, compounds and polymers (Cooper, 

aaaaaaaaaaa1996). 

2.1.1 History and properties 

Since early work in the 1950s (Frydman, 1948), electrically conductive polymer 

composites (CPCs) have interested many research groups (Kohler, 1966; Bueche, 

1973; Meyer, 1973; Narkis et al., 1978; Carmona and Mouney, 1992; Gubbels et al., 

1994; Tchoudakov et al., 1996; Yi et al., 1998). CPCs are obtained by blending 

insulating polymers with conductive particles such as carbon black, carbon fibers, 

carbon nanotubes, metal particles or conducting polymers such as polyaniline (Narkis 

et al., 1997) and lead to several applications such as shielding, switching or heating. 

More recently CPCs were also used as sensors (Chen and Tsubokawa, 2000; Srivastava 

et al., 2000). 

2.1.2 Application  

The main applications of CPCs are being replaced with metals in electromagnetic 

interference-shielding applications, electrostatic discharge or dissipative properties, 

and electrostatic painting. 

2.1.3 Components of CPCs 

Polymer composites are combinations of materials differing in composition, where the 

individual constituents retain their separate identities. These separate constituents act 
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together to give the necessary mechanical strength or stiffness to the composite part. 

Composite material is a material composed of two or more distinct phases (matrix 

phase and dispersed phase) and having bulk properties significantly different from 

those of any of the constituents. Matrix phase is the primary phase having a continuous 

character. Matrix is usually more ductile and less hard phase. It holds the dispersed 

phase and shares a load with it. Dispersed (reinforcing) phase is embedded in the matrix 

in a discontinuous form. This secondary phase is called the dispersed phase. Dispersed 

phase is usually stronger than the matrix, therefore, it is sometimes called reinforcing 

phase (Jose and Joseph, 2012). CPCs have the similar constituents that discussed 

earlier. So the components of CPCs can be divided in two main categories; Polymer 

(matrix) and additives.      

2.1.3.1 Polyamide 

If wood is the world's most versatile natural material, polyamide (PA) is probably the 

most useful synthetic one. PA is a thermoplastic, silky material, which can be molded 

into everyday products or drawn into fibers for making fabrics (Trossarelli, 2003). 

History 

Wallace Carothers and his colleague invented PA in DuPont Company (Hermes, 1996). 

First, it was called nylon, since the nylon family contains characteristic amide groups 

in the backbone chain, later it was named as polyamide (PA). Ever since it first came 

on the market, nylon’s many uses have greatly influenced most facets of our daily lives, 

including automotive industry, mountaineering, clothes fabrics, package paper, pipes, 

and etcetera (Hermes, 1996). At the beginning it was used for toothbrushes and later 

women's stockings ("nylons"; 1940) after being introduced as a fabric at the 1939 New 

York World's Fair.  

PA was the first commercially successful synthetic thermoplastic polymer. It was 

intended to be a synthetic replacement for silk and substituted for it in many different 

products. After silk became scarce during World War II, it replaced silk in military 

applications such as parachutes and flak vests, and was used in many types of vehicle 

tires. Solid PA is used in hair combs and mechanical parts such as machine 

screws, gears and other low to medium-stress components previously cast in metal. 

Engineering-grade PA is processed by extrusion, casting, and injection molding 

(Hounshell and Smith, 1988). 

http://www.explainthatstuff.com/wood.html
http://en.wikipedia.org/wiki/Thermoplastic
http://en.wikipedia.org/wiki/Silk
http://en.wikipedia.org/wiki/Machine_screw
http://en.wikipedia.org/wiki/Machine_screw
http://en.wikipedia.org/wiki/Gear
http://en.wikipedia.org/wiki/Extrusion
http://en.wikipedia.org/wiki/Casting
http://en.wikipedia.org/wiki/Injection_molding
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Synthesis method 

This polymer obtained by the condensation of diamines with bicarboxylic organic 

acids, or from omega-amino acids. In more specific terms, it is a polyamide, i.e. one of 

a class of polymers whose molecular chains are formed by regularly spaced -CONH- 

amide groups. Since Carothers and his group invented nylon (Hermes, 1996), PA has 

been conventionally accompanied by some figures indicating the number of carbon 

atoms in structural unit(s). PA6, PA4/6, PA6/6, PA6/10, PA6/12, PA11 and PA12 are 

examples of PA category. The first figure shows the carbon atoms of the diamine, the 

second those of the bicarboxylic acid. The PA invented by Carothers and known as PA 

6/6, or poly(hexamethylneadipamide), therefore, is read as six-six, not sixty-six, which 

means that it is composed of two structural units, each with six carbon atoms, namely 

the residues of hexamethylen diamine(H2N(CH2)6NH2) and adipic acid 

(HOOC(CH2)4COOH). The reason for choosing the PA 6/6 for our purpose is its 

unique mechanical and physical properties on the other hand it is less expensive than 

other types of polyamide (Trossarelli, 2003).  

 

Figure 2.2: Nylon 6,6 closed formula. 

PA 6/6 is one of the most versatile engineering thermoplastics. It is popular in every 

major market using thermoplastic materials. Because of its excellent balance of 

strength, ductility and heat resistance, PA 6/6 is an outstanding candidate for metal 

replacement applications. PA6/6 is very easy to process with a very wide process 

window. This allows it to be used for everything from complex, thin walled 

components to large thick walled housings. 

PA 6/6 is very easy to modify with fillers, fibers, internal lubricants, and impact 

modifiers. With the use of fiber reinforcements, the physical strength of PA 6/6 can be 

improved five times that of the base resin. The stiffness of PA 6/6 can be improved up 

to 10 times. With impact modifiers, the ductility of PA 6/6 is comparable to 
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polycarbonate. The use of internal lubricants improves on the already excellent wear 

resistance and friction properties on PA 6/6. Its versatility allows it to be used in almost 

any application that requires high physical strength, ductility, heat resistance and 

chemical resistance (Margolis, 1985). 

Properties 

PA 6/6 has a melting point of 265°C, high for a synthetic fiber, though not a 

match  for  polyesters  or  aramids  such  as  Kevlar.  This fact makes it the most 

resistant to heat and friction and enables it to withstand heat setting for twist retention. 

Its long molecular chain results in more sites for hydrogen bonds, creating chemical 

“springs” and making it very resilient. It has a dense structure with small, evenly 

spaced pores. This means that PA6/6 is difficult to dye, but once dyed it has superior 

colorfastness and is less susceptible to fading from sunlight and ozone and to yellowing 

from nitrous oxide (Palmer, 2002). 

The high melting point of PA6/6 is a function of both the strong hydrogen bonding 

between the chains and the crystal structure. This also allows the materials to retain 

significant stiffness above the glass-transition temperature, which is 50oC for PA 66 

and almost up to the melting point (Mark, 1999; Charles et al., 2009). 

Nowadays PAs is used in electrical applications mainly for their combination of 

mechanical, thermal, chemical, and electrical properties. They are reasonably good 

insulators at low temperatures and humidity and are generally suitable for low 

frequency, moderate voltage applications. The relatively high dissipation factor of PA 

causes problems under conditions of high electrical stress, particularly when moist, 

because of the likelihood of overheating. Dry PA has volume resistivity in the 1014 –

1015 Ω·cm region, but this decreases with increasing moisture and temperature (Mark, 

1999; Charles et al., 2009). 

Commercial PAs contain semicrystalline structure which play role as a high strength 

(tensile, flexural, compressive, and shear) due to crystallinity and good toughness 

(impact strength) as a result of the amorphous region. There are kinds of matters, which 

affect the PA properties like copolymerization, molecular weight, moisture content, 

temperature and additives. Increasing density of amide groups and crystallinity in 

aliphatic nylons will increase the modulus (stiffness) and strength of PA but on the 
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other hand reduces the impact strength and elongation. PA 6/6 has higher stiffness and 

strength compared to PA6, which makes it special for us. See  

PA has the ability to be very lustrous, semilustrous or dull. Its high tenacity fibers are 

used for seatbelts, tire cords, ballistic cloth and other uses. Properties such as high 

elongation, excellent abrasion resistance, highly resilient (PA fabrics are heat-set), 

paved the way for easy-care garments, high  resistance to insects, fungi, animals, as 

well as molds, mildew, rot and many chemicals, used in carpets and PA stockings, 

melts instead of burning can be mentioned (Mark, 1999). Like every materials PA 6/6 

has in own disadvantages such as high water absorption, poor chemical resistance to 

strong acids and bases (Palmer, 2002). 

Table 2.1: Mechanical properties of PA 6/6 (Mark, 1999; Charles et al., 2009). 

Mechanical 

Properties 

ASTM Test 

Method 
Units PA 6/6 

Tensile Strength 

73°F 
D638 psi 12,400 

Elongation 73° F D638 % 90 

Flexural Strength, 

73° F 
D790 psi 17,000 

Flexural 

Modulus, 73°F 
D790 psi 4.1 X 105 

Izod Impact 

Strength, 

Notched, 73°F 

D256 ---- R120 - M79 

Rockwell 

Hardness 
D785 ft-lbs/in. 1.2 
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Characterization methods 

Attenuated Total Reflection- Fourier Transform InfraRed (ATR-FTIR), Differential 

Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and scanning 

electron microscope (SEM) are commonly used methods for characterization of PA. 

 FTIR is a simple and reliable technique used in different field of study. It can be used 

to study and identify chemicals.  

The aim of using Differential Scanning Calorimeter (DSC) is to observe thermal 

transitions in different materials like polymers. 

Thermogravimetric analysis (TGA) is commonly used to determine selected 

characteristics of materials that exhibit either mass loss or gain due to decomposition, 

oxidation, or loss of volatile (such as moisture). It is an especially useful technique for 

the study of polymeric materials, including thermoplastics, thermosets, elastomers, and 

composites.                   

Samples were cryogenically fractured in liquid nitrogen then observed with a scanning 

electron microscope (SEM).  In this method, a piece of sample placed between pliers 

was immersed into a vessel containing a liquid nitrogen. After a couple of minutes, the 

sample was fractured inside vessel and left to dry heat to room temperature. 

Afterwards, exposed surfaces of samples were coated with a fine gold(0r platinum) 

layer (about 20  nm)  by  ion  sputtering  and  examined  with  SEM  in  a  high  vacuum 

mode  at  the  accelerating  voltage  of  10 and 20  kV.  

Polyamide application 

Polyamide has a wide range of uses such as : Hosiery, Weaving and wrap knitting, tires 

and conveyor belts, Coated fabrics, Carpeting, Furnishing/ floor coverings, 

Textiles( Apparel, tooth brushes, Tyre cord), Automotive (Bearings, slides, door 

handles, hubcaps, door and window stops), Furniture ( Locks, hangers, chairs etc.). 

Since our target is related to automotive industry, we will investigate PA6/6 usage in 

this industry. If the automotive industry had its own periodic table, PA66 would be a 

key element. Thanks to its versatility, mold ability and resistance to high temperatures 

and harsh chemicals, PA 66 PA is the most used engineering thermoplastic in the 

automotive industry today. Descriptions of uses for polyamides split into the principal 

application areas that are given below. 
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Under the hood 

 In the engine compartment, PA 66nylon’s performance properties make it a rising 

star.PA 66 reinforced with glass fiber can be used in engine-cooling flex fans; 

transmission thrust washers and spring guides; and air cleaner support brackets. Even 

valve stem oil deflectors, which are required to resist oil and temperatures as high as 

320°F are converted to nylon. Tapped PA 66 can be used as mechanical, pneumatic 

and electrical control systems, many of which have to withstand temperatures reaching 

300°F. Applications included throttle control cable end fittings, lever retainers and 

“umbrellas;” downshift cables and hood release cable jackets. An exhaust gas 

recirculation (EGR) interface adapter was brought to U.S. marketing by DuPont and 

General Motors Companies. The innovative EGR valve interface joint reduced EGR 

temperatures to levels manageable by PA air intake manifolds. Fuel rails, fans, fan 

shrouds, thermostat housings, and valve and engine covers water tubes or water rails 

to replace rubber hoses in the coolant circuit are some other examples of PA66 under 

the hood applications (Mark, 1999; Charles et al., 2009; Qiu et al., 2013). 

Interior 

Today, the latest research on potential airbag materials including polyester fiber, 

continues to point the industry towards PA66 (due its higher seam strength and low air 

permeability compared to polyester). Polyamides have been used for switches, handles, 

seat belt components, etc. (Mark and Seidel, 2014).  

Exterior 

The most usage of area for PA 66 in this part is in hubcaps (wheel cover), which imparts 

decorative part for wheels. External mirror bracket, hood release, front cover, front-

end module, fuel filler cap, fuel filler door, headlight bezel, etc., Are the other examples 

of PA 66’s applications (Mark and Seidel, 2014).  

2.1.3.2 Additives 

An additive is usually a minor component of the mixture formed and usually modifies 

the properties of the polymer. Examples of additives are antioxidants, plasticizers, 

flame-retardants, processing aids, other polymers, colorants, UV absorbers, extender, 

compatibilizer and fillers.  

http://www.ascendmaterials.com/markets/automotive/exterior/exterior-mirror-bracket
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Carbon materials 

Nowadays, additives such carbon materials play an important part in human life, they 

can be used in many different fields like automobile industry and so on. There are types 

of carbon with different subcategory. The main three carbon categories are carbon 

nanotubes (CNTs), carbon fiber (CF), and carbon black (CB). 

Carbon nanotubes  

Carbon nanotubes (CNTs) are remarkable objects that look set to revolutionize the 

technological landscape in the near future.  Tomorrow’s society will be shaped by 

nanotube applications, just as silicon-based technologies dominate society today. 

Space elevators tethered by the strongest of cables; hydrogen-powered vehicles; 

artificial muscles: these are just a few of the technological marvels that may be made 

possible by the emerging science of carbon nanotubes (Narkis and Tobolsky, 1969). 

 CNTs are mainly classified in two types: single walled nanotubes (SWNT) and multi 

walled nanotubes (MWNT).Single walled nanotubes diameter are about 1nm and their 

electrical conductivity can show metallic or semiconducting behaviour. In multi walled 

nanotubes (MWNT) consist of multiple rolled layers (concentric tubes) of graphene, 

the interlayer distance is about 3-4 Å. There are two models that can describe the multi 

walled nanotubes; 1- Russian doll model, 2- Parchment model.Carbon nanotubes have 

the strongest tensile strength of any material known. It also has the highest modulus of 

elasticity. Nanotubes were first observed in 1991 in the carbon soot of 

graphite electrodes during an arc discharge, by using a current of 100 amps that was 

intended to produce fullerenes (Meyer, 1973; Gubbels et al., 1998; Zhang et al., 1998; 

Feller et al., 2002). 

History  

Carbon nanotubes having nanoscale dimension (1-D) have been well-known over the 

past 15 years. The molecules were first discovered by Iijima in 1991 (Feller et al., 2002) 

when he was studying the synthesis of fullerenes by using electric arc discharge 

technique. The high-resolution transmission electron microscopy (HRTEM) was 

employed for observation of that phenomenon. Carbon nanotubes that Iijima observed 

were so called multi-walled carbon nanotubes (MWNTs) as shown in Fig. 1a, nested 

as Russian dolls, containing at least two graphitic layers, and generally have inner 

http://en.wikipedia.org/wiki/Electrode
http://en.wikipedia.org/wiki/Ampere
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diameters of around 4 nm. Two years later, Iijima and Ichihashi of NEC (Feller et al., 

2003) , Bethune, and colleagues of the IBM Almaden Research Center in California 

(Boiteux et al., 1999) synthesized single-walled carbon nanotubes (SWNTs) as shown 

in Fig. 1b. The SWNTs were synthesized by the same route of producing MWNTs but 

adding some metal particles to the carbon electrodes. 

 

Figure 2.3: (a) HRTEM images of two MWNTs (b) and SWNTs rope: each black 

aaaaaaaaaaaccircle is the image of one SWNT of the rope. 

Manufacture of CNTs 

There are various methods of production of carbon nanotubes such as production of 

nanotubes by arc discharge, chemical vapor deposition, laser ablation, flame synthesis, 

high-pressure carbon monoxide (HiPco), electrolysis, pyrolysis etc. However, they can 

be mainly classified into following groups.  

1) Physical Processes 

2) Chemical Processes  

3) Miscellaneous Processes 

Physical processes 

These are the processes, which make use of physical principles of carbon conversion 

into nanotubes. These include popular process of carbon nanotubes production such as 

arc discharge and laser ablation. Due to their wide spread popularity they are by far the 

most widely used processes for nanotubes production for experimental purposes.  

Arc discharge 

This is one of the oldest methods of carbon nanotube production. First utilized by Iijima 

(Feller et al., 2002) in 1991 at NEC’s Fundamental Research Laboratory to produce 

new type of finite carbon structures consisting of needle-like tubes. The tubes were 
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produced using an arc discharge evaporation method similar to that used for the 

fullerene synthesis. The carbon needles, ranging from 4 to 30 nm in diameter and up 

to 1 mm in length, were grown on the negative end of the carbon electrode used for the 

direct current (DC) arc-discharge evaporation of carbon. During the process Iijima used 

a pressurized chamber filled with a gas mixture of 10 Torr methane and 40 Torr argon. 

Two vertical thin electrodes were installed in the center of the chamber (Figure 2.4). 

The lower electrode (cathode) contained a small piece of iron in a shallow dip made 

purposefully to hold iron. 

 

Figure 2.4: Arc discharge method for CNT. 

The arc was generated by running a DC current of 200 A at 20 V between the electrodes. 

The use of the three components, namely argon, iron and methane, was critical for the 

synthesis of SWNT. Carbon soot produced as result of arc-discharge settled and 

nanotubes grew on the iron catalysts contained in negative cathode. The nanotubes had 

diameters of 1 nm with a broad diameter distribution between 0.7 and 1.65 nm. In a 

similar process Bethune et al. used thin electrodes with bored holes as anodes, which 

were filled with a mixture of pure powdered metals (Fe, Ni or Co) (catalysts) and 

graphite. The electrodes were vaporized with a current of 95 - 105 A in100 - 500 Torr 

of Helium. SWNT were also produced by the variant of arcechnique by Journet et al. 

(Qin et al., 2003) as well. In his variant, the arc was generated between two graphite 

electrodes in a reaction chamber under helium atmosphere (660 mbar). This method 

also gave large yield of carbon nanotubes. Ebbesen and Ajayan, (Cheah et al., 1999) 

however, reported large-scale synthesis of MWNT by a variant of the standard arc 

discharge technique as well. 
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Laser ablation process 

In the laser ablation process, a pulsed laser is made to strike at graphite target in a 

high temperature reactor in the presence of inert gas such as helium, which vaporizes 

a graphite target. The nanotubes develop on the cooler surfaces of the reactor, as the 

vaporized carbon condenses. A water-cooled surface is also included in the most 

practical systems to collect the nanotubes (Figure 2.5).This  method  was  first  

discovered  by  Smally  and Co-workers at Rive University in 1995 “Polyamides, 

Plastics,” in Encyclopedia Of Polymer Science and Technology, 1 ed., vol. 10, pp. 460-

482.. At the time of discovery, they were studying the effect of laser impingement 

on metals. They produced high yields (>70%) of Single walled Carbon Nanotubes by 

laser ablation of graphite rods containing small amounts of Ni and Co at 1200˚C. In 

this method two-step, laser ablation was used. Initial laser vaporization pulse was 

followed by second pulse to vaporize target more rapidly. The two-step process 

minimizes the amount of carbon deposited as soot. Tubes grow in this method on 

catalysts atoms and continued to grow until too many catalyst atoms aggregate at the 

end of the tube. The tubes produced by this method are in the form of mat of ropes 10 

- 20 nm in diameter and up to 100 micron or more in length. By varying temperature, 

catalyst composition and other process parameters average diameter and length of 

carbon nanotube could be varied. 

 

Figure 2.5: Schematic view of laser ablation method for carbon nanotube      

aaaaaaaaaaaproduction. 

Chemical  processes 

Chemical vapor deposition 

In 1996, Chemical vapor deposition emerged as potential method for large-scale 

production and synthesis of carbon nanotubes. This method is capable of controlling 

growth directions on a substrate and synthesizing a large quantity of carbon nanotubes. 
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In this process a mixture of hydrocarbon gas (ethylene, methane or acetylene) and a 

process gas (ammonia, nitrogen, hydrogen) is made to react in a reaction chamber on 

heated metal substrate at temperature of around 700˚C - 900˚C, at atmospheric 

pressures. CNTs formed as a result of decomposition of hydrocarbon gas and deposit 

and grow on metal catalyst (substrate). The catalysts particle can stay at the bottom or 

top of growing carbon nanotube. The use of the catalyst and preparation of the substrate 

is one of the most important factors in CVD, as this substrate will define the nature and 

type of carbon nanotubes formed. The usually substrate material is silicon, but glass and 

alumina are also used. The catalysts are metal nanoparticles, like Fe, Co and Ni, which 

can be deposited on substrates by means of electron beam evaporation, physical 

sputtering or solution deposition. Porous silicon is an ideal substrate for growing self-

oriented nanotubes on large surfaces. The nanotube diameter depends on the catalyst 

particle size, therefore, the catalyst deposition technique should be chosen carefully to 

yield desired results. 

High  pressure  carbon  monoxide  reaction (HiPco®) 

This is a unique method developed at Rice University in 1999 for the production of 

carbon nanotubes Introduction to Fourier Transfor m Infrared Spectroscopy, Thermo 

Nicolet Corporation, 2001. . Unlike other methods in which the metal catalysts are 

deposited or embedded on the substrate before the deposition of the carbon begins, in 

this method catalyst is introduced in gas phase. Both the catalyst and the hydrocarbon 

gas are fed into a furnace, followed by catalytic reaction in the gas phase. This method 

is suitable for large-scale synthesis, because the nanotubes are free from catalytic 

supports and the reaction can be operated continuously. Usually CO gas is used as 

hydrocarbon gas which reacts with iron pentacarbonyl, Fe (CO)5 to form SWNT. This 

process is called HiPco process. SWNT have also been synthesized in a variant of 

HiPco process in which a mixture of benzene and ferrocene, Fe (C5H5)2 reacts in a 

hydrogen gas flow to form SWNT H. W. F. H.-J. D. S. C. Hohne G, An Introduction 

for Practitioners, Berlin, Germany: Springer-Verlag, 1996. . In both methods, catalyst 

nanoparticles are formed through thermal decomposition of organometallic 

compounds, such as iron pentacarbonyl and ferrocene. 

 

CoMoCAT® process 
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Recently an effort has been made at University of Oklahoma (Haines et al., 1998), to 

develop a process using Cobalt and Molybdenum catalysts and CO gases. In this 

method, SWNT are grown by CO disproportionation (decomposition into C and CO2) 

in the presence of CoMo Catalyst (specifically developed for the purpose) at 700˚C - 

950˚C in flow of pure CO at a total pressure that typically ranges from 1 to 10 atm. 

This process is able to grow a significant amount of SWNT (about 0.25 g SWNT/g 

catalyst) in a couple of hours, keeping selectivity towards SWNT better than 80%. The 

secret of the process is in synergistic effect of Co and Mo. Catalyst is most effective 

when both metals Co and Mo are present at a time on silica substrate with low Co:Mo 

ratio. The material produced by the HiPco process yields a much larger number of 

bands, which indicate a greater variety of diameters than the material produced by 

CoMoCAT Process. The distribution of diameters produced by the HiPco process 

reported in the literature is also significantly broader than that of the product obtained 

from the CoMoCAT process. This process carries strong prospects in it to be scaled up 

as large-scale production process for the production of SWNT. 

Miscellaneous processes 

Some miscellaneous and relatively less used processes of carbon nanotube production 

are given below. 

Helium arc discharge method 

It was reported in 2006 by scientists of NASA’s Goddard Space Flight Center that 

they have developed a simple, safe, and very economical process of Single walled 

carbon nanotubes production (Danley, 2002). In this method, scientists used a helium 

arc welding process to vaporize an amorphous carbon rod and then form nanotubes by 

depositing the vapor onto a water-cooled carbon cathode. This process yields bundles, 

or “ropes,” of single-walled nanotubes at a rate of 2 grams per hour using a single 

setup. It was claimed   that   process   would   produce SWCNT with yield of 70% at a 

much lower cost as compared to previously achieved yield of 30% - 50% at a cost of 

approximately $100 per gram. Further, it was claimed, as process does not require 

any metal catalyst no metal particles need to be removed from the final product. 

Eliminating the presence of metallic impurities results in the SWCNTs exhibiting 

higher degradation temperatures (650˚C rather than 500˚C) and eliminates damage to 
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the SWCNTs by the purification process. This process is under discussion for 

potential use as commercial scale process. 

Electrolysis 

In this method carbon nanotubes were produced at University of Miskolc by G. Kaptay 

& J. Sytchev (Zucca et al., 2004) by depositing  alkali  metals  on  a  graphite  cathode  

from  a high-temperature molten salt system. The deposited metallic atoms intercalate 

into the space between the graphitic sheets and diffuse towards the bulk of the graphite 

cathode, causing some mechanical stress inside graphite. This stress induces the 

ablation of separate graphitic sheets, which will turn into carbon nanotubes due to 

interfacial forces, trying to recombine broken carbon-carbon bonds. Though this 

method has been reported to yield good quality of carbon nanotubes. It is not scalable 

to large-scale production method to produce carbon nanotubes. 

Flame synthesis 

This method is based on the synthesis of SWNT in a controlled flame environment, 

that produces the temperature, forms the carbon atoms from the inexpensive 

hydrocarbon fuels and forms small aerosol metal catalyst islands (Chen and 

Tsubokawa, 2000; Feller and Grohens, 2004). SWNT are grown on these metal islands 

in the same manner as in laser ablation and arc discharge. These metal catalyst islands 

can be made in three ways. The metal catalyst (cobalt) can either be coated on a 

mesh (Qiu et al., 2013), on which metal islands resembling droplets were formed by 

physical vapor deposition. These small islands become aerosol after exposure to a 

flame. The second way is to create aerosol small metal particles by burning a filter 

paper that is rinsed with a metal-ion (e.g. iron nitrate) solution. The third way is the 

thermal evaporating technique in which metal powder (e.g. Fe or Ni) is inserted in a 

trough and heated (Postek, 1980). In a controlled way a fuel gas is partially burned 

to gain the right temperature of ~800˚C and the carbon atoms for SWNT production. 

On the small metal particles the SWNT are than formed. As optimization parameters 

the fuel gas composition, catalyst, catalyst carrier surface and temperature can be 

controlled (Qiu et al., 2013). In the literature found, the yield, typical length and 

diameters are not stated. 
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Application of CNTs  

A carbon nanotube is inert, has a high aspect ratio and a high tensile strength, has low 

mass density, high heat conductivity, a large surface area, and a versatile electronic 

behavior, including high electron conductivity. However, while these are the main 

characteristics of individual nanotubes, many of them can form secondary structures 

such as ropes, fibers, papers and thin films with aligned tubes, all with their own 

specific properties. These properties make them ideal candidates for a large number of 

applications provided their cost is sufficiently low. The cost of carbon nanotubes 

depends strongly on both the quality and the production process. High-quality single-

shell carbon nanotubes can cost 50 – 100 times more than gold. However, carbon 

nanotube synthesis is constantly improving, and sale prices are falling rapidly. The 

application of carbon nanotubes is therefore a very fast moving field, with new 

potential applications found every year, even several times per year. Therefore, 

creating an exhaustive list of these applications is not the aim of this section. Other 

application of CNTs are chemical sensors, catalyst support, gas storage, gas separation, 

adsorbents, biosensors, metal matrix composite, polymer matrix composite etc. (Narkis 

and Tobolsky, 1969). 

Carbon fiber  

A carbon fiber (CF) is a long, thin strand of material about 0.0002-0.0004 in (0.005-

0.010 mm) in diameter, which constitute more than 90 % carbon atoms. The carbon 

atoms are bonded together in microscopic crystals that are more or less aligned parallel 

to the long axis of the fiber (Carlson et al., 1996). 

History  

The earliest commercial use of carbon fibers is often attributed to Thomas Edison’s 

carbonization of cotton and bamboo fibers for incandescent lamp filaments (Leboeuf et 

al., 2010). However, practical commercial use of carbon fibers for reinforcement 

applications began in the late 1950s with the pursuit of improved ablative materials for 

rockets (Dasari et al., 2009). Union Carbide marketed a carbonized rayon based fabric 

in the early 1960s (Socher et al., 2011). DuPont’s work with “black Orlon” in the late 

1950s showed that acrylics could be thermally stabilized, while Shindo in Japan and 

Watt et al. in the United Kingdom demonstrated that, by using tension through the 

carbonization process, high mechanical properties could be realized (Kim et al., 
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2011).Activity increased rapidly during the 1960s and 1970s to improve the 

performance/price ratio of carbon fibers. Much of this effort focused on evaluation of 

various precursors, since carbon fiber can be made from almost anything that yields a 

quality char upon pyrolysis. Donnet and Bansal (Caamaño et al., 2012) present a good 

overview of various researchers’ efforts to evaluate different precursors, including PAN 

(polyacrylonitrile), pitch, rayon, phenol, lignin, imides, amides, vinyl polymers, and 

various naturally occurring cellulosic materials. Overall carbon fiber demand grew to 

approximately 1000 metric tons by 1980, fueled primarily by the aerospace industry, 

with the sporting goods industry taking some excess capacity and off-specification 

fiber. Polyacrylonitrile-based carbon fiber usage had exceeded all other precursors at 

that time. This was a surprise to some, since the anticipation in the late 1970s had been 

that the significantly lower raw material price and higher char yield of pitch would 

result in the winning combination. However, higher processing costs are required to 

make a spinnable pitch, so better overall properties for PAN fibers resulted in their 

dominance. Rayon was relegated to third place, despite having a lower raw material 

cost, because inferior properties and a low char yield (20 to 25%) after carbonization 

made for a higher overall cost. Properties can be improved by stress graphitization at 

high temperatures, but this increases cost further, making the fiber even less desirable. 

Rayon is still used today for insulating and ablative applications but not for structural 

applications. By the mid-1990s, a new cost-effective, PAN- based carbon fiber made 

from a modified textile precursor was being aggressively promoted by companies like 

Zoltek and Fortafil for commercial applications. In 1995, one manufacturer announced 

the goal of reaching a price level of $5/ lb ($11/kg) by the year 2000, which brought a 

lot of attention to and greatly accelerated application development (Finegan and 

Tibbetts, 2001).  

Manufacture of carbon fibers 

Precursor sources used, in order of volume, are PAN, pitch, and rayon. Although the 

specific processing details for each precursor is different, all follow a basic sequence 

involving spinning, stabilization, carbonization, and application of a finish or sizing 

to facilitate handling, as shown in Fig. 1. Discontinuous carbon fiber whiskers are also 

now produced in a batch process from hydrocarbon gases using a vapor-liquid-solid 

growth mechanism (Leer et al., 2006). 
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Figure 2.6: The  processing  sequence  for  polyacrylonitrile  (PAN)  and  

aaaaaaaaaaamesophase-pitch-based precursor fibers shows thesimilarities for the two 

aaaaaaaaaaaprocesses.  

PAN-based carbon fibers 

The majority of all carbon fibers used today are made from PAN precursor, which is a 

form of acrylic fiber. Precursor manufacture is accomplished by spinning the PAN 

polymer into filaments using variants of standard textile fiber manufacturing processes. 

The PAN fibers are white in color, with a density of approximately 1.17 g/cm3 (0.042 

lb/ in3) and a molecular structure comprised of oriented, long chain molecules. 

Stabilization involves stretching and heating the PAN fibers to approximately 200 to 

300 °C (390 to 570 °F) in an oxygen-containing atmosphere to further orient and then 

crosslink the molecules, such that they can survive higher-temperature pyrolysis 

without decomposing. Stretching after spinning and during stabilization helps develop 

the highly oriented molecular structure that allows development of a high tensile 

modulus and improved tensile strength upon subsequent heat treatment. Carbonization 

of standard and intermediate modulus fiber typically involves pyrolyzing the fibers to 

temperatures ranging from 1000 to 1500 °C (1800 to 2700 °F) in an inert atmosphere, 

typically to 95% carbon content. An additional high heat treatment step is included just 

after carbonization for some very high-modulus fibers. During carbonization, the fibers 

shrink in diameter and lose approximately 50% in weight. Restraint on longitudinal 

shrinkage helps develop additional molecular orientation, further increasing 

mechanical properties. After carbonization, the fibers may be run through a surface 
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treatment step designed to clean and attach functional groups to the fiber surface, which 

increases bond strength with matrix resins. Most manufacturers use an electrolytic 

oxidation process that creates carboxyl, carbonyl, and hydroxyl groups on the surface 

for enhanced bonding. A sizing or finish is then applied to minimize handling damage 

during spooling and enhance bonding with matrix resins. The fiber is then spooled. 

Today, there is differentiation among manufacturers between those who use a modified 

textile-type PAN precursor and those who use an aerospace-type precursor. The textile-

type precursor is made on a very large scale in modified- acrylic textile fiber plants in 

tows or rovings consisting of >200,000 filaments. The tows are then split down into 

smaller bundles (approximately 48,000 filaments) after carbonization for spooling. 

Aerospace precursor is made in smaller specialty plants and processed in 3000 (3K) to 

12K filament tows that can be assembled into 24K or larger tows after carbonization. 

Manufacturing cost is lower for the textile-type precursor, due to higher line 

throughputs, larger economies-of- scale, and less handling of small tow bundles. This 

type fiber is more targeted for industrial applications. The aerospace-type precursor, 

because it is processed in smaller tow sizes, is less fuzzy and available in the smaller 

tow sizes favored by the aerospace industry, for whom it was originally developed. 

Physical properties can be similar for both types (Leer et al., 2006). 

Pitch-based fibers 

 Pitch is a complex mixture of aromatic hydrocarbons and can be made from petroleum, 

coal tar, asphalt, or PVC (Socher et al., 2011). Starting raw material selection is 

important to the final fiber properties. Pitches must be processed through a pre-

treatment step to obtain the desired viscosity and molecular weight in preparation for 

making high-performance carbon fibers. The pre-processed pitch contains 

“mesophase”, a term for a disk-like liquid crystal phase (Farimani and Ebrahimi, 2012) 

that develops regions of long-term ordered molecules favorable to manufacture of high-

performance fibers. Without this step, the result is an isotropic carbon fiber with low 

strength and low modulus of less than 50 GPa (7 X 106 psi) (Shen et al., 2012).Process 

details of the final composition and method of spinning mesophase pitch are generally 

held secret by the manufacturers. Once spun, the stabilization, carbonization, surface 

treatment, application of sizing, and spooling of pitch-based fibers follows a sequence 

similar to the manufacture of PAN-based fibers, as shown in Fig. 1. Actual process 

parameters, such as temperatures, ramp rates, and time at temperature for stretch and 
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stabilization, are different for pitch than for PAN. Gas species evolved during pyrolysis 

and their onset of evolution are very different for PAN and pitch. The response to heat 

treatment is also greater for mesophase-pitch-based fibers at higher temperatures, a 

consequence of their more ordered starting molecular structure. For example, a 

mesophase-pitch-derived fiber processed to the same temperature as a PAN fiber will 

exhibit higher density and thermal and electrical conductivity, all else being equal. 

Other precursors 

 Rayon is processed in similar fashion to PAN, as shown in Fig. 1; the difference is the 

actual process parameters used. Carbon fiber “whiskers” can be formed from gas-phase 

pyrolysis via catalyzed cracking of hydrocarbon gases like methane. One process 

involves growth of a thin carbon tube of 10 to 50 nm from a submicron iron particle in 

a hydrocarbon-rich atmosphere, followed by a secondary process of thickening the tube 

by chemical vapor deposition of carbon on the surface (Zhang et al., 2009). Others have 

discussed similar processes, some capable of longer length fibers (Alig et al., 2007). 

Although only discontinuous fibers are fabricated, they have unique properties 

approaching those of single crystal graphite in some cases. 

Available formats for fibers 

Commercially available carbon fibers are produced by a multitude of manufacturers 

with a wide range of properties and two sizes. Carbon fibers are available in many of 

the same formats as glass fiber. These formats include continuous filament- spooled 

fiber, milled fiber, chopped fiber, woven fabrics, felts, veils, and chopped fiber mattes. 

Most fiber today is spooled, and then processed into other formats in secondary 

operations. The size of the carbon fiber tow bundle can range from 1000 filaments (1K) 

to more than 200K. Generally, aerospace carbon fibers are available in bundles of 3K, 

6K, 12K, and 24K filaments, while most commercial-grade fibers are available in 48K 

or larger filament counts. Composite fabrication equipment, such as filament winders 

and weaving machines, must be adapted to handle the larger cross section of 

commercial grade fiber (Leer et al., 2006).  

Typical applications of carbon fibers 

Carbon fiber usage is growing in a variety of applications, including aerospace, sporting 

goods, and a variety of commercial/industrial applications. Growth is fastest in the 
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commercial/ industrial applications. In many instances, carbon composites have 

displaced metal parts, despite being more expensive on a direct replacement purchased 

cost basis. Where successful, carbon composites have lowered total system costs 

through reduced maintenance, faster processing speeds, and improved reliability. Many 

new uses under development are enabling, meaning applications that were not practical 

with metal or other materials are now possible with carbon composites (Leer et al., 

2006). 

Aerospace 

Perhaps nowhere is the need to save weight greater than in the aerospace industry. Early 

growth of the carbon fiber industry was driven almost exclusively by the desire for 

higher performance aircraft made possible with carbon fiber composites. Today, carbon 

fiber is used on aircraft for primary and secondary structures. Use is growing, having 

already established a strong track record in primary structures on military aircraft. All 

of these applications use carbon fiber for its high specific strength and specific stiffness. 

Fiber formats used include prepreg for layup processes and fabrics for resin transfer 

molding and similar processes. Satellites incorporate very high modulus pitch-based 

carbon fibers, partly for the high stiffness-to-weight ratios and partly for their negative 

axial coefficient of thermal expansion (Leer et al., 2006).  

Sporting goods 

 Golf club shafts are presently the largest sporting goods application for carbon fibers. 

Lighter weight and higher stiffness shafts, made possible with carbon fiber, allow club 

manufacturers to place more weight in the club head, which increases club head speed 

for improved distance. Most golf shaft manufacturing today is done with unidirectional 

prepregged sheets of carbon fiber in a roll wrapping operation. Some shafts are filament 

wound. Carbon fiber fishing rods are favored by fisherman for their lightweight and 

sensitive touch. The rods are manufactured via a roll wrapping process similar to golf 

shafts, using unidirectional prepreg. Most racquets for tennis, racquetball, and squash 

are made from prepregged carbon fiber that is sheeted, wrapped around a bladder, and 

cured. Carbon composite arrows are fabricated by either of two processes: pultrusion 

or roll wrapping. Skis and bicycle components tend to use fabrics made from carbon 

fiber etc. (Leer et al., 2006). 
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Carbon black  

Carbon black (CB) is a high purity colloidal carbon produced in large quantities 

worldwide for myriad industrial and consumer application Commercial carbon black 

differs in important respects from soots and other environmental carbonaceous 

particles but it is useful as an idealized model for investigating the adsorption 

properties, atmospheric reactions, and to a lesser extent, the environmental effects of 

these materials (Deng et al., 2009). 

History   

Carbon black was first produced commercially in China by burning purified animal or 

vegetable oil in porcelain pots.  For two thousand years this lampblack process 

underwent only minor evolutionary change until the advent of  the modern  Carbon  

Black  Industry  in  1872.  In that year, a small plant was built in Pennsylvania to 

produce channel black from natural gas. As  the  supply of by-product gas  from  the 

oil fields  in Pennsylvania diminished,  the industry moved to new gas fields in West 

Virginia and then to Louisiana, Oklahoma, and Texas. About  500,000  pounds  of 

channel  black  and  lampblack were  produced  in 1881, increasing to 3 million pounds 

per year (mainly channel black) by 1895.  (Wang et al., 2008). Carbon black was used 

primarily as a pigment in printing inks, paints, and lacquers until the early 1900's when 

its use as a reinforcing filler for rubber became important  following  the  discovery  in  

England  of  carbon  black's  ability  to strengthen and toughen rubber. The rubber 

industry soon became the major market for carbon black.  Its requirements led to the 

development of more efficient, lower cost, high-volume furnace processes for the 

production of carbon black. In the first of these, a limited range of  carbon blacks was 

obtained from natural gas. The gas furnace process was developed in the USA in 1922 

and employed for about 40 years. A method for producing carbon black from heavy 

aromatic liquids was introduced in the USA in 1943. Today, the oil furnace process 

accounts for over 95% of world production (Deng et al., 2009). 

Technology of manufacture 

Mechanism of formation 

In all carbon, black processes except that for acetylene black, a liquid or gaseous 

hydrocarbon feedstock is pyrolyzed at 1200-1700 °C. The resultant molecular 
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fragments polymerize in the vapor phase to polycyclic aromatic species, which 

condense to form liquid nuclei.  Small amounts of stable polycyclic aromatic 

hydrocarbons (PAH) are formed also as a minor by-product. Subsequent coalescence 

and carbon deposition yields spherical particles with diameters of 5-20 nm in the 

furnace and channel processes and up to 500 nm in the thermal process. Progressive 

dehydrogenation leads to an increase in viscosity and "stickiness" so that further 

collisions cause the particles to cohere and partially fuse but not to coalesce into 

spherical form. Continued dehydrogenation and carbon deposition yields carbon 

aggregates of characteristic morphology made up of fused particles having 

turbostratically oriented graphite-like carbon layers. When solid  aggregates  are 

present  the  temperature must be decreased to retard oxidation of the  carbon  in  the 

presence of  the high concentration of  water vapor  in the flue gas. This process appears 

to proceed via hydroxyl radical attack to produce porosity and loss of surface carbon 

(Etika et al., 2009). 

Channel process 

The original process employed a sheet metal building containing thousands of natural 

gas flames quenched by overhead reciprocating iron channels. A limited air supply was 

admitted at the base of the building with combustion products vented to the 

atmosphere. Most of the carbon deposited on the channel and was scraped off and 

collected in hoppers. The product from many hot houses was converged to a central 

processing unit where coke and foreign materials were removed. Yields were very low, 

usually < 5% of the theoretical car-bon, with up to 20% of the carbon black lost as 

smoke through the vents (Deng et al., 2009). 

Acetylene black process 

 Flowing acetylene gas is decomposed exothermically to carbon and hydrogen at 1000 

0C in a water-cooled refractory lined metal reactor. Almost all input carbon is converted 

to product since no oxygen or other oxidant is present (Deng et al., 2009). 

Thermal process 

 Gas or vaporized oil is pyrolysed in a preheated refractory brick retort at 1300-1500 

0C to produce carbon suspended in an off-gas com-posed of > 85% hydrogen plus 

methane and heavier hydrocarbons. After cooling with a water spray, the carbon is 
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removed by cyclone separators followed by bag filters or wet scrubbers. Two reactors 

are operated in  tandem; one being heated by  combustion  of recycled  off-gas  in  air 

while  the  other  is  producing  carbon (Deng et al., 2009). 

Gas furnace process 

 Natural gas is injected into a gas-air flame at 1400 0C in a refractory lined furnace with 

the combined pyrolysis and combustion products subsequently cooled to 200-300 0C 

by water sprays.  In the original process, carbon black was collected using electrostatic 

precipitators in series with cyclone separators but process modifications led to the use 

of more efficient bag filters (Deng et al., 2009). 

Oil furnace process 

  In this modem successor to the gas furnace process, a highly aromatic liquid feedstock 

derived from coal or petroleum is sprayed into a flame at 1300-1700 0C in a refractory 

lined or water-cooled reactor. The car-bon laden gas is cooled to 300 0C by water sprays 

then filtered through coated glass fiber or teflon fabric filter bags to remove and collect 

fluffy carbon black (Deng et al., 2009). 

Application  

Carbon black is  an essential  ingredient in  thousands of  industrial products, however,  

over 90%  of  the carbon black produced is  used as  a  reinforcing  filler in elastomers, 

mainly  in  the manufacture of  rubber tires.  Some other important applications  are:  

pigment  in  inks,  paints,  plastics,  and paper;  conductive  filler; radio-frequency  

insulator;  dry cell  batteries; magnetic  tapes;  UV  stabilizer and antioxidant in plastics;  

and photocopy toners. A few  of  the grades used in inks, enamels, and toners are after 

treated with ozone, nitric acid or nitrogen oxides to yield an acidic, oxidized product. 

These grades account for < 1% of total furnace black production (Deng et al., 2009). 

2.2 Intrinsically Conductive Polymer 

Intrinsically conductive polymers (ICPs) are organic polymers that conducts 

electricity. They can be used like the metallic conductors or semiconductors 

(iPolycond). 
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2.2.1 History and properties 

Typically conventional polymers such as plastics, rubbers, etc., offer significant 

resistance to electrical conduction  and are either dielectrics or insulators. With the 

invention of conductive polyacetylene in the 1970s, Intrinsically conductive polymers 

(ICPs) have received  significant  attention  from  both  science  and  engineering 

communities. This culminated in 2000 when the Nobel Prize was awarded to Alan J. 

Heeger, Alan G. MacDiarmid,  and Hideki Shirakawa for their discovery and 

development of  electrically conductive polymers (Shirakawa et al., 1977). 

Polyacetylene, polypyrole, polythiophene, polyaniline and their derivatives are the 

most common ICPs. All mentioned polymer has one characteristic features (scheme 

1.3), they all have highly conjugated back bone. 

 2.2.2 Application 

Much of the early research into conducting polymers was spurred on by  their  potential  

applications  as  replacements  for  existing  metals  and semiconductors.  In particular, 

their low densities compared with metals and their ease of processing via typical 

polymer routes such as injection moulding led to conductive polymers being proposed 

as alternatives to existing materials in many areas.  However,  with  almost  15  years  

of intensive  development  activity,  it  seems  that many  of  the  proposed applications 

for  these materials were rather optimistic and have not yet become possible. With 

growing experience of  these materials, a number of more realistic applications have 

now emerged that tend  to  exploit the novel features associated with conductive 

polymers  rather  than  those properties  that are  readily  obtainable  in  more  traditional  

materials.  Some of these applications include plastic batteries, sensors, electrochromic 

displays, EMI shielding, fuel cells and various biomedical devices (Stolka et al., 1995). 
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Figure 2.7: Chemical structure of some important ICPs (Stolka et al., 1995). 
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3. ELECTRO STATIC PAINTING 

Electrosttatic painting (EP) is a solvent-free method of coating objects with dry, finely 

grounded paint particles. The chief benefit of this process is that it avoids the 

environmental and economic costs of petroleum solvents used in traditional liquid 

coatings. ESP has been used in the United States and Europe since the 1950s. 

History  

In the early years, basically  from  its  invention  in  the  1950s  to  the mid-1970s,  the  

coating chemistry, manufacturing, and application technology had to develop. 

Functional applications, where coating characteristics other than appearance are 

important, came first, followed by decorative applications. After the mid-1970s, this 

basic dynamic still takes place but higher solvent costs and environmental   regulations 

become   an important driver in the substitution of liquid, solvent-based systems. The  

major  manufacturing  and  application technologies had, by this time, been developed 

and the area of development for this relatively standardized  equipment  and  

application technology  was  to  become  computerized  and automated a trend that 

continues today. Also by the mid-1970s, the major powder chemistries had become 

mature, leaving further development in the area to be increasingly specialized to 

narrow product segments, while powder coating as a whole becomes suitable to be used 

in an ever-broader array of product segments (Brun et al., 2010).  

Electrostatic spray charging improves the transfer efficiency of spray finishing 

equipment. The transfer efficiency improvements occur because the electrostatic  

forces help overcome other forces, such as momentum and air flow that can cause the 

atomized materials to miss the intended target. Electrostatic methods save coating 

material, time, and labor. More of the material is attracted to and adheres to the target, 

and less material is lost in the spray booth and the surrounding environment. 

Electrostatic methods also lower solvent emissions into the air since less coating 

material is needed to coat each part (Graco, 1995). Electrostatic painting systems can 

be either automatic or manual. 
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3.1 Automatic Electrostatic Systems 

The automatic electrostatic systems include High-speed rotational (stationary or 

reciprocating) atomizers, Reciprocating discs, and Automatic air spray, airless, air 

assisted airless, or HVLP spray guns (Figure 3.1). 

 

Figure 3.1: Automatic electrostatic system. 

3.2 Manual Electrostatic Systems 

The manual electrostatic systems include Airspray electrostatic hand-held spray guns, 

Air-Assisted Airless electrostatic hand-held spray guns, Airless electrostatic hand-held 

spray guns, HVLP electrostatic hand-held spray guns, and Hand-held rotary atomizer 

systems (Figure 3.2).  
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Figure 3.2: Manual electrostatic system. 

3.3 The Electrostatic Spray Charging Process 

 Figure 3.3 shows the basic components of electrostatic spray equipment. Basic parts 

are a spray gun or atomizer, particles of atomized coating material, which are emerging 

from the gun in a spray pattern, an ionizing needle located in or near the stream of 

coating material and the target, or object, to be coated. In the example in Figure 3.3, 

the ionizing needle applies an electrical charge to the particles of material (Graco, 

1995). (In an electrostatic system, the coating material may be charged either before or 

after it is atomized.) 

 As shown in Figure 3.4, the electrical field between the ionizing needle and the 

grounded object helps drive the charged spray particles to the grounded target. The 

force of the electrostatic field causes a greater percentage of the charged spray particles 

to reach the grounded object, rather than miss the target or be swept away by 

surrounding airflow. In other words, the transfer efficiency of the spray finishing 

process is improved through electrostatics because the electrical field draws an 

increased number of particles to the target (Graco, 1995). 
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Figure 3.3: Basic components of a electrostatic painting spray equipment. 

 
Figure 3.4: The electro field of an electrostatic system 

Electrostatic Charging Methods There are four types of electrostatic charging methods. 

The four electrostatic charging methods that can be mentioned are corona charging, 

contact charging (also called conduction charging), induction charging, (also called 

non-contact charging) and frictional charging (also called tribo charging). Of these 

methods, corona and contact (conduction) charging are the two primary methods used 

in liquid electrostatic spray finishing which will be illustrated in the following (Graco, 

1995). 

3.3.1 Corona charging 

The corona charging method utilizes a pointed or sharply curved electrode that is raised 

to a high electrical potential. The intense electric field at the electrode breaks down the 
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surrounding air and creates ions, which are then free to attach themselves to the 

atomized coating material (Graco, 1995).(See Figure 3.5) 

 

Figure 3.5: Corona charging 

3.3.2 Contact charging 

The contact charging (or conduction) method utilizes a direct charge transfer, rather 

than ionization. In this method, an electric charge flows from a source of high potential 

(voltage) to the coating material that has encountered the source (Graco, 1995).(See 

Figure 3.6) 

 

Figure 3.6: Contact charging. 

Application 

The market for can be divided into three main categories, general metal, appliance, and 

automotive market. In general metals, powder replaced porcelain enamel and liquid 

coating in lighting fixtures, indoor metal furnitures and tractors . In the appliances 
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market, powder coating replaced porcelain enamel on external surfaces in refregerator 

and druer In automotive industry, automotive componets expanded to exterior 

applications like window frames, roof rails, wiper arm, aluminum wheels, 

hubcaps(wheelcover) and interior apllications like seat risers and mirrors (Brun et al., 

2010). 
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4. EXPERIMENTAL WORK 

4.1 Materials And Preparation  

PA 66 (Minlon) granules were supplied by DuPont Company (USA). Conductive 

carbon fiber (diameter: 7.2 m, length of fibers: 3-12 mm), Carbon black (Acetylene, 

50% compressed) and Multi wall Carbon nano tubes (diameter: 9.5 nm, length: 1.5 m, 

Surface area: 250-300m2/g) were used in this study. PA66 with 15 wt. % additives 

(Minlon) granules and conductive fillers was dried at 80 0C for 2 to 4 h to remove 

residual moisture, and electrical conductive PA66 composites were prepared by the 

following  method: 

Extrusion method (EM): The PA66 granules, electrical conductive fillers 

(CB,CF,MWCNTs) and compatibilizer were proportionally mixed  and processed in a  

twin-screw extruder (Scientific, south Korea) to give samples. The rotational speed of 

the extruder was 30 rpm, and the temperatures of its eleven sections, from the hopper 

to the  head, were 260, 260, 265, 265, 270, 270, 270, 275, 275, 275 and 280. Then 

samples injected to form  hubcaps (wheel covers) with a injection molding machine. 

In  general,  the  materials investigated  in  this study  were  prepared in a twin-screw 

extruder by  compounding  Minlon  with  various  weight percentages  of  conductive 

fillers ( maximum 5 wt %). and pp-g-ma (2 and 5 wt. %) as a compatibilizer. 

Composition and codes of the samples are listed in the Table 4.1. 

Table 4.1: Composition and codes of the samples 

No PA66 (gr) Compatibilizer(gr) CF (gr) CB(gr) CNT (gr) 

M1 97 - - - 3 

M3 95 2 - - 3 

M4 90 5 5 - - 

M5 94 5 - - 1 

M6 90 5 - 5 - 

M7 89 5 4 1 - 

M8 89 5 4 0.5 0,5 

4.2 Apparatus And Experimental Techniques 

Results  presented  further  in  the  study  were  obtained  on  the  basis  of  a number 

of research  methods  and  techniques.  Measuring instruments used to characterize 
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materials, which are the subject of the study included an electrical conductivity device, 

scanning electron microscope (SEM), tensile testing machines,   differential scanning 

calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR).The details 

were given below.  

4.2.1 Electrical properties 

Volume and surface resistivity were measured on Keithley connected to 4-Point Probe 

of Signaton and GW instek (LCR-816). 

4.2.2 Scanning electron microscope measurements 

SEM of samples were taken by a JSM-7800F PRIME model .  

4.2.3 Mechanical properties 

Tensile test have been done on the samples. Four samples of each composites formula 

were used each time for measuring the mechanical properties and for increasing the 

accuracy of data, the average of the data has been reported. Test speed and pre-load 

were respectively 10mm/min and 0.5 Mpa with a Rockwell tensile device. 

 

4.2.4 Differential scanning calorimetry (DSC) analysis  

The aim of using Differential Scanning Calorimeter (DSC) is to observe thermal 

transitions in different materials like polymers. Composites samples were 

characterized by a TA Q10 Model DSC during heating to 400 0C. Heating rate of 20 C 

min-1 was applied. The entire thermal treatment was performed under nitrogen flow. 

4.2.5 ATR-FTIR measurements 

FTIR is a simple and reliable technique used in different field of study. It can be used 

to study and identify chemicals. All samples ATR-FTIR measured.   

4.2.5 Hardness tests 

The aim of the test is to determine the hardness of the paint film based on TSH 3131G 

4,5. A pencil suitable for the measurement of paint film hardness was used. At first, 

the wooden part of such a pencil was cut off, then the lead cylindrically to expose the 

tip by 3mm to 5mm was sharpened. The tip perpendicularly against sandpaper placed 

http://www.jeolusa.com/PRODUCTS/ScanningElectronMicroscopes(SEM)/FESEM/JSM-7800FPRIME/tabid/1313/Default.aspx


 

37 

 

on a hard flat plane was applied, and it should be sharpened gently by drawing a circle 

so that the tip becomes flat with an acute angle. a pencil at an angle of 45±2° should 

be pushed  forward 10 to 20 mm to scratch the coated surface with a uniform speed 

(10mm/s) while pushing the pencil against the coated surface by applying load of 750g 

to 1250g. This test will be repeated five times using pencils of the same hardness, with 

their lead tips sharpened flat by an acute angle each time. The same procedure will be 

continued until one of the pencil scratches the paint film. In that case, the hardness of 

the previous pencil will be reported as its hardness.    

4.2.6 Adhesive resistance (Cross-Cut) tests 

This analysis method is intended to measure the strength of adhesion of paint films to 

substrate based on the TSH 3131G 4.8. In this test, the blade of a cutter knife was 

applied vertically to the test piece coated surface.  Eleven equally spaced parallel cuts 

reaching to the interface in the selected place were made then another Eleven equally 

spaced parallel cuts intersecting these at right angles. A piece of adhesive tape (width: 

24mm) onto the cross cut area was pressed and then uniform force to the entire area 

with the pad of the finger at 20±2°C and 65±5% RH was applied. Test pieces in which 

50% or more of the crosscuts in the square frame peeled will be counted and reported. 

In the case, the square frame peeled was less than mentioned value material will be 

approved by this test. 

4.2.7 Dropped weight impact tests 

The purpose of this analysis is to observe the wheel cap impact behavior by throwing 

weights based on the TIS 01202-00N08 7. In this test, a wheel cap will be put on the 

disc wheel then disc wheel equipped with a cap will be placed on a plane and the disc 

wheel tilted at 45°.The weight will be Dropped onto the center of the cap, the spoke 

portion and flange portion. The test will be repeated three times or more at each 

location. There shall be no crack, breakage, etc., which may affect appearance and 

harmful flaw (confirm by visual inspection from spacing of 50cm ). Otherwise, the 

sample will not be approved by this test. 

4.2.8 Drop impact tests 

The purpose of this analysis is to check the wheel cap dropping effect in terms of 

fracture, scratch based on the TIS 01202-00N08 8. In this test, a single unit of wheel 
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cap will be fallen freely in the below positions (a, b, c). The same step should be 

repeated for two times under the same conditions. 

 

Figure 4.1 : Dropping  posture  in drop impact test. 

There shall be no crack, breakage, etc., which may affect appearance and harmful flaw 

(confirm by visual inspection from spacing of 50cm ). Otherwise, the sample will not 

be approved by this test. 
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5. RESULT AND DISCUSSION  

5.1 Electrical Properties 

The electrical conductivity of composites were obtained and summarized in Table 5.1. 

Noryl is a commercially available conductive composite which is suitable for 

electrostatic painting (EP) and has poor mechanical properties compared to the Minlon. 

In this thesis, it is named as (N1) and its conductivity was measured as 2.310-8 S/cm 

with the methods used in this study. This conductivity is used as a reference data for 

the composites conductivity obtained in this study. The conductivity of the composites 

should be equal or higher to Noryl’s conductivity.  

Table 5.1: Electrical conductivity of Noryl and samples (Minlon with different               

aaaaaaaaaa portions of CB,CNTs and CF with 2 and 5 % wt. of compatibilizer). 

Sample 
Minlon 

(gr) 

compatibilizer 

(gr) 

CF 

(gr) 

CNT 

(gr) 

CB 

(gr) 

Conductivity 

S/cm 

 

 

N1 
- - - - - 2x10-8 

 

M1 
97 - - 3 - 1x10-7 

 

M3 
95 2 - 3 - 1x10-7 

 

M4 
90 5 5 - - 3x10-8 

 

M5 
94 5 - 1 - 4x10-8 

M6 
90 5 - - 5 4x10-8 

M7 
89 5 4 - 1 2x10-8 

 

M8 

 

89 5 4 0,5 0,5 2x10-8 

5.2 Scanning Electron Microscope Measurements 

To have a better understanding of morphology and additives distribution in composites, 

the SEM is useful tools. SEM images of samples and Noryl (N1) shown in Figure 5.1  

to Figure 5.9. Unfortunately, since the size of the CF, CB and CNTs are not at the same 

scale (mm, nm and nm respectively), it is impossible to have a good comparison 

between them. So each composite’s SEM image has been reported with the best 
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magnitude. In the first image (N1) which indicates Noryl some sphere and rod shapes 

can be seen, which represent the CB and CF respectively. SEM images of M1, M3, 

M4, M5, M6, M7, and M8 composite with the presence of the carbon additives are 

presented. M1 and M3 respectively are without and with compatibilizer. It can be 

inferred from better homogeneity of additives (carbon content) in the M3.The most 

suitable composite that covers all of our requirements is M4; two SEM pictures with 

the magnification of 500 and 12000 have been presented. For sample M4, the left image 

shows that carbon fibers can have good distribution and the right one, with a white rod 

appearance, points out CF. 

 

Figure 5.1: SEM images of N1 (Noryl) with different magnitudes.a)100µm, b)3 µm. 

 

 

Figure 5.2 : SEM images of M1(Minlon + 3 wt. % CNT )with different magnitudes; 

aaaaaaaaaaaaa) 3µm, b) 500nm. 
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Figure 5.3 : SEM images of M3 (Minlon + 3 wt.% CNT + 2 wt.% compatibilizer) 

aaaaaaa        with different magnitudes; a) 3µm, b) 500nm.  
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Figure 5.4 : SEM images of M4 (Minlon + 5 wt.% CF + 5wt.% Compatibilizer) with 

aaaaaaaaaaaatwo magnitudes; a) 100µm, b) 5µm. 

 

Figure 5.5 : SEM images of M5 (Minlon + 1wt.% CNT + 5wt.% Compatibilizer) 

aaaaaaaaaaaawith two magnitude; a) 3µm, b) 500nm.  
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Figure 5.6 : SEM images of M6 (Minlon + 5wt.% CB + 5wt.% compatibilizer) with 

aaaaaaaa       two different magnitudes; a) ) 3µm, b) 500nm. 

 

Figure 5.7 : SEM images of M7 (Minlon+4wt.% CF +1wt.% CB+ 5wt.%   

aaaaaaaaaaaacompatibilizer) with two different magnitudes; a)20 µm, b) 3µm. 

The homogeneous dispersion of fillers (CNTs, CF, CB) in the polymer matrix is one 

of the most important requirements in achieving   mechanical strength reinforcement  

because  in-homogeneities  can  lead  to structural defects in the composite material. 

The other issue that can be important is the type of compatibilizer. PP-g-MA used in 

this study .Among them MA-g-EVA, SEBS-g-MA and, PP-g-MA may be named but 

due to the price the PP-g-MA seems to be the best choice for this study.  

(HowardáEbron, 2004; Dasari et al., 2006; Pisharath et al., 2006; Lee et al., 2007) 

Comparing M1 and M3 which contains Minlon + 3% CNT and Minlon + 3% CNT + 

2% compatibilizer  respectively, it can be  observed that adding compatibilizer helps 

to have less agglomerates and shows more uniform dispersion compared to 
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Minlon/MWCNTs without compatibilizer. The same result were obtained for other 

samples (Figure 5.4 to Figure 5.8).  

 

Figure 5.8 : SEM images of M8 (Minlon + 4wt.% CF + 0.5wt.% CB+ 0.5wt.%    a  

aaaaaaaaaaaaCNTs) with two different magnitudes; a) 5 µm b)500nm. 

5.3 Differential Scanning Calorimetry (DSC) Analysis  

DSC graphs of PA 6,6, Minlon, Noryl and M4 shown respectively in Figure 5.9 to 

Figure 5.12. Before extrusion process, thermal properties of PA 6,6 without additives, 

PA 6,6 with additives (Minlon) and final product (M4), were investigated by a DSC 

(TA Q10) with the nitrogen flow rate of 50 ml/min between 0-400 C. Melting was 

observed at about 260 C(Figure 5.9) and the optimum temperature in which the 

extruder can work properly was determined as 260-280C from the below 

measurements. 
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Figure 5.9: DSC curve of PA 66. 

 
Figure 5.10: DSC curve of Minlon. 

 



 

46 

 

 

Figure 5.11: DSC curve of Noryl. 

 

 

Figure 5.12: DSC curve of M4 (Minlon+5wt.%CF +5wt.% compatibilizer). 

5.4 ATR-FTIR Measurements 

FTIR spectra of pure PA 6,6,  Minlon,  Noryl, and M4, are shown in Figure 5.13. In 

PA 6,6, Minlon, and M4 composites 3297, 3082 cm-1  peaks belong to –NH  and C-N 

stretching. 2924 cm-1 shows C-H stretching and 1713 cm-1 is for amide group.1634, 

1371, and 1199 cm-1 show C=O, C-N-H and CH2-NH stretching respectively. Minlon 

and M4 ATR FTIR spectra have similar peaks, which indicate that after thermal 
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process, the structure of M4 has not undergone significant degradation and this shows 

that “temperature zones” and “screw speed” of extruder have been well adjusted.     

 

Figure 5.13 : FTIR curves for PA 6,6, M4, Minlon and Noryl. 

 

5.5 Mechanical Properties 

Tensile test have been done on the samples and reported in Table 5.2. Four samples of 

each composites formula were used each time for measuring the mechanical properties 

and for increasing the accuracy of data, the average of the data has been reported.   



 

48 

 

Table 5.2: Mechanical properties of composite samples. 

Sample 

No. 

Tensile 

stress 

MPa 

Tensile    

strain 

% 

Stress at 

break 

MPa 

Elongation 

at break 

% 

L0 

mm 

d0 

cm 

S0 

mm2 

M1 40.92 59.49 37 62.6 20.00 0.241 4.56 

M3 39.22 81.9 37.66 85.16 20.00 0.230 4.18 

M4 52.27 14.77 48.33 16.43 20.00 0.197 3.05 

M5 37.30 76.22 35 80.73 20.00 0.253 5.06 

M6 31.81 72.03 30 75 20.00 0.202 3.22 

M7 53.32 23.94 50 25.25 20.00 0.197 3.07 

M8 48.55 16.58 45.5 18.37 20.00 0.206 3.34 

By increasing amount of CB and CF in the matrix, some portions of polymer may be 

trapped by filler networks. Besides, polymer-filler interaction may reduce portion of 

polymer chains mobility due to the absorption of polymer segments to filler surface.  

Therefore, the polymer will face the rising of viscosity and modulus and tensile 

strength while elongation at break will be decreased. From Table 5.2 information, 

especially samples M4 and M5, it can be concluded that increasing CF is more effective 

than CB in enhancing tensile strength and decreasing elongation at break. This is 

because of greater strength of carbon fiber. These results were expected since polymer 

matrix can transfer the stress more easily to the filler with higher amount of aspect ratio 

and CF has a better reinforcement compared to CB. Other composites formulas have 

similar mechanical properties. Since the price of the final product for M4 sample was 

the lowest with the desired mechanical and electrical properties So M4 was chosen as 

optimum composite formulation that covers the requirements of the projects.  
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5.6 Hardness Tests 

The aim of the test was to determine the hardness of the paint film based on TSH 3131G 

4,5 and the results have been reported in Table 5.3. 

Table 5.3 : Hardness test results for M4, Minlon and Noryl. 

Part description Hardness measurement result  Judgment 

M4 HB OK 

Minlon HB OK 

Noryl HB OK 

 

Figure 5.14 : Hardness test. 

Based on the information in Table 5.3 all samples have met the requirements and the 

hardness value of the film paint is HB. 

5.7 Dropped Weight Impact Tests 

The purpose of this analysis is to observe the wheel cap impact behavior by throwing 

weights based on the TIS 01202-00N08 7. Results for dropped weight impact test can 

be seen in Table 5.4 to Table 5.9.  



 

50 

 

 

Figure 5.15 : Drop weight impact test. 

Table 5.4 : Evaluation results of M4 when placed on plane. 

Drop point Number 

of round 

Evaluation Results of M4 when placed on plane 

Flaw 

and 
scratch 

Cracking 
and 

peeling 
of 

surface 

treatment 

Cracking 

and 

f racture 

Judgment 
Overall 

evaluation 

a 
Center 

of cap 

First OK OK OK OK 

OK Second OK OK OK OK 

Third OK OK OK OK 

b 

 

Spoke of 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

c 
Outer 

circumferenti

al portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 
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Table 5.5 : Evaluation results Minlon when placed on plane. 

Drop point Number of 

round 

Evaluation Results of Minlon when placed on plane 

Flaw 
and 

scratch 

Cracking 
and peeling 

of surface 

treatment 

Cracking 

and 

f racture 

Judgment 
Overall 

evaluation 

a 
Center of 

cap 

First OK OK OK OK 

OK Second OK OK OK OK 

Third OK OK OK OK 

b 

 

Spoke of 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

c 
Outer 

circumferential 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

 

Table 5.6 : Evaluation results Noryl when placed on plane. 

Drop point Number 

of round 

Evaluation Results of Noryl when placed on plane 

Flaw 

and 

scratch 

Cracking 

and 

peeling 

of surface 

treatment 

Cracking 

and 

f racture 

Judgment 
Overall 

evaluation 

a 
Center of 

cap 

First OK OK OK OK 

OK Second OK OK OK OK 

Third OK OK OK OK 

b 
 

Spoke of 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

c 
Outer 

circumferential 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 
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Table 5.7 : Evaluation results M4 when titled at 450. 

Drop point Number 

of round 

Evaluation Results of Minlon when tilted at 45º 

 

Flaw 

and 

scratch 

Cracking 

and 

peeling 

of 

surface 

treatment 

Cracking 

and 

f racture 

Judgment 
Overall 

evaluation 

a 
Center of 

cap 

First OK OK OK     OK 

OK Second OK OK OK OK 

Third OK OK OK OK 

b 

 

Spoke of 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

c 

Outer 

circumferential 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

 

Table 5.8 : Evaluation results Minlon when tilted at 45º. 

Drop point Number 

of round 

Evaluation Results of Minlon when tilted at 45º 

Flaw 

and 
scratch 

Cracking 

and 

peeling 

of surface 

treatment 

Cracking 

and 

f racture 

Judgment 
Overall 

evaluation 

a 
Center of 

cap 

First OK OK OK OK 

OK Second OK OK OK OK 

Third OK OK OK OK 

b 

 

Spoke of 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

c 
Outer 

circumferential 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 
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Table 5.9 : Evaluation results Noryl when tilted at 45º. 

Drop point Number 

of round 

Evaluation Results of Noryl when tilted at 45º 

Flaw 

and 
scratch 

Cracking 

and 

peeling of 

surface 

treatment 

Cracking 

and 

f racture 

Judgment 
Overall 

evaluation 

a 
Center 

of cap 

First OK OK OK OK 

OK Second OK OK OK OK 

Third OK OK OK OK 

b 

 

Spoke 

of 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

c 

Outer 

circumfere

ntial 

portion 

First OK OK OK OK 

OK 
Second OK OK OK OK 

Third OK OK OK OK 

Based on the results in Table 5.4 to Table 5.9 cover wheels have met the requirements. 

5.8 Drop impact tests 

The purpose of this analysis is to check the wheel cap dropping effect in terms of 

fracture, scratch based on the TIS 01202-00N08 8 and Results have been reported in 

Table 5.10 to Table 5.15. 
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Table 5.10 : Evaluation results of M4 parts when placed at 120 cm (initial state). 

Evaluation 

temperature 

Dropping 

posture 

Evaluation Results of M4 parts when placed at 120 cm (Initial 

State) 

Flaw and 

scratch 

Cracking and peeling of 

surface treatment 

Cracking and 

fracture 
Judgment Overall 

Height 120 cm 

@ 23°C 

 

a 

1st  

- 

 

- 

 

- 

 

OK 

 
OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

b 

1st  

- 

 

- 

 

- 
 

OK 

2nd  

- 

 

- 

 

- 
 

OK 

 

c 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 
 

OK 

 

Table 5.11 : Evaluation results of Minlon parts when placed at 120 cm (initial state). 

Evaluation 

temperature 

Dropping 

posture 

Evaluation Results of Minlon parts when placed at 120 cm 

(Initial State) 

Flaw and 
scratch 

Cracking and peeling 
of surface treatment 

Cracking and 
fracture 

Judgment Overall 

Height 120 

cm 

@ 23°C 

 

a 

1st  

- 

 

- 

 

- 

 

OK 

 
OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

b 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

c 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 
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Table 5.12 : Evaluation results of Noryl parts when placed at 120 cm (initial state). 

Evaluation 
temperature 

Dropping 
posture 

Evaluation Results of Noryl parts when placed at 120 cm 

(Initial State) 

Flaw and 

scratch 

Cracking and peeling 

of surface treatment 

Cracking and 

fracture 
Judgment Overall 

Height 120 

cm 

@ 23°C 

 

a 

1st  

- 

 

- 

 

- 

 

OK 

 
OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

b 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

c 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 
 

OK 

 

Table 5.13 : Evaluation results of M4 parts when placed at 60 cm (after ageing). 

Evaluation 

temperature 

Dropping 

posture 

Evaluation Results of M4 parts when placed at 60 cm 

(Initial State) 

Flaw and 
scratch 

Cracking and peeling of 
surface treatment 

Cracking and 
fracture 

Judgment Overall 

Height 60 cm 

@ -40°C 

 

a 

1st  

- 

 

- 

 

- 

 

OK 

 
OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

b 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

c 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 
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Table 5.14 : Evaluation results of Minlon parts when placed at 60 cm (after ageing). 

Evaluation 
temperature 

Dropping 
posture 

Evaluation Results of Minlon parts when placed at 60 cm 

(Initial State) 

Flaw and 

scratch 

Cracking and 
peeling of surface 

treatment 

Cracking and 

fracture 
Judgment Overall 

Height 60 cm 

@ -40°C 

 

a 

1st  

- 

 

- 

 

- 

 

OK 

 
OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

b 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

c 

1st  

- 

 

- 

 

- 
 

OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

Table 5.15 : Evaluation results of Noryl parts when placed at 60 cm (after ageing). 

Evaluation 

temperature 

Dropping 

posture 

Evaluation Results of Noryl parts when placed at 60 cm 

(Initial State) 

Flaw and 
scratch 

Cracking and 

peeling of surface 

treatment 

Cracking and 
fracture 

Judgment Overall 

Height 60 cm 

@ -40°C 

 

a 

1st  

- 

 

- 

 

- 

 

OK 

 
OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

b 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 

 

OK 

 

c 

1st  

- 

 

- 

 

- 

 

OK 

2nd  

- 

 

- 

 

- 
 

OK 

Based on the information mentioned hubcaps have met the requirements. 
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5.9 Adhesive Resistance (Cross-Cut) Tests 

 

Figure 5.16 : Adhesive resistance (Cross-Cut) test. 

Table 5.16 : Adhesive resistance (Cross-Cut) test result for M4, minlon and nylon. 

Part description Peeling Percentage of peeling 

M4 No peeling is observed 0/100 

Minlon       No peeling is observed 0/100 

Noryl No peeling is observed 0/100 

The test was performed on the hubcaps and they met the requirements.  

Cost of composites formulae  

 

The price of composites per a kilo have been calculated and reported in Table 5.17. 

 

Table 5.17 : Average  price of composites per a kilo . 

  

No 
PA66 

(gr) 

Compatibilizer

(gr) 

CF 

(gr) 

CNT 

(gr) 

CB 

(gr) 

Price 

(€/kg) 

M1 97 - - 3 - 73.5 

M3 95 2 - 3 - 73.56 

M3 95 2 - 3 - 73.56 

M4 90 5 5 - - 8.07 

M5 94 5 - 1 - 26.94 

M6 90 5 - - 5 34.74 

M7 89 5 4 - 1 19.64 

M8 89 5 4 0,5 0,5 28.22 
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6. CONCLUSION  

The composites were prepared by compounding of PA66 with different types of carbon 

(CB, CF, and CNT) with a twin-screw extruder. The FTIR spectra results showed that 

the composites have not undergone degradation. This showed the temperature zones of 

extruder have been well adjusted. 

 The electrical conductivity of composites had been investigated. Based on the 

electrical conductivity results, it can be concluded that even at lower concentration, 

CNT is more effective in decreasing electrical resistivity of composite than CB and 

CF.  

Results obtained from the mechanical properties of the composites suggest that 

composites obtained by using CNT have more stiffness compared to one with CB but 

lower than composite filled with CF. On the other hand, elongation at break for CNT 

filled composites is lower compared to CB filled composites and higher than CF filled 

composites. 

As a result, based on the mechanical, electrical properties and cost of composites, M4 

(Minlon with 5wt. % CF and 5wt. % compatibilizer) was determined as a final 

composite for the requirement of wheel cover that suitable for EP. M4 was used to 

produced wheel cover and then these product was electrostatically painted and 

compared with the cover obtained from Minlon which had been painted with wet 

painting.  The common tests such as hardness, cross cut, dropped weight impact, drop 

impact were applied in order to check the properties of final product and all tests 

showed that the M4 was matched with the requirements. 

 In conclusion, a conductive composite material based on PA and carbon material was 

obtained for automotive industry, which was suitable for electrostatic painting and had 

better mechanical properties compared to commercially available one.     
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