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HETEROARM H-SHAPED TERPOLYMERS THROUGH CLICK 
REACTION  

SUMMARY 

H type polymers show unique morphologies and very interesting rheological 
properties of entangled polymer melts and solutions because they have special 
structure. Therefore, the syntheses of H-shaped copolymers have become attractive 
research projects, and several H-shaped copolymers have been prepared in recent 
years.  

The synthesis of well-defined polymers is usually achieved by a living 
polymerization technique. Controlled/ “Living” Radical Polymerization processes 
have proven to be versatile for the synthesis of polymers with well-defined structures 
and complex architectures. Among the CRP processes, Atom Transfer Radical 
Polymerization (ATRP) and Nitroxide Mediated Polymerization (NMP),  are the 
most efficient methods for the synthesis of special polymers with complex 
architectures. Both, ATRP and NMP methods based on the fast equilibrium between 
active and dormant chains, actually it is the main effect to obtain controlled 
structure.One of the advantageous of controlled radical polymerization techniques 
such as ATRP and NMP is that the molecular weight and the chain end functionality 
can be controlled. The wide range of functionality can be introduce into the polymer 
chain and this leads to the synthesis of well-defined copolymers by a sequential two-
step or one pot method without any transformation or protection of initiating sites. 

Recently, Sharpless and coworkers used Cu(I) as a catalyst in conjunction with a 
base in Huisgen’s 1,3-dipolar cycloadditions ([3 + 2] systems) between azides and 
alkynes or nitriles and termed them click reactionsClick chemistry strategy was 
successfully applied to macromolecular chemistry, affording polymeric materials 
varying from block copolymers to complex macromolecular structures. Click 
reactions permit C–C (or C–N) bond formation in a quantitative yield without side 
reactions or requirements for additional purification steps. 

In this study, we prepared a novel H type terpolymer with an alkyne, TEMPO, and 
tertiary bromide function via combination of atom transfer radical polymerization 
(ATRP), nitroxide mediated polymerization (NMP) routes, and click reaction. For 
this purpose, first, mikto-functional initiator, 7, with tertiary bromide (for ATRP), 
2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) (for NMP), and alkyne  (for click 
reaction) functionalities was synthesized. The initiator 7 thus obtained was used in 
the subsequent living radical polymerization routes such as ATRP of MMA and 
NMP of St, and click reaction of alkyne and azide groups respectively, in order to 
give H type terpolymer, (PS)(PMMA)-PtBA-(PMMA)(PS) and (PS)(PMMA)-PEG-
(PMMA)(PS) with controlled molecular weight and low polydispersity 
(Mw/Mn=1.33, 1.16). GPC traces, 1H-NMR, DSC, and AFM investigations show that 
both initiator and polymerization were carried out successfully. 
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CLICK REAKSİYONU ARACILIĞIYLA FARKLI KOLLU H-TİPİ 
TERPOLİMER SENTEZİ 

ÖZET 

H-tipi polimerler özel yapılarından dolayı eşsiz morfolojik ve ilgi çekici reolojik 
özelliklere sahiptirler. Bu nedenledir ki H-tipi polimerler araştırma projeleri için çok 
ilgi çekici duruma gelmiştir. Son zamanlarda çeşitli H-tipi polimerler hazırlanmıştır. 
Yıldız polimerler araştırmalarda üç boyutlu ve çok dallanmış yapılarından dolayı 
yıllardır ilgi çekmektedirler.  

Kontrollü/ “Yaşayan” Polimerizasyon yöntemlerinin iyi tanımlanmış ve kompleks 
yapılı polimerlerin sentezinde birçok açıdan faydalar sağladığı bilinmektedir. 
Kontrollü/ “Yaşayan” Radikal Polimerizasyon yöntemlerinin arasında Atom Transfer 
Radikal Polimerizasyonu (ATRP) ve Nitroksit Ortamlı Radikal Polimerizasyonu 
(NMP) kompleks yapılı polimerlerin sentezinde en etkili yöntemlerdir. ATRP ve 
NMP metotlarının her ikisi de aktif ve kararlı zincirler arasındaki hızlı dinamik 
dengeye dayanır ki kontrolü de sağlayan aslında budur. ATRP ve NMP gibi kontrollü 
polimerizasyon tekniklerinin bir avantajı da elde edilen polimerin molekül ağırlığının 
ve zincir uç grubu fonksiyonalitesinin kontrol edilebilir olmasıdır. Bu teknikler 
sayesinde polimer uç gruplarına çok çeşitli fonksiyonellikler kazandırılabilir bu da 
herhangi bir transformasyon reaksiyonu gerektirmeden iyi tanımlı polimerlerin 
eldesine izin verir. 

Son yıllarda, Sharpless ve arkadaşları azidler ve alkin ya da nitriller arasındaki 
Huisgen 1,3-dipolar siklokatılmalarda ([3 + 2] sistemi) Cu(I)’i baz ile birleştirip 
kataliz olarak kullandılar ve bu reaksiyonu click reaksiyonu olarak adlandırdılar. 
Click kimyası blok kopolimerlerden karmaşık makromoleküler yapılara kadar 
değişen birçok polimerik malzemenin yapılmasına kadar makromolekül kimyasında 
başarılı bir şekilde uygulandı. Click reaksiyonları, yan reaksiyonlara sebebiyet 
vermeyecek ve ilave saflaştırma işlemlerine gereksinim duyulmayacak bir şekilde 
kantitatif verimle C–C (veya C–N) bağ oluşumuna izin vermektedir. 

Bu çalışmada, sırasıyla Nitroksit Ortamlı Radikal Polimerizasyon (NMP), Atom 
Transfer Radikal Polimerizasyon (ATRP) yöntemleri ve click reaksiyonunu 
kullanarak farklı kollu H-tipi terpolimer hazırlandı. Bu amaç için, ilk olarak 
yapısında tersiyer bromür (ATRP için) ve 2,2,6,6-tetrametilpiperidin-1-iloksi 
(TEMPO) (NMP için) ve alkin (Click reaksiyonu için) fonksiyonu içeren farklı kollu 
3 fonksiyonlu başlatıcı, 7, sentezlendi. Başlatıcı 7, stirenin Nitroksit Ortamlı Radikal 
Polimerizasyonu, metil metakrilatın Atom Transfer Radikal Polimerizasyonu gibi 
yaşayan radikal polimerizasyonları ve alkin-azid fonksiyonlarının click reaksiyonu 
ile kontrollü molekül ağırlığına ve düşük molekül ağırlığı dağılımına (Mw/Mn=1.33, 
1.16) sahip (PS)(PMMA)-PtBA-(PMMA)(PS) ve  (PS)(PMMA)-PEG-(PMMA)(PS) 
olmak üzere 2 çeşit farklı kollu H-tipi polimer elde etmek için kullanıldı. GPC, 1H-
NMR, DSC ve AFM analizlerinden elde edilen sonuçlar hem başlatıcı hem de H-tipi 
terpolimer sentezinin başarılı bir şekilde gerçekleştiğini göstermiştir.  
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1. INTRODUCTION 

H-shaped polymers defined as two side chains attached to the each end of a polymer 

backbone (main chain) were generally prepared through anionic polymerization route 

starting from chlorosilane or aromatic diolefins as coupling agents [1–5]. Thus, 

numerous H-shaped polymers such as polystyrene (PS) backbone and side chains [1], 

(PS)2-PS-(PS)2, polyisoprene (PI) backbone and side chains [3], (PI)2-PI-(PI)2, PI 

backbone and PS side chains [2,4], (PS)2-PI-(PS)2, and polybutadiene (PB) backbone 

and side chains [5], (PB)2-PB-(PB)2, were successfully prepared. Because of its 

architectural difference, H-shaped polymers show different rheological properties, 

micellar properties, and self assembled structures when compared with other linear 

or branched block copolymers. H-shaped polymers are important as model materials 

in understanding the rheology of branched polymers such as LDPE [6–8]. H-shaped 

copolymers form micelles with lower aggregation numbers which results in smaller 

micellar structures compared to linear block copolymers [9,10]. The selfassembly of 

H-shaped block copolymers show a variety of morphologies depending on the 

preparation conditions [11]. The synthesis of H-shaped poly- mers having various 

chemical structures is thus important to thoroughly understand the above-mentioned 

physical properties. The ionic polymerizations (anionic or cationic) were the only 

living systems available until recently. These systems provide the polymers with the 

controlled molecular weight, well-defined chain ends, and low polydispersity. In 

recent years, the use of the living radical polymerization (LRP) techniques for the 

synthesis of complex macromolecules has fast increased because of the variety of 

applicable monomers and more tolerant experimental conditions than the living ionic 

polymerization routes require. The reversible addition fragmentation chain transfer 

[12] (RAFT) polymerization, the nitroxide-mediated free radical polymerization [13] 

(NMP), and the metal mediated living radical polymerization often called atom 

transfer radical polymerization [14–16] (ATRP) are versatile methods for the living 

radical polymerizations. Although a remarkable development in all LRP processes, 

there are still some disadvantages such as removal of transition metal catalyst for the 
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purification of polymer (particularly in ATRP), low yield, and relatively higher 

polydispersity index. ATRP route was effectively employed for the synthesis of H-

shaped copolymer, PS2-poly(ethyleneglycol)-PS2, (PS)2-PEG-(PS)2, where PEG and 

PS represent main and side chains, respectively [17,18]. Furthermore, via 

combination of ATRP and anionic polymerization routes, asymmetric H-shaped 

(PS)2-PEG-(poly(methyl methacrylate)2) (PMMA)2 has been prepared [19] Recently, 

Sharpless and coworkers used Cu(I) as a catalyst in conjunction with a base in 

Huisgen’s 1,3-dipolar cycloadditions [20], [3 + 2] system, between azides and 

alkynes or nitriles, and termed them click reactions [21,22]. Later, click chemistry 

strategy was successfully applied to macromolecular chemistry, affording polymeric 

materials varying from the block copolymers [23] to the complex macromolecular 

[24–38] structures. 

Click reactions permit C-C (or C-N) formation in a quantitative yield without side 

reaction and requirement for additional purification step.  

The aim of this study was to investigate the efficiency of the click reaction strategy 

for the preparation of H-shaped polymer that has two thermodynamically 

incompatible arms (PS and PMMA) on either side of the central unit (PtBA or PEG). 

Using this strategy, diazide end-functionalized PtBA or PEG (main chain) and PS-b-

PMMA copolymer (side chains) with an alkyne functional group at the junction point 

were linked to give (PS)(PMMA)-PtBA-(PMMA)(PS) and (PS)(PMMA)-PEG- 

(PMMA)(PS) heteroarm H-shaped terpolymer. 
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2. THEORITICAL PART 

2.1. Conventional Free Radical Polymerizations 

Conventional free radical polymerization (FRP) has many advantages over other 

polymerization processes. First, FRP does not require stringent process conditions 

and can be used for the (co)polymerization of a wide range of vinyl monomers. 

Nearly 50% of all commercial synthetic polymers are prepared using radical 

chemistry, providing a spectrum of materials for a range of markets [39]. However, 

the major limitation of FRP is poor control over some of the key elements of the 

process that would allow the preparation of well-defined polymers with controlled 

molecular weight, polydispersity, composition, chain architecture, and site-specific 

functionality. 

As chain reactions, free radical polymerizations proceed via four distinct processes: 

1. Initiation. In this first step, a reactive site is formed, thereby “initiating” the 

polymerization. 

2. Propagation. Once an initiator activates the polymerization, monomer molecules 

are added one by one to the active chain end in the propagation step. The reactive site 

is regenerated after each addition of monomer. 

3. Transfer. Transfer occurs when an active site is transferred to an independent 

molecule such as monomer, initiator, polymer, or solvent. This process results in 

both a terminated molecule (see step four) and a new active site that is capable of 

undergoing propagation. 

4. Termination. In this final step, eradication of active sites leads to “terminated,” or 

inert, macromolecules. Termination occurs via coupling reactions of two active 

centers (referred to as combination), or atomic transfer between active chains 

(termed disproportionation). 

The free radical chain process is demonstrated schematically below (2.1): 

R.
 represents a free radical capable of initiating propagation; M denotes a molecule 



 4 

of monomer; Rmand Rnrefer to propagating radical chains with degrees of 

polymerization of m and n, respectively; AB is a chain transfer agent; and Pn + Pm 

represent terminated macromolecules. 

Because chain transfer may occur for every radical at any and all degrees of 

polymerization, the influence of chain transfer on the average degree of 

polymerization and on polydispersity carries enormous consequences. Furthermore, 

propagation is a first order reaction while termination is second order. Thus, the 

proportion of termination to propagation increases substantially with increasing free 

radical concentrations. Chain transfer and termination are impossible to control in 

classical free radical processes, a major downfall when control over polymerization 

is desired. A General Free Radical Polymerization Mechanism is given below. 

Figure 2.1. General Free Radical Polymerization Mechanism 

2.2. Conventional Living Polymerizations 

Living polymerizations are characterized by chain growth that matures linearly with 

time. Inherent in this definition are two characteristics of ionic polymerizations that 

both liken and distinguish ionic routes from the aforementioned free radical route. In 

order to grow linearly with time, ionic polymerizations must proceed by a chain 

mechanism in which subsequent monomer molecules add to a single active site; 

furthermore, addition must occur without interruption throughout the life of the 

active site. Thus, the chain transfer mechanisms described above must be absent. 

Living polymerizations may include slow initiation, reversible formation of species 

with various activities and lifetimes, reversible formation of inactive (dormant) 

species, and/or reversible transfer [40]. Living polymerizations must not include 

irreversible deactivation and irreversible transfer.  
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Classical living polymerizations occur by the formation of active ionic sites prior to 

any significant degree of polymerization. A well-suited initiator will completely and 

instantaneously dissociate into the initiating ions. Dependent on the solvent, 

polymerization may then proceed via solvent pairs or free ions once a maximum 

number of chain centers are formed. Solvents of high dielectric constants favor free 

ions; solvents of low dielectric constants favor ionic pairs. Termination by coupling 

will not occur in ionic routes due to unfavorable electrostatic interactions between 

two like charges. Furthermore, chain transfer routes are not available to living 

polymerizations, provided the system is free of impurities. Polymerization will 

progress until all of the monomer is consumed or until a terminating agent of some 

sort is added.  On the flip side, ionic polymerizations are experimentally difficult to 

perform: a system free of moisture as well as oxygen, and void of impurities is 

needed. Moreover, there is not a general mechanism of polymerization on which to 

base one’s experiment: initiation may occur in some systems before complete 

dissociation of initiator. Knowledge of the initiating mechanism must be determined 

a priori to ensure a successful reaction. Despite the advantage of molecular control 

of living systems, the experimental rigor involved in ionic polymerization is often 

too costly for industrial use and free radical routes are preferred. 

2.3. Controlled/ ‘‘Living” Free Radical Polymerizations 

Living polymerization was first defined by Szwarc [41] as a chain growth process 

without chain breaking reactions (transfer and termination). Such a polymerization 

provides end-group control and enables the synthesis of block copolymers by 

sequential monomer addition. However, it does not necessarily provide polymers 

with molecular weight (MW) control and narrow molecular weight distribution 

(MWD). Additional prerequisites to achieve these goals include that the initiator 

should be consumed at early stages of polymerization and that the exchange between 

species of various reactivities should be at least as fast as propagation [42-44]. It has 

been suggested to use a term controlled polymerization if these additional criteria are 

met [45]. This term was proposed for systems, which provide control of MW and 

MWD but in which chain breaking reactions continue to occur as in RP. However, 

the term controlled does not specify which features are controlled and which are not 

controlled. Another option would be to use the term ‘‘living’’ polymerization (with 
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quotation marks) or ‘‘apparently living,’’ which could indicate a process of preparing 

well-defined polymers under conditions in which chain breaking reactions 

undoubtedly occur, as in radical polymerization [46,47].    

Conventional free radical polymerization techniques are inherently limited in their 

ability to synthesize resins with well-defined architectural and structural parameters. 

Free radical processes have been recently developed which allow for both control 

over molar masses and for complex architectures. Such processes combine both 

radical techniques with living supports, permitting reversible termination of 

propagating radicals. In particular, three controlled free radical polymerizations have 

been well investigated. Each of these techniques is briefly presented below and all 

are based upon early work involving the use of initiator-transfer-agent-terminators to 

control irreversible chain termination of classical free radical process. 

Living polymerization is defined as a polymerization that undergoes neither 

termination nor transfer. A plot of molecular weight vs conversion is therefore linear, 

as seen in Scheme (2.2), and the polymer chains all grow at the same rate, decreasing 

the polydispersity. The propagating center at 100 % conversion still exists and can be 

further reacted, which can allow novel block, graft, star, or hyperbranched 

copolymers to be synthesized. Living polymerizations have been realized in anionic 

processes where transfer and termination are easy to suppress. Due to the favorable 

coupling of two radical propagating centers and various radical chain transfer 

reactions, the design and control of a living radical processes is inherently a much 

more challenging task. The living process of radical polymerization involves the 

equilibration of growing free radicals and various types of dormant species. By tying 

up a great deal of the reactive centers as dormant species, the concentration of free 

radicals decreases substantially and therefore suppresses the transfer and termination 

steps. These reactions are also denoted as controlled /living polymerizations rather 

than as true living polymerizations because transfer and termination are decreased 

but not eliminated. Three processes, NMP, ATRP, and RAFT, will now be 

introduced [48]. 
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Figure 2.2. Molecular weight vs conversion graph of a typical living polymerization 

Living free radical polymerizations, although only about a decade old, have attained 

a tremendous following in polymer chemistry. The development of this process has 

been a long-standing goal because of the desire to combine the undemanding and 

industrial friendly nature of radical polymerizations with the power to control 

polydispersities, architectures, and molecular weights that living processes afford. A 

great deal of effort has been made to develop and understand different living free 

radical polymerization (LFRP) methods. The methods at the forefront fall into one of 

three categories: nitroxide mediated polymerization (NMP), atom transfer radical 

polymerization
 

(ATRP), and reversible addition fragmentation chain transfer (RAFT) 

[48]. 

2.3.1. Nitroxide-Mediated Living Free Radical (NMP) 

Nitroxide–mediated living free radical polymerization (NMP) belongs to a much 

larger family of processes called stable free radical polymerizations. In this type of 

process, the propagating species (Pn°) reacts with a stable radical (X°) as seen in 

Scheme (2.3). The resulting dormant species (Pn-X) can then reversibly cleave to 

regenerate the free radicals once again. Once Pn° forms it can then react with a 

monomer, M, and propagate further. The most commonly used stable radicals have 

been nitroxides, especially 2,2,6,6-tetramethylpiperidinoxy (TEMPO). The 2,2’,6,6’- 

tetramethylpiperidine-1-oxyl radical (TEMPO) was used as the nitroxide component 

in these initial studies. The alkoxyamine is formed in situ during the polymerization 
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process. Shortly thereafter, it was shown that low molecular weight alkoxyamines 

such as styryl-TEMPO  can be used as initiators/regulators for the controlled living 

radical polymerization of styrene [49]. Although NMP is one of the simplest methods 

of living free radical polymerization (LFRP), it has many disadvantages. Many 

monomers will not polymerize because of the stability of the dormant alkoxyamine 

that forms. Also, since the reaction is kinetically slow, high temperatures and bulk 

solutions are often required. Also, the alkoxyamine end groups are difficult to 

transform and require radical chemistry [50]. 
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Figure 2.3. Mechanism for nitroxide-mediated living free radical polymerization 

The key to the success is a reversible thermal C═O bond cleavage of a polymeric 

alkoxyamine to generate the corresponding polymeric radical and a nitroxide. 

Monomer insertion with subsequent nitroxide trapping leads to chain-extended 

polymeric alkoxyamine. The whole process is controlled by the so called persistent 

radical effect (PRE) [51]. The PRE is a general principle that explains the highly 

specific formation of the cross-coupling product (R1–R2) between two radicals R1 

and R2 when one species is persistent (in NMP the nitroxide) and the other transient 

(in NMP the polymeric radical), and the two radicals are formed at equal rates 

(guaranteed in NMP by thermal C═O bond homolysis). The initial buildup in 

concentration of the persistent nitroxide, caused by the self termination of the 

transient polymeric radical, steers the reaction subsequently to follow a single 

pathway, namely the coupling of the nitroxide with the polymeric radical. First, 

nitroxide mediated polymerizations of styrene were conducted using conventional 

free radical initiators in the presence of free nitroxide and monomer [52]. In general 

better results are obtained using preformed alkoxyamines. Defined concentration of 

the initiator allows a better control of the targeted molecular weight using this 

approach. Based on the mechanism depicted in Scheme (2.3), it is obvious that the 
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equilibrium constant K between the dormant alkoxyamine and the polymeric radical 

and nitroxide is a key parameter of the polymerization process. The equilibrium 

constant K is defined as ka/kd (ka = rate constant for alkoxyamine C═O bond 

homolysis; kd = rate constant for trapping of the polymeric radical with the given 

nitroxide). Various parameters such as steric effects, H-bonding and polar effects 

influence the K-value [53]. Since the first TEMPO-mediated polymerizations many 

nitroxides and their corresponding alkoxyamines have been prepared and tested in 

NMP. Due to space limitation we cannot give an overview of all alkoxyamines tested 

so far [54].  

The most popular nitroxide used for NMP in the past has been TEMPO. However, 

TEMPO is limited in the range of monomers which are compatible to polymerize by 

NMP, mostly due to the stability of the radical. Hawker et. al. recently discovered 

that by replacing the α-tertiary carbon atom with a secondary carbon atom, the 

stability of the nitroxide radical decreased which lead to an increased effectiveness in 

polymerization for many monomers in which TEMPO was uneffective. While 

TEMPO and TEMPO derivatives are only useful for styrene polymerizations, the 

new derivatives permit the polymerization of acrylates, acrylamides, 1,3-dienes, and 

acrylonitrile based monomers with very accurate control of molecular weights and 

low polydispersities. Another family of nitroxides that have shown to have the same 

success are phosphonate derivatives designed by Gnanou et.al [55]. 

The chain end functionalization of polymers synthesized by NMP is a significant 

problem because dormant chains containing alkoxyamines can regenerate terminal 

radicals which can depolymerize at high temperatures. A very interesting chain end 

functionalization process has also been discovered by Hawker et. al. which involves 

the controlled monoaddition of maleic anhydride or maleimide derivatives to the 

alkoxyamine chain end. The alkoxyamine can then be easily eliminated and other 

functional groups can be introduced. This process relies on the resistance of maleic 

anhydride or maleimide derivatives to homopolymerize and the ability of the 

precurser to reform the olefin by elimination of the hydroxylamine [56]. 

2.3.2. Atom Transfer Radical Polymerization 

Atom transfer radical polymerization (ATRP) is a living radical polymerization 

process utilizing transition-metal complexes as catalysts to mediate the propagation 
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of the polymerization. It is a very versatile process and can synthesize a wide 

spectrum of polymers with controlled structures. Atom transfer radical 

polymerization (ATRP) is one of the most convenient methods to synthesize well-

defined low molecular weight polymers [57]. A general mechanism for ATRP is 

given below. 

   Mt
n-Y/Ligand   R

.   X-Mt
n+1-Y/Ligand

propagation termination

R-X + +

+M

kact

kdeact

kt
kp

 

Figure 2.4. General Mechanism for ATRP 

Firstly, initiation should be fast, providing a constant concentration of growing 

polymer chains. Secondly, because of the persistent radical effect, the majority of the 

growing polymer chains are dormant species that still presence the ability to grow 

because a dynamic equilibrium between dormant species. By keeping the 

concentration of active species of propagating radicals sufficiently low through the 

polymer, termination is suppressed. ATRP is a radical process that full fills these 

requirements by using a transition metal in combination with a suitable ligand [58].   

Atom transfer radical polymerization (ATRP) involves first a reduction of the 

initiator by a transition metal complex forming a radical initiating species and a 

metal halide complex. The reactive center can then initiate the monomer, which can 

then propagate with additional monomer or abstract the halide from the metal 

complex forming a dormant alkyl halide species. The alkyl halide species is then  

activated by the metal complex and propagates once more.  

ATRP can be used on a large number of monomers and requires ambient reaction 

conditions. The reaction is uneffected by the precence of O
2 

and other inhibitors. 

Also, the alkyl halide end groups can be easily transformed by S
N

1, S
N

2, or radical 

chemistry.
 

The major drawback to ATRP is that a transition metal catalyst which is 

used must be removed which after polymerization and possibly recycled. Future 

work in this field includes the removal and recycling of the catalyst as well as the 

design of catalysts that react with a larger range of monomers [48]. 
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A transition metal complex, e.g. copper (I) bromide, undergoes an one-electron 

oxidation with simultaneous homolytic abstraction of the halogen atom from a 

dormant species (e.g. carbon–halide bond) to generate a radical. The radical 

propagates monomers with the activity similar to a conventional free radical. The 

radical is very quickly deactivated to its dormant state—the polymer chain terminally 

capped with a halide (e.g. P–Br) group. Since the deactivation rate constant is 

substantially higher than that of the activation reaction Keq= Kact / Kdeact ~10-7; each 

polymer chain is protected by spending most of the time in the dormant state, and 

thereby the permanent termination via radical coupling and disproportionation is 

substantially reduced. In a well-controlled ATRP, only several percents of the chains 

become dead via termination. 

This process occurs with a rate constant of activation, kact, and deactivation, kdeact. 

Polymer chains grow by the addition of the intermediate radicals to monomers in a 

manner similar to a conventional radical polymerization, with the rate constant of 

propagation kp. Termination reactions (kt) also occur in ATRP, mainly through 

radical coupling and disproportionation; however, in a well-controlled ATRP, no 

more than a few percent of the polymer chains undergo termination.  

Other side reactions may additionally limit the achievable molecular weights. 

Typically, no more than 5 % of the total growing polymer chains terminate during 

the initial, short, nonstationary stage of polymerization. This process generates 

oxidized metal complexes, X-Mt
n+1, as persistent radicals to reduce the stationary 

concentration of termination [59]. Polydispersities in ATRP decrease with 

conversion, with the rate constant of deactivation, kdeact, and also with the 

concentration of deactivator. The molecular conversion and the amount of initiator 

used, DP=∆[M]/[I]0 ; polydispersities are low, Mw / Mn <1,3  [60]. 

The ATRP system is consisting of the monomer, initiator, and catalyst composed of 

transition metal species with any suitable ligand. 

ATRP has been successfully used in living polymerizations of a wide range of 

monomers, such as styrenic monomers, acrylates, methacrylates, (meth)acrylamides, 

acrylnitrile and vinyl chloride in bulk, solution using organics or water as solvents, 

and emulsion, supercritical carbon dioxide, producing polymers with well-controlled 

molecular weights and structures. For example, polystyrene with polydispersity as 
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narrow as those of PS standards synthesized by living anionic polymerization was 

obtained by copper-catalyzed ATRP [61]. 

The amount of the initiator in the ATRP determines the final molecular weight of the 

polymer at full monomer conversion. Multifunctional initiators may provide chain 

growth in several directions. The main role of the initiator is to determine the number 

of growing polymer chains. If initiation is fast and transfer and termination 

negligible, then the number of growing chains is constant and equal to the initial 

initiator concentration. The theoretical molecular weight or degree of polymerization 

(DP) increases reciprocally with the initial concentration of initiator in a living 

polymerization. 

  DP = [M]0 / [I]0 x Conversion 

Figure 2.5. Degree of polymerization  

In ATRP, alkyl halides (RX) are typically used as the initiator and the rate of the 

polymerization is first order with respect to the concentration of RX. To obtain well-

defined polymers with narrow molecular weight distributions, the halide group X, 

must rapidly and selectively migrate between the growing chain and the transition-

metal complex. 

Initiation should be fast and quantitative with a good initiator. In general haloganated 

alkanes, benzylic halides, α-haloesters, α-haloketones, α-halonitriles and sulfonyl 

halides are used as ATRP initiators [62]. 

The most frequently used initiator types used in the atom transfer radical 

polymerization systems are, 1-Bromo-1-phenyl ethane (Styrene), 1-Chloro-1-phenyl 

ethane (Styrene), Ethyl-2-bromo propionate (Methyl methacrylate) and Ethyl-2-

bromo isobutyrate (Methyl methacrylate). Two parameters are important for a 

successful ATRP initiating system; first, initiation should be fast in comparison with 

propagation. Second, the probability of side reactions should be minimized [62].  

Transition metal catalysts are the key to ATRP since they determine the position of 

the atom transfer equilibrium and the dynamics of exchange between the dormant 

and active species. The main effect of the ligand is to solubilize the transition-metal 

salt in organic media and to regulate the proper reactivity and dynamic halogen 

exchange between the metal center and the dormant species or persistent radical. 

Ligands, typically amines or phosphines, are used to increase the solubility of the 
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complex transition metal salts in the solution and to tune the reactivity of the metal 

towards halogen abstraction. Linear amines with ethylene linkage like 

tetramethylethylenediamine (TMEDA), 1,1,4,7,7-pentamethyldiethylenetriamine 

(PMDETA), and 1,1,4,7,10,10 hexamethyltriethylenetetramine (HMTETA) were 

synthesized and examined for ATRP as ligands [63]. Reasons for examining of these 

type of ligands are, they are not expensive, due to the absence of the extensive π-

bonding in the simple amines, the subsequent copper complexes are less colored and 

since the coordination complexes between copper and simple amines tend to have 

lower redox potentials than the copper-bpy complex, the employment of simple 

amines as the ligand in ATRP may lead to faster polymerization rates. 

Catalyst is the most important component of ATRP. It is the key to ATRP since it 

determines the position of the atom transfer equilibrium and the dynamics of 

exchange between the dormant and active species. There are several prerequisites for 

an efficient transition metal catalyst. First, the metal center must have at least two 

readily accessible oxidation states separated by one electron. Second, the metal 

center should have reasonable affinity toward a halogen. Third, the coordination 

sphere around the metal should be expandable upon oxidation to selectively 

accommodate a (pseudo)-halogen. Fourth, the ligand should complex the metal 

relatively strong. 

The most important catalysts used in ATRP are; Cu(I)Cl, Cu(I)Br, NiBr2(PPh3)2, 

FeCl2(PPh3)2, RuCl2(PPh3)3/ Al(OR)3. 

ATRP can be carried out either in bulk, in solution or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide and many others have been used for 

different monomers. A solvent is sometimes necessary especially when the obtained 

polymer is insoluble in its monomer [64]. 

2.3.3. Reversible-Addition Fragmentation Chain Transfer (RAFT) 

The most recent report of a controlled/”living” free radical polymerization has been 

reported by Haddleton and co-workers as well as Thang et al. Reversible addition-

fragmentation chain transfer (RAFT) is achieved by performing a free radical 

polymerization in the presence of dithio compounds, which act as efficient reversible 



 14 

addition-fragmentation chain transfer agents. Much like the first two routes, the rapid 

switching mechanism between dormant and active chain ends affords living 

polymerization character [65]. 

Reversible addition-fragmentation chain transfer (RAFT) incorporates compounds, 

usually dithio derivatives, within the living polymerization that react with the 

propagating center to form a dormant intermediate. The dithio compound can release 

the alkyl group attached to the opposite sulfur atom which can then propagate with 

the monomer.  

The greatest advantage to RAFT is the incredible range of polymerizable monomers. 

As long as the monomer can undergo radical polymerization, the process will most 

likey be compatible with RAFT. However, there are many major drawback that arise 

when using this process. The dithio end groups left on the polymer give rise to 

toxicity, color, and odor and their removal or displacement requires radical 

chemistry. Also, the RAFT agents are expensive and not commercially available. 

Another drawback is that the process requires an initiator, which can cause undesired 

end groups and produce too many new chains which can lead to increased 

termination rates [48]. 

2.4. ABC terpolymers 

In recent years ternary triblock terpolymers have attracted increasing interest owing 

to their rich variety of bulk morphologies [66]. 

Emerging technologies in medicine, microelectronics and optics require the 

availability of novel polymeric materials with ever more sophisticated properties and 

performances. Living and controlled/ living polymerization methods have allowed 

for the synthesis of tailor-made macromolecules of varying chemical structure, 

composition, molecular characteristics and architecture. Among the different 

architectures, block copolymers definitely play a central role in polymer science.   

Following the intense interest in the study of diblock and ABA triblock copolymers, 

the polymer community starts now to focus on a new type of block copolymers, that 

of ABC triblock copolymers comprising three blocks, each made of a different 

monomer repeat unit [67]. In bulk, four different ordered structures can be obtained 

(alternating lamellae, cylinders, body-centered cubic arrays of spheres and gyroid) 
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depending on the copolymer composition and architecture. Considerably less 

extended is the work dedicated to the synthesis, solution and bulk properties of 

triblock terpolymers of the ABC type [68].  

Linear ABC triblock terpolymers represent a relatively new class of polymeric 

materials with an increasing interest for their properties in the bulk and in solution. 

The three chemically different components of these materials, each placed in a 

separate block, can confer to the terpolymer three different functions. Another 

similar, but more novel, and equally interesting class of polymeric materials is that of 

ABC heteroarm or miktoarm star terpolymers, bearing three arms, each of which is a 

different homopolymer [69]. 

The presence of three different monomers placed in different blocks confers to these 

polymers, three rather than two functions [67]. It is well known that the addition of a 

third block leads to a much richer variety of phases (over 30 phases have been 

identified to date in bulk). These materials have the potential to generate a variety of 

well controlled multiphase microdomain structures with nanosized structural units in 

bulk and thin films and to provide supramolecular structures in solution with a 

mesoscopic length scale. Therefore, numerous applications such as multifunctional 

sensors, multiselective catalysts for sequential or simultaneous chemical reactions, 

separation membranes, filters, etc., are possible [68]. 

The purpose of this investigation was to further extend the synthetic work on three-

component polymers and prepare a new structure of star terpolymers whose arms are 

not different homopolymers but ABC triblock terpolymers. A combination of two 

hydrophilic and one hydrophobic monomers was chosen, leading to water-soluble, 

amphiphilic materials [69]. 

ABC triblock copolymers comprised mostly of diene-, styrene-, methacrylate-, or 

pyridine-based monomers have been studied extensively. These well-defined 

structures have elicited fascination not only for theoreticians modeling phase 

behavior but also in the physical realm for studying morphological transitions. The 

phase behavior of these systems is governed by the Flory interaction parameter 

between two domains, , and is strongly influenced by the weight fraction of the 

various blocks present in the copolymer. The morphological possibilities for these 

copolymers can range from a basic lamellar structure to highly complex core-shell 
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gyroid morphology and even to a unique knitting pattern. Blending these types of 

block copolymers with other copolymers enables additional manipulation of the 

morphological patterns. Until now, however, the monomers comprising the ABC 

triblock copolymers have been limited to those that can be polymerized either 

anionically or by group transfer polymerization. Recently, examples of 

inorganic/organic hybrid ABC triblock copolymers synthesized by combining living 

anionic ring-opening polymerization with atom transfer radical polymerization 

(ATRP) have been presented, in addition to ABC triblock copolymers synthesized 

wholly by ATRP or through reversible addition fragmentation chain transfer 

(RAFT). Kelly and Matyjaszewski demonstrated that ABC triblock copolymers of 

various chain architectures and monomer combinations can be successfully prepared 

using ATRP methods [70]. 

The key to the controlled synthesis of block copolymers in ATRP is to maintain high 

chain end functionality, i.e., limit termination and side reactions, and to balance the 

reactivity of the end group with that of the monomer, i.e., avoid slow initiation. 

While the latter consideration is not as problematic as it is in anionic or carbocationic 

polymerizations and can be overcome through a careful choice of the block order, 

radical termination cannot be completely avoided due to the nature of the 

polymerization process. It can be limited, however, through the careful choice of the 

polymerization conditions and through adjustment of the equilibrium between the 

active and dormant species, often by adding a "persistent radical" in the form of a 

higher oxidation state metal. Kelly and Matyjaszewski’s report focuses on the 

preparation of copolymers using these approaches to obtain well-defined multiblock 

copolymers. Several different catalyst systems, based predominantly on linear amine 

ligands, as well as different synthetic methodologies (i.e., the halogen exchange 

technique) were utilized to successfully prepare these copolymers [70]. 

Recently, the co-terpolymerization reactions, involving two or three monomers for 

the synthesis of synthetic polymers, have been commonly used. The properties of 

available polymers can also be changed by these reactions and novel polymers can be 

obtained by co-terpolymerization reactions. Thus, several useful terpolymers have 

been synthesized and used for various purposes [71]. 
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Figure 2.6. Schematic presentation of all possible arrangements for an ABC 
terpolymer. (a–c) Linear triblock terpolymer, ABC, BAC, CBA, respectively. (d) 
Miktoarm star terpolymer, (e) Cyclic terpolymer. (f–h) One of the chains is cyclic 
(starts and ends at the junction point) and the other two linear.(i-k) One chain is 
linear and the two are cyclic. (l) All chains are cyclic. 

As an important illustration, interesting results have been recently obtained with 

SBM Nanostrengthw block terpolymers produced on an industrial scale. These 

triblocks copolymers combine polystyrene (PS), 1–4 polybutadiene (PBu) and 

polymethylmethacrylate (PMMA) segments. These engineering polymers can, for 

instance, be used as additives, allowing a much better solubility between 

incompatible commodity or technical plastics and fine tuning between toughness and 

stiffness of the host matrix. Detailed characterization of these new block copolymers 

obtained both by controlled radical polymerization and anionic polymerization 

represents a real challenge due to their increasing complexity [68].  
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2.5. Click Chemistry  

Although demand for new chemical materials and biologically active molecules 

continues to grow, chemists have hardly begun to explore the vast pool of potentially 

active compounds. The emerging field of “click chemistry,” a newly identified 

classification for a set of powerful and selective reactions that form heteroatom links, 

offers a unique approach to this problem [72]. “Click chemistry” is a term used to 

describe several classes of chemical transformations that share a number of important 

properties which include very high efficiency, in terms of both conversion and 

selectivity under very mild reaction conditions, and a simple workup [73]. It works 

well in conjunction with structure based design and combinatorial chemistry 

techniques, and, through the choice of appropriate building blocks, can provide 

derivatives or mimics of ‘traditional’ pharmacophores, drugs and natural products. 

However, the real power of click chemistry lies in its ability to generate novel 

structures that might not necessarily resemble known pharmacophores [74]. 

A concerted research effort in laboratories has yielded a set of extremely reliable 

processes for the synthesis of building blocks and compound libraries: 

• Cycloaddition reactions, especially from the 1,3-dipolar family, but also hetero-

Diels-Alder (DA) reactions. 

• Nucleophilic ring-opening reactions, especially of strained heterocyclic 

electrophiles, such as epoxides, aziridines, cyclic sulfates, cyclic sulfamidates, 

aziridinium ions and episulfonium ions.  

• Carbonyl chemistry of the non-aldol type (e.g. the formation of oxime ethers, 

hydrazones and aromatic heterocycles). 

• Addition to carbon–carbon multiple bonds; particularly oxidation reactions, such as 

epoxidation, dihydroxylation, aziridination, and nitrosyl and sulfenyl halide 

additions, but also certain Michael addition reactions [74]. 

Huisgen’s 1,3-dipolar cycloaddition of alkynes and azides yielding triazoles is, 

undoubtedly, the premier example of a click reaction [74]. Recently, DA reaction 

based on the macromolecular chemistry has attracted much attention, particularly for 

providing new materials. As an alternative route, recently, 1,3-dipolar 

cycloadditions, such as reactions between azides and alkynes or nitriles, have been 
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applied to macromolecular chemistry, offering molecules ranging from the block 

copolymers to the complexed macromolecular structures [75]. 

Sharpless and co-workers have identified a number of reactions that meet the criteria 

for click chemistry, arguably the most powerful of which discovered to date is the 

Cu(I)-catalyzed variant of the Huisgen 1,3-dipolar cycloaddition of azides and 

alkynes to afford 1,2,3-triazoles [72]. Because of Cu(I)-catalyzed variant of the 

Huisgen 1,3-dipolar cycloaddition of azides and alkynes reactions’ quantitative 

yields, mild reaction condition, and tolerance of a wide range of functional groups, it 

is very suitable for the synthesis of polymers with various topologies and for polymer 

modification [76]. Because of these properties of Huisgen 1,3-dipolar cycloaddition, 

reaction is very practical. Moreover, the formed 1,2,3-triazole is chemically very 

stable[77]. 

In recent years, triazole forming reactions have received much attention and new 

conditions were developed for the 1,3-dipolar cycloaddition reaction between 

alkynes and azides [78]. 1,2,3-triazole formation is a highly efficient reaction without 

any significant side products and is currently referred to as a click reaction [79].  

Huisgen 1,3-dipolar cycloadditions are exergonic fusion processes that unite two 

unsaturated reactants and provide fast access to an enormous variety of five-

membered heterocycles. The cycloaddition of azides and alkynes to give triazoles is 

arguably the most useful member of this family [80].  

The copper(I)-catalyzed 1,2,3-triazole formation from azides and terminal acetylenes 

is a particularly powerful linking reaction, due to its high degree of dependability, 

complete specificity, and the bio-compatibility of the reactants. With the ~106-fold 

rate acceleration of the copper(I)-catalyzed variant of Huisgen’s 1,3-dipolar 

cycloaddition reaction, the generation of screening libraries has reached a new level 

of simplicity. Two subunits are reliably joined together by formation of a 1,4-

disubstituted 1,2,3-triazole linkage. This ligation process works best in aqueous 

media without requiring protecting groups for any of the most common functional 

groups, enabling compound screening straight from the reaction mixtures (i.e. 

without prior purification) [74].  

Azides usually make fleeting appearances in organic synthesis: they serve as one of 

the most reliable means to introduce a nitrogen substituent through the reaction 
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–R–X→[R–N3]→R–NH2. The azide intermediate is shown in brackets because it is 

generally reduced straightaway to the amine. Despite this azidophobia, this have 

been learned to work safely with azides because they are the most crucial functional 

group for click chemistry endeavors. Ironically, what makes azides unique for click 

chemistry purposes is their extraordinary stability toward H2O, O2, and the majority 

of organic synthesis conditions. The spring-loaded nature of the azide group remains 

invisible unless a good dipolarophile is favorably presented. However, even then the 

desired triazole forming cycloaddition may require elevated temperatures and, 

usually results in a mixture of the 1,4 and 1,5 regioisomers. 

  

 

Figure 2.7. Regioselectivity mechanism of triazole forming cycloaddition 

Since efforts to control this 1,4- versus 1,5-regioselectivity problem have so far met 

with varying success, it was found that copper(I)-catalyzed reaction sequence which 

regiospecifically unites azides and terminal acetylenes to give only 1,4-disubstituted 

1,2,3-triazoles. The process is experimentally simple and appears to have enormous 

scope [80]. 

1,4 triazole 1,5 triazole 
1:1 

1,4 triazole 
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Since the initial discovery of Cu(I)-catalyzed alkyne–azide coupling, numerous 

successful examples have been recorded in the literature, but as of yet, no systematic 

study of optimal conditions has been reported. Further, conditions have varied 

widely, particularly with respect to generation of the active Cu(I) species. Sources of 

Cu(I)  include Cu(I)  salts, most commonly copper iodide, in-situ reduction of Cu(II)  

salts, particularly Cu(II) sulfate, and comproportionation of Cu(0) and Cu(II). Recent 

reports suggest that nitrogen-based ligands can stabilize the Cu(I) oxidation state 

under aerobic, aqueous conditions and promote the desired transformation. Steric 

factors and electronic effects may also play a role in the success of this click 

chemistry [72]. 

 

 

Figure 2.8. Proposed catalytic cycle for the Cu(I)-catalyzed ligation 
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The process exhibits broad scope and provides 1,4-disubstituted 1,2,3-triazole 

products in excellent yields and near perfect regioselectivity [80].  

This ligation process has proven useful for the synthesis of novel polymers and 

materials in many laboratories, and its unique characteristics make it an ideal 

reaction for model network crosslinking. Johnson et al. therefore envisioned an azide 

telechelic macromonomer and a multifunctional small molecule alkyne, the former 

with a cleavable functionality at its center, as fulfilling the requirements for a 

degradable model network. Organic azides are most often made from alkyl halides, 

and several groups have reported the quantitative postpolymerization transformation 

(PPT) of polymeric halides to azides for the copper(I)-catalyzed azide-alkyne 

cycloaddition (CuAAC) reaction by treatment with sodium azide in DMF. Atom 

transfer radical polymerization (ATRP) of various styrenic, acrylic, and methacrylic 

monomers from halide initiators is well-known to provide polymers of low 

polydispersity possessing alkyl halide end groups. Therefore, by a sequence of ATRP 

from a degradable halide-containing initiator, PPT, and CuAAC, one can 

conveniently prepare model networks of different macromonomer structure (e.g., star 

polymers, block copolymers) and incorporate a wide variety of functional groups 

[81]. 

Some click reactions have already been successfully used in polymer and materials 

chemistry. The efficient preparation of well-defined polymeric tetrazoles, or 

dendrimers, amphiphilic block copolymers, cross-linked block copolymer vesicles, 

and adhesives with triazole units has been reported. Click reactions were also used in 

the synthesis of functionalized poly(oxynorbornenes) and block copolymers and are 

a convenient alternative to other coupling reactions applied to polymers prepared by 

ATRP (such as atom transfer radical coupling or reversible thiol oxidative coupling) 

for the preparation of high molecular weight polymeric materials [82].  

The halogen end group can be converted to other functional groups using standard 

organic procedures.  However, the transformation is preferably carried out under 

mild conditions, as the substitution must be as free of side reactions as possible and 

the yield of the transformation reaction must be quantitative. With ATRP, the alkyl 

group of the alkyl halide initiator remains at one end of the produced polymer chain, 

a halogen atom is quantitatively transferred to the other end of the chain. By 

replacement of the halogen end group, several functional groups can be introduced at 
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the polymer chain end [83]. The functionalized  polymers  can  find  many  

applications, for example as macromonomers, telechelics or other specialty polymers 

[84]. An interesting functional group transformation is the one to azide end groups. 

Azide groups can produce nitrenes on thermolysis or photolysis, or can be converted 

to other functionalities such as amines, nitriles, isocyanates, etc [83].  

In addition, click strategies have been used as an approach to synthetic cyclodextrins 

and the decoration of cyclic peptides by glycosylation. Synthetic glycochemicals 

have attracted increasing interest as carbohydrates are involved in a number of 

important biological processes involving highly specific events in cell-cell 

recognition, cell-protein interactions, and the targeting of hormones, antibodies, and 

toxins. Sugars are information-rich molecules, and an increasingly large number of 

known lectins are able to recognize subtle variations of oligosaccharide structure and 

act as decoders for this carbohydrate-encoded information. Gaining insight into the 

factors that control these phenomena may open the way for the development of new 

antiinfective, anti-inflammatory, and anticancer therapeutics and agents [73]. 

Due to their biological activity of click reactions as anti-HIV and antimicrobial 

agents, as well as selective β3 adrenergic receptor agonist, new methods for the regio- 

and/or stereoselective synthesis of both 1,2,3 triazoles and 1,2,3,4-tetrazoles should 

be highly valuable [84]. 

2.6. H-Shaped Polymers 

Through controlling the molecular architecture, block copolymers can be tuned to 

self-assemble into periodic structures of an astounding variety. A lot of work has 

been devoted to studies on block copolymers of different architectures because they 

may self-organize and undergo phase separation, leading to various morphologies 

and interesting properties. However, most of the works focused on linear block and 

star block copolymers. With the development of synthetic methods, block 

copolymers  with more complex architectures, such as H-shaped, π-shaped, comb, 

centipede, and barbwire shape, were synthesized [85]. 

Three-arm star polymers represent the simplest example for branched polymers. The 

next complex structure is the H-polymer, where two sidearms are attached to the 

backbone chain. These polymers play an important role as model materials in 
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rheology, for example to understand the processing behavior of branched polymers 

[86]. 

 

Figure 2.9. H-shaped polymer 

In recent years several publications appeared reporting the synthesis of H-polymers 

or super H-polymers. In the latter case three arms are attached to each end of the 

cross-bar chain instead of two as for the H-shaped polymers. The synthetic 

procedures, however, are similar for both structures [86].  

The first H-shaped polymer was synthesized from styrene by Roovers and 

Toporowski using anionic polymerization; two molecules of poly(styryllithium) were 

reacted with one molecule of methyltrichlorosilane, and the resulting (PS)2Si(CH3)Cl 

was subsequently condensed with α,ω-difunctional poly(styryllithium) [87]. 

Numerous H-shaped polymers such as polystyrene (PS) backbone and side chains, 

[1].  (PS)2-PS-(PS)2, polyisoprene (PI) backbone and side chains [3], (PI)2-PI-(PI)2, 

PI backbone and PS side chains [2,4], (PS)2-PI-(PS)2, and polybutadiene (PB) 

backbone and side chains [5], (PB)2-PB-(PB)2, were successfully prepared. Because 

of its architectural difference, H-shaped polymers show different rheological 

properties, micellar properties, and self assembled structures when compared with 

other linear or branched block copolymers. H-shaped polymers are important as 

model materials in understanding the rheology of branched polymers such as LDPE 

[6-8]. H-shaped copolymers form micelles with lower aggregation numbers which 

results in smaller micellar structures compared to linear block copolymers [9,10]. 

The self-assembly of H-shaped block copolymers show a variety of morphologies 

depending on the preparation conditions [11]. Therefore, the synthesis of H-shaped 

copolymers have become attractive research projects, and several H-shaped 

copolymers have been prepared in recent years [88]. 
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The synthetic strategies of these copolymers are based on anionic polymerization, 

and there are two general synthetic routes. One is anionic polymerization together 

with chlorosilane as coupling agent. Another method is repeating the reactions of 

living anionic polymer chain with aromatic diolefin or polymer capped with aromatic 

olefin. Due to the limited numbers of vinyl monomers applied in the living anionic 

polymerization, until now, H-shaped polymers were prepared from only a few kinds 

of polymers, such as polystyrene (PSt), polyisoprene (PI) and polybutadiene (PBD). 

In addition, after each reaction of living polymer chain with linking agents, trouble 

some purification for removing contaminants from the crude products is necessary, 

because the coupling reactions cannot go to completion and side reactions may 

occur. Therefore, finding a new, convenient, and more versatile synthetic strategy is 

challenging. 

In the research program on star-shaped copolymers, Yu-gang Li et al. synthesized a 

series of star-shaped polymers by controlled radical polymerization using 

multifunctional initiators or by the combination of controlled radical and ring-

opening polymerizations. In the latter case, the synthetic strategy is based on a 

heterofunctional macroinitiator bearing two chemically different functional groups 

that are able to initiate independently two different kinds of polymerizations. Thus, 

they try to extend the synthetic strategies to prepare H-shaped copolymers. 

Compared to anionic polymerization, the controlled radical polymerizations are more 

versatile in monomers, and they are easier to operate. They reported for the first time 

the synthesis of the H shaped copolymer (PSt)2PEG(PSt)2 by atom transfer radical 

polymerization (ATRP) using multifunctional macroinitiator [88]. 
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3. EXPERIMENTAL WORK 

3.1. Materials 

St (99%, Merck), tBA (99%, Aldrich), tert-butylacrylate (tBA, 99%, Aldrich) and 

methyl methacrylate (MMA, 99%, Acros) were passed through a basic alumina 

column to remove the inhibitor and then distilled over CaH2 in vacuo before use. 

N,N,N’,N’’,N’’-Pentamethyldiethylenetriamine (PMDETA, Aldrich) was distilled 

over NaOH before use. Poly(ethylene glycol) (PEG) (Mn = 6000, Acros) with 

dihydroxy end group was dried over anhydrous toluene by azeotropic distillation. 

Tetrahydrofuran (THF, 99.8%, J.T. Baker) was dried and distilled over LiAlH4. 

Other solvents were purified by conventional procedures. All other reagents were 

purchased from Aldrich and used as received. 2-(2-bromo-2-methyl-

propionyloxymethyl)-3-hydroxy-2-methylpropionic acid 2-phenyl-2-(2,2,6,6-

tetramethyl-piperidin-1-yloxy)-ethyl ester [89], 1,  and 1,2-bis (bromoisobutyrl- 

oxy)ethane [90],  difunctional initiator, were synthesized according to the literature 

procedures.  

3.2. Synthesis of Initiator 

3.2.1. Synthesis of benzoic acid 2-phenyl-2-(2,2,6,6-tetramethyl-piperin-1-yloxy)-

ethyl ester [1] 

In a 500 mL of two-necked round bottom flask, equipped with a magnetic stirrer, 

TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy) (6 g, 19.2 mmol) and BPO (9.4 g, 

38.8 mmol) were dissolved in 600 mL of freshly distilled Styrene, then flask 

conducted three times evacuation and subsequent nitrogen purging. The solution was 

kept for 30 minutes stirring at 90 oC in an oil bath. After that period more styrene 

removed via back distillation and flask dissolved in 200 mL of ethyl acetate then 

extracted two portions (100 mL) of NaOH (1%). The combined organic phase was 

dried with Na2SO4 and solvent evaporated. The crude product purified by column 

chromatography over silica gel eluting just with dichloromethane, and the product 
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fully purified by recrystallization from cold hexane concentrated to yield 4.2 g  (11 

mmol, 58 %) as white needles. 

3.2.2. Synthesis of 2-phenyl-2-(2,2,6,6-tetramethyl-piperin-1-yloxy)-ethanol [2] 

Product 1 (4.2 g, 11 mmol) was dissolved in 70 mL of absolute ethanol and 17 mL of 

2 N KOH and kept for 5 h to reflux. Then the product is extracted with water and 

dichloromethane (1:1). The combined liquid phase is again extracted with 

dichloromethane and combined organic phase dried with Na2SO4, evaporation of the 

solvent yielded 3.3 g (12 mmol, 96%) as yellow viscous liquid without further 

purification. 

3.2.3. Synthesis of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid [3]  

The 2,2-bis(hydroxymethyl)propanoic acid (4 g, 29.84 mmol) along with p-TSA 

(0.112g, 0.58 mmol), and 2,2-dimethoxypropane (5.6 mL, 44.8 mmol) dissolved in 

20 mL of dry acetone , and stirred 2 h at room temperature. In the vicinity of 2 h, 

while stirring continued the reaction mixture was neutralized with 3 mL of totally 

NH4OH (25%), and absolute ethanol (1:1), filtered off by-products and subsequent 

dilution with dichloromethane (50 mL) , and once extracted with distilled water (20 

mL). The organic phase dried with Na2SO4, concentrated to yield 3.9 g (22.4 mmol, 

75%) as white solid after evaporation of the solvent.  

3.2.4. Synthesis of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid 2-phenyl-2-

(2,2,6,6-trimethyl-piperidin-1-yloxy)-ethyl ester [4] 

Compound 2 (3.3 g, 12 mmol) was dissolved in 20 mL of dry dichloromethane along 

with compound 3 (2.19 g, 12.6 mmol), and DPTS (0.561 g, 1.7 mmol) were added in 

that order, after stirring 5 minutes at room temperature DCC (3.198 g, 15.5 mmol) 

dissolved in 10 mL CH2Cl2 was added. Reaction mixture was then left overnight at 

room temperature to stir. After filtration off the urea byproduct, the solvent removed, 

and the remaining product was purified by column chromatography over silica gel 

eluting with hexane/ethylacetate (9:1). Solvent was removed in vacuum to give the 

yield 3.16 g  (7.3 mmol, 62%) as pale yellow.  
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3.2.5. Synthesis of 3-hydroxy-2-hydroxymethyl-2-methyl-propionic acid 2-

phenyl-2-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-ethyl ester [5] 

Compound 4 (3.16 g, 7.3 mmol) was dissolved in 12 mL of THF and 12 mL of 1 M 

HCl. The reaction mixture was then stirred for 2h at room temperature. The 

precipitated product was filtered off, after removing of THF in vacuum, the reaction 

mixture extracted with 160 mL of CH2Cl2, and same 40 ml distilled water. The 

combined organic phase dried with Na2SO4, evaporation of the solvent concentrated, 

added hexane and kept in deep freeze an overnight and then solvent was removed to 

yield 2.5 g  (6.3 mmol, 89%) as white solid.  

3.2.6. Synthesis of 2-(2-bromo-2-methyl-propionyloxymethyl)-3-hydroxy-2-

methyl propionic acid 2-phenyl-2-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-ethyl 

ester [6] 

Compound 5 (2.5g, 6.3 mmol) was dissolved in 20 mL of CH2Cl2, and Et3N (2 mL, 

13.8 mmol) was added. The reaction mixture was cooled to 0 oC. Isobutrylbromide 

was added dropwise within 30 minutes. The reaction mixture was stirred 4 h at room 

temperature. After filtration off little byproduct, the mixture extracted with CH2Cl2, 

and saturated aq. NaHCO3. The water phase again extracted with CH2Cl2, and 

combined organic phase dried with Na2SO4. The solution was concentrated, and the 

crude product was purified by column chromatography over silica gel eluting with 

hexane/ethylacetate (10:1) to give the yield 1.15 g (2.12 mmol, 72%) as pale yellow. 

3.2.7. Synthesis of pen-4-ynoic acid 3-(2-bromo-2-methyl-propionyloxy)-2-

methyl-2-[2-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)-ethoxycarbonyl]-

propyl ester [7] 

6 (0.85 g, 1.56 mmol) was dissolved in 15 mL of dichloromethane. To this solution, 

DMAP (0.190 g, 1.56 mmol) and 4-pentynoic acid (0.199 g, 2.03 mmol) were added 

in that order. After stirring 5 minutes at room temperature, DCC (0.48g, 2.34 mmol) 

dissolved in 10 mL CH2Cl2 was added to the reaction medium. The reaction mixture 

was then left overnight at room temperature to stir. After filtration off the byproduct 

urea the solvent was removed, and the remaining product was purified by column 

chromatography over silica gel eluting with hexane/ ethylacetate (4:1) yielding 7 

(0.765 g; 90%). 1H NMR (CDCl3) 7.32-7.26 (m, 5H, ArH), 4.94 and 4.91 (dd, 1H, 

ArCH), 4.57 and 4.52 (dd, 1H, ArCHCHH), 4.42 and 4.37 (dd, 1H, ArCHCHH), 
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4.18-4.11 (m, 4H, CH2OC=O), 2.45-2.40 (m, 4H, C=OCH2CH2C≡CH), 1.95 (t, 1H, 

HC≡C-CH2), 1.83 (6H, CBr(CH3)2), 1.58-0.74 (m, 21H).  Anal. Calc. for 

C31H44NO7Br: C, 59.80 %; H, 7.12 %; N, 2.25 %. Found: C, 59.75 %; H, 7.06 %; N, 

2.20 %. 

3.3. Preparation of polystyrene macroinitiator by NMP of St 

PS macroinitiator was prepared using NMP of St (2 mL, 17.4 mmol) in the presence 

of 7 (0.054 g, 0.087 mmol). The reaction mixture was degassed by three freeze-

pump-thaw (FPT) cycles and left in vacuo. The tube was then placed in an oil bath 

thermostated at 125 oC for 17 h. The polymerization mixture was diluted with THF, 

and precipitated in methanol. The obtained polymer was dried for 24 h in a vacuum 

oven at 25 oC (Mn,GPC = 9800; Mn,theo = 9300; Mn,NMR = 10000; Mw/Mn = 1.2). 

3.4. Preparation of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) by 

ATRP of MMA 

The synthesis of PS-b-PMMA was accomplished by the ATRP of MMA in toluene 

with CuCl/PMDETA as a catalyst and the previously obtained PS as a macroinitiator. 

To a Schlenk tube equipped with a magnetic stirring bar, the degassed MMA (1 mL, 

9.35 mmol), PMDETA (6.5 µL, 0.031 mmol), CuCl (3 mg, 0.031 mmol), toluene (1 

mL) and PS macroinitiator (0.31 g, 0.031 mmol) were added in that order. The 

polymerization was carried out at 60 oC under degassed conditions for 1 h. After the 

polymerization, the reaction mixture was diluted with THF and then passed through a 

column of neutral alumina to remove metal salt. The polymerization mixture was 

diluted with THF and precipitated in methanol. The obtained block copolymer was 

dried for 24 h in a vacuum oven at 25 oC (Mn,GPC =17000; Mn,NMR = 17800; Mn,theo = 

16000; Mw/Mn = 1.17). 

3.5. Synthesis of diazide end-functionalized PtBA (N3-PtBA-N3) 

3.5.1. Preparation of difunctional initiator [8] 

Ethylene glycol (0.5g, 8 mmol), DMAP (0.492g, 4 mmol) was dissolved in 20 mL of 

CH2Cl2, and Et3N (3.347 mL, 23mmol) was added into two neckled reaction baloon. 

The reaction mixture was cooled to 0 oC. 3 mL of 2-bromoisobutryl which is  
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dissolved in CH2Cl2 was added dropwise. After addition, first, the reaction mixture 

was stirred 30 min. at 0 oC. 30 min. later,  the reaction mixture was stirred 24 h at 

room temperature. After filtration off little byproduct, the mixture extracted with 

0.5M HCl and CH2Cl2, and organic phase again extracted with distilled water. 

Organic phase dried with Na2SO4., solvent is evaporated. Solid product is crystallized 

with distilled hexane, and ethylacetate was added to give yield 0,475g (1,448 mmol, 

95%).  

3.5.2. Preparation of dibromo end-functionalized PtBA (Br-PtBA-Br) by ATRP 

of tBA [9] 

Dibromo end-functionalized PtBA was prepared by the ATRP of tBA in bulk with 

CuBr/PMDETA as catalyst and difunctional initiator. To a Schlenk tube equipped 

with a magnetic stirring bar, the degassed tBA, (10 mL, 68.27 mmol), ligand, 

(PMDETA, 95 µL, 0.455 mmol), CuBr (65 mg, 0.455 mmol) and difunctional 

initiator (0.081 g, 0.227 mmol) were added in the order mentioned. The 

polymerization was carried out at 80 oC under degassed conditions for 20 min. After 

the polymerization, the reaction mixture was diluted with THF and then passed 

through a column of neutral alumina to remove metal salt. The excess of THF and 

the unreacted monomer were evaporated under reduced pressure. The resulting 

polymer was dissolved in THF and precipitated into excess amount of cold 

methanol/water (80/20; v/v). After decantation, the polymer was dissolved in 

CH2Cl2, extracted with water and dried over Na2SO4. Finally, the organic phase was 

evaporated to give dibromo end-functionalized PtBA (Mn,GPC = 5100; Mn,theo = 4970; 

Mn,NMR = 4300; Mw/Mn = 1.29). 

3.5.3. Preparation of diazide end-functionalized PtBA (N3-PtBA-N3) [10] 

To a solution of dibromo end-functionalized PtBA (Br-PtBA-Br) (0.761 g, 0.177 

mmol) in dimethylformamide (DMF) (10 mL), NaN3 (0.2 g, 3 mmol) was added. 

After stirring the reaction mixture for overnight at room temperature, CH2Cl2 and 

water were added and the organic layer was extracted for another three times with 

water and dried over Na2SO4. The purification procedure was the same as described 

for the preparation of Br-PtBA-Br. After purification, the presence of azide end-

groups of N3-PtBA-N3 was confirmed by FT-IR (cm-1): 2109 (s) (azide stretching). 
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3.6. Synthesis of azide end-fuctionalized PEG (N3-PEG-N3) 

3.6.1. Preparation of ditosylated-PEG (TsO-PEG-OTs) [11] 

PEG (Mn = 6000 g/mol) (3 g, 0.5 mmol) with dihydroxyl end group is dissolved in 5 

mL of dichloromethane. To this solution, added was DMAP (0.0305 g, 0.25 mmol), 

triethylamine (0.416 mL, 3 mmol) and toluene-4-sulfonyl chloride (tosyl chloride) 

(0.572 g, 3 mmol). Reaction mixture was then left overnight at room temperature to 

stir. It was first extracted with cold 4 M HCl then with distilled water and dried over 

Na2SO4. The organic phase was evaporated to 1/4 of its volume and precipitated into 

diethyl ether. The product was obtained as white solid, 2.93 g (0.46 mmol, 97.6 %). 

3.6.2.Preparation of azide end-fuctionalized PEG (N3-PEG-N3) [12] 

Thus obtained ditosylated-PEG (2.93 g, 0.46 mmol) was dissolved in DMF (15 mL) 

and sodium azide (NaN3) (0.299 g, 4.6 mmol) was added to this solution. After 

stirring the reaction mixture overnight at room temperature, dichloromethane and 

water were added and the organic layer was extracted for another three times with 

water and dried over Na2SO4. The polymer was precipitated in diethylether. The 

obtained N3-PEG-N3 was dried for 24 h in a vacuum oven at 25 oC. The yield was 

2.80 g (95.5 %). 

3.7. Synthesis of H type terpolymer  

3.7.1. Click reaction between PS-b-PMMA and N3-PtBA-N3   

Alkyne functionalized PS-b-PMMA copolymer (0.19 g, 0.01 mmol) and N3-PtBA-N3 

(0.0221 g, 0.005 mmol) were dissolved in nitrogen-purged DMF (5 mL) in a Schlenk 

tube equipped with magnetic stirring bar. CuBr (3.5 mg, 0.025 mmol) and PMDETA 

(5.2 µL, 0.025 mmol) were added and the reaction mixture was degassed by three 

FPT cycles and left in argon and stirred at room temperature for 24 h.  Reaction 

mixture was passed through alumina column to remove copper salt, precipitated into 

methanol and dried in vacuum oven at 25 oC (Mn,GPC = 32000; Mw/Mn =1.33). 

3.7.2. Click reaction between PS-b-PMMA and N3-PEG-N3  

Alkyne functionalized PS-b-PMMA copolymer (0.15 g, 0.008 mmol) and N3-PEG-

N3 (0.025 g, 0.004 mmol) were dissolved in 5 mL of nitrogen-purged DMF in a 
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Schlenk tube. CuBr (0.003 g, 0.02 mmol) and PMDETA (4.4 µL, 0.02 mmol) were 

added and the reaction mixture was degassed by three FPT cycles and left in argon 

and stirred at room temperature for 24 h. The purification step was the same as 

described above (Mn,GPC = 22000; Mw/Mn = 1.16). 

3.8. Preparation of samples for AFM 

Solutions of polymers were prepared in toluene at a concentration of 5 mg/mL. Films 

were spin-coated at 2000 rpm for 1 min from these solutions on oxidized silicon 

substrates. Spin-coated films were kept in vacuum oven at low temperatures for 

solvent evaporation. 

3.9. Characterization   

1H NMR spectra was recorded on a Bruker NMR Spectrometer (250 MHz) in CDCl3. 

Gel permeation chromatography measurements were obtained from an Agilent 

instrument (Model 1100) consisting of a pump, a refractive index (RI) detector, and 

four Waters Styragel columns (HR 5E, HR 4E, HR 3, and HR 2). THF was used as 

eluent at a flow rate of 0.3 mL/min at 30 oC. Toluene was as an internal standard. 

Data analyses were performed with PL Caliber Software. The molecular weight of 

the polymers was calculated on the basis of linear polystyrene standards (Polymer 

Laboratories). Differential Scanning Calorimetry (DSC) was measured on a DSC 

Q100 (TA Instruments) at a heating rate of 10 oC/ min under nitrogen atmosphere. 

All data were collected from a second heating cycle and the glass transition 

temperatures (Tg) were calculated as a midpoint of thermogram.  NT-MDT Solver 

P47 Atomic Force Microscopy (AFM) was used in tapping mode for morphological 

characterization. Ultra sharp Si cantilevers having force constant of 48 N/m were 

used.   
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4. RESULTS and DISCUSSION 

4.1. Synthesis of Initiator 

The initiator synthesis was carried out as follows: First of all, the synthesis of 

benzoic acid 2-phenyl-2-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-ethyl ester (1) was 

carried out by heating styrene in the presence of benzoyl peroxide and TEMPO for 

30 minutes. The hydrolysis of ester was then carried out to give the 2-phenyl-2-(2, 2, 

6, 6-tetramethyl-piperidin-1-yloxy)-ethanol (2). The characteristic peak of aromatic 

protons adjacent to ester group at δ 7.9 ppm completely disappeared after hydrolysis. 

Moreover, the new signals appeared at δ 5.9 ppm of –OH and the shifts of the –CH2 

and –CH protons adjacent to hydroxyl and aromatic group, respectively, clearly 

confirm the successful hydrolysis. The 1H NMR spectra of the corresponding ester 

and alcohol precursors are presented in Figures 4.1. and 4.2., respectively. 
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Figure 4.1. The 1H NMR spectrum of benzoic acid 2-phenyl-2-(2, 2, 6, 6-
tetramethyl-piperin-1-yloxy)-ethyl in CDCl3. 

 

Figure 4.2. The 1H NMR spectrum of 2-phenyl-2-(2, 2, 6, 6-tetramethyl-piperin-1-
yloxy)-ethanol in CDCl3. 

In order to convert the hydroxyl functionality at compound 2 into two hydroxyl 

functionalities, successive protection, esterification and deprotection reactions were 
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realized. For this purpose, the hydroxyl protected acidic compound, 3, was 

synthesized according to the following reaction. 

In this reaction, 2, 2-bis (hydroxymethyl)-propanoic acid was reacted with excess 

amount of dry acetone using p-toluene sulfonic acid as catalyst. Additionally, 2,2-

dimethoxy-propane was deliberately used to provide acetone during the reaction. The 
1H NMR spectrum of the compound, (3), is shown in Figure 4.3. 
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Figure 4.3. The 1H NMR spectrum of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid 
in CDCl3. 
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Subsequent esterification reaction between alcohol and hydroxyl protected acid was 

carried out using catalytic amount of DPTS (dimethylamino-4-toluene-sulfonate).  

Although this procedure was reported to be a suitable method for the esterification 

reaction [53], the main drawback of this system is related to the difficulties arising 

from the removal of formed urea by product. However,  this was overcomed by 

further precipitation followed by filtration method. The 1H NMR spectrum of the 

compound, (4), is shown in Figure 4.4. 
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Figure 4.4. The 1H NMR spectrum of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid 
2-phenyl-2-(2,2,6-trimethyl-piperidin-1-yloxy)-ethyl ester in CDCl3. 

Finally, deprotection step was easily achieved by acidic hydrolysis using 1 M HCl 

and THF at room temperature. 1H NMR spectrum of the desired compound, (5), is 



 37 

shown in Figure 4.5. From the NMR spectrum -OH protons (e-e’) at δ 2.7 ppm 

suggests that deprotection step was carried out successfully. 

 

Figure 4.5. The 1H NMR spectrum of 3-hydroxy-2-hydroxymethyl-2-methyl-
propionic acid 2-phenyl-2-(2,2,6,6-tetramethyl-piperidin-1-yloxy)-ethyl ester in 
CDCl3. 

In order to introduce ATRP functionality into the synthesis, second esterification 

reaction was achieved. In this connection, it should be pointed out that at this step 

severe reaction conditions may cause the hydrolysis of the ester groups present in the 

structure. Therefore, the esterification process was performed at room temparature 

and 2-bromoisobutryl bromide was added in a dropwise manner. The 1H NMR 

spectrum of the compound 6 showed that the –OH protons of compound 5 at δ 2.7 

ppm completely removed. Moreover, the new –OH proton at δ 2.2 ppm belongs to –

CH2 group, the shift of the -CH2 protons adjacent to ATRP functionality to δ 4.1 ppm 

and the –CH3 protons on ATRP functionality at δ 1.89 ppm indicate that 

esterification reaction was carried out successfully. The 1H NMR spectrum of the 

resulting compound, (6), is shown in Figure 4.6. 
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Figure 4.6. The 1H NMR spectrum of 2-(2-bromo-2-methyl-propionyloxymethyl)-3-
hydroxy-2-methyl propionic acid 2-phenyl-2-(2,2,6,6-tetramethyl-piperidin-1-
yloxy)-ethyl ester in CDCl3. 

4.2. Synthesis of Polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) 

Macroinitiator 

For this purpose, first of all 7 containing proper initiating functionalities for ATRP 

(tert-bromide) and NMP (2,2,6,6-tetramethyl-piperidin-1-yloxy, TEMPO) was 

prepared from 6 and 4-pentynoic acid. The 1H NMR spectrum of the compound 7 

showed that a broad peak of -CH2OH at δ 3.6 ppm disappeared and a corresponding 

ester (CH2OC=O) signal came out at around δ 4.10 ppm together with another CH2 

ester linkage of 7. Furthermore, from the spectrum, CH2-CH protons adjacent to 

TEMPO, HC≡C- hydrogen of alkyne, and CH3 protons of tert–bromide functionality 

could easily be detected at δ 4.93-4.36, δ 1.95, and δ 1.83 ppm, respectively.  Thus 

obtained 7 was used as an initiator for NMP of St at 125 oC. The theoretical number- 
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average molecular weight (Mn,theo) of PS precursor was calculated by using following 

equation: Mn,theo = ([M]o/[I]o) X conversion X 104 + MW of 7 (622.6). The number 

average molecular weight calculated by GPC (Mn,GPC) was consistent with that of 

Mn,theo (Table 4.1.). The 1H NMR spectrum of the compound, (7), is shown in Figure 

4.7. 
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Figure 4.7. The 1H NMR spectrum of 4-pentynoic acid 3-(2-bromo-2-methyl-
propionyloxy)-2-methyl-2-[2-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy) 
ethoxycarbonyl]-propyl ester in CDCl3. 

Then PS precursor containing tert-bromide functionality was used as a macroinitiator 

in ATRP of MMA in the presence of CuBr/PMDETA as a catalyst in toluene at 60 
oC. Mn,theo of PS-PMMA copolymer was calculated according to Mn,theo = ([M]o/[I]o) 

X conversion X 100.12 + Mn,NMR of PS precursor, and the molecular weight of the 

resulting copolymer (Mn,NMR) was determined accordingly from the integration of the 

signals at δ 3.6 and δ 6.2-7.5  ppm related to OCH3 of PMMA and aromatic protons 

of PS segments, respectively. The theoretical, NMR and GPC molecular weights are 

in fairly good agreement (Table 4.1.). 
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Table 4.1. Polymers obtained from the living radical polymerizations. 

Entry 
 
 

Monomer 
 
 

[M]o 
 

(mol.L-1) 

[M]o/[I]o 
 
 

Initiator 
 
 

Time 
 

(h) 

Conv. 
 

(%) 

Mn,theo 

 

 

Mn,GPC
e 

 

 

Mn,NMR 

 

 

Mw/Mn 

 

 

PSa St 8.73 200 7 17 41 9300 9800 10000 1.20 

PS-PMMAb MMA 4.67 300 PS 1 20 16000 17000 17800 1.17 

Br-PtBA-Brc 
tBA 6.83 300 DFId 0.33 12 5000 5200 4300 1.29 

a[M]o:[I]o = 200; polymerization was carried out in bulk at 125 °C.  

b[M]o:[I]o: [PMDETA]o : [CuCl]o = 300:1:1:1;  polymerization was carried out in toluene at 60 °C. 

c[M]o:[I]o: [PMDETA]o : [CuBr]o = 300:1:2:2; polymerization was carried out at 80 oC.  

dDFI = difunctional initiator. 

eMolecular weigths were calculated according to linear PS standards. 
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4.3. Synthesis of diazide end-functionalized PtBA and PEG 

Br-PtBA-Br precursor was obtained from ATRP of tBA by using difunctional 

initiator (8), in the presence of PMDETA/CuBr catalyst system in bulk at 80 oC.  

Mn,NMR was calculated by comparison of the integrals of the CH units of the PtBA at 

δ 2.2 ppm and that of the OCH2CH2O of the initiator fragment at δ 4.2 ppm.  Mn,theo, 

Mn,NMR and Mn,GPC values of Br-PtBA-Br (9), are in good agreement (Table 4.1.).   

Br-PtBA-Br precursor was then converted quantitatively to diazide form in the 

presence of NaN3 in DMF. The formation of N3-PtBA-N3 precursor, 10, was 

monitored by 1H NMR spectroscopy following the disappearing signal of the CH-Br 

end group at around δ 4.1 ppm and the appearing of the new CH-N3 at δ 3.7-3.6 ppm. 

It should be noted that Mn,GPC of N3-PtBA-N3 is calculated as 5250 and close to that 

of Br-PtBA-Br.     

Moreover, dihydroxyl-end functionalized PEG was first tosylated and then converted 

to diazide form by reacting NaN3 in DMF. The structure of N3-PEG-N3, 12, was 

confirmed 1H NMR spectroscopy. The signals originating from the CH2O end group 

of the PEG at 4.1 ppm shifted to main peak of PEG at 3.6 ppm upon the azide 

formation. Additionally, the ArH δ 7.8-7.3 ppm and CH3 δ 2.4 ppm of the tosyl 

group disappeared from the spectrum.  
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4.4. Synthesis of H-shaped terpolymers through click reactions 

The “click” reactions between PS-PMMA copolymer with alkyne functionality and 

diazide end-functionalized PtBA or PEG afforded the corresponding H-shaped 

heteroarm terpolymers. 

As given in the Experimental, we used an exact equivalent of alkyne per azide 

function in both click reactions, since the separation of the unreacted PS-PMMA 

precursor would cause a problem. The formation of H-shaped heteroarm terpolymers 

were confirmed by NMR and GPC measurements.  

1H NMR spectrum of (PS)(PMMA)-PtBA-(PMMA)(PS) H-shaped polymer  

displayed characteristic signals at δ 6.2-7.5, 3.6 and 1.4 ppm assignable to the ArH of 

the PS, the OCH3 of the PMMA and the C(CH3)3 of the PtBA segments, respectively 

(Fig.4.8.). The presence of a characteristic peak of the PtBA segment confirms the 

click reaction, due to the solubility of the unbound PtBA in MeOH during the 

recovery of H-shaped polymer. 
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Figure 4.8. The 1H NMR spectrum of (PS)(PMMA)-PtBA-(PMMA)(PS) H-shaped 
polymer  in CDCl3.  
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Moreover, an analysis on the integration values of the segments (PtBA and PS-

PMMA) obtained from the spectrum of the H-shaped polymer displayed that click 

reaction was occurred quantitatively between PS-PMMA and PtBA precursors 

(Table 4.2.).  

Here, Mn,theo of the H-shaped polymer is calculated according to the equation: Mn,theo 

=  Mn,NMR of PtBA + 2 X Mn,NMR of PS-PMMA. Moreover, Mn,NMR is derived from 

the 1H NMR spectrum of the H-shaped polymer taking into account the ratio of the 

integrated values of the main chain (PtBA) to the side chain (PS and PMMA).  

1H NMR spectrum of (PS)(PMMA)-PEG-(PMMA)(PS) H-shaped polymer showed  

a characteristic peak of PEG at 3.63 ppm affording the incorporation of PEG into 

PMMA-PS copolymer due to the solubility of the unbound PEG precursor in MeOH 

as precipitation solvent. A quantitative analysis of the corresponding segments also 

indicated that Mn,theo  of H-shaped polymer was rather close to that of Mn,NMR (Table 

4.2.). 
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Table 4.2. H-shaped polymers obtained from click reactions 

 
H-shaped polymers 

 
Precursors Mn,theo

c Mn,NMR
d Mn,GPC

e Mw/Mn
e 

(PS)(PMMA)-PtBA-
(PMMA)(PS) 

N3-PtBA-N3 + PS-PMMAa 39900 34800 32000 1.33 

(PS)(PMMA)-PEG-
(PMMA)(PS) 

N3-PEG-N3 + PS-PMMAb 41600 36500 22000 1.16 

 

a[N3-PtBA-N3]o/ [PS-b-PMMA]o / [CuBr]o/[PMDETA]o= 1/2/5/5, the click reaction was carried out in DMF at 25°C. 

b[N3-PEG-N3]o / [PS-b-PMMA]o / [CuBr]o/[PMDETA]o= 1/2/5/5, the click reaction was carried out in DMF at 25°C. 

c
Mn,theo = Mn,NMR (PtBA) + 2 X Mn,NMR (PS-PMMA).    

dCalculated from 1H NMR spectrum of the H-shaped polymer taking into consideration the ratio of the integrated  

values of the main chain (PtBA or PEG) to that of the side chain (PS and PMMA). 

eMolecular weigths were calculated according to linear PS standards. 
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From GPC analysis, it was clearly observed that traces for both PMMA-PS and PtBA 

segments disappeared and a new monomodal trace in the higher molecular weight 

region appeared revealing the incorporation of the PtBA segment into the H-shaped 

polymer (Fig. 4.9.). 

                  

Figure 4.9. GPC traces of (PS)b(PMMA), PtBA and (PS)(PMMA)-PtBA-
(PMMA)(PS) H-shaped polymer 

Figure 4.10. showed the evolution of GPC traces. A clear shift to the higher 

molecular weight region was observed. A GPC trace of (PS)(PMMA)-PEG-

(PMMA)(PS) H-shaped polymer is monomodal and displays almost no tail in the 

lower molecular weight region indicating an efficient click reaction between PEG 

and PS-PMMA precursors.    

 

 

 

 

 



 49 

 

Figure 4.10. GPC traces of (PS)b(PMMA), PEG and (PS)(PMMA)-PEG-
(PMMA)(PS) H-shaped polymer 

Thermal properties of H shaped polymers were probed by DSC.  (PS)(PMMA)-PEG-

(PMMA)(PS) H-shaped polymer showed a Tm = 22  and Tg = 88 oC, corresponding 

to the PEG and PS/PMMA precursors, respectively.  However, a Tg for PEG segment 

is not apparent from DSC analysis. For the case of (PS)(PMMA)-PtBA-

(PMMA)(PS) H-shaped polymer, two Tgs are evident: one at 45 oC corresponding to 

PtBA and at 100 oC corresponding to PS/PMMA precursors.    

AFM investigations confirmed the phase separation between PS and PMMA blocks 

in the polymers and showed different morphologies for the two H-type polymers. 

Fig. 4.11. shows the AFM height pictures (Fig. 4.11a-4.11c) and phase pictures (Fig. 

4.11d-4.11f), respectively, for PS-b-PMMA, (PS)(PMMA)-PEG-(PMMA)(PS) and 

(PS)(PMMA)-PtBA-(PMMA)(PS). AFM height picture of PS-b-PMMA diblock 

copolymer (Fig. 4.11a) showed 2-3 nm height irregularly distributed surface 

undulations. The corresponding phase picture (Fig. 4.11d) shows a clear phase 

contrast between the lower and higher parts on the surface. The lower parts are bright 

in the phase picture and the higher parts are dark. This indicates a clear phase 

separation between the PS and PMMA blocks such that the lower surface energy PS 

block stays higher on the surface. In fact, annealing this film above the glass 

transition temperatures of both blocks (~100 oC) allowed PS to cover the top surface 

resulting in a smooth surface in height picture and a uniform phase in phase picture. 
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The height and phase picture of the H-type polymer (PS)(PMMA)-PtBA-

(PMMA)(PS) (Fig. 4.11c and Fig. 4.11f, respectively) showed similar features to 

those of PS-b-PMMA. The height difference between the lower and higher parts was 

2-3 nm and appeared bright and dark, respectively, in phase picture. The size of the 

higher regions was larger than that of PS-b-PMMA. This may be due to the increased 

density of PS blocks in the H-type polymer as two PS-b-PMMA chains were 

attached to a central PtBA block. The surface morphology of (PS)(PMMA)-PEG-

(PMMA)(PS) was significantly different than (PS)(PMMA)-PtBA-(PMMA)(PS). A 

very smooth surface is seen in the height picture of Fig. 4.11b. But the phase picture 

of Fig. 4.11e shows ordered regions of rods that extend from lower right corner to 

upper left corner of the picture. The average width of these rods is approximately 30 

nm.  We attribute the observed rods to the self assembly of (PS)(PMMA)-PEG-

(PMMA)(PS) into cylinders in which the central PEG blocks form the core of the 

cylinder with the PS and PMMA blocks on the shell. The phase picture of Fig. 4.11e 

shows the organization of the PS and PMMA blocks in the shell on the top surface. 

Our investigations of the detailed structure of this morphology have been continuing. 

The driving force for the morphology of ordered cylinders is the strong phase 

separation between the central PEG block and PS and PMMA. The tendency of PEG 

to crystallize may also contribute to the morphology formation. In the case of 

(PS)(PMMA)-PtBA-(PMMA)(PS), the three –CH3 in the side group of PtBA may be 

preventing the strong segregation with the PS groups and hindering the formation of 

such an ordered morphology. 
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Figure 4.11. AFM images of  (PS)-b-(PMMA), (PS)(PMMA)-PtBA-(PMMA)(PS) 
and (PS)(PMMA)-PEG-(PMMA)(PS) polymers  

 

 

 

(a) (b) 

(c) 

(f) (e) 

(d) 
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Figure 4.11. Schematic presentation of H-shaped terpolymers through click reaction 
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CONCLUSION  

In conclusion using click chemistry strategy, two types of H shaped polymer 

containing PEG or PtBA as a main chain and PS-PMMA as side chains was 

successfully prepared. For this purpose, first, trifunctional initiator, pen-4-ynoic 

acid3-(2-bromo-2-methyl-propionyloxy)-2-methyl-2-[2-phenyl-2-(2,2,6,6-

tetramethylpiperidin-1-yloxy)-ethoxycarbonyl]-propyl ester 7, with tertiary bromide 

(for ATRP) and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) (for NMP) 

functionalities and an alkyne moiety was synthesized. The initiator 7, thus obtained 

was used in the subsequent living radical polymerization routes such as ATRP of 

MMA and NMP of St, respectively, in order to give (PMMA)-(PSt) copolymer with 

controlled molecular weight and low polydispersity (Mn,GPC =17000; Mn,NMR = 17800; 

Mn,theo = 16000; Mw/Mn = 1.17). Second, the click reaction between alkyne 

functionalized (PMMA)-(PSt) copolymer and di-azide end functionalized PtBA and 

PEG afforded the corresponding H-shaped heteroarm terpolymers.  

In this study, an H-shaped polymer was synthesized that has two thermodynamically 

incompatible arms (PS and PMMA) on either side of the central unit (PtBA or PEG) 

by using click chemistry. Both NMR and GPC analyses confirmed the H-shaped 

structures. GPC traces of H-shaped polymers displayed monomodal behavior and 

narrow molecular weight distribution. Moreover, the H-shaped structures were 

analyzed by AFM measurements.  
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