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3D MODEL BASED STOCHASTIC TRACKING OF LICENSE PLATES IN 

VIDEO SEQUENCES 

SUMMARY 

 
The aim of this work is 3D tracking of license plates from video in order to 
determine the state (spatial position and 3D orientation) of the license plate from 
sequential frames of the video. This can be accomplished in a brute force by testing 
every possible orientation and translation and then selecting the one that best fits the 
current frame. If all six degrees of spatial freedom of the object are to be determined, 
the state space of the object is six dimensional. Setting the number of possible values 
of each degree of freedom to 100, the task of tracking by brute force then requires 
1006 comparisons of a state with the image data. Even with such a limited resolution 
and a six dimensional feature space, it is clear that, it is computationally impossible 
to perform tracking in real time by brute force. That is where stochastic tracking is 
meaningful. A stochastic process is one whose behavior is non-deterministic in that 
the next state of the environment is partially but not fully determined by the previous 
state of the environment. Instead of comparing every possible configuration of the 
object with each video frame, the idea behind stochastic tracking is to make a set of 
guesses of the state, compare these guesses with the current frame, and use the result 
of this comparison as the basis for a new set of guesses when the next frame comes. 
The new guesses are made by selecting the best guesses from the last frame and 
applying a model of the movement of the object from one frame to the next. The set 
of guesses (called particles or samples) will frame by frame converge around the 
correct state of the object. 

In recent years, there has been a great interest in applying Particle Filtering to 
computer vision problems. The specialized Particle Filtering method for computer 
vision problems is introduced as Condensation or Sequential Importance Sampling. 
Condensation algorithm utilizes factored sampling and given dynamic models to 
propagate an entire probability distribution for object position and shape over time. It 
can perform successfully robust tracking of object motion. On the other hand, its 
convergence greatly depends on the trade off between the number of 
particles/hypotheses and the fitness of the dynamic model. For example, in cases 
where the dynamics are complex or poorly modeled, thousands of samples are 
usually required for real applications. In order to improve the performance of the 
Condensation algorithm, we propose DEMC Particle Filter, which is an integration 
of the Differential Evolution and Particle Filtering. We utilize DEMC Particle Filter 
for tracking the license plates in 3D from monocular camera view. We compared the 
performance of the Auxiliary Particle Filter, Condensation Algorithm, Genetic 
Condensation Algorithm and DEMC Particle Filter. With the same computation 
complexity, DEMC Particle Filter outperforms other three algorithms regarding error 
rate and robustness. 
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VİDEO DİZİLERİNDEKİ ARAÇ PLAKALARININ ÜÇ BOYUTLU MODEL 

YARDIMIYLA STOKASTİK YÖNTEMLERLE İZLENMESİ 

ÖZET 

 

Bu çalışmanın amacı, araç plakalarının üç boyutlu uzay içerisindeki konum ve 
yönelimlerinin bulunması için video görüntüsünden izlenmesidir. İzleme işlemi her 
bir olası konum ve yönelimi deneyerek ve o andaki video karesine en iyi uyanı 
seçerek gerçekleştirilebilir. Eğer nesnenin altı dereceli uzaysal serbestliği 
belirlenmek isteniyorsa, durum uzayı altı boyutlu alınabilir. Her serbestlik derecesi 
için olası değerleri 100 kabul edersek, bu nesneyi olası her durumu deneyerek 
izleyebilmek için görüntü verisi üzerinde 1006 karşılaştırma yapmamız 
gerekmektedir. Bu sınırlı çözünürlük ve altı dereceli serbestlik uzayında dahi, bu 
şekilde gerçek zamanlı izleme yapmanın mümkün olmadığı açıktır. Bu aşamada 
stokastik izleme kavramı anlamlı olmaktadır. Stokastik süreç bir önceki system 
durumunun bir sonraki durumu tam olarak belirlemediği determinist olmayan bir 
süreçtir. Stokastik izlemenin ardında yatan düşünce, her olası nesne durumunu 
denemek yerine, durum hakkında tahminlerde bulunmak ve bu tahminleri o anki 
video karesi ile karşılaştırarak sonuçları bir sonraki video karesi için tahmin 
yapmakta kullanmaktır. Bir sonraki video karesi için yeni tahminler son video karesi 
için yapılan karşılaştırmalarda en iyi sonucu veren tahminler kullanılarak ve bu 
tahminler öngörülen dinamik model ile zamanda ilerletilerek yapılır. Bu tahmin 
kümesi (parçacık veya örnekler) zaman içinde nesnenin gerçek durumuna 
yakınsayacaktır. 

Son yıllarda, bilgisayar ile görüntü işleme problemlerinde Parçacık Filtreleri’nin 
kullanımına yönelik bir ilgi görülmektedir. Bilgisayarla görüntü işleme 
problemlerinde kullanılan özel Parçacık Filtresi’ne Yoğunlaştırma algoritması veya 
Ardışıl Önem Örnekleme denmektedir. Yoğunlaştırma algoritması Çarpan 
Örneklemesi ve bütün olasılık dağılımını zaman içinde ilerletmek için dinamik bir 
model kullanmaktadır. Bu yöntem hareketli nesneler için gürbüz bir izleme olanağı 
sunmaktadır. Öte yandan, bu algoritmanın yakınsaması büyük oranda parçacık sayısı 
ve dinamik modelin doğruluğu arasındaki ilişkiye bağlıdır. Örnek olarak, dinamik 
modelin karmaşık olduğu veya kötü modellenmiş bir sistemde, gerçek bir uygulama 
için binlerce parçacık gerekmektedir. Yoğunlaştırma algoritmasını iyileştirmek 
amacıyla FEMZ Parçacık Filtresi’ni öneriyoruz, bu algortima Farksal Evrim ve 
Parçacık Filtresinin bir birleşimidir. FEMZ Parçacık Filtresi’ni üç boyutlu uzayda tek 
kamerayla araç plakası konum ve yöneliminin izlenmesi için kullandık. Yardımcı 
Parçacık Filtresi, Yoğunlaştırma Algoritması, Genetik Yoğunlaştırma Algoritması ve 
FEMZ Parçacık Filtresi’nin izleme başarımlarını karşılaştırdık. Aynı hesaplama yükü 
altında, FEMZ Parçacık Filtresi diğer üç algoritmaya göre çok daha iyi başarım 
göstermektedir. 
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1. INTRODUCTION 

Automated Vehicle Identification (AVI) is still an important research issue and 

drawing attention in machine vision community. Its potential commercial 

applications are automatic barrier systems, automatic payment of parking fee or 

highway toll fee, automatic detection of a stolen vehicle, automatic calculation of 

traffic density and so on. 

License plate enables us to identify a vehicle and its owner, because it has peculiar 

information. License plate recognition is the most effective method for identification 

of the vehicle. A suitable and promising solution to vehicle identification is visual 

recognition of the license plate from camera view. This approach is applicable 

because it does not require vehicles to carry additional equipment such as special RF 

transmitters. 

However, visual license plate detection and recognition is a very difficult task. It is 

quite a challenging problem because vehicles are running in an outdoor environment, 

where lighting conditions can change rapidly, weather conditions can cause poor 

image quality, license plates can be dirty or in poor condition and occlusions can 

occur frequently. Therefore, Visual License Plate Recognition (VLPR) systems may 

fail because of uncontrollable external conditions. Beside the challenging nature of 

the problem, the high-dimensional nature of the VLPR problem may impose a 

significant computational load on the target processing platform.  

VLPR systems can be separated into three major parts. These are license plate 

detection (segmentation), license plate tracking and license plate recognition. In 

these three parts, license plate detection and tracking can be considered the most 

important step in the VLPR systems. License plate detection involves a search over 

the given image for candidate regions, which has the extracted license plate pattern 

characteristics. Many techniques are proposed for extracting plate region, where 

vertical edge density caused by license text, corner extraction and plate color features 

are generally evaluated for locating the license plate. These techniques also utilize a 
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search method for finding the appropriate license plate regions. These methods 

include Genetic algorithms [5,6], Means Shift algorithm [4] and various different 

heuristic search techniques, which we will give examples in the next sections. 

Searching the license plate regions and locating in each sequential video frame is an 

expensive processing. Instead, once an initial location for the license plate is given, it 

is possible to track the license plate in consecutive video frames. In our work, we 

focused on mostly the tracking step of the VLPR systems. In order to improve the 

performance of the well-known Condensation algorithm, we propose DEMC Particle 

Filter, which is an integration of the Differential Evolution and Particle Filtering. We 

utilize DEMC Particle Filter for tracking the license plates in 3D from monocular 

camera view. 

This thesis is organized as follows: In the following subsections, we will give a brief 

summary on the related research in literature and the statement of objectives for this 

thesis. Section 2 describes the basics of Statistical Bayesian Estimation. The section 

includes the Bayesian approach, introduces several estimators and state space form. 

Section 3 provides information on Markov Chain Monte Carlo Methods. Particle 

filtering is also introduced in this section. Section 4 describes the concept of 

Stochastic Optimization. Genetic algorithms and evolutionary algorithms are all 

included in this section. Section 4.4 is about DEMC sampling. These sections contain 

basic theoretical background for our application. Section 5 introduces our application 

of 3D License Plate Tracking and its problem statement. Section 6 includes the 

basics of 3D Model Based Tracking. Section 7 introduces our novel approach DEMC 

Particle Filter. Section 8 is about utilizing the DEMC Particle Filter for our 

application. Section 9 presents the experimental results. Finally, section 10 is the 

conclusion remarks. 

1.1 Related Work 

Even though, we divided a typical VLPR system into three parts, namely detection, 

tracking and recognition, all the processing starts with detecting a license plate in the 

video frame. There are many creative approaches for detecting and locating the 

license plates in a scene, nevertheless most of these techniques utilize the presence of 

a text in the license plate frame.  
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The text locating-based technique depends on the fact that there is frequent change of 

the intensity caused by the characters in the plate. The edge of the characters is 

extracted and connected together using morphological operation to represent the 

plate region [1-7]. However, in the complex scene the normal morphological 

techniques such as closing or dilating produce noisy output and result in too many 

candidates for plate regions. The edge or plate boundary detection suffers 

dramatically because of uncertainty of the edge, caused by various types of the plate 

as well as identifying plate area from incomplete or broken edges. The process ends 

up with producing too many candidate regions, which is difficult for segmentation. 

In order to overcome the difficulties of morphing, Accumulative Intensity Morphing 

(AIM) algorithm is introduced in [1]. The basic concept of the algorithm is to create 

a connected region from a group of pixels that conform to pre-defined conditions.  

Another text locating-based technique is proposed in [2] to extract and recognize 

license plates of motorcycles and vehicles on highways. In the first stage, a block-

difference method is used to detect moving objects. In the second stage, an edge 

screening method based on the projection of edge magnitudes is used to find two 

peaks in the projection histograms to bound license plates. In the third stage, 

character images are segmented and recognized.  

An alternative text locating-based technique in [3] proposes a method of extracting 

license plate based on wavelet transform. The proposed system consists of three main 

stages, wavelet transform, roughly extracting candidate regions based on high 

frequency features and locating the exact license plate. 

Mean shift algorithm is a nonparametric statistical method for seeking the main 

modes of a point sample distribution. The mean shift estimate of the gradient of a 

density function and the associated iterative procedure of mode seeking is applied to 

image segmentation in [4]. The candidate regions are obtained by applying mean 

shift segmentation. Three features are defined and extracted in order to detect the 

license plate area from segmented candidate areas, namely, rectangularity, aspect 

ratio and edge density. 

Genetic search algorithm is used for the license plate locating problem in [5]. In 

order to overcome the degradation of license plates in vehicle images under various 

illumination conditions, a windowed local area is adaptively binarized and the 
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feature vector is obtained from a bank of filters. After that, the real integer coded 

genetic algorithm is proposed to search the whole image for the most promising area.  

A color-based approach is normally useful and fast. However, the plate color must be 

different from background color and color is not stable when the lighting conditions 

change especially when using IR cameras at night. Color-based approaches basically 

fail due to change in lighting conditions. For example, color of an object varies 

significantly from outdoor to indoor environment.  

A distributed genetic algorithm based segmentation approach to plate region 

extraction is presented in [6]. In the segmentation stage, a label image is generated 

with a distributed genetic algorithm. The chromosome is composed of two parts. One 

part a chromosome is the label assigned to the pixel on which it is lying. The other 

part is coding for the feature vector. For each chromosome, the algorithm computes a 

distance between the actual feature vector measured on the image at its location and 

the vector for which it is coding. Next step is to replace each chromosome by a 

neighbor (possibly itself), according to the fitness of the neighboring chromosomes. 

For each chromosome, the algorithm looks for a neighboring coding, which has the 

same label. Current chromosome is recombined by this neighbor. Finally from the 

label image, the plate region is extracted by applying some heuristic rules. 

The work in [7] presents a method that uses a license plate as an inherent car feature. 

The work assumes that, the license plate color is normally distributed and builds a 

statistical representation of the license plate color space. Their technique allows 

classification using a known number of classes including a rejection class. Statistical 

decision considers the area, position, dimension and orientation of the extracted 

candidate regions. 

The plate detection algorithm can process the whole image. Such a treatment would 

be expensive in term of processing time. For this reason, a tracking technique should 

be applied allowing us to make a prediction of the probable plate's position in the 

next image, thus greatly reducing the image area (called the ROI Region Of Interest) 

in which the detection process must be carried out. The tracking technique is utilized 

for estimating the plate center's position in the next frame. 

The major development in filter theory was introduced by Kalman who noticed that 

for linear Gaussian problems can be solved recursively. His solution was the famous 
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Kalman Filter [23]. After the Kalman Filter, a number of different ideas for nonlinear 

and non-Gaussian filtering problems have been proposed. Some of these approximate 

filters include the popular Extended Kalman Filter, the Gaussian Sum Filter and 

other filters [24] which approximate the posterior by a mixture density. Grid based 

filters are also an important approach for posterior approximation. It is seen that all 

the filters suffer from serious drawbacks. It is as a result of these problems that there 

has been much interest in Particle filtering. 

Most visual tracking systems either rely on contours or feature points because they 

are both naturally present in objects and easy to extract. Both these features have 

advantages and inconveniences. 

Feature point matching of a 3D object model can be performed using selected control 

points. These control points are used for matching instead of the edge segments. The 

matching strategy can be simple and effective by just searching in four directions 

with desired pixel value [8,9]. 

Feature points are very well adapted to textured objects and robust to geometrical 

distortion and to light changes. Unfortunately, they become rare and unstable on 

poorly textured objects, and they are not invariant to scale changes. By contrast, 

contour points are informative for scenes with sharp edges and strong contrast 

changes, but less so in cluttered and textured scenes. In practice, there is no such 

sharp distinction between textured objects and objects with sharp edges. Therefore, 

the two information sources are, complementary, and it is useful combining them for 

camera tracking. 

While feature points can be reliably characterized by the neighboring texture, 

contours information is much more ambiguous, and it is necessary to consider 

several possibilities when matching models against image contours.  

In the model-based approach [8], the motion state is recovered from the 3D 

configuration with the maximal similarity. This problem has been formulated as an 

optimization problem and can also be treated in a probabilistic framework as the state 

estimation of a dynamic system. Since closed-form solutions of a highly non-linear 

dynamic system are intractable, Extended Kalman Filter, Unscented Kalman Filter, 

sequential Monte Carlo methods such as Particle Filtering was introduced to solve 

this problem. 
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The work in [8] presents an effective way to combine the information provided by 

edges and other feature points for the purpose of robust real-time 3D tracking. This 

lets the tracker handle both textured and untextured objects. They propose a method 

for handling multiple hypotheses for potential edge-locations. In order to efficiently 

consider multiple hypotheses, they introduce a new robust estimator built on the 

Tukey estimator. 

A system to track vehicles on images taken from a mobile platform is described in 

[9]. The problem is addressed by modeling a 3D dynamic system, where both the 

acquisition platform and the tracked vehicles are represented in a state vector. From 

measurements obtained in every frame, this state vector is re-estimated using an 

Unscented Kalman Filter, instead of the Extended Kalman Filter. They assume that 

vehicles progress on a flat surface.  

The work in [10] proposes a model based tracking method, called Appearance 

Guided Particle Filtering. A probability propagation model is derived from a 

Bayesian formulation for this framework, and a sequential Monte Carlo method is 

introduced for its realization. They apply the proposed method to articulated hand 

tracking. They study the state estimation of a dynamic system under the assumption 

that there are some known attractors, in addition to the initial state, in the state space. 

An attractor is referred as a state space vector whose observation is known. For a 

visual tracking problem, attractors are some reference images of the objects with 

known motion states, and serve as prior knowledge to guide the tracking in a high-

dimensional space. 

A real-time vehicle management system using a vehicle tracking and a car plate 

number identification technique is proposed in [11]. The system uses two cameras: 

one for tracking vehicles and another for capturing license plate. They track the 

vehicles by applying the Condensation algorithm over the vehicle's movement image 

captured from the first camera. To render the Condensation algorithm more effective, 

they build a discrete vehicle shape model by training vehicle patterns with a SOM 

(Self Organizing Map). 

If there exists a strong perspective in traffic video, it is necessary to recover the 

effects of the license plate projection. Different viewpoints in 3D space produces 

distorted license plate images in a camera. For this reason, a method is developed in 

[25] to segment and to recognize characters of license plate objects undergoing 
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various perspective views. This method is for segmenting license plate characters on 

a moving vehicle in actual outdoor environment and is based upon object contours. 

There are also dedicated publications to moving license plate recognition. For 

example in [26], Yuntao Cui and Qian Huang present a new approach to extract 

characters on a license plate of a moving vehicle, given a sequence of perspective-

distortion-corrected license plate images. Different from many existing single-frame 

approaches, their method simultaneously utilizes spatial and temporal information. 

They model the extraction of characters as a Markov Random Field (MRF), where 

the randomness is utilized for describing the uncertainty in pixel label assignment. 

Another important problem for locating license plate in video sequences, is the low 

resolution of the video. In [27], a new method is proposed to extract license plate 

from the surveillance video, which is shot at lower resolution (320x240) as well as 

degraded by video compression. Morphological operations of bottom-hat and 

morphology gradient are utilized to detect the LP candidates, and effective schemes 

are applied to select the correct one. 

We tried to summarize the previously published work in the literature about license 

plate detection and tracking. Considering all the previous effort in this area of 

research, we try to identify the objectives of this thesis in the next section. 

1.2 Statement of Objectives 

VLPR systems play an important role in traffic/vehicle surveillance/monitoring 

systems. There are many computer vision-based systems that recognize license plates 

most of which, mainly focus on the development of reliable optical character 

recognizer (OCR) without the emphasis on the prior problems of localizing the 

license plates from moving vehicles.  

Primary objective of the thesis is locating license plate in 3D for consecutive video 

frames utilizing 3D static shape, 3D dynamic motion models and stochastic tracking 

algorithms. By means of projecting the estimated license plate’s 3D position and 

orientation on to the 2D image and extracting the 2D image region, we will be able to 

provide a series of license plate extractions, thus a multi input system for OCR 

functionality.  
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Locating license plate in 3D will provide us predicting the license plate location in 

consecutive frames more precisely, because the drift of the license plate in images is 

the result of a 3D motion in time. Utilizing stochastic tracking algorithms will yield 

better estimation of a multi-modal probability distribution, thus adapts the system to 

multi-modal nature of the image segmentation problem. 

Furthermore, obtaining the 3D position and orientation of the license plate will 

provide us the ability to calculate the vehicles speed, parallel to the road surface. 

This information is very crucial for estimating the position of the license plate in next 

video frame. Besides, the speed of the vehicle is an important information for traffic 

surveillance and monitoring functionality.  

In addition to all the other considerations about tracking license plates, in the 

crowded urban regions, occlusion is a serious problem while tracking the license 

plates. Occlusions by pedestrians and other vehicles is a frequent event for license 

plates. We also aim to develop our approach robust to the temporary occlusions 

while tracking.  
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2. STATISTICAL BAYESIAN ESTIMATION 

Statistical estimation differs from classical estimation, which deals with a 

deterministic but unknown constant [28,29,30,31]. There are two models, one can 

use in the estimation of a parameter. A nonrandom parameter can be estimated by 

non-Bayesian or Fisher approach. If the parameter is random variable with an 

associated PDF (Probability Distribution Function), we may use Bayesian approach. 

Here, the parameter to be estimated, is a random variable whose particular realization 

is estimated in statistical estimation. Bayes’ theorem resulted in many recursive 

Bayesian estimation approaches. The motivation for applying Bayesian approaches is 

its twofold nature. Initially, we need to have available some prior knowledge about 

our estimation for feeding it into our estimator. For doing this, we need to assume a 

random variable with a given PDF. The Bayesian approach, when applicable, can 

therefore improve the estimation accuracy. In classical estimation, initial assumption 

is generally a unique value of the parameter. By the help of assigning a PDF to the 

parameter, we can devise strategies to find the estimator. The designed estimator is 

than said to be optimal with respect to the assumed prior PDF.  

In order to study the Bayesian estimators, the concept of Bayesian cost function 

should be explained. Minimization of this function results in different estimators. We 

will introduce MMSE (Minimum Mean Square Error) and MAP (Maximum A 

Posteriori) etc. estimators as examples. These two estimators are the most common 

ones used in practice.  

Before going into details of the estimators, we need to explain Bayesian approach. 

2.1 Bayesian Approach 

The term “parameter” is used to designate a quantity (scalar or vector valued) that is 

assumed to be time invariant. If it changes with time, it can be called as a “time-

varying parameter”, but its time variation must be “slow” compared to the state 

variables of a system. The estimation of the state vector of a stochastic linear 

dynamic system is considered later starting from Section 2.3.  
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In the Bayesian approach, we start with the prior PDF of the parameter from which 

we will derive the posterior PDF using the Bayes’ formula: 

1:
( | ) ( ) 1( | ) ( | ) ( ),

( ) k
p B s p sp s B p B s p s where B b

p B c
= = =  (2.1) 

Here c  is a normalization constant, s  is the system state and B is the measurements. 

The posterior PDF can be used to estimate the state s . 

In contrast to the above, in the non-Bayesian approach there is no prior PDF 

associated with the parameter and thus one cannot define a posterior PDF for it. In 

this case, one has the PDF of the measurements conditioned on the parameter, called 

the likelihood function (LF) of the parameter, 

( ) ( | )B s p B sΛ � . (2.2) 

A measure of how “likely” a parameter value is given by the obtained observations. 

The likelihood function serves as a measure of the evidence from the data. 

2.2 Maximum Likelihood and Maximum A Posteriori Estimators 

A well-known method of estimation of nonrandom parameter is the ML estimator 

that maximizes the function: 

ˆ ( ) arg max ( ) arg max ( | )ML
s ss B s p B s= Λ =  (2.3) 

Here s  is an unknown constant being a function of the observations.  

The Maximum Likelihood Estimator MLE is the solution of the function: 

( ) ( | ) 0Bd s dp B s
ds ds
Λ

= =  (2.4) 

The corresponding estimate for a random parameter is the Maximum A Posteriori 

MAP estimator, which requires the minimization of the risk function: 

ˆ ( ) arg max ( | ) arg max [ ( | ) ( )]MAP
s ss B p s B p B s p s= = . (2.5) 

When using the Bayes’ formula, the last equality above does not require a 

normalization constant for the maximization. The MAP estimate depends on the 

observations and finally it is a random variable. 
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The non-Bayesian MLE is nothing but the Bayesian MAP estimate with complete 

prior ignorance, which is presented by the prior PDF. This is the point where 

Bayesian and non-Bayesian estimators differ. 

Until now, we focused on the estimation of a single parameter, given some noisy 

measurements. In the following sections, we will focus on the estimation of the state 

vector of a stochastic dynamic system starting from the linear case.  

2.3 State Space Form 

For understanding the problem of tracking, consider the evolution of the state 

sequence { , }ks k N∈  of a dynamic system, in most general non-linear situation, state 

space model for discrete-time stochastic systems is of the form, 

1 1= ( , , )k k k k ks f s u v− −  (2.6) 

where : *s vn n
kf ℜ ℜ  into snℜ  is a possibly nonlinear function of the state 

1 1, { , }k ks v k N− − ∈  is the process noise sequence, ,s vn n  are dimensions of the state and 

process noise vectors, respectively. N is the set of natural numbers and ku  is the 

known input. The objective of tracking is to recursively estimate ks  from 

measurements  

= ( , )k k k kb h s w  (2.7) 

where : *b wn n
kh ℜ ℜ  into bnℜ  is a possibly nonlinear function, { , }kw k N∈  is the 

measurement noise sequence, and ,b wn n  are dimensions of the measurement and 

measurement noise vectors, respectively. In particular, we seek filtered estimates of 

ks  based on the set of all available measurements : = { , = 1,..., }l k ib b i k  up to time k . 

Using Bayesian approach, the tracking problem is to calculate recursively the 

expectations on the state ks  given the measurements 1:kb . Thus, it is required to 

construct the PDF 1:( | )k kp s b . We assume that the initial PDF 0( )p s  is known as the 

prior. From Bayesian perspective, the PDF can be obtained recursively in two stages: 

prediction and update. 



12 

The needed PDF 1 1: 1( | )k kp s b− −  is known at time 1k − . The prediction step involves 

using the system model 1 1= ( , , )k k k k ks f s u v− −  to obtain the prior PDF of the state for 

time step k  via the Chapman-Kolgorov equation: 

1: 1 1 1 1: 1 1( | ) = ( | ) ( | )k k k k k k kp s b p s s p s b ds− − − − −∫  (2.8) 

At time step k , a measurement kb  becomes available, and this may be used to 

update the prior (update stage) via Bayes' rule:  

1: 1
1:

1: 1

( | ). ( | )( | ) =
( | )

k k k k
k k

k k

p b s p s bp s b
p b b

−

−

 (2.9) 

These recurrence relations form the basis for the optimal Bayesian solution. 

2.4 Least Squares and Minimum Mean Square Error Estimation 

Given a batch of measurements from a static system, a common estimation procedure 

for nonrandom parameters is the Least Squares (LS) method. Given the (scalar and 

nonlinear) measurements 

( )k k kb h s w= + . (2.10) 

The Least Squares Estimator (LSE) is defined as: 

2ˆ ( ) arg min { ( ( , )) }
k

LSE
s j j j

j

s B b h s w= −∑  (2.11) 

For random parameters, the Bayesian case of the above is the Minimum Mean 

Square Error (MMSE) estimator, given as: 

2
ˆˆ ˆ( ) arg min [( ) | ]MMSE
ss B E s s B= −  (2.12) 

The solution is the conditional mean of s  

ˆ ( ) [ | ] . ( | )MMSEs B E s B s p s B ds
+∞

−∞
= ∫� . (2.13) 

Batch Linear Squares Estimator and its iterated version can be used to estimate static 

systems, which produces a batch of output resulted from a parameter or a set of 

parameters. 
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2.5 Estimation of Linear Dynamic Systems, Kalman Filter 

The state-space representation of continuous-time linear stochastic systems can be 

written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )s t A t s t B t u t D t v t= + +� �  (2.14) 

Here, ( )s t is the system state, ( )A t  is the system matrix, ( )B t  is the input gain, ( )D t  

is the noise gain, ( )u t  is the input and ( )v t�  is the process noise. 

The output of the system is, in general 

( ) ( ) ( ) ( )b t C t s t w t= + �  (2.15) 

where ( )b t  is the output, ( )C t  is the measurement matrix and ( )w t�  is the 

measurement noise.  

In the stochastic case, the noises are usually assumed to be zero mean, white and 

mutually independent. If the noise is not zero mean, its mean (if known) can be taken 

as a known input [32]. 

The state equation has the following solution: 

0

0 0( ) ( , ) ( ) ( , )[ ( ) ( ) ( ) ( )]
t

t

s t F t t s t F t B u D v dτ τ τ τ τ τ= + +∫ �  (2.16) 

For a time-invariant system, assuming 0 0t =  , we have 

( ) ( ,0) AtF t F t e=� . (2.17) 

Some of the computational methods for the evaluation of the matrix Ate  are infinite 

series, Laplace transform and polynomial interpolation. 

In the state space representation of discrete-time systems, it is assumed that the input 

is piecewise constant, so that 

1( ) ( )k k ku t u t where t t t += ≤ ≤ . (2.18) 

Then the state equation can be written as, 

1 1 1( ) ( , ) ( ) ( , ) ( ) ( )k t k k k k ks t F t t s t G t t u k v t+ + += + + . (2.19) 

Sampling a time invariant continuous time system at arbitrary times, state transition 

matrix can be formulated as,  
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1( )
1( ) ( ) k kt t A

k kF k F t t e + −
+ − =�  (2.20) 

and the input gain is, 

1
1( )

1( ) ( , ) k
k

k

t t A
k k t

G k G t t e Bdτ τ+
+ −

+ = ∫� . (2.21) 

Finally the discrete time process noise is, 

1
1( )( ) ( ) ( )k

k

k

t t A
k t

v k v t e Dv dτ τ τ+
+ −= ∫ �� . (2.22) 

We need to give further two equations for noise covariance matrices Q  and R : 

[ ( ) ( ) ] ( ) kjE v k v j Q k δ′ =  (2.23) 

[ ( ) ( ) ] ( ) kjE w k w j R k δ′ =  (2.24) 

Here Q  is the process noise covariance matrix and R  is the measurement noise 

covariance matrix.  

Finally, the (dynamic) model for discrete-time linear stochastic systems can be 

written with the simplified index-only time notation as, 

( 1) ( ) ( ) ( ) ( ) ( )s k F k s k G k u k v k+ = + + . (2.25) 

The discrete-time measurement equation is, with a similar notation, 

( ) ( ) ( ) ( )b k H k s k w k= + . (2.26) 

If the discrete-time system is time-invariant, that is, 

( ) , ( )F k F G k G= =  (2.27) 

and the solution becomes very simple as: 

1
1

0
( ) (0) [ ( ) ( )]

k
k k i

i
s k F s F Gu i v i

−
− −

=

= + +∑  (2.28) 

Sometimes we can include a noise gain to the state transition equation in the form of, 

( 1) ( ) ( ) ( ) ( ) ( ) ( )s k F k s k G k u k k v k+ = + +Γ . (2.29) 

Before going into the details of the Kalman filter we will note two properties of the 

system state. First, the propagation of the system state mean can be given as, 

( 1) ( ) ( ) ( ) ( ) ( ) ( )s k F k s k G k u k k v k+ = + +Γ . (2.30) 
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Defining the covariance of the state as ( )ssP k , covariance propagation equation is, 

( 1) ( ) ( ) ( ) ( ) ( ) ( )ss ssP k F k P k F k k Q k k′ ′+ = +Γ Γ . (2.31) 

The discrete-time Kalman filter computes recursively the MMSE estimate of the 

state of a dynamic system. With some assumptions such as, the matrices , , ,F G H Q , 

and R  are assumed known and possibly time varying. The system can be time 

varying and the noises non-stationary. The initial state is modeled as a random 

variable, Gaussian distributed with known mean and covariance. The two noise 

sequences and the initial state are assumed to be zero mean white Gaussian noise, 

which are mutually independent. This all make a linear Gaussian model and a Gauss 

Markov process.  

The Kalman filter is named after Rudolph E. Kalman, who in 1960 published his 

famous paper describing a recursive solution to the discrete-data linear filtering 

problem [23]. 

The Kalman filter is essentially a set of mathematical equations that implement a 

predictor-corrector type estimator that is optimal in the sense that it minimizes the 

estimated error covariance then some presumed conditions are met. Since the time of 

its introduction, the Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. This is 

likely due in large part to advances in digital computing that made the use of the 

filter practical, but also to the relative simplicity and robust nature of the filter itself. 

Rarely do the conditions necessary for optimality actually exist, and yet the filter 

apparently works well for many applications in spite of this situation. 

The Kalman filter estimates a process by using a form of feedback control thus the 

filter estimates the process state at some time and then obtains feedback in the form 

of noisy observations. The equations for Kalman filter fall into two groups namely 

time update equations and observation update equations. The time update equations 

are responsible for projecting forward in time the current state and error covariance 

estimates to obtain the a priori estimates for the next time step. The observation 

update equations are responsible for the feedback. 

The time update equations can also be thought as predictor equations, while the 

observations update equations can be thought as corrector equations. The equations 

for the time and observation updates are presented below. 
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Time Update 

( | 1) ( ). ( 1 | 1) ( ). ( )s k k F k s k k G k u k− = − − +  (2.32) 

( | 1) ( ). ( 1| 1). ( ) ( )T
ss ssP k k F k P k k F k Q k− = − − +  (2.33) 

Observation Update 

1( ) ( | 1). ( ) .( ( ). ( | 1). ( ) ( ))T T
ss ssK k P k k H k H k P k k H k R k −= − − +  (2.34) 

( | ) ( | 1) ( ).( ( ) ( ). ( | 1))s k k s k k K k b k H k s k k= − + − −  (2.35) 

( | ) ( ( ). ( )). ( | 1)ss ssP k k K k H k P k k= − −  (2.36) 

The optimal filter gain ( )K k  is proportional to the state prediction variance and 

inversely proportional to the innovation ( ( ) ( ). ( | 1))b k H k s k k− −  variance. Thus, the 

gain is large if the state prediction is inaccurate (has a large variance) and the 

measurement is accurate (has a relatively small variance) 

The gain is small if the state prediction is accurate (has a small variance) and the 

measurement is “inaccurate” (has a relatively large variance). A large gain indicates 

a “rapid” response to the measurement in updating state, while a small gain yields a 

slower response to the measurement. In frequency domain, it can be shown that these 

properties correspond to a higher/lower bandwidth of the filter. A filter whose 

optimal gain is higher yields less “noise reduction” as one would expect from a filter 

with a higher bandwidth. 

Under the Gaussian assumption for the initial state (or initial state error) and all the 

noises entering into the system, the Kalman filter is the optimal MMSE state 

estimator. If these random variables are not Gaussian and one has only their first two 

moments, then the Kalman filter algorithm is the best linear state estimator, that is, 

the Least Minimum Mean Square Error LMMSE state estimator. 

2.6 Estimation of Nonlinear Systems, Extended Kalman Filter 

The Kalman filter addresses the general problem of trying to estimate the state of a 

discrete time controlled process, which is governed by a linear stochastic difference 

equation. If the process to be estimated and/or the observation relationship to the 

process is non-linear, then Kalman filter is not sufficient for estimation. A Kalman 

filter that linearizes about the current mean and covariance is referred to as an 
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Extended Kalman Filter [32]. Consider the basic state-space estimation framework as 

in, 

( ) = ( ( 1), ( ), ( 1))ks k f s k u k w k− −  (2.37) 

( ) = ( ( ), ( ))kb k h s k v k . (2.38) 

To estimate a process with non-linear difference and observation relationships, we 

write new governing equations that linearize the estimate. 

ˆ ˆ( ) ( ) ( )( ( 1) ( 1)) ( ). ( 1)s k s k A k s k s k W k w k= + − − − + −  (2.39) 

ˆ ˆ( ) ( ) ( )( ( ) ( )) ( ). ( )b k b k H k s k s k V k v k= + − + . (2.40) 

Here A is the Jacobian matrix of partial derivatives of kf  with respect to s , W  is the 

Jacobian matrix of partial derivatives of kf  with respect to w , H  is the Jacobian 

matrix of partial derivatives of kh  with respect to s  and V  is the Jacobian matrix of 

partial derivatives of kh  with respect to v . 

Time Update 

( | 1) ( ( 1| 1), ( ),0)ks k k f s k k u k− = − −  (2.41) 

( | 1) ( ). ( 1| 1). ( ) ( ) ( 1) ( )T TP k k A k P k k A k W k Q k W k− = − − + −  (2.42) 

Observation Update 

1( ) ( | 1) ( ) .( ( ) ( | 1) ( ) ( ) ( ) ( ) )T T TK k P k k H k H k P k k H k V k R k V k −= − − +  (2.43) 

( | ) ( | 1) ( )( ( ) ( ( | 1),0))ks k k s k k K k b k h s k k= − + − −  (2.44) 

( | ) ( ( ). ( )) ( | 1)P k k K k H k P k k= − −  (2.45) 

Given the noisy observation ( )b k , a recursive estimation for ( )s k  can be expressed 

in the form, 

ˆ( ) ( ( )) ( ).( ( ) ( ( ))s k prediction of s k K k b k prediction of b k= + − . (2.46) 

This recursion provides the optimal minimum mean-squared error (MMSE) estimate 

for ( )s k  assuming the prior estimate ˆ( 1)s k −  and current observation ( )b k  are 

Gaussian Random Variables (GRV). We need not assume linearity of the model. The 

optimal terms in this recursion are given by, 
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1

ˆ ˆ( ) [ ( ( 1), ( 1))]

( )

ˆ ˆ( ) [ ( )( ( ) , ( ))]
k k k ks b b b

s k E F s k w k

K k P P

b k E H k s k v k

−

−

−

= − −

=

=

 (2.47) 

where the optimal prediction of ( )s k  is written as ˆ( )s k − , and corresponds to the 

expectation of a nonlinear function of the random variables ˆ( 1)s k −  and ( 1)w k − . 

The optimal gain term ( )K k  is expressed as a function of posterior covariance 

matrices (with ˆ( ) ( ) ( )b k b k b k −= − ). Note these terms also require taking 

expectations of a nonlinear function of the prior state estimates. 

The Kalman filter calculates these quantities exactly in the linear case, and can be 

viewed as an efficient method for analytically propagating a GRV through linear 

system dynamics. For nonlinear models, however, the EKF approximates the optimal 

terms as, 

1
( ) ( ) ( ) ( )

ˆ ˆ( ) ( ( 1), )
ˆ ˆ( )

ˆ ˆ( ) ( , )

k

s k b k b k b k

k k

s k f s k w

K k P P

b k h s v

−

−

−

≈ −

≈

≈

 (2.48) 

where predictions are approximated simply as the function of the prior mean value 

for estimates. The covariance is determined by linearizing the dynamic equations and 

then determining the posterior covariance matrices analytically for the linear system. 

In other words, in the EKF the state distribution is approximated by a GRV which is 

then propagated analytically through the “first-order” linearization of the nonlinear 

system. As such, the EKF can be viewed as providing “first-order” approximations to 

the optimal terms. These approximations, however, can introduce large errors in the 

true posterior mean and covariance of the transformed (Gaussian) random variable, 

which may lead to sub-optimal performance and sometimes divergence of the filter.  

2.7 Grid Based and Approximate Grid Based Methods 

Grid-based methods provide the optimal recursion of the filtered density ( )kp s  if the 

state space is discrete and consists of a finite number of states 1, 1,...,i
ks i N− = .  
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If the state space is continuous but can be divided into N  cells, then grid-based 

method can be utilized to approximate the posterior PDF at time 1k − , which is 

given by: 

1 1: 1 1| 1 1 1
1

( | ) ( )
N

i i
k k k k k k

i

p s b w s sδ− − − − − −
=

≈ −∑  (2.49) 

Further more, the prediction and update equations can be formulated as 

1: 1 | 1 1 1
1

( | ) ( )
N

i i
k k k k k k

i
p s b w s sδ− − − −

=

≈ −∑  (2.50) 

1: | 1 1
1

( | ) ( )
N

i i
k k k k k k

i

p s b w s sδ − −
=

≈ −∑ . (2.51) 

The grid points represent regions of continuous state space, for this reason 

calculating the weights requires integration over these regions. A further 

approximation in evaluation of the weights can be made. We assume that these 

weights are computed at the center of the cell corresponding to i
ks . So the weights 

can be computed by: 

| 1 1| 1 1
1

( | )
N

i j i j
k k k k k k

j

w w p s s− − − −
=
∑�  (2.52) 

| 1
|

| 1
1

( | )

( | )

i j
k k k ki

k k N
j j

k k k k
j

w p b s
w

w p b s

−

−
=

≈

∑
 (2.53) 

The grid should be dense to get a good approximation to the continuous state space. 

As the dimensionality of the state space increases, the computational cost of the 

approach increases significantly. Another disadvantage of grid-based methods is that 

the state space must be predefined and, thus, cannot be partitioned unevenly to give 

greater resolution in high probability density regions, unless prior knowledge is used. 

Hidden Markov Model (HMM) filters are an application of such approximate grid-

based methods in a fixed-interval smoothing context and have been used extensively 

in speech processing. 
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3. MARKOV CHAIN MONTE CARLO METHODS 

Markov Chain Monte Carlo (MCMC) is a powerful means for generating random 

samples that can be used in computing statistical estimates and marginal and 

conditional probabilities [24,39]. Although MCMC has general applicability, one 

area where it has had a revolutionary impact is Bayesian analysis. MCMC has 

greatly expanded the range of problems for which Bayesian methods can be applied. 

Sequential Monte Carlo methods found limited use in the past, except for the last 

decade, primarily due to their very high computational complexity and the lack of 

adequate computing resources of the time. The fast advances of computers in the last 

several years and the outstanding potential of Particle Filters have made them 

recently a very active area of research. 

We will introduce importance sampling, rejection sampling, Metropolis method and 

the Gibbs sampling as a basis for the Monte Carlo methods.  

Mainly the problems addressed by the Monte Carlo methods are generating samples 

1{ }n N
ns =  given a probability distribution function ( )p s  and estimating expectations of 

functions under this distribution is given as:  

[ ( )] ( ) ( )E f s f s p s ds= ∫  (3.1) 

The probability distribution function ( )p s  is called as the target density in Monte 

Carlo methods. For example, this can be the posterior probability of a model’s 

parameters given some measurements. 

If the first problem is solved, estimating expectations of functions under this 

distribution can be solved such as, 

1[ ( )] ( )n

n

E f s f s
N

= ∑ . (3.2) 

An important property of the Monte Carlo methods is its independence of the 

dimensionality of the space sampled. However, high dimensionality can cause other 

difficulties. 
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We will assume that the density from which we want to draw samples ( )p s  can be 

calculated, at least within a constant ratio given by,  

*( )( ) p sp s
Z

=  (3.3) 

because we do not have the normalizing factor Z , 

( )Z p s ds= ∫ . (3.4) 

Importance sampling is not a method for generating samples from ( )p s , but 

estimating the expectations of a function ( )f s . Let’s assume that the density ( )p s  is 

too complicated but we have a simpler density ( )q s .  

In importance sampling, we will generate N samples from  proposal density ( )q s . If 

these samples were sampled from ( )p s , we could estimate any given function. 

However, when we generate samples from ( )q s , there will be a problem of over and 

under representation of the areas, where ( )q s  and ( )p s  strongly differ. Therefore, 

we introduce weights, 

*

*

( )
( )

n

n n

p sw
q s

=  (3.5) 

which we use to adjust the importance of each sample in our estimator: 

( )
[ ( )]

n
n

n

n
n

w f s
E f s

w
=
∑
∑

 (3.6) 

It can be proven that the estimate converges to the true value as N increases [39].  

Rejection sampling is another Monte Carlo sampling technique. Again, we assume 

( )p s  to be complex density, which can be evaluated with a constant ratio. We have a 

simpler proposal density ( )q s . We have a further assumption that, 

* *. ( ) ( )c q s p s for s> ∀  (3.7) 

where c  is a positive constant. We generate two random numbers. The first s′  is 

generated from ( )q s  and the other is generated from a uniform distribution in the 

interval [0, . ( )]c q s′ . If *( )u p s′> , then s′  is rejected. Otherwise s′  is included into 
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the set of samples generated from ( )p s . Rejection sampling works well if ( )q s  is a 

good approximation of ( )p s .  

In large and complex problems, it is difficult to provide a ( )q s  that is a good 

approximation of ( )p s . The Metropolis algorithm [39] is useful in these cases. 

Metropolis algorithm utilizes a proposal density ( )q s , which depends on the current 

state ( )s t . In the simplest case, proposal density can be a Gaussian centered on the 

current state ( ; ( ))q s s t′ . Like the previous two Monte Carlo methods, we assume that 

( )p s  can be calculated at least within a constant ratio. In order to decide whether to 

accept or reject the new generated sample from ( ; ( ))q s s t′ , we have the following 

quantity: 

*

*

( ). ( ( ); )
( ( )). ( ; ( ))

p s q s t sa
p s t q s s t

′ ′
=

′
 (3.8) 

If 1a ≥  then the new generated sample is accepted, otherwise the new sample is 

accepted with probability a. 

The Metropolis method is an example of a Markov Chain Monte Carlo MCMC 

method [39]. Compared to rejection sampling where generated candidate samples are 

independent from desired distribution, MCMC methods involve a Markov process in 

which a sequence of samples is generated, where each sample depends on the 

previous. Since successive samples are correlated with each other, the Markov chain 

should be run for a considerable time in order to generate effectively independent 

samples from the target distribution. 

Gibbs sampling [24] also known as “heat bath” method, is a method for sampling 

from distributions over at least two dimensions. Gibbs sampling is a Metropolis 

method in which the proposal distribution is defined in terms of conditional 

distribution of the joint distribution ( )p s . The target distribution is complex but we 

assume that its conditional distributions are easy to draw samples from.  

In general, for a sample dimension of L, a single iteration involves sampling from 

one dimension at a time. 

( 1)
1 1 2 3
( 1)
2 2 1 3
( 1)
3 3 1 2

( | , ,..., )

( | , ,..., )

( | , ,..., ) ...

t t t t
L

t t t t
L

t t t t
L

s p s s s s

s p s s s s

s p s s s s

+

+

+

∼
∼
∼

 (3.9) 
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Gibbs sampling is like a Metropolis method in which all the proposals are accepted. 

3.1 Particle Filtering 

Particle filtering [48,49] is a sequential MCMC methodology where the basic idea is 

the recursive computation of relevant probability distributions using the concepts of 

importance sampling and approximation of probability distributions with discrete 

random measures. 

The particle filter represents the underlying PDF that describes the state of an object 

by a set of random samples from the space on which the PDF is defined. Every 

sample is commonly referred to as a particle. Associated with each particle is a 

weight. The particle locations and weights are used to achieve “Monte-Carlo" 

approximations to integrals involving the unknown PDF that is being determined. 

Bayesian recursive propagation of the posterior density is only a conceptual solution 

in that in general, it cannot be determined analytically. Kalman filter is an optimal 

solution to the problem under linearity and Gaussian white noise assumptions. There 

are also sub-optimal solutions like Extended Kalman filter, approximate grid based 

methods and Particle filters which approximate the optimal Bayesian solution. 

Particle filter can be summarized as follows,   

• Initially, all particles have equivalent weights attached to them.  

• At the prediction step, the state of every particle is updated according to the 

motion model. An accurate dynamical model is essential for robust tracking 

and for achieving real-time performance.  

• During the measurement step, new information that became available about 

the system is used to adjust the particle weights for every particle. The weight 

is set to be the likelihood of this particle state describing the true current state 

of the object, which can be computed via Bayesian inference to be 

proportional to the probability of the observed measurements given the 

particle state.  

• The sample points are then redistributed to obtain uniform weighting for the 

next algorithm iteration by re-sampling them from the computed posterior 

probability distribution. 
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• At any time, such characteristics (position, speed etc.) can be directly 

computed, if desired, by using the particle set and weights as an 

approximation to the true PDF.  

 

Figure 3.1: Particle Filtering Flow Chart 

The flow of the algorithm is also shown in Figure 3.1, where { , }i i
k ks w  are the samples 

and the associated weights at time step k and N is the number of samples. The 

algorithm works well in many cases where the Kalman filter (or the extended 

Kalman filter) would fail due to poor approximation of the process PDF by the 

Gaussian (for example, when the PDF is multimodal). An advantage of the 

formulation is that it can be easily applied even when the state update model and the 

measurement model are nonlinear since they are only evaluated in the forward 

direction, and need not be inverted. This allows the use of error functions that make 

sense for the problem, including nonlinear ones. 

The first particle filtering method that we will explain is the well-known Sequential 

Importance Sampling (SIS) algorithm. SIS forms the basis for most sequential Monte 

Carlo filters.   

Before detailing the algorithm, let 1{ , }i i N
k k is w =  is a characterization of the posterior 

1:( | )k kp s b  where i
ks  are a set of N samples with associated weights i

kw . The weights 

are normalized that 1i
ki

w =∑ . The posterior density at time step k  can be 

approximated as: 

1:
1

( | ) ( )
N

i i
k k k k k

i

p s b w s sδ
=

≈ −∑  (3.10) 
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The weights are assigned according to importance sampling. Suppose ( )p s  and ( )q s  

are the target and the proposal densities. ( ) ( )p s sπ∝  can be evaluated by a constant. 

Then a weighted approximation of the target density can be given as, 

1

( ) ( )
N

i i
k

i

p s w s sδ
=

≈ −∑  (3.11) 

where 

( )
( )

i
i

i

sw
q s
π

∝  (3.12) 

are the normalized weights assigned to each particle. We will further define the 

proposal and the target density as: 

1:

1:

( | )
( | )

i
i k k
k i

k k

p s bw
q s b

∝  (3.13) 

If we can factorize the proposal density such that, 

1: 1 1: 1 1:( | ) ( | , ) ( | )k k k k k k kq s b q s s b q s b− −= , (3.14) 

we can derive the weight update equation as: 

1 1 1: 1 1
1

1 1: 1 1: 1 1 1:

( | ) ( | ) ( | ) ( | ) ( | )
( | , ) ( , ) ( | , )

i i i i i i i
i ik k k k k k k k k k
k ki i i i i

k k k k k k k k

p b s p s s p s b p b s p s sw w
q s s b q s b q s s b

− − − −
−

− − − −

∝ =  (3.15) 

By using the fact that, 

1: 1 1 1:( | ) ( | ) ( | ) ( | )k k k k k k k kp s b p b s p s s p s b− −∝ . (3.16) 

Finally, the posterior filtered density 1:( | )k kp s b  can be approximated as, 

1:
1

( | ) ( )
N

i i
k k k k k

i
p s b w s sδ

=

≈ −∑ . (3.17) 

SIS algorithm consists of recursive propagation of the weights and particles as each 

measurement is received sequentially. 

A common problem with the SIS particle filter is the degeneracy phenomenon, where 

after a few iterations; all but one particle will have negligible weight. A measure for 

the degeneracy is proposed as the effective sample size effN , which is defined as, 
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*1 ( )eff i
k

NN
Var w

=
+

 (3.18) 

where the *i
kw  are the true weights, 

* 1:

1 1:

( | )
( | , )

i
i k k

k i i
k k k

p s bw
q s s b−

= . (3.19) 

We can not calculate true weights exactly, but an estimate for effN  is given as, 

2

1

1

( )
eff N

i
k

i

N
w

=

=

∑
 (3.20) 

where i
kw  are the normalized weights obtained from the weight update step. A small 

effN  indicates severe degeneracy. There are two main approaches to overcome the 

degeneracy problem. The first is the optimum choice of the importance density. The 

optimum importance function minimizes the variance of the true weights *i
kw  and it 

is given by: 

1 1

1 1

1

( | , ) ( | , )

( | | ) ( | )
( | )

i i
k k k optimum k k k

i i
k k k k k

i
k k

q s s b p s s b

p b s s p s s
p b s

− −

− −

−

=

=
 (3.21) 

Utilizing the above equation in weight update stage, we conclude, 

1 1( | )i i i
k k k kw w p b s− −∝ . (3.22) 

The optimal importance density suffers from two important problems. It requires the 

evaluation of the probability 1( | , )i
k k kp s s b−  and it requires an integration over the 

new state.  

It is a common choice to accept the importance density to be the prior, 

1 1( | , ) ( | )i i
k k k k kq s s b p s s− −=  (3.23) 

which yields, 

1 ( | )i i i
k k k kw w p b s−∝ . (3.24) 

This is the choice for importance density for Condensation Algorithm, which will be 

introduced later in the thesis. 
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The second method for overcoming degeneracy is “re-sampling”. The basic idea 

behind re-sampling is to eliminate particles that have small weights and to 

concentrate on particles with large weights. There are several re-sampling techniques 

such as stratified sampling, residual sampling, systematic sampling and so on. 

Although re-sampling step reduces the effects of the degeneracy problem, it 

introduces new problems. The particles with high weights are selected many times. 

This yields loss of diversity, which is known as sample impoverishment. 

Implementation of the systematic re-sampling algorithm is detailed below as an 

example, 

Re-sampling Algorithm 

 
 

• Initialize the cumulative distribution function CDF values starting from 

1 0c =  

• For 2 :i N=  

o Calculate CDF as 1
i

i i kc c w−= +  

• Draw a starting point as 1
1 [0, ]u U N −=  

• For 1:j N=  

o Calculate next 1
1 ( 1)ju u N j−= + −  

o Until j iu c>  , increment i. 

o Update sample *j i
k ks s=  

o Update weight 1j
kw N −=  

o Update parent ji i=  
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A generic particle filter algorithm steps are formulated below, 

Generic Particle Filter 

 
 

Here we will detail only two specific implementations of the generic particle filter 

that are Sampling Importance Re-sampling (SIR) and the Auxiliary Sampling 

Importance Re-sampling. SIR filter is known as Condensation Algorithm 

(Conditional Density Propagation) in computer vision society.  

SIR filter includes the following steps, 

SIR Filter 

 
 

ASIR (Auxiliary SIR or Auxiliary Particle Filter) filter [52] is also a variant of the 

SIR filter. This filter can be derived from SIR by assuming the importance density as 

1:( , | )k kq s i b . By applying Bayes’ rule we obtain, 

• For 1:i N=  

o Draw 1( | , )i i
k k k ks q s s b−∼  

o Calculate weights i
kw  for each particle  

• Sum the weights 
1

N
i
k

i
sum w

=

=∑  

• Normalize weights /i i
k kw w sum=  

• Calculate effN  

• If eff TN N<  

o Resample 

• For 1:i N=  

o Draw 1( | )i i
k k ks p s s −∼  

o Calculate weights ( | )i i
k k kw p b s=  for each particle  

• Sum the weights 
1

N
i
k

i
sum w

=

= ∑  

• Normalize weights /i i
k kw w sum=  

• Resample 
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1: 1 1( , | ) ( | ) ( | )i i
k k k k k k kq s i b p b s p s s w− −∝  (3.25) 

which can be written by an approximation, 

1: 1 1( , | ) ( | ) ( | )i i
k k k k k k kq s i b p b s p s s w− −∝  (3.26) 

where 1[ | ]i i
k k kE s sμ −=  which is a characterization of ks . Applying this importance 

density to the weight update step, we obtain, 

1
1

1:

( | ) ( | ) ( | )
( , | ) ( | )

j
j

j

j j i j
j i k k k k k k

k k j j i
k k k k

p b s p s s p b sw w
q s i b p b μ

−
−∝ = . (3.27) 

Finally, the steps of the ASIR filter can be summarized as follows, 

ASIR Filter 

 

• For 1:i N=  

o Calculate 1[ | ]i i
k k kE s sμ −=  

o Calculate weights 1: 1( | ) ( | )i i i
k k k k kw q i b p b wμ −= ∝  for each particle 

• Sum the weights 
1

N
i
k

i
sum w

=

= ∑  

• Normalize weights /i i
k kw w sum=  

• Resample 

• For 1:j N=  

o Draw 1( | )
jj i

k k ks p s s −∼  

o Calculate weights ( | )
( | )

j

j
j k k

k i
k k

p b sw
p b μ

=  for each particle  

• Sum the weights 
1

N
i
k

i
sum w

=

= ∑  

• Normalize weights /j j
k kw w sum=  
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4. STOCHASTIC OPTIMIZATION METHODS 

Genetic and Evolutionary algorithms [33-38] are two well-known stochastic 

optimization techniques. Before introducing these global optimization techniques, we 

need to mention the concepts of stochastic optimization. There are basically two 

main properties of the stochastic optimization techniques. These are, 

• There is random noise in the measurements. 

• There is a random choice made in the search direction as the algorithm 

iterates toward a solution. 

In some optimization problems, the model cannot be completely defined because it 

depends on quantities that are unknown at the time of formulation. Rather than just 

use a best guess for the uncertain quantities, we  may obtain more useful solutions by 

utilizing additional knowledge about these quantities into the model. Stochastic 

optimization algorithms use this level of the uncertainty to produce solutions that 

optimize the expected performance of the model. Many algorithms for stochastic 

optimization do, however, proceed by formulating one or more deterministic sub 

problems. Stochastic and robust optimizations have seen a great deal of recent 

research activity.  

Many deterministic algorithms (Gradient methods : Steepest Descent, Simplex 

Methods : Nelder-Mead, Newton Methods : Levenberg-Marquart, Quasi-Newton 

Methods : DFP, BFGS) [36] for nonlinear optimization problems seek only a local 

solution, a point at which the objective function is smaller than at all other feasible 

nearby points. They do not always find the global solution, which is the point with 

lowest function value among all feasible points. Global solutions are needed for 

many problems, they are difficult to recognize and even more difficult to locate.  

We will begin with the most basic algorithm, namely “blind search”. The simplest 

random search method is one where we repeatedly sample over the problem space 

such that the current sampling for state s does not take into account the previous 

samples. This "blind search" approach does not adapt the current sampling strategy 

to information that has been gathered in the search up to the present time. The 
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approach can be implemented in batch (nonrecursive) form simply by laying down a 

number of points and taking the value yielding the lowest target value as our estimate 

of the optimum. The approach can also be implemented in recursive form as we 

illustrate below, 

Blind Search Algorithm 

 
 

Blind search is the simplest random search in that the sampling generating the new θ  

value at each iteration is over the entire domain of interest. The sampling does not 

take into account of where the previous estimates of θ  have been. 

The random sampling can be a function of the position of the current best estimate 

for θ . In this way, the search is more localized in the neighborhood of that estimate, 

allowing for a better exploitation of information that has previously been obtained 

about the shape of the loss function. Such algorithms are sometimes referred to as 

localized algorithms to emphasize their dependence on the local environment near 

the current estimate for θ . Below is the most naïve of the localized stochastic 

optimization method. More sophisticated approaches can also be implemented.  

• Initialization : Choose initial value of θ  (the parameter to be optimized), 

randomly or deterministically as 0θ . Calculate the cost function 0( )L θ  

• Generate a new value 1
new
kθ + , according to a chosen probability distribution. 

If 1( ) ( )new
k kL Lθ θ+ <  set 1 1

new
k kθ θ+ +=  else 1k kθ θ+ =  

• Stop the iteration if maximum number of evaluations is reached or a user 

defined criteria is satisfied. 
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Localized Random Search Algorithm 

 
 

More sophisticated stochastic algorithms include Annealing Type algorithms, 

Evolutionary algorithms and Genetic algorithms. 

4.1 Genetic Algorithms 

Evolutionary and Genetic algorithms (GAs) [40] draw inspiration from the natural 

search and selection processes leading to the survival of the fittest individuals. 

Genetic algorithm search methods are rooted in the mechanisms of evolution and 

natural genetics. The interest in heuristic search algorithms with underpinnings in 

natural and physical processes began as early as the 1970s. Simulated annealing, 

Genetic algorithms, and evolutionary strategies are similar in their use of a 

probabilistic search mechanism directed toward decreasing cost or increasing payoff. 

These three methods have a high probability of locating the global solution optimally 

in a multimodal search landscape. (A multi-modal cost function has several locally 

optimal solutions as well). However, each method has a significantly different mode 

of operation. The principal difference between Genetic algorithms and evolutionary 

strategies is that genetic algorithms rely on crossover, a mechanism of probabilistic 

and useful exchange of information among solutions, to locate better solutions, while 

evolutionary strategies use mutation as the primary search mechanism. 

In the literature, Holland’s Genetic algorithm is commonly called the Simple Genetic 

Algorithm (SGA). Essential to the SGA’s working is a population of binary strings. 

Each string of 0s and 1s is the encoded version of a solution to the optimization 

• Initialization : Choose initial value of θ  the parameter to be optimized, 

randomly or deterministically as 0θ . Calculate the cost function 0( )L θ  

• Draw an independent random vector kd  and add it to the current value 

1
new
k k kdθ θ −= + . 

• If 1( ) ( )new
k kL Lθ θ+ <  set 1 1

new
k kθ θ+ +=  else 1k kθ θ+ =  

• Stop the iteration if maximum number of evaluations is reached or a user 

defined criteria is satisfied. 
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problem. Using genetic operators (crossover and mutation) the algorithm creates the 

subsequent generation from the strings of the current population.  

A simple Genetic Algorithm is presented below, 

Simple Genetic Algorithm 

 

GA has been successfully applied to solving optimization problems, such as wire 

routing, scheduling, adaptive control, game playing, cognitive modeling, 

transportation problems, traveling salesman problems, optimal control problems, 

database query optimization etc. 

4.2 Condensation and Genetic Condensation Algorithms 

In recent years, there has been a great deal of interest in applying Particle Filtering, 

also known as Condensation or Sequential Importance Sampling [13], to computer 

vision problems. Applications on parameterized or non-parameterized contour 

tracking and human tracking have demonstrated its usefulness. In the context of 

contour-based object recognition, multiple hypotheses for such correspondences are 

always considered. Condensation is a more efficient way to maintain multiple 

hypotheses over time while tracking, where particles represent the probability 

distribution of the target position. The method is relatively robust to noise, and 

recovers from tracking misses in intermediate frames. In addition, they are relatively 

simple to implement, and allow one to conveniently combine multiple feature types 

in the same tracker. 

The Condensation algorithm is a specific realization of the SIR Particle Filter. The 

1( | )i i
k k ks p s s −∼  importance density is approximated by 1= ( ) (0, )n n

k ks f s N σ− +  and 

re-sampling is applied in each measurement step. By combining a tractable dynamic 

• Initialize population  

• Evaluate population  

• While termination criteria is not reached   

o Select solutions for next generation  

o Perform crossover and mutation  
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model with visual observations, it can accomplish highly robust tracking of object 

motion. Below, you may find a sketch of the algorithm. 

Condensation Algorithm 

 

 

As an example to the improvement efforts on Condensation algorithm, Genetic 

Condensation algorithm [6] will be presented. Basically, Condensation algorithm 

solves an optimization problem along the time axis. In this sense, Evolutionary and 

Genetic algorithms for searching an optimal solution are very similar to 

Condensation algorithm. They are based on principle of evolution (propagation in 

Condensation) and the survival of the fittest (re-sampling in Condensation). As a 

difference, the EAs and GAs benefit from a wide range of structures using a set of 

operators that are often defined specially for a given problem. 

In order to evaluate our DEMC Particle Filtering approach, we will compare it to the 

standard Condensation and Genetic Condensation algorithms. We slightly changed 

• Initialization: For n = 1,2,...,N generate samples from the prior in order to 

obtain 0 0{ , }n ns π , where 0
ns  are the initial samples, 0

nπ  are the initial 

likelihoods of the samples and N is the number of samples.  

• 1
n
kπ −  are the associated likelihoods of the samples 1

n
ks −  at time step k-1 . 

From sample set 1 1{ , }n n
k ks π− − , compose the new sample set { , }n n

k ks π . Iterate 

for k=1, 2, ... as follows: 

o Propagate samples using state transition equation 

1= ( ) (0, )n n
k ks f s N σ− + .  

o Update the likelihoods (weights) by = ( | )n n n
k k kp b sπ , where 

( | )n n
k kp b s  is the likelihood value of the measurement n

kb  given 

sample n
ks . Normalize n

kπ ’s so that = 1.n
kn

π∑   

o Resample the samples n
ks  with probability n

kπ  in order to select N 

samples { , }, = 1,2,...,n n
k ks n Nπ . 
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the structure of the algorithm. The work presented in [6], applies the GA 

optimization step after the re-sampling. This approach seriously diminishes the 

optimization opportunity of the GA step. The main reason is the reduced variance of 

the samples after the re-sampling step. We prefer to apply the GA optimization step 

just before the re-sampling. We experienced that this approach increases the 

performance in tracking considerably. The sketch of the Genetic-Condensation 

algorithm can be given as follows,  

Genetic Condensation Algorithm  

 

 

• Initialization: For n = 1,2,...,N generate samples from the prior in order to 

obtain 0 0{ , }n ns π   

• Compose the new sample set { , }n n
k ks π  by iterating for k=1, 2, ... as follows:   

o Propagate samples using state transition equation 

1= ( ) (0, )n n
k ks f s N σ− + .  

o Update the likelihoods (weights) by = ( | )n n n
k k kp b sπ , where ( | )n n

k kp b s  

is the likelihood value of the measurement n
ky  given sample n

ks .  

o Apply crossover on the sample set, iterate through the sample set as 

follows,  

 Select two samples randomly ,A B
k ks s  from the sample set, 

apply stochastic crossover,  

= (1 )newA A B
k k ks s sγ γ η+ − +  

= (1 )newB B A
k k ks s sγ γ η+ − +  

 where η  is a normal distributed random variable and γ  is 

an uniform distributed random variable [0..1]∈ . 
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DEMC Particle Filter will be defined in the next section. Both DEMC Particle Filter 

and Genetic Condensation algorithms are the same in the sense of improving the re-

sampling step of the Condensation algorithm. 

 Replace the parents by their children according to 

Metropolis algorithm, if ( | )new
k kp b s  

> ( ( | ), ( | ))A B
k k k kmax p b s p b s  or with a probability of,  

( | )
( ( | ), ( | ))

new
k k

A B
k k k k

p b s
max p b s p b s  

o Apply mutation on the sample set, iterate through the sample set as 

follows,   

 Select a sample A
ks  from the sample set, mute it 

according to, =new A
k ks sγ η+  where η  defined as 

(0, )N Σ .  

 Accept the new sample if ( | )new
k kp b s  > ( | )A

k kp b s  or 

with a probability of,  

( | )
( | )

new
k k

A
k k

p b s
p b s

 

o Compute the efficient sample size, 

2

1=eff n
k

n

N
π∑

 

o If effN Threshold≥ , do not resample  

 else resample from { , }n n
k ks π  and set the likelihood 

values equal to 1/N .  
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4.3 Differential Evolution 

The Differential Evolution algorithm [41,42] can be classified as a floating-point 

encoded evolutionary optimization algorithm. Traditional GAs use a fixed type of 

perturbation, such as adding random numbers to individual parameters. The problem 

with this approach is that it fails to account for the fact that what might be a small 

perturbation for one parameter might be gigantic for another. DE avoids this problem 

by using the population itself as the source of appropriately scaled perturbations. 

Differential Evolution (DE) has proven to be a promising candidate for minimizing 

real valued, multi-modal objective functions. Besides its good convergence 

properties, DE is very simple to understand and to implement. DE is also particularly 

easy to work with, having only a few control variables, which remain fixed 

throughout the entire minimization procedure. DE is a parallel direct search method, 

which utilizes N  D-dimensional parameter vectors , = 0,1,2,..., 1ix G i N∈ −  as a 

population for each generation G , for each iteration of the minimization. N does not 

change during the minimization process. The initial population is chosen randomly 

and should try to cover the entire parameter space uniformly. As a rule, a uniform 

probability distribution for all random decisions will be assumed unless otherwise 

stated. Basically, DE generates new parameter vectors by adding the weighted 

difference between two population vectors to a third vector. If the resulting vector 

yields a lower objective function value than a predetermined population member, the 

newly generated vector replaces the vector, with which it was compared, in the next 

generation; otherwise, the old vector is retained. Below, you can find a sketch of the 

DE algorithm. 

For each sample n
Gs , ( = 1,2,..., )n N  and G is the current generation and N is the 

number of samples, a perturbated vector 1
n
Gv +  is generated according to,  

 
1 2 3

1 = .( )n r r r
G G G Gv s F s s+ + −  (4.1) 

 with 1, 2, 3 [1, ]r r r N∈  and > 0F . The randomly chosen integers 1, 2, 3r r r  are 

mutually different and also chosen to be different from the running index n. F is a 

real and constant factor [0,2]∈ , which controls the amplification of the differential 
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variation 2 3( )r r
G Gs s− . In order to increase the potential diversity of the perturbated 

parameter vector, crossover is introduced. The vector,  

 
0, 1, 1,

1 1 1 1= ( , ,..., )n n n D n
G G G Gu u u u −
+ + + +  (4.2) 

with 

 

,
, 1

1 ,

= , 1 ,..., 1
=

[0, 1]

j n
j n G D D D

G j n
G

v for j k k k L
u

s for all other j D
+

+

⎧ + + −
⎨

∈ −⎩  (4.3) 

is formed. The acute brackets 
D

 denote the modulo function with modulus D, 

which is the vector dimension. The starting index k is a randomly chosen integer 

from interval [ ]0, 1D − . The integer L, which denotes the number of parameters that 

are going to be exchanged, is drawn from interval [ ]0, 1D −  with probability 

( = ) = ( )vPr L v CR . [0,1]CR∈  is the crossover probability and constitutes a control 

parameter for the optimization. The random decisions for both k and L are made 

individually for each trial vector v . In order to decide whether the new vector 1
n
Gu +  

shall become a population member of generation G+1, it will be compared to n
Gs . 

Defining the ( )p u  as the likelihood function, if vector 1
n
Gu +  yields a greater 

likelihood value 1( )n
Gp u +  than ( )n

Gp s , 1
n
Gs +  is set to 1

n
Gu + , otherwise the old value n

Gs  

is retained. 

4.4 DEMC Sampling  

Differential Evolution Markov Chain (DEMC) [47] combines the basic ideas of DE 

and MCMC. DEMC is a population MCMC algorithm, where multiple chains run in 

parallel. DEMC solves an important problem in MCMC, namely that of choosing an 

appropriate scale and orientation for the jumping distribution. In DEMC, the jumps 

are simply a fixed multiple of the differences of two random parameter vectors that 

are currently in the population. The selection process of DEMC works via the usual 

Metropolis ratio, which defines the probability with which a proposal is accepted. 

In DEMC N chains run in parallel where jump for one of the chains is determined by 

the all other N-1 chains. Taking the difference of vectors of two randomly chosen 

chains can be the simplest method of balancing the exploration of the space. The 
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difference vector should be multiplied with a factor γ and added to the vector of the 

current chain. The difference vector contains the required information on scale and 

orientation. Each proposal is shown to define a Metropolis step, in which each jump 

is as likely as the reverse jump, given the current state of the remaining chains. The 

N-chain is therefore a single random walk Markov chain on an N × d-dimensional 

space. The method can be coded in a few lines, requiring only a function to draw 

uniform random numbers and a function to calculate the fitness of each proposal 

vector. Below is the pseudo code of the DEMC, 

 

DEMC Sampling Algorithm 

 
 

Where NG is the number of generations and N is the number of samples in the 

generation. 

For utilizing DE for drawing samples from a target density, the proposal and 

acceptance scheme must be such that there is detailed balance with respect to ( )sπ . 

DE proposal scheme is not appropriate for such a balance. DE1 is more appropriate 

where 0Rs  is replaced by ns . To ensure all the parameter space can be reached, 

scheme DE1 is modified such that, 

1 2( )new n R Rs s s s eγ= + − +  (4.4) 

• Iterate for G=1,…,NG 

o Assign Temperature according to a cooling schedule 

o Cycle through members of the population { } 1,...,n
Gs n N=  

• R1 is a uniform number between 1 and N 

• R2 is a uniform number between 1 and N, different than R1 

• 1 2.( ) [ , ]n n R R
new G G Gs s c s s uniform b b= + − + −  

• ( )
( )

n
new

n
G

fitness sr
fitness s

=  

• if (log( ) *log( [0,1])r Temperature uniform>  swap ,n n
new Gs s  

• n
news  is a new sample drawn from the target density. 
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where e is drawn from a symmetric distribution with a small variance compared to 

that of the target, but with unbounded support, e.g. with (0, )e N b∼  where b is small. 

The key of DEMC is to introduce a probabilistic acceptance rule in DE: proposal and 

acceptance with probability p nmin(1,r ) where r = (s )/ (s ). π π  
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5. 3D LICENSE PLATE TRACKING USING DEMC PARTICLE FILTER 

Numerous algorithms for tracking objects in video sequences have been proposed; 

they can be classified as feature-based when the goal is to track image feature 

between consecutive frames without the use of any model or they can be model-

based when a 2D or 3D model of the target is known. We will focus on the 3D 

model-based approach for license plate tracking in VLPR systems.  

In the next section, we give brief information on a typical VLPR system architecture. 

5.1 VLPR System Architecture 

As mentioned in previous sections, a typical VLPR system consist of three major 

parts, namely license plate detection (segmentation), tracking and recognition parts. 

The information flow between these parts is shown in Figure 5.1. Basically, the 

diagram shows the collaboration between the segmentation and the tracking blocks. 

The tracking block provides the ROI (Region Of Interest) to the segmentation block. 

The segmentation block works on the given ROI and returns the segmentation results 

to the tracking block in order to estimate the next LP (License Plate) location in the 

next frame. Finally, tracking block transfers the filtered LP location for recognition 

purposes to the recognition block. Figure 5.1 also shows the acquisition system 

composed of a camera and a frame grabber. In the next sections, we will explain the 

utilized acquisition system and the model.  
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Figure 5.1: VLPR System 

5.2 Acquisition System 

Our outdoor data acquisition setup is simply shown in Figure 5.2. The acquisition 

system consists of a monochrome camera, mounted on a tripod, facing the road 

ahead with a slight inclination.  

 

Figure 5.2 : VLPR System Outdoor Setup 

The camera has a fixed pre-mounted optics with focal length between 28-280 mm. 

Images are digitized at a resolution of 704x288 pixels 

The focal length of a lens is defined as the distance in mm from the optical center of 

the lens to the focal point, which is located on the sensor or film as shown in Figure 

5.3.  
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Figure 5.3 : Optical System and Focal Length 

The camera lens projects part of the scene onto the film or sensor. The field of view 

(FOV) is determined by the angle of view from the lens out to the scene and can be 

measured horizontally or vertically. Larger sensors or films have wider FOVs and 

can capture more of the scene. 

A change in focal length allows you to come closer to the subject or to move away 

from it and has therefore an indirect effect on perspective. The optical zoom is 

defined as, 

maximum focal lengthOptical zoom =  
minimum focal length

. (5.1) 

For instance, the optical zoom of a 28-280mm zoom lens is 280mm/28mm or 10X. 

This means that the size of a subject projected on the film or sensor surface will be 

ten times larger at maximum focal length (280mm) than at maximum wide angle 

(28mm). Optical zoom should not be confused with digital zoom. 

Given the information above we may have a look at an example scene of the 

described setup in Figure 5.4. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.4 : Example Sequence (a) Frame 16 (b) Frame 24 (c) Frame 32  

(d) Frame 36 

5.3 Camera Model 

We utilize a pinhole camera model [21,43,44] because of its simplicity. This model 

connects a point of the 3D space to its perspective projection on the camera plane. 

This transformation is linear in the projective space and is described by the intrinsic 

and extrinsic parameters. The intrinsic camera parameters, such as the focal 

length ( )f , the pixels size ( , )u vk k  and the image coordinates of the projection center 

0 0( , )Tu v  describe an affine transformation representing a scaling, a rotation and a 

translation between the camera and the image references. The extrinsic parameters 

describe the rigid transformation from the world reference to the camera reference. 

This transformation is entirely defined by a 3x3 rotation matrix and a 3x1 translation 

vector. Using homogeneous coordinates in the projective space we get:  
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  (5.2) 

Where ( )Tx y s  are the homogeneous coordinates of the projection of point P on the 

image, =u
u

f
k

α  and =v
v

f
k

α  (with uk  and vk  the pixels width and height, 

respectively), R  is the rotation matrix, ( 1)TX Y Z  is the homogeneous coordinates 

of point P in the scene reference, T  is the translation vector and combined matrix is 

the perspective projection matrix (that expresses the transformation between the 

camera coordinate system and the image coordinate system). The above model 

describes a projective transformation from 3D space to 2D space (camera retina's 

plane). A 3x4 projection matrix describes this transformation. Determining the model 

parameters are called camera calibration. This can be done by observing a 3D known 

object (classical Calibration), or by using 2D pattern like a checkerboard with a 

predefined size. However, locating a point in the 3D space implies this one to be 

viewed from at least two different locations. This requirement can be met either by 

observing the scene point with two different cameras or by moving a single camera 

along a known trajectory. 

A rotation matrix R can always be written as the product of three matrices 

representing rotations around the X, Y, and Z axes. There are several conventions on 

the order in which these rotations are carried out. For example, taking , ,α β γ  to be 

rotation angles around the X, Y, and Z axis respectively yields,  

 

1 0 0 0
0 , 0 1 0
0 0

0
0 , . .

0 0 1

x y

z x y z

cos sin
R cos sin R

sin cos sin cos

cos sin
R sin cos R R R R

β β
α α
α α β β

γ γ
γ γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

 (5.3) 

 

x
T y

z

Δ⎛ ⎞
⎜ ⎟= Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

 (5.4) 
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Even though Euler angles , ,α β γ  can do a creditable job for a large range of camera 

orientations, they have a well-known drawback: When two of the three rotations axes 

align, one rotation has no effect. This problem is known as gimbal lock, and this 

singularity can result in ill-conditioned optimization problems. 

By this projection the real world coordinates ( )X Y Z  are transformed into image 

coordinates ( )x y s  and the pixel coordinates on the image ,x yp p  can be calculated 

by = /xp x s  and = /yp y s . 

In most 3D tracking methods, the internal parameters are assumed to be fixed and 

known, which means that the camera cannot zoom, because it is difficult to 

distinguish a change in focal length from a translation along the camera Z-axis. 

These parameters can also be estimated during an offline camera calibration stage, 

from the images themselves. Classical calibration methods make use of a calibration 

pattern of known size inside the field of view. 

The perspective projection model is not always sufficient to represent all the aspects 

of the image formation since it does not take into account the possible distortion 

from the camera lens, which may be non negligible, especially for wide angle 

cameras. Fortunately, the lens distortion can be modeled as a 2D deformation of the 

image. 

In this section, we introduced the camera model, since, we need to further explain the 

utilization of the model in 3D model based tracking concept. In Section 6, an 

introduction on 3D model based tracking and the theoretical background of the 

approach is given. In next section, the details of the camera calibration methods are 

detailed. 

5.4 Camera Calibration 

The idea behind the calibration is discovering the projection equations that links 3D 

points to their projections on 2D image plane [21,43,44]. Camera calibration 

methods rely on one or more images of calibration pattern. In those calibration 

pattern images, 3D objects of known geometry exist, possibly known position and 

orientation. Maybe, the most well known calibration method is the Direct Parameter 

Calibration [21] (DPC).  
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Consider a 3D point P defined by its coordinates [ , , ]w w w TX Y Z  in the world 

reference frame. Let [ , , ]c c c TX Y Z  be its coordinates in the camera reference frame, 

where the origin of the camera frame is the center of the projection and the Z is the 

optical axis. We do not know the extrinsic parameters, 3x3 rotation matrix R and the 

translation matrix T . The projection is given as, 

.

c w

c w

c w

X X
Y R Y T
Z Z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.5) 

in addition, its components can be written as, 

11 12 13

21 12 23

31 32 33

. . .

. . .

. . . .

c w w w
x

c w w w
y

c w w w
z

X r X r Y r Z T

Y r X r Y r Z T

Z r X r Y r Z T

= + + +

= + + +

= + + +

 (5.6) 

Neglecting the radial distortion, we can re-write the equations,  

0

0

.

.

c

im c
u

c

im c
v

f Xx u
k Z

f Yy v
k Z

= − +

= − +
 (5.7) 

with the focal length ( )f , the pixels size ( , )u vk k  and the image coordinates 

0 0( , )Tu v . Plugging (3.5) and (3.6) we get, 

11 12 13
0

31 32 33

21 12 23
0

31 32 33

. . .

. . .

. . .
.

. . .

w w w
x

w w w
z

w w w
y

w w w
z

r X r Y r Z Tx u
r X r Y r Z T

r X r Y r Z T
y v

r X r Y r Z T

+ + +
− =

+ + +

+ + +
− =

+ + +

 (5.8) 

We assume that the image center coordinates are known. The aspect ratio α  is 

defined as /x yf f . The eight unknowns can be packed in a vector 1 2 8( , ,..., )v v v v=  

resulting [21],  

. 0A v =  (5.9) 

where, 
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 (5.11) 

with N corresponding pairs of points, this leads us to a homogeneous system of N 

linear equations. Those pairs should not be coplanar, and A has rank greater than 7. 

The solution is trivial and can be calculated by Single Value Decomposition. We 

have still undetermined parameters ( , )z xT f . We will solve the following N linear 

equations for determining the missing two parameters, 

. z

x

T
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f
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 (5.12) 

where, 
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The least squares solution to (5.12) exists and the solution for ( , )z xT f  can be found. 

as: 
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Until now, we examined three-dimensional reference object-based calibration. 

Camera calibration is performed by observing a calibration object whose geometry in 

3D space is known with very good precision.  

In our application of license plate tracking, we applied the flexible technique in [50], 

which only requires the camera to observe a planar pattern shown at least two 

different orientations. The pattern can be printed on a laser printer and attached to a 

reasonable planar surface. Either the camera or the planar pattern can be moved by 

hand. The motion need not to be known. The proposed approach, which uses 2D 

metric information, lies between the photogrammetric calibration, which uses 

explicit 3D model, and self-calibration, which uses motion rigidity or equivalently 

implicit 3D information. 

Considering the pinhole camera model, we can briefly rewrite the projection 

equation as, 

[ ]sm A R t M= ��  (5.16) 

where s is a scaling factor, [ , ,1]Tm u v=� , [ , , ,1]TM X Y Z=� . The matrix A (camera 

intrinsic matrix) is defined as, 

0

00
0 0 0

u
A v

α γ
β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (5.17) 

[ ]R t  is called as the camera extrinsic matrix. which relates the world coordinate 

system to the camera coordinate system. 

Given a model plane and we assume it is on Z=0, we can define a homography H as, 

1 2, [ ]sm HM where H A r r t= =�� . (5.18) 

We will define a matrix B such as, 

11 12 13
1

21 22 23

31 32 33

T

B B B
B A A B B B

B B B

− −

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

. (5.19) 
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Note that B is symmetric, defined by a 6D vector, 

11 12 22 13 23 33[ ]Tb B B B B B B=  (5.20) 

Let the i-th column vector of H be 1 2 3[ , , ]T
i i i ih h h h= .Then, we have 

T T
i j ijh Bh v b= . (5.21) 

Here ijv  is given as, 

1 1 1 2 2 1 2 2 3 1 1 3 3 2 2 3 3 3[ , , , , , ]T
ij i j i j i j i j i j i j i j i j i jv h h h h h h h h h h h h h h h h h h= + + + . (5.22) 

Considering the homography constraints from a given homography, we can rewrite 

the equations as, 
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11 22
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⎡ ⎤
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. (5.23) 

If n images are given with model plane observed, we can combine n such equations 

and we get, 

. 0V b = . (5.24) 

Here V is a 2n x 6 matrix. In case of 3n ≥  we can find a unique solution for b up to a 

scale factor. 

Once b is determined, we can compute all camera intrinsic parameters from matrix B, 

which is defined as TB A Aλ −= . 

and the intrinsic parameters are, 
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 (5.25) 

The extrinsic parameters can be computed, if A is known,  
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Because of the noise in the measurements, rotation matrix does not in general fulfill 

the properties of a rotation matrix. Assume that the image points are corrupted by 

independent and identical noise. With n images and m points in each image, the 

maximum likelihood estimate can be obtained by minimizing the following function, 

2

1 1

ˆ ( , , , )
n m

ij i i j
i j

m m A R t M
= =

−∑∑  (5.27) 

where ˆ ( , , , )i i jm A R t M  is the projection of the point jM  in the image i. Minimization 

the given function is a nonlinear minimization problem, which can be solved by 

Levenberg-Marquart algorithm [50]. 
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6. 3D MODEL BASED TRACKING 

Location of the camera may cause different perspective views, which plays an 

important role in the recognition process at the final step of the VLPR systems. Most 

VLPR system nevertheless utilize 2D plane, but with a limited range of visual angle 

and focus distance. Because considerable perspective in 3D space results distorted 

license plate images.  

3D displacement of the objects or object parts in the scene, results a 2D change in the 

image, which is typically modeled by 2D tracking applications. This yields a need for 

an adaptive model in order to handle appearance changes due to perspective effects 

or deformations. This appearance model finally includes a centroid for images 

position in 2D, a scale factor and last but not the least; the model should utilize an 

affine transformation for relocating object feature points. 

More complex models exist like splines, deformable templates, 2D deformable 

meshes or 2D articulated models. Basically, these models are far from recovering the 

actual object state in space despite their sophisticated nature. 

On the other hand, 3D tracking targets recovering all six degrees of freedom 

continuously, given the camera location and orientation relative to the scene. Totally 

3D displacement and the orientation of the object in the scene is discovered. 

The 3D information can be represented in the form of a CAD model of a scene 

object, a set of planar parts, or even a rough 3D model such as an ellipsoid. Such 

models can be created using either automated techniques or commercially available 

products. 

In the particular context of our application, the license plate is a rectangle defined by 

its four corner points, which also defines its width and its height (50 cm to 10 cm). 
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Figure 6.1 : License Plate Projection 

The Figure 6.1 describes the projection process of the license plate on the camera's 

image plane. In the case of a license plate tracking application, it is reasonable to 

assume that the vehicle moves parallel to the road plane. The camera is statically 

mounted. In this case, the 3D motion of the license plate is restricted and the 

prediction and estimation can be optimized according to this 3D restricted 6-DOF 

behavior. 

Model-based approaches try to extract the drift information by finding object pose 

that correctly projects some fixed features of a given 3D model onto the 2D image. 

These features can be edges, line segments, or points.  

3D tracking is more complex and has the difficulty of matching high dimension 3D 

models to the image features. The matching of 3D model to image features is an 

optimization problem. The optimization space is large and convergence is not 

guarantied, if the initial estimation is not close to the solution. In order to improve 

the estimation process, Bayesian approach needs to be used. In the next section, the 

utilized system state in Bayesian framework is explained. 

6.1 System State 

The state of a license plate in 3D can be represented with six variables such as the 

Cartesian coordinates , ,X Y Z  of the license plate's center in 3D and the Euler angles 

α  (the rotation around x  axis), β  (the rotation around y  axis) and finally γ  (the 

rotation around z  axis) rotation angles of the license plate's plane. The state vector 

can be represented by = [ ]T
ks X Y Z α β γ  where k  is the time step. The state vector 
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variables are shown in Figure 6.2. The origin of the coordinate system is the center of 

the 2D image plane. 

 

Figure 6.2 : Coordinate System 

{ , }ks k N∈  is given as the state sequence, where ks  is the state at time step k . We 

may consider the system being in one of the states ,n
ks n N∈  with the probability 

( )n
kp s  at time step k . This notation will be used in the proceeding sections. In the 

context of our application, we assume that the road conforms to a planar surface, the 

movement of a vehicle is parallel to this plane. Euler angles changes are accordingly 

limited considering the real world scenarios. That simply dictates that the variance of 

γ  is considerably less than the other Euler angles. γ  can only change if there exists 

an ego-motion of the camera, which is not the case in our setup. 

6.2 System Model 

The state evolution along time can be modeled by a discrete-time nonlinear dynamic 

system. The license plate is assumed to move towards its plane's normal vector 

direction. The system dynamic equation is non-linear such as 1 1= ( , )k k k ks f s w− −  and 

can be approximated with a stochastic differential equation as,  
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 (6.1) 

where , ,α β γ  are the Euler angles and kc  is the velocity of the license plate in its 

normal direction. 1kw −  is represented by a zero mean, σ  standard deviation Gaussian 

(0, )N σ . The system dynamic equation can also be stated as 1 1 1= ( , , )k k k ks f s c w− − −  

considering the kc  as a state of the system. Estimating the correct value of kc  is a 

crucial point of the tracking. In our very first trials, we also included the velocity of 

the license plate into the state vector. This made the state vector seven dimensional. 

The velocity of the plate is not directly measured from the video sequence. For this 

reason, estimation of the velocity is not an easy task. Increasing the dimension of the 

state vector and trying to estimate a hidden state, was not yielding good tracking 

results. In our tracking application, the kc  velocity magnitudes are approximated by 

an augmented Kalman filter, which processes the proceeding location estimate 

differences as velocity measurements and outputs a filtered kc  velocity magnitude. 

The time update equations are,  

1

1

ˆ ˆ

.
k k

k k

c c

P P Q

−
−

−
−

=

= +
 (6.2) 

In addition, the measurement update equations are, 

1( )
ˆ ˆ ˆ( )

(1 )

k k k

k k k k k

k k k

K P P R

c c K d c

P K P

− −

− −

−

= +

= + −

= −

 (6.3) 

where kd  is calculated by taking the Euclidian distance of two successive 

coordinates ( )x y z  of license plate in video sequence. 
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6.3  Observation Model 

The observation model = ( , )k k k kb h s v  relates the system state ks  with the 

information extracted from images kb . Given the image kb , solving the equation 

1= ( )k k ks h b− , would yield the desired solution if we had a deterministic description of 

the measurement process. Instead, given the image kb , we may define a likelihood 

function ( | )k kp b s  assuming the system in state ks . Therefore, figuring out the 

probability ( | )k kp b s  is important for understanding update step. 

Vertical edge detection is a popular method for exposing the desired features in 

license plate segmentation. It can be observed that the edges are more uniformly 

distributed with in the plate area than in other part of the image. Although the pattern 

of the vertical edges in the plate is unique compared to the other parts, directly 

searching for this pattern is not an easy task. 

Most of the work on license plate localization, somehow utilizes the edge 

information. For example, an interesting approach, Sliding Cocentric Windows (SW) 

segmentation technique is introduced in [12]. The method is developed in order to 

describe the local irregularity in the image using image statistics such as standard 

deviation and/or mean value.  

Despite the edge extraction based methods, we apply simple template matching for 

likelihood calculation. The information extraction starts by defining the polygon 

determined by the license plate corners projected on to the camera plane as shown in 

Figure 6.1. A warping operation is defined from these points to a rectangle whose 

dimensions are the same as the template. The template matching is applied after 

adjusting the extracted image region and the template to zero mean and unit variance. 

The details of this operation will be explained in Section 8 . 
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7. DEMC PARTICLE FILTER 

Tracking problem is an optimization problem and can also be treated in a 

probabilistic framework for the state estimation of a dynamic system. Sequential 

Monte Carlo methods such as Particle Filtering, were introduced to solve non-linear 

dynamic systems. Isard and Blake in [13] introduced the concept of particle filtering 

to visual tracking, named Condensation Algorithm. Particle Filtering was introduced 

to the vision community in the form of the Condensation algorithm. Improvements 

for the Condensation algorithm were considered in [14], [15], and [16]. The 

algorithm was applied to tracking people in video and face tracking. The reason these 

algorithms have attracted much interest is that they offer a framework for dynamic 

state estimation, where the underlying probability density functions need not be 

Gaussian, and state and measurement equations can be nonlinear, which are 

commonly encountered in computer vision. 

Condensation is a very popular technique for visual tracking problem. However, its 

convergence greatly depends on the balance between the number of particles, 

hypotheses and the fitness of the dynamic model. The important problem of the 

Condensation algorithm is to choose proper samples to approach the actual samples 

position. Many improvements are offered to tackle the limitations of Condensation 

algorithm [14-16]. 

Condensation algorithm has several limitations. In cases where the dynamics are 

complex or poorly modeled, thousands of samples are usually required for real 

applications. However, the performance of Condensation depends on both the 

number of particles and the accuracy of the dynamic model. Given a specific error 

margin, the number of the particles required is generally determined by the 

dimension and structure of the state space. A typical 6-DOF tracking problem may 

require thousands of particles. 

Another limitation of Condensation is that in the sampling step the set of samples are 

propagated without taking account of new measurements. As a result, a large number 

of samples may be needed to accurately represent the distribution. This is particularly 
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the case for peaked likelihood or case where the new measurements appear in the tail 

of the prior. After the new weights are evaluated, there are only few samples may be 

counted in and a large number of them will be neglected. 

Genetic Condensation Algorithm is presented in [17], which utilizes the mutation 

and crossover operators of the genetic algorithm to find more appropriate samples by 

calculating weights. They improve robustness, accuracy and flexibility in 

Condensation for visual tracking. 

The work in [18] presents a hybrid sampling solution that combines the sampling in 

the image feature space and in the state space via RANSAC and Particle filtering, 

respectively. Number of particles can be reduced to dozens for a full 3D tracking 

problem, which contains considerable noise of different types. The algorithm has 

been applied to the problem of 3D face pose tracking with changing moderate or 

intense expressions. 

Inspired by the optimization mechanism in DE and Condensation, we propose a new 

method, namely, DEMC PARTICLE FILTER to tackle the limitations of 

Condensation algorithm. Several re-sampling methods for Condensation are 

proposed in literature. DEMC is an alternative for re-sampling step in Condensation 

algorithm. DEMC is more effective than standard re-sampling techniques and avoids 

sample degeneracy and impoverishment without violating multimodal nature of 

Condensation algorithm. 

DEMC sampling is inspired from DE techniques. DE is characterized by keeping the 

N candidates for optimal solution at each iteration. As a matter of fact, there exists a 

close relationship between Condensation algorithm and EA's. The structure involved 

in Condensation is quite similar to that in EA's. The correspondence between 

Condensation and EA's terminology can be summarized as follows. 

First, we can say, a time step k  is similar to a generation in DE. n
ks , which is 

identified as samples in the Condensation, is considered as the strings in DE. Re-

sampling procedure in Condensation corresponds to the selection of DE. 

Accordingly, in the DE, the weights can be called the fitness of the string, which 

undergoes selection. The maximum likelihood principle is interpreted as a rule to 

choose the model that maximizes the overall fitness under a circumstance of given 

data and may be interpreted from the Bayesian point of view. In particular, a 
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fluctuation caused by a perturbation can be exactly regarded as the system noise, 

which is caused by a non-Gaussian probability density function. 

Two methods were introduced in literature to overcome the degeneracy problem in 

literature. The first one is the utilization of optimum importance density as explained 

in section 3.1. The optimum importance density is given as: 

1 1( | , ) ( | , )i i
k k k optimum k k kq s s b p s s b− −=  (7.1) 

which can be simplified as, 

1
1

1

( | ) ( | )( | , )
( | )

i
i k k k k

k k k i
k k

p b s p s sp s s b
p b s

−
−

−

=  (7.2) 

For a given 1
i
ks −  (which is the sample inherited from previous time step), by the 

means of DEMC sampling, we can draw samples from the optimum importance 

density. 

If 1
i
ks −  is given and we know how many times it has been re-sampled in the previous 

time step, we can perform DEMC sampling in order to generate the needed particles. 

We will use 1( | )i
k kp s s −  as the proposal density for generating initial values to the 

DEMC chains. The initial samples are generated by 1= ( ) (0, )n n
k ks f s N σ− +  as in 

Condensation algorithm. The fitness function is reduced to 1( | ) ( | )i
k k k kp b s p s s −  

because the denominator is the same for all generated proposals. The proposals are 

generated and rejected or accepted according to the DEMC algorithm.  

After the DEMC sampling step the generated samples have higher likelihood values 

which significantly reduces the sample degeneracy. The mechanism of DEMC 

sampling also increases the variance of the generated samples, which diminishes the 

sample impoverishment. 

We have slightly modified the proposal generation of the DEMC algorithm. We also 

utilize the best sample in the chain in order to generate new proposals by using an 

analogy to the DE/rand-to-best/1/exp version of DE algorithm. We aim to reduce the 

iteration number for DEMC sampling by shifting the proposals to the best sample. 

From the optimization point of view, this increases the speed of convergence to the 

optimum value. 
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Below you can find a sketch of the DEMC Particle Filter. 

DEMC Particle Filter 

 

• Initialization: Generate samples 0 0{ , }n ns π  from initial distribution for n = 1,2,...,N , 

where s′  are the samples, sπ ′  are the weights assigned to each sample and N is the 

number of samples.  

• Iterate for k=1,2,... and at time step k, propagate the probability density as follows: 

o NSSn is the number of samples that needs to be sampled from sample 1{ }n
ks −  

assigned by the previous re-sampling step. Draw samples ,{ }m n
ks  given 1{ }n

ks −  

according to 1( | )k kp s s −  where m = 1,…, NSSn  . ,{ }m n
ks  are the samples that 

are propagated from 1{ }n
ks −  according to ,

1= ( )m n n
k k ms f s v− +  where 

(0, )mv N σ∼  . 

o Iterate for i=1,...,I. where I is the number of DE iterations. For each m,n, 

 Calculate the new weight, , , ,
1= ( | ) ( | )m n m n m n n

k k k k kp b s p s sπ − , where 

,( | )m n
k kp b s  is the likelihood value of the measurement kb  given 

sample ,m n
ks .  

 Generate a perturbated sample ,p n
ks , which is generated according to, 

, , , , 1, 2,= .( ) .( ) ( , )p n m n Rbest n m n R n R n
k k k k k ks s a s s c s s uniform b b+ − + − + −  

as described in DE algorithm. n Rbest
ks  is the sample with greatest 

likelihood in set ,{ }m n
ks . 

 Assign a weighted temperature where, 

,
1. ( | )p n n

k kT TempCoef p s s −= . 

 If ,log( ) .log( )m n
k T uπ >  where (0,1)u uniform∼ , ,p n

ks  is a new 
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DEMC Particle Filter continues 

 

 

The temperature value in DEMC sampling step is adjusted by scaling with 
,

1( | )p n n
k kp s s − , which reduces the probability of generating samples that are less 

probable according to the time propagation. 

DEMC Particle Filter is summarized above; the flow of the particle filter is also 

presented in the Figure 7.1  

o For each sample n, find the best 1
n
ks −  with maximum n

kπ  by, 

, ,
1 1

1
= ( | ) ( | ). ( | )

M
n n m n m n n
k k k k k k k

m

p b s p b s p s sπ − −
=

=∑  

o Calculate the estimation of ks , by ,

1

ˆ /
M

m n best
k k n best

m
s s NSS=

=
=

= ∑   

o Combine all { }mn
ks  into { }n

ks  and store the new weights as, n
kπ  and 

normalize so that = 1.n
kn

π∑   

o Resample N/3 samples from { }n
ks  according to n

kπ  and assign three times 

the calculated re-sampling as NSSn  for each sample. 
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Figure 7.1 : DEMC Particle Filter Flow Diagram 

7.1 Occlusion Detection in DEMC Particle Filter 

Occlusion detection can also be augmented to the DEMC Particle Filter. Let ˆks  be 

the filtered state at time step k . Occlusion detection can be formulated as, 
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>
 (7.3) 

( )kL b  is the Neuman-Pearson criteria for detection. If ( )kL b  is greater than a given 

threshold τ , we assume there is a detection. If not, there is supposed to be no license 

plate visible in the video frame. Neuman-Pearson criteria can be calculated in the 

DEMC Particle Filter as follows, 

11 1

001

( | ) ˆ( | )( )
ˆ( | )( | )

N n
H k kn H k k

k N n
H k kH k kn

p b s p b sL b
p b sp b s

=

=

≈ ≈∑
∑

 (7.4) 

( )kL b  is calculated before each re-sampling step. If ( )kL b τ>  is satisfied, re-

sampling is performed, else re-sampling is omitted. 
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8. UTILIZING DEMC PARTICLE FILTER 

We supplied the theoretical background for 3D projection, state space models and 

stochastic estimation concept in previous sections. We also detailed the stochastic 

tracking concept and stochastic tracking algorithms. As mentioned already, our main 

objective is 3D tracking of license plates from monocular camera view. In this 

section, we explain the application of DEMC Particle Filtering to a real world 

scenario, namely 3D license plate tracking.  

We will try to elaborate the main ideas, which have been explained theoretically in 

previous sections. First question arising is as following. “What do the samples ks  

mean in our application of license plate tracking?” 

For better understanding we may look at some sample state vectors and their 

representation for real world in Figure 8.1.  

 
(a) 
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(b) 

 
(c)  

 
(d)  
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(e) 

Figure 8.1 : Samples and their Representations  

(a) 1 0 40 0.7 0 0X Y Z α β γ= = = = = =  

(b) 1 0 40 0 0.7 0X Y Z α β γ= = = = = =  

(c) 1 0 40 0 0 0.7X Y Z α β γ= = = = = = −  

(d) 1 0 40 0.7 0 0.1X Y Z α β γ= = = = = = −  

(e) 1 10 40 0.7 0 0.1X Y Z α β γ= = = = = = −  

Thus, it can easily be seen that, each sample corresponds to a translation and rotation 

of the license plate. Each sample is a hypothesis for the position and orientation of 

the license plate. On the other hand, we do not have only one suggestion for the state 

of the license plate, we have a set of samples n
ks  each with different state variables 

and each make a different suggestion for the license plate position and orientation. 

Now we can answer to the next question. “What do we do with all those samples?” 

First thing to mention is that, samples evolve in time. For example,  
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Figure 8.2 : License Plate Dynamics 

in Figure 8.2, a sample is moving forward thus, approaching the camera. This is a 

consequence of the propagation of the samples according to the dynamic model 

given by 1= ( , ) (0, )n n
k k ks f s c N σ− + .  

Remembering the Kalman time update equations, we may notice the similarity of the 

propagation in Condensation algorithm and time update step in Kalman filter. After 

the time update step, we have a measurement update step in Kalman equation set. 

This step corresponds to the re-sampling step of the Condensation algorithm. For the 

DEMC Particle Filter, re-sampling step also includes DE optimization iterations. In 

order to understand the re-sampling step, we need to be familiar with the probability 

distribution concept and its propagation in time. Analogical to sampling in time, we 

may think that the samples n
ks  are samples from the probability distribution ( )kp s , 

therefore n
ks ’s are representing a probability distribution. On the other hand, ( )kp s  is 

measurement dependent and given as ( | )k kp s b . From Bayesian point of view we 

use ( | )k kp b s  in our algorithms. We may talk about a deterministic drift of the 

samples by dynamic model and then a correction according the given measurement 

on the probability distribution. By means of this recursive updates, the algorithm is 

able to track a probability distribution and so an object. The mean of this probability 

distribution is the prediction and corrected (filtered) output of the filter. As an add-on 

or enhancement to the Condensation algorithm, DEMC Particle Filter applies 

additional DE optimization iterations at the re-sampling step. This is where the 

DEMC Particle Filter has advantage on Condensation algorithm and reduces the 
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number of required samples and avoids sample degeneracy. Additional DE 

optimization iterations propagate the samples to more probable areas of the 

distribution so better represents the probability distribution. We can observe such a 

propagation of samples to more probable position in Figure 8.3. From frame 1 to 4 

the bold square is the current mean of the distribution and the thin squares are the 10 

samples projected on to the image. The samples propagate to the given template 

pattern, which is the triangular logo (see on the top left corner of the images) on the 

pencil box. 

(a) (b) 

(c) (d) 

Figure 8.3 : Propagation of the Samples in Time (a) Frame 1 (b) Frame 2  

(c) Frame 3 (d) Frame 4 
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Figure 8.4 : Video Frame Sample 

 

Figure 8.5 : Template 

8.1 Likelihood Calculation 

= ( | )n n n
k k kp b sπ  likelihood values are obtained by simple template matching. The 

matching is performed against the template that is extracted from the initial frame. A 

sample video frame is shown in Figure 8.4 . The template extracted from this frame 

can be as shown in Figure 8.5. There is no update on this template during the 

tracking in our application. The template is normalized in order to obtain an image 

with zero mean and unit variance. The template matching is then performed as 

follows, 

2
,

0 0

ˆ( , ) [ ( , ) ( , )]
yx TT

x y
n m

likelihood x y I n m T n m
= =

= −∑∑  (8.1) 

where ,x yT T  are the template dimensions, ( , )T n m  is the zero mean, unit variance 

template and ,
ˆ ( , )x yI n m  is the extracted image region around (x,y) which is processed 

to have zero mean and unit variance. Because of the 3D nature of the system state, 

this image region also needs to be warped according to the sample’s Euler angles.  

Likelihood values calculated for a window, which is shifted around the true license 

plate coordinates (in a 100x50 pixels neighborhood), is shown in Figure 8.6. Please 

notice that in this likelihood calculation, no warping operation is performed before 

template matching. 
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Figure 8.6 : Likelihood Function Plot 

There is an important step that has to be performed before template matching; that is 

the warping of extracted image before matching to the given template. The warping 

is performed according to the sample values, namely the 3D coordinates , ,X Y Z  and 

the , ,α β γ  Euler angles. 3D license plate corners are first projected to the image 

plane by camera model and each 2D corner coordinate is fed to the warping function. 

The perspective transform is calculated from given 2D corner coordinates. The result 

of warping operation is shown in Figure 8.7. In this example the template is warped, 

instead in the application we need to warp the extracted image region. 

We will try to evaluate the performance of four algorithms, namely Auxiliary 

Particle Filter, Condensation Algorithm, Genetic Condensation Algorithm and 

DEMC Particle Filter in the next section for the application of license plate tracking. 
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(a) 

(b) 

 
(c) 

 
(d)  

 
(e) 

 
(f) 

Figure 8.7 : 3D Projection of the License Plate in Various Euler Angles (a) 

0, 0, 0α β γ= = =  (b) 60º, 0, 0α β γ= = =  (c) 0, 60º, 0α β γ= = =  (d) 

0, 0, 30ºα β γ= = =  (e) 60º, 0, 30ºα β γ= = =  (f) 0, 60º, 30ºα β γ= = =  
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9. EXPERIMENTAL RESULTS 

Before evaluating DEMC Particle Filter, it is necessary to explain the requirements 

of a robust tracking algorithm.  

First, a tracking algorithm must decrease the error rate of the noisy measurements. 

Thus, the error rate of the output of the algorithm must be less than the input, namely 

noisy measurements. This decrease in error rate is due to the employed system model 

and its accuracy in prediction of the next state of the system. Another requirement of 

the tracking algorithm is its robustness, in other words, its strength in estimating the 

right ROI in the application and insisting on the right path of solution avoiding 

jumping to other possible system solutions. We utilize a tracking algorithm in order 

to restrict our attention into a defined ROI, thus we want to eliminate the rest of the 

image from processing. Thus, the tracking algorithm’s processing complexity should 

be less then processing all the input. Otherwise, the problem can be solved by brute 

force. Last but not the least, tracking algorithm should tolerate to a degree of missing 

measurements. Thus, for example in the presence of occlusion, the algorithm should 

possibly sustain its stability for a required period of time. 

In order to evaluate the DEMC Particle Filter, we have implemented Auxiliary 

Particle Filter, Condensation Algorithm and Genetic Condensation Algorithm. We 

evaluated these algorithms by tracking license plates on 12 test video sequences. 

The tests are performed with calibrated camera and manually determined license 

plate 2D corner coordinates as a ground truth. This ground truth is also utilized for 

track initialization. Therefore, the initial frame for each vehicle has no error, but the 

proceeding frames yield corner displacement errors according the tracking 

performance of the filters. 

9.1 Calibration for Each Video Sequence 

In order to utilize our framework of tracking on the test sequences, our algorithm 

requires camera parameters. We do not apply a coordinate transform between the 
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camera and the outdoor environment because we did not need to define a world 

coordinate system other than camera coordinate system. Thus, we only require the 

focal length ( )f , the pixels size ( , )u vk k  and the image coordinates of the projection 

center 0 0( , )Tu v . The projection center is assumed to be the sensor center, which 

dictates that the projection center is the half of the image dimensions. We utilized the 

calibration method in [50]. This method requires a couple of calibration images, 

which include the calibration pattern clearly seen. The calibration pattern is a 8x4 

chessboard in our application. The dimensions of the calibration pattern is fed to the 

algorithm and at least 10 calibration images are used for each test video. Example 

calibration images can be seen in Figure 9.1.  

 

(a) Example Calibration Image 1 

 

(b) Example Calibration Image 2 

 
(c) Example Calibration Image 3 

 
(d) Example Calibration Image 4 

Figure 9.1 : Example Calibration Images (a) Image 1 (b) Image 2 (c) Image 3  

(d) Image 4 

The calibration algorithm outputs the parameters =u
u

f
k

α  and =v
v

f
k

α  which we 

will use in the test data extraction and tracking itself. 
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9.2 Composing the Test Data for Video Sequences 

Before testing each particle on the test sequences, the ground truth for each frame 

must be extracted. This operation is performed manually using a GUI program, 

which helped to select the license plate corners. 

 

Figure 9.2 : License Plate Coordinates Selection Program 

This utility has also a process of controlling the selected license plate corners by 

optimizing it according to the 3D model of the license plate. Thus, the program 

includes an optimization step, which converges to the 3D state of the license plate. 

The optimized cost function that is given as: 

4
2 2

( )
1

arg min ( ) ( )projected selected projected selected
XYZ i i i i

i
x x y yαβγ

=

= − + −∑  (9.1) 

The optimization is performed on the state ( )Ts XYZαβγ� , the difference of the four 

projected and selected corners is minimized. 



75 

If the convergence is supplied in a limited number of iterations and with a required 

error limit, the four corners are accepted as the license plate corner coordinates. Also 

after the optimization, we get the approximated 3D state of the license plate, which is 

used for initialization of the filters at the very beginning of tracking. 

9.3 Performance Comparison 

DEMC Particle Filter, Auxiliary Particle Filter, Condensation Algorithm and Genetic 

Condensation Algorithm are evaluated on 12 test videos, which include 108 vehicles. 

Each vehicle is tracked maximum of 25 frames after the initialization frame. Totally 

2205 frames of tracking performed for evaluation. The filters are utilized with the 

same number of particles and with the same number of likelihood calculation. 

Considering the number of particles N, Condensation algorithm has complexity of 

O(N), Auxiliary Particle Filter has O(2N), DEMC Particle Filter has O(3N) (in case 

of 2 DEMC iterations), Genetic Condensation has O(4N) complexity. If we want to 

equalize the number of likelihood computations and if Condensation algorithm has 

360 particles, Auxiliary Particle Filter will have 180 particles, DEMC Particle Filter 

will have 120 particles and Genetic Condensation will have 90 particles, which is the 

case in the test setup. 

The general parameters for the DEMC Particle Filter is given as, 

Table 9.1: Parameters for DEMC Particle Filter 

Parameter Value 

a 0.8 

c 0.2 

Temperature Coefficient 1e-3 

b [0.05,0.05,0.05,0.005,0.005,0.005] 

Number of iterations I 2 
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and the general parameters for the Genetic Condensation algorithm is given as, 

Table 9.2: Parameters for Genetic Condensation Algorithm 

Parameter Value 

b [4,4,15,0.01,0.01,0.005] 

 

Initial speed for all the filters at the initialization step is given as 20 cm per frame, 

which makes 18 km/h (at 25 fps). The speeds of vehicles at the test sequences are 

generally between 10-50 km/h. These speeds are very common in urban area. If the 

tracking is performed in highways, the configuration for initial speed, process noise 

variance etc. should be tuned accordingly. 

The videos are captured by a Sony Handy cam, which can capture 704x576 at the 

frame rate of 25 fps. This video is interleaved; therefore, we needed to discard even 

rows of the image, which resulted in a 704x288 resolution. The camera parameters 

are calibrated according to this resolution. 

The tracking is performed on grayscale images. Color information is not utilized in 

tracking. The main reason for not utilizing color information is to make the approach 

also usable with IR cameras, which at the end will allow us to work at night. 

Sample frames from 12 test videos are presented below. The tracking results are 

listed after each test video sequence. The corner displacement error is given as pixels 

per corner. 
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(a) Calibration Image  

 
(b) Video 1 Frame 12  

 
(c) Video 1 Frame 44  

 
(d) Video 1 Frame 116  

 
(e) Video 1 Frame 156  

 
(f) Video 1 Frame 252  

 
(g) Video 1 Frame 376  

 
(h) Video 1 Frame 476  

Figure 9.3 : Test Video Sequence 1 (a) Calibration Image (b) Frame 12 (c) Frame 44 

(d) Frame 116 (e) Frame 156 (f) Frame 252 (g) Frame 376 (h) Frame 476 
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Video Sequence : 1 

Number of Vehicles : 10 

Number of Tracked Frames : 210 

Process Noise Standard Deviation σ  in equation 6.1 : [10,5,30,0.02,0.02,0.01] 

Table 9.3: Test Video 1 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 6498 7.73

Auxiliary Particle 

Filter  
180 360 37056 44.11

DEMC Particle 

Filter 
120 360 3399 4.04

Genetic 

Condensation 
90 360 4302 5.12

 

Table 9.4: Test Video 1 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 6498 7.73

Auxiliary Particle 

Filter  
360 720 12140 14.45

DEMC Particle 

Filter 
360 1080 2438 2.90

Genetic 

Condensation 
360 1440 2062 2.45
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(a) 

(b) 

(c)  

(d)  

Figure 9.4 : Test Video Sequence 1 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 2 Frame 16  

 
(c) Video 2 Frame 172  

 
(d) Video 2 Frame 376  

 
(e) Video 2 Frame 408  

 
(f) Video 2 Frame 612  

 
(g) Video 2 Frame 680  

 
(h) Video 2 Frame 692  

Figure 9.5 : Test Video Sequence 2 (a) Calibration Image (b) Frame 16 (c) Frame 

172 (d) Frame 376 (e) Frame 408 (f) Frame 612 (g) Frame 680 (h) Frame 692 
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Video Sequence : 2 

Number of Vehicles : 7 

Number of Tracked Frames : 175 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.5: Test Video 2 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 2973 4.24

Auxiliary Particle 

Filter  
180 360 12578 17.96

DEMC Particle 

Filter 
120 360 2676 

3.82

Genetic 

Condensation 
90 360 5591 7.98

 

Table 9.6: Test Video 2 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 2973 4.24

Auxiliary Particle 

Filter  
360 720 26747 38.21

DEMC Particle 

Filter 
360 1080 1854 2.64

Genetic 

Condensation 
360 1440 1530 2.18
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(a) 

(b) 

(c)  

(d)  

Figure 9.6 : Test Video Sequence 2 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 3 Frame 12  

 
(c) Video 3 Frame 76  

 
(d) Video 3 Frame 132  

 
(e) Video 3 Frame 232  

 
(f) Video 3 Frame 344  

 
(g) Video 3 Frame 448  

 
(h) Video 3 Frame 576  

Figure 9.7 : Test Video Sequence 3 (a) Calibration Image (b) Frame 12 (c) Frame 76 

(d) Frame 132 (e) Frame 232 (f) Frame 344 (g) Frame 448 (h) Frame 576 
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Video Sequence : 3 

Number of Vehicles : 9 

Number of Tracked Frames : 225 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.7: Test Video 3 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3955 4.39

Auxiliary Particle 

Filter  
180 360 28781 31.97

DEMC Particle 

Filter 
120 360 3548 3.94

Genetic 

Condensation 
90 360 4080 4.53

 

Table 9.8: Test Video 3 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3955 4.39

Auxiliary Particle 

Filter  
360 720 5885 6.53

DEMC Particle 

Filter 
360 1080 2925 3.25

Genetic 

Condensation 
360 1440 2630 2.92
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(a) 

(b) 

(c)  

(d)  

Figure 9.8 : Test Video Sequence 3 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 4 Frame 16  

 
(c) Video 4 Frame 72  

 
(d) Video 4 Frame 160  

 
(e) Video 4 Frame 204  

 
(f) Video 4 Frame 248  

 
(g) Video 4 Frame 284  

 
(h) Video 4 Frame 308  

Figure 9.9 : Test Video Sequence 4 (a) Calibration Image (b) Frame 16 (c) Frame 72 

(d) Frame 132 (e) Frame 160 (f) Frame 204 (g) Frame 284 (h) Frame 308 
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Video Sequence : 4 

Number of Vehicles : 6 

Number of Tracked Frames : 150 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.9: Test Video 4 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3204 5.34

Auxiliary Particle 

Filter  
180 360 6207 10.34

DEMC Particle 

Filter 
120 360 2180 3.63

Genetic 

Condensation 
90 360 3043 5.07

 

Table 9.10: Test Video 4 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3204 5.34

Auxiliary Particle 

Filter  
360 720 3027 5.04

DEMC Particle 

Filter 
360 1080 1639 2.73

Genetic 

Condensation 
360 1440 1540 2.56
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(a) 

(b) 

(c)  

(d)  

Figure 9.10 : Test Video Sequence 4 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 5 Frame 24  

 
(c) Video 5 Frame 172  

 
(d) Video 5 Frame 184  

 
(e) Video 5 Frame 308  

 
(f) Video 5 Frame 348  

 
(g) Video 5 Frame 436  

 
(h) Video 5 Frame 448  

Figure 9.11 : Test Video Sequence 5 (a) Calibration Image (b) Frame 24 (c) Frame 

172 (d) Frame 184 (e) Frame 308 (f) Frame 348 (g) Frame 436 (h) Frame 448 
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Video Sequence : 5 

Number of Vehicles : 10 

Number of Tracked Frames : 129 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.11: Test Video 5 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 2668 5.17

Auxiliary Particle 

Filter  
180 360 22942 44.46

DEMC Particle 

Filter 
120 360 2503 4.85

Genetic 

Condensation 
90 360 3209 6.21

 

Table 9.12: Test Video 5 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 2668 5.17

Auxiliary Particle 

Filter  
360 720 2438 4.72

DEMC Particle 

Filter 
360 1080 1844 3.57

Genetic 

Condensation 
360 1440 1649 3.19
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(a) 

(b) 

(c)  

(d)  

Figure 9.12 : Test Video Sequence 5 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 6 Frame 20  

 
(c) Video 6 Frame 80  

 
(d) Video 6 Frame 160  

 
(e) Video 6 Frame 216  

 
(f) Video 6 Frame 272  

 
(g) Video 6 Frame 376  

 
(h) Video 6 Frame 928  

Figure 9.13 : Test Video Sequence 6 (a) Calibration Image (b) Frame 20 (c) Frame 

80 (d) Frame 160 (e) Frame 216 (f) Frame 272 (g) Frame 376 (h) Frame 928 
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Video Sequence : 6 

Number of Vehicles : 15 

Number of Tracked Frames : 376 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.13: Test Video 6 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 4829 3.21

Auxiliary Particle 

Filter  
180 360 15923 10.58

DEMC Particle 

Filter 
120 360 5636 3.74

Genetic 

Condensation 
90 360 5088 3.38

 

 

Table 9.14: Test Video 6 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 4829 3.21

Auxiliary Particle 

Filter  
360 720 8666 5.76

DEMC Particle 

Filter 
360 1080 4001 2.66

Genetic 

Condensation 
360 1440 3540 2.35
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(a) 

(b) 

(c)  

(d)  

Figure 9.14 : Test Video Sequence 6 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 7 Frame 8  

 
(c) Video 7 Frame 52  

 
(d) Video 7 Frame 92  

 
(e) Video 7 Frame 164  

 
(f) Video 7 Frame 496  

 
(g) Video 7 Frame 528  

 
(h) Video 7 Frame 640  

Figure 9.15 : Test Video Sequence 7 (a) Calibration Image (b) Frame 8 (c) Frame 52 

(d) Frame 92 (e) Frame 164 (f) Frame 496 (g) Frame 528 (h) Frame 640 

 

 

 



96 

Video Sequence : 7 

Number of Vehicles : 11 

Number of Tracked Frames : 241 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.15: Test Video 7 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3758 3.89

Auxiliary Particle 

Filter  
180 360 8412 8.72

DEMC Particle 

Filter 
120 360 4319 4.48

Genetic 

Condensation 
90 360 4165 4.32

 

Table 9.16: Test Video 7 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3758 3.89

Auxiliary Particle 

Filter  
360 720 3566 3.69

DEMC Particle 

Filter 
360 1080 3030 3.14

Genetic 

Condensation 
360 1440 2481 2.57
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(a) 

(b) 

(c)  

(d)  

Figure 9.16 : Test Video Sequence 7 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 8 Frame 8  

 
(c) Video 8 Frame 64  

 
(d) Video 8 Frame 104  

 
(e) Video 8 Frame 160  

 
(f) Video 8 Frame 196  

 
(g) Video 8 Frame 236  

 
(h) Video 8 Frame 244  

Figure 9.17 : Test Video Sequence 8 (a) Calibration Image (b) Frame 8 (c) Frame 64 

(d) Frame 104 (e) Frame 160 (f) Frame 196 (g) Frame 236 (h) Frame 244 
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Video Sequence : 8 

Number of Vehicles : 6 

Number of Tracked Frames : 45 

Process Noise Standard Deviation σ  in equation 6.1: [5,10,30,0.02,0.02,0.01] 

Table 9.17: Test Video 8 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 1055 5.86

Auxiliary Particle 

Filter  
180 360 1162 6.45

DEMC Particle 

Filter 
120 360 885 4.91

Genetic 

Condensation 
90 360 789 4.38

 

Table 9.18: Test Video 8 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 1055 5.86

Auxiliary Particle 

Filter  
360 720 843 4.68

DEMC Particle 

Filter 
360 1080 826 4.58

Genetic 

Condensation 
360 1440 693 3.85
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(a) 

(b) 

(c)  

(d)  

Figure 9.18 : Test Video Sequence 8 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 9 Frame 16  

 
(c) Video 9 Frame 48  

 
(d) Video 9 Frame 88  

 
(e) Video 9 Frame 160  

 
(f) Video 9 Frame 256  

 
(g) Video 9 Frame 432  

 
(h) Video 9 Frame 436  

Figure 9.19 : Test Video Sequence 9 (a) Calibration Image (b) Frame 16 (c) Frame 

48 (d) Frame 88 (e) Frame 160 (f) Frame 256 (g) Frame 432 (h) Frame 436 
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Video Sequence : 9 

Number of Vehicles : 7 

Number of Tracked Frames : 41 

Process Noise Standard Deviation σ  in equation 6.1: [5,10,30,0.02,0.02,0.01] 

Table 9.19: Test Video 9 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 1178 7.18

Auxiliary Particle 

Filter  
180 360 1285 7.83

DEMC Particle 

Filter 
120 360 709 4.32

Genetic 

Condensation 
90 360 612 3.73

 

Table 9.20: Test Video 9 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 1178 7.18

Auxiliary Particle 

Filter  
360 720 907 5.53

DEMC Particle 

Filter 
360 1080 760 4.63

Genetic 

Condensation 
360 1440 539 3.28
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(a) 

(b) 

(c)  

(d)  

Figure 9.20 : Test Video Sequence 9 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 10 Frame 20  

 
(c) Video 10 Frame 88  

 
(d) Video 10 Frame 120  

 
(e) Video 10 Frame 176  

 
(f) Video 10 Frame 244  

 
(g) Video 10 Frame 276  

 
(h) Video 10 Frame 520  

Figure 9.21 : Test Video Sequence 10 (a) Calibration Image (b) Frame 20 (c) Frame 

88 (d) Frame 120 (e) Frame 176 (f) Frame 244 (g) Frame 276 (h) Frame 520 
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Video Sequence : 10 

Number of Vehicles : 9 

Number of Tracked Frames : 205 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.21: Test Video 10 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3060 3.73

Auxiliary Particle 

Filter  
180 360 6808 8.30

DEMC Particle 

Filter 
120 360 2868 3.49

Genetic 

Condensation 
90 360 3111 3.79

 

Table 9.22: Test Video 10 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3060 3.73

Auxiliary Particle 

Filter  
360 720 3111 3.79

DEMC Particle 

Filter 
360 1080 2377 2.89

Genetic 

Condensation 
360 1440 1959 2.38
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(a) 

(b) 

(c)  

(d)  

Figure 9.22 : Test Video Sequence 10 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 11 Frame 16  

 
(c) Video 11 Frame 68  

 
(d) Video 11 Frame 136  

 
(e) Video 11 Frame 232  

 
(f) Video 11 Frame 340  

 
(g) Video 11 Frame 480  

 
(h) Video 11 Frame 688  

Figure 9.23 : Test Video Sequence 11 (a) Calibration Image (b) Frame 16 (c) Frame 

68 (d) Frame 136 (e) Frame 232 (f) Frame 340 (g) Frame 480 (h) Frame 688 
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Video Sequence : 11 

Number of Vehicles : 10 

Number of Tracked Frames : 238 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.23: Test Video 11 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3230 3.39

Auxiliary Particle 

Filter  
180 360 8375 8.79

DEMC Particle 

Filter 
120 360 3100 3.25

Genetic 

Condensation 
90 360 3192 3.35

 

Table 9.24: Test Video 11 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 3230 3.39

Auxiliary Particle 

Filter  
360 720 3653 3.83

DEMC Particle 

Filter 
360 1080 2551 2.67

Genetic 

Condensation 
360 1440 2215 2.32
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(a) 

(b) 

(c)  

(d)  

Figure 9.24 : Test Video Sequence 11 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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(a) Calibration Image  

 
(b) Video 12 Frame 8  

 
(c) Video 12 Frame 100  

 
(d) Video 12 Frame 152  

 
(e) Video 12 Frame 316  

 
(f) Video 12 Frame 336  

 
(g) Video 12 Frame 404  

 
(h) Video 12 Frame 492  

Figure 9.25 : Test Video Sequence 12 (a) Calibration Image (b) Frame 8 (c) Frame 

100 (d) Frame 152 (e) Frame 316 (f) Frame 336 (g) Frame 404 (h) Frame 492 
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Video Sequence : 12 

Number of Vehicles : 8 

Number of Tracked Frames : 170 

Process Noise Standard Deviation σ  in equation 6.1: [10,5,30,0.02,0.02,0.01] 

Table 9.25: Test Video 12 Tracking Results with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 2387 3.51

Auxiliary Particle 

Filter  
180 360 4188 6.15

DEMC Particle 

Filter 
120 360 2841 4.17

Genetic 

Condensation 
90 360 2529 3.71

 

Table 9.26: Test Video 12 Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

Condensation 360 360 2387 3.51

Auxiliary Particle 

Filter  
360 720 2697 3.96

DEMC Particle 

Filter 
360 1080 2115 3.11

Genetic 

Condensation 
360 1440 1771 2.60
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(a) 

(b) 

(c)  

(d)  

Figure 9.26 : Test Video Sequence 12 Corner Displacement Errors with Same 
Computation Load (a) Condensation (b) Auxiliary Condensation (c) DEMC Particle 

Filter (d) Genetic Condensation  
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The tracking result for 12 individual test videos is given. The overall score of 

performance can be gathered in tables as below, 

Table 9.27: Overall Tracking Result with Same Computation Load 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Average Displacement 
Error per Corner 

(pixels) 

Condensation 360 360 4.80 

Auxiliary Particle 

Filter  
180 360 17.13 

DEMC Particle 

Filter 
120 360 4.05 

Genetic 

Condensation 
90 360 4.64 

 

Table 9.28: Overall Tracking Results with Same Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Average Displacement 
Error per Corner 

(pixels) 

Condensation 360 360 4.80 

Auxiliary Particle 

Filter  
360 720 8.35 

DEMC Particle 

Filter 
360 1080 3.23 

Genetic 

Condensation 
360 1440 2.72 

 

The results show that the with same computation load, DEMC Particle filter 

performs best among all other filters with 4.05 pixels average corner error. It is very 

important to observe that the DEMC Particle Filter performs better with the same 

number of likelihood calculations. On the other hand, Genetic Condensation 

algorithm also performs better than standard Condensation algorithm with the same 

computation load. The Auxiliary Particle Filter is reported to be impractical when the 

likelihood function has low variance [49]. Template matching is such a peaked 

likelihood function that has steep increase close to the optimum but considerably low 
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values at the neighborhood of the optimum. Auxiliary Particle Filter is the worst 

filter with 17.13 pixels corner error. Auxiliary Particle Filter requires more particles 

for being applicable to the license plate tracking problem.  

The tests are repeated with the same number of particles. With the same number of 

particles, DEMC Particle Filter and Generic Condensation algorithm performs 

significantly better than the standard Condensation algorithm. The best filter in this 

situation is the Genetic Condensation algorithm with 2.72 pixels error per corner. 

However, it must always be kept in mind that the total likelihood calculation per time 

step of the Genetic Condensation is 360 more than the DEMC Particle Filter, 720 

more than Auxiliary Particle Filter and 1080 more than Condensation algorithm. 

9.4 DEMC Particle Filter Performance with Different Number of Particles 

It is also necessary to study the behavior of the DEMC Particle Filter with different 

number of particles. The performance of the filters gets better with the increasing 

number of particles, until a satisfying number of particles is reaches. After that point, 

we cannot get a performance increase, even if we continue to increase the particle 

number. For each application, this number of particles should be searched for 

efficiency.  

We performed the tracking of the test video 1 with DEMC Particle Filter with 

different number of particles. During these trials, the parameters of the DEMC 

Particle Filter are kept constant and the only varying input to the filtering was the 

number of particles.  

We started from 60 and increased the number of particles as 120, 180, 240, 300, 360, 

420, as shown in Table 9.29. We obtained a steady performance increase until 360 

particles. After that number, increasing the number of particles did not result in 

performance increase.  

We applied 120 as the number of particles in the performance evaluation tests 

because this is the minimum number of particles that we can sustain a robust tracking 

performance. 
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Video Sequence : 1 

Number of Vehicles : 10 

Number of Tracked Frames : 210 

Process Noise Standard Deviation : [10,5,30,0.02,0.02,0.01] 

Table 9.29: DEMC P. F. Tracking Results with Different Number of Particles 

Algorithm 
Number of 
Particles 

Number of 
Likelihood 

Calculations 

Total Corner 
Displacement 

Error 

Average 
Displacement 

Error per Corner 

DEMC Particle 

Filter 
60 180 20509 24.41

DEMC Particle 

Filter 
120 360 3399 4.04

DEMC Particle 

Filter 
180 540 3352 3.99

DEMC Particle 

Filter 
240 720 2874 3.42

DEMC Particle 

Filter 
300 900 2828 3.36

DEMC Particle 

Filter 
360 1080 2438 2.90

DEMC Particle 

Filter 
420 1260 2599 3.09
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9.5 DEMC Particle Filter Performance with Different Parameters 

The performance of the DEMC particle filter with different parameters is shown in 

Table 9.30. It is important to calibrate the filter to the application with different 

parameter set trials. We tested the performance of the algorithm again with the test 

video sequence 1. Changing the parameter a does not give any increase in the 

performance. 0.8 is an optimum value for the filter, which is also recommended as 

0.85 by the Differential Evolution algorithm itself.  

Nevertheless, different values of the parameter c can give better results dependent to 

the application. We reached a good performance with c assigned to 0.2. Decreasing 

the parameter c increases the probability of completely missing the target while 

tracking. However, decreasing the parameter c increases the precision of the 

localization. In other words, the localization performance increases with decreasing c 

and variance of the particles increases with increasing c. 

As mentioned in DEMC sampling algorithm parameter b should be very small. 

Therefore, it is not very suitable to make calibration of parameter b. The only 

remaining parameter that we can change, is the temperature. The temperature should 

be adjusted according to the characteristics of the likelihood function. If the 

likelihood function is very distinctive and can separate the feature space strictly, it is 

quite helpful to decrease the temperature. However, if the likelihood function has a 

big variance on the feature set, we may think of increasing it and by this means, we 

can increase the variance of the particles. 
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Video Sequence : 1 

Number of Vehicles : 10 

Number of Tracked Frames : 210 

Process Noise Standard Deviation : [10,5,30,0.02,0.02,0.01] 

Table 9.30: DEMC P. F. Tracking Results with Different Parameters 

Algorithm 
Number 

of 
Particles 

a c b Temp 
Total Corner 
Displacement 

Error 

DEMC Particle 

Filter  
360 0.8 0.2 5,5,5,0.5,0.5,0.5 *1e-2 1e-3 2438

DEMC Particle 

Filter 
360 0.8 0.2 5,5,5,0.5,0.5,0.5 *1e-2 1 2608

DEMC Particle 

Filter 
360 0.5 0.2 5,5,5,0.5,0.5,0.5 *1e-2 1e-3 7326

DEMC Particle 

Filter 
360 0.8 0.5 5,5,5,0.5,0.5,0.5 *1e-2 1e-3 4486

DEMC Particle 

Filter 
360 0.9 0.1 5,5,5,0.5,0.5,0.5 *1e-2 1e-3 2341

 

9.6 Speed Measurement by License Plate Tracking 

The natural result of tracking in 3D is the ability of measuring the 3D velocity of the 

license plate. The most useful information in motion is the speed of the license plate, 

which is also the speed of the vehicle. We can make the speed measurement of the 

vehicle in our approach as explained in section 6.2. In order to test this ability, we 

have recorded the videos of the vehicles with known speed values. The test video for 

speed measurement validation includes four pass of the same car with different speed 

values. The speeds are in time order 15 km/h, 28 km/h, 38 km/h and 21 km/h.  

The videos are tracked by DEMC Particle Filter with 360 particles. We have utilized 

a high number of particles because here we do not make a performance test 

considering the particle number; we are testing the ability of speed measurement. 

The video sequence and the measured speed is shown in Figure 9.27, Figure 9.28, 

Figure 9.29 and Figure 9.30 
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(a) Vehicle Speed 15 km/h Frame 8 

 
(b) Vehicle Speed 15 km/h Frame 12  

 
(c) Vehicle Speed 15 km/h Frame 16 

 
(d) Vehicle Speed 15 km/h Frame 20 

Figure 9.27 : Test Vehicle Speed 15 km/h (a) Frame 8 (b) Frame 12 (c) Frame 16 (d) 

Frame 20 (Measured Speed 15.77 km/h) 

 
(a) Vehicle Speed 28 km/h Frame 296 

 
(b) Vehicle Speed 28 km/h Frame 300 

 
(c) Vehicle Speed 28 km/h Frame 304 

 
(d) Vehicle Speed 28 km/h Frame 308 

Figure 9.28 : Test Vehicle Speed 28 km/h (a) Frame 296 (b) Frame 300 (c) Frame 

304 (d) Frame 308 (Measured Speed 25.93 km/h) 
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(a) Vehicle Speed 38 km/h Frame 504 

 
(b) Vehicle Speed 38 km/h Frame 508 

 
(c) Vehicle Speed 38 km/h Frame 512 

 
(d) Vehicle Speed 38 km/h Frame 516 

Figure 9.29 : Test Vehicle Speed 38 km/h (a) Frame 504 (b) Frame 508 (c) Frame 

512 (d) Frame 516 (Measured Speed 33.81 km/h) 

 
(a) Vehicle Speed 21 km/h Frame 688 

 
(b) Vehicle Speed 21 km/h Frame 692 

 
(c) Vehicle Speed 21 km/h Frame 696 

 
(d) Vehicle Speed 21 km/h Frame 700 

Figure 9.30 : Test Vehicle Speed 21 km/h (a) Frame 688 (b) Frame 692 (c) Frame 

696 (d) Frame 700 (Measured Speed 19.87 km/h) 

The velocity of the vehicle is measured by considering the whole tracking sequence, 

thus the 3D shift is divided to the time duration between the first and the last frames. 
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9.7 Occlusion Detection  

It is a very frequent situation that occlusion of the license plate occurs by pedestrians 

and the other vehicles in urban area. An important advantage of utilizing a tracking 

filter is gaining robustness to the occlusions. 

However, in order to be robust to the occlusions, the filter should have a mechanism 

of detecting the occlusions. Because the filter should be preserving its last kinematics 

and continue updating the particles discarding the wrong or absent measurements. 

We have recorded a test sequence in order to present this feature of the DEMC 

Particle Filter. In this test sequence, a pedestrian occludes the license plate 

completely for 5 frames. 

The standard Condensation algorithm has no occlusion detection feature. We have 

augmented this feature to the DEMC Particle Filter as explained in section 7.1. The 

Figure 9.31 shows the result of Condensation Algorithm tracking without occlusion 

detection. On the other hand, Figure 9.32 shows the result of tracking by DEMC 

Particle Filtering.  

The Condensation algorithm continues to resample even if there is no visible license 

plate in the frame. This results in the shift of the estimated state to the road regions 

with comparably similar brightness levels to the license plate.  

Nevertheless, the DEMC Particle Filter detects the occlusion and stops re-sampling 

of the particles, which result in the scattering of the particles with the last kinematics. 

After the occlusion is over, the probable particles are re-sampled quickly, which 

again refreshes the estimated state. 
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(a) Video Occlusion Frame 2 

 
(b) Video Occlusion Frame 4 

 
(c) Video Occlusion Frame 6 

 
(d) Video Occlusion Frame 8 

 
(e) Video Occlusion Frame 10 

 
(f) Video Occlusion Frame 12 

 
(g) Video Occlusion Frame 14 

 
(h) Video Occlusion Frame 20 

Figure 9.31 : Test Video Occlusion (without Occlusion Detection) (a) Frame 2 (b) 

Frame 4 (c) Frame 6 (d) Frame 8 (e) Frame 10 (f) Frame 12 (g) Frame 14 (h) Frame 

20 
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(a) Video Occlusion Frame 2 

 
(b) Video Occlusion Frame 4 

 
(c) Video Occlusion Frame 6 

 
(d) Video Occlusion Frame 8 

 
(e) Video Occlusion Frame 10 

 
(f) Video Occlusion Frame 12 

 
(g) Video Occlusion Frame 14 

 
(h) Video Occlusion Frame 20 

Figure 9.32 : Test Video Occlusion (with Occlusion Detection) (a) Frame 2 (b) 

Frame 4 (c) Frame 6 (d) Frame 8 (e) Frame 10 (f) Frame 12 (g) Frame 14  

(h) Frame 20 
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In Figure 9.33 and Figure 9.34, a test sequence is shown, which is recorded from a 

helicopter. This aerial video sequence is taken from the VIVID website [53]. The 

tracked vehicle disappears behind the trees and appears again after the occlusion. 

Again, Condensation and DEMC Particle Filter tracking results are presented in 

Figure 9.33 and Figure 9.34. DEMC Particle Filter manages to continue tracking 

after the occlusion, but Condensation algorithm gets stuck at the first location that 

the occlusion starts. 

In this application, the color histogram is utilized for likelihood calculation [53]. The 

Bhattacharyya coefficient of the color distribution is calculated as a likelihood 

measure. In the figures, the particles are shown with small white dots, which are 

surrounded by a white rectangle. It can be observed in Figure 9.33 that at frame 740 

the occlusion starts. Until this frame the particles are sampled around the tracked 

vehicle. 

The Condensation algorithm continues to resample after the occlusion occurs. As a 

result, the particles stay re-sampled on the road color distribution, which is more 

close to the target color distribution than the tree’s color distribution. The 

Condensation has no mechanism to overcome this situation and loses the vehicle, 

fails tracking further. 

On the other hand, the DEMC Particle Filter detects occlusion at frame 740. After 

that point, it stops re-sampling and the particles get scattered by the noise added in 

each iteration. This behavior corresponds a search mechanism, which continues until 

a sufficiently close color distribution is observed on the image. This happens at 

frames 780 and 820. The DEMC Particle Filter continues its normal operation until it 

detects a new occlusion. 
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(a) Video Occlusion 2 Frame 700 

 
(b) Video Occlusion 2 Frame 720 

 
(c) Video Occlusion 2 Frame 740 

 
(d) Video Occlusion 2 Frame 760 

 
(e) Video Occlusion 2 Frame 780 

 
(f) Video Occlusion 2 Frame 800 

 
(g) Video Occlusion 2 Frame 820 

 
(h) Video Occlusion 2 Frame 840 

Figure 9.33 : Test Video Occlusion 2 (without Occlusion Detection) (a) Frame 700 

(b) Frame 720 (c) Frame 740 (d) Frame 760 (e) Frame 780 (f) Frame 800 (g) Frame 

820 (h) Frame 840 
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(a) Video Occlusion 2 Frame 700 

 
(b) Video Occlusion 2 Frame 720 

 
(c) Video Occlusion 2 Frame 740 

 
(d) Video Occlusion 2 Frame 760 

 
(e) Video Occlusion 2 Frame 780 

 
(f) Video Occlusion 2 Frame 800 

 
(g) Video Occlusion 2 Frame 820 

 
(h) Video Occlusion 2 Frame 840 

Figure 9.34 : Test Video Occlusion 2 (with Occlusion Detection) (a) Frame 700 (b) 

Frame 720 (c) Frame 740 (d) Frame 760 (e) Frame 780 (f) Frame 800 (g) Frame 820 

(h) Frame 840 
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10. CONCLUDING REMARKS 

We have proposed a new algorithm DEMC Particle Filter in order to overcome the 

drawbacks of standard Condensation algorithm. We implemented the DEMC Particle 

Filter for 3D license plate tracking in video sequences. We compared the 

performance and the computation complexity of DEMC Particle Filter, Auxiliary 

Particle Filter, Condensation Algorithm and Genetic Condensation Algorithm. In the 

next sections, we will give a summary for the results, contributions and give 

suggestions for future work. 

10.1 Summary of Results 

The main deficiency of the Condensation algorithm is the sample impoverishment, 

which increases significantly the number of samples to achieve sufficient tracking 

performance. We may conclude that the meaningful samples, which represent the 

prior and posterior probability distributions, are needed. Condensation algorithm’s 

re-sampling approach can be improved by different approaches. One of the 

approaches, that have been presented, is the Genetic Condensation algorithm, which 

utilizes genetic generations in order to improve the final sample set.  

DE optimization tries to update all the samples once, by the means of combining the 

most probable samples. DEMC sampling approach does not spoil the multi-modal 

nature of the probability distribution. Instead, the mechanism of the DEMC sampling 

preserves the peaks of the probability distribution. 

DEMC Particle Filter has a drawback of computational complexity compared to 

standard Condensation algorithm, even though it can achieve better tracking 

performance of Condensation algorithm with same computation load.  

10.2 Summary of Contributions 

• A new 3D dynamic system model is built for tracking license plates. 
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• The prediction of the license plate position on 2D is modeled as a projection 

of 3D points. 

• Instead of working on 2D and suffering from strong perspective, an 

alternative approach has been studied. 

• In order to estimate a 3D dynamic model, Condensation algorithm is utilized. 

• Deficiencies of the Condensation algorithm has been studied. 

• A new algorithm DEMC Particle Filter is proposed and its performance is 

evaluated. DEMC Particle Filter is superior compared to the Auxiliary 

Particle Filter, Condensation Algorithm and Genetic Condensation Algorithm 

with the same number of likelihood calculations. 

10.3 Suggestion for Future Research 

As a result of tracking, we obtain a set of coordinates of the license plate, from which 

the license plate can be extracted. These extracted license plate images can be used 

for recognition purposes. Recognition from multiple images will increase the 

performance of the recognition results. 

The extracted license plate images can also be combined in order to get resolution 

increase with super resolution techniques. Recognition from higher resolution will 

improve the recognition performance. 

Next opportunity of the tracking is detecting temporary occlusions of the license 

plate and eliminating these frames from the complete tracking sequence. Occlusion 

detection will stop recognition process when license plate is occluded, which can 

cause severe recognition errors if not avoided. 

In our approach likelihood calculation is performed by simple template matching. 

Different features can be utilized for increasing the likelihood calculation 

performance. The techniques such as SIFT (Scale-invariant feature transform), 

GLOH (Gradient Location and Orientation Histogram) and SURF (Speeded Up 

Robust Features) can be utilized in the likelihood calculation process. 

On the other hand, we have the 3D motion pattern of the license plate, so the vehicle, 

from which we can deduce the vehicles speed and illegal behavior. 
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Nevertheless, the implementation of our license plate tracking application can be 

improved in order to consume less system resources. This can be done by optimizing 

the c source code by applying better programming experience.  
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