ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

QUERY DISSEMINATION AND PROCESSING IN
WIRELESS SENSOR NETWORKS

M.Sc. Thesis by
Omer Sinan KAYA

Department : Computer Engineering

Programme: Computer Engineering

Supervisor : Prof. Dr. Biilent ORENCIK
Coadyvisor : Prof. Dr. Sebnem BAYDERE

APRIL 2004



ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

QUERY DISSEMINATION AND PROCESSING IN
WIRELESS SENSOR NETWORKS

M.Sc. Thesis by
Omer Sinan KAYA, B.Sc.

(504001571)

Date of submission : 26 April 2004

Date of defence examination: 21 May 2004

Supervisor (Chairman): Prof. Biillent ORENCIK (I.T.U.)
Coadvisor: Prof. Sebnem BAYDERE (Y.U.)

Members of the Examining Committee Prof. Emre HARMANCI (I.T.U.)
Assoc. Prof. Erdal CAYIRCI (W.C.)

Asst. Prof. Gékhan Yavuz (Y.T.U.)

MAY 2004



ISTANBUL TEKNIiK UNiVERSITESI * FEN BiLIMLERI ENSTITUSU

TELSiZ DUYARGA AGLARINDA SORGU DAGITIMI VE
COZUMLEMESI

YUKSEK LiSANS TEZI
Miih. Omer Sinan KAYA
(504001571)

Tezin Enstitiiye Verildigi Tarih : 26 Nisan 2004
Tezin Savunuldugu Tarih : 21 Mayis 2004

Tez Danisman : Prof.Dr. Biilent ORENCIK (1.T.U.)
Ek Damisman Prof.Dr. Sebnem BAYDERE (Y.U.)

Diger Jiiri Uyeleri ~ Prof.Dr. Emre HARMANCI (I.T.U.)
Do¢.Dr. Erdal CAYIRCI (H.A)

Yrd.Do¢.Dr. Gokhan YAVUZ (Y.T.U.)

MAYIS 2004



ACKNOWLEDGEMENTS

I would like to express my deep appreciation to Professor Biilent ORENCIK and
Professor Sebnem Baydere for their guidance and tolerance while | was working for

my thesis.

| am grateful to TNL members of Yeditepe University, Mesut Ali Ergin, Ozlem
Durmaz, Sinan Buyruk, Metin Ko¢ and Onur Ergin for their all helps and for the time
they spent to answer my questions patiently, especially to Metin Kog for patient
testing and verification of the code and to Professor Sebnem Baydere for instant

guidance during the project and knowledge sharing.

I thank to all people in TUBITAK-UEKAE for their continuous support for my thesis
and for the experience | got during my work which helped my thesis with reasonable

support.

And finally I would like to express all my gratitude to my family.

April 2004 OMER SINAN KAYA



TABLE OF CONTENTS

ABBREVIATIONS
LIST OF TABLES
LIST OF FIGURES

OZET
SUMMARY

1 INTRODUCTION
2  WIRELESS COMMUNICATION

2.1 Wireless Channel
2.2 Multiple Access Control

2.2.1
2.2.2
2.2.3

CSMAJ/CA
Hidden Terminal Problem
Exposed Terminal Problem

2.3 Ad Hoc Networks

23.1

2.3.2

2.3.3
233.1
2.3.3.2
2.3.3.3
2.3.34
2.3.3.5
2.3.3.6

Wireless Mobile Ad Hoc Networks

Wireless Ad Hoc Backbone Networks

Wireless Ad Hoc Sensor Networks

MEMS

Smart Dust

Networked Embedded Systems Technology (NEST)
Ad Hoc Sensing

Design Considerations

Application Taxonomy

3 STATE OF THE ART IN WIRELESS MICRO-SENSORS
3.1  Query Dissemination

3.1.1 SPIN
3.12 Directed Diffusion
3.1.3 LEACH
3.2 Query Processing and Resolution
3.2.1 TINYDB
3.2.2 COUGAR
3.2.3 ACQUIRE

4  SeMA QUERYING PROTOCOL FOR MICRO-SENSORS (SQS)

41  SeMA Architecture
4.2  Query Resolution

4.3  Query Definition

4.4 Compilation Functions
4.5 Query Types

4.6  Query Distribution

4.7  Query Processing

vii

viii

X.

ooo~N~NOoO oIk~ W



4.8 Response Generation

48.1
4.8.2
4.8.3
483.1
4.8.3.2
48.4

Response Traffic Analysis

Response Message and Time Synchronization
Response Generation Method

Immediate Message Delivery

Aggregated Message Delivery

Response Delivery

5 SOFTWARE ARCHITECTURE
5.1  Development Platform

511
5.1.2
5121
5.1.2.2
5.1.2.3
5.1.3
5.13.1
5.1.3.2
5.1.3.3
5.1.4
5.15
5.151
5.15.2
5.153
5.154
5.155

Sensor Mote Platform

TINYOS

TinyOS Execution Model: Event Based Execution
TinyOS Component Model

AM Communication Paradigm

NesC

Component Specification

Component Implementation
Concurrency and Atomicity
SerialForwarder

TOSSIM

Network Monitoring and Packet Injection
Radio Models

ADC Models

TinyViz

Concurrency Model

5.2  Application Framework

5.2.1
5.2.2
5.2.3
5.24
5.25

SeMA Sensor Protocol Application
Driver Application

Querier Application

Oscilloscope Application

External Data Binding Mechanisms

6 EXPERIMENTS AND TESTING

6.1  Packet Level Data Transmission Add-on for TOSSIM
6.2  Power Management Add-on for TOSSIM

6.3  Performance and Functionality Tests

6.4  Timing Tests

6.5  Data Traffic Analysis

7 CONCLUSION

REFERENCES
APPENDIX A.
APPENDIX B.

EMSTAR
IN NETWORK PROGRAMMING

AUTOBIOGRAPHY

53
55
56
59
59
59
62

63

63
63
65
66
67
69
70
71
73
73
75
76
79
79
80
81
82
82
84
90
90
91
92

94

94
96
97
102
105

111
114
119
122
124



ABBREVIATIONS

ACQUIRE
ADC
AM
AODV
avg
BCN
BER
BN
COTS
CDMA
CSMA
CSMAJ/CA
CSMA/CD
CRC
CTS
DARPA
DIFS
DSN
ERS

fd
FDMA
GUI

hc

LAN
LEACH
MAC
MANET
Max
MBN
MEMS
Min

nc

NesC
MoTeS
NEST
NoCOL
NoPER
ODBC
PAN
PER
PLP
PRN

QCycle

: Active Query Forwarding in Sensor Networks
: Analog To Digital Converter

: Active Message

: Ad hoc On Demand Distance Vector Routing Protocol
. Average

: Backbone Capable Node

: Bit Error Rate

: Backbone Network

: Commercial Off The Shelf

: Code Division Multiple Access

: Carrier Sense Multiple Access

: Carrier Sense Multiple Access with Collision Avoidance
: Carrier Sense Multiple Access with Collision Detection
: Cyclic Redundancy Check

: Clear to Send

: Defense Advanced Research Projects Agency
: Distributed Interframe Space

: Data Source Name

: Expanding Ring Search

: Flooding Degree

: Frequency Division Multiple Access

: Graphical User Interface

: Hop Count

: Local Area Network

: Low Energy Adaptive Clustering Hierarchy

: Medium Access Layer

: Mobile Ad Hoc Network

: Maximum

: Mobile Backbone Network

: Micro-Electro-Mechanical System

: Minimum

: Neighbor Count

: Network Embedded Systems C

: Monitoring Tool for Networked Sensors

: Network Embedded System Technology

: No Collision

: No Packet Error Rate

: Open Database Connectivity

: Personal Area Network

: Packet Error Rate

: Packet Loss Probability

: Packet Radio Network

: Query Cycle



QTP
RF
RFM
RGP
RN
RTS

S

SC
SeMA
SHM
SPIN
SQS
TASK
TDMA
TinyOS
TOSSIM
WSN
XML

: Query Timeout Period

: Radio Frequency

: Radio Frequency Model

: Response Generation Period

: Regular Node

: Request to Send

: Sampling Period

: Sample Count

: Session Based Multi-Layer Ad Hoc Network Architecture
: Structured Health Monitoring

: Sensor Protocols for Information via Negotiation

: SEMA Querying Protocol For Micro-Sensors

: Tiny Application Sensor Kit

: Time Division Multiple Access

: Tiny Micro threading Operating System

: Tiny Micro threading Operating System Simulator
: Wireless Sensor Network

: eXtensible Markup Language

Vi



LIST OF TABLES

Table 2.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

Smart Dust Prototype Nodes

Time unit encoding

Sub query Context Encoding

Compilation Function Encodings

Sample Queries

Traffic Intensity in N-hop sensor network
Number of Sub queries vs. Concatenated Message Count
The Energy Dissipation of Operations for Mica2
Simulation Parameters

Query Parameters Used For Simulation

Timing Test Simulation Parameters

Local Processing Test Query Parameters
Connectivity Ratio for Data Traffic Simulation

vii

Page Number

13
o1
52
52
53
56
61
64
97
98
102
106
107



LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Page Number

Cellular SYSTEM.......c.oiiiieeee e 3
Propagation MeChaniSIMS...........ccveiuiiiieiiere e 4
CSMAVCA .ttt 6
Hidden Terminal Problem ... 7
Exposed Terminal Problem ..., 7
Mobile Ad HOC NEIWOTK ......cooiiiiiiiiiiiisesee e 8
Backbone NEetWOrK ..o s 10
Smart Dust MOte DESIGN.......c.cccueiieiieii e 12
Ad HOC SENSING ..ot 15
ClasSiC FIOOAING ......ccivveiiiiiiieee et 21
PaCKEt IMPIOSION ... e 21
SPIN Data EXChanQe .......cccveiieiieiieiiece e 24
A Sample interest desSCription .........ccooereriririnieeieree e 25
Interest diSSEMINALION ........ccccviiiiereie e, 26
LEACH Cluster FOrmation.........ccocevvereeieiie e 28
TINYDB GUI ..o 31
Triggering SQL QUETY ...c.oiiiiiieieee e 31
A SaMPIE TAG QUETY ..ottt 32

Partitioning of time into EPOCHS ... 35

The TASK AIChItECIUIE......eoveeieieece e 36

QUETY TeMPIALE ..o 37

A Cougar QUENY PlaN.........ccciiiiiiiece e 39

ACQUIRE Query ReSOIULION ........ccccvviieiieiecie e 40
SEMA ATCRITECIUIE ... 44
XML definition of @ MONItOring SEIVICe.........ccceeerereieneniceeeeeeeens 45
Query Driven Network TYPES ....ccveiveiiiieieese e 49
SEEUP PACKEL.....c.eiiiiiiiieee e 50
TIme UNIt STIUCIUIE ...oveiceceeee e 51
Sampling Period Timer AlgOrithm ..........ccccooeviiinniee 54
RGP Periods Time Gantt chart: (SC*S) per sub query............ccceueu.... 55
RESPONSE PACKEL ... 57
RESPONSE DAL .....eeiiiieiiiie i 57

Timing Problem Demonstration ...........cc.covveeieniienc e 58

Response Packets in Detail..........ccccooveiieiciicce e, 60

Concatenation AlgOrithm...........cccoeiiiiiiii e 61
COTS MOLES ..ttt sttt 64
Mote Programming INterface.........cccovvviieiii i 65
TinyOS EXecution MOdel ..........coviiiiiiiiiiieeeee e, 66
Component Graph of GenericComm..........ccccevieeviiiiie i 67
A sample component: Messaging Component. ..........cc.ccocevereeeeeennen. 68
TINYOS Packet FOrmMat.......ccocviiiiiieiiiecie e 69
Timer Module Configuration...........ccoviiniiineiee e, 72

viii



Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure A.1
Figure A.2
Figure B.1
Figure B.2

Relationship diagram of Timer Module.............cccooeviiieiieiccccee, 72
SAMPIE INEEITACES. ..o 73
N (0] (T T U K Vo - S SS 74
SErTalFOIWAITET ... e 75
TOSSIM ArChItECIUIE ... 76
Flow Diagram of TOSSIM ......cccooiiiiiiiiii e, 77
A Sample RUN Of TOSSIM .......cooiiiiiie e 78
Lossy Model Configuration ............coevieiiieeienee e 80
TINYVIZ oot 81
SQS Application Framework............coceiiiiiieieicnese e 83
Hardware Dependent Definitions ..........cccccevvevviievneve e, 84
SeMA Querying Application Component Graph ..........ccocevevvienenne. 86
BitParser INterface .........cocvvviiiiecec e 87
MsgForwardBuffer INterface ..........ccooveeieniniice s 88
ADCBUTFTEr INEIfaCe .......ccoviieiiiiecec e 89
Querier APPHCALION ........ccviiiieieie e 91
Oscilloscope APPlICAtION........cccciveiiiiicceee e 92
Database DESIGN ......ccoiiiiiieieierierie e 93
ODBC Access of Sensor Data from The Database...........c.ccccevvveenenn 93
Packet Level Transmission Configuration............ccccceveverenennenenenn. 95
Connectivity for Immediate DeliVery .........cccooveveiiiiiiiie i 98
Immediate EVENt DElIVErY ..o, 99
Event Delivery for Aggregate Event Delivery .........c.ccccoocvvveiviinenen, 100
Message Delivery Ratio for Immediate Delivery ..........ccccoevevvinnnen. 100
Message Delivery Ratio for Aggregate Message Delivery ................ 101
TIMING TeSt TOPOIOGY ....vvveeiieiieieieiere e 103
Flooding Degree vs. Average Response TIMe........cccccevvvveivenieiiennnn, 103
Flooding Degree vs. Message COoUNt..........ccevveeerierieneneneseeeeeenens 104
The Best and WOrSt CasesS ......ccevvvieieiiiesiieieieniesie e 105
Logical Topology for Data Traffic Simulation............cccccocevvennnne. 108
Data Traffic ANalySiS.......cccoveiiiiieiiccceece e 109
EmStar Software Stack .........ccoovvveeiiiiiie e 120
EmStar Simulator ArchiteCture...........ccoooviveeeereie e 120
NEetwork Programming........cccceeeeieneneneneseeeesese e 122
Xnp Network Programming Protocol ............cccccvveieiieiieie e, 122



OZET

Telsiz aglar bilginin kolay erisilir olmasini sagladi. Cevre ile etkilesibilme yetenegi
ile birlestirildiginde, gelecekte her yerde islem yapabilme (ubiquitous computing)
giinliik hayatin bir pargasi olacak. Smart DUST ve diger DARPA destekli projelerin
tamamlanmasi ve MEMS teknolojisindeki yenilikler ile duyarga diigiimleri bir
milimetre kiip hacme sahip olacaklar ve duyarga aglarinin maliyetinin 1$ civarinda
olmasi bekleniyor. Bu teknolojik gelismeler yogun duyarga aglarmi kullanima
acacak. Telsiz duyarga aglari uzak yerlerin insane miidahelesi olmadan
gbzlemlenebilmesini saglar. Bu aglar miidahelesiz ve baglantisiz bir sekilde ¢alisir ve
giic harcamasi c¢ok yiiksek Oneme sahiptir. Genel amachi kendiliginden uyum
saglayabilen altyapilar kullanic1 isteklerinin dagitimi ve duyarga verilerinin
toplanmasi i¢in kullanighdir. Bu tezde giicii verimli bir sekilde kullanmak igin bir
yerel sorgu optimizasyonu yapan ve ag icinde mesajlar1 bitistiren bir duyarga
sorgulama mekanizmasi tanitilmaktadir. Protokol bir ¢ok katmanli mimarinin en alt
katman1 olarak calismasi lizere tasarlanmistir. Bu mimaride protokol bir gdézlem
uygulamasi aracilifiyla hizmet tabanl bir tasarisiz omurga iizerinden hedef alandaki
duyargalara erisimi saglamaktadir.Tezde sorgular veri iiretme karakterlerine gore
kiyaslanmaktadir ve bu baglamda sorgulama sisteminin bilesenleri agiklanmaktadir.
TinyOS iizerinde ¢aligan Mica diigiimleri i¢in bir prototip gerceklestirme yapilmigtir
ve bu gerceklemenin deneysel performans sonuclari ve karsilastirmali veri trafigi
verilmistir. Sonuglar gostermistir ki yerel optimizasyon ile veri trafigi kullanicinin
belirledigi ornekleme periyodu oraninda azalir ve mesaj bitistirme ise ayrica veri
iletimini %75 oraninda azaltir. Ayrica yine gosterilmistir ki uygulamaya 6zel hizmet
kalitesi parametreleri dinamik duyarga aglarinin olusturulmasi igin verilmli bir
sekilde kullanilabilir.



SUMMARY

Wireless networking has enabled easy access of information. Combined with the
power of interacting with the environment, ubiquitous computing will be a part of
modern day life in the future. With the completion of Smart Dust and other DARPA
supported projects and improvement in MEMS technology, sensor nodes will have a
size of cubic millimeter and sensor node cost is expected to be around 1$. These
technological advancements will enable dense sensor networks to be available for
use. Wireless sensor networks enable inspection of remote locations without any
human intervention. They operate in unattended and untethered mode where power
consumption is of greatest importance. General purpose adaptive infrastructures are
useful for dissemination of user interests and collection of sensor data. In this thesis,
a sensor querying mechanism which provides local query optimization and in-
network message concatenation for energy efficient response delivery is presented.
The protocol is designed to operate as the lowest tier of a hierarchical architecture
that enables access to tiny sensors in the target domain from a monitoring application
via a service aware ad hoc backbone. Queries are classified according to data
generation characteristics and the components of the querying system are explained
in this context. A comparative data traffic analysis and experimental performance
results of the prototype implementation on TinyOS running Berkeley mica motes are
also given. The results have revealed that local optimization can reduce bit
transmission by a multiple of user supplied sampling period parameter and message
concatenation can further reduce transmission by 75%. It has also been shown the
application specific quality of service parameters can effectively be used to construct

sensor querying networks dynamically.
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1 INTRODUCTION

With the emerging Micro-Electro-Mechanical System (MEMS) technologies sensor
nodes are able to combine power processing, data transmission and sensing
capabilities into one small node that operates with battery or other sources of energy
such as solar power. It’s expected that in the near future, sensor nodes will have a
dimension of 1 cubic millimeter. As a result of this decrease in size, large number of
sensor nodes will be able to be used in applications to disseminate and process data
in a distributed fashion. While the capabilities of these nodes are limited, in order to
handle large number of data flowing from numerous nodes in a power efficient way,
new technologies are required. The power of wireless sensor networks lies in the
ability to deploy large number of sensor nodes that are able to assemble and

configure themselves resulting in adaptive systems.

The most straightforward application of wireless sensor networks is to monitor a
remote location in environment to receive low frequency responses. For example, a
forest can be monitored against fire and sensor nodes can report temperature every 5
minutes. With a well designed protocol, a sensor node can serve for one year for
requested monitoring capability until it runs out of battery. Since nodes are
distributed to monitoring terrain in a random fashion, it’s not possible to access the

nodes again.

Most of the studies aim to problems in Medium Access Layer (MAC) or other layers.
However, sensor networks are formed by an application. Therefore, it is important to
know the traffic characteristics of the applications and adopt the system according to
application requirements. Querying is the application layer of sensor network
architecture. Therefore, a set of options are provided to user by querying layer to fit
the requirements of different kinds of applications. In this thesis, a general purpose
scalable and power efficient query dissemination and processing system used as the
lowest tier of a multi-tier architecture for processing user data requests from sensor

networks for environmental monitoring is proposed.



In network programming schemes could also be used for small sensor network
scenarios as a replacement of querying systems. The difficulty behind in network
programming is that distribution of code updates and maintaining synchronized
software updates is a cumbersome task. Therefore, general purpose sensor network
applications that can fit most of the user requests are a must for dense, scalable

sensor networks.
Contents of this thesis are arranged as below:

In Chapter 2, basics of wireless communication are discussed and the subject is
further enhanced by the description and limitations of wireless ad hoc sensor

networks.

In Chapter 3, what is meant by query dissemination and processing is defined and the

current state of the art in query processing and dissemination protocols is given.

In Chapter 4, Session Based Multi-Layer Ad Hoc Network Architecture (SeMA) is
described and how SeMA sensor querying protocol for micro-sensors fits into the

architecture is shown and the protocol details are given.

In Chapter 5, sensor network development platform is introduced and software

architecture is given in detail.
In Chapter 6, results of several experiments and tests are given.

In Chapter 7, conclusion and comparison of SEMA Querying Protocol for Micro-

Sensors (SQS) with other query processing protocols are given.

In Appendix A, brief description of EmStar development environment which is a
scalable and robust simulator that enables mixed mode operation of sensor nodes and

simulated nodes is presented.

In Appendix B, introductory information about Crossbow [32] implementation of an

in network programming scheme is given.



2 WIRELESS COMMUNICATION

Hardware connections and electronic switches have made transfer of digital data
feasible over long distances. There is a long history of how the field has evolved [1].
The use of internet has added another dimension to the wireline communication field,
and both voice and data are being processed extensively. In parallel to wireline
communication, radio transmission has progressed substantially. Feasibility of
wireless transmission has brought drastic changes in the way people live and

communicate.

Wireless communication has become popular by the introduction of affordable
wireless telephones to the public society. Wireless systems have evolved over time
by the beginning of first-generation (1G) towards third generation telephone systems.
Later, wireless communication has become very popular in major fields such as
commerce, medicine, education and military defense. The ease of access to data
made this technology more demanding.

Cellular systems have been in use for a long time and the idea of forming an ad hoc
network takes most of its requirements from the cellular systems limitations. In a
cellular system a base station serves to mobile nodes in the range of a base station’s

transmission range as in depicted in Figure 2.1.

Figure 2.1 Cellular System

The radius of the circle is equal to the reachable range of the transmitted signal. In
each cell, multiple users or wireless subscribers are served by a single base station. If
the coverage area is to be increased, then additional base stations are placed to take

care of the added area. Time Division Multiple Access (TDMA), Frequency Division



Multiple Access (FDMA) or Code Division Multiple Access (CDMA) is used to
distribute available bandwidth among the users. The idea behind cellular systems is
to provide users with mobile telephony service over a fixed base station to base

station network infrastructure.

2.1  Wireless Channel

For wireless and mobile system design, it is very important to understand the
distinguishing features of mobile radio propagation. There are several kinds of radio
waves, such as ground, space, sky and satellite waves. We’ll refer to ground and

space waves in this section.

Propagation in free space and without any obstacle is the most ideal situation. When
the radio waves reach close to an obstacle, the following propagation effects as in

Figure 2.2 do occur to waves:

e Reflection: Propagating wave hits an object such as tall buildings, surface of

the earth that is larger as compared to its wavelength.

e Diffraction: Radio path between a transmitter and a receiver is obstructed by

a surface with sharp irregular edges.

e Scattering: When objects are smaller than the wavelength of the propagation

wave, the incoming signal is scattered into several weaker outgoing signals.

Reflection

Difraction

v

Scattering

-
Figure 2.2 Propagation Mechanisms

Free space is the ideal transmission medium for wireless communication. At an
arbitrary, large distance d from the source, the radiated power is uniformly
distributed over the surface area of a sphere of radius. Thus, the received signal

power varies inversely with the square of d.

4



However, not all of the communication is achievable using free space
communication. Signal propagates through the land to reach the target user as well.
In the case of land propagation, radio channel becomes a multi path propagation
channel with fading. The signal reaches the destination using many different paths
because of the diffraction and reflection from various objects along the path. The
signal strength and quality of received radio waves also vary accordingly as well as

the time to reach the destination changes.

Wave propagation in a mobile radio channel is characterized by three aspects: path
loss, slow fading (shadowing) and fast fading. The path loss is the average
propagation loss over a wide area. It is determined by the macroscopic parameters,
such as the distance between the transmitter and receiver, the carrier frequency and
the land profile. The slow fading loss represents variation of the propagation loss in a
local area. Slow fading is caused by the variation in propagation conditions due to
buildings, roads and other obstacles in a relatively small area. Fast fading is due to
the motion of the terminal in a standing wave that consists of many diffracted waves

representing the microscopic aspect of the channel.

2.2 Multiple Access Control

Existing Local Area Networks (LANSs), Packet Radio Network (PRNs) and Personal
Area Networks (PANSs) do utilize broadcast channels rather than point-to-point
channels for information transmission. MAC sub layer protocols are primarily a set
of rules that communicating terminals need to follow, and these are assumed to be
agreed upon a priori. MAC layers are classified as contention based or conflict free.
Conflict free protocols such as FDMA or TDMA require a centralized coordination
among the communicating nodes to share the channel between participants and this
kind of protocols are prone to mobility in the environment. Contention based
protocols such as Carrier Sense Multiple Access (CSMA) and its variants are

generally used in wireless communication.

2.2.1 CSMAI/CA

CSMA protocols try to increase throughput by listening to channel before
transmitting data for some time to see if another node is also transmitting and they
keep their state information locally which makes CSMA protocols most suitable for

wireless communication.



Carrier Sense Multiple Access with Collision Detection (CSMA/CD) used in
Ethernet does not fit into wireless networking. Because carrier sensing is much
costlier in wireless and due to radio hardware the transmitter node can not listen
while transmitting. As a result, a node can not abort a transmission by detecting a
collision as in the case of CSMA/CD. Additionally, in wireless systems, collisions
occur at the receiver and due to spatial distribution a transmitter can not listen to the

channel at the receiver.

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) as defined by
IEEE 802.11 is a modified version of CSMA/CD protocol. Details of CSMA/CD can
be found in [2]. Under a CSMAJ/CA technique, all terminals listen to the medium
same as CSMA/CD. A terminal that is ready to transmit data senses the medium and
will transmit its data if the medium is idle for time interval that exceeds the
Distributed Interframe Space (DIFS); otherwise, if the medium is busy, it waits for
an additional predetermined time period, denoted as DIFS, and then picks a random
backoff period within its contention window to wait before transmitting its data. The
backoff period is used to initialize the backoff counter. The backoff counter can
count down only when the medium is idle. Otherwise, the node’s frozen counter
resumes only after the medium has been free longer than DIFS. The terminal can
start transmitting its data when the backoff counter becomes zero. Collisions can
occur only when two or more terminals select the same time slot in which to transmit

their frames. The flow of the algorithm is shown in Figure 2.3.

Contention
Window

DIFS Medium Busy DIFS Data

| Time

g Defer Access » ” Backoff After Defer »

Figure 2.3 CSMA/CA

2.2.2 Hidden Terminal Problem

The transmission range of wireless radio hardware is usually limited. Hidden
terminal problems occur in wireless networks when two nodes, which aren’t in the
transmission range of each other, transmit a message to the same node as in Figure
2.4. As a result of this two packets transmitted at the same time collide and packets
are lost. Ready to Send (RTS) / Clear to Send (CTS) based mechanisms are used to

6



avoid hidden terminal problem for unicast traffic. Protocols should avoid assuming

reliable transmission in wireless networks.

Figure 2.4 Hidden Terminal Problem

2.2.3 Exposed Terminal Problem

As stated before CSMAJ/CA listens for a fixed period prior to starting data
transmission and delays packet transmission if there is an active transmission. In the
case of Figure 2.5, A is transmitting a message to B and C tries to transmit a message
to D. However, as a result of CSMA/CA, C will sense the channel as busy and will
not transmit its message to D which is not in the transmission range of A and B.
Consequently, the throughput of the system will decrease. Directed antennas are

offered in the literature as a solution to this problem.
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Figure 2.5 Exposed Terminal Problem

2.3 Ad Hoc Networks

Ad hoc networks are designed to remove cellular system’s infrastructure
requirement. An ad hoc network is a local network with wireless or temporary plug-
in connection, in which mobile or portable devices are part of the network only while

they are in close proximity.

An ad hoc network consists of mobile platforms, known as nodes, which are free to
move around arbitrarily. Each node is equipped with a wireless transmitter and a
receiver with appropriate antenna, which may be omni directional or highly
directional. At a given point in time, depending on the nodes’ positions and their

transmitter and receiver coverage patterns, transmission power level, and cochannel



interference levels, a wireless connectivity in the form of random, multi hop graph or
ad hoc network exists between the nodes. This ad hoc topology may change with

time as the nodes move or adjust their transmissions and reception parameters.

There are three kinds of ad hoc networks: Mobile ad hoc networks, backbone ad hoc

networks and sensor ad hoc networks.

2.3.1 Wireless Mobile Ad Hoc Networks

A Mobile Ad Hoc Network (MANET) is formed by the mobile devices that comes
together to form a network as needed, not necessarily with any existing infrastructure
or any other kinds of fixed stations. In MANET, the network infrastructure may

change dynamically in an unpredictable manner since nodes are free to move.

Initially, the technology was developed keeping in mind the military applications of
such a technology in areas such as the battlefield, where an infrastructured network is
almost impossible to have or to maintain. In such situations, ad hoc networks, with
their self-organizing capability, can be used effectively, where other technologies
fail.

Ease and speed of deployment, personal area networking and decreased dependence
on infrastructure make MANET’s popular. A user can easily create a network while
on the plane with a colleague or in the case of a disaster, networks can be set up very
quickly without requiring a previously set up infrastructure. Computers with short-
range interactions such as ear phone, wrist watch, and smart office makes life more
comfortable. Intelligent devices can be connected with one another via wireless links
and newly joined nodes can request information from local servers without any

human intervention.

Ad hoc networks are basically peer-to-peer, multi-hop mobile wireless networks in
which information packets are transmitted in a store-and-forward manner from a

source to an arbitrary destination as in Figure 2.6.
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Figure 2.6 Mobile Ad Hoc Network



In an ad hoc network, each node is expected to serve as a router and each router is
indistinguishable from another in the sense that all routers execute the same routing
algorithm to compute routing paths through the entire network. As the number of
nodes become larger, the overhead in computing, storing, and communicating the
router table information could become prohibitive. Therefore, instead of a flat
architecture, a hierarchical structure, with a leader of a cluster of nodes, could serve

as a router to other clusters of the network.
Characteristics of Ad Hoc Networks:

Dynamic Topologies: Nodes are free to move arbitrarily; thus, the network topology
may change randomly and at unpredictable times and may primarily consist of
bidirectional links. In some cases, where the transmission power of two mobile nodes

is different, a unidirectional link may exist.

Bandwidth-constrained and variable capacity links: Wireless links continue to
have significantly lower capacity than the infrastructed networks. In addition, the
realized throughput of wireless communications after accounting for the effects of
multiple access, fading, noise, interference conditions and so on - is often much less
than a radio's maximum transmission rate. Packet losses due to transmission errors
occur very frequently and since transmission range is very short and nodes can be

mobile, frequent network partitions can occur.

Energy-constrained operation: Some or all of the nodes in an ad hoc network may
rely on batteries. For these systems, the most important design optimization criteria

may be the energy conservation.

Security: Mobile wireless networks are generally more prone to physical security

threats than wireline networks and wireless transmissions can be easily snooped.

2.3.2 Wireless Ad Hoc Backbone Networks

Wireless Ad Hoc Backbone Networks are used for easy establishment of a backbone
in an area. Most of the nodes in the backbone serve as an IP router and are used to
forward users data requests to some IP based network such as internet. The nodes in
a wireless ad hoc backbone network can be mobile and therefore they form a Mobile
Backbone Network (MBN). Detailed information about a MBN can be found in [3].
An MBN consists of a backbone network, access nets and regular ad hoc networks as

in Figure 2.7. Nodes are categorized as a Regular Node (RN) and a backbone capable
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node (BCN) in this network. BCNs are better equipped, have higher capacities and
have ability to operate at multiple power levels and employ multiple radio modules.
The MBN is designed so that it involves a sufficient but not excessive number of
backbone capable nodes while providing high coverage, so that high fraction of the

low power nodes can access at lease a single Backbone Network (BN).
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Figure 2.7 Backbone Network

Ease of deployment makes wireless ad hoc networks a promising feature in the case

of a war or disaster.

2.3.3  Wireless Ad Hoc Sensor Networks

Recent advances in wireless communications and electronics (MEMS) have enabled
the development of low-cost, low-power multifunctional sensor nodes that are small
in size and communicate untethered in short distances [4]. A wireless sensor network
is a collection of tiny disposable and low-power devices. The position of sensor
nodes need not be engineered or predetermined. This allows random deployment in
inaccessible terrains or disaster relief operations. A sensor node is a device that
converts a sensed attribute (such as temperature) into a form understandable by users.
Each of such devices may include a sensing module, a communication module,
memory, CPU and a small battery. Another unique feature of sensor networks is the
cooperative effort of sensor nodes. Instead of sending the raw data to the nodes
responsible for fusion, they use their processing abilities to locally carry out simple

computations and transmit only the required and partially processed data.

Wireless sensor networks are a new class of ad hoc networks that are expected to
find increasing deployment in incoming years, as they enable reliable monitoring and

analysis of unknown and untested environments [1]. These networks are data-centric
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(unlike traditional networks, where data are requested from a specific node, data are
requested based on certain attributes such as “which area has temperature 30°C?”).
The routing protocols proposed for all the traditional networks are point to point, and

these protocols are not well suited for wireless networks.

2.3.3.1 MEMS

Microelectromechanical Systems (MEMS) is one of the core enabling technologies
within the microsystems. MEMS technology merges the functions of compute,
communicate and power together with sense, actuate and control to change
completely the way people and machines interact with the physical world [5]. Using
an ever-expanding set of fabrication processes and materials, MEMS will provide the
advantages of small size, low-power, low-mass, low-cost and high-functionality to
integrated electromechanical systems both on the micro as well as on the macro
scales. Further, demands for increased performance, reliability, robustness, lifetime,
maintainability and capability of military equipment of all kinds can be met by the

integration of MEMS into macro devices and systems.

MEMS is based on a manufacturing technology that has had roots in
microelectronics, but MEMS has gone beyond this initial set of processes as it
became more intimately integrated into macro devices and systems. MEMS will be
successful in all applications where size, weight and power must decrease
simultaneously with functionality increases, and all while done under extreme cost

pressure. Typical applications include, but are not limited to:

e Inertial measurement units for munitions, military platforms and personal

navigation;
e Electromechanical signal processing;
e Distributed control of aerodynamic and hydrodynamic systems;

e Distributed sensors both for condition-based maintenance and for structural

health and monitoring;

e Distributed unattended sensors both for asset tracking and for

environmental/security surveillance;
e Atomic resolution data storage devices;

e Miniature analytical instruments;
11



e Non-invasive biomedical sensors and

e Optical fiber components and networks.

2.3.3.2 Smart Dust

Smart Dust project is the pioneer project in this area and is further enhanced into
Network Embedded System Technology (NEST) project by Defense Advanced
Research Projects Agency (DARPA). The goal of the Smart Dust project is to build
cubic-millimeter scale sensing and communication platforms that form a distributed
sensor network [6] and can monitor environmental conditions in both military and
commercial applications. These networks will consist of hundreds to thousands of
“dust motes” and a few interrogating transceivers. The concern of Smart Dust is the
integration of micromachined sensors and communication devices with standard

CMOS circuits into a low cost, low power, small volume package.

The primary constraint in the design of the Smart Dust motes is volume, which in
turn puts a severe constraint on energy since there is not much room for batteries or
large solar cells. The dust motes are comprised of various subsystems as shown in
Figure 2.8 from different fabrication technologies. Many sensors, including
temperature, pressure, and acceleration sensors, from MEMS and CMOS processes
can be attached to a mote. A microprocessor handles measurement recording, data
storage and system control. Laser communication interface has been chosen as
communication module. A receiver circuit converts photocurrent from an incoming

laser into a data stream to be used to interrogate or reconfigure the mote.
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Figure 2.8 Smart Dust Mote Design
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Several transmission systems can also be utilized, such as a passive corner cube
reflector. Finally, all of the systems are mounted onto a thick-film battery charged

with a solar cell.

The Smart Dust mote is run by a microcontroller that not only determines the tasks
performed by the mote, but controls power to the various components of the system
to conserve energy. Periodically the microcontroller gets a reading from one of the
sensors, which measure one of a number of physical or chemical stimuli such as
temperature, ambient light, vibration, acceleration, or air pressure, processes the data,
and stores it in memory. It also occasionally turns on the optical receiver to see if
anyone is trying to communicate with it. This communication may include new
programs or messages from other motes. In response to a message or upon its own
initiative the microcontroller will use the corner cube retroreflector or laser to

transmit sensor data or a message to a base station or another mote.

Smart Dust project has been finished by 2001 and prototype nodes developed by this
project are shown in Table 2.1. Smart Dust project has continued to develop
miniature scale hardware structures that are advancing the state-of-the-art in wireless
sensor network technology. In targeting extreme miniaturization and low-power
consumption, many ultra-low power primitives including the radio and Analog to
Digital Converter (ADC) components has been developed. Smart Dust project has
pioneered new optical communication technologies through the use of MEMS

mirror-based optical communication.

Table 2.1 Smart Dust Prototype Nodes

Golem Dust:

solar powered mote with bi-directional communications
sensing (acceleration and ambient light)

11.7 mma3 total circumscribed volume

~4.8 mma3 total displaced volume

Daft Dust:
X20 63 mm3 bi-directional communication mote
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Flashy Dust:
X12 138 mma3 uni-directional communication and sensing
(ambient light) mote

2.3.3.3 Networked Embedded Systems Technology (NEST)

Networked Embedded Systems Technology (NEST) is one of the most powerful
technologies that will shape science and engineering in the twenty-first century [7].
Revolutionary changes are already underway in a broad range of monitoring and
control fields: transportation, manufacturing, health care, environmental oversight,
virtual reality, and safety and security, to name just a few. Each of these areas has
developed a deep NEST technology, with its own hardware, algorithms,

mathematics, and specialized techniques.

Advances in networking and integration have enabled small, flexible, low-cost nodes
that interact with their environment through sensors, actuators and communication.
Single-chip systems are now emerging that integrates a low-power CPU and
memory, radio or optical communication, and substantial MEMS-based onchip
sensors; these nodes are casually referred to as "Motes"” or "Smart Dust". Target costs
(for single-chip Motes) are less than 10 cents per unit, which enables networks with
potentially tens of thousands of Motes. Target power consumption means that motes
can last years with low-bandwidth communication, or even be battery-free when

fueled by ambient power (e.g., heat, light, or vibration from the environment).

A NEST system is a collection of autonomous motes. Each mote is networked and
embedded. Networking is used to coordinate sensor nodes for collaborative sensing
and perform higher level tasks. Numerous distributed devices that communicate with
each other are embedded to monitor and interact with physical world.

2.3.3.4 Ad Hoc Sensing

Ad hoc sensing is the prototypical example of the use of a NEST system. It is
characterized by self organizing network, sensor information and intermediate nodes
as in Figure 2.9. Autonomous nodes self assemble into a network of sensors. The
topology of the network is quite often a one-to-many spanning tree root at the Base
Station's interface to the sensor network. Sensor information is propagated to a

central collection point or "Base Station". Some applications require raw sensor
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readings to be collected while other applications may be interested in aggregate
function values computed over a set of sensor information. Intermediate nodes assist
distant nodes to reach the Base Station by forming a Multi Hop Network.

Routing Tree Link
Connectivity

. Base Station
s

Figure 2.9 Ad Hoc Sensing

2.3.3.5 Design Considerations
Traditional protocols defined for wireless ad hoc network are not well suited for
wireless sensor networks [4]. The differences between a MANETs and sensor

networks are:

e The number of sensor nodes in a sensor network can be several orders of

magnitude higher than the nodes in an ad hoc network.
e Sensor nodes are densely deployed.
e Sensor nodes are prone to failures.
e The topology of a sensor network changes very frequently.

e Sensor nodes mainly use a broadcast communication paradigm, whereas most

ad hoc networks are based on point-to-point communications.
e Sensor nodes are limited in power, computational capacities and memory.

e Sensor nodes may not have global identification because of the large amount

of overhead and large number of sensors.

Factors influencing a wireless sensor network design can be categorized as follows:
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Power: There are a few inherent limitations of wireless media, such as low
bandwidth, error-prone transmissions and need for collision-free channel access.
Also, since the wireless nodes are mostly mobile and are not connected in any way to
a constant power supply, they derive energy from a personal battery. This limits the
amount of energy available to the nodes. In addition, since these sensor nodes are
deployed in places where it is difficult to replace the nodes or their batteries, it is
desirable to increase the longevity of the network. Thus, the protocols designed for
these networks must strategically distribute the dissipation of energy, which also

increase the average lifetime of the overall system.

Fault Tolerance: Since sensor networks are mostly unattended, they should possess
fault-tolerant capability. Some sensor nodes may fail or be blocked due to lack of
power, or have physical damage or environmental interference. The failure of sensor
nodes should not affect the overall task of the sensor network. Foremost issue is to
detect if a node is faulty. When a sensor crashes (either because of battery depletion
or due to a catastrophic event), neighboring sensors should cover, at least partially,
it’s sensing task. Also, re-routing around failed nodes is necessary. Path from source
to sink is set up on demand. In case of failure of nodes, alternative paths are needed.
One solution is to periodically send events (network wide flooding) to find alternate
paths that enable local re-routing around failed nodes. But such flooding can
adversely impact the lifetime of network. It is possible to set up multiple paths just

once initially.

Flexibility: The wide range of usage scenarios being considered means that the
wireless sensor network must be flexible and adaptive. Each application scenario will
demand a slightly different mix of lifetime, sample rate, response time and in-
network processing. Wireless sensor network architecture must be flexible enough to
accommodate a wide range of application behaviors. Additionally, for cost reasons
each device will have only the hardware and software it actually needs for a given
application. The architecture must make it easy to assemble just the right set of
software and hardware components. Thus, these devices require an unusual degree of

hardware and software modularity while simultaneously maintaining efficiency.

Robustness: In order to support the lifetime requirements demanded, each node

must be constructed to be as robust as possible. In a typical deployment, hundreds of

nodes will have to work in harmony for years. To achieve this, the system must be
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constructed so that it can tolerate and adapt to individual node failure. Additionally,
each node must be designed to be as robust as possible.

Scalability: Sensor nodes are expected to be dense. New schemes must be able to

work with thousands of nodes.

Hardware Constraints: In order to use low power, most of the sensor nodes have
limited processing capabilities and local storage. Therefore, algorithms depending on
complex operations and large number of data would not be feasible for sensor
networks. Transmission medium can be optical, Radio Frequency (RF) or infrared.
Smart dust motes use optical communication and they require line of sight. Infrared
IS another communication mechanism which is robust to interference but it also
requires line of sight between the transmitter and receiver. RF is generally used in
academic researches which is not prone to interference and has many problems to be

addressed as discussed in the Multiple Access Channel section of the thesis.

Security: Sensor Networks are dynamic in nature; they allow addition and deletion
of sensor nodes after deployment to allow for growth of the network or to replace
failing and unreliable nodes. An adversary may deploy sensor networks in hostile
areas where communication is monitored and nodes are subject to capture and
dishonest use. Hence these networks require cryptographic protection of
communications, sensor capture detection, key revocation and sensor disabling. Care
must also be taken to ensure that nodes are unable to act selfishly and must
contribute to the routing of their neighbors' packets and the maintenance of the
network. Sensor networks must also be provided authentication, integrity and
privacy. At the same time, any design for sensor networks must keep in mind that
sensor nodes are severely limited in terms of computational power and energy. The
trust model in the network assumes that the sensor nodes are not trusted; the base
station is trusted and shares keys with all nodes. It is also assumed that the broadcast
medium is subject to threat.

Time Synchronization: In order to support time correlated sensor readings and low-
duty cycle operation of data collection applications, nodes must be able to maintain
precise time synchronization with other members of the network. Nodes need to
sleep and awake together so that they can periodically communicate. Errors in the

timing mechanism will create inefficiencies that result in increased duty cycles.
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Thus, sensor networks need protocols that are application specific, data centric, and
capable of aggregating data and minimizing energy consumption while keeping

scalability and fault tolerance in design.

2.3.3.6 Application Taxonomy
There are several application areas for wireless sensor networks from military
applications to commercial applications including battlefield surveillance,

environment monitoring and health applications [8].

Target Tracking: Target tracking is one of the primary applications of sensor
networks. The key steps involved in the tracking procedure include event detection,
target classification, and estimation and prediction of target location. Tracking
enemy movements in the battlefield is an example of multiple targets tracking
application. There are several studies that try to determine the number of targets in
the field. Generally, Collaborative signal processing schemes are used for detection

and tracking of targets.

Habitat Monitoring: The remote sensing capabilities of sensor nodes allow
inspection of certain species habits in their natural living conditions without any
effect of human intervention. Sensor nodes work in untethered mode in an

undistributed environment.

Environmental Monitoring: Environmental monitoring includes large distributed
system that spans large geographic areas and monitor, model and forecast physical
processes, such as environmental pollution, flooding etc.

Health Monitoring: Applications in this category include telemonitoring of human
physiciological data, tracking and monitoring of doctors and patients inside a
hospital, drug administrator in hospitals etc. The idea of embedding wireless
biomedical sensors inside human body is promising, although many additional
challenges exist: the system must be ultra safe and reliable; require minimal
maintenance; energy-harnessing from body heat. With more researches and
progresses in this field, better quality of life can be achieved and medical cost can be

reduced.

Structure Health Monitoring Systems (SHM): SHM is another important domain
for sensor network application. The widely accepted goals of SHM system include

detecting damage, localizing damage, estimating the extent of the damage and
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predicting the residual life of the structure [9]. Wireless Sensor Network (WSN)
provides low deployment and maintenance cost, large physical coverage and high

spatial resolution compared to wired sensors for this case.

Home Applications, Office Applications: “Smart Kindergarten” proposed by [10]
builds a sensor-based wireless network for early childhood education. It is
envisioned that this interaction-based instruction method will soon take place of the

traditional stimulus-responses based methods.
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3 STATE OF THE ART IN WIRELESS MICRO-SENSORS

In this section, what’s meant by Query Dissemination and Query Processing is
explained. In each of these subsections, general methods used in existing Internet
protocols or other systems for disseminating and processing data are first introduced.

Later, most cited academic studies and papers in these areas are summarized.

3.1 Query Dissemination

The main purpose of a sensor network is to gather information by monitoring the
environment. This is possible by collecting information from all the sensors
distributed in the environment. Data dissemination protocols define methods for
nodes to transmit and receive queries and sensing data in wireless sensor networks
efficiently [8]. Thus, data dissemination protocols help sensor networks achieve their

aim of gathering information from multiple nodes.

In order to collect information from all the nodes, some level of routing of data must
be performed by the data dissemination protocols. Also, when a large number of
sensors sense the same phenomena, each node, which sensed the phenomena, may
propagate information on this phenomenon and may hence send all other nodes,
which already have information on this phenomenon. This kind of propagation of

information causes network congestion.

Another distinctive attribute of a sensor network is that all communication is data
centric. In wireless sensor networks, nodes cannot designate the destination with an
address (as maintaining address of individual nodes is a large overhead). Instead of
using a device based addressing scheme, data identification is used, and according to

the data interest, results and data are exchanged.

Several data dissemination methods for wireless sensor networks are defined by
protocols and most of these protocols are variants of the methods used in the internet

or in the literature. The most referred data dissemination methods are as follows:

Classic Flooding: In classic flooding, a node wishing to disseminate a piece of data

across the network starts by sending a copy of the data to all of its neighbors.
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Figure 3.1 Classic Flooding

Whenever a node receives new data, it makes a copy of the data and sends the data to
all of its neighbors, except the node from which it just received the data. In Figure
3.1, a sample communication scheme is given. A sends the message to its neighbors
B and C. Then, B and C copy the message and send the message to their neighbors D
and E respectively. The algorithm finishes when all the nodes in the network have

received a copy of the message.

Gossiping: Gossiping [11], which uses randomization to conserve energy, is an
alternative to the classic flooding approach. Instead of forwarding data to all its
neighbors, a gossiping node only forwards data onto one randomly selected neighbor.
If a gossiping node receives data from a neighbor, it can forward data back to that

packet originating neighbor if randomly selects that neighbor.

Figure 3.2 Packet Implosion

Whenever data travels to a node that is part of a high degree node density

environment in a classic flooding network, more copies of the data start flowing

around the network and implosion can occur. Implosion is the receiving of

unnecessary duplicate packet traffic because of having same neighbor in

transmission range. In Figure 3.2, D receives the same packet from both C and D
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according to classic flooding because they transmit a copy of the message to their
neighbor D. Gossiping avoids implosion by making one copy of each message at any
node. While gossiping distributes information slowly, it dissipates energy at a slow

rate as well.

Gossiping was originally introduced in discrete mathematics as a combinatorial
problem in graph theory [12]. In gossiping, every person in the network knows a

unique item of information and needs to communicate it to everyone else.

A popular formulation assumes there are n people, each one of whom knows a
scandal which is not known to any of the others. They communicate by telephone,
and whenever two people place a call, they pass on to each other as many scandals as

they know.

Let f(n) be the number of minimum calls necessary to complete gossiping among n
people, where any pair of people may call each other. Then f(1) =0, f(2) = 1, f(3) =3
and according to [13], f(n) is calculated as in Equation 3.1.

n>4= f(n)=2n-4 (3.1)

In the case of one-way communication as in the case of sensor networks, the graph

becomes a directed graph and the minimum number of calls becomes

n>4= f(n)=2n-2 (3.2)
according to [14].

3.1.1 SPIN

Sensor Protocols for Information via Negotiation (SPIN) [15] is a family of
negotiation-based information dissemination-based information protocols suitable for
wireless sensor networks. SPIN focuses on the efficient dissemination of individual
sensor observations to all the sensors in a network, treating all sensors as potential
sink nodes. The design of SPIN grew out of the analysis of the strengths and
limitations of conventional protocols such as classic flooding for disseminating data
in a sensor network. Classic flooding is a very simple, straightforward protocol for
information dissemination. However, it’s inefficient in terms of energy. First, nodes

send data to their neighbors regardless of whether or not they have already received
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the data from another source. Second, sensor networks are expected to be very dense,
multiple copies of the same data will be disseminated in the same region. Lastly, the
protocol is not energy aware which would allow a sensor protocol to change its

communication parameters depending on the energy left on the node.

To overcome these problems, SPIN nodes negotiate with each other before
transmitting data. Negotiation helps ensure that only useful information will be
transmitted. Meta-data is used to discriminate transmitted data from each other to
avoid data replication in the network. It allows nodes to name the portion of the data
that they are interested in obtaining. In order to add energy efficiency metric into
SPIN, nodes poll their resources before data transmission. Each sensor node has its
own resource manager that keeps track of resource consumption. This allows sensors

to cut back on certain activities when energy is low.

SPIN family of protocols rests upon two basic ideas. First, to operate efficiently and
to conserve energy instead of exchanging the data each node has, SPIN exchanges
summary of the data each node has and the data they request. Second, nodes in a
network monitor and adopt to changes in their own energy resources to extend the

battery lifetime of the system.

Two versions of the protocol have been implemented to test SPIN. SPIN-1 includes a
three way handshake protocol which uses advertise, request and data messages to
exchange lost or new information among the nodes. Meta-data is used in request
messages so that only nodes that have the requested information respond. SPIN-1’s
data exchange method is depicted in Figure 3.3. Node A advertises its data and node
B responds with request message and then node A transmits data to node B. This

process continues until all the nodes have the data.
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Figure 3.3 SPIN Data Exchange

SPIN-2 adds energy efficiency to SPIN-1. When a SPIN-2 node observes that its
energy is approaching a low-level threshold, it adapts by reducing its participation in
the protocol. In general, a node will only participate in a stage of the protocol if it
believes that it can complete all the other stages of the protocol without going below
the low-energy threshold. Similarly, if a node receives an advertisement, it does not
send out a request if it does not have enough energy to transmit the request and

receive the corresponding data.

SPIN proves that: Naming data using meta-data descriptors and negotiating data
transmissions using meta-data successfully solve the implosion and overlapping
region problems. SPIN protocols are simple protocols and they maintain no neighbor

state which makes them suitable for mobile nodes.

3.1.2 Directed Diffusion

Directed Diffusion [16] is a data-centric paradigm for coordination of dense sensor
nodes to collect data in a distributed fashion. Data gathered by sensor nodes is named
by attribute-value pairs. A node requests data by sending interests for named data.
Data matching the interest is then drawn down towards that node. Intermediate nodes
can cache, or transform data, and may direct interests based on previously cached
data. An important feature of directed diffusion is that interest and data propagation

and aggregation are determined by localized interactions.
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Type : four-legged animal // Detect animal location

Interval  :20ms // Send back events every 20ms
Duration  : 10 seconds /I For the next 10 seconds
Rect : [-100,100,200,400] // From sensors within range

Figure 3.4 A Sample interest description

Directed diffusion consists of several elements. Data is named using attribute-value
pairs as in Figure 3.4. A sensing task is disseminated throughout the sensor network
as interest for named data. The dissemination sets up gradients within the network
designed to draw events. A gradient consists of a destination ID and data flow rate.
Events start flowing towards the originators of interests in the form of attribute-value
pairs along multiple paths. The sensor network reinforces one, or a small number of

these paths as seen on Figure 3.5..

An interest is usually injected into the network at the node named sink in the
network. A task for each named interest is created which is temporarily stored at sink
node until the task’s timer times outs. For each active task, the sink periodically
broadcasts an interest message that contains the parameters listed in Figure 3.4 to
each of its neighbors. Instead of transmitting at the original interval rate (20ms), sink
node begins with a lower rate (1 sec.) to discover if any node can answer to the
interest. A timestamp is appended to each interest message to track requests from the

sink node so that messages with greater timestamps are preferred to older ones.

Every node maintains an interest cache in which each item corresponds to a distinct
interest. Timestamp of the last received matching interest, sender 1D, duration and
several gradient fields per neighbor that contain data rate requested by specified

neighbor are found in the cache.

After receiving an interest, a node may decide to re-send the interest to some subset
of its neighbors. To its neighbors, this interest appears to originate from the sending
node, although it might have come from a distant node. This is an example of local
interaction. In this manner, interests diffuse throughout the network. Not all received
interests are re-sent. A node may suppress a received interest if it recently re-sent a

matching interest.

Interest cache is used for directing interests to correct locations. For example, if in

response to an earlier interest, a node heard from some neighbor a data sent by some
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sensor within the region specified by the interest, it can direct this interest to real
destination using the its cache, rather than broadcasting to all neighbors.
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Figure 3.5 Interest dissemination

A scenario for interest dissemination is given in Figure 3.5. Sink node sends its
interest in attribute-value pairs to its neighbors. Each neighbor records sending node
to its cache and retransmits message to its own neighbors. When the interest reaches
event location at source node, it computes the highest requested event rate among all
its outgoing gradients and starts its sensing interface with the given event rate and
transmits message to its neighbors at each interval. Sensor cache is used to prevent
loops in the network. If a received data message has a matching data cache entry, the
message is ignored. To resend a received data message, a hode needs to examine the
matching interest entry’s gradient list. If all gradients have a data rate that is greater
than or equal to the rate of incoming events, the node may simply send the received
message to the appropriate neighbors. However, if some gradients have a lower data

rate than others, then the node may downconvert to the appropriate gradient.

When an interest reaches the source node, it contains the interval timing of the sink
node which is slower than the original interest. Once the sink node starts receiving
message from the source node, it steadily increases the rate by retransmitting another
interest message with a higher data rate. Each node that receives this announcement
updates its entry and retransmits the interest. Nodes use probabilistic methods to
choose among the neighbors that request higher data rates. This operation is called
reinforcement. Using this algorithm, after some time the network will provide the

sink node with a constant data rate data.

To sum up, in directed diffusion, all communication is neighbor-to-neighbor. Unlike
traditional routers, each sensor node can interpret data and interest messages. Sensor
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nodes do not need to have globally unique Ids as in internet protocols. Because every
sensor can cache, aggregate and process messages, it is possible to perform
coordinated sensing close to the sensed phenomenon. The aim of directed diffusion is
to scale well to thousands of sensors. To achieve this local processing algorithms
have been employed by trading some energy efficiency for increased robustness and
scale

3.1.3 LEACH

Low Energy Adaptive Clustering Hierarchy (LEACH)[17] is a clustering based
protocol that utilizes randomized rotation of local cluster base stations to evenly
distribute the energy load among the sensors in the network. In LEACH, the nodes
organize themselves into local clusters, with one node acting as local base station or
station-head. LEACH includes randomized rotations of the high-energy cluster-head
position such that it rotates among the various sensors in order not to drain the
battery of a single sensor. In addition LEACH performs local data fusion to compress

the amount of data being sent from the clusters to the base station.

Sensors elect themselves to be local cluster-heads at any given time with a certain
probability. These cluster-head nodes broadcast their status to the other sensors in the
network. Each sensor node determines to which cluster it wants to belong by
choosing the cluster-head that requires the minimum communication energy. Once
all the nodes are organized into clusters, each cluster-head creates a schedule for the
nodes in its cluster. This allows the radio components of each non-cluster head node
to be turned off at all times except during each node’s transmit time, thus minimizing
the energy dissipated in the individual sensors. Once the cluster-head has all the data
from the nodes in its cluster, the cluster-head node aggregates the data and then

transmits the compressed data to the base station.

However, being cluster-head drains the battery of that node. In order to spread this
energy usage over multiple nodes, the cluster-head nodes are not fixed. The decision
to become a cluster-head depends on the amount of energy left at the node. In this
way, nodes with more energy remaining will perform the energy-intensive functions
of the network. Each node makes its decision about whether to be a cluster-head
independently of the other nodes in the network and thus no extra negotiation is

required to determine the cluster heads.
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Figure 3.6 LEACH Cluster Formation

Cluster formation algorithm is given in Figure 3.6. Each node, that has elected itself
as a cluster-head for the current round, broadcasts an advertisement message to the
rest of the nodes in the cluster. The cluster-head uses CSMA-MAC protocol and all
cluster heads transmit their advertisement using the same transmit energy. Each non-
cluster head node decides the cluster which it will belong for this round. This
decision is based on the received signal strength of the advertisement. After each
node has decided to which cluster it belongs, each node transmits membership
information back to cluster-head using a CSMA-MAC protocol. The cluster-head
receives all the messages for nodes that would like to be included in the cluster.
Based on the number of nodes in the cluster, the cluster-head node creates a TDMA
schedule telling each node when it can transmit. This schedule is broadcast back to
the nodes in the cluster. Nodes transmit their data during their schedule to the cluster-
head. When all the data has been received, the cluster head node performs signal
processing functions to compress data. Finally, processed data is transferred between

cluster-nodes via a tree up to sink node.

From the simulations made, LEACH can achieve over a factor of 7 reduction in
energy dissipation compared to direct communication with the base station, when
using the optimal number of cluster-heads. The main energy savings of the LEACH
protocol is due to combining lossy compression with data routing. In this case, some
data from the individual signals is lost, but this results in a substantial reduction of

the overall energy dissipation of the system.
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3.2 Query Processing and Resolution

After the user requests arrive to sensor nodes via dissemination, these requests are
first processed by the sensor node to see if the sensor node can match user requests.
If a node has the capability for answering user request, the request is resolved by
collecting sensing information and an answer to the query is generated and posted
towards the user. This approach is one of the simplest ways of resolving and
processing query. Sensor nodes usually take advantage of collaborative processing to
resolve user requests so that smaller number of messages are transmitted in the

network.
Mostly referred methods that are in use by many protocols are as follows:

Flooding based Query Resolution: The querier floods multiple copies of the query
as in classic flooding mechanism for query dissemination and nodes with the relevant
data then respond. Flooding can dominate the costs if the query is not continuous.

Expanding Ring Search (ERS) based Query Resolution: At stage 1, the querier
will request information from all sensors exactly one hop away . If the query is not
completely resolved in the first stage, querier will send a request to all sensors two
hops away in the second stage. This process continues until query is resolved. When
ERS is used, the energy saving for query resolutions that can be achieved within
small number of hops is tremendous because of the less overhead of flooding of the
environment. However, if the query can not be resolved within the near nodes,

excessive flooding of the network will be the biggest issue for smaller hops.

3.2.1 TINYDB

TinyDB [18] is a query processing system for extracting information from a network
of Tiny Micro threading Operating System (TinyOS) sensors. Unlike existing
solutions for data processing in TinyOS, TinyDB does not require embedded C code
for sensors to be written. Instead, TinyDB provides a simple, SQL-like interface to
specify the data, along with additional parameters, like the rate at which data should
be refreshed — much as in traditional databases. Given a query specifying data
interests, TinyDB collects that data from motes in the environment, filters it,
aggregates it together, and routes it out to a PC. TinyDB does this via power-efficient

in-network processing algorithms.
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The primary goal of TinyDB is to allow data-driven applications to be developed and
deployed much more quickly than what is currently possible. Some of the features of
TinyDB include:

Metadata Management: TinyDB provides a metadata catalog to describe the kinds

of sensor readings that are available in the sensor network.

High Level Queries: TinyDB uses a declarative query language that lets the data to
be described without requiring stating how to get it. This makes it easier to write
applications, and helps guarantee that applications continue to run efficiently as the

sensor network changes.

Network Topology: TinyDB manages the underlying radio network by tracking
neighbors, maintaining routing tables, and ensuring that every mote in the network
can efficiently and (relatively) reliably deliver its data to the user. A particular query
for network topology is executed on motes, with results displayed in a special

visualization.

Multiple Queries: TinyDB allows multiple queries to be run on the same set of
motes at the same time. Queries can have different sample rates and access different

sensor types, and TinyDB efficiently shares work between queries when possible.

Incremental Deployment via Query Sharing: TinyDB motes share queries with
each other: when a mote hears a network message for a query that it is not yet
running, it automatically asks the sender of that data for a copy of the query, and

begins running it.

TinyDB system contains two applications: one application runs on the sensor
platforms and another application runs on the PC side. A user requests his query
using the Java application on the PC and this query is disseminated to sensor nodes
and the application on the sensor platforms retrieve and return the requested

information.

A sensor platform application consists of Sensor Catalog and Schema Manager,
Query Processor, Memory Manager and Network Topology Manager. Sensor
Catalog is responsible for tracking the set of attributes, or types of readings available
on each sensor. The Query processor uses the catalog to fetch the values of local
attributes, receives sensor readings from the neighboring nodes over the radio,

combines and aggregates these values together, filters out undesired data, and outputs
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values to parents. Memory manager is a heap memory manager implemented on top
of static memory. TinyDB manages the connectivity of motes in the network, to

efficiently route data and query sub-results through the network.

IR = ] G rrote =k
Graphical Interface Text Interface | Reset Motes
Sample Period 2048 - Send Query Set Radio Strength
. . - . Stop Magnetometer
Available Attributes Projected Attributes i
o deid = 1 - Dlsplay Topology Change Base Bcast Interval

ermp Add Attribute

light _ M ‘ Magnet Demo Sounder On

[ arent s Loy Attribute

Fire Test Event

accel x L8

accel v =

[v] Broadcast

Query must SELECT at least one attribute.

. Next QID: ’07 Running Queries
] New Predicate
[0 [J'Log to Database

Refresh

Figure 3.7 TinyDB GUI

TinyDB client application in Figure 3.7 running on the PC is used to construct and
inject the queries and listen for results. A graph and table Graphical User Interface

(GUI) is used to display individual sensor results.

TinyDB implicitly queries one single, indefinitely-long logical table called sensors.
This table has one column for each attribute in the catalog, including sensor
attributes, nodelDs, and some additional introspective attributes that describe mote’s
states. This table conceptually contains one row for each reading generated by any
mote. TinyDB’s query language is based on SQL and named as TinySQL. TinySQL

results are posed over rows generated by multiple sensors at one point in time.

SELECT Temp
FROM Sensors
WHERE temp> threshold

TRIGGER ACTION  SetSnd(512)
EPOCH DURATION 512

Figure 3.8 Triggering SQL query

TinyDB also includes a facility for simple triggers, or queries that execute some

command when a result is produced. A sample query is given in Figure 3.8 which
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calls SetSnd function to give alarm when the temperature is over some threshold
value and this value is checked every 512 seconds.

TinyDB includes the ability to run queries that log into the Flash memory of the
motes. TinyDB provides commands for creating tables that reside in flash, for
running queries that insert into these tables, for running queries that retrieve from
these tables, and for deleting these tables. One query can log to a buffer at a time,
and that new queries will overwrite data that was previously logged to a table.
Currently, a query that selects from a Flash table and a query that writes to the same
table can not be run. Logging of the query should be stopped using TinyDB Client
utility prior to collecting data from flash table.

When running queries longer than 4 seconds by default, TinyDB enables power-
management and time-synchronization. This means that each sensor is on for exactly
the same four seconds of every sample period. Results from every sensor node for a
particular query should arrive at the basestation within four seconds of each other.
This time synchronization and power management enables long running deployments

of sensors.

TinyDB aggregates results on the way to the sink node. TAG [19] is an aggregation
service offered by TinyDB. It operates as follows: users pose aggregation queries
from a powered, storage-rich base station. Operators that implement the query are
distributed into the network by piggybacking on the existing ad hoc networking
protocol. Sensors route data back towards the user through a routing tree rooted at
the base station. As data flows up this tree, it is aggregated according to an

aggregation function and value-based partitioning specified in the query.

In order for users to pose declarative queries, an SQL like programming language

was designed.

SELECT AVG(volume),room
FROM Sensors

WHERE floor = 6

GROUP BY Room

HAVING AVG(volume) > threshold
EPOCH DURATION  30s

Figure 3.9 A Sample TAG Query

A sample SQL query is given in Figure 3.9. In this query it’s requested from sensor

nodes to report the room number and microphone level of each sensor in floor 6 if
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the average volume is greater than the threshold for 30s. It’s quite similar to SQL

queries but it has limited capabilities.

TAG implements three function: a merging function f, an initializer function i, an
evaluator e, to implement aggregation services. In general f has the following

structure:

<z>=f(<xx><y>) (3.3)

<x> and <y> are multi-valued partial state records, computed over one or more
sensor values, representing the intermediate state over those values that will be
required to compute an aggregate. <z> is the partial state record resulting from the
application of function f to <x> and <y>. For example, if f is the merging function
for AVERAGE, each partial state record will consist of a pair of values: SUM and

COUNT.F is specified as follows, given two state records <S;,C;1> and <S,,C,>:

f(<S,,C, ><8S,,C, > =<S,+S,,C, +C,) (3.4)

The initialized i is needed specify how to instantiate a state record for a single sensor
value; for an AVERAGE over a sensor value of x, the initializer i(x) returns the tuple
<x,1>. Finally, the evaluator e takes a partial state record and computes the actual
value of the aggregate. For AVERAGE, the evaluator e(<S,C>) simply returns S/C.

Aggregates are classified according to four categories according to their state

requirements, tolerance of loss, duplicate sensitivity and monotonicity:

Duplicate Insensitive/Sensitive Aggregates: Duplicate insensitive aggregates are
unaffected by duplicate readings. Duplicate sensitive aggregates will change when a

duplicate reading is reported.

Examplary/Summary Aggregates: Examplary aggregates return one or more
representative values from the set of all values. Summary aggregates compute some

property over all values.

Monotonic Aggregates: These aggregates have the property that when a function f
is applied to two partial state records for all resulting values, it will be greater or
lower than each of the evaluation of pair’s values. This proves increasing or

decreasing values for aggregate results.
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Distributive/Algebraic/Holistic/Unique/Context-sensitive Aggregates: Depending
on the function a pair of values has to be carried. For example AVERAGE function
requires the number of elements used to compute the result and the result to further
continue in processing. Distributive aggregates don’t require other data to calculate
result; therefore, size of the partial records is the same as size of the final record.
COUNT, MAX and MIN are an example of distributive aggregates. Algebraic
aggregates require intermediary state information to continue operation. AVERAGE
function is an example of algebraic aggregate. Holistic aggregates require whole
values to be kept together prior to computing the result. MEAN is one of these
operators. Unique aggregates are similar to holistic aggregates, except that the
amount of state that must be propagated is proportional to the number of distinct
values in the partition. In Context-sensitive aggregates, the partial state records are
proportional in size to some property of the data values in the partition. Many
approximate aggregates are content-sensitive. Fixed-width histograms and wavelets

are examples of these operators.

Queries in TAG contain named attributes. When a TAG sensor received a query, it
converts named fields into local catalog identifiers. Nodes lacking attributes
specified in the query simply tag missing entry as NULL. This increases the
scalability as not all the nodes are required to know global knowledge of all
attributes. Attributes can be sensor values, remaining energy or network

neighborhood information.

TAG computes aggregate in network whenever possible to decrease the number of
message transmissions, latency and power consumption. Given the goal of
decreasing the number of transmitted messages, during the collection phase each
parent waits for some time period prior to transmitting its own message in order to
aggregate with the children nodes’ responses. How long each node waits for other
nodes’ responses is (EPOCH DURATION)/d, where d is the maximum depth of the

tree.

In order to group received data group id is tagged to each sensor partial state record.
So that, response data is aggregated for the nodes with same group id. When a node
receives an aggregate from a child, it checks the group id. If the child is in the same
epoch as the node, it combines the two values. If it’s in another epoch, it stores the

value of the child’s group along with its own value for forwarding in the next epoch.
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Figure 3.10 Partitioning of time into EPOCHS

For the query in Figure 3.9, computation is applied for each sensor at each room and
results are transmitted to upper nodes. Base station combines each room’s
information to display to the user.

The principal advantage of TAG is that it dramatically decreases the number of
messages by aggregation and employing distributed data processing. It can also
tolerate disconnections since it carries partial state information. Any node can join
query processing from the middle of the operation. By explicitly dividing time into
epochs as in Figure 3.10 while waiting for other nodes’ responses to arrive, the CPU
can be set to idle period during this time. But, the depth of the tree has to be known
for this principle to be made successful. However, waking up the processor will

require synchronization to be employed.

Finally, real users of sensor networks are most likely not sophisticated software
developers. Therefore, TinyDB has been supported by various toolkits [20] for easy
access of data. The complexity of sensor network application development must be
reduced and deployment must be made easy to ensure the success of sensor network
technology in the real world.
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Figure 3.11 The TASK Architecture

The architecture of Tiny Application Sensor Kit (TASK) is depicted in Figure 3.11.

TASK consists of the following components:

TinyDB based sensor network: allows traditional programs to interact the sensor

network through a declarative SQL-like interface

TASK Server: a server process running on a sensor network gateway that acts as a

proxy for the sensor network on the internet.

TASK DBMS: a relational database that stores sensor readings, sensor network

health statistics, sensor locations and calibration coefficients, etc.
TASK Deployment Tool: helps users record sensor node metadata.

TASK Configuration Tool: helps users choose data collection intervals and data

filtering and aggregation criteria.

TASK Visualization Tool: helps users monitor the network health and sensor

readings.

TASK Field Tool: running on a PDA help users diagnose and resolve problems in

certain areas of the network in the field.
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3.2.2 COUGAR

Cougar [21] is a query layer for sensor networks. The query layer accepts queries in
a declarative language that are then optimized to generate efficient query execution
plans with in-network processing which can significantly reduce resource

requirements.

Cougar is motivated by three design goals. First, declarative queries are especially
suitable for sensor networks. Clients issue queries without knowing how the results
are generated, processed and returned to the client. Second, it is very important to
preserve limited resources such as energy and bandwidth. Since sensor nodes have
the ability to perform local computation, part of the computation can be moved from
the clients and pushed into the sensor network, aggregating records or eliminating
irrelevant records. Third, different applications usually have different requirements,
from accuracy, energy consumption to delay. For example, a sensor network
deployed in a battlefield or rescue region may only have a short life time but a higher
degree of dynamics. On the other hand, for a long term scientific research project
that monitors an environment, power-efficient execution of long-running queries
might be the main concern. More expensive query processing techniques may
shorten processing time and improve result accuracy, but might use a lot of power.

The query layer can generate query plans with different tradeoffs for different users.

The component of the system that is located at each node is called query proxy.
Architecturally the query proxy lies between the network layer and the application
layer and the query proxy provides higher level services through queries. Gateway
nodes are connected to components outside of the sensor network through long-range
communication and all communication with users of the sensor network goes

through the gateway node.

SELECT {attributes, aggregates}
FROM {SensorData S}

WHERE {Predicate}

GROUP BY {attributes}

HAVING {predicate}

DURATION time interval

EVERY time span e

Figure 3.12 Query Template

Declarative queries are the preferred way of interacting with a sensor network. The
queries having the form in Figure 3.12 are considered. It is very similar to the SQL
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language and it has limitations when compared to SQL. One difference between the
query template and SQL is that query template has additional support for long
running, periodic queries. The DURATION clause specifies the life time of a query

and the EVERY clause determines the rate of query answers.

A simple aggregate query is an aggregate query without GROUP BY and HAVING
clauses. In order to compute these aggregates several processing such as in-network
aggregation has to be done. In order to process data in-network, several sensor nodes
transmit the packet to a central node named leader-node which calculates the
aggregates of incoming messages. There are three approaches that can be taken to
collect sensor data at leader node. Messages can be directly delivered to leader node
using ad hoc routing protocol, messages can be merged into same packet to limit
amount of packet transmitted and partial aggregation on the way to the central node

can be done by intermediary nodes.

Synchronization is needed if the messages are to be merged and some duplicate
sensitive operators such as SUM and AVERAGE require data to be transmitted once.
Synchronization is used to determine for each node in each round of the query to
determine how many sensor readings to wait for and when to perform packet

merging or partial aggregation.

Since query processing facility has been designed as a layer, COUGAR assumes that
several ad hoc routing protocols with modifications can be used for delivery of the
messages. Ad hoc On Demand Distance Vector Routing Protocol (AODV) [22]
protocol has been used with extensions for simulations. According to COUGAR
approach, routes are set up at initialization phase and each message carries the hop
count of the message. Each node records the message receive ID as a parent node
and a reverse path to the leader is set up. Two methods are used to maintain the tree.
Local repair is used when a broken link is detected. Depth of the tree with sequence
number is used between nodes that are spatially close to find a new parent in the case
of a communication failure. Another method is to reconstruct the tree whenever the

number of messages expected reach below some user defined threshold.
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Figure 3.13 A Cougar Query Plan

In order to resolve queries like “What is the minimum average temperature during
the next seven days?” two levels of aggregation has to be done. First the average
temperature has to be computed and then the minimum operator has to be applied. In
order to resolve these kinds of queries query plans are used. A query plan is needed
to compute complex aggregate queries that a user poses. A query plan decides how
much computation is pushed into the network and it specifies the role of and
responsibility of each sensor node, how to execute the query, and how to coordinate
the relevant sensors. A query plan is constructed by flow blocks, where each flow
block consists of a coordinated collection of data from a set of sensor nodes at the
leader of the flow block as depicted in Figure 3.13. The task of a flow block is to
collect data from relevant sensor nodes and to perform some computation at the
destination or sensor internal nodes. A flow block is specified by different
parameters such as the set of source sensor nodes, a leader selection policy, the
routing structure and the computation that the block should perform. Each flow block
is called a cluster and maintained by some heartbeat messages transmitted by the
leader of the flow.

Several optimizations can be applied to query plan construction such as creating flow
blocks that are sharable between different queries and use of join operator which
enforces two conditions coming from different data flows to be true before returning
a value. Join operator represents a wide range of possible data reductions. Depending

on the selectivity of the join, it is possible to reduce the resulting data size.
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3.2.3 ACQUIRE

Active Query Forwarding in Sensor Networks (ACQUIRE) [23] is a mechanism for
obtaining information in sensor networks. In ACQUIRE, an active query is
forwarded throughout the network, and intermediate nodes use cached local
information in order to partially resolve the query. When the query is fully resolved,

a completed response is sent directly back to the querying node.

With large scale networks of energy-constrained sensors it is not feasible to collect
all measurements from each device for centralized processing. Due to energy
constraints it is desirable for much of the data processing to be done in-network, and
this has led to the concept of data-centric information routing, in which queries and
responses are for named data. Depending on the applications, there are likely to be

different kinds of queries. These queries can be categorized as follows:
Continuous queries: result in extended data flows.

Aggregate queries: aggregation of information from several sensors is done.
Complex queries: consists of several nested or batched subqueries

Queries for replicated data: response to a given query can be provided by many
nodes.

o

<« -- Complete Response
<€ — Update Messages

4— Active Query

Figure 3.14 ACQUIRE Query Resolution

The principle behind ACQUIRE is to inject an active query packet into the network

that follows a random or guided trajectory throughout the network. At each step, the

node which receives the active query performs a triggered, on-demand, updated

obtaining information from all neighbors within a look-ahead of d hops as in
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Figure 3.14. New updates are triggered reactively by the active node upon reception
of the active query if the current information it has is obsolete. As this query
progresses through the network it gets progressively resolved into smaller and
smaller components until it is completely solved and is returned back to the querying
node as a completed response through the return path or shortest path. The choice of
a next hop to forward the message is done randomly or by intelligence based on other

information that guarantee further resolution of the query.

ACQUIRE is likely to perform in an energy-efficient manner compared to other
approaches on complex, one-shot and non-aggregate queries for replicated data. In
particular, ACQUIRE with optimal parameters performs many orders of magnitude
better than flooding-based schemes. %60 Energy savings can be achieved when

compared to ERS.
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4 SeMA QUERYING PROTOCOL FOR MICRO-SENSORS (SQS)

SeMA, which is an acronym for A Session Based Mobile Ad Hoc Network
Architecture, is a project supported by TUBITAK under grant no: 101E037/ EEAG-
AY-41. It has started as an ad hoc network routing evaluation work [24]. The project
then evolved into an architectural proposal that tries to address some important
problems in the mobile ad hoc networking environment. Under the assumption of an
existing wireless data link layer protocol, the architecture covers a clear definition of
an ad hoc network as a session, and defines agents of session, routing and service in
order to maintain an ad hoc network to discover a service and use it. For the purpose,
an expressive definition of services is considered and SeMA aware application

scenarios are being developed.

In this study, SeMA architecture has been extended to the sensor networks with
design and implementation on a real time operating system for sensor nodes so that
sensing capabilities of the nodes are expressed to users as services of the mobile ad
hoc network. For example, a user which has access to a sensor node that is part of the
sensor network in the forest, can announce temperature reading capability of the
mobile node as a service to other users of the mobile ad hoc backbone and any user
in the ad hoc backbone can bind to this service to fetch the results.

SeMA architecture defines services as attribute-value pairs as recommended in other
studies [23], [21]. To map this capability to sensor networks a general purpose query
processing and dissemination protocol is defined in which capabilities of underlying
network such as immediate or aggregated delivery and reliable event delivery is
expressed to users as customizable set of options so that a user’s request can be

resolved by an appropriate combination of these options.

This protocol named as SQS (SeMA Scalable Querying Protocol for Micro-Sensors)
hereafter is the lowest tier of the architecture and is completely independent of other
protocols in the architecture. It’s currently assumed that specialized nodes which
serve as a gateway between the tiers of the architecture will provide the necessary

conversion between the protocols.
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4.1 SeMA Architecture

Dynamic service discovery and late binding to the most appropriate network service
will be the key characteristics of future ad hoc network. Mobile nodes dynamically
establish routes among themselves to form a network “on the fly”. SeMA [25]
incorporates a service discovery protocol based on a node mobility and service
definition model formally specified in eXtensible Markup Language (XML) [26].
The protocol employs a session-based approach to service access whereas the
discovery algorithm returns both the service location and the route information for
late binding.

SeMA is an enhanced client-server architecture in which clients are supported to
adapt themselves to the new network resources they discover “on the fly”. The nodes
get service information either by catching the periodically advertised services or by
generating a service request. Applications establish light-weight sessions with the
resources using the address returned to them. Binding is done when the service is

needed.

SeMA is a cross-layer protocol, capable of operating on generic wireless data link
layer protocols, such as IEEE 802.11. SeMA addresses issues like service
announcement, binding, session management and data routing. The monitoring of
sensor networks is an application of SeMA architecture. The terrain of the sensor
deployment area is assumed to be suitable for navigating by means of some mobile
units, which form the information retrieval backbone of the overall monitoring
application [27]. These mobile units are either wireless equipment carrying livings or
autonomous robots as seen in multi robot exploration studies. The architectural view

of the system is shown in Figure 4.1.
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<monitoringService>

</monitoringService>

Figure 4.1 SeMA Architecture

An instructive example sensor network aims to detect the amount of hazardous
chemicals that have spread over an urban environment, because of a leak during
transportation or explosion of an on-site reactor. Wireless communication capable,
chemical material density measuring sensors are deployed over the polluted area in
an ad hoc fashion. Hazardous material density is the objective to be monitored from a
safe distance. For the information retrieval, autonomous robots are released to the
area, where each will initiate temporal sensor tree topologies to disseminate and
gather results of a query created by the monitoring application. The monitoring
application running host and the autonomous robots form a wireless backbone
network, with longer transmission and reception capable radios and better energy
capacity holding batteries compared to sensor node’s batteries. Robots of the
backbone network relay each other to announce the queries of monitoring service or

to collect results of the queries back to monitoring application.

All available resources on the SeMA network are considered as services. They play a
major role on SeMA network, since mechanisms of the protocol are built with the
aim of providing means to access those services. Specification of a service should
include necessary information for SeMA clients to determine whether the service
fulfills clients need. Thus, services are modeled with a generic name, and following
attribute-value pairs. This definition is sufficient for a host to discover a required
service without any bindings beforehand. Details of XML processing of services and
ad hoc routing in the backbone can be found in [27].
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In sensor network application, clients of the ad hoc network backbone become
middleman between monitoring application which is defined in XML in Figure 4.2.
They participate in forming query driven sensor trees adaptively and backbone

features are used to announce queries and return collected results.

<service name = “monitoring application”>
<keyword attribute =validUntil”>20031128193044EEST</keyword>
<keyword attribute = “queryPredicate”>sensor:read[value>100 and order(value)<5]</keyword>
<keyword attribute = “resultFunction”>fn:concat</keyword>

<(service>

Figure 4.2 XML definition of a monitoring service
The components of sensor network are as follows:

Client: Clients are mobile nodes modeled with two wireless network interfaces;
communication interface, which runs SeMA ad hoc backbone protocol, is used to
fetch monitoring service instances for query attributes. All data required for driving a
sensor network topology such as the query, query time boundaries, runtime
characteristics, geographic region boundaries etc. are encapsulated in the service
attributes. Upon fetching a service, mobile client pauses its movement, activates the
sensor driver process and goes to sleep. The driver process initiates a rooted tree
network among a subset of all sensors in the region via the node’s second wireless
network interface which is a short range radio capable of communicating with sensor
node radios in the same transmission range. This interface is used to disseminate the
query in a controlled way. During topology construction and query running phases,
the driver node is assumed to be fixed; not moving. Upon collecting event data from
the sensor network, the driver wakes up and establishes an implicit SeMA session

with the monitoring service to transmit collected query responses.

Driver: Clients bind to a monitoring service with an implicit intention to get query
and network parameters in service definition. Further, sensor driver process on the
client is activated with these parameters to convert XML compliant query parameters

into a bitwise coded format for dissemination through the sensors.

Workers: Sensors of the embedded network are called workers.

4.2  Query Resolution

Queries for data of interest are transmitted through the backbone in service

announcement packets. Service definitions contain an XQuery [28] predicate, a result
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function and Query Timeout Period (QTP), as well as geographic region boundaries
of the area of interest. XQuery predicate is used to extract the readings that interest
the monitoring application. Then, if specified in the service, these readings may be
processed via the given resultFunction. The actual query result to be submitted is the
returned data from this XQuery function. XQuery specifies more than 200 functions
(including functions in SQL) that include numerical processing, data aggregation
(Sum, Average (avg) , Minimum (min) , Maximum (max) ), string operations (string-
join, starts-with, ends-with), pattern matching (matches, replace, tokenize) etc. and
more. By using XQuery in value fetching and processing, sensor querying process
conforms to XML standard, from monitoring application down to the sensor nodes.

Temporarily posed sensor drivers convert service parameters and XQuery predicate
to a bitwise coded format. Coded query is sent to sensors in the payload field of setup
packet. In this model, sensor nodes are assumed to be very simple equipments with
limited processing and battery power. Setup packet initiates a tree topology network

in the area of interest among the sensors those have accepted the query.
XML service attributes are defined as:
ValidUntil: Query validity time.

QueryPredicate: An XQuery predicate that will filter out the desired sequence of
values from the sensor readings. To be more specific, the given predicate instance

will fetch the last five readings that carry numerical values greater than 100.

ResultFunction: A built-in or custom XQuery function that will be applied to the
resulting sequence of the given predicate. What the function returns is to be sent to
the client sensor node driving the tree. For the example instance, the sequences that
are found by the predicate will be concatenated to form a compact resulting string of

values.

A sample XML instance is given in Figure 4.2.

4.3 Query Definition

After being scattered around the terrain, sensor nodes operate in low power radio

listening mode to receive messages from the driver. Queries are used to request data

from sensor nodes. They can be used to collect data about the status of nodes or

querying the environment via sensing interfaces. Therefore, queries that can be run
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on sensor nodes are categorized as Sensing Related} and Node Related. When a
sensing related query is made, it is indicated that the monitoring application is rather

interested in data readings obtained from sensing interfaces than node status.
Example: Retrieve the daily average temperature for the next seven days.

Node related queries are used to set or get the constant values found on the nodes.
Since sensor nodes are typically state machine oriented nodes, node related queries
are used to externally force a state transition or a parameter calibration on the node.
When a node related query is made, it is indicated that the application is rather
interested in monitoring the network for topology maintenance than sensor

interfaces.

Example: set the transmission power to %65 duty cycle

4.4  Compilation Functions

Raw data readings retrieved from sensors for some duration may not give enough
idea about monitored environment. Compilation Functions applied to raw readings
reduce the number of responses processed by the driver. Example: Alert the fire

brigade when the temperature readings in the forest are over 70 degrees.

Compilation functions are used with Sample Count (SC) and Sampling Period (S)
parameters to obtain more accurate query data on the node. SC defines the numbers
of sensor reading samples to be taken by the node and S defines the time interval
between samples. Nodes generate one response packet for every SC samples. Each
response packet contains a compiled data of these samples as defined in the query
predicates. This results in fewer response packets to be returned to the driver and

consequently results in less power consumption for packet transmission overall.

45 Query Types

Query Processing Algorithm handles a number of different query types. Query
specifies how data should be retrieved from a node and when a response packet

should be generated. Three attribute classes are defined:
e Response attempt: is either continuous or one shot

e Response generation method: is either simple or complex
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e Response transmission: is either aggregated or non-aggregated.
Descriptions of query attribute types are given below:

Continuous Queries: last for query timeout period and may result in multiple
response packets from sensor nodes. These queries are used for periodic data

collection. Example: Report daily temperature for a week at most three hops away.

One Shot Queries: result in a single response packet from every sensor node. These
queries are used to receive one compiled result from sensors. Example: Report

temperature readings from all nodes.

Simple Queries: return raw data readings from sensors without applying any

compilation function. Example: What is the battery level? Or is sensing interface on?

Complex Queries: contain a compilation function such as sum, total, min, max of
samples, to be applied to a number of raw sample readings. Example: Return
temperature reading if after taking 3 samples at 3 min intervals any value is greater

than 100 degrees.

Aggregate Queries: delay packet transmission at intermediate nodes during response
delivery. Nodes keep responses from their children until their send buffer is full or
timer expires. One network packet containing all responses in the buffer is
transmitted. Our architecture currently supports max of four responses in a single
data packet. A typical query example which may benefit from this type of
aggregation: What is the number of nodes in the area?

Non-Aggregate Queries: return each response immediately. As soon as a packet is
generated, or received by the node, it is relayed towards the root. Example: Return
immediate response if at least one reading of 5 samples taken at 1 second intervals is
over 70 degrees.
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Figure 4.3 Query Driven Network Types

Sensor networks are classified with three binary digits encoding the query attributes
of the network. For example: 010 type network processes a one shot, complex and
non aggregate query. This network generates zero or one response from a simple
reading on each connected sensor, resulting at most N-1 network packet to be
forwarded towards the root where N is the number of nodes. Additionally, each data
packet is relayed separately via intermediate nodes. Figure 4.3 illustrates query

driven network types.

4.6 Query Distribution

A Sensor network is created by the distribution of a setup packet as in Figure 4.4
among sensors and destroyed after the query is timed out or an abort packet is
received. RF is a broadcast medium and each transmitted setup message is received
by all neighboring nodes and disseminated with modifications at each hop. How far
this broadcast message will be forwarded is given by the Flooding Degree parameter.
Flooding is stopped when the Hop Count (hc) parameter becomes equal to flooding
degree. Each node that receives setup packet decides to participate in the query
network or not according to its battery level. Sensor nodes are allowed to join one
network at time and each query network is uniquely identified by its Region-ID and

Driver-ID pair.

Sensor node generates a local ID for itself upon receiving setup packet.
Acknowledge flag in the packet is used to specify event delivery mechanism and

concatenate flag is used to force piggybacking.
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4.7 Query Processing

All participating sensors either act as intermediary routers that forward others
response messages or both a query resolving and a message forwarding node. Nodes
receiving setup packet inspect the requested query parameters and initiate a query
resolving process if they have the requested capabilities. For sensing related sub
queries, relevant sensing interface is switched on and for node related sub queries;

required state data collection operation is activated.
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As it can be seen from Figure 4.4, setup packet is a variable length packet that
consists of one global query related parameters and several sub query parameters.

Query parameters are sent to sensors in the query related parameters part of the setup
packet; acknowledge flag-ack is used to specify reliability requirement and
concatenate flag-concat is used to force data buffering for message concatenation.
Some applications might require individual results whenever they are ready, causing
more traffic in the network and worse battery consumption whereas others might be
interested in overall results. With concatenate flag set, the node collects responses
from its children until the send buffer is full or the timer expires and sends the full
buffer in a single message. Sampling Period (S) as explained before states how often

data should be collected from sensing interface, Query Type specifies whether this
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query is a continuous query or one-shot query. Sub query Count states the number of
sub queries encapsulated into the setup packet.

Since data gathering interval requirements for sub queries can be different, time

related information is encoded as Time Unit structure given in Figure 4.5.

3 bit 10 bit

Time Type Time Value

Figure 4.5 Time Unit Structure

Time unit is represented in 3 bits which allow time type to be set to from
microsecond to year scale. 10 bit value allows time value to be set up to 1024. So
that very large scale timing values can be coded with 13 bits. All time related
parameters of the protocols are represented in the same time unit structure in Figure

4.5. The coding of time types is also given in Table 4.1.

Table 4.1 Time unit encoding

Time Type | Value
Microsecond
Millisecond
Second
Minute

Hour

Day

Month

Year

N[O IWINEFLIO

Sub queries are also categorized into two types; sensing related and node related.
Subquery type tells whether this query is sensing unit related or node related. Sensing
related sub queries collect data from sensing interfaces and apply compilation
function if requested. Node related queries allow the state of the node to be changed

prior to sensing or retrieving node state as a part of the query.

Sub query Context field is a joint field. For sensing related sub queries, sub query
context field is used to specify for which sensing interface this query is intended to
and for node related sub queries, sub query context field is used to tell the function
that will get or set the values. Encoding of sub query context field is shown in Figure
4.2.
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Table 4.2 Sub query Context Encoding

Sub query Context | Sensing Related Value | Node Related Value
0000 Photo Sensor Node ID

0001 Voltage Sensor Parent ID

0010 Temperature Sensor Neighbor ID

0011 Accelerometer Sensor Battery Level

0100 Humidity Sensor Packets Sent Per Node
0101 Microphone Sensor Retransmission Count
0110 Magnetometer Sensor Sensor Type

0111 Pressure Sensor N/A

Compilation Data field can be redundant for some of the compilation functions and
might be missing in the setup packet. This field is also used with node related queries
in a jointly manner to specify the value to be set when we want to change a constant
on the node.

For sensing related queries single raw data reading may not give enough idea about
the environment. A number of raw samples may be needed to compile data. SQS
query parameters specify how many raw samples must be taken (sample count-SC)
and how frequent these readings have to be obtained from the sensing interface at

each sampling period.

Sixteen compilation functions are defined for local query optimization. These
functions are used with SC and S parameters to obtain more accurate query data on
the node. Compilation functions and their encodings are given in Table 4.3.

Table 4.3 Compilation Function Encodings

Compilation Function | Value
Sum 0001
Count 0010
Average 0011
Min 0100
Max 0101
Greater 0110
Lower 0111

Nodes generate one response message for every SC samples. Each response packet
contains a compiled data of these samples as defined in the query predicates. This
generates fewer response packets to be returned to the driver, resulting in less power

consumption for packet transmission overall.
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Table 4.4 Sample Queries

Query Type Sample Query Network Parameters
001 Return Node ID and Battery | QTP = X
Level S = X
SC = X
010 Return Temperature reading if | QTP = 9 minutes
after taking 3 min sampling | S =3
period any sample value is | SC = 3 minutes

greater than the given threshold
100 Return Temperature reading for | QTP

(7%24*60)min

the next 7 days after taking 10 | S = 6 minutes
samples at 6 min sampling period | SC = 10
RGP = 60 minutes
QCycle = (7x24x60)/60=164
110 For the next 3 months return | QTP = (90*24) hours
temperature  reading if the | S = 1 hour
average of 5 samples taken at 1 | SC =5
hour sampling period is greater | RGP = 5hours

than the threshold value. QCycle (90x24)/5=432

Compilation functions are the operators applied to the raw sensor readings.
Threshold value is to derive results. Compilation functions are also assumed to be
statically built on nodes and driver nodes. Compilation function “0000" has a special

meaning and is used to specify whether the query is simple or not.

Table 4.4 gives some sample queries and the corresponding network parameters

extracted from query attributes.

4.8 Response Generation

When a sensor node receives query parameters with a setup packet, it sets up a one
shot query timeout timer to be fired at QTP and a continuous sampling period timer
to be fired at each S time. The sampling period timer algorithm is given in Figure
4.6.

With each sampling period timer tick, if the sub-query is sensing related relevant
sensing unit is switched on, the result is gathered and SC of the sub-query is
decremented by one. This process continues until QTP is reached or SC of all sub
queries reach zero which indicates that a response packet should be generated. If
Continuous flag is not set, sampling period timer is stopped after packet transmission

in order to save energy by avoiding unused timer interrupts.
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SamplingPeriodTimer.fired()
begin
if (1SubqueriesCompleted())
begin
forall subqueries begin
if SubqueryCompleted()
DisableSensingInterface()
end
if (ThereAreInCompleteSubqueries())
\\ Request data from sensing interfaces
StartCollectingDataFromSensingInterfaces()
end
else begin
PrepareAndPostResponseMessage()
if (!ContinuousQuery)
StopFrequencyTimer()
end
end

Figure 4.6 Sampling Period Timer Algorithm

As stated before, in active state, query nodes either generate query data or relay
others data. In either case, nodes propagate messages towards upper levels of the tree
by transmitting packets to their parents. They get parent ID and Region ID during
setup packet processing. Nodes process messages only if their local region ID and
node ID is equal to the region ID and message destination ID in the received packet.
This allows simultaneous queries to be run in the same physical region without query

networks interfering each other’s processing.

Since proposed architecture supports up to four simultaneous sub queries, sub query
responses have to be synchronized with each other on the sensor node. The network
setup protocol supports different sample counts to be set up for different sub queries.
As mentioned before, nodes wait for all sub queries to be resolved in order to
generate a response message. The protocol sets a single Response Generation Period
(RGP) for the whole network. With every sampling period timer tick, it is checked if
all sub query sample counts has reached zero or not. Completed sub queries switch
off their sensing interface and go to sleep.
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Figure 4.7 RGP Periods Time Gantt chart: (SC*S) per sub query

When all sub queries are completed a response message is generated. RGP periods
are given in Figure 4.7. The figure illustrates a continuous network query which has
four sub queries with different sample counts. Query instances are scheduled at t4, t8
etc. In order to schedule next instance all sub query samples for the previous instance
have to be collected. At this point a response message is posted and all sub queries

are rescheduled by initializing their number of samples counts to their initial values.

4.8.1 Response Traffic Analysis

In SQS, a sensor network is formed for a limited period of time to process one
network query. Sensors compile query readings at given frequencies. Response
generation period is a function of Sample Count (SC) and Sampling Period (S)
values received during setup. Each network query can be decomposed into maximum
four sub-queries as defined in the setup packet. Compiled result of each sub query is
locally buffered and one network packet is generated at Response Generation Periods

(RGP) for all sub query responses.

RGP = Max(SC) * S (4.1)

As the response generation method (RGM) may vary for each subquery S(i), traffic
intensity of the network as a function of network query type can be analyzed for the
best and worst case sub query type combinations. For example: simple queries
generate only one response at each node whereas complex queries may result in zero

Or one response.

If set of generation methods is defined as:
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RGM-SET ={ Simple, Complex} 4.2)

Then the response generation method for the network query can be given as follows:

NetQueryqey = U;SubQuery(i)RGM —{Complex} (4.3

This predicate statement indicates that if at least one sub query is of Simple type then
network query RGM is also Simple which generates one response per node. If all sub
queries are Complex then the network query type is also Complex generating zero or

one response per node.

Continuous queries cause periodic processing on the nodes. The number of periods
or Query Cycle (QCycle) is found by dividing Query Time Period (QTP) by RGP
from Equation (4.4).

QCycle =QTP/RGP 4.4

From eq. (4.4) and eq. (4.3), minimum and maximum number of packets injected
into the network can be estimated for network query types. Table 4.5 illustrates the

range of number of responses generated in an n-node query network.

Table 4.5 Traffic Intensity in N-hop sensor network

Query Type | Response Range
00(0,1) [N, N]
01(0,1) [0,N]
10(0,1) [(N*QCycle), (N*QCycle)]
11(0,1) [0, (N*QCycle)]

4.8.2 Response Message and Time Synchronization

A response message might carry a single node response or responses from multiple
nodes. Thus, the response message is a variable length message as illustrated in
Figure 4.8 and Response Count Field is used to tell the number of response messages
contained in the packet. Response Data is the name of the data given to each single

sensor's data which is depicted in Figure 4.9.
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Figure 4.8 Response Packet

Each response data message contains a Hop Count, a Data Count and a Response
Time field and Data Count times Sub query Context Data. These fields are used to
uniquely identify each incoming response data at the driver node. In the proposed
architecture, each response data carries its originator's hop count to specify how
many hops away this event has occurred. This way, driver node can have a rough
idea about the location of the event in terms of transmission range and hop count.

;g- g &% é (each gJapstgzczlE)arqﬂaetra)result
- e

Figure 4.9 Response Data

Since not all of the nodes participating in query are required to match all sub queries,
some nodes joining the query can be simple message forwarders. So, the Data count
field is used to specify how many of the requested sub queries can a node answer to.
The response of node follows response time field in the packet and is named as sub
query context data which contains 16 bit response of the message and the index of

the sub query this data refers to.

Sensor networks are mostly known as unreliable and there is no guarantee about the
order of arrival of the events to the driver node. Therefore, response messages about
the same event initiated by neighboring nodes might arrive at different times to the
driver. While some packets might be lost on the way, others might arrive out of order
or some nodes might run the reliable event delivery algorithm as a result of losing
contact with their local parents. As a result, the driver node is expected to
discriminate these messages from each other. In the case of a target tracking

application, messages are required to be sorted by time to provide target path to the
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monitoring application. In order to distinguish events from each other a timing

mechanism is required.

Figure 4.10 Timing Problem Demonstration

Recent research groups [29], [30] have used messaging based synchronization
primitives but message transmission is the most costly operation on sensor nodes and
it's not desirable for each node to transmit message to each other to keep
synchronized. Proposed query processing algorithm provides its users with relative
message delivery time so that client nodes can have a rough idea about the
occurrence of event. Each response message has a response time field which is used
for time stamping. Each time a response message is processed on each node at the
forwarding path its time count is incremented by the amount of time difference
between message reception and message transmission and by a theoretical
propagation delay calculated by using 12kbps transmission throughput and packet
length. Therefore, messages for the same event arriving via a longer path will have
relatively greater time. Driver node can filter the events that have already been
delivered to client node so that delayed packets are also taken care of.

In Figure 4.10 a sample scenario for timing problem is given. In this scenario several
sensors have been deployed in an area to track any changes in the environment and
the path of a truck is given. During the truck’s movement, its movement is detected
by 2,5,4,9,10,8 and 6 sensors respectively assuming that sensing and transmission
ranges of sensors are same. However, when looked at the events from monitoring
application point of view, it needs to discriminate the event’s occurrence sequence so
that it can have a rough idea about the path of the target. First, when the target enters
the circled region, it will be detected by sensors 2 and 5. Second, it will be detected
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by 4, 9, 8 and 10. Finally, it will be detected by 6. When the driver node processes

the received messages, it will be able to figure out the truck’s movement path.

4.8.3 Response Generation Method
Two kinds of response generation methods are supported by the architecture and
Concatenation flag in the setup packet is used to switch between modes.

4.8.3.1 Immediate Message Delivery
For time critical applications like a fire in the forest or a chemical attack in the war,
events should be delivered to driver nodes immediately. With concatenation flag

unset, sensor nodes forward their messages to their parent nodes without delaying.

4.8.3.2 Aggregated Message Delivery

In order to save energy, messages that are carried over the broadcast network are
concatenated at upper level nodes so that the number of transmitted packets is
reduced. Since each packet has a header to identify the responding node,

concatenation is more efficient in terms of number of bytes transmitted.

For example, each node which responds to a query message with one sub query will
send a response message with 37 bits of message header for identifying message
type, destination, region id and response count and 41 bits for response data,
resulting in 78 bits. When the node is configured with the concatenation mode, it will
put 4 messages with 41 bits of response data and a header to the packet instead of

transmitting 78 bit response data four times resulting in 55% gain.

Whether nodes concatenate responses or not is configured by the driver node during
setup. One drawback of concatenation is the latency for response messages. Each
node waits for timeout period to transmit local data to see if anyone else is also

transmitting data over itself so that it can concatenate with its own.

With concatenate flag set, sensors wait for a concat timeout interval to fill the packet
with the responses from other nodes. Equation 4.5 gives timeout for a node to relay
its message. A message can be transmitted prior to timeout if the packet is full at any
time. Concatenation timeout is proportional to the level of the node in the tree, node's
Neighbor Count (nc) and propagation time of the packet (Tyg).

T e = RGP.(fd —hc —1).+ Tpg *nc (4.5)

concat —
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Nodes in the lower levels of the tree wait less; whereas, nodes in the upper levels
wait more. Each node also keeps track of received setup packets from the
neighboring nodes which are correlated to the number of received unnecessary setup
and response messages. Since RF is a broadcast medium, each receiving node in the
transmission range will broadcast the packet again. Each setup packet receiving node
will wait for a fixed duration to keep track of the number of nodes in the area to use

as a feedback to make adjustments for concat timeout value.
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Figure 4.11 Response Packets in Detail

When concatenation timer expires, the node checks to see if there is any packet in the
received buffer and transmits it. As the responses will gradually grow towards the
sink, this metric considers that nodes at the higher levels of tree will wait more and

nodes at the lower parts of the tree will wait less.

Figure 4.11 shows a typical concatenation process in terms of packaging. As it can
be seen from, the architecture supports up to four messages that can be concatenated

when a single sub query is used.
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Table 4.6 Number of Sub queries vs. Concatenated Message Count

Number Of Subqueries | Concatenated Message Count
4 1
3 2
2 3
2 4

Three messages can be concatenated for two sub queries and two messages can be
concatenated for three and four sub queries. It should be noted that since not all
nodes can have the same abilities to respond to the sub queries, number of
concatenated responses might vary according to the length of the response messages

generated by nodes.

ProcessResponseMessage()
begin
TOS Msg msg
if (ReceiveMessage(&msg)) begin
if EnoughPlaceExistsInLocalResponseMessage()
CopyMessageTolocalResponse(msg)
else begin
CopyPartOfMessageUntilPacketIsFull(msg, local repsonse message)
TransmitMessage(local response message)
AllocateBuffer(&local response message)
CopyRemainingsOfMessage(msg,local response message)
end
if PacketFull(local response message)
TransmitMessage(local response message)
end

if (local response message ready) begin
if EnoughPlaceExistsInLocalResponseMessage()
AppendLocalResponseTolLocalResponseMessage()
else begin
TransmitMessage(local response message)
AllocateBuffer(&local response message)
RetryLocatingLocalResponse()
end
if PacketFull(local response message)
TransmitMessage(local response message)
end

if (Expired(Concatenation timer)) begin
if TherelsResponseMessageNotSent()
TransmitMessage(local response message)
end
end

Figure 4.12 Concatenation Algorithm

Concatenation algorithm is depicted in Figure 4.12. There are two sources of
messages that can be concatenated into the same buffer. One of these is local
response message which is generated by processing sub queries and another is
received messages from other nodes. If a node receives a response message, it checks
to see if there is space in concatenation buffer and appends the message to this area.

Otherwise, it copies the part of message that can fit into the concatenation buffer and
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transmits the concatenated buffer. Then, it allocates a new concatenation buffer and
copies the remaining fields of the message to this area.

Similar things are done in the case of response generation. If the processing of all sub
queries is completed, node appends its response message to concatenation buffer. If
there isn't enough space, it transmits the concatenated packet and retries appending to
a newly allocated buffer. After concatenation, if the buffer is full, it is also
transmitted to not delay packet delivery for the next packet reception of response

generation.

4.8.4 Response Delivery

Setup packets carry the query related parameters to the nodes and data packets are
generated as a response. Data packets might include sensing related data as well as
node related constants. The routing algorithm specifies two kinds of event delivery.
These are end-to-end reliable event delivery and best effort event delivery.

With best effort event delivery option is selected, responses from the sensor nodes
are assumed to be delivered to driver node without failure. Each node simply
forwards data packets to its parent node. Since sensor lifetimes can be quite varying,
topology failures may occur. In such environments, reliable event delivery can be
achieved by transmission control schemes but the cost of retransmissions makes
them unusable for sensor networks. In our architecture, end-to-end reliable event
delivery is achieved by a dynamic-path-switching algorithm which makes each event
data receiving node to take the responsibility of the delivery of the packet to its own
parent node using ack packets and timeouts. End-to-end transmission is achieved
between the last node receiving the event successfully on the return path and the sink

node; not with the ultimate event source and the sink.

62



5 SOFTWARE ARCHITECTURE

SQS query processing system has been implemented on TinyOS [31] operating
system for use in real sensor network scenarios. Therefore, the design of the software
has been affected by operating system and programming language limitations. In this
section, first the development tools and sensor hardware that were used are
introduced and then the components of the SQS query processing system are

described in detail in application framework subsection.

5.1 Development Platform

Mica2 and Mica2Dot hardware by Crossbow Inc [32], TinyOS operating system,
Network Embedded Systems C (NesC) [33] programming language and Tiny Micro
threading Operating System Simulator (TOSSIM) [34] simulator have been used
during development. NesC is a subset of C language and TinyOS is a power efficient
operating system with a small footprint. TOSSIM is a scalable simulator developed

on top of TinyOS by making abstraction at the hardware level to PC components.

5.1.1 Sensor Mote Platform

As stated before Smart Dust project aims to build 1 cubic millimeter sensor nodes
but currently these motes are readily available and research in this area is still in
progress. In order to speed up the project several prototype motes have been
designed by using commercial of the shelf (COTS) components in order to evaluate
the behavior of a final Smart Dust mote. COTS Motes is an alternative means to test
basic complete system behavior in a timely manner. COTS Motes has all the basic
functionality of Smart Dust, but the devices are built in a tenth of the time. Instead of
being a cubic millimeter in size, these devices are around a cubic inch in size (16,387
cubic millimeters). The COTS Mote serves as the current platform and runs a variety

of algorithms that Smart Dust will run.

Several unstable and stable prototypes that use different technologies such as optical
communication RF communication have been built. These prototypes were named as

COTS Dust. The details and evaluation of the prototypes are given in [35].
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The hardware designs in COTS Dust motes were followed by several other motes.
WeC mote, which was designed in 09/1999, is the smallest in size of the COTS Dust
motes and was designed with the original intent to test out algorithms based on

messaging for distributed sensor networks.

Following the introduction of the WeC Mote, the beginnings of an operating system,
TinyOS, for management of the different functions on board a Mote began
development by UCB. The introduction of TinyOS initially consisted of a
communication stack. Later Crossbow Inc [32] continued development of motes with
Rene, Mica, Mica2 and Mica2Dot hardware. The technical specifications of each

mote are given in Figure 5.1.

NMote Tyvpe Wel Renee Mica AMicaZ MicaZDot

Microcontroller

Type

CPU Clock (Mhe)
Program Memory (KB
Ram (KB)

LUARTs

SPl

12C

Nonvolatile storage
Chip
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Radio Communication
Radio
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Radio speed (kbps)

Transmit Power
Control
Encodin;

Figure 5.1 COTS Motes

Mica2 and Mica2Dot are currently the most advanced versions of the COTS motes.
The most important advantage of these motes is they have lower power consumption.
The radio interface has been replaced with a better chip that supports better noise
immunity, better range and different power down modes. The power breakdown of
the mote components can be found in mote user’s manual [36]. According to this
document when the system components are used effectively with an AA battery
system lifetime can be up to 17.35 months. The energy dissipation of certain

operations is as follows:

Table 5.1 The Energy Dissipation of Operations for Mica2

Operation Energy Dissipation
Flash memory write access 15mA
Radio transmit 12mA
Radio receive 8mA
CPU running in full duty cycle 8mA
Sensor board data acquisition 5mA
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The radio on the Mica2 and Mica2Dot can be adjusted for a range of output power
levels. When output power is set to maximum, a transmission range of 30 meters is

achieved.

Mica2 has an extensible interface for plugging different sensor boards using a 51 pin
connector. Several sensor boards [36] are available from Crossbow Inc. Available
sensing interfaces for the motes include light, temperature, acceleration,
magnetomer, microphone, tone detector and ultrasonic sensors. Acceleration sensor
is generally used to calculate the acceleration of a moving target in x and y
coordinates relative to the node. Magnetometer is used for detection of targets.
Different objects have different magnetic characteristics and when the read values
are combined with signal processing detection of a person is achievable in an area.
Ultrasonic sensor is a range detection sensor can get the position of an object relative

to sensor node up to 2.5 meters range with 6 cm accuracy.

Figure 5.2 Mote Programming Interface

Mica2 and Mica2Dot are programmed by using Mote Programming Interface which
is shown in Figure 5.2. Mote programming interface is also used to collect data from
the sensor network to the pc. This is achieved by plugging a mote to the sensor board
and instructing sensor to forward the received messages from the RF to the PC serial

port. This mote is usually named base station in applications.

51.2 TINYOS

Existing operating systems don’t meet requirements of Wireless Sensor Networks
since they were designed for more complex systems such personal computers. A
WSN operating system must be efficient in terms of memory, processor, and power
so that it meets strict application requirements. The extreme constraints of sensor
nodes make it impractical to use legacy systems. Two issues must be addressed by

the operating system: sensor nodes are concurrency intensive - several different
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flows of data must be kept moving simultaneously, and the system must provide
efficient modularity - hardware specific and application specific components must

snap together with little processing and storage overhead.

5.1.2.1 TinyOS Execution Model: Event Based Execution

TinyOS maintains a two-level scheduling structure as shown in Figure 5.3, so a small
amount of processing associated with hardware events can be performed
immediately while long running tasks are interrupted. The execution model is similar

to finite state machine models, but considerably more programmable.

Tasks

NN N

commands

I Interrupts

Hardware

Figure 5.3 TinyOS Execution Model

To provide the extreme levels of operating efficiency required in wireless sensor
networks, TinyOS uses event based execution. A thread based approach requires that
stack space be pre-allocated for each execution context. Additionally, the context
switch overhead of threaded systems is significantly higher than those of an event-

base system.

In TinyOS, a single execution context is shared between unrelated processing tasks.
When an event arrives, it brings the required execution context with it. When the
event processing is completed, it is returned back to the system. A key to limiting
power consumption is to identify when there is no useful work to be performed and
to enter an ultra-low power state. In TinyOS, all tasks associated with an event are
handled rapidly after each event is signaled. When an event and all tasks are fully
processed, unused CPU cycles are spent in the sleep state as opposed to actively
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looking for the next interesting event. Eliminating blocking and polling prevents
unnecessary CPU activity.

Figure 5.3 shows how TinyOS code execution model performs. In normal condition
CPU is in low power state and is awakened by a hardware interrupt which calls the
related event function. Event function triggers the related tasks in the system and
they are executed until completion. During this time if another event is received

TASKS are interrupted and events are serviced.

A limiting factor of TinyOS is that long-running calculations can disrupt the
execution of other time critical subsystems. Therefore, task based execution model is
employed with a task queue which is used to queue pending tasks. The important
factor is that programmers should employ state based programming for long
executing operations. So that during task switch other tasks pending in the queue can

be serviced.

The need for synchronization is also seen in sensor network applications but a
lightweight concurrency model is proposed for atomic operations instead of complex
spinning semaphores. In TinyOS, code that is executed inside of a task is guaranteed
to run to completion without being interrupted by other tasks. To guard tasks against
reentrant interrupt codes, atomic operations are introduced by NesC language which

disables interrupts to allow critical sections to be created.

5.1.2.2 TinyOS Component Model

Since storage area for code is limited, TinyOS includes a specially designed
component model targeting highly efficient modularity and easy composition. The
component model allows an application developer to be able to easily combine

independent components into an application specific configuration.

Generic Comm

CC1000RadioC

CC1000RadioControl

CC1000RadiolntM

| SpiByteFifo | | RandomLFSR | ‘ ADC

Figure 5.4 Component Graph of GenericComm
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In TinyOS, each module is defined by the set of commands and events that makes up
its interface. In turn, a complete system specification is a listing of the components to
include plus a specification for the interconnection between components. The
TinyOS component has four interrelated parts: a set of command handlers, a set of
event handlers, an encapsulated private data frame, and a bundle of simple tasks.
Tasks, commands, and event handlers execute in the context of the frame and operate
on its state. To facilitate modularity, each component also declares the commands it
uses and the events it signals. Event handlers are invoked to deal with hardware

events, either directly or indirectly.

g(addr,type,data)

init

power(mode)
msg_receive(type,data)
===

msg_send_done(status)
L= =

send_ms:

Internal

Send_msg_thread State

Messaging Component

-

init
power(mode)
tx_packet(buf)

tx_packet_done(result)
rx_packet_done(buf)

Figure 5.5 A sample component: Messaging Component.

Tasks perform the primary work in a TinyOS application. They are atomic with
respect to other tasks and run to completion, though they can be preempted by
events. Tasks can call lower level commands, signal higher level events, and
schedule other tasks within a component. The run-to-completion semantics of tasks
make it possible to allocate a single stack that is assigned to the currently executing
task. This is essential in memory constrained systems.

Messaging component is illustrated in Figure 5.5. Generally programming steps in
TinyOS is as follows. First, a programmer designs the component prior to coding and
inputs and outputs of a component and their logical relationships are specified.
Second, the description of the component is specified in configuration file and lastly
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implementation is done in module file with tasks. In Figure 5.5, a sample design is

given.

5.1.2.3 AM Communication Paradigm

Active Messages communication model is the primary building blocks for
networking in TinyOS. Active Messages (AM) is a simple, extensible paradigm for
message-based communication widely used in parallel and distributed computing
systems [37]. Each Active Message contains the name of an application-level handler
to be invoked on a target node upon arrival and a data payload to pass in as
arguments. The handler function serves the dual purpose of extracting the message
from the network and either integrating the data into the computation or sending a
response message. The network is modeled as a pipeline with minimal buffering for
messages. This eliminates many of the buffering difficulties faced by communication
schemes that use blocking protocols or special send/receive buffers. To prevent
network congestion and ensure adequate performance, message handlers must be

able to execute quickly and asynchronously.

Data

Dest
AM
Type
Group
Length
CRC

2byles | 1byte | 1byte 1 byte 29 bytes 2 bytes

Figure 5.6 TinyOS Packet Format

The event based handler invocation model allows application developers to avoid
busy-waiting for data to arrive and allows the system to overlap communication with
their activities such as interacting with sensors or executing other applications. It is

this event centric nature of Active Messages which makes it a natural fit for TinyOS.

TinyOS Packet format is given in Figure 5.6. Address of the destination is set in Dest
field and the application number that this message belongs to is set in AM type
section of the message. Sensor nodes can be communicating with multicast scheme;
therefore, group of the recipients of this message is set in Group field. Default group
ID is Ox7f and user data is put in Data section of the message and Length of the
message is set by the sender to the length of the data requested to be transmitted.
Underlying communication scheme computes two bytes Cyclic Redundancy Check

(CRC) and transmits the packet.
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Another issue fundamental to the TinyOS communication system is its storage
model. As data arrives over the radio, it must be stored into a memory buffer. The
active messages dispatch layer then delivers the buffer up to the applications. In
many cases, applications will wish to keep the message buffers that are delivered to
them. In the case of the multi-hop communication, applications would need to keep
the buffer long enough for it to be transmitted to the next node. To handle this,
TinyOS requires that each application return an unused message buffer to the radio
subsystem each time a message is delivered. The radio simply maintains one extra
buffer to receive the next message into. After reception the buffer is transferred up to
the application. Then a free buffer is handed back by the application component to

the radio system. This free buffer is then filled by the next message.

5.1.3 NesC

NesC is an extension to C [38] designed to embody the structuring concepts and
execution model of TinyOS [31]. NesC supports a programming model that
integrates reactivity to the environment, concurrency, and communication. By
performing whole-program optimizations and compile-time data race detection, nesC
simplifies application development, reduces code size, and eliminates many sources

of potential bugs.

Mote applications are deeply tied to hardware, and each mote runs a single
application at a time. This approach yields three important properties. First, all
resources are known statically. Second, rather than employing a general-purpose OS,
applications are built from a suite of reusable system components coupled with
application-specific code. Third, the hardware/software boundary varies depending
on the application and hardware platform; it is important to design for flexible
decomposition.

The basic concepts behind nesC are:

Separation of construction and composition: programs are built out of
components, which are assembled (“wired”) to form whole programs. Components
define two scopes, one for their specification (containing the names of their interface
instances) and one for their implementation. Components have internal concurrency
in the form of tasks. Threads of control may pass into a component through its

interfaces. These threads are rooted either in a task or a hardware interrupt.
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Specification of component behavior in terms of set of interfaces: Interfaces may
be provided or used by the component. The provided interfaces are intended to
represent the functionality that the component provides to its user; the used interfaces

represent the functionality the component needs to perform its job.

Interfaces are bidirectional: they specify a set of functions to be implemented by
the interface’s provider (commands) and a set to be implemented by the interface’s
user (events).This allows a single interface to represent a complex interaction
between components (e.g., Registration of interest in some event, followed by a
callback when that event happens). This is critical because all lengthy commands in
TinyOS (e.g. send packet) are non-blocking; their completion is signaled through an
event (send done). By specifying interfaces, a component cannot call the send
command unless it provides an implementation of the sendDone event. Typically
commands call downwards, i.e., from application components to those closer to the
hardware, while events call upwards. Certain primitive events are bound to hardware

interrupts.

Components are statically linked to each other via their interfaces: This
increases runtime efficiency, encourages robust design, and allows for better static
analysis of programs.

The concurrency model of nesC: It is based on run-to-completion tasks, and
interrupts handlers which may interrupt tasks and each other: The nesC compiler

signals the potential data races caused by the interrupt handlers.

Whole-program compilation: NesC is designed under the expectation that code
will be generated by whole-program compilers. This allows for better code
generation and analysis. An example of this is nesC’s compile-time data race

detector.

5.1.3.1 Component Specification

NesC applications are built by writing and assembling components. A component
provides and uses interfaces. These interfaces are the only point of access to the
component. An interface generally models some service and is specified by an

interface type.

71



configuration TimerC {

provides interface Timer[uint8_t id];
provides interface StdControl;

}

implementation {

module TimerM {

provides interface Timer[uint8_t id];
provides interface StdControl;
uses {

interface Leds;

interface Clock;

interface PowerManagement;

>
components TimerM, ClockC, NolLeds;
components HPLPowerManagementM; >

TimerM.Leds -> NolLeds;

TimerM.Clock => ClockC;
TimerM.PowerManagement ->HPLPowerManagementM;

StdControl = TimerM;
Timer = TimerM;

}

Figure 5.7 Timer Module Configuration

The configuration of Timer component is given in Figure 5.7 and logical relationship
between components are depicted in Figure 5.8.Configuration states that timer
component provides an array of Timer and a StdControl interface to the user while it
Clock ClockC

PowerManagement interface to HPLPowerManagementM component and Leds to

implements its interface by wiring it to component,

NoLeds interface. Leds, Clock and PowerManagement are used by this component;

whereas, Timer and StdControl are provided.

Clecls

Fowerhlanagement

Figure 5.8 Relationship diagram of Timer Module

Interfaces in nesC are bidirectional: they contain commands and events, both of
which are essentially functions. The providers or an interface implement the
commands, while the users’ implements the events. In Figure 5.9, the definition of
Timer interface and StdControl interface are given. StdControl interface is usually
used for initializing a component. A component user uses init function to initialize
the component and start function to start running or stop function to stop. If a

component requires extra services to be represented to user, it defines its own
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interface and provides it to user additionally. For instance, Timer component
provides StdControl interface for initializing and Timer interface for accessing timer
services. Start and stop commands are implemented in Timer module and fired event
is provided to user to run when a timer tick event occurs. Events are generally caused
by hardware interrupts; therefore, it’s crucial that user provided functions be

implemented in state machine transitions instead of a monolithic approach.

interface StdControl interface Timer

{ {
command result_t init(); command result_t start(char type, uint32_t interval);
command result_t start(); command result_t stop();
command result_t stop(); event result_t fired();

> ¥

Figure 5.9 Sample Interfaces

The separation of interface type definitions from their use in components promotes
the definition of standard interfaces, making components more reusable and flexible.
A component can provide and use the same interface type, or provide the same
interface multiple times. In these cases, the component must give each interface

instance a different name using the “as” notation.

5.1.3.2 Component Implementation

There are two types of components in nesC: modules and configurations. Modules
provide application code, implementing one or more interfaces. Configurations are
used to wire other components together, connecting interfaces used by components
to interfaces provided by others. Every nesC application is described by a top-level

configuration that wires together the components used.

The body of a module is written in C-like code, with straightforward extensions such
as call atomic keyword is used to run a command and signal keyword is used to

trigger and event function provided to user.

The explicit wiring of components via interfaces, combined with the removal of
function pointer types, makes the control-flow between components explicit. Module

variables are private. This makes it much easier to write correct components.

5.1.3.3 Concurrency and Atomicity
Concurrency is central to nesC components: events (and commands) may be signaled
directly or indirectly by an interrupt, which makes them asynchronous code. NesC

provides atomic tasks and events to handle these situations.
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Data races occur due to concurrent updates to shared state by unmasked interrupts
and tasks. For instance, a task accessing a local variable can be interrupted and
interrupt service routine or events can update the same variable. Because of
simplicity of the sensor network applications compile time concurrency checks are
applied by nesC. In order to prevent them, a compiler must understand the

concurrency model and determine the target of every update.

In TinyOS, code runs either asynchronously in response to an interrupt or in a
synchronously scheduled task. NesC categorizes code as asynchronous and
synchronous. Asynchronous codes are the ones that can be executed by an event and
synchronous codes are the ones that are executable by a task. Tasks run to
completion in TinyOS unless interrupted. Therefore, Synchronous Code is atomic

with respect to other Synchronous Code.

“Atomic” keyword with parenthesis is used to enclose code accessing shared variable
and during this time interrupts are disabled to prevent accessing of data at the same
time. If the user does not use atomic keyword with his code, compiler detects data

races by comparing the variables accessed by synchronous and asynchronous codes.

Module Test{
Implementation{
bool busy;
TOS_Msg m;

event result_t MsgSend.sendDone(TOS_MsgPtr msg,result_t success)

{

atomic

busy = FALSE;
¥
b

event result_t Timer.fired()
{
bool localBusy;
atomic {
localBusy = busy;
busy = TRUE;

>
if (YMlocalBusy)
{

bool ret;
ret = call MsgSend.send(TOS_UART_ADDR,sizeof(int),&m);
if (ret)

atomic{
busy = TRUE;
¥
¥

¥
return SUCCESS;

Figure 5.10 Atomic Usage
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In Figure 5.10, a code snippet of test application has been provided. This application
transmits data with each timer tick and checks to see if previous transmission is still
in progress. Busy local variable has been used to synchronize each function and

atomic keyword is used while accessing busy variable.

Currently, atomic is implemented by enabling and disabling interrupts which has a
very low overhead. However, leaving interrupts disabled for a long period delays
interrupt handling, which makes the system less responsive. To minimize this effect,
atomic statements are not allowed to call commands or signal events, either directly

or in a called function.

5.1.4 SerialForwarder

SerialForwarder application in Figure 5.11 is used to interact with simulation or real
motes. Mica2 and Mica2dot hardware is connected to a PC through serial port that’s
why application is named SerialForwarder. The application serves as a forwarder
between selectable input controls and it redirects read data to the clients connected to
a TCP/IP socket server. As a result, mote data is stored in a TCP server which can be
accessed by external application such as Java applications converted using MIG

application.

=ioix

Listening to serialfACOML:57600 [ Mah1|
Listening for client connections on port 9001 Server Port

rerial@CDMl:S?EDD: resynchronising

| b

a1

Mote Communications:

seriali@c ohd 1:57600

Stop Server
’Z Werbose Mode
Fclts Re=d: 0

Polts Writn: O
MNurn Clients: O

Help
Quit

Figure 5.11 SerialForwarder

TOSSIM Serial input control is used to retrieve data from simulation environment
instead of real motes. When the application is started in TOSSIM Snoop mode all
messages transmitted in the simulation environment is forwarded to SerialForwarder
regardless of the message destination. Serial Port is used to retrieve data from the

PC’s serial port.
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Currently, SerialForwarder application has been depreciated and renamed as old
SerialForwarder because of the lack of acknowledge messages in the data exchange
between TCP clients. Either new SerialForward application with framed and
acknowledged messages or old SerialForwarder with no acknowledgements and

frames can be used to retrieve data.

515 TOSSIM

TOSSIM is a discrete event simulator for TinyOS sensor networks. Instead of
compiling a TinyOS application for a mote, users can compile it into the TOSSIM
framework, which runs on a PC. This allows users to debug, test, and analyze
algorithms in a controlled and repeatable environment. As TOSSIM runs on a PC,

users can examine their TinyOS code using debuggers and other development tools.

The simulator engine provides a set of communication services for interacting with
external applications which is shown in Figure 5.12. These services allow programs
to connect to TOSSIM over a TCP socket to monitor or actuate a running simulation.
Details of the ADC and radio models, such as readings and loss rates, can be both
queried and set. Programs can also receive higher level information, such as packet

transmissions and receptions or application-level events.

Event Queue

Services

ooooooo

TOSSIM Anc | [cLock]

Implementjtj)_l;;{
=

Figure 5.12 TOSSIM Architecture

While TOSSIM can be used to understand the causes of behavior observed in the real
world, it does not capture all of them such as preemptive interrupts and harsh

conditions. The flow diagram of TOSSIM is given in Figure 5.13.This figure shows
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that tasks are run to completion in simulator as in real world motes but they are not
interrupted by events. After completion of tasks, event queue is checked to see if

there is any pending interrupt function in the queue and if there is one, it is executed.

Start

Pop a Task From
Queue

\
Execute Task Function

Task Queue Empty

True

False

True

Pop an Event From
Queue

\

Execute Event

Function

Figure 5.13 Flow Diagram of TOSSIM

Although TOSSIM can be used to simulate most of the real world events, it makes

several assumptions:

TOSSIM captures TinyOS’ behavior at a very low level: It simulates the network
at the bit level, simulates each individual ADC capture, and every interrupt in the

system.

Non-preemptive mode of operation: While TOSSIM precisely times interrupts
(allowing things like bit-level radio simulation), it does not model execution time.
From TOSSIM’s perspective, a piece of code runs instantaneously and can not be

interrupted.

Time is kept at a 4MHz granularity: (the CPU clock rate of the rene and mica
platforms). This also means that spin locks or task spin locks will never exit: as the
code runs instantaneously, the event that would allow the spin to stop will not occur

until the code completes.

TOSSIM tries to model communication behavior: TOSSIM itself does not model
the real world; however, it provides models to allow an external utility to simulate

real world conditions. TOSSIM does not model radio propagation; instead, it
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provides a radio abstraction of directed independent bit errors between two nodes.
An external program can provide a desired radio model and map it to these bit errors.
Having directed bit error rates means that asymmetric links can be easily modeled.
Independent bit errors mean longer packets have a higher probability of corruption,
and each packet’s loss probability is independent. Currently, TOSSIM simulates the
40Kbit Radio Frequency Model (RFM) mica networking stack, including the MAC,
encoding, timing, and synchronous acknowledgements. While Mica2 stack is better it

is not included in the simulation.

TOSSIM does not model power draw or energy consumption: However, it is very
simple to add annotations to components that consume power to provide information
on when their power states change (e.g., turned on or turned off). After a simulation
is run, a user can apply an energy or power model to these transitions, calculating
overall energy consumption. Because TOSSIM does not model CPU execution time,
it cannot easily provide accurate information for calculating CPU energy

consumption.

TOSSIM builds directly from TinyOS code: To simulate a protocol or system,
TinyOS implementation of it has to be written. This allows simulated code to be

executed on real motes as well

$ build/pc/main.exe -r=lossy 10

SIM: Initializing sockets

SIM: Created server socket listening on port 10584.

SIM: Created server socket listening on port 10585.

SIM: clientAcceptThread running.

SIM: commandReadThread running.

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

0 0:0:0.00000000: initial battery :3000.000000

SIM: spatial model initialized.

SIM: RFM model initialized at 40 kbit/sec.

Initializing lossy model from lossy.nss.

0 0:0:0.00000000: SIM RADIO: 2 -> 9 : 0.000010 neighbor_count = 1
0 0:0:0.00000000: SIM RADIO: 2 -> 10 : 0.000010 neighbor_count = 2
0 0:0:0.00000000: SIM RADIO: 6 -> 9 : 0.000010 neighbor_count = 1
0 0:0:0.00000000: SIM RADIO: 6 -> 10 : 0.000010 neighbor_count = 2
0 0:0:0.00000000: SIM RADIO: 7 -> 8 : 0.000010 neighbor_count = 1
0 0:0:0.00000000: SIM RADIO: 8 -> 7 : 0.000010 neighbor_count = 1
0 0:0:0.00000000: SIM RADIO: 9 -> 2 : 0.000010 neighbor_count = 1
0 0:0:0.00000000: SIM RADIO: 9 -> 6 : 0.000010 neighbor_count = 2
0 0:0:0.00000000: SIM RADIO: 9 -> 10 : 0.000010 neighbor_count =3
0 0:0:0.00000000: SIM RADIO: 10 -> 2 : 0.000010 neighbor_count = 1

Figure 5.14 A Sample Run of TOSSIM
78



A sample run snapshot of TOSSIM is given in Figure 5.14.Simulation starts with
socket initialization for external events and then battery levels of each mote is set.

Later, connectivity graph for the simulation is formed.

5.1.5.1 Network Monitoring and Packet Injection

To interact with a simulated network, SerialForwarder application has to be used. To
work with TOSSIM, SerialForwarder’s input source must be set appropriately.
TOSSIM provides two modes: communication through a serial port to mote 0 and

network snooping.

The serial port mode interacts with mote O over its serial port. Programs connecting
to SerialForwarder can read messages mote 0 sends to its serial port, and send
messages to mote O over its serial port. The snooping mode sits on top of the
TOSSIM network model. Programs connecting to SerialForwarder hear every radio
message sent in the network, and can inject radio messages to arrive (without error)
at any mote. Because this mode outputs every message sent, it does not consider loss;

programs connecting will hear packets that might not arrive successfully at any mote.

Message Interface Generator (MIG) is a tool that generates Java classes for TinyOS
packets which can also be used to interact with motes. The MIG tool parses C
structures in the application for TinyOS packets and builds a Java class with
accessors for each of the packet fields. The message classes can also unpack from

and pack to byte arrays.

5.1.5.2 Radio Models

TOSSIM simulates the TinyOS network at the bit level, using TinyOS component
implementations almost identical to the mica 40Kbit RFM-based stack. TOSSIM
provides two radio models: simple and lossy. The mica2 CC1000-based stack does

not currently have a simulation implementation.

In TOSSIM, a network signal is either a one or zero. All signals are of equal strength,
and collision is modeled as a logical or; there is no cancellation. This means that
distance does not affect signal strength; if mote B is very close to mote A, it cannot
cut through the signal from far-away mote C. This makes interference in TOSSIM

generally worse than expected real world behavior.
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The “simple” radio model places all nodes in a single cell. Every bit transmitted is
received without error. Although no bits are corrupted due to error, two motes can
transmit at the same time; every mote in the cell will hear the overlap of the signals,

which will almost certainly be a corrupted packet.

The simple model is useful for testing single-hop algorithms and TinyOS
components for correctness. Deterministic packet reception allows deterministic
results. The “lossy” radio model places the nodes in a directed graph. Each edge (a,
b) in the graph means a’s signal can be heard by b. Every edge has a value in the
range (0, 1), representing the probability a bit sent by a will be corrupted (flipped)
when b hears it. For example, a value of 0.01 means each bit transmitted has a 1%
chance of being flipped, while 1.0 means every bit will be flipped and 0.0 means bits
will be transmitted without error. Each bit is considered independently. However,
having 0 loss rate doesn’t mean that packets won’t get corrupted. Two nodes

transmitting at the same time cause each others data to be overrun although link is

°° ABO 4
> B:A:0 €

Figure 5.15 Lossy Model Configuration

lossless.

By making the graph directed, TOSSIM can model asymmetric links, which is
suggested by initial empirical studies as a common occurrence in sensor networks.
By specifying error at the bit level, TOSSIM can capture many causes of packet loss
and noise in a TinyOS network, including missed start symbols, data corruption, and
acknowledgement errors. The lossy model models interference and corruption, but it
does not model noise; if no mote transmits, every mote will hear a perfectly clear

channel.

5.1.5.3 ADC Models

ADC is used to access sensing interface and gather data. TOSSIM provides two
ADC models as random and generic to simulate data gathered from ADC. Whenever
any channel in the ADC is sampled in the random model, it returns a 10-bit random

value (the rene and mica ADCs are 10 bits).

The general model also provides random values by default, but has added
functionality. Just as external applications can actuate the lossy network model, they
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can also actuate the generic ADC model using the TOSSIM control channel, setting

the value for any ADC port on any mote.

5.15.4 TinyViz
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Figure 5.16 TinyViz

TinyViz as seen in Figure 5.16 is a Java visualization and actuation environment for
TOSSIM. TinyViz can be attached to a running simulation. This allows users to be
sure that TinyViz captures all of the events in a given simulation. TinyViz is not
actually a visualizer; instead, it is a framework in which plugins can provide desired
functionality. The TinyViz engine uses an event-driven model, which allows easy
mapping between TinyOS’s event-based execution and event-driven GUIs. By itself,
the application does very little; drop-in plugins provide user functionality. TinyViz
has an event bus, which reads events from a simulation and publishes them to all

active plugins.

Users can write new plugins, which TinyViz can dynamically load. A simple event
bus sits in the center of TinyViz; simulator messages sent to TinyViz appear as
events, which any plugin can respond to. For example, when a mote transmits a
packet in TOSSIM, the simulator sends a packet send message to TinyViz, which

generates a packet send event and broadcasts it on the event bus. A networking
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plugin can listen for packet send events and update TinyViz node state and draw an

animation of the communication.

5.1.5.5 Concurrency Model

TOSSIM captures the TinyOS event-driven concurrency model at interrupt and task
granularity. TOSSIM models each TinyOS interrupt as a simulation event. Each
event is associated with a specific mote. Simulator events run atomically with respect
to one another. Therefore, unlike on real hardware, interrupts cannot pre-empt one
another. After each simulator event executes, TOSSIM checks the task queue for any
pending tasks, and executes all of them in FIFO scheduling order. In TOSSIM,
interrupts do not pre-empt tasks. This method of task execution means that spinning
tasks (e.g., tasks that enqueue themselves in a spin-lock fashion) will cause TOSSIM
to execute that task indefinitely. Using tasks in this way is contrary to the event-
driven TinyOS programming model. Once a simulator event calls an interrupt

handler, the handler executes TinyOS code through commands and events.

5.2 Application Framework

SQS query processing system consists of several applications from the lowest tier to
the middleware. The aim of these tools is to bring sensor network capabilities to a
form that is easily monitored and controlled by the user. Overall view of application

framework is given in Figure 5.17.
The components of the application suite are:

SeMA Sensor Protocol: SeMA sensor protocol is the core facility of the system. It
provides necessary low level coding in NesC language on top of TinyOS to achieve
multi hop communication between the nodes, sensing interface access for data
gathering and parsing of network packets in order to disseminate user driven queries
and further process and reply to the requests. Details of query processing and

dissemination algorithms are given in Chapter 4 of the thesis.

Driver: Currently, driver which is to implement driver capability of the architecture
acts as an abstraction layer on top of TinyOS operating system so that any user can
retrieve data using TCP/IP sockets.

Querier: Querier application is used to inject user queries and retrieve the results.
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Osciloscope: Oscilloscope application is used to monitor the change characteristics

of sensor readings in time.

Database Server: Retrieved query results are stored in a database server as three

tables so that results can be further processed using data mining tools.

Oscilloscope Java

COpe MySQL Database Server
Application

Querier Application

Driver

SerialForwarder (Java
Application)

Simulation Real Motes

As Data As Data
Source Source
SeMA Sensor Protocol
= = TinyOS
E J

——Serial cable—

Figure 5.17 SQS Application Framework

A general usage scenario is as follows: User injects a query as “retrieve average daily
temperature after taking 1 sample at each hour for the next 7 days” using querier
application. Querier application converts user requested data to bit coded sensor
network packet format and sends the application to driver application. Driver
application encapsulates the received packet with an HDLC like framing protocol
with acknowledgements to achieve reliable packet delivery between the mote and PC
and sends the packet from the serial port using SerialForwarder application. The
mote connected to the programmer board and identified as 0, broadcasts the request
using RF interface and starts processing the request. Other motes in the network
receive query request from the RF interface and record ID of the received message as
parent ID and send their response to the mote with this ID every sampling period.
Messages received from the sensor network via serial port are encoded with framing
again. Driver application strips off the frames and makes necessary
acknowledgements and posts the received message to the querier application. Querier
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application displays the message in a listbox and it also posts the received results in
Oscilloscope application’s packet format to the oscilloscope application. User
monitors the result from the oscilloscope application for different hop counts of the

network.

5.2.1 SeMA Sensor Protocol Application

As most of the TinyOS applications SeMA sensor protocol application is created
with the design of the wiring of the component. Configuration file is used to wire
application requested interfaces to actual implementations. Since the software has
been developed for multiple platforms including Mica2, Mica2dot and PC (for
simulation) system dependent definitions are defined in “smtypes.h” header file.
Depending on the definitions component linkage is done in the configuration file
“smRouter.nc”. Current hardware configuration and definitions are listed in Figure
5.18. As new sensor hardware become available to the public, configuration of the

interfaces has to be done in “smtypes.h” file.

#if  defined PLATFORM_MICA2
#define HAVE_VOLTAGE_SENSOR
#define HAVE_PHOTO_SENSOR
#define HAVE_TEMP_SENSOR
#define HAVE_RADIO_CONTROL
1 #define HAVE_SYSTIME
#define HAVE_NETWORK_MON

[ e e e N

#endif

#if  defined PLATFORM_PC
#define HAVE_PHOTO_SENSOR
#define HAVE_TEMP_SENSOR
#define HAVA_NETWORK_MON
#define SEMATERMINATE
#define SEMA_TOSSIM_EXTENSIONS

A

#endif

#if  defined PLATFORM_MICA2DOT
#define HAVE_TEMP_SENSOR
#define HAVE_RADIO_CONTROL
1 #define HAVE_SYSTIME
#define HAVE_NETWORK_MON

N e

#endif

Figure 5.18 Hardware Dependent Definitions

Mica2 and Mica2dot hardware have voltage, temperature sensors and additionally
Mica2 has photo sensor. Radio control definition is used to control the transmission
range of the communication interface. Transmission range can be configured
dynamically during system runtime or initially. Currently, since transmission range
test have not been completed interfaces relating to hardware register access modules
are defined but not called in the code. SysTime definition is used to access modules

that allow system timer snapshots during runtime so that any time difference between
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two events can be calculated. However, Mica2 and Mica2dot hardware have 16 bit
CPU and SysTime interface provides user with times in terms of microseconds.
Therefore, maximum time difference that can measured using this interface is 65
milliseconds. As a result of our system’s greater time difference calculation
requirement SysTime interface is currently disabled. Network monitoring definition
Is required if the user wants to include logical topology monitoring of the network
during runtime using Monitoring Tool for Networked Sensors (MoTeS) [39]
application. Several modifications to the simulator have been made in order to
automate running of multiple tests. These modifications are enabled by including
HAVE_TOSSIM_EXTENSIONS in the hardware configuration. These
modifications have been made on TinyOS 1.1 release and require simulator code to
be replaced by modified version. If the code is to be used with newer versions of the
TinyOS these modifications have to be migrated to new simulator code without
breaking the structure of the new simulator. By commenting
HAVE_TOSSIM_EXTENSIONS, SeMA sensor network application can be
modified to work as an ordinary TinyOS application and it can be used with newer
versions without any customization as a result sacrificing capabilities of the TOSSIM
extensions. SEMATERMINATE definition is included in the hardware configuration
if the application is required to terminate after the query timeout timer is reached.
This timer is expected to reach on all nodes prior to termination so that any task that
is in the progress of working is not interrupted. If this definition is commented,
application will return to original state so that another query can be injected to the

network.

The component graph of the SeMA sensor protocol for Mica2 hardware is given in
Figure 5.19. The interfaces that are used by smRouterM module are wired to
implementations in “smRouter.nc” file and this graph shows the resulting wiring.
SmRouterM module’s photo, temp and voltage interfaces are wired to Photo, Voltage
and Temp modules so that whenever a getData command of ADC interface for photo
interface is executed from smRouterM module, actual Photo module will be
accessed. CC1000ControlM module is used changing the state of the radio interface
of the sensor node. LedsC module is accessed when smRouterM application tries to

activate green, red or yellow lamps on the mode.
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Figure 5.19 SeMA Querying Application Component Graph
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Send and Receive calls are wired to GenericComm. SmRouterM module uses two
different active message numbers for transmission and reception of the protocol
messages: messages with AM ID of 20 are used for exchanging protocol packets and
30 is used by MoTeS for network monitoring. Three different timers, sampling
period, query timeout and concatenation timer, in the system are wired to TimerC
module so that their fired function is called when the timers are started and a timeout

is occurred.

Besides from using existing modules provided by the operating system, three

different modules were defined and implemented. These modules are:

BitParserC: Bitparser is a component that provides get and set commands to the
users. The interface of BitParser is given in Figure 5.20. Get command is used to
retrieve a specified sizeof value from specified position of the user provided
buffer.Address of a 16 bit target variable is casted to 8 bit array pointer during
function call. The variable provided to the function is used as a two sized 8 bit array
in the module. Similarly, Set command is used to set a specified sizeof value at the

specified position to the user provided buffer.

interface BitParser {

command result_t Get(uint8_t *data,uint8_t pos,uint8_t size,uint8_t *target);

command result_t Set(uint8_t *data,uint8_t pos,uint8_t size,uint16_t value);

}
Figure 5.20 BitParser Interface

MsgForwardBufferC: MsgForwardBufferC module is used for two different
purposes by the application. First of all, it provides necessary abstraction between the
MAC layer and the application. All received messages are stored in the buffers
provided by this component instead of using MAC layer provided messages.
Experience with coding proved that some MAC layers in simulation (packet level)
does not handle buffer exchange correctly and results in improper corruption of the
packet by other nodes while it is expected to be delivered to a target node. Therefore,
all received buffers by receive functions are returned to MAC layer and their contens
are copied to new buffers. Although this operation is costly, it avoids MAC layer
problems from interfering the working of the protocol and also it provides
application to keep a message as long as it wants, since the application owns the

message.
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interface MsgForwardBuffer {
command result_t Empty();
command result_t Get(TOS_Msg **retmsg);
command result_t Put(TOS_Msg *msg);
command result_t GetEmptyBuffer(TOS_Msg **msg,ul6 t);
command result_t ReleaseEmptyBuffer(TOS_Msg *msg);
command result_t GetTime(TOS_Msg *msg,ul6 *t);

}
Figure 5.21 MsgForwardBuffer Interface

MsgForwardBufferC  module provides the interface given in Figure 5.21.
MsgForwardBufferC module contains two different data structures inside: empty

message buffer store and incoming message queue.

As stated before, all received packets are stored locally. Application uses
GetEmptyBuffer command to retrieve a buffer from the store and uses this message
in order to perform parsing and processing of the message later at a task. When the
application is done with the message, it uses ReleaseEmptyBuffer command to
release the message to the store. For example, when a message transmission is
requested by the application, application calls GetEmptyBuffer command to receive
an empty buffer and fills the packet and lastly calls send command of the Send
interface. The buffer is released when the application receives message transmission

complete or failure notification from the MAC layer.

Besides from functioning as a node that resolves a query, nodes also act as a gateway
between other nodes up to the sink node. Incoming message queue is used to store
the received messages that are to be transmitted after being processed by the node.
Calls to the Send command of the SendMsg interface for packet transmission can
sometimes return false. Current RF hardware and MAC layer does not allow packet
reception and transmission to occur at the same time. A message reception process
can be in due while a node tries to transmit a message. In this case, the message is
stored in the incoming message queue for retransmission at a later time and a task

named DeliverDataMessage is posted.
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ADCBufferC: All the sensing interfaces in the mote is connected to the ADC
channel. Whenever a mote requests information from a sensing interface, the channel
is kept busy. Similar to the message transmission case, sometimes calls to getData
command of the ADC interface can fail due to a data gathering process. ADCBuffer
Is used to store the request in a queue so that when dataReady notification is made by
the operating system, those data gathering requests waiting in the queue are activated
one at a time. The interface provided is given in Figure 5.22. ID is the number of the

sensing interface that is waiting in the queue to be queried.

interface ADCBuffer {

async command result_t Empty();
async command result_t Get(ul6 *id);
async command result_t Put(ul6 id);

}
Figure 5.22 ADCBuffer Interface

The system functions as follows: The module is initialized with execution of
RouterControl interface’s init function. In this function, local variables are set to
initial values by a call to Initalize_LocalParams function. Later all the components
that are wired to the actual modules are initialized by executing each interface’s init
function call. Afterwards, start command of RouterControl interface is executed by
the operating system and all sensing interfaces and communication interfaces are
started and the system is set to IDLE state. Similarly, stop command of
RouterControl interface is executed when sensor node decides to switch to power

consumption mode.

In IDLE case, the system is expecting a setup message to start a query processing on
the node. When a setup message is received, the system switches to ACTIVE state
and incoming message is decoded and query parameters are stored to subqueries
variable. Additionally, sample_count_store is used to make a backup of the actual
sample counts in the setup packet. During data collection sample count is
decremented and query processing is assumed to finish when sample count of all sub
queries reach to zero. If the query is continuous, sample counts are restored to

original values and another query processing is scheduled.

If the query includes a sensing related sub query, requests to sensing interface are
made by getData call. DataReady event function of each sensing interface is
executed when a data is fetched from the sensing interface. At each dataReady
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function, do_compilation function is executed to store the sampled value to relevant
positions of the compilation_store array. Compilation_store is used to store
intermediary data during local processing. Compilation functions are applied to

values stored in this array.

When a message is received from the radio interface, it is multiplexed to appropriate
function by checking the message type and each message type is processed at

relevant functions.

After completion of query processing, system initializes all local variables and
transitions to IDLE_STATE again.

5.2.2 Driver Application

Driver is a java application that extends TinyOS provided java classes to allow
parsing and creating of TinyOS messages that are coded according to AM message
format. This application has been initially created using MIG application for
listening to 29 bytes messages with AM ID of 20. This application also creates a
TCP socket server listening to port 9998. If a message is received from the sensor
network, SerialForwarder forwards the message to the Driver application and Driver
application’s MessageReceived function is executed. In this function, it’s checked if
there exists any application that is connected to the TCP port and received message is
sent to the listening application from this socket. To allow two way communication
between the driver application and the application that is connected to the socket, a
thread that tries to receive message from the socket is created during startup. When a
message is received from the socket, it is converted to TinyOS compatible message

and transmitted to SerialForwarder using TinyOS provided java classes.

Having driver application that acts as a proxy in software architecture might seem as
an overhead but it provides an abstraction from the TinyOS operating system. Any
changes in packet reception routines of TinyOS would not effect SQS applications

since inputs and outputs of SQS applications remain same.

5.2.3 Querier Application

Querier application is provided as an alternative means for retrieving XML service
request attributes from SeMA architecture. Since the connection between SeMA
architecture and sensor network has not been currently completed, this application is

used to inject query parameters defined in the setup message.
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User selects query related parameters from the GUI and injects the message using
Send Setup Message button in the application which is shown in Figure 5.23.
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Figure 5.23 Querier Application

When user issues send command, selected options are converted to SeMA bitwise
encoded packets and then querier application connects to the driver application using
TCP sockets and sends the message to the driver application in SeMA message
format which constitutes the 29 bytes data section of TinyOS message. The node
which is connected to the programmer board transmits setup message to the network
and responses are delivered to the querier application following SerialForwarder and
driver path. The results retrieved from the sensor network are decoded from the
packet and displayed in the listbox found in Received Packets sections of the GUI. In
order to keep the consistency, the message format defined in this application has to
be kept same with the TinyOS message format. Otherwise, messages received would

be decoded incorrectly.

5.2.4 Oscilloscope Application
Oscilloscope is an application that was developed by University of California,

Berkeley and it has been released to the public use by TinyOS operating system.
Oscilloscope application uses its own messaging mechanism to draw the change of
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the values over time for some duration. Experiences with TinyOS operating system
have proved that Oscilloscope application is a vital part of sensor network
application tool suite. In order to use this application’s capability, protocol
conversion has been done. Data retrieved from sensor network in SeMA encoded
packets are encapsulated in Oscilloscope application’s packet format and
oscilloscope application messages have been injected to java oscilloscope application
using TCP sockets. Conversion is done in querier application. Querier application
instantiates a TCP server that listens to socket 8000 and when oscilloscope
application is started it connects to the querier application and fetches the values

from querier and injects the message to Oscilloscope GUI classes’ methods.
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Figure 5.24 Oscilloscope Application

The GUI of oscilloscope application is shown in Figure 5.24, the plot includes
temperature change of the room monitored by sensor motes. Oscilloscope application
uses different channels for monitoring different data as in the case of a real
oscilloscope. Channel information has been converted from querier application in the
form of hop count so that data received from different hops can be monitored using

this application.

5.2.5 External Data Binding Mechanisms
Sensor network part of the architecture is as stated before independent of SeMA
architecture and can be used for other purposes. In order to achieve this flexibility,
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several proxy applications such as querier and driver have been written to abstract
details of each layer from interfering each other. However, having these applications
don’t make life still more comfortable. It is still required that received data messages
have to be processed to decode sensor data. To extend the usage of the architecture,
data received by querier application is dumped to three different tables in a database
so that any user who doesn’t have any idea about sensor networks can write software
that accesses database using Open Database Connectivity (ODBC) connection and
further use the results for his own use. Sensor network becomes a database

application for this user.

MySQL server has been chosen as a storage server and MySQL ODBC client has
been used to access MySQL server as an ordinary database server. Any database
server can be used provided that a Data Source Name (DSN) named sema is created
in ODBC data sources.

*
o - o
msg_type msg_id header_id
region_id single_msg_index_in_msg data_index_in_single_msg
sender_id data_rcount data_id

hop_count data
time_value

Figure 5.25 Database Design

Three tables named response_msg, response_single_msg and response_data were
created in the database. The relationship between these tables is given in Figure 5.25.
The protocol discussed in Chapter 4 for response delivery has been taken into
account for the design.After the database has been created, any ODBC aware
application can be used to access stored data. A sample snapshot of the data retrieved

from the sensor network is given in Figure 5.26.
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Figure 5.26 ODBC Access of Sensor Data from The Database
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6 EXPERIMENTS AND TESTING

Sensor node software has been developed using TinyOS operating system and NesC
programming language over MICA2 & MICA2Dot hardware [32]. TinyOS
simulator, TOSSIM has been used to test algorithms for scalability. As mentioned
before, TOSSIM is a discrete event simulator for TinyOS. It allows code written for
TinyOS to be used for simulation directly. Primary goal of TOSSIM simulator is to
emulate how TinyOS works on motes by using the same components of TinyOS and
changing behavior of system dependent code. For example TOSSIM interrupts do

not preempt each other and tasks are not interrupted by TOSSIM interrupts either.

TOSSIM has been used extensively to test the algorithms against certain inputs.
Debug messages have been used to trace how applications perform. Custom
developed applications such as message injector that use TOSSIM sockets to inject

setup messages and collect response messages have also been developed.

6.1 Packet Level Data Transmission Add-on for TOSSIM

TOSSIM uses ADC and RFM models to simulate different communication scenarios
and different ADC readings that can be achieved. Lossy model models node
connectivity with graph edges and loss rates for that link. A customized version of
lossy model has been used for our tests. According to [34], TOSSIM uses mica
communication stack at bit level simulation so that MAC protocols also effect how
messages are transmitted. However, our tests proved that simulation of radio
communication is unstable and results in higher rates of messages getting lost as well
as some messages not being delivered because of inaccurately designed TinyOS
Active Message Acknowledgement methodology [34]. Additionally, Mica2 stack
and other MAC protocols such as SMAC [40] are proved to be much stable than
MICA stack and we didn't want to base our responses to a specific kind of MAC
protocol since proposed architecture design is independent of the underlying MAC
Protocol. As a result, simulator's bit level communication stack has been replaced

with packet level communication stack by replacing the bindings of packet
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transmission component wiring in “RadioCrcPacket.nc” file to a newly developed

packet transmission module named as “RadioCRCPacketM.nc”.

configuration RadioCRCPacket
{
provides {
interface StdControl as Control;
interface BareSendMsg as Send;
interface ReceiveMsg as Receive;
}
}
implementation
{
components RadioCRCPacketM, InjectMsg;
Control=RadioCRCPacketM.Control;, «————— Control = MicaHighSpeedRadioM.Control
Send = RadioCRCPacketM.Send; 4~ Send = MicaHighSpeedRadioM.Send
Receive=RadioCRCPacketM.Receive; € Receive= CrcFilter.UpperReceive
Receive=InjectMsg.RadioReceiveMsg; Receive= InjectMsg.RadioReceiveMsg

}

Figure 6.1 Packet Level Transmission Configuration

TOSSIM simulates the behavior of Mica MAC stack with MicaHighSpeedRadio
module and in Figure 6.1 how packet transmission, reception and control interfaces
of the simulation are wired to the RadioCRCPacketM module’s interfaces is shown.
After applying this configuration, when a packet is received by simulation it’s fed to
RadioCRCPacketM’s receive function. Similarly each transmit request by the

application is fed to RadioCRCPacketM’s Send function.

P(NOBER) =1— P(BER) (6.1)

Packet delivery has been utilized with bit error rates from lossy model and
probabilistic collision using Equations 6.1, 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6. Since
Equation 6.2 contains packet length, packet loss probability is different for various

sizes of packets.

P(NOPER) = P(NOBER) P2cet-tength (6.2)

However, not all of the packet errors are caused by bit error rates. Collisions occur
when nodes try to send data to a clear channel at the same time. CSMA allows nodes
to detect if another node is already transmitting; however, proposed MAC protocols
do not include carrier detection. Therefore, two nodes can see the medium free and

transmit at the same time.
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P(Col) =Y Cy.a'.(1-a)™" (6.3)
i=2
According to Equation 6.3, collision probability is the sum of probability of two or

more nodes transmitting at the same time.

P(NoCol) =1- P(Col) (6.4)

Losses caused by the MAC layer have been modeled as in Equation 6.3. In the
equation, N is the number of neighboring nodes in the same transmission range with
transmitting node and o is the probability that at least two nodes will transmit a

packet at the same time after detecting the channel as clear.

P(tx _success) = P(NoBER).P(NoCol) (6.5)

According to these equations, for each packet to be transmitted, a packet error rate
(PER) is computed using given link bit error rates by lossy model input file as in
Figure 5.15. After that, the probability of packet’s being lost in collision is computed
using Equation 6.3.

P(PLP) =1— P(tx _success) (6.6)

6.2 Power Management Add-on for TOSSIM

Currently, there’s no power management component in TOSSIM. Therefore, a
simple battery simulation environment for the simulator has been established for
tests. After the simulation is started, each node is assigned a battery level parameter
as 3000 mAh which is taken from a standard battery. At each packet transmission
and reception, this value is decremented by transmission and reception powers taken
from [41] respectively. Sleep energy of 30uA taken from [42] is decremented
between each successive simulation events. During packet transmission, the battery
level of the node that data is to be transmitted to is checked and if it’s below 0, no

packet is transmitted to that node which means that node has run out of power.
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6.3 Performance and Functionality Tests

Prior to starting simulation with TOSSIM, we have created simulation parameters
offline and we inspected the results from TOSSIM after running the simulation. A

trace generator tool has been used to create events and position nodes in the terrain.

Table 6.1 Simulation Parameters

Environment Constants Values

Terrain Size 200m X 200m
Transmission Range 30m

Sensing Range 30m

Simulation Time 300 simulation seconds
a 0.05

Bit Error Rate (BER) 0.00001
Number Of Events Generated 80

Number Of Nodes Used 20,40,60,80,100
Number Of Generated Topologies per node number | 10

Number Of Tests repeated for each topology 30

Event Duration 10 - 15 Seconds

Parameters used in the simulation can be seen on Table 6.1. A terrain size of 200
meters X 200 meters and a transmission range and a sensing range of 30 meters have
been used. In order to use results from these output files, a new ADC model has also
been written. This ADC model reads the output files and fills the necessary data

structures in the simulator for node positions and lossy model parameters.

Event generator tool generates events in the terrain to last for some duration at
random positions and startup times. When the simulation is started with the SeMA
ADC model, simulator checks for each node if the event is in the sensing range of the
node and creates a simulation event to take place at event start time away from setup
message reception time and removes the event after event duration time has passed.

During this time, if a node tries to gather data from ADC it detects the event.

Used query parameters for simulation can be seen on Table 6.2. A continuous query
message with 300 seconds QTP, 5 seconds S has been used. Each node tries to read a
value lower than 65535 every 5 seconds and when new ADC model is used, it
returns 1 if it detects an event registered for the node; otherwise, it returns 65535. So

a message will be transmitted by the node if it detects an event.
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Table 6.2 Query Parameters Used For Simulation

Query Parameter Values
Flooding Degree 20

Region ID 1
Continuous Flag True

Query Timeout 300 seconds
Sampling Period 5 seconds
Subquery Count 1

Sensor Type Temperature
Sample Count 1
Compilation Function Lower
Compilation Data 65535

Tests for 20, 40, 60, 80 and 100 nodes have been made by injecting the same query
for all tests to see how well architecture performs. Additionally, 10 different
topologies, that is tested for different number of nodes, have been generated and
simulation tests for aggregate and immediate way of delivery for each topology and
node count have been run so that sensor node positions and terrain have been kept
same while inspecting the effects of aggregation over query processing. Moreover,
30 tests for each topology have been made and the average of the results has been
taken in order to reach to a result distribution and remove unnecessary effects over

total system behavior.
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Figure 6.2 Connectivity for Immediate Delivery

With this experiment setup, connectivity rate, region coverage, event delivery rate
and message delivery rate for different number of nodes and different delivery
mechanisms have been measured. Node connectivity distribution can be seen in

Figure 6.2 for immediate and aggregate event delivery. Since connectivity is a
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function of the topology and setup message distribution connectivity results have

been similar for aggregate and immediate event delivery.

Connectivity Ratio is the ratio of the number of nodes joining query processing to the
total number of nodes in the terrain. From Figure 6.2 it can be seen that higher
number of nodes result in higher rates of connectivity in both graphs since the node
density in each region becomes higher as node count increases, the number of nodes
receiving setup packet also increase. For some test topologies connectivity ratio
seems to decrease while increasing node count for some time and then a tremendous
increase in connectivity is established. This is due to the far node placement in the
terrain. As node number in the terrain increases, nodes will be able send packets to
each other and from some point all of the nodes will be accessed. This problem is

named as network partitioning in the literature.
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Figure 6.3 Immediate Event Delivery

Event Delivery Ratio is the ratio of number of events delivered to monitoring
application to total number of events registered for all nodes including nodes that are
not connected in the terrain to be detected. If the links were lossless and all nodes in
the terrain were connected to each other, event delivery ratio would be expected to be
100%.
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Figure 6.4 Event Delivery for Aggregate Event Delivery

It can be seen from Figure 6.3 and Figure 6.4 that as the number of nodes increase,
the number of events delivered to root node increases as well. Thus, more nodes will
be connected and received events will increase as well. In the case of lower node
density, events will be registered for nodes to be detected but as some nodes might
not receive setup message in the case of a far distribution between the nodes. As a
result, some of the events would be missed. Similar results have been achieved for
both aggregate and immediate event delivery. Nevertheless, because of the reason
that in aggregate event delivery nodes carry one message to deliver more than one
event message, when a message is lost in aggregated event delivery more events
won’t be able to be delivered when classified with immediate delivery. That’s why;

differences between these two graphs exist.
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Figure 6.5 Message Delivery Ratio for Immediate Delivery
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Message Delivery Ratio is the ratio of messages delivered to the root to the total
number of events detected. If immediate mode of delivery is selected and the links
are lossless, Message Delivery Ratio will be expected to be 1.1t can be inferred from
Figure 6.5 that as the number of nodes increase, the number of messages successfully
delivered decrease. Since node density increase with increasing node number, the
probability of messages not being delivered will increase. Figure 6.5 shows the effect
of packet losses in the simulation. Packet Loss Probability (PLP) of 0.10 has been

experienced with 100 nodes during simulation.
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Figure 6.6 Message Delivery Ratio for Aggregate Message Delivery

When Figure 6.6 is inspected, Message Delivery Ratio seems to be quite low.
However, lower message delivery ratio means lower number of messages being
transmitted in the terrain to detect the events. Since response messages are
concatenated, one message carries at a maximum of four response messages.
Therefore, event delivery rates of 80% has been achieved with 100 nodes by only
transmitting 20% of total messages while similar results with immediate delivery can

only be achieved with transmitting 78% of all messages.

Figure 6.6 also shows the change trend of message delivery versus node count. For
aggregated messages as the number of nodes increases it eventually reaches to 0.2
message delivery since in that case all nodes that want to transmit message can find a
neighboring node’s message to aggregate. This indicates that concatenation is

applicable to dense sensor networks.
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6.4 Timing Tests

Another set of experiments have been carried out using simulator to inspect the
message delivery characteristics of sensor nodes. Simulation parameters that were
used are shown in Table 6.3. A continuous query with QTP 60 seconds and S 5
seconds has been used for temperature sensor to collect data reading every 5 seconds

without applying any compilation functions.

Table 6.3 Timing Test Simulation Parameters

Query Parameter Values
Region ID 1
Continuous Flag True

Query Timeout 60 seconds
Sampling Period 5 seconds
Subquery Count 1

Sensor Type Temperature
Sample Count 1
Compilation Function 0 (N/A)

As a result, 12 messages per node are expected to reach driver node when immediate
message delivery is used. Flooding degree (fd) parameter has been varied between 1
and 10 during this experiment. Variation of fd results in different number of nodes to
be connected. It is to be analyzed that with which fd parameter can nodes cover the
region and how long driver node would wait incase it uses aggregate message

delivery.

In this experiment, a static sensor configuration for node positions which was
generated by topology generator tool has been used. Additionally, lossy RFM model
has been used to simulate link losses with previously described PLP calculation
formulas. SeMA ADC model has been left out for this experiment and standard ADC
model that generates random number is used for the reason that we’re not interested
in any events that is to be detected. A terrain size of 200m x200m was used for
simulation with 100 nodes, 30m transmission range and 30m sensing range. The

node distribution was randomly generated and it is shown in Figure 6.7.
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Figure 6.7 Timing Test Topology

In this experiment, previously discussed timing mechanism has been used with a
slight change. When each node receives setup message, it sets up a counter which is
incremented by each S timer tick and this counter value is used when a message is
allocated and to be transmitted to find time difference. Therefore, the precision of the
elapsed time depends on the time unit of the S timer. More precise timers could be
employed, but when sampling time is set to seconds or minutes, calculated time in
the mote remains negligible among others. In fact, it has been measured that the
average time for a mote to transmit a message after using it is in terms of
microseconds. Data throughput of 12kbps has been used with message length to

calculate the message propagation time and it has been added to each transmitted

message.

Figure 6.8
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fd has been varied between 1 and 10 and it has been incremented by one after
making simulation tests for 20 times at each fd value. During the simulation, elapsed
time of each received message at root node (node 0) has been used to calculate
average message reception time and average of each calculated average message

reception time after 20 tests has been used for plots in Figure 6.8 and Figure 6.9.

It can be seen in Figure 6.8 that when aggregate mode of message delivery is used
the message reception time increases while message reception time for immediate
message delivery remains nearly same. Delayed message reception is caused by
concatenation timer that is set at each node. According to Equation 4.5 when the
flooding degree parameter increases the time a node waits for other nodes’ messages
to transmit its own message increases. However, as fd parameter increases the area
coverage increases. Therefore, the time it takes a message to be filled decreases. It is
the reason why the curve advances with a more slope than a directional relationship
with flooding degree.

Flooding Degree vs Message Count
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Figure 6.9 Flooding Degree vs. Message Count

Figure 6.9 illustrates that as fd increases the number of received message increases as
well, this is because of the fact that the number of nodes joining query processing
increases. However, there is a tremendous difference between aggregate and
immediate mode of message delivery. As there is 100 nodes in the terrain and it’s
expected that each node send 12 message per simulation it can be seen that with fd of
9 whole area is covered since it no longer increases and message reception rate is

very close to 1200. The difference between these values is caused by MAC layer
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collisions and link layer losses. As in the previous experiment, a message delivery
proportion of 1/4 has been achieved with this test as well.

6.5 Data Traffic Analysis

Local processing is one of the key features of SQS query processing system. Use of
SC allows nodes to perform local data compilation prior to transmission.
Transmission is the most costly operation in sensor networks and by the use of
distributed local data processing on every node tremendous message count decrease

is achieved.

In order to see the effects of local processing prior to data transmission simple
mathematical equations applying to general in-network processing communication
schemes is used to find difference. In order to generalize the mathematical approach,
it is assumed that every node transmits a data message and a negotiation message to
elect cluster leaders or parent node on the tree. The worst and best cases are handled
separately. The best case is that every node is connected to a central base station and
each transmitted message is converted to a total of one processed message according
to in-network processing. The worst case is that every node is connected to exactly

one node creating a chain with maximum hop count and transmission count to drain

Best Case Worst Case
Figure 6.10 The Best and Worst Cases

energy. These cases are seen in Figure 6.10.

Let N be the total number of nodes in a terrain, S be the sampling period for an in-
network processing scheme, QTP be the total time this query is expected to run and
SC be the sample count of the SQS query system. Every node relays a message every
QTP/S or QCycle time. If the message came in a way to achieve aggregation and
compacting the received whole packet, best case situation occurs and node returns

the minimum number of messages. If no messages have been received to calculate
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aggregated result then the maximum result is reached with the worst case. As a result
total number of messages transmitted in a network would be in the range as shown in

equation 6.7.

(% +1).N <message_ count < (N + %w)

(6.7)

If local processing is employed in this system, instead of transmitting message every
QTP/S each node will collect SC times data from the ADC and apply aggregation
function prior to transmission and relay only one message per node. If each parent
node or cluster head also applies aggregation functions, the number of messages in
the network will decrease tremendously. SC can be chosen by the user, or can be
varied dynamically or can be a constant. For example if a user requested message
every 1 second, SC can be chosen 10 and the result will be delivered to sink node at

the 10" second.

QTP N.(N +1)
ssc’ 2

(6.8)

QTP

———+1).N <message__count < (N +
(s.sc ) ge_ ( )
If SC is instrumented into the network, message count in the network will change as
in equation 6.8. This equation states that if RGP (QTP/S) remains big enough when
compared with N then local aggregation will decrease the maximum and minimum

number of messages by a multiple of SC.

The same topology in Figure 6.7 and simulation environment used in timing tests
have been used for data traffic analysis of TinyDB query processing system and SQS
system with immediate and aggregate delivery. Query parameters used in the
simulation are in shown in Table 6.4 and the connectivity ratios of the nodes for

different number of nodes are given in Table 6.5.

Table 6.4 Local Processing Test Query Parameters

Query Parameters Values

Flooding Degree 20

Query Type Continuous
Sampling Period 1 Seconds

Sample Count 1,5

Sensor Type Temperature sensor
Compilation Function Average
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Four different cases have been created. The aim of each of these cases is to compare
the effect of the usage of different processing techniques to the network utilization.
The terrain has been queried for 30 seconds to retrieve the average temperature in all
of the cases. The results are shown in Figure 6.12. The first case labeled as “SQS
Immediate Delivery SC=1" in the graph tries to collect average temperature every
second using SQS. Since SQS doesn’t perform in-network processing this query is
typically equal to “retrieve temperature every second”. The second case, labeled as
“SQS Immediate Delivery SC=5" performs local processing. The third case, labeled
as “TinyDB in-network processing” collects data from sensor nodes every 1 second
and results are processed using in-network processing. The last case, labeled as "SQS
aggregate delivery SC=5" applies concatenation to resulting packets to further

decrease the number of transmitted messages.

Table 6.5 Connectivity Ratio for Data Traffic Simulation

Node Count Connectivity Ratio
30 0.2
50 0.56
70 1
100 1

Network utilization of the first case is the worst/highest as expected since no
processing is done to the collected messages. Every node relays 30 messages during
this time and as a result of multi hop communication messages are retransmitted to
deliver each packet to the root node. Therefore, greater number of messages

transmitted by each node results in more retransmission and worse utilization.
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Figure 6.11 Logical Topology for Data Traffic Simulation

To see the effect of local processing SQS system has been run in simulation with a
SC of 5 so that a message is generated every 5 seconds and the average of
temperature is calculated during this time for 5 samples. Simulation has been
terminated after 30 seconds again. Theoretically, 6 messages per node are expected
from SQS system if all of the links are lossless and no hidden terminal problem or
other MAC layer problem is encountered. However for 50 nodes with the logical
graph in Figure 6.11, 153 messages have been delivered to the root node instead of
168 messages resulting in 10% loss by application of Equation 6.6 to the transmitted
messages. As a result of multi hop communication, total number of messages

transmitted in the network is 1035.

TinyDB has been run on simulation environment with an SQL expression of "select
avg(temp) epoch duration 1024 " to collect temperature values from nodes every
second and simulation has been terminated after 30th message so that simulation
time is limited by 30 seconds. TinyDB nodes transmit extra control messages to each
other to elect processing leaders and data messages transmitted by the neighbors are
processed using in-network aggregation and one message that contains processed
result is relayed instead of transmitting each message which is the first case. The
ratio of control messages to the transmitted data message has been 0.05% for 100

nodes. Therefore, in order to compare the results with SQS which does not contain
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control messages, TinyDB results exclude the number of control messages which is
negligible compared to the total number of data messages.
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Figure 6.12 Data Traffic Analysis

The last case uses in-network message concatenation in addition to local processing
wherever possible to decrease the number of total messages and transmit each packet

at the full packet length.

When Figure 6.12 is inspected, it can be seen that first case performs worst and has
message counts in the magnitudes of 10000. The difference between second
case(local processing only) and first case, shows the effect of local processing to
straight forward data transmission which is slightly bigger than a multiple of 5 as
expected by the ratio of SC=1 to SC=5 and from the equations in evaluation section.
The performance of in-network processing scheme of TinyDB (case 3) and local
processing is competing in general. TinyDB performs better up to node count of 70,
later on local processing becomes first. The forth case, SQS concatenation of locally
processed messages performs best according to the simulation results. Since SQS
concatenation can wrap up to four messages into one message, 4 times better results

are achieved when compared to SQS locally processed simulation and TinyDB.

Simulation results prove that local processing is a critical design issue for sensor
network databases since it can compete with in-network processing schemes.
Generally, SC is dependent on the user's data request interval. Therefore, provided
that user can specify data acquisition interval and duration, local processing schemes

must be incorporated into query processing systems. It has been also seen that in-
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network processing contributes well to the energy consumption. Consequently, a
scalable query processing system for wireless micro sensors is expected to integrate
in-network processing, local data processing and message concatenation data

processing techniques.
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7 CONCLUSION

In this thesis, a scalable system for topology construction and query processing
mechanism for data collection among tiny sensors have been presented. The overall
model is a three tier architecture constructed to process a query devised in an Internet
application down at a group of sensors in the target domain. A MANET is assumed
to carry XML formed queries and data between the end-user application and a group
of sensor drivers. Each driver establishes a network for query processing on its
dynamically associated sensors. The parameter driven scalable structure of the
proposed model makes it usable for querying in general purpose environmental
monitoring applications. Solutions for a number of problems are proposed: topology
construction via query dissemination, response aggregation for energy optimization
via in-network buffering and message concatenation, employing of local processing
algorithms for distributed data processing prior to transmission and handling

timeouts efficiently.

TinyDB, Cougar and Acquire use in network processing to decrease the number of
messages. TinyDB inspects response characteristics of aggregation operators such as
average, sum and count and defines methods to carry intermediary results. Acquire
uses active queries to resolve queries partially at each step and each sensor node
functions as a cluster head to resolve part of the query from a transmission diameter.
Similarly, Cougar resolves user queries by generating query plans and assigning
some nodes to be cluster heads to resolve part of the queries. SQS also make use of
limited sensor processing power but instead of applying aggregation functions at the
reception of messages that contain raw sensor readings on the intermediary nodes,
SQS prefers taking a user defined sample count times sensor reading and apply user
selected compilation function to the result and relay resulting data to sensor node’s
one hop away parent. Packet transmission is the most energy consuming operation
and SQS tries to limit this operation. This kind of local processing has been named
by TinyDB as temporal queries and is partially supported in two steps. First, TinyDB
makes use of the flash memory to store sensor readings by issuing a sensor query to

ask sensor nodes to put results into tables in the flash memory and then with a second
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query sensor results are queried from these tables. This two step operation that
requires user interaction puts unnecessary delay to user requested data. Additionally,
usage of flash memory is also as energy consuming as packet transmission and is not
desirable to use. This is the reason why flash memory logging is disabled by default
in TinyDB. Packet overhead is also reduced in SQS by delaying route maintenance
until data delivery, whereas in TinyDB, root node periodically announces itself in
control packets so that sensors can update their parents and maintain the routes
towards the root. For periodic queries, top-down tree maintenance with control
packets can be justified whereas for queries returning rare events such as “return
sensor readings if temperature >50°C for the next one hour”, overwhelming control
packet processing may reduce the overall network lifetime as this query may never
generate data traffic at all. Additionally, SQS returns timing information in each data
packet to be used to predict events in relation to the depth of the return path so that
nodes are not required to be time synchronized with each other which cause extra

overhead.

There are also some differences in architectural assumptions. The upper tier of
SeMA architecture supports XML format for service definition. Thus, underlying
sensor network infrastructure can easily be made transparent to web-based

monitoring applications conforming to XML standards.

SQS has been implemented on mica2 and mica2dot hardware running TinyOS
operating system to determine the limitations and performance characteristics of the
protocols. The architecture is analyzed for response generation characteristics of
different query types. With the proposed energy saving optimization methods, it has
been observed that the architecture is flexible enough to handle diverse
environmental monitoring applications with different requirements as well as
network monitoring for administrative purposes. As the protocols are implemented in
TinyOS active messages payload, packets sizes are limited with 29 bytes. A number
of limitations exist such as; maximum of four sub queries are supported because of
packet size of TinyOS Active Message payload size. Maximum of four response
packets can be concatenated again because of packet size limitations. Although a
wide range of compilation functions are supported, they are currently statically built

into the system software. Additionally, as Sampling Period parameter is globally set
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for all sub queries in the current implementation, this can also be considered as a

limitation.
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APPENDIX A. EMSTAR

Increasing research attention has been directed towards wireless sensor networks. As
the community moved into more complex design efforts a number of important
software design issues have arisen. Therefore, the need for good quality simulators
has become important. Simulation of wireless sensor networks is a difficult task to
achieve since modeling wireless communication channel and sensing interfaces is
very difficult. Another problem is with the software design: in order to save energy
cross layer protocols are becoming more obvious today and the interactions between
the layers can cause unpredicted problems in the real life. EmStar [43] is a Linux
based software framework developed by University of California, Los Angeles.
EmStar’s novel execution environment encompasses pure simulation, true in-situ
deployment, and hybrid mode that combines simulation with real wireless
communication and sensors situated in the environment. Each of these modes run the
same code and use the same configuration files, allowing developers to seamlessly
iterate between the convenience of simulation and the reality afforded by physically

situated devices.

EmStar is an attempt to balance the usefulness of a simulator with the need to write
software that works in reality. EmStar allows developers get the basics of an
algorithm working in a controlled environment (simulation); then understand both

the effects of the real environment via the ceiling array and portable arrays.
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Figure A.1 EmStar Software Stack

In a real deployment, autonomous and untethered nodes are deployed in a real
environment, running a real application. Each node has a low power radio and
sensors, and runs an EmStar software stack. EmStar software stack includes device
drivers that provide interfaces to real physical channels such as network and sensing
interface. In Figure A.1, the architecture of a simple base station with EmStar
software stack is given. PC runs EmStar server side tools and user application and
sensor device runs EmStar sensor software stack. Drivers provide the connection

between the application and sensor device.
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Figure A.2 EmStar Simulator Architecture

In the simulation mode, the architecture of the software stack changes at the driver
level as seen in Figure A.2. Instead of communicating with real hardware, simulated
radio and sensor drivers act as if the application has received response from real

hardware. Each instance of the code runs a different process in the memory and by
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using RPC mechanisms between processes drivers are emulated. The main advantage
of the simulator is that nodes running simulation can easily log distributed events in
their global temporal order and pc side tools such as debuggers, memory check tools

can be used to debug simulations.

The ceiling array feature allows simulations to be done using real hardware. All the
instances of the node stack are run centrally. However, the channel simulator module
is not used; instead, each simulated node is mapped to one of the motes connected to
the server. When a node sends a packet, it is transmitted and received by real motes,
through the real channel. As a result, the environment causes real distortion and

multipath fading effects to the simulation environment.

Having the ability to communicate with real sensing interfaces and radio devices, the
sensor inputs can be recorded and later these recorded time series are played back in
real time to a simulation environment. EmStar provides a hybrid environment for
simulation and is an essential tool to be used for complex environments. Interactions
between simulated nodes and real nodes are possible and each simulated node can
run different application. Ceiling array provides the adverse effects of real life to the
simulation. Consequently, most of the problems can be solved by using this

environment.
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APPENDIX B. IN NETWORK PROGRAMMING

Xnp [49] is a Crossbow implemented network programming toolkit included in
TinyOS. Network programming is to load and transfer the program code using
wireless communication rather than direct communication to PC host. Several
approaches to in-network programming exist. Although XNP is a limited version of
in-network programming, it was the first to achieve this. Trickle [48] is an enhanced
version of XNP that provides scalability and it focuses on multi hop reliable program

code distribution.

 Mote

Program

EEPROM Memory

Program

Base 's_t:'t‘if:_lc= PC

Figure B.1 Network Programming

Network programming works mainly in two stages. First the program is stored
outside the program memory through radio packets. Second the downloaded code is

transferred to the program memory and the mote reboots with the new code.

Network programming consists of mote modules and a java program on PC host.
Between a mote and PC, messages of reserved message ID (47) are transferred. The

format of the message is shown in Figure B.2.

Mote Radio PC —
=

0:1 2 3 4 5 6 7:8 9:10 11:end
[ Dest [ AmiD| GiD | Len [ cmp | suBcwp [ P | cip | Data

AMID: set to #47.

— CMD: type of command (e.g., download, query and etc).
—  PID: Checksum for program code. Used for validation
CID: Sequence number for capsule

Figure B.2 Xnp Network Programming Protocol
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Network programming starts with download start message. After sending start of
download message a couple of times, PC side program sends each line of program as
a capsule. Sensor node receives these capsules and stores them in EEPROM. Once
transmission of capsules finishes, PC side application sends download terminate
message to notify the end of download. Then, the mote searches any missing capsule
in its EEPROM and asks for retransmission of it to PC side. This operation continues
until there aren’t any missing capsules left. After download of missing capsules are
completed, mote transfers the image to its program memory and restarts with new

application.
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