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Jury Members : Assoc. Prof. Dr. Şima Etaner-Uyar ..............................
Istanbul Technical University

Prof. Dr. Yücel Saygın ..............................
Sabancı University

Asst. Prof. Dr. Yusuf Yaslan ..............................
Istanbul Technical University

Assoc. Prof. Dr Songül Albayrak ..............................
Yıldız Technical University

Date of Submission : 30 September 2016
Date of Defense : 03 November 2016

v



vi



To my mother,

vii



viii



FOREWORD

First of all, I would like to express my sincere appreciation to my advisor, Assoc. Prof.
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COMMUNITY EVENT PREDICTION IN EVOLVING SOCIAL NETWORKS

SUMMARY

The last decade has witnessed the dramatically quick and explosive growth of
information available over the Web and Internet. Social networks have become very
popular due to increasing proliferation of Internet enabled devices such as personal
computers, mobile phones and other recent hardware innovations. Social networking
sites enable users to share ideas, post updates and comments, to follow breaking news
while keeping up with friends or colleagues. Rapid growth of online social networks
has led to a tremendous explosion of network centric data in a wide variety of scenarios.
Data from many types of social networks is a graph, where nodes represent individuals
and edges represent the relationship and interactions among individuals. In such social
networks, communities are constituted as a result of establishing relationships and
interactions with each other. Although no single definition has been agreed upon,
the most common definition of community is: a collection of nodes who are more
densely connected to each other than with the rest of the network. Discovery of
communities consists in characterizing the structure of a network at the mesoscopic
level, i.e. neither the point of view of a single node or edge (microscopic level) nor
the whole graph structure (macroscopic level), but rather an intermediary structure,
namely community. Inherently, as time passes, community members interact with each
other, but they also interact with others outside the community, resulting in a dynamic
or temporal behavior. As a result, communities may stay stable just over a period of
time, display a periodic pattern, change member composition abruptly, and perform
many other evolutionary events. This phenomenon attracts researchers to study how
connections between individuals are established and how they evolve over time.

Capturing the community dynamics and predicting their evolution has been an
important subject in Social Network Analysis (SNA). Quantifying community
evolution is crucial to identify major changes in the internal organization of the
network. Analyzing the evolution of communities over time provides insights in
many application domains such as sociology, criminology, advertising and marketing,
information diffusion, recommender systems, etc. Latent trends of members’ behavior
and adoption can be exposed by understanding which communities are growing,
shrinking or undergo other events. For instance in marketing strategy, performing the
marketing actions on communities and tracking the results of those actions over time
is necessary to extract knowledge that can be used to support the redesign of marketing
promotions. The user comments and friendship ties within a social networking site can
be used to follow emergence and development of new ideas and political views.

Common approaches to tracking the evolution of communities have devised on an
event framework that defines a specific behavior of a community like growth, merge
and disappear. Many of them propose a two-step event based model to explore
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community evolution which firstly detect communities on each snapshot graph and
secondly construct relationships between partitions at successive snapshots defining
critical events and predicting events by use of community features as attributes.
These approaches need community extraction and computing the whole community
features of each snapshot including the snapshot which its future to be predicted.
Moreover, recent studies predict community evolution by considering the whole
historical information. However, such an approach may fail to provide accurate results
on current evolution since it considers all the historical data and treat all nodes and
links equally, even if they only appear at the early stages of the network life.

In the thesis, evolutionary dynamics of the communities has been studied and an event
based approach proposed to predict future events of the communities. The dynamic
network is modeled by a series of static snapshots and each snapshot corresponds
to a time interval constituted of the interactions during/up to that specific interval.
Communities in each snapshot are mined and communities’ structural and temporal
features are computed. The extracted features cover many properties of both the
internal link structure and the external interaction of the community with the rest of the
network. A similarity metric is calculated for each pair of communities at successive
snapshots and significant events of the communities are identified by applying our
proposed event detection algorithm. Then, event prediction modeled as a classification
problem where identified events are used as class labels for the classifiers and the
structural features as input parameters. Detailed experimental results have proved that
the proposed event prediction model can accurately estimate community events.

By utilizing the underlying event based framework, the thesis suggests frameworks
to two substantial problems in event prediction of temporal communities. The first
one is predicting community events by employing time series analysis models. A
time series model predicts how particular community features will change in the
following time period thus directly predicts community features at the next time step
thus it avoids discovering communities from scratch. A time series is built for the
last snapshot communities those the events will be predicted, recording the feature
values of the matching communities from past to present using landmark and sliding
window techniques. Unlike the landmark windows which take into consideration all
the historical data, sliding windows focus on the most recent state of the dynamic
network thus uncover the most recent changes occurring in the network. Distinct time
window intervals are examined in constituting and analyzing time series. Experimental
results on two real datasets show that the proposed framework forecasts community
feature values with a reasonable error rate and predicted events highly overlap with the
actual event labels. Moreover, the effect of window size on the forecast error and event
prediction is uncovered.

The second one is identification of community features that perform successful
prediction results. A novel framework proposed to examine various structural features
of the network and detects the most prominent subset of community features in order
to predict the future direction of community evolution without computing the entire
feature set. The framework extracts the network’s structural properties and use it to
determine the subset of community features that leads to accurate community event
prediction. Unlike traditional approaches that harvest a large number of features at
each time point, the proposed framework suggests the most predictive community
features by exploiting the network’s topology to effectively determine whether a
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community will remain stable or undergo certain events such as shrink, merge or
split. Experiments conducted on four real datasets verified the effectiveness of the
proposed framework. The experiments indicated that framework produces almost the
same prediction results as those produced using the entire feature set, such that there is
no statistical difference. Furthermore, the results for the running time and speedup of
framework over the use of all features have also presented. Due to the lower number of
features that should be calculated, there is a corresponding reduction in computational
time and cost.
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DİNAMİK SOSYAL AĞLARDA TOPLULUK OLAY ÖNGÖRÜSÜ

ÖZET

Geçtiğimiz son on yıl internet ve web üzerinden elde edilen bilginin hızla ve çarpıcı bir
biçimde artmasına tanıklık etmiştir. Sosyal ağlar kişisel bilgisayarlar, cep telefonları ve
diğer donanımsal yenilikler gibi internet erişimli cihazların yaygınlaşmasıyla birlikte
oldukça popüler hale gelmiştir. Sosyal ağ siteleri kullanıcılarına fikirlerini paylaşma,
güncel durum ve yorumları yayınlama, yeni haberleri takip edebilme, arkadaşlar ve
meslektaşlar ile iletişimde kalabilme gibi olanaklar sağlamaktadır. Çevrimiçi sosyal
ağların hızlı gelişimi çok çeşitli senaryolarda ağ merkezli verilerin muazzam bir
biçimde artmasına yol açmıştır. Birçok sosyal ağ çeşidinde veri, düğümlerin bireyleri,
ayrıtların ilişki ve etkileşimleri temsil ettiği çizgelerden oluşur. Ağ yapısı içerisindeki
bir düğüm kümesi, dışarıya olan bağlantı sayısına kıyasla kendi içinde daha fazla
sayıda bağ içeriyor ise bu düğüm kümesi bir topluluk olarak nitelendirilebilir. Bu
gibi sosyal ağlarda topluluklar, ağ elemanlarının birbirleriyle ilişki ve etkileşim
kurması neticesinde oluşmaktadır. Topluluğun en yaygın tanımı şudur: topluluk
içeride yoğun olarak birbirine bağlı ancak dışarıyla daha az yoğunlukta bağlantısı
olan düğümler topluluğudur. Toplulukların belirlenmesi, düğüm veya ayrıt bazında bir
yaklaşım sergilenen mikroskopik düzey ve bütün çizge yapısını ele alan makroskopik
düzeyden farklı olarak, daha ara yapılar olan topluluklar kullanılarak, ağ yapısının
mezoskopik düzeyde tanımlanmasıdır. Topluluk üyeleri zaman içinde birbirleriyle ve
topluluk dışındaki ağ üyeleriyle etkileşim kurarak dinamik veya zamansal bir davranış
sergilerler. Sonuç olarak, topluluklar belirli bir zaman diliminde kararlı bir biçimde
durabilir, periyodik örüntü sergileyebilir, üye bileşiminde ansızın değişiklikler olabilir
veya diğer başka dinamik davranışlar gösterebilirler. Bu nedenle toplulukların ve ağın
zamansal değişimlerinin irdelenmesi önem arz etmektedir. Bu fenomen araştırmacıları
bireyler arasındaki bağlantıların nasıl kurulduğu ve zamanla nasıl değiştiğini araştırma
konusuna yöneltmiştir.

Ağ yapılarının içerisinde yer alan bireyler/varlıklar arasındaki ilişkilerin çeşitli
bilimsel metotlar aracılığı ile detaylı olarak incelenmesi sonucu elde edilen verilerden
anlamlı sonuçlar türetilmesi Sosyal Ağ Analizi olarak tanımlanmaktadır. Bu
bağlamda, topluluk dinamiklerinin gözlemlenmesi ve değişiminin öngörülmesi Sosyal
Ağ Analizi’nin en önemli konularından biridir. Toplulukların değişimlerinin
belirlenmesi, ağın içsel organizasyonundaki temek değişiklikleri tanımlamak açısından
elzemdir. Toplulukların zaman içindeki değişiminin analiz edilmesi sosyoloji,
kriminoloji, reklamcılık ve pazarlama, bilgi difüzyonu, öneri sistemleri gibi pek çok
uygulama alanında genişçe yer almaktadır. Üyelerin gizli yönelimleri ve beğenileri,
hangi toplulukların büyüyeceği veya küçüleceği gibi olayların anlaşılmasıyla açığa
çıkarılabilir. Örnek olarak, topluluklara pazarlama faaliyeti yapmak ve bu faaliyetin
zaman içinde sonuçlarını izlemek verilebilir. Buradan yapılan çıkarımlar daha
sonra pazarlama teşviklerinin yeniden düzenlenmesinde kullanılabilir. Bir sosyal ağ
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sitesindeki kullanıcı yorumları ve arkadaşlık ilişkileri yeni fikir ve politik görüşlerin
oluşumunu ve gelişimini izlemekte kullanılabilir.

Toplulukların gelişimini takip eden yöntemler yaygın olarak topluluğun büyüme,
birleşme veya yok olma gibi olaylarını tanımlayan çerçeveler üzerine kurulmuştur.
Bunların birçoğu, toplulukların evrimini incelemek üzere iki adımlı olay eksenli
modeller önermiştir. Bu modeller birincil olarak her bir zaman dilimine ait
çizgelerin topluluklarını belirleme ve daha sonra ardışık zaman dilimlerindeki
bölümlemeler arasındaki ilişkiyi kritik olaylar olarak tanımlamakta ve toplulukların
yapısal özelliklerini öznitelik olarak kullanarak olayları tahmin etmektedir. Netice
olarak bu yöntemler, bir sonraki adımdaki olayları bilinmeyen zaman dilimi de dahil
olmak üzere tüm zaman dilimlerine ait çizgelerdeki toplulukların belirlenmesi ve
bütün topluluksal özelliklerinin hesaplanmasını gerektirmektedir. Buna ek olarak,
yakın zamandaki çalışmalar toplulukların evrimini çizgelere ait bütün tarihsel bilgileri
kullanarak tahmin etmektedir. Ancak bu tarz bir yaklaşım, bütün geçmiş veriyi
kullanması ve sadece ağ oluşumunun ilk aşamalarında var olmuş olan düğümleri
diğerlerinden ayırt etmeksizin bütün düğüm ve ayrıtları eşit olarak göz önüne
almasından mütevellit, güncel değişimle ilgili doğru sonuçlar sağlamakta başarısız
olabilir.

Bu tezde, toplulukların evrimsel dinamikleri irdelenmiş ve toplulukların gelecekteki
olaylarını tahmin etmek amacıyla olay eksenli bir yaklaşım önerilmiştir. Dinamik
ağ bir dizi statik zaman adımlı çizgeler olarak modellenmiş ve her bir zaman
adımlı çizge belirlenen zaman aralığında veya o zamana kadar olan etkileşimlerden
oluşturulmuştur. Her bir zaman adımında topluluklar belirlenmiş ve toplulukların
yapısal ve zamansal nitelikleri hesaplanmıştır. Ele alınan özellikler toplulukların içsel
ayrıt yapıları ve toplulukların ağın geri kalanıyla olan dışsal etkileşimlerini de içerecek
şekilde pek çok niteliği kapsamaktadır. Ardışık zaman adımlarındaki her bir topluluk
çifti için bir benzerlik ölçütü hesaplanmış ve önerdiğimiz olay belirleme algoritması
uygulanarak anlamlı olaylar saptanmıştır. Daha sonra olay öngörüsü, tanımlanmış
olayların sınıf etiketleri, yapısal ve zamansal topluluk niteliklerinin giriş parametresi
olarak kullanıldığı bir sınıflandırma problemi olarak modellenmiştir. Detaylandırılmış
deneysel sonuçlar önerilen olay öngörü modelinin topluluk olaylarını doğru olarak
yakınsadığını ispatlamıştır.

Tez kapsamında önerilen olay eksenli çerçeve kullanılarak, zamansal topluluklarda
olayların öngörülmesinde karşılaşılan iki temel soruna da çözüm getirilmiştir. Tezin
birinci katkısı; topluluk olaylarının zaman serisi analizi modelleri kullanılarak
öngörülmesidir. Zaman serisi modelleri topluluksal niteliklerin bir sonraki zaman
adımında nasıl değişeceğini ve değerinin ne olacağını tahmin ederek, toplulukların
sıfırdan belirlenmesini önlemiş olur. Bir sonraki adımda olayları öngörülecek
olan zaman dilimine ait toplulukların her biri için, biriken ve kayan pencereleme
tekniklerine göre geçmişten günümüze topluluksal değerlerden müteşekkil bir zaman
serisi oluşturulur. Bütün geçmiş veriyi işleyen biriken pencereleme tekniğinin
aksine, kayan pencereleme tekniği dinamik ağın güncel durumu üzerine yoğunlaşır ve
dolayısıyla ağdaki en son değişiklikleri meydana çıkarır. Zaman serilerinin oluşumu
ve analizinde farklı pencere aralıkları test edilmiştir. İki adet gerçek veri üzerinde
yapılan deneysel sonuçlar önerilen çerçevenin toplulukların nitelik değerlerinin makul
bir hata oranı ile tahmin edildiğini ve öngörülen olayların gerçek olay etiketleriyle
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yüksek oranda örtüştüğünü göstermektedir. Buna ek olarak, pencere büyüklüğünün
tahmin hatası ve olay öngürüsü üzerindeki etkisi irdelenmiştir.

İkinci olarak, olayların öngörülmesinde başarılı sonuçlar üreten topluluksal nitelikler
tespit edilmiştir. Ağın çeşitli yapısal niteliklerini hesaplayan ve topluluk gelişiminin
gelecekteki doğrultusunu tüm topluluksal nitelikleri hesaplamadan, önde gelen
topluluk nitelik alt kümesini tespit ederek öngören yeni bir çerçeve önerilmiştir.
Önerilen çerçeve ağın yapısal niteliklerini kullanarak topluluk olay tahmininde doğru
sonuç üretmeyi sağlayan topluluk nitelikleri alt kümesi belirlemektedir. Her bir
zaman noktasında çok sayıda topluluksal niteliği hesaplayan yöntemlerin aksine,
önerilen çerçeve ağ topolojisinden faydalanarak topluluğun gelecekte başına gelecek
olayı en etkin biçimde öngören en kestirimci topluluksal nitelikleri bulmaktadır.
Dört farklı gerçek veri seti üzerinde yapılan deneyler önerilen çerçevenin etkinliği
doğrulamıştır. Yapılan deneyler, önerilen çerçevenin bütün nitelik kümesi kullanılarak
üretilen öngörü sonuçlarıyla hemen hemen aynı sonuçlar ürettiğini, sonuçlar arasında
istatistiksel bir farklılık bulunmadığını göstermiştir. Önerilen çerçeve ve bütün
topluluk niteliklerinin kullanımı çalışma süresi ölçülerek karşılaştırılmış ve çerçevenin
hızlandırma oranı sunulmuştur. Sonuçlar, önerilen çerçeve kapsamında daha az
nitelik hesaplanmasından dolayı, aynı nispette hesaplama zaman ve maliyetinde düşüş
olduğunu kanıtlamıştır.
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1. INTRODUCTION

Complex systems can be described as networks consisting of a set of items which

is called vertices or nodes, with connections between them, called edges. There are

many types of complex networked systems such as social networks, technological

networks, climate networks, protein-protein interaction networks, etc. With the current

popularity of social networks, network analysis and modelling of such networks

become more popular. In this thesis, studies are performed focusing on social

networks. Social networks are made up of actors called nodes that are connected by

various social familiarities or relationships represented by edges. A social network

dynamically changes since the social ties between network actors change over time.

The rapid advent in social networking systems has given rise to a growing need

for Social Network Analysis (SNA) in order to investigate the relationships between

network actors while being able to follow their evolution. In SNA, the main interest

is to infer the structural characteristics of networks. Hence the connections between

actors are key elements of the analysis that facilitates the mining of the important

behavioral patterns among the actors.

One of the salient feature of the social networks is represented by their mesoscopic

structure, characterized by the presence of groups of nodes, called communities, with a

high density of connections between nodes of the same community and comparatively

sparse connections between nodes of different communities [1] [2]. Exploring network

communities is important to reveal the network organization at a coarse level and

uncover relationships between the nodes which are not apparent by inspecting the

graph as a whole. In social networks, the interactions between communities evolve

dynamically over time due to the fact that the actors represented as nodes in the

network may have multiple roles and thus may change their communities over

time. Tracking communities in a network can reveal long-term trends of community

evolution and patterns on how the underlying network evolve. The interactions
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established by the community members over time play an important role in shaping

the future of the community.

Recently, a great deal of work has been devoted on analyzing dynamic communities

and their temporal evolution [3]. A common strategy involves considering a dynamic

network divided into series of individual time step graphs, representing successive

snapshots of the graph taken at regular intervals and study the structural characteristics

of the static networks within each interval. Hopcroft et al. proposed a method to

track stable clusters over time which utilizes “natural community” that have high

stability against to minor perturbations of the graph [4]. Berger-Wolf et al. proposed

a mathematical and computational framework that enables analysis of dynamic social

networks and explicitly makes use of information about the time that social interactions

occur [5]. The same team in their later study formulated the community membership

detection as a graph coloring problem, using greedy matching heuristic in order to

assign individuals to communities in any given time interval [6].

In the course of network evolution, different events may occur such that communities

grow over time by acquiring new members or shrink by loosing existing members; new

communities are emerging while old ones are disappearing; two or more communities

can merge to form a new community or they can also split into smaller groups [7].

Community evolution prediction aim at predicting these events and is beneficial from

many aspects. It can help to predict the spread of diseases or information. For example,

user comments and friendship ties can help us to monitor development of new trends,

ideas, political views, etc. Wising up the futuristic knowledge of the community

can assist to make accurate recommendations to the community members. Many

approaches to characterize the evolution of communities have focused on identifying

critical events that a community can encounter, then investigating the occurrences of

these events within the network. Palla et al. identify six basic events such as birth,

growth, and merging by applying Clique Percolation Method (CPM) [8]. Asur et

al. define critical events between detected communities at two consecutive snapshots

which are implemented in the form of bit operations [9]. However, these events do

not cover all of the transitions that may occur for a particular community. Chen

et al. presented a representative-based approach to uncover distinct possible types

of community-based anomalies in evolutionary networks such as grown, shrunken,
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merged, split, born, and vanished communities [10]. Takaffoli et al. proposed an

event-based framework incorporating substantial features related to a community such

as its structure, history and influential members. Their framework allows to track

the changes of communities, not only between two consecutive snapshots but also

encompassing multiple snapshots. Gliwa et al. proposed a method, namely SCGI,

for modeling group evolution and event prediction by utilizing leadership, density,

cohesion and group size measures [11]. In our paper [12], a model is proposed for

tracking the evolutionary dynamics of communities with a broad range of structural

features which results in a better prediction accuracy for community events in social

networks.

In spite of the tremendous amount of work that has been done so far, there are still

problems. In the large part of community evolution studies, community features

are utilized as attributes to classify predetermined community instances to the

corresponding event. Usually, these approaches are based on the extraction of the

community structure at each time step and then predict the labels of the last time step

communities by utilizing the community features. However, the proposed approaches

require the community extraction and computing the community features relevant to

the time point to be predicted. Besides, in these approaches, communities are extracted

by applying an appropriate community detection algorithm to each snapshot of the

network that has been accumulated over the time span (aka landmark windows). Thus,

these approaches evaluate the whole historical data in the analysis and designate equal

weight to nodes and edges even if they were not active for a while. However, such an

approach may fail to provide accurate results on current evolution. The first hypothesis

of the thesis is as follows: community features of the next time step can be estimated

using time series analysis models applied on time series which constituted using a

specified length of snapshot history. Another thing is; most of the existing work on

community evolution focuses on a model which predicts a set of events by computing

a range of features that span different categories. However, extracting a wide range of

features is computationally expensive, especially when working with large datasets. In

such cases, it is crucial to discard redundant and ineffective features. Even the studies

which incorporate feature selection stage do not remedy the issue of feature calculation

cost. The second hypothesis is that: exploring the prominent subset of community
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features will reduce the feature calculation cost and these features can be identified by

exploiting topological network properties. Therefore, a model should be suggested to

identify a minimal number of community features to effectively determine community

events.

1.1 Contributions of the Thesis

The main purpose of the thesis is tracking the evolutionary dynamics of the

communities in the social network and predicting the future event of the communities

over time. Experiments on different data sets prove that a high rate of community

evolution prediction has been achieved. On this basis, we also seek solutions to the

related problems. In the basis of the proposed approaches, the process proceeds as

follows: the evolving network is handled by series of static snapshots where each

snapshot corresponds to a particular point in time. In the first step, a community

detection algorithm is applied to discover communities. In the second step, the

structural features are extracted by measuring on a large scale of the properties of the

communities. The extracted features cover many properties of both the internal link

structure and the external interaction of the community with the rest of the network.

The third step involves matching communities found at consecutive time steps in the

individual snapshot graphs and identification of significant events of the communities,

such as survive, growth, merge, split and dissolve. The fourth step is the event

prediction step in which identified events are used as class labels for the classifiers

with the structural features found in the second stage as input parameters. The thesis

can be handle into two phases: 1) Community evolution prediction based on time series

modeling and 2) Feature identification for predicting community evolution.

1) Community evolution prediction based on time series modeling: In the first

phase, an approach to accurately predict the next event of a community with employing

various time series models namely the Autoregressive Integrated Moving Average

(ARIMA), Artificial Neural Networks (ANN) and Exponential Smoothing (ETS) has

been proposed. Our first contribution is effectively predicting community events

through community feature forecasting. The community feature values of the next

snapshot are directly forecasted thus demand for the community extraction of the

snapshot to be predicted is removed. Our second contribution is examining the
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dynamics of the community structure in the networks make use of two different time

window models: a landmark and a sliding window. Landmark window keeps the

data from the beginning to the present time where sliding window is focusing on the

specified amount of the recent past thus allowing to capture current events. We then

investigate the influence of the windowing approaches and various window lengths on

the framework results.

2) Feature identification for predicting community evolution: In the second phase,

the problem of feature calculation cost in the study of community event prediction has

been addressed. A novel framework named Feature Identification for Event Prediction

(FIEP) to identify a proper subset of features for a given network that achieves good

prediction results without the need for calculating all features at the beginning. The

suggested framework utilizes various structural network measures including clustering

coefficient, average path length, embeddedness and betweenness in order to determine

the accurate subset of features. The contribution of this stage is threefold. First, the

proposed generic methodology for predicting the community evolution facilitates the

identification of the predictive community features based on the structure of networks.

The community event prediction is then modeled as a classification problem. Second,

our methodology is capable of determining a useful subset of community features at

the first observation moment of the network without observing the dynamic behavior

of the network at different time periods. Third, we have empirically tested different

factors related to the network structure and community features that may contribute

positively to the community event prediction performance.

The rest of the thesis chapters are organized as follows:

• In Chapter 2, the related literature review has been given.

• Chapter 3 includes the brief descriptions about the community detection algorithms,

feature selection and time series analysis methods that are used throughout the

thesis.

• In Chapter 4, community evolution prediction based on time series modeling

approach is presented and experimental results are given.
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• Chapter 5 includes the feature identification for predicting community evolution

stage and the details of proposed framework. Related experimental results are also

provided.

• Chapter 6 concludes the thesis by discussing the outcomes and the possible future

directions for the work.
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2. RELATED WORK

2.1 Tracking Community Evolution

Recently, many researchers have been interested in mining the temporal evolution of

social networks. [8, 9, 13–19]. A common way to study temporal network behavior

is taking static snapshots and analyzing the structural characteristics of the static

networks within each snapshot.

Several studies have been carried out on constructing an event prediction framework

that characterizes the evolution of communities in dynamic networks. Palla et al.

proposed an extension of the Clique Percolation Method (CPM) [20] to identify events

such as birth, growth and merging in the evolution of dynamic graphs [8]. This

extension involved applying CPM on a graph formed by the communities discovered

at pairs of consecutive snapshots. The resulting clique based communities were

subsequently matched to communities and events pertaining to the communities

specified. Asur et al. define critical events between detected communities at two

consecutive snapshots which are implemented in the form of bit operations [9].

However, these events do not cover all of the transitions that may occur for a particular

community. Wang proposed an intuitive method to compare two communities of

the consecutive timestamps with rules based on tracking specific core nodes that are

more representative of their community than others [21]. Greene et al. allowed

for tracking of similar communities in different snapshots [22]. They proposed a

model for tracking the evolution of communities over time in a dynamic network,

where each community is characterised by a series of significant evolutionary events.

Their model introduces an effective community-matching strategy for efficiently

identifying and tracking dynamic communities in multiple snapshots of a dynamic

network. The authors in [10], presented an approach to discover all possible types

of community-based anomalies in evolutionary networks characterized by overlapping

communities. Tajeuna et al. proposed a novel approach for modeling and detecting the

7



evolution of communities. Their model comprises a new similarity measure, named

mutual transition, for tracking the communities and rules for capturing significant

transition events a community can undergo [23]. Leskovec et al. studied the patterns

of graph evolution based on the various properties of the large social networks such as

the degree distribution and the small-world phenomena [14]. They also propose Forest

Fire model to produce networks satisfying the discovered patterns. Ahn et al. analyzed

different behavior scaling in degree distribution on online social networks, extracting

the main characteristics of online social networks and performing an analysis of

the evolution of Cyworld network [24]. However, in these studies the influence of

structural properties is examined at individual level and the prediction is lacking. A

prediction which discards structural properties of communities may be insufficient

when predicting several different events.

2.2 Community Event Prediction

Some approaches focus on the event prediction problem to determine the future

behavior of a community. Goldberg et al. developed an algorithmic framework

for studying the evolution of communities by proposing axioms which imply that

an evolution is at most as strong as its weakest link [25]. They also studied the

predictability of evolution, in particular lifespan, by identifying a consistent set of

structural features including density, intersection, size, growth and core of the early

stages of a community that indicate whether a community is going to be short-lived or

not. They found that density, intersection, and core size are quite significant and have

strong positive correlation with lifespan. In their subsequent study, they proposed a

two-step process for the identification of evolution within a network. However, both

studies are only useful for predicting the lifetime of the community. Kairam et al.

proposed a predictive model and investigated the relationsip between a group’s network

features and its future growth and longevity using online social network community

data [26]. Patil et al. build a model to predict if a group is going to remain stable or is

likely to shrink over a period of time [27]. They successfully predicted group stability

with high accuracy using a range of features that describe the group composition,

activities within the group and structural aspects of a group. Diakidis et al. presented

a study to predict the evolution of communities by focusing on the continuation,
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growth, shrink and dissolution events computing the structural, content and contextual

community features of Twitter [28]. However, their method is unable to identify the

merge and split events of a community which are the essential events that a community

may encounter in its life cycle. Bródka et al. proposed GED (Group Evolution

Discovery) method to discover group evolution and the sequences of group sizes, while

events between time steps were extracted from the GED results [29]. The sequence

consists only of several preceding group sizes and events as an input for the classifier.

Similar authors then proposed a new method for future event prediction based on stable

group changes identification algorithm (SGCI) [11]. They used leadership, density,

cohesion and group size measures to describe the group profile. They show that using

many measures to describe the group profile, and in consequence as a classifier input,

can improve predictions. The same group, in their later study, compared SCGI and

GED with different lengths of evolution chains by extending the variety of community

features [30].

2.2.1 Time series analysis

Implementing time series analysis on social networks also a topic of research. The

authors in [31] proposed a model by fitting the occurrence of links between the nodes

of the network along time into time series, using ARIMA to project their future values

and to measure the probability of new connections. In [32], an approach presented to

perform prediction of new links by addressing the evolution of topological metrics as

a time series problem. They used a set of well-known statistical forecasting models to

estimate future values. Time series analysis has also been applied in tweet analysis.

The authors in [33] analyzed several surveys on consumer confidence and political

opinion of textual sentiment in microblog messages through time and they correlate

to sentiment word frequencies in contemporaneous Twitter messages. However, none

of them are concerning the community features and events. In our previous work

[34], we proposed a model which avoids applying community detection algorithm and

calculating community features for the relevant snapshot where its evolution will be

predicted. The model utilized time series analysis model ARIMA to forecast precise

community feature values, thereby classify the communities to the related events. A

time series is built for the last snapshot communities those the events will be predicted,
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recording the feature values of the matching communities from past to present using

landmark window technique.

2.2.2 Feature selection

Feature selection has been an active and widely recognized method for improving

data quality in the field of machine learning and data mining communities [35].

Feature selection methods involve selecting the optimal subset of features from the

original set of features that show the best performance in terms of well-defined

criteria, e.g. classification accuracy [36–38]. Through feature selection, the cost of

learning, the amount of data needed to achieve learning and overall execution time

is reduced while classification accuracy is possibly improved. In general, feature

selection can be classified into three main evaluation models: filter model [39],

wrapper model [40] and the embedded model [35]. Filter models extract features

from the data without any learning involved Gain Ratio Attribute Evaluation (GRAE)

[41], Information Gain Attribute Evaluation (IGAE) [42], OneR Attribute Evaluation

(ORAE) [43], Relief-F Attribute Evaluation (RFAE) [44], Symmetrical Uncertainty

Attribute Evaluation (SUAE) [45], Correlation-based Feature Selection (CFS) [46].

The wrapper models use learning techniques to evaluate which features are useful

Wrapper Subset Evaluation (WSE) [47], Genetic Algorithms [48]. The embedded

models combine the feature selection step and the classifier construction (Random

Forest [49]). We also note that there are several works which study feature selection

in community evolution [16, 30, 50]. These methods select the features to reduce

the overfitting effects thereby improving prediction accuracy, but do not eliminate

calculation cost of the whole feature set.
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3. BACKGROUND

In this chapter, community detection algorithms, feature selection methods and time

series analysis models that used within the scope of the thesis are briefly described.

3.1 Community Detection Algorithms

Identifying meaningful community structure in social networks is a hard problem and

a number of methods to address this problem have been proposed. In this section very

partial descriptions only about the methods which are implemented in the study has

been provided.

3.1.1 Fast Greedy

Fast Greedy is a greedy optimization algorithm and tries to optimize a quality function

called modularity in a greedy manner [51]. Initially, each node in its own community,

and then in every step two communities are merged iteratively in order to gain largest

increase in the current value of modularity such that each merge is locally optimal.

The algorithm continues when it is not possible to increase the modularity any more.

This results a grouping as well as a dendrogram. The hierarchical merging tree is cut

at the point where maximum modularity is achieved. The method is fast and generally

tried as a first approximation because it has no parameters to tune. However, it is

known to suffer from a resolution limit and will always be merged with neighboring

communities.

3.1.2 Leading Eigen Vector (LEV)

Leading Eigenvector is a top-down hierarchical graph partitioning approach using a

so-called modularity matrix [52]. The method finds communities by calculating the

leading non-negative eigenvector of the modularity matrix. In each step, the graph is

split into two parts in a way that the separation itself yields a significant increase in the

modularity. The split is determined by calculating the eigenvector of the modularity
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matrix for the largest positive eigenvalue and then separation occurs on vertices into

two community based on the sign of the corresponding element in the eigenvector.

There also exist a stopping criteria which prevents tightly connected groups to be split

further. If all elements in the eigenvector have the same sign means that the network

can not be split anymore.

3.1.3 Infomap

Infomap is a two-level method based on Huffmann coding. First level is to distinguish

communities in the network and second to distinguish nodes in a community [53]. It

tries to build a community structure which provides the shortest description length for a

random walk on the graph. The goal is to find the community structure that minimizes

the expected length of the description.

3.1.4 Label Propagation Method (LPM):

Label Propagation Method is based on the simple rule that at each iteration a given

node takes the most frequent label in its neighborhood. The starting configuration is

chosen such that every node is given a different label and the procedure is iterated until

convergence [54].

3.1.5 Louvain:

Louvain Method is a hierarchical greedy algorithm which is composed of two phase

[55]. Initially, each node is assigned to a community on its own. In the first

stage, nodes are reassigned to neighboring communities in a local and greedy manner

by maximizing the modularity gain. The process repeated until no nodes can be

reassigned. In the second stage, each community is considered as a node on its own.

Then, the algorithm starts the phase 1 and so on.

3.2 Feature Selection Methods

In the thesis, eight common feature subset selection methods proposed in the literature

including both filter and wrapper models are considered. These methods are:

Information Gain [42], CFS [46], Correlation Attribute Evaluation [56], Gain Ratio
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[41], OneR, Relief-F [44], Symmetrical Uncertainty [45],Wrapper Subset Evaluation

[47].

3.2.1 Information Gain Attribute Evaluation (IGAE):

Information Gain measures information obtained for class prediction by evaluating

presence or absence of a feature using entropy [42]. Information Gain is calculated

by the feature’s contribution on decreasing overall entropy. Let D be set consisting of

d data samples with k distinct classes, the expected information needed to classify a

given instance is given by:

I(D) =�
k

Â
i=1

pilog2(pi) (3.1)

where pi is the probability that an arbitrary data sample belongs to class Ci estimated as

|CiD | / | D |. If we want to classify the instance in D on some attribute A, D will split

into w partitions set {D1,D2, ....,Dw}. The entropy, or expected information based on

the partitioning into subset by A, s given by:

E(A) =�
w

Â
j=1

| D j |
| D | xI(D j) (3.2)

where | D j | is the weight of the jth partition and I(D j) ia the entropy of partition D j.

Then, Information Gain (IG) by partitioning on A is:

IG(A) = I(D)� IA(D) (3.3)

3.2.2 Correlation-Based Feature Selection (CFS):

CFS evaluates the subsets of features by considering degree of redundancy among

them. The methods aims to find subsets of features that are individually highly

correlated with the class while having low inter-correlation. Equation of CFS is given

in Equation 3.4.

rzc =
srzip

s+(s�1)rii
(3.4)

where rzc is the correlation between the summed feature subsets and the class variable,

s is the number of subset features, rzi is the average of the correlations between the

subset features an the class variable, and rii is the average inter-correlation between

subset features [46].
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3.2.3 Correlation Attribute Evaluation (CAE):

Correlation attribute evaluation measures the worth of an attribute by calculating the

Pearson’s correlation between it and the class [56]. For two quantitative attribute X

and Y , Pearson’s correlation coefficient is defined as:

rXY =
Â(xi � xyi � y)
(n�1)SX SY

(3.5)

where x and y are the sample means for X and Y respectively, SX and SY are the sample

standard deviations for X and Y and n is the size of the instance used to compute the

correlation. The correlation rXY is comprises between -1 and 1. A value of 1 means

perfect positive correlation and -1 in the other direction.

3.2.4 Gain Ratio Attribute Evaluation (GRAE):

The information gain measure prefers to select attributes having a large number of

values thus it is biased towards tests with many outcomes. C4.5 [41], a successor of

the basic decision tree induction algorithm ID3 [57], uses an extension to information

gain known as Gain Ratio (GR), which attempts to overcome the bias by introducing

an extra term named Split Info (SI) taking into account how the feature splits the data.

The split info corresponds to the potential information obtained by partitioning the

training data set D into w partitions, resulting to w outcomes on attribute A:

SIA(D) =�
w

Â
i=1

(| Di | / | D |)log2(| Di | / | D |) (3.6)

High SI means partitions have equal size and low SI means few partitions contains

most of the tuples. The Gain Ratio (GR) is defined as:

GR(A) = IG(A)/SIA(D) (3.7)

The attribute with maximum gain ratio is selected as the splitting attribute.

3.2.5 OneR Attribute Evaluation (ORAE):

OneR approach evaluates each attribute individually by using the 1R classifier. For

each attribute and for each value of the attribute, the error produced if only that attribute

will be used to classify the corresponding dataset. The attributes ranked based on the

error rate obtained and desired number of attributes selected with lowest error rate.
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3.2.6 Relief-F Attribute Evaluation (RFAE):

Relief-F method randomly selects feature instances, computes their nearest neighbors

to find nearest miss and nearest hit, calculates the weight of a feature and adjusts a

feature weighing vector to give more weight to features that discriminate the instance

from neighbors of different classes [44].

3.2.7 Symmetrical Uncertainty Attribute Evaluation (SUAE):

Symmetrical Uncertainty method evaluates attributes individually by measuring

symmetrical uncertainty with respect to the class [45]. It compensates for the inherent

bias of IG by dividing it by the sum of the entropies of X and Y . Symmetrical

Uncertainty (SU) is given by:

SU(X ,Y ) = 2
h

IG(X |Y )
E(X)E(Y )

i
(3.8)

where IG(X | Y ) is the information gain of independent attribute X and the class

attribute Y . H(X) is the entropy of feature X and H(Y ) is the entropy of feature Y . SU

normalizes the value to the range [0,1]. SU = 0 indicates that X and Y are uncorrelated

and SU = 1 indicates that the knowledge of one feature completely predicts. SU is

biased toward features with fewer values like GR.

3.2.8 Wrapper Subset Evaluation (WSE):

Wrapper methods evaluate subsets by running a specific classifier on the training data,

using only the attributes of the subset [47]. In the wrapper method, the feature subset

selection is done by induction algorithm in order to find a good subset. The space of

feature subsets searched and the estimated accuracy of a single learning algorithm is

calculated for each feature that can be added to or removed from the feature subset. The

feature space can be searched with various strategies, e.g., greedy stepwise, best first,

random search, etc. In the wrapper approach, the classifier itself is used to determine

the attribute subset.

3.3 Time Series Analysis Models

In the thesis, three forecasting techniques were evaluated on the basis of their efficiency

to forecast and their ability in producing coherent results with the actual event labels.
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3.3.1 Autoregressive Integrated Moving Average (ARIMA)

The Autoregressive Integrated moving average (ARIMA) models are the most popular

and effective statistical models for time series forecasting [58]. These models are based

on the main principle that the future values of a time series are generated from a linear

function of its past values and white noise terms.

The future value of a variable is a linear combination of past values and past errors and

can be written as:

yt =
p

Â
i=1

aiyt � i+ et +
q

Â
i=1

biet�i, (3.9)

where yt = (1 � B)dxt , B is the back shift operator, xt is the trend, ai is the auto

regressive coefficients, bi is moving average coefficients and et is the residual,

uncorrelated white noise with zero mean and constant variance s2, and p,d, and q are

the order of each parameters. Parameter optimization is performed using Box-Jenkins

methods [58] and Akaike Information Criterion (AIC) is used for order selection where

the model that gives minimum AIC is selected as the best fit model.

3.3.2 Artificial Neural Networks (ANN)

ANN is a computational model implemented in computer science which is inspired

by some of the behavioral and adaptive features of biological neural systems [59].

The basic objective of ANN is to build a model for mimicking the intelligence of

human brain into machine. It has been suggested as a very successful alternative to the

ARIMA models for time series forecasting and it gained enormous popularity in recent

years. ANN can estimate any nonlinear continuous function up to any desired degree

of accuracy [60]. The most common type of ANNs is a three layer back-propagation

network: input, hidden and output node layers which are interconnected with different

weights. Each node is called a neuron.

A three layer back-propagation network, which includes i input, j hidden and k output

neurons, can be represented by the following equation:

yk = fk

 
ak + Â

j!k
w jk f j

 
a j + Â

i! j
wi jxi

!!
(3.10)
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where yk is the neural output of the k neuron, fk and f j are activation functions. w jk or

wi j represents weights and ak and a j are biases which multiply the signals processing

from j to k or from i to j respectively [61].

3.3.3 Exponential Smoothing (ETS)

Exponential smoothing has become very popular as a forecasting model which can be

applied to process a wide variety of time series data. Simple exponential smoothing

is employed in the study. This model is frequently used short-term analysis and

suitable for forecasting data with no trend or seasonal pattern. The simple exponential

smoothing method is based on a weighted average of current and past observations

assigning exponentially decreasing weights as the observation get older [62]. Given

a weight a , the sequence of observed data xt , the result of exponential smoothing

algorithm yt , the state of a time series is found using the following formula:

yt = axt +(1�a)yt�1 (3.11)

The value of the a is defined by minimizing the sum of squared errors produced by the

model.
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4. COMMUNITY EVOLUTION PREDICTION BASED ON TIME SERIES
MODELING

In this chapter, the methodology for predicting community events using time series

models is introduced. Since the next behavior of a community can be quantified and

closely related to time factor, its temporal and structural features have been formulated

as time series forecasting models. The intuition behind our algorithm is simple. We

aim to estimate community feature values belonging to the time step to be predicted,

thus discovering the communities of the related snapshot is avoided.

4.1 Methodology

The proposed method proceeds as follows: the evolving network is modeled by a

series of static snapshots where each snapshot formed by the interactions up to that

specific interval. We consider various predefined window lengths (w) of snapshots

to constitute the graph for the temporal analysis. The communities of the graph are

extracted using Louvain [55] community detection algorithm. Then, a broad range of

structural and temporal community features are extracted. The extracted community

features cover many properties of both the internal link structure and the external

interaction of the community with the rest of the network. Then, community matchings

at consecutive time steps are found and these communities are labeled with significant

events such as survive, growth, shrink, merge, split and dissolve according to our event

detection procedure. Time series of length w is generated for each feature, thus each

community has time series as the number of features. Afterwards, time series models

are applied to estimate the next values of the features. Finally, model is trained with

the several well known classifiers on the w length snapshots as the training data and

the forecasted feature values of the communities as the test data. More specifically,

the proposed method is performed in six steps: 1) Setting windows 2) Community

detection 3) Feature extraction 4) Event tracking procedure 5) Time series analysis

and 6) Classification. Each step is described as the following:
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Definition 1. A graph G = (V,E) be an undirected and unweighted graph where V is a

set of nodes and E is a set of edges. Evolving graph is modeled as an ordered sequence

of T graphs {G1,G2, ...,GT}, where Gi = (V i,Ei) represents a static snapshot of the

network at a given discrete time point ti where (i = 1, ...,T ).

Algorithm 1 Community event prediction using time series analysis.
Input: A sequence of undirected and unweighted graphs: G� = Gh+1, ...,Gh+w

Output: Prediction Results

1: for every horizon h where h  (h+w+1) do
2: for every graph Gt in the sequence G do
3: Apply community detection algorithm
4: Extract Ct = {Ct

1,C
t
2....,C

t
n}

5: for every community Ct
i 2Ct do

6: Calculate community features Fi = f i
1, ..., f i

k
7: Calculate Sim(Ct

i ,C
t+1
j ) with Ct+1

j 2Ct+1

8: Apply "Event Detection" algorithm (Algorithm 2)
9: Create an instance with the features and label with the corresponding event

10: end for
11: end for
12: for every community Ch+w

i do
13: Constitute time series {T S1

i , ...,T S1
i }

14: Apply forecasting models to produce {p f 1
i , p f 2

i , ..., p f k
i }

15: end for
16: Apply classifiers to produce prediction results
17: end for
18: Apply classifiers to produce prediction results.

4.1.1 Setting windows

Sliding Window: We propose the use of an overlapping sliding window approach

where only a predefined number of static graphs, namely window length (w), are

considered for the temporal analysis. A horizon h be constituted by partitioning the

time axis into time slots of fixed length w and then time slots are shifted in subsequent

horizons. Therefore, a forgetting mechanism is employed by considering only the

static graphs falling within each one of these slots. Hence, the past graph G� and the

next graph G+ is defined as:

G� = G[(h+1),(h+w)],G+ = G(h+w+1) (4.1)

where (h+w+1) T , and 0  h  T � (w+1).
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Such forgetting mechanism allows us to focus only on current events, by considering

in the analysis only the most recent connections of the dynamic network. In Figure 4.3

we illustrate seven horizons (hk,k = 0, ..7) of an overlapping sliding window of length

eight time points (w = 8).

t1      t2      t3      t4      t5      t6      t7      t8                     t9

t2      t3      t4      t5      t6      t7      t8      t9                     t10

t3      t4      t5      t6      t7      t8      t9      t10                     t11

t8    t9    t10    t11    t12    t13    t14    t15                     t16

.

.

.

.

.

.

h0

.

.

.

.

.

.

.

.

.

.

h1

h2

h7

G- G+

G- G+

G+G-

G- G+

Figure 4.1 : Sliding windows.

Landmark Window

We also employ landmark window approach which relies on the specified amount of

the whole past thus allowing us to capture persistent communities. As illustrated in

Figure 4.2, landmark window model retains the historical information of the network

as long as the window length. This model succeeds in finding persistent communities

by considering the entire past. The past graph G� and the next graph G+ is defined as:

G� = G[1,w],G+ = G(w+1) (4.2)

where (w+1) T .
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t1   t2   t3   t4   t5   t6  t7   t8    t9    t10    t11    t12    t13    t14    t15                    

G-

 t16

G+

Figure 4.2 : Landmark windows.

Landmark window model corresponds to the h0 of sliding window model.

4.1.2 Community detection

Definition 2. While Gi representing the ith snapshot of the graph, Ci = {Ci
1,C

i
2....,C

i
n}

represents the set of communities of graph in that snapshot i.

Community evolution analysis starts with community detection. We used Louvain

which is a well known community detection algorithm to obtain communities. Louvain

is a two phased hierarchical agglomerative approach proposed by Blondel et al.. In

beginning each node is placed in its own community. During the first phase, each

node is moved to one of its neighbours’ community by maximizing the modularity

gain or stays in its original community if no gain is possible. This procedure is applied

repeatedly and sequentially for all nodes until no further improvement can be achieved.

In the second phase, each community is considered as a node on its own. Then, the

algorithm starts the phase one and both steps are repeated until stable communities are

reached.

4.1.3 Feature extraction

Community features that may be important in tracking community evolution and

measure structural and temporal aspects of the communities are extracted. Nine

distinct community features are employed within the scope of the model. The features

implemented within the algorithm encompass many structural and temporal properties

such as node number, edge number, betweenness, degree, activeness and so on.

Structural community features: To gauge the structural properties of a community,

we considered its node number, edge number, average of internal links, average of

external links, average betweenness, average degree, and conductance.
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Temporal community features: The temporal properties of the community, such as

aging and activeness, were also quantified. Aging feature assesses the average lifetime

of community members. It indicates whether the community is constituted by new

arrivals or old members. Activeness feature measures the activity by evaluating the

number of established connections of community members in the previous snapshot.

Each measurement corresponds to a dimension in our feature space and the details are

given in Table 4.1.

Table 4.1 : Community features.

No Feature Desription
f1 Nodes Number of nodes within the community i at time t.
f2 Edges Number of edges within the community i at time t.

f3 Intra Ratio of the total number of edges between the nodes inside
the community to the number of nodes in the community.

f4 Inter
Ratio of the total number of edges of nodes connected
outside the community to the number of nodes in the
community.

f5 Activeness
Ratio of the total number of connections made in the
previous timestamp by the nodes of the community to the
number of nodes in the community.

f6 Aging
Ratio of the total ages of the nodes in the community to
the number of nodes in the community. With ages of nodes
increasing by 1 at each timestamp, starting from zero.

f7 Betweenness Ratio of the total node betweenness in the community to the
number of nodes in the community.

f8 Degree Ratio of the sum of degrees of the nodes in the community
to the number of nodes in the community.

f9 Conductance Ratio of the number of edges in the community to the sum
of degrees of the nodes in the community.

4.1.4 Event tracking procedure

To capture the changes that are likely to occur for a community, the six frequently

occurring events known as survive, growth, shrink, merge, split and dissolve are

considered. In order to track the evolution, the set of communities at consecutive

snapshots have to be matched with each other. Therefore, the match of a given

community at time t among the communities at time t + 1 should be found. The output

of the matching process between Ct
i and {Ct+1

1 , ...,Ct+1
j } reveals a series of community

evolution events which are used as the class label of Ct
i in the classification. We defined

two distinct thresholds: Similarity Threshold (q) and Fluctuation Threshold (f).
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

w=10

h=5

Figure 4.3 : Community evolution.

Two communities at consecutive snapshots are said to be matched to each other if the

ratio of their similarity value Sim(Ct
i ,C

t+1
j ) exceeds the threshold q [4], more formally:

Sim(Ct
i ,C

t+1
j ) = min

 
|Ct

i \Ct+1
j |

|Ct
i |

,
|Ct

i \Ct+1
j |

|Ct+1
j |

!
� q (4.3)

Event detection procedure works as follows: for a given community Ct
i , the similarity

between Ct
i and at least one of the successor communities at time step t + 1 should

be greater than q in order to be labeled with an event other than dissolve. If

a community has one successor, it may have one of the three possible events

{survive,growth,shrink}. Herein, we propose a metric, namely fluctuation, for the

purpose of computing the percentage of increase/decrease in the number of community

members. An illustration is given in Figure 4.4 where the light-colored object

represents the community to be labeled at time step t.

t t+1

Shrink

Growth

φ 

Figure 4.4 : Fluctuation in survive event which results in growth and shrink.

Fluctuation rate would give us an accurate result of whether i) the community has

grown (i.e. there is a substantial percentage increase in the number of members), or ii)
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the community has survived (i.e. there is a negligible increase/decrease in the number

of members), or iii) the community has shrunk (i.e. there is a substantial percentage

decrease in the number of members). More formally, given a community Ct
i has nt

i

members at time snapshot t and successor community Ct+1
j has nt+1

j members at time

snapshot t+1, the fluctuation is defined as:

f luctuation(Ct
i ,C

t+1
j ) =

nt+1
j

nt
i

�1 (4.4)

We could then label a community as having survived, grown, or shrunk as follows:

label =

8
><

>:

shrink if f luctuation(Ct
i ,C

t+1
j )<�f

survive if �f  f luctuation(Ct
i ,C

t+1
j ) f

growth if f luctuation(Ct
i ,C

t+1
j )> f

A community Ct
i at time t may match with a set of communities Ct+1

⇤ = {Ct+1
1 ...Ct+1

j }

in a later snapshot in the case of split or a set of communities Ct
⇤ = {Ct

1...C
t
i} may

match to a community Ct+1
j in the subsequent snapshot t + 1 in the case of merge,

where Cr
⇤ ✓ Cr. In the case where there is no similar community at a later snapshot,

which means q is not exceeded, then it is assumed that the community dissolves.

t t+1

Survive

t t+1

Growth

t t+1

Shrink

t t+1

Split

t t+1

Merge

t t+1

Dissolve

Figure 4.5 : Schematic diagram of types of community events.
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The formal definitions of the events are as follows:

Definition 3. A community Ct
i at time t is said to be labeled with survive event if there

exists a community Ct+1
j at time t + 1 whose similarity is greater than predefined q

and fluctuation falls between �f and f . Thus, Ct
i has survived if

Sim(Ct
i ,C

t+1
j )� q and �f  f luctuation(Ct

i ,C
t+1
j ) f

Definition 4. A community Ct
i at time t is said to be labeled with growth event if there

exists a community Ct+1
j at time t + 1 whose similarity is greater than predefined q

and fluctuation is greater than f . Thus, Ct
i has grown if

Sim(Ct
i ,C

t+1
j )� q and f luctuation(Ct

i ,C
t+1
j )> f

Definition 5. A community Ct
i at time t is said to be labeled with shrink event if there

exists a community Ct+1
j at time t + 1 whose similarity is greater than predefined q

and fluctuation is smaller than �f . Thus, Ct
i has shrunk if

Sim(Ct
i ,C

t+1
j )� q and f luctuation(Ct

i ,C
t+1
j )<�f

Definition 6. Community Ct
i is said to be split to Ct+1

⇤ = {Ct+1
1 ...Ct+1

j } and has split

event if similarity between Ct
i and each Ct+1

⇤ and also similarity between Ct
i and the

union of two or more communities in the set Ct+1
⇤ is greater than q . Thus, Ct

i has split if

8Ct+1
j 2Ct+1

⇤ ,Sim(Ct
i ,C

t+1
j )� q and Sim(Ct

i ,[{Ct+1
⇤ })� q

Definition 7. A set of communities Ct
⇤ = {Ct

1...C
t
i} is said to be merged to Ct+1

j and

have merge event if similarity between each community in Ct
⇤ and Ct+1

j and also

similarity between the union of the communities in Ct
⇤ and Ct+1

j is greater than q .

Thus, a set of communities Ct
⇤ has merged if

8Ct
i 2Ct

⇤,Sim(Ct
i ,C

t+1
j )� q and Sim([{Ct

⇤},Ct+1
j )� q
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Definition 8. A community Ct
i at time t is said to be labeled with dissolve event if there

is no matching community at time t + 1 whose similarity threshold is greater than q .

Thus, Ct
i has dissolved if

Sim(Ct
i ,C

t+1
j < q)

Overall event detection procedure is given in Algorithm 2.

Algorithm 2 Event detection.
Input: Sim(Ct

i ,C
t+1
j )

Output: Event label

1: if 8Ct
i 2Ct

⇤,Sim(Ct
i ,C

t+1
j )� q and Sim([{Ct

⇤},Ct+1
j )� q then

2: label is Merge
3: else if 8Ct+1

j 2Ct+1
⇤ ,Sim(Ct

i ,C
t+1
j )� q and Sim(Ct

i ,[{Ct+1
⇤ })� q then

4: label is Split
5: else if Sim(Ct

i ,C
t+1
j )� q and �f  f luctuation(Ct

i ,C
t+1
j ) f then

6: label is Survive
7: else if Sim(Ct

i ,C
t+1
j )� q and f luctuation(Ct

i ,C
t+1
j )> f then

8: label is Growth
9: else if Sim(Ct

i ,C
t+1
j )� q and f luctuation(Ct

i ,C
t+1
j )<�f then

10: label is Shrink
11: else
12: label is Dissolve
13: end if

4.1.5 Time series analysis

There are two main objectives of the time series prediction, namely, 1) To predict the

change of community features of a given community over time 2) To quantitatively

characterize the development process of communities. Let w be the window length

and h is the horizon number, our task is to predict the community events of subsequent

snapshot th+w+1 by concerning the data of [th+1, th+w]. In our proposed approach,

we build time series for each community feature of the set { f1, f2, ..., fk} related to

community Ch+w+1
i . Thus, as instance, time series related to f1 of Ch+w+1

i become

T S1
i = { f h+1

1 , f h+2
1 , ..., f h+w

1 }. As a results of applying time series forecasting methods,

the time serie T S1
i produce a predicted value of the feature, p f 1

i . Hence, the attributes

of community Ch+w+1
i which will be used to detect event label by classifiers is

{p f 1
i , p f 2

i , ..., p f k
i }.
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4.1.6 Classification

At the last step, the well-known classifiers are adopted in order to determine

corresponding event labels: Adaboost (Base Classifier: Decision Stump), Simple Cart,

Bayes Net (Estimator: SimpleEstimator, Search Algorithm: K2) and Bagging (Base

Classifier: REPTree) [63]. The instances obtained from G� are used as the training

set for the classifiers. The goal of classification is to predict the next event of a given

community at G+.

4.2 Experimental Study

4.2.1 Datasets

Two citation networks from the High Energy Physics Theory (hepTh) and High Energy

Physics Phenomenology (hepPh) sections in e-print arXiv are used in this phase. The

hepTh and hepPh are the collaboration networks that covers scientific collaborations

between authors’ papers. Table 4.2 shows detailed information about the datasets. Four

year period in each dataset is experimented by taking three months interval snapshots

being sixteen time steps and fifteen evolution transitions in total.

Table 4.2 : hepTh and hepPh datasets.

Name No. of papers No. of citations Time period
hepTh 22623 107857 1993-1997
hepPh 28073 477971 1993-1997

4.2.2 Experimental configuration

The datasets were represented as nodes and relationships that connect nodes were

represented as edges. Each entry in the dataset was annotated with the timestamp of the

connection. Each dataset was divided into sixteen time frames. A network snapshot

at time t contains all nodes and edges existing at the corresponding time or prior to

t. Networks were taken to be undirected and unweighted. The communities whose

size was smaller than three members were ignored. This diminishment was performed

intuitively, since a group of nodes that consist of less than three members does not form

a community. Setting the appropriate similarity threshold (q ) and fluctuation threshold

(f ) is very crucial in the study. A low value of q may lead to a substantial amount of
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matching communities, while high value of q results in more dissolutions. Similarly,

low value of f results in a small amount of survival and an excessive number of grown

and shrunken communities. As f increases, the number of survive events increases.

To select the optimal thresholds, q and f values have been trained and event rates

are observed. In order to investigate the impact of the similarity threshold (q ) on the

community evolution, experiments were conducted where q was varied from 0.1 to 1

and f fixed at 0.15, yielding the results as depicted in Figure 4.6.

Figure 4.6 : Number of events vs. similarity threshold (q ) of hepTh and hepPh
datasets.

Figure 4.6 shows that the q value has a noticable effect on the observed events: the

number of survive, growth, shrink, merge, split events drop as q increases, while there

are more dissolve events. A low q value induces a slew of matching communities

thus enabling the observation of a significant number of events apart from dissolve.

Besides, high values of q result in a small amount of matching communities and

events other than dissolve. Besides, high values of q result in a small amount of

matching communities and events other than dissolve. Therefore, selecting the optimal

similarity threshold is crucial and it differs with respect to the structural characteristics

of the networks. We intended to select a threshold where the event numbers were as

well-proportioned in their distribution as possible. In hepTh, q is selected as 0.3 due

to decrease in the number of split and merge events after that threshold. q is picked as

0.2 for hepPh dataset, since it is a breakpoint particularly for growth and split events.

Fluctuation threshold (f ) is the other metric to be tuned and has significant effect on the

survive, growth and shrink events. So as to determine the optimal f value, experiments

were conducted where f was varied from 0.1 to 0.5 while fixing q at 0.3, yielding the

results as shown in Figure 4.7.

29



Figure 4.7 : Number of events vs. fluctuation threshold (f ) of hepTh and hepPh
datasets.

It can easily be observed that the number of survive events increases, whereas the

number of growth and shrink events drops gradually as f increases. In hepTh, balanced

distribution has been attained with f = 0.15. In hepPh, the gap between the observed

event rates begins to grow after f = 0.1. Thus, the choice of similarity and fluctuation

thresholds is q = 0.3,f = 0.15 in hepTh, and q = 0.2,f = 0.1 in hepPh respectively.

4.2.3 Results

Initially, we give the prediction results of the event detection procedure. The

classification results of the event detection procedure for various window lengths

w = {8, ...,15} in predicting events of timestamps t9, ..., t16 have been provided in

terms of F-measure using classifiers Adaboost, Simple Cart, Bayes Net and Bagging

(for simplicity, four classifiers are selected including the best and worst performers).

The results of each classifier are the average values of 5 independent runs. Table 4.3

reports the event prediction results of hepTh dataset.

Results in Table 4.3 indicate that event prediction model accurately predicts

community events and the accuracy values are in the range 0.54 to 0.96. It can also

be observed that Adaboost performed worst while other classifiers producing higher

results. The results are no evidence of overall superiority of one window length over

another due to fluctuative performance of both window lengths and classifiers.
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Table 4.3 : hepTh-event prediction results.

w Classifier t 9 t10 t11 t12 t13 t14 t15 t16

w=8

Adaboost 0.83 0.71 0.78 0.78 0.66 0.79 0.80 0.80
Simple Cart 0.76 0.90 0.92 0.88 0.95 0.92 0.88 0.86

Bayes Net 0.71 0.80 0.78 0.80 0.76 0.85 0.75 0.78
Bagging 0.80 0.88 0.87 0.88 0.92 0.86 0.82 0.83

w=9

Adaboost 0.72 0.67 0.70 0.66 0.65 0.63 0.62
Simple Cart 0.86 0.89 0.88 0.95 0.92 0.90 0.93

Bayes Net 0.82 0.80 0.80 0.70 0.75 0.74 0.80
Bagging 0.87 0.94 0.88 0.96 0.80 0.84 0.90

w=10

Adaboost 0.68 0.76 0.65 0.69 0.68 0.62
Simple Cart 0.95 0.97 0.96 0.96 0.97 0.97

Bayes Net 0.82 0.96 0.87 0.83 0.87 0.80
Bagging 0.92 0.98 0.94 0.95 0.94 0.92

w=11

Adaboost 0.68 0.64 0.69 0.75 0.54
Simple Cart 0.90 0.95 0.90 0.96 0.96

Bayes Net 0.71 0.87 0.78 0.85 0.70
Bagging 0.88 0.94 0.91 0.94 0.90

w=12

Adaboost 0.65 0.70 0.70 0.73
Simple Cart 0.90 0.85 0.95 0.94

Bayes Net 0.81 0.85 0.84 0.82
Bagging 0.90 0.93 0.92 0.93

w=13

Adaboost 0.62 0.65 0.65
Simple Cart 0.93 0.90 0.94

Bayes Net 0.72 0.80 0.70
Bagging 0.89 0.88 0.91

w=14

Adaboost 0.64 0.60
Simple Cart 0.96 0.92

Bayes Net 0.79 0.80
Bagging 0.94 0.91

w=15

Adaboost 0.61
Simple Cart 0.86

Bayes Net 0.73
Bagging 0.83

The results of the event detection procedure of hepPh have been provided in Table 4.4.

Similar to hepTh dataset, the procedure has produced good prediction results. The best

accuracy for the hepPh dataset is 0.97 and the worst is 0.52. Results in Table 4.3 and

Table 4.4 quantitatively indicate that good performance is obtained by proposed event

detection procedure. So far, conducted experiments have shown the non-necessity of

investigating long period of past to achieve better event prediction. For the sake of

example, while predicting t15 in Table 4.4, window length of eight (w = 8) produce

almost same results with w = 13 or w = 14. In predicting t16, the results of w = 15

are relatively better than w = 8, but comparable with w = 9. Observed differences are

negligible when we consider the computation cost of larger window lengths.
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Table 4.4 : hepPh-event prediction results.

w Classifier t 9 t10 t11 t12 t13 t14 t15 t16

w=8

Adaboost 0.55 0.53 0.57 0.57 0.67 0.63 0.64 0.68
Simple Cart 0.97 0.93 0.90 0.93 0.91 0.96 0.97 0.95

Bayes Net 0.84 0.80 0.88 0.86 0.83 0.91 0.90 0.86
Bagging 0.93 0.87 0.91 0.84 0.90 0.93 0.96 0.90

w=9

Adaboost 0.53 0.52 0.60 0.60 0.62 0.70 0.64
Simple Cart 0.89 0.93 0.97 0.97 0.97 0.98 0.97

Bayes Net 0.92 0.87 0.89 0.88 0.87 0.90 0.93
Bagging 0.96 0.93 0.96 0.94 0.94 0.96 0.95

w=10

Adaboost 0.60 0.66 0.77 0.74 0.79 0.64
Simple Cart 0.90 0.92 0.97 0.99 0.97 0.95

Bayes Net 0.88 0.91 0.90 0.93 0.90 0.95
Bagging 0.89 0.92 0.96 0.92 0.95 0.95

w=11

Adaboost 0.73 0.62 0.68 0.62 0.67
Simple Cart 0.96 0.96 0.96 0.95 0.92

Bayes Net 0.90 0.92 0.92 0.92 0.88
Bagging 0.96 0.95 0.94 0.92 0.88

w=12

Adaboost 0.68 0.71 0.62 0.65
Simple Cart 0.97 0.96 0.94 0.89

Bayes Net 0.78 0.80 0.83 0.81
Bagging 0.93 0.93 0.88 0.90

w=13

Adaboost 0.72 0.61 0.64
Simple Cart 0.96 0.96 0.96

Bayes Net 0.90 0.91 0.90
Bagging 0.92 0.93 0.95

w=14

Adaboost 0.70 0.68
Simple Cart 0.97 0.95

Bayes Net 0.90 0.92
Bagging 0.96 0.95

w=15

Adaboost 0.70
Simple Cart 0.94

Bayes Net 0.91
Bagging 0.95

After the success of event detection procedure has been shown, we evaluate the

performance of the predictive models by comparing their ability to accurately predict

the actual events. The ANN, ARIMA and ETS models are tested through various

Weka classifiers. The results of each classifier are averaged over 5 independent

runs. First, we investigate the matching up values of the actual event labels and the

identified event labels by the proposed framework in terms of F-measure. Matching up

values represent to what extend the identified event labels are overlap with the actual

event labels. The performance of ANN, ARIMA and ETS models are analyzed with

various window lengths w= {8, ...,15}. Besides, comparative analysis of the landmark

window and sliding window has been provided. Afterwards, the global performance of

32



the forecasting models are evaluated by an accuracy measure, such as Mean Absolute

Percentage Error (MAPE). The mathematical formulation of the considered measure

is given below:

MAPE =
1
n

n

Â
i=1

k

Â
j=1

|
Ai

j �Fi
j

Ai
j

| (4.5)

where Ai
j represents the actual f j value of Ci and Fi

j is the forecasted f j value of Ci.

Lower MAPE indicates better forecasts.

Table 4.5 : hepTh-match up results of ANN.

Landmark
Window

Sliding Window
Timestamp Classifier w=8 w=9 w=10 w=11 w=12 w=13 w=14

t9

Adaboost 1.00
Simple Cart 1.00

Bayes Net 0.99
Bagging 0.97

t10

Adaboost 1.00 1.00
Simple Cart 1.00 1.00

Bayes Net 0.97 0.95
Bagging 0.98 0.91

t11

Adaboost 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00

Bayes Net 0.94 1.00 0.94
Bagging 1.00 1.00 1.00

t12

Adaboost 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 0.97 1.00

Bayes Net 0.80 0.89 0.93 0.85
Bagging 1.00 1.00 1.00 0.95

t13

Adaboost 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.92 1.00 1.00 1.00

Bayes Net 0.88 0.83 0.96 0.83 0.81
Bagging 0.82 0.69 0.95 0.90 0.94

t14

Adaboost 1.00 0.99 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.92 0.67 1.00 1.00 1.00

Bayes Net 0.84 0.96 1.00 1.00 0.84 0.87
Bagging 0.78 0.84 0.69 0.82 0.95 0.88

t15

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bayes Net 0.86 0.84 0.78 0.96 0.96 0.89 0.85
Bagging 0.99 0.73 0.69 0.83 0.91 0.84 0.99

t16

Adaboost 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.84 0.83 0.95 0.86 1.00 0.89 1.00

Bayes Net 0.90 0.79 0.80 0.90 0.89 0.92 0.81 0.82
Bagging 0.92 0.72 0.81 0.96 0.82 0.84 0.75 0.92

The time series analysis results of the hepTh dataset using ANN, ARIMA and ETS

have shown in Table 4.5, Table 4.6 and Table 4.7 respectively. The left most column
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of the tables indicates the timestamp to be predicted. As instance, the sixth row of the

w = 8 column represents the matching up value of Simple Cart classifier in predicting

t10 using eight windows.

Our results in Table 4.5 indicate that the predicted event labels of the framework using

ANN model in hepTh dataset substantially intersect with the actual event labels as high

as 1.00. We can also observe that the minimum matching up value is 0.67. Entirely, it is

not possible to mention about the superiority of landmark or sliding window approach

in this table. Nonetheless, in some horizons either of them out competes, e.g. sliding

window approach gave better results a major part in predicting t14.

Table 4.6 : hepTh-match up results of ARIMA.

Landmark
Window

Sliding Window
Timestamp Classifier w=8 w=9 w=10 w=11 w=12 w=13 w=14

t9

Adaboost 1.00
Simple Cart 1.00

Bayes Net 0.99
Bagging 0.97

t10

Adaboost 1.00 1.00
Simple Cart 1.00 1.00

Bayes Net 0.97 0.96
Bagging 0.99 0.90

t11

Adaboost 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00

Bayes Net 0.94 0.99 0.94
Bagging 1.00 1.00 1.00

t12

Adaboost 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00

Bayes Net 0.84 0.91 0.92 0.79
Bagging 1.00 1.00 1.00 0.95

t13

Adaboost 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.92 1.00 1.00 1.00

Bayes Net 0.88 0.83 0.96 0.88 0.81
Bagging 0.83 0.69 0.96 0.91 0.95

t14

Adaboost 1.00 0.97 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.92 0.67 1.00 1.00 1.00

Bayes Net 0.84 0.92 0.96 0.95 0.87 0.83
Bagging 0.78 0.83 0.74 0.81 0.93 0.88

t15

Adaboost 1.00 1.00 0.98 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bayes Net 0.85 0.81 0.77 0.96 0.93 0.84 0.81
Bagging 1.00 0.70 0.73 0.77 0.90 0.84 0.99

t16

Adaboost 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.83 0.83 0.95 0.87 1.00 0.84 1.00

Bayes Net 0.85 0.78 0.79 0.88 0.83 0.92 0.81 0.79
Bagging 0.86 0.71 0.78 0.82 0.75 0.87 0.75 0.89
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Similarly, good results are attained using Arima with 1.00 being the highest and 0.67

being the worst value (Table 4.6). Landmark substantially overcomes smaller window

lengths (w= 8 and w= 9) while predicting t15 and t16. There exist more or less equality

in predicting other timestamps.

Table 4.7 : hepTh-match up results of ETS.

Landmark
Window

Sliding Window
Timestamp Classifier w=8 w=9 w=10 w=11 w=12 w=13 w=14

t9

Adaboost 1.00
Simple Cart 1.00

Bayes Net 1.00
Bagging 0.97

t10

Adaboost 1.00 1.00
Simple Cart 1.00 1.00

Bayes Net 0.97 0.96
Bagging 0.98 0.92

t11

Adaboost 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00

Bayes Net 0.94 1.00 0.94
Bagging 1.00 1.00 1.00

t12

Adaboost 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 0.97 1.00

Bayes Net 0.85 0.89 0.93 0.87
Bagging 1.00 0.99 1.00 0.95

t13

Adaboost 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.92 1.00 1.00 1.00

Bayes Net 0.87 0.87 0.96 0.83 0.81
Bagging 0.81 0.69 0.93 0.90 0.95

t14

Adaboost 1.00 0.99 1.00 1.00 1.00 1.00
Simple Cart 1.00 0.92 0.67 1.00 1.00 1.00

Bayes Net 0.85 0.97 1.00 0.99 0.86 0.87
Bagging 0.77 0.84 0.74 0.82 0.93 0.87

t15

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bayes Net 0.86 0.85 0.78 1.00 0.96 0.89 0.87
Bagging 1.00 0.70 0.68 0.83 0.90 0.84 0.99

t16

Adaboost 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 0.84 0.84 0.83 0.95 0.86 1.00 0.88 1.00

Bayes Net 0.79 0.79 0.80 0.89 0.89 0.92 0.88 0.84
Bagging 0.72 0.72 0.77 0.87 0.82 0.87 0.76 0.92

As it is presented in Table 4.7, ETS results of hepTh dataset vary between 0.67 and

1.00. Sliding windows perform better specifically in predicting t14 and t16 and both

approach performed almost identical in the remaining timestamps.

We can easily see that the predicted events using time series analysis models highly

overlap with the actual events in hepTh dataset. The classifier results fluctuates as the
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window length changes. Despite the fluctuation in the results, sliding window works

well in particular with ARIMA and ETS model as against to landmark.
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Figure 4.8 : hepTh-MAPE results.

MAPE rates of hepTh dataset are figured demostratively horizon results for each w in

Figure 4.8. Note that h0 corresponds to landmark approaach. As it can be seen, the

mean performance of ETS is better than the other models. The ARIMA model stands
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in the second place and ANN performed worst. Furthermore, we observe an inverse

correlation between error estimates and matching rates. As instance, a lowest error

rate for all models are obtained in w = 8 and h2 which corresponds predicting t11 with

w= 8 where higher F-measure results are attained in a considerable extend. The related

MAPE and F-measure intervals for the models are as follows: ANN (MAPE:0.11,

F-measure:[1]), ARIMA (MAPE:0.11, F-measure:[0.99,1]) and ETS (MAPE:0.11,

F-measure:[1]). Another example is the abrupt rising of ANN error rate at w = 13

in prediction of second horizon (h2) which results in decrease on classifiers Bayes Net

and Bagging.

Table 4.8 : hepPh-match up results of ANN.

Landmark
Window

Sliding Window
Timestamp Classifier w=8 w=9 w=10 w=11 w=12 w=13 w=14

t9

Adaboost 0.92
Simple Cart 1.00

Bayes Net 0.97
Bagging 0.88

t10

Adaboost 1.00 1.00
Simple Cart 0.86 0.81

Bayes Net 0.88 0.98
Bagging 0.86 0.87

t11

Adaboost 1.00 1.00 1.00
Simple Cart 1.00 0.96 0.81

Bayes Net 1.00 1.00 0.86
Bagging 0.97 1.00 0.96

t12

Adaboost 1.00 1.00 1.00 1.00
Simple Cart 0.88 1.00 0.95 0.68

Bayes Net 1.00 0.97 0.97 0.89
Bagging 0.96 0.97 0.91 0.91

t13

Adaboost 1.00 1.00 0.92 0.98 0.87
Simple Cart 1.00 1.00 0.81 0.90 0.91

Bayes Net 1.00 1.00 0.90 1.00 0.76
Bagging 0.83 0.90 0.88 0.95 0.79

t14

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 0.68 0.92

Bayes Net 1.00 0.89 0.97 1.00 1.00 0.98
Bagging 0.78 0.79 0.67 0.65 0.68 0.61

t15

Adaboost 1.00 1.00 1.00 0.92 1.00 1.00 1.00
Simple Cart 0.77 0.71 0.95 0.87 1.00 1.00 1.00

Bayes Net 0.86 0.89 0.82 0.76 0.92 0.97 0.92
Bagging 0.73 0.88 0.82 0.38 0.37 0.62 0.68

t16

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 0.98 0.66 1.00 0.98

Bayes Net 0.97 0.94 1.00 0.88 0.88 0.95 0.99 0.92
Bagging 0.87 0.98 0.87 0.89 0.88 0.87 0.79 0.71
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Matching up results of hepPh dataset using ANN, ARIMA and ETS models are

reported in Table 4.8, Table 4.9 and Table 4.10 respectively. Table 4.8 reveals that

results of ANN model in hepPh dataset change between 0.37 and 1.00. We can deduce

that the proposed model is more successful in smaller window lengths, especially with

w = 8 and w = 9.

Table 4.9 displays the ARIMA results of hepPh datasets. The lowest matching rate is

found as 0.30 and the highest rate is 1.00. Likewise ANN, ARIMA is successful in

smaller window lengths. On the other hand, we observe that the mean value of the

landmark window results are slightly lower than ANN.

Table 4.9 : hepPh-match up results of ARIMA.

Landmark
Window

Sliding Window
Timestamp Classifier w=8 w=9 w=10 w=11 w=12 w=13 w=14

t9

Adaboost 0.76
Simple Cart 1.00

Bayes Net 0.97
Bagging 0.88

t10

Adaboost 0.88 1.00
Simple Cart 0.86 0.74

Bayes Net 0.78 0.94
Bagging 0.86 0.64

t11

Adaboost 0.98 0.97 1.00
Simple Cart 1.00 0.92 0.84

Bayes Net 1.00 1.00 0.86
Bagging 0.97 1.00 0.96

t12

Adaboost 0.90 1.00 1.00 0.90
Simple Cart 0.78 1.00 0.95 0.58

Bayes Net 0.90 0.97 0.97 0.89
Bagging 0.86 0.97 0.91 0.84

t13

Adaboost 1.00 0.91 0.92 0.98 0.87
Simple Cart 1.00 0.98 0.81 0.90 0.83

Bayes Net 1.00 1.00 0.90 1.00 0.76
Bagging 0.83 0.88 0.88 0.95 0.76

t14

Adaboost 1.00 1.00 1.00 1.00 1.00 0.98
Simple Cart 1.00 1.00 1.00 1.00 0.68 0.90

Bayes Net 1.00 0.89 0.97 1.00 1.00 0.96
Bagging 0.60 0.80 0.76 0.73 0.68 0.60

t15

Adaboost 1.00 1.00 1.00 0.92 1.00 1.00 1.00
Simple Cart 0.67 0.78 0.95 0.87 1.00 1.00 1.00

Bayes Net 0.86 0.89 0.82 0.76 0.92 0.97 0.92
Bagging 0.59 0.86 0.84 0.38 0.30 0.59 0.58

t16

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 0.98 0.66 1.00 0.98

Bayes Net 0.97 0.96 1.00 0.88 0.88 0.95 0.99 0.92
Bagging 0.86 0.98 0.87 0.87 0.88 0.82 0.73 0.71
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The ETS results of hepPh dataset is as given in Table 4.10 with 1.00 being the best and

0.37 being the worst match up result as in the other models. Similarly, sliding window

approach with smaller window lengths exceeds landmark in most instances.

Table 4.10 : hepPh-match up results of ETS.

Landmark
Window

Sliding Window
Timestamp Classifier w=8 w=9 w=10 w=11 w=12 w=13 w=14

t9

Adaboost 0.92
Simple Cart 1.00

Bayes Net 0.97
Bagging 0.88

t10

Adaboost 1.00 1.00
Simple Cart 0.86 0.89

Bayes Net 0.88 0.98
Bagging 0.86 0.64

t11

Adaboost 1.00 1.00 1.00
Simple Cart 1.00 0.96 0.84

Bayes Net 1.00 1.00 0.86
Bagging 0.97 1.00 0.96

t12

Adaboost 1.00 1.00 1.00 1.00
Simple Cart 0.88 1.00 0.95 0.68

Bayes Net 1.00 0.97 0.97 0.89
Bagging 0.96 0.97 0.91 0.91

t13

Adaboost 1.00 1.00 0.92 0.98 0.87
Simple Cart 1.00 1.00 0.81 0.90 0.91

Bayes Net 1.00 1.00 0.90 1.00 0.78
Bagging 0.83 0.90 0.88 0.95 0.76

t14

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 0.68 0.92

Bayes Net 1.00 0.89 0.97 1.00 1.00 0.98
Bagging 0.58 0.65 0.67 0.65 0.68 0.61

t15

Adaboost 1.00 1.00 1.00 0.92 1.00 1.00 1.00
Simple Cart 0.77 0.78 0.95 0.87 1.00 1.00 1.00

Bayes Net 0.86 0.89 0.82 0.76 0.92 0.97 0.92
Bagging 0.73 0.88 0.84 0.54 0.37 0.62 0.68

t16

Adaboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Simple Cart 1.00 1.00 1.00 1.00 0.98 0.66 1.00 0.98

Bayes Net 0.97 0.96 1.00 0.88 0.88 0.95 0.99 0.92
Bagging 0.87 0.98 0.87 0.87 0.88 0.89 0.79 0.63

Figure 4.9 has shown the MAPEs of hepPh dataset in various window lenghts. It is

obvious that the forecasting error made by ANN model is worser than the other models

and ETS results are slightly better than the ARIMA. We can also observe the inverse

correlation between the MAPEs and matching results. To give an example, the horizon

h0 of w = 15 is one of the lowest MAPEs obtained horizon commonly by all models

which corresponds predicting t16 using landmark window. F-measure values of this
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horizon also verifies the correlation with higher results by having values in interval of

[0.80,1] for all models.
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Figure 4.9 : hepPh-MAPE results.

The experimentation on both datasets revealed that the labels predicted by our

framework excessively overlaps with the actual event labels. Time series models

estimate the community features successfully. The models can be rank by ascending
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order with regard to the error rate as follows: ETS, ARIMA, ANN. An inverse

correlation between MAPE and F-measure results has been observed. After all, we

can proudly say that the proposed framework is robust to the error rate of time series

forecasting. More clearly, any abrupt change, rise/fall in time series model estimation

does not evenly reflect to event prediction. It is also worth to mention that the results of

the current study demonstrated that computing a less amount of past may yield better

results than analyzing the whole history in a dynamic network.
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5. FEATURE IDENTIFICATION FOR PREDICTING COMMUNITY
EVOLUTION

This chapter introduces the Feature Identification for Event Prediction (FIEP)

framework which is proposed to detect the most representative set of features for

a given network before starting the community evolution process. An experimental

system is designed to determine a community feature subset that results in higher (or

at least the same) community event prediction accuracies than using all features.

5.1 Problem Formulation

This section briefly introduces the problem definition and formulation as well as

the Feature Identification for Event Prediction (FIEP) framework. The framework

concerned with identifying the appropriate feature set in predicting the evolutionary

dynamics of a sequence of graphs G = {G1, ...,GT} where Gt = (Vt ,Et) denotes a

graph containing the set of vertices and their interactions up to a particular snapshot

t. FIEP framework takes the graph snapshots as input and produces event prediction

results. The FIEP framework is comprised of two layers: Feature Identification Layer

and Event Prediction Layer. Feature Identification Layer gets the first snapshot G1 of

the graph G and outputs the identified community feature subset. Event Prediction

Layer obtains the graph G and produces prediction results utilizing the identified

feature set generated by the feature identification layer. The notations used throughout

the section are listed in Table 5.1.

Overall FIEP framework is represented in Figure 5.1, which is described in

Algorithm 3. Lines 1-2 pertain to Feature Identification Layer while Lines 3-12

concern the Event Prediction Layer in Figure 5.1. Structural Network Analysis

component corresponds to Line 1 while Community Feature Identifier component

corresponds to Line 2. Event Prediction Layer comprises the following components

respectively: Community Detection (Line 4), Feature Extraction (Line 6), Community

Matching and Event Detection (Line 7-8), and Classification (Lines 9-12).

43



Table 5.1 : Notations and definitions.

Symbol Description
G = G1, ...,GT The graph sequence
T The number of timestamps
Gt The graph at time t
Ct The communities at time t
Ct

i The ith community at time t
NM = {NM1, .....,NMk} The structural network measures
F = { f1, ....., fk} The feature sequence
Fi = { f i

1, ....., f i
k} The feature sequence of Ci

IF = {i fx, ..., i f z} The identified feature set where | IF | r IF ⇢ F
SF = {s fx, ...,s f z} The selected feature set where | SF | r SF ⇢ F
Sim(Ct

i ,C
t+1
j ) Similarity of Ct

i and Ct+1
j

q Similarity Threshold
f Fluctuation Threshold

Community 
Detection Feature Extraction

Community 
Matching

&
Event Detection

ClassificationG

Prediction 
Results

Structural Network
 Analysis

Community Feature Identifier

FSE Multi-Label Classification

G1

Feature 
Identification 

Layer

Event 
Prediction 

Layer

Figure 5.1 : Feature identification for event prediction (FIEP) framework.

In the first line of the Algorithm 3, the structural network measures (NM), such

as clustering coefficient, average path length, embeddedness and betweenness are

computed on the first graph snapshot where the details are given in Section 5.1.1.1.

In the second line, community feature identifier process is applied to identify a

feature subset (IF) by using structural network measures, and the detail of the process

is provided in Section 5.1.1.2. The third and fourth lines consist of discovering

communities of each graph snapshot using a community detection algorithm. Then

for every community Ct
i 2 Ct , the IF produced in the second step is calculated (Line

6). The corresponding community event is detected according to the similarity between
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the community and its successor and the instance is created (Lines 7-9). Community

detection and the community matching and event detection stage will be explained

under the title FSE in Section 5.1.1.2. The last step of the algorithm is applying

classifiers on the created instances to produce a prediction result (Line 12).

Algorithm 3 Feature identification for event prediction (FIEP) framework.
Input: A sequence of undirected and unweighted graphs: G = G1, ...,GT

Output: Prediction results

1: Compute structural network measures NM of G1

2: Apply "Community Feature Identifier" process to extract IF = {i fx, ..., i fz}
3: for every graph Gt in the sequence do
4: Apply community detection algorithm to extract Ct = {Ct

1,C
t
2....,C

t
l}

5: for every community Ct
i 2Ct do

6: Calculate identified features {i f (x)...i f (z)}
7: Calculate Sim(Ct

i ,C
t+1
j ) with Ct+1

j 2Ct+1

8: Apply "Event Detection" procedure
9: Create an instance with the calculated community features and event label

10: end for
11: end for
12: Apply classifiers.

5.1.1 Feature identification layer

Feature identification layer has two main components: structural network analysis and

community feature identifier. The objective of feature identifier layer is to build a

model using a multi-label classifier on synthetic datasets which makes it possible to

determine important subsets of community features of future networks in an automated

way. Initially, NM, such as clustering coefficient, average path length, embeddedness

and betweenness are computed on the first graph snapshot. Then the community

feature identifier process is applied to extract IF.

5.1.1.1 Structural network analysis

Various measures of the network structure have been used allowing us to understand

the structure of a particular network. As an example, Carrington et al. propose

a list of some measures, including degree distribution, diameter and clustering

coefficient [64]. Wasserman and Faust [65] used five properties of social network

including betweenness centrality, degree, strength, closeness and clustering coefficient.

However, not all of these measures provide information on the underlying structure
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of the networks. Experiments were carried out on radius, diameter, closeness

centrality, degree distribution coefficient, average path length, clustering coefficient,

embeddedness and betweenness centrality measures. Since the experiments show that

radius, diameter, closeness centrality and degree distribution coefficient do not yield

discriminative and beneficial results in event prediction. The constitutional affinity and

correlation between the structural metrics and community features might designate the

discriminatory behavior of the structural metrics. The results of non-discriminatory

metrics are not included for the sake of simplicity. As is known, different notions of

community structures are implemented by numerous community detection algorithms.

However, the ultimate aim of all of them is detecting groups with better internal

connectivity than external connectivity. Whichever algorithm is used, the resulting

communities are actual sub-graphs of the studied network. Therefore, their statistical

properties reflect the mesoscopic organization of networks and this organization is

similar between the networks with similar characteristics. Moreover, link densities

within communities depend strongly on the topology of the network [66].

In this study, some of the connection oriented topological measures that are conducive

to characterizing community structures are considered. The following measures have

been investigated: clustering coefficient, average path length, embeddedness and

betweenness centrality.

First examined measure is clustering coefficient (NM1), which quantifies how densely

the neighbourhood of a node is connected. It is a measure of the degree to which the

nodes in a graph tend to cluster together. The clustering coefficient of a node i is the

fraction of pairs of i’s neighbour nodes that are connected to each other by edges [67].

The clustering coefficient of a node also represents how well connected its neighbours

are. The local clustering coefficient for undirected graphs can be defined as:

CCi =
2di

di(di�1)
(5.1)

where di is the degree of node i and di is the number of triangles containing that node i.

The clustering coefficient of a network is the mean clustering coefficient of all nodes:

CCN =
1
N Â

i
Ci (5.2)
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In a tightly connected network, the clustering coefficient approaches 1. Greater

clustering coefficient is one of two important characteristics of the “small-world”

networks revealed by Watts and Strogatz [67].

The other characteristic of “small-world” networks is smaller path length. Average

path length (NM2) of the network is defined as the average minimal distance between

all pairs of its nodes. Let D(i, j) denote the shortest distance between node i and node

j, the average path length of the network lG is:

lG =
Âi6= j D(i, j)
N(N �1)

(5.3)

Smaller path length is the other characteristic of “small-world” networks [67]. A

shorter average path length is an indicator of how close the nodes are one to another

and enables the quick transfer of information within the network.

The other measure is embeddedness (NM3), an important measure of social networks

[68]. It refers to a node’s relative involvement depth in social relations. The

embeddedness of an edge e = (i, j) in a network G(V,E), named as dG(e), is defined

to be the number of common neighbors of i and j. For an edge e, the subnetwork

consisting of the nodes i, j and their common neighbors dG(e) is called d � triangle

[69]. The embeddedness value of an edge is high if two nodes adjacent on the edge

have a high overlap of neighborhoods. Sometimes, embeddedness notion is defined

under a different name called tie strength and within highly relationally embedded

networks, the more nodes are integrated in dense clusters.

Lastly, betweenness (NM4) centrality is computed, which is the most widely used

metric to measure the importance of a node in a network. Betweenness counts the

number of shortest paths in a network that passes through a node and takes into account

the connectivity of the node’s neighbors by giving a higher value for nodes which

bridge clusters. It can be represented as:

B(i) = Â
i6= j 6=k2V

s jk(i)
s jk

(5.4)

where s jk is total number of shortest paths from node j to node k and s jk(i) is

the number of those paths that pass through i. Nodes that occur on many shortest

paths between other vertices have higher betweenness and play an important role in

communication within the network [70].
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5.1.1.2 Community feature identifier

Community feature identifier process aims at producing identified feature set IF by

using NM of the first snapshot of the network. Initially, a correlation should be found

between the structural network measures and the community features. It is not accurate

to generalize the correlation results using only four datasets. Since there is a limited

number of real-world datasets, it makes sense to take advantage of synthetic datasets

having different topologies. First, NM of the synthetic datasets was calculated. Then,

FSE algorithm was applied, as given in Algorithm 4, on synthetic datasets to extract

selected community feature set (SF). Each synthetic dataset forms a train instance in

the training dataset with its structural measures as attributes and selected community

features as class labels. In this dataset each instance may have more than one label,

since each network with different characteristics yields a subset of useful community

features. For this reason, a multi-label classifier is needed. Thus, synthetic datasets

are used as training instances to learn community features SF i.e. they are used as

multi-labels and build a classification model which is subsequently applied to real

networks in extracting their important community features (IF).

• Feature Subset Extraction (FSE): Feature Subset Extraction (FSE) algorithm takes

the graph snapshots G as input and outputs the selected subset of features (SF).

FSE algorithm aims to explore a feature subset for a given network by utilizing

various community detection and feature selection algorithms. An outline of the

entire process is provided in Algorithm 4.

Algorithm 4 Feature subset extraction algorithm (FSE).
Input: A sequence of undirected and unweighted graphs: G = G1, ...,GT

Output: Selected feature set (SF)

1: for every graph Gt in the sequence do
2: Apply community detection algorithm to extract Ct = {Ct

1,C
t
2....,C

t
l}

3: for every community Ct
i 2Ct do

4: Calculate community features Fi = f i
1, ..., f i

k
5: Calculate Sim(Ct

i ,C
t+1
j ) with Ct+1

j 2Ct+1

6: Apply “Event Detection" procedure
7: Create an instance with the features and label with the corresponding event
8: end for
9: end for

10: Apply feature selection methods to extract SF.

48



FSE algorithm begins by detecting communities for every graph Gt in the sequence.

The set Ct = {Ct
1,C

t
2, ..C

t
l} is denoted as the l number of communities detected at

the tth snapshot. The community structural features are extracted by measuring

the properties of the communities on a large scale in order to better detect future

community events. The extracted features cover many properties of both the

internal link structure and the external interaction of the community. The six

community events of growth, survive, shrink, merge, split and dissolve were

considered in order to capture the changes of a community. A community can

survive if there exists a similar community in the next snapshot. It can growth by

linking with new members or can shrink by unlinking with existing members. Also,

it may split at a later snapshot if it fractures into multiple communities. In the case

where there is no similar community at a later snapshot, then it is assumed that

the community dissolves. Our event detection process involves two thresholds: q

and f . Two communities that are discovered at consecutive snapshots are similar if

their similarity exceeds a given similarity threshold q 2 [0,1]. After a community

has been discovered as surviving, it is necessary to detect if the community survives

by growing or shrinking, which is done by checking the fluctuation rate f . Since

the purpose of FSE is identifying the most predictive subset of features for the

networks, we utilized several feature selection methods. To sum up, FSE arises

from four stages: (1) Community Detection, (2) Community Feature Extraction,

(3) Community Matching and Event Detection, and (4) Feature Selection.

• Multi-label Classification: The experiments were performed in MEKA which

is an open source tool for multi-label classification [71]. A common approach

to multi-label classification is to perform problem transformation in which a

multi-label classification problem is transformed into a single-label classification

task. The most popular problem transformation method is the Binary Relevance

(BR) method [72]. BR decomposes a multi-label classification problem into several

distinct single-label binary classification problems, one problem for each label, such

that each binary model is trained to predict the relevance of one of the labels. In this

work, BR method with Multi-Class Classifier (MCC) as the base classifier is used

to conduct the feature identification experiment and produce an identified feature

set (IF).
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5.1.2 Event prediction layer

Event prediction layer has four main stages: community detection, feature extraction,

community matching and event detection, and classification. The first three stages are

as mentioned in Section 4.1.2, Section 4.1.3 and Section 4.1.4. The only difference

being that they are computed for IF rather than the entire set. At the last stage of

the event prediction layer, the identified community features with the assigned event

class label of a community constitute an instance and are used as the input parameter

for the classifiers. The following well-known classifiers are adopted in order to

ascertain corresponding event labels: Bagging (Base Classifier: REPTree), Bayes Net

(Estimator: SimpleEstimator, Search Algorithm: K2), J48, Decision Tree, Decision

Table (Search Algorithm: BestFirst), Nearest Neighbor (KNN) (K-value:3, Search

Algorithm: LinearNNSearch), OneR, Random Forest, Random Tree and Simple

CART classifiers 1.

5.2 Experimental Study

Several experimental studies are conducted both on real and synthetic datasets. The

details of these datasets are given in Section 5.2.1. In Section 5.2.2, the experimental

design is explained, along with the threshold settings obtained through exhaustive

experimental analysis. In Section 5.2.3, the results are provided. First, FSE algorithm

performed on real datasets by exploiting a number of community detection algorithms

to demonstrate that prominent features vary across datasets independently of the used

algorithm. Then, the FSE algorithm results on synthetic datasets is given to display the

correlation between the selected community features and the network topology. Lastly,

prediction and performance results of the FIEP framework are provided.

5.2.1 Datasets

Four distinct real datasets and forty synthetic datasets were subject to experimentation

in this study.

5.2.1.1 Real datasets
1The WEKA Data Mining implementation of the classifiers [63]
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The real-world datasets were Digg, Slashdot, Enron, and Internet Topology.

• Digg: Digg is the reply network of the social news web site which allows users to

submit a web page for general consideration and to vote Web content up or down,

called digging and burying, respectively. The dataset consisted of 30,398 nodes and

87,627 edges from August to September 2008 [73]. Each node in the network is a

user of the website, and each directed edge denotes that one user replied to another.

• Slashdot: Slashdot is a popular web site that frequently publishes short news posts

and allows its readers to comment on them. One year of activity on Slashdot and

consisting of 140,778 comments about news posts written by 51,083 users has been

used [74]. Nodes are users and edges are replies. The edges are started by the

responding user and annotated with the timestamp of the reply.

• Enron: Enron is one of the largest public datasets of a corporate e-mail environment.

Each node in the network is an e-mail address, and a timestamped edge represents

an e-mail sent between two addresses. There exist 1,326,771 edges corresponding

to individual e-mails sent between 84,716 e-mail addresses. There were 215,841

unique timestamps covering a period of approximately 4 years [75].

• Internet Topology: Internet Topology is the network of connections between

autonomous systems of the Internet. Autonomous systems are the collections of

connected IP routing prefixes controlled by independent network operators. Nodes

represent the autonomous systems, and edges represent the connections between

autonomous systems. The dataset has 22,084 nodes and 122,439 edges collected

between January 1, 2004 and October 24, 2004 [76].

5.2.1.2 Synthetic datasets

This study makes use of the tool provided by Greene et al. [22] which is adapted from

LFR benchmark dataset generator [77] for dynamic graphs. The LFR is a scalable

model proposed by Lancichinetti et al. for generating static networks with embedded

ground truth communities that closely resemble real-world graphs [78]. The studies

in [79] [80] have also shown the superiority of LFR benchmark over several other

benchmarks with regard to their realism. LFR graphs follow power-law distribution

in both degree and community size, having a user-controlled set of parameters such
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as node number (N), desired average (d ) and maximum degree (dmax), maximum and

minimum community size (Cmin and Cmax), and mixing coefficient (µ). A mixing

coefficient governs the fraction of edges that are between communities. The adapted

version by Greene et al. provides additional parameters to specify the number of time

steps (t) and the probability of a node switching community membership between time

steps (r). Forty synthetic datasets were generated where the number of the nodes

(N) varied between 1000 and 20,000 and the number of edges between 4657 and

183,341. Diverse parameter settings were employed in synthetic dataset generation

to obtain networks with different structures and with the topological properties

consensually considered to be present in real-world networks. The other parameter

settings were varied as the following: t=10, d :[3,25], dmax=[15,3000], Cmin=[3,1000],

Cmax=[20,2000], µ=[0.1,0.2] and r=[0.1,0.5].

5.2.2 Experimental configuration

The datasets were represented as nodes and relationships that connect nodes were

represented as edges. Each entry in the dataset was annotated with the timestamp of the

connection. Each dataset was divided into ten time frames. A network snapshot at time

t contains all nodes and edges existing at the corresponding time or prior to t. Networks

were taken to be undirected and unweighted. Within the scope of the framework,

various community detection algorithms were utilized. However, for the sake of

simplicity, Infomap is selected to present the prediction results of FIEP, since several

papers have shown that Infomap is the best algorithm for LFR benchmarks [81] [82].

It also performs well among several community detection algorithms in real-world

networks [83]. Furthermore, it was found that the community size distribution obtained

by applying Infomap fits power-law in our studied networks, being very similar to those

of the real graphs. The communities whose size was smaller than three members were

ignored. This diminishment was performed intuitively, since a group of nodes that

consist of less than three members does not form a community.

The cardinality of selected and identified feature subset r (Table 5.1) was set at four

since it is not efficient to pick and compute more than four features among nine in

terms of time and complexity. The other important parameters to be tuned were

similarity threshold (q ) and fluctuation threshold (f ). The impact of the thresholds on
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the evolution of the communities can be understood from the results in Section 4.2.2.

which are presented along with the setting procedure for real datasets. The same

procedure was also performed on synthetic datasets (results not shown here). In

all experiments, the classifiers were evaluated with stratified 10-fold cross-validation

approach. For more reliable results, the cross-validation procedure was executed 10

times for each classifier and dataset.

5.2.2.1 Threshold setting

Tuning the appropriate thresholds for the purpose of tracking the matching

communities and determining the community events at consecutive time steps is one

of the challenges in studying the community evolution. A low similarity threshold

(q ) may lead to a significant number of matching communities, while high value

of q results in more dissolutions. Likewise, low value of fluctuation threshold (f )

results in a small amount of survival and an excessive number of grown and shrunken

communities. The number of survive events increases as f increases. In order to

investigate the impact of the similarity threshold (q ) on the community evolution,

experiments were conducted where q was varied from 0.1 to 1 and f fixed at 0.15,

yielding the results as depicted in Figure 5.2.

Figure 5.2 : Number of events vs similarity threshold (q ).

Figure 5.2 shows that the q value has a noticeable effect on the observed events: the

number of survive, growth, shrink, merge, split events drop as q increases, while there
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are more dissolve events. A low q value induces a slew of matching communities

thus enabling the observation of a significant number of events apart from dissolve.

Besides, high values of q result in a small amount of matching communities and events

other than dissolve. Therefore, selecting the optimal similarity threshold is crucial and

it differs with respect to the structural characteristics of the networks. We intended

to select a threshold where the event numbers were as well-proportioned in their

distribution as possible. The Digg and Slashdot datasets have more stable communities

in which members participate over a long period warranting a value of q = 0.5. In

Enron and Internet Topology datasets, communities can be more dynamic, since the

number of matching communities begins to decrease after the similarity threshold (q )

reaches 0.4 and split and merge events are not observed. Hence, a rather low threshold

of q = 0.4 is used to analyze the evolution of communities in these networks.

Fluctuation threshold (f ) is the other metric to be tuned and has significant effect on the

survive, growth and shrink events. So as to determine the optimal f value, experiments

were conducted where f was varied from 0.1 to 0.5 while fixing q at 0.4, yielding the

results as shown in Figure 5.3.

Figure 5.3 : Number of events vs fluctuation threshold (f ).

It can easily be observed that the number of survive events increases, whereas the

number of growth and shrink events drops gradually as f increases. In Enron and

Internet Topology datasets, the gap between the observed event rates begins to grow
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after f = 0.1. In Digg and Slashdot, balanced distribution can be attained with f =

0.15.

Thus, the choice of similarity and fluctuation thresholds is q = 0.4,f = 0.1 in Enron

and Internet Topology, and q = 0.5,f = 0.15 in Digg and Slashdot, respectively.

The event numbers regarding the selected thresholds in the networks are presented

in Table 5.2.

Table 5.2 : Event numbers.

Dataset Survive Growth Shrink Merge Split Dissolve
Digg 6817 2661 2084 160 118 4967
Enron 2814 947 237 21 20 374
Internet Topology 3966 1986 353 128 96 427
Slashdot 12671 3217 2307 174 130 2804

Despite catching the utmost balanced distribution, a class imbalance exists due to the

behavioral characteristics of social networks. Thus, to balance class labels and prevent

over fitting, Resampling technique 2 is used to obtain uniform class distribution.

5.2.3 Results

5.2.3.1 Results of FSE on real datasets

In the first part of our experiments, we want to find out whether there exists a prominent

subset of community features in real datasets that can be selected by feature selection

methods for the purpose of effectively predicting community events. We want to reveal

the prominent community feature subset which is independent of the used community

detection algorithm, i.e. how common are the groups of features selected by different

methods. The following process was applied: for each dataset and community

detection algorithm, the entire set of feature selection methods were used. Then for

each feature, the frequency of appearance in the selected subsets (SF) (those selected

by feature selection methods) is computed. The frequency of selected features with

each community detection algorithm is depicted in Figure 5.4. Features are represented

in descending order depending on the frequency level. To better visualize the selection

of the features, the columns of the heat-map are clustered to create blocks of similarly

colored cells.
2A filtering approach available in Weka [63]
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Figure 5.4 : Frequency of selected features with each community detection algorithm
for all datasets.

Interesting results can be inferred from Figure 5.4. For example, in Digg: Infomap,

Louvain and LPM give similar results, and conductance, aging, edges and betweenness

features are stated as frequent. In Enron dataset: the entire set of the community

detection algorithm results are similar except that LEV and inter, degree, betweenness

and conductance are prominent features. In Internet Topology: Fast Greedy, LEV and

Louvain algorithms yield similar results, and inter, edges and nodes are frequently

observed. In Slashdot: LEV, LPM and Infomap algorithms are similar and aging,

betweenness, degree and conductance emerged as the foremost features. As can be

seen in Figure 5.4, for a given dataset the features selected by various community

detection algorithms and feature selection methods are substantially matching, while

there is considerable variation between the datasets themselves. Digg-Slashdot and

Enron-Internet Topology pair results are fairly similar to each other.
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General Results
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Figure 5.5 : Generalized frequency results.

Figure 5.5 shows the number of times that each feature is selected by each of

the community detection algorithms for each dataset. The overall frequently

selected features are as follows; Digg: conductance, aging, edges and betweenness;

Enron: inter, betweenness, conductance and degree; Internet Topology: inter, intra,

conductance and edges; Slashdot: aging, betweenness, nodes and degree. The

generalized frequency results also verify that a different set of features comes to the

forefront in each examined dataset. This raises some questions. Why has such diversity

occurred? What are the distinguishing properties and underlying structures of these

networks? So as to understand the ground of the difference, we need to analyze the

structure of the networks and extract topological properties.
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5.2.3.2 Results of FSE on synthetic datasets

As deduced in previous subsection (Section 5.2.3.1), the selected features are not

identical in all networks. That being the case, how can we decide the feature set that

will give us better/adequate community event prediction results in advance? With

this intent, we make use of synthetic datasets with different characteristics. The

motivation behind this is to investigate the discrepancy of the prominent features in

distinct networks. Thus, to establish training data for multi-label classification and to

investigate the correlation between the network topology and the prominent feature

subsets, FSE algorithm (Algorithm 4) was performed on our synthetically generated

networks possessing various topologies. The NM of the networks was calculated, all

feature selection methods were applied, and the top four frequent features (SF) were

revealed for each synthetic dataset.

Figure 5.6 shows the box-plots of structural measure values for the synthetic datasets

covering all community features. To set an example, degree feature is frequently

selected when the median value of the average path length is 3.85, while the upper

quartile is 4.62 and lower quartile is 3.44.

Figure 5.6 : Box-plots of structural networks measures over community features.

The results indicate that inter, intra and degree features are frequently selected when

the synthetic datasets have a lower median value for average path length while aging

feature is selected for higher average path length value. Betweenness centrality results
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differ in the order of small decimal fractions. The greatest betweenness centrality rate

was produced in selection of betweenness feature with 0.00069 median. Inversely, in

case of low betweenness centrality rate, conductance and intra features are stated as

prominent. Clustering coefficient value varies between 0.03 and 0.68 over the whole

experiment. Higher clustering coefficient value yields the prominence of activeness,

degree, inter and intra features, while smaller clustering coefficient results in the

prominence of aging. Degree, inter and intra features are designated as prominent with

the greater median embeddedness value. Smaller embeddedness reveals the selection

of aging feature.

5.2.3.3 Performance and evaluation of FIEP

In order to analyze the performance of the FIEP framework, Algorithm 3 is conducted

as indicated below:

Step 1. The real networks are converted into a sequence of network snapshots evolving

over time (a total of 10 snapshots for each network).

Step 2. Structural measures belonging to the first snapshot of the networks have been

calculated (Table 5.3).

Table 5.3 : Structural measures of the networks.

Clustering Coef. Avg.Path Length Embeddedness Betweenness Centrality
Digg 0.01 5.51 0.15 0.0006

Slashdot 0.05 5.50 0.48 0.0010
Enron 0.35 4.36 2.87 0.0004

Internet Topology 0.34 3.86 2.35 0.0002

Step 3. The model is trained using synthetic datasets with BR multi-label

classification. MCC is applied as base classifier on the first snapshot of

real networks. For each network, the subset of community features (IF) is

identified.

Step 4. Infomap community detection algorithm is applied on each snapshot of the

networks.

Step 5. IF found in Step 3 is calculated.

Step 6. Community matching and event detection processes are applied.
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Step 7. Classifiers are used to testify the performance of the framework in terms of

community event prediction.

In Step 3, IF for each dataset has been designated as follows: Digg (conductance,

betweenness, aging, nodes), Enron (inter, degree, betweenness), Internet Topology

(inter, edges, degree) and Slashdot (aging, betweenness, degree, nodes).

At this point, three basic questions arise. Why not use just one significant feature

of a community? What are the benefits of using a set of community features? Do

identified features really make a difference in community event prediction? In the

approach proposed by Huang et al. only the activity features are used in measuring

the influence of member activities to predict the network evolution [50]. Likewise, the

GED method by Bródka et al. utilizes the community size feature alone to discover

community evolution [29]. Hence, we also want to investigate whether a good event

prediction accuracy can be obtained using only nodes [29] and activeness [50] features.

The prediction performance of utilizing all features, FIEP framework, nodes [29] and

activeness [50] in terms of accuracy, precision, recall, and F-measure using the top five

accurate classifiers is shown in Table 5.4.

Table 5.4 reveals that overall FIEP framework F-measure results lie between 0.70 and

0.88, and accuracy results lie between 71.27% and 88.59% which can be considered

as a successful event prediction rate. It has shown that the FIEP framework performs

pretty much the same as using the full feature set and outperforms using only nodes

[29] and activeness [50] by a wide margin in all datasets. Also, it is obvious from

the table that usage of only nodes and activeness yield very poor prediction results.

Also One-way Anova and Tukey HSD tests are performed with a significance level

of a = 0.05 to test whether the differences between the approaches are statistically

significant or not. The test was performed on all the classifier results i.e. not just

using the represented top five. It was found that there is not a significant difference

between our FIEP framework and utilizing all features with p = 0.99. Besides, it is

very clear that there is a significant difference between the FIEP and nodes/activeness

with p = 0.00.
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Table 5.4 : Prediction results of real datasets.
Digg Enron

Classifiers Accuracy Precision Recall F-measure Classifiers Accuracy Precision Recall F-measure

All Features

J48 73.31 0.72 0.73 0.72 J48 84.17 0.83 0.84 0.83
Random Forest 80.37 0.80 0.80 0.80 Random Forest 89.34 0.89 0.89 0.89

Random Tree 78.40 0.77 0.78 0.78 Random Tree 87.27 0.87 0.87 0.87
Bagging 72.49 0.71 0.72 0.71 Bagging 83.92 0.83 0.83 0.83

Simple CART 72.62 0.71 0.72 0.72 Simple CART 82.92 0.82 0.82 0.82

FIEP

J48 72.53 0.72 0.73 0.72 J48 83.44 0.83 0.83 0.83
Random Forest 79.79 0.79 0.80 0.79 Random Forest 88.59 0.88 0.89 0.88

Random Tree 78.59 0.78 0.79 0.78 Random Tree 87.41 0.87 0.87 0.87
Bagging 71.27 0.70 0.71 0.70 Bagging 81.70 0.81 0.82 0.81

Simple CART 72.58 0.72 0.73 0.72 Simple CART 82.15 0.82 0.82 0.82

Nodes

J48 35.86 0.29 0.35 0.31 J48 40.81 0.39 0.40 0.36
OneR 35.85 0.29 0.35 0.31 Random Forest 41.97 0.41 0.42 0.38
KNN 35.83 0.29 0.35 0.31 Random Tree 41.88 0.41 0.41 0.38

Random Forest 35.86 0.29 0.35 0.31 Bagging 41.42 0.42 0.41 0.35
Random Tree 35.85 0.29 0.35 0.31 Simple CART 41.36 0.40 0.41 0.38

Activeness

J48 38.40 0.37 0.38 0.36 J48 59.02 0.57 0.59 0.57
Random Forest 38.95 0.38 0.39 0.37 Random Forest 63.51 0.62 0.63 0.62

Random Tree 38.81 0.38 0.38 0.36 Random Tree 63.53 0.62 0.63 0.62
Bagging 38.10 0.36 0.38 0.36 Bagging 58.95 0.57 0.59 0.57

Simple CART 38.31 0.37 0.38 0.36 Simple CART 60.86 0.60 0.60 0.59

Internet Topology Slashdot
Classifiers Accuracy Precision Recall F-measure Classifiers Accuracy Precision Recall F-measure

All Features

J48 80.27 0.79 0.80 0.79 J48 76.79 0.76 0.76 0.76
Random Forest 86.20 0.85 0.86 0.85 Random Forest 83.81 0.83 0.83 0.83

Random Tree 84.71 0.83 0.84 0.84 Random Tree 82.17 0.81 0.82 0.81
Bagging 79.55 0.78 0.79 0.78 Bagging 75.96 0.75 0.76 0.75

Simple CART 78.18 0.76 0.78 0.77 Simple CART 75.47 0.74 0.75 0.75

FIEP

J48 78.47 0.77 0.78 0.77 J48 74.99 0.74 0.75 0.75
Random Forest 84.57 0.84 0.85 0.84 Random Forest 83.05 0.83 0.83 0.83

Random Tree 83.72 0.83 0.84 0.83 Random Tree 81.74 0.81 0.82 0.81
Bagging 77.22 0.76 0.77 0.76 Bagging 74.11 0.73 0.74 0.73

Simple CART 78.24 0.77 0.78 0.77 Simple CART 74.72 0.74 0.75 0.74

Nodes

J48 35.50 0.36 0.35 0.32 OneR 36.09 0.35 0.36 0.32
Random Forest 35.30 0.35 0.35 0.32 Bayes Net 36.21 0.36 0.36 0.32

Random Tree 35.18 0.35 0.35 0.32 Decision Table 36.18 0.35 0.36 0.32
Bagging 34.85 0.35 0.35 0.31 Random Tree 36.09 0.35 0.36 0.32

Simple CART 35.08 0.35 0.35 0.31 Simple CART 36.09 0.35 0.36 0.32

Activeness

J48 42.14 0.41 0.42 0.41 J48 40.67 0.39 0.40 0.38
Random Forest 43.96 0.44 0.44 0.43 Random Forest 41.86 0.41 0.41 0.40

Random Tree 43.65 0.43 0.43 0.42 Random Tree 41.60 0.40 0.41 0.39
Bagging 41.65 0.41 0.41 0.41 Bagging 40.68 0.39 0.40 0.38

Simple CART 42.19 0.42 0.42 0.41 Simple CART 41.08 0.40 0.41 0.39
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The prediction results of FIEP versus the feature selection methods are presented in

Table 5.5. J48 and Random Forest classifiers are selected to represent results in

terms of F-measure. It is clear from Table 5.5 that FIEP is superior to the feature

selection methods particularly in Digg and Internet Topology datasets. Only in Enron

do some feature selection methods give better results than FIEP and even then only by

a narrow margin (0.02 in J48, 0.03 in Random Forest). This difference is negligible

when the increase in speedup is taken into account (see Figure 5.7). In Slashdot,

none of the feature selection methods could overcome FIEP. When we compare the

feature selection methods among themselves, despite the fact that there is not being

any dramatically difference, WSE gave the worst and IGAE, ORAE and RFAE gave

the best results in general.

Table 5.5 : Prediction results: FIEP vs feature selection methods.

Digg Enron Internet Topology Slashdot
J48 Random Forest J48 Random Forest J48 Random Forest J48 Random Forest

FIEP 0.72 0.79 0.83 0.89 0.77 0.84 0.75 0.83
IGAE 0.70 0.78 0.84 0.89 0.69 0.79 0.75 0.82

CFS 0.66 0.76 0.85 0.92 0.70 0.83 0.69 0.80
CSAE 0.70 0.78 0.84 0.89 0.66 0.78 0.75 0.82

CSE 0.70 0.78 0.83 0.90 0.65 0.74 0.74 0.82
CAE 0.53 0.54 0.85 0.91 0.66 0.75 0.74 0.81

CVAE 0.67 0.73 0.84 0.91 0.67 0.82 0.71 0.79
GRAE 0.67 0.76 0.84 0.89 0.68 0.77 0.74 0.81
ORAE 0.70 0.78 0.84 0.89 0.69 0.82 0.74 0.82
RFAE 0.67 0.75 0.84 0.91 0.70 0.82 0.74 0.82
SUAE 0.70 0.78 0.84 0.89 0.69 0.79 0.74 0.81
WSE 0.50 0.53 0.84 0.89 0.65 0.74 0.74 0.82

Time spent predicting the community events is also registered. All experiments are

performed on a PC with 2xIntel Xeon 4C CPU (2.4GHz) and 80GB of RAM. The

programs are coded in Java without any code optimization. The run time of FIEP and

use of all features is measured in seconds. Also, the improvement in the run time of

FIEP framework versus using all features in terms of speedup is computed by dividing

the run time of all features by the run time of FIEP framework. From Figure 5.7, it

can be seen that the FIEP framework is faster, in comparison to using all features in

all datasets, and achieves a speedup of 2.05, 4.54, 2.65, 1.83 times in Digg, Enron,

Internet Topology and Slashot respectively.
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Figure 5.7 : (a) Run time of FIEP and all features in seconds (b) Run time speedup of
FIEP over using all features

5.2.4 Discussions

In this subsection, the correlation between the prominent community features and the

network topology is examined in perspective. It has been discovered that identified

features of FIEP match up in the findings with Section 5.2.3.1. Thus, we can conclude

that FIEP identifies a generic feature subset that produce successful event prediction

results with reduced computation time. The first examined structural measure is

clustering coefficient which quantifies how densely the neighborhood of a node is

connected. A high clustering coefficient indicates the presence of triads in the network.

High density of triads can be related to the existence of community structures. The

clustering coefficients of Enron and Internet Topology networks are higher than for

Slashdot and Digg networks, thus they constituting modular community structures

when compared with Slashdot and Digg. Recall that inter, intra, degree and activeness

features are prominent at higher clustering coefficient value while aging is selected

when clustering coefficient value is low (Figure 5.6). As expected, FIEP identifies

inter and degree features in Enron and Internet Topology and aging feature in Digg

and Slashdot.

The networks were also analyzed to quantify the strength of community structure. A

network has a clear-cut community structure if it is divided naturally into groups of

nodes with dense connections within the groups and sparser connections between the

different groups. To measure this gi is defined as the ratio of total number of inter
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Figure 5.8 : The distribution of gi over community size

Figure 5.8 shows the distribution of gi as a function of community size. With

respect to this measure, Enron and Internet Topology datasets possess clear-cut

community structure: the majority of communities have low g values. Predictably,

if a node is in a dense community, its clustering coefficient is expected to be high.

It is also clear from the figure that Enron and Internet Topology datasets have a

more coarse-grained community structure where the graph is partitioned into larger

communities, while Digg and Slashdot have fine-grained communities. It can be

deduced that as the networks get closer to “small-world” effect and represent modular

community structure they might have better community event prediction results with

inter, intra and degree features.

The other measure to be examined is average path length which is simply the average

path of all pairs of shortest paths in a social network. Enron and Internet Topology

networks have smaller average path length (Table 5.3). Bearing in mind that inter,

intra degree features are prominent in smaller average path length, as in Enron and

Internet Topology, and aging is the prominent feature in greater average path length,

as in Digg and Slashdot (See Figure 5.6). The results indicate that Enron and Internet
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Topology networks fit the two patterns of “small-world” phenomena better than Digg

and Slashdot, with a larger clustering coefficient and a smaller average shortest path

length.

The third measure tested was embeddedness, a notion used to capture the strength

of an edge with regard to the number of common neighbors. The link densities are

higher in networks with higher embeddedness values. From Figure 5.6, we can easily

see that embeddedness value produces results correlatively with clustering coefficient

and average path length; in other words inter, intra and degree features are selected

in case of greater embeddedness value and aging feature is selected in case of lower

embeddedness value.

Not all nodes are equally important in a network. Centrality analysis is performed

to find out the most important nodes. In particular, betweenness centrality of nodes

was studied, being one of the most frequently considered centrality indices. Node

betweenness quantifies the extent to which a particular node is positioned between

communities. Nodes connecting distinct communities have very high betweenness.

As with the correlation of degree and betweenness centrality measures in social

networks, degree and betweenness features of our framework were correlated and

selected together (Figure 5.4). In Figure 5.6, it can be observed that betweenness and

inter features are prominent with greater betweenness value. We have already seen

that, betweenness feature is one of the identified features of Digg and Slashdot which

are the datasets having the greatest betweenness centrality measure.

In brief, the observations can be summed up in the list below:

• The networks which ensure “small-world” property and have strong community

structure, produce better event prediction results with inter, intra and degree

features.

• Similar patterns are observed with embeddedness, i.e. a higher embeddedness

corresponds to the prominence of inter, intra and degree.

• Aging feature is prominent in more stable and less embedded networks.

• Betweenness feature is frequently selected in the networks that have higher node

betweenness value.
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• Betweenness and degree features are strongly correlated and observed together.

• Nodes and edges features do not present discriminative behavior within the

framework.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In the first phase of the thesis an approach has been proposed to predict next event of a

community through time series analysis on the structural and temporal feature history

of the community. Differently from the classical event prediction approaches that takes

the network prior to time t in order to predict events at future time t 0, our method

takes a pre-defined length of temporal information into account by monitoring how the

network evolved along time. An empirical comparative evaluation of the performance

of forecasting models ANN, ARIMA and ETS was employed for predicting the next

values of the features and attendantly the events of the communities. Experiments

are conducted on two different windowing approach, namely landmark and sliding.

Various window lengths are experimented to testify framework performance in terms

of error rate (MAPE) of community feature forecasting and rate of overlap in terms of

F-measure between the predicted and actual events.

The obtained results suggest that proposed event detection procedure accurately

predicts next event of the communities. Moreover, usage of time series analysis model

results highly match up with the actual event labels. Additionally, for the forecasting

of community features, acceptable error rate is produced specifically by ARIMA and

ETS models. The ANN model was often worse in forecasting accuracy among all the

models we examined. We have also investigated that there exist remarkable correlation

between error rates and match up values. However, the framework is not that much

sensitive to the MAPE values. Precisely, the poor results in MAPE values do not trigger

a sharp fall in matching accuracy. Moreover, we have shown the effect of processed

window length on the results. One may think that longer window lengths may improve

forecasting accuracy. Contrarily, even though the existence of the fluctuative results,

experiments revealed that sliding window approach performed better than landmark,

in particular with shorter window lengths.
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In the second phase, a novel framework, namely FIEP has been proposed to identify

a feature set that provides better results in community event prediction among a

broad range of community features by exploiting the network’s topological properties.

Initially, various community detection algorithms with feature selection methods

were performed on real datasets to obtain a generalized projection on the results,

showing that a diverse set of community features is frequent in distinct networks.

Our findings uncovered that distinct features are extracted as prominent in networks

with distinct topologies. To investigate the ground of the difference, detailed structural

network analysis was performed. Subsequently, the correlation between the network

topology and the prominent community features was investigated on synthetically

generated datasets. By multi-label classification, where the synthetic dataset results

were used as the training data, representative community features of the real datasets

were extracted. In this way, the most representative community features (which are

initially unknown) were identified so that grown, shrunken, survived, merged, split,

and dissolved communities could be predicted with greater accuracy. The experiments

indicated that FIEP produces almost the same prediction results as those produced

using the entire feature set, such that there is no statistical difference. Due to the lower

number of features that should be calculated, there is a corresponding reduction in

computational time and cost. We have also presented results for the running time and

speedup of FIEP framework over the use of all features.

6.2 Future Work

For the first phase, an open problem is how many window lengths that users should

employ in forecasting. A solution may be using validation set to identify the required

window length that perform good results. In its current state, our study can predict the

values of the community events at a future time step. In future research, we intend to

extend the prediction horizon from one timestamp to more by preserving the accuracy.

Furthermore, we will deeply investigate the underlying structural properties that yield

fluctuation of the results as the window length changes.

Another future direction is to predict the time of change and estimate a possible

break point time in community structure by using the general structural properties

of the network and evolving community metrics. Routinely, the community detection
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algorithm is applied without examining whether any considerable change occurs in the

network. By predicting the time of change, the community detection algorithm will

not be executed unnecessarily and the time and space complexity will be reduced.
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