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THE COUPLINGS OF ELECTROMAGNETIC AND DIRAC SPINOR
FIELDS TO GRAVITY

SUMMARY

In order to obtain new insights into gravity, we investigate the couplings of
electromagnetic and spinor fields to gravity.

Firstly, after we summarized Einstein-Cartan Gravity in d-dimensions using the
algebra of exterior differential forms, we investigate couplings of electromagnetism
to gravity in four dimensions. We obtain the field equations of the non-minimal
couplings described by a Lagrangian that involves generic RF2-terms. We
consider both theories without torsion, which is called non-minimally coupled
Einstein-Maxwell theory and with torsion which is called non-minimally coupled
Einstein-Cartan-Maxwell theory. In particular, we give a class of exact plane
wave solutions and static, spherically symmetric magnetic monopole solutions. The
solutions verify the predictions of the classical laws of electrodynamics up to high
levels of accuracy. These are the laws that are usually extrapolated to describe
astrophysical phenomena under extreme conditions of temperature, pressure and
density. Any departures from these laws under such extreme conditions may be
ascribed to new types of interactions between the electromagnetic fields and gravity.

Since major part of the known universe consists of fermions, it is important to know
the effects of the fermions coupled to gravity. But it is not easy to determine the
behavior of spinor fields in four dimensions. Nevertheless, in three dimensions, the
system is simplified partly. Therefore, secondly, we formulate Einstein-Cartan-Dirac
theory in (1+2)-dimensions using the algebra of exterior differential forms. That is,
we couple a Dirac spinor to gravity and obtain the field equations by a variational
principle. We determine the space-time torsion to be given algebraically in terms of
the Dirac condensate field. We give circularly symmetric, stationary, exact solutions
that collapse to static AdS3 geometry in the absence of a Dirac spinor.
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ELEKTROMANYETİK VE DIRAC SPİNÖR ALANLARININ
GRAVİTASYONA BAĞLANMASI

ÖZET

Gravitasyon teorisiyle ilgili yeni öngörüler elde edebilmek için, elektromanyetik ve
spinör alanlarının gravitasyona bağlanmalarını inceliyoruz.

İlk olarak, d-boyutta Einstein-Cartan gravitasyon teorisini özetledikten sonra
diferansiyel formların dış cebirini kullanarak dört boyutta elektromanyetik alanların
gravitasyona minimal olmayan bağlanmalarını düşünüyoruz. Genel RF2 formunda
terimler içeren Lagrangian tarafından tariflenen minimal olmayan bağlanmalar için
alan denklemlerini elde ediyoruz. Minimal olmayacak şekilde bağlanmış burulmasız
olan Einstein-Maxwell teorisi ile birlikte minimal olmayacak şekilde bağlanmış
burulma da içerebilen Einstein-Cartan-Maxwell teorisini de hesaba katıyoruz. Özel
olarak, bu teorilere analitik, düzlem yüzlü dalga ve küresel simetrik, durgun manyetik
tek-kutup çözümleri buluyoruz. Bu çözümler klasik elektrodinamik yasalarını yüksek
hassasiyetlere kadar doğrulamaktadır. Bu yasalar sıcaklık basınç ve yoğunluğun
bazı uç koşullarda olduğu astrofiziksel olayları tariflemek için kullanılabilir. Bu
uç koşullar altında, bu yasalardan sapmalar elektromanyetik alanlar ve gravitasyon
arasında yeni etkileşim türlerine atfedilebilir.

Bilinen evrenin büyük bir kısmı fermiyonlardan oluştuğu için fermiyonların
gravitasyona bağlanmalarının etkilerini bilmek önemlidir. Fakat, dört boyutta spinör
alanlarının bu davranışını bilmek kolay değildir. Üç boyutta bu sistem kısmen
basitleşir. Bü yüzden, ikinci olarak, (1+2)-boyutta Einstein-Cartan-Dirac teorisinin
formalizmini dış diferensiyel form hesabını kullanarak veriyoruz. Yani gravitasyona
Dirac spinör alanını bağlayarak varyasyon yöntemiyle alan denklemlerini elde
ediyoruz. Uzay-zaman burulmasını Dirac yoğunlaşmış alanları cinsinden elde
ediyoruz. Dirac spinörünün yokluğunda AdS3 durgun metriğine dönüşen durağan
çembersel simetrik tam çözümleri belirliyoruz.
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1. INTRODUCTION

The predictions of the classical laws of electrodynamics have been verified to high

levels of accuracy. These are the laws that are usually extrapolated to describe

astrophysical phenomena under extreme conditions of temperature, pressure and

density. Any departures from these laws under such extreme conditions may be

ascribed to new types of interactions between the electromagnetic fields and gravity.

In this thesis, we firstly consider non-minimal couplings of gravitational and

electromagnetic fields described by a Lagrangian density that involves generic

RF2-terms. Such a coupling term was first considered by Prasanna and classified

by Horndeski to gain more insight into the relationship between space-time curvature

and electric charge conservation. It is remarkable that a calculation in QED of the

photon effective action from 1-loop vacuum polarization on a curved background

contribute similar non-minimal coupling terms.

After we present required fundamental concepts for our research in the second

section, in the third section we give an outline of the Einstein-Cartan theories of

Gravitation in any number of dimensions considering the presence of the other fields.

In the fourth section, in order to gain more insight to the observations, we formulate

non-minimally coupled Einstein-Maxwell theory which is non-minimally coupled the

curvature and Maxwell tensor in form of RF2 in four dimensions using the algebra of

exterior differential forms. We derive the field equations by a first order variational

principle. We will be working with the unique metric-compatible, torsion-free

Levi-Civita connection at first. We impose this choice of the connection through

constrained variations by the method of Lagrange multipliers. That is, we add to

the Lagrangian density of the theory Lagrange multiplier 2-forms whose variation

imposes the zero-torsion constraint. We also use a first order variational principle

for the electromagnetic field 2-form F to impose the homogeneous Maxwell equation

as a constraint. Secondly, we consider the variational field equations without the
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zero-torsion constraint. The resulting field equations are highly non-linear in both

cases. The case with a connection with zero torsion and the case with a connection

with non-zero torsion give rise to inequivalent systems of field equations. Intense

gravitational fields that will be found near black holes behave as a specific kind

of non-linear medium in the presence of non-minimal couplings. Conversely, one

should expect new gravitational effects induced by non-minimal couplings in the

vicinity of the neutron stars or magnetars where there are intense electromagnetic

fields. Such new effects, if there are any, can be discussed in terms of exact solutions

of the coupled field equations with appropriate isometries. Finding spherically

symmetric solutions is not an easy task for such theories. Furthermore, any arbitrary

non-minimal coupling may not give rise to solutions satisfying physical asymptotic

conditions and observations in solar and cosmological scales. RF2-coupled terms

in the Lagrangian lead to modifications both in the Maxwell and Einstein field

equations. The modifications in the Maxwell equations can be related with the

polarization and magnetization in a specific medium. The non-minimal couplings

also give rise important modifications to the structure of a charged black hole.

These may shed light on some problems of gravity such as dark matter and dark

energy without introducing a cosmological constant or any other type of scalar

fields. This means that, if dark matter is not some strange matter, but, for instance

the non-minimal couplings produce such effects, then the electromagnetic fields

get modified at large (astrophysical) scales and thus contribute to the conventional

electromagnetic energy density which may then be interpreted as the effects of

dark matter. In particular, we look for static, spherical symmetric, electric and

magnetic monopole solutions and plane fronted wave (pp-wave) solutions. Then, we

obtain a class of asymptotically flat solutions that include new black hole candidate

configurations, except for the parameter values when there is a naked essential

singularity at the origin. There are two different solutions with magnetic monopole

potential for non-minimally coupled Einstein-Maxwell theory; one of them has

central singularity and the other has no central singularity. On the other hand, in

the case of non-minimally coupled Einstein-Cartan-Maxwell theory with torsion for

the same magnetic monopole potential, only one of these solutions which does not

have a central singularity is allowed. This solution does not correspond to a black

2



hole in general. We discuss the structure of these solutions. Also, we find that a class

of pp-wave solutions, which is solution of both the field equations obtained from

the non-minimally coupled Einstein-Maxwell theory and the non-minimally coupled

Einstein-Cartan-Maxwell theory.

Even if it is considered that the matter couplings to gravity have a small effect on

test particles, under some extreme conditions such as high density, small scales and

near black holes, it can cause important effects. Moreover, it can be a new insight

to consider the couplings in the context of astrophysical and quantum field theory.

For this aim, lastly, we investigate Einstein-Cartan-Dirac theory in 1+2 dimensions

differently from the theories in 1+3 dimensions.
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2. THE GEOMETRY OF SPACETIME

2.1 Preliminaries

In this thesis, the space-time is denoted by {M,g,∇} where M is a d-dimensional

smooth and differentiable manifold, diffeomorfic to Rd , equipped with a Lorentzian

metric g which is a second rank, covariant, symmetric, non-degenerate tensor and ∇

is a linear connection which defines parallel transport of vectors (or more generally

tensors and spinors).

The coordinate system which is given by {xµ(p)}, constitutes such a coordinate

reference frame { ∂

∂xµ (p)} or {∂µ} at any point p ∈ M. This reference frame is a

set of base vectors of Tp(M) tangent space. Analogously, {dxµ(p)} is a coordinate

reference co-frame of the cotangent space Tp
∗(M). On the manifold M, functions are

(0,0) type tensors, vectors are (1,0) type contravariant tensors and co-vectors are (0,1)

type covariant tensors.

2.1.1 Exterior algebra and differential forms

We will use exterior algebra throughout this thesis [1–3]. In the exterior algebra

space, the basis of cotangent bundle Tp
∗(M) are called 1-forms. Any p-forms space

which is denoted by Λp(M) can be obtained from the antisymmetric tensor product

space as Tp
∗(M)× . . .×Tp

∗(M)︸ ︷︷ ︸
p-times

. Therefore, the exterior algebra space is consist of

the sum of the p-forms spaces;
⊕d

p=0Λp(M).

Any p form ω ∈Λp(M) can be written in closed 1-forms ( closed means that d(dxν)=

0) as:

ω =
1
p!

ωµ1···µpdxµ1 ∧·· ·∧dxµp . (2.1)

In this exterior algebra space, let’s consider a real constant α , ω1 ∈ Λp(M), ω2 ∈

Λq(M) and ω3 ∈ Λr(M). They satisfy the following properties:

5



1. (αω1)∧ω2 = ω1∧ (αω2) = α(ω1∧ω2)

2. (ω1 +ω2)∧ω3 = ω1∧ω3 +ω2∧ω3

3. ω1∧ (ω2∧ω3) = (ω1∧ω2)∧ω3

4. ω1∧ω2 = (−1)p.qω2∧ω1

After the definitions, we can look at some fundamental operators in the exterior

algebra.

2.1.2 Exterior derivative operator

Exterior derivative operator d is an exact derivative and maps p-forms to (p+1) forms

d : Λ
p(M)−→ Λ

p+1(M) (2.2)

The operator satisfies

1. d(ω1 +ω2) = dω1 +dω2

2. dω = 1
p!

∂ωµ1∧···µp
∂xµ dxµ ∧dxµ1 ∧·· ·dxµp

3. d(ω1∧ω3) = dω1∧ω3 +(−1)pω1∧dω3

4. d(dω) = 0.

2.1.3 Interior product operator

Interior product operator or contraction operator ıẽa is an antiderivative operator for

each ẽa ∈ TpM and maps p-forms to (p-1) forms.

ıẽa = ıa = ηabıb := Λ
p(M)−→ Λ

p−1(M) (2.3)

let’s consider ω ∈ Λp(M) and scalar function f , the operator satisfies

1. ıa f = 0

2. ı f aω = f ıaω

3. ea∧ ıaω = pω

4. ıaıbω =−ıbıaω

6



5. ıa(ω1∧ω2) = ıaω1∧ω2 +(−1)pω1∧ ıaω2.

The interior product of base vectors of tangent space wand base co-vectors of

cotangent space is determined by Kronecker delta.

dxµ(
∂

∂xν
)≡ ı ∂

∂xν
dxµ = δ

µ
ν (2.4)

One can choose a set of linearly independent orthonormal frames on tangent space

Tp(M) which is denoted by {ẽa}, a = 0,1,2,3..,d − 1 and is called orthonormal

reference frame. The dual basis of the orthonormal reference frame will be denoted

by {ea}. Similarly to the (2.4), the interior product of {ẽa} and {ea} satisfy

ea · ẽb ≡ ıẽb(e
a) = δ

a
b (2.5)

where ıẽa ≡ ıa is the interior product. In this research, the first half of Greek alphabet

α,β , . . . = 0̂, 1̂, 2̂, .., d̂− 1̂ and the second half µ,ν , . . . = 1̂, 2̂, .., d̂− 1̂ are coordinate

(holonomic) indices. The first half of Latin alphabet a,b, . . . = 0,1,2, ..d − 1 and

the second half i, j, . . . = 1,2,3, ..,d − 1 are frame (anholonomic) indices. The

orthonormal frame ẽa(p) is related to the coordinate frame ∂α(p) via hα
a(p) vielbein

or tedrad;

ẽa(p) = hα
a(p)∂α(p) (2.6)

If hα
a(p) is nondegenerate or dethα

a(p) 6= 0, then ẽa is an anholonomic base.

Analogously, the co-frame 1-forms can be written in the form of exact 1-forms as

ea(p) = ha
α(p)dxα(p) (2.7)

Moreover, the tedrad satisfy

ıaeb = hα
a(p)hb

α(p) = δ
b
a . (2.8)

In this thesis, we will use mostly the shorthand notations for exterior product of

co-frames ea∧ eb∧ ·· · = eab··· and interior product operators ιaιb · · · = ιab··· One can

show that although ∂α and ∂β commute, ẽa and ẽb may not commute

[ẽa, ẽb] = hα
a∂β ẽb−hβ

b∂α ẽa. (2.9)

7



2.1.4 Hodge star operator

Hodge star operator ∗ is a linear mapping from p-forms to (d-p) forms for a

d-dimensional manifold:

∗ : Λ
p(M)−→ Λ

d−p(M) (2.10)

The volume d-form is defined by

∗1 = e0∧ e1∧ e2∧ e3...ed−1 =
1
d!

εabc...dea∧ eb∧ ec...∧ ed (2.11)

and the completely antisymmetric Levi-Civita tensor density is fixed by choosing

ε012...d−1 =+1. The star operator has the following properties for α,β ∈ Λp(M):

1. α ∧∗β = β ∧∗α and ∗β ∧α = ∗α ∧β

2. ∗(α ∧ ea) = ıa∗α

3. ∗∗α =±α

Using the above definitions and properties, we can introduce a spacetime metric. The

metric which is related to the distance between two infinitesimally near points xµ and

xµ +dxµ can be written via reference frames and orthonormal reference co-frames as

g = gαβ dxα ⊗dxβ = hα
ahβ

b
ηabdxα ⊗dxβ = ηabea⊗ eb (2.12)

Here g(ẽa, ẽb) = ηab is Minkowski metric which is diag(−1,1,1, ..,1).

2.1.5 Connection 1- forms

Let us take two observers each using their own reference frame to measure spacetime

intervals on the manifold M. The observer O fixes {ẽa} and the observer O′ fixes {ẽ′a}

reference frames at the same point p ∈M. One can find L−1b
a a local Lorentz matrix

satisfying the transformation,

ẽ′a(p) = ẽ′b(p)L−1b
a(p). (2.13)

Similarly, the transformation of orthonormal reference co-frames is defined by

e′a(p) = La
b(p)eb(p) (2.14)
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Then, the local Lorentz transformation of interior product of the frames and co-frames

are

ẽ′a(e
′a) = ẽcL−1c

a(La
ded) = ẽcδ

c
ded = ẽcec = ẽaea. (2.15)

Lorentz invariant. Let us see the local Lorentz transformation of exterior derivative

of the covariant ea basis.

de′a = d(ebLa
b) = dLa

beb +La
bdeb (2.16)

Because of dLa
beb term, the transformation of dea is not Lorentz covariant. That is;

it does not transform as a tensor. We need to use connection 1-forms in order to make

it Lorentz covariant and the local Lorentz transformation of the connections must be

defined as

Λ
a′

b = La
cΛ

c
f L−1 f

b +La
cdL−1c

b. (2.17)

2.1.6 Covariant exterior derivative

For any general (p,q) type tensor Ra1···ap
b1···bq , the covariant exterior derivative

operator defined as follow;

DRa1···ap
b1···bq = dRa1···ap

b1···bq +Λ
b1cRa1···ap

cb2···bq + · · ·+Λ
bq

cRa1···ap
b1···c

−Λ
c
a1Rca2···ap

b1···bq−·· ·−Λ
c
apRa1a2···c

b1···bq. (2.18)

We have shown that dea′ 6= La
b(deb) does not transform as a tensor. But now we can

show that the covariant exterior derivative of ea transforms as a tensor.

Dea′ = dea′+Λ
a

b
′∧ eb′

= d(La
beb)+(La

cΛ
c

f L−1 f
b +La

cdL−1c
b)∧Lb

kek

= dLa
b∧ eb +La

bdeb +La
cΛ

c
f L−1 f

bLb
k∧ ek +La

cdL−1c
bLb

k∧ ek

= dLa
b∧ eb +La

bdeb +La
cΛ

c
k∧ ek−dLa

k∧ ek

= La
b(deb +Λ

b
k∧ ek)

Dea′ = La
bDeb (2.19)

and it is called local Lorentz covariant. After the fundamental definitions, we can look

at the covariant exterior derivative of the metric ηab, ea orthonormal basis 1-forms and

Λa
b connection 1-forms. They are known as Cartan Structure equations. In the gauge

approach to gravity ηab, ea,Λa
b are interpreted as the generalized gauge potentials,

9



while the nonmetricity 1-forms, torsion 2-forms and curvature 2-forms correspond to

field strengths.

2.2 Nonmetricity

The covariant exterior derivative of the ηab metric gives us first Cartan structure

equation [4].

Qab =−
1
2

Dηab. (2.20)

The symmetric 1-forms Qab are (1,2)-type tensor and called nonmetricity tensor. The

Qab tensor is the symmetric part of Λab:

Dηab = dηab−Λ
c
aηcb−Λ

c
bηac (2.21)

because of ηab has real constant elements, dηab = 0 and so,

Dηab = −Λab−Λba (2.22)

Qab =
1
2
(Λba +Λab) (2.23)

Thus, if we compare these two equations (2.22) and (2.23), we reach the equation

(2.20). If Qab = 0, it is said that the connection is metric compatible.

Geometrically the nonmetricity tensor measures the deformation of length and

angle standards under parallel transport. Technically speaking it is a measure

of compatibility of the affine connection with the metric. The scalar product of

vectors is, in general, not preserved under parallel transport due to the appearance

of nonmetricity. Einstein’s general relativity theory is formulated in spacetimes with

metric compatible connection (vanishing nonmetricity tensor). But, the solutions

which are symmetric teleparallelly equivalent to Einstein’s general relativity (giving

the same solutions with Einstein’s relativity and more in the framework of symmetric

teleparallel gravity) can be found considering only the nonmetricity tensor [8, 9].

2.3 Torsion

The covariant exterior derivative of ea orthonormal basis 1-forms gives T a torsion

tensor, or second Cartan structure equation [4]:

T a := Dea = dea +Λ
a

b∧ eb. (2.24)
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T a 2-forms are called (1,2)-type torsion tensor. Torsion can be obtained from

contortion 1-forms as

Ka
b∧ eb = T a. (2.25)

The full connection 1-forms can be decomposed by [5–7],

Λab = ω̂ab +Kab +qab +Qab (2.26)

where ω̂a
b are the zero-torsion Levi-Civita connection 1-forms satisfying

dea + ω̂
a
b∧ eb = 0 (2.27)

and the antisymmetric connection qab can be derived from the symmetric Qab

nonmetricity tensor ;

qa
b =−ıaQbc∧ ec + ıbQa

c∧ ec (2.28)

So, the antisymmetric part of the full connection is

Λ[ab] = ω̂ab +Kab +qab (2.29)

and the symmetric part is

Λ(ab) = Qab. (2.30)

We can see from the above equation, if Qa
b = 0 then qa

b = 0. In this case it is possible

to decompose the connection 1-forms in a unique way:

ω
a
b = ω̂

a
b +Ka

b (2.31)

In addition to Qab, if also Kab is zero then

Λ
a

b→ ω̂
a
b (2.32)

Moreover, ωab satisfy the equation

2ωab =−ıa(deb)+ ıb(dea)+ ıaıb(dec)ec (2.33)

Analogously, Ka
b contorsion 1-forms can be written as

2Kab = ıaTb− ıbTa− (ıaıbTc)ec (2.34)

The connections are dimensionless quantities. Thus, Torsion has dimension of length,

T a = [L].
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Physically, the torsion tensor can describe the density of intrinsic angular momentum

or effects of scalar fields depending on the related theory. In Einstein’s general

relativity, torsion tensor is zero. But, when one considers the couplings of gravity with

matter fields, the torsion tensor has to be taken into account. Additionally, theories

with torsion have more degrees of freedom to comply with observations.

2.4 Curvature

The covariant exterior derivative of the connection 1-forms gives Ra
b(Λ) curvature

tensor or third Cartan structure equation [4].

Ra
b(Λ) := DΛ

a
b := dΛ

a
b +Λ

a
c∧Λ

c
b (2.35)

Ra
b(Λ) is a (1,3)-type Riemann curvature tensor. We can show that Ra

b(Λ) transforms

as a tensor;

Ra′
b = dΛ

a′
b +Λ

a′
c∧Λ

c′
b

= d(La
cΛ

c
f L−1 f

b +La
cdL−1c

b)

+(La
eΛ

e
f L−1 f

c +La
edL−1e

c)∧ (Lc
gΛ

g
hL−1h

b +Lc
gdL−1g

b)

Ra′
b = La

cRc
dL−1d

b

In the second line, we have used that (dL−1c
b)Lb

g =−L−1c
b(dLb

g).

Geometrically it is related to linear group. Now let us see the effect of curvature on

vectors after parallel transport along a closed loop. If the vector does not undergo a

rotation, then the space is flat. Conversely, if the vector is rotated, then the space is

curved. Performing the parallel transport of a vector A = eaAa around a closed small

path one obtains the following transformation

∆Aa ' 1
2

∫
S

Ra
bµνAbdxµ ∧dxν (2.36)

where S is the surface of the loop. If this tensor is not zero that means if any

component is not zero, then space-time is curved. If this tensor is zero, then

space-time is flat. Physically this is a fundamental tensor in gravitation, in particular

in Einstein’s general relativity.
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2.5 Bianchi Identities

One can find Bianchi identities taking the covariant exterior derivative of curvature,

torsion, nonmetricty tensors as

DQab =
1
2
(Rab +Rba) (2.37)

DT a = Ra
b∧ eb (2.38)

DRa
b = 0. (2.39)

Here we have used (2.24), (2.35), (2.20) and the properties of exterior algebra.

Also, one can show that the following equalities noting that lowering or raising

an index in front of the covariant exterior derivative if the spacetime metric is not

compatible or nonmetricity is not zero.

D∗ ea = −Q∧∗ea +T b∧∗eab (2.40)

D∗ eab = −Q∧∗eab +T c∧∗eabc (2.41)

D∗ eabc = −Q∧∗eabc +T d ∧∗eabcd (2.42)

D∗ eabcd = −Q∧∗eabcd. (2.43)
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3. EINSTEIN-CARTAN GRAVITY

Einstein-Cartan Gravity is considered as an extension of general relativity in the

presence of torsion tensor field. The source of the torsion field can be intrinsic angular

momentum, scalar fields, non-minimal couplings of gravity and electromagnetic

fields depending on the theory. In the following sections we will discuss also the

effects of torsion for electromagnetic field coupled to gravity in four dimensions and

Dirac field coupled to gravity in three dimensions.

Therefore, we will point out the difference between general relativity and

Einstein-Cartan gravity in this chapter giving an outline of these two theories in

arbitrary d-dimensions. We will take a metric compatible connection; that is, the

nonmetricity tensor is equal to zero.

3.1 General Relativity

Einstein’s theory of gravity has been formulated in (pseudo-)Riemannian space-times

in four dimensions such that the structure of the space-time is characterized by the

metric or co-frame uniquely and the corresponding field strength is the curvature Ra
b

written in terms of the Levi-Civita connection. That is; in Einstein gravity, in addition

to the non-metricity, the torsion is zero and the zero-torsion condition can be imposed

to the field equations by inserting a Lagrange multiplier term to the Lagrangian. One

can generalize the theory to d-dimensions writing the following action

I =
∫

M

{
LEH +λ ∗1+ L̂M +T a∧λa

}
(3.1)

where the Einstein-Hilbert Lagrangian density is defined by

LEH =− 1
2κ2 R̂ab∧∗(ea∧ eb), (3.2)

with κ is the gravitational coupling constant such that κ2 = 8πG
c4 = 8π`p, `p' 10−35m

is the Planck length, G is the Newton’s gravitational constant. We will take c = 1 in

this research and ˆ describe the tensors related with the Levi-Civita connection. In
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(3.1) λ is the cosmological constant, λa are the Lagrange multiplier (d-2)-forms, the

Lagrangian L̂M = LM(e, ω̂,matter fields) can be composed of metric, connection

and other fields.

The field equations are obtained by making independent variations of the action with

respect to the co-frame {ea}, the connection {ω̂a
b} and the other gauge potentials.

We write the infinitesimal variations of the Lagrangian as (up to a closed form)

L̇ = ėa∧
(
− 1

2κ2 R̂bc∧∗eabc +λ ∗ ea + τ̂a + D̂λa

)
+ ˙̂ωab∧

(
e[b∧λa]+ Σ̂ab

)
+T a∧ λ̇a (3.3)

where the symbol [ab] means that the indices a,b are antisymmetric and the variations

of the matter Lagrangian yield the stress-energy (d-1)-forms

τ̂a =
∂L̂M

∂ea = Tab ∗ eb (3.4)

and the angular momentum (d-1)-forms

Σ̂ab =
∂L̂M

∂ω̂ab = Sab,c ∗ ec. (3.5)

Therefore, in Einstein theory of gravity with matter fields, the field equations are

given as

− 1
2κ2 R̂bc∧∗eabc +λ ∗ ea =−τ̂a− D̂λa, (3.6)

ea∧λb− eb∧λa = 2Σ̂ab. (3.7)

The second equation (3.7), can be solved for λa via the interior product for any

d-dimensions interestingly and the result is

λ
a = 2ıbΣ̂

ba +
1
2

ea∧ ıbcΣ̂
cb (3.8)

If we substitute this λa into (3.6), we find the Einstein field equations:

− 1
2κ2 R̂bc∧∗eabc +λ ∗ ea =−τ̂a−2D̂ıaΣ̂

ac− 1
2

ec∧ D̂ıbaΣ̂
ab. (3.9)

16



3.2 Einstein-Cartan Gravitation Theory

Einstein-Cartan theory gravity is a generalization of Einstein gravitation theory. In

this theory, the full connection has a torsion part and the torsion is considered

independent of the co-frame. Since the torsion is introduced into the theory, the

space-time is Riemann-Cartan. The field equations of Einstein-Cartan theory of

gravity [10] are obtained by varying the action in d-dimensions

I =
∫

M
{LEC +λ ∗1+LM} (3.10)

where the Einstein-Cartan Lagrangian density

LEC =− 1
2κ2 Rab∧∗(ea∧ eb). (3.11)

Here the gravitational constant κ and LM(e,ω, matter fields) is the Lagrangian

density related with the other fields. The curvature 2-forms are decomposed as

follows:

Ra
b = R̂a

b + D̂Ka
b +Ka

c∧Kc
b (3.12)

where

D̂Ka
b = dKa

b + ω̂
a
c∧Kc

b− ω̂
c
b∧Ka

c.

Similarly to the Einstein theory of gravity, we write the infinitesimal variations as (up

to a closed form)

L̇ = ėa∧
(
− 1

2κ2 Rbc∧∗eabc +λ ∗ ea + τa

)
+ω̇

ab∧
(
− 1

κ2 ∗ eabc∧T c +Σab

)
(3.13)

where the co-frame and connection variations of the matter Lagrangian yield the

stress-energy

τa =
∂LM

∂ea = Tab ∗ eb (3.14)

and the angular momentum

Σab =
∂LM

∂ωab = Sab,c ∗ ec (3.15)
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respectively. Therefore, the Einstein-Cartan field equations are given as

− 1
2κ2 Rbc∧∗eabc +λ ∗ ea =−τa, (3.16)

1
2κ2 T c∧∗eabc = Σab. (3.17)

We note that while the field equations of Einstein-Cartan gravity is written in terms

of the full connection ω , the field equations of Einstein gravity is written in terms of

ω̂ Levi-Civita connection.
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4. THE COUPLINGS OF ELECTROMAGNETIC FIELDS TO GRAVITY

We can test a majority of the results of general relativity via photons coming from

distant stars and galaxies. In order to verify the insight of a gravitation theory

exactly, it should couple to electromagnetic fields. The Einstein-Maxwell theory is a

minimally coupled theory between the electromagnetic fields and gravitation and this

theory is described by the action;

S =
∫
{− 1

2κ2 R̂ab∧∗(ea∧ eb)+
1
2

F ∧∗F} (4.1)

where electromagnetic coupling constant q is absorbed into the electromagnetic

field F . In this minimal theory, the spacetime geometry is modified by the

electromagnetic fields. The spherically symmetric and static solution of this theory

is known as Reissner-Nordström solution. Some gravitational wave solutions of the

Einstein-Maxwell theory were given in [11], [12] and [14].

To extend this theory as non-minimal, the coupling terms including curvature and

Maxwell tensor in the same term are inserted into the Lagrangian of Einstein-Maxwell

theory. The coupling terms were first considered by Prasanna [15] . They were soon

extended and classified by Horndeski [16] to gain more insight into the relationship

between spacetime curvature and electric charge conservation. It is remarkable

that a calculation in QED of the photon effective action from 1-loop vacuum

polarization on a curved background [17] contributed similar nonminimal coupling

terms. It was contemplated at about the same times that Kaluza-Klein reduction of a

five-dimensional R2-Lagrangian would induce similar non-minimal couplings in four

dimensions [18]. A variation of an arbitrary Lagrangian with non-minimally coupled

gravitational and electromagnetic fields in general may involve field equations of

order higher than two. The nonminimal couplings in four dimensions classified by

Horndeski are exactly those that involve at most second order terms. These particular

combinations are obtained by reduction of the Euler-Poincaré Lagrangian in five

dimensions to four dimensions [19], [20].
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Recently, in more detail, such a 3-parameter nonminimally coupled Einstein-Maxwell

theory was applied to the spherical symmetric models in [21], [22] and the

cosmological models in [23]. Later, Balakin et al. have also extended the nonminimal

theory to presence of axion fields, which is the non-minimal 10-parameter

Einstein-Maxwell-axion model [24]. They considered the model with pp wave metric

in the Bondi et al. form. They have shown that the non-minimal coupling of the

photon and axions to gravitational field generally may lead to the birefringence effect

and optical activity.

In this chapter, we formulate a general 6-parameter nonminimal extended

Einstein-Maxwell theory and Einstein-Cartan-Maxwell theory that are linear in the

curvature and quadratic in the electromagnetic field; using the algebra of exterior

differential forms without torsion and with torsion. We derive the field equations of

the model according to the first order variation method and we look for plane-fronted

wave solutions in Ehlers-Kundt form and static, spherically symmetric solutions.

Consequently, although the structure of Maxwell field equations is modified by

the coupling terms, the modifying part vanishes and the Maxwell equations are

left the same as vacuum for the pp-wave metric solutions. But, Einstein and

Einstein-Cartan field equations allow a class of nontrivial solutions. Additionally,

the energy-momentum transported by the pp waves is modified by the nonminimal

coupling terms. We have shown the difference between Einstein-Maxwell and

Einstein-Cartan-Maxwell theory for pp-wave and static spherically symmetric metric.

4.1 Non-minimally Coupled Einstein-Maxwell Theory

Non-minimally coupled Lagrangian density L̂NM = LNM(A,e, ω̂) can include

couplings of curvature and Maxwell tensor such as RnFm in any invariant order

(n,m=1,2,.. are not indices, they describe the order of a tensor). In this study, we

will use a first order formalism. We will use the electromagnetic field 2-forms F

for which the homogeneous field equation dF = 0 is imposed by the variation of the

Lagrange multiplier 2-form µ . We will start with the following action with constraint;

I =
∫

M

{
1

2κ2 R̂ab∧ ∗eab +λ ∗1− 1
2

F ∧∗F + L̂NM +T a∧λa +µ ∧dF
}

(4.2)

which has Einstein-Hilbert Lagrangian density, cosmological constant λ , Maxwell

Lagrangian density, non-minimally coupled Lagrangian density and constraint terms
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respectively. Here κ is the gravitational constant, λa and µ are Lagrange multiplier

2-forms. That is, we will take {ea} and {ω̂a
b} to be the fundamental field variables,

F is the electromagnetic field 2-form. We write the infinitesimal variations of the

Lagrangian as (up to a closed form)

L̇ = ėa∧
(

1
2κ2 R̂bc∧∗eabc +λ ∗ ea + τ̂a + D̂λa

)
+ ˙̂ωab∧

(
e[a∧λb]+ Σ̂ab

)
+Ȧ∧ (−d ∗F +

∂L̂NM

∂A
)+ λ̇a∧T a + µ̇ ∧dF (4.3)

where the symbol [ab] means that the indices a,b are antisymmetric. We can write

the stress-energy 3-forms τ̂a related with the Levi-Civita connection from the above

variation as

τ̂a =
Max

τa +
NM

τ̂a, (4.4)

where the Maxwell stress-energy tensor and the non-minimally coupled stress-energy

tensor are

Max
τa =

1
2
(ιaF ∧∗F−F ∧ ιa ∗F) (4.5)

NM
τ̂a =

∂L̂NM

∂ea . (4.6)

The angular momentum 3-forms are found from the above variation (4.3 ) as

Σ̂ab =
∂L̂NM

∂ω̂ab = Ŝab,c ∗ ec. (4.7)

After solving the λa’s as (3.8), the Einstein field equations and the Maxwell equations

turn out to be

− 1
2κ2 R̂bc∧∗eabc−λ ∗ ea =−τ̂a−2D̂ıbΣ̂ba−

1
2

ea∧ D̂ıbcΣ̂
cb. (4.8)

dF = 0, −d ∗F +
∂L̂NM

∂A
= 0 (4.9)

with T a = 0.

In this section, we will consider only the following Lagrangian density as

non-minimally coupled electromagnetic fields to gravity:

L̂NM = =
c1

2
R̂abFab∧∗F +

c2

2
ıaF ∧ R̂a∧∗F +

c3

2
R̂F ∧∗F

+
c4

2
R̂abFab∧F +

c5

2
ıaF ∧ R̂a∧F +

c6

2
R̂F ∧F (4.10)
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where c′is are phenomenological coupling constants and we assume that the

cosmological constant is zero. Through the research we will show the interior

products of the electromagnetic tensor 2-form F = 1
2Fabeab and the curvature 2-forms

Rab =
1
2Rab,cdecd with the co-frame ea as

ιaF = Fabeb = Fa 1− f orm, (4.11)

ιbaF = Fab 0− f orm, (4.12)

ιaRab = Rab
,aded = Rb Ricci 1− f orm, (4.13)

ιbaRab = Rab
,ab = R curvature scalar, 0− f orm. (4.14)

The first term in the (4.10) has been considered firstly by Prasanna [15]. For the six

non-minimally coupled terms the stress-energy tensors iτc can be found as:

1
τ

c = −1
4
(4FacıbF ∧∗R̂ab + ıcF ∧∗R̂abFab− R̂abFab∧ ıc ∗F

+ıcR̂abFab∧∗F−F ∧ ıc ∗ R̂abFab) (4.15)

2
τ

c =
1
4
[2R̂Fc∧∗F−2Fc∧ R̂a∧ ıa ∗F +2FabıcR̂ab∧∗F

+2ıcR̂ba∧Fa∧ ıb ∗F +FacR̂a∧∗F− ıcR̂aıaF ∧∗F

−Fc∧∗(Fa∧ R̂a)+Fa∧ R̂a∧ ıc ∗F +F ∧ ıc ∗ (Fa∧ R̂a)] (4.16)

3
τ

c = −1
2
[2ıcR̂bıbF ∧∗F +2ıcR̂bF ∧ ıb ∗F + ıcF ∧∗R̂F

−R̂F ∧ ıc ∗F ] (4.17)

4
τ

c = c4[FacR̂a∧F−FacR̂ab∧Fb] (4.18)

5
τ

c =
c5

2
[−FcaR̂a∧F +FcR̂∧F−Fc∧ R̂a∧Fa−FabıcR̂ba∧F

−FaıcR̂a∧F−Fa∧ ıcR̂ba∧Fb] (4.19)

6
τ

c = −2c6(ıcR̂b)Fb∧F (4.20)

and the angular momentum tensor Σ̂ab:

Σ̂
ab =

c1− c2 + c3

2
D̂(Fab ∗F)+

2c3− c2

4
D̂(Fb∧ ıa ∗F−Fa∧ ıb ∗F)

−c3

2
D̂(F ∧ ıab ∗F)+

c4− c5 +2c6

2
D̂FabF +

c5−2c6

2
D̂Fa∧Fb(4.21)

Additionally, the Maxwell field equations read

dF = 0 (4.22)
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d{−∗F + c1Fab ∗ R̂ab +
c2

2
[R̂a∧ ıa ∗F− R̂∗F +∗(Fa∧ R̂a)]

+c3R̂∗F +
c4

2
[2Fa∧ R̂a +2FabR̂ab]+

c4− c5 +2c6

2
FR̂}= 0 (4.23)

Trace of the co-frame equation (4.8) is

1
κ2 R̂∗1−λ ∗1− c1F ∧Fab ∗ R̂ab− c2Fa∧ R̂a∧∗F− c3R̂F ∧∗F

−c4FabR̂ab∧F + c5R̂F ∧F−2c6R̂a∧Fa∧F + ea∧ D̂λ
a = 0. (4.24)

4.2 Electromagnetic Constitutive Equations

In general, one encodes the effects of non-minimal couplings of electromagnetic

fields to gravity into the definition of a constitutive tensor. Maxwell’s equations for

an electromagnetic field F in an arbitrary medium can be written as,

dF = 0 , ∗d ∗G = J (4.25)

where G is called the excitation 2-form and J is the source electric current density

1-form. The effects of gravitation and electromagnetism on matter are described by

G and J. To close this system we need electromagnetic constitutive relations relating

G and J to F . Here we consider only the source-free interactions, so that J = 0. Then

we take a simple linear constitutive relation

G = Z (F) (4.26)

where Z is a type-(2,2) constitutive tensor. For the above theory we have

G = F− c1RabFab− c2ıaF ∧Ra− c3RF− c4RabFab

−c5ıaF ∧Ra− c6RF. (4.27)

With these definitions, the non-minimal Einstein-Maxwell Lagrangian simply

becomes

L =
1

2κ2 R∗1+λ ∗1− 1
2

F ∧∗G+λa∧T a. (4.28)

The electric field e and magnetic induction field b associated with F are defined

with respect to an arbitrary unit, future-pointing time-like 4-velocity vector field U

("inertial observer") by

e = ıU F , b = ıU ∗F. (4.29)
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Since g(U,U)=-1 we have

F = e∧Ũ−∗(b∧Ũ) (4.30)

where Ũ ∈ T ∗M. Likewise, the electric displacement field d and the magnetic field h

associated with G are defined with respect to U as

d = ıU G , h = ıU ∗G. (4.31)

Thus

G = d∧Ũ−∗(h∧Ũ). (4.32)

It is sometimes convenient to work in terms of polarization 1-form p = d− e and

magnetization m = b−h. More details about this concepts can be found in [25, 26].

4.3 Non-minimally Coupled Einstein-Cartan-Maxwell Theory

The field equations of Einstein-Cartan theory considering non-minimally coupled

electromagnetic fields with gravity are obtained by varying the action without any

constraints on torsion;

I =
∫

M

{
1

2κ2 Rab∧ ∗eab +λ ∗1− 1
2

F ∧∗F +LNM +dF ∧µ

}
(4.33)

where the first term is the Einstein-Cartan Lagrangian density and the non-minimally

coupled Lagrangian density LNM(A,e,ω) now can include torsion more generally

from the previous theory. In general, LNM(A,e,K) can include couplings of

curvature, electromagnetic and torsion tensors such as RmFnT l in any non-minimal

invariant order (n,m, l = 0,1,2,3..). At the lowest order one can consider the direct

coupling Ra∧∗Fa, which is zero in the absence of torsion because of Bianchi identity,

which may give interesting insights in the presence of torsion. Recently, the effects of

some non-minimally couplings such as T F∂F on the Maxwell equations have been

investigated in [27]. We consider the couplings in the form RF2 again.

Similar to the Einstein gravitation theory, here we write the infinitesimal variations as

(up to a closed form)

L̇ = ėa∧
(

1
2κ2 Rbc∧∗eabc +λ ∗ ea + τa

)
+ ω̇

ab∧
(

1
2κ2 ∗ eabc∧T c +Σab

)
+Ȧ∧ (−d ∗F +

∂LNM

∂A
) (4.34)
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Now we can write τa the stress-energy 3-forms as

τa =
Max

τa +
NM

τa (4.35)

where the non-minimally coupled stress-energy tensors and the angular momentum

3-forms are

NM
τa =

∂LNM

∂ea (4.36)

Σab =
∂LNM

∂ωab = Sab,c ∗ ec. (4.37)

The Einstein-Cartan field equations and the Maxwell equations of the model above

are given by

− 1
2κ2 Rbc∧∗eabc−λ ∗ ea = τa, (4.38)

1
2κ2 ∗ eabc∧T c =−Σab. (4.39)

dF = 0, −d ∗F +
∂LNM

∂A
= 0. (4.40)

For the non-minimally coupled terms (4.10), the stress energy tensors iτc can be found

from (4.36)

1
τ

c = −1
4
(4FacıbF ∧∗Rab + ıcF ∧∗RabFab−RabFab∧ ıc ∗F

+ıcRabFab∧∗F−F ∧ ıc ∗RabFab) (4.41)

2
τ

c =
1
4
[2RFc∧∗F−2Fc∧Ra∧ ıa ∗F +2FabıcRab∧∗F

+2ıcRba∧Fa∧ ıb ∗F +FacRa∧∗F− ıcRaıaF ∧∗F

−Fc∧∗(Fa∧Ra)+Fa∧Ra∧ ıc ∗F +F ∧ ıc ∗ (Fa∧Ra)] (4.42)

3
τ

c = −1
2
[2ıcRbıbF ∧∗F +2ıcRbF ∧ ıb ∗F + ıcF ∧∗RF

−RF ∧ ıc ∗F ] (4.43)

4
τ

c = c4[FacRa∧F−FacRab∧Fb] (4.44)

5
τ

c =
c5

2
[−FcaRa∧F +FcR∧F−Fc∧Ra∧Fa−FabıcRba∧F

−FaıcRa∧F−Fa∧ ıcRba∧Fb] (4.45)

6
τ

c = −2c6(ıcRb)Fb∧F (4.46)
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and the angular momentum tensor Σab (4.37) becomes

Σ
ab =

c1− c2 + c3

2
D(Fab ∗F)+

2c3− c2

4
D(Fb∧ ıa ∗F−Fa∧ ıb ∗F)

−c3

2
D(F ∧ ıab ∗F)+

c4− c5 +2c6

2
D(FabF)+

c5−2c6

2
D(Fa∧Fb)

We can write (4.39) in another form in terms of contortion as;

1
κ2 Kc

m∧ em∧∗eabc + D̂Γ̂ab−Kc
m∧ Γ̂cb−Kc

n∧ Γ̂an = 0 (4.47)

where we have used that

Σ
ab = 2DΓ

ab = 2DΓ̂ab (4.48)

and

Γ
ab = (c1− c2 + c3)(Fab ∗F)+

2c3− c2

2
(Fb∧ ıa ∗F−Fa∧ ıb ∗F)

−c3(F ∧ ıab ∗F)+(c4− c5 +2c6)(FabF)+(c5−2c6)(Fa∧Fb).

It is very complicated to solve the above expression algebraically in terms of Γ̂ab.

But, for a given Γ̂ab, we have twenty four unknowns which are the components

of Kab 1-forms and twenty four differential equations. Firstly, we have to find the

connections Kab satisfying the equation. After, we have to replace the previous

Levi-Civita connection ω̂ with ωab = ω̂ab +Kab because of the non-zero contortion

Kab . The Einstein-Cartan-Maxwell field equations can be obtained from the co-frame

variation of (4.33) for the non-minimally coupled electromagnetic fields to gravity as

Ga

κ2 −λ ∗ ea = τ
a +∑

i
ci

i
τ

a (4.49)

dF = 0 (4.50)

d{−∗F + c1Fab ∗Rab +
c2

2
[Ra∧ ıa ∗F−R∗F +∗(Fa∧Ra)]

+c3R∗F +
c4

2
2Fa∧Ra +2FabRab +

c4− c5 +2c6

2
FR}= 0 (4.51)
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4.4 Conformally Extended, Nonminimally Coupled Einstein-Maxwell Theory

Let’s consider two manifolds M and M′ with co-frames ea and e′a. If we can find the

following transformations;

ea→ ea′ = eσ ea, , φ → φ
′ = e−σ

φ , (4.52)

we can say these two manifolds are conformal to each other and these are conformal

transformations. Here σ(x) is a conformal factor. Specially, σ = constant

corresponds to a scale transformation which is a global transformation. In order to

extend the nonminimally coupled Einstein-Maxwell theory conformally, we write the

following Lagrangian,

L =
φ

2
R̂∗1− ω

2φ
dφ ∧∗dφ − 1

2
F ∧∗F +

1
φ

LN M

+T a∧λa +µ ∧dF (4.53)

where we consider the six nonminimally coupled terms in (4.10) as LN M . A

conformally invariant non-minimally coupled Einstein-Maxwell theory is achieved

(for the case ω =−3
2 ) by considering

L =
φ

2
Rab∧∗eab− ω

2φ
dφ ∧∗dφ − 1

2
F ∧∗F +

γ

2φ
Cab∧Fab ∗F

+T a∧λa +µ ∧dF (4.54)

where φ is the dilaton field and

Cab = Rab−
1
2
(ea∧Rb− eb∧Ra)+

1
6
Reab (4.55)

are the Weyl conformal curvature 2-forms (c1 = c2 = γ, c3 =
γ

3 , c4 = c5 = c6 = 0) .

Thus, the field equations for (4.53) are written as1

φGa = τ
a[dφ ]+ τ

a[F ]+∑
i

ci
i
τ

a[F, R̂]+ D̂λ
a (4.56)

dF = 0 (4.57)

d[−∗F +
c1

φ
Fab ∗ R̂ab +

c2

2φ
[R̂a∧ ıa ∗F− R̂∗F +∗(ıaF ∧ R̂a)]

+
c3

φ
R̂∗F +

c4

2φ
[2Fa∧ R̂a +2FabR̂ab]+

c4− c5 +2c6

2φ
FR̂] = 0 (4.58)

1here i = 1,2,3,4,5,6
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where

Ĝc = −1
2

R̂ab∧∗eabc (4.59)

τ
c[F ] =

1
2
(ıcF ∧∗F−F ∧ ıc ∗F) (4.60)

τ
c[φ ] =

ω

2φ
(ıcdφ ∧∗dφ +dφ ∧ ıc ∗dφ) (4.61)

1
τ

c[F, R̂] = − 1
4φ

(4FacıbF ∧∗R̂ab + ıcF ∧∗R̂abFab− R̂abFab∧ ıc ∗F

+ıcR̂abFab∧∗F−F ∧ ıc ∗ R̂abFab) (4.62)

2
τc[F, R̂] =

1
4φ

[2R̂Fc∧∗F−2Fc∧ R̂a∧ ıa ∗F +2FabıcR̂ab∧∗F

+2ıcR̂ba∧Fa∧ ıb ∗F +FacR̂a∧∗F− ıcR̂aıaF ∧∗F

−Fc∧∗(Fa∧ R̂a)+Fa∧ R̂a∧ ıc ∗F +F ∧ ıc ∗ (Fa∧ R̂a)] (4.63)

3
τc[F, R̂] = − 1

2φ
[2ıcR̂bıbF ∧∗F +2ıcR̂bF ∧ ıb ∗F + ıcF ∧∗R̂F

−R̂F ∧ ıc ∗F ] (4.64)

4
τc[F, R̂] =

c4

φ
[FacR̂a∧F−FacR̂ab∧Fb]

5
τc[F, R̂] =

c5

2φ
[−FcaR̂a∧F +FcR̂∧F−Fc∧ R̂a∧Fa−FabıcR̂ba∧F

−FaıcR̂a∧F−Fa∧ ıcR̂ba∧Fb] (4.65)

6
τc[F, R̂] = −2c6

φ
(ıcR̂b)Fb∧F (4.66)

Σ̂
ac =

c1− c2 + c3

φ
Fac ∗F +

2c3− c2

2φ
(Fc∧ ıa ∗F−Fa∧ ıc ∗F)− c3

φ
F ∧ ıac ∗F

+
(c4− c5 +2c6)

φ
FacF +

(c5−2c6)

φ
Fa∧Fc]+φ ∗ ea∧ ec (4.67)

we have also the scalar field φ equation;

1
2

R̂∗1+
ω

2φ 2 dφ ∧∗dφ +ωd ∗ dφ

φ
− 1

2φ 2 [c1F ∧Fab ∗ R̂ab + c2Fa∧ R̂a∧∗F

+c3R̂F ∧∗F + c4FabR̂ab∧F + c5ıaF ∧ ıbR̂baF + c6R̂F ∧F ] = 0 (4.68)

producting with 2φ

φ R̂∗1+
ω

φ
dφ ∧∗dφ +2ωφd ∗ dφ

φ
− 1

φ
[c1F ∧Fab ∗ R̂ab + c2Fa∧ R̂a∧∗F

+c3R̂F ∧∗F + c4FabR̂ab∧F + c5ıaF ∧ ıbR̂baF + c6R̂F ∧F ] = 0 (4.69)

Trace of the co-frame equation is,

φ R̂∗1− ω

φ
dφ ∧∗dφ − 1

φ
[c1F ∧Fab ∗ R̂ab + c2Fa∧ R̂a∧∗F + c3R̂F ∧∗F

+c4FabR̂ab∧F− c5R̂F ∧F +2c6R̂a∧Fa∧F ]+ ec∧ D̂λc = 0 (4.70)
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subtract the trace eq. from φ eq.

2ωd ∗dφ − 1
φ
[(c5 + c6)R̂F ∧F +(c5 +2c6)Fa∧ R̂a∧F ]− ec∧ D̂λc = 0 (4.71)

Lagrange multiplier λa can be solved again;

λ
c = ıaD̂Σ̂

ac +
1
2

ıbaD̂Σ̂
ab∧ ec. (4.72)

Lastly, the field equations of the conformally invariant non-minimally coupled

Einstein-Maxwell Lagrangian (4.54) is found to be

φGa = τ
a[dφ ]+ τ

a[F ]+ γ( 1
τ

a + 2
τ

a +
1
3

3
τ

a)+ D̂[ıbD̂Σ̂
ba +

1
2

ıbcD̂Σ̂
cb∧ ea],(4.73)

d[−∗F +
γ

φ
Fab ∗ R̂ab +

γ

2φ
(R̂a∧ ıa ∗F− R̂∗F +∗(Fa∧ R̂a))

+
γ

3φ
R̂∗F ] = 0, (4.74)

dF = 0, (4.75)

2ωd ∗dφ − ea∧ D̂[ıbD̂Σ̂
ba +

1
2

ıbcD̂Σ̂
cb∧ ea] = 0 (4.76)

where Σ̂ab

Σ̂
ac =

γ

3φ
[Fac ∗F +

1
2
(Fc∧ ıa ∗F−Fa∧ ıc ∗F)−F ∧ ıac ∗F ]+φ ∗ eac. (4.77)
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5. EXACT SOLUTIONS

5.1 Plane Fronted Wave Solutions

Gravitational waves describing the propagation of gravitational radiation predicted by

Albert Einstein based on Einstein’s general relativity. They are known as fluctuations

of curvature of spacetime and they can be produced by binary star systems or black

holes. The linearized gravitational wave solutions of general relativity is well known.

However, the linearized solutions may cause inadequate information. So, we look for

the exact solutions describing plane fronted waves with parallel rays (pp-waves). The

following calculations of this section can be found partly in [28]. A generic pp-wave

metric (in Ehlers-Kundt form) [11, 12] is given by,

g = 2dudv+dx2 +dy2 +2H(u,x,y)du2. (5.1)

H is the metric disturbance which is a smooth function to be determined1. According

to the pp-wave metric the two surfaces u and v are constant or plane wave surfaces

and the metric of the surfaces is (dx2+dy2). For the metric (5.1), a convenient choice

of orthonormal co-frames is going to be used:

e0 =
H−1√

2
du+dv, e1 = dx, e2 = dy, e3 =

H +1√
2

du+dv. (5.2)

We may also exploit the advantages of complex coordinates in transverse plane by

letting

g = 2dudv+2dzdz+2H(u,z,z)du2 (5.3)

where

z =
x+ iy√

2
, z̄ =

x− iy√
2

. (5.4)

We firstly determine the unique Levi-Civita connection using that torsion is zero

ω̂
01 =−ω̂

13 =
Hx

2
(e3− e0), ω̂

02 =−ω̂
23 =

Hy

2
(e3− e0). (5.5)

1If the metric disturbance H is quadratic in (x,y), then one can find a transformation [29] from the
metric (6.36) to the metric in Bondi et al. form.
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We calculate the Einstein tensor 3-forms which are defined as Ĝa =− 1
2κ2 R̂bc∧∗eabc

for the connection

Ĝ0 =−Ĝ3 =
Hxx +Hyy

2κ2 ∗ (e3− e0), Ĝ1 = 0 = Ĝ2. (5.6)

We consider an electromagnetic potential 1-form in direction du given as A =

a(u,x,y)du or A = a(u,z,z)du for pp-waves. Then

F = dA

= axdx∧du+aydy∧du

= azdz∧du+azdz∧du (5.7)

and the Maxwell stress-energy 3-forms turn out to be

Max
τ0 = −Max

τ3 =−
ax

2 +ay
2

2
∗ (e3− e0) =−azaz ∗ (e3− e0) (5.8)

Max
τ1 = Max

τ2 = 0. (5.9)

After a lengthy calculation it is found that the non-minimal invariants give a nontrivial

contribution to the non-minimally coupled Einstein-Maxwell theory only via D̂λa

D̂λ0 = −D̂λ3 =
c2− c1

2
(
(ax

2)xx +2(axay)xy +(ay
2)yy
)
∗ (e3− e0), (5.10)

D̂λ1 = 0 = D̂λ2, (5.11)

The all other expressions are zero;

NM
τ̂a = 0. (5.12)

Now we put all these terms together and write the non-minimally coupled

Einstein-Maxwell equations as

Hxx +Hyy =−κ
2(ax

2 +ay
2)+κ

2(c2− c1)
(
(ax

2)xx +2(axay)xy +(ay
2)yy
)
, (5.13)

axx +ayy = 0. (5.14)

These equations can be written in an invariant form on the transverse xy-plane [12],

[13]:

∆H = κ
2|∇a|2−κ

2(c2− c1)Hess(a)

−2κ
2(c2− c1)

(
∆(a∆a)−a∆(∆a)+(∆a)2) (5.15)

∆a = 0 (5.16)
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where

∆ =
∂ 2

∂x2 +
∂ 2

∂y2 (5.17)

is the 2-dimensional Laplacian,

|∇a|2 =
(

∂a
∂x

)2

+

(
∂a
∂y

)2

(5.18)

is the norm-squared of the 2-dimensional gradient and

Hess(a) =
∣∣∣∣ axx axy

ayx ayy

∣∣∣∣= axxayy− (axy)
2 (5.19)

is the 2-dimensional Hessian operator. In terms of complex coordinates, (5.16) simply

become

Hzz̄ = −κ
2azaz̄ +κ

2(c2− c1)azzaz̄z̄,

azz̄ = 0. (5.20)

A non-trivial solution that depends on the coupling constant (c2− c1) is obtained by

letting

a(u,z,z) = f1(u)z+ f̄1(u)z+ f2(u)z2 + f̄2(u)z2. (5.21)

while f1(u), f̄1(u) arbitrary functions demonstrate the polarization states of photon

in vacuum, f2(u), f̄2(u) demonstrate the polarization by the presence of nonminimal

coupling terms. Then

1
κ2 H(u,z, z̄) = f3(u)z2 + f̄3(u)z̄2−| f1(u)|2|z|2−| f2(u)|2|z|4− f1(u) f̄2(u)z̄|z|2

− f2(u) f̄1(u)z|z|2 +4(c2− c1)| f2(u)|2|z|2. (5.22)

We note that the non-minimal coupling c2− c1 between the gravitational and

electromagnetic waves is carried in the last term on the right hand side of the

expression above and affects only the space-time metric. Both the polarization p = 0

and the magnetization m = 0 identically in the pp-wave geometry. We write

A = A1++A1−+A2++A2− (5.23)

where

A1+ = f1(u)zdu = ¯A1− , A2+ = f2(u)z2du = ¯A2− (5.24)
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and introduce z = reiθ to show that

L 1
i

∂

∂θ

A1± =±A1± L 1
i

∂

∂θ

A2± =±2A2±. (5.25)

LX denotes the Lie derivative along the vector field X . Hence A1±,A2± are null

photon helicity eigen-tensors. Similarly, the metric tensor decomposes as

g = η +G0 +G1++G1−+G2++G2− (5.26)

where η is the metric of Minkowski spacetime and

G1+ = − f̄1(u) f2(u)z|z|2du⊗du = Ḡ1− (5.27)

G2+ = f̄3(u)z2du⊗du = Ḡ2− (5.28)

G0 =
(
−| f1(u)|2−| f2(u)|2|z|4 +4(c2− c1)| f2(u)|2|z|2

)
du⊗du. (5.29)

The G1±,G2± are null g-wave helicity eigen-tensors for linearized gravitation about

η +G0:

L 1
i

∂

∂θ

Ḡ1± =±Ḡ1± L 1
i

∂

∂θ

Ḡ2± =±2Ḡ2±. (5.30)

The helicity of the electromagnetic fields must have±1. This means that f2 = f̄2 = 0.

These two helicity components correspond to the classical concepts of right-handed

and left-handed circularly polarized light.

While f1(u), f̄1(u) arbitrary functions demonstrate the polarization states of photon

in vacuum, f2(u), f̄2(u) demonstrate the polarization states to see the effects of the

nonminimal coupling terms. Then

1
κ2 H(u,z,z) = f3(u)z2 + f̄3(u)z̄2 + | f1(u)|2|z|2 + | f2(u)|2|z|4 + f1(u) f 2(u)z̄|z|2

+ f2(u) f 1(u)z|z|2−4(c2− c1)| f2|2|z|2. (5.31)

These solutions describe parallelly propagating plane fronted gravitational and

electromagnetic waves that do not interact with each other in the Einstein-Maxwell

theory. Here if only the standard degrees of polarization ( ±1 for the photon and

±2 for the graviton) are kept, no contribution arises from the non-minimal coupling

constants c1,c2. It is interesting to note that if c1,c2 are kept they bring in ±2

polarization degrees of freedom for the photon together with ±1 polarization degrees

of freedom for the graviton. The notion of a partially massless (spin-2) photon had
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been introduced before by Deser and Waldron [30], [31]. On the other hand, the

partially massive (spin-2) graviton here is new and it may find some observational

evidence in future.

Additionally, Energy-momentum transported by the exact plane wave is given by

Σ
0 = Σ

3 =
1√
2
[| f1(u)|2z2 +4(c2− c1)| f1(u)|2

+2 f1(u) f 2(u)z+2 f2(u) f 1(u)z+ f2(u)2]∗du (5.32)

5.1.1 The non-zero torsion case:

Now we give up the zero-torsion constraint in the action of nonminimal

Einstein-Maxwell theory and calculate the contortion 1-forms from (4.47) as

K31 = K01 = −κ2(c2− c1)

2
[ayayx +2axaxx +axayy](e3− e0) (5.33)

K32 = K02 = −κ2(c2− c1)

2
[axaxy +2ayayy +ayaxx](e3− e0) (5.34)

and the other components are zero. We find the non-zero torsion components from

this contortion using (2.25)

T 0 = T 3 =
κ2(c2− c1)

2
[ayayx +2axaxx +axayy]e1∧ (e3− e0)

+
κ2(c2− c1)

2
[axaxy +2ayayy +ayaxx]e2∧ (e3− e0). (5.35)

Then the full connection 1- forms are to be

ω
01 = ω

31 =
1
2
[Hx−κ

2(c2− c1)(ayayx +2axaxx +axayy)](e3− e0), (5.36)

ω
02 = ω

32 =
1
2
[Hy−κ

2(c2− c1)(axaxy +2ayayy +ayaxx)](e3− e0). (5.37)

For the full connection the Einstein-Cartan tensor 3-forms which are defined by Ga =

− 1
2κ2 Rbc∧∗eabc become

G0 = −G3 = {
Hxx +Hyy

2κ2 − c2− c1

2
(
(ax

2)xx +2(axay)xy +(ay
2)yy
)
}∗ (e3− e0),

G1 = 0 = G2. (5.38)

When we put all these terms together to write the non-minimally coupled

Einstein-Cartan-Maxwell equations, we find remarkably that they are the same

equations with the non-minimally coupled Einstein-Maxwell equations

Hxx +Hyy−κ
2(c2− c1)

(
(ax

2)xx +2(axay)xy +(ay
2)yy
)
=−κ

2(ax
2 +ay

2),

axx +ayy = 0. (5.39)
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5.2 Static Spherically Symmetric Solutions

We look for static spherically symmetric solutions of the field equations of

non-minimally coupled Einstein-Cartan-Maxwell theory. We start with the following

metric

g = − f (r)2dt2 + f (r)−2dr2 + r2(dθ
2 + sin2

θdφ
2) (5.40)

the convenient choice of orthonormal co-frames:

e0 = f (r)dt , e1 = f (r)−1dr , e2 = rdθ , e3 = r sinθdφ (5.41)

under this choice the metric (5.40) becomes

g = −e0⊗ e0 + e1⊗ e1 + e2⊗ e2 + e3⊗ e3 (5.42)

and the exterior derivative of the co-frames (5.41) can be calculated as

de0 = f ′e10 , de1 = 0 , de2 =
f
r

e12 , de3 =
f
r

e13 +
cotθ

r
e23 (5.43)

the Levi-Civita connection 1-forms are to be

ω̂
0

1 = f ′e0 , ω̂
2

1 =
f
r

e2 , ω̂
3

1 =
f
r

e3 , ω̂
3

2 =
cotθ

r
e3 (5.44)

from the definition of curvature (2.35), each component of curvature 2-form:

R̂01 =
( f 2)′′

2
e10 , R̂02 =

( f 2)′

2r
e20 , R̂03 =

( f 2)′

2r
e30,

R̂21 =
( f 2)′

2r
e12 , R̂31 =

( f 2)′

2r
e13 , R̂32 =

1
r2 (1− f 2)e32. (5.45)

and Ricci 1-forms from ıaR̂ab = R̂b:

R̂0 =−[( f 2)′′

2
+

( f 2)′

r
]e0, R̂1 =−[( f 2)′′

2
+

( f 2)′

r
]e1

R̂2 =−[ f 2−1
r2 +

( f 2)′

r
]e2, R̂3 =−[ f 2−1

r2 +
( f 2)′

r
]e3 (5.46)

the scalar of curvature:

R̂ = ıaR̂a = ı0R̂0 + ı1R̂1 + ı2R̂2 + ı3R̂3

R̂ = −( f 2)′′−4
( f 2)′

r
−2

f 2−1
r2 (5.47)
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Thus the Einstein tensor can be calculated as

Ĝ0 =−[( f 2)′

r
− 1− f 2

r2 ]e123, Ĝ1 =−[( f 2)′

r
− 1− f 2

r2 ]e023

Ĝ2 = [
( f 2)′′

2
+

( f 2)′

r
]e013, Ĝ3 =−[( f 2)′′

2
+

( f 2)′

r
]e012. (5.48)

In general, to solve the field equations of non-minimally coupled Einstein-Maxwell

theory is not easy. So, we look at the special solutions such as the Coulomb potential

and magnetic monopole potential.

5.2.1 Coulomb potential

We will consider Coulomb potential as an electromagnetic potential 1-form satisfying

the Maxwell equation dF = 0;

A = h(r)dt. (5.49)

We can calculate the following components of electromagnetic field

F = dA =
1
2

Fabeab = h′e10, ∗F = h′∗e10 = h′e23,

F0 = ı0F = h′e1, F1 = ı1F = h′e0, F01 = h′

FabRab =−h′( f 2)′′e10. (5.50)

Thus, the Maxwell energy momentum tensor,

τ
0 =

1
2

h′2e123, τ
1 =

1
2

h′2e023, τ
2 =

1
2

h′2e013, τ
3 =−1

2
h′2e012 (5.51)

and energy momentum-tensor of the nonminimally coupled terms respectively from

(4.15)-(4.20).

1
τ̂

0 = h′2( f 2)′′e123, 1
τ̂

1 = h′2( f 2)′′e023,

1
τ̂

2 =
1
2

h′2( f 2)′′e013 1
τ̂

3 =−1
2

h′2( f 2)′′e012 (5.52)

2
τ̂

0 =−h′2[( f 2)′′+
3
2
( f 2)′

r
]e123, 2

τ̂
1 =−h′2[( f 2)′′+

3
2
( f 2)′

r
]e023

2
τ̂

2 =−1
2

h′2[( f 2)′′+
( f 2)′

r
]e013, 2

τ̂
3 =

1
2

h′2[( f 2)′′+
( f 2)′

r
]e012 (5.53)

3
τ̂

0 = h′2[( f 2)′′+3
( f 2)′

r
+

f 2−1
r2 ]e123, 3

τ̂
1 = h′2[( f 2)′′+3

( f 2)′

r
+

f 2−1
r2 ]e023

3
τ̂

2 =
h′2

2
[( f 2)′′+2

( f 2)′

r
]e013, 3

τ̂
3 =−h′2

2
[( f 2)′′+2

( f 2)′

r
]e012 (5.54)
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4
τ̂

a = 5
τ̂

a = 6
τ̂

a = 0 (5.55)

the Lagrange multiplier λa can be found from (3.7) as

λ
0 = −2 f h′[(c1− c2 + c3)h′′+(c1−

c2

2
)
h′

r
]e23

λ
1 = 0

λ
2 = −2 f h′[(2c3− c2)h′′−

c2

2
h′

r
]e03

λ
3 = 2 f h′[(2c3− c2)h′′−

c2

2
h′

r
]e02 (5.56)

and the covariant exterior derivative of them

D̂λ
0 = −[(c1− c2 + c3)( f 2′h′h′′+2 f 2h′′2 +2 f 2h′h′′′)+(2c1− c2)(

f 2h′2

r2

+
f 2′h′2

2r
)+(8c1−6c2 +4c3)

f 2h′h′′

r
]e123 (5.57)

D̂λ
1 = −[(c1− c2 + c3) f 2′h′h′′+(c1−

c2

2
)

f 2′h′2

r
+(4c3−2c2)

f 2h′h′′

r

−c2
f 2h′2

r2 ]e023 (5.58)

D̂λ
2 = [(2c3− c2)( f 2′h′h′′+ f 2h′′2 + f 2h′h′′′)+(2c3−2c2)

f 2h′h′′

r

−c2

2
f 2′h′2

r
]e013 (5.59)

D̂λ
3 = −[(2c3− c2)( f 2′h′h′′+ f 2h′′2 + f 2h′h′′′)+(2c3−2c2)

f 2h′h′′

r

−c2

2
f 2′h′2

r
]e012 (5.60)

The total field equations are

1
κ2 Ĝ0−λe123 = h′2[

1
2
+(c1− c2 + c3) f 2′′+(3c3−

3c2

2
)

f 2′

r
+ c3

f 2−1
r2 ]e123 +Dλ

0

1
κ2 Ĝ1−λe023 = h′2[

1
2
+(c1− c2 + c3) f 2′′+(3c3−

3c2

2
)

f 2′

r
+ c3

f 2−1
r2 ]e023 +Dλ

1

1
κ2 Ĝ2 +λe013 = [

h′2

2
+

(c1− c2 + c3)

2
h′2 f 2′′+(c3−

c2

2
)
h′2 f 2′

r
]e023 +Dλ

2
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1
κ2 Ĝ3−λe012 = [

h′2

2
+

(c1− c2 + c3)

2
h′2 f 2′′+(c3−

c2

2
)
h′2 f 2′

r
]e023 +Dλ

3

These differential equation system can be reduced to the following form; the

difference between the zeroth and first equations:

c1H +(2c1− c2)H ′r+
c1− c2 + c3

2
H ′′r2 = 0 (5.61)

and we can solve it for H(r) as

H(r) =C1 +C2r
−c1−c2+3c3+b1

2(c1−c2+c3) +C3r
−c1−c2+3c3−b1

2(c1−c2+c3) (5.62)

where b1 = c2
1 +2c1c2−14c1c3 + c2

2 +2c2c3 + c2
3 the first equation:

− 1
κ2 [

( f 2)′

r
− 1− f 2

r2 ] = λ +H[
1
2
+(c1− c2 + c3) f 2′′+(3c3− c1− c2)

f 2′

r

+
(c2 + c3) f 2− c3

r2 ]− c1− c2 + c3

2
f 2′H ′− (2c3− c2)

f 2H ′

r

the second equation:

1
κ2 [

( f 2)′′

2
+

( f 2)′

r
] = −λ +[

H
2
+

(c1− c2 + c3)

2
H f 2′′+(c3− c2)

(H f 2)′

r
]

+
2c3− c2

2
(H ′ f 2)′

where H = h′2 and there is also the Maxwell equation from (4.23)

(1+(c1− c2 + c3) f 2′′+(4c3−2c2)
f 2′

r
+2c3

f 2−1
r2 )h′ = q/r2 (5.63)

We have not found any analytic solutions to these three differential equations which

has one unknown function.

5.2.2 Magnetic monopole potential

Now we consider the solutions with magnetic monopole potential to this theory as

A = k0(1− cos(θ))dφ (5.64)

where

k0 =
1

4π

∫
S

F (5.65)

We calculate the all required expressions to solve the field equations of the

non-minimal Einstein-Maxwell theory for the above potential. We point out that the
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0th and 1st components of all the Einstein equations have the same results, except of

Dλ a.

λ a and Dλ a components can be found as:

λ
0 = −2 f

r5 (2c3−
c2

2
)k2

0e23

λ
1 = 0

λ
2 = − f

r5 (c1−
5c2

2
+4c3)k2

0e03

λ
3 =

f
r5 (c1−

5c2

2
+4c3)k2

0e02 (5.66)

D̂λ
0 = [−6 f 2

r6 (2c3−
c2

2
)− 2 f f ′

r5 (c3−
c2

4
)]k2

0e123

D̂λ
1 = [−2 f 2

r6 [(c1−
5c2

2
+4c3)−

2 f f ′

r5 (c3−
c2

4
)]k2

0e023

D̂λ
2 = [−2 f 2

r6 2(c1−
5c2

2
+4c3)+

2 f f ′

r5 (c1−
5c2

2
+4c3)]k2

0e013

D̂λ
3 = [

2 f 2

r6 [2(c1−
5c2

2
+4c3)−

2 f f ′

r5 (c1−
5c2

2
+4c3)]k2

0e012 (5.67)

Thus we can write the total field equations respectively;

The 0th component:

f 2′

r
− 1− f 2

r2 +
k2

2r4 −
k2c3 f 2′

r5

−(4c2−13c3− c1)k2 f 2 +(c1− c2 + c3)k2

r6 = 0 (5.68)

where k = κ2k0.

The 1st component:

f 2′

r
− 1− f 2

r2 +
k2

2r4 −
k2c3 f 2′

r5

−(−4c2 +7c3 + c1)k2 f 2 +(c1− c2 + c3)k2

r6 = 0 (5.69)

The 2nd component:

f 2′

r
+

f 2

2
− (c3 f 2′′+1)k2

2r4 − (7c3−4c2 + c1)k2 f 2′

r5

−(8c2−14c3−2c1)k2 f 2−2(c1− c2 + c3)k2

r6 = 0 (5.70)

and the Maxwell equation is automatically satisfied for this potential.

d ∗F = 0 (5.71)
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We can see from 0th and 1st components2.

c1−4c2 +10c3 = 0 (5.72)

• If one choose c3 = 0, c1 = 4c2 , the above system is reduced to the following two

differential equations;

f 2′′

2
+

f 2′

r
− k2

2r4 +6
k2c2

r6 = 0

f 2′

r
+

f 2−1
r2 +

k2

2r4 −3
k2c2

r6 = 0 (5.73)

As it is given by Balakin in [32], the solution of these differential equations is

f (r)2 = 1− 2m
r

+
k2

2r2 −
c2k2

r4 . (5.74)

The solution is asymptotically flat and a generalization of Reissner-Nordström

solution to the non-minimal case. The metric function f 2 has a central essential

singularity for arbitrary mass and charge. That is, f 2 has at least one positive real

solution for r, thus spacetime has one or more horizons.

• If c1 = 6c3, c2 = 4c3, the above system turns out to the following two differential

equations;

f 2′′

2
+

f 2′

r
− (1+ c3 f 2′′)k2

2r4 +
3k2c3 f 2′

r5 − 6c3( f 2−1)k2

r6 = 0

f 2′

r
− 1− f 2

r2 +
k2

2r4 −
k2c3 f 2′

r5 +
3c3k2( f 2−1)

r6 = 0 (5.75)

the solution of this differential system [33] is

f 2(r) = 1+
k2r2−4mr3

2(r4− c3k2)
(5.76)

This solution is also asymptotically flat and it is regular at r = 0, f 2(0) = 1, provided

that c3 6= 0. There is a singularity at r4 = k2c3 and there is at least one horizon.

2When we take c1 = q3 c2 =−q2 c3 = q1, we obtain the same results with [32]
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5.2.3 The non-zero torsion case:

In the beginning of this chapter, we have shown that we can consider also theory

with torsion. For a given electromagnetic potential we can determine the contortion

uniquely from (4.47) as

K0
1 =

f k2 (−3c6
2k2−2r4c6− r4c5 + c5 k2c3 + r4c3

)
e0

r (r8 +2r4c6 k2 + c6
2k4)

(5.77)

K1
2 = K1

3 =
f k2 (c3 + c6)e3

r (r4 + c6 k2)
(5.78)

and using (2.25) we can determine the components of the torsion

T 0 =
f k2 (−3c6

2k2−2r4c6− r4c5 + c5 k2c3 + r4c3
)

e01

r (r8 +2r4c6 k2 + c6
2k4)

(5.79)

T 2 =
f k2 (c3 + c6)e12

r (r4 + c6 k2)
(5.80)

T 3 =
f k2 (c3 + c6)e13

r (r4 + c6 k2)
(5.81)

where c5 = c1− c2 + c3 and c6 = c3− c2
2 .

When we calculate the Einstein-Cartan-Maxwell field equations (4.49)-(4.51), we

find very long and complicate differential equations for the above magnetic monopole

potential and static spherically symmetric metric. Therefore, we think it is not useful

to give the expressions explicitly here. So, we look for solutions for some special

values of ci.

• If c1 = 6c3, c2 = 4c3, the above system is reduced to (5.75) with T a = 0

interestingly and the solution is (5.76) again.

• But, if c3 = 0, c1 = 4c2 the above system with torsion is not consistent and

there is no solution. The absence of the solution gives us the difference between

Einstein-Maxwell theory and Einstein-Cartan-Maxwell theory for this choice. We

can see while the solution (5.76) is regular at r = 0 for c3 6= 0, the solution (5.74)

has a singularity at this point. Thus, when we allow the torsion, there is no solution

which has central singularity, while there is a solution which has central singularity

(5.76) to the Einstein-Maxwell field equations.

42



6. EINSTEIN-CARTAN-DIRAC THEORY

Although general relativity describes the motion of bodies at the scale of solar

system very successfully, it is inadequate in Planck densities and cosmological scales.

Therefore, for a natural extension of general relativity to those scales, the effects of

coupling fermions to gravity should be considered.

On the other hand, Einstein-Cartan theory [10] is a generalization of Einstein’s

theory of gravity allowing space-time (in arbitrary number of dimensions) to have

torsion in addition to curvature and relating torsion to the density of intrinsic angular

momentum of matter. In this theory, torsion is considered as a nonpropagating

field. The Einstein and Einstein-Cartan theories give exactly the same results

in empty space. Since all tests of general relativity are based on the idea of

Einstein’s field equations in vacuum, the Einstein-Cartan gravity is consistent with

the idea in that case. Initial expectation of Trautman was that the intrinsic angular

momentum may influence the occurrence of singularities in gravitational collapse or

cosmology but that didn’t turn out to be the case. The theory of gravity which has

torsion and spin was given independently by Sciama and Kibble. Actually, simple

theory of supergravity is equivalent to Einstein-Cartan-Dirac theory with massless,

anticommuting Rarita-Schwinger field [38].

One can couple gravity with the Dirac fields in the formulation of

Einstein-Cartan-Dirac theory. In Einstein-Cartan-Dirac theory, torsion depends

on the spin and the energy-momentum tensor which is non-symmetric (because of

torsion). The effects of torsion can be significant only at high densities of matter.

Nevertheless, they may contribute at much smaller densities than the Planck density

at which quantum gravitational effects are believed to dominate. Moreover, it

can be a new insight to consider the couplings in the context of astrophysical and

quantum field theory. Field theories often provide easy ways to check the ideas that

are difficult to prove in actual (1+3)-dimensions. However, it is not surprising to
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uncover other new ideas as well that are specific to (1+2)-dimensions. Topologically

massive gravity [34] or BTZ black holes [35] are some of the best known examples

to the latter case. Other aspects and the literature may be found in Ref. [36]. An

extension of the BTZ solution with torsion is discussed by Garcia et al [37] where the

field equations are derived from an action that includes topological Chern-Simons

terms. Despite the existence of many solutions of general relativity in the Einstein or

Einstein-Maxwell theory, there are a few solutions for Einstein-Cartan-Dirac theory.

We investigate Einstein-Cartan-Dirac theory in order to obtain the behevior of the

space-time metric in the precense of a Dirac spinor field. Firstly, we will obtain the

field equations of Einstein-Cartan theory using the variational principle. Therefore,

we will point out the difference between General relativity and Einstein-Cartan

gravity giving an outline of these two theories in arbitrary d-dimensions. In order

to reach this theory, the Einstein-Hilbert action is extended to Einstein-Cartan action

which includes torsion tensor. We will couple a Dirac spinor to Einstein-Cartan

gravity and obtain the field equations by a variational principle in (1+2)-dimensions

using the algebra of exterior differential forms. We will determine the torsion tensor

in terms of Dirac field couplings in three dimensions. It is interesting to note that

the same Einstein-Cartan-Dirac field equations can also be obtained from an action

by zero-torsion constrained variations using the method of Lagrange multipliers.

Thus, we will show that the equivalence between the Einstein-Dirac theory and

Einstein-Cartan-Dirac theory in three dimensions. We will consider through this

paper the metric compatible connection. That is; the nonmetricity tensor is equal

to zero.

The space-time torsion is determined algebraically in terms of the quadratic spinor

invariant associated with a Dirac condensate field. We then looked for rotating,

circularly symmetric solutions. We found a particular class of solutions that possess

an essential curvature singularity at the origin r=0. The mass and the intrinsic angular

momentum of this configuration can be identified. It is remarkable that in the absence

of the Dirac condensate field the metric collapses to the regular AdS3 metric. We note

that for our solution the Dirac condensate field determines completely the rotation of

the metric of the space-time.
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6.1 Variational Field Equations

We consider a Dirac spinor field ψ which has two components in 1+2 dimensional

space-time in spinor representation of the Lorentz group as

ψ =

(
ψ1
ψ2

)
(6.1)

and the conjugate spinor field

ψ̄ = ψ
†
γ0 = (−ψ

∗
2 ψ

∗
1 ) (6.2)

where ψ1 and ψ2 are complex, odd Grassmann valued functions. We use a real (i.e.

Majorana) realization of the gamma matrices {γa} given explicitly as

γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
1 0
0 −1

)
. (6.3)

To write the hermitian Dirac Lagrangian let us start the following Lagrangian for the

Dirac fields ψ, ψ̄ ,

LD[ψ,e,ω] = iψ ∧∗γ ∧∇ψ + imψψ∗1 (6.4)

where m represents the mass of the fermionic field. The exterior covariant derivatives

of the spinor fields are defined to be

∇ψ ≡ dψ +
1
2

ω
ab

σabψ , ∇ψ ≡ dψ̄− 1
2

ω
ab

ψ̄σab (6.5)

with

σab =
1
4
[γa,γb] =

1
2
∗ eabcγ

c. (6.6)

in terms of spinor connection ωab. We set ∗γ = γa ∗ ea. We see from (6.4) that the

first term is not hermitian. But, the second term is hermitian since (γ0)
† =−γ0.

(imψψ)† = imψψ (6.7)

In order to make the first term in (6.4) hermitian, hermitian conjugate of this is

inserted to the Lagrangian

O =
1
2
(O +O†). (6.8)
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thus,

LD =
1
2
[iψ∗γ ∧∇ψ +(iψ ∧∗γ ∧∇ψ)†]+ imψψ∗1

=
i
2
[ψ∗γ ∧∇ψ− (ψ ∧∗γ ∧∇ψ)†]+ imψψ∗1

=
i
2
[ψ∗γ ∧∇ψ− (∇ψ)†∧ (∗γ)†(ψ†

γ0)
†]+ imψψ∗1

=
i
2
[ψ∗γ ∧∇ψ− (∇ψ)†∧ (γa)

†(γ0)
†
ψ∗ea]+ imψψ∗1

where we have used the properties of Dirac matrices such as γ0γa
†γ0 = γa, γ0γ0 =−1

and γ0
† =−γ0.

We will continue with taking independent variations according to the fields of the

hermitian Dirac Lagrangian 3-form in three dimensions.

LD =
i
2
[ψ∗γ ∧∇ψ−∇ψ ∧∗γψ]+ imψψ∗1 (6.9)

• The co-frame variation of the Dirac Lagrangian:

δeLD =
i
2
(ψδ∗γ ∧∇ψ−∇ψ ∧δ∗γψ)+ imψψδ∗1 (6.10)

substituting ∗γ = γa∗ea and δ∗1 = δea∧∗ea in the above expression the variation can

be recast into the form

δeLD = δ∗eb∧ i
2
(ψγb∇ψ−∇ψγbψ)+δea∧ imψψ∗ea

= δea∧∗(eb∧ ea)∧
i
2
(ψγb∇ψ−∇ψγbψ)+δea∧ imψψ∗ea

= δea∧ i
2
[ψ∗(γ ∧ ea)∇ψ +∇ψ∗(γ ∧ ea)ψ]+δea∧ imψψ∗ea

Thus, the energy-momentum 2-form of a spinor field have been derived such as

τ̂a[ψ] =
i
2
[ψ∗(γ ∧ ea)∇ψ +∇ψ∗(γ ∧ ea)ψ]+ imψψ∗ea (6.11)

• The connection variation of the Dirac Lagrangian:

δωL =
i
2
[ψ∗γ ∧δ∇ψ +δ∇ψ ∧∗γψ]

= ψ∗γ ∧ i
4

δω
ab

σabψ− i
4
(−ψδω

ab
σab ∗ γψ)

= δω
ab∧ i

4
ψ(∗γσab +σab∗γ)ψ

= δω
ab∧ i

4
ψ(γcσab +σabγc)ψ∗ec
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by using the properties of the Dirac matrices the variation

δωL = δω
ab∧ i

4
ψψεabc ∗ ec

= −δω
ab∧ i

4
ψψeab (6.12)

from here the spinor angular momentum 2-form can be identified as

Σab =−
i
4

ψψeab (6.13)

• The ψ field variation of the Dirac Lagrangian:

δψL =
i
2
[δψ∗γ ∧∇ψ−∇(δψ)∧∗γψ]+δψimψ∗1 (6.14)

The second term in the parenthesis

∇(δψ)∧∗γψ = d(δψ)∧∗γψ− 1
2

δψω
ab

σab∧∗γψ

= −δψ[∗γ ∧dψ +d∗γψ +
1
2

ω
ab

σab∧∗γψ]

using this property σabγc = γcσab +ηbcγa−ηacγb

∇(δψ)∧∗γψ = −δψ[d(∗γψ)+
1
2

ω
ab∧ (∗γσab + γa ∗ eb− γb ∗ ea)ψ]

= −δψ ∗ γ ∧∇ψ−δψ(d ∗ ea +ω
ab ∗ eb)γaψ

= −δψ ∗ γ ∧∇ψ +δψT ∧∗γψ (6.15)

where in the last step we have used

D∗ea = d∗ea +ω
ab∧∗eb = T b ∗ ea

b (6.16)

= −T ∧∗ea (6.17)

Thus from (6.14) non-linear Dirac equation is obtained in the Riemann-Cartan

space-times

δψL = δψ
i
2
[2∗γ ∧∇ψ−∗γ ∧T ψ +2mψ∗1] (6.18)

and for the ψ field after same process we find that

δψL =
i
2
[−2∇ψ ∧∗γ +∗γ ∧T ψ +2mψ∗1]δψ (6.19)
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Thus, the infinitesimal variations of the Dirac Lagrangian (6.9) are found to be (up to

a closed form)

L̇D = ėa∧
{

i
2
∗eb

a∧ (ψ̄γb∇ψ−∇ψγbψ)+ imψ̄ψ ∗ ea

}
+

1
2

ω̇
ab∧

{
i
2

ψ̄(∗γσab +σab ∗ γ)ψ

}
+i ˙̄ψ

{
∗γ ∧∇ψ +

1
2
∗ ea

b∧T b
γaψ +m∗ψ

}
−i
{

∇ψ ∧∗γ− 1
2
∗ ea

b∧T b
ψ̄γa−m∗ ψ̄

}
ψ̇. (6.20)

Here we use the notation δL = L̇. In order to obtain the field equations of the

Einstein-Cartan-Dirac theory, we substitute these variations into (3.16) and 3.17).

Thus, we obtain

Rab = κλea∧ eb + imκψ̄ψea∧ eb

+i
κ

2
ea∧ (ψ̄γb∇ψ)− i

κ

2
eb∧ (ψ̄γa∇ψ)

+i
κ

2
eb∧ (∇ψγaψ)−i

κ

2
ea∧ (∇̄ψγbψ), (6.21)

Ta = i
κ

2
ψ̄ψ ∗ ea (6.22)

We note that the torsion 2-forms (6.22) satisfy ∗ea
b∧T b = 0 and the Dirac equation

(6.18) simplifies to

∗γ ∧∇ψ +mψ ∗1 = 0. (6.23)

6.2 Equivalence of Einstein-Cartan-Dirac and Einstein-Dirac Theories

When we solve contortion from (6.22) using (2.25) and substitute it into the field

equations (6.21) and (6.23) we can rewrite the field equations explicitly. In order to

show this the con-torsion 1-forms can be calculated as

Kab =−
i
4

ψψ ∗ eab =−
τ

2
∗ eab (6.24)

where τ(r) = iκ
2 ψψ is a new radial function.
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Noting that the full connection ωab = ω̂ab + Kab, Einstein tensor and

energy-momentum tensor can be written as

Ĝc = − 1
2κ

[R̂ab∧∗eabc + ∇̂Kab∧∗eabc +Ka
f ∧K f b∧∗eabc]

= Ĝc−
1

2κ
(dτ ∧ ec +

τ2

2
∗ ec) (6.25)

τc[ψ,ω] =
i
2
[ψ ∗ (γ ∧ ec)∧∇ψ +∇ψ ∧∗(γ ∧ ec)ψ]+ imψψ ∗ ec

=
i
2
[ψ ∗ (γ ∧ ec)∧ ∇̂ψ + ∇̂ψ ∧∗(γ ∧ ec)ψ]+ imψψ ∗ ec

+
i
4

ψψ ∗ (e f ∧ ec)∧Kab(γ f
σab +σabγ f )

= τc[ψ, ω̂]+
τ2

κ
∗ ec (6.26)

These field equations (6.21) and (6.23) can be rewritten in terms of the Levi-Civita

connection only [39].

R̂ab = κλea∧ eb−κ ∗ eabcτ̂
c+i

κ

4
d(ψ̄ψ)∧∗(ea∧ eb)−

3κ

16
(ψ̄ψ)2ea∧ eb,

∗γ ∧ ∇̄ψ +mψ ∗1+i
3κ

8
(ψ̄ψ)ψ ∗1 = 0 .(6.27)

It is interesting to note that the Einstein-Cartan-Dirac equations (6.27) can be obtained

from an action by zero-torsion constrained variations using the method of Lagrange

multipliers [40]. To this end, we consider a modified Dirac Lagrangian density 3-form

L ′
D =

i
2

(
ψ̄ ∗ γ ∧ ∇̂ψ− ∇̂ψ ∧∗γψ

)
+ imψ̄ψ ∗1−3κ

16
(ψ̄ψ)2 ∗1 (6.28)

together with the constraint term

Lconstraint = (dea +ω
a
b∧ eb)∧λa (6.29)

where {λa} are the Lagrange multiplier 1-forms. The variation of the total action

I =
∫

M

(
LEC +L ′

D +Lconstraint
)

(6.30)

with respect to the Lagrange multipliers imposes the constraint that the connection

1-forms are Levi-Civita. Then we firstly find the connection variation equations under

this constraint for the Lagrange multiplier 1-forms from the connection ω̂ variation

of (6.30)

i
4

ψψeab +λa∧ eb = 0 (6.31)

49



We can solve the Lagrange multiplier λc from the Levi-Civita connection equation

and find,

λa =−
τ

2κ
ea (6.32)

and the covariant derivative of it

D̂λa =−
dτ

2κ
∧ ea =−

1
2κ

∇̂Kab∧∗eabc (6.33)

The Einstein and Dirac field equations of the constraint Lagrangian are found as;

Ĝc +λ ∗ ec =−τc[ψ, ω̂]− D̂λc +
3κ

16
(ψψ)2 ∗ ec,

∗γ ∧ ∇̄ψ +mψ ∗1+i
3κ

8
(ψ̄ψ)ψ ∗1 = 0 . (6.34)

where

τc[ψ, ω̂] =
i
2
[ψ ∗ (γ ∧ ec)∧∇(ω̂)ψ +∇(ω̂)ψ ∧∗(γ ∧ ec)ψ]+ imψψ ∗ ec (6.35)

If we rewrite the Einstein-Dirac field equations (6.34) explicitly and compare with

the equations of Einstein-Cartan-Dirac theory (6.27), we find field equations of these

two theories are equivalent.

6.3 Stationary, Circularly Symmetric Solutions

We will seek the solutions of the field equations in terms of the local coordinates

(t,r,φ) given by the metric tensor,

g =− f (r)2dt2 +h(r)2dr2 + r2(dφ +a(r)dt)2 (6.36)

In the orthonormal co-frames

g =−e0⊗ e0 + e1⊗ e1 + e2⊗ e2 (6.37)

where we choose

e0 = f (r)dt, e1 = h(r)dr, e2 = r(dφ +a(r)dt). (6.38)

leads to the Levi-Civita connection 1-forms

ω̂
0
1 = αe0− β

2
e2 , ω̂

0
2 =−

β

2
e1 , ω̂

1
2 =−γe2− β

2
e0 (6.39)
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where the new unknown functions

α =
f ′

f h
, γ =

1
rh

, β =
a′r
f h

(6.40)

are introduced to simplify the calculations with denoting the derivative d
dr .

The exterior derivatives of the co-frames become

de0 =
f ′

f h
e10, de1 = 0, de2 =−a′r

f h
e01 +

1
rh

e12 (6.41)

On the other hand, assuming iκ

2 ψ̄ψ = τ(r), we calculate the contortion 1-forms

K0
1 =

τ

2
e2 , K0

2 =−
τ

2
e1 , K1

2 =−
τ

2
e0. (6.42)

We can write the full connection 1-forms as

ω
0
1 = αe0− β − τ

2
e2 , ω

0
2 =−

β + τ

2
e1 , ω

1
2 =−γe2− β + τ

2
e0 (6.43)

As we know GR is based on a space which has real metric functions. But here we

find the metric functions can take even Grassman numbers. If we want to generalize

GR to the superspace considering the Dirac fields, the metric necessarily involves

the even Grassman valued functions. ECD theory is defined here similarly. We can

extend the real metric as ḡ = g and the (6.42) satisfy the requirement. It is need for

consistency of the theory with SUGRA and QFT. However, the all following results

are also correct for ordinary complex Dirac spinors without any other assumptions.

Using this expressions as a first step towards a solution, we take a Dirac spinor that

depends only on r and work out (6.23) in components as follows:

ψ1
′+

h
2
(α + γ)ψ1 +

h
4
(β +3τ +4m)ψ2 = 0 (6.44)

ψ2
′+

h
2
(α + γ)ψ2 +

h
4
(β +3τ +4m)ψ1 = 0. (6.45)

It is important to remember that while α,β ,γ are the metric functions, τ is the

function of torsion tensor. Since differential equations depend on both ψ1 and ψ2

simultaneously, we take the combinations ψ+ = ψ1+ψ2 and ψ−= ψ1−ψ2 and write

a decoupled system of equations

ψ
′
++(k1 + k2)ψ+ = 0

ψ
′
−+(k1− k2)ψ− = 0 (6.46)
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where we set

k1 =
h
2
(α + γ) , k2 =

h
4
(β +3τ +4m).

The formal solution to these equations are given by

ψ1 = e−
∫ r k1dr

(
ξ+e−

∫ r k2dr +ξ−e
∫ r k2dr

)
ψ2 = e−

∫ r k1dr
(

ξ+e−
∫ r k2dr−ξ−e

∫ r k2dr
)

(6.47)

where ξ+ and ξ− are complex, odd Grassmann valued constants. It can easily be

verified

τ(r) = iκ(ξ ∗−ξ+−ξ
∗
+ξ−)e−2

∫ r k1dr. (6.48)

The function of torsion is a real function with even Grassmann numbers. This is

the general solution of the radial Dirac equation with torsion for stationary circularly

symmetric metric. Now let us solve the co-frame equations for (6.36). The Einstein

tensor related with Levi-Civita connection,

Ĝ0 =
1
κ
[(

β ′

2g
+ γβ )e01− (

γ ′

g
+ γ

2 +
β 2

4
)e12] (6.49)

Ĝ1 = − 1
κ
(γα +

β 2

4
)e02 (6.50)

Ĝ2 =
1
κ
[(

α ′

g
+α

2− 3β 2

4
)e01 +(

β ′

2g
+βγ)e12] (6.51)

Non-Riemannian part of the Einstein tensor related with torsion or spinor fields

− 1
2κ

[D̂Ka f ∧∗ea f 0 +Ka
f ∧K f b∧∗eab0] =

1
κ
[
τ ′

2g
e01 +

τ2

4
e12] (6.52)

− 1
2κ

[D̂Ka f ∧∗ea f 1 +Ka
f ∧K f b∧∗eab1] =

1
κ

τ2

4
e02 (6.53)

− 1
2κ

[D̂Ka f ∧∗ea f 2 +Ka
f ∧K f b∧∗eab2] =

1
κ
[−τ2

4
e01− τ ′

2g
e12] (6.54)

and the energy-momentum tensor for the Dirac fields

τ
0 =

τα

κ
e01 +(

i
2g

Ξ− τ2

κ
− 2mτ

κ
)e12 (6.55)

τ
1 = −(τ2

κ
+

2mτ

κ
)e02− i

2g
(ψ1
∗
ψ
′
1−ψ1

∗′
ψ1 +ψ2

∗
ψ
′
2−ψ2

∗′
ψ2)e12 (6.56)

+
i

2g
(ψ2
∗
ψ
′
1 +ψ1

∗
ψ
′
2−ψ

′
2
∗
ψ1−ψ1

∗′
ψ2)e01 (6.57)

τ
2 = −τγ

κ
e12 +(− i

2g
Ξ+

τ2

κ
+

2mτ

κ
+

βτ

κ
)e01 (6.58)
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where Ξ = −ψ1
∗ψ ′1 + ψ1

∗′ψ1 + ψ2
∗ψ ′2 −ψ2

∗′ψ2. We arrange the equations such

that the left hand side of the following equation system represents torsion-less

contributions and cosmological constant term, and the right hand side describes

with torsion part of Einstein tensor in addition to energy momentum tensor of Dirac

spinors. We next work out the Einstein field equations (6.21) that after simplifications

reduce to the following system of coupled first order differential equations:

β ′

2g
+βγ = − τ ′

2g
− τα (6.59)

γ ′

g
+

β 2

4
+ γ

2 +λκ =
3τ2

4
+

βτ

2
(6.60)

α ′

g
− 3β 2

4
+α

2 +λκ =
3τ2

4
− βτ

2
(6.61)

−β 2

4
−αγ−λκ =

3τ2

4
+2mτ (6.62)

β ′

2g
+βγ =

τ ′

2g
+ τγ (6.63)

At this point, to be able to find an explicit solution we fix a negative cosmological

constant

κλ =− 1
l2 < 0 (6.64)

and restrict our attention to those cases for which

γ = α =
1
rh

, τ = β =
β0

r2 . (6.65)

We then integrate for the metric functions

f (r) =
r
l

, h(r) =
l

r
√

1− 2mβ0l2

r2 − β 2
0 l2

r4

, (6.66)

and

a(r) =
1
2l

arcsin

 m√
m2 + 1

l2

− 1
2l

arcsin

 m+ β0
r2√

m2 + 1
l2

 . (6.67)

It now remains to integrate for the Dirac spinor and we find

ψ± =
ξ±`

r

∣∣∣∣∣∣r
2

`2 −mβ0 +

√
r4

`4 −
2mβ0r2

`2 −
β 2

0
`2

∣∣∣∣∣∣
∓ml

2

e
± 1

2 arcsin

 m+
β0
r2√

m2+ 1
l2


(6.68)
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where −λκ = `−2, Q := k
√

`−2r4−2β0`2mr2−β 2
0 `

4, k =±1 and β0 = iκ(ξ2
∗
ξ1−

ξ1
∗
ξ2) is an even Grassmann number. Here dimensions are [`] = [κ] = L and [β0] =

[m] = [ξi] = L−1.

In order to understand the physical meaning of this solution we write down the metric

g =−r2

l2 dt2 +
l2dr2

r2
(

1− 2mβ0l2

r2 − β 2
0 l2

r4

) + r2(dφ +a(r)dt)2. (6.69)

Firstly we observe that in the absence of a Dirac condensate (β0 = 0) the above metric

collapses to the AdS3 metric

g0 =−
r2

l2 dt2 +
l2

r2 dr2 + r2dφ
2. (6.70)

Even when β0 6= 0, the metric g→ g0 asymptotically as r→ ∞. Secondly we note a

metric singularity at

rc =


l

√
mβ0 +β0

√
m2 + 1

l2 , β0 > 0

l

√
|β0|
√

m2 + 1
l2 −m|β0| , β0 < 0

 . (6.71)

This is a coordinate singularity as evidenced by a further calculation of the curvature

scalar

R =− 6
l2 +

4mβ0

r2 (6.72)

and the quadratic curvature invariant

∗(Rab∧∗Rab) =
6
l4 −

8mβ0

l2r2 +
β 2

0 (8m2− 4
l2 )

r4 +
16mβ 2

0
r6 +

8β 4
0

r8 (6.73)

that are regular at r = rc. However, these curvature invariants exhibit an essential

singularity at r = 0. Such a configuration resembles to a black hole for which the

essential curvature singularity at the coordinate origin is hidden behind an event

horizon. A global extension of the above solution is tedious and will not be attempted

here. Instead we will check the quasi-local conserved quantities associated with our

solution at a distance r > rc. A comprehensive discussion of the conserved quasi-local

quantities for gravitating systems within the framework of general relativity may be

found in [41, 42]. For calculational details in (1+ 2) dimensions we again refer to

Ref. [43].
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The quasi-local angular momentum is a constant

J(r) =
r3

f (r)h(r)
da
dr

= β0, (6.74)

the quasi-local energy is

E(r) =
1

h0(r)
− 1

h(r)
(6.75)

where the first term describes the contribution of the background "empty" spacetime.

Using the metric functions in (6.69),

E(r) =
r
l
−

√
r2

l2 −2mβ0−
β 2

0
r2 '

β0ml
r

, (6.76)

and the quasi-local mass is determined by the expression

M(r) = 2 f (r)E(r)− J(r)a(r). (6.77)

We can calculate the quasi-local mass for the system as;

M(r) = 2
l2

r2 −2
l2

r2

√
1− 2mβ0l2

r2 −
β 2

0 l2

r4

+
1
2l

arcsin

 m√
m2 + 1

l2

− 1
2l

arcsin

 m+ β0
r2√

m2 + 1
l2

 (6.78)

' 2mβ0.

in the limit as r→ ∞.

The results of this chapter is submitted for publication [44]. Also, a similar model

has been considered [45] where the space-time torsion was introduced independent

of a Dirac spinor. The static solutions were discussed there rather than the stationary

solutions as given here.

55



56



7. CONCLUSION

Firstly, we have investigated gravitation theories considering non-minimally coupled

electromagnetic fields to gravity. We have derived the field equations of the theories

with torsion and without torsion using exterior algebra of differential forms by the

first order variation procedure. We investigated static spherically symmetric and

pp-wave solutions. We found an exact magnetic monopole solution for the field

equations of Einstein-Cartan-Maxwell theory. The torsion affects the singularity

of the solution and do not allow a singularity at the central point. We give also a

class of exact plane fronted wave solutions in Brinkmann form to the field equations

for a generic 6-parameter non-minimally coupled terms. Maxwell field equations

are not changed by the nonminimal coupled terms for the pp-wave metric. But,

Einstein field equations allow a class of nontrivial solutions by the presence of the

first two non-minimal couplings of electromagnetic fields to gravity. Additionally,

The energy-momentum transported by the plane-fronted waves is modified by the

nonminimal coupled terms.

Secondly, we have formulated the Einstein-Cartan-Dirac theory in (1+2)-dimensions

using the algebra of exterior differential forms. We coupled a Dirac spinor to

Einstein-Cartan gravity and obtained the field equations by a variational principle.

The space-time torsion is given algebraically in terms of the quadratic spinor invariant

associated with a Dirac condensate field. We then looked for rotating, circularly

symmetric solutions. We found a particular class of solutions that possess an

essential curvature singularity at the origin r = 0. The mass and the intrinsic angular

momentum of this configuration can be identified. It is remarkable that in the absence

of the Dirac condensate field the metric collapses to the regular AdS3 metric.
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APPENDIX

APPENDIX A: Derivation of Field Equations from a General Action.
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A. DERIVATION OF FIELD EQUATIONS FROM A GENERAL ACTION

Let M be an n-dimensional manifold and α,β ∈ Λp(M) where Λp(M) denotes any
p-form on M. Then we would like to find the extremum of the following action
integral

I[α,β ,ea] =
∫

M
α ∧∗β (A.1)

by varying it with respect to the dependent variables 1; α , β and ea 2.

δ I =
∫

M
δα ∧∗β +α ∧δ ∗β (A.2)

Here, variation of the second term on the right hand side needs some calculations to
be given in detail, because it contains Hodge star.

α ∧δ ∗β = α ∧δ (
1
p!

βi1···ip ∗ ei1···ip)

= α ∧ 1
p!
(δβi1···ip)∗ ei1···ip +α ∧ 1

p!
βi1···ipδ ∗ ei1···ip (A.3)

First, use the identity in the first term

θ ∧∗ϑ = ϑ ∧∗θ (A.4)

where θ , ϑ ∈ Λp(M)

α ∧δ ∗β =
1
p!
(δβi1···ip)e

i1···ip ∧∗α +α ∧ 1
p!

βi1···ipδ ∗ ei1···ip . (A.5)

By making the use of the equality

δβ = δ (
1
p!

βi1···ipei1···ip)

=
1
p!
(δβi1···ip)e

i1···ip +(δei1)∧ 1
(p−1)!

βi1···ipei2···ip

=
1
p!
(δβi1···ip)e

i1···ip +(δei1)∧ (ıi1β ) (A.6)

1
p!
(δβi1···ip)e

i1···ip = δβ − (δea)∧ (ıaβ ) (A.7)

and the equality

1
p!

βi1···ipδ ∗ ei1···ip =
1
p!

βi1···ipδ

[
1

(n− p)!
ε

i1···ip
ip+1···ineip+1···in

]
= (δeip+1)∧ 1

p!(n− p−1)!
ε

i1···ip
ip+1···inβi1···ipeip+2···in

= (δea)∧ (ıa ∗β ) (A.8)
1Since these variables are dependent of chart coordinates xµ , we call them as "dependent variables".
2These kinds of Lagrangian contains co-frame via the Hodge star.
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in (A.5) and then substituting the results into (A.2) we obtain

δ I = δ

∫
M

α ∧∗β

=
∫

M
δα ∧∗β +δβ ∧∗α−δea∧ [(ıaβ )∧∗α− (−1)p

α ∧ (ıa ∗β )] (A.9)

where α , β ∈ Λp(M).

• Special Case: α = β = F = dA

We encounter these kinds of Lagrangians, especially in electromagnetic theory and
symmetric teleparallel gravity models. In this case (A.9) becomes

δ I =
∫

M
(δdA)∧ (2∗dA)−δea∧ [(ıaF)∧∗F− (−1)pF ∧ (ıa ∗F)] (A.10)

where A∈Λp−1(M). Since variation and exterior derivative commute with each other

δd = dδ (A.11)

the equation may be rewritten

δ I =
∫

M
(dδA)∧ (2∗dA)−δea∧ [(ıaF)∧∗F− (−1)pF ∧ (ıa ∗F)]

=
∫

M
(δA)∧ (−1)p(2d ∗F)+d(δA∧2∗F)

−δea∧ [(ıaF)∧∗F− (−1)pF ∧ (ıa ∗F)] (A.12)

By applying the Stoke’s theorem, the second term on the right hand side can be written∫
M

d(δA∧2∗F) =
∫

∂M
δA∧2∗F = 0 (A.13)

because the boundary condition is δA|
∂M = 0 where ∂M is the boundary of M. Thus

δ I = δ

∫
M

dA∧∗dA

=
∫

M
(δA)∧ (−1)p(2d ∗F)−δea∧ [(ıaF)∧∗F

−(−1)pF ∧ (ıa ∗F)] (A.14)

where F = dA ∈ Λp(M).
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