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HIGH STRAIN RATE CHARACTERIZATION OF ENGINEERING 

MATERIALS 

 

SUMMARY 

Determining of mechanical properties of engineering materials is one of the oldest 

research area of mechanical engineering. There has been a significant demand for 

engineering materials that are stronger, lighter and durable especially for automobile, 

aerospace and military industries. In addition to this, identification of the mechanical 

properties mainly requires experimental tests. It is the fact that experimental methods 

are very expensive for identification of mechanical properties. Nowadays, computer 

simulation which simulates real world are popular in scientific and engineering world 

especially for material behavior. In order to simulate material behavior, constitutive 

models which links the flow stress to incremental strain, strain rate and temperature 

should be used.  

One of the most popular constitutive models used in computer simulation is Johnson 

– Cook strength model. This model includes three terms and five constants in order 

to describe stress as a function of strain rate, strain, temperature.  

In the present work, five parameters of Johnson – Cook constitutive model are 

determined for material characterization. For this purpose, three test types were 

performed. Initially, quasi-static ( 3 110 s  ) tensile tests are performed for determining 

yield strength and strain hardening parameters of Johnson – Cook Model. In addition 

to this, quasi–static temperature tests at 80 C  and 260 C   were performed in order 

to find thermal softening parameter. 

Finally, the high strain rate tests were performed to characterize material behavior at 

strain rates. For this purpose, Split Hopkinson Pressure Bar apparatus was used. This 

device is used to obtain stress – strain behavior of materials under impact loading 

conditions. In SHPB, a specimen is sandwiched between two pressure bars which are 

called incident and transmitted bars. Then, a striker bar is accelerated with a gas gun 

or pressure bar in order to strike incident bar. At the same time, two strain gages on 

the pressure bars measure the strains on the bars. 

In the present study, the test methods in order to determine Johnson – Cook material 

parameters are searched and applied three types of steel which are AISI 1040, AISI 

1045 and AISI 4140.  After necessary tests were performed, the obtained data is 

analyzed via MATLAB and Microsoft Excel for determining Johnson – Cook 

parameters.  

The determined parameters for AISI 1040  were found to be well agreed  with 

literature study. The thermal softening parameter could not be accurately determined 

because of not using extensometer at tests concducted at 260 C .  For AISI 1045 and 

AISI 4140 steels, the test results were not seen to be compatible with available 

literature based on “normalized” material. Thus, it has seen that materials tested had 

an unknown “strain history”, and this effects the material behavior considerably. 
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MÜHENDİSLİK MALZEMELERİNİN YÜKSEK ŞEKİL DEĞİŞTİRME 

HIZINDA KARAKTERİZASYONU 

ÖZET 

Malzemelerin mekanik özelliklerinin belirlenmesi makine mühendisliğinin en eski 

araştırma alanlarından birisidir. Piyasadaki rekabet dolayısıyla özellikle otomotiv, 

havacılık ve askeri endüstri malzemelerin daha hafif, daha dayanıklı olmasını 

istemektedir. Bu sebeple malzemlerin geliştirme alanındaki çalışmalar günümüzde 

hızla devam etmektedir. 

Malzemelerin mekanik özellikleriyle ilgili en önemli bilgiye gerilme – birim şekil 

değiştirme eğrilerinden ulaşılır. Bilim adamları ve mühendisler yüzyıllarca 

malzemelerin maruz kaldıkları yükler altında nasıl davrandığı hakkında araştırmalar 

yapmıştır. Günümüzde bir çok sektörde malzeme seçimlerinde  gerilme – birim şekil 

değiştirme eğrileri önemli rol oynamaktadır. 

Malzemelerin gerilme – birim şekil değiştirme eğrileri deneysel yöntemlerle elde 

edilir. Fakat deneysel yöntemlerin pahalı ve zaman olarak uzun süreler aldığı 

bilinmektedir. Bu nedenle son yıllarda bilgisayarların da gelişmesiyle birlikte 

malzemeleri belirlenen yüklerde teste tabi tutmak yerine bilgisayar ortamında 

modelleyerek sonuçları görmek zaman ve ucuzluk açısından tercih edilmektedir.  

Yapıların yükleme koşullarındaki davranışını bilgisayar ortamında modelleyebilmek 

için kullanılan malzemenin mekanik özelliklerinin bilinmesi ve bilgisayar 

programına verilmesi gereklidir. Elastisite modülü ve akma mukavemeti gibi 

malzeme özellikleri bir çok firma tarafından bilinmekle beraber, bu özellikler 

özellikle  çarpma, patlama  gibi yüksek sıcaklık ve yüksek birim şekil değiştirme hızı 

içeren olaylarda malzemenin davranışını belirlemek açısından yeterli değildir. 

Plastisite teorisine göre bir malzemenin akma mukavemeti uygulanan birim şekil 

değiştirme miktarına, birim şekil değiştirme hızına ve sıcakığa bağlı olarak 

değişmektedir. Artan şekil değiştirme hızıyla malzemenin mukavemeti artmakta, 

artan sıcaklıkla beraber mukavemet azalmaktadır. Malzemenin bu gibi durumlarda 

davranışının belirlenebilmesi için standart çekme testlerinin yanında yüksek birim 

şekil değiştirme hızında ve yüksek sıcaklıklarda teste tabi tutulması gerekmektedir. 

Malzemelerin yüksek birim şekil değiştirme hızı ve sıcaklıklardaki davranışını 

modelleyebilmek için mukavemet modellerine ihtiyaç duyulmaktadır. Mukavemet 

modelleri basit olarak mevcut birim şekil değiştirme miktarı, birim şekil değiştirme 

hızı ve sıcaklığa bağlı olarak gerilme değerinin hesaplanmasında kullanılmaktadır. 

Malzemenin elastik ve plastik bölgedeki davranışı malzemeye özgü çeşitli 

parametrelerle ifade edilir. Her malzeme için farklı olan bu değerler bilgisayar 

ortamına girilerek yapıların istenilen koşullar altında nasıl bir yapısal performans 

göstereceği belirlenebilir.  

Viskoplastik mukavemt modellerinden en çok kullanılanı Johnson  ve Cook 

tarafından 1983 yılında mermilerin yüksek hızda deformasyonuyla ilgili 

çalışmasında kullanılmak üzere buldukları Johnson – Cook mukavemet modelidir. 

Bu model malzemenin akma mukavemeti ve pekleşme özelliklerini, yüksek şekil 

değiştime sırasındaki davranışını ve yüksek sıcaklıktaki davranışını ifade eden üç ana 

çarpan ve beş parametreden oluşmaktadır. Bu beş parametreye karar vermek için 

çeşitli testler gerçekleştirilir. Bu testlerden standart çekme ve basma testleri 
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malzemenin akma mukavemeti ve pekleşme özelliklerinin bulunması açısından basit 

ve kullanışlı testlerdir. Yüksek sıcaklıkla ilgili parametre de yine çekme testlerinin 

yüksek sıcaklıklarda yapılmasıyla elde edilmektedir. 

Malzemenin yüksek şekil değiştirme hızındaki davranışı ise ancak özel düzeneklerle 

test edilebilmektedir. Bu düzeneklerden en yaygın olarak kullanılanı Split Hopkinson 

Pressure Bar dinamik test aparatıdır. Bu düzenekte malzeme özellikleri öğrenilmek 

istenilen numune yüksek mukavemetli uzun silindirik barlar arasında sıkıştırılır. 

Daha sonra başka bir silindirik çubuk basınçlı bir sistemle hızlandırılarak ilk uzun 

çubuğa çarptırılır. Silindirler üzerinde ilerleyen gerilme ve gerinme dalgalarını 

ölçmek maksadıyla birinci ve ikinci barların yüzeylerine strain gageler konulmak 

suretiyle numune üzerinden iletilen ve geri yansıyan dalgalar hesaplanır. Bir boyutlu 

dalga denklemleri ve kuvvet eşitliği ilkelerinin uygulanılmsıyla malzemenin gerilme 

– gerinme eğrisi elde edilir. Günümüzde malzemelerin yüksek hızlı 

deformasyonlarındaki davranışını incelemek için en güvenilir düzenek bu düzenektir. 

Bu çalışmada, 1040, soğuk çekme 1045 ve 4140 (CR42Mo4) çelikleri olmak üzere 

üç adet malzemenin Johnson – Cook mukavemet model parametrelerinin 

belirlenmesi hedeflenmiştir. Bu kapsamda öncelikle malzemenin akma mukavemeti 

ve pekleşme özellikleri, yüksek şekil değiştirme hızı ve yüksek sıcaklıktaki 

davranışını belirleyebilmek için üç ana test yapılır. Bunlardan ilki standar çekme 

testidir. Her malzeme için 5 adet çekme testi gerçekleştirilmiştir. Elde edilen 

sonuçlar MATLAB ve Microsoft Excel veri analizi programları yardımıyla gerinme 

– gerilme grafikleri çizdirilmek vasıtasıyla akma mukavemeti ve pekleşme üsteli 

hesaplanır. Bu hesaplama deneyse sonuçlara modelin içerdiği parametrelerle birlikte 

en küçük kareler metodu ve regrassion analizi kullanılarak en iyi eğrinin 

uydurulmasına dayanır. 

Malzemenin yüksek sıcaklık etkisini içeren parametreyi bulmak için çekme testleri 

80 C  ve 260 C  olmak üzere iki farklı sıcaklıkta her malzeme için tekrarlandı. 

Buradan elde edilen eğriler oda sıcaklığında elde edilen çekme testi sonuçları baz 

alınarak ısıl yumuşama katsayısı elde edilmiştir. Yüksek sıcaklıklardaki testleri 

yaparken birim şekil değiştirme hızının etkisinin bulunmadığı varsayımı yapılarak 

Johnson – Cook mukavemet modelindeki bu terim dikkate alınmamıştır. 

Mukavemet model parametrelerinin belirlenmesinde kullanılan son test tekniği Split 

Hopkinson Pressure Bar dinamik test yöntemidir.  Her malzeme için üç adet 

silindirik  numune kullanılarak farklı basınçlarda çarpma testi yapılmıştır. Bu yolla 

malzemelerin çarpma anındaki gerilme – şekil değiştirme eğrileri 400 kHz işleme 

frekansına sahip bir veri toplama cihazıyla belirlendikten sonar MATLAB veri 

analizi programlarıyla elde edilmiştir.Yüksek hızda çarpma test sonuçlarına, daha 

önceki testlerde elde edilen akma mukavemeti, pekleşme üsteli ve ısıl yumuşama 

katsayıları kullanılarak Johnson – Cook  mukavemet modelinin son değişkeni olan 

birim şekil değiştirme katsayısı bulunmuştur. 

Elde edilen sonuçlarda 1040 çeliği için özellikle literatüdeki yayınlarla uyumlu 

sonuçlar elde edilmiştir. 1045 ve 4140 çelikleri ise askeri uygulamlarda kullanılmak 

üzere ısıl işlem ve soğuk çekme uygulandığı için kırılgan davranış gösterip 

sünememiştir.  

Malzemelerin yüksek sıcaklıkta akma mukavemetlerinin düştüğü gözlemlenmiştir. 

Bu düşme gözlemlenmekle beraber testlerin gerçekleştirildiği sıcaklıklar 

malzemelerin erime sıcaklıklarının çok altında olduğundan ısıl yumuşama etkisi 



xxv 

 

1040 ve 4140 çelikleri için tam olarak gözlemlenememiştir. Yüksek sıcaklıklarda 

extansiyometre kullanılmadığından dolayı eğriler 260 C  için uyumsuzluklar 

göstermektedir. 

Yüksek sıcaklıkta yapılan test sonuçlarında ise birim şekil değiştirme katsayısı üç 

test incelenerek elde edilmiştir. Elde edilen değerler literatürde bulunan değerlerle 

uyumlu olmaklar beraber malzemenin çekme ve basma durumunda farklılıklar 

gösterebilmesi nedeniyle Elastisite modülünde farklılıklar gözlemlenmiştir. 

Bu çalışma kapsamında İTÜ BİYOMEKANİK VE MUKAVEMET 

LABARATUVARI  akademisyenleri tarafından tasarlanan Split Hopkinson Pressure 

Bar dinamik test düzeneği malzemelerin çarpma anındaki davranışlarını 

belirleyebilmek amacıyla kullanılmıştır. Bunun yanında sonlu eleman yazılımlarda 

kullanılan malzeme modellerinin oluşturulması için gerekli testler araştırılıp çeşitli 

malzemeler için uygulanmıştır. Test tekniğinin gelişmesi öğrenilmesi ve sonlu 

elemanlar programları vasıtasıyla doğrulanmasıyla birlikte labaratuvar bünyesinde 

bulunan düzenek çarpma testlerinde başarıyla kullanılabilecektir. Uygulamalar 

sadece otomotiv, havacılık ve savunma sanayii gibi alanlarda değil mühendislikle 

tıbbın kesişim noktası olan biyomekanik alanında da önemli faydalar sağlayacaktır. 
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1.  INTRODUCTION 

Research on mechanical properties of engineering materials is one of the oldest 

scientific endeavors for mechanical engineering. There has been a significant 

demand for engineering materials that are stronger, lighter and durable especially for 

automobile, aerospace and military industries. In addition to this, identification of the 

mechanical properties mainly requires experimental tests. It is the fact that 

experimental methods are very expensive for identification of mechanical properties. 

The cost of identification of mechanical and chemical properties such as 

metallography, chemical composition and stress – strain curve is 1000-1250 €. 

Furthermore, if the strain rate dependent properties related crash tests are desired, the 

cost may increase to 5000-7000 € [1]. Since experimental tests are so expensive in 

order to characterize material properties of structure, the need for computational 

tools that describe the structural response of material has been increase day by day. 

With improvement in computer skills, research facilities remarkably oriented to 

computational simulations. Development of CAE softwares allowed scientists and 

companies to reduce expenditures on research and avoiding too much testing [2]. For 

providing mechanical response of any material in computational simulations, 

material models known as constitutive equations are required. Indeed, all mechanical 

analysis of engineering materials needs for constitutive models that link the states of 

stress and strain [3]. For most of metals, in elastic regime, the stress linearly 

increases with respect to incremental strain until yield point. After the yield point, 

work hardening occurs and materials show a nonlinear stress increase respect 

incremental strain for most of metals. Furthermore, the rate of deformation and 

temperature are also effective in stress state.  

It has been observed by experimental test that yield strength of many metals 

increases with increasing strain rate. In other words, metals resist to more 

deformation when the deformation rate is higher. Vice versa, metals resist to less 

deformation when the temperature is higher. Therefore, any constitutive model 
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should include the rate of deformation and temperature effects in order to simulate 

material behavior correctly. 

1.1 Purpose of Thesis 

The purpose of this thesis to characterize and model of mechanical behavior of three 

materials under quasi–static and dynamic loadings. The materials are AISI 1040, 

AISI 1045 cold rolled, AISI 4140 (Cr42Mo4) steels. These materials are not chosen 

for a specific project, they are chosen according to abundance and cost issues. For 

modeling material behavior, Johnson – Cook constitutive model is selected in this 

study. This rate – dependent constitutive model is chosen due to relative ease of 

parameters for this constitutive material model compared to other models. 

After, an available constitutive law is described with different parameters, it is 

crucial to identify each of these parameters in order to define it. For this purpose, 

experimental tests are inevitable to evaluate these parameters. In this study, 

numerous quasi-static tension and Split Hopkinson Pressure Bar tests are performed 

to characterize mechanical behavior of materials. For performing dynamic test, Split 

Hopkinson Pressure Bar apparatus in ITU BIOMECHANICS AND STRENGTH OF 

MATERIALS LABORATORY is used. By identifying parameters of Johnson – 

Cook strength model, flow stress of any material can be described as a function of 

strain, strain rate and temperature as long as the material behavior is compatible. 

The general information about elastic-plastic behavior and constitutive equations is 

presented in Chapter 2. The testing methods include quasi–static and dynamic tests 

are given in Chapter 3. The historical perspective and general theory of Split 

Hopkinson Pressure bar are also presented in this chapter. The results of different test 

such as quasi-static tension test, quasi-static tension test at high temperature and 

dynamic compression tests will be presented in Chapter 4. Finally, the conclusion 

and recommendations for future works are discussed in Chapter 5. 

1.2 Literature Review 

Engineering phenomenas occur usually at various strain and temperature. In other 

words, they are time-dependent and non-linear.  It is known that materials exhibits 

different mechanical response at different strains and temperatures. Testing of 
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materials at these different conditions are remarkably expensive. Therefore, 

constitutive equations  were developed in order to link the flow stress to strain, strain 

rate and temperature. Constitutive equations have the general form to characterize 

dynamic events as below, 

.

( , , )pf T    (1.1) 

where σ, ɛ, 
.

P
 , T are the stress, strain and strain rate and temperature respectively. 

For metals, the constitutive equation given by equation (1.1) is called rate–dependent 

viscoplasticity model. In early 1900’s, Ludwik (1909) proposed a model which strain 

hardening effect was taken into account as given equation (1.2). 

0

n

pK     (1.2) 

where 0 , K and n are yield strength of material, strength coefficient and strain 

hardening exponent respectively. It should be noted that strain measure must be true 

plastic strain. This concept will be explained in next chapters with details. Hollomon 

simplfies Ludwik’s Law so that stress is not function of yield strength of material. 

n

pK   (1.3) 

In 1980’s, two important material models were presented which includes basic 

relationship between strain hardening, strain rate and thermal softening. Johnson and 

Cook proposed a phenomenological model in which the flow stress is a function of 

equivalent plastic strain, strain rate and temperature  as descibed in equation (1.4) 

[4]. 

.

*

.

0

( )(1 ln( ))(1 )
pn m

pA B C T


 



     (1.4) 

A, B, C, m and n are material constants which are explained in details following 

chapters. 
.

0  is also a material parameter which describes strain rate at onset of 

yielding.This strain rate value is generally taken 1.0 1s   and *T  is the homologous 

temperature  as given  by equation (1.5). 
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* inst ref

melt ref

T T
T

T T





 

(1.5) 

where instT  , 
refT  and meltT  are instanteneous temperature, room temperature (25 C  ) 

and  melting temperature of material. Zerilli and Armstrong proposed a physical 

based constitutive law, that takes two different form depending on microstructure of 

material[5]. For face centered cubic  (fcc) material, the flow stress is descibed as 

given in equation (1.6). 

.
1/2

0 2 3 4exp( ln )C C C T C T       (1.6) 

For body – centered – cubic materials (bcc), the model takes the form as presented in 

equation (1.7). 

.
1/2

0 2 3 4 5exp( ln ) nC C C T C T C         (1.7) 

For both equations, ɛ, 
.

 , T are the equivalent plastic strain, strain rate and 

temperature and iC are material constants. In 1988, Holmquist and Johnson shows 

that both constitutive models gives good results for cylindirical impact tests at low 

strains while the results lost accuracy at high strains [6]. Holmquist and Johnson 

made a comparison between two constitutive models for cylindirical impact tests and 

depicted both models are consistent with test results. However, they recommended 

that obtained parameters in simulations where strains and strain rates should be 

similar values found in impact test [6]. Nobel and Harding compared two model by 

using Split Hopkinson Tension Bar Apparaturs and reported that Zerilli – Armstrong 

model gave better results [7]. In 1992, Tanimura proposed a modified model which 

includes a term that couples strain and strain rate together.  

To determine strain rate parameters, Split Hopkinson Pressure Bar apparatus is 

usually used. Bertamd Hopkinson invented this apparatus and Kolsky developed it. 

Nowadays, many types of Hopkinson bars are used for characterizing material 

behavior at high strain rates. The detailed historical information about this apparatus 

will be presented in Chapter 3. 
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2.  ELASTIC – PLASTIC BEHAVIOR OF METALLIC MATERIALS 

2.1 Material Behavior in Elastic Region 

The three major types of deformation that occur in engineering materials are elastic, 

plastic and creep deformation. In engineering applications, mathematical equations 

describing stress – strain behavior, called stress – strain relationships, or constitutive 

equations, are usually required [8]. In order to obtain these significant equations, 

mathematical preliminaries and concepts of material behavior must be known. If the 

material is in elastic region, stress usually changes linearly related with strain. 

Generalized Hooke’s Law can be written in terms of incremental stress as a result of 

incremental strain. For a simple uniaxial loading, elastic behavior of a material can 

be described as given equation (2.1). 

X XE   
(2.1) 

where x  and E are stress in x-direction which is axial direction and Young 

(Elasticity) Modulus of materials respectively. However, elastic deformation in other 

directions occur as a result of uniaxial loading as stated in equations (2.2) and (2.3). 

x
y

E


    (2.2) 

x
z

E


    (2.3) 

where υ is the Poisson ratio of material. If the three axial loading condition is 

considered, generalized Hooke’s Laws called also Constitutive Equations of 

Elasticity are obtained as presented below equations. 

1
[ ( )]x x y z

E
        (2.4) 
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1
[ ( )]y y x z

E
        (2.5) 

1
[ ( )]z z x y

E
        (2.6) 

As the same analogy, the shear strain can be described as equation (2.7). 

, ,
xy yz zx

xy yz zx
G G G

  
      (2.7-2.7a) 

In equation (2.7), G is called shear modulus and it is related with Young Modulus, E, 

as presented in equation (2.8) for homogeneous isotropic materials. 

2(1 )

E
G





 (2.8) 

2.2 Material Behavior in Plastic Region 

If the material is deformed beyond the point of yielding, this deformation called 

plastic deformation that occurs in many engineering applications such as crash 

penetration, impact phenomena and so on. In plastic regime, stresses are not 

proportional to strains. Plastic flow of a material occurs if a certain stress 

combination exceeds a definite limit value [9]. The condition for plastic flow can be 

written in terms of principle stress as 

1 2 3( , , ) 0f      (2.9) 

where 1 2,  and 3 are principal stress values in principle stress directions. The 

plastic flow begins when the limit value is exceeded(f=0). If 1 2 3( , , ) 0f     , the 

material is in elastic region. Yield condition must be independent of the choice of the 

coordinates and it is used for the limit value for the plastic flow [10]. According to 

many plasticity books, the rate of plastic strain is proportional to stress deviator [11].  
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

 

(2.10) 

(2.10a) 

(2.10b) 

where 
.

i  are plastic strain rates and 
.

 is the plastic flow rate parameter. In equation 

(2.11), stresses are not rate dependent but they are proportional to rate dependent 

constant. During the plastic deformation, total volume is assumed to remain constant 

vice versa of elastic deformation. In other words, sum of plastic strains are equal to 

zero during plastic deformation, which is called plastic incompressibility. 

1 2 3 0p p p      (2.11) 

The total strain due to any loading equals to sum of recovery elastic strains and 

permanent plastic strains. 

e p

i i i     (2.12) 

The elastic portion of strain is recoverable, however the plastic portion is assumed 

permanent as in Figure 2.1. 

 

Figure 2.1 : Typical stress-strain curve of a ductile material [12]. 

2.2.1  Yield phenomena and yield criteria 

When the combination of stress components exceeds a threshold value, it is assumed 

that yield phenomena begins. In order to define the onset of yielding, a “Yield 

Criteria” is needed. In past century many scientists proposed various yield criterias. 

http://www.google.com.tr/url?sa=i&rct=j&q=&source=images&cd=&cad=rja&docid=FaZoY3Io6yDlzM&tbnid=VS2Bvh6pu7dwjM:&ved=&url=http://commons.wikimedia.org/wiki/File:Stress_Strain_Ductile_Material.png&ei=YInIUdmvHdCSswaX1oHwBg&bvm=bv.48293060,d.Yms&psig=AFQjCNHpctI21tPFv8cdjiWhh8v51mZxDA&ust=1372183264917655
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However, the most famous and widely accepted yield criteria is Von Mises Yield 

Criteria, which is based on maximum distortion energy theory. According to this 

theory, if the energy sourced by all combined stress at a point reaches the energy that 

causes to yielding of tensile test specimen, yielding is assumed to begin at this point. 

Total distortional energy at a point can be calculated as presented in equation (2.13). 

2 2 2 2 2 21
[( ) ( ) ( ) 6( )]

12
d xx yy yy zz zz xx xy yz xzU

G
                

 
(2.13) 

where dU  is distortional energy [13]. 

The maximum distortional energy at yield point of simple tension test specimen can 

be given as. 

0

2 2

0 0

1 1
( ) ( ) ( )

3 6
d

v
U

E G
  


   (2.14) 

where 0  is stress where yielding starts in the tension test. 

It can be seen from two equations above that plastic flow begins when the elastic 

distortion energy reaches a threshold value. During the plastic flow, distortional 

energy remains constant and all distortion will result in plastic work [13]. When the 

material deforms plastically and then unloaded; only the elastic energy can be 

recovered [13]. Von Mises Yield Criteria can be derived by combining equations 

(2.13) and (2.14) in terms of distortional energy theory. 

2 2 2 2 2 2 2

0( ) ( ) ( ) 6( ) 2( )xx yy yy zz zz xx xy yz xz                   (2.15) 

Von Mises Yield Criterion can be also written as in terms of principal stress as. 

2 2 2 2

1 2 2 3 3 1 0( ) ( ) ( ) 2( )             (2.16) 

Equation (2.16) defines a circular cylinder in 1 , 2  and 3  space as depicted in 

Figure 2.2. The axis of cylinder equally inclined to the principal axis system of 

coordinates [11]. 
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Figure 2.2 : Von Mises yield surface in principle stress space [14]. 

By using equations (2.17) and (2.18), effective stress can be defined as. 

2 2 2 2 2 21
( ) ( ) ( ) 6( )

2
eff xx yy yy zz zz xx xy yz xz                   (2.17) 

2 2 2

1 2 2 3 3 1

1
( ) ( ) ( )

2
eff             (2.18) 

The “Effective stress” (
eff ) definition is important especially in plastic regime 

because it is the maximum stress at definite strain, strain rate and temperature. 

2.2.2  Flow curve in plastic region 

It has been stated that material behavior is lack of linearity when the material is in 

plastic region. In other words, the stress and strain is not linearly proportional 

anymore in this region. Beyond the yield strength, 0 , of any metals, the metal 

deforms plastically. 

If the material is strained up to an elastoplastic deformed state; such as point A in 

Figure 2.3, total strain decreases will from 1  to 2  by an amount E  when the 

applied load is removed. After the unloading, the decrease in strain 1 2   is called 

recoverable elastic strain [15].  
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Figure 2.3 : The recovarable elastic strain [15].  

After the yield point materials exhibit various stress – strain behavior. As shown in 

Figure 2.4, if the stress remains constant when it is strained beyond yield and elastic 

strain equals to zero, this type of material is called perfectly plastic. If the elastic 

strain is not zero and and yield strength is constant during plastic deformation, 

material can be modeled elastic and perfectly plastic. A more realistic way is to 

approximate flow stress by two straight lines corresponding to elastic and plastic 

regions [15]. 

 

Figure 2.4 : Typical material behavior for flow curves a) Perfectly plastic material;         

b) Ideal plastic material with elastic region; c) Piecewise linear (strain 

hardening) material [15]. 

If the perfectly plastic material is considered, maximum stress is defined as the yield 

strength. 

0 
 (2.19) 

However, it is known that the yield strength increases with plastic accumulating 

strain for most materials. For the stress – strain relationship in plastic region, some 
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empirical equations are used but it is not easy to define to describe material behavior 

in plastic region [16] 

2.2.3  Work hardening 

It is known that the increase in stress is required to accumulate further strain in the 

plastic region. In other words, the resistance of material increases as the material 

deforms in plastic region. This phenomena is called work (strain) hardening. The 

stress – strain relationship is defined by Ludwik as a power law given in equation 

(2.20). 

n

pK   (2.20) 

where K  and n  are strength coefficient and strain hardening exponent respectively. 

Hollomon modified this power law so that it includes yield strength as following 

equation. 

0

n

pB     (2.21) 

where 0  is the yield strength at zero plastic strain, B  is strain hardening coefficient 

and n  is the strain hardening exponent. 

2.2.4  Strain rate and temperature dependent constitutive models 

Until now, the behavior of material is investigated by taking only strain into account. 

However, it has been observed in many experimental tests that the resistance of 

material to the deformation increases when the strain rate is increased. In other 

words, yield strength of material differs at different strain rates for same plastic strain 

value. Moreover, if the temperature of the material is increased, thermal softening 

occurs and yield strength decreases. As a result yield strength of a material can be 

described as function of strain, strain rate and temperature as, 

.

0 ( , , )f T  
 (2.22) 

where 
.

,  and T are strain, strain rate and temperature. The behavior of materials 

whose properties depend on strain rate and temperature as in the form given in 

equation (2.22) can be shown in Figure 2.5. 
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Figure 2.5 : Strain rate and temperature dependancy of effective stress [17]. 

In order to descibe strength of any material in terms of these parameters, many 

empirical relationships has been derived. These material models are called 

constitutive models. They are also known that strength models [17]. Most famous 

constitutive models for engineering materials are Johnson Cook Constitutive Model 

and Zerilli – Armstrong Constitutive Model. In Literature Review section, these 

models were introduced briefly. In this chapter, these models are explained again to 

emphasize the strain rate and temperature effect for material behavior in plastic 

region. Both of these significant strength models have some material constants which 

should be determined for characterizing the material behavior. To determine material 

constants of strength models, dynamic testing must be performed. Most known and 

used test is Split Hopkinson Pressure Bar test [4]. 

2.2.4.1 Johnson – Cook constitutive model 

Johnson – Cook constitutive model is a phenomenological model which describes the 

stress in terms of strain, strain rate and temperature. The phenomenological 

definition implies that material flow stress depends on emprical observations include 

mathematical functions with lack of physical background that fit to experimental 

observations [18]. Johnson – Cook model is not a very complex mathematical model 

so that it consists of five material parameters. Furthermore, determination of these 
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material constant is not difficult due to simplicity of model. The flow stress can be 

calculated as a function stress, strain rate and temperature in this model as given in 

equations (2.23) and (2.24). 

.

*

.

0

( )(1 ln )(1 )
pn m

p

p

A B C T


 



     (2.23) 

* inst ref

melt ref

T T
T

T T





 

(2.24) 

where 
p  is equivalent plastic strain,

.

p is plastic strain rate, 
.

0 p is the reference 

strain rate, *T  homologous temperature, 
refT  is the reference temperature or room 

temperature at 25 C  , instT  is instanteneous temperature, meltT  is melting 

temperature. All of temperature units are kelvin. Furthermore, A is the yield strength, 

B is the strain hardening coefficient, C is the strain rate coefficient, n is the strain 

hardening exponent and m is the thermal softening parameter. In this study, this 

model will be used in order to characterize material behavior. 

2.2.4.2 Zerilli – Armstrong constitutive model 

Zerilli – Armstrong constitutive model is a physically based emprical model [4].  The 

physically based definition implies that this type of constitutive model accounts for 

the physical aspects of material behavior grounded on the theory of thermodynamics, 

slip and dislocation theory. A physically based model has a lot of material constants 

and physical assumptions are needed for their determination [18]. Zerilli–Armstrong 

constitutive model has two distinct relations for face centered cubic (fcc) and body 

centered cubic (bcc) materials as following equations. 

.
1 2

0 2 3 4exp( ln )p pC C C T C T     
            (FCC) (2.25) 

.
1/2

0 2 3 4 5exp( ln ) n

p p pC C C T C T C       
(BCC) (2.26) 
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where 
p  is the equivalent plastic strain, 

.

p  is the equivalent plastic strain rate, T   

is the temperature in kelvin and n is strain hardening exponent. Moreover, 0C  is the 

yield strength which can be calculated by equation (2.27). 

1/2

0 g hC k  
 (2.27) 

where 
g  is the contribution of solutes and initial dislocation density, hk  is the 

microstructural stress intensity and t  is the average grain diameter.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

3.  EXPERIMENTAL METHODS 

Up to now, the fundamentals of constitutive equations and elastic – plastic materials 

are explained. In this chapter, the testing methods for characterizing materials 

behavior are introduced in order to get Johnson–Cook material parameters. The 

experiments are generally performed at different strain rates to determine material 

behavior. Quasi–static tests are performed via the constant speed tensile testing 

machines at strain rates between 5 1 3 110 10s s     . At higher strain rates ( 1100s  ), 

there are many testing methods in order to test materials. However, the most used 

experimental testing device for high strain rate characterization is the Split 

Hopkinson Pressure Bar technique which gives stress-strain relationships correctly 

up to strain rates of 4 110 s . 

3.1 Quasi–Static Tension Tests 

Since the first term of Johnson–Cook strength model includes parameters which may 

be obtained from quasi–static tests, many quasi–static tests are performed in the 

scope of this thesis. Tension tests are most widly used techniques for testing 

materials at quasi–static strain rates. It is a very basic test method but it provides 

important information about selecting materials in engineering applications. Tensile 

properties are evaluated during development of new materials and processes, so that 

different materials and processes can be compared [19].  

The shape and dimensions of tensile test specimen that are shown in Figure 3.1 are 

specified by ASTM (American Society for Testing and Materials) standarts.  In 

tension tests, the dogbone specimen is mounted on the grips of tensile test machine 

and elongated at a constant crosshead speed. Furthermore, applied load and 

elongation of test specimen are recorded via mechanical extensometers or camera. 

Finally, the recorded force and displacement data are used in order to construct stress 

– strain behavior of test material.  
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Figure 3.1 : Typical dogbone specimen [19]. 

3.1.1  Engineering stress – strain curves 

The test specimen shown in above involves mounting of specimen in a tensile test 

machine and then is subjected to tension. The tensile force is recorded as a function 

of the increase in gage length. Moreover, these recorded values must be normalized 

with respect to specimen dimension in order to define material properties. 

Engineering stress or nominal stress, 
eng  , is describes as, 

0

eng

F

A
   (3.1) 

where F  is (tensile) force and 0A  is the initial cross-sectional area of gage section. 

In addition to this, engineering strain with respect to elongation is calculated by, 

0

eng

L

L



  (3.2) 

where is 0L  is the initial gage length and L  is the change in gage length which 

equals to 0( )L L where L  is the instaneous length of test specimen. If force – 

elongation data are converted into engineering stress and engineering strain and then 

engineering stress – strain curve can be plotted as given in Figure 3.2. 
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Figure 3.2 : A typical engineering stress – strain curve for a ductile material [20]. 

As shown in Figure 3.2, when a specimen is subjected to tensile load, the specimen 

deforms elastically up to a limiting point which is called yield strength. During this 

deformation if the force is removed, the bonds of atoms of solid material are relaxed 

and material turns to its original shape. This type of reversible deformation is called 

elastic deformation as explained in Chapter 2. Furthermore, if the material is 

subjected tensile loading beyond the limit value, the planes of atoms slides one over 

another. At that point, if the force is removed, the material can not turn into its 

original shape and this type of deformation is called plastic deformation. Elastic and 

plastic deformation of a wire is depicted in Figure 3.3. 

 

Figure 3.3 : Elastic and plastic deformations of wire with fingers [19]. 
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3.1.2  Yielding 

For most of materials, the initial portion of stress–strain curve is linear. In other 

words, the stress changes linearly with the strain in this elastic region. The slope of 

this region is called Elastic Modulus or Young’s Modulus as given in equation (3.3). 

eng

eng

E



  (3.3) 

After Elastic Modulus is calculated, next step is specifying yield strength of material. 

A value that stress–strain curve deviates from linearity is called proportional limit. 

However, it is not easy to determine proportional limit for some materials. In order to 

avoid this problem, the onset of plasticity is usually described by “offset yield 

strength” [19]. It can be found by constructing a straight line which is parallel to 

elastic portion of stress–strain curve with an offset of strain of 0.002   or 0.2%. 

The yield strength is at the intersection point of offsetted straight line and stress–

strain curve as presented in Figure 3.4. 

 

Figure 3.4 : Definition of 0.2% offset yield strength [19]. 

For some materials such as low carbon steel and some polymers, stress–strain curves 

does not resemble to Figure 3.4. For this type of materials, the stress – strain curves 

have initial maxima. After the initial maximum, all the deformation at any instant is 

occurring within a relatively small region of the specimen and continued elongations 

with fluctuations due to Lüder’s Band occurs which shown in Figure 3.5 [19]. 



19 

Lüder’s Band can be explained as localized bands of plastic deformations in metals 

experiencing tensile stress. It can be said that defining yield strength of materials 

which has Luder’s Band is easier than others because the yield strength fort his kind 

of materials is definite. 

 

Figure 3.5 : Yielding points for low carbon steel [19]. 

3.1.3  True stress – true strain curves 

Since the test specimen can not conserve its original shape, the engineering stress – 

strain curves does not give a true sense about deformation behavior of materials. 

Figure 3.6 shows that difference between true stress –strain curves with necking 

correction and engineering stress – strain curves. 

 

Figure 3.6 : The difference between true stress – true strain  and               

engineering stress – engineering strain curves [19]. 
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The true stress can be calculated equation via, 

tr

i

F

A
   (3.4) 

where iA  is the instanteneous cross – section area. The true strain is also calculated 

as  

0

ln( )i
tr

L

L
   (3.5) 

where iL  is the instanteneous gage length. The relationship between true stress – true 

strain and engineering stress – engineering strain can be construct by considering 

plastic deformation with constant volume which is explained in previous chapter as, 

i i f fAL A L  (3.6) 

where subscripts i and f stand for initial and final dimension. By considering constant 

volume relations and engineering stress – engineering strain equations true stress and 

true strain can be calculated in terms of engineering stress strain as presented in 

equation (3.7). 

(1 )

ln(1 )

tr eng eng

tr eng

  

 

 

 
 (3.7) 

Above equations are valid until inhomogeneous deformation, necking, starts. After 

onset of the necking, the recorded data does not reflect reality. The point of onset of 

necking can be calculated by using derivatives of stress and strain values as below. 

tr
tr

tr

d

d





  (3.8) 
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Figure 3.7 : Determination of necking point on flow curve [21]. 

Deviations due to necking can be corrected by using Bridgman Correction, which is 

out of the scope of this thesis [22]. 

3.2 Dynamic Tests 

For material characterization at higher strain rates, most reliable and used devices are 

Split Hopkinson Pressure Bars. They can be classified as compression, tension and 

torsion bars according to loading conditions. Split Hopkinson Pressure Bars (SHPB)  

also known as Kolsky Bars are the most convenient characterization tools for the 

mechanical response of materials at strain rates ( 2 4 110 10 s ) [22]. This section gives 

information about background, working principles and equations for construction 

stress–strain diagrams for its compression type. 

3.2.1  Split Hopkinson Pressure Bar: Background 

The design of stuctures depends on tabulated material data that consist of stress–

strain diagrams. Moreover, material properties such as yield strength, ultimate tensile 

strength defined in material handbooks are obtained from quasi–static tests which are 

presented previous section. However, it is known that yield strength of materials is 

sensitive to strain rate changes. In order to provide product reliability under impact 

conditions such as vehicle collision, military bullet penetration, bird impact to 

aircraft and so on, the mechanical responses of materials under similar loading 

conditions must be characterized accurately [22].  
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The first attempt in order to characterize material response at higher strains came 

from Bertram Hopkinson. He invented a pressure bar to measure the pressure 

produced by high explosives and or high speed impact of bullets in 1914 [22]. 

Hopkinson used pendulums with a pencil and paper to record the movements of 

cylinders in order to obtain a pressure – time curve produced by detonation of the 

gun cotton was obtained as shown in Figure 3.8. 

 

Figure 3.8 : The Hopkinson Experiment [22]. 

In 1948, Davis conducted a critical study by using parallel plate and cylindrical 

condenser microphones to electrically measure the axial and radial movements of the 

bar loaded by detonation as in Figure 3.9. The output from the condenser is 

proportional to the displacement – time relations assuming that the pressures in the 

bars are under the elastic limit of the material [23]. Davis also studied the dispersion 

of the stress waves’ propogating in a long rod. 

 

Figure 3.9 : Davis Experiment [22]. 
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Kolsky added a second pressure bar to Hopkinson’s device and extended the 

technique to measure stress – strain response of materials under impact loading 

conditions in 1949. The difference between Kolsky bar and Davis’ apparatus is that 

Kolsky used two bars where a specimen was sandwiched in between as shown in 

Figure 3.10. 

 

Figure 3.10 : The Kolsky Bar [22]. 

Kolsky also presented expressions to calculate material properties based on strain 

data in the bars. The technique of Kolsky is also called Split Hopkinson Bar in the 

memory of Bertram Hopkinson. 

In 1954, Krafft firstly mounted strain gages to measure the strains in the two bars of 

SHPB instead of condenser microphones [23]. He also used a gun to launch a 

projectile, a striker bar, to impact on the incident bar. The advantage of using a 

striker is obtaining trapezoidal shaped pulse which have been recognized ideal for 

Kolsky bar experiments.  

In 1964, Lindholm introduced an updated version of the SHPB and presented as a 

valid dynamic characterization tool. This apparatus became a popular among 

laboratories among world. Nowadays, new improvements have been occurred with 

recent technological devices in SHPB. The Kolsky bar techniques have extended for 

tension and torsion tests for different materials. 
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3.2.2  Split Hopkinson Pressure Bar Apparatus 

A general Split Hopkinson Pressure (Kolsky) Bar consists of three major components 

such as a loading device, incident and transmitted bars and data acquisition system as 

shown in Figure 3.11. 

 

Figure 3.11 : The schematic view of SHPB [24]. 

In SHPB experiments, the loading should be controllable. The most common method 

for dynamic loading is to launch a striker impacting on the incident bar. For this 

purpose, gas guns and pressure vessels are generally used. The striker is launched by 

a sudden release of the compressed air in a pressure vessel and then accelerates 

through a long gun tube to impact on the end of the incident bar. When the striker bar 

impacts to the end of the incident bar with initial impact velocity ( 0v ), it forms a 

compressive wave in incident bar. The amplitude of this compressive wave is 

directly proportional with initial impact velocity. The impact velocity can be 

measured optically or magnetically at onset of impact. When the compressive wave 

propogates through the incident bar, it comes to the interface between incident bar 

and sandwiched specimen. At this location, a portion of compressive wave is 

reflected back into the incident bar while the rest is transmitted into specimen. 

Incident and transmitted strains are measured by strain gages on pressure bars via a 

data acquisition system. For this purpose, two strain gages are attached on the surface 

of the incident and transmitted bars. In order to record signal and monitor strain data, 

amplifier and oscilloscope should have high frequency response because voltage 

outputs from the strain gages are small amplititude [25]. The minimum frequency 

response of all components in the data acquisition system should be 100 KHz [25]. 
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3.2.3  Split Hopkinson Pressure Bar Theory 

Up to now, the equations which are needed to calculate stress and strain are not 

discussed. In this section, the theory behind this experiment is introduced. Initially, 

elastic waves in cylindrical bars are explained in order to constitute equation of 

motion. After that, the equations will be derived in order to calculate strain rate, 

strain and stress. 

3.2.3.1 Elastic waves in a cylindrical bar 

The fundamental elements of Split Hopkinson Pressure Bar are incident and 

transmitted bars as shown in Figure 3.11. Both bars should be fabricated from same 

materials. The bar material is desired to be linearly elastic during all tests with a high 

yield strength. The pressure bars have cross–section area 0A , elastic modulus E , and 

density  . Typically, the length to diameter ratio of pressure bars should be greater 

than 10 to ensure uniaxial and homogeneous elastic deformation in bars [25]. Many 

books explained the calculation of velocity of propogation in a thin bar. The 

derivation starts from a differential element of a bar. Figure 3.12 depicts that the 

striker bar impacting a long cylindrical bar with initial impact velocity 0v  and 

differential element before and after impact. 

 

Figure 3.12 : Propogation of a compression wave in a cylindrical bar [26]. 
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The forces in differential element shown in Figure 3.12 (b) are related to the stress on 

the cross–section of this element. The strains in the element can be expressed in 

terms of displacement of differential element in x-direction. By applying Newton’s 

Second Law to the cross section ' 'AA B B  as; 

2

2

0 0 0

2

2
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e e
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
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 (3.9) 

is obtained, where em  is the mass of differential element, u is the displacement in x-

direction and t is time. Since the deformation is elastic, stress can be defined as in 

equation (2.1). 

E



  (3.10) 

where   is the strain can be defined as u x  . By combining stress and strain 

definition and inserting into (3.9), the equation of motion of wave is obtained as 

given in equation (3.11). 

2

2
[ ]

u u
E

x x t


  

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 (3.11) 

and it can be simplified as, 

2 2

2 2

E u u

x t

 


 
 (3.12) 

In addition to these, if the wave velocity 0C  is taken into account as below equation 

(3.13) and then inserted into equation (3.2). 
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 (3.13) 

This differential equation is known as one-dimensional wave equation. This equation 

of motion has no practical use in Split Hopkinson Pressure Bar analysis. However, it 

can be used for calculating strain rate, strain and stress. 

3.2.3.2 Strain rate, strain and stress calculation for SHPB 

In this section, basic equations that provide strain rate, strain and stress will be 

introduced from the strain gage recordings. The testing section and recordings strains 

are shown in Figure 3.13. 

 

Figure 3.13 : Testing region of SHPB [22]. 

The incident and reflected pulses are measured by strain gages on the incident bar 

while the transmitted is measured by on the transmission bar. These strains can be 

described I , R , T . Moreover, sL  is the length of specimen and 1v  and 2v  are the 

interface velocities at the ends of specimen. The interface velocities can be calculated 

by equations (3.14). 

1 0

2 0

( )I R

T

v C

v C

 



 


 (3.14) 

where 0C  is the wave velocity of bars. The average engineering strain rate and strain 

of specimen can be calculated as, 
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01 2 ( )s
I R T

s s

d Cv v

dt L L


  


     (3.15) 

The strain is found by integrating strain rate in equation (3.15) from 0 to t as; 

0

0

( )

t

s I R T

s

C
dt

L
       (3.16) 

where s  is the average strain of specimen. The stresses at the both ends of specimen 

can be calculated as; 

1

2

( )b
s b I R

s

b
s b T

s

A
E

A

A
E

A

  

 

 



 (3.17) 

where 1s  and 2s  are the stress at first and second end of specimen respectively. 

Furthermore, it is assumed that the specimen deforms uniformly and is to be stress 

equilibrated [22]. If this stress equlibirium is considered and inserted into equation 

(3.17) related specimen stress, 

1 2s s

I R T

 

  



 
 (3.18) 

are obtained. Finally, equations (3.16) and (3.17) can be simplified as below 

equations. 
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

  (3.19) 

These equations are necessary to produce dynamic stress – strain curves. However, it 

is the fact that these equations are affected by testing condition remarkably [23]. The 

main assumption for the validity of these equations is that the specimen deforms 
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uniformly. Furthermore, the stress equilibrium should be ensured. For these 

purposes, lubrication between specimen and bar ends is used and dimensions of 

specimen are chosen properly. If these considerations taken into account, equation 

(3.16) is effective for constituting dynamic stress – strain curves of many materials. 

3.2.3.3 High temperature testing 

In order to find thermal softening coefficient ( m ) of Johnson – Cook constitutive 

model, high temperature testing of materials is needed. It is known that the high 

temperature testing should be performed at high strain rates [27]. However, SHPB at 

ITU BIOMECHANICS AND STRENGTH OF MATERIALS LAB has not such a 

kind of modeification. Therefore, the high temperature tests will be performed at 

quasi–static strain rates. 
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4.  EXPERIMENTAL RESULTS 

In order to simulate the structural response of material, a crucial point is to determine 

flow stress of this material as a function. In this chapter, the procedure to obtain five 

material parameters of Johnson – Cook from experimental results for three materials 

will be introduced. Moreover, how the quasi–static tension, quasi–static tension at 

high temperature and dynamic compression tests are performed will be explained 

elaborately. 

4.1 Quasi–Static Tensile Testing Procedure 

The fundamental aim of the quasi–static tensile tests is obtaining the true stress – true 

strain curve of AISI 1040, AISI 1045(cold – rolled) and AISI 4140 (Cr42Mo4) 

materials. From obtained true stress – true strain curves, first part of Johnson–Cook 

equation which includes A, B and n parameters can be found. For testing of three 

materials, MTS Tensile Testing Machine and MTS extensometer are used. 

4.1.1  Tensile test specimens 

The tensile test specimen was presented in previous chapter with Figure 3.1. For 

AISI 1040 steel, diameter is 6.5 mm and gage length which extensometer is mounted 

is 20 mm. For AISI 1045 and AISI 4140 steels, the diameter is 5.1 mm and gage 

length is 20 mm respectively. Figure 4.1 and Figure 4.2 depict AISI 1040 and AISI 

1045 specimens respectively. 
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Figure 4.1 : AISI 1040 tensile test specimen. 

 

Figure 4.2 : AISI 1045 and AISI 4140 tensile test specimens. 

4.1.2  Testing 

Quasi-static tension tests were performed using the MTS test machine in Figure 4.3 

with a strain rate 3 110 s  . Five succesive quasi–static tests for each material are 

performed in order to constitute true stress – true strain curves as shown. Table 4.1 

shows the dimensions of specimens for AISI 1040. 

Table 4.1 : The dimension and strain rates for AISI 1040 tests. 

1.  Test No 2.  Diameter [mm] 3.  Gage Length [mm] 4.  Strain Rate [1/s] 

1 6.5 20 0.001 

2 6.5 20 0.001 

3 6.5 20 0.001 

4 6.5 20 0.001 

5 6.5 20 0.001 
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For AISI 1045 and AISI 4140, tests were repeated four times and diameter of 

specimen is 5.1 mm differently from AISI 1040 specimens. Engineering stress–strain 

curves can be provided after tests shown in Figure 4.3. 

 

Figure 4.3 : Tensile test machine and MTS extensometer. 

The force and displacement signals come from crosshead sensors and extensometer 

are recorded via the controllable data acquisition system of MTS. After that, force – 

displacement data are converted to true stress – true strain data by using equations 

from (3.1) to (3.7). 

(1 )

ln(1 )

tr eng eng

tr eng

  

 

 

 
 (4.1) 

It can be said that two curves slightly differ with each after yield strength as can be 

seen in Figure 4.4 
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Figure 4.4 : Engineering and true stress – strain curve for tension test of AISI 1040. 

If the first term of Johnson–Cook constitutive model shown in equation (2.28) is 

considered, it can be easily seen that the plastic strain is needed as presented in 

equation (4.2). 

n

pA B    (4.2) 

This equation is modified version of Johnson–Cook constitutive model at quasi-static 

strain tensile tests. To make clear, it is the fact that there is no significant temperature 

change in quasi–static tensile tests. In addition to this, test is performed at low strain 

rates so strain rate effect also does not occur. To sum up, Johnson–Cook constitutive 

equation (2.24) rolls-down to equation (4.2) at quasi–static tensile tests. 

According to equation (4.2), the plastic strain calculation is required for determining 

flow stress. In Chapter 2, it is explained that total strain consists of elastic and plastic 

strains as shown in Figure 3.2. Moreover, strain in elastic region can be calculated by 

Hooke’s Law from equation (3.3). According to this results, the true plastic strain 

and true plastic strain rate is calculated by using following relations. 
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 (4.3) 

where t  is total true strain. In order to determine A, B and n parameters, true stress–

true plastic strain curve of material is plotted as shown in Figure 4.5. 
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Figure 4.5 : True stress – Equiv. true plastic strain graph example for AISI 1040. 

After the true stress – equivalent true plastic strain curve is plotted, logarithm of 

stress and strain value are taken to find A, B and n parameters easily. For this 

purpose, equation (4.2) should be modified as; 

ln( ) ln( )

ln( ) ln ln( )
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 

 
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 
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 (4.4) 

where equation (4.4) is a linear function ln( )p  and ln( )A  , where 
p  and   are 

equivalent true plastic strain and stress respectively. Moreover, A  is the yield 

strength of material. In order to find B and n  parameters, a first order polynomial is 

used. This approach is called direct fitting. The direct fitting of stress – strain data in 

Figure 4.5 according to equation (4.4) is presented in Figure 4.6. 
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Figure 4.6 : Ln-Ln graph of flow curve for AISI 1040. 

From Figure 4.6, strain hardening exponent ( n ) equals to 0.5346 and B equals to 

6.8083e = 905 MPa. This procedure effective and simple but it may be sometimes 

problematic. Moreover, it has proved to be inconvenient to choose the parameter A  

as the yield strength because the power law curve might deviate substantially from 

the stress – strain graph to be represented, such that the representation become 

inaccurate [28]. Therefore, an alternative approach, regression analysis, will be used 

for parameter identification during this thesis. Thanks to regression analysis, yield 

strength A  can be determined with B and n parameters by the regression algorithm. 

Regression algorithm depends on minimizing the square of the difference between 

experimental stress and stress found from constitutive model as shown in equation 

(4.5). 
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            (4.5) 

where 
exp  and model  are experimental stress and stress calculated by Johnson – 

Cook constitutive model. Moreover, k is the total number of data points. This 

procedure will be used after this section in order to obtain Johnson – Cook 

constitutive model parameters. 
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4.1.3  AISI 1040 results 

For AISI 1040 steel, five successive tensile tests performed. Since AISI 1040 show 

yield phenomena, it is not difficult determine yield strength of material. In addition 

to this, it can be accepted that yield strength of a material can be differently with 

each other up to 10% at tensile tests. Figure 4.7 depicts that five different test results 

for true stress–true strain curves. 

 

Figure 4.7 : True Stress – True Strain Curves for AISI 1040. 

The yield phenomenon during tests is shown with black ellipse in Figure 4.7. It is 

clear that yield strength values are not same for all tests. Instead of finding A , B and 

n  parameters for each test, a unique curve is fitted to all of data points by taking 

average yield strength value. In order to minimize error between experimental stress 

results and calculated stress from constitutive model, regression analysis presented in 

equation (4.6) was used.  Microsoft Excel software is highly effective in finding 

parameters by using regression analysis with Microsoft Excel Solver. As a result, the 

average yield strength of five tests are calculated and then strain hardening 

coefficient B and strain hardening exponent n can be found easily via Microsoft 

Excel Solver as shown in Figure 4.8. 
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Figure 4.8 : Curve Fitting of Experimental Test Results for AISI 1040. 

According to regression analysis and curve fitting, yield strength of material A  is 

found as 375 MPa, strain-hardening coefficient B  is found as 383 MPa and strain 

hardening exponent n is found as 0.23. The constitiutive fitting of each tests can be 

seen in Appendix A. Finally, the first term of Johnson – Cook constitutive model 

became as equation (4.6) for AISI 1040. 

0.23(375 383 )p             (4.6) 

4.1.4  AISI 1045 results 

The same procedure for AISI 1040 steel is also used for AISI 1045 steel. The only 

difference is that AISI 1045 steel specimens do not show yield points. Therefore, 

0.2% yield strength which is also called proof stress should be found. At the end of 

the test, one of the AISI 1045 is shown in Figure 4.9. 
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Figure 4.9 : The fracture of AISI 1045 specimen. 

In order to find 0.2 % yield strength of material, the linear portion of true stress – 

true strain curve is plotted and its slope is found. This slope represents the Young 

Modulus E  of material. An example of this procedure is shown in Figure 4.10. 

 

Figure 4.10 : Elastic portion of true stress – true strain curve. 

From Figure 4.10, it can be seen that the slope of elastic portion of true stress – true 

strain curve is equal to 210997 MPa. It is known that Elastic Modulus of many steels 

210000 MPa and Elastic Modulus found from experiment is consistent with literature 

data. Four tensile tests were performed for AISI 1045 and true stress – true strain 

curves are shown in Figure 4.11. 
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Figure 4.11 : True stress – true strain curves for AISI 1045 tensile tests. 

Unfortunately, the result of Test 2 is meaningless. Therefore, the constitutive fitting 

is performed for other three tests. After the stress – strain curves are obtained, a key 

point is to determine the yield strength. For this purpose, the offset curve should be 

plotted. Inıtially, equations of linear curve were found for each test and then the 

offset curve is plotted by equation (4.7). 

( 0.002)offset tra b              (4.7) 

where 
offset  is calculated stress for offset curve, a is the slope of linear curve and b

is the constant. After the offset curve is plotted, 0.2% offset yield strength can be 

found at point which intersects with true stress – true strain curve as shown in Figure 

4.12. 
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Figure 4.12 : 0.2 % yield strength of AISI 1045 (TEST 4). 

After determining the proof stress for each test, the equivalent plastic strain values 

are found according to equation (4.3) and then true stress–equivalent plastic strain 

curves are plotted. In order to determining B and n parameters, regression analysis, 

which is presented previos section, is used. Finally, a unique curve is fitted to all 

tests as given in Figure 4.13. 

 

Figure 4.13 : Curve fitting of experimental test results for AISI 1045.  

According to regression analysis and curve fitting, yield strength of material A  is 

found as 625 MPa, strain-hardening coefficient B  is found as 273 MPa and strain 

hardening exponent n is found as 0.11. It should be remembered that work hardening 

is applied to AISI 1045 (Cold Drawn) steel. It is known that the yield strength of 

material increases when ductility of material decreases if the cold drawn process is 
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applied to any material. In addition to this, the test does not show a necking behavior 

so the slope is then also too high. A. Finally, the first term of Johnson–Cook 

constitutive model became as equation (4.8) for AISI 1045. 

0.11(625 273 )p             (4.8) 

4.1.5  AISI 4140 (Cr42Mo4) results 

Four tests are performed  for AISI 4140 specimens. True stress–True strain curves 

are presented in Figure 4.14. 

 

Figure 4.14 : True stress – true strain curves for AISI 4140. 

From Figure 4.14, it can be understood that yielding point phenomena occurs for 

AISI 4140 steel. The average yield strength is assumed 395 MPa according to Figure 

4.14. After this assumption was made, the unique curve is fitted to all data points 

includes four tests with respect regression analysis procedure that presented in 

previous sections. 
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Figure 4.15 : Curve fitting of experimental test results for AISI 4140.  

Figure 4.15 shows the curve fitting of all data points of four tests. In addition to this, 

AISI 4140 is supposed to heat treatment and cold working process. Therefore, the 

mechanical properties such as yield strength remarkably changes. According to 

regression analysis and curve fitting, yield strength of material A  is found as 395 

MPa, strain-hardening coefficient B  is found as 395 MPa and strain hardening 

exponent n is found as 0.17. The constitiutive fitting of each tests can be seen in 

Appendix A. Finally, the first term of Johnson – Cook constitutive model became as 

equation (4.9) for AISI 4140. 

0.17(395 395 )p             (4.9) 

Curve fitting of AISI 4140 is worst among all curve fittings. The reason of this 

reality is not known clearly. In addition to this, if yield strength A  is changed, better 

curve fittings with less error can be obtained. However, the author choose to 

determine yield strength as average of yield strength values of all tests during this 

study. For instance, there is a better fit for AISI 4140 steel specimens with yield 

strength A  as choosen 315 MPa. However, it is clear that yield strength of any test 

results is not equal to 315 MPa. Therefore, parameter A  is chosen as an average 

value which equals to 395 MPa. To sum up, the calculated stress with respect to true 

strain values from the determined parameters as presented in Table 4.2. 
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Table 4.2 : Quasi – Static Johnson – Cook Parameters. 

Material A  [MPa] B  [MPa] n  

AISI 1040 375 383 0.25 

AISI 1045 625 273 0.11 

AISI 4140 395 395 0.17 

4.2 Quasi–Static Tensile Tests at High Temperature 

The third term of Johnson–Cook constitutive model represents thermal softening 

effect. For this purpose, quasi–static test are performed at 80 C  and 260 C . It is 

observed strain rate dependency of temperature and supposed that high temperature 

test should be performed at high strain rates for more accurate results [27]. 

Unfortunately, there is no experimental set up so that the high temperature tests are 

performed with Split Hopkinson Pressure Bar. Instead of this technique, quasi-static 

tests at high temperatures were performed in order to see thermal softening effect. 

Moreover, some difficulties are faced during high temperature quasi–static tests. 

First of all, the extensometer gives accurate strain values up to 150 C . Therefore, the 

correct strain values are taken for only 80 C  with extensometer. The force–

elongation curve for tensile tests at 260 C  are obtained without using extensometer. 

In this case, the test machine remarkably extends during the tests. In other words, 

most of the displacement comes from the crosshead motion of machine due to test 

machine stiffness. In order to overcome this problem, the author tried to compare all 

tensile test results without extensometers but the meaningful results cannot be 

obtained. In addition to this, the tensile test results are not adequate for determining 

thermal softening parameter m . In order to understand the effect of the temperature 

effect, tests should be performed at higher temperatures up to 1000 C . Johnson and 

Cook determined that m is equal to 1 for most of metals especially steels studied in 

this thesis. Through this section, thermal softening parameter m  determination is 

attempted. However, if any meaningful value cannot be obtained, a unit value for m

will be used.  
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4.2.1  High temperature testing procedure 

The main goal of quasi–static tests at high temperature is determining thermal 

softening effect m which appears in third term in Johnson – Cook constitutive 

equation. 

.

*

.

0

( )(1 ln )(1 )
p

n m

p
p

A B C T


 



             (4.10) 

where *T   can be expressed as homologous temperature as shown in following 

relation. 

* inst ref

melt ref

T T
T

T T





 (4.11) 

If the tensile tests are performed at quasi–static strain rates, the second term of 

Johnson–Cook constitutive equation became negligible and equation (4.11) 

diminishes to equation (4.12). 

*( )(1 )n m

pA B T     (4.12) 

Equation 4.12 can be used for especially determining yield strength of materials. 

Moreover, the average of m values are taken into account for determining this 

parameter. In order to perform high temperature tests, MTS tensile testing machine 

with an environmental chamber (furnace) for this kind of tests is used as shown in 

Figure 4.16. After the position of environmental chamber is adjusted for test, the 

desired temperature is given via the controllable data acquisition system. The test 

specimens after quasi–static tensile tests can be seen as presented in Figure 4.17 
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Figure 4.16 : Environmental chamber and data acquisition system. 

 

Figure 4.17 : AISI 1040 specimens after high temperature tests. 

4.2.2  AISI 1040 results for high temperature testing 

For AISI 1040 specimens, five successive tests were performed at 80 C and 260 C  

respectively. The measurement difference sourced by using extensometers was 

explained. In Figure 4.17, it can be seen that difference between true stress – true 

strain curves of tests with extensometers and without extensometers. 



47 

 

Figure 4.18 : The effect of extensometer usage on flow curves. 

Figure 4.18 depicts that strain values significantly changes if the extensometer which 

used to measure changes in length of specimen. For tests at 80 C  extonsemeter is 

used but its specification is not suitable for 260 C . For overcoming this problem, 

two different approaches were tried. One of these approaches is preparing very rigid 

tensile specimen which its diameter is relatively high so that it does not elongate so 

much. By this way, the elongation value are recorded that are related only to machine 

stiffness. After the force-displacement curve is obtained for machine rigidity., the 

stiffness of the machine can be found. Figure 4.19 shows a rigidity model of the 

tensile test – machine specimen system. 

0

100

200

300

400

500

600

700

0 0,05 0,1 0,15 0,2

T
ru

e 
S

tr
es

s 
[M

P
a
] 

True Strain [-] 

True Stress - True

Strain w/o

Extansiometer

True Stress - True

Strain with

Extansiometer



48 

 

Figure 4.19 : Tensile test – machine specimen rigidity model [29]. 

Equation (4.13) gives the system machine – specimen stiffness, 
sysK . 

1 1 1

sys m specimenK K K
   

(4.13) 

where 
specimenK  is the specimen linear stiffness and mK  is the machine linear 

stiffness. In Figure 4.20, two curves are shown which are elastic regions of curves in 

Figure 4.18. To obtain the specimen stiffness, the contribution of low part of the 

machine should be subtracted [29]. 

 

Figure 4.20 : Linear stiffness curves of the specimen and of                                    

the system machine – specimen. 
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From Figure 4.20, it can be shown that linear stiffnesses of two measurement 

systems are slightly different with each other. In Figure 4.21, the setup of test for 

determining machine rigidity can be shown. 

 

Figure 4.21 : Machine rigidity test. 

After the machine rigidity test was performed, displacement – force curve was 

plotted and a high order polynomial is fitted to this curve for strain correction as 

shown in Figure 4.22. 

 

Figure 4.22 : Displacement–Force curve of machine rigidity test. 
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The equation obtained from displacement – force curve is used for correcting the 

strain data. One of the example of this correction is shown in Figure 4.23. 

 

Figure 4.23 : The effect of correction for AISI 1040 (TEST 15 at 260 C ). 

It can be said that the high order polynomial corrected flow curve. However, it is 

observed that the correction is not effective for lower stresses. Therefore, another 

approach is attempted to find thermal softening effect. For this purpose, test results at 

80 C  will be compared with test results at 25 C  according to results obtained by 

extensometer. Moreover, test results at 260 C  will be compared test results at 25 C  

obtained without extensometer. In order to clarify, the high temperature results are 

evaluated according to reference temperature (25 C ). Due to the fact that 

extensometer gives accurate results up to 80 C , it cannot be used for tests performed 

at 260 C . Therefore, the decrease at yield strength at 260 C  should be compared 

with test results at 25 C . Both elongation values acquired by machine and 

extensometer are available for 25 C  and 80 C . The author expects that, the trendline 

does not change, although strain values are not true for results obtained without 

extensometer. Finally, quasi–static parameters of Johnson–Cook constitutive 

equation are taken into account and thermal softening parameter m  for each test at 

high temperatures. A general decrease in yield strength of AISI 1040 can be shown 

in Figure 4.24. 
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Figure 4.24 : Thermal softening effect on yield strength of AISI 1040. 

From Figure 4.24, it can be said that the yield strength of material decreases with 

temperature rise. The hardening behavior of test results for 25 C  and 80 C  

resemble with each other. However, the test results at 260 C  show a different 

hardening behavior from results at other two temperatures. Since the normalization 

process is not applied to materials the hardening curve behaves differently. Figure 

4.22 also depicts that, different stress values are experimentally obtained for same 

true strain values. If equation (4.12) is applied for test results at 80 C , the average of 

thermal softening parameter m is found as 0.98. For this purpose, the constitutive 

equation is fitted to all data points for 80 C  and the error between experimental 

results and constitutive equation with given equation (4.12) is minimized by using 

least – squares technique as given in equation (4.5). Figure 4.25 depicts that 

regression fitting of experimental results with determined thermal softening 

parameter m . The determined parameter is logical because the temperature 

difference (55 C ) is found to be satisfactory relatively low when it is compared to 

melting temperature of steel which is 1521 C . In addition to this best fit is obtained 

for Test 7, which is shown in Figure 4.26. Other fits are presented in Appendix B. 
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Figure 4.25 : Curve fitting to experimental results for TEST 7 at 80 C  with m=0.98. 

As stated before, thermal softening parameter for most metals can be accepted as 1. 

Unfortunately, curve fitting results for 260 C  are not successful as test  results at 80

C . The curve fitting of all data points according to equation (4.12) as presented in 

Figure 4.27. 

 

Figure 4.26 : Curve fitting to experimental results of AISI 1040 at 260 C  with 

m=1.0. 

One reason of unrealistic fitting result in Figure 4.27 may be taking data without 

extensometer. In addition to this, it is the fact that the model predicts stresses that are 
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crucially higher than stresses obtained from experimental tests. Finally, the thermal 

softening parameter m is an average value of 80 C  and 260 C  tests (0.99) and 

equation 4.12 becomes for AISI 1040. 

0.23 *0.99(375 383 )(1 )p T            (4.14) 

4.2.3  AISI 1045 results for high temperature testing 

In previous sections, it is explained that AISI 1045 specimen does not show yield 

point phenomena so its yield strength can be determined by using 0.2 % offset proof 

stress. This situation makes more difficult specifying yield strength for results 

obtained without extensometers because the elastic curve is not true. In addition to 

this, AISI 1045 specimens provided by steel manufacturer is manufactured for 

military purposes and special heat treatment and cold – working process is applied to 

material and no normalizing was applied before tests. Therefore, the hardening and 

thermal softening characteristics of AISI 1045 may be different than literature values 

for normalized materials. 

The same procedure for AISI 1040 is used to determine thermal softening parameter 

m  for AISI 1045. Figure 4.27 depicts that thermal softening effect for a test 

performed at 80 C  with extensometer. Figure 4.28 also shows the same effect for a 

test performed at 260 C  without extensometer. 
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Figure 4.27 : Thermal softening effect on yield strength of AISI 1045 for 80 C . 

 

Figure 4.28 : Thermal softening effect on yield strength of AISI 1045 for 260 C . 

It can be said that finding 0.2% proof stress is difficult from Figure 4.28. For 80 C  

results, a unique curve is fitted to all data points which are performed for three tests 

at this temperature as shown in Figure 4.29. 
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Figure 4.29 : Curve fitting to experimental results of AISI 1045 at 80 C  with 

m=0.69. 

A best fit is obtained with m =0.69 and curve fitting for each test will be given in 

Appendix B. Nevertheless a good fit is not obtained for tests performed at 260 C . 

However, the two tests were chosen so that the thermal softening effect can be 

clearly observed as given 4.29 and thermal softening parameter is attempted to 

predict. Finally, best fit is again obtained for 0.69m  . Finally, equation (4.12) 

becomes for AISI 1045 as presented in 

0.11 *0.69(625 273 )(1 )p T            (4.15) 

4.2.4  AISI 4140 results for high temperature testing 

For AISI 4140 test specimens, high temperature tests are only performed at 260 C  

due to experimental reasons. Therefore, resulst must be compared for data recorded 

without extensometer. Thermal softening effect can be seen in Figure 4.30. 
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Figure 4.30 : Thermal softening effect on yield strength of AISI 4140 for 260 C . 

The same problem with other specimens due to measurement without extensometer 

is faced again according to Figure 4.30. The hardening curve’s behavior is not 

obtained correctly. Since the melting temperature of steel is nearly 1500 K, the 

temperature change does not affect the results. Therefore, the thermal softening 

parameter m is chosen as 1.0. Finally, equation (4.12) becomes as equation (4.13). 

0.17 *1.0(395 395 )(1 )p T     (4.16) 

4.3 High Strain Rate Testing Results 

In order to determine all parameters of Johnson–Cook parameters, final task is 

determining strain rate coefficient parameter C. The device consists of  a striker and 

two pressure bars made of maraging steel, two strain gages on the surface of incident 

and transmission bars, a data acquisition sytem which has 400 kHz frequency 

response and pressure vessel. For this purpose, SHPB at ITU BIOMECHANICS 

AND STRENGTH OF MATERIALS LAB as shown in Figure 4.31 is used. The 

fifteen tests were performed for each material for different length- diameter ratios. 

The strain rate coefficient can be calculated by fitting most suitable curves to data 

points for each strain rate. Initially, a simple curve is fitted to all points then the least 

square methods is used in order to determine the strain rate coefficient. A lubricant is 

used between specimen and pressure bars’ interfaces in order to prevent high stress 

values due to friction during tests. 
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4.3.1  AISI 1040 results for high strain rate results 

The strain rate coefficient parameter ( C ) is determined for AISI 1040 steel. The 

fifteen succesive tests were performed for different length-diameter ratios as in Table 

4.3. 

Table 4.3 : Specimen dimensions and pressure for AISI 1040. 

L [mm] D [mm] Pressure [Bar] Number of Tests 

15 9 6 3 

12 9 4 3 

6 9 4 4 

9 9 4 5 

 

Figure 4.31 : ITU split hopkinson pressure bar. 

 

Figure 4.32 : Strain gage on the incident bar. 



58 

 

Figure 4.33 : AISI 1040 specimen for high strain rate testing. 

For this purpose, the strain recordings from the strain gages on the bars are plotted as 

Figure 4.34. 

 

Figure 4.34 : Strain gage signals from the pressure bars. 

The first negative blue wave is the incident wave on the incident bar, the second blue 

wave, which is the positive reflected wave and it is used in order to calculate strain 
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rate and strain according to equation (3.18). If the wave speed is taken 

4857 /BC m s ,diameter of pressure bars equals to 22.7 mm and diameter of 

specimen is taken 9 mm and it is considered that the the sample rate of data 

acquisition system is 400 kHz, the strain rate, strain and stress are plotted as below 

figures. 

 

Figure 4.35 : Strain rate – time curve of test1 for AISI 1040. 
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Figure 4.36 : Strain – time curve of test1 for AISI 1040. 

 

Figure 4.37 : Engineering Stress–time curve of test1 for AISI 1040. 
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Figure 4.38 : True stress – time curve of test1 for AISI 1040. 

It can be seen that the average strain rate can be found as approximately 1700 1s  

from Figure 4.35. Engineering strain and stress data with respect to time are also 

presented in Figure 4.36 and 4.37.  Finally, true stress–true strain curve can be 

obtained as presented in Figure 4.38. In order to determine the strain rate coefficient 

parameter C , Johnson–Cook constitutive equation should be modified as given in. 
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Finally, the strain rate coefficient C  is determined 0.04 for TEST 1. The constitutive 

fit can be shown in Figure 4.39. 
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Figure 4.39 : Constitutive fit with C=0.04. 

Moreover, the increase in stress response due to the strain rate effect is given as 

Figure 4.40. 

 

Figure 4.40 : True Stress vs. True Strain for AISI 1040 at strain rates of 1500 1s  , 

2000 1s  and 3000 1s . 
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higher strain rates. The yield strength of AISI 1040 specimen increases from 400 

MPa to 1000 MPa with respect to strain rate effect. It can be said that the strain rate 

coefficient ( C ) changes in the range between 0.04 and 0.1. On the other hand, it can 

be seen that the good fit cannot be obtained with the strain hardening parameters B  
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and n . These values. are used because of the necking behavior can be provided only 

with these values. On the other hand, the values for strain hardening parameters, 

which results better fit to test data, are also used and true stress- true straın graphs are 

plotted in Appendix C. Finally, Johnson-Cook parameters are obtaines as given in 

Table 4.4. 

Table 4.4 : Johnson-Cook parameters for AISI 1040. 

Material A [MPa] B [MPa] n C m 

AISI 1040 375 383 0.23 0.07 0.99 

 

4.3.2  AISI 1045 results for high strain rate results 

The fourteen successive tests were performed for AISI 1045 high strain rate tests as 

given in Table 4.5. 

Table 4.5 : Specimen dimensions and pressure for AISI 1045. 

L [mm] D [mm] Pressure [Bar] Number of Tests 

6 9 4 6 

9 9 3 3 

9 9 6 1 

12 9 3 2 

12 9 6 1 

12 9 7 1 

Two different parameter sets are used in order to fit curve to all data points. These 

curves will be presented in Appendix C. AISI 1045 specimens for high strain rate 

tests before and after experiments are shown as Figure 4.41 and Figure 4.42 

respectively. 
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Figure 4.41 : AISI 1045 test specimens. 

 

Figure 4.42: AISI 1045 test specimen after SHPB experiments. 

 

The same procedure was used to obtain data. Moreover, the strain rate, strain and 

stress with respect to time are plotted as below, 
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Figure 4.43 : Strain rate – time curve of test1 for AISI 1045. 
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Figure 4.44 : Strain–time curve of test1 for AISI 1045. 
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Figure 4.45 : Engineering Stress – time curve of test1 for AISI 1045. 

 

Figure 4.46 : True Stress – True Strain curve of test1 for AISI 1045. 
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The strain rate effect on stress response can be seen as given in Figure 4.46. 

 

Figure 4.47 : True Stress vs. True Strain for AISI 1040 at strain rates of 1500 1s , 

2000 1s  and 3000 1s . 

Finally, the strain rate coefficient parameter ( C ) changes between the range 0.06 and 

0.08 with respect to strain rate. Johnson-Cook fit with 0.08c   can be seen in Figure 

4.47 for 3000 1s . 

 

Figure 4.48 : Constitutive fit with C=0.08. 

The constitutive model does not provide a good fit to experimental results. The strain 

hardening parameters may be reason of these results. In order to clarify this 

explanation, a different model with 1647B MPa  and 0.49n   is tried to fit data 

points as given in Figure 4.48. 
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Figure 4.49 : Constitutive fit with different parameters for AISI 1045. 

It can be seen that better fit is obtained with parameters shown in Figure 4.48. All of 

these curve fits with different parameters are given in Appendix C. Furthermore, the 

strain rate coefficient (C ) is taken as 0.08, an average of calculated values between 

0.06 and 0.11, and Johnson-Cook parameters for AISI 1045 is given as, 

Table 4.6 : Johnson-Cook parameters for AISI 1045. 

Material A [MPa] B [MPa] n C m 

AISI 1045 625 274 0.11 0.08 0.69 

4.3.3  AISI 4140 results for high strain rate results 

The fourteen successive tests were performed to determine the strain rate coefficient 

(C ) at high strain rates for different length-diameter ratio as given in Table 4.7. 

Table 4.7 : Specimen dimensions and pressure for AISI 4140. 

L [mm] D [mm] Pressure [Bar] Number of Tests 

12 9 3 2 

12 9 4 3 

9 9 3 2 

9 9 4 2 

9 9 6 3 
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The strain rates, strain and stress recordings with respect to time for Test 1 can be 

shown in below figures. 
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Figure 4.50 : Strain rate – time curve of test1 for AISI 4140. 
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Figure 4.51 : Strain–time curve of test1 for AISI 4140. 
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Figure 4.52 : Engineering stress-time curve of test 1 for AISI 4140. 

 

Figure 4.53 : True stress-time curve of test 1 for AISI 4140. 

It can be seen that the average strain rate can be found as approximately 1500 1s  

from Figure 4.49. Engineering strain and stress data with respect to time are also 

presented in Figure 4.50 and 4.51.  Finally, true stress–true strain curve can be 

obtained as presented in Figure 4.52. The strain rate effect on stress response is 

depicted as in Figure 4.53. 
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Figure 4.54 : True Stress vs. True Strain for AISI 1040 at strain rates of 1500 1s , 

2000 1s  and 3000 1s . 

From Figure 4.53, it can be understood that stress values increases with respect to 

strain rate increase. Finally, the constitutive model fit to experimental data is 

obtained as Figure 4.54. 

 

Figure 4.55 : Constitutive fit with C=0.06. 
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Figure 4.56 : Constitutive fit with different parameters for AISI 4140. 

It can be seen that better fit is obtained with parameters shown in Figure 4.55. 

Furthermore, the strain rate coefficient ( C ) is taken as 0.07, an average of calculated 

values between 0.06 and 0.08, and Johnson-Cook parameters for AISI 4140 is given 

as, 

Table 4.8 : Johnson-Cook parameters for AISI 4140. 

Material A [MPa] B [MPa] n C m 

AISI 4140 395 395 0.17 0.07 1.0 

Finally, Johnson-Cook constitutive model parameters for all materials in this study 

are tabuleted as; 

Table 4.9 : Johnson-Cook constitutive model parameters for all materials. 

Material A [MPa] B [MPa] n C m 

AISI 1040 375 383 0.23 0.07 0.99 

AISI 1045 625 274 0.11 0.08 0.69 

AISI 4140 395 395 0.17 0.07 1.0 

In this thesis, another parameter set for obtaining better fitting is used. The second 

parameter set for Johnson-Cook constitutive model is given as; 
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Table 4.10 : Johnson-Cook constitutive model parameters for all materials for a 

better fit. 

Material A [MPa] B [MPa] n C m 

AISI 1040 375 765 0.48 0.07 0.99 

AISI 1045 625 1647 0.49 0.03 0.69 

AISI 4140 395 1142 0.46 0.05 1.0 
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5.   CONCLUSIONS AND RECOMMENDATIONS 

In the present study, Johnson–Cook strength model parameters of three materials 

were determined. For this purpose, the material behavior in elastic and plastic regime 

is introduced initially. Moreover, experimental methods for material characterization 

are detailed explained. The Johnson–Cook parameters were determined through 

quasi–static ( 3 110 s  ) and quasi–static tests with higher temperatures at 80 C  and 

260 C  are performed. In addition to this, high strain rate tests were performed by 

using compression SHPB apparatus.  The following results are obtained based on 

experiments. 

1. The hardening behaviors are obtained for AISI 1040 steels correctly 

but the results found AISI 1045 and AISI 4140 specimens are 

suspicious. The heat treatment and cold–drawn processes were 

possibly applied to this material and they do not show necking 

behavior. 

2. High temperature quasi–static tests depict that flow stress decreases 

with temperature increase. It can be said that the use of extensiometer 

of high temperature are crucial for determining thermal softening 

parameter m. 

3. The flow stresses of all tested materials were found to increase with 

strain rate increasing. This depicts that all of materials are strain rate 

sensitive. 

4. The determined Johnson–Cook parameters for AISI 1040 is 

consistent with literature. However, the other materials parameters 

are different. The brittleness of these materials may be a reason of 

this result. The cold drawing and heat treatment processes also effects 

the yield strength and hardening behavior significantly. 

5. Two different parameter sets were obtained. One of them shows 

necking behavior in true stress-true strain curve but it does not 
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provide a good fit for experimental tests. Vice versa, the second 

parameter set does not show necking behavior in true stress-true 

strain curve but it provides a good fit for experimental tests. This is a 

questionable issue that what data set should be chosen. Therefore, the 

results for two sets were given in Appendix part.  

In conclusion, the constitutive model proposed by Johnson–Cook does not allow an 

easy parameters determination. In order to obtain tese parameters correctly, both of 

tension and compression quasi–static tests are needed. It is also recommended that 

performing high temperature tests incorpareted with high strain rates in order to 

obtain correct stress values. Finally, for the determination of constitutive model 

parameters a lot of tests should be performed for commenting results statistically. 
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APPENDIX A: Quasi-Static Test Results 
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APPENDIX A 

Since various tests are performed, all of these tests cannot presented in previous 

chapters. In this part all quasi-static test results will be given for two different 

parameter sets for Johnson-Cook consititutive model.  

 

APPENDIX A.1 Quasi-Static Test Results for Parameter Set 1 

 

In Conclusion part, it was discussed that two parameter sets are used for curve 

fitting. The initial parameter set which was given in Table 4.9 was chosen so that the 

results shows necking behavior. The quasi-static test results by using this parameter 

set is given as below figures. 

 

Figure A.1 : Constitutive fitting for AISI 1040 test 1. 
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Figure A.2 : Constitutive fitting for AISI 1040 test 2.  

 

Figure A.3 : Constitutive fitting for AISI 1040 test 3.  
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Figure A.4 : Constitutive fitting for AISI 1040 test 4. 

 

Figure A.5 : Constitutive fitting for AISI 1040 test 5. 
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Figure A.6 : Constitutive fitting for AISI 1045 test 1. 

 

Figure A.7 : Constitutive fitting for AISI 1045 test 2. 
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Figure A.8 : Constitutive fitting for AISI 1045 test 3. 

 

Figure A.9 : Constitutive fitting for AISI 4140 test 1. 
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Figure A.10 : Constitutive fitting for AISI 4140 test 2. 

 

Figure A.11 : Constitutive fitting for AISI 4140 test 3. 
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Figure A.12 : Constitutive fitting for AISI 1040 test 1 with parameter set 2. 

 

Figure A.13 : Constitutive fitting for AISI 1040 test 2 with parameter set 2. 
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Figure A.14 : Constitutive fitting for AISI 1040 test 3 with parameter set 2. 

 

Figure A.15 : Constitutive fitting for AISI 1040 test 4 with parameter set 2. 
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Figure A.16 : Constitutive fitting for AISI 1040 test 5 with parameter set 2. 

 

Figure A.17 : Constitutive fitting for AISI 1045 test 1 with parameter set 2. 
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Figure A.18 : Constitutive fitting for AISI 1045 test 2 with parameter set 2. 

 

Figure A.19 : Constitutive fitting for AISI 1045 test 3 with parameter set 2. 
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Figure A.20 : Constitutive fitting for AISI 4140 test 1 with parameter set 2. 

 

Figure A.21 : Constitutive fitting for AISI 4140 test 2 with parameter set 2. 
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Figure A.22 : Constitutive fitting for AISI 4140 test 3 with parameter set 2. 
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APPENDIX B 

In this section, higher strain rate testing results were presented for two parameter 

sets. Since a large number of tests were performed for three materials, all of graphs 

were not given. Instead of this, test results were choosen for definite average strain 

rates such as 1500 1s , 2000 1s  and 3000 1s  and plotted for both parameter sets. 

APPENDIX B.1 High Strain Rate Test Results for Parameter Set 1 

 

 

Figure B.1 : Constitutive fit for AISI 1040 test 1 at strain rate of 1500
1s . 

 

Figure B.2 : Constitutive fit for AISI 1040 test 8 at strain rate of 2000
1s . 
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Figure B.3 : Constitutive fit for AISI 1040 test 7 at strain rate of 3000
1s . 

 

Figure B.4 : Constitutive fit for AISI 1045 test 11 at strain rate of 1500 1s . 
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Figure B.5 : Constitutive fit for AISI 1045 test 8 at strain rate of 2000 1s . 

 

Figure B.6 : Constitutive fit for AISI 1045 test 6 at strain rate of 3000 1s . 
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Figure B.7 : Constitutive fit for AISI 4140 test 1 at strain rate of 1500 1s . 

 

 

Figure B.8 : Constitutive fit for AISI 4140 test 6 at strain rate of 2000 1s . 
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Figure B.9 : Constitutive fit for AISI 4140 test 10 at strain rate of 3000 1s . 

APPENDIX B.2 High Strain Rate Test Results for Parameter Set 2 

 

 

Figure B.10 : Constitutive fit for AISI 1040 test 1 with parameter set 2 at strain rate 

of 1500 1s . 

 

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3

Tr
u

e
 S

tr
e

ss
 [

M
P

a]

True Strain [-]

AISI 4140 Test 10

Experimental Results

Constitutive Model
with C=0.10

0

200

400

600

800

1000

1200

1400

1600

0 0,05 0,1 0,15 0,2

Tr
u

e
 S

tr
ai

n
 [

M
P

a]
 

True Stress [-] 

AISI 1040 Test 1  

Experimental Results

Constitutive Fit with
C=0.06



95 

 

Figure B.11 : Constitutive fit for AISI 1040 test 8 with parameter set 2 at strain rate 

of 2000 1s . 

 

Figure B.12 : Constitutive fit for AISI 1040 test 7 with parameter set 2 at strain rate 

of 3000 1s . 
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Figure B.13 : Constitutive fit for AISI 1045 test 11 with parameter set 2 at strain rate 

of 1500 1s . 

 

Figure B.14 : Constitutive fit for AISI 1045 test 8 with parameter set 2 at strain rate 

of 3000 1s . 
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Figure B.15 : Constitutive fit for AISI 1045 test 6 with parameter set 2 at strain rate 

of 3000 1s . 

 

Figure B.16 : Constitutive fit for AISI 4140 test 1 with parameter set 2 at strain rate 

of 1500 1s . 
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Figure B.17 : Constitutive fit for AISI 4140 test 6 with parameter set 2 at strain rate 

of 2000 1s . 

 

Figure B.18 : Constitutive fit for AISI 4140 test 10 with parameter set 2 at strain rate 

of 3000 1s . 
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