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ix 

FOREWORD 

While fighting fire, fire fighters are exposed to both the high working temperatures 

which can cause burning and also to the stress from internal body temperature 

increament. In order to ensure the workers thermal comfort, the heat exchange of 

human body and the surrounding through the fire fighters clothing should be studied. 

In this thesis the thermal comfort properties of different fabric layers (outer layer, 

moisture barrier and thermal barrier) that can be layered and used to make fire 

fighters protective clothing are tested for their comfort and fire protection properties. 

The moisture transporting properties like water vapour permeability, airpermeability, 

and also heat loss and gain properties of fabric layers is measured by using Alambeta 

and Permetest measuring instruments. Thermal resistance, thermal absorptivity, 

water vapor resistance, thermal diffusion and air permeability are considered in 

calculating thermal comfort index. Additionaly thermal camera is used to measure 

temperature difference while wear trials were done at varying working environment 

temperature. The fabric selection for fire fighters clothing can be suggested based on 

the overall  measurement results. 
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ANALYZING AND MODELLING OF COMFORT AND PROTECTION 

PROPERTIES OF FIRE FIGHTERS PROTECTIVE CLOTHINGS 

SUMMARY 

Protection together with comfort is very important subject for the performance of 

protective equipment. Firefighting is very dangerous work and today firefighters 

wear personal protective equipment to protect themselves during their highly 

dangerous work. Also they have to perform their jobs under very restrict time 

intervals so their motion and working performances are highly dependent on clothing 

comfort. The balance of thermal protection from fire and metabolic heat stress 

generated by the human body due to metabolic activities is very important during fire 

situations. The structure of the garments must allow evaporation of perspiration, 

ventilation and also thermal protection from fire. 

In this study, first of all the technical literatures were reviewed concerning the 

studies  related to thermal comfort properties, fire protection  performance of fire 

fighters clothings, factors contributing to improvement of thermo-physiological 

comfort, wear trials  comfort analysis and also the reviews including researchers 

recomendations. The thesis aimed  to focus on studying both comfort and protection  

performance of fire fighters protective clothings by using objective measurements 

applied generally and specifically in screening the most comfortable/ protective 

fabric layers used to produce fire fighters protective clothing.  

The objective measurement equipments such as Alambeta device and Permetest were 

found to be appropriate and useful  instruments to measure comfort parameters, and 

also both being fast and non-destructive. Beside these there are others test apparatus 

used such as air-permeability tester, thermal camera, burning tests equipment sets, all 

described well in materials and methods sections of this thesis work. The analysis of 

results is supported by basic knowledges of various aspects of comfort, thermal 

comfort, clothing comfort properties, mechanisms  of heat and moisture transfer 

through the coveralls all which provided in chapter two of the thesis. Additionally, 
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understanding about fire protection, fire fighters thermal environments, and 

appropriate test apparatus based on standards were  used. 

Water vapour resistance, thermal resistance, thermal conductivity, thermal 

absorption, thermal diffusion, air permeability were measured and analysed. The 

relative thermal comfort index of multi-layered fabrics was calculated to see their 

comfort levels. This thermal comfort index was used to compared against the burning 

test results to attain an objective of screening and listing the layers of fabrics. The 

results and discussions section of the thesis represents all steps and values based on 

the analysis of the several test results. Additionaly the wear trials have been 

conducted to compare the objective measurements conformity with the analysis done 

by measuring human worn fire fighters protective clothings. The Testo 885 thermal 

imaging camera was used to measure. Statistical analysis showed that the conformity 

of fabric evaluation using RTCI with those carried out by wear trials measurements 

by using thermal camera. 

The thesis addressed several potential problems with the current  methods for 

screening  each single layered fabrics used in assembly according to their demand to 

comfort and protection level based on objective measurements. In analysis of 

properties such as water vapour permeability, thermal resistance, thermal 

absorptivity, thermal diffusion and protection performances total of sixty four 

layered fabrics used.  All of the multilayered firefighters protective clothings are not 

air permeable because of the thermal barriers which hinder air transmission. From 

several tests done for all samples its possible to conclude that, the thermal resistance 

measured by Alambeta device results greater than that measured by Permetest device 

for the same sample. 

The relative thermal comfort index calculated for fabric layers evaluate and provide 

well screened status weather a particular type of fabrics when made garments and 

investigated wear trially would definitely ensure thermal comfort. The more burning 

tests resistance time in seconds to convective and radiant heat source, the more 

protective the assemblies and its used to rank the performances of samples. In order 

to meet the best expectations to this conclusion, it is necessary to precisely specify 

the conditions of using the garments, not only concerning microclimate parameters 

but also personal features of the user and the type and intensity of physical activity. 
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İTFAİYECI KORUYUCU KIYAFETLERININ KONFOR VE KORUMA 

ÖZELLİKLERİNİN ANALİZİ VE MODELLEME 

ÖZET 

İtfaiyeci kıyafetlerinin konfor özellikleri koruyuculuk özellikleriile birlikte önemli 

bir performans göstergesidir. Yangın söndürme oldukça tehlikeli bir iş olup, 

günümüzde itfaiyeciler çok tehlikeli çalışma koşullarında bulunduklarından 

kendilerini koruyabilmek için kişisel koruyucu kıyafetler giymektedirler. Ayrıca  

itfaiyeciler işlerini çok kısıtlı birsüre de gerçekleştirmek zorunda olduklarından 

hareket kabiliyetleri veçalışma performansları yüksek oran da giysi konforuna 

bağlıdır. Koruyucu giysinin yangın  ortamında gereken termal korumayı sağlaması 

ve aynı zamanda vücut tarafından gerçekleştirilen metabolic aktiviteler sonucu 

üretilen ısıyı dengelemesi yangın koşullarında çok önemlidir. Koruyucu giysi 

yapısıterin buharlaşmasını, havalanmayı ve aynı zamanda yangından korunmayı 

sağlamalıdır. 

Bu çalışmada ilk aşama olarak termal konfor özellikleri, itfaiyeci kıyafetlerinin 

yangın koruması, termo-fizyolojik konfor özelliklerinin geliştirilmesine katkı 

sağlayan faktörler, giysi denemeleri analizleri ve araştırmacı yorumları ile ilgili 

çalışmalar hakkında literatür araştırması yapılmıştır. Bu tezde, itfaiyeci giysisi 

üretiminde kullanılan kumaş katmanlarının belirlenmesinde genel ve özel olarak 

uygulanan objektif ölçüm metodlarını kullanarak, koruyucu itfaiyeci giysisi için 

konfor ve koruyuculuk özelliklerinin çalışılması üzerine odaklanılmıştır.   

Alambeta ve Permetest gibi kumaşların konfor özelliklerinin incelenmesinde 

kullanılan objektif ölçüm cihazları hızlı ölçüm kabiliyeti ve giysiye zarar vermeden 

ölçüm yapması bakımından çalışmada kullanılması uygun görülmüştür. Hava 

geçirgenliği, termal kamera, yanma testi cihazları gibi çalışmada kullanılan diğer 

konfor ve yanmaya dayanıklılık ölçüm cihazları tezin malzeme ve metot kısmında 
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detaylı bir şekilde açıklanmıştır. Sonuçların analizi,  tezin ikinci bölümünde detaylı 

bir şekilde verilen konfor, termal konfor, giysi konforu özellikleri, giysi 

katmanlarından ısı ve nem transfer mekanizmaları gibi temel bilgilerle 

desteklenmiştir. Ayrıca, yangından korunma, itfaiyeci termal ortamları ve 

standartlara göre uygun test cihazları detaylı bir şekilde incelenerek çalışmada 

kullanılmıştır. 

Su buharı direnci, termal direnç, termal iletkenlik, termal absorplama, termal 

difüzyon, hava geçirgenliği ölçülmüş ve analiz edilmiştir. Çok katmanlı kumaşların 

konfor seviyelerini belirlemek için rölatif termal konfor indeksi hesaplanmıştır. Bu 

termal konfor indeksi yanma test sonuçları ile karşılaştırılarak kumaş katmanlarının 

objectif olarak değerlendirilmesi ve sıralanması sağlanmıştır. Sonuçlar ve tartışma 

bölümünde uygulanan tüm test yöntemi sonuçları ve değerlendirilmesi sunulmuştur.  

Bu çalışmalara ek olarak giysi denemeleri gerçekleştirilerek objektif test yöntemleri 

kullanılarak elde edilen konfor deneyi sonuçlarının gerçek giysi giyimi esnasında 

oluşan durumla uygunluğu karşılaştırılmıştır.Testo 885 termal kamera ölçümler 

esnasında kullanılmıştır. İstatistiksel analizler rölatif termal konfor indeksi 

kullanılarak elde edilen kumaş değerlendirmesinin termal kamera kullanılarak 

gerçekleştirilen giyim denemeleri ile uyumlu olduğunu göstermiştir. Son olarak, 

gelecek çalışmalar için  sonuçlar ve tavsiyeler  verilmiştir. 

Genellikle bu tez geçerli yöntemlerle birçok potansiyel sorunları ele adı ve nesnel 

ölçümlere dayalı konfor ve koruma seviyesine kendi isteğine göre montajında 

kullanılan her katmanlı kumaş tarama yapilabıldi. Su buharı geçirgenliği, ısıl direnç, 

termal ekstensiyonu termal difüzyon ve kumaş koruma performansları kullanılan 64 

katmanlı toplamı olarak özelliklerinin analize yapıldı. Çok katmanlı itfaiyeciler tüm 

koruyucu giysiler için hava iletimini engelleyen termal engellerin nedeniyle hava 

geçirgen değildir. Bu sonuca en iyi beklentilerini karşılamak amacıyla, giysiler 

kullanan tek mikroklima parametrelerini aynı zamanda kullanıcı ve fiziksel aktivite 

türü ve yoğunluğu kişisel özellikleri ile ilgili koşullarını belirlemek gereklidir. 
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1. INTRODUCTION 

Optimal comfort will enable the wearer to work efficiently over long periods of time 

and help to protect the body from dangerous local cooling or from imminent 

overheating. During their regular work operations, firefighters are exposed to 

conditions involving intense thermal exposures that have the potential to cause 

serious injury or death unless proper protective clothing is utilized. The abilities of a 

firefighter to mitigate a fire hazard successfully are limited because the length of 

time such conditions can safely be endured is dependent on the performance of the 

protective clothing. However, the special clothing ensembles firefighters wear should 

provide not only thermal protective performance but also thermal- and moisture-

related comfort[93]. 

There exist a number of factors contributing to the effectiveness of a firefighter 

protective clothing garment. These factors range from operational features such as 

the weight, comfort, mobility, and cost of the garment, to fundamental protective 

features such as reduced ignition propensity, resistance to heat and moisture 

transport, and dissemination of stored thermal energy. By improving the 

understanding of the thermal properties of fire fighting clothing, as well as the 

physiology of the user, improvements can be made in comfort of these materials[3]. 

Historically, protective clothing was designed based upon subjective comments, and 

not on the physiology of the user or basic physical principles. This practice began to 

change in the 1940’s, when the armed services initiated programs to investigate 

protective clothing, due to the climatic extremes encountered by servicemen. This 

initial military work led to the standardized tests, such as the Thermal Protective 

Performance Test[4]. 

The National Fire Protection Association (NFPA) first released an industry wide 

standard on fire fighting clothing 1975, designated NFPA 1971 Protective Clothing 

for Structural Fire Fighting. This document has been revised every three to five 

years, per the normal NPFA Standard developmental process. Despite advancements 
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in the development of synthetic fibers and materials that provide better insulation, 

fire ground burn injuries remain a significant issue (according to data collected by 

NFPA, Fire Fighting Injuries, 1997) [80]. 

The thermal performance of fire fighters’ protective clothing is primarily based on 

the thermophysical properties of the materials that are used to construct the clothing 

and the insulating air space that is provided by the garment as a result of its design. is 

possible to improve the thermal protection provided by a garment simply by 

increasing the thickness of its protective layers; however, such an improvement 

increases the cost and weight of the garment and reduces its mobility, rendering 

succesful firefighter operations more difficult.  

A complete evaluation of comfort phenomenon requires a substantial 

multidisciplinary approach, like objective analysis, in which quantitative measures 

characterizing comfort can be determined (tactile and thermal parameters). Another 

is subjective analysis, in which psychological evaluation is made by surveys, ratings 

and scales and also correspondence analysis, in which the subjective and objective 

analysis are combined to develop quantitative measures.The overall measured values 

of comfort properties shall be evaluated in one system and then used to screen the 

comfort level of firefighters protective clothings. 

 Numerous studies of textile thermal protective properties as well as theoretical 

considerations have allowed to develop a generalised formula for a comprehensive 

index representing the capability of textiles to ensure thermal comfort 

(ThermalComfort Index)[90] . TCI can be used to assess textiles for specialist 

protective clothing, which have normative requirements for the range of values of an 

indicator influencing thermal protection. Small-scale laboratory tests are a practical 

alternative to expensive, time-consuming wear trials; however, they do not take into 

account factors related to garment fit and design. With the development of high 

resolution infrared cameras, thermography is gaining increased attention of the 

researcher not merely as a non contact tool to measure surface temperature of the 

objects, but also as a tool in fine physical experiments to analyze thermo-physical 

phenomena[92]. 
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1.1 Objectives of Thesis  

The general objectives of this thesis are to study the comfort and protection of 

selected Firefighters protective clothing’s and this is done based on the objective 

measurement results and scientific analysis methods. Thermo-physiological comfort 

properties of protective clothing’s have been studied both at fabric level and garment 

level.  

At fabric level, the properties such as thermal resistance, thermal conductivity, water 

vapor resistance, thermal diffusion, thermal absorption, air permeability were 

evaluated and analyzed. Beside this, the protection ability of fire fighters protective 

clothing to burning flame, radiant heat and other hazards were measured according to  

the standards and these results were used to rank the selected fabrics to study at 

garment level. At garment level, the wear trials were implemented for selected 

firefighters clothing’s that were recommended to be sewn from good protective and 

comfort lists, medium in protection and comfort and bad both in protective and 

comfort properties. 

Specifically, fabrics selected; from stock of Kivanç Group Safety Division, Istanbul 

Turkey, well-known Protective clothing Manufacturing Company; were measured 

for their thermo physiological properties such as thermal resistance, thermal 

conductivity, thermal diffusion and thermal absorption; by using Alambeta 

Instrument. The experiments were conducted at Istanbul Technical University, 

Turkey by using Fast Permetest to measure water vapor resistance and thermal 

resistance, and also Air permeability tester to measure air permeability.  

Similarly, the fabric burning tests were done at Kivanç Group Company to measure 

selected fabrics assemblies when exposed to a source of radiant heat as per EN ISO 

6942 standards and also determination of heat transmission on exposure to flame as 

per EN ISO 9151 or EN 367. Finally, the overall thermal comfort index and 

protection abilities were analyzed to pick readymade garments for wear trials 

analysis by using thermal camera. Thus to undergo all the above objectives the road 

map model was prepared and given by Figure 1.1 on next page showing the main 

work flows followed. 
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ROAD MAP MODEL FOR STUDY 

  

 

Figure 1.1: Roadmap model for study. 

1.2 Literature Reviews 

Gi-Soo Chung, Dae Hoon Lee, (2005) studied comfort of protective clothing for fire 

fighters and suggested that the system of of clothing designs and material layers must 

be chosen carefully to balance protection and comfort. It is because of that, when 

performing a task in a fire the heat and perspiration generated from the body become 

trapped inside the protective clothing. This heat and moisture result in heat stress and 

physical fatigue of the firefighter, which hinder their work [1]. 
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 Similarly,  Yunyi Wang et al, 2012 concluded that the special clothing ensembles 

firefighters wear should provide not only thermal protective performance but also 

thermal- and moisture-related comfort. The comfort property of protective clothing 

has great influence on work efficiency[2]. 

Mah, T. & Song, G. W.,  (2010) outlined that firefighting clothing’s heat and 

moisture transfer capacity was affected by many factors, such as material properties, 

the style, fit, size and drape of garments [3]. According to the study results of 

Antonio M.Raimundo and Antonio R.Figueiredo, (2008) it was possible to enhance 

firefighter safety by the augmentation of clothing insulation and vapour permeability 

efficiency and by diminishing the emissivity of its external surface. However, the 

results clearly showed that, besides the improvement of clothing properties, the 

safety of firefighters was essentially related with a good control of the exposure 

times to these high intensity radiation fluxes[9]. 

Historically, fire fighters did not have the same level of protective clothing used 

today. Because of this most fires were fought from the outside of burning buildings, 

and structures were rarely entered. Early in the history of fire fighting, a fire fighter’s 

outer clothing was more for warmth and dryness than for protection from fire.  

In the early 19th century, the early use of long trench coats, made of leather or 

canvas and later made of rubber, was the fore runner of modern turnout jackets. 

Early coats had felt or wool liners to provide warmth in the winter. These liners later 

developed in basic thermal protection liners found in today’s modern coats. Earlier 

rubber coats were much longer than today’s modern turnout jackets, reaching down 

to a fire fighter’s mid thigh and were worn with long rubber boots called “three-

quarter boots” which came above the fire fighter’s knees. This interface of boot and 

coat left a large gap of protection against fire. This system has since been replaced by 

the modern combination of a jacket, pants with suspenders, and shorter rubber or 

leather boots, although some departments still wear the traditional old style of 

gear[4]. 

The National Fire fighters Protection Association has set a fundamental requirement 

that protective clothing for fire fighters has a minimum thermal protective 

performance TPP value of 35, which means the clothes, can protect a person 

engulfed in a fire for 17.5 seconds 
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According to Holcombe, 1983, The professional firefighter in an urban environment 

faces hazards which include contact with falling objects, contact with projecting 

objects which can puncture both garments and skin, exposure to heat, flames and hot 

objects, water, corrosive liquids, toxic gases and combustion products, and even 

molten metals and live electrical wiring. Apart from the risk of direct physical injury, 

he was also faced with the more subtle danger of heat stress and heart strain due to 

strenuous work in hot environments, or simply excessive exposure to heat which 

overloads his metabolic system[5]. 

Raheel, M. (Ed.), 1994, Bajaj, Sengupta,1990, Jeffries, Berichte,1989 studied and 

identified some occupations in which the hazards from heat and flame were such an 

integral part of the job that the worker needed to wear protective clothing more or 

less continuously and Table1.1 illustrates their studies[6-7]. 

Working conditions for fire fighters can be described according to the environment 

temperature and the incident radiant heat flux. Rossi, (2003), made some 

measurements for their study in buildings for fire fighting training and he has shown 

that fire fighters were typically exposed to radiant heat fluxes of between 5 and 10 

kWm
-2

 during this kind of exercise. The heat load can nevertheless be much higher. 

Table 1.1: Hazardous occupations requiring protection against flame and heat[6-7]. 

Industry Flame Thermal 

Contact 

Radiant 

Heat 

Foundry (Steel and glass 

manufacturing, metal casting, 

forging) 

* ** ** 

Engineering 

(Welding, cutting, boiler work) 

* ** * 

Oil, gas, and chemicals * - - 

Aviation and space * - - 

Military ** * * 

Firefighters ** * * 

** Major hazard; * Subsidiary hazard; - Minor/no hazard, 



 

7 

In one case, 42 kWm
-2

 was measured. The temperatures were reached between 100 

and 190
o
C at 1 m above ground, going up to 278

o
C in one case[8]. 

Human trials have been performed with 17 fire fighters. After exercises (about 15 

min) in a heated room, the mean core temperature of the fire fighters rose by 0.6
o
C 

with a surrounding temperature of 31
o
C and 1.0

o
C with 38

o
C. The sweat production 

varied from 0.7 to 2.1 l/hr; 16% to 45% of sweat remained in the clothing layers. 

During the exercises in the training buildings, a mean of 48
o
C has been measured 

between fire fighters’ clothing and workwear. These conditions lead to an increase of 

the relative humidity in all the jackets up to 100%[8]. 

Significant thermal degradation to the turnout materials are not always observed in 

sub-flashover incidents. Visually observable thermal degradation to moisture barrier 

and thermal liner components can occur with no visual degradation to the outer shell 

of the turnout. Heat degradation and melting are most often observed in reflective 

trim components attached to the outer shell[10]. 

According to the report presented to National Institute for Occupational Safety and 

Health (NIOSH) in 2008 and supported by Figure 1.2 showing the location and 

frequency of burn injuries, observed in the limited survey of sub-flashover burn 

incidents, may be associated with stored thermal energy. These data indicate that 

most of the reported burns occur on the shoulders and arms. Some of the burns occur 

in areas where the turnout is compressed, such as the shoulder area by the weight of 

the SCBA, or in the elbow and/or knee areas where clothing compression occurs as a 

result of bending of the arms and/or legs. A number of the burns occur in areas where 

reflective trim or reinforcements are attached to the outer shell of the turnout. A few 

of the burns occurred around the knees in cases where the firefighter was in a 

crouched position. Some burns even appeared to occur where patches or logos are 

attached to garments worn underneath the turnout suit[10]. 

Radiant protective performance, air permeability, vapor evaporation, and the thermal 

resistance of clothing are fundamentally related to the chemical and physical 

structures of fabrics.According to G. Sun et al, 2000, the results of selected fabrics 

made from aramid, modacrylic, polyimide, and fire resistant cotton fibers, though not 

exclusive, indicate that radiant protective performance and transport properties were 

affected by the material, structure, thickness, and weight. The higher the thickness or 

the heavier the weight, the better the radiant protection. Radiant protective 
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performance was not affected significantly by color in the varieties they tested. The 

thermal resistance of the tested fabrics varies in a relatively small range, but is 

associated with fabric thickness. Thick fabrics possessed high thermal resistance, but 

the structural impacts on RPP Radiant Protective Performance and transport 

properties of fabrics were different[11]. 

 

 

Figure 1.2: Distribution of burn injuries observed in twenty-four incidents     

assumed to be subflashover thermal exposures[10]. 

The Jun Li et al, (2007) research work was done to evaluate effects of material 

component and design feature on heat transfer in firefighter turnout clothing. By 

using a sweating manikin heat and moisture transfer performance of firefighter 

turnout clothing including outer shell, moisture barrier and thermal liner was 

evaluated considering clothing material, design (style), size (fitness) and accessory 

(design detail in clothing) and clothing design were concluded as six explainable 

factors. Their effects on heat loss of firefighter protective clothing were 

Burn Frequency by 

Location 

Back = 4 

Left upper arm = 9 

Right upper arm = 7 

Left forearm = 9 

Right forearm = 7 

Left shoulder = 7 

Right shoulder = 5 

Left thigh = 3 

Right thigh = 2 

Left knee = 2 

Right knee = 2 
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differentiated by the indices thermal insulation (It), moisture permeability index (Im), 

CIt and CIm [12]. 

CIt and CIm, the changing rates of It and Im, respectively, under two different 

dressing ways, with openings sealed or not, were proposed as new indices in the 

study. CIt quantified the effects of clothing design features (design, size, accessory) 

on heat transfer through firefighter turnout clothing, while Cim was dependent greatly 

on the material moisture permeability[12]. 

J. Randal Lawson’ and Robert L. Vettori, 2002 suggested that Fire fighters  

protective clothing thermal performance must be evaluated while dry, when wet, in 

full loft and when fully compressed.  Additionally, it was apparent that thermocouple 

pad temperature measurement devices can create significant errors when attempting 

to measure heat transfer in protective clothing systems, and a greater understanding 

of thermal performance may be gained by using materials thermal properties to 

model the behavior of protective clothing systems. These new measurement 

techniques and approaches to predicting thermal performance provided opportunities 

for improving fire fighters’ protective clothing. In addition, their application to the 

design of protective clothing and training in the fire service had the potential for 

reducing the number of serious burn injuries experienced by fire fighters[13]. 

According to J. Randall Lawson et al, 2005 the thermal performance of fire fighters’ 

protective clothing was primarily based on the thermophysical properties of 

thematerials that were used to construct the clothing and the insulating air space that 

was provided by the garment as a result of its design. The experimental data show 

that the thermal conductivity generally increases as exposure temperature increases. 

As a comparison, the following are thermal conductivity values reported for some 

materials similar to those measured in their study[14]: 

 Cotton, 0.0589 W/mK 

 Wool felt, 0.0519 W/mK 

 Silk, 0.0364W/mK 

 Protective clothing shell fabric, 0.0470 W/mK  

 Hard rubber, 0.1506 W/mK 

 Soft rubber, 0.012 W/mK  

 Glass wool insulation, 0.038 W/mK 
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Lubos Hes , 2009 defined thermal comfort for lying or resting human body as 

thermal equilibrium, no muscular shivering nor vasodilatation, no principal sweating 

(relatively dry skin), skin temperature between 32 and 34
O
C, no heat storage or 

loses[15]. 

Wakatsuki et al, (2013) investigated if the synthetic underwear plays a significant 

role in moisture and metabolic heat transfer within the fire fighter clothing by total 

heat loss measurement. The heat loss of synthetic underwear is larger than other 

underwear including natural fibrous textile. The total heat loss of each fire fighter 

protective clothing is more than or equal to 300 W/m2. And the latent heat losses are 

more than or equal to 200 W/m2. Both of the values are over the performance 

requirement by the guideline of fire fighter’s personal protective equipment notified 

from the Fire and Disaster Management Agency. When underwear and fire fighter 

protective clothing were made lamination, it became that heat loss decreases 

significantly. It came out that the fire fighter protective clothing was the main factor 

which control heat loss. They concluded that the fire fighter’s multi-layer fabric 

controls the heat and moisture transfer within fire fighter clothing and no positive 

contribution by any types of underwear[16]. 

Thermal insulation is normally provided by a layer of non-woven material. But the 

real insulation is created by trapped air between the fibers. GORE-TEX® and  

Airlock® is a new combination of waterproof barrier and thermal protection. 

Wolfgang Nocker and Johann Seibert, (2005) have studied on these new combination 

by comparing with leather insulation and concluded as follows.  In the fire-fighting 

suits with the new combination of thermal protection and liquid barrier, very 

favourable thermophysiological conditions prevailed. Such suits can be expected to 

produce less heat stress in the wearer. Fire-fighting suits with Airlock®   fulfil EN 

469 and had been successful in thermo-man-tests. With the new concept, the 

bulkiness of insulation could be reduced while maintaining the same level of heat 

protection. Due to minimal moisture absorption and high moisture vapour transfer 

the risk of injuries by scalding should be reduced. High flexibility and reduced 

weight of such suits increases the wear comfort[17]. 
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1.2.1 Heat and moisture transfer related studies 

Yunyi Wanga, et al   (2013), studies concluded that the thermal and moisture comfort 

of firefighters’ ensembles when combined with the polyester inner clothing was 

worse than the other types of inner clothing. It was suggested that firefighters wear 

cotton or linen inner clothing when extinguishing fires. Specifically, firefighters’ 

ensembles combined with linen inner clothing could provide better thermal and 

clingy sensation when working in high temperature environments[18]. 

Evaporative resistance is a moisture transfer resistance, as the transferred heat is 

bound to moisture that evaporates at the skin surface and passes to the environment. 

Evaporative resistance of clothing may be directly measured with subjects. It can 

also be determined on the basis of thermal insulation and the permeability index (im) 

for the fabric or for the ensemble.  

 

The permeability index is measured on a “sweating, hot plate” or with a sweating, 

thermal manikin and expresses the fraction of evaporation that takes place with the 

Table 1.2: Thermal properties of selected protective ensembles compiled from various 

sources[19]. 
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sample compared with evaporation through the air layer only. The fire fighters 

turnout ensembles evaporative resistance have studied and compared with selected 

garments by I Holmer, (2006) and showed as table below. Values are obtained with 

measurements on manikins[19]. 

During fire fighting, firefighters can sweat profusely causing moisture to accumulate 

in their turnout garments. This accumulated moisture can affect the ability of the 

turnout clothing materials to protect against prolonged exposure to heat in a 

structural fire within a room that has not reached flashover condition. The research 

by Barker et al, (2006) was conducted to study the effects of moisture on the thermal 

protective performance of firefighter turnout materials in this type of radiant heat 

environment[20]. 

A basic heat transfer model was constructed to estimate the effect of added moisture 

on turnout systems. A turnout system consisting of an outer shell, moisture barrier 

and thermal liner is illustrated in Figure 1.3. The heat flux boundary condition and 

the heat flux measuring device are also shown in Figure 1.3. the addition of moisture 

negatively impacts the predicted burn protection to the greatest degree when the 

moisture was added at a comparatively low level of approximately 15% of turnout 

composite weight. As the moisture level increased beyond this critical level, 

predicted second-degree burn times increase to approach values measured for dry 

composites[21]. 

 

Figure 1.3: Measuring heat transfer in turnout systems[21]. 
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Jiazhen He  et al, (2014) study showed the heat and moisture transport performance 

of the multilayer protective clothing under seven different ambient conditions. As 

ambient temperature increased, microclimate temperature was observed to be higher 

and the microclimate vapor pressure rose with the increase of ambient vapor 

pressure. It also revealed that the overall moisture accumulation distribution in 

multilayer clothing could be influenced by the ambient condition. microclimate, the 

nearest environment surrounding the human body. It was closely associated with the 

ambient conditions, and also that it changed with the periods of time, indicating that 

the wearer was exposed to a changeable microclimate instead of the constant ambient 

conditions. The results of this study challenged designers and producers of 

firefighters’ clothing to put more effort into improving the properties of the materials 

or the designs of the protective clothing in order to adapt to the ambient 

conditions[22]. 

The research of moisture effects on the protective properties of PC is of great 

importance to avoid and minimize skin burn and heat stress. The amount and 

location of moisture influences the transfer ability of water vapor through the 

clothing layers. The protective performance of fabrics made for PC is significantly 

influenced by the internal or external moisture as conducted byKeiser et al, 

(2008)[40]. Internal moisture can originate from perspiration produced by 

firefighters who often sweat profusely during fire fighting. External moisture sources 

normally comprise the dousing water from a hose spray and water produced from 

dew or rains. 

The effects of the moisture on the protective properties of PC is either increase or 

decrease the heat protection of PC which depends on the amount and location of the 

moisture. Barker et al.(2006) [41] studied the influences of absorbed moisture on the 

protective performance of the PC. Experimental measurement indicated that the 

moisture severely decreases protective performance at a low moisture level. 

Fukazawa et al.(2004)[42] measured water vapor transfer through PC and 

distribution of the condensation using a sweating manikin. It was found that an 

intensive condensation occurs in the ensembles for a high sweat rate, especially in 

parts of the trunk, thigh and leg. Similarly Ming Fu, Wenguo Weng, Xuefeng 

Han,(2013)  have tested two kinds of PC with different vapor permeability in order to 

study the design influence on protective properties. The measurement has 
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demonstrated that the level of gas permeability of PC was so vital to the protective 

performance in that sweating contributes to the cooling effect for high-level 

permeability and had the negative effects on the protective performance for low-level 

permeability[43]. 

1.2.2 Sweat absorption  in firefighter turnouts 

Physiological studies on the effects of turnout breathability on firefighter heat stress 

and comfort show that the highest percentage of moisture accumulates in absorbent 

clothing or layers in closest contact with sweat-wetted skin. An absorbent t-shirt 

material absorbs moisture levels that approach saturation (> 90%). In comparison, 

turnout garments, worn over a t-shirt and station uniform, absorb moisture in 

amounts that are significantly below saturation levels (1,5 - 15%). Within individual 

fabric layers of the turnout composite, moisture was absorbed primarily by the 

thermal liner component. Moisture absorption, and distribution within the turnout, 

were determined by the moisture absorption capacity of the thermal liner, by the 

breathability of the moisture barrier, and by the sweat output in wear. More moisture 

was absorbed by turnout liners that incorporate thicker thermal liners, principally 

because thicker thermal liners have greater capacity to contain moisture than thinner 

liner components[44,45]. 

When thermal liners do not directly contact liquid sweat, and the level of moisture in 

inner clothing layers is less than saturation level, moisture accumulates by 

condensation of evaporated moisture vapor. Moisture build up by processes 

involving the wicking of liquid sweat can be expected in cases where the thermal 

liner is in intimate contact with sweat wet skin[46] 

1.2.3 Moisture transport mechanisms in turnouts 

Moisture is transferred in turnout materials by two basic mechanisms: by wicking of 

liquid moisture into clothing materials through direct contact with sweat wetted skin, 

or by condensation of moisture vapor from evaporated sweat. Between the sweat 

wetted surface and the thermal liner of the turnout composites. Tests showed that 

absorbent clothing inner layers reduce the amount of liquid moisture absorption into 

the liner system. However, moisture pick up continued to exceed saturation levels in 

Aralite® liner systems. These findings suggested that moisture was transported by 
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wicking mechanisms that occur as the intervening absorbent inner layers exceed their 

saturation capacity[46]. 

A typical fire-fighting ensemble (including SCBA) weighs ~ 26 Kg. The protective 

clothing of fire fighters has an insulation value of ~ 0.47 m
2
KW

-1
 (clo rating of 2.44) 

[48]. The overall function is to provide the firefighter with adequate protection from 

heat, flames, and other hazardous environments. However, this protection is often 

achieved at the expense on body heat balance. The limited vapour permeability 

across the protective clothing’s layers and the added metabolic heat production 

resulting from the increased weight impact on the thermoregulatory system by 

reducing the ability to dissipate generated heat. The end result is continued heat 

storage in the body[47]. 

Total heat loss (THL) test measures the thermal and evaporative resistance of the 

clothing and combines these measures to yield a single number, the THL, to indicate 

the capability of the sample to dissipate heat. Testing adhered to NFPA (2006) 

guidelines using a sweating hot plate test apparatus and different base layers, under 

fire fighters clothing or turn outs (TO), THL values were recorded as shown in figure 

1.4.   

 

Figure 1.4: Total heat loss for different materials and ensembles.TO, turnout  gear; 

PCM, phase change material; COT, cotton; MOD, modacrylic[49]. 
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Interestingly, the differences in THL among the base layers do not correspond to the 

differences in THL among the ensembles. Fewer differences existed among the 

combined ensembles and when THL values were ordered from high to low, the base 

layers are not in the same sequence for the individual layers and the ensembles of 

base layer and turnout gear. A marked difference exists for PCM, whose highest 

THL was 213% greater than WOOL but when combined with Turnout (TO) was 

92% that of WOOL + Turn out (TO)[49]. 

Sensorial comfort, usually described as “fabric hand or feel”, and defined as the 

sensation of how the fabric feels when it is worn next to the skin. This feeling deals 

with properties of the fabric such as prickling, itching, stiffness or smoothness. Wet 

feeling and wet clinging can be a major source of sensorial discomfort in situations 

of profuse sweating like in firefighters’ working environment. For the objective 

evaluation of this aspect of comfort Kawabata Evaluation System (KES) was used 

for the present study[68]. 

The presence of moisture on fabric-skin contact has been found to be positively 

correlated with the frictional force and thus with the perception of roughness. 

Moisture at the skin surface can alter the intensity of the perceived fabric roughness: 

as the moisture content increases, the friction and displacement of the skin increases 

as well activating more touch receptors. Therefore, a fabric that is perceived to be 

comfortable under low humidity conditions may be perceived to be uncomfortable 

under high humidity or sweating conditions[50]. 

Nazia et al, (2011) have investigated the surface properties of different knitted 

fabrics suitable for skin layers of firefighters’ protective clothing. For that purpose 

100% wool, 100% cotton, 100% polyester and different wool blends were studied in 

virgin state and then in wet state. From the results it was cleared that wool fibre and 

wool fibre blends can be considered to perform better in terms of sensorial comfort 

in single jersey constructions. Wool is an elastic and resilient fibre due to having 

inherent fibre crimp and its micro-structure with scales compared to bamboo, cotton 

or polyester. It seemed to provide better sensorial comfort due to its resiliency when 

used next to skin in single jersey structure. Finally they have concluded that fibre 

content and fabric structure were the most critical parameters to influence the fabric 

surface properties relevant to sensorial comfort[51].  
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The performance of protective clothing has a significant influence on the level of 

protection provided. During their lifetime, materials used in protective clothing age 

under the action of various environmental and operation aggressors (temperature, 

light, moisture etc.). These factors constitute a severe limitation to the use of 

protective materials. Banu Ozgen and Gulsah Pamuk have studied thermal aging of 

Nomex and Kevlar made fabrics. Accordingly, woven fabrics produced from various 

combinations of Kevlar and Nomex yarns were exposed to 220°C and 300°C for 

duration ranging from 24 hours to 30 days to investigate the effects of thermal aging. 

Mass loss and tensile strength values of fabrics were measured before and after 

exposure and results were statistically analysed[52]. 

The study revealed that the structure and properties of specimens changed in a 

similar manner after each thermal exposure, but the magnitude of changes varied 

with both temperature and cumulative duration of exposure. The changes in the 

specimens observed at higher temperatures and shorter durations were similar to the 

changes observed at lower temperatures and longer duration. As temperature 

increased, the percentage of mass loss was also increased. It was also concluded that 

material type had an effect on mass loss results[52]. 

According to the test results, highest mass loss values were achieved for 100% 

Kevlar fabrics for both temperatures. Percentage of mass loss was decreased when 

amount of Nomex yarns used in fabric production was increased. The effect of 

thermal exposure on tensile strength was dependent on the fabric type, temperature 

and exposure duration. Highest strength loss was also measured for 100% Kevlar 

fabrics for both temperatures. The percentage of strength loss for 100% Kevlar was 

about 95%, while this value was calculated as 4% for 100% Nomex fabrics[52]. 

While fighting fire, fire fighters are not only exposed to one thermal hazard but two: 

burns and heat stress [71].The external heat and the working load did not affect the 

core temperature in the same way: heat from the environment had first to get through 

the clothing and the skin before it may influence the core temperature. The work load 

provoked heat flux in the contrary direction: first the core temperature increased 

before the excessive heat was transmitted to the skin. When the outside temperature 

is higher than the skin temperature, the body can only get rid of excessive heat by 

evaporation of sweat on the skin. The evaporative cooling should furthermore 

compensated for the heat storage due to the external heat. 
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The resistance of protective clothing materials to the loss of body heat is dependent 

upon the thickness of the material, and the influence of fibre type is small enough to 

be neglected[72]. The resistance of protective clothing materials to penetration by 

radiant heat of an intensity which might be found under fireground conditions was 

dependent upon the thickness of the material, and was not influenced significantly by 

the type of fibre involved so long as the fibre itself was not substantially degraded. 

Such degradation only occurs after exposures well in excess of that required to cause 

burn injury to human skin. The resistance of protective clothing materials to 

penetration by convective heat of an intensity which might be found in flashover or 

backdraught conditions is largely dependent upon fabric thickness. 

Clothing provides a barrier to heat and vapor transfer between the skin and the 

environment. The barrier is composed of the clothing materials and the air they 

enclose[73]. When multiple layers of clothing are worn, the air layers between the 

material layers add to the insulative properties of the ensemble. These layers as well 

as the air layer between the innermost layer of PPC and the skin have their own 

microclimate.  

Research suggests that adding an additional layer of clothing with an accompanying 

air layer causes an increase in thermal stress due to a decrease in evaporative cooling 

efficiency and increases in thermal insulation and water vapor resistance[74]. 

The thermal performance of fire fighters’ protective clothing was primarily based on 

the thermophysical properties of the materials that were used to construct the 

clothing and the insulating air space that is provided by the garment as a result of its 

design[75]. Thermal conductivity (k) of a material relates to the rate of heat transfer 

through the material[76].  Heat flow by this mechanism was based on the transfer of 

energy through motion between adjacent molecules. Therefore, insulating materials 

were typically lower density, lower thermal conductivity materials that have fewer 

numbers of molecular interfaces per unit volume.  

Synthetic textile such as polyester and poly-urethane has been used for underwear in 

terms of moisture released and function in underwear. However, the synthetic 

underwear has high risk for skin burns due to melting and shrinking by heat. The 

data indicated that the fire fighter’s multi-layer fabric controls the heat and moisture 

transfer within fire fighter clothing and no positive contribution by any types of 

underwear[77]. 
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2. CLOTHING COMFORT AND FIRE PROTECTION 

2.1 Clothing Comfort 

2.1.1 Definition of comfort 

Comfort is difficult to explain since it is a complex and interdependent combination 

of physical, psychological and sensorial perceptions and highly depends of subjective 

evaluation of the individuals. Lower thermal resistance results in discomfort for the 

wearer because excessive heat may be dissipated rapidly by vapourisation of the 

body water. A garment that permits free access of liquid (water) can become 

uncomfortable in wet weather, when the reverse movement of exterior water towards 

the skin is experienced [36].  

Comfort is a fundamental and universal need of a human being. However it is very 

complex and is very difficult to define. According to Fourt and Hollies (1970) 

comfort involves thermal and non thermal components and is related to wear 

situations such as working, non critical and critical conditions. The physiological 

responses of the human body to a given combination of clothing and environmental 

conditions are predictable when the system reaches steady state. According to Slater 

(1985), comfort is a pleasant state of physiological, psychological, neuro-

physiological and physical harmony between a human being and the environment 

[33]. 

He identified the importance of environment to comfort and defined the following 

three types. 

1. Physiological comfort is related to the human body’s ability to maintain life. 

2. Psychological comfort to the mind’s ability to keep it functioning satisfactorily 

without external help, and 

3. Physical comfort to the effect of the external environment on the body. 

Although it is difficult to describe comfort positively, discomfort can be easily 

described in such terms as prickle, itch, hot and cold. According to Hatch (1993), 

comfort is ‘freedom from pain and from discomfort as a neutral state’. The 

discomfort arises from too hot, too cold, and odorous or stale atmosphere. Comfort 

conditions are those that do not cause unpleasant sensation of temperature, drafts 
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(unwanted local cooling), humidity or other aspects of the environment. In ideally 

conditioned space, people should be an aware of noise, heat or air motion. Comfort 

depends on subjective perceptions of visual, thermal and tactile sensations, 

psychological processes, body- apparel interaction and external environmental 

effects[50].  

2.1.2 Various aspects of clothing comfort 

Comfort is related to subjective perception of various sensations. It may be 

psychological or physiological. Three aspects of clothing comfort are: 

1. Thermal comfort is attainment of a comfortable thermal and wetness state; it 

involves transport of heat and moisture through fabric. 

2. Sensorial comfort is the sensation of how the garment fabric feels when it is 

touched by hands and worn next to the skin. These sensations are often expressed as 

feelings of softness, smoothness, dampness, clinginess, prickliness, and the like [68]. 

Sensorial comfort can also be related to the thermo-physiological comfort, as a fabric 

wetted through with sweat will change its properties and may, for instance, cling to 

the skin[69]. The tactile quality of fabrics is a key parameter in successful marketing 

strategies for conventional textiles. However, since FFPC firefighters protective 

clothing is seldom worn next to the skin, the tactile sensations of the materials used 

in their construction are considered less important than other properties, particularly 

those that influence their level of protection. 

Clothing that sticks to skin when it is wet with sweat is perceived as dragging and 

restrictive when people move. Textiles to be worn next to the skin should therefore 

designed in such a way that they do not stick to the surface of the skin and that they 

can wick large quantities of sweat away to layers that are not in contact with the skin. 

To meet these requirements the most important thing is the construction of the 

underlying textile from which a garment is made. Whether the textile is made of 

natural fibres such as cotton or from synthetic fibres is in fact of secondary 

importance - what is more important is the construction of the textile, i.e. the yarn 

structure and the method of weaving or knitting it. Many of the materials used for 

occupational and protective clothing are mixed fibres, which combine the positive 

characteristics of both types of fibre[50]. 
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3. Body movement comfort- ability of textile to allow freedom of movement, 

reduced burden, and body shaping, as required. 

2.1.3 Thermal comfort 

Thermal comfort is very subjective issue. It is that state when an individual prefers 

neither warmer nor cooler condition and that condition are comfortable when largest 

percentage people in any particular grouping are comfortable. It can be defined as 

“the absence of any unpleasant sensations of being too cool or too warm, or of 

having too much perspiration on the skin”.  The thermal comfort of clothing is 

associated with the thermal balance of the human body and its thermal responses to 

the dynamic interactions with the clothing and environment systems. Man, being a 

homeotherm, strives to keep his body core at a constant temperature, ie, 37°C and a 

rise or fall of ±5°C can be fata. In the cold conditions the blood supply to the 

extremities is reduced and shivering occurs. In hot days or during high activity level, 

blood comes to the skin surface to reduce the body temperature[37]. 

According to generally accepted definition given by American Society of Heating, 

Refrigerating and Air Conditioning Engineers (ASHRAE), thermal comfort is “the 

condition of mind that expresses satisfaction with the thermal environment” [53]. 

Nonetheless, the concept of thermal comfort is not solely in a subjective domain 

since it depends to a certain extent on physiological processes in the body. It is in 

direct relation with a heat balance of the human body, i.e. the processes that lead to 

heat production and heat loss. The heat balance depends on a number of factors that 

could be classified into environmental, physiological and clothing factors. Therefore, 

the role of protective clothing in high-risk profession as fire fighting is of crucial 

significance for the thermal comfort of a wearer and its performance.  

Definition of thermal comfort for lying or resting human body:  thermal equilibrium, 

no muscular shivering nor vasodilatation, no principal sweating (relatively dry skin), 

skin temperature between 32 and 34
O
C, no heat storage or loses. Changes of stored 

(accumulated) heat[32]. 

ΔQAC = cspec . (0.35 ΔtS + 0.65 tN)                                           (2.1) 

Where: cspec = 3300 J/kg. K          
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Clothing has a vital part to play in maintaining this heat balance as it modifies the 

heat loss from the skin surface under the same time has the secondary eftect of 

altering the moisture loss from the skin. The heat balance also varies with climatic 

conditions. It should be the main property of textiles to conserve the heat that body 

divers away, and dissipate heat from body surrounding when body generates it. 

Because of above two different actions, it is impossible to design a single clothing 

system, which acts comfortable to body for all the seasons and reasons. A clothing 

system, which is suitable for one climate may not be suitable for another climate. 

Good thermal insulation properties are required for clothing and textiles used 

specially in cold climates. In warm climate, or when the wearer performs hard work, 

it is important that the clothing transmits the moisture secreted by the body. So it is 

necessary to understand the mechanism of thermal comfort. 

2.1.3.1 Mechanism of thermal comfort 

a. Heat Balance 

The human body tries to maintain a constant core temperature of about 37°C. The 

actual value varies slightly from person to person but the temperature of any one 

person is maintained within narrow limits. In most climates, body temperature is 

above that of the external environment so that there has to be an internal source of 

heat in order to maintain the temperature difference[38]. 

The required heat comes from the body's metabolism that is necessary burning of 

calories to provide power to the muscles and other internal functions. However, the 

body must be kept in thermal balance. The metabolic heat generated together with 

the heat received from external sources must be matched by the loss from the body of 

an equivalent amount of heat. If the heat gain and the heat loss are not in balance 

then the body temperature will either rise or fall. The heat balance is mathematically 

expressed as below. 

Q = M ± R + C∞v ± C∞d – E                                                    (2.2) 

Where, Q = Heat gain or loss 

            C∞v = Convective gain or loss 

            C∞d = Conductive gain or loss 

            E = Evaporative loss 

            M = Metabolism 

            R = Radiant gain or loss 
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b. Heat loss 

There are five mechanisms like conduction, convection, radiation, evaporation and 

respiration that allow the body to lose heat to the environment in order to maintain its 

thermal balance. Thermal conductivity measures of how rapidly heat flows through a 

material that is exposed to a difference in temperatures. Convection gently removes 

the warmed air from your skin and replaces it with cooler air. Heat can also exchange 

by radiation. In radiation skin emits electromagnetic waves toward human body 

surroundings and they emit electromagnetic waves toward skin.The heat loss by 

evaporation is made up of two, the insensible heat loss by skin diffusion, and the heat 

loss by regulatory sweating. The way the heat loss is divided between the 

mechanisms depends on the external environment[38].  

Clothing has a large part to play in the maintenance of heat balance as it modifies the 

heat loss from the skin surface and at the same time has the secondary effect of 

altering the moisture loss from the skin surface. However, no one clothing system is 

suitable for all occasions a clothing system that is suitable for one climate is usually 

completely unsuitable for another. The main fabric properties that are of importance 

for maintaining thermal comfort are Insulation, moisture vapour permeability and 

waterproofing. 

c. Insulation 

Anair temperature of 28 – 29
o
C would be required for a person to be able to sit in 

comfort without wearing any clothes. At air temperatures lower than this, therefore, 

the body will lose heat without the added insulation given by clothing. It losses by 

convection can be prevented, the air itself offers a very high resistance to heat 

conduction having a value of thermal resistance which is only slightly less than that 

of a vacuum. 

2.1.3.2 Thermo-physiological clothing comfort 

The thermo-physiological comfort required by the various users of protective 

clothing, work, sports and leisure wear is an important parameter of clothing fabrics 

and designs. Water vapour resistance and thermal resistance are essential elements to 



 

24 

assess comfort. The standardised test method - described in ISO 11092, EN 31092 - 

a.k.a. “skin model”, simulates the heat and moisture transfer of the human skin [32]. 

Thermo-physiological Clothing Comfort - Evaluation: 

1. Measurement of thermal resistance and of warm-cool feeling of fabrics, both in 

dry and wet state, by means of the ALAMBETA computer-controlled device 

2. Evaluation of warm-cool feeling in simulated conditions of medium and 

intensive sweating 

3. Measurement of water vapour resistance (in dry and wet state) and heat of 

absorption of fabrics, by means of the fast PERMETEST instrument 

4. A new principle of evaluation of thermal comfort of clothing based on thermal 

mannequins, small thermal-comfort instruments and data storage in PC 

Thermal mannequin simulate a human body as a thermal machine divided into up to 

17 independently heated segments, which keeps (by means the PC control) their 

surface (skin) temperature tS at the average level of 33
O
C, and which enables exact 

measurement of an electric power P [W] required for this relatively truly simulation 

of heat distribution in the human body. From these values, the PC calculates the 

levels of individual superficial heat fluxes qi of the mentioned segments. First, heat 

fluxes qin for the naked mannequin should be measured and used for the calculation 

of the exterior resistances REN of the naked body: 

REN, i = (tSi - tE) / qN, i                                                                                                       (2.3) 

In the next step, the mannequin is dressed and total thermal resistances RTOT,,i will 

be determined by similar procedure: 

                         RTOT  = (tSi - tE) / qTOT, i                                                                 (2.4) 

The differences between the both above given measurement present the demanded 

individual clothing resistance levels RTOT, i 

                        RCL, i = RTOT, i - REN, i                                                                 (2.5) 

 

Factors affecting comfort  

Clothing is an integral part of human life as an extension of human skin. It is 

important to realize that clothing is not just a passive cover over the body, but that it 
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interacts with the body and the environment constantly. It is isolative to discuss the 

comfort of clothing without putting it into the context of human and environmental 

parameters. Human comfort in a human-clothing-environment system therefore is 

determined by factors from three aspects: person attributes, clothing attributes and 

environmental attributes, as listed in Table 2.1 [70] 

Table 2.1: Factors affecting comfort[70]. 

Person Attributes Fabric/ Clothing Attributes Environment Attributes 

Sex  

Age  

Race  

Weight  

Height  

Physical Condition  

Activity  

Covered Surface Area 

Thickness  

Weight  

Mechanical Properties  

Surface Properties  

Heat Transfer Properties  

VapourTransfer Properties  

Moisture-Management 

Properties  

Air Permeability  

Covered Surface Area  

Design  

Fit 

Air Temperature  

Radiant Temperature  

Wind Velocity  

Ambient-Vapour 

Pressure 

(Branson & Sweeney, 1991) 

2.1.4 Clothing comfort properties 

2.1.4.3 Air permeability 

The woven and knitted textile fabrics are made of interlaced yarns. Between the 

yarns as well as between the fibers the existing free space contributes in the 

formation of air-flow paths when a differential air-pressure will be applied. The air 

permeability of the textile fabrics is essential for the prediction of the fabric comfort, 

the performance during drying procedure etc. The rate of airflow through a textile 

fabric under differential pressure applications between its two surfaces is believed to 

be important in determining many of the physical and mechanical properties of it. 

Critical fabric characteristics such as transportation of the moisture from body to 

environment, thermal insulation properties, the rate of liquid removal during drying 
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of fabrics, effluent movement through filtration devices, etc. depend on the 

permeability of textiles. Fabric thickness and the applied pressure drop are among 

dominant factors that affect permeability[31]. 

2.1.4.4 Air permeability and its effect on moisture transport 

The water-vapor permeability of clothing materials is noted to be a critical property 

of textiles which contribute to comfort under hot and cold weather conditions. When 

fabrics made from yarns of a particular count and twist are considered on moisture 

transfer rate finer the fibers used for preparing the fabric, lower will be the moisture 

transport through the fabric. This may be due to reduced air space in these fabrics 

made from finer fibers . It was observed from experimental results that fabrics made 

from finer yarns were able to displace a greater amount of moisture in a given time. 

Finer yarns will produce a fabric with lower cover factor, thereby increasing the total 

air space within the fabric. 

Fabrics which allow easy flow of air through them will also be permeable to 

moisture. Similarly, water vapor transfer takes place through air spaces in the fabric. 

The movement of air, water vapor and heat dependson the air space within the fabric 

and hence wouldobviously depend to some extent on the fabricstructure guided by 

the total air space and itsdistribution [59].  

2.1.4.5 Thermal transfer properties 

Thermal conductivity 

Thermal conductivity is an intensive property of a material that indicates its ability to 

conduct heat.Thermal conductivity increases depending on the single jersey, 1×1 rib 

and interlock structures of the cotton and polyester fabric samples. This situation can 

be explained by the amount of entrapped air in the fabric structure. The amount of 

fibre in the unit area increases and the amount of air layer decreases as the weight 

increases. As is known, thermal conductivity values of fibres are higher than the 

thermal conductivity of entrapped air [31]. So heavier fabrics that contain less still 

air (like interlock) have higher thermal conductivity values. 
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Thermal resistance 

Thermal resistance is a measure of the resistance that a garment provides against heat 

loss from the body of the wearer to the external environment [25]. It is influenced by 

a combination of the thermal resistance provided  

 by the clothing,  

 by the layer of air between the skin and the clothing, and  

 by the layer of air between the inner and outer surfaces of the fabric. 

 The thermal resistance of a fabric is more or less proportional to the thickness of the 

fabric. Thermal resistance is measured in m
2
K/W, and can be converted to “tog” or 

“clo”. One tog can be defined as a temperature difference of 0.1°C between two 

surfaces caused by the heat flow of 1 Watt/m
2
 (1 tog = 0.1 m

2
K/W) [26]. 

Thermal resistance is also sometimes measured in clo (a unit of thermal insulation of 

clothes). One clo represents the amount of clothing required to keep a sitting man of 

average metabolic rate comfortable in an average indoor atmosphere at 21°C [25]. 

Thermal absorptivity 

A 'warm–cool' feeling is the first sensation experienced when a human touches a 

fabric. This feeling is a result of heat exchange that takes place between the human 

hand and the fabric because of the temperature difference between the fabric surface 

and that of the human skin. This is referred to as thermal absorptivity. If the thermal 

absorptivity of a garment is high it can be expected to give a cooler feeling upon first 

contact [27]. 

2.1.4.6 Moisture transfer properties 

Water vapour permeability 

The human body continuously produces insensible perspiration in the form of water 

vapour. The body’s natural mechanism for cooling itself when overheating is through 

sensible perspiration in the form of liquid sweat. This is caused by strenuous activity 

or climatic conditions. Both of these have to be managed rapidly by the wearer's 

clothing in order to maintain the body’s thermal regulation [24]. Evaporation of the 

liquid sweat requires heat. Body heat is used to evaporate the perspiration, resulting 

in the dissipation of the surplus heat and the cooling of the body. However, if the 
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water vapour cannot escape to the surrounding atmosphere then the relative humidity 

inside the clothing increases, causing a wet feeling on the skin, and leading to an 

uncomfortable sensation. 

Also known as “breathability”, water vapour permeability is defined as a fabric’s 

ability to transport water vapour from the skin surface through the fabric to the 

external environment. Hatch (1993:33) defines water vapour permeability as "the 

rate at which water vapour diffuses through a fabric.” This should ocur 

spontaneously because of the vapour pressure gradient. The water vapour dissipates 

from the high vapour pressure region (humid body surface) to the lower vapour 

pressure region (drier external environment). The diffusion of water vapour occurs 

through fabric interstices and air spaces between the skin and the fabric. 

Water vapour resistance  

Water vapour permeability is indirectly related to water vapour resistance. The latter 

property can be described as the amount of resistance against the transport of water 

vapour through a fabric. Because water is an excellent conductor of heat, the thermal 

resistance of a garment will be directly influenced by the amount of moisture present 

in the fabric. Thus, the more water present in a fabric, due to either normal 

absorption from the air or as a result of the absorption of liquid water (e.g. 

perspiration), the higher the rate will be at which heat is conducted. The amount of 

water present in a garment therefore plays a significant role in the degree of comfort 

that will be felt. Although a fabric with good absorption will initially increase 

comfort, a wet fabric touching the skin will create an unpleasant sensation. 

Relative water vapour permeability 

Water vapour permeability is the ability to transmit vapour from the body. If the 

moisture resistance is too high to transmit heat, by the transport of mass and at the 

same time the thermal resistance of the textile layers considered by us is high, the 

stored heat in the body cannot be dissipated and causes an uncomfortable sensation. 

2.1.5 Clothing heat transfer coefficients 

Heat transfer through clothing is often broken down into dry heat transfer 

(conduction, convection, and radiation), and evaporative heat transfer (diffusion and 
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convection of evaporated sweat vapor). Typical units to characterize clothing dry 

heat transfer are thermal resistance Rct (m²-°C/Watt) and the alternate thermal 

resistance unit of clo. Typical units for evaporative heat transfer are evaporative 

resistance Ret (m²-Pa/Watt), the equivalent parameter im/clo, and the related water 

vapor transfer rate, WVTR (g/m²-day). These properties may all be dependent to 

some extent on the measurement methods used--material properties related to air 

permeability, liquid sweat wicking, etc., may be lumped together into overall 

measurements made using system tests such as sweating thermal manikins[57]. 

Conventional testing methods for obtaining thermal properties for clothing heat 

balance include the sweating guarded hot plate, water-filled cup tests, and various 

permeation cells. All give equivalent values and can be converted if testing 

conditions are known. Im (permeability index) is a relative measure of the 

permeability of the material to the passage of water vapor. The im index should vary 

between 0 (for completely impermeable materials), and 1 (for completely permeable 

materials). In practice, the value of 1 as an upper limit is not approached until the 

wind speed over the thermal manikin or sweating guarded hot plate becomes great 

enough to minimize the contribution of radiative heat transfer.  

In heat balance equations, the thermal resistance is divided out of the im index to give 

the variable related to water vapor permeability (im /clo, Ret, MVTR, etc.) The 

effects of wind speed and measurement bias can be subtracted off  to give “intrinsic” 

values for the materials that are closer to true material properties. For clothing 

system testing (im, clo), all values depend on wind speed, fit, and air permeability 

(commonly included by testing thermal manikins at three different wind speeds) 

[57].  

As mentioned previously, total heat transfer is equal to dry heat transfer plus 

evaporative heat transfer. The importance of the term im/clo is illustrated if the 

equations for dry heat transfer (Edry), and evaporative heat transfer (Eevap), are 

written:  

Edry(watts/m
2
) = (6.45/clo)( ΔT)                                                     (2.6) 

Eevap(watts/m
2
) = im (6.45/clo)S( Δp)                                              (2.7) 
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Total heat transfer (watts/m
2
) = (6.45/clo)( ΔT) + 14.2(im/clo)( Δp)           (2.8) 

Where: ΔT = temperature difference, °C  

            S = Lewis Relation (2.2 °C/mmHg)  

           Δp = vapor pressure difference, mmHg  

           clo = Rdryin clo units 

It is important to note that the value for im/clo is inversely equivalent to evaporative 

resistance Ret (m²-Pa/Watt) as defined in an alternate system of units, and can also 

be converted directly into water vapor flux values (g/m²-day) [58]. 

2.2 Fire Protection 

2.2.1 Introduction: 

In protection against flames and heat radiation, two cases have to be distinguished: 

first, flames and heat may occur sporadically and unexpectedly, e.g. in accidents or 

in war; second, they are characteristic of many work places, e.g. in smelting-works or 

rolling mills, during fire-fighting or rescue operations. 

Human skin is very sensitive to heat, pain is felt at 45
o
C and the skin is completely 

burn at 72
o
C. The amount of heat delivered causes an increase of skin temperature. 

Above 44 °C the cells become damaged by degradation of tissue proteins; the rate 

and depth of this damage increase with temperature. Burns can be classified into 

three categories according to depth of damage: 

1st degree:  Erythema, dilatation of capillaries; a normal reaction, with no damage. 

2nd degree: Separation of epidermis, formation of edematous blisters; painful but 

                    reversible. 

3rd degree: Necrosis of skin and deeper tissues, largely pain full; scar formation  

                  Unavoidable [60]. 

Fire protective clothing reduces the rate of heating of human skin so that the wearer 

gets enough time to react and escape. Normally only 3-10 seconds are available for a 

person to escape from a place of fire with a heat flux of about 130 – 330kW/m
2
[65]. 

Most of the textile fibres are easy to burn and untreated cotton will either burn with 

flame or smoke whenever it is in the presence of oxygen and temperature is high 

enough to initiate combustion (360 – 420 
o
C).  
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Protective clothing must be flame resistant and should form a heat barrier. The latter 

is very important if the wearer needs to stay near flames for a fairly long time. Flame 

retardant clothing is generally used for occupation uniforms [65]. It may also be 

noted that the main cause of death in a fire accident is not direct burning. Therefore, 

the use of non toxic or low-toxic burning materials is very important for protection. 

Considering safety, the government regulations says that certain classes of garments 

and home textiles such as children’s sleep wear, carpets, upholstery fabrics and 

bedding should be made flame retardant or flame resistant [60]. Clothing and textiles 

are made flame retardant by using inherently flame retardant materials such as 

Kevlar and Nomex or by applying a flame retardant finish. 

2.2.2 The firefighters' environment 

The conditions in firefighting are variable. Burning buildings can be fought from an 

adequate distance. In underground facilities and ships we find smoldering fires with 

toxic gases and an oxygen deficit. At crash landings of aircraft, fuel often is set afire 

and heat radiation (up to 8000 kcal/m
2
h) and darting flames (up to 1000 °C) may 

occur. The rescue time for a person, however, is limited to about 1 min, so that short-

term heat reflective protection with high mobility is needed. At burning fuel tanks, 

the radiation increases up to 30,000 kcal/m
2
h, so that the reflective cover has to be 

supplemented by an insulation layer. At catastrophes, e.g. like the area configarations 

of World War II, They found similar values of radiation combined with darting 

flames, toxic air-contamination and falling fragments, so that complete protection 

against radiation, flames, toxic gases and mechanical injuries was required [60]. 

The situations under which protective clothing will be used was described by Coletta 

et al. and Abbott et al.about the exposure conditions encountered by firefighters. 

Similar studies by Makinen H have discussed the conditions by numerical value of 

radiant heat flux and temperature range of exposures. Accordingly, fire fighters 

exposure conditions were grouped as follows [39, 54]. 

"Routine" conditions, applicable to firefighters who are operating hoses or otherwise 

fighting fires from a distance, are generally equivalent to being outdoors on a hot 

summer day, or standing in front of a small open fireplace. No special clothing is 

necessary. It corresponds to a common intervention for firefighters characterized by 
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low radiant heat flux from 0.42 to 1.26 kW/m2 and air temperatures in the range of 

10 to 60°C; 

"Hazardous" conditions (described as "ordinary" by Abbott) are typical of those that 

would be encountered outside a burning room or a small burning building. The less 

severe conditions of the hazardous region are applicable to firefighters ventilating a 

fire without water support. The more severe conditions of the hazardous region are 

applicable to firefighters who are first into a burning building. A "turnout uniform" is 

necessary to provide adequate burn protection and to minimize the thermal stress 

endured by the firefighter.It represents an intervention in the presence of high radiant 

heat flux from 1.26 to 8.37 kW/m2 and air temperatures in the range of 60 to 300°C, 

and firefighters generally have less time to intervene; 

"Emergency" exposures are not normally encountered by civilian firefighters; such 

conditions exist around a crashed aircraft when fuel is burning fiercely. They may 

also be encountered during "flashover" of a building fire. Special equipment is 

required for these very high levels of heat flux and temperature. It means extreme 

conditions from 8.37 to 125,6 kW/m2 and air temperatures in the range of 300 to 1 

000°C, and firefighters have only several seconds to escape.Proximity suits are used 

by firefighters working close to the fire, and fire entry suits must be employed 

together with breathing apparatus for working in the fire. Fire entry would only be 

necessary in rare cases, for example, to manipulate valves on fuel storage vessels. 

2.2.3 Fire fighting thermal environments 

The primary thermal exposures that a fire fighter must be concerned with are thermal 

radiation from flames, smoke, hot gas convection, and conduction from high 

temperature surfaces [85].Each of these heat transfer modes has an impact on the 

thermal performance of fire fighters’ protective clothing, and they all can 

independently cause burn injuries. However, in actual fire fighting situations these 

different components of heat transfer will likely be combined in varying fractions 

depending on the location and position of the fire fighter in relation to the fire’s 

varying thermal environment. The fact that the component fractions of heat transfer 

vary during an exposure complicates the measurement process and increases the 

measurement uncertainty. 
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Another factor that varies during the process of measuring heat transfer through fire 

fighters’ protective clothing systems is the amount of moisture in the system. 

Moisture is often a significant factor in the creation of fire fighter burn injuries. The 

moisture in fire fighters’ protective clothing originates from human perspiration, 

hose spray, and weather. Moisture levels can be controlled to some degree when 

making thermal measurements in laboratory test environments. These laboratory 

environments initially provide a stable level of control over wetting and moisture 

conditions at the beginning of a thermal exposure. The protective clothing systems 

then respond to heating processes and begin to dry. Controlling moisture input to the 

protective clothing system after heating begins is difficult and accurately replicating 

wetting processes that take place in the field environment is difficult. However, basic 

information on wet thermal performance can be gained by studying the drying 

processes of wet protective clothing systems and applying this knowledge to physics 

based predictive models. 

2.2.4 Fire fighter protective clothings 

When firefighters are exposed to a heat stress, their body reacts by activating sweat 

glands, i.e. through evaporative cooling mechanism. The protective clothing protects 

the firefighters from environmental heat and moisture but simultaneously prevents 

their flow in the opposite direction, away from the body to the environment. 

Consequently, risks of heat stress and steam burn injuries strongly increase. In such 

hot environments, heat and moisture transfer properties of the protective clothing 

have prevailing impact on firefighters’ performances and their safety. Optimization 

of these coupled transfer phenomena from the skin through the garment could 

improve comfort of the wearers and hence their performance. Effective protective 

clothing should minimize heat stress while providing protection [55].  For this 

purpose, the firefighter protective clothing has to fulfill a variety of different 

demands according to the European standard EN 469 2006: protection against heat 

from flames and thermal radiation, protection against hot liquids and other 

chemicals, resistance against abrasion and other mechanical stress, breathability, 

being not flammable, unshrinkable, easy to wash, light and comfortable [56]. 

People all around the world depend on the bravery and training of firefighters to 

offer protection against fires. In turn, firefighters depend on firefighter apparel made 

with DuPont™ Nomex® and Kevlar® fiber to help them meet the demands of a 
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rigorous and challenging job. Together, these innovative fibers help offer fire 

resistance, strength, durability, and more. Kevlar® is five times stronger than steel on 

an equal-weight basis, yet fabrics can be lightweight, comfortable, and thermally 

protective. It helps to enhance the overall durability and strength of lightweight 

turnout gear outer-shell and-thermal-liner systems.  Nomex® fiber is inherently 

flame resistant, tough and flexible [34].    

 Nomex® fiber carbonizes and thickens when exposed to the intense heat of 

today’s fires. This  increases the protective barrier between the heat source and the 

user, helping to reduce burn injury and providing valuable time to work or escape. 

 When fabric made with Kevlar® fiber is engineered with Nomex® fiber or 

used with another blend, it can help to further enhance tear strength and abrasion 

resistance of outer shells protecting the moisture barriers and thermal liners inside. 

 Garments made from Nomex® fiber last, on average, two to three times 

longer than most other standard and protective fabrics, including 100% cotton, 

polyester/garment blends, and FR cotton. 

 Per garment manufacturers, the average wear life of Stationwear made of 

Nomex® is about five years, and it can be washed and worn at least 125 times, 

making it an affordable choice. 

DuPont™ NOMEX® and DuPont™ KEVLAR® brand fibers are widely used in 

firefighter clothing systems. These fibers will not melt, drip, or support combustion, 

providing a stable barrier that helps minimize burn injuries. The flame resistant 

properties of NOMEX® and KEVLAR® are permanent; they cannot be washed out 

or removed in any way.  Each layer of flame resistant clothing provides a protective 

barrier from the heat source and traps insulating air. Multiple layers provide more 

thermal insulation but can also trap metabolic heat, increasing heat stress. 

2.2.5 Test methods for fire fighters clothing fabric 

There are five main industry test procedures performed on the fabric that conform to 

certain industry standards that have been developed through the standards 

organisations involved. In order for a fabric to be accepted to use as a flame resistant 

material it must pass these tests and therefore conform to the ASTM (American 
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Society for Testing and Materials) and the NFPA (National Fire Protection 

Association) standards[79]. 

These five tests are as follows 

 Vertical flame test 

  Thermal protective performance test 

  Instrumented manikin tests for flash fires 

 Instrumented Mannequin and panel tests for Electric Arc exposure 

2.2.6 Components of fire fighting clothings 

 

According to NFPA1971 and similar standards in other countries, all turnout clothing 

must have three components: outer shell, a moisture barrier, and a thermal barrier. In 

between these layers are pockets of air referred to as “dead zones”. 

These layers of air along with the three protective layers help to further insulate the 

wearer from the extreme environments of fires. Usually turnout pants are outfitted 

with reinforced knees and leather cuffs. The materials used for the three layers in 

turnout trousers and coats may vary but will very often include a Nomex/Kevlar 

combination of material As an example, the materials used by the Los- Angeles City 

Fire Department, as found in their 2005 recruit handout are as follows: 

 Outer shell: Nomex/Kevlar blend in a “rip stop weave”, with water repellent               

                               finish. 

 Thermal insulated layer: Quilt material. 

 Moisture barrier: Breathe-Tex material combined with Nomex/Kevlar blend  

                                        laminated cloth. 

Thermal and moisture barriers are sewn together for removal for cleaning, repair and 

replacement from outer shell. The main components in most firefighter clothing are 

kevlar and nomex, two fabrics created by chemical giant DuPont in the 1960s. Many 

protective clothing companies use a mix of the two fabrics, whereas other focuses 

more on the flame-resistant Nomex. Nomex is the fabric that gives the protective 

gear its resistance to heat and flame while kevlar adds flexibility, comfort and allows 

the fabric to breathe [79]. 
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2.2.7 Fire fighting clothing design 

Construction and design of the protective clothing for firefighters 

The special attention should be given to the construction of certain parts of garment 

that will protect the user from burning, penetration of moisture or chemicals to  

underwears and then to skin. Additionally, it is very important  to consider how to 

satisfy the comfort of the garment which to be dressed in  multi layered way , while 

not to inhibit movement in extreme conditions[61]. Construction and design of the 

protective jacket and trousers are shown by figure 2.1 and figure 2.2 below 

respectively. 

 

Figure 2.1: Construction and design of the protective jacket[61]. 

 

Figure 2.2: Construction and design of the protective trousers [61]. 

There are several different types of protective clothing used by fire fighters, and 

consequently several different standards outlining the performance requirements of 

each type. 
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Structural fire fighting clothing is typically constructed of a flame resistant outer 

shell, and an insulating thermal liner consisting of a moisture barrier and a thermal 

barrier[85]. The outer shell material resists ignition when being exposed to thermal 

radiation or direct flame contact. The moisture barrier prevents the passage of 

moisture between the thermal barrier exposed to the skin and the outer shell, exposed 

to the fire environment. This barrier will prevent water, as well as chemicals, from 

passing through the garment to the wearer. The thermal barrier is a thicker, air filled, 

material that resists heat flow to the skin. In addition to preventing excessive heat 

from reaching the wearer, the clothing ensemble prevents the flow of heat and 

moisture from the body, reducing the ability of the body to give off excess heat. 

Wildland fire fighting clothing is not designed to provide the same level of protection 

as that provided by structural fire fighting clothing, due to the differences in the 

anticipated work environment. Wildland fire fighting clothing is designed to provide 

protection from radiant environments, the primary thermal hazard encountered[86].  

2.2.7.7 The wild land fire suit 

The wild land fire suit is manufactured either as a double layer suit comprising of an 

outer shell and Thermal barrier or as a single layer suit.Its features are:[79] 

 Outer shell fabric is predominantly made from Nomex & Kevlar and has 

inherent fire resistant properties, ensuring durability and consistent protection 

 The outer shell fabric does not melt or drip when exposed to fire or heat but 

carbonises and closes up for a few seconds thereby preventing flame from 

injuring the wearer 

 The Thermal barrier on the double layer suit takes away or reduces heat stress 

providing a comfortable and longer working tie for the fire fighter 

 The Wildland suit is lightweight and comfortable 

 The sizing is off a loose fit to prevent heat build up 

 The jacket has no turn ups or cuffs that may catch burning embers 

 Reflective trims on the jacket and trousers ensure 360° visibility 

 Extra-large underarm gusset ensures uninhabited arm and shoulder movement 

and prevents the jacket from lifting 
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2.2.7.8 Protective ensemble for structural firefighting 

Standard: NFPA 1971, Standard on Protective Ensemble for Structural Firefighting. 

NFPA 1971 includes helmets, hoods, coats, pants, coveralls, boots and gloves. Every 

firefighter’s turnout is a composite of outer shell, moisture barrier and thermal liner. 

Outershell  

The outer shell is designed to take the everyday abuse of firefighting. This outermost 

layer is designed to protect the inner components from thermal hazards, abrasion, 

sunlight and other factors involved in fighting fires. The outer shell resists ignition 

upon being exposed to thermal radiation for a short period of direct flame contact. 

Normally only inherently flame-retardant fibres, such as aromatic polyamides 

(aramids) and polybenzimidazole (PBI) are used for the outer layers of firefighters' 

turnout suits. On the market there are meta-aramids from different manufacturers, 

e.g., Nomex (DuPont), Conex (Teijin), Fenilon (Russian) and Apyeil (Unitika). Para-

aramid fibres like Kevlar (DuPont), Twaron (Akzo Nobel) and Technora (Teijin) are 

used in blends with meta-aramids to increase durability, e.g., Nomex III (blend of 

Nomex and Kevlar (95/5%) and X-fire (blend of Teijin Conex and Technora). 

Especially in France, a polyamide-imide fibre called Kermel from Rhone-Poulenc is 

used for firefighters' protective clothing. Polybenzimidazole (PBI) fibre was 

developed by Celanese. Its advantage is that it absorbs more moisture than does 

cotton, and has a comfort rating from the wearers equivalent to that of 100% cotton.  

The fibres on the market have the following trade names: Nomex®III, Nomex® 

Antistatic (IIIA), Nomex® Outershell Tough (Delta T), Kermel® HTA, PBI®Gold 

(Ibena). Typical blends are PBI/aramid, Nomex with flame-retardant viscose and 

flame-retardant wool, Kermel with viscose. Typical constructions of the outer fabrics 

are twill or ripstop woven fabrics with a mass of 195±270 g/m2. In addition to the 

above fibres in the garments for wildland firefighting, some materials with flame-

retardant finishes (FR) (e.g. Proban® and Pyrovatex® for cotton) are used. They 

must retain the FR properties after 50 launderings (ISO 15384:2003)[64]. 

Moisture Barrier 

Moisture membranes are an essential element in protective clothing against heat and 

flame due to their double role in preventing water penetration while allowing water 

vapor perspiration to exit. Microporous moisture barriers are generally made of 
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expanded polytetrafluroethylene (e-PTFE) laminated on an aramid fabric. The 

principle under the membrane breathable function is the enormous difference in size 

between water vapor molecules (~ 0.4 nm in diameter) and water droplets which 

usually exceed 100 µm in diameter and are thus larger than the membrane pores[67]. 

The moisture barrier in firefighters' clothing is: 

i. laminated or coated to the inside of the outer shell fabric, 

ii.  is a lightweight knitted material or web, and the structure is inserted loosely 

between the outer fabric and the liner, or  

iii.  is on the outside of the thermal liner. 

The moisture barrier provides protection against water as well as against many 

common liquids such as common chemicals and bloodborne pathogens. The moisture 

barrier can be a microporous or hydrophilic membrane or coating [65]. GORE-

TEX®, CROSSTECH® and TETRATEX® are textile laminates incorporating 

microporous polytetrafluoroethylene. PORELLE®, PROLINE® and VAPRO® are 

microporous polyurethane laminates with textiles. BREATHE-TEX PLUS®, 

STEDAIR 2000® are hydrophilic polyurethane laminates or coated fabrics, 

SYMPATEX® is a hydrophilic polyester laminate. The microporous and hydrophilic 

coatings are normally polyurethane products. ACTION® is example of a 

polyurethane coating. Neoprene (NEOGUARD®) and polyvinyl chloride (PVC) are 

non-breathable moisture barrier products. 

Thermal Liner 

The thermal liner provides the most thermal insulation by trapping air in either a 

traditional needle-punched batting or between multiple layers of fabric. The 

durability of this layer is improved by quilting these materials to a woven facecloth 

fabric. Because this layer is close the body, its friction and moisture absorption 

characteristics can impact the comfort and mobility of the entire garment. 

The thermal liner is normally made of inherently flame-retardant fabrics or their 

blends. A similar fibre content of the thermal liner and outer shell fabric make the 

laundering of the garment easier. Fibres and yarns are not the real thermal insulators 

of a garment because fibres conduct heat 10±20 times better than still air. The WL 

Gore company therefore developed a non-textile insulation material, i.e., an air 

cushion to replace the traditional textile insulation. Airlock® is a combination of a 
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moisture barrier and thermal protection. `Spacers' made of foamed silicone on the 

GORE-TEX® moisture barrier create the insulating air buffer in the material [66]. 

 

Figure 2.3: Structural Firefighting protective clothings [66]. 

2.2.7.9 Thermal performance tests: 

Two thermal performance tests in the NFPA1971 standard: a fabric flammability test 

and the TPP test. 

 The fabric flammability test has resulted in the development of protective 

garments that resist   flaming ignition. 

 The thermal protective Performance (TPP) test measures how well a fabric 

protects theFirefighter against second-degree burns in a flash fire. The higher 

the TPP value, the more thermal protection the fabric provides relative to 

other fabrics. A minimum TPP rating of 35 required according to the NFPA 

standard. 

At this level of protection a fire fighter would have approximately 17.5 seconds to 

escape from a flashover exposure before sustaining second degree burns. A popular 

misconception is that if 35 is good, a rating of 40, 50, or even 60 must be better. It is 

important to remember, however, that the only way to increase your TPP rating is to 

add more insulation, usually by specifying heavier material components. Generally 

speaking, added insulation will mean increased weight of the total system, resulting 

in greater heat stress for the firefighter. 
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3. TESTS  STANDARDS AND TESTS APPARATUS 

3.1 Review of Standard Tests 

Taking universal application into consideration, some countries have established 

their own standards for firefighter turnout clothing, which are different with respect 

to evaluating the heat and moisture transfer property. In NFPA1971 Standard 

(Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting) of 

the US, total heat loss (THL) is adopted. Different from THL, other measurements 

are adopted in EU and Chinese standards (Table 1 below). 

 Although testing the WVTR of a single moisture barrier by the cup method in a 

steady state is much simpler than to measure the total heat loss or water vapour 

resistance of a turnout ensemble’s multi-layers using a sweating hot plate, the latter 

ones can be a better way to evaluate the effect of the heat and/or moisture transfer 

property of firefighter turnout clothing[62,63]. 

Note that: 

 Total heat loss (THL) is the amount of conductive (dry) and evaporative (wet) 

heat loss. The total heat loss testing apparatus is sweating hot plate as per US 

and EU standards. 

 Water vapour resistance (WVR) is the amount of resistance against the 

transport of water vapour through a fabric. 

 The water vapour transmission rate (WVTR) , the tesing apparatus for water 

vapour transmission rate is called WVTR cup as per China standards and it  

was calculated by the following formula: 

WVTR =
4 x Δm  

S x t
                                                     (3.1)  

Where: 

WVTR – weight of water vapor permeability, g/ (m
2
 · 24h); 

Δm – difference in weight of experimental assemble before test and after test, g; 

S – area of the sample, m
2
; 

t – test time, h. 
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Table 3.1: Requirement for the heat and moisture transfer property of firefighter 

turnout clothing in different standards[63]. 

Category  

 

Standard title Editio

n 

Testing 

objects 

Indices Requiremen

t 

Testing 

apparatu

s 

US NFPA1971 

Standard on 

Protective 

Ensembles for 

Structural Fire 

Fighting and 

Proximity Fire 

Fighting 

2000  

 

Multi-

layered 

fabric 

assemblie

s 

Total 

Heat 

Loss 

(THL) 

≥130 w/m
2
 Sweating 

hot plate 

2007 ≥205 w/m
2
 

ASTMF 1868  THL >130W/m
2
  

EU EN469 

Protective 

clothing for 

firefighters – 

Performance 

requirements for 

protective 

clothing for 

firefighting 

2005 Multi-

layered 

fabrics 

assemblie

s 

Water 

Vapour 

Resistan

ce 

 

30 m
2
Pa/W 

Sweating 

hot plate 

EN 31092  
Layer 

combinati

on, testing 

from 

inside out 

Water 

Vapour 

Resistan

ce 

Level 2 

>30m
2
Pa/W 

 

China GA10Standard 

onFirefighting 

ProtectiveClothi

ng 

2002 Moistureb

arriers 

water 

vapourtr

ansmissi

on 

rate(WV

TR) 

 

≥5000 

g/(m
2
 · 24 h 

 

WVTR 

cup 

 ISO 11092  Layer 

combinati

on testing, 

from 

inside out 

Water 

Vapour 

Resistan

ce 

Level 1 

>30m
2
Pa/W 

 

FTMS (Federal 

test method 

standard) 191A, 

5504 

 
outer 

shell and 

collar 

lining 

Water 

absorpti

onresist

ance  

 

<30%  
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Fire fighting protective clothing standards as per EN 469 

 

Figure 3.1: Testing methods for flame resistant  personal protecting clothing [83]. 

 

Figure 3.2: Vertical flame test exemplary according to EN ISO 15025  [83]. 
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Figure 3.3: Convective heat test according to EN ISO 9151 [83]. 

 

Figure 3.4: Full manikin testing exemplary according to ISO 1350 [83]. 
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Figure 3.5: Physiological properties exemplary according to EN 31092 [83]. 

Two representatives of the standardized test methods, one in the field of protection 

and one related to comfort, shall be described shortly[87]. The protective property of 

clothing materials against radiant heat can be measured according to IS0 6942 I EN 

366. The test device consists of a radiation source able to produce a heat flux density 

up to 80 kW/m2 and a calorimeter which allows the measurement of the heat flux. 

The results of this test are the transmission factor and two threshold times. The 

threshold times correspond approximately to the time spaces until pain sensation and 

second degree burn respectively occur. 

The comfort properties of clothing materials, Le. thermal and water vapour 

resistance, can be assessed with a sweating guarded hot plate according to IS0 11092 

/ EN 3 1092. The thermal resistance of the material is determined by measuring the 

heating power of the plate which is needed to keep a given temperature difference 

between the plate and the air. For the measurement of the water vapour resistance the 

porous plate is fed with destilled water which evaporates at the surface and simulates 

the sweating. The heating power of the plate is only used for the evaporation of the 

water – the measurement is done under isothermal conditions - and is therefore a 

measure for the water vapour permeability of the material under test[23]. 
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These two test methods are qualified as standardized material tests because they 

provide reasonably repeatable and reproducible results. On the other hand they have 

several drawbacks compared with real life conditions: 

1. The geometrical conditions do not correspond at all to reality. Normally the 

different layers of the clothing are not lying flat on each other; there are air gaps 

between them which constitute additional thermal and water vapour resistances. 

2. When measuring the protection against radiative heat the humidity in the materials 

play an important role on the heat transmission [23]. 

3. Another very important effect, the so called pumping effect, cannot be assessed by 

the skin model. It is the transport of air containing heat and humidity through the 

openings of the clothing, caused by the movement of the wearer. 

4.A simultaneous assessment of protective and comfort properties, which is 

necessary because they are dependent of each other,is not possible. 

According to ASTM 1518 Standard, a guarded hot plate is used for measurement of 

thermal transport properties. And in order to obtain a rapid technique to measure the 

thermal properties of fabrics simulating the condition of sweating, different kinds of 

thermal manikins were developed. According to ASTM F1291 and ISO 7730, 

thermal insulation measured by thermal manikins can be used to predict thermal 

comfort of overall clothing systems.  [84] 

a. Fabric thermal insulation: 

Property: Resistance to dry heat transfer (i.e. fabric insulation value)  

Methods: ASTM D 1518 "Thermal Resistance of Batting Systems Using a Hot Plate"  

                ASTM F 1868 “Thermal and Evaporative Resistance of Clothing Materials 

                                     Using a Sweating Hot Plate Test”  

               ISO 11092 "Textiles--Determination of Physiological Properties— 

                                  Measurement of Thermal and Water-Vapour Resistance"  

Instrument: Guarded hot plate in an environmental chamber; custom hoods provide 

either still air  conditions, horizontal air flow, or vertical air flow at different levels  
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b. Evaporative resistance of fabrics  

Property: Resistance to evaporative heat transfer  

Methods: ASTM F 1868 “Thermal and Evaporative Resistance of Clothing Materials 

Using a Sweating Hot Plate Test”  

                  ISO 11092 "Textiles--Determination of Physiological Properties— 

                                   Measurement of Thermal  and Water-Vapour Resistance"  

Instrument: Sweating hot plate in an environmental chamber; custom hoods provide 

either horizontal or vertical air flow at different levels  

c. NFPA total heat loss test  

Property: Total heat loss (from fire fighter fabrics)  

Method:  ASTM F 1868 “Thermal and Evaporative Resistance of Clothing Materials 

Using a Sweating Hot Plate Test”  

THL Specification criteria are given in:  

 NFPA 1971 "Protective Clothing for Structural Fire Fighting and Proximity 

Fire Fighting" 

 NFPA 1977 “Protective Clothing and Equipment for Wildland Fire Fighting”  

 NFPA 1992 “Liquid Splash-Protective Ensembles and Clothing for 

Hazardous Materials Emergencies”  

Instrument: Sweating hot plate in an environmental chamber; custom hoods provide 

either horizontal or vertical air flow at different levels  

3.2 Tests Apparatus 

3.2.1 Perspiring fabric thermal manikin 

General features of  Perspiring Fabric Thermal Manikin are as follows[28]. 

1. There are two heaters and a water pump that control the temperature of the 

manikin body 37°C, similar to a real person’s body temperature:  

2. Perspiration simulation using a waterproof, but moisture-permeable fabric 

skin, which holds the water inside the body, but allows moisture to pass 

through the skin: 
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3. The skin of the manikin can be interchanged so as to simulate different rates 

of perspiration:  

4. It takes only one step to measure the thermal insulation and moisture-vapour 

resistance of textiles.  

With this manikin, the total thermal insulation Rd  of garment can be measured and 

calculated by using the following equations: 

𝑅𝑑 = [𝐴 ∗ (𝑡𝑠 − 𝑡𝑎)]/𝐻𝑑                                                    (3.2) 

𝐻 =  𝐻𝑑 + 𝐻𝑒                                                                     (3.3) 

𝐻𝑒 = 𝐸 ∗ 𝑄                                                                          (3.4) 

Where,  

R d is the total thermal insulation value (m
2
.°C/W); 

A is the total surface area of the manikin ( A = 1.79 m2);   

ts is the mean skin temperature (°C); 

ta is the mean temperature of the environment (°C);  

H is the total heat which the manikin needs to maintain constant core temperature 

(W);  

He is the evaporative heat loss from the water evaporation (W);   

Hd is the dry heat loss(W);  

E is the heat of evaporation of water at the skin temperature(0.672W.h/g at 35°C); 

Q is the “perspiration” rate or water loss per unit time, which can be measured by 

measuring the amount of water needed to top up the water level in the projecting tube 

to the original level(g/h). 

3.2.2 Guarded hot plate apparatus 

The Guarded Hot Plate Apparatus (see Fig 3.6 below) was composed of a test plate, 

guard section and bottom plate, each electronically maintained at a constant 

temperature within the range of human skin temperature (33 to 36°C). The guard 

section shall be designed to prevent lateral loss of heat from the test plate. Thermal 

resistance is calculated by measuring the temperature difference between the surface 

of the heated measurement area of the guarded hot plate and the temperature of the 

ambient air away from the plate. The temperature difference drives heat transfer 

through the fabric [9]. The plate’s dry heat loss, the temperature difference between 

the plate’s mean temperature and the chamber’s air temperature, heating time as well 

as the CLO of samples can be read directly from the apparatus. The CLO can be 

calculated using the following equation[28]. 
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                         CLO  =          Ubp – U1                                                                          (3.5) 

                                       0.155* Ubp *U1 

Where: U1 is the thermal conductivity with a sample (W/ m
2
.°C); 

           Ubp is the thermal conductivity without a sample (W/ m
2
.°C). 

Considering the thermal resistance, including the surface air layer resistance, we use 

the following equation to calculate the total thermal resistance: 

                        Rd` =    A` *( ts` – ta` )                                                                    (3.6) 

                                             Hd` 

Where:   Rd`is the total thermal resistance with air layer (m
2
.°C/W);  

              A
'
 is the area of test section (0.09m

2
);  

              ts`is the surface temperature of the plate (°C);  

              ta` is the air temperature   (°C);  

             Hd`is the heat loss (W). 

Firefighting is hot and strenuous work which Leads to dehydration and heat stress. 

Thermal resistance (Rct) is expressed in m².K/W and quantifies the thermal 

insulation capacity. Water vapour resistance (Ret) is expressed in m².Pa/W and is a 

measure for breathability. ISO 11092-EN 31092 - measurement of thermal and 

water-vapour resistance under steady-state conditions (sweating guarded-hotplate 

test) 

 

Figure 3.6: Guarded hot plate apparatus[28]. 
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3.2.3 Objective evaluation of fabric comfort properties 

Various forms of physical and simulative tests have been developed, and improved 

over the years, to assess comfort through the measurement of specific properties 

related to uncomfortable sensations. Success has also been achieved with various 

tests simulating wearing conditions on different models of thermal and sweating 

manikins [28]. 

3.2.4 WALTER
TM

 sweating thermal manikin 

According to Fan and Qian (2004), the best simulative test involves the use of 

thermal manikins, but simulation of human perspiration remains a challenge. They 

are of the opinion that the Walter
TM

 sweating thermal manikin (US patent 6,543,657) 

offers great potential in terms of measurement accuracy during tests comprising the 

simulation of walking and perspiration on fully made-up garments. Measurements 

are made while the 172-cm breathable fabric manikin is simulating walking at a 

speed of 0–5 km/h or is in a stationary state.  

“Walter” achieves a body temperature distribution similar to that of a human by 

pumping water at body temperature (37°C) from its centre to its extremities. During 

testing, the manikin is dressed in a garment made from the test fabric. Sensors 

measuring temperature and humidity are placed on specific areas on the manikin and 

connected to a computer, which controls and monitors the rate of heat loss and 

perspiration. A photograph of the manikin in the test chamber is shown in Figure 1. 

 The Walter
TM

 apparatus measures thermal resistance (Rt), water vapour resistance 

(Ret) and absorbency of a garment and calculates the moisture permeability index 

(Im). Unlike many other manikins, Walter
TM

 measures the two most important 

parameters, thermal resistance and water vapour resistance, in only one step. The 

moisture permeability index is an overall indication of the thermo -physiological 

comfort, which is dimensionless. The moisture permeability index is calculated by 

the Walter
TM

 software according to the following formula: Im = 60.6 X Rt / Ret 

The water absorbency (%) of the textile fabric, in other words, the amount of 

moisture accumulated in the fabric, is determined by weighing the conditioned 

garments before dressing the manikin (Wb) and after removing the garments at the 

end of the procedure (Wa), and calculated as follows: 
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             Ma (%) = (Wa – Wb) / Wb X 100                                                (3.7) 

According to Hes (1999 and 2008), a person becomes aware of his clothing within a 

very short time period after putting it on or experiencing a change in environmental 

conditions. Therefore, measuring thermal and moisture management properties 

within a short time frame will give a more realistic measurement of the fabric 

properties. Several test instruments have been developed specifically for this 

purpose, e.g. the Alambeta and Permetest instruments. 

3.2.5 The Alambeta instrument 

This test instrument was developed at the Technical University of Liberec (Czech 

Republic) for the objective evaluation of the thermal absorptivity of textile fabrics. 

The instrument is computer controlled, and uses the statistical parameters of 

measurements for thermal conductivity, thermal resistance and sample thickness to 

calculate the thermal absorptivity (Ws½/m2K). An auto diagnostic program checks 

measurement precision to avoid any faulty instrument operation. The main advantage 

of this instrument is that the entire evaluation process takes less than three minutes to 

complete. Thermal absorptivity is regarded as an indication of the warmcool feeling 

that will be experienced upon touch [27,29].  A photograph of the Alambeta 

instrument is shown in Figure 3.7  

 

Figure 3.7: Photograph of Alambeta test instrument[27]. 

3.2.6 The Permetest instrument 

The Permetest instrument is a semi-automated, portable, computercontrolled 

instrument, developed by Hes and manufactured by the Sensora Company in Liberec, 



 

52 

Czech Republic. It was developed for the fast measurement of water vapour 

permeability (WVP) and resistance (WVR) as well as thermal resistance (Rt). 

The instrument measures the amount of water vapour transmitted through a test 

sample, and the average WVP and WVR as well as the percentage coefficient of 

variance (CV) are automatically calculated. The measurements are based on the 

principle of heat flux sensing. A fabric sample, 80 mm in diameter, is mounted on 

the machine against a highly sensitive measuring head, containing a highly sensitive 

heat flow sensor with a thermal inertia similar to that of the human skin. The sensors 

are able to distinguish very small changes in the amount of water absorbed by the 

fabric during unsteady state of diffusion and to record, for example, the heat of 

absorption. This results in high measurement repeatability, with CV often less than 

3%. The test is conducted under isothermal conditions; the temperature of the 

measuring head is maintained at room temperature. When water flows into the 

measuring head, some heat is lost due to evaporation. The instrument 

measures the evaporation of the “uncovered” head as well as that of the head when 

covered with the test fabric. The full test is completed when the transfer of water 

from the measuring head to the atmosphere reaches steady-state (usually within two 

to three minutes). 

 

Figure 3.8: Photograph of Permetest test instrument[29]. 

The relative WVP (P) is a non-standardised, practical parameter and indicates the 

water vapour permeability of the tested sample as a percentage relative to that of a 

free measuring surface (where the WVP = 100%). To calculate P, the ratio of heat 

loss from the measuring head with fabric (qs) and without fabric (q0) are used 

[27,29]. 
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                          P = 100[qs /q0] %                                                            (3.8) 

The water vapour resistance (Ret) is expressed in m2Pa/W and thermal resistance 

(Rt) in m2K/W as described in ISO standard 11092. A photograph of the Permetest 

instrument is shown in Figure 3.8 above. 

3.2.7 Hydrostatıc head tester 

The Hydrostatic Head Tester measures the resistance of a fabric to penetration by 

water under hydrostatic pressure. This new instrument is applicable to all types of 

woven, knitted and nonwoven fabrics, including those with water repellent and 

waterproof finishes and complies with AATCC, ISO and BS testing standards. 

Specimens are subjected to increasing (dynamic) or static hydrostatic pressure until 

three points of leakage occur. After a minimum of three specimens ere tested, 

calculation of the average maximum hydrostatic pressure is reported in mBars or cm 

H2O, to rate the fabric. This Hydrostatic Head Tester offers increased capacities in 

both hydrostatic pressure and fabric thickness, greater efficiency through end-of-test 

alarms and auto head refills. Pre loaded test standards and downloadable results are 

included for ease of use [30]. 

 

Figure 3.9: Photograph of hydrostatic head tester[30]. 

3.2.8 Air permeability tester 

The Air Permeability Tester offers unmatched ease of use, efficiency and reliability 

for air permeability tests. It automatically measures the flow of air through a given 
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area of a fabric (set by a selected standard orifice) at a given pressure drop over this 

test area during the time called out by the accepted standard. Exclusive features 

include automatic detection of the test head size and an automatic ranging system 

that eliminates the need for a pretest to discover and then set the instrument range. 

The 50 cm test arm allows for simple testing on a large sample without having to cut 

multiple small specimens. The compact size and included casters permit the 

instrument to be setup quickly and easily whenever testing needs to be done, from 

the laboratory to the production flor [30]. 

 

Figure 3.10: Air permeability tester[30]. 
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4. MATERIALS AND METHODS 

4.1 Experimental Materials 

All samples utilize common firefighter protective clothing materials combined to   

form multilayered assemblies. The individual layers of these assemblies are square 

pieces of material roughly by in size. These layers are unattached and can be inverted 

and rearranged with respect to one another to construct varying assembly types and 

configurations . Once finalized, assembly configurations and type remain constant, 

utilizing the same collection of materials in the same orientation throughout testing 

to ensure consistent results. 

4.1.1 Test fabrics 

 Sample materials are supplied by KIVANÇ Group Company*. Various types of 

fabrics currently used in firefighter turnout clothing were selected as shown in table 

4.1, including 4 outer shells coded (A1~A4), 4 moisture barriers coded  (B1~B4), 4 

thermal barriers coded (C1~C4). Fabric samples were combined to make a multi-

layer fabric assembly for firefighter turnout clothing in order to measure their 

comfort propeties like water vapor resistance, airpermebility, thermal resistance and 

others. These sample fabrics were supposed to fulfill the requirements of the EN 

469:2005 standards. 

 One of the basic ideas of the EN 469:2005 is that 3 different letters (X-Y-Z) indicate 

the level of performance (a lower level 1 or a higher level 2). The properties 

represented by the letters are justified. Xf1 or Xf2 is to mean the performance in the 

heat test of flame; X1 or X2 is to mean the performance in the heat test of radiation; 

Y1 or Y2, to mean the performance in the waterproofness tests ; and Z1 or Z2 to 

mean the resistance against water vapour.EN 469:2005 Level 2 is the higher 

requirement for structural fire fighting and is used by professional firefighters. Level 

2 suits should include a waterproof moisture barrier. 

Xf2 = Convective heat HTI24 > 13 second and HTI24 – HTI12 > 4second 

 Xr2 = Radiant heat RHTI24 > 18second and RHTI24 – RHTI12 > 4 second 

Y2 = Water resistance > 20 KPa  

 Z2 = Water vapour resistance < 30 m2 Pa/W 
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The characteristics of the specimens are provided in Table 4.1 All the selected layers 

for firefighters’ clothing are commercially available and popularly used in the fire 

fighters protective clothing 

Table 4.1: Sample fabrics characteristics  descriptions. 

Type  Fabric 

Code 

Fabric Name  Weight 

 

 

 

Outer 

 shell 

A1 Nomex Outershell 

Tough 

195 g/ m² 

A2 PBI gold 200 g/m² 

A3 PBI Matrix 200 g/m² 

A4 Nomex Outershell 

Tough Ripstop 

195 g/m² 

 

 

 

Moisture 

 barrier 

B1 PU membrane 

laminated to nonwoven 

(50/25/25) 

55 g / m2 

B2 PU membrane 

laminated to nonwoven 

(50/25/25) 

85 g / m2 

B3 PU membrane 

laminated to knitted 

fabric 

85 g/m2 

B4 PU membrane 

laminated to knitted 

fabric 

145 g/m2 

 

 

 

 

 

Thermal  

barrier: 

 

C1 Two layers of 

nonwoven(55+55) 

quilted to Aramid 

Viscose FR inner lining 

110 g/m2 

C2 Two layers of 

nonwoven(55+55) 

quilted to Nomex 

Comfort inner lining 

110 g/m2 

C3 Nonwoven quilted to 

Aramid Viscose FR 

inner lining 

55 g / m2 

C4 Nonwoven quilted to 

Aramid Viscose FR 

inner lining 

85 g / m2 
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4.1.2 Test apparatus: 

Experimental works is done by using the following test apparatus 

4.1.2.1 Air permeability tester 

The air permeability of the fabrics was measured on a Textest M821A Air 

Permeability Tester according the Standard:  EN ISO 9237,400Pa, Temp.  23.7- 

24.5
o
c, l/m

2
/s, 20cm

2
 sample area and described test conditions. Refer to chapter 3 of 

the theses above about the equipment. 

 

Figure 4.1: Prowhite air permeability tester. 

4.1.2.2 Permetest 

The tests were conducted with the PERMETEST apparatus. The instrument uses the 

same principle as specified in ISO 11092 developed by Hohenstein Institute, 

whereby a heated porous membrane is used to simulate the sweating skin. The heat 

required for the water to evaporate from the membrane, with and without a fabric 

covering, is measured. The fabric sample is placed on a measuring head over a semi-

permeable foil and exposed to parallel air flow at a velocity of 1m/s. The 

measurement is carried out under isothermal conditions 22 °C. The computer 

connected to the apparatus determines the evaporative resistance Ret and the thermal 

resistance Rct and RWVP of textile fabrics according the standard ISO 11092.  

 

Figure 4.2: Permetest instrument. 
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4.1.2.3 Alambeta 

The thermal properties were measured with the Alambeta device which is a computer 

controlled instrument for measuring the basic static and dynamic thermal 

characteristics of textiles. This method belongs to the so-called ‘plate methods’, the 

acting principle of which relies on the convection of heat emitted by a hot upper plate 

in one direction through the sample being examined to the cold bottom plate adjoined 

to it. 

 

Figure 4.3: Alambeta instrument . 

4.1.2.4 Radiant heat tester EN ISO 6942 

Evaluation of materials and material assemblies when exposed to a source of radiant 

heat as per EN ISO 6942 standard requires the followings:3 specimen with 230 x 70 

mm , Vertical orientation, Heatflux = 20kW/m², Time until second degree burn 

 

Figure 4.4: Radiant heat transmision tester model. 
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4.1.2.5 Convective heat transfer tester as per EN 367 

Test models for determination of the heat transmission on exposure to flame  icludes 

the following as instrument constructing parts. Gas burner (unless the defense), 

Copper disc calorimeter, Specimen support frame, Calorimeter plate,  Leg support, 

Measuring instrument,  Mould (model)[83]. 

 

Figure 4.5: Convective heat transfer tester model. 

4.1.2.6 Thermal camera 

The testo 885 is a handy and robust thermal imager. It enables you to carry out 

contactless determination and display of the temperature distribution on surfaces. 

The testo used in this thesis work has the following specifications[82]. 

Testo 885-1: high-quality wide angle lens 30° x 23, detector 320 x 240, NETD < 30 

mK at 30°C, 2GB SD card for approx. 2000 to 3000 images, minimum focusing 

distance 0.1 m, touchscreen, built-in digital imager with power LEDs for 

illumination, auto-focus, isotherm, min/max/avg on area, panorama image wizard, 

laser (not available in all countries), rotatable handle, rotatable and pivoting display 

 

Figure 4.6: Testo 885 - Thermal imaging camera. 
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Flexible camera with rotatable display, Resolution of 160 x 120 pixels (Optional: 

SuperResolution technology increases res. to 320 x 240 pixels), thermal sensitivity < 

80 mK, integrated digital camera. The testo 876 stands out thanks to its large 

rotatable display. This allows you to keep the display in view when thermographing 

in any position, securely reaching every corner. 

4.2 Methodology 

4.2.1 Air permeability 

The inner layer and the thermal liner were put together with no extra air gap, in order 

to simulate the real situation[81]. 

How the test works: 

A circle of fabric is clamped into the tester and through the use of a vaccum, the air 

pressire is made different on one side of the fabric. Airflow will occur from the side 

with higher air pressure, through the fabric, to the side with the lower air pressure. 

From this rate of air flow, the air permability of the fabric is determined.Air 

Permeability testing apparatus, Circular test head with a test area of 5.93 square 

inches (15.07 cm)., Clamping system to secure test specimens, Pressure gage or 

manometer, Flowmeter, Cutting dies. 

Scientific testing requirements: 

When using this equipment for scientific purposes, the fabric must be prepared 

according to ASTM D1776. 

Procedure: 

Sample preparation 

1) When cutting specimens, avoid wrinkles, folds or creases. 

2) Avoid getting oil, water, grease, etc. on the specimens when handling. 

3) For the purposes of the lab, each student will test one sample. For scientific 

testing, 10 samples are used.  

4) Use the medium cutting die (sized 4.5 inches/114. cm) 

5) Use specimens representing a broad distribution across length and width, 

preferably along the diagonal of the fabric. 
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Preparation of test apparatus 

1) Make all tests in the standard atmosphere for testing textiles. 

2) Loosen the clamping system by twisting the top ring counter-clockwise. 

3) Position the fabric sample between the top and bottom of the column, 

ensuring that fabric covers the entire opening. The fabric should be placed 

right side down. 

4) Tighten the clamping system completely. 

5) Place coated test specimens with the coated side down (toward the low 

pressure side) to minimize air edge leakage. 

Test procedure 

1) Read and record the individual test results in SI units or in inch-pound units 

rounded to three significant digits. 

2) Ensure that the control vales .“A.” and .“C.” on the right are completely 

closed. 

3) Check that the manometer (the glass tube of liquid) indicates zero. Adjust if 

necessary using the black knob on the top right of the machine to raise and 

lower the level. 

4) Using the foot switch, turn on the vacuum pump  

5) Using the black flowtube switch closer to the center on the left side of the 

machine, select flow tube number 4. 

6) Gradually open .“Valve C.” (on the right side) until the required pressure is 

shown on the manometer tube. 

7) If the flowtube float has not moved close .“Valve C..” 

8) Select Flowtube number 3. 

9) Gradually open .“Valve C.” (on the right side) until the required pressure is 

shown on the manometer tube. 

10) If the flowtube float has not moved close .“Valve C..” 

11) Select flowtube number 2. 

12) Gradually open .“Valve A.” until the required pressure drop is shown on the 

manometer. 

13) If the float in tube 2 does not rise, close .“Valve A..” 

14) Select flowtube number 1. 
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15)  Gradually open .“Valve A.” until the required pressure drop is shown on the 

manometer. 

16)  Once a range has been established for a particular type of material, the 

correct flowtube can be selected without going through the sequence. 

4.2.2 Permetest 

The measurement by fast permetest  is carried out under isothermal conditions 22 °C. 

The computer connected to the apparatus determines the evaporative resistance Ret 

and the thermal resistance Rct and RWVP of textile fabrics according the standard 

ISO 11092. It does not refer to the fabric surface temperature, when there is an air 

gap between the skin model surface and the tested fabric (Eq. below). These values 

serve to reflect the thermo-physiological properties of textile fabrics and garments.  

1) Join the PT with any modern computer (no VISTA, pls) by means of a RS 

232 cable.  The FRB cable for small computers (desktops) is also, included, 

along with a special conversion programme. 

2) Swirch on both devices.  

3) Install the CD program into the PC. The program must be downloaded on the 

C harc disciplines, and open the PERMETEST window. The use of the 

program will explained later.  

4) On PT select the air velocities I (1 m/s) or II (1,6 m/s). 

5) On the temperature controller OMRON adjust the required teperature 

gradient (0 deg. C for water vapour resistance measurement and 10 deg. C for 

thermal resistance measurement). The gradient shows the green scale. Use the 

buttons on the right hand side. 

6) Install a small cup on the output of the free end of plastic tube, which will 

contain the water excess.   

7) Fill the syring with distilled water containing 0,1 % of pure non-aggressive 

liquid soap used for hand washing with neutral acidity PH = 7), and insert it 

into the hole on the right hand side of the PT.  

8) Wait 5 minutes to get the temperature deviation less then 0,2
 o

 C (later it will 

be less then 0,1 
o
C), and the membrane on the measuring head surface returns 

back to the porous surface. 

9) Press the zero “short“ on the top (I) to make short circuit on the entrance of 

the analogue amplifier.  
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10) Adjust slowly the zero potentiometer to zero on the black digital indicator. 

The adjustment requires patience, but it will keep adjusted for long time.  

11) Press the “zero short“ on the bottom to open the entrance of the analogue 

amplifier. 

12) Move the amplifier potentiometer to reach the signal level on the black 

digital indicator approx. 100, practically between 90 and 110.   

13) Repeat the procedure according to 7,8,9 and 10 points, to improve the zero 

adjustment.  

14) Adjust the amplification to 100 with better precision (95 to 105). 

15) Pull down the measuring head (special knob on the top surface of the 

instrument enables easy pulling the head down) and insert the measured 

sample between the head and the botton of the air channel. Then pull back 

(upwards) the measuring head to the channel. Thus, the sample keeps fixed 

on the semi-permeable surface of the measuring head. Insert the measured 

sample between the bottom of the channel and the measuring head. Try not to 

scratch the surface membrane on the edges.  

16) After 2-4 minutes read the relative water vapour permeability on the digital 

indicator.  The observed turbulency is inevitable, but the PC program will 

avoid the variations of the readings – see the next expanation.   

Use similar procedure for the measurement of thermal resistance Rct (with no water 

in the measuring head – drying the wet head takes more than 2 hours!). Use the foam 

foil as the reference fabric with the Ret value written on the foil.   

4.2.3 Alambeta instrument 

Principle of Alambeta instrument - tester of thermal properties of fabrics 

This apparatus use in this study enables the measurement of the following thermal 

parameters: thermal conductivity, thermal absorbtivity, thermal resistance, thermal 

diffusion and sample thickness. The Alambeta simulates the dry human skin and its 

principle depends in mathematical processing of time course of heat flow passing 

through the tested fabric due to different temperatures of bottom measuring plate 

(22°C) and measuring head (32°C) [78].  

Procedures 
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1) When the specimen is inserted, the measuring head drops down, touches 

the fabrics and the heat flow levels are processed in the computer and 

thermo-physical properties of the measured specimen are evaluated.  

2) After insertion of the sample the head moves down, and the heat (q1 = f 

(τ)) flows from the heated plate to the sample, accumulating in it during 

the non-stationery state, and from the sample to the lower plate q2 = f(τ) 

3) The measurement lasts for several minutes only. 

4) By measuring the electric power at the known area of the plates), the 

temperature difference between the upper and bottom fabric surface, and 

the fabric’s thickness. 

5) The sample thickness is measured by an optoelectronic incremental 

sensor connected to a screw. The measuring head pressure is set and 

adjusted. The heat flow density is detected using thermocouples that 

measure the temperature gradient across a very thin plastic foil. 

6) Device calculates the real thermal resistance (from the above-mentioned 

quantities) for all fabric configurations.  

7) In contrast, the other thermal parameters such as thermal conductivity, 

thermal absorption and the thermal diffusion are calculated on the basis 

of the properties measured using algorithms appropriate for unstratified 

(homogeneous) materials. 

8) The measurements were made for the left side (the left side of the fabric 

sticks to the upper plate) and the right side (the right side of the fabric 

sticks to the upper plate) of each sample.  

9) For each side 20 measurements were made, and then the average values 

of the measured parameters were calculated.  

10) The following thermal parameters were assessed: thermal conductivity, 

thermal diffusion, thermal absorption, thermal resistance, stationary heat 

flow density, the ratio of the maximum and stationary heat flow density 

as well as the fabric thickness. 

In multilayer textile structures we can consider the results calculated on the basis of 

the measured parameters as equivalent values, i.e. equivalent conductivity, 

absorption and diffusion, for comparisons valid only for similar measuring 
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conditions and comparable layer configuration. In this context the values of λ, a, and 

b should be considered. 

4.2.4 Radiant heat tester EN ISO 6942 

This test method is the Protective Clothing – Protection against heat and fire – 

Method of test. Evaluation of materials and material assemblies when exposed to a 

source of radiant heat as per EN ISO 6942 standard requires the followings: 

1) 3 specimen 

2) 230 x 70 mm 

3) Vertical orientation 

4) Heatflux = 20kW/m² 

5) Time until second degree burn 

6) Classification according to the relevant standard such as EN ISO 

11612 

4.2.5 Convective heat tester  EN 367/ISO 9151 

Protective Clothing against heat and flame – Determination of heat transmission on 

exposure to flame as EN ISO 9151 (ex EN 367) needs the following. 

1) 3 specimen 

2) 140 x 140 mm 

3) Horizontal orientation 

4) Heatflux = 80kW/m² 

5) Time until second degree burn 

6) Classification according to the relevant standard e.g. EN ISO 11612 

Test principle: 

A horizontally oriented test specimen is partially restrained from moving and 

subjected to an incident heat flux of 80 kW/m
2
.  From the flame of a gas burner 

placed beneath. The heat passing through the specimen is measured by means of a 

small copper calorimeter on top and in contact with the specimen. The time (s) for 

the temperature to rise 24 +/- 0.2 °C is recorded. The mean result of three specimens 

is calculated as the heat transfer index. 

Expression of results: 

 The time (s) for the temperature to rise 24 +/- 0.2°C is recorded. The mean 

result of three specimens iscalculated as the heat transfer index (HTI24) 

 The time (s) for the temperature to rise 12 +/- 0,2)°C is recorded if requested 

(HTI12) 
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Terms definitions: 

 Incident heat flux density: amount of energy incident per unit time on the 

exposed face of the specimen,expressed in kilowatts per square meter 

(kW/m2) 

 Heat transfer index (flame): whole number calculated from the mean time in 

seconds to achieve a temperaturerise of 24+/-0,2°C when testing by this 

method using a copper disc of mass 18+/-0,05 g and a startingtemperature of 

25+/-5°C 

 Calorimeter: instrument to measure the heat energy absorbed by it; a 

calorimeter has a well defined heatcapacity, i.e. the amount of energy can be 

calculated from the temperature rise in the calorimeter. 

4.2.6 Thermal camera testo 885 principle 

Product components: 

The testo 885 thermal camera have the following components. The digital imager 

lens which used for taking  visual images and and also two power -LEDs for 

illuminating the image. Infrared imager lens for taking thermograms and release lens 

for releasing the lens lock. Thread (1/4" - 20 UNC) is used for attaching a tripod 

(bottom of imager) and Laser for marking the measurement object. Focusing ring is 

used for adjusting the focus manuallyand rotatable handle with adjustable hand strap 

and fastening loop for the lens cover. Two fixing eyelets for carrying/shoulder strap 

and also display that can be flipped out 90° and rotated 270. 

1. Digital imager lens and  power -LEDs  

2. Infrared imager lens  

3. [Release lens]  

4. Thread (1/4" - 20 UNC)  

5. Laser  

6. Focusing ring  

7.  Rotatable handle  

8. Battery compartment  

9. Operating buttons (back and top of imager): 

10. Two fixing eyelets. 

11. Interface terminals: 

12. Display 
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Figure 4.7: Thermal camera testo 885 product components. 

Table 4.2: Infrared  image output by Testo 885 thermal camera [82]. 

Feature    Values 

Detector type                       FPA 320 x 240 pixels, a.Si 

Thermal sensitivity (NETD)                            < 30 mK at 30°C (86°F) 

Field of vision/min. focusing 

distance 

30° x 23°/0.1 m (0.33 ft) Telephoto lens (optional): 

11° x 9°/0.5 m (1.64 ft) 

Geometric resolution (IFOV) 1.7 mrad (standard lens) 

0.6 mrad (telephoto lens) 

Super-resolution 

(pixels/IFOV) -optional 

640 x 480 pixels /  

1.06 mrad (standard lens) 

0.38 mrad (telephoto lens) 

Image refresh rate 33 Hz within EU, 9 Hz outside of EU 

Focus Automatic/manual 

Spectral range 8 - 14 μm 

Visual image output  

Feature  Values 

Image size 3.1 megapixels 

Min. focusing  distanc 0.5 m (1.64 ft.) 
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5. RESULTS AND DISCUSSIONS 

5.1 Air Permeability: 

The test results are reported in Tables 5.1, 5.2, 5.3and also supported for comparison 

by the figure 5.1 below as an average of at least five independentreplications.Air 

permeability test results for single layers of fire fighters clothings constructing 

fabrics: (outer shell, moisture barriers and thermal linings) and also multilayered 

fabrics is done as per the following standard and conditions. 

Standard:  EN ISO 9237,400Pa, Temp.  23.7- 24.5
o
c, l/m

2
/s, 20cm

2
 sample area. 

Outer shell Air permeability test results which was done according to Standard:EN 

ISO 9237 by applying 400Pa pressure to 20cm
2
 sample area at air Temp.  23.7- 

24.5
o
c  is given in  l/m

2
/s unit,  

Table 5.1: Outer shell fabrics Air permeability test results. 

Fabric 

code  

Measure 

1 

(l/m
2
/s ) 

Measure 

2 

(l/m
2
/s ) 

Measure 

3 

(l/m
2
/s ) 

Measure 

4 

(l/m
2
/s ) 

Measure 

5 

(l/m
2
/s ) 

Average 

 (l/m
2
/s ) 

A1 590 561 564 565 533 562.6 

A2 834 842 829 843 829 835.4 

A3 470 483 464 490 493 480 

A4 562 534 515 572 574 551.4 

 

Moisture barriers Air permeability test results which was done according to  

Table 5.2: Moisture barrier fabrics Air permeability test results. 

Fabric 

code  

Measure 

1 

(l/m
2
/s ) 

Measure 

2 

(l/m
2
/s ) 

Measure 

3 

(l/m
2
/s ) 

Measure 

4 

(l/m
2
/s ) 

Measure 

5 

(l/m
2
/s ) 

Average 

(l/m
2
/s )  

B1 0 0 0 0 0 0 

B2 1 0 1 0 0 0.4 

B3 0 0 0 0 1 0.2 

B4 2 1 0 0 2 1 
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Standard:EN ISO 9237 by applying 400Pa pressure to 20cm
2
 sample area at air 

Temp.  23.7- 24.5
o
c  is given in  l/m

2
/s unit 

Thermal linings air permeability test results which was done according to 

Standard:EN ISO 9237 by applying 400Pa pressure to 20cm
2
 sample area at air 

Temp.  23.7- 24.5
o
c  is given in  l/m

2
/s unit. 

Table 5.3: Thermal lining fabrics Air permeability test results. 

Fabric 

code  

Measure 

1 

(l/m
2
/s ) 

Measure 

2 

(l/m
2
/s ) 

Measure 

3 

(l/m
2
/s ) 

Measure 

4 

(l/m
2
/s ) 

Measure 

5 

(l/m
2
/s ) 

Average 

 (l/m
2
/s 

) 

C1  450  465  425  410  407 431 

C2 383 447 438 423 429 424 

C3 321 417 473 398 487 419.2 

C4 910 820 898 939 989 911.2 

 

 

 

Figure 5.1: Average air permeability test results for single layer fabrics. 

The test results for the layered sample fabrics show that the fire fighters clothing 

under study is not air permeable since all 64 combinations test measurements value 

are zero. This is understandable that moisture barriers which air permeability results 

are almost zero causes the fire fighters assembly layers not to permit airs. 

These results lead us to exclude the air permeability properties while comparing the 

comfort properties of the samples understudy. 
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5.2 Water Vapor Permeability  

The mentioned PERMETEST instrument enables the determination of relative WVP 

[%] and evaporation resistance Ret [m
2
Pa/W] of single and layered fabrics within 3-5 

minutes as the results are shown below. Measuring head of this small Skin Model is 

covered by a resistant semi permeable foil, which avoids the liquid water transport 

from the measuring system into the sample. Cooling heat flow caused by water 

evaporation from the thin porous layer is quickly recorded by a special computer 

evaluated sensing system. In terms of heat transfer this instrument presents the model 

of real human skin. 

Table 5.4: Relative water vapor permeability and Water vapor resistance of single 

layer fabrics. 

Fabric 

codes 

 

Relative water vapor permeability 

(%) 

Water vapor resistance Ret 

(m
2
PaW

-1
) 

Test 1 Test 2 Test 3 Averag

e 

Test 1 Test 2 Test 3 Average 

A1 
62.39 

62.13 63.75 62.75 
4.92 4.6 

4.42 4,65 

A2 
60.27 

62.26 
60.66 61.06 5.14 4.29 4.9 4,78 

A3 
62.15 61.39 61.06 61.53 3.72 3.79 3.84 3,78 

A4 
62.87 61.63 61.74 62.08 3.56 3.71 3.72 3,66 

B1 
46.69 43.68 48.1 46.16 7 7.6 6.62 7.07 

B2 
37.55 38.75 36.41 37.57 10.12 9.56 10.73 10.14 

B3 
57.73 57.85 55.75 57.11 4.47 4.5 4.74 4.57 

B4 
39.95 35.04 37.44 37.48 9.79 11.79 10.77 10.78 

C1 
50.95 51.1 49.71 50.59 6.26 6.14 6.56 6.32 

C2 
48.31 47.08 47.72 47.70 7.02 7.22 7.1 7.11 

C3 
50.95 48.13 46.62 48.57 6.26 7.07 7.36 6.90 

C4 
51.1 51.34 52.93 

51.79 
6.14 6.22 5.78 

6.05 
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For layered fabric samples only average test results of relative water vapor 

permeability and water vapor resistance are given here, the full test data is attached at 

appendix number A table A.2 

The relative water vapor permeability and water vapor resistance of the layered 

fabrics is analyzed separately for their outer shell A1, A2, A3 and A4. 

 

Figure 5.2: Histogram of relative water vapor permeability and water vapor 

resistance of single layer fabrics. 

When comparing the water vapor resistance of moisture barriers B1-B4;  

 As the mass of PU membrane laminated to nonwoven (50/25/25) increases 

the Ret increases and also the same is true for PU membrane laminated to 

knitted fabric. 

 Keeping the same weight of two moisture barriers; PU membrane laminated 

to nonwoven (50/25/25) showed more water vapor resistance than that 

laminated to knitted fabric. 

When comparing the water vapor resistance of thermal barriers C1-C4; 

 As the sample mass per unit area of Nonwoven quilted to Aramid Viscose FR 

inner lining increases, the water vapor resistance Ret decreases and in turn 

comfort increases. 

 Keeping the same weight of two thermal barriers; C2 (Two layers of 

nonwoven (55+55) quilted to Nomex Comfort inner lining) has more Ret than 

C1 (Two layers of nonwoven (55+55) quilted to Aramid Viscose FR inner 

lining) 
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Table 5.5: Relative water vapor permeability and Water vapor resistance of multi-

layered fabrics for outer shell  A1 Nomex Outershell Tough common. 

No. Layered Fabric 

Code 

Relative water 

vapour 

permeability % 

Water Vapour resistance  

Ret(m
2
PaW

-1
) 

1 A1B1C1 20.13 21.94 

2 A1B1C2 19.01 21.16 

3 A1B1C3 18.08 22.48 

4 A1B1C4 17.34 23.14 

5 A1B2C1 18.39 26.91 

6 A1B2C2 17.72 22.38 

7 A1B2C3 17.25 24.55 

8 A1B2C4 16.83 25.69 

9 A1B3C1 22.18 21.37 

10 A1B3C2 20.69 19.94 

11 A1B3C3 19.61 21.59 

12 A1B3C4 21.49 19.16 

13 A1B4C1 17.57 29.14 

14 A1B4C2 17.28 22.67 

15 A1B4C3 14.76 28.25 

16 A1B4C4 15.94 25.57 

 

From the layered fabrics in which an outer shell A1 or Nomex Outershell Tough with 

195 g/ m² weight has been used; 

 The combination of moisture barrier B4 or PU membrane laminated to 

knitted fabric with 145 g/m2 and thermal barrier C1 or Two layers of 

nonwoven(55+55) quilted to Aramid Viscose FR inner lining with 110 g/m2 

found to be the highest water vapor resistant layers which can be concluded 

because of the highest mass per unit area from their respective groups. 
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Figure 5.3: Histogram of multilayered fabrics water vapor resistance when outer 

shell A1 is common. 

 The combination of moisture barrier B3 or PU membrane laminated to 

knitted fabric and thermal barrier C4 or Nonwoven quilted to Aramid Viscose 

FR inner lining both with 85 g/ m² mass per unit area found to be the most 

comfortable by allowing water vapor transmission through the layer. This can 

be because of lamination of moisture barrier to knitted fabric. 

 

 

Figure 5.4: Histogram of multilayered fabrics water vapor resistance when outer 

shell A2 is common. 
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Table 5.6: Relative water vapor permeability and Water vapor resistance of multi-

layered fabrics for outer shell  A2 PBI gold 200 g/m² as common. 

No. Layered Fabric 

Code 

Relative water 

vapour 

permeability % 

Water Vapour resistance  

Ret(m
2
PaW

-1
) 

1 A2B1C1 19.80 25.13 

2 A2B1C2 16.38 25.23 

3 A2B1C3 15.73 26.95 

4 A2B1C4 15.20 27.76 

5 A2B2C1 18.08 28.32 

6 A2B2C2 15.88 25.62 

7 A2B2C3 15.51 26.78 

8 A2B2C4 15.67 26.52 

9 A2B3C1 22.92 20.84 

10 A2B3C2 17.58 21.92 

11 A2B3C3 19.15 20.07 

12 A2B3C4 19.74 20.22 

13 A2B4C1 21.10 23.31 

14 A2B4C2 15.80 26.73 

15 A2B4C3 16.63 24.81 

16 A2B4C4 17.26 23.98 

 

From the layered fabrics in which an outer shell A2 or PBI gold 200 g/m² weight has 

been used; 

 The combination of moisture barrier B2 or PU membrane laminated to 

nonwoven (50/25/25)  with 85 g/m2 and thermal barrier C1 or Two layers of 

nonwoven(55+55) quilted to Aramid Viscose FR inner lining with 110 g/m2 

found to be the highest water vapor resistant layers which can be because of 

the highest mass per unit area from their nonwoven fabric and also form the 

group. 

 

 The combination of moisture barrier B3 or PU membrane laminated to 

knitted fabric and thermal barrier C4 or Nonwoven quilted to Aramid Viscose 
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FR inner lining both with 85 g/ m² mass per unit area found to be the most 

comfortable by allowing water vapor transmission through the layer. This can 

be because of lamination of moisture barrier to knitted fabric.This agrees with 

outershell A1 illustrated above. 

Table 5.7: Relative water vapor permeability and Water vapor resistance        

of multi layered fabrics for common outer shell A3 PBI Matrix. 

No. Layered Fabric 

Code 

Relative water 

vapour 

permeability % 

Water Vapour resistance  

Ret(m
2
PaW

-1
) 

1 A3B1C1 19.94 25.62 

2 A3B1C2 17.14 24.03 

3 A3B1C3 16.10 25.48 

4 A3B1C4 16.82 24.57 

5 A3B2C1 17.88 28.61 

6 A3B2C2 14.93 27.79 

7 A3B2C3 15.64 26.17 

8 A3B2C4 15.91 24.82 

9 A3B3C1 21.14 23.77 

10 A3B3C2 17.81 21.93 

11 A3B3C3 19.57 19.89 

12 A3B3C4 17.52 22.91 

13 A3B4C1 20.06 25.51 

14 A3B4C2 13.32 31.69 

15 A3B4C3 14.73 28.48 

16 A3B4C4 13.47 29.64 
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Figure 5.5: Histogram of multilayered fabrics water vapor resistance when outer 

shell A3 is common. 

From the layered fabrics in which an outer shell A3 or PBI Matrix with 200 g/m² 

weight has been used; 

 The combination of moisture barrier B4 or PU membrane laminated to 

knitted fabric with 145 g/m2 and thermal barrier C2 or Two layers of 

nonwoven(55+55) quilted to Nomex Comfort inner lining with 110 g/m2 

found to be the highest water vapor resistant layer which can be because of 

the highest mass per unit area from their groups and also Nomex comfort 

inner lining. The value is above the standard limit which showed it is the least 

comfortable assembly.  

 

 The combination of moisture barrier B3 or PU membrane laminated to 

knitted fabric with 85 g/ m² and thermal barrier C3 or Nonwoven quilted to 

Aramid Viscose FR inner lining with 55 g/ m² mass per unit area found to be 

the most comfortable by allowing water vapor transmission through the layer. 

This can be because of lamination of moisture barrier to knitted fabric and 

also low mass per unit area.  

 

From the layered fabrics in which an outer shell A4 or Nomex Tough Ripstop with  

195 g/m² weight has been used; 

 The combination of moisture barrier B3 or PU membrane laminated to 

knitted fabric and thermal barrier C4 or Nonwoven quilted to Aramid Viscose 

FR inner lining both with 85 g/ m² mass per unit area found to be the most 

comfortable by allowing water vapor transmission through the layer. This can 

be because of lamination of moisture barrier to knitted fabric.This agrees with 

outershell A1, A3 illustrated below. 

 The combination of moisture barrier B4 or PU membrane laminated to 

knitted fabric with 145 g/m2 and thermal barrier C2 or Two layers of 
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nonwoven(55+55) quilted to Nomex Comfort inner lining with 110 g/m2 

found to be second highest water vapor resistant layer which can be because 

of the highest mass per unit area from their groups and also Nomex comfort 

inner lining. 

 

Figure 5.6: Histogram of multilayered fabrics water vapor resistance when outer 

shell A4 is common. 

Table 5.8: Relative water vapor permeability and Water vapor resistance of multi- 

layered fabrics for outer shell A4 Nomex Tough Ripstop 195 g/m² as 

common. 

No. Layered Fabric 

Code 

Relative water 

vapour permeability 

% 

Water Vapour 

resistance  

Ret(m
2
PaW

-1
) 

1 A4B1C1 19.75 25.74 

2 A4B1C2 17.07 23.15 

3 A4B1C3 16.87 24.62 

4 A4B1C4 16.95 24.15 

5 A4B2C1 18.52 26.95 

6 A4B2C2 15.64 26.19 

7 A4B2C3 17.03 24.07 
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8 A4B2C4 16.21 26.54 

9 A4B3C1 22.04 22.06 

10 A4B3C2 18.33 23.44 

11 A4B3C3 15.14 29.29 

12 A4B3C4 18.94 22.34 

13 A4B4C1 19.56 25.40 

14 A4B4C2 16.03 29.04 

15 A4B4C3 16.92 26.63 

16 A4B4C4 16.84 27.08 

 

Relative water vapour permeability of the textile sample pwv can be determined 

from the relation  

                   pwv%   = 100us / uo                                                            (5.1) 

Here, uo means the instrument reading without a sample (heat loses of the free wet 

surface), and us presents the heat loses of the wet measuring head (skin model) with 

a sample.  

Water vapour resistance Ret [m
2Pa/W], when expressed in terms of the according 

to the ISO 11092 Standard (Textiles - Physiological effects - Measurement of the 

thermal and water-vapour resistance), then the following relationship is applied (and 

used : 

 Ret  = (pwsat  - pwo )(1/us – 1/uo) = C (100 - φ)(1/us – 1/uo)              (5.2) 

The values of water vapour partial pressures pw sat and pwo in Pascals in this 

equation represent the water vapour saturate partial pressure valid for the temperature 

of the air in the measuring laboratory to (22-25 oC), and the partial water vapour 

pressure in the laboratory air. The relative humidity φ should be kept between 45-60 

%. The constant C will be determined by the calibration procedure. Special 

hydrophobic polypropylene reference fabric for this purpose is delivered with the 

instrument.  
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The instrument provides all kinds of measurements similar to the ISO Standard 

11092, and the results are evaluated by identical procedure as required in this 

standard. The correlation coefficient of measurements related to the ISO Standard 

SKIN MODEL exceeds 0.9. The results are treated statistically, displayed and 

recorded for next use [88]. 

Based on the standard EN 469:2005 Level 2 which is the higher requirement for 

structural fire fighting and is used by professional firefighters we have to comapare 

the results obtained by permetest instrument. The standard suggests the acceptable 

value of water vapor resistance Z2 as follows. 

 Z2 = Water vapour resistance < 30 m2 Pa/W, 

 Level 2 suits should include a waterproof moisture barrier. 

Thus all of combination of layered fabrics fulfill the requirement except one. That is 

A3B4C2 ; The combination of outer shell A3 or PBI Matrix with 200 g/m², moisture 

barrier B4 or PU membrane laminated to knitted fabric with 145 g/m2 and thermal barrier 

C2 or Two layers of nonwoven(55+55) quilted to Nomex Comfort inner lining with 110 

g/m2 having 13,32% of RWVP and 31,69m
2
 Pa/W water vapour resistance value. 

5.3 Thermal Resistance Properties 

Thermal resistance and conductivity of the sample fabrics under study are measured 

by using Alambeta and Permetest instruments. Alambeta modern device is designed 

to measure the following thermal parameters: thermal conductivity (λ), thermal 

absorptivity (b), thermal diffusion (a), thermal resistance (R) and sample thickness 

(h). The device basically simulates the dry human skin and its principle is based on 

the mathematical processing of time course of heat flow passing through the tested 

fabric due to temperature difference of the bottom measuring plate at 22 °C and the 

measuring head at 32 °C. The measurement takes only a few minutes, which ensures 

reliable measurements for the fabrics. 

Similar to measurements done by Permetest 12 types of different single layer fabrics 

each four from outer shell, thermal barrier and moisture barriers and also 64 multi-

layered combinations which are commonly used for production of fire fighters 

protective clothings were measured.  
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Table 5.9: Single layer fabrics average thermal parameters results by Alambeta.  

Single 

layer 

Fabric 

codes 

Tests Thermal 

conductivity 

λ 

(Wm
-1

K
-1

) 

Thermal 

diffusion 

a 

(m
2
s

-1
) 

Thermal 

absorptivity 

b 

(Wm
-2

s
1/2

K
-

1
) 

Thermal 

resistance 

R 

(mK.m
2
/W) 

A1 Average 54.73 0.076 198.33 8.33 

A2 Average 57.73 0.086 197.33 8.033 

A3 Average 61.97 0.074 228 7.4 

A4 Average 47.73 0.085 164.33 10.7 

B1 Average 32.63 0.114 97.23 17.13 

B2 Average 35.07 0.128 98.1 22.03 

B3 Average 32.73 0.089 110 7.8 

B4 Average 43.57 0.070 165.33 10.3 

C1 Average 36.83 0.53 51.07 76 

C2 Average 36.5 0.245 73.67 55.57 

C3 Average 36.2 0.288 67.87 54.93 

C4 Average 38.13 0.207 84.5 49.03 

 

The thermal absorptivity of single fabrics to mean a 'warm–cool' feeling that first 

sensation experienced when a human touches a fabric. This feeling is a result of heat 

exchange that takes place between the human hand and the fabric because of the 

temperature difference between the fabric surface and that of the human skin. If the 

thermal absorptivity of a garment is high it can be expected to give a cooler feeling 

upon first contact.  

Thermal resistance of single layer fabrics ;which is a measure of the resistance that a 

garment/fabric provides against heat loss from the body of the wearer to the external 

environment; showed by histogram above can be related to their thermal absorptivity 
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which is inversely proportional to each other.That is the more the fabric can resist to 

thermal transmission, the less value of their thermal absorptivity. 

 

Figure 5.7: Histogram of single layer fabrics thermal absorptivity and thermal 

resistance. 

 Thus from the outershell group fabric coded A3 or PBI Matrix with 200g/m
2
 

mass per unit area, from moisture barrier B4 or PU membrane laminated to 

knitted fabric with 145 g/m
2 

mass per unit area and from thermal barrier C4 

or Nonwoven quilted to Aramid Viscose FR inner lining with 85 g /m
2
 mass 

per unit area were found to be the highest results. Hence because of cooler 

feelings they provide they could be considered as the most comfortable 

specifically for fire fighters in warm environment. 

The thermal diffusion of single layer fabrics were measured by Alambeta device and 

the histogram below shows it. 

Thermal diffusion is an ability related to the heat flow through the air in the fabric 

structure. The thermal barrier’s measured value indicates that they have high thermal 

diffusion because of their bulky structure quilted with inner lining. Thermal barrier 

coded C1 or Two layers of nonwoven(55+55) quilted to Aramid Viscose FR inner 

lining with 110 g/m
2 

had high value because of two layers used in quilting and also 

Aramid viscose. 

Thermal parameters test results for layered fabrics was analyzed for each outershell 

fabrics separately.  
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In the analysis there was two thermal resistance values measured by both Alambeta 

and Permetest. 

 

Figure 5.8: Histogram of single layer fabrics thermal diffusion. 

Before ignoring one of the two, first I had to see their relationship based on the 

following null hyphothesis Ho.  

 Ho- There is no relationship between measured values of thermal resistance 

properties of Fire fighters protective clothing’s materials by using Alambeta 

and Permetest instruments. 

 

Figure 5.9: Correlations between thermal resistance measurements of layered fabrics 

by Alambeta and Permetest. 
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Table 5.10: Comparison of Thermal resistance measurements of layered fabrics by 

Alambeta and Permetest. 

Correlations 

 

Thermal_resi

stanceR_by_

Alambeta 

Thermal_resi

stanceR_by_

Permetest 

Thermal_resistanceR_b

y_Alambeta 

Pearson 

Correlation 
1 .776

**
 

Sig. (2-tailed)  .000 

N 64 64 

Thermal_resistanceR_b

y_Permetest 

Pearson 

Correlation 
.776

**
 1 

Sig. (2-tailed) .000  

N 64 64 

**. Correlation is significant at the 0.01 level (2-tailed). 

From this correlation results the relationship between measured values of thermal 

resistance of layered fabrics by Alamabeta and Permetest have the correlation 

coeficient of 0.776 which is greater than 0.65. Therefore there is statistical 

relationship between two measured values and the null hyphothesis above was 

rejected. 

Additionally; in order to proceed the discussions it was better to understand wich 

instruments results is best suit to our fabrics understudy. Alambeta measures the heat 

flow through garments which has direct contact with human skin based on its dry 

skin model between upper and bottom plates. Permetest measures the heat flow from 

high to low thermal regions and it is not better for underwear when compared with 

Alambeta. Hence, Firefighters protective clothing has no direct contacts with wearers 

skin the Permetest was chosen to be considered in thermal resistance results 

discussions.   

For layered fabric samples only average test results of thermal parameters measured 

by Alambeta device and also thermal resistance results by Permetest are given here, 

the full test data is attached at Appendix B. Table B.2 

From the histogram below the thermal absorptivity of thermal barrier coded C4 or 

Nonwoven quilted to Aramid Viscose FR inner lining with 85 g /m
2
 mass per unit 

area results in the highest value of thermal absorptivity of layered combination coded 
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Table 5.11: Multi - layer fabrics thermal parameters results by Alambeta and 

Permetest for common outershell coded A1 Nomex Outer shell Tough. 

No. 

 

Multi- 

layered 

Fabric 

codes 

 

Thermal Parameters by Alambeta  

By 

Permetest  

Thermal 

conductivity 

λ 

 (Wm
-1

K
-1

) 

Thermal 

diffusion 

a  

(m
2
s

-1
) 

Thermal 

absorption 

b 

(Wm
-2

s
1/2

K
-

1
) 

Thermal 

resistance 

R 

 (mK.m
2
/W) 

Thermal 

resistance 

 

Rct 
(mK.m

2
/W) 

1 A1B1C1 39.90 0.27 77.57 96.30 
63.43 

2 A1B1C2 39.87 0.39 64.20 80.20 
51.99 

3 A1B1C3 40.63 0.38 66.77 75.13 
47.90 

4 A1B1C4 41.30 0.32 73.23 72.77 
36.77 

5 A1B2C1 40.47 0.31 73.33 100.60 
65.47 

6 A1B2C2 39.93 0.61 52.70 83.17 
56.25 

7 A1B2C3 39.47 0.40 62.67 81.73 
49.02 

8 A1B2C4 41.10 0.26 80.50 67.13 
40.58 

9 A1B3C1 40.77 0.26 79.87 87.50 
51.31 

10 A1B3C2 39.47 0.38 64.33 75.13 
44.75 

11 A1B3C3 39.63 0.34 68.77 65.57 
41.72 

12 A1B3C4 42.13 0.24 85.47 55.30 
33.18 

13 A1B4C1 41.87 0.24 85.50 88.80 
59.66 

14 A1B4C2 40.93 0.37 68.57 76.70 
53.63 

15 A1B4C3 40.70 0.26 79.83 63.67 
48.60 

16 A1B4C4 43.10 0.23 89.27 59.60 
33.50 

 

 

A1B4C4. In all combinations it is understandable that the higher thermal absorptivity 

the lower thermal resistance as observed for the single layers also. Thermal 

absorptivity ‘warm cool feelings’ of moisture barriers which is sandwiched  between 

outershell and thermal barrier cannot have significant effect in combinations 
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measured values. The thermal resistance of layered combinations in which C4 or 

Nonwoven quilted to Aramid Viscose FR inner lining with 85 g /m
2
 mass per unit 

area used shows the least results which could be because of not being two layers of 

non woven.  

 

 
 

Figure 5.10: Histogram of thermal absorptivity and thermal resistance values of 

layers with common outer shell A1 or Nomex Outershell Tough with 195 g/ m² 

 

Thermal diffusion (a) values of layered fabrics with common outershell A1 or 

Nomex Outershell Tough with 195 g/ m² mass per unit area is compared and showed 

by histogram below.  

 

From the histogram, the thermal diffusion values in which thermal barrier C2 or Two 

layers of nonwoven(55+55) quilted to Nomex Comfort inner lining with 110 g/m
2
 

used shows the highest values in all combinations even if moisture barriers changed. 

This could be because of Nomex comfort inner ling used to be quilted. 
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Figure 5.11: Histogram of thermal diffusion values of layered fabrics with common 

outershell A1 or Nomex Outershell Tough with 195 g/ m² 

Table 5.12: Multi- layer fabrics thermal parameters results by Alambeta and 

Permetest for common outershell code A2 or PBI gold with 200 g/m
2
. 

 

No. 

 

Multi- 

layered 

Fabric 

codes 

 

Thermal Parameters by Alambeta  

By 

Permetest  

Thermal 

conductivity 

λ 

 (Wm
-1

K
-1

) 

Thermal 

diffusion 

a  

(m
2
s

-1
) 

Thermal 

absorption 

b 

(Wm
-2

s
1/2

K
-

1
) 

Thermal 

resistance 

R 

 (mK.m
2
/W) 

Thermal 

resistance 

 

Rct 
(mK.m

2
/W) 

1 A2B1C1 42.27 0.19 98.10 88.47 
57.37 

2 A2B1C2 40.33 0.33 70.97 74.20 
49.13 

3 A2B1C3 40.03 0.26 78.43 67.63 
46.11 

4 A2B1C4 41.60 0.23 76.67 76.10 
34.39 

5 A2B2C1 41.87 0.22 91.33 93.73 
63.29 

6 A2B2C2 40.57 0.29 76.67 76.10 
50.53 

7 A2B2C3 40.70 0.28 77.23 72.67 
49.96 

8 A2B2C4 42.10 0.42 73.50 64.97 
39.43 
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9 A2B3C1 41.90 0.19 96.63 83.07 
59.38 

10 A2B3C2 41.17 0.29 77.10 64.27 
48.28 

11 A2B3C3 40.90 0.26 82.23 68.27 
47.36 

12 A2B3C4 42.57 0.21 92.70 53.30 
34.30 

13 A2B4C1 42.40 0.18 100.87 83.50 
60.81 

14 A2B4C2 41.40 0.36 69.20 74.37 
57.50 

15 A2B4C3 42.40 0.31 76.33 62.37 
48.22 

16 A2B4C4 43.93 0.30 82.17 64.97 
36.23 

 

 

From the histogram below the thermal absorptivity values in which thermal barrier 

coded C1 or Two layers of nonwoven(55+55) quilted to Aramid Viscose FR inner 

lining with 110 g /m
2
 mass per unit area used shows the highest values in all 

combinations even if moisture barriers changed. This could be because of being two 

layers nonwoven rather than single layers. Thermal absorptivity ‘warm cool feelings’ 

of moisture barriers which is sandwiched  between outershell and thermal barrier 

cannot have significant effect in combinations measured values. The thermal 

resistance of layered combinations in which C4 or Nonwoven quilted to Aramid 

Viscose FR inner lining with 85 g /m
2
 mass per unit area used shows the least results 

which could be because of not being two layers of non woven. This holds the same 

for the outshell A1 used as common above.  

 

Figure 5.12: Histogram of thermal absorptivity and thermal resistance values of 

layers with common outer shell A2 or PBI gold with 200 g/ m². 
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Thermal diffusion (a) values of layered fabrics with common outershell A2 or PBI 

gold with 200 g/ m² mass per unit area is compared and showed by histogram below. 

From the histogram the thermal diffusion of thermal barrier coded C4 or Nonwoven 

quilted to Aramid Viscose FR inner lining with 85 g /m
2
 mass per unit area results in 

the highest value of thermal absorptivity of layered combination coded A2B2C4. 

Here the effects of higher mass per unit area with higher air density of sample results 

in this value when compared to C3 or Nonwoven quilted to Aramid Viscose FR inner 

lining with 55 g /m
2
 mass per unit area. 

 

 
 

Figure 5.13:  Histogram of thermal diffusion values of layered fabrics with common 

outershell A2 or PBI gold with 200 g/ m². 

Table 5.13: Multi- layer fabrics thermal parameters results by Alambeta and 

Permetest for common outershell A3(PBI Matrix with 200 g/ m²). 

No. 

 

Multi- 

layered 

Fabric 

codes 

 

Thermal Parameters by Alambeta  

By 

Permetest  

Thermal 

conductivity 

λ 

 (Wm
-1

K
-1

) 

Thermal 

diffusion 

a  

(m
2
s

-1
) 

Thermal 

absorption 

b 

(Wm
-2

s
1/2

K
-

1
) 

Thermal 

resistance 

R 

 (mK.m
2
/W) 

Thermal 

resistance 

 

Rct 
(mK.m

2
/W) 

1 A3B1C1 40.77 0.23 86.07 93.60 
50.41 

2 A3B1C2 40.87 0.29 76.40 73.90 
54.90 
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3 A3B1C3 41.33 0.31 74.17 72.83 
49.45 

4 A3B1C4 42.53 0.27 81.70 68.60 
39.09 

5 A3B2C1 42.33 0.22 91.30 96.33 
53.93 

6 A3B2C2 40.27 0.40 65.87 79.13 
59.42 

7 A3B2C3 40.33 0.33 70.80 72.30 
51.17 

8 A3B2C4 42.17 0.51 64.10 70.87 
40.57 

9 A3B3C1 42.33 0.22 91.30 96.33 
55.39 

10 A3B3C2 41.40 0.41 65.10 67.37 
51.60 

11 A3B3C3 41.53 0.38 67.50 63.60 
42.39 

12 A3B3C4 43.27 0.31 78.57 55.10 
31.74 

13 A3B4C1 41.33 0.22 89.43 84.37 
54.61 

14 A3B4C2 43.13 0.39 50.10 66.43 
50.14 

15 A3B4C3 42.50 0.33 75.03 64.37 
47.33 

16 A3B4C4 44.73 0.25 79.87 58.30 
46.13 

 

 

From the histogram below the thermal absorptivity values in which thermal barrier 

coded C1 or Two layers of nonwoven(55+55) quilted to Aramid Viscose FR inner 

lining with 110 g /m
2
 mass per unit area used shows the highest values in all 

combinations even if moisture barriers changed. This could be because of being two 

layers nonwoven rather than single layers. Further more this thermal barrier was 

quilted to Aramid viscose FR inner lining not Nomex comfort FR inner lining. This 

results agreed with the case of outershell PBI gold with 200 g/ m². Thermal 

absorptivity ‘warm cool feelings’ of moisture barriers which is sandwiched  between 

outershell and thermal barrier cannot have significant effect in combinations 

measured values. The thermal resistance of layered combinations in which C4 or 

Nonwoven quilted to Aramid Viscose FR inner lining with 85 g /m
2
 mass per unit 

area used shows the least results which could be because of not being two layers of 

non woven. This holds the same for the outshells A1 and A2 used as common above.  
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Figure 5.14: Histogram of thermal absorptivity and thermal resistance values of 

layers with common outer shell A3 or PBI Matrix with 200 g/ m². 

Thermal diffusion (a) values of layered fabrics with common outershell A3 or PBI 

Matrix with 200 g/ m² mass per unit area compared and showed by histogram below. 

From the histogram the thermal diffusion of thermal barrier coded C4 or Nonwoven 

quilted to Aramid Viscose FR inner lining with 85 g /m
2
 mass per unit area results in 

the highest value of thermal absorptivity of layered combination coded A3B2C4. 

Here the effects of higher mass per unit area with higher air density of sample results 

in this value when compared to C3 or Nonwoven quilted to Aramid Viscose FR inner 

lining with 55 g /m
2
 mass per unit area. This agreed with the values of outershell A2 

or PBI gold with 200 g/m² above. 

 
 

Figure 5.15: Histogram of thermal diffusion values of layered fabrics with common 

outershell A3 or PBI Matrix with 200 g/ m². 
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Table 5.14: Multi- layer fabrics thermal parameters results by Alambeta Permetest 

for common outershell code A4 or Nomex Outer shellTough Ripstop  

No. 

 

Multi- 

layered 

Fabric 

codes 

 

Thermal Parameters by Alambeta  

By 

Permetest  

Thermal 

conductivity 

λ 

 (Wm
-1

K
-1

) 

Thermal 

diffusion 

a  

(m
2
s

-1
) 

Thermal 

absorption 

b 

(Wm
-2

s
1/2

K
-

1
) 

Thermal 

resistance 

R 

 (mK.m
2
/W) 

Thermal 

resistance 

 

Rct 
(mK.m

2
/W) 

1 A4B1C1 41.83 0.22 90.53 87.37 
62.00 

2 A4B1C2 40.13 0.34 69.20 76.30 
54.60 

3 A4B1C3 40.37 0.41 65.57 71.20 
51.89 

4 A4B1C4 41.50 0.26 82.13 69.50 
40.83 

5 A4B2C1 41.13 0.20 92.20 99.73 
59.76 

6 A4B2C2 40.10 0.28 75.57 83.40 
57.58 

7 A4B2C3 40.97 0.29 76.60 76.53 
53.66 

8 A4B2C4 41.73 0.27 71.27 75.77 
45.65 

9 A4B3C1 40.73 0.19 93.97 87.17 
55.35 

10 A4B3C2 41.00 0.32 74.13 71.63 
50.76 

11 A4B3C3 40.93 0.31 73.53 66.47 
45.99 

12 A4B3C4 42.33 0.24 87.60 63.57 
38.04 

13 A4B4C1 42.13 0.18 101.13 85.97 
62.30 

14 A4B4C2 41.43 0.30 77.03 72.77 
55.86 

15 A4B4C3 41.80 0.38 69.93 66.67 
49.91 

16 A4B4C4 43.50 0.25 87.13 63.30 
40.68 

 

 

From the histogram below the thermal absorptivity values in which thermal barrier 

coded C1 or Two layers of nonwoven(55+55) quilted to Aramid Viscose FR inner 

lining with 110 g /m
2
 mass per unit area used shows the highest values in all 

combinations even if moisture barriers changed. This could be because of being two 
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layers nonwoven rather than single layers. Further more this thermal barrier was 

quilted to Aramid viscose FR inner lining not Nomex comfort FR inner lining. This 

results agreed with the case of outershell PBI gold with 200 g/ m² and PBI Matrix 

with 200 g/ m². Thermal absorptivity ‘warm cool feelings’ of moisture barriers which 

is sandwiched  between outershell and thermal barrier cannot have significant effect 

in combinations measured values. The thermal resistance of layered combinations in 

which C4 or Nonwoven quilted to Aramid Viscose FR inner lining with 85 g /m
2
 

mass per unit area used shows the least results which could be because of not being 

two layers of non woven. This holds the same for the outshells A1, A2 and A3 used 

as common above.  

 

 

Figure 5.16: Histogram of thermal absorptivity and thermal resistance values of 

layers with common outer shell A4 or Nomex Outershell Tough 

Ripstop with 195 g/ m². 

Thermal diffusion (a) values of layered fabrics with common outershell A4 or 

Nomex Outershell Tough Ripstop   with 195 g/ m² mass per unit area compared and 

showed by histogram below. From the histogram the thermal diffusion of thermal 

barrier coded C3 or Nonwoven quilted to Aramid Viscose FR inner lining with 55 g 

/m
2
 mass per unit area results in the highest value of thermal absorptivity of layered 

combination coded A4B1C3. Here the effects of moisture barrier might be 

considered for not agreeing with the previous outershell results. 
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Figure 5.17: Histogram of thermal diffusion values of layered fabrics with common 

outershell A4 or Nomex Outershell Tough Ripstop with 195 g/ m². 

5.4 Protection Performance Test Results and Discussions 

The burning tests have done only for layered fabrics because of the single layers 

alone cannot fulfill the standards minimum protection requirements. Knowing this 

and testing for single layers have no importance rather than consuming the sample 

fabrics. The layered fabrics are tested for two tests. The first one is convective heat 

transfer test which is done according to EN 367 standard. This test measures the time 

in seconds that indicates the convective heat transfer index at 12 and 24 seconds. It is 

abbreviated as EN367 HTI 12 AND EN367 HTI 24, and their difference is also 

calculated as shown in table 5.x. The second test is layered fabrics protection test to 

radiant heat flux which is done according to EN6942 and the index measures times in 

seconds at 12 and 24 seconds. It is abbreviated as RHTI 12 and RHTI 24. Thus the 

more time(s) resists to burn, the more protective the layer.  

Before discussing on the results of burning tests it is better to correlate the results and 

see their relationship for tests separately. Comparison of EN367 HTI 12 and EN367 

HTI 24 convective heat transfer index at 12 second and 24 second relations by 

correlation was observed. 

Based on the null hyphothesis which says; there is significant difference between 

measured values of burning tests according to  EN367 HTI 12 and EN367 HTI 24, 

convective heat transfer index at 12 second and 24 second, and also; There is 
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significant difference between measured values according to  EN6942 RHTI 12 and 

EN6942 RHTI 24, radiant heat transfer index at 12 second and 24 seconds. 

 

Figure 5.18: Correlation EN367 HTI 12 and EN367 HTI 24 convective heat transfer 

index at 12 second and 24 second. 

 Table 5.15: Comparison of EN367 HTI 12 and EN367 HTI 24 convective heat 

transfer ındex at 12 second and 24 second. 

 Correlations 

 

EN367_HTI_

12 

EN367_HTI_

24 

EN367_HTI_1

2 

Pearson 

Correlation 
1 ,982

**
 

Sig. (2-tailed)  ,000 

N 64 64 

EN367_HTI_2

4 

Pearson 

Correlation 
,982

**
 1 

Sig. (2-tailed) ,000  

N 64 64 

**. Correlation is significant at the 0.01 level (2-tailed). 
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It shows that there is very significat relationship between the two results of 

cenvective heat transfer index at 12 and 24 seconds with correlation coeffiecient of 

0.982 which is greater than 0.65 and thus we can consider EN367 HTI 24 as their 

comparison parameter in place of two results compared to each other. 

Similarly, the comparison of EN6942 RHTI 12 and EN6942 RHTI 24 radiant heat 

transfer ındex at 12 second and 24 second relations by correlation 

 

Figure 5.19: Correlation  of EN6942 RHTI 12 and EN6942 RHTI 24 radiant heat 

transfer index at 12 second and 24 second. 

It shows that there is very significat relationship with 0.980 correlation coefficients  

between the two results (EN6942 RHTI 12 and EN6942 RHTI 24 radiant heat 

transfer index at 12 second and 24 second) and thus we can consider EN6942 RHTI 

24 as their comparison parameter in place of two results compared to each other 
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Table 5.16: Comparison of EN6942 RHTI 12 and EN6942 RHTI 24 radiant heat 

transfer index at 12 second and 24 second. 

Correlations 

 

EN6942_RHT

I_12 

EN6942_RHT

I_24 

EN6942_RHTI_12 Pearson Correlation 1 .980
**

 

Sig. (2-tailed)  .000 

N 64 64 

EN6942_RHTI_24 Pearson Correlation .980
**

 1 

Sig. (2-tailed) ,000  

N 64 64 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Table 5.17: Burning test results for layered fabrics HTI and RHTI with common  

moisture barrier B1(PU membrane laminated to non woven (50/25/25)) 

No. Multi-

layered 

fabrics 

code 

EN 

367                  

HTI12 

EN 

367                 

HTI24 

EN 367                                       

HTI24-

HTI12 

EN 

6942 

RHTI 

12 

EN 

6942                             

RHTI24 

EN 

6942                                               

RHTI 

24-

RHTI 

12 

1   

B1C1A1 

13.5 18.25 4.75 17.65 23.9 6.25 

2 B1C1 A2 12.1 16.9 4.8 20.75 30 9.25 

3 B1C1 A3 10.8 14.9 4.1 21.6 31 9.4 

4 B1C1 A4 13.2 18.15 4.95 16.4 22.2 5.8 

5 B1C2 A1 13 17.5 4.5 15.2 20.3 5.1 

6 B1C2 A2 11.9 16.7 4.8 20.2 29.5 9.3 

7 B1C2 A3 10.6 14.7 4.1 20.7 30.5 9.8 

8 B1C2 A4 13.1 17.7 4.6 15.3 20.5 5.2 
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9 B1C3 A1 10.8 14.5 3.7 13.9 19 5.1 

10 B1C3 A2 9.9 13.6 3.7 14.8 21.5 6.7 

11 B1C3 A3 10.3 13.9 3.6 14.5 20.7 6.2 

12 B1C3 A4 9.4 13.1 3.7 11 15.8 4.8 

13 B1C4 A1 11.1 15.1 4 14.7 20.3 5.6 

14 B1C4 A2 10.9 14.9 4 15.7 23.3 7.6 

15 B1C4 A3 11.2 15.3 4.1 15.6 23.2 7.6 

16 B1C4 A4 10.6 14.8 4.2 12.2 18.1 5.9 

 

From the histogram below for common moisture barrier B1 or PU membrane 

laminated to nonwoven (50/25/25) with 55g/m
2
, the outershell coded A3 or PBI 

Matrix with 200 g/m² mass per unit area resulted in the highest protection to radiant 

heat transfer from each groups, even if thermal barriers changed. However, burning  

results for convective heat transfer protection is the lowest for PBI Matrix with 

200g/m
2
 from the groups. 

 

Figure 5.20: Histogram of layered fabrics EN367 HTI 24 and EN6942 RHTI 24 

results with common moisture barrier B1 or PU membrane laminated 

to nonwoven (50/25/25) with 55g/m
2
. 
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Table 5.18: Burning test results for layered fabrics HTIRHTI, common moisture 

barrier B2 or PU membrane laminated to non woven (50/25/25).  

No. Multi-

layered 

fabrics 

code 

EN 

367                  

HTI12 

EN 

367                 

HTI24 

EN 367                                       

HTI24-

HTI12 

EN 

6942 

RHTI 

12 

EN 

6942                             

RHTI24 

EN 

6942                                               

RHTI 

24-

RHTI 

12 

1 B2C1 A1 13.8 18.9 5.1 17.95 24.7 6.75 

2 B2C1 A2 14.25 19.9 5.65 19.1 28.65 9.55 

3 B2C1 A3 14.1 19.7 5.6 19 28.4 9.4 

4 B2C1 A4 14.25 19.6 5.35 18.3 25.45 7.15 

5 B2C2 A1 14.3 18.5 4.2 15.7 22.4 6.7 

6 B2C2 A2 13.9 19.4 5.5 18.9 26.4 7.5 

7 B2C2 A3 13.5 19.3 5.8 18.9 26.4 7.3 

8 B2C2 A4 14.4 18.7 4.3 15.5 22.2 6.7 

9 B2C3 A1 13 17.2 4.2 15.2 21.2 5.9 

10 B2C3 A2 12.4 16.2 3.8 15.6 22.8 7.2 

11 B2C3 A3 11.1 15 3.9 15.4 22.6 7.2 

12 B2C3 A4 12.1 16 3.9 14.3 21 6.7 

13 B2C4 A1 12.4 16.7 4.3 14.2 20.2 6 

14 B2C4 A2 13 17.6 4.6 16.4 24.9 8.5 

15 B2C4 A3 12 16.5 4.5 16.3 24.9 8.6 

16 B2C4 A4 13 17.7 4.7 15.8 23.2 7.4 

 

From the histogram below for common moisture barrier B2 or PU membrane 

laminated to nonwoven (50/25/25) with 85 g/m
2
, the outershell coded A3 or PBI 

Matrix with 200 g/m² mass per unit area and outer shell coded A2 or PBI gold with 

200 g/m² are first and second respectively with slight differences in protection to 

radiant heat transfer from each groups, even if thermal barriers changed. Protection 
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to convective heat transfer is also proportional to radiant heat transfer unlike in 

moisture barrier PU membrane laminated to nonwoven (50/25/25) with 55g/m
2
. 

 

Figure 5.21: Histogram of layered fabrics EN367 HTI 24 and EN6942 RHTI 24 

results with common moisture barrier B2 or PU membrane laminated 

to nonwoven (50/25/25) with 85 g/m
2
. 

Table 5.19: Burning test results for layered fabrics HTI and RHTI with common 

moisture barrier B3 or PU membrane laminated to knitted fabric. 

No. Multi-

layered 

fabrics 

code 

EN 

367                  

HTI12 

EN 

367                 

HTI24 

EN 367                                       

HTI24-

HTI12 

EN 

6942 

RHTI 

12 

EN 

6942                             

RHTI24 

EN 

6942                                               

RHTI 

24-

RHTI 

12 

1 B3C1 A1 10.75 14.8 4.05 14.15 20.35 6.2 

2 B3C1 A2 11.4 16.05 4.65 16.15 24.2 8.05 

3 B3C1 A3 11 16.2 5.2 16 23.8 7.8 

4 B3C1 A4 10.8 15.05 4.25 14.45 20.6 6.15 

5 B3C2 A1 9.8 13.7 3.9 13.9 19.4 5.5 

6 B3C2 A2 10.9 15.8 4.9 15.7 23.8 8.1 

7 B3C2 A3 10.9 15.6 4.7 15.3 23.8 8.5 

8 B3C2 A4 9.8 13.8 4 13.5 19.5 6 
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9 B3C3 A1 9.4 12.6 3.2 9.6 13.8 4.2 

10 B3C3 A2 9.1 12.3 3.2 12.2 18.5 6.3 

11 B3C3 A3 8.9 12.2 3.3 12 17.9 5.9 

12 B3C3 A4 8.9 12 3.1 9.8 14 4.2 

13 B3C4 A1 9.6 13.1 3.5 10.2 14.8 4.6 

14 B3C4 A2 9.8 13.4 3.6 13.3 20.5 7.2 

15 B3C4 A3 9.5 13.3 3.8 13.3 20.3 7 

16 B3C4 A4 9.6 13.2 3.6 10.8 15.8 5 

From the histogram below for common moisture barrier B3 or PU membrane 

laminated to knitted fabric with 85 g/m
2
, the outershell coded A3 or PBI Matrix with 

200 g/m² mass per unit area and outer shell coded A2 or PBI gold with 200 g/m² are 

first and second respectively with slight differences in protection to radiant heat 

transfer from each groups, even if thermal barriers changed. Protection to convective 

heat transfer is also proportional to radiant heat transfer. 

 

Figure 5.22: Histogram of layered fabrics EN367 HTI 24 and EN6942 RHTI 24 

results with common moisture barrier B3or PU membrane laminated 

to knitted fabric with 85 g/m
2
. 
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Table 5.20: Burning test results for layered fabrics HTI and RHTI with common 

moisture barrier B4 or PU membrane laminated to knitted fabric. 

No. Multi-

layered 

fabrics 

code 

EN 

367                  

HTI12 

EN 

367                 

HTI24 

EN 367                                       

HTI24-

HTI12 

EN 

6942 

RHTI 

12 

EN 

6942                             

RHTI24 

EN 

6942                                               

RHTI 

24-

RHTI 

12 

1 B4C1 A1 11.25 15.25 4 15.05 22.1 7.05 

2 B4C1 A2 13.35 18.55 5.2 17.5 25.95 8.45 

3 B4C1 A3 13 18.2 5.2 17.2 25 7.8 

4 B4C1 A4 13.45 19 5.55 15.3 22.85 7.55 

5 B4C2 A1 10.9 14.7 3.8 14.9 21.7 6.8 

6 B4C2 A2 13.2 18.2 5 17.1 25.2 8.1 

7 B4C2 A3 13.5 18.1 4.6 16.9 25 8.1 

8 B4C2 A4 10.5 14.6 4.1 14.9 20.4 5.5 

9 B4C3 A1 9.5 12.7 3.2 11.5 15.7 4.2 

10 B4C3 A2  10  14  4  16  23.8  7.8 

11 B4C3 A3 9.9 13.5 3.6 13.7 18.8 5.1 

12 B4C3 A4 9.9 13.7 3.8 11 15.7 4.7 

13 B4C4 A1 9.7 13.3 3.6 12 16.9 4.9 

14 B4C4 A2 11.1 15.6 4.5 14.5 21.3 6.8 

15 B4C4 A3 11.3 15.4 4.1 14.5 20.7 6.2 

16 B4C4 A4 11.1 15.4 4.3 12.5 18 5.5 

 

From the histogram below for common moisture barrier B4 or PU membrane 

laminated to knitted fabric with 145 g/m
2
, the outershell coded A2 or PBI gold with 

200 g/m² mass per unit area and outer shell coded A3 or PBI Matrix with 200 g/m² 

are first and second respectively with slight differences in protection to radiant heat 
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transfer from each groups, even if thermal barriers changed. Protection to convective 

heat transfer is also proportional to radiant heat transfer. 

 

 

Figure 5.23: Histogram of layered fabrics EN367 HTI 24 and EN6942 RHTI 24 

results with common moisture barrier B4 or PU membrane laminated 

to knitted fabric with 145 g/m
2
. 

Generally concluding from all histograms of protection performance, the higher mass 

per unit area of outershell, the higher the protection to radiant heat transfer and also 

protection to convective heat transfer. Moreover,considering the results of outershell 

materials PBI are better in burning protection performance when compared to 

Nomex Outershell fabrics. 

5.5 Thermal Comfort Index as Comparison Term 

The overall measured values of comfort properties shall be evaluated in one system 

and then used to screen the comfort level of firefighters protective clothings. 

Accordingly the thermal comfort index calculation is suitable to rank all 64 samples 

understudy.  Numerous studies of textile thermal protective properties as well as 

theoretical considerations have allowed to develop a generalised formula for a 

comprehensive index representing the capability of textiles to ensure thermal comfort 

(Thermal Comfort Index). The formula is as follows[90] 
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𝑇𝐶𝐼 = ∑ (𝑎𝑥𝑖 ∗
𝑋𝑖−𝑋𝑖𝑚𝑖𝑛

𝑋𝑖
)

𝑛

𝑖=1
+ ∑ (𝑎𝑧𝑗 ∗

𝑍𝑗𝑚𝑎𝑥−𝑍𝑗

𝑍𝑗𝑚𝑎𝑥
)

𝑚

𝑗=1
                               (5.3) 

Where: 

TCI      – Thermal Comfort Index, 

xi          – the value of ith parameter,which results in an improvement of thermal 

comfort 

              when increased, where i = 1, 2, …, n, 

x imin – minimum value of ith parameter needed to ensure thermal comfort, 

zj         – the value of jth parameter, which results in a deterioration in thermal 

comfort when 

             increased, where j = 1, 2, …, m, 

z jmax – maximum value of jth parameter, which is acceptable from the point of 

view of 

            thermal comfort, 

ax,i, a z,j – parameters calculated on the basis of the importance degree of particular 

            properties used for calculations. 

 

The value of TCI ranges between 0 and 1. The higher the value of the index, the 

higher the capability of a fabric to ensure thermal comfort. A certain limitation of 

TCI lies in the fact that the current level of knowledge does not allow to determine 

minima and maxima, i.e. critical points at which values of particular parameters of 

fabrics for everyday clothing are acceptable for providing thermal comfort. The basic 

difficulty in determining these values lies in the impossibility to define conditions in 

which clothing would be worn, the changeability of these conditions during the 

wearing of the clothing which result from all the manner of wearing, thermal 

environmental conditions, individual features and the type of physical activity of the 

wearer [89]. TCI can be used to assess textiles for specialist protective clothing, 

which have normative requirements for the range of values of an indicator 

influencing thermal protection. Also the index is useful if a receiver has particular 

requirements for textiles used in his/ her order. In this case requirements can be taken 

as critical values, i.e. minimum and maximum values in the formula for TCI. 

5.5.1 Relative thermal comfort index 

Matusiak M., Sikorski K.(2011), In a comparative analysis of fabrics evaluated with 

TCI above formula, it is advisable to use a maximum value of the zj property 
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obtained for the group of fabrics under evaluation instead of the maximum zmax 

value acceptable for providing thermal comfort. Similarly, instead of using the 

minimum value xmin necessary to ensure thermal comfort, the lowest value of the xi 

property obtained for the group of fabrics under evaluation and comparison can be 

used[90]. 

An index calculated on the basis of minimum and maximum values of particular 

parameters obtained as a result of testing a group of fabrics should be considered as a 

relative measure of the quality of fabrics from the point of view of their ability to 

ensure thermal comfort, since it allows a comparative evaluation of fabrics and 

assessment of the level of fabric quality with regard to the quality of other fabrics 

evaluated by means of the same procedure. All things considered, an index 

calculated on the basis of minimum and maximum values of parameters obtained by 

measuring a group of fabrics that are under collective evaluation is referred to as 

Relative Thermal Comfort Index (RTCI), the formula of which is as follows: 

𝑅𝑇𝐶𝐼 = ∑ (𝑎𝑥𝑖 ∗
𝑋𝑖−𝑋𝑖𝑚𝑖𝑛𝐼𝐺

𝑋𝑖
)

𝑛

𝑖=1
+ ∑ (𝑎𝑧𝑗 ∗

𝑍𝑗𝑚𝑎𝑥−𝑍𝑗

𝑍𝑗𝑚𝑎𝑥𝐼𝐺
)

𝑚

𝑗=1
                    (5.4) 

Where: 

RTCI – Relative Thermal Comfort Index, 

Xi    – the value of ith parameter, which results in an improvement of thermal  

          comfort when increased, where i = 1, 2, …, n, 

ximinIG – minimum (intragroup - IG) value of ith parameter obtained as a result of 

               measuring a group of textiles under collective evaluation, 

zj      – the value of jth parameter, which results in a deterioration of thermal comfort   

          when increased, where j = 1, 2, …, m, 

zjmaxIG – maximum (intragroup - IG) value of jth parameter obtained as a result of 

                measurements made on a group of textiles under collective evaluation, 

𝑎𝑥 = 𝑃𝑖/[∑ (pi)𝑛
𝑖=1 + ∑ (pj)𝑚

𝑗=1 ]                                         (5.5) 

𝑎𝑗 = 𝑃𝑗/[∑ (pi)𝑛
𝑖=1 + ∑ (pj)𝑚

𝑗=1 ]                                          (5.6) 

Where: 

            pi – significance of ith property (1 ÷ 5), 

            pj – significance of jth property (1 ÷ 5). 

The properties of fabrics which influence their capability to ensure thermal comfort 

as well as significance degrees corresponding to these properties have been selected 
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on the basis of experience, an analysis of the heat exchange processes which take 

place in various climatic conditions, and the results of numerous prior studies 

concerning human body protection against hot and thermal discomfort [91]. 

Water vapour permeability is assumed to be a key parameter since it is body’s 

natural mechanism for cooling itself when overheating is through sensible 

perspiration in the form of liquid sweat. This is caused by strenuous activity or 

climatic conditions. Sweating is troublesome in this case. If the water vapour cannot 

escape to the surrounding atmosphere then the relative humidity inside the clothing 

increases, causing a wet feeling on the skin, and leading to an uncomfortable 

sensation. Consequently,water vapour resistance is scored 5, i.e. the highest degree 

of significance. Thermal resistance is also one of important parameter since body 

protection against excessive heat gain is an absolute condition for maintaining 

thermal comfort in a hot microclimate and has been scored 4. 

Table 5.21: Degree of importance of the properties used for RTCI calculation. 

 Property Units  P a 

1 Water-vapour 

resistance 

m
2
.Pa/W 5 0.357 

2 Thermal 

resistance 

mK.m
2
/W 4 0.286 

3 Thermal 

absorptivity 

Wm
-2

s
1/2

K
-1

 3 0.214 

4 Thermal 

diffusion 

m
2
s

-1
 2 0.143 

 Σpi  14  

 

Thermal absorptivity is the characteristic of how textile feels when touched, i.e. 

warm or cold. A warm or cold sensation when skin touches clothes is important 

parameter for comfort because it influences the subjective feeling of thermal 

comfort. This feeling is a result of heat exchange that takes place between the human 

hand and the fabric because of the temperature difference between the fabric surface 

and that of the human skin. Consequently, thermal absorptivity has been regarded as 

an important property, hence it is scored 3 (out of 5). Thermal diffusion is an ability 
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related to the heat flow through the air in the fabric structure. The thermal diffusion 

of the textile materials is the transient thermal characteristic of textiles.hence it 

should also considered while discusing thermal comfort index and scaled as 2 out of 

5. Then Relative comfort index has been calculated acccording to below formula.  

RTCI=0,214*(1-0,18/a)+0,143*(1-52,7/b)+0,357*(1-Ret/31,69)+0,286*(1-

Rct/65,47) 

Relative thermal comfort index calculated values ranges between zero and one and 

the more values close to 1 the more it is comfortable. Accordingly, from 64 total 

samples, layered fabrics coded A1B3C4, A3B3C4 and A3B3C3 ranked 1 up to 3 

respectively as the most comfortable layered and samples A2B2C1, A4B4C1, 

A4B2C1 are screened from the least in comfort levels respectively 

Table 5.22: The calculated RTI of the layered fabrics. 

 No.  Code a b Ret Rct RTCI 

1 A1B1C1 0.27 77.57 21.94 63.43 0.317333 

2 A1B1C2 0.39 64.20 21.16 51.99 0.317333 

3 A1B1C3 0.38 66.77 22.48 47.90 0.322858 

4 A1B1C4 0.32 73.23 23.14 36.77 0.355625 

5 A1B2C1 0.31 73.33 26.91 65.47 0.1849 

6 A1B2C2 0.61 52.70 22.38 56.25 0.295643 

7 A1B2C3 0.40 62.67 24.55 49.02 0.292592 

8 A1B2C4 0.26 80.50 25.69 40.58 0.293612 

9 A1B3C1 0.26 79.87 21.37 51.31 0.293883 

10 A1B3C2 0.38 64.33 19.94 44.75 0.360731 

11 A1B3C3 0.34 68.77 21.59 41.72 0.350435 

12 A1B3C4 0.24 85.47 19.16 33.18 0.393405 

13 A1B4C1 0.24 85.50 29.14 59.66 0.162887 

14 A1B4C2 0.37 68.57 22.67 53.63 0.294915 

15 A1B4C3 0.26 79.83 28.25 48.60 0.22799 
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16 A1B4C4 0.23 89.27 25.57 33.50 0.316784 

17 A2B1C1 0.19 98.10 25.13 57.37 0.183856 

18 A2B1C2 0.33 70.97 25.23 49.13 0.276575 

19 A2B1C3 0.26 78.43 26.95 46.11 0.251542 

20 A2B1C4 0.23 76.67 27.76 34.39 0.271025 

21 A2B2C1 0.22 91.33 28.32 63.29 0.146581 

22 A2B2C2 0.29 76.67 25.62 50.53 0.2574 

23 A2B2C3 0.28 77.23 26.78 49.96 0.244733 

24 A2B2C4 0.42 73.50 26.52 39.43 0.335054 

25 A2B3C1 0.19 96.63 20.84 59.38 0.226545 

26 A2B3C2 0.29 77.10 21.92 48.28 0.309741 

27 A2B3C3 0.26 82.23 20.07 47.36 0.324329 

28 A2B3C4 0.21 92.70 20.22 34.30 0.359384 

29 A2B4C1 0.18 100.87 23.31 60.81 0.178131 

30 A2B4C2 0.36 69.20 26.73 57.50 0.231676 

31 A2B4C3 0.31 76.33 24.81 48.22 0.286084 

32 A2B4C4 0.30 82.17 23.98 36.23 0.350427 

33 A3B1C1 0.23 86.07 25.62 50.41 0.232862 

34 A3B1C2 0.29 76.40 24.03 54.90 0.25644 

35 A3B1C3 0.31 74.17 25.48 49.45 0.271353 

36 A3B1C4 0.27 81.70 24.57 39.09 0.318401 

37 A3B2C1 0.22 91.30 28.61 53.93 0.182622 

38 A3B2C2 0.40 65.87 27.79 59.42 0.217343 

39 A3B2C3 0.33 70.80 26.17 51.17 0.257735 

40 A3B2C4 0.51 64.10 24.82 40.57 0.34962 

41 A3B3C1 0.22 91.30 23.77 55.39 0.230731 
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42 A3B3C2 0.41 65.10 21.93 51.60 0.317341 

43 A3B3C3 0.38 67.50 19.89 42.39 0.377496 

44 A3B3C4 0.31 78.57 22.91 31.74 0.381469 

45 A3B4C1 0.22 89.43 25.51 54.61 0.210873 

46 A3B4C2 0.39 50.10 31.69 50.14 0.174316 

47 A3B4C3 0.33 75.03 28.48 47.33 0.254155 

48 A3B4C4 0.25 79.87 29.64 46.13 0.216958 

49 A4B1C1 0.22 90.53 25.74 62.00 0.1842 

50 A4B1C2 0.34 69.20 23.15 54.60 0.278849 

51 A4B1C3 0.41 65.57 24.62 51.89 0.286402 

52 A4B1C4 0.26 82.13 24.15 40.83 0.310591 

53 A4B2C1 0.20 92.20 26.95 59.76 0.162559 

54 A4B2C2 0.28 75.57 26.19 57.58 0.217608 

55 A4B2C3 0.29 76.60 24.07 53.66 0.263831 

56 A4B2C4 0.27 71.27 26.54 45.65 0.253713 

57 A4B3C1 0.19 93.97 22.06 55.35 0.22494 

58 A4B3C2 0.32 74.13 23.44 50.76 0.291029 

59 A4B3C3 0.31 73.53 29.29 45.99 0.24421 

60 A4B3C4 0.24 87.60 22.34 38.04 0.332677 

61 A4B4C1 0.18 101.13 25.40 62.30 0.150734 

62 A4B4C2 0.30 77.03 29.04 55.86 0.203299 

63 A4B4C3 0.38 69.93 26.63 49.91 0.273238 

64 A4B4C4 0.25 87.13 27.08 40.68 0.276283 

 

Relative thermal comfort index calculated values ranges between zero and one and 

the more values close to 1 the more it is comfortable. Thus, all 64 samples are ranked  

for their comfort properties as shown by table below 
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Table 5.23: Ranks of 64 sample layered fabrics based on calculated RTCI values. 

Code RTCI  Ranks Code RTCI  Rank
s 

Code RTCI  Rank
s 

A1B3C4 0.39340 1 A1B2C4 0.293612 23 A3B2C2 0.217343 45 

A3B3C4 0.38146 2 A1B2C3 0.292592 24 A3B4C4 0.216958 46 

A3B3C3 0.37749 3 A4B3C2 0.291029 25 A3B4C1 0.210873 47 

A1B3C2 0.36073 4 A4B1C3 0.286402 26 A4B4C2 0.203299 48 

A2B3C4 0.35938 5 A2B4C3 0.286084 27 A2B1C1 0.183856 49 

A1B1C4 0.35562 6 A4B1C2 0.278849 28 A3B2C1 0.182622 50 

A1B3C3 0.35043 7 A2B1C2 0.276575 29 A2B4C1 0.178131 51 

A2B4C4 0.35042 8 A4B4C4 0.276283 30 A3B4C2 0.174316 52 

A2B2C4 0.33505 9 A4B4C3 0.273238 31 A1B4C1 0.162887 53 

A4B3C4 0.33267 10 A3B1C3 0.271353 32 A4B2C1 0.162559 54 

A2B3C3 0.32432 11 A2B1C4 0.271025 33 A4B4C1 0.150734 55 

A1B1C3 0.32285 12 A4B2C3 0.263831 34 A2B2C1 0.146581 56 

A3B1C4 0.31840 13 A3B2C3 0.257735 35 A3B2C4 0.34962 57 

A3B3C2 0.31734 14 A3B4C3 0.254155 36 A3B1C2 0.25644 58 

A1B1C1 0.31733 15 A4B2C4 0.253713 37 A4B3C3 0.24421 59 

A1B1C2 0.31733 16 A2B1C3 0.251542 38 A1B4C3 0.22799 60 

A1B4C4 0.31678 17 A2B2C3 0.244733 39 A4B3C1 0.22494 61 

A4B1C4 0.31059 18 A3B1C1 0.232862 40 A2B2C2 0.2574 62 

A2B3C2 0.30974 19 A2B4C2 0.231676 41 A1B2C1 0.1849 63 

A1B2C2 0.29564 20 A3B3C1 0.230731 42 A4B1C1 0.1842 64 

A1B4C2 0.29491 21 A2B3C1 0.226545 43    

A1B3C1 0.29388 22 A4B2C2 0.217608 44    
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5.6 Screening Firefighters Clothings for Wear Trials 

Screening for Most Protective to least protective 

Step 1: comparison of EN367 HTI 12 and EN367 HTI 24 convective heat transfer 

index at 12 second and 24 second relations by correlation has been done and 

considering EN367 HTI 24 as their ranking parameter in place of two results. 

Step 2: comparison of EN6942 RHTI 12 and EN6942 RHTI 24 radiant heat transfer 

index at 12 second and 24 second relations by correlation has been done and 

considering EN6942 RHTI 24 as their ranking parameter in place of two results 

Step 3: ranking as per EN367 HTI 24 and EN6942 RHTI 24 and adding their 

corresponding ranks to re rank from most protective to least one 

Table 5.24: Ranking of samples as per EN367 HTI 24 and EN6942 RHTI 24 from 

most protective to least one. 

Ranks Multi-

layered 

fabrics 

code 

EN367                 

HTI24 

(s) 

EN6942                             

RHTI24 

(s) 

Ranks 

By 

EN367 

HTI24 

Ranks by 

EN6942 

RHTI 24 

Sum of 

two 

ranks 

1 
A2B2C1 

19.9 30 1 3 4 

2 
A1B2C1 

18.9 26.4 7 7 14 

3 
A1B1C1 

18.25 28.65 11 5 16 

4 
A1B1C2 

17.5 28.4 19 6 25 

5 
A3B2C4 

16.5 31 24 1 25 

6 
A2B4C1 

18.55 23.8 9 19 28 

7 
A2B2C3 

16.2 29.5 25 4 29 

8 
A2B2C4 

17.6 24.9 18 14 32 

9 
A3B2C2 

19.3 22.6 5 27 32 

10 
A1B2C2 

18.5 22.85 10 25 35 

11 
A1B2C3 

17.2 24.7 20 16 36 

12 
A2B1C2 

16.7 24.9 22 14 36 

13 
A3B2C1 

19.7 20.6 2 40 42 
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14 
A1B1C4 

15.1 26.4 36 7 43 

15 
A2B1C1 

16.9 23.2 21 23 44 

16 
A1B4C1 

15.25 25 35 12 47 

17 
A2B4C2 

18.2 21.3 12 35 47 

18 
A2B3C2 

15.8 23.8 29 19 48 

19 
A4B2C2 

18.7 20.5 8 41 49 

20 
A1B3C1 

14.8 25.95 41 9 50 

21 
A1B2C4 

16.7 22.2 22 29 51 

22 
A2B2C2 

19.4 20.2 4 48 52 

23 
A2B3C1 

16.05 22.8 27 26 53 

24 
A3B4C1 

18.2 20.4 12 43 55 

25 
A4B2C1 

19.6 18.8 3 52 55 

26 
A1B1C3 

14.5 25.45 46 10 56 

27 
A3B3C4 

13.3 30.5 55 2 57 

28 
A3B2C3 

15 23.3 38 22 60 

29 
A4B2C4 

17.7 20.3 16 45 61 

30 
A4B1C1 

18.15 19.5 14 49 63 

31 
A2B4C3 

14 23.8 47 19 66 

32 
A3B1C2 

14.7 23.2 43 23 66 

33 
A3B4C2 

18.1 19 15 51 66 

34 
A4B1C2 

17.7 19.4 16 50 66 

35 
A2B4C4 

15.6 20.7 30 38 68 

36 
A1B3C4 

13.1 25.2 58 11 69 

37 
A3B3C1 

16.2 20.35 25 44 69 

38 
A3B4C4 

15.4 20.7 32 38 70 

39 
A4B4C1 

19 13.8 6 64 70 
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40 
A1B4C2 

14.7 22.2 43 29 72 

41 
A1B4C3 

12.7 25 60 12 72 

42 
A2B1C4 

14.9 21.2 39 36 75 

43 
A4B1C4 

14.8 21.5 41 34 75 

44 
A1B3C2 

13.7 22.4 50 28 78 

45 
A1B3C3 

12.6 23.9 61 18 79 

46 
A2B3C3 

12.3 24.2 62 17 79 

47 
A3B1C3 

13.9 22.1 48 31 79 

48 
A3B1C4 

15.3 20.3 34 45 79 

49 
A3B3C2 

15.6 18.1 30 54 84 

50 
A3B4C3 

13.5 22 53 32 85 

51 
A4B2C3 

16 16.9 28 57 85 

52 
A2B3C4 

13.4 21 54 37 91 

53 
A3B1C1 

14.9 18 39 55 94 

54 
A4B3C1 

15.05 15.8 37 58 95 

55 
A4B4C4 

15.4 14 32 63 95 

56 
A1B4C4 

13.3 20.5 55 41 96 

57 
A3B3C3 

12.2 21.7 63 33 96 

58 
A2B1C3 

13.6 20.3 52 45 97 

59 
A4B4C2 

14.6 18.5 45 53 98 

60 
A4B4C3 

13.7 17.9 50 56 106 

61 
A4B3C2 

13.8 14.8 49 62 111 

62 
A4B3C4 

13.2 15.7 57 60 117 

63 
A4B1C3 

13.1 15.7 58 60 118 

64 
A4B3C3 

12 15.8 64 58 122 

After multilayered fabrics were grouped to most protective to least protective and 

also the most comfortable to the least comfortable that done by relative thermal 
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comfort index calculations, the following fabrics used to construct firefighters 

protective clothings at KIVANÇ Group Safety Division were listed. 

Table 5.25: Grading to High, Medium and Low both in protective& Comfortable 

combinations. 

Code Category Outershell Moisture Barrier Thermal Barrier 

A3B2C4 High 

protective and 

good 

comfortable 

 

PBI Matrix 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 85g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 85g/m
2 

          

A2B2C4 

PBI gold 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 85g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 85g/m
2 

          

A1B2C2 

Nomex Outershell 

Tough 195 g/m² 

PU membrane 

laminated to 

nonwoven 

(50/25/25) 85g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Nomex Comfort inner 

lining 110 g/m² 

A3B2C3 Medıum 

protective and 

medium 

comfortable  

 

PBI Matrix 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 85g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 55g/m
2 

A4B2C4 Nomex Outershell 

Tough Ripstop 195 

g/m² 

PU membrane 

laminated to 

nonwoven 

(50/25/25) 85g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 85g/m
2 

A3B1C2 PBI Matrix 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 55g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Nomex Comfort inner 

lining 110 g/m² 
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A4B1C2 Nomex Outershell 

Tough Ripstop 195 

g/m² 

PU membrane 

laminated to 

nonwoven 

(50/25/25) 55g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Nomex Comfort inner 

lining 110 g/m² 

A2B1C4 PBI gold 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 55g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 85g/m
2 

A1B4C2 Nomex Outershell 

Tough 195 g/m² 

PU membrane 

laminated to knitted 

fabric 145g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Nomex Comfort inner 

lining 110 g/m² 

A3B2C3 PBI Matrix 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 85g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 55g/m
2 

A4B2C4 Nomex Outershell 

Tough Ripstop 195 

g/m² 

PU membrane 

laminated to knitted 

fabric 145g/m
2 

Nonwoven quilted to 

Aramid Viscose FR 

inner lining 85g/m
2 

A3B1C2 PBI Matrix 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 55g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Nomex Comfort inner 

lining 110 g/m² 

   

A4B4C2 

Low  

protection 

and low 

comfort 

 

Nomex Outershell 

Tough Ripstop 195 

g/m² 

PU membrane 

laminated to knitted 

fabric 145g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Nomex Comfort inner 

lining 110 g/m² 

   Nomex Outershell PU membrane Two layers of 
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A4B3C1 Tough Ripstop 195 

g/m² 

laminated to knitted 

fabric 85g/m
2 

nonwoven(55+55) 

quilted to 

Aramid  Viscose FR 

inner lining 110 g/m² 

    

A3B1C1 

PBI Matrix 200 g/m² PU membrane 

laminated to 

nonwoven 

(50/25/25) 55g/m
2 

Two layers of 

nonwoven(55+55) 

quilted to 

Aramid  Viscose FR 

inner lining 110 g/m² 

 

Selected Garments 

Three types of fire fighters protective clothings made at KIVANÇ GROUP Safety 

Division worn over and used in this study as shown in figure 5.24 in wear 

investigination sub topic below 

Table 5.26: Descriptions of selected fire fighters protective clothings components. 

Garment 

name  

 

Codes Outer shell Moisture 

barrier  

Thermal barrier Remarks  

Prostar  A2B2C4 PBIgold 

200 g/m
2
 

PU membrane 

laminated to 

nonwoven 

(50/25/25) 

85g/m
2
 

Nonwoven 

quilted to Aramid 

Viscose FR inner 

lining 

85 g/m
2
 

 

High 

protective 

and good 

comfort 

Firestar A4B1C2 Nomex 

Outershell 

Tough 

Ripstop 

195 g/m² 

PU membrane 

laminated to 

nonwoven 

(50/25/25) 

55g/m
2
 

Two layers of 

nonwoven(55+55) 

quilted to Nomex 

Comfort inner 

lining 

110g/m
2
 

Medium 

protective 

and medium 

comfort 

Oldprostar A1B4C3 Nomex 

Outershell 

Tough 

195 g/ m² 

PU membrane 

laminated to 

knitted fabric 

145g/m
2
 

Nonwoven 

quilted to Aramid 

Viscose FR inner 

lining 

55g/m
2
 

Low 

protective 

and low 

comfort 

 



 

117 

The garment system included a long-sleeved 100% cotton, knit shirt and pants.The 

descriptions of the design and structure of the of the fire fighters clothing  Prostar, 

Old prostar and Firestar are given in table below. Prior to testing and between trials, 

garments were stored under environmental conditions of 21 ± 3°C and 50- 60% 

relative humidity for at least 24 hours.  

5.7 Wear Trial Investigation Of Thermo-Physiological Comfort 

Laboratory testing of textile fabrics properties; using Permetest, Alambeta, 

Airpermeability, hydrostatic tester, and others; have been widely used to evaluate 

clothing comfort. Bench-scale testing of thickness, mass per unit area, air 

permeability, thermal resistance, and evaporative resistance, thermal diffusion, 

thermal absorptions have been used successfully to evaluate the thermal comfort of 

fabrics. Small-scale laboratory tests are a practical alternative to expensive, time-

consuming wear trials; however, they do not take into account factors related to 

garment fit and design. With the development of high resolution infrared cameras, 

thermography is gaining increased attention of the researcher not merely as a non 

contact tool to measure surface temperature of the objects, but also as a tool in fine 

physical experiments to analyze thermo-physical phenomena[92]. 

Understanding the relationships between fabric/garment properties and the associated 

thermo-physiological comfort of fire fighters protective clothing on the wearer is still 

limited. The purpose of part of this thesis is to determine the comfort level of three 

different Fire fighters Protective Clothings  during moderate treadmill exercise in 

controlled environmental conditions. 

Methods 

The experiment was carried out in an ambient temperature of 22±2 °C and ~55% RH 

, and it involved wearing protective clothings. Each fire fighters protective clothings 

was worn for about 15 minutes by one person. During intervals between the trials, 

the person who tested the clothings take off and relax  for 45 minutes so as to regain 

thermal comfort and obtain identical initial conditions for an other wearing. Due to 

the long duration of the tests, it was impossible to carry out the experiment outdoors 

because of the inability to maintain identical microclimate conditions for 3 hours, i.e. 
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the duration of the experiment. Therefore, it was necessary to limit the study to 

testing in a conditioned fitness room. 

 

            Prostar                                    Old prostar                         Firestar  

Figure 5.24: Selected fire fighters protective clothings worn by human. 

For the purpose of the study, it was assumed that the feeling of thermal comfort of a 

user wearing a fire fighters protective clothings made of the fabrics under 

investigation could be estimated and ordered on the basis of two measurable 

indicators: 

1. The temperature of air under the clothing ( between the clothing and skin of 

the user) 

2. The temperature of the outer fire fighters clothings surface. 

The temperature measured in both places corresponds to the thermal feeling of a 

clothing wearer. The temperature of air under the clothing corresponds to the feeling 

of thermal comfort in a positive manner since the air under the clothing is in direct 

contact with the skin of the wearer.  

A testo 885 Thermal imager camera was used to measure the temperature of the 

outer surface of the fire fighters protective clothings. Measurements were taken at the 

beginning and at the end of the exercises which is done by running 3-5 minutes at 

8km/hr followed by running 6-8 min at 10 km/hr speed. The temperature was 

measured with Detector type of FPA 320 x 240 pixels, a.Si Thermal sensitivity 
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(NETD) < 30 mK at 30°C (86°F) Field of vision/min. focusing distance 30° x 

23°/0.1 m (0.33 ft) Telephoto lens (optional): 11° x 9°/0.5 m (1.64 ft) Geometric 

resolution (IFOV) 1.7 mrad (standard lens) 0.6 mrad (telephoto lens). Temperature 

ranges (can be changed) -20 to 100°C (-4 to 212°F) 0 to 350°C (32 to 662°F) 

Accuracy ±2°C (±3.6°F) or ±2% of meas. val. (higher value applies). 

In order to measure the air temperature under clothings the thin wire connected to 

head of small thermometer was placed in a manner preventing it from touching the 

body and clothes. The air temperature under the clothing was recorded at the start of 

the exercise and at the finish and at the time of taking measurements, the ambient 

temperature was recorded, which oscillated around 22 °C, ranging between 21.8  °C 

and 22.8 °C.  

In order to eliminate the influence of ambient air temperature fluctuations on the 

results of the analysis, the difference between the temperature of air under the 

clothing and the ambient air temperature was taken as a measure characterising 

fabrics from the point of view of the wearer’s thermal comfort. 

An exemplary thermal image taken at the initial phase of wearing fire fighters 

protective clothings and also after the exercise, its for illustration of front and back 

images. The region at which the temperature of the outer surface was recorded is 

marked on the Figure. The temperature of the outer surface of the clothings was 

calculated as an integral mean of temperatures on the area of the region seleceted 

surface as shown by the graphs below. The exemplary images are given below for 

both before and after exercise with mean integral of temperature. 

Before exercise 

 

Figure 5.25: Exemplary therma camera image taken before exercise.  
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Figure 5.26: Exemplary Mean integral of temperature caculated before exercise. 

After exercise 

 

Figure 5.27: Exemplary thermal camera image taken after exercise. 

 

Figure 5.28: Exemplary Mean integral of temperature caculated after exercise. 
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The wear trials experimental results are given in table below. 

Table 5.27: Measured surface temperature of fire fighters clothings before and after 

exercise. 

Garment 

type 

Surface temperature 

Before Exercise  in 
o
C 

 

Surface temperature 

After exercise in 
o
C 

Change in 

Temp. 
o
C 

 Min Max.  Average  Min. Max.  Average   Av 

Prostar 

A2B2C4 

Front  23.1 30.3 25.1 23.4 32.8 25.7 0.6 0.7 

Back 20.3 27.4 24.1 23.4 27.8 24.9 0.8 

Firestar 

A4B1C2 

Front  22.8 28.0 24.0 23.6 28.4 25.1 1.1 1.0 

Back 22.3 26.3 24.3 21.4 28.6 25.3 1.0 

Oldprostar 

A1B4C3 

Front  23.3 28.0 24.3 21.2 33.3 25.7 1.4 1.2 

Back 22.8 25.6 23.9 21.2 28.6 24.9 1.0 

 

Table 5.28: Measured temperature of air under fire fighters clothings and ambient 

temperature before and after exercise. 

Garment 

type 

Ambient temp. 

During exercise 

o
C 

The temperature 

of air under the 

clothing  before 

exercise  

The temperature 

of air under the 

clothing after 

exercise 

Change in 

Temp. Of air 

under clothing 

and ambient 

temp. 

Prostar 

A2B2C4 

22.6    54%RH 26.8 33.2 10.6 

Firestar 

A4B1C2 

22.8    54%RH  26.9 32.6 9.8 

Oldprostar 

A1B4C3 

22.2    55% RH 26.7 31.8 9.6 

The difference between the temperature of air under the clothing and that of air in a 

cold room reflects the ability of the heat barrier by clothing, to protect the air layer 
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adherent to the skin under the clothes against a drop in temperature. Similarly, in hot 

working environments; in which an air layer adherent to the skin under fire fighters 

clothing has lower temperature than ambient temperature; the heat barrier by clothing 

should protect an air layer temperature from increament so as to stay comfortable. 

Hence, this principle should be checked for conformity for fire fighters protective 

clothings used in wear trials based on results given above in table form. 

For fire fighters protective clothings under investigation, Relative Thermal Comfort 

Index values were calculated based on the laboratory test results of the parameters 

such as water vapor resistance, thermal resistance, thermal diffusion and thermal 

absorption. The formula used to calculate was explained earlier in this chapter. The 

RTCI values calculated are presented in Table below. 

Table 5.29: Calculated RTCI values, Change in Temp. Of air under clothing and 

ambient temperature and also Δ in Surface temperature in 
o
C for 

garments under wear trial study. 

Garment type   Codes RTCI ΔTemp. Of air 

under clothing 

and ambient 

temp. 

Δ in Surface 

temperature 

in 
o
C 

Prostar A2B2C4 0.335054 10.6 0.7 

Firestar A4B1C2 0.278849 9.8 1.0 

Oldprostar A1B4C3 0.22799 9.6 1.2 

 

Correlation between RTCI values and Change in Temp. Of air under clothing and 

ambient temperature was done and the relationship is showed by figure 5.29 below. 

The relationship between thermal comfort index and heat barrier results by 

firefighters protective clothings agree with the screening steps done to rank as the 

most protective and the most comfortable (Prostar in this case) to the least protective 

and least comfortable (Oldprostar). 
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Figure 5.29: Relationship between the values of RTCI and change in temperature of 

air under clothing and ambient temp. 

Relationship between the values of RTCI and Change in surface temperature of fire 

fighters protective clothings after exercise is shown by correlation figure 5.30 below. 

The figure indicates that the most comfortable garments with the highest values of 

calculated RTCI values such as Prostar have no significant effects in changing outer 

surface temperature of the clothings due to their high heat barrier properties which to 

mean they are also the most protective based on wear trial analysis. 

 

Figure 5.30: Relationship between the values of RTCI and change in  surface 

temperature of fire fighters protective clothings. 
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Generally, analayzing the objective measurement datas used to rank the comfort 

properties and protection properties of fire fighters protective clothings can be further 

supported by wear trial investigations in order to model the screening systems of 

garments used for fire fighters as tried to be checked for conformity. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

In this thesis, an experimental analysis is presented examining the comfort properties 

and protective performance of a collection of  multi layered fabrics used to made 

firefighters protective clothings. Several series of tests are conducted, each assessing 

the thermo-physiological comfort parameters and also assembly protective 

performance of coveralls. Thus, this  thesis addressed several potential problems with 

the current  methods for screening  each single layered fabrics used in assembly 

according to their demand to comfort and  protection level based on objective 

measurements. 

In analysis of properties such as water vapour permeability, thermal resistance, 

thermal absorptivity, thermal diffusion and protection performances total of sixty 

four layered fabrics used. By combinations of Outer shells (A1 or Nomex Outershell 

Tough with 195 g/ m², A2 or PBI gold with 200 g/m² , A3 or PBI Matrix with 200 

g/m², A4 or Nomex Outershell Tough Ripstop with 195 g/m²), Moisture barriers (B1 

or PU membrane laminated to nonwoven (50/25/25)  with 55 g / m2, B2 or PU 

membrane laminated to nonwoven (50/25/25) with 85 g / m2, B3 or PU membrane 

laminated to knitted fabric with 85 g/m2 and B4 or PU membrane laminated to 

knitted fabric with 145 g/m2) and Thermal barriers (C1 or two layers of 

nonwoven(55+55) quilted to Aramid Viscose FR inner lining with 110 g/m2, C2 or 

two layers of nonwoven(55+55) quilted to Nomex Comfort inner lining  with 110 

g/m2, C3 Nonwoven quilted to Aramid Viscose FR inner lining with 55 g / m2 and 

C4 or Nonwoven quilted to Aramid Viscose FR inner lining with 85 g / m2); have 

been done in order to compare and screen the best combinations in specified comfort 

and protection properties. 

According to test results done by using Permetest instrument  the fire fighters 

protective multilayered from Nomex® Outershell Tough  195 g/ m² + moisture 

barrier laminated  to knitted fabric PU Membrane85 g/m2 + thermal  barrier of 

Nonwoven Aramid Viscose FR valve has been quilted inner lining 85 g / m2) is 

found to be the best in water vapour permeability and so as to improve the comfort 

level in turn. To the opposite A3B4C2 coded assembly of PBI®  Matrix 200 g/m²+ 

moisture barrier  PU Membrane  laminated  to knitted fabric 145 g/m2 + thermal 
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barrier of  Nonwoven Nomex Comfort which has been quilted inner lining until 2 

times (55 + 55) is identified as the only assembly which cannot fulfill the standard of  

EN 469:2005 Level 2 requirement which says Water vapour resistance < 30 m2 

Pa/W. Thus this layered fabrics with above 31m2Pa/W water vapor resistance is 

concluded as the least in its comfort assesement by this parameter and others are 

listed in results and discusions sections of the thesis. Additionaly its measured and 

concluded that all of the multilayered firefighters protective clothings are not air 

permeable because of the thermal barriers which hinder air transmission. 

The thermal parameters such as  thermal conductivity (λ), thermal absorptivity 

(b),thermal resistance (R) and sample thickness (h) have been measured by Alambeta 

modern device which basically simulates the dry human skin . From several tests 

done for all samples its possible to conclude that, the thermal resistance measured by 

Alambeta device results greater than that measured by Permetest device for the same 

sample. This limits the Alambeta device to measure fabrics such as underwear which 

have direct contacts with human skin. From their real applications fire fighters 

protective clothings are worn as outer cover next to underwears and it is decided to 

take the results by Permetest in calculations of overall properties Thermal Comfort 

Index TCI. The calculated relative thermal index values of all 64 samples were 

compared  to rank the comfort level of the assemblies. Thus the fabric layers of code 

A1B3C4 which mean of outer shell: Nomex® Outershell Tough 195 g/ m², Moisture 

barrier: PU Membrane laminated to knitted fabric 85 g/m2, Thermal barrier of  

Nonwoven Aramid Viscose FR valve which has been quilted inner lining 85 g / m2 

is screened as the most comfortable combinations among the samples. 

The burning tests done for the fabric layers as per standards of EN367 HTI 12/24and 

EN6942 RHTI 12/24 measure the protective performance of fire fighters clothings 

and the correlation analysis showed that both convective heat transfer index and 

radiant heat transfer index at 12 and 24 seconds are very significantly proportional to 

each other. The more burning tests resistance time in seconds to convective and 

radiant heat source, the more protective the assemblies and its used to rank the 

performances of samples. From relative thermal comfort index and burning tests 

rank, the priority lists for three classes have done. The High protective and good 

comfortable are A3B2C4, A2B2C4, and A1B2C2 Medıum protective and medium 

comfortable are A3B2C3, A4B2C4 , A3B1C2, A4B1C2, A2B1C4 and  A1B4C2 
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Low  protection and low comfort A4B4C2, A4B3C1  and A3B1C1.  From these lists 

the available ready made firefighters protective clothings taken from KIVANÇ 

KIMYA PLC have investigated for wear trials by using testo 885Thermal imager 

camera.  

The relative thermal comfort index calculated for fabric layers evaluate and provide 

well screened status weather a particular type of fabrics when made garments and 

investigated wear trially would definitely ensure thermal comfort . In order to meet 

the best expectations to this conclusion, it is necessary to precisely specify the 

conditions of using the garments, not only concerning microclimate parameters but 

also personal features of the user and the type and intensity of physical activity. 

However, it is not possible to define the above-mentioned conditions accurately for 

the mass production of everyday clothing. 

6.2 Recommendations of Future Researches 

The scope of this thesis work in examining fire fighters protective clothings comfort 

properties;via  thermo-physiological parameters and simultaneously the study 

assemblies protection performance is found very  important and  there is still 

researches shall be done to further understand comfort improving parameters.  

Further studies and  investigations of other comfort parameters while improving their 

protection can be measured either objectively or subjectively to optimize this 

importance. For instance, studying influences of  common hazards while fighting 

fires on workers performance can be studied by simulation of real working situations. 

The material especially fabrics selection process before sewing them to coveralls can 

be done after measuring other necessary tests other than those done by Permetest and 

Alambeta. In order to have fire fighters with air permeable properties, the thermal 

barriers used currently can be studied to replace with demanded characteristics. The 

use of thermal camera can be supported by subjective assesement of professional fire 

fighters in order to increase the accuracy of conclusions about comfort and 

protection. 
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Appendix A. Permetest test results  

Table A.1 Single layer fabrics permetest test results. 

Single layered 

Fabric codes 

Relative wvp 

(% ) 

WVP 

(m
2
PaW

-1
) 

Thermal 

resistance 

(mK.m
2
/W) 

A1 

 

62.39 4.92 8.60 

62.13 4.60 9.27 

63.75 4.42 7.53 

A2 

 

60.27 5.14 11.30 

62.26 4.29 9.22 

60.66 4.90 9.42 

A3 

 

62.15 3.72 9.99 

61.39 3.79 9.23 

61.06 3.84 10.37 

A4 

 

62.87 3.56 12.52 

61.63 3.71 12.37 

61.74 3.72 16.25 

B1 

 

46.69 7.00 10.69 

43.68 7.60 10.62 

48.10 6.62 10.18 

B2 

 

37.55 10.12 11.16 

38.75 9.56 12.19 

36.41 10.73 12.94 

B3 

 

57.73 4.47 0.86 

57.85 4.50 2.02 

55.75 4.74 1.36 

B4 

 

39.95 9.79 0.40 

35.04 11.79 0.35 
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37.44 10.77 0.39 

C1 

 

50.95 6.26 
40.8 

51.1 6.14 
38.20 

49.71 6.56 
41.72 

C2 

 

48.31 7.02 52.11 

47.08 7.22 54.03 

47.72 7.10 46.36 

C3 

 

50.95 6.26 37.86 

48.13 7.07 34.37 

46.62 7.36 40.23 

C4 

 

51.10 6.14 22.61 

51.34 6.22 19.83 

52.93 5.78 26.85 

 

Table A.2 Layered fabrics permetest test results. 

No. Combination 

code 

RelativeThermal 

permeability in 

% 

Thermal 

permeability 

(m
2
PaW

-1
) 

Thermal 

resistance 

(mK.m
2
/W) 

1 A1B1C1 

 

22.07 18.94 61.21 

18.07 24.84 68.90 

20.24 22.04 60.19 

2 A1B1C2 

 

 

17.58 23.01 52.99 

19.76 20.28 53.83 

19.68 20.19 48.98 

3 A1B1C3 

 

18.20 21.99 48.35 

16.92 24.50 45.92 

19.12 20.96 49.44 

4 A1B1C4 15.65 26.24 34.23 
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18.19 21.79 38.89 

18.19 21.40 37.19 

5 A1B2C1 

 

18.56 26.23 65.87 

17.26 29.06 65.29 

19.34 25.44 65.24 

6 A1B2C2 

 

18.15 22.62 57.56 

18.55 20.44 56.91 

16.46 24.08 54.27 

7 A1B2C3 

 

16.88 25.03 48.20 

17.32 24.51 46.17 

17.56 24.11 52.68 

8 A1B2C4 

 

 

15.12 28.99 40.71 

17.04 24.92 42.81 

18.33 23.16 38.22 

9 A1B3C1 

 

21.51 22.27 48.17 

21.27 22.15 55.43 

23.76 19.70 50.33 

10 A1B3C2 

 

20.38 20.91 44.37 

21.07 19.29 42.55 

20.63 19.62 47.34 

11 A1B3C3 

 

20.14 20.66 42.51 

18.35 23.35 41.60 

20.34 20.75 41.06 

12 A1B3C4 

 

22.68 17.50 31.66 

22.93 17.44 30.66 

18.85 22.53 37.23 

13 A1B4C1 19.05 26.75 62.83 
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17.16 29.76 54.14 

16.50 30.92 62.00 

14 A1B4C2 

 

16.13 24.66 53.97 

18.47 20.87 50.91 

17.25 22.47 56.02 

15 A1B4C3 

 

15.03 27.77 51.74 

14.67 28.37 48.41 

14.58 

 

28.62 45.65 

16 A1B4C4 

 

14.42 29.21 32.83 

17.46 22.69 34.50 

15.94 24.81 33.18 

17 A2B1C1 

 

18.43 27.28 54.13 

20.06 24.77 60.82 

20.92 23.34 57.15 

18 A2B1C2 

 

16.82 24.28 51.49 

15.45 26.99 44.45 

16.87 24.42 51.44 

19 A2B1C3 

 

17.22 23.96 49.95 

15.00 28.82 45.34 

14.98 28.06 43.03 

20 A2B1C4 

 

16.82 24.57 34.56 

13.77 30.39 31.35 

15.02 28.32 37.26 

21 A2B2C1 

 

 

17.52 29.89 63.42 

17.25 30.23 69.68 

19.48 24.85 56.77 

22 A2B2C2 15.76 26.48 54.08 



 

142 

 
15.99 25.32 49.02 

15.88 25.05 48.48 

23 A2B2C3 

 

14.75 28.51 47.74 

15.66 26.38 47.80 

16.13 25.46 54.33 

24 A2B2C4 

 

16.46 24.98 36.93 

15.19 27.19 42.28 

15.36 27.39 39.07 

25 A2B3C1 

 

23.46 20.19 55.21 

21.82 21.92 61.78 

23.49 20.40 61.16 

26 A2B3C2 

 

17.46 22.22 51.71 

18.40 20.64 45.84 

16.87 22.90 47.28 

27 A2B3C3 

 

19.69 19.78 48.72 

17.95 21.38 49.17 

19.82 19.05 44.18 

28 A2B3C4 

 

18.75 21.22 37.87 

19.31 20.65 32.64 

21.16 18.79 32.39 

29 A2B4C1 

 

20.15 24.64 61.55 

21.10 23.21 55.24 

22.06 22.09 65.65 

30 A2B4C2 

 

14.52 29.93 57.25 

16.02 26.47 56.61 

16.86 23.79 58.65 

31 A2B4C3 15.27 26.83 47.16 
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16.92 24.40 48.08 

17.71 23.20 49.41 

32 A2B4C4 

 

15.91 26.79 39.08 

17.71 

 

23.13 34.40 

18.16 22.03 35.21 

33 A3B1C1 

 

21.39 23.90 49.94 

18.44 28.19 50.15 

19.98 24.78 51.15 

34 A3B1C2 

 

17.26 24.36 52.69 

16.53 24.58 54.27 

17.62 23.15 57.75 

35 A3B1C3 

 

14.80 27.54 49.82 

17.07 23.65 52.08 

16.42 25.25 46.44 

36 A3B1C4 

 

17.34 24.51 37.20 

16.76 23.93 37.26 

16.37 25.27 42.82 

37 A3B2C1 

 

16.68 30.11 57.80 

19.34 25.81 50.90 

17.61 29.90 53.10 

38 A3B2C2 

 

15.83 26.15 60.17 

13.81 29.83 61.05 

15.16 27.40 57.03 

39 A3B2C3 

 

16.58 23.68 50.28 

14.94 27.76 52.60 

15.41 27.08 50.63 

40 A3B2C4 16.67 23.45 41.42 
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14.57 26.89 37.25 

16.49 24.13 43.05 

41 A3B3C1 

 

20.26 25.75 54.90 

22.19 22.17 54.49 

20.98 23.39 56.79 

42 A3B3C2 

 

17.46 23.34 56.55 

18.40 20.67 51.15 

17.58 21.77 47.09 

43 A3B3C3 

 

19.10 20.33 40.27 

19.92 19.36 43.18 

19.69 19.97 43.73 

44 A3B3C4 

 

16.93 23.43 34.55 

18.67 20.92 30.68 

16.97 24.38 29.98 

45 A3B4C1 

 

18.80 27.34 53.75 

21.66 23.03 50.12 

19.72 26.17 59.96 

46 A3B4C2 

 

14.87 28.64 46.42 

12.65 33.24 53.74 

12.45 33.20 50.26 

47 A3B4C3 

 

14.14 29.15 49.64 

14.97 28.08 46.90 

15.07 28.21 45.46 

48 A3B4C4 

 

13.11 30.58 48.02 

12.90 30.97 45.50 

14.39 27.37 44.87 

49 A4B1C1 18.32 27.30 57.17 
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21.33 23.27 61.79 

19.59 26.66 67.04 

50 A4B1C2 

 

17.44 21.25 54.69 

16.53 24.55 53.10 

17.24 23.64 56.02 

51 A4B1C3 

 

16.74 24.51 51.27 

17.05 24.42 52.03 

16.83 24.93 52.36 

52 A4B1C4 

 

19.05 21.22 39.85 

16.08 24.94 39.93 

15.71 26.30 42.70 

53 A4B2C1 

 

17.89 27.77 65.18 

18.12 27.55 57.30 

19.56 25.54 56.80 

54 A4B2C2 

 

15.81 27.11 56.61 

16.12 24.89 55.07 

15.00 26.56 61.07 

55 A4B2C3 

 

16.56 25.01 54.69 

16.76 24.79 52.42 

17.76 22.41 53.87 

56 A4B2C4 

 

14.50 30.42 47.61 

16.65 25.31 45.28 

17.48 23.89 44.06 

57 A4B3C1 

 

20.43 24.28 51.90 

22.91 21.18 52.83 

22.78 20.73 61.31 

58 A4B3C2 17.11 25.96 49.01 
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19.26 22.06 51.46 

18.61 22.30 51.81 

59 A4B3C3 

 

16.31 26.50 50.62 

14.59 30.54 43.60 

14.52 30.84 43.74 

60 A4B3C4 

 

18.82 22.91 36.00 

19.37 21.36 37.68 

18.62 22.75 40.44 

61 A4B4C1 

 

17.88 28.51 60.68 

21.04 23.80 61.56 

19.77 23.90 64.67 

62 A4B4C2 

 

16.88 27.51 53.73 

15.75 29.38 58.84 

15.46 30.23 55.02 

63 A4B4C3 

 

17.48 25.58 48.86 

16.56 27.00 48.01 

16.71 27.30 52.86 

64 A4B4C4 

 

16.76 27.53 38.94 

15.00 30.45 38.74 

18.75 23.25 44.36 
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Appendix B. Alambeta test results  

Table B.1 Single layers Alambeta device test results. 

Single 

layer 

Fabric 

codes 

Thermal Parameters by Alambeta 

Tests Thermal 

conductivity 

λ 

(Wm
-1

K
-1

) 

Thermal 

diffusion 

a 

(m
2
s

-1
) 

Thermal 

absorptivity 

b 

(Wm
-2

s
1/2

K
-

1
) 

Thermal 

resistance 

R 

(mK.m
2
/W) 

A1 

 

Test 1 55.3 0.074 204 8.4 

Test 2 55.4 0.08 194 8.1 

Test 3 53.5 0.073 197 8.5 

Average 54.73 0.076 198.33 8.33 

A2 

 

Test 1 58.3 0.094 191 8.2 

Test 2 59.1 0.087 200 7.9 

Test 3 55.8 0.077 201 8 

Average 57.73 0.086 197.33 8.033 

A3 

 

Test 1 61.5 0.071 231 7.3 

Test 2 62.3 0.078 223 7.5 

Test 3 62.1 0.073 230 7.4 

Average 61.97 0.074 228 7.4 

A4 

 

Test 1 50 0.102 157 10.6 

Test 2 49.9 0.085 171 10.3 

Test 3 43.3 0.069 165 11.2 

Average 47.73 0.085 164.33 10.7 

B1 

 

Test 1 32.3 0.117 95.8 17.3 

Test 2 32.7 0.112 97.5 16.9 

Test 3 32.9 0.112 98.4 17.2 

Average 32.63 0.114 97.23 17.13 

B2 Test 1 35.6 0.117 104 21.6 
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Test 2 35.3 0.129 98.2 22.1 

Test 3 34.3 0.139 92.1 22.4 

Average 35.07 0.128 98.1 22.03 

B3 

 

Test 1 32.3 0.094 106 7.9 

Test 2 33.1 0.094 106 7.7 

Test 3 32.8 0.078 118 7.8 

Average 32.73 0.089 110 7.8 

B4 

 

Test 1 43.6 0.069 166 10.2 

Test 2 44.2 0.068 169 10.4 

Test 3 42.9 0.071 161 10.3 

Average 43.57 0.070 165.33 10.3 

C1 

 

Test 1 36.6 0.613 46.8 75.3 

Test 2 37.6 0.523 51.8 71.6 

Test 3 36.3 0.44 54.6 81.1 

Average 36.83 0.53 51.07 76 

C2 

 

Test 1 36.7 0.239 75.1 54.2 

Test 2 36.6 0.227 76.1 53 

Test 3 36.2 0.269 69.8 59.5 

Average 36.5 0.245 73.67 55.57 

C3 

 

Test 1 36.5 0.243 74 56.6 

Test 2 36 0.302 65.5 54.1 

Test 3 36.1 0.317 64.1 54.1 

Average 36.2 0.288 67.87 54.93 

C4 Test 1 38.6 0.182 90.5 49.8 

Test 2 37.7 0.247 75.9 51.4 

Test 3 38.1 0.192 87.1 45.9 

Average 38.13 0.207 84.5 49.03 
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Table B.2 Layered fabrics Alambeta device test results. 

Combination 

fabric layers 

code 

Thermal 

conductivity 

λ 

(Wm-1K-1) 

Thermal 

diffusion 

a 

(m2s-1) 

Thermal 

absorptivity 

b 

(Wm-2s1/2K-

1) 

Thermal 

resistance 

R 

(mK.m2/W) 

A1B1C1 

 

40.5 0.255 80.2 95.1 

40.1 0.288 74.7 97.7 

39.1 0.252 77.8 96.1 

A1B1C2 

 

 

39.8 0.36 66.3 82.7 

40 0.399 63.3 79.8 

39.8 0.399 63 78.1 

A1B1C3 

 

41.3 0.296 75.9 72.4 

40.4 0.424 62 77 

40.2 0.416 62.4 76 

A1B1C4 

 

41.5 0.28 78.5 74 

41.2 0.339 70.8 70.9 

41.2 0.343 70.4 73.4 

A1B2C1 

 

40.5 0.372 66.4 102 

40.7 0.237 83.6 101 

40.2 0.329 70 98.8 

A1B2C2 

 

40 0.84 43.7 89.2 

40 0.444 60 78.6 

39.8 0.535 54.4 81.7 

A1B2C3 

 

39.6 0.352 66.7 81.7 

39.3 0.447 58.8 81.3 

39.5 0.399 62.5 82.2 

A1B2C4 

 

41.6 0.239 85.1 65.9 

41.1 0.241 83.7 65.7 
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40.6 0.311 72.7 69.8 

A1B3C1 

 

40.9 0.231 85.1 87.3 

40.6 0.265 78.8 86.2 

40.8 0.291 75.7 89 

A1B3C2 

 

39.7 0.399 62.8 79.5 

39.4 0.387 63.4 72.8 

39.3 0.347 66.8 73.1 

A1B3C3 

 

40.1 0.287 75 65 

39.7 0.393 63.3 65.7 

39.1 0.329 68 66 

A1B3C4 

 

42.2 0.236 86.8 54.2 

42.6 0.223 90.1 51.4 

41.6 0.274 79.5 60.3 

A1B4C1 

 

 

41.8 0.23 87.2 89.9 

42.7 0.226 89.7 87.7 

41.1 0.266 79.6 88.8 

A1B4C2 

 

40.7 0.276 77.4 74.9 

41.1 0.427 62.8 78 

41 0.392 65.5 77.2 

A1B4C3 

 

40.9 0.223 86.6 62.5 

40.8 0.279 77.1 63.7 

40.4 0.284 75.8 64.8 

A1B4C4 

 

43 0.214 92.8 59.7 

43 0.263 83.9 62.3 

43.3 0.226 91.1 56.8 

A2B1C1 

 

42.9 0.157 108 86 

42.2 0.203 93.6 90.6 
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41.7 0.202 92.7 88.8 

A2B1C2 

 

40.5 0.289 75.3 75.2 

40.9 0.327 71.5 72.6 

39.6 0.36 66.1 74.8 

A2B1C3 

 

40.2 0.248 80.7 65.9 

39.6 0.288 73.7 69.7 

40.3 0.248 80.9 67.3 

A2B1C4 

 

41.8 0.226 85.6 73.2 

41.4 0.247 70.7 74.9 

41.6 0.216 73.7 80.2 

A2B2C1 

 

42.7 0.178 101 94.1 

41.6 0.183 97.3 92 

41.3 0.298 75.7 95.1 

A2B2C2 

 

40.7 0.226 85.6 73.2 

40.7 0.331 70.7 74.9 

40.3 0.299 73.7 80.2 

A2B2C3 

 

41.3 0.24 84.2 74.2 

40 0.323 70.3 73 

40.8 0.276 77.2 70.8 

A2B2C4 

 

42.1 0.218 90.2 63.7 

42.2 0.259 82.9 66.5 

42 0.787 47.4 64.7 

A2B3C1 

 

42 0.161 105 82 

42.2 0.189 97.1 84.6 

41.5 0.224 87.8 82.6 

A2B3C2 

 

41.1 0.305 74.5 66.5 

41.5 0.281 78.3 61.5 
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40.9 0.272 78.5 64.8 

A2B3C3 

 

41.7 0.226 87.8 58.7 

40.7 0.328 71.1 58.3 

40.3 0.211 87.8 87.8 

A2B3C4 

 

43 0.198 96.7 54.3 

41.4 0.235 85.3 56.6 

43.3 0.203 96.1 49 

A2B4C1 

 

43 0.144 114 81.5 

42.7 0.168 104 84.4 

41.5 0.216 84.6 84.6 

A2B4C2 

 

41.8 0.327 73.1 72.6 

40.7 0.377 66.3 77.7 

41.7 0.375 68.2 72.8 

A2B4C3 

 

 

42.9 0.29 79.2 56.2 

41.8 0.302 76 65.9 

42.5 0.332 73.8 65 

A2B4C4 

 

43.4 0.398 68.8 69.9 

43.4 0.247 87.3 65.6 

45 0.248 90.4 59.4 

A3B1C1 

 

41.5 0.192 93.6 90.1 

41 0.222 87 91.6 

39.8 0.263 77.6 99.1 

A3B1C2 

 

41.1 0.271 78.9 74.9 

40.9 0.289 76.1 70.6 

40.6 0.3 74.2 76.2 

A3B1C3 

 

41.4 0.304 75.1 72 

40.7 0.326 71.2 74.3 
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41.9 0.302 76.2 72.2 

A3B1C4 

 

42.5 0.28 80.3 75.4 

42.5 0.281 80.2 68.2 

42.6 0.254 84.6 62.2 

A3B2C1 

 

41.7 0.215 89.9 97.7 

43 0.186 99.8 97.7 

42.3 0.252 84.2 93.6 

A3B2C2 

 

39.7 0.589 51.8 80.8 

40.3 0.297 74 78.8 

40.8 0.323 71.8 77.8 

A3B2C3 

 

40.9 0.382 66.2 69.7 

40 0.313 71.6 74.6 

40.1 0.289 74.6 72.6 

A3B2C4 

 

42.7 0.864 46 69.5 

42.2 0.308 76 73.4 

41.6 0.35 70.3 69.7 

A3B3C1 

 

41.9 0.188 96.7 82.6 

40.7 0.241 82.9 87.5 

41.4 0.217 88.7 83 

A3B3C2 

 

40.5 0.362 67.4 70.6 

42.2 0.397 67 66.3 

41.5 0.464 60.9 65.2 

A3B3C3 

 

41.2 0.374 67.4 65.3 

41.6 0.367 68.7 62.2 

41.8 0.396 66.4 63.3 

A3B3C4 

 

43.9 0.333 76.1 53.9 

42.8 0.322 75.4 58.5 
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43.1 0.263 84.2 52.9 

A3B4C1 

 

41.5 0.156 105 86 

42.5 0.221 90.4 87.5 

41.5 0.296 76.2 88.6 

A3B4C2 

 

43.4 0.38 72.9 63.7 

43.1 0.366 71.2 69.2 

42.9 0.419 66.2 66.4 

A3B4C3 

 

42.4 0.275 80.8 63.9 

42.6 0.304 77.3 65.4 

42.5 0.402 67 63.8 

A3B4C4 

 

45.3 0.241 92.3 58.6 

43.9 0.245 60.3 57.9 

45 0.268 87 58.4 

A4B1C1 

 

41.6 0.196 94.1 93.2 

40.9 0.219 87.4 93.4 

41 0.259 80.6 89.2 

A4B1C2 

 

40.4 0.348 68.5 77 

40.1 0.287 75 74.9 

39.9 0.388 64.1 77 

A4B1C3 

 

40.8 0.269 78.6 70.5 

39.9 0.566 53.1 74.1 

40.4 0.386 65 69 

A4B1C4 

 

42.3 0.2 94.5 68.8 

40.7 0.294 74.9 70.5 

41.5 0.291 77 69.2 

A4B2C1 

 

41.4 0.168 101 100 

41.1 0.215 88.8 97.2 
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40.9 0.222 86.8 102 

A4B2C2 

 

40.3 0.256 79.7 88.1 

40 0.308 72.1 82.2 

40 0.285 74.9 79.9 

A4B2C3 

 

41.1 0.238 84.3 76.4 

40.9 0.29 76 77.8 

40.9 0.346 69.5 75.4 

A4B2C4 

 

42.7 0.218 91.4 76.6 

40.9 0.33 71.3 76.8 

41.6 0.265 51.1 73.9 

A4B3C1 

 

40.8 0.186 94.6 88.3 

40.2 0.172 96.8 84.6 

41.2 0.207 90.5 88.6 

A4B3C2 

 

40.8 0.226 85.8 72.3 

41.2 0.375 67.3 71.9 

41 0.35 69.3 70.7 

A4B3C3 

 

40.7 0.261 79.7 68.6 

40.9 0.316 72.9 65.3 

41.2 0.367 68 65.5 

A4B3C4 

 

42.3 0.211 92.1 68.4 

41.9 0.22 89.2 58.9 

42.8 0.276 81.5 63.4 

A4B4C1 

 

41.7 0.137 113 85.6 

42 0.183 98.2 84.6 

42.7 0.214 92.2 87.7 

A4B4C2 

 

40.8 0.207 89.7 78.1 

41.9 0.345 71.3 69.9 
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41.6 0.353 70.1 70.3 

A4B4C3 

 

42 0.536 57.3 67.3 

41.9 0.355 69.9 67.2 

41.5 0.253 82.6 65.5 

A4B4C4 

 

42.3 0.249 84.9 66.8 

44.6 0.245 90 59 

43.6 0.254 86.5 64.1 
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Appendix C. Air permeability test results  

Table C.1 Single layers air permeability test results. 

Fabric code Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 Average 

A1 590 561 564 565 533 562.6 

A2 834 842 829 843 829 835.4 

A3 470 483 464 490 493 480 

A4 562 534 515 572 574 551.4 

B1 0 0 0 0 0 0 

B2 1 0 1 0 0 0.4 

B3 0 0 0 0 1 0.2 

B4 2 1 0 0 2 1 

C1 450 465 425 410 407 431 

C2 383 447 438 423 429 424 

C3 321 417 473 398 487 419.2 

C4 910 820 898 939 989 911.2 
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Appendix D. Burning tests results 

Table D.1 Layered fabrics burning test results. 

No. Multi-

layered 

fabrics 

code 

EN 367                  

HTI12 

EN 367                 

HTI24 

EN 367                                       

HTI24-

HTI12 

EN 6942 

RHTI 

12 

EN 6942                             

RHTI24 

EN 6942                                               

RHTI 24-

RHTI 12 

1 A1B1C1 13.5 18.25 4.75 17.65 23.9 6.25 

2 A1B1C2 13 17.5 4.5 15.2 20.3 5.1 

3 A1B1C3 10.8 14.5 3.7 13.9 19 5.1 

4 A1B1C4 11.1 15.1 4 14.7 20.3 5.6 

5 A1B2C1 13.8 18.9 5.1 17.95 24.7 6.75 

6 A1B2C2 14.3 18.5 4.2 15.7 22.4 6.7 

7 A1B2C3 13 17.2 4.2 15.2 21.2 5.9 

8 A1B2C4 12.4 16.7 4.3 14.2 20.2 6 

9 A1B3C1 10.75 14.8 4.05 14.15 20.35 6.2 

10 A1B3C2 9.8 13.7 3.9 13.9 19.4 5.5 

11 A1B3C3 9.4 12.6 3.2 9.6 13.8 4.2 

12 A1B3C4 9.6 13.1 3.5 10.2 14.8 4.6 

13 A1B4C1 11.25 15.25 4 15.05 22.1 7.05 

14 A1B4C2 10.9 14.7 3.8 14.9 21.7 6.8 

15 A1B4C3 9.5 12.7 3.2 11.5 15.7 4.2 

16 A1B4C4 9.7 13.3 3.6 12 16.9 4.9 

17 A2B1C1 12.1 16.9 4.8 20.75 30 9.25 

18 A2B1C2 11.9 16.7 4.8 20.2 29.5 9.3 

19 A2B1C3 9.9 13.6 3.7 14.8 21.5 6.7 

20 A2B1C4 10.9 14.9 4 15.7 23.3 7.6 

21 A2B2C1 14.25 19.9 5.65 19.1 28.65 9.55 

22 A2B2C2 13.9 19.4 5.5 18.9 26.4 7.5 

23 A2B2C3 12.4 16.2 3.8 15.6 22.8 7.2 
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24 A2B2C4 13 17.6 4.6 16.4 24.9 8.5 

25 A2B3C1 11.4 16.05 4.65 16.15 24.2 8.05 

26 A2B3C2 10.9 15.8 4.9 15.7 23.8 8.1 

27 A2B3C3 9.1 12.3 3.2 12.2 18.5 6.3 

28 A2B3C4 9.8 13.4 3.6 13.3 20.5 7.2 

29 A2B4C1 13.35 18.55 5.2 17.5 25.95 8.45 

30 A2B4C2 13.2 18.2 5 17.1 25.2 8.1 

31 A2B4C3  14  18  4  17  23  6 

32 A2B4C4 11.1 15.6 4.5 14.5 21.3 6.8 

33 A3B1C1 10.8 14.9 4.1 21.6 31 9.4 

34 A3B1C2 10.6 14.7 4.1 20.7 30.5 9.8 

35 A3B1C3 10.3 13.9 3.6 14.5 20.7 6.2 

36 A3B1C4 11.2 15.3 4.1 15.6 23.2 7.6 

37 A3B2C1 14.1 19.7 5.6 19 28.4 9.4 

38 A3B2C2 13.5 19.3 5.8 18.9 26.4 7.3 

39 A3B2C3 11.1 15 3.9 15.4 22.6 7.2 

40 A3B2C4 12 16.5 4.5 16.3 24.9 8.6 

41 A3B3C1 11 16.2 5.2 16 23.8 7.8 

42 A3B3C2 10.9 15.6 4.7 15.3 23.8 8.5 

43 A3B3C3 8.9 12.2 3.3 12 17.9 5.9 

44 A3B3C4 9.5 13.3 3.8 13.3 20.3 7 

45 A3B4C1 13 18.2 5.2 17.2 25 7.8 

46 A3B4C2 13.5 18.1 4.6 16.9 25 8.1 

47 A3B4C3 9.9 13.5 3.6 13.7 18.8 5.1 

48 A3B4C4 11.3 15.4 4.1 14.5 20.7 6.2 

49 A4B1C1 13.2 18.15 4.95 16.4 22.2 5.8 

50 A4B1C2 13.1 17.7 4.6 15.3 20.5 5.2 
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51 A4B1C3 9.4 13.1 3.7 11 15.8 4.8 

52 A4B1C4 10.6 14.8 4.2 12.2 18.1 5.9 

53 A4B2C1 14.25 19.6 5.35 18.3 25.45 7.15 

54 A4B2C2 14.4 18.7 4.3 15.5 22.2 6.7 

55 A4B2C3 12.1 16 3.9 14.3 21 6.7 

56 A4B2C4 13 17.7 4.7 15.8 23.2 7.4 

57 A4B3C1 10.8 15.05 4.25 14.45 20.6 6.15 

58 A4B3C2 9.8 13.8 4 13.5 19.5 6 

59 A4B3C3 8.9 12 3.1 9.8 14 4.2 

60 A4B3C4 9.6 13.2 3.6 10.8 15.8 5 

61 A4B4C1 13.45 19 5.55 15.3 22.85 7.55 

62 A4B4C2 10.5 14.6 4.1 14.9 20.4 5.5 

63 A4B4C3 9.9 13.7 3.8 11 15.7 4.7 

64 A4B4C4 11.1 15.4 4.3 12.5 18 5.5 
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