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SECURITY RISK ASSESSMENT FOR CRITICAL FACILITY 
PROTECTION  

SUMMARY 

Although many countries have national security challenges, security risk has 
infiltrated into the international arena just after the attacks to twin towers in New 
York/USA on September 11, 2001 called 9/11 attacks. The 9/11 attacks are the 
beginning of the new era where the classical approaches to contemporary security 
challenges are questioned by security analysts and academics. There is also an 
increase in malevolent attacks in recent years worldwide. Developed societies 
become more vulnerable to security risks caused by such events as they get more 
dependent on critical facilities such as airports, nuclear power plants, oil plants, 
dams, harbours, governmental facilities etc. 

This thesis proposes a novel Security Risk Assessment (SRA) framework consisting 
of four models that quantifies corresponding security risk factors: threat, 
vulnerability and consequence, and aggregates them. Proposed SRA framework 
helps to improve security risk assessment decisions for critical facilities considering 
appropriate uncertainty theory, input data and output data for each model. The four 
developed models are presented step-by-step and applied to an illustrative airport as 
a critical facility case study. Therefore, all the application in each chapter covers an 
illustrative airport. The results of the applications are evaluated to illustrate the 
effectiveness of proposed SRA framework. 

The thesis consists of six chapters. The first chapter, Introduction introduces the 
motivation of the study and its aim and objectives. Introductory chapter summarizes 
also the theoretical, methodological and information processing frameworks utilized 
in the thesis. Respectively, Chapters 2, 3 and 4 provide threat, vulnerability and 
consequence assessment models. Then, Chapter 5 provides a model that aggregates 
the outputs of the threat, vulnerability and consequence assessment models presented 
until this chapter under a Security Risk Assessment framework. Finally, the study 
concludes by highlighting the major concluding remarks and offering some 
recommendations.  

Chapter 2 offers a Threat Assessment Model. The aim in this chapter is to identify 
threats of a critical facility and estimates their likelihoods in order to generate the 
initiating events, possible threat scenarios, for other models of SRA framework.  

The model offered in Chapter 3, Vulnerability Assessment Model identifies and 
quantifies the weakness of the critical facility as a system, system functions and 
system components, and determines the most critical functions and components by 
simulating the system behaviour.  

Chapter 4 aims to quantify the likely loss or damage caused due to anticipated threat 
scenarios. Therefore, the Consequence Assessment Model estimates the expected 
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magnitude and type of loss (e.g., deaths, injuries, or property damage) associated 
with a threat scenario given adversary success for a critical facility.  

Chapter 5 gathers all the information together and continues the calculation and 
evaluation in order to aggregate the outputs of Threat Assessment Model, 
Vulnerability Assessment Model and Consequence Assessment Model for evaluating 
the security risk of a critical facility. What is offered in Chapter 5 is basically the last 
step of the SRA framework.  

To summarize, this thesis proposes a complete SRA framework that offers a 
comprehensive and logical multi methodological approach capable of handling and 
combining different uncertainties for assessing the security risk of critical facilities. 
Illustrative case study shows that useful insight about possible security risks of a 
critical facility can be gained through applying proposed SRA framework and 
proposed framework provides valuable information to decision makers in dealing 
with security risks of critical facility by increasing situational awareness and 
understanding. As a result, proposed SRA framework has contributed to quantitative 
decision analysis by supporting decisions under different modes of uncertainty and 
provided a basis for more effective security risk management. 
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KRİTİK TESİSLERİN KORUNMASI İÇİN GÜVENL İK RİSKİ 
DEĞERLEMESİ 

ÖZET 

Pek çok ülkede ulusal güvenlik sorunları olmasına rağmen, 11 Eylül 2001 tarihinde 
New York / ABD ikiz kuleler saldırılarından -  9 / 11 saldırıları - hemen sonra 
güvenlik riski uluslararası arenanın gündemine girmiştir. 9/11 saldırıları, güvenlik 
analizcileri ve akademisyenler tarafından güncel güvenlik konularına klasik 
yaklaşımların sorgulandığı yeni bir çağın başlangıcı olmuştur. Ayrıca, son yıllarda 
dünya çapında kötü niyetli saldırılar daha da artmaktadır. Gelişmiş toplumlar, 
havaalanı, nükleer enerji santrali, petrol istasyonu, barajlar, limanlar, kamu tesisleri 
gibi kritik tesislere git gide daha bağımlı hale geldikleri için bu tür kötü niyetli 
saldırılara karşı daha savunmasız hale gelmektedir.  

Bu tez güvenlik riski faktörleri olan tehdit olabilirli ğini, güvenlik açığını ve 
oluşabilecek hasarı sayısallaştıracak ve birleştirecek dört modeli içeren yeni bir 
Güvenlik Riski Değerlemesi (GRD) çerçevesi önermektedir. Önerilen GRD 
çerçevesi, belirsizlik kuramı, girdi verisi ve çıktı verisini her model için dikkate 
alarak kritik tesisler için GRD kararlarını geliştirmede yardımcı olmaktadır.  
Geliştiren dört model adım adım sunulmakta ve kritik tesisler için örnek uygulama 
olarak havalimanına uygulanmaktadır. Böylece, her bir bölümde ayrı ayrı verilen 
tüm uygulamalarda havalimanı örneği kullanılmaktadır. Uygulamaların sonuçları 
önerilen GRD çerçevesinin etkinliğini göstermek için değerlendirilmektedir.  

Tez altı bölümden oluşmaktadır. İlk bölüm olan, giriş bölümü çalışmanın çıkış 
noktasını, amacını ve hedeflerini tanıtmaktadır. Giriş bölümü ayrıca tez de kullanılan 
kuramsal, yöntemsel ve bilgi işleme çerçevelerini de özetlemektedir. Sırasıyla, 
Bölüm 2,3 ve 4 tehdit, güvenlik açığı ve hasar değerleme modellerini ortaya 
koymaktadır. Sonrasında, Bölüm 5 bu modellerin çıktılarını Güvenlik Riski 
Değerlemesi çerçevesi adı altında tek bir modelde bütünleştirmektedir. Son olarak, 
çalışma temel sonuç değerlendirmelerini vurgulayarak ve bazı önerilerde bulanarak 
sonuçlanmaktadır.  

Bölüm 2, Tehdit Değerleme Modelini sunmaktadır. Bu bölümde amaç, başlangıç 
olayları olan olası tehdit senaryolarını diğer GRD çerçevesindeki modeller için 
üreterek kritik tesislerin karşı karşıya kaldığı tehditleri belirlemek ve olabilirliklerini 
tahmin etmektir.  

Bölüm 3’te sunulan model, Güvenlik Açığı Değerleme Modeli ise kritik tesisleri 
sistem yaklaşımı çerçevesinde bir sistem, sistem işlevleri ve sistem bileşenleri olarak 
ele almakta ve bu tesislerin zayıflıklarını belirlemekte ve sayısallaştırmakta, ayrıca 
en kritik işlevi ve bileşeni sistemin davranışlarının benzetimini yaparak 
saptamaktadır.  
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Bölüm 4, beklenen tehdit senaryolarınca meydana gelebilecek muhtemel kayıpları 
veya hasarları sayısallaştırmayı amaçlamaktadır. Böylece, Hasar Değerleme Modeli 
kritik tesis için saldırganın başarı sağlayabileceği bir tehdit senaryosunda beklenen 
kayıp büyüklüğünü ve kayıp türünü  (ölüm, yaralanma veya makine/teçhizat kaybı 
vs.) tahmin etmektedir.  

Bölüm 5 tüm model çıktılarını bir araya getirip Tehdit Değerleme Modelinin, 
Güvenlik Açığı Değerleme Modelinin ve Hasar Değerleme Modelinin çıktılarını 
bütünleştirerek kritik tesis için güvenlik riski değerlendirmesi yapmaktadır. Bu 
bölümdeki model GRD çerçevesi içi son adımdır.  

Özet olarak, bu çalışma bütüncül bir GRD çerçevesi ve kritik tesisler için güvenlik 
riski değerlemede farklı belirsizlikleri ele alabilen ve bu belirsizlikleri birleştirebilir 
bütünsel ve mantıksal çoklu yöntem yaklaşımı sunmaktadır. Örnek uygulama 
göstermektedir ki, önerilen GRD çerçevesi uygulanarak kritik tesislerin olası 
güvenlik riskleri hakkında kullanışlı sezgiler kazanılmakta ve önerilen çerçeve 
durumsal farkındalığı ve anlamayı arttırarak kritik tesislerin güvenlik riski ile başa 
çıkmada karar vericilere değerli bilgiler sunmaktadır. Sonuç olarak, önerilen GRD 
çerçevesi, farklı belirsizlikler içinde alınan kararları destekleyerek sayısal karar 
analizine katkıda bulunmakta ve daha etkin bir güvenlik riski yönetimine zemin 
sağlamaktadır.  
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1.  INTRODUCTION 

Although many countries have national security challenges, security risk has 

infiltrated into the international arena just after the attacks to twin towers in New 

York/USA on September 11, 2001 called 9/11 attacks. The 9/11 attacks are the 

beginning of the new era where the classical approaches to contemporary security 

challenges are questioned by security analysts and academics (Harris, 2004; Wright 

et al., 2006; Keeney, 2007). The notion of the change in security mainly stems from 

the changes in targets, weapons, and motives, the combination of which make 

malevolent attacks more dangerous than ever before. There is also an increase in 

malevolent attacks in recent years worldwide. Weapons such as explosives 

meanwhile became more lethal and efficient, and the technology and skills enabled 

them diffuse throughout the world easily. As a result of these progresses, developed 

societies become more vulnerable to security risks as they more get more dependent 

on critical facilities. In developed societies, critical facilities are the systems that 

have a high impact to the psychology, health and welfare of the population, and are 

essential to the operations of the economy and government such as airports, nuclear 

power plants, oil plants, dams, harbours, governmental facilities etc. Therefore, 

critical facilities are attractive targets for malevolent attacks and should be given 

special consideration for security risk assessment (SRA). Traditionally, studies on 

security have focused on military and defence issues but security in military terms is 

inadequate at present. During this change of the profile of security, 9/11 attacks 

displayed that even the most powerful can not be immune to such attacks and 

reminded that there is an obvious need to revisit security risk with a view to 

proposing adequate responses to emerging threats rather than military threats.  

1.1 Background – Motivation of the Study 

Risk traditionally has a negative meaning and can be defined both qualitatively and 

quantitatively. According to the qualitative definition of risk, which is the dictionary 

definition, risk is “exposure to the possibility of loss, injury, or other adverse or 
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unwelcome circumstance; a chance or situation involving such a possibility” 

(Simpson and Weiner, 1989). The quantitative definition of risk is commonly defined 

as a measure of expected loss which is the product of likelihood and severity of loss 

based on the probability theory in the literature.  

To manage risk in an efficient way, risk assessment (RA) is required. RA is a 

systematic decision analysis methodology for identifying the expected loss incurred 

by a system or process as a result of undesired event. Typical RA is generally related 

to expected losses from failures, accidents, and natural disasters and is a kind of 

safety analysis. There are different sources of risk and Renn (1992) identifies five 

major types of RA: technical RA, economic RA, psychological RA, sociological RA 

and cultural RA. The first two types of RA are quantitative and the last three are 

qualitative. Each of RA has different assumptions about the underlying reality under 

consideration depending on the concerned risk type. For example, in economic RA, 

risk is associated with the unexpected variability or volatility of returns.  

However, risk of random events is different from risk of intelligent events. The risk 

arising from intelligent acts is called security risk. Security risk includes intelligent, 

deliberate, and unpredictable acts which are intended to create fear, are committed 

for an ideological goal, and deliberately target or disregard the safety of civilians 

(Garrick et al., 2004). Security risk differs in kind from other type of risks because of 

these special characteristics. Thus, protecting against security risk is fundamentally 

different from protecting against natural disasters or accidents and has to be handled 

in a different way. In the literature, most researchers agree that security risk is based 

on the analysis and aggregation of three widely recognized factors: threat likelihood, 

vulnerability, and consequence as (Willis et al., 2005): 

Security Risk = Threat x Vulnerability x Consequence                 (1.1) 

Threat is the likelihood of the malevolent attack, vulnerability is the system response 

to attack and the consequence is the result of the attack. Each security risk has a 

corresponding likelihood, vulnerability and consequence. Security analysts attempt 

to answer following three fundamental questions related to these factors: “How likely 

is it?”, “What can go wrong?”, and “How bad it can be?” (Kaplan and Garrick, 

1981). In the security domain, RA focuses on assessing the likelihood of attack, 

likelihood of adversary success given attack, and consequences given success for a 
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variety of threat scenarios. Equation 1.1 provides the main basis for many SRA 

methodologies (Garrick et al., 2004). As in the other typical risk types, to manage 

security risk in an efficient way, SRA is required. Managing security risk through 

threat likelihood requires intelligence represent an approach to SRA that focuses 

specifically on threats. Managing security risk through vulnerability requires 

increasing surveillance and detection, hardening targets, or other capabilities that 

might reduce the success of attempted attacks. Managing security risk through 

consequences can be done through increasing preparedness and response that reduces 

the effects of damage through mitigation or compensation. The main problems are 

how these factors are quantified and aggregated.  

Therefore, SRA is an important and challenging problem (Levitin and Ben-Haim, 

2008). The main challenge of SRA is to provide best possible situational awareness 

to the decision makers (DM). Efficient SRA is essential and a valuable decision aid. 

SRA is an objective and preferably quantitative evaluation of security risks 

considering threats, vulnerabilities, and consequences. SRA is a technique for 

identifying, characterizing, quantifying, and evaluating the risk from an intelligent 

event. Many methods/tools of typical RA have been applied to support SRA. The 

basic methods for SRA can be categorized in two main categories as: qualitative 

SRA methods and quantitative SRA methods (Apostolakis, 2004; Cox et al., 2005).  

In the qualitative SRA methods, the results are often shown in the form of a simple 

risk matrix where one axis of the matrix represents the probability and the other 

represents the consequences (Figure 1.1).  

Likelihood 
Consequence 

Minor Serious Very serious Major Catastrophic 

Very High      

High      

Medium      

Low      

Very Low      

Figure 1.1 : Risk matrix. 

In the Figure 1.1 darker the colour of the cell, higher the risk is. The advantages of 

qualitative SRA methods are as follows (Cox et al., 2005): 
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• only a few qualitative judgments is required as inputs (ordered categorical labels 

such as “low,” “medium,” and “high”),  

• the rating logic is transparent and easy to apply, 

• calculations are reduced to simple categorizations of risk as outputs that can be 

communicated relatively easily to DMs. 

The disadvantages of qualitative SRA methods are as follows: 

• sufficient information to discriminate accurately between quantitatively small and 

quantitatively large risks is not provided, 

• simple linguistic variables such as “High/Low” have the limitations in quantifying 

the risk and only represent subjective mental cognition adequately. 

Quantitative SRA methods include quantifying and categorizing risks within the risk 

portfolio. When adequate data are available, quantitative SRA is preferred. 

Quantitative methods of RA to analyze the security risk are fairly limited. There is 

great uncertainty about the risk scenarios and contributing factors. Unfortunately, 

detailed quantitative data are frequently not available. There are two common 

quantitative methods: scoring methods and probabilistic methods. 

In the typical quantitative SRA scoring methods, security risk is determined through 

the risk score which is defined as the product of the threat, vulnerability and 

consequence. The three factors threat, vulnerability and consequence are all 

evaluated using the ratings or scores. Typical scoring method based on Eq.1.1 

produce ambiguous or mistaken security risk estimates because of the following 

reasons: 

• Directly estimating scores for the security risk factors (Threat, Vulnerability, and 

Consequence), 

• Intrinsic subjectivity and ambiguity of security risk factors,  

• Not modelling uncertainty suitably in the light of available information and 

experience, 

• Inability to use risk-scoring results to optimally allocate defensive resources,  

• Ignoring intelligent planning and adaptation. 

The other most common quantitative SRA method is probabilistic RA (PRA) (Ezell 

et. al., 2010; McGill, 2007; Kirchsteiger, 1999). In the PRA, probability theory is the 

foundation of contemporary risk analysis. PRA which is based on probability theory 



5 
 

emphasizes random uncertainties and requires statistical data about each parameter. 

Probabilistic method is an effective tool to study risk when a great amount of data 

can be collected. For PRA, threat is measured by the frequency of the intentional 

attack, vulnerability is measured by the probability that the attack defeats the security 

of the system, and consequence is the expected loss if the system fails. For example, 

assume that based on the data available, Threat is modelled with a normal probability 

distribution with mean 0.005 per year and standard deviation 0.0008 per year. 

Vulnerability is modelled with a lognormal probability distribution with mean 0.06 

and standard deviation 0.02. Consequence is modelled with a uniform probability 

distribution with minimum 1 million and maximum 7 million (mean 4 million) Liras 

(L) per year. Using convolution of probability distributions under multiplication or 

Monte Carlo simulation, the expected value (mean) of risk can be calculated as L per 

year. 

Difficulties of PRA are as follows: 

• Many of the events in the intentional attack are fairly rare events and their 

probabilities cannot be estimated from data and in terms of one single probability, 

• Probability is not valid for non repeatable events,  

• Expert opinion is frequently employed as a method of eliciting probability 

estimates, but this is unreliable in the case of rare events, 

• When there are very few data, the end result is very strongly influenced by the 

assumed prior distribution. 

In this section limitations of conventional models/theories are discussed and the 

results of qualitative and quantitative RA systems are evaluated.  

1.2 Aim and Objective 

It is clear that analyzing the security risk of intelligent acts with the potential for 

severe consequences considering vulnerabilities requires methods of analysis that 

systematically and rigorously quantify uncertainties. There is a need for a realistic 

quantification of security risk factors. The quantitative description of security risk is 

affected by the accuracy of the estimates of the likelihood of events, vulnerability of 

assets and the quality of the consequence study. This thesis proposes a quantitative 

SRA framework that offers a methodology for assessing the security risk of critical 
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facilities. The purpose of the proposed framework is to support effective decision 

making to SRA for defending critical facilities against malevolent attacks. This thesis 

is about a description of the nature of security risk, a security risk assessment 

methodology, information requirements to security risk, and recommendations for 

successful implementation. There are many challenges in the details of SRA. The 

main research questions are as follows: 

• How to measure/quantify/represent security risk factors: Threat likelihood, 

Vulnerability, Consequence, and Security risk? 

• How to aggregate threat likelihood, vulnerability and consequence for SRA? 

• What is the appropriate uncertainty model for SRA?  

• How to improve SRA decisions? 

The main objectives of this study are to propose a new realistic framework to SRA 

process for incorporating uncertainties using required concepts into conventional RA 

frameworks, to understand the security risks involved that might affect the critical 

facility and to demonstrate how proposed SRA can help in decision-making 

considering research questions.  

1.3 Theory, Methodology and Data 

The three fundamental factors used to assess the security risk of threat scenario are 

threat, vulnerability and consequence (Eq.1.1). SRA focuses on quantification of 

these factors and aggregation of them for SRA. In order to accomplish SRA; four 

different models are developed for each factor of the SRA framework as Threat 

Assessment Model (TAM), Vulnerability Assessment Model (VAM), Consequence 

Assessment Model (CAM), and Security Risk Evaluation Model (REM) (Figure 1.2).  

 

Figure 1.2 : Models of security risk assessment framework. 
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• Threat Assessment Model (TAM): TAM identifies threats of a critical facility and 

estimates their likelihoods. The threat assessment also generates the initiating 

events, possible threat scenarios, for the other models of SRA framework 

(Chapter 2). 

• Vulnerability Assessment Model (VAM): VAM identifies and quantifies the 

weakness of the critical facility as a system, system functions and system 

components, and determines the most critical functions and components by 

simulating the system behaviour (Chapter 3).  

• Consequence Assessment Model (CAM):  CAM estimates the expected 

magnitude and type of loss (e.g., deaths, injuries, or property damage) associated 

with a threat scenario given adversary success for a critical facility. This model 

involves quantification of the likely loss or damage due to anticipated threat 

scenarios (Chapter 4). 

• Security Risk Evaluation Model (REM): REM aggregates the outputs of TAM, 

VAM and CAM for evaluating the security risk of a critical facility (Chapter 5). 

Each developed model in SRA framework proposes an approach for quantification of 

corresponding security risk factor. Quantification of security risk factor means that 

the factor is represented by a mathematical parameter that embodies enough 

information supported by the evidence for estimating the future values.  

Proposed SRA framework has been studied in three dimensions: theoretical 

framework, methodological framework and information processing framework and 

described in the following sections. 

1.3.1 Theoretical framework 

The choice of the appropriate uncertainty theory is a critical modelling decision and 

context dependent. In typical RA, no distinction is traditionally made between 

different types of uncertainty for the factors and in the literature generally 

uncertainty has been addressed using only one of the uncertainty theories within the 

computations. Few studies have considered the issue of integrating different modes 

of representation of uncertainty in a single computational procedure (Guyonnet et al., 

2003).  

There are limitations in using only one uncertainty theory to quantify the security 

risk factors in a framework because security risk factors involve different types of 
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uncertainty stem from technical, non technical or social sources of the concerned risk 

type: security risk. To quantify the any security risk factor, it is first necessary to 

choose the appropriate uncertainty theory. The appropriate uncertainty theory used to 

describe studied security risk factor should obviously be compatible with the features 

of this factor, by the type of required input information, by the quality of required 

output information and by the axiomatic assumptions about the cause of uncertainty. 

Therefore, choosing an uncertainty theory is important because: 

• An uncertainty theory has to be appropriate to the available quantity and 

quality of input information,  

• An uncertainty theory determines the type of information processing applied 

to available information, 

• An uncertainty theory determines the output. 

Research advances in uncertainty modelling and decision making have produced new 

opportunities for representing and processing information. Most of the established 

theories and methods for uncertainty modelling are focused on specific types of 

uncertainty and they also require specific types or qualities of information depending 

on the type of information processing they use. There is not any single method or 

theory which is sufficient to model all types of uncertainty equally well.  

Since parameter uncertainty is a major aspect of SRA, in quantifying the security 

risk, only one uncertainty theory is not enough because of different nature of security 

risk factors. In order to handle various types of possible uncertainties that occur in 

the implication/application of SRA, this thesis proposes a framework to represent 

each factor with different uncertainty theory for SRA. The proposed uncertainty 

modelling strategy for SRA is depicted in Figure 1.3 based on the characteristics of 

the uncertainty on security risk factors.  

This thesis investigated the uncertainty affecting security factors in SRA and the use 

of probability theory, fuzzy set theory, Dempster-Shafer theory of evidence (DST) 

and other uncertainty theories for SRA. The possible application of different 

uncertainty theories to the quantification of SRA factors are explored and described 

in the following chapters. 
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Figure 1.3 : Theoretical framework. 

1.3.2 Methodological framework 

On methodological dimension, proposed SRA framework consists of four models 

that apply several methodologies consistent with each other for the quantification of 

corresponding security risk factor. The proposed multi methodological modelling 

strategy for SRA is depicted in Figure 1.4 based on the characteristics of the special 

challenges of security risk factors.  

 

Figure 1.4 : Methodological framework. 

Methodologies relevant to address the special challenges of security risk factors that 

can be applied to the quantification of security risk factors are investigated. These 

include problem structuring methods (PSM) such as Morphological Analysis (MA), 

multiple criteria/attribute decision making (MCDM) techniques such as Simple 

Multi-Attribute Rating Technique (SMART), data integration methods and evidence 
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combination techniques (combining data collected from multiple sources with 

different sampling rates or data schemas to reach a conclusion) such as rule based 

expert systems, DST combination rules and Uncertain Linguistic Weighted Average 

(ULWA), and modelling and simulation techniques such as Trinitrotoluene (TNT) 

equivalent method, Fuzz Cognitive Maps (FCM) and Monte Carlo simulation. The 

possible application of these methodologies to the quantification of SRA factors are 

explored and described in the following chapters. 

1.3.3 Information processing framework 

On information processing dimension, the factors must be represented in a way that 

is consistent with the resolution of data/information at hand and the information at 

hand must be structured in a suitable form as input to SRA. The input and output 

information requirements must be understood to support meaningful analysis of the 

security risks.  

The available input information in SRA process can be very different in nature for 

security risk factors. The input data may be different both in type and in scale. It can 

be qualitative and quantitative, can be incomplete, imprecise (vague), unreliable, 

conflicting, overloaded. So, there is a need to establish a framework that provides a 

basis for synthesis across multidimensional information of varying quality. The 

available information is neither ignored nor exaggerated.  

The historical data for SRA are limited and sometimes meaningless because of the 

characteristic of intelligent events in security risk. Both linguistic data and 

incomplete information are inevitable in SRA. When dealing with security risk, two 

extremes are avoided: reducing everything to inappropriate numerical forms and 

reducing everything to plain language rejecting technical and quantitative data. 

Because of lack of complete information, intuition and judgement still play major 

role in SRA. Methods for extracting reliable knowledge from experts and 

representing knowledge in more suitable form are investigated and developed. 

The proposed information processing strategy for SRA is depicted in Figure 1.5 

based on the characteristics of the input information available and the quality of 

required output information.  
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Figure 1.5 : Information processing framework. 

Since data for the security parameter in each model are obtained via different 

uncertainty models, data for the parameters in each of these models can be obtained 

in different forms, and can be specified in terms of linguistic variables, point 

estimates, means and standard deviations, intervals, probability distributions, fuzzy 

numbers or belief distributions. The handling various types of input and output 

information of SRA factors are explored and described in the following chapters. An 

illustrative example is also provided to demonstrate an application of developed 

models for a typical critical facility. The developed models as described in following 

chapters are applied to a hypothetical Airport X to discover threats, vulnerabilities, 

consequences and security risks for improving its site security (Figure 1.6). A typical 

airport is decomposed to the dimensions of functions, critical infrastructures and key 

infrastructure elements. Modern airports with their runways, taxiways, aprons, 

passenger terminals, ground handling and flight navigation equipment are very 

complex facilities (Ashford et al., 1997). Simply, the mission of an airport is to land, 

to unload payload, to load payload and to take off aircrafts. When the security 

requirements are considered against the possible malevolent attacks, the challenge of 

SRA for an airport becomes very complicated. Therefore, it is thought that an airport 

case can be an interesting example. Note that all the values used throughout this 

thesis are purely generic and notional. 
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Figure 1.6 : Sketch of airport X. 
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2.  THREAT ASSESSMENT MODELLING 

2.1 Introduction to Threat Assessment 

Critical facility threat assessment is considered to be the most difficult challenge in 

security risk assessment (SRA). In the security field, a threat is an intelligent event 

that is defined as any human caused act, entity, event or phenomenon with the 

potential to cause harm or damage to a critical facility by adversely changing its 

state. In other words, a threat is a human caused intelligent event of undesired 

consequence and different from random events. In the system perspective, the critical 

facility, such as an airport, dam, governmental facility, harbour, nuclear power plant, 

oil plant etc., can be defined as a system that relies on a group of different physical 

entities as system components which are attractive targets subject to threats. Unlike 

accidental failures, human caused threats are deliberate, innovative, and 

unpredictable acts against the targets of critical facility. Forecasting threats are 

difficult because adversaries will continue to improve tactics and enhance their 

capabilities according to changing conditions. Before the security risk is assessed, 

threats and their likelihoods must be identified and quantified. Therefore, threat 

assessment is the task of identifying threats and estimating their likelihoods, and 

involves two sub-phases: threat identification and threat likelihood estimation, which 

are described in the following sections (Figure 2.1). 

 

Figure 2.1 : Threat assessment. 

The aim of this chapter is to present a realistic approach to quantify the likelihood of 

threats by identifying them based on the appropriate uncertainty model and 

supplementary methods for a critical facility considering both information at hand 

(input information) and information requirements of DMs (output information). The 

proposed approach, called evidence based Morphological Analysis (EMA) model, is 

Threat Assessment

Threat Identification Threat Likelihood Estimation



14 
 

based on Dempster-Shafer theory of evidence (DST) and Morphological Analysis 

(MA) methodology. EMA model incorporates DST with MA for threat assessment of 

a critical facility in this study. The proposed approach is presented step by step and 

applied to a simple case study on airport threat assessment. The results show that 

EMA can be used to reason about threat assessment by providing adequate precision. 

After reviewing the existing approaches and the factors that influence the threat 

identification and likelihood estimation, the remainder of this chapter is organized as 

follows: In Section 2.2, theoretical background information for the proposed 

approach is represented. The proposed EMA model and its process flow are 

introduced in Section 2.3. The illustrative application of the proposed approach is 

performed over an airport case study in Section 2.4. This section also examines the 

utility of findings and discusses the analysis results. Conclusions and further issues 

are addressed respectively in the final section. 

2.1.1 Threat identification 

Threat identification sub-phase identifies threats that a critical facility may suffer by 

developing an exhaustive set of plausible threat scenarios based on the 

susceptibilities of its possible targets to possible attack profiles considering 

information on the intentions and capabilities of the attackers, targets and weapon 

delivery systems. Threat identification is the basis for identification, filtering and 

prioritizing of threat scenarios on which concentration is needed. For developing 

plausible threat scenarios, extensive involvement of security experts is required. The 

aim is to develop a complete set of plausible threat scenarios which are bounded in 

terms of the intentions and capabilities of the attackers. The development of threat 

scenarios is different because of the intelligent attacker. An examination of historical 

data is useful when identifying possible threat scenarios, but it is also required to 

identify possible threat scenarios that have never been happened in the past. 

Since development of scenarios is critical for threat identification, a method for 

developing threat scenarios is required. In the literature, a variety of tree structures 

are often used to develop scenarios. Tree structures are important tools for exploring 

the scenario space, analyzing uncertain events and defining scenarios (Harris, 2004). 

Tree structures can be categorized in two types: event trees or fault trees that display 

functional and logical relationships among events. Given a set of initiating events, if 
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the structuring of scenarios is done by identifying succeeding events and tracing the 

response of a system from an initiating event to different possible end-states, 

scenarios constructed in this way form an event tree (Andrews and Dunnett, 2000). 

Each path through this tree represents a scenario and ends up at an end state started 

by an initiating event.  Therefore, an event tree is a cause-and-effect representation of 

logic. Given an end-state, if the structuring of scenarios is done by projecting 

backwards to determine the potential scenarios that could cause the end-state, 

scenarios constructed in this way form a fault tree (Ericson, 1999). A fault tree starts 

with the end-state and attempts to determine all of the contributing system states. 

Therefore, fault trees are effect-and-cause representations of logic. An event tree is 

developed by inductive reasoning while a fault tree is based on deductive reasoning. 

In the literature, event trees and fault trees have been used to identify threat scenarios 

in several studies (Ezell et al., 2001; Rosoff and von Winterfeldt, 2007). But, tree 

structures as a hierarchical technique quickly become difficult to handle because of 

the wide variety of possible scenarios. Proposed technique must be fast enough to 

quickly analyze a wide range of plausible scenarios with modest computational 

effort. 

In this study, MA is used for threat identification. The fundamentals of MA and 

reasons for using MA are described in the following sections. 

2.1.2 Threat likelihood estimation 

Threat likelihood estimation is the most uncertain aspect of the SRA problem. As 

threat scenarios are about what will happen, threat likelihood is about how likely it is 

to happen. At this sub-phase, threat scenario likelihoods are determined. The critical 

research question is “Which interpretation of likelihood is the most informative and 

is the preferred way of capturing and quantifying the state of knowledge about the 

likelihood of a defined threat scenario for a critical facility?” Quantification of 

likelihood means that the threat likelihood is represented by a mathematical 

parameter that embodies enough information supported by the evidence for 

estimating the future occurrences of intentional attacks. To quantify the threat 

likelihood, it is first necessary to choose the appropriate uncertainty model and 

define the concept of likelihood. Modelling uncertainty is one of the most critical 

modelling decisions (Zimmermann, 2000). The choice of the appropriate uncertainty 

model is context dependent. The appropriate uncertainty model used to describe 



16 
 

studied situation should obviously be compatible with the features of this situation, 

by the type of required input information, by the quality of required output 

information and by the axiomatic assumptions about the cause of uncertainty. 

Therefore, choosing an uncertainty model is important because: 

• An uncertainty model has to be appropriate to the available quantity and quality of 

input information,  

• An uncertainty model determines the type of information processing applied to 

available information, 

• An uncertainty model determines the output. 

There are two main types of uncertainty: aleatory uncertainty and epistemic 

uncertainty. Epistemic uncertainty is referred to as reducible, subjective and state-of-

knowledge uncertainty and aleatory uncertainty is referred to as random, irreducible 

and stochastic uncertainty (Helton, 1997; Oberkampf et al., 2004). 

Many researchers have investigated how to deal with both uncertainties and there 

exist a considerable number of theories, methods or paradigms to model uncertainty. 

Some commonly used uncertainty models are as follows: probability theory 

(Laplace, 1812; Kolmogorov, 1950), fuzzy set theory (Zadeh, 1965), possibility 

theory (Zadeh, 1978; Dubois and Prade, 1988), and Dempster-Shafer theory of 

evidence (Dempster, 1967; Shafer, 1976). But, there is not any single method or 

theory which is sufficient to model all types of uncertainty equally well. Each of 

these theories makes assumptions about available information, it contains a certain 

calculus by which these information are processed and certain measures of 

uncertainty. A specific uncertainty model should not be used if its mathematical 

operations require a higher level of information than that on which the available 

information is provided. This is very important when applying those models. 

Uncertainty models transform input information to output information. 

Underestimation and wrong interpretation of uncertainty is an important mistake. 

Therefore, the choice of appropriate uncertainty model for threat likelihood 

estimation is crucial. 

In probabilistic risk assessment (PRA), quantitative interpretations of likelihood are 

frequency, probability, and probability of frequency (Ezell et. al., 2010; Kirchsteiger 

1999). If the event happens repeatedly, its likelihood can be expressed as frequency 
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like in occurrences per day, per year, per trial, etc. If the event happens either once or 

not, its likelihood can be quantified in terms of probability. If the event happens 

repeatedly and has a frequency, but the numerical value of that frequency is not fully 

known, its likelihood can be expressed as a probability of frequency. The most 

appropriate mathematical representation of likelihood is probability theory when the 

given information is perfect and complete. It is difficult to obtain precise relation 

between events and their likelihoods. The PRA requires having all the information on 

the probability of all events. When such information is not available, the uniform 

distribution function is used. Uniform distribution function states that all events in a 

given sample space are equally likely. Because of the axiom of additivity (where all 

probabilities that satisfy specific properties must sum to 1) in the probability theory, 

if it is believed that a likelihood of an event A is 0.25, it is necessarily believed that 

likelihood of not event A (complement of A) is 0.75. This is a strict assumption for 

threat likelihood. Even if there is a historical data and predetermined probability 

function fits the limited historical data well, the threat likelihood estimation results 

may not be good in practice because of the human factor in deliberate and adaptive 

events of security risk. In case of partial ignorance, the use of a single probability 

measure introduces information that is in fact not available. This may seriously bias 

the outcome of a threat assessment in a non conservative manner. Probability theory 

is an appropriate uncertainty theory for analysis of random events. But, is 

randomness one of threat likelihood nature? Although some threat has never 

happened, it will be possible in the future. Threat likelihood estimation involves 

uncertainty associated with predicting an event in the future. Zadeh’s egg example 

illustrated the difference between probability and possibility simply by the following 

example (Zadeh, 1978). Consider “Hans ate X eggs for breakfast” with X taking 

values in u = {1, 2, 3, 4, 5, 6, 7, 8} (Table 2.1). 

Table 2.1: Egg example. 

u 1 2 3 4 5 6 7 8 
Possibilityx (u) 1 1 1 1 0.8 0.6 0.4 0.2 
Probabilityx(u) 0.1 0.8 0.1 0 0 0 0 0 

As shown in the Table 2.1, a high degree of possibility does not imply a high degree 

of probability, nor does a low degree of probability imply a low degree of possibility. 

But, a high degree of probability implies a high degree of possibility and low degree 

of possibility implies low probability. If an event is impossible, it is bound to be 
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improbable. This is called Zadeh’s possibility-probability consistency principle 

(Zadeh, 1978). Threats are also a class of events that may have a probability of zero 

but may not be impossible. Although something has never happened, it will be 

possible in the future. 

Fuzzy logic based approaches have been extensively used to model vagueness and 

ambiguity, but it can not deal with such uncertainties as incomplete, imprecise and 

missing information (ignorance). Vagueness is uncertainty about the classification of 

a known event. For example, Hans is 22 years old, but it is said that Hans is young 

without the precise definition of young. At this example, the word young is vague 

and can be addressed by using fuzzy set theory.  

The threat is chosen and executed for a reason by the attacker. A threat, intentional 

attack for a critical facility, is neither random event nor vague event and uncertainty 

associated with such intelligent event involves epistemic uncertainty rather than 

aleatory uncertainty. The threat likelihood parameter must also be represented in a 

way that is consistent with the information at hand. For threat likelihood estimation, 

it is not possible to obtain a measurement from experiments and the input 

information is commonly obtained from expert elicitation. Threat likelihood is 

evaluated based on experience and judgement. The input information for threat 

likelihood is commonly expressed in qualitative terms and frequently described using 

linguistic variables. There is a significant body of knowledge in qualitative or 

linguistic form for determining threat likelihood and this knowledge has to be 

captured.  

In this study, DST is used for uncertainty modelling and the input data for threat 

likelihood are represented by DST variables due to epistemic uncertainty. The 

fundamentals of DST, reasons for modelling uncertainty by DST, and how DST is 

applied for threat likelihood estimation within MA is described in the following 

sections. 

2.2 Theoretical Background for Threat Assessment Modelling 

In this section, theoretical background information on Morphological Analysis (MA) 

and fundamentals of Dempster-Shafer theory of evidence (DST) are presented, 

respectively. 
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2.2.1 Morphological analysis 

MA, developed by Fritz Zwicky in 1969, is a qualitative modelling method for 

structuring parameter space of the multidimensional non-quantifiable problems by 

defining relationships between the parameters on the basis of internal consistency 

(Zwicky, 1969). As a qualitative problem structuring method, MA has been applied 

to complex social, organizational and technical problem fields for the scenario 

planning, strategy formulation, policy development, etc. (Sharif and Irani, 2006a;b; 

Ritchey, 1998; 2009). 

MA begins by forming a morphological field and corresponding cross-consistency 

assessment (CCA) matrix in MA’s terms. A morphological field, matrix of the state 

of all conditions in the system, is constructed by identifying and defining the 

parameters of the problem and assigning each parameter a range of relevant values in 

a multidimensional matrix. A configuration contains one value from each of the 

parameters and represents a particular state, solution or scenario in the problem. The 

next step in the MA is to examine the internal relationships between the parameters 

and reduce the morphological field by eliminating all mutually contradictory 

conditions. This is achieved by a process of cross-consistency assessment in the CCA 

matrix where all of the parameter values in the morphological field are evaluated pair 

wise with the other parameter values by defining pairs that can not coexist and 

removing the configurations that contain a single illogical pair. The exponential 

growth to unmanageable numbers of permutations is decreased by discarding 

illogical pairs through a process of cross-consistency assessment in the CCA matrix. 

By doing this, solution space of the problem is determined. The solution space 

consists of the subsets of configurations that satisfy the condition of internal 

consistency.  

In MA different from event trees and failure trees, structuring of a configuration is 

done by using logical relationships instead of casual relationships. The important 

feature of MA is to reduce the solution space. The total number of configurations 

(possible or not) is the product of the number of values under each parameter. The 

total number of configurations grows exponentially with each new parameter but the 

number of pair wise relationships between parameters grows only as a quadratic 

polynomial that is proportional to the triangular number series (Ritchey, 1998; 2009). 
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Therefore, even a morphological field involves many configurations, fewer number 

of pair wise evaluations is always required than the total number of configurations in 

order to create solution space. Advantages of MA are as follows: 

• The solution space of any given problem can be derived systematically, 

• New configurations or relations that is not so evident can be discovered more 

easily, 

• Impossible configurations can be screened rapidly, 

• Multi-dimensions in columns can easily be represented by morphological field 

and MA matrix structure helps to keep the solution space organized, accessible 

and traceable even at large sizes, 

• New parameters and new parameter values can easily be added, and new relations 

can easily be updated. 

But, there is no mechanism to address the issue of how to deal with incomplete, 

imprecise and ignorance in MA, which is essentially inherent and inevitable in expert 

judgements. Pair wise evaluations can take different forms instead of binary decision 

to determine the strength of the logical relations between the parameter values as 

proposed in this study. 

In this study, MA is used for the purpose of the threat identification because MA is 

fast enough to quickly analyze a wide range of plausible threat scenarios with modest 

computational effort.    

2.2.2 Dempster-Shafer theory of evidence 

The Dempster-Shafer theory of evidence (DST) is an alternative theory for the 

mathematical representation of uncertainty (Dempster, 1967; Shafer, 1976). There 

are many practical applications of DST in the literature such as artificial intelligence, 

expert systems, pattern recognition, data fusion, etc. (Dempster et al., 2008).  

Applications of DST in typical risk assessment have been very limited because 

probabilistic methods are successful where a lot of experimental data and expert 

knowledge are available (Demotier et al., 2006). 

The theory begins by defining the frame of discernment (FD), denoted by                 

Θ = {H1,…, HN}, which is a collectively exhaustive and mutually exclusive set of 
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propositions or hypotheses. The power set, 2Θ, is constructed from Θ which     

consists all subsets of Θ, including the empty set (Ø) and Θ itself i.e. 

1 1 2 12 { ,{ }, ...,{ },{ , },...,{ , },..., }.N NH H H H H HΘ = ∅ Θ  

DST uses three basic parameters, i.e., basic probability assignment (bpa), belief 

measure (Bel), and plausibility measure (Pls) to characterize the uncertainty in a 

belief structure. The bpa (m) which is a function : 2 [0,1]m Θ →  satisfying following 

axioms: 

( ) 0 ( ) 1
A

m and m A
⊆ Θ

∅ = =∑                                     (2.1) 

where A is any subset of Θ (A∈2Θ). The bpa for a given set A, m(A), measures the 

belief exactly assigned to A and represents how strongly the evidence supports A. 

The bpa’s of all the subsets of Θ sum to unity and the bpa of Ø is 0. The bpa of Θ, 

m(Θ), is called the degree of ignorance.  Each subset A with m(A)>0 is called a focal 

element and all the focal elements are called the body of evidence.  

The belief measure (Bel) and the plausibility measure (Pls) are the functions 

associated with each bpa and defined by the following equations:  

Bel(A)   ( )
B A

m B
⊆

= ∑                                          (2.2)  

Pls(A)   ( )
A B

m B
∩ ≠∅

= ∑                                         (2.3)  

where A and B are subsets of Θ. Bel(A) represents the exact support to A. Pls(A) 

represents the possible support to A. The two functions are connected by the 

equation: 

Pls(A)= 1- Bel(A)                                         (2.4)  

where A  denotes the complement of A. The difference between the Bel(A) and 

Pls(A) describes the ignorance of the assessment for the set A (Figure 2.2). 

 

Figure 2.2 : Belief and plausibility. 
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[Bel(A), Pls(A)] constitutes the interval of support to A and can be interpreted as the 

lower and upper bounds of the probability to which A is supported due to lack of 

information. The precise probability of an event lies within the lower and upper 

bounds of Bel and Pls, respectively (Bel(A)≤P(A)≤Pls(A)). The wider the interval, 

the less informative it is. The measurements Bel, Pls, and probability will converge 

to a single probability when the information increased sufficiently 

(Bel(A)=P(A)=Pls(A)). The sum of all the Bel and the sum of all the Pls are not 

required to be 1 and therefore, both Bel and Pls are non-additive.  

The other important aspect of DST is the combination rules that are the special types 

of aggregation methods for data obtained from multiple independent information 

sources. Detailed discussions on these rules can be found in the literature (Sentz and 

Ferson, 2002; Smets, 2007). These rules can be either conjunctive rules (AND-based 

on set intersection) or disjunctive rules (OR-based on set union) from a set theoretic 

standpoint. Two most common combination rules, both one conjunction based rule 

and one disconjunction based rule, are used and compared in this study: the Yager’s 

modified Dempster’s rule (Yager’s rule) and the Dubois and Prade’s disjunctive 

consensus rule (DP’s rule) (Dempster, 1967; Yager, 1987a;b; Dubois and Prade, 

1992).  
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where Ai’s are propositions from different information sources, mi(Ai)s are 

corresponding bpas, K represents bpa associated with conflict, and the symbol ⊕ 
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represents operator of combination. The symbol ⊕DP  represents DP’s rule and the 

symbol Yager⊕  represents Yager’s rule.  

In the case of multiple information sources, two algebraic properties enable evidence 

to be combined in any order: commutativity   and associativity, i.e. 

1 2 2 1m m m m⊕ = ⊕  and 1 2 3 1 2 3( ) ( )m m m m m m⊕ ⊕ = ⊕ ⊕ . Therefore, commutativity 

and associativity of the combination rules are required for multiple information 

combinations. These algebraic properties are satisfied by each of the applied rules: 

the Yager’s rule is both commutative and quasi-associative, and the DP’s rule is both 

commutative and associative. These properties can be seen in Sentz and Ferson 

(2002). 

Major difficulty in applying the DST is the computational complexity. There is no 

explicit function of the given imprecise information in DST like the probability 

density function. The significant difference of DST is that bpas are assigned to sets 

and subsets of sample space rather than mutually exclusive singletons as in 

probability theory. This implies an exponential increase in computational 

complexity. The subsets to which the bpas are assigned can be consonant (nested) or 

non consonant and continuous or discrete. Under the restriction that all the focal 

subsets are nested, Pls is referred to as possibility and Bel is referred to as necessity 

in possibility theory (Dubois and Prade, 1988).  

DST is selected for the likelihood estimation because both epistemic uncertainty and 

aleatory uncertainty can be handled by the help of the flexibility of DST basic 

axioms. DST is also well suited for handling incomplete information without any 

additional assumptions as additivity. Lastly, DST combination rules allow 

aggregating different types of evidence obtained from multiple sources easily. 

Details of the application of DST within MA to likelihood estimation are described 

in the next section.  

2.3 Evidence based Morphological Analysis Model 

Likelihood estimation of complex events like intentional attacks in threat assessment 

is difficult to assess directly because it is not possible to obtain a precise 

measurement from experiments. Therefore, EMA model decomposes these events 

into simple relations and determine the overall event likelihood by assembling the 
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relations’ likelihoods using DST combination rules. EMA model provides an 

efficient approach for breaking/making a large and complex assessment into a 

sequence of smaller and simpler relations that can be more easily addressed in a 

structured way. 

The proposed EMA model incorporates DST with MA in this study. Different from 

typical MA applications, the strength of logical relations between the parameter 

values are not limited to binary (Yes or No) decisions since experts may express 

likelihood of existence of relation which is characterized by the linguistic evaluation 

grades that represent the qualitative expert assessments. Typical qualitative analysis 

of MA identifies all the plausible scenarios, whereas proposed EMA both identifies 

all the plausible scenarios and estimates the likelihood of plausible scenarios based 

on DST. The proposed model allows to express qualitative judgements using belief 

structures developed on the basis of DST and make full use of available information 

without information loss and exaggeration. A relation in MA may change when more 

information is get by time. Thus, the notion of time, t, is also introduced into the 

problem formulation.  

The proposed model first identifies the parameters of the scenarios and defines a 

range of values for each parameter. Original FD is determined for evaluation of CCA 

matrix relations and bpas for evaluation of CCA matrix relations are assigned. 

Relations within MA are combined using belief structures that are aggregated to 

form the scenarios by two well-known DST combination rules: DP’s rule and 

Yager’s rule. Then, the belief intervals of all scenario likelihoods are calculated. The 

likelihoods of identified scenarios are ranked based on their belief intervals 

according to defined preference relation using bubble sort algorithm. The proposed 

approach consists of the following steps shown in Figure 2.3.   

Step 1: Identify the parameters and define a range of values for each parameter  

In this step, the scenario parameters are identified and a range of values for each 

scenario parameters are defined. Suppose in a morphological field there are L basic 

parameters and let be a set of parameters A={A1,…, Ai,…AL}. A set of basic values 

for parameter Ai is defined as 1 ( ){ ,..., , ..., }
i

i i i
i k L AA a a a=  where i

ka is the kth value of 

the parameter Ai and L(Ai) is the total number of the values of parameter Ai. 
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Figure 2.3 : The steps of  EMA model. 

Step 2: Form Morphological Field 

Morphological field is formed as shown in Table 2.2.  

Table 2.2: Sample morphological field. 

Parameter A1 … Parameter AL 

1
1a  … 1

La  

… … … 
… … ( )L

L
L Aa  

1

1
( )L Aa  … 

 
Step 3:  Construct Cross-Consistency Assessment (CCA) Matrix 

At this step, definition and representation of CCA matrix is done based on DST.  

Sub-step 3.1: Determine the Frame of Discernment for evaluation of CCA Matrix 

relations 



26 
 

Determination of the FD is context dependent and very important. Since bpas are 

assigned to subsets of the FD in DST, this implies an exponential increase in 

computational complexity (Liu et al., 2007). The other point is that FD affects the 

way information captured. Therefore, FD is determined considering both information 

at hand and computational complexity in this study.  

Qualitative judgement information given by security experts is essential to quantify 

likelihood. Security experts as in many fields tend to think in linguistic terms and 

usually give their subjective judgements linguistically by means of a set of 

evaluation grades. Different types of assessment information, such as complete and 

incomplete, precise and imprecise assessments, may be expressed as follows (Yang 

and Singh, 1994):  

Assessment 1: Absolutely (100%) believe that explosive attack to target 1 is “Likely” 

expressed by DST format as {(Likely,1)}; 

Assessment 2: 70% believe that explosive attack to target 2 is “Likely” and 30% 

believe that it is “Highly Likely” expressed by DST format as {(Likely,0.7), (Highly 

Likely,0.3)}; 

Assessment 3: 80% believe that explosive attack to target 3 is “Likely” expressed by 

DST format as {(Likely,0.8)}; 

Assessment 4 : 90% believe that explosive attack to target 4 is between “Likely” to 

“Highly Likely” and 10% believe that “Extremely Likely” expressed by DST format 

as {(Likely-Highly Likely,0.9), (Extremely Likely,0.1)}; 

Assessment 5: No judgement, which means experts can not provide an assessment for 

likelihood of relation under consideration, is expressed by DST format as {(Θ,1)}. 

In the above statements, the input is given as a distribution using linguistic terms 

with the belief degrees (30%, 70%, etc.) based on subjective judgments. Each belief 

degree is the individual bpa of the input to the evaluation grade. When all the belief 

degrees are summed to one in an assessment, the assessment is said to be complete; 

otherwise, it is said to be incomplete. Assessment 1,2 and 4 are complete while 

assessment 3 is incomplete. No judgement is referred to as total ignorance as in 

assessment 5. Total ignorance corresponds to whole domain of likelihood being 

possible. The decision maker may not always be 100% sure that the state of a 

relation is exactly confirmed to one of the evaluation grades since FD, Θ, consists all 
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evaluation grades. Incomplete assessments may result from lack of data, unavailable 

data, partially known data or the inability of experts to provide valid and accurate 

information. For handling incomplete information, the Θ is taken as a focal element 

by assuming that the unknown evidence may let all evaluation grades have equal 

evaluation. For example, in assessment 3 the missing 0.2 represents the degree of 

ignorance and is assigned to Θ. The decision maker also may not always be confident 

enough to provide subjective assessments to individual grades and may assess beliefs 

to subsets of adjacent grades, intervals, like in assessment 4. In assessment 4, the 

individual grades are extended to include interval grades such as “Likely-Highly 

Likely”.  

In order to reduce the computational complexity, all of the CCA matrix relation 

likelihoods between each scenario parameter are assessed on the basis of Hpq 

(p,q=1,…,N) evaluation grades where Hpp is an individual evaluation grade, and Hpq 

for p=1 to N and q=p+1 to N-1 is the interval evaluation grade between Hpp and Hqq 

(p<q,q=2,...,N). Hpp (p=1,...,N) are required to be mutually exclusive. Therefore, a set 

of evaluation grades for relation likelihood, FD, is denoted by  

{ ,p q,p 1,..., N}pqHΘ = = =

                                                 

(2.8) 

Θ constitutes a FD and interval evaluation grades are special subsets of mutually 

exclusive individual evaluation grades in the terminology of DST. H11 and HNN are 

set to be the worst and the best grades, respectively, and Hp+1p+1 is to be preferred to 

Hpp among evaluation grades.  

In this study, uncertain subjective judgments, such as complete and incomplete, 

precise and imprecise assessments, for evaluation of CCA matrix relation likelihoods 

are acquired using statements similar to statements 1-5 where Hpq represents an 

evaluation grade to which relations between each scenario parameter in MA may be 

assessed and (Hpq, m(Hpq )) represents the input information. 

Sub-step 3.2: Assign bpas for evaluation grades of CCA matrix relations 

In the proposed EMA model, the relations among scenario parameters in CCA matrix 

are evaluated by assigning bpa to each linguistic evaluation grade and/or linguistic 

interval evaluation grades. Likelihood bpa assignments are based on subjective 

judgements because of the limited numeric data, and human judgement is needed to 
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weigh alternative interpretations of whatever data available. It is assumed that group 

of experts provide consensus evaluation for each relation. Group decision making 

techniques can be applied but beyond the scope of this study.   

The Cartesian product of any two parameters in CCA matrix, Ai and Aj is determined 

as: 

i j i jA X A {(a ,a ) | a A ,  a A }i j i j
k l k l= ∈ ∈

                            
(2.9) 

which forms ordered pair of every a i
k ∈A i with every a j

l ∈A j. The strength of 

relationship between ordered pairs of elements in typical MA is measured by the 

characteristic function, denoted χ, where a value of unity is associated with complete 

relationship and a value of zero is associated with no relationship as follows: 

i j

i j
A X A

1 , (a ,a ) A X A
(a ,a )

0 ,

i j
k li j

k l
otherwise

χ
 ∈= 


            (2.10) 

However, in proposed approach the strength of relationship between ordered pairs of 

elements is measured by the following DST characteristic function as: 

i j

i j
A X A

( / (a ,a )), (a ,a ) A X A , 2
(a ,a )

0 ,

i j i j
t pq ij k l k l pqi j

k l

m H R H

otherwise
χ

Θ ∈ ∈= 
       

(2.11) 

where ( / (a ,a ))i j
t pq ij k lm H R expresses a bpa assigned to pair (a ,a )i j

k l from kth value of 

A i and lth value of Aj confirmed to Hpq at time t. Therefore, each relation in proposed 

MA at time t is defined by the following expression: 

i jR , )

, , , 1,..,

( {(a ,a ) | ( / (a ,a )) 0,  a A ,  a A , 2 }t

ij i j

i j i j i j
k l t pq ij k l k l pqA A

i j i j L

m H R H Θ=

≠ =

> ∈ ∈ ∈
    

(2.12) 

The belief structure of each relation (a ,a ) R ( , )i j t
k l ij i jA A∈  at time t can be defined as 

follows: 
 

S (a ,a ) {( , ( / (a ,a )))} , (a ,a ) R ( , ), 2i j i j i j t

t k l pq t pq ij k l k l ij i j pqH m H R A A H Θ= ∈ ∈
       

(2.13) 

For example, in Table 2.3 belief structure for 11 1 1 1(a , a ) R ( , )L t
L LA A∈  at time t is 

1
1 1 24 11S (a ,a ) {( ,0.5), ( ,0.5)}L

t H H= . 
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Table 2.3: CCA matrix. 

 

Parameter        
A1 

Parameter 
… 

Parameter                         AL  

1
1a  … 

1

1
( )L Aa  … … … 1

La  … ( )L

L
L Aa  

Parameter  
… 

… 
         

… 
         

… 
         

Parameter 
AL 

1
La  {( H24,0.5), 

(H11,0.5)}         

… 
         

( )L

L
L Aa

 
         

Step 4: Synthesize an internally consistent outcome space 

Sub-step 4.1: Combine beliefs in CCA matrix relations 

If a morphological field is defined by L basic parameters, there will be 2
LC  relations 

in CCA matrix and each scenario is defined as a unique combination of relations in 

CCA matrix. Therefore, each relation considered as different information source and 

fused by using DST combination rules in order to produce an aggregated likelihood 

estimation of the scenarios. The relations, as different information sources, provide 

different assessments for the same FD and the aggregation among the relations 

produces the scenarios. The beliefs of relations in CCA matrix is aggregated using 

the DP’s rule (Eq. 2.5) and the Yager’s rule (Eq. 2.6) as follows: 

2
1
. .

1
. . /

, {a ,...,a },

( / (a ,..., a )) ( / (a , a )) ,
∈

∈ ≠

= ⊕ ∀∑
L

M

L i j
t pq DP Yager t pq ij k l pq

ij C
k l k l

m H T m H R H

    

(2.14)

 

where the symbol ⊕ represents operator of combination: the symbol DS⊕ represents  

DP’s rule and the symbol Yager⊕  represents Yager’s rule. Therefore, each scenario in 

proposed MA at time t is defined by the following expression: 

1

1 1 1
. . . . . 1 .T ( ,..., ) {(a ,..., a ) | ( / (a ,...,a )) 0,  a A ,...,  a A , 2 }t L

L L L
t pq L pqA A m H T H Θ= > ∈ ∈ ∈

 

                                                     

(2.15) 

The belief structure of each scenario 1. . 1(a ,..., a ) T ( ,..., )L
t LA A∈  at time t can be 

defined as follows: 
 

1 1

. . . . 1

1

. .S (a ,...,a ) { , (a ,...,a ) ( ,..., ),( , ( / (a ,...,a )))} 2L L

t t L

L

pq t pq t pqT A AH m H T H Θ= ∀ ∈ ∈
     

(2.16) 
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Sub-step 4.2: Construct the belief intervals for identified scenarios 

After identifying scenarios by combining beliefs in CCA matrix relations, Bel, Pls 

and the belief intervals of evaluation grades for identified scenarios are determined 

by applying Eq. 2.2 and Eq. 2.3 as: 

1 1
. . . .Bel ( / (a ,...,a )) ( / (a ,...,a )), , 1,...,

pq pp

L L
t pp t pq t

H H

H T m H T p q N
⊆

= =∑
        

(2.17) 

1 1
. . . .Pls ( / (a ,...,a )) ( / (a ,...,a )), , 1,...,

pq pp

L L
t pp t pq t

H H

H T m H T p q N
∩ ≠∅

= =∑
        

(2.18) 

' 1 L

t . .

1 L 1 L
. . . .S (a ,...,a )={( ,[ ( / (a ,...,a )), ( / (a ,...,a ))]), 1,..., }pp t pp t t pp tH Bel H T Pls H T p N=

    
     

(2.19) 

The  result  is  used  as  a  belief  interval  indicating  how  strongly  the  evidence 

support each scenario. The end points of the belief interval 

1 1
. . . .[Bel ( / (a ,...,a )),Pls ( / (a ,...,a ))]L L

t pp t t pp tH T H T
 
can be viewed as the lower and 

upper bounds of the probability to which Hpp is supported under the current evidence 

for scenario 1
. .(a ,..., a )L . Figure 2.2 illustrates the interpretation of the belief interval.  

For example; 

• If 1 1
. . . .[Bel ( / (a ,...,a )),Pls ( / (a ,...,a ))]L L

t pp t t pp tH T H T =[0,0], then there is no 

evidence to support Hpp for scenario 1
. .(a ,..., a )L ,   

• If 1 1
. . . .[Bel ( / (a ,...,a )),Pls ( / (a ,...,a ))]L L

t pp t t pp tH T H T =[0,1], then there is no 

evidence available either to support or not to support Hpp for scenario 1
. .(a ,..., a )L , 

• If 1 1
. . . .[Bel ( / (a ,...,a )),Pls ( / (a ,...,a ))]L L

t pp t t pp tH T H T =[1,1], Hpp for scenario 

1
. .(a ,..., a )L

 has been completely confirmed,  

• If 1 1
. . . .[Bel ( / (a ,...,a )),Pls ( / (a ,...,a ))]L L

t pp t t pp tH T H T =[0.6,0.9], then the probability 

of exact support to Hpp for scenario 1
. .(a ,..., a )L  is 0.6, and the maximal probability 

of possible support to Hpp for scenario 1
. .(a ,..., a )L  is 0.9, i.e., there is a probability 

of 0.1 to refuse Hpp for scenario 1
. .(a ,..., a )L .  
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Step 5: Evaluate the identified scenarios  

In order to evaluate the identified scenarios, the likelihood of identified scenarios is 

needed to be ranked and compared based on their belief intervals. Therefore, ranking 

of identified scenarios based on their belief intervals is required.  

For this purpose, preference function proposed by Wang is adopted (Wang et al., 

2005; Wang et al., 2006). In Wang’s method each alternative, here called scenario, 

has one belief interval. But, because of the different determination of the FD in this 

study, any scenario could have more than one belief interval; one belief interval for 

any evaluation grade, Hpp (p=1,...,N). Therefore, the degree of preference of scenario 

A over scenario B for Hpp (p=1,...,N) at time t, denoted by P(A > B, Hpp)t ∈ [0, 1], is 

defined as follows: 

max[0, ( / ) ( / )] max[0, ( / ) ( / )]
( , )

[ ( / ) ( / )] [ ( / ) ( / )]
t pp t pp t pp t pp

pp t

t pp t pp t pp t pp

Pls H A Bel H B Bel H A Pls H B
P A B H

Pls H A Bel H A Pls H B Bel H B

− − −
> =

− + −

                                                     
(2.20)

 
According to definition, it is obvious that 

• ( , )> pp tP A B H  = 1 if and only if ( / ) ( / )≥t pp t ppBel H A Pls H B , 

• ( , )> pp tP A B H  = 0 if and only if ( / ) ( / )≤t pp t ppPls H A Bel H B , 

• ( , )> pp tP A B H  = 0.5 if and only if ( / ) ( / )+ =t pp t ppBel H A Pls H A

( / ) ( / )+t pp t ppBel H B Pls H A , 

• ( , )> pp tP A B H > 0.5 if  

o ( / ) ( / )>t pp t ppBel H A Bel H B
  
 and   ( / ) ( / )>t pp t ppPls H A Pls H B

  
 or  

o ( / ) ( / )<t pp t ppBel H A Bel H B  , ( / ) ( / )>t pp t ppPls H A Pls H B  , and

( / ) ( / ) ( / ) ( / )
.

2 2
t pp t pp t pp t ppBel H A Bel H B Pls H A Pls H B+ +

>  

Therefore, based on above mentioned properties for any evaluation grade, Hpp, A is 

superior to B if ( , )> pp tP A B H > 0.5, A is indifferent to B if ( , )> pp tP A B H = 0.5, 

and A is inferior to B if ( , )> pp tP A B H  < 0.5. The preference function between 

scenarios has transitivity, i.e., if scenario A is superior to B, and scenario B is 
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superior to C, then scenario A is superior to C. By applying Eq. 2.20, preference 

relations among all scenarios can be determined for any evaluation grade, Hpp.  

In this study, for ranking of scenarios having more than one belief interval, one belief 

interval for several evaluation grades, new ranking algorithm based on bubble sort is 

developed. Identified scenarios are sorted from highest likelihood to lowest 

likelihood according to preference function using bubble sort (Knuth, 1997). Bubble 

sort is used in this study because bubble sort is one of the simplest sorting algorithms 

to understand and to implement. Bubble sort works by repeatedly stepping through 

the list to be sorted, comparing each pair of adjacent items and swapping them if they 

are in the wrong order. The pass through the list is repeated until no swaps are 

needed, which indicates that the list is sorted. At the sorting process, there are two 

alternatives of DM’s attitude toward the decision environment: pessimistic or 

optimistic, in other words risk averse or risk seeking. For the DM’s pessimistic 

attitude, the proposed ranking algorithm is used to identify the worst evaluation 

grade of any scenario and pick a scenario that has the best of the worst evaluation 

grade interval based on the preference function mentioned above. For the DM’s 

optimistic attitude, the proposed ranking algorithm is used to select scenario with the 

best of the best intervals. If one scenario has a higher (or more preferable) evaluation 

grade value than any of the other scenarios, that scenario is chosen and the sorting 

process ends. However, if some scenarios are tied on the most important evaluation 

grade, the subset of tied scenarios is then compared on the next most important 

evaluation grade. The process continues sequentially until all the alternatives are 

sorted. Pseudo code implementation of the two proposed ranking algorithm called 

BubbleSortByMinLikelihood and BubbleSortByMaxLikelihood can be expressed as:  

procedure BubbleSortByMinLikelihood                  
( T : list of scenarios ) 
  do 
    swapped = false 
    for i = 1 to length(T)-1  
      if is_superior (T[i-1],T[i]) then 
        swap( T[i-1], T[i] ) 
        swapped = true 
      end if 
    end for 
  while swapped 
end procedure 
 
function is_superior( A,B : scenario ) 
  for p=1 to N 
    if P(A,B,p)> 0.5 then 
      return is_superior = false 
    end if 
  end for 
  return is_superior = true 
end function 

procedure BubbleSortByMaxLikelihood       
( T : list of scenarios ) 
  do 
    swapped = false 
    for i = 1 to length(T)-1  
      if is_superior (T[i-1],T[i]) then 
        swap( T[i-1], T[i] ) 
        swapped = true 
      end if 
    end for 
  while swapped 
end procedure 
 
function is_superior( A,B : scenario ) 
  for p=N down to 1 
    if P(A,B,p)> 0.5 then 
      return is_superior = true 
    end if 
  end for 
  return is_superior = false 
end function 
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The detailed descriptions of each step are elaborated in the following illustrative case 

study section. 

2.4 An Illustrative Example for Threat Assessment 

In this section, the proposed EMA model as described in Section 2.3 is applied to a 

hypothetical Airport X to identify the threat scenarios and evaluate their likelihoods. 

Modern airports with their runways, taxiways, aprons, passenger terminals, ground 

handling and flight navigation equipment are very complex facilities (Ashford, 

1997). Simply, the mission of an airport is to land, to unload payload, to load payload 

and to take off aircrafts. When the security requirements are considered against the 

possible malevolent attacks, the challenge of threat assessment for an airport 

becomes very complicated. Therefore, it is thought that an airport case can be an 

interesting example. Note that for security reasons, all the data used throughout this 

example are purely generic and notional. Even though this case study is very simple, 

the resulting qualitative relationships and insights drawn from this example validate 

the proposed approach.  

Assume that at time t officials issued an intelligence bulletin to warn security 

departments of critical facilities that says “terrorists could target large crowds at 

holiday gatherings and they might have entered the city with explosive loaded car” 

and as a security manager of Airport X “what should I do to accomplish a realistic 

threat assessment?” A step-by-step algorithm for this example is as follows: 

Step 1: Identify the parameters and define a range of values for each parameter  

In this step, the parameters of the threat scenario are identified and range of values 

for each parameter is defined for critical facility, Airport X. History of attacks 

against similar assets and possible methods of attacks are examined. Many of these 

attacks to date are one-time strike and run-away events. As the attack strategy, 

attacking a single target is considered, attacking multiple targets is not considered. 

After data of attacks were collected and compiled for this research from unclassified 

resources, four critical most common parameters of possible threat scenarios are 

determined as: 

A= {Target (A1), Weapon type (A2), Part of target attacked (A3), Magnitude (A4)} 
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Originally more parameters could be defined but this study considers four parameters 

for possible threat scenarios against critical facility assets. Based on available data 

and expert knowledge, the detailed descriptions of these parameters and their values 

are listed below:  

• Target (A1): Targets are specific high value assets at the critical facility, Airport 

X. After investigating Airport X, 20 possible targets are determined (Ashford, 

1997; Akgun et al., 2010). 

 A1 = {“Airfield Maintenance Building” ( 1
1a ), “Fuel Complex Building” (1

2a ), 

“Passenger Terminal” (13a ), “Parking Facility” ( 1
4a ), “Bus Station” ( 1

5a ), 

“Custom Building” ( 1
6a ), “Cargo Terminal” ( 1

7a ), “Air Traffic Control Tower” 

( 1
8a ), “Apron” ( 1

9a ), “Runway and Taxiway” ( 1
10a ), “Main Entrance and  

Security Control Building” ( 1
11a ), “Security Building” ( 1

12a ), “Aircraft 

Rescue and Fire Fighting Building” (113a ), “Police Station Building” ( 1
14a ), 

“Fuel Complex Guard Building” (1
15a ), “Guard Tower” ( 1

16a ), “Fencing”       

( 1
17a ), “Heating Centre Building” ( 1

18a ), “Power Centre Building” ( 1
19a ), 

“Water Storage Building” (1
20a )} 

• Weapon type (A2): Possible types of the weapon or equipment used for the 

attacks are determined (Table 2.4). Explosive attacks are most common in 

historical analysis of past attacks (LaTourrette et al., 2006). In this study, 

chemical, biological, radiological and nuclear threats are not considered.  

following weapon types used in disruptive attacks are interested:  

A2 = {“Explosives” ( 2
1a ), “Truck/Car bomb” ( 2

2a ), “Fire/fire bomb” ( 2
3a ),   

“Firearms” ( 2
4a )} 

Table 2.4: Frequency by weapon type of adversary attacks 1998-2005. 

Weapon Type 
All incidents 

Number Percentage (%) 
Explosives (nonsuicide and suicide) 6,538 51 
Truck/Car bomb (nonsuicide and suicide) 221 1.7 
Fire/fire bomb 1,378 10.7 
Firearms 3,222 25.1 
Knives and sharp objects 175 1.4 
Chemical/Biological agent 41 0.3 
Other\Unknown 1,256 9.8 
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• Part of target attacked (A3):  Different part of the target may be subject to attack. 

Part of the targets subject to attack is classified as: 

A3={“Perimeter” ( 3
1a ), “Protected areas” (32a ), “Infrastructure Systems” (33a )} 

Perimeter is the peripheral/outside part, protected areas are inside part and 

infrastructure systems are especially equipment dense part of the targets.  

• Magnitude (A4): Intensity of the attack may vary. Intensity of attacks are 

categorized as: 

A4 = {“Low” ( 4
1a ), “Medium” ( 4

2a ), “High” ( 4
3a )} 

Therefore, threat scenario of Airport X is defined as a combination of four 

parameters: target, weapon type, part of target attacked and magnitude.   

Step 2: Form Morphological Field 

The morphological field is constructed depending on the information provided by 

step 1 (Table 2.5). There are totally 20*4*3*3 = 720 threat scenarios either possible 

or not in the formed morphological field. For example, a threat scenario is developed 

by the highlighted parameter values that describe a low magnitude explosive attack 

to perimeter of power centre building in the morphological field (Table 2.5).  

Step 3: Construct Cross-Consistency Assessment (CCA) matrix 

Sub-step 3.1: Determine the Frame of Discernment for evaluation of CCA matrix 

relations 

Uncertain subjective judgments for evaluation of CCA matrix relation likelihoods are 

acquired using statements similar to statements 1-5. It is important to capture fine 

threat likelihood distinction among threat scenarios with proposed linguistic 

evaluation grades that represent the input information. In this study, security experts 

give their subjective judgements linguistically by means of a following mutually 

exclusive set of evaluation grades: “Likely” (L), “Very Likely” (VL), “Highly 

Likely” (HL), “Very Highly Likely” (VHL) and “Extremely Likely” (EL). In the 

terminology of DST, the FD, Θ, is defined as follows: 

{ } { }11 22 33 44 55L, VL,HL,VHL,EL = , , , ,H H H H HΘ =

                         

(2.21) 
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Therefore, all of the relations between each scenario parameter are assessed on the 

basis of individual evaluation grades Hpq (p=q,p=1,…,5) and the interval evaluation 

grades between Hpp and Hqq (p<q,q=2,…,5) similar to statements 1-5 as: 

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

H H H H HL L VL L HL L VHL L EL

H H H HVL VL HL VL VHL VL EL

H H HHL HL VHL HL EL

H HVHL VHL EL

HEL

− − − −   
  − − −      =− −   

   −
   
      

  

                                                     
(2.22) 

Table 2.5: Morphological field of the case study. 

Target (A1) Weapon 
Type(A2) 

Part of Target 
Attacked (A3) 

Magnitude 
(A4) 

1
1a  Airfield Maintenance Building 2

1a  Explosives 3
1a  Perimeter 4

1a  Low 

1
2a  Fuel Complex Building 2

2a  Truck/Car bomb 3
2a  Protected areas 4

2a  Medium 
1
3a  Passenger Terminal 2

3a  Fire/Fire bomb 3
3a  Infrastructure systems 4

3a  High 

1
4a  Parking Facility 2

4a  Firearms    
 

1
5a  Bus Station  

 
   

 
1
6a  Custom Building  

 
   

 
1
7a  Cargo Terminal  

 
   

 
1
8a  Air Traffic Control Tower  

 
   

 
1
9a  Apron  

 
   

 
1
10a  Runway  and  Taxiway  

 
   

 
1
11a  Main Entrance  and  Security 

Control Building 
 

 
   

 
1
12a  Security Building  

 
   

 
1
13a  Aircraft Rescue & Fire 

Fighting Building 
 

 
   

 
1
14a  Police Station Building  

 
   

 
1
15a  Fuel Complex Guard Building  

 
   

 
1
16a  Guard Tower  

 
   

 
1
17a  Fencing  

 
   

 
1
18a  Heating Centre Building  

 
   

 
1
19a  Power Centre Building  

 
   

 
1
20a  Water Storage Building  
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Sub-step 3.2: Assign bpas for evaluation grades of CCA matrix relations  

In the proposed model, the relations among threat scenario parameters in CCA are 

required to be evaluated. All the evidence of a threat will be in the form of 

intelligence information and analyses of past adversary attacks. Reliable threat data 

are the most difficult to assess because prediction of adversary intentions are 

complex and difficult. Although historical data can help to define threat likelihood, it 

must be interpreted by considering technical capabilities of attacker, the attacker’s 

perception of both the vulnerability and the potential consequences from a successful 

attack of the target. Attacker will attack the targets with high consequence and high 

vulnerable in order to maximize expected consequence. The attacker’s 

intelligence/knowledge of the system may vary. The attacker may have perfect 

intelligence, partial intelligence, bad intelligence or no intelligence. Perception and 

capabilities of attackers are also not known. Therefore, identifying all of the actions 

into the future is not possible.  

The experts (intelligence, weapons, weapon delivery systems, etc.) and their 

knowledge base examining the current evidence become the basis for assigning bpas 

to evaluation grades of CCA matrix relations. The experts typically ask the question, 

“If I were an attacker, I would ...” thinking like an attacker and assign bpas to simple 

relations in CCA rather than complex relations without getting overloaded 

considering above mentioned facts. The use of judgment is necessary because of the 

subjective nature of these assessments and the experts can cast this information into 

an easy form provided by proposed EMA model.   

In this study, the evidence is quantified by representing it as a belief structures that 

clearly communicates the uncertainty based on the quality of the evidence. The belief 

structures are easy to use and very flexible way to expert judgements and can help to 

better evaluate the threat likelihood. In terms of the defined evaluation grades, 

experts express their opinions using belief structure and providing consensus 

evaluation for each relation. Each relation is described by evaluation grades and their 

associated bpas. Explicitly, the assigned bpas represents the degree of expert belief 

for each evaluation grade, and implicitly, it represents the total evidence to clarify the 

threat scenario likelihood.  

By using expert judgement, the belief structure of any relation based on intelligence 

at time t reporting “possible bomb attack especially focusing on civilians” is given in 
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Table 2.6. For example, in Table 2.6 the belief structure of 1 2 1 2
3 1 12(a ,a ) R (a ,a )t

k l∈ at 

time t is { }1 2
3 1 11 25S (a ,a ) ( ,0.4), ( ,0.2)t H H= . 

Step 4: Synthesize an internally consistent outcome space 

Sub-step 4.1: Combine beliefs in CCA matrix relations 

In this case study, the morphological field is defined by four basic parameters. 

Therefore, there are six (4
2C ) relations in CCA matrix, and the information collected 

by experts comes from these six different relations that constructs a threat scenario. 

These relations are independent pieces of evidence offering information on the 

experts’ knowledge towards the likelihood of the threat scenario. Threat scenarios 

are constructed depending on evaluation grades of each relation using the DP’s rule 

(Eq. 2.5) and the Yager’s rule (Eq. 2.6) as follows:  

1 2 3 4 1 2 1 3
. . . . 12 . . 13 . .

1 4 2 3
14 . . 23 . .

2 4 3 4
24 . . 34 . .

( / (a ,a ,a ,a )) ( / (a ,a )) ( / (a ,a ))

( / (a ,a )) ( / (a ,a ))

( / (a ,a )) ( / (a ,a ))

t pq t pq t pq

t pq t pq

t pq t pq

m H T m H R m H R

m H R m H R

m H R m H R

= ⊕

⊕ ⊕

⊕ ⊕

∑

 
(2.23)

 

Sample combination of two relations by using both rules is shown in Table 2.7 and 

Table 2.8. 
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Table 2.6: CCA matrix at time t. 

note: “*” refers to incomplete information. 

 
Weapon Type Part of target attacked Magnitude 

2
1a  

2
2a  

3
1a  

3
2a  

4
1a  

4
2a  

T
a

rg
e

t 

1
3a  

11 25
{(H ,0.4), (H ,0.2)}*  - 

34 55
{(H ,0.7), (H ,0.3)} 12 34

{(H ,0.6), (H ,0.2)}*  34 55
{(H ,0.5), (H ,0.5)} 12 34

{(H ,0.6), (H ,0.4)} 

1
4a  - 

12 34
{(H ,0.5), (H ,0.2)}*  - 

34 55
{(H ,0.4), (H ,0.6)} 13 45

{(H ,0.7), (H ,0.3)} 34 55
{(H ,0.8), (H ,0.2)} 

1
5a  

12 35
{(H ,0.6), (H ,0.4)} - 

33 45
{(H ,0.2), (H ,0.8)} 13 44

{(H ,0.5), (H ,0.5)} 12 35
{(H ,0.6), (H ,0.4)} 12 33

{(H ,0.5), (H ,0.4)}*  

1
11a  

12 33
{(H ,0.4), (H ,0.3)}*  - 

13 45
{(H ,0.7), (H ,0.3)} - 

13 45
{(H ,0.6), (H ,0.4)} 33 45

{(H ,0.7), (H ,0.3)} 

W
e

ap
on

 
T

yp
e 

2
1a    

22 35
{(H ,0.2), (H ,0.8)} 13 45

{(H ,0.7), (H ,0.3)} 33 45
{(H ,0.6), (H ,0.3)}*  22

{(H ,0.5)}*  

2
2a    

33 45
{(H ,0.3), (H ,0.7)} 22 35

{(H ,0.4), (H ,0.5)}*  12 34
{(H ,0.4), (H ,0.6)} 12 34

{(H ,0.5), (H ,0.5)} 

P
a

rt
 o

f t
a

rg
et

 
a

tta
ck

ed
 3

1a      
12 35

{(H ,0.6), (H ,0.4)} 13 45
{(H ,0.7), (H ,0.3)} 

3
2a      

12 33
{(H ,0.7), (H ,0.3)} 11 23

{(H ,0.8), (H ,0.2)}  
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Table 2.7: Combination of 1 2
12 3 1R (a ,a )t  and 1 3

13 3 1R (a ,a )t by DP’s rule. 

1 2 1 3
12 3 1 13 3 1R (a , a ) R (a ,a )t t⊕  

1 3
13 3 1R (a ,a )t  

Interval mt Interval mt 
H34 0.7 H55 0.3 

1 2
12 3 1R (a ,a )t

 

Interval mt   

H11 0.4 [H11,H34 ] 0.28 [H11,H55] 0.12 

H25 0.2 H25 0.14 H25 0.06 

Θ 0.4 Θ 0.28 Θ 0.12 

1 2( ) ( )
i j

i jB B A
m B m B

=∑ ∪  {([ H11,H34 ], 0.28), ([H11,H55 ], 0.12), (H25, 0.2)} 

1 2( )DPm m A⊕  {([ H11,H34 ], 0.28), ([H11,H55 ], 0.12), (H25, 0.2), (Θ, 0.4)} 

Note that if there is an intersection, the union of two intervals in Table 2.7 is defined 

by the set consisting minimum of the two lower bounds and the maximum of the two 

upper bounds corresponding to an intersection. If there is no intersection, the union 

of two intervals in Table 2.7 is defined by the set consisting of two intervals 

separately. 

Table 2.8: Combination of 1 2
12 3 1R (a ,a )t  and 1 3

13 3 1R (a ,a )t  by Yager’s rule. 

1 2 1 3
12 3 1 13 3 1R (a , a ) R (a ,a )t t⊕  

1 3
13 3 1R (a ,a )t  

Interval mt Interval mt 
H34 0.7 H55 0.3 

1 2
12 3 1R (a ,a )t

 

Interval mt   

H11 0.4 Ø 0.28 Ø 0.12 

H25 0.2 H34 0.14 H55 0.06 

Θ 0.4 H34 0.28 H55 0.12 

K 0.4 

1 2( ) ( )
i j

i jB B A
m B m B

=∑ ∩
 {( H34, 0.42), (H55, 0.18)} 

1 2( )Yagerm m A⊕  {( H34, 0.42), ( H55,0.18), (Θ, 0.4)} 

Note that the intersection of two intervals in Table 2.8 is defined by the maximum of 

the two lower bounds and the minimum of the two upper bounds corresponding to an 

intersection. For K, there are two cells that contribute to conflict represented by 

empty intersections and using Eq. 2.7, K= (0.4*0.7)+(0.4*0.3)=0.4. 

Belief structures of identified threat scenarios at time t by using both combination 

rules is shown in Table 2.9. 
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Table 2.9: Belief structures of identified threat scenarios. 

Rule No. S (.)t  Belief Structure 

D
P

 
1 1 2 3 4

3 1 1 1S (a ,a ,a , a )t  { }14 25( ,0.0101),( ,0.0720),( ,0.9179)H H Θ  

2 1 2 3 4
3 1 2 1S (a ,a ,a ,a )t  { }14 25( ,0.0672),( ,0.0032),( ,0.9296)H H Θ  

3 1 2 3 4
3 1 1 2S (a ,a ,a , a )t  { }14 25( ,0.0196),( ,0.0120),( ,0.9684)H H Θ  

4 1 2 3 4
3 1 2 2S (a ,a ,a ,a )t  

12 13 14 25( ,0.0230), ( ,0.0058), ( ,0.0992), ( ,0.0014),

( ,0.8706)

H H H H

Θ
 
 
 

 

5 1 2 3 4
4 2 2 1S (a ,a ,a ,a )t  { }14 25 35( ,0.0784),( ,0.0043),( ,0.0054),( ,0.9119)H H H Θ  

6 1 2 3 4
4 2 2 2S (a ,a ,a ,a )t  { }14 24 25( ,0.0870),( ,0.0026),( ,0.0154), ( ,0.8950)H H H Θ  

7 1 2 3 4
5 1 1 1S (a ,a ,a ,a )t  { }13 25 35( ,0.0052), ( ,0.0115),( ,0.0461),( ,0.9372)H H H Θ  

8 1 2 3 4
5 1 2 1S (a ,a ,a ,a )t  { }13 14 35( ,0.0756),( ,0.0756),( ,0.0065),( ,0.8423)H H H Θ  

9 1 2 3 4
5 1 1 2S (a ,a ,a ,a )t  { }13 25( ,0.0076),( ,0.0240),( ,0.9684)H H Θ  

10 1 2 3 4
5 1 2 2S (a ,a ,a ,a )t  

{ }13 14 25( ,0.0945),( ,0.0945), ( ,0.0024), ( ,0.8086)H H H Θ  

11 1 2 3 4
11 1 1 1S (a ,a ,a ,a )t  

{ }13 25 35( ,0.0212), ( ,0.0026),( ,0.0104),( ,0.9659)H H H Θ  

12 1 2 3 4
11 1 1 2S (a ,a ,a ,a )t  

{ }13 25( ,0.0240),( ,0.0135),( ,0.9625)H H Θ  

Y
a

g
e

r 

1 1 2 3 4
3 1 1 1S (a ,a ,a , a )t  

33 34 44 55( ,0.0269), ( ,0.0022), ( ,0.0134), ( ,0.0131),

 ( ,0.9444)

H H H H

Θ
 
 
 

 

2 1 2 3 4
3 1 2 1S (a ,a ,a ,a )t  { }33( ,0.0149), ( ,0.9851)H Θ  

3 1 2 3 4
3 1 1 2S (a ,a ,a , a )t  { }33 44( ,0.0470),( ,0.0202),( ,0.9328)H H Θ  

4 1 2 3 4
3 1 2 2S (a ,a ,a ,a )t  { }11 22 33( ,0.0077),( ,0.0137),( ,0.0058),( ,0.9729)H H H Θ  

5 1 2 3 4
4 2 2 1S (a ,a ,a ,a )t  { }33( ,0.0126),( ,0.9874)H Θ  

6 1 2 3 4
4 2 2 2S (a ,a ,a ,a )t  { }33( ,0.0096),( ,0.9904)H Θ  

7 1 2 3 4
5 1 1 1S (a ,a ,a ,a )t  { }33 45( ,0.0061),( ,0.0123), ( ,0.9816)H H Θ  

8 1 2 3 4
5 1 2 1S (a ,a ,a ,a )t  { }12 33( ,0.0088),( ,0.0118),( ,0.9764)H H Θ  

9 1 2 3 4
5 1 1 2S (a ,a ,a ,a )t  { }33 45( ,0.0090),( ,0.0038),( ,0.9872)H H Θ  

10 1 2 3 4
5 1 2 2S (a ,a ,a ,a )t  

{ }11 22 33( ,0.0504),( ,0.0273),( ,0.0070), ( ,0.9153)H H H Θ  

11 1 2 3 4
11 1 1 1S (a ,a ,a ,a )t  

{ }22 33 45( ,0.0035),( ,0.0564),( ,0.0046),( ,0.9354)H H H Θ  

12 1 2 3 4
11 1 1 2S (a ,a ,a ,a )t  

{ }33 45( ,0.0412),( ,0.0032),( ,0.9556)H H Θ  

Sub-step 4.2: Construct the belief intervals for identified scenarios 

After identifying threat scenarios by combining beliefs in CCA matrix relations, Bel, 

Pls and the belief intervals of evaluation grades for identified threat scenarios are 

determined by applying Eq. 2.2 and Eq. 2.3 as: 

1 2 3 4 1 2 3 4
. . . . . . . .Bel ( / (a ,a ,a ,a )) ( / (a ,a ,a ,a )), , 1,...,5

pq pp

t pp t pq t
H H

H T m H T p q
⊆

= =∑
    

(2.24)
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1 2 3 4 1 2 3 4
. . . . . . . .Pls ( / (a ,a ,a ,a )) ( / (a ,a ,a ,a )), , 1,...,5

pq pp

t pp t pq t
H H

H T m H T p q
∩ ≠∅

= =∑
    

(2.25)
 

{ }' 1 2 3 4 1 2 3 4

. . . . . . . .

1 2 3 4
. . . .S ( ) ( ,[Bel ( / (a ,a ,a ,a )),Pls ( / (a ,a ,a ,a ))]), 1,...,5a ,a ,a ,at pp t pp t t pp tH H T H T p= =

                                                     
(2.26) 

The belief intervals calculated for the identified threat scenarios by using both 

combination rules are provided in Table 2.10 and plotted in Figure 2.4 and Figure 

2.5.  

Table 2.10: Belief intervals for threat scenarios. 

R
ul

e 

No Threat Scenario 
H11 H22 H33 H44 H55 

Bel Pls Bel Pls Bel Pls Bel Pls Bel Pls 

D
P

 

1 1 2 3 4
3 1 1 1S (a ,a ,a , a )t

′  0 0.9280 0 1 0 1 0 1 0 0.9899 

2 1 2 3 4
3 1 2 1S (a ,a ,a ,a )t

′  0 0.9968 0 1 0 1 0 1 0 0.9328 

3 1 2 3 4
3 1 1 2S (a ,a ,a , a )t

′  0 0.9880 0 1 0 1 0 1 0 0.9804 

4 1 2 3 4
3 1 2 2S (a ,a ,a ,a )t

′  0 0.9986 0 1 0 0.9770 0 0.9712 0 0.8720 

5 1 2 3 4
4 2 2 1S (a ,a ,a ,a )t

′  0 0.9903 0 0.9946 0 1 0 1 0 0.9216 

6 1 2 3 4
4 2 2 2S (a ,a ,a ,a )t

′  0 0.9820 0 1 0 1 0 1 0 0.9104 

7 1 2 3 4
5 1 1 1S (a ,a ,a ,a )t

′  0 0.9424 0 0.9539 0 1 0 0.9948 0 0.9948 

8 1 2 3 4
5 1 2 1S (a ,a ,a ,a )t

′  0 0.9935 0 0.9935 0 1 0 0.9244 0 0.8488 

9 1 2 3 4
5 1 1 2S (a ,a ,a ,a )t

′  0 0.9760 0 1 0 1 0 0.9924 0 0.9924 

10 1 2 3 4
5 1 2 2S (a ,a ,a ,a )t

′
 0 0.9976 0 1 0 1 0 0.9055 0 0.8110 

11 1 2 3 4
11 1 1 1S (a ,a ,a ,a )t

′
 0 0.9870 0 0.9896 0 1 0 0.9788 0 0.9788 

12 1 2 3 4
11 1 1 2S (a ,a ,a ,a )t

′
 0 0.9865 0 1 0 1 0 0.9760 0 0.9760 

Y
a

g
e

r 

1 1 2 3 4
3 1 1 1S (a ,a ,a , a )t

′  - - - - 0.0269 0.9734 0.0134 0.9600 0.0131 0.9574 

2 1 2 3 4
3 1 2 1S (a ,a ,a ,a )t

′  - - - - 0.0149 1 - - - - 

3 1 2 3 4
3 1 1 2S (a ,a ,a , a )t

′  - - - - 0.0470 0.9798 0.0202 0.9530 - - 

4 1 2 3 4
3 1 2 2S (a ,a ,a ,a )t

′  0.0077 0.9806 0.0137 0.9866 0.0058 0.9786 - - - - 

5 1 2 3 4
4 2 2 1S (a ,a ,a ,a )t

′  - - - - 0.0126 1 - - - - 

6 1 2 3 4
4 2 2 2S (a ,a ,a ,a )t

′  - - - - 0.0096 1 - - - - 

7 1 2 3 4
5 1 1 1S (a ,a ,a ,a )t

′  - - - - 0.0061 0.9877 0 0.9939 0 0.9939 

8 1 2 3 4
5 1 2 1S (a ,a ,a ,a )t

′  0 0.9882 0 0.9882 0.0118 0.9912 - - - - 

9 1 2 3 4
5 1 1 2S (a ,a ,a ,a )t

′  - - - - 0.0090 0.9962 0 0.9910 0 0.9910 

10 1 2 3 4
5 1 2 2S (a ,a ,a ,a )t

′
 0.0504 0.9657 0.0273 0.9426 0.0070 0.9223 - - - - 

11 1 2 3 4
11 1 1 1S (a ,a ,a ,a )t

′
 - - 0.0035 0.9389 0.0564 0.9919 0 0.9400 0 0.9400 

12 1 2 3 4
11 1 1 2S (a ,a ,a ,a )t

′
 - - - - 0.0412 0.9968 0 0.9588 0 0.9588 
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Figure 2.4 : The belief intervals of DP’s rule. 

 

 

Figure 2.5 :  The belief intervals of Yager’s rule.
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When the two rules are compared, the Yager’s rule transfers the conflict into the total 

ignorance by adding K to joint evidence of Θ but the DP’s rule does not generate any 

conflict. In other words, the Yager’s rule as conjunctive rule (AND-based on set 

intersection) discards the conflict information and increases the total ignorance but 

the DP’s rule as a disjunctive rule (OR-based on set union) does not reject any 

information asserted by the sources. It is seen that the DP’s rule provides larger 

belief intervals to more evaluation grades for the same threat scenarios than the 

Yager’s rule. Therefore, when the conflict is higher (for a higher K value), the total 

ignorance will increase significantly and the Yager’s rule gives more stable and 

robust results than the DP’s rule.  The drawback of DP’s rule is that it yields more 

imprecise result than desirable when there is a strong conflict among relations. 

Step 5 : Evaluate the identified scenarios  

At this step, the likelihood of identified scenarios are ranked and compared based on 

their belief intervals by the developed sorting algorithm. The results are interpreted 

to guide threat assessment. The ranking of 12 identified threat scenarios based on 

their likelihoods is calculated and presented in Table 2.11.  Since there are two DST 

combination rules and two sorting algorithms, four ranking alternatives are presented 

in Table 2.11. Rankings enable the DMs to identify the higher likelihood scenarios 

from the lower likelihood ones.  

Risk bearer’s attitude, either risk seeking or risk averse, is important when choosing 

the approporiate ranking among four different ranking alternatives. For risk seeking 

attitude, ranking based on Yager’s rule with sorting algorithm by maximum 

likelihood is appropriate and for risk averse attitude, ranking based on DP’s rule with 

sorting algorithm by minimum likelihood is appropriate. As risk bearer’s attitude is 

subjective, it is assumed that risk bearer is rational and aware of this issue. 

After threat assessment has been completed based on the intelligence at time t, 

depending on the ranking of security risks from highest likelihood to lowest 

likelihood, security risk management can be accomplished by allocating available 

security risk management resources to security risk-reducing countermeasures (e.g., 

for vulnerability reduction or consequence mitigation) from the top of the list down. 

Fine threat likelihood distinction among threat scenarios can be captured with 

proposed EMA model that represents the available input information. Therefore, 
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EMA model can be used to reason about threat likelihood and provide adequate 

precision for threat assessment.  

Table 2.11: Threat scenario rankings based on belief intervals. 

No. Threat Scenario 

Ranking 
DP Yager 

By Min 
Likelihood 

By Max 
Likelihood 

By Min 
Likelihood 

By Max 
Likelihood 

1 1 2 3 4
3 1 1 1(a ,a ,a ,a ) 1 3 2 3 

2 1 2 3 4
3 1 2 1(a ,a ,a ,a ) 10 7 6 7 

3 1 2 3 4
3 1 1 2(a ,a ,a ,a ) 7 4 7 6 

4 1 2 3 4
3 1 2 2(a ,a ,a ,a ) 12 10 10 11 

5 1 2 3 4
4 2 2 1(a ,a ,a ,a ) 8 8 5 8 

6 1 2 3 4
4 2 2 2(a ,a ,a ,a ) 4 9 4 9 

7 1 2 3 4
5 1 1 1(a ,a ,a ,a ) 2 1 1 1 

8 1 2 3 4
5 1 2 1(a ,a ,a ,a ) 9 11 11 10 

9 1 2 3 4
5 1 1 2(a ,a ,a ,a ) 3 2 3 2 

10 1 2 3 4
5 1 2 2(a ,a ,a ,a ) 11 12 12 12 

11 1 2 3 4
11 1 1 1(a ,a ,a ,a ) 6 5 9 5 

12 1 2 3 4
11 1 1 2(a ,a ,a ,a ) 5 6 8 4 

2.5 Concluding Remarks of Chapter 2 

In SRA, there is a need for understanding the threats involved. Therefore, the main 

goal of this study is to identify threats for which there is intelligence of an imminent 

threat and estimate their likelihoods for critical facility protection. For this purpose, a 

novel approach called Evidence based Morphological Analysis (EMA) is proposed 

by describing reasons for modelling uncertainty by DST, the fundamentals of DST 

and MA, and how DST is applied for threat likelihood estimation within MA.  

Firstly, the appropriate uncertainty model for threat assessment of a critical facility is 

discussed in detail by considering the type of input information at hand, the quality 

of required output information, and the axiomatic assumptions about the cause of 

uncertainty. It is stated that DST is the appropriate uncertainty model for threat 

likelihood estimation since threat is neither random event nor vague event and 

uncertainty associated with such intelligent event involves epistemic uncertainty. 
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Secondly, qualitative method MA is integrated with DST. Original FD is determined 

for evaluation of relations considering computational complexity. Determination of 

the FD for input data is the most informative and is the efficient way of capturing 

and quantifying the state of knowledge about the likelihood of a defined threat 

scenario for a critical facility. The proposed model allows to express qualitative 

judgements using belief structures developed on the basis of DST and make full use 

of available information without information loss and exaggeration. EMA also 

converts limited information to quantifiable threat likelihood parameter for 

quantitative analysis based on the complete and/or incomplete information which can 

be both linguistic evaluation grades and interval evaluation grades. The notion of 

time, t, is also introduced into the problem formulation because a relation in MA may 

change when more information is get by time.  

To summarize, EMA is a quantified MA that integrates MA with DST. The strength 

of MA provides both identifying and developing the plausible scenarios while DST 

allows for both the definition and the quantification of relationships between 

parameters of the scenario in MA. Scenarios are developed by combining simple 

relations using two most common DST combination rules. The two most common 

DST combination rules (conjunctive and disconjunctive) are analyzed for threat 

likelihood estimation by considering DM’s attitude (risk averse and risk seeking) and 

new interval sorting algorithm is developed for scenario ranking. EMA analyzes and 

handles a wide range of plausible scenarios more easily than hierarchical techniques 

as tree structures with modest computational effort. By using EMA, alternative threat 

scenarios can be formulated, developed and evaluated in a structured way. This 

approach provides required output data precision for comparing and ranking of threat 

scenarios systematically.  

An important feature of EMA is the ability to update easily with less computational 

burden. The threat is usually assumed to be static but dynamic SRA requires 

dynamic threat assessment. Intelligent attackers innovate and threat scenarios evolve 

based on changing conditions as changing defences, technology and social situations 

in an adaptive way. When new intelligence information about adversary intent and 

assumed adversary capabilities become available, EMA can be easily updated by 

recalculating only the affected threat scenario likelihoods or extending the 

morphological field (adding new parameters or adding new parameter values). Since 
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likelihood estimation is a continuous process, the new information obtained can be 

used easily as a feedback for the proposed model to update evaluation. 

As a result, EMA has been successfully used to represent the threat likelihood for 

critical facility by synthesizing linguistic judgement information of experts. This 

approach better captures the uncertainty in threat assessment than traditional 

probabilistic risk approaches that use point estimates. EMA improves threat 

assessment and is shown to be a useful tool in threat assessment of critical facilities 

in a simple case study. EMA is not limited to threat assessment and can also be 

applied to likelihood estimation problems involving epistemic uncertainty and 

scenario development. 
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3.  VULNERABILITY ASSESSMENT MODELLING 

3.1 Introduction to Vulnerability Assessment 

Critical facility vulnerability assessment is a highly complex strategic activity in 

security risk assessment (SRA) and necessitates a structured quantified methodology 

to support the decision making process in defence planning. In the system 

perspective, the critical facility, such as airport, dam, governmental facility, harbour, 

nuclear power plant, oil plant etc., can be defined as a system that relies on a group 

of different interdependent logical and physical entities as system functions and 

system components. 

The aim of this chapter is to present a realistic approach to determine the 

vulnerability of such a system defended against the adversary attack under multiple 

criteria which can be both qualitative and quantitative by considering these 

interdependencies. The proposed approach, called fuzzy integrated vulnerability 

assessment model (FIVAM), is based on fuzzy set theory, Simple Multi-Attribute 

Rating Technique (SMART) and Fuzzy Cognitive Maps (FCM) methodology in a 

group decision-making environment (Akgün et al., 2010). The FIVAM approach is 

presented step by step and applied to a simple case study on airport vulnerability 

assessment. The results of the application are compared to those observed through a 

classical vulnerability assessment model to illustrate the effectiveness of the FIVAM. 

Furthermore, FIVAM provides a framework to identify the hidden vulnerabilities 

caused by the functional interdependencies within the system. The results also show 

that FIVAM quantifies the vulnerability of the system, system functions and system 

components, and determines the most critical functions and components by 

simulating the system behaviour. 

For SRA, vulnerability assessment of a system defended against adversary attack is 

initial and crucial step (Garrick et al., 2004; Sarewitz et al., 2003). Vulnerability can 

be defined as a “weakness in the system defended” in a most common and simplest 

way. Indeed, more vulnerable means easier to be damaged or harmed. Although a 
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comprehensive list of vulnerability definitions can be found in Ezell (2007), the term 

vulnerability still remains as a vague term. Therefore, a workable definition of 

vulnerability is especially difficult to formulate and quantify. Vulnerability must be 

quantifiable so that vulnerability assessment before adversary attack occurs can be 

done. Vulnerability assessment is a systematic process of identification and 

evaluation of system vulnerabilities (Garrick et al., 2004). Firstly, vulnerability 

assessment is intended to identify the weaknesses of a system that adversaries can 

exploit. Then, vulnerabilities that are most significant are evaluated and focused on. 

It may be impractical or usually even impossible to eliminate all system 

vulnerabilities because of time and resource constraints. It is required to be aware of 

these vulnerabilities for developing the necessary defence methods and for assigning 

the defence resources consistently. 

As critical facilities are complex both topologically and functionally, critical facility 

vulnerability assessment is a challenging issue. As the complexity of a system 

increases, ability to make precise and yet significant statements about its behaviour 

diminishes (Zadeh, 1975a;b;c). Each critical facility as a system contains some 

degree of vulnerability and vulnerabilities may have different effects on the system 

and its functions/services. System functions are addressed as purposeful actions that 

system components contribute to accomplish system mission. System functions are 

not physical entities like system components and the dependence between system 

functions and system components, physical dependencies, is frequently difficult to 

assess accurately. In addition to this, system functions are not independent of each 

other. Because of high degree of uncertainties, it is also difficult to discover 

quantitative and precise information on system function interdependencies. 

Interaction among system functions produces the emergence of complex 

relationships that are not predictable by the knowledge of any single system function.  

Designing a realistic vulnerability assessment necessitates consideration of complex 

causal relationships among various system functions, logical dependencies. Both the 

presence of either hidden or poorly understood interdependencies and their cascading 

effects are required to be handled. Previous studies on this issue have largely ignored 

the possible interrelationships among the system functions that affect the system 

state.  
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It is extremely difficult in security case to obtain exact data under uncertainty against 

an adversarial and adaptive opponent. Much of the information related to 

vulnerability assessment is not quantitative. Rather, this incomplete and imprecise 

information is expressed qualitatively as words or phrases in a natural language by 

experts of different fields such as terrorism experts, security experts, engineers, and 

academicians. Individual opinions, evaluations and ratings from these experts must 

be identified and applied to vulnerability assessment. Vulnerability assessment 

problem can be recognized as a group decision-making (GDM) problem under 

multiple criteria. Therefore, there is a value in considering the fuzzy set theory and 

GDM methods for critical facility vulnerability assessment.  

The purpose of this chapter is to present a fuzzy integrated vulnerability assessment 

model (FIVAM) based on fuzzy SMART and FCM techniques to assess the 

vulnerability of a critical facility in the GDM environment. The proposed FIVAM 

approach enables to determine the vulnerability values under multiple criteria as well 

as provides a framework to simulate the system vulnerability behaviour depending 

on the vulnerabilities of the interdependent system functions. Additionally, FIVAM 

allows the decision makers to identify the hidden vulnerabilities caused by the 

functional interdependencies within the system. 

The remainder of this chapter is organized as follows: Section 3.2 overviews the 

existing approaches and the factors that influence the system vulnerability 

assessment. In Section 3.3, fundamentals of fuzzy set theory, the theoretical 

framework of SMART and the principles of FCM are represented. The proposed 

FIVAM and its process flow are introduced in Section 3.4. The illustrative 

application of FIVAM is performed over an airport case study in Section 3.5. This 

section also examines the utility of findings and discusses the analysis results. 

Conclusions and further issues are addressed respectively in the final section. 

3.2 Literature Review on Vulnerability Assessment 

There is confusion in the terms “vulnerability” and “risk” as applied to SRA in the 

literature. To overcome this issue, Ezell (2007) presented a relationship emerging 

between vulnerability and risk. According to his study, vulnerability highlights the 

notion of susceptibility to a scenario, whereas risk focuses on the severity of 
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consequences within the context of a scenario. In addition to this, Willis (2007) 

defined security risk as a function of threat, vulnerability and consequences. 

Vulnerability assessment is generally employed as a sub process of risk assessment 

in the previous studies (Garrick et al., 2004). 

Recently, vulnerability assessment has gained a dynamic and complex nature, and 

become an active area of research due to its increasing strategic significance in 

various application areas. However, the focus of this chapter is limited to the 

researches for critical facility vulnerability assessment in SRA. This survey also 

incorporates the studies for critical infrastructures vulnerability assessment briefly, as 

critical facilities rely on these critical infrastructures and have some key critical 

infrastructure components together with system specific components within their 

system bounds. The critical infrastructures can be defined as a complex set of 

interconnected, interdependent, geographically dispersed systems on which the 

nation depend as energy distribution, telecommunications, rail, water supply 

networks etc. 

In the literature, there have been several approaches for vulnerability assessment and 

these approaches can be categorized into two main groups as follows: qualitative 

approaches and quantitative approaches. Qualitative approaches are generally applied 

in the sub process of the risk assessment studies (Bajpai and Gupta, 2007). Despite 

the increasing significance of vulnerability assessment in SRA, researches and 

analyses using quantitative methodologies have been rarely seen in the literature. 

Bajpai and Gupta (2005) have shown that security risk status of oil and gas facilities 

can be assessed qualitatively by developing a security risk factor table and 

vulnerability assessment worksheet. They divided the facility into various zones and 

identified the factors that influence the overall security of the facility by rating them 

on a scale from 0 to 5. Qualitative methods as in Bajpai and Gupta (2005) permit 

vulnerability ranking or separation into descriptive categories of vulnerability 

(Garrick et al., 2004). Therefore, qualitative methods can be used to pre-assess the 

vulnerability but much more is required to quantify the vulnerability. 

Generally, existing quantitative methodology studies focused on one kind of critical 

infrastructure such as energy (Salmeron et al., 2004), telecommunications (Murray et 

al., 2007), water system (Ezell, 2007). Salmeron et al. (2004) developed a max-min 
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model to determine the weaknesses in the electric grid to prepare for terrorist attacks. 

Through decomposition, they solved the problem with a heuristic on two test 

systems.  Murray et al. (2007) presented an optimization approach for identifying 

interdiction bounds with respect to connectivity and/or flow associated with a system 

of origins and destinations. They applied this approach to the telecommunications 

flow in United States.  Apostolakis and Lemon (2005) used Multi Attribute Utility 

Theory (MAUT) for the identification and prioritization of vulnerabilities in an 

infrastructure that they modelled using interconnected digraphs and employed graph 

theory to identify the candidate vulnerable scenarios. Ezell (2007) proposed an 

infrastructure vulnerability assessment model based on MAUT and applied it to a 

medium-sized clean water system. In this model, the system is presented in a 

hierarchical structure and clean water system model decomposition serves as the 

structure of the value model with deterrence, detection, delay, and response value 

functions used to measure protection for components of the system. 

There are also various studies that models critical infrastructure interdependencies. 

Brown et al. (2004) applied simulation to study the impacts of disruptions and used 

risk analysis to assess infrastructure interdependencies. Their purpose was to identify 

infrastructure risks and ways to reduce them. Min et al. (2007) proposed a modelling 

and analysis framework that uses system dynamics, functional models and nonlinear 

optimization algorithms to study the entire interconnected system of infrastructures. 

Their purpose was to simulate the effects of localized capacity losses on the entire 

integrated system and to predict the extent of the shortage and its impact across the 

entire system. 

From the previous researches, it is observed that vulnerability assessment in SRA is 

recognized as a worldwide problem. Despite the availability of the researches on this 

issue, the nature of the problem additionally seeks for the utilization of fuzzy logic in 

order to deal with the uncertainty and the vagueness of the decision environment in 

practice. Furthermore, in addition to the physical dependencies of the system 

functions, the interdependencies among the system functions, logical dependencies, 

in other words logical vulnerabilities, have to be considered and included into the 

vulnerability computations. Quantifying the vulnerability of such a system defended 

against the adversary attack by considering the interdependencies among the 

functions of the system has not been adequately addressed in the literature. That’s 
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why; these existing approaches and decision-making models are not satisfying the 

solution of this problem in a consistent manner. Hence, this chapter addresses a 

quantified fuzzy approach based on SMART and FCM methodology for managing a 

more realistic and structured vulnerability assessment process to provide practical 

solutions in real life applications.  

3.3 Theoretical Background for Vulnerability Assessment Modelling 

In this section, theoretical background information on triangular fuzzy numbers 

(TFNs), linguistic variables, fuzzy SMART and FCM methodologies are presented, 

respectively. 

3.3.1 Triangular fuzzy number 

A fuzzy number is a convex, normalized fuzzy set defined on the real line whose 

membership function is at least semi continuous and has the functional value 

( ) 1
M

xµ =ɶ  at precisely one element (Ross, 1995). In other words, a fuzzy number is a 

quantity whose value is imprecise rather than exact. Among the various types of a 

fuzzy number such as trapezoidal, bell-shaped etc., TFN is the most popular one as it 

is easy to use and interpret. A TFN is completely represented by a triplet such as 

( | ,  | )M a b b c=ɶ or ( ,  ,  )M a b c=ɶ  whose membership function can be defined as 

(Kaufmann and Gupta, 1991) 
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The parameters a, b and c, respectively, denote the smallest possible value, the most 

promising value, and the largest possible value that describe a fuzzy event. A sample 

TFN, ( ,  ,  )M a b c=ɶ , is shown in Figure 3.1.  

The fuzzy algebraic operations (addition, multiplication, division and subtraction) of 

two TFNs 1 1 1 1( , , )M a b c=ɶ  and 2 2 2 2( , , )M a b c=ɶ  are applied as expressed within the 



55 
 

contents of various researches (Kaufmann and Gupta, 1991; Chen and Hwang, 

1992).  

 

Figure 3.1: A triangular fuzzy number. 

The result of fuzzy operations is a fuzzy number and in some situations a single 

scalar quantity is needed as an output. Therefore, it is required to convert a fuzzy 

number into a crisp value. There are several available defuzzification methods for 

this purpose in the literature. Mean of maximum method, centroid method (or centre 

of area) and α-cut methods are the most common defuzzification methods (Sugeno, 

1985; Lee, 1990). Each of these methods has advantages and disadvantages. In this 

study, the centroid method is utilized due to its simplicity and widespread use. A 

TFN, ( , , )M a b c=ɶ , is defuzzified by using the following centroid method equation:  
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3.3.2 Linguistic variables 

A linguistic variable is a variable whose values are words or sentences in a natural or 

artificial language (Zadeh, 1975a;b;c). According to Zadeh (1975a;b;c), it is very 

difficult for conventional quantification to express reasonably those situations that 

are overtly complex or hard to define; thus, the notion of a linguistic variable is 

necessary in such situations. Since linguistic variables are not directly 

mathematically operable, each linguistic variable is associated with a fuzzy number 

characterizing the meaning of each generic verbal term. In fuzzy set theory, 

conversion scales are applied to transform linguistic terms into fuzzy numbers. 

µ(x) 

1 

a c b 
x 
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Determining the number of conversion scales is generally intuitive (Chen and 

Hwang, 1992).  

Since the use of fuzzy logic becomes very important for the decision making 

problem in this study, linguistic variables are used to express the qualitative 

judgments such as the relative importance weights of vulnerability criteria, 

component and function dependency values, the ratings of system components, and 

the degree of influence (or causal relationships) among system functions. The 

possible values for these variables are presented in Table 3.1-3.3. For example, the 

decision makers are asked to describe the degree of influence among system 

functions using a linguistic variable given in Table 3.3 and each linguistic variable is 

indicated by a TFN within the interval of [0, 1]. The linguistic variables in Table 3.3 

and their membership functions are shown in Figure 3.2. 

Table 3.1: Linguistic variables for the importance weights and dependency values. 

Linguistic variable Triangular fuzzy number 
Very low (VL) (0, 0, 0.1) 
Low (L) (0, 0.1, 0.3) 
Medium low (ML) (0.1, 0.3, 0.5) 
Medium (M) (0.3, 0.5, 0.7) 
Medium High (MH) (0.5, 0.7, 0.9) 
High (H) (0.7, 0.9, 1) 
Very High (VH) (0.9, 1, 1) 

Table 3.2: Linguistic variables for the ratings of system components. 

Linguistic variable Triangular fuzzy number 
Very poor (VP) (0, 0, 1) 
Poor (P) (0, 1, 3) 
Medium Poor (MP) (1, 3, 5) 
Fair (F) (3, 5, 7) 
Medium Good (MG) (5, 7, 9) 
Good (G) (7, 9, 10) 
Very Good (VG) (9, 10, 10) 

Table 3.3: Linguistic variables for causal relationships among system functions. 

Linguistic variable Membership function Triangular fuzzy number 
Very very low (VVL) µvvl (0, 0.1, 0.2) 

Very low (VL) µvl (0.1, 0.2, 0.35) 

Low (L) µl (0.2, 0.35, 0.5) 

Medium (M) µm (0.35, 0.5, 0.65) 

High (H) µh (0.5, 0.65, 0.8) 

Very high (VH) µvh (0.65, 0.8, 0.9) 

Very very high (VVH) µvvh (0.8, 0.9, 1) 
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Figure 3.2: Membership functions of linguistic variables for causal relationships. 

Besides the decision makers’ qualitative judgments, the TFN can also be used to 

represent the quantitative terms. For example, ‘‘approximately equal to 30’’ can be 

represented by (29, 30, 31); ‘‘approximately between 20 and 24’’ can be represented 

by (20, 22, 24); the crisp number 10 can be represented by (10, 10, 10) as a special 

TFN for the fuzzy algebraic operations (Liang, 1999).  

3.3.3 The fundamentals of SMART 

SMART is a compensatory method of multiple criteria/attribute decision making 

(MCDM), developed by Edwards in 1971. This method was designed to provide a 

simple way to implement the beginnings of MAUT. SMART uses the Simple 

Additive Weight (SAW) method as a basis for obtaining the total values of individual 

alternatives to rank them according to the order of preference (Edwards, 1971; 

Edwards, 1977; Edwards and Barron, 1994). 

In this method, a score is obtained by adding the contribution from each criterion. 

Since two items with different measurement units cannot be added, normalization is 

required to permit addition among criteria values. The total score for each alternative 

can be computed by multiplying the normalized value of each criterion for the 

alternatives with the importance weight of the criterion and then summing these 

products over all the criteria (Yoon and Hwang, 1995). Formally, the total score of 

an alternative can be expressed as  

,      
n
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i w r i = 1,2,...mS
=

=∑                                     (3.3) 

where iS is the total score of alternative i, jw  is the importance weight of criterion j, 

ijr is the normalized rating of the alternative i for the criterion j, m is the number of 
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alternatives and n is the number of criteria. Finally, the alternative with the highest 

score is selected as the preferred one. 

In SMART, weights of criteria and ratings of alternatives are assigned directly using 

different scales. The simplicity of the questions done to the decision maker and the 

easiness of the analysis done on the answers are the great advantages of SMART. 

These issues directly influence on the understanding of the decision maker about the 

process used in the solution of the problem. 

Another advantage of the SMART is that the decision model is independent of the 

alternatives (Brownlow and Watson, 1987). Since the ratings of alternatives are not 

relative, changing the number of alternatives considered will not in itself change the 

decision scores of the original alternatives (Edwards and Barron, 1994). This issue is 

particularly useful when new alternatives or criteria are needed to be added to the 

existing decision model. In that case, the evaluation process does not require any 

further evaluations and can continue from the previous scores obtained. 

Furthermore, as the time is a crucial factor for managerial decision making, SMART 

becomes a better method than the other MCDM methods as it often requires a short 

period of decision cycle. 

Along the years, the SMART has been successfully applied to various MCDM 

problems and became very popular as its analysis incorporates a wide variety of 

quantitative and qualitative criteria. Due to many advantages mentioned above, 

SMART becomes a better choice to evaluate the initial vulnerability of system 

components, system functions and the system with respect to determined criteria, and 

to deal with the ratings of both qualitative and quantitative criteria.  Hence, in this 

study, a fuzzy SMART approach proposed by Chou and Chang (2007) in the GDM 

situation to solve a strategic MCDM problem is utilized. 

3.3.4 Brief overview on FCM methodology 

FCM methodology is a natural extension to cognitive maps, which can be found in 

the fields of economics, sociology and political science (Axelrod, 1976; Kosko, 

1986). It is originated from the combination of Fuzzy Logic and Neural Networks for 

modelling complex systems. A FCM describes the behaviour of a system in terms of 

concepts; each concept represents an entity, a state, a variable or a characteristic of 

the system (Dickerson and Kosko, 1997). FCMs are used to represent and to model 
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the knowledge on the examining system. Existing knowledge on the behaviour of the 

system is stored in the structure of nodes and interconnections of the map. The 

graphical illustration of an FCM is a signed fuzzy graph with feedback, consisting of 

nodes and weighted interconnections. Signed and weighted arcs connect various 

nodes representing the causal relationships that exist among concepts. A simple 

graphical representation of FCMs is depicted on Figure 3.3. 

 

Figure 3.3: A simple fuzzy cognitive map. 

In Figure 3.3, Ci is a concept with a state value. The state value can be a fuzzy value 

within [0, 1] that represents the existent degree of a concept. The weight Wij of an 

arrow indicates the influence degree from the cause concept Ci to the effect concept 

Cj, which can be a fuzzy value within [-1, 1]. Positive or negative sign and fuzzy 

weights (e.g. W12) model the expert knowledge of the causal relationships (Kosko, 

1991). Concept Ci causally increases Cj if the weight value Wij > 0 and causally 

decreases Cj if Wij < 0. When Wij = 0; concept Ci has no causal effect on Cj. In 

practice, the sign of Wij indicates whether the relationship between concepts is 

positive or negative, while the value of Wij indicates how strongly concept Ci 

influences concept Cj. The forward or backward direction of causality indicates 

whether concept Ci causes concept Cj or vice versa, respectively.  

The value of each concept in iterations can be computed from the values of the 

concepts in the preceding state using the following equation (Xirogiannis et al., 

2004): 
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where t+1
iC  is the value of concept Ci at the step t + 1, t

iC  is the value of the 

interconnected concept Cj at step t, Wji is a corresponding fuzzy weight between two 

given nodes, from Cj to Ci and f  is a given threshold function that transforms the 

result into a value in the interval where concepts can take values. The threshold 

function f can be bivalent (f(x)= 0 or 1), trivalent (f(x)= -1, 0 or 1), tangent 

hyperbolic (f(x)=tanh(x)) or the unipolar sigmoid function (( ) 1/ (1 )xf x e λ−= + , 

where λ is a constant). Hyperbolic function is used when concepts can be negative 

and their values belong to the interval [-1, 1]. The unipolar sigmoid function where   

λ >0 determines the steepness of the continuous function and is used when the values 

of the concepts lie within [0, 1]. Thus, we used unipolar sigmoid function in this 

study and assume that λ = 1.  

The initial values of the concepts in the input vector and the weighted arcs are set to 

specific values based on the expert’s beliefs. Afterwards, the system is free to 

interact. This interaction continues until the model: 

• Reaches equilibrium at a fixed point, with the output values, being decimals in the 

interval, stabilizing at fixed numerical values.  

• Exhibits limit cycle behaviour, with the output values falling in a loop of 

numerical values under a specific time period.  

• Exhibits a chaotic behaviour, with each output value reaching a variety of 

numerical values in a non-deterministic, random way. 

Modelling a system using FCM has several advantages. FCMs are very simple, 

flexible and powerful tools for analyzing and modelling the real world as a collection 

of concepts and causal relationships. This simplicity helps the decision makers better 

understand the underlying formal model and its execution. In addition, they show an 

abstract representation and are capable of fuzzy reasoning (Stach et al., 2005). 

Furthermore, even if the initial map of the problem is incomplete or incorrect, further 

additions to the map can be included, and the effects of new parameters can be 

quickly seen (Sharif and Irani, 2006a;b). Therefore, FCM is chosen as a modelling 

approach in this study to simulate the system vulnerability behaviour by taking into 

account the possible interrelationships among the system functions. 
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3.4 Fuzzy Integrated Vulnerability Assessment Model  

The proposed FIVAM framework in this study is based on fuzzy set theory, SMART 

and FCM methodology in the GDM environment. In this integrated utilization, fuzzy 

SMART is used as a simple and effective MCDM technique to weight the 

vulnerability criteria and to calculate the initial vulnerability value of the components 

with respect to these weighted criteria. After calculating the initial vulnerability 

values of all components, the physical dependencies of functions on components and 

the logical dependencies of system on functions are determined. Then, the initial 

vulnerability values of both the functions and the system are computed using these 

dependencies and component vulnerability values ignoring the possible 

interdependencies among the system functions. In the next phase, FCM methodology 

is applied to simulate the system vulnerability behaviour depending on the 

vulnerabilities and the interdependencies among the system functions. After 

calculating the vulnerability values of the functions in the long run by using FCM, 

the system function and component vulnerabilities are recalculated by considering 

the effects of these possible interdependencies among the system functions. 

According to these results, the most critical functions and components in the system 

are determined and ranked. Finally, the vulnerabilities before and after the FCM 

simulation are compared and evaluated. The proposed approach consists of the 

following steps is shown in Figure 3.4. 

Step 1: Form a working group. The group size influences the effectiveness of the 

GDM. As Yetton and Bottger (1983) pointed out groups of five are the most 

effective and odd numbered groups help avoid decision deadlocks.  

Assume that there is a group of s decision makers/experts (DMs) (Di , i =1, 2, ..., s) 

who are responsible for all the activities in the vulnerability assessment process. 

Step 2: Characterize the system defended. The DMs organize series of meetings for 

identifying the system functions and system components considering the system 

mission and system boundaries. Then, a hierarchical system structure is constructed 

using this information. 
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Assume that there are t system functions (Fj, j =1, 2, ..., t) and there are 
jFu system 

components (Tjk, j =1, 2, ..., t , k = 1, 2, …, 
jFu ) that are required by function Fj  to 

work properly. 

 

Figure 3.4: The steps of FIVAM approach. 

Step 3: Identify the vulnerability criteria for system components. The DMs use 

brainstorming GDM method for identifying the relevant criteria of the internal and 

external environment on vulnerability assessment of components. Then, these criteria 
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are categorized as qualitative or quantitative, and quantitative criteria are also 

categorized as cost or benefit (polarity). 

Let Cl, l =1, 2, …, v be the vulnerability criteria. 

Step 4: Determine the weights of the vulnerability criteria. Each DM assigns 

linguistic weighting variables shown in Table 3.1 for each criterion. Then, these 

fuzzy values are aggregated and the relative importance of the criteria is determined.  

Let ( , , ),   , il il il ilW a b c i = 1,2,...,s l = 1,2,...v=ɶ  be the TFN corresponding to the 

linguistic variable given to criterion Cl by decision maker Di. The aggregated fuzzy 

criterion weight, ( , , ),  
l l l lC C C CW a b c l = 1,2,...v=ɶ , of criterion Cl assessed by the group 

of s DMs is calculated as follows:  

1
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As the fuzzy SMART requires cardinal weights that are normalized to sum to 1, the 

crisp value of weight for criterion Cl, denoted as 
lCW , is given by  
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Step 5: Calculate the initial vulnerability value of the components with respect to the 

weighted criteria. The DMs use linguistic rating variables shown in Table 3.2 to 

assess fuzzy ratings of components with respect to vulnerability criteria, and then 

compute aggregated fuzzy ratings. While calculating the initial vulnerability value of 
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the components, it is assumed that the vulnerability of any component does not affect 

the vulnerability of the other components. 

Let ( , , ),   , ,   , 
jijkl ijkl ijkl ijkl Fx a b c i=1,2,...,s  j =1, 2, ..., t k=1,2,...,u l =1,2,...v=ɶ  be the 

linguistic rating assigned to the component Tjk of function Fj for 

qualitative/subjective criterion Cl by decision maker Di. Similarly, let 

( , , ),   , ,   , 
jijkl ijkl ijkl ijkl Fq d e f i=1,2,...,s  j =1, 2, ..., t k=1,2,...,u l=1,2,...v=ɶ  be the TFN (or 

crisp) cost or benefit value assessed to the component Tjk of function Fj for 

quantitative/objective criterion Cl by decision maker Di. The following equations are 

applied to normalize the quantitative value. 

min { }
10

max { } min { }
ijkl jk ijkl

jk ijkl jk ijkl
ijkl

q d

f d
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−
⊗

−
=

ɶ
ɶ                              (3.8) 

where ijklxɶ  denotes the normalized fuzzy rating of fuzzy benefit ijklqɶ .
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jk ijkl ijkl

jk ijkl jk ijkl
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f q

f d
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−
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−
=

ɶ
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where ijklxɶ  denotes the normalized fuzzy rating of fuzzy cost ijklqɶ . The aggregated 

fuzzy rating, ( , , ),  ,
jjkl jkl jkl jkl Fx a b c j =1, 2, ..., t  k=1,2,...,u=ɶ  , l =1,2,...v, of component 

Tjk for criterion Cl  is calculated as  

1

s

jkl ijkl
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1
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s =
= ⊗∑ɶ ɶ                                          (3.10) 

Then, the initial fuzzy vulnerability value of component k of function j, 
jkTVɶ , can be 

obtained by: 

1
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C jkl F
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where ( , , ),  , .
jjk jk jk jk FT a b c j = 1, 2, ..., t  k =1,2,...,uV =ɶ   
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The component vulnerability value 
jkTVɶ  is defuzzified using Eq.3.2 and component 

vulnerability value ( )
jkTd Vɶ  is determined. Then, normalized crisp component 

vulnerability value 
jkTV  is calculated as follows: 

( ) ,
max ( )

( )
,  

j

jk

jk
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F
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T

j = 1, 2, ..., t  k = 1,2,...,u
d
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=

ɶ

ɶ
                          (3.12) 

Step 6: Construct the physical dependencies of functions on components and 

calculate the initial vulnerability value of the functions. To determine the initial 

function vulnerabilities that depend on component vulnerability values, the DMs 

assign linguistic variables shown in Table 3.1 for the degree of dependency between 

function and component.  

Let ( , , ),   , ,
jijk ijk ijk ijk FW a b c i = 1,2,...,s j = 1, 2, ..., t  k = 1,2,...,u=ɶ  be the TFN 

corresponding to the linguistic variable given to the dependency degree of function 

Fj on component Tjk by decision maker Di. The aggregated fuzzy dependency degree, 

( , , ),  ,
jk jk jk jk jT T T T FW a b c j = 1, 2, ..., t  k = 1,2,...,u=ɶ  of component Tjk assessed by the 

group of s DMs is determined as: 
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Then, the defuzzified dependency degree, )(
jkTd Wɶ , is calculated using Eq.3.2 and 

normalized as follows: 
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The initial fuzzy vulnerability value for function Fj, denoted as 
jFVɶ , is the sum 

product of all component vulnerability values and their associated dependency 

degree as follows: 
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where ( , , ),  .
j j j jF a b c j =1, 2, ..., tV =ɶ   

Since, the threshold function in FCM model requires crisp concept values within    

[0, 1], normalized crisp function vulnerability value 
jFV  is calculated as follows: 
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where ( )ɶ
jFd V  is the defuzzified function vulnerability value. 

Step 7: Construct the logical dependencies of system on functions and calculate the 

initial vulnerability value of the system. To determine the system vulnerability that 

depends on function vulnerability values, the DMs assign linguistic variables shown 

in Table 3.1 for the degree of dependency between system and function.  

Let  ( , , ),   , =ɶij ij ij ijW a b c i = 1,2,...,s j = 1, 2, ..., t be the TFN corresponding to the 

linguistic variable given to the dependency degree of system on function Fj by 

decision maker Di. The aggregated fuzzy dependency degree, 

( , , ),  =ɶ
j j j jF F F FW a b c j = 1, 2, ..., t of component Fj assessed by the group of s DMs is 

defined as: 
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As in the previous steps, the fuzzy dependency degree, ɶ
jFW , is defuzzified and 

normalized value, ɶ
jFW , is calculated. Then, the vulnerability value for the system S, 

denoted as SV , is the sum product of all function vulnerability values and their 

associated dependency degree as follows: 

( )j j
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F F
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Step 8:  Define the logical dependencies among the functions and construct the FCM 

model. The DMs use linguistic influence variables shown in Table 3.3 to assess 

fuzzy causal relationships (influences) among the system functions. 

Let ( , , ),   , ,ijm ijm ijm ijmr a b c i = 1,2,...,s  j m = 1, 2, ..., t=ɶ  be the TFN corresponding to the 

linguistic variable assigned to the influence degree of function Fj to function Fm by 

decision maker Di. The aggregated fuzzy influence value, 

( , , ),  ,jm jm jm jmr a b c j m = 1, 2, ..., t=ɶ  where 0jjr =ɶ , is calculated as:  

1

s

jm ijm
i

1
r r

s =

⊗= ∑ɶ ɶ                                           (3.19) 

As the unipolar sigmoid function in FCM model requires crisp values, the crisp 

influence value jmr  is determined by defuzzifying the aggregated fuzzy influence 

value jmrɶ  using Eq.3.2. 

Step 9: Simulate the system and calculate the vulnerability value of the system 

functions in the long run. The vulnerability value of a system function in each 

iteration is calculated using Eq.3.4 as follows: 
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When the model reaches equilibrium at a fixed point after some iterations, new crisp 

vulnerability value of for function Fj, denoted as 
j

e
FV , is determined.  

Step 10: Recalculate the vulnerability values of the components, functions and the 

system. As the result of the FCM simulation is the function vulnerabilities at the 

equilibrium point, first of all, the hidden vulnerability of the functions have to be 

determined. If function Fj influences function Fm, there is a hidden vulnerability on 

cause function Fj because of the dependency of Fm on Fj. This hidden vulnerability

j

h
FV  of a function Fj is calculated as 
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m m j

h e
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Then, the real vulnerability value of function Fj is the sum of initial and the hidden 

vulnerabilities as follows: 
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, .
j j j

h
F F FV  j = 1, 2, ...,tV V= +′                                    (3.22) 

The hidden vulnerability value of the system, h
SV , is calculated by the sum product 

of hidden function vulnerability values and their associated dependency degree as 
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The real vulnerability value of the system, SV ′ , is therefore given by 

= +′ h
S S SVV V                                              (3.24) 

Similarly, the hidden function vulnerabilities calculated by the FCM simulation have 

to be reflected to the component vulnerabilities proportional to the component-

function dependencies. To do this, the vulnerability values of the components are 

recalculated by the following equations: 

* , ,
jjjk jk F

h h
T T FV V  j = 1, 2, ..., t  k = 1,2,...,uW=                           (3.25) 

, ,
jjk jk jk F

h
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Step 11: Evaluate the results. The system components and functions based on their 

vulnerability values before and after FCM simulation are ranked and compared. 

Furthermore, the hidden vulnerabilities are presented and discussed. 

The detailed descriptions of each step are elaborated in the following illustrative case 

study section. 

3.5 An Illustrative Example for Vulnerability Assessment 

In this section, the proposed FIVAM approach as described in Section 4 is applied to 

a hypothetical Airport X to discover hidden vulnerabilities for improving its site 

security. When the security requirements are considered against the possible terrorist 

attacks, the challenge of vulnerability assessment for an airport becomes very 

complicated.  

Note that all the values used throughout this example are purely generic and notional. 

Even though this case study is very simple and the results may not increase our 
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knowledge about the system, it validates the FIVAM approach. A step-by-step 

algorithm for this example is as follows: 

Step 1: In this case study, the number of DMs who were involved in the decision-

making process is selected as five. In order to extend the assessment to account for 

the conflicts among different interest groups who have different objectives, goals and 

criteria; one terrorism expert, one security expert, two representatives from the 

airport administration and one academician from the Faculty of Aeronautics have 

participated in the decision process as DMs.  

In the evaluation process, while the terrorism and security experts mostly deal with 

the security issues, representatives from an airport administration and the 

academician concern the functionality of Airport X. The authors support these DMs 

with their technical knowledge on the methodology. Series of meetings were 

organized with participation of these DMs and all the issues including comments and 

suggestions are discussed at these meetings. 

Step 2: The DMs identified the relevant functions and components of Airport X by 

considering the following three questions: “What is the principal mission of Airport 

X?”, “What system functions are essential to carry out this mission by Airport X?” 

and “What system components do these system functions depend on for their 

success?”. For simplification, only the critical functions have been considered and 

their most relevant components have been focused on at the component abstraction 

level in this study. 

In order to accomplish its mission, the DMs determined that Airport X has to provide 

six main functions: (1) Ground handling service (GHS) for servicing, maintenance 

and engineering of aircrafts; (2) Passenger service (PS) for gate-management, check-

in desk allocation, and flight-information displays; (3) Cargo and baggage service 

(CBS) function for transportation of payload; (4) Air traffic management service 

(ATMS) for approach, landing, taxiing, take off and departure of aircrafts; (5) 

Emergency services (ES) for fire fighting, medical and security services; and (6) 

Infrastructure services (IS) for maintaining the general service capability of the 

airport. 

After identifying the relevant functions of Airport X, the DMs determined 20 system 

components by answering the third question mentioned above. Table 3.4 summarizes 
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the functions and the components of Airport X in a hierarchical structure and Figure 

1.6 illustrates the sketch of Airport X. 

Table 3.4: Hierarchical system structure of airport X. 

Components Functions System 

T11 Airfield Maintenance Building F1 Ground Handling Service 
(GHS) 

Airport X (S) 

T12 Fuel Complex Building   

T21 Passenger Terminal F2 Passenger Service (PS)  

T22 Parking Facility   

T23 Bus Station   

T31 Custom Building F3 Cargo  and  Baggage Service 
(CBS) 

 

T32 Cargo Terminal   

T41 Air Traffic Control  and  Tower F4 Air Traffic Management 
Service (ATMS) 

 

T42 Apron   

T43 Runway  and  Taxiway   

T51 Main Entrance  and  Security Control Building F5 Emergency Service (ES)  

T52 Security Building   

T53 Aircraft Rescue and Fire Fighting Building   

T54 Police Station Building   

T55 Fuel Complex Guard Building   

T56 Guard Tower   

T57 Fencing   

T61 Heating Centre Building F6 Infrastructure Service (IS)  

T62 Power Centre Building   

T63 Water Storage Building   

Step 3: In this study, the key factors for assessing the vulnerability of Airport X are 

derived from literature reviews, comprehensive investigation and consultation with 

DMs. After a comprehensive discussion, all the evaluation criteria for the component 

vulnerability assessment are identified accordingly. The five DMs collectively set up 

five criteria and the detail descriptions of these criteria are listed below: 

• Deterrence (C1): Deterrence is defined as defence methods implemented that are 

perceived by terrorists as too difficult to defeat. The presence of security controls 

such as access control, perimeter protection, proper lighting and use of metal 

detector/X-ray/Closed Circuit Television at entrance and at all critical locations 

increase the deterrence of the component by lowering the attractiveness of a 

component as a target.  

• Detection (C2): Detection is defined as the capability of determining that an 

unauthorized terrorist action has occurred or is occurring, including: sensing, 
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communicating alarm to control centre, and assessing the alarm (Ezell, 2007). 

The high value of detection decreases the vulnerability of a component.  

• Delay (C3): Delay is defined as the time that an element of a physical protection 

system is designed to impede terrorist penetration into or exit from the protected 

area (Ezell, 2007). Decreasing the delay will reduce the potential for a component 

to be a target. 

• Response (C4): Response is defined as a time to respond to a threat. Response 

activities occurred immediately after a terrorist attack includes stabilizing 

affected areas, immediate medical care and evacuation during the terrorist attack. 

Short response time decreases the vulnerability of a component. 

• Recovery (C5): Recovery is defined as a time to return the affected areas and 

persons to their pre-event status. It includes restoring critical elements, assisting 

affected persons, and coordinating relief efforts after the possible terrorist attacks 

for the worst case scenario. Quicker recovery of a component from an attack 

indicates that the component is less vulnerable.  

As a result, Deterrence (C1) and Detection (C2) are the qualitative criteria; whereas 

Delay (C3), Response (C4) and Recovery (C5) are the quantitative benefit criteria. 

Step 4: The linguistic weighting variables (Table 3.1) and their respective fuzzy 

numbers for DMs are then used to assess the importance weights of the evaluation 

criteria. These assigned fuzzy values are aggregated by arithmetic mean method 

using Eq.3.1 and the fuzzy weights of individual criteria can then be determined 

(Table 3.5). Furthermore, crisp and normalized weight values are also calculated by 

using Eqs. 3.2-3.3 and included in the table.  

Table 3.5: The relative importance weights of the five criteria by five DMs. 

Criteria  Polarity 
DM’s linguistics weights Aggregated weights 
DM 1 DM2 DM3 DM4 DM5 Fuzzy number Defuzzified Normalized 

C1 - H H VH MH M (0.62, 0.8, 0.92) 0.780 0.275 

C2 - H MH M M ML (0.38, 0.58, 0.76) 0.573 0.202 

C3 + M ML L M ML (0.16, 0.34, 0.54) 0.347 0.122 

C4 + MH M H M MH (0.46, 0.66, 0.84) 0.653 0.231 

C5 + M VL H M M (0.32, 0.48, 0.64) 0.480 0.169 

Polarity : ‘+’ = benefit criteria, ‘-’ = cost criteria 
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The weights of the criteria presented in Table 3.5 reveal that the most important 

criteria for assessing vulnerability of a component is “deterrence” ( 0.275
1CW = ); 

whereas the least important criteria is “delay” ( 0.122
3CW = ). 

Step 5: The linguistic rating variables (Table 3.2) and their respective fuzzy numbers 

for DMs are used to assess the fuzzy ratings of the 20 components with respect to 

each qualitative/quantitative criterion. As the DMs sometimes have different 

understandings of the same performance data, the DMs adopted linguistic terms in 

Table 2 to express their opinions about the rating of every component regarding each 

quantitative criterion, Delay (C3), Response (C4), and Recovery (C5) in this case 

study. For instance, some DMs might think that 3 minutes was a ‘‘good’’ or ‘‘very 

good’’ delay for “Air Traffic Control  and  Tower” component, while the others 

might think that value was ‘‘fair’’ or ‘‘medium poor’’. Alternatively, in accordance 

with crisp data, the normalized values of individual quantitative criteria can be 

computed by using Eq.3.3 or Eq.3.5. The aggregated fuzzy rating of each criterion 

can be computed by Eq.3.6, and then, the aggregated fuzzy ratings are formed. The 

fuzzy vulnerability values of components are obtained using Eq.3.7 and the results 

are listed in Table 3.6. Furthermore, crisp and normalized vulnerability values of 

components and their rankings are also calculated by using Eq.3.8 and included in 

the table. 

Table 3.6: Aggregated fuzzy ratings and vulnerability of components. 

 
Aggregated fuzzy ratings regarding each criterion Component vulnerability value 

C1 C2 C3 C4 C5 Fuzzy number Defuz. Norm. Rank 
T11 (2.6, 4.6, 6.6) (1.8, 3.2, 5) (4.6, 6.6, 8.4) (5, 7, 8.6) (4.6, 6.6, 8.4) (3.58, 5.45, 7.26) 5.430 0.904 5 
T12 (3, 5, 7) (3.2, 5, 7) (3.4, 5.4, 7.4) (3.8, 5.8, 7.8) (4.2, 6.2, 8.2) (3.48, 5.44, 7.44) 5.450 0.907 4 
T21 (4.6, 6.6, 8.4) (0.2, 1.2, 3) (0.2, 1.2, 3) (2, 3.8, 5.8) (6.6, 8.4, 9.6) (2.91, 4.51, 6.25) 4.556 0.758 9 
T22 (1, 2.6, 4.6) (5.8, 7.6, 8.8) (3, 5, 7) (2.2, 4.2, 6.2) (0.2, 1.2, 3) (2.36, 4.04, 5.84) 4.079 0.679 11 
T23 (0.8, 2.6, 4.6) (5, 7, 8.6) (4.6, 6.6, 8.4) (3.4, 5.4, 7.4) (0.2, 1.2, 3) (2.61, 4.39, 6.25) 4.417 0.735 10 
T31 (3, 5, 7) (4.2, 6.2, 8.2) (4.2, 6.2, 8) (1.8, 3.8, 5.8) (1, 2.4, 4.2) (2.77, 4.67, 6.61) 4.687 0.780 8 
T32 (2.6, 4.6, 6.6) (5, 7, 8.8) (5, 7, 8.8) (4.2, 6.2, 8.2) (0.8, 2, 3.8) (3.44, 5.31, 7.21) 5.320 0.886 6 
T41 (3.8, 5.8, 7.6) (0.4, 1.8, 3.8) (0.4, 1.6, 3.4) (2.6, 4.6, 6.6) (7.4, 9, 9.8) (3.03, 4.74, 6.46) 4.744 0.790 7 
T42 (1, 2.6, 4.6) (5.4, 7.4, 9) (1.2, 3, 5) (2.6, 4.6, 6.6) (0, 0.4, 1.8) (2.11, 3.71, 5.53) 3.783 0.630 12 
T43 (1, 2.6, 4.6) (3.4, 5.4, 7.4) (2.2, 4.2, 6.2) (3, 5, 7) (0.2, 1.2, 3) (1.96, 3.68, 5.64) 3.760 0.626 13 
T51 (0, 0.4, 1.8) (0, 0.2, 1.4) (0, 0.2, 1.4) (0, 0.4, 1.8) (0.8, 2.2, 4.2) (0.14, 0.64, 2.08) 0.951 0.158 20 
T52 (0, 0.2, 1.4) (0, 0.2, 1.4) (0, 0, 1) (0, 0.2, 1.4) (1.8, 3.8, 5.8) (0.3, 0.79, 2.1) 1.062 0.177 19 
T53 (1.6, 3.4, 5.4) (0.6, 2.2, 4.2) (0.2, 1, 2.6) (1.2, 3, 5) (1, 2.6, 4.6) (1.03, 2.64, 4.59) 2.752 0.458 14 
T54 (0, 0.2, 1.4) (0, 0.4, 1.8) (0, 0.2, 1.4) (0.2, 1, 2.6) (2.6, 4.6, 6.6) (0.49, 1.17, 2.64) 1.432 0.238 16 
T55 (0, 0.6, 2.2) (0.4, 1.8, 3.8) (0.4, 1.4, 3) (0, 0.6, 2.2) (0.2, 1.2, 3) (0.16, 1.04, 2.76) 1.321 0.220 17 
T56 (0, 0.6, 2.2) (0.4, 1.8, 3.8) (0.2, 1.2, 3) (0, 0.6, 2.2) (0, 0.4, 1.8) (0.11, 0.88, 2.55) 1.181 0.197 18 
T57 (0, 0.6, 2.2) (0.2, 1.2, 3) (3.8, 5.8, 7.8) (0.2, 1.4, 3.4) (0, 0.2, 1.4) (0.55, 1.47, 3.19) 1.738 0.289 15 
T61 (3, 5, 7) (3.8, 5.8, 7.6) (2.6, 4.6, 6.6) (2.6, 4.6, 6.6) (7, 8.8, 9.8) (3.7, 5.66, 7.45) 5.606 0.933 2 
T62 (3.8, 5.8, 7.8) (3, 5, 7) (3.8, 5.8, 7.8) (3, 5, 7) (7.8, 9.4, 10) (4.13, 6.06, 7.83) 6.007 1.000 1 
T63 (2.6, 4.6, 6.6) (3.4, 5.4, 7.4) (3.4, 5.4, 7.4) (2.6, 4.6, 6.6) (7.4, 9, 9.8) (3.67, 5.61, 7.4) 5.560 0.926 3 
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In Table 3.6, it is identified that the three most vulnerable components are “Power 

Centre Building” (
62

1.000=TV ), “Heating Centre Building” (
61

0.933=TV ) and 

“Water Storage Building” (
63

0.926=TV ); whereas the three least vulnerable 

components are “Main Entrance  and  Security Control Building” (
51

0.158=TV ), 

“Security Building” (
52

0.177=TV ) and “Guard Tower” (
56

0.197=TV ). These are the 

most and the least probable possible targets for the terrorist attacks. 

Step 6: In this step, the DMs use the linguistic weighting variables in Table 3.1 to 

assess the physical degree of dependency between functions and components. These 

assigned fuzzy values are aggregated and defuzzified using Eqs.3.9-3.10 and the 

crisp dependency degrees (weights) are determined (Table 3.7). The fuzzy 

vulnerability values of functions are then calculated by the sum product of all 

component vulnerability values and their associated dependency degrees using 

Eq.3.11 (Table 3.7). In addition to this, crisp and normalized vulnerability values of 

functions and their rankings are also computed using Eq.3.12 and included in the 

table. 

Table 3.7: Dependency degree of components and vulnerability of functions. 

Func.  Comp. 
Aggregated degree of dependency  Function vulnerability value 

Fuzzy number Defuzzified Normalized Fuzzy number Defuzzified Normalized Rank 
F1 T11 (0.66, 0.84, 0.96) 0.82 0.52 (3.53, 5.45, 7.35) 5.440 0.932 2 
 T12 (0.58, 0.78, 0.92) 0.76 0.48     
F2 T21 (0.82, 0.96, 1) 0.93 0.73 (2.79, 4.42, 6.19) 4.470 0.766 4 
 T22 (0.04, 0.16, 0.34) 0.18 0.14     
 T23 (0.04, 0.14, 0.3) 0.16 0.13     
F3 T31 (0.38, 0.58, 0.78) 0.58 0.42 (3.16, 5.04, 6.96) 5.051 0.865 3 
 T32 (0.62, 0.8, 0.94) 0.79 0.58     
F4 T41 (0.82, 0.96, 1) 0.93 0.50 (2.52, 4.22, 6.03) 4.256 0.729 5 
 T42 (0.16, 0.34, 0.54) 0.35 0.19     
 T43 (0.38, 0.58, 0.78) 0.58 0.31     
F5 T51 (0.46, 0.66, 0.84) 0.65 0.21 (0.38, 1.17, 2.74) 1.429 0.245 6 
 T52 (0.38, 0.58, 0.76) 0.57 0.19     
 T53 (0.26, 0.46, 0.66) 0.46 0.15     
 T54 (0.26, 0.46, 0.66) 0.46 0.15     
 T55 (0.1, 0.26, 0.46) 0.27 0.09     
 T56 (0.26, 0.46, 0.66) 0.46 0.15     
 T57 (0.04, 0.16, 0.34) 0.18 0.06     
F6 T61 (0.1, 0.24, 0.42) 0.25 0.19 (3.95, 5.89, 7.67) 5.838 1.000 1 
 T62 (0.62, 0.82, 0.96) 0.80 0.60     
 T63 (0.1, 0.26, 0.46) 0.27 0.21     
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In Table 3.7, it is seen that the most vulnerable function is “Infrastructure Service 

(IS)” (
6

1.000=FV ). On the other hand, the least vulnerable function is “Emergency 

Service (ES)” (
5

0.245=FV ). 

Step 7: The DMs assign the linguistic weighting variables in Table 3.1 for the logical 

degree of dependency between Airport X and its functions. These assigned fuzzy 

values are aggregated using Eq.3.13. The crisp vulnerability value of Airport X is 

then calculated by the sum product of all function vulnerability values and their 

associated aggregated dependency degrees using Eq.3.14 (Table 3.8). As seen from 

the table, the Airport X has a vulnerability value of 0.749. By the end of this step, 

vulnerability assessment is conducted using the SMART approach like the other 

classical models. However, in the next steps FCM is applied to identify and 

determine the real and hidden vulnerabilities caused by the functional 

interdependencies among the system functions. 

Table 3.8: Dependency degree of functions and vulnerability value of airport X. 

Func.  
Aggregated degree of dependency  System vulnerability 

value Fuzzy number Defuzzified Normalized 
F1 (0.42, 0.62, 0.82) 0.62 0.15 

0.749 

F2 (0.7, 0.88, 0.98) 0.85 0.21 
F3 (0.34, 0.54, 0.74) 0.54 0.13 
F4 (0.74, 0.9, 0.98) 0.87 0.22 
F5 (0.42, 0.62, 0.8) 0.61 0.15 
F6 (0.34, 0.54, 0.74) 0.54 0.13 

Step 8: The linguistic influence variables (Table 3.3) and their respective fuzzy 

numbers for DMs are then used to define the causal relationships among the 

functions of Airport X. These fuzzy values are aggregated by using Eq.3.15 and crisp 

influence matrix is constructed after defuzzication for the FCM simulation (Table 

3.9). Furthermore, the FCM model for the functions of Airport X is presented in 

Figure 3.5. 

Table 3.9: Causal relationships among the functions of airport X. 

Functions F1 F2 F3 F4 F5 F6 
F1 0.00 0.36 0.00 0.27 0.00 0.00 
F2 0.00 0.00 0.00 0.25 0.00 0.00 
F3 0.00 0.27 0.00 0.00 0.00 0.00 
F4 0.00 0.64 0.00 0.00 0.00 0.00 
F5 0.67 0.44 0.35 0.59 0.00 0.64 
F6 0.56 0.38 0.27 0.38 0.50 0.00 
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Figure 3.5: FCM model for airport X. 

Step 9: The FCM model is simulated using Eq.3.16 and function vulnerability values 

reach an equilibrium state after a few iterations. The calculated function vulnerability 

values for 10 iterations are presented in Table 3.10 and equilibrium of concept values 

are shown in Figure 3.6. 

Table 3.10: The vulnerability values of functions for 10 iterations. 

Functions 
Iterations 

1 2 3 4 5 6 7 8 9 10 
F1 0.932 0.840 0.848 0.855 0.858 0.859 0.859 0.859 0.859 0.859 
F2 0.766 0.908 0.928 0.933 0.934 0.935 0.935 0.935 0.935 0.935 
F3 0.865 0.773 0.772 0.776 0.778 0.779 0.779 0.779 0.779 0.779 
F4 0.729 0.845 0.879 0.888 0.890 0.890 0.891 0.891 0.891 0.891 
F5 0.245 0.678 0.742 0.755 0.758 0.759 0.759 0.759 0.759 0.759 
F6 1.000 0.761 0.768 0.777 0.779 0.780 0.781 0.781 0.781 0.781 

As seen from Table 3.10 and Figure 3.6, after the FCM simulation, PS function has 

become the most vulnerable function in the long run with a vulnerability value of 

2
0.935=FV . The reason is that, this function is affected by all the other functions. 

This means an increase in the vulnerability value of any function creates an increase 

in the vulnerability value of PS function. On the other hand, ES function has become 

relatively the least vulnerable function with 
5

0.759=FV  after the simulation as it is 

the least affected function in the system. The results in Table 3.10 also show that 
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after the FCM simulation the most influenced function has the highest vulnerability 

value; whereas the least influenced function has the lowest vulnerability value. 

 

Figure 3.6: Equilibrium state of the function vulnerability values. 

Step 10: The hidden and real vulnerability values of the components, functions and 

the system are calculated using Eqs.3.17-3.26 and shown in Table 3.11. 

Step 11: The rankings and the vulnerability values before and after FCM simulation 

are presented in Table 3.11. It is observed that the ranks of functions and components 

are different due to the hidden vulnerabilities caused by the logical interdependencies 

among the functions. For instance, while IS function has the same rank before and 

after the simulation, ES functions has greatly different ranks. Although, this function 

has the least vulnerability before simulation, it becomes the second most vulnerable 

after simulation as it has the highest hidden vulnerability (
5

2.293=h
FV ). On the other 

hand, PS function becomes the least critical function of Airport X having the least 

real vulnerability value after simulation. It can be concluded that the IS function, 

with the real vulnerability of 
6

2.774=FV , is determined as the most critical function 

for Airport X. 

At the component level, this rank difference is not as much as it is at the functional 

level. From Table 3.11, it is identified that “Power Centre Building” having the 
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highest real vulnerability of 
62

2.069=TV , is the most critical component for Airport 

X. This component also has the highest hidden vulnerability (
62

1.069=h
TV ). “Main 

Entrance  and  Security Control Building” has the least vulnerability (
51

0.158=TV ) 

and rank before the simulation, but its rank and criticality is increased by five after 

the simulation since it has the second highest hidden vulnerability (
51

0.490=h
TV ).  

Table 3.11: Comparison of the vulnerability values. 

 Before FCM 
simulation 

After FCM  
simulation 

Hidden 
vulnerability 

 Vulnerability  Rank Vulnerability Rank 
System  0.749 - 1.621 - 0.872 

Functions      

F1 0.932 2 1.506 3 0.574 

F2 0.766 4 0.985 6 0.220 

F3 0.865 3 1.121 5 0.256 

F4 0.729 5 1.330 4 0.601 

F5 0.245 6 2.538 2 2.293 

F6 1.000 1 2.774 1 1.774 

Components      
T11 0.904 5 1.202 4 0.298 
T12 0.907 4 1.183 5 0.276 
T21 0.758 9 0.919 8 0.161 
T22 0.679 11 0.710 14 0.031 
T23 0.735 10 0.763 12 0.028 
T31 0.780 8 0.889 9 0.108 
T32 0.886 6 1.033 7 0.147 
T41 0.790 7 1.090 6 0.301 
T42 0.630 12 0.742 13 0.112 
T43 0.626 13 0.814 10 0.188 
T51 0.158 20 0.648 15 0.490 
T52 0.177 19 0.606 16 0.430 
T53 0.458 14 0.803 11 0.345 
T54 0.238 16 0.583 17 0.345 
T55 0.220 17 0.425 19 0.205 
T56 0.197 18 0.541 18 0.345 
T57 0.289 15 0.424 20 0.135 
T61 0.933 2 1.272 3 0.339 
T62 1.000 1 2.069 1 1.069 
T63 0.926 3 1.291 2 0.365 

 

The high vulnerable or in other words most critical components of Airport X are the 

most probable possible targets for the terrorist attacks. Hence, the appropriate 

defence resource should be allocated in the following defence resource planning 

process to improve site security of Airport X.  
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Finally, the systematic application of the FIVAM satisfactorily contributes the 

overall vulnerability assessment process of Airport X. This approach can originally 

be utilized as a decision aid by the related managers; moreover, it provides both 

motivation and contributions on vulnerability assessment process as one of the 

critical administrative issue consistently. 

3.6 Concluding Remarks of Chapter 3 

In the last decade, the number of adversary attacks to the critical facilities has 

increased dramatically and SRA has gained more importance. Managing the risk of 

these facilities for the adversary attacks depends on systematic and quantitative 

vulnerability assessment.  

Vulnerability assessment should be conducted at three levels: system level, system 

function level and system component level. Furthermore, the most critical functions 

and components in the system have to be determined and ranked to support the 

following defence resource planning process. 

When the nature of this problem is analyzed, it seems that the fuzzy SMART and 

FCM integration, proposed FIVAM framework, can be recognized as a suitable 

research methodology towards the solution of this problem. FIVAM takes the 

advantages of the fuzzy SMART for determining the vulnerability of system under 

multiple qualitative/quantitative criteria in GDM environment, and FCM for 

modelling the behaviour of the system to monitor the vulnerability. 

The case application of an example airport illustrates the utility and effectiveness of 

the proposed FIVAM framework. The quantitative findings on the case study 

highlight that possible interrelationships among the system functions are very 

significant in vulnerability assessment of a critical facility and they have to be taken 

into account in the system perspective. By doing this, hidden vulnerabilities can be 

identified consistently. That’s why; the FIVAM framework becomes more realistic 

and applicable to overcome this issue. Furthermore, FIVAM can be utilized as a 

simple and practical toolkit for this type of real life problems for enhancing the 

current procedures in vulnerability assessment process. To realize this idea, FIVAM 

can be applied similarly in some cases to assess the vulnerability of any other 

facilities that can be a metro station, shopping mall, metro station, harbour, 
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governmental facility, military bases, chemical plants, oil refinery etc. In addition to 

this, both the number of evaluation criteria and system components can be increased 

in order to conduct a detailed assessment at the operational and tactical level. 

The further research can be performed on extending the FIVAM framework to assign 

defence resources for the most vulnerable components to comprehensively support 

this critical decision-making problem. For this purpose, SWOT analysis as a 

strategy-making tool can be integrated into the FIVAM framework for identifying 

and formulating appropriate counter-measure strategies in defence planning. 
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4.  CONSEQUENCE ASSESSMENT MODELLING 

4.1 Introduction to Consequence Assessment 

In SRA, the objective of consequence assessment (CA) is to estimate the expected 

magnitudes and types of losses (e.g., deaths, injuries, or property damage) associated 

with a threat scenario given adversary success. CA is an important part of SRA 

because wrong CA leads to the wrong estimation of the security risk.  The most 

important aspect of CA is the identification, quantification and integration of all 

different types of losses specific to security risk while estimating the total 

consequence of a critical facility.  

In the literature, there are models that estimate the damage to a building based on the 

quantity of fire, explosion, and toxic release and dispersion. The CA schemes for 

chemical process industries are mainly common in the literature and they are based 

on the models of accidental fire, explosion, and toxic release and dispersion (Khan 

and Abbasi, 1998; 1999; 2000; Arunraj and Maiti, 2009). The existing models of 

accidental fire, explosion, and toxic release and dispersion are mainly based on either 

empirical methods or numerical methods (Remennikov, 2003). Empirical methods 

are analytical methods that are correlations with experimental data while numerical 

methods are computational fluid dynamics models that are based on mathematical 

equations of basic physic laws. 

The available complex methodologies lacks in estimating the losses due to security 

risk consequences. Threat scenario as an initiating event causes explosions and fire 

or combinations of these main events leading to losses. Therefore, model estimating 

the effects of explosive blast on humans and structures due to size of explosions and 

fire is needed. Therefore, the consequence modelling for SRA has to be performed 

by considering all major losses of security risk with optimal complexity and optimal 

time to improve the SRA.  

This chapter proposes the Monte Carlo Simulation based CA model (CAM) that 

combines different types of consequences for SRA. After reviewing the existing 
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approaches and the factors that influence the CA, the remainder of this chapter is 

organized as follows: In Section 4.2, theoretical background information for the 

proposed approach is represented. The proposed model and its process flow are 

introduced in Section 4.3. The illustrative application of the proposed approach is 

performed over an airport case study in Section 4.4. This section also examines the 

utility of findings and discusses the analysis results. Conclusions and further issues 

are addressed respectively in the final section. 

4.2 Theoretical Background for Consequence Assessment Modelling 

In this section, theoretical background information on Monte Carlo simulation 

(MCS) and Trinitrotoluene (TNT) equivalent method are presented, respectively. 

4.2.1 Monte Carlo simulation 

MCS is a complex stochastic problem technique used to solve a wide range of 

mathematical problems in numerous fields such as mathematics, physics and 

engineering (Rubinstein and Kroese, 2007). MCS is used to approximate the 

probability of certain outcomes by running multiple trials, called simulations, using 

random variables. The basic idea of MCS is as follows: MCS randomly selects 

values from given distributions for the defined random variables of the given 

problem. Then, it forms one possible solution to the problem for each trial. Finally, 

these trials give a range of possible solutions, resulting in a probability distribution 

for the outcome parameter.  MCS is also called random sampling technique or 

statistical experimental approach. 

In this study, MCS is used to calculate the consequence of given threat scenarios for 

CA.  

4.2.2 TNT equivalent method 

TNT equivalent method is a set of equations which relate the energy of explosion in 

terms of TNT equivalent weight, distance from explosion, and blast pressure in the 

literature (Cooper, 1996; Diaz Alonso et al., 2006; Diaz Alonso et al., 2007; Diaz 

Alonso et al., 2008; Usmani and Kirk, 2008; Usmani et al., 2009). TNT equivalent 

method is widely used empirical method and computationally simple for loss 

calculation. The experimental data show that when different amount of TNT 
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explodes, the shock wave overpressure produced can be calculated by the following 

scaling law of equation (Cooper, 1996): 

1/3

0
0 0

,TNTWR
P P

R W

 
= ∆ = ∆ 
                                      

(4.1) 

where R is the distance between target and explosion centre in meters (m), R0 is the 

distance between target and reference explosion centre in m, W0 is the reference 

TNT equivalent weight in kilograms (kg), WTNT is the TNT equivalent weight of 

threat scenario in kg, ∆P is the overpressure at the target in MPa, and ∆P0 is the 

overpressure at the reference target in mega pascal (MPa). Eq. 4.1 shows that ratio of 

the distance R to R0 is equal to the cube root of the ratio of WTNT to W0 under the 

same overpressure.  

The typical shock wave overpressure produced by reference explosion of 1000kg 

TNT is listed in Table 4.1 and the possible losses caused by shock wave overpressure 

are listed in Table 4.2 (Huang and Cheng, 2009). By using the experimental data like 

in Table 4.1 and in Table 4.2, R0 and ∆P0 in Eq. 4.1 can be determined by 

interpolation for all loss types. 

Distance R0 
(m) 

Overpressure ∆P0 
(105MPa)  

Distance R0 (m) Overpressure ∆P0 
(105MPa)  

5 30 25 0.81 
6 21 30 0.59 
7 17 35 0.44 
8 13 40 0.34 
9 9.7 45 0.28 
10 7.8 50 0.24 
12 5.1 55 0.21 
14 3.4 60 0.184 
16 2.4 65 0.164 
18 1.74 70 0.146 
20 1.29 75 0.132 

In this study, TNT equivalent method is used to describe the energy of threat 

scenario by converting the weapon type and magnitude of threat scenario to the 

amount of TNT that releases the same amount of energy and then using the 

experimental data related to TNT explosion effect to predict the effect of threat 

scenario.  

Table 4.1 :The shock wave overpressure of W0=1000kg TNT explosion.  
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Overpressure ∆P0 
(105MPa) 

Losses 

0.05 ~ 0.06 Part of glasses of door and window broken 
0.06 ~ 0.10 Most of pressurized glasses of door and window broken 
0.15 ~ 0.20 Window frame damaged 
0.20 ~ 0.30 Wall cracked, slight injury of personnel 

0.40 ~ 0.50 
Big cracks in wall, tiles falling off, intermediate injury of 
personnel 

0.60 ~ 0.70 
Column of wooden buildings broken, building frame loose, 
serious injury or death of personnel 

0.70 ~ 1.00 Brick wall collapsed, serious injury or death of personnel 

1.00 ~ 2.00 
Vibration-proof reinforced concrete damaged, small house 
collapsed, most personnel dead 

2.00 ~ 3.00 Large steel structure damaged, majority of personnel dead 

4.3 Monte Carlo Simulation based Consequence Assessment Model 

Given a threat scenario, there are three main challenges in CA: identification, 

estimation and aggregation of consequence dimensions. For identification of 

consequence dimensions, literature is reviewed and the types of losses are classified 

for security risk of a critical facility (Khan and Haddara, 2004). Since the 

consequence from a threat scenario is multidimensional, the proposed model 

examines three main consequence dimensions (Figure 4.1). Additional or fewer 

dimensions can also be considered. The definitions of identified consequence 

dimensions are as follows: 

• Assets loss (AL): This loss is the loss due to the occurrence of both equipment 

damage and building damage resulted from a given threat scenario.  

• Human loss (HL): This loss is the loss due to the occurrence of fatalities and/or 

injuries resulted from a given threat scenario. 

• Operational loss (OL): This loss is the loss due to the occurrence of profit loss 

from downtime resulted from a given threat scenario.  

For estimation of consequence dimensions, TNT equivalent method described in 

Section 4.2.2 is applied for the transformation of a threat scenario into corresponding 

consequence. TNT equivalent method is applied to CA for AL, HL and OL 

calculations in this study. 

Table 4.2 :Possible losses caused by shock wave overpressure. 
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Figure 4.1 :The consequence dimensions. 

For comparison and aggregation of consequence dimensions, a single measure of 

total consequence is required. The loss is assessed for each consequence dimension 

with different unit of measure. A single measure of total loss can be obtained through 

converting losses from their natural units to a dimension that facilitates comparison 

and aggregation. There are different consequence measures in the literature. Many of 

the consequence measures focus on financial loss. Therefore, in this study all the 

consequence dimensions are measured in monetary terms. The asset loss is measured 

in Liras (L) to repair or replace the damaged equipment and building. Although the 

value of life is immeasurable and there is a discomfort associated with monetary 

valuation of human life, this loss is calculated in terms of number of fatalities and/or 

injuries times the life insurance cost and/or rehabilitation costs. Different 

rehabilitation costs are also considered since the rehabilitation costs for injuries vary 

according to the severity of the injury. The operational loss is measured in Liras (L) 

due to profit loss to resume critical facility functionality. As a result, all the 

consequence types are expressed in units of cost (L) per consequence dimension, and 

this provides a measure of the loss given the occurrence of a specific threat scenario. 

In the estimation of the total consequence, stochastic nature of the input parameters 

is taken into consideration. Data relating to all consequence types in security risk is 

collected from the existing scientific literature for a critical facility. The input 
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parameters for all types of losses to which an exact value can not be assigned are 

determined and described with probability distributions. These parameters are 

modelled as a random variable which accepts specific probability distribution 

function. Values for the random variables in CAM are determined by MCS. Detailed 

descriptions of the input parameters are discussed and tables of model inputs and 

distributions are provided in following sub-sections. After defining the parameters 

and their probabilistic behaviours, total consequence is estimated with respect to 

these parameters by using MCS and TNT equivalent method for a critical facility.   

The proposed approach consists of the following steps shown in Figure 4.2.   

 

Figure 4.2 :Steps of proposed approach. 
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Step 1: Find TNT equivalent   

TNT equivalent weight of threat scenario is determined by weapon type and 

magnitude of a given scenario. MCS is used to generate random numbers following 

determined distribution for TNT weight based on weapon type and magnitude of 

given threat scenario from both historical data and technical data of weapon type.   

WTNTi = f(weapon typei, magnitudei) 
                              

(4.2) 

where WTNTi is the TNT equivalent weight of scenario i in kg based on weapon type 

and magnitude of threat scenario i. 

Step 2: Calculate damage radius 

Damage radiuses are used to quantify the determined types of losses. Different 

damage radiuses are calculated for all different types of losses based on TNT 

equivalent of a given threat scenario. The damage radiuses are computed by using 

the scaling law of equation as follows: 

1/3

0
0 0

,k TNTiR W
P P

R W

 
= ∆ = ∆ 
                                      

(4.3) 

where Rk is the radius (m) of type k loss given R0, W0 and ∆P0. R0 is the distance 

between target and reference explosion centre in m, W0 is the reference TNT 

equivalent weight in kg, WTNTi is the TNT equivalent weight of threat scenario i in 

kg, ∆P is the overpressure at the target in MPa, ∆P0 is the overpressure at the 

reference target in MPa, and k is the type of loss {Equipment Damage (ED), 

Building Damage (BD), Fatality (Fat), Serious Injury (SeI), Slight Injury (SlI)}. 

Step 3: Calculate losses 

The calculated damage radiuses are used to compute the effects on assets, humans, 

and operations. It is assumed that physical objects like walls, furniture etc. in the 

buildings and blockage effect of human to human do not provide protection as 

obstacles/shields or do not cause extra harm. 

Step 3.1: Calculate asset loss 

Asset loss involves both equipment damage and building damage. Therefore, asset 

loss is calculated as in the following sub-steps. 

Step 3.1.1: Calculate equipment damage cost 
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Equipment damage is formulated as follows: 

EDCi= 2
EDRπ  * EDij                                        (4.4) 

where EDCi is the equipment damage cost (L) of threat scenario i, RED is the 

equipment damage radius (m), EDij is the equipment density in the vicinity of the jth 

part of target related to threat scenario i (L/m2) and j is the part of the target 

{perimeter, protected areas, infrastructure systems}. 

Step 3.1.2: Calculate building damage cost 

Building damage is formulated as follows: 

2

iBDC  * BC              BD
i

i

R

BA

π=                                   (4.5) 

where BDCi is the building damage cost (L) of threat scenario i, RBD is the building 

damage radius (m), BAi is the total area of target building related to threat scenario i 

(m2) and BCi is the value of the target building related to threat scenario i (L).  

After equipment damage cost (EDCi) and building damage cost (BDCi) are 

calculated, asset loss is computed by using the following formula: 

AL i = EDCi + BDCi                                         (4.6) 

where ALi is asset loss of the threat scenario i. 

Step 3.2: Calculate human loss 

Human loss involves both fatalities and injuries. Injuries can be either serious injury 

or slight injury. Therefore, human loss is calculated as in the following sub-steps. 

Step 3.2.1: Calculate fatality cost 

Fatality cost is formulated as follows: 

FCi = 
2

210,000
FatR

m

π
 * HD ij * HFC                                (4.7) 

where FCi is the fatality cost (L/person) of threat scenario i, RFat is the fatality radius 

(m), HDij is the human population density in the vicinity of the jth part of target 

related to threat scenario i (person/hectare(ha)), HFC is the cost of one fatality and j 

is the part of the target {perimeter, protected areas, infrastructure systems}. Note that 
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damage area is calculated in m2 and than converted to ha by dividing the damage 

area to 10,000m2 since 1ha is equal to 10,000m2. 

Step 3.2.2: Calculate serious injury cost 

Serious injury cost is formulated as follows: 

SeICi = 
2

210,000
SeIR

m

π
 * HD ij * SeC                               (4.8) 

where SeICi is the serious injury cost (L/person) of threat scenario i, RSeI is the 

serious injury radius (m), HDij is the human population density in the vicinity of the 

jth part of target related to threat scenario i (person/ha), SeC is the serious injury cost 

and j is the part of the target {perimeter, protected areas, infrastructure systems}. 

Step 3.2.3: Calculate slight injury cost 

Slight injury cost is formulated as follows: 

SlICi = 
2

210,000
SlIR

m

π
 * HD ij * SlC                                (4.9) 

where SlICi is the slight injury cost (L/person) of threat scenario i, RSlI is the slight 

injury radius (m), HDij is the human population density in the vicinity of the jth part 

of target related to threat scenario i (person/ha), SlC is the slight injury cost and j is 

the part of the target {perimeter, protected areas, infrastructure systems}. 

After fatality cost (FCi), serious injury cost (SeICi) and slight injury cost (SlICi) are 

calculated, human loss is computed by using the following formula: 

HLi = FCi + SeICi + SlICi                                    (4.10) 

where HLi is human loss of the threat scenario i. 

Step 3.3: Calculate operational loss 

OL is estimated using the following relation: 

cov covmax( , , )= ERe er BRe er CSIdt t t t                                (4.11) 

where td is the time spent for repairs or downtime (hour), tERcover is the speed of time 

for replacement and reinstallation of damaged equipments (hour/damage ratio), 

tBRecover is the speed of time for reconstruction of damaged building (hour/damage 
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ratio), and tCSI is the speed of time for crime scene inspection (hour/damage ratio). 

Note that damage ratio is a proportion of damage area to building area. 

OLi= OuC * td                                            (4.12) 

where OLi is the operational loss of threat scenario i (L) and OuC is the 

service/production value per hour (L/hour). 

Step 4: Estimate total consequence  

Total consequence is formulated as follows: 

TCi = ALi + HLi + OLi                                       (4.13) 

where TCi is the total consequence, ALi is the asset loss, HLi is the human loss and 

OLi is the operational loss of threat scenario i. 

Step 5: Evaluate the threat scenarios  

At this step, the threat scenarios are ranked and compared based on their total 

consequences. Furthermore, CA is presented and discussed. 

4.4 An illustrative example for Consequence Assessment 

In this section, the proposed model as described in Section 4.3 is applied to the CA 

of a hypothetical Airport X. Possible threat scenarios identified in Chapter 2 are used 

for CA (Table 2.11). Note that for security reasons, all the data used throughout this 

example are purely generic and notional. Even though this case study is very simple, 

the resulting qualitative relationships and insights drawn from this example validate 

the proposed approach. A step-by-step algorithm for this example is as follows: 

Step 1: Find TNT equivalent   

TNT equivalent weight of threat scenario is determined by weapon type and 

magnitude of a given scenario. Both historical data and technical data of weapon 

type are reviewed in the unclassified literature.  It is seen that: Large trucks typically 

contain 11,340 kilograms or more of TNT equivalent, and vans typically contain 

2,268 to 11,340 kilograms. Small automobiles can contain 23 to 2,268 kilograms of 

TNT equivalent. A briefcase bomb is about 23 kilograms, and a suicide bomber 

wearing a vest belt generally carries up to 14 kilograms of TNT equivalent (Usmani 

and Kirk, 2008).  It is assumed that TNT equivalent weight of weapon type-
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magnitude pairs follows triangular distribution. Therefore, minimum, most likely and 

maximum ranges of TNT weight in kg for threat scenarios are given in the Table 4.3. 

MCS generates random numbers following triangular distribution with given 

parameters for TNT weight based on weapon type and magnitude. 

Weapon Type  and  Magnitude 
TNT equivalent weight (kg) 

Minimum  Most Likely  Maximum  
Explosives-Low 2 4

1 1(a ,a ) 5 9 13 
Explosives-Medium 2 4

1 2(a ,a ) 14 18 22 
Truck/Car bomb-Low 2 4

2 1(a ,a ) 31 1,150 2,267 
Truck/Car bomb-Medium 2 4

2 2(a ,a ) 2,268 6,804 11,339 

 

Step 2: Calculate damage radius 

By using Table 4.1 and Table 4.2, R0 and ∆P0 in Eq. 4.3 are determined by 

interpolation for all loss types.  

Step 2.1: Calculate asset loss radius 

Step 2.1.1: Calculate equipment damage radius 

By using Table 4.1 and Table 4.2, ∆P0 and R0 are determined by interpolation for 

equipment damage as ∆P0=0.2MPa and R0=56.9m respectively. Therefore, 

equipment damage radius (RED) is calculated based on Eq. 4.3 as follows: 

1/3

, 0.2MPa
56.9 1000

TNTED WR
P

 = ∆ = 
                                 

(4.14) 

Step 2.1.2: Calculate building damage radius 

As airports are generally constructed as either reinforced concrete structures or large 

steel structures, the shockwave pressure value at which these structures are damaged 

is used. According to Table 4.1 and Table 4.2, ∆P0 and R0 are determined by 

interpolation for building damage as ∆P0=2MPa and R0=17.2m respectively. 

Therefore, building damage radius (RBD) is calculated based on Eq. 4.3 as follows: 

1/3

, 2MPa
17.2 1000

TNTBD WR
P

 = ∆ = 
                                   

(4.15) 

 

Table 4.3 :TNT Equivalent weights.  
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Step 2.2: Calculate human loss radius 

Step 2.2.1: Calculate fatality radius 

By using Table 4.1 and Table 4.2, ∆P0 and R0 are determined by interpolation for 

fatality as ∆P0=0.6MPa and R0=30m respectively. Therefore, fatality radius (RFat) is 

calculated based on Eq. 4.3 as follows: 

1/3

, 0.6 MPa
30 1000

Fat TNTR W
P

 = ∆ = 
                                  

(4.16) 

Step 2.2.2: Calculate serious injury radius 

By using Table 4.1 and Table 4.2, ∆P0 and R0 are determined by interpolation for 

serious injury as ∆P0=0.3MPa and R0=44m respectively. Therefore, equipment 

serious injury radius (RSeI) is calculated based on Eq. 4.3 as follows: 

1/3

, 0.3MPa
44 1000

SeI TNTR W
P

 = ∆ = 
                                  

(4.17) 

Step 2.2.3: Calculate slight injury radius 

By using Table 4.1 and Table 4.2, ∆P0 and R0 are determined by interpolation for 

slight injury as ∆P0=0.138MPa and R0=72.1m respectively. Therefore, slight injury 

radius (RSlI) is calculated based on Eq. 4.3 as follows: 

1/3

, 0.138MPa
72.1 1000

SlI TNTR W
P

 = ∆ = 
                                

(4.18) 

Step 3: Calculate Losses 

Step 3.1: Calculate Asset Loss 

Step 3.1.1: Calculate equipment damage cost 

All the equipments of Airport X are assumed as though they were uniformly 

distributed over the entire unit area in this study. Airport X parameters for equipment 

damage are given in the Table 4.4 and equipment damage cost is calculated for a 

threat scenario i by using Eq. 4.4. 
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Target i 

Equipment Density  
(EDij), L/ m2 Equipment 

Cost (ECi), L 
Perimeter 

Protected 
Areas 

1
3a  

Passenger Terminal 200 600 113,400,000 
1
4a Parking Facility 5 250 25,075,000 

1
5a  

Bus Station 10 100 253,750 
1
11a Main Entrance  and  Security Control 

Building 
90 200 256,200 

Step 3.1.2: Calculate building damage 

Airport X parameters for building damage are given in the Table 4.5 and building 

damage cost is calculated for a threat scenario i by using Eq. 4.5. 

Target i 
Building 

Area (BAi), 
m2 

Building 
Peripheral 

Area (BPAi), 
m2 

Total 
Building 

Cost (TBCi), 
L 

Building 
Unit Cost 

(BCi), L/m2 

1
3a  

Passenger Terminal 180,000 207,000 222,300,000 1,235 
1
4a Parking Facility 100,000 115,000 15,000,000 150 

1
5a  

Bus Station 2,500 2,875 1,752,500 701 
1
11a Main Entrance  and  Security 

Control Building 
1,200 1,380 356,400 297 

Step 3.2: Calculate Human Loss 

Airport X parameters for human loss are determined reasonably by using historical 

data and given in the Table 4.6 and Table 4.7 (SAA, 2009; Turkstat 2009). 

Target i 

Human Density 
(HDi), persons/ha 

Perimeter 
Protected 

Areas 
1
3a  

Passenger Terminal 1000 3500 
1
4a Parking Facility 15 25 

1
5a  

Bus Station 500 2000 
1
11a Main Entrance  and  Security Control Building 250 1500 

Different rehabilitation costs are also considered since the rehabilitation costs for 

injuries vary according to the severity of the injury. It is assumed that injury costs 

Table 4.4 :Airport X parameters for equipment damage. 

Table 4.5 :Airport X parameters for building damage . 

Table 4.6 :Airport X parameters for human density of human loss. 
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follow triangular distributions. Therefore, minimum, most likely and maximum 

ranges of cost (L) for injury types are given in the Table 4.7. 

Injury Min Most Likely Max 
Fatality cost - 50,000 - 

Serious Injury cost 11,000 25,500 40,000 

Slight Injury cost 1,000 5,500 10,000 

Fatality cost, serious injury cost, slight injury cost and human loss is calculated for a 

threat scenario i by using Eq. 4.7-4.10. 

Step 3.3: Calculate Operational Loss 

Airport X parameters for operational loss are given in the Table 4.8 and operational 

loss for threat sceanrio i is calculated for a threat scenario i by using Eq. 4.11. 

In this study, it is assumed that operational loss category speeds follows triangular 

distribution. Minimum, most likely and maximum ranges of time (hours) for 

operational loss categories are given in the Table 4.8. The service value per hour 

(OuC) is taken 270,000L/hour.  

Speed (hour) 

Damage ratio<33%  
33%≤Damage 

ratio≤66% 
66%<Damage ratio 

Min 
Most 

Likely 
Ma
x 

Min 
Most 

Likely 
Max Min 

Most 
Likely 

Max 

Equipment Recovery speed (tER) 1 3 5 3 5 8 5 8 12 

Building Recovery speed (tBR) 2 4 6 5 8 10 8 10 12 

CSI speed (tCSI) 2 4 6 4 6 8 6 8 12 

Step 4: Estimate total consequence 

The model is developed in Microsoft Excel. The model is run for 500 iterations using 

Monte Carlo sampling. The model is performed using the parameters and 

calculations presented. The model simulates the all consequence types for the given 

threat scenario. The simulated minimum, maximum and mean values of total 

consequence and all the loss types are calculated. The results of overall consequence 

calculation are shown in Table 4.9 and Figure 4.3.  

Table 4.7 :Airport X parameters for injury types of human loss . 

Table 4.8 :Airport X parameters for operational loss . 
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Total Consequence (L) Asset Loss (L) Human Loss (L) Operational Loss  (L) 
Threat  

Scenario Min Mean Max Min Mean Max Min Mean Max Min  Mean Max 
1 1 2 3 4

3 1 1 1(a , a ,a , a ) 1,855,044 2,557,497 3,306,729 95,416 136,179 171,383 736,642 1,203,190 1,735,559 707,918 1,218,129 1,607,319
2 1 2 3 4

3 1 2 1(a ,a , a ,a ) 4,114,586 5,776,055 7,920,885 218,557 312,922 395,561 2,535,876 4,240,495 6,430,380 727,513 1,222,638 1,601,086
3 1 2 3 4

3 1 1 2(a , a ,a , a ) 2,601,305 3,360,789 4,176,256 186,769 218,373 247,723 1,223,938 1,934,325 2,497,974 683,784 1,208,091 1,587,441
4 1 2 3 4

3 1 2 2(a ,a , a ,a ) 6,091,308 8,477,618 10,877,330 425,979 497,807 565,492 4,742,648 6,769,266 9,189,841 683,969 1,210,544 1,613,639
5 1 2 3 4

4 2 2 1(a ,a , a ,a ) 2,048,342 4,871,782 7,350,824 631,447 2,888,314 4,548,318 161,160 756,807 1,340,322 757,047 1,226,662 1,614,403
6 1 2 3 4

4 2 2 2(a ,a , a ,a ) 7,406,773 13,913,540 19,595,160 5,088,904 9,569,270 13,376,230 1,154,807 2,509,098 3,965,474 822,482 1,835,176 3,107,361
7 1 2 3 4

5 1 1 1(a ,a ,a ,a ) 1,274,131 1,879,900 2,838,691 23,045 32,182 41,329 374,382 605,091 908,647 711,069 1,242,627 1,907,523
8 1 2 3 4

5 1 2 1(a , a ,a , a ) 2,685,732 3,755,768 5,321,711 52,413 72,362 91,398 1,530,236 2,418,364 3,458,504 738,661 1,265,042 2,058,488
9 1 2 3 4

5 1 1 2(a ,a ,a ,a ) 2,021,381 2,632,710 3,338,911 44,199 51,678 58,857 689,978 964,269 1,302,507 1,111,675 1,616,762 2,118,398
10 1 2 3 4

5 1 2 2(a , a ,a , a ) 4,208,345 5,526,108 7,031,545 97,564 114,103 130,115 2,657,464 3,802,663 4,994,112 1,089,563 1,609,342 2,157,968
11 1 2 3 4

11 1 1 1(a ,a , a , a ) 1,471,245 2,105,731 3,667,204 35,527 51,424 65,422 180,743 301,508 439,273 1,112,241 1,752,799 3,192,101
12 1 2 3 4

11 1 1 2(a ,a , a , a ) 2,175,763 2,899,042 3,769,009 70,223 81,181 93,122 321,500 477,262 614,628 1,646,463 2,340,600 3,121,380

Table 4.9 :Simulation results. 
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Total Consequence (L) Asset Loss (L) 

  

Human Loss (L) Operational Loss (L) 

Figure 4.3 :Histograms of simulation results. 
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Step 5: Evaluate the threat scenarios  

The model resulted in a number of output distributions that can be used to predict the 

minimum, maximum and mean values of all consequence types given in Table 4.9. 

Rankings of consequences (total consequence, asset loss, human loss and operational 

loss) for threat scenarios are shown in Table 4.10.  Rankings enable the DMs to 

identify the higher consequence scenarios from the lower consequence ones.  

As seen from Table 4.9 and Figure 4.3, after the MCS, threat scenario 6 has the 

highest total consequnece with a total consequence value of 13,913,540 L and threat 

scenario 7 has the lowest total consequnece with a total consequence value of 

1,879,900 L. From the MCS results, it is observed that targets with higher equipment density 

have higher asset loss and targets with higher human density have higher human loss. The 

results are useful to determine the precautions such as architectural and geometric 

changes of a critical facility considering both equipment density and human density for 

reducing asset loss, human loss, and operational loss.  In addition, all the consequence 

types can also be evaluated on the basis of targets, parts of target attacked and weapon type-

magnitude pairs. 

Table 4.10 :Ranking of the simulation results. 

Threat 
Scenario 

Total Consequence Asset Loss Human Loss Operational Loss 

Mean (L) Rank Mean (L) Rank Mean (L) Rank Mean (L) Rank 

1 1 2 3 4

3 1 1 1(a , a ,a , a ) 2,557,497 10 136,179 6 1,203,190 7 1,218,129 10 

2 1 2 3 4

3 1 2 1(a , a , a ,a ) 5,776,055 3 312,922 4 4,240,495 2 1,222,638 9 

3 1 2 3 4

3 1 1 2(a , a ,a , a ) 3,360,789 7 218,373 5 1,934,325 6 1,208,091 12 

4 1 2 3 4

3 1 2 2(a , a , a ,a ) 8,477,618 2 497,807 3 6,769,266 1 1,210,544 11 

5 1 2 3 4

4 2 2 1(a , a , a ,a ) 4,871,782 5 2,888,314 2 756,807 9 1,226,662 8 

6 1 2 3 4

4 2 2 2(a , a , a ,a ) 13,913,540 1 9,569,270 1 2,509,098 4 1,835,176 2 

7 1 2 3 4

5 1 1 1(a , a ,a ,a ) 1,879,900 12 32,182 12 605,091 10 1,242,627 7 

8 1 2 3 4

5 1 2 1(a , a ,a , a ) 3,755,768 6 72,362 9 2,418,364 5 1,265,042 6 

9 1 2 3 4

5 1 1 2(a , a ,a ,a ) 2,632,710 9 51,678 10 964,269 8 1,616,762 4 

10 1 2 3 4

5 1 2 2(a , a ,a , a ) 5,526,108 4 114,103 7 3,802,663 3 1,609,342 5 

11 1 2 3 4

11 1 1 1(a , a , a , a ) 2,105,731 11 51,424 11 301,508 12 1,752,799 3 

12 1 2 3 4

11 1 1 2(a , a , a , a ) 2,899,042 8 81,181 8 477,262 11 2,340,600 1 

The case study results are compared with the similar past events such as the 2011 

Domodedovo International Airport/Moscow bombing and the 2003 Brtitish 
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Consulate/Istanbul truck bomb attack for validation and verification. It is observed 

that result are reasonable. 

4.5 Concluding Remarks of Chapter 4 

CA is an important part of SRA because wrong CA leads to the wrong estimation of 

the security risk. Therefore, the main goal of this chapter is to develop a model that 

identifies, quantifies and integrates major types of losses specific to security risk 

while estimating the total consequence of a critical facility. For this purpose, Monte 

Carlo simulation based consequence assessment model using TNT equivalent 

method is proposed and complete logical model for CA is constructed in this study. 

Firstly, CA schemes for different process industries suggested by various authors 

applicable to SRA are reviewed and CA model that can quantify impacts from 

identified threat scenarios for SRA is examined. The available complex 

methodologies lacks in estimating the losses due to security risk consequences and 

CA is required to be done with less calculation complexity by reducing efforts and 

time in SRA. Then, for identification of consequence dimensions, literature is 

reviewed and the types of losses are classified for security risk of a critical facility. 

Since the consequence from a threat scenario is multidimensional, the proposed 

model examines three main consequence dimensions, AL, HL and OL. Different 

from existing studies, CSI time is also considered for operational loss specific to 

SRA. Secondly, for estimation of consequence dimensions, TNT equivalent method 

integrated with MCS is applied for the transformation of a threat scenario into 

corresponding consequence. TNT equivalent method is applied to CA for AL, HL 

and OL calculations in this study. 

To summarize, the proposed CA model identifies, quantifies and integrates all 

different types of losses specific to security risk of a threat scenario while estimating 

the total consequence. The proposed model performs CA by considering all major 

losses of security risk with optimal complexity and time to improve the SRA.  

Although the main objective of the proposed model is CA, by using real data, the 

results of CAM can be used to determine the precautions such as architectural and 

geometric changes of a critical facility for reducing AL, HL, and OL. The correlation 
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between AL and equipment density, the correlation between HL and human density, 

and the correlations between all types of loss and building areas can also be explored. 

In this study, total consequence is calculated by summing three equally weighted 

consequence type costs (Eq. 4.13). By changing the weights on the three 

consequence types (AL, HL, and OL), sensitivity analysis can be applied easily. If a 

greater proportion of the weight is allocated to the OL, this results in an increase in 

the OL cost of scenarios with operational assets such as air traffic control centre of 

an airport due to increased emphasis on service value of equipments. If a greater 

proportion of the weight is allocated to HL, this results in an increase in the HL cost 

of scenarios with heavily populated facilities such as passenger terminal of an 

airport. 

Finally, as an illustration, the proposed model is applied to a case study. According 

to the results of CAM, suggestions for a critical facility protection can be put forward 

to reduce the losses. CAM enables security analyzers to identify the higher 

consequence scenarios from the lower consequence ones. Proposed model helps to 

improve SRA. 
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5.  SECURITY RISK EVALUATION 

5.1 Introduction to Security Risk Evaluation 

The main objective of proposed SRA framework is to evaluate the security risk of a 

critical facility. This model of proposed SRA framework, security risk evaluation 

model (REM), involves determining the security risk priorities of a critical facility by 

quantifying the security risk.  

Till now, a structured set of scenarios, their likelihoods, vulnerabilities and 

consequences have been quantified with different modes of uncertainty since security 

risk is measured in terms of threat likelihood (T), vulnerability (V), and consequence 

(C). In order to make correct decisions on the basis of the scenarios, T, V and C, the 

next thing is to properly aggregate them for evaluating the security risk. So, in this 

chapter, the key problem is to integrate T, V, and C to quantify the security risk. The 

choice of aggregation operators is crucial to the behaviour of the proposed SRA 

framework output. Therefore, aggregation operator is one of the basic brick of the 

proposed SRA framework.  

Traditional methods require humans to translate their perceptions into numerical 

scales, frequently through mechanisms like a Likert scale. Following typical scoring 

method can be applied to security risk as qualitative SRA method. As security risk is 

a function of T, V, and C, one way to calculate it is to quantitatively assess T, V, and 

C, multiply the three factors to obtain a risk score, and make comparisons based on 

this risk score for a threat scenario. The risk score provides a quantitative measure of 

security risk associated with a threat scenario. For example, let the three factors T, V 

and C are all evaluated using the ratings (scores) from 1 to 5 as described in Table 

5.1.  

 

 



102 
 

Qualitative definition Quantitative definition 
(Score) Threat Likelihood Vulnerability Consequence 

Extremely Likely Very High Catastrophic 5 
Very Highly Likely High Major 4 
Highly Likely Medium Very serious 3 
Very Likely Low Serious 2 
Likely Very Low Minor 1 

Problems about typical security risk scoring method using multiplicative aggregation 

are as follows:  

• Different sets of T, V and C ratings may produce exactly the same value of 

security risk score, but their hidden risk implications may be totally different. 

For example, two different threat scenarios with values of 1, 2, 6 and 6, 2, 1 

for T, V and C respectively, will have the same security risk score value of 

12. High likelihood-low consequence and low likelihood-high consequence 

threat scenarios can not be distinguished (limited resolution) since they may 

have same risk score. 

• Small variations in one rating may lead to vastly different effects on the 

security risk score depending on the values of the other factors. For example, 

if T and V are both 5, then a 1 point difference in C rating results in a 25 

point difference in the security risk score. If T and V are equal to 1, then the 

same 1 point difference results in only a 1 point difference in the security risk 

score. This is valid for all combinations of T, V and C. 

• These factors are difficult to quantify and can not be adequately described 

numerically. For example, when security risk parameter is considered, the 

appropriate numeric scale for security risk is not known, does it range from 0 

to 1, 1 to 10, or -10 to 10? If arbitrary numeric scales are used, the problem 

increases when factors are combined and the resultant numeric answer can 

not be understood. 

As a result, multiplication is not the right aggregation operator and security risk 

factors must be aggregated in a nonlinear rather than linear manner.  

The input information for REM in SRA framework comes from three different 

models: Threat Assessment Model (TAM), Vulnerability Assessment Model (VAM), 

and Consequence Assessment Model (CAM) that quantify T, V and C respectively as 

Table 5.1 :Ratings of security risk factors. 
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shown in Figure 1.3 and Figure 1.4.  Since each factor and corresponding proposed 

model has different uncertainty model, the other problem is how these three modes 

of representation of parameter uncertainty can be integrated for evaluating the 

security risk. Therefore, different formats of available data and uncertain knowledge 

must also be incorporated into SRA process. 

This chapter proposes rule-based expert system/inference methodology for 

evaluating security risk with multiple uncertain information in SRA process. After 

reviewing the existing approaches and the factors that influence the security risk 

calculation and evaluation, the remainder of this chapter is organized as follows: In 

Section 5.2, theoretical background information for the proposed approach is 

represented. The proposed model and its process flow are introduced in Section 5.3. 

The illustrative application of the proposed approach is performed over an airport 

case study in Section 5.4. This section also examines the utility of findings and 

discusses the analysis results. Conclusions and further issues are addressed 

respectively in the final section. 

5.2 Theoretical Background for Security Risk Evaluation 

In this section, theoretical background information on rule-based expert systems and 

Linguistic Aggregation operators are presented, respectively. 

5.2.1 Rule-based expert systems 

In the literature, rule-based expert systems are used as a way to store and manipulate 

knowledge to interpret information in a useful way by emulating the decision-making 

ability of a human expert (Ross, 1995). They are often used in artificial intelligence 

applications and research as the domain-specific expert systems that use rules to 

make deductions or choices (Jackson, 1998). Typical rule based systems have two 

main components: a rule-base and an inference engine. A rule base is a list of rules, 

which is a specific type of knowledge base. Knowledge is stored as if-then rules in 

the rule-base. An inference engine infers information or takes action based on the 

interaction of input and the rule base. 

There are two common inference techniques in the literature: Mamdani method and 

Sugeno method (Ross, 1995; Jang et al., 1997). The most commonly used inference 

technique is the so-called Mamdani method. In 1975, Professor Ebrahim Mamdani 
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built one of the first fuzzy systems to control a steam engine and boiler combination. 

He applied a set of fuzzy rules supplied by experienced human operators (Mamdani 

and Assilian, 1976). The format of the Mamdani-style fuzzy rule is as follows: 

 IF x is A ⊕y is B THEN z is C                                 (5.1) 

where x, y and z are linguistic variables; A, B and C are fuzzy sets on universe of 

discourses X,Y and Z, respectively. An antecedent of a rule is linked by ⊕ 

connective that is a logical connective to represent relationship. 

Mamdani method is widely accepted for capturing expert knowledge. It allows 

describing the expertise in more intuitive, more human-like manner. However, 

Mamdani-type fuzzy inference entails a substantial computational burden (Ross, 

1995; Jang et al., 1997). Mamdani-style inference requires finding the centroid of a 

two-dimensional shape by integrating across a continuously varying function. In 

general, this process is not computationally efficient.  

Michio Sugeno suggested using a singleton, as the membership function of the rule 

consequent (Jang et al., 1997). Sugeno-style fuzzy inference is very similar to the 

Mamdani method. Sugeno changed only a rule consequent. Instead of a fuzzy set, he 

used a mathematical function of the input variable. A singleton is a set with a 

membership function that is unity at a single particular point on the universe of 

discourse and zero everywhere else. The most commonly used zero-order Sugeno 

fuzzy model applies fuzzy rules in the following form: 

IF x is A ⊕ y is B THEN z is k                                (5.2) 

where x, y and z are linguistic variables; A and B are fuzzy sets on universe of 

discourses X and Y, respectively; and k is a constant. In this case, the output of each 

fuzzy rule is constant. All consequent membership functions are represented by 

singletons. Sugeno method is computationally effective and works well with 

optimisation and adaptive techniques, which makes it very attractive in control 

problems, particularly for dynamic nonlinear systems.  

In this study, Sugeno method is adopted for REM. Sugeno method is used for the 

purpose of aggregating security risk factors in a nonlinear manner based on a rule 

base. Details of the application of Sugeno method are described in the next sections.  
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5.2.2 Linguistic aggregation 

In the literature, many linguistic aggregation operators exist (Merigo and Casanovas 

2010; Xu, 2004). In this section, main properties of uncertain linguistic aggregation 

operators and uncertain linguistic weighted average (ULWA) operator to be used 

throughout this chapter are described briefly. 

Let iS {s | i 1,..., t}= =  is a finite and totally ordered discrete term set, where si 

represents a possible value for a linguistic variable (Xu, 2004). For example, a set of 

five terms S could be: 

S = {s1 = very low, s2 = low, s3 = medium, s4 = high, s5 = very high} 

Main characteristics of set S are: 

• ordered set      : si ≥ sj if i ≥ j                                 (5.3) 

• Max operator    : max(si, sj) = si if si ≥ sj                        (5.4) 

• Min operator     : min(si, sj) = si if si ≤ sj                      (5.5) 

• Negation operator : neg(si ) = sj such that j = t – i                  (5.6) 

The discrete term set S is extended to a continuous term set

1 tS {s | s s s , [1, t]}α α α= ≤ ≤ ∈ , whose elements also meet characteristics above. If

s Sα ∈ , sα is called the original term, otherwise, sα is called the virtual term. Let

s [s ,s ]α β= , where s ,s Sα β ∈ , and sα  and sβ are the lower and the upper limits 

respectively. Therefore, s  is called the uncertain linguistic variable. 

Consider any two uncertain linguistic variables 
1 11s [s ,s ]α β= and 

2 22s [s ,s ]α β= then 

their operational laws are defined as follows: 

• Commutativity  : 1 2 2 1s s s s⊕ = ⊕                            (5.7) 

• Addition       : 
1 1 2 21 2s s [s ,s ] [s ,s ]α β α β⊕ = ⊕                    

(5.8) 

1 2 1 2 1 2 1 2
[s s ,s s ] [s ,s ]α α β β α α β β+ += ⊕ ⊕ =  

• Scalar product   : 
1 1 1 1 1 11s [s ,s ] [ s , s ] [s ,s ]α β α β λα λβλ λ λ= = = , [0,1]λ∈      (5.9) 

• 1 2 1 2(s s ) s sλ λ λ⊕ = ⊕ , [0,1]λ∈                                (5.10) 

• 1 2 1 1 1 2 1( )s s sλ λ λ λ⊕ = ⊕ , [0,1]λ∈                             (5.11) 
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An ULWA operator of dimension n is a mapping ULWA: 
nS S→  that has 

associated n vector w = (w1,w2,…,wn)
T such that wi ∈ [0,1], i = 1,2,…,n, and 

n

i
i 1

w 1
=

=∑ . 

n

1 2 n i i
i 1

ULWA(s , s ,..., s ) w s
=

=∑                                 (5.12) 

For example, assume 1 1 3s [s ,s ]= , 2 2 3s [s ,s ]= , 3 1 2s [s ,s ]= , and w = (0.3, 0.5, 0.2)T 

then ULWA is calculated as follows (Eq. 5.1): 

1 2 3 1 3 2 3 1 2

0.3 0.9 1 1.5 0.2 0.4

1.5 2.8

ULWA(s , s , s ) 0.3*[s ,s ] 0.5*[s ,s ] 0.2*[s ,s ]

[s ,s ] [s ,s ] [s ,s ]

[s ,s ]

= ⊕ ⊕
= ⊕ ⊕
=

 

In this study different from previous studies, the consequent of a rule is defines as an 

uncertain linguistic variable and the ULWA operator is used to aggregate activated 

rules in Sugeno method. The reasons for using the uncertain linguistic variable and 

ULWA operator and how ULWA operator is applied for the activated rule 

aggregation in Sugeno inference method is described in the following sections. 

5.3 Rule-based Expert System for Security Risk Evaluation Model 

In this study, new rule based expert system is proposed for aggregating threat 

likelihood, vulnerability and consequence information for evaluating security risk. 

Proposed method captures nonlinear causal relationships between security risk 

factors (threat likelihood, vulnerability and consequence) which have different 

uncertainty modes. 

As security risk factors must be aggregated in a nonlinear manner, the relationship 

between security risk factors and a specific security risk level can be regarded as a 

rule. Once given an input, rule based system can be used to inference and generate an 

output. Given security factors and its strength, a rule makes one infers the possible 

presence of a specific security risk level or not in a nonlinear manner.  

In a rule-based system, a rule is used to describe causal relationships between 

antecedent attributes and their associated consequent. Rule-based expert systems are 
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constructed from human judgments and domain knowledge in the form of if-then 

rules. For example, typical if-then rule for SRA is: 

IF  Threat Likelihood is “Highly Likely” AND Vulnerability is “High”  AND 

Consequence is “High”  THEN  Security Risk is “High-Very High” 

Therefore, SRA is a three input-one output problem. If–then rules are normally based 

on linguistic variables because they are more natural and expressive than numerical 

numbers. Linguistic rule base can capture sophisticated inferences with a reasonable 

effort. This allows using a linguistic approach to process quantitative information. 

Using linguistic variables instead of precise numbers are more appropriate for 

analysis using these three parameters as they are always associated with great 

uncertainty. Therefore, transforming quantitative data in the form of linguistic 

variables into a format that can be used along with qualitative data is required. 

Both the Mamdani-style and Sugeno-style inference process is performed in four 

steps: fuzzification of the input variables, rule evaluation, aggregation of the rule 

outputs, and defuzzification. But these inference methods can not be directly applied 

to REM, because outputs from different models with different uncertainty modes 

could be implemented.  

Knowledge representation, handling various types of uncertain input information is 

investigated first. Output information of models as an input information to proposed 

method are represented by the matching degree of referential values describing the 

attributes of antecedent of a rule using a two-dimensional variable. The output 

information of models is converted into a matching degree of referential values by 

using fuzzification and bet estimate. By this way, different formats of available data 

and various types of uncertainties such as ignorance and vagueness in inference 

process can be incorporated into REM process. 

Because of the arbitrary numeric scales problem mentioned in Section 5.1, the 

consequent of a rule is neither fuzzy set like in Mamdani-style inference nor constant 

like in Mamdani-style inference. Different from previous studies, the consequent of a 

rule is uncertain linguistic variables in this study. This definition also allows 

consequents to be either individual grades or subsets of adjacent grades, intervals 

such as “High-Very High” interval grades. 
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Since the consequent of rules are uncertain linguistic variables, rule aggregation of 

the proposed method is also different from typical inference methods. In Sugeno 

method, weighted average (WA) is used to aggregate activated rules. However, the 

WA operator can only be used in situations where the input arguments are exact 

numerical values. But in this study, consequent of a rule in the rule base is 

determined as an uncertain linguistic variable. Therefore, the ULWA operator is used 

for rule aggregation where the consequent of rules are uncertain linguistic variables. 

A rule base constructed by the rules given in the form above represents functional 

mappings between antecedents and consequents. It provides a more informative and 

realistic scheme for various uncertain knowledge representation. When a rule base is 

established, the knowledge contained in the rule base can be used to perform security 

risk inference of a critical facility for given inputs. The inference procedure is 

investigated in the following subsections. 

The proposed approach consists of the following steps shown in Figure 5.1.   

 

Figure 5.1 : Steps of proposed approach. 

Step 1: Construct the rule base 

The starting point of constructing a rule-based system is to collect if–then rules from 

human experts based on domain knowledge. Then a knowledge base and an 

inference engine are designed to infer useful conclusions from the rules and inputs 

provided by output of SRA models. Suppose a rule base is given by R = {R1, . . ., Rk 

,…, RL}. L is the total number of rules in the rule base. Formally, the kth rule, Rk, in 

a rule base can be written as  
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1: ... ...k k k k
k i M pqR IF H H H THEN H⊕ ⊕ ⊕ ⊕                          (5.13) 

where k
iH (i=1,..,M) is a referential value of the ith antecedent attribute in the kth 

rule, and M is the number of the antecedent attributes used in the kth rule. 

{ }1 ,..., ,...,k k k k
i MH H H H= is the packet antecedent in the kth rule. k

pqH  is an uncertain 

linguistic variable referential value of the consequent where [ , ]k
pq p qH H H= . An 

antecedent of a rule is linked by ⊕ connective that is a logical connective to 

represent relationship. Since, each rule has multiple antecedents, both disjunctive 

opertor and conjunctive operator are used for the rule antecedent evaluation in this 

study. To evaluate the disjunction of the rule antecedents, the OR (˅) operation is 

applied as:  

1: ... ...k k k k
k i M pqR IF H H H THEN H∨ ∨ ∨ ∨ ∨                          (5.14) 

Similarly, in order to evaluate the conjunction of the rule antecedents, the AND (˄) 

operation is applied as: 

1: ... ...k k k k
k i M pqR IF H H H THEN H∧ ∧ ∧ ∧ ∧                          (5.15) 

A referential value describing the attributes of antecedent k
iH  and consequent k

pqH  is 

a Hpq (p,q=1,...,N) evaluation grade where Hpp are individual evaluation grade, and 

Hpq for p=1 to N and q=p+1 to N-1 is the interval evaluation grade between Hpp and 

Hqq in this study. Hpp (p=1,...,N) are mutually exclusive. Therefore, a set of 

evaluation grades for each referential value is denoted by  

{ }, p q,p 1,..., NpqH H= = =
                                  

 

(5.16) 

H11 and HNN are set to be the worst and the best grades, respectively, and Hp+1p+1 is to 

be preferred to Hpp among evaluation grades. Therefore, a basic rule base is 

composed of if-then rules as in Equation 5.14 and Equation 5.15. 

Step 2: Transform the input  

Before starting an inference process, the relationship between an input and each 

referential value in the antecedents of a rule needs to be determined so that an 

activation weight for each rule can be generated. The basic idea is to examine all the 

referential values of each attribute in order to determine a similarity/matching degree 

to which an input belongs to a referential value. 
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The matching degree of referential values describing the attributes of antecedent of a 

rule is provided by the outputs of SRA models. Transformation of input variables 

from different models with different uncertainty modes is implemented in this step. 

Inputs are transformed into matching degree of referential values. After 

transformations, a general input form corresponding to all antecedent attributes is 

given as 

* * *
,{( , )}, 1,..., , 1,..., }β= = =i j ij iH H i M j T                          

 (5.17) 

where *
ijβ  expresses the matching degree assigned to the input *

,i jH , the jth referential 

value of ith attribute. Ti is the total number of number of the referential values used 

for describing the ith antecedent attribute and M is the total number of antecedent 

attributes involved in all the rules in a rule base. 

For example, an input in REM transformed into the any rule is given by Threat 

Likelihood is {(highly likely, 0.8)} and Vulnerability is {(high,0.3),(medium,0.7)} 

and consequence is {(high,0.3),(medium,0.7)}.  

Step 3: Calculate the rule activation weights 

At this step the rule activation weights are calculated. Once the matching degree 

between an input and the referential values of all antecedents in a rule are 

determined, they are processed to generate an activation weight for the rule which is 

used to measure the degree to which the packet antecedent of the rule k, Hk, is 

activated by the input. 

Since, each rule has multiple antecedents, both disjunctive operator and conjunctive 

operator are used to obtain a single number that represents the result of the rule 

antecedent evaluation for the purpose of sensitivity analysis. To evaluate the 

disjunction of the rule antecedents, the OR (˅) operation is applied (Eq. 5.14). 

Similarly, in order to evaluate the conjunction of the rule antecedents, the AND (˄) 

operation is applied (Eq. 5.15). 

Given the input for the packet antecedent Hk in the kth rule, denoted by *H and the 

corresponding activation weight (wk) to which the input matches the packet 

antecedent Hk in the kth rule can be calculated using the following formulas: 

*
,max( ), 1,..., , ,β∨ = = ∈ ∀k

k ij i jw i M H H i j
                          

(5.18) 
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*
,min( ), 1,..., , ,β∧ = = ∈ ∀k

k ij i jw i M H H i j
                          

(5.19) 

where *
ijβ  expresses the matching degree assigned to the input *

,i jH , the jth referential 

value of ith attribute and M is the total number of antecedent attributes involved in 

all the rules in a rule base. Note that 0≤wk≤1 and wk=0 if the kth rule is not activated. 

wk is the activation weight of rule k which measures the degree to which the kth rule 

is weighted and activated. Input activates different rules depending on activation 

weights of each rule. The activation weights wk for all the rules Rk (k = 1,…, K) are 

generated using Equations 5.18-5.19. 

Step 4: Aggregate the activated rules 

At this step, the inference procedure is implemented in order to combine all rules for 

generating the final matching degree for activated rules of a scenario. Since 

consequent is uncertain linguistic variable, ULWA operator is employed to combine 

the activated rules in this study.  

Let 1{ ,..., ,... }k LR R R R′′ =  set of L ′ rules which are activated by the actual input *H  

and the inference of a rule-based system is implemented using the linguistic 

aggregation operator as :   

'
*

1

( )
L

k
k pq

k

H ULWA H w Hαβ
∨ ∨

∨
=

= = ∑                                 
(5.20) 

'
*

1

( )
L

k
k pq

k

H ULWA H w Hαβ
∧ ∧

∧
=

= = ∑                                 
(5.21) 

where /H αβ
∨ ∧  is the final matching degree for activated rules of a scenario in the form 

of an uncertain linguistic variable where / [ , ]H H Hαβ α β
∨ ∧ = , wk is the activation 

weight of the kth rule, and k
pqH  is an uncertain linguistic variable referential value of 

the consequent where [ , ]k
pq p qH H H= . The final result generated by aggregating the  

L ′ rules, which are activated by the actual input vector *H  of a scenario is 

represented in the form of an uncertain linguistic variable, /H αβ
∨ ∧ , that is produced by 

ULWA operator. 
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Step 5: Evaluate the security risk 

In order to evaluate the identified scenarios, the security risk of identified scenarios 

is needed to be ranked and compared based on their uncertain linguistic variables 

which are also intervals. Therefore, ranking of identified scenarios based on their 

intervals is required. For this purpose, preference function proposed by Wang is 

adopted (Wang et al., 2005; Wang et al., 2006). The properties of Wang’s method are 

discussed in Chapter 2 in detail.  

Let 
A A

Hα β and 
B B

Hα β be the uncertain linguistic variables of A and B respectively. 

Then the degree of preference of A over B, denoted by P(A > B) ∈ [0, 1], is defined 

as follows:  

max[0, ] max[0, ]
( )

[ ] [ ]
A B A B

A A B B

P A B
β α α β
β α β α

− − −> =
− + −                       

(5.22)
 

Therefore, based on the properties of preference function, A is superior to B if 

( )P A B> > 0.5, A is indifferent to B if ( )P A B> = 0.5, and A is inferior to B if 

( )P A B>  < 0.5. The preference function between scenarios has transitivity, i.e., if 

scenario A is superior to B, and scenario B is superior to C, then scenario A is 

superior to C. By applying Eq. 5.22, preference relations among all scenarios can be 

determined for any evaluation grade, Hpp.  

5.4 An Illustrative Example for Security Risk Evaluation 

In this section, the proposed rule based expert system approach as described in 

Section 5.3 is applied to a hypothetical Airport X to evaluate security risk of 

identified threat scenarios. Note that for security reasons, all the data used throughout 

this example are purely generic and notional. Even though this case study is very 

simple, the resulting qualitative relationships and insights drawn from this example 

validate the proposed approach. A step-by-step algorithm for this example is as 

follows: 

Step 1: Construct the rule base 

Typical If-then rules for REM are defined based on Equation 5.13-15 as follows: 

1 2 3: k k k k
k pqR IF H H H THEN H∨ ∨ ∨                                (5.23) 
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1 2 3: k k k k
k pqR IF H H H THEN H∧ ∧ ∧                                (5.24) 

where 1
kH is the referential value of antecedent attribute threat likelihood (T), 2

kH is 

the referential value of antecedent attribute vulnerability (V) and 3
kH is the referential 

value of antecedent attribute consequence (C), respectively. The number of 

antecedent attributes used in any rule for REM, M, is 3. k
pqH  is the uncertain 

linguistic variable referential value of consequent attribute security risk (SR).  

The granularity of linguistic term sets used for describing each fundamental factor is 

decided according to the situation of the case of interest. In the literature, the 

granularity from three to nine labels is commonly used to represent any factor. 

Therefore, the referential value set of defined attributes are determined as follows: 

• The referential value set for threat likelihood is given by  

T = {“Likely” (H 1), “Very Likely” (H2), “Highly Likely” (H 3), “Very Highly 

Likely” (H 4), ”Extremely Likely” (H5)}. 

• The referential value set for vulnerability is given by  

V = {“Low” (H 1), “Medium” (H2), “High” (H3)}. 

• The referential value set for consequence is given by  

C = {“Very Low” (H 1), “Low” (H 2), “Medium” (H3), “High” (H4), “Very High” 

(H5)}. 

• The referential value set for security risk is given by  

SR = {“Very Low” (H11), “Low” (H 22), “Medium” (H33), “High” (H44), “Very 

High” (H55)} 

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

H H H H H VL VL L VL M VL H VL VH

H H H H L L M L H L VH

H H H H M M H M VH

H H H H VH

H VH

− − − −   
   − − −      = = − −   
   −
   
       

Organizations differ in the amount of risk they are willing to accept. Preference for 

risk and interpretation of risk differ. Such if-then rules are collected from security 
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experts based on domain knowledge that constitute a rule base with both individual 

and interval based grades and L=5*3*5=75 rules are defined:  

R = {R1, . . ., R75}                                         (5.25) 

Sample rule base for security risk evaluation of Airport X is given in Table 5.2. 

When sample rule base is examined, rules R1-R5 have the minimum security risk and 

rules R71- R75 have the maximum security risk. High Likelihood – Low Consequence 

rules are R1-R5 and Low Likelihood – High Consequence rules are R1-R5. Based on 

the domain knowledge, the rules are interpreted differently in a nonlinear manner 

rather than linear.  

Step 2: Transform the input  

Since the matching degree of referential values describing the attributes of 

antecedent of a rule is needed for the input of REM, the outputs of SRA models are 

transformed into the required form of Equation 5.17 in this step. The input is given as 

linguistic terms with the matching degrees based on the three models described in the 

previous chapters. The fuzzification is applied to VAM and CAM, and bet estimate is 

applied to TAM in this study. The details of the transformation for the models are 

described in the following sub sections. 

Step 2.1 : Transform TAM output 

In TAM, DST is used for uncertainty modelling and the output data for threat 

likelihood are represented by DST variables due to epistemic uncertainty. Bet 

estimate gives a point estimate in a belief structure similar to defuzzification in the 

fuzzy set theory as follows (Smets, 2000): 

( )
( )

A B

m B
bet A

B⊆

= ∑                                          (5.26) 

where B is the cardinality (number of elements) in the set B. For example, as a 

belief structure of threat scenario 1 is 33 34 44{( ,0.0269), ( ,0.0022), ( ,0.0134),H H H  

55( ,0.0131), ( , 0.9444)}H Θ , bet estimate of this scenario is calculated as: 

3 34
3

( ) ( ) ( )
( ) 0.0269 0.0011 0.1889 0.2169

1 2 5

m H m H m
bet H

Θ= + + = + + =  
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Bet estimates of likelihood belief structures of identified threat scenarios are 

calculated and results are presented in Table 5.3. 

Table 5.2 :Sample rule base. 

IF  Antecedent ( kH ) THEN  Consequent ( k
pqH ) 

 Antecedent Consequent   Antecedent Consequent 
No TL V C SR    No TL V C SR 
1 H1 H1 H1 H11  39 H5 H2 H1 H33 
2 H1 H1 H2 H11  40 H2 H2 H5 H33 
3 H2 H1 H1 H11  41 H4 H2 H2 H33 
4 H2 H1 H2 H11  42 H3 H2 H4 H34 
5 H1 H1 H3 H11  43 H5 H2 H2 H34 
6 H1 H1 H4 H12  44 H3 H2 H5 H44 
7 H3 H1 H1 H12  45 H4 H2 H3 H44 
8 H2 H1 H3 H12  46 H4 H2 H4 H45 
9 H1 H1 H5 H22  47 H5 H2 H3 H45 
10 H4 H1 H1 H22  48 H4 H2 H5 H55 
11 H2 H1 H4 H22  49 H5 H2 H4 H55 
12 H3 H1 H2 H22  50 H5 H2 H5 H55 
13 H3 H1 H3 H23  51 H1 H3 H1 H11 
14 H5 H1 H1 H23  52 H1 H3 H2 H12 
15 H2 H1 H5 H23  53 H2 H3 H1 H12 
16 H4 H1 H2 H23  54 H2 H3 H2 H22 
17 H3 H1 H4 H33  55 H1 H3 H3 H22 
18 H5 H1 H2 H33  56 H1 H3 H4 H23 
19 H3 H1 H5 H34  57 H3 H3 H1 H23 
20 H4 H1 H3 H34  58 H2 H3 H3 H23 
21 H4 H1 H4 H44  59 H1 H3 H5 H33 
22 H5 H1 H3 H44  60 H4 H3 H1 H33 
23 H4 H1 H5 H45  61 H2 H3 H4 H33 
24 H5 H1 H4 H45  62 H3 H3 H2 H33 
25 H5 H1 H5 H55  63 H3 H3 H3 H34 
26 H1 H2 H1 H11  64 H5 H3 H1 H34 
27 H1 H2 H2 H11  65 H2 H3 H5 H34 
28 H2 H2 H1 H11  66 H4 H3 H2 H34 
29 H2 H2 H2 H12  67 H3 H3 H4 H44 
30 H1 H2 H3 H12  68 H5 H3 H2 H44 
31 H1 H2 H4 H22  69 H3 H3 H5 H45 
32 H3 H2 H1 H22  70 H4 H3 H3 H45 
33 H2 H2 H3 H22  71 H4 H3 H4 H55 
34 H1 H2 H5 H23  72 H5 H3 H3 H55 
35 H4 H2 H1 H23  73 H4 H3 H5 H55 
36 H2 H2 H4 H23  74 H5 H3 H4 H55 
37 H3 H2 H2 H23  75 H5 H3 H5 H55 
38 H3 H2 H3 H33       
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Table 5.3 :TAM output. 

Threat scenario 
Threat Likelihood 

H1 H2 H3 H4 H5 Rank 

1 1 2 3 4
3 1 1 1(a ,a ,a ,a ) - - 0.2169 0.2034 0.2020 3 

2 1 2 3 4
3 1 2 1(a ,a ,a ,a ) - - 0.2119 - - 7 

3 1 2 3 4
3 1 1 2(a ,a ,a ,a ) - - 0.2336 0.2067 - 6 

4 1 2 3 4
3 1 2 2(a ,a ,a ,a ) 0.2023 0.2083 0.2003 - - 11 

5 1 2 3 4
4 2 2 1(a , a ,a ,a ) - - 0.2101 - - 8 

6 1 2 3 4
4 2 2 2(a , a ,a ,a ) - - 0.2077 - - 9 

7 1 2 3 4
5 1 1 1(a ,a ,a ,a ) - - 0.2025 0.2025 0.2025 1 

8 1 2 3 4
5 1 2 1(a ,a ,a ,a ) 0.2003 0.2003 0.2076 - - 10 

9 1 2 3 4
5 1 1 2(a ,a ,a ,a ) - - 0.2064 0.1994 0.1994 2 

10 1 2 3 4
5 1 2 2(a ,a ,a ,a ) 0.2335 0.2104 0.1901 - - 12 

11 1 2 3 4
11 1 1 1(a , a ,a ,a ) - 0.1906 0.2435 0.1894 0.1894 5 

12 1 2 3 4
11 1 1 2(a , a ,a ,a ) - - 0.2323 0.1927 0.1927 4 

 

Step 2.2 : Transform VAM output 

In VAM, the fuzzy set theory is used for uncertainty modelling and the output data 

for vulnerability are represented by vulnerability scores. Fuzzification is the process 

of making a crisp quantity fuzzy by taking the crisp input and determining the degree 

to which this input belongs to each of the appropriate fuzzy sets. Therefore, 

vulnerability can be quantified by the degree of membership of a numerical value to 

a fuzzy set. The output of VAM is described using linguistic variables given in Table 

5.4 and each linguistic variable is indicated by a TFN within the interval of [0, 1]. 

The linguistic variables in Table 5.4 and their membership functions are shown in 

Figure 5.2.  

By using the linguistic variables in Table 5.4 and their membership functions shown 

in Figure 5.1, vulnerability scores are fuzzified and results are presented for the 

identified threat scenarios in Table 5.5.   

Table 5.4 :Linguistic variables for the vulnerability of targets. 

Linguistic variable Triangular fuzzy number 

Low (L) (0, 0, 0.5) 

Medium (M) (0, 0.5,1) 

High (H) (0.5, 1, 1) 
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Figure 5.2 : Membership functions of linguistic variables for vulnerability. 

Table 5.5 :VAM output. 

Target Vulnerability Rank 
Normalized 

Vulnerability 
Vulnerability 

H1 H2 H3 
1

1
a  1.202 4 0.581 - 0.838 0.162 

1

2
a  1.183 5 0.572 - 0.856 0.144 

1

3
a  0.919 8 0.444 0.112 0.888 - 

1

4
a  0.710 14 0.343 0.314 0.686 - 

1

5
a  0.763 12 0.369 0.262 0.738 - 

1

6
a  0.889 9 0.430 0.140 0.860 - 

1

7
a  1.033 7 0.499 0.002 0.998 

 
1

8
a  1.090 6 0.527 - 0.946 0.054 

1

9
a  0.742 13 0.359 0.282 0.718 - 

1

10
a  0.814 10 0.393 0.214 0.786 - 

1

11
a  0.648 15 0.313 0.374 0.626 - 

1

12
a

 0.606 16 0.293 0.414 0.586 - 

1

13
a

 0.803 11 0.388 0.224 0.776 - 

1

14
a

 
0.583 17 0.282 0.436 0.564 - 

1

15
a

 0.425 19 0.205 0.590 0.410 - 

1

16
a

 0.541 18 0.262 0.476 0.524 - 

1

17
a  0.424 20 0.204 0.592 0.408 - 

1

18
a  1.272 3 0.615 - 0.770 0.230 

1

19
a  2.069 1 1.000 - - 1.000 

1

20
a

 1.291 2 0.624 - 0.752 0.248 
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Step 2.3: Transform CAM output 

In CAM, probability theory is used for uncertainty modelling and the output data for 

consequence are represented by random variables due to stochastic uncertainty. By 

using the expected values of consequence, consequence can be quantified by the 

degree of membership of a numerical value to a fuzzy set like the fuzzification of 

vulnerability score. The output of CAM is described using linguistic variables given 

in Table 5.6 and each linguistic variable is indicated by a TFN within the interval of 

[0, 1]. The linguistic variables in Table 5.6 and their membership functions are 

shown in Figure 5.3. 

Linguistic variable Triangular fuzzy number 

Very low (VL) (0, 0, 0.3) 

Low (L) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

High (H) (0.5, 0.7, 1) 

Very High (VH) (0.7, 1, 1) 

 

Figure 5.3 : Membership functions of linguistic variables for consequence. 

By using the linguistic variables in Table 5.6 and their membership functions shown 

in Figure 5.3, expected values of consequence are fuzzified and results are presented 

for the identified threat scenarios in Table 5.7.   

The fuzzification is applied to VAM and CAM, and bet estimate is applied to TAM 

for transforming the input in the required form of Equation 5.17 in this study. All the 

transformed inputs for the identified threat scenarios are shown in Table 5.8.   

 

Table 5.6 :Linguistic variables for the consequence of threat scenarios. 
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Table 5.7 :CAM output. 

Threat Scenario ConsequenceRank
Normalized 

Consequence 

Consequence 

H1 H2 H3 H4 H5 

1 1 2 3 4
3 1 1 1(a ,a ,a ,a ) 2,557,497 10 0.1305 0.5650 0.1525 - - - 

2 1 2 3 4
3 1 2 1(a ,a ,a ,a ) 5,776,055 3 0.2948 0.0174 0.9740 - - - 

3 1 2 3 4
3 1 1 2(a ,a ,a ,a ) 3,360,789 7 0.1715 0.4284 0.3575 - - - 

4 1 2 3 4
3 1 2 2(a ,a ,a ,a ) 8,477,618 2 0.4326 - 0.3370 0.6630 - - 

5 1 2 3 4
4 2 2 1(a , a ,a ,a ) 4,871,782 5 0.2486 0.1714 0.7430 - - - 

6 1 2 3 4
4 2 2 2(a , a ,a ,a ) 13,913,540 1 0.7100 - - - 0.9667 0.0334 

7 1 2 3 4
5 1 1 1(a ,a ,a ,a ) 1,879,900 12 0.0959 0.6804 - - - - 

8 1 2 3 4
5 1 2 1(a ,a ,a ,a ) 3,755,768 6 0.1917 0.3610 0.4585 - - - 

9 1 2 3 4
5 1 1 2(a ,a ,a ,a ) 2,632,710 9 0.1344 0.5520 0.1720 - - - 

10 1 2 3 4
5 1 2 2(a ,a ,a ,a ) 5,526,108 4 0.2820 0.0600 0.9100 - - - 

11 1 2 3 4
11 1 1 1(a , a ,a ,a ) 2,105,731 11 0.1075 0.6417 0.0375 - - - 

12 1 2 3 4
11 1 1 2(a , a ,a ,a ) 2,899,042 8 0.1479 0.5070 0.2395 - - - 

Table 5.8 :Transformed inputs. 

N 
* * *

,{( , )}β= i j ijH H  

Threat Likelihood, i=1 Vulnerability, i=2 Consequence, i=3 

1 1,3 1,4

1,5

{( ,0.2169), ( , 0.2034),
( , 0.2020)}
H H
H

 
2,1 2,2{( ,0.1120), ( , 0.8880)}H H  

3,1 3,2{( ,0.5650), ( , 0.1525)}H H  

2 1,3{( ,0.2119)}H  
2,1 2,2{( ,0.1120), ( , 0.8880)}H H  

3,1 3,2{( ,0.0174), ( , 0.9740)}H H  

3 1,3 1,4{( ,0.2336), ( , 0.2067)}H H  
2,1 2,2{( ,0.1120), ( , 0.8880)}H H  

3,1 3,2{( ,0.4284), ( , 0.3575)}H H  

4 1,1 1,2

1,3

{( ,0.2023), ( , 0.2083),
( , 0.2003)}
H H
H

 
2,1 2,2{( ,0.1120), ( , 0.8880)}H H  

3,2 3,3{( ,0.3370), ( , 0.6630)}H H  

5 1,3{( ,0.2101)}H  
2,1 2,2{( ,0.3140), ( , 0.6860)}H H  

3,1 3,2{( ,0.1714), ( , 0.7430)}H H  

6 1,3{( ,0.2077)}H  
2,1 2,2{( ,0.3140), ( , 0.6860)}H H  

3,4 3,5{( ,0.9667), ( , 0.0334)}H H  

7 1,3 1,4

1,5

{( ,0.2025), ( , 0.2025),
( , 0.2025)}
H H
H

 
2,1 2,2{( ,0.2620), ( , 0.7380)}H H  

3,1{( ,0.6804)}H  

8 1,1 1,2

1,3

{( ,0.2003), ( , 0.2003),
( , 0.2076)}
H H
H

 
2,1 2,2{( ,0.2620), ( , 0.7380)}H H  

3,1 3,2{( ,0.3610), ( , 0.4585)}H H  

9 1,3 1,4

1,5

{( ,0.2064), ( , 0.1994),
( , 0.1994)}
H H
H

 
2,1 2,2{( ,0.2620), ( , 0.7380)}H H  

3,1 3,2{( ,0.5520), ( , 0.1720)}H H  

10 1,1 1,2

1,3

{( ,0.2335), ( , 0.2104),
( , 0.1901)}
H H
H

 
2,1 2,2{( ,0.2620), ( , 0.7380)}H H  

3,1 3,2{( ,0.0600), ( , 0.9100)}H H  

11 1,2 1,3

1,4 1,5

{( ,0.1906), ( , 0.2435)
( , 0.1894), ( , 0.1894)}

H H
H H

 
2,1 2,2{( ,0.3740), ( , 0.6260)}H H  

3,1 3,2{( ,0.6417), ( , 0.0375)}H H  

12 1,3 1,4

1,5

{( ,0.2323), ( , 0.1927),
( , 0.1927)}
H H
H

 
2,1 2,2{( ,0.3740), ( , 0.6260)}H H  

3,1 3,2{( ,0.5070), ( , 0.2395)}H H  
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Step 3: Calculate the rule activation weights 

The activation weights wk for all the activated rules 1{ ,..., ,... }k LR R R R′′ =  are 

generated by using both disjunctive operator (OR (˅)) and conjunctive operator 

(AND (˄)) (Eqs. 5.18-19). For example, for threat scenario 1 following rules in Table 

5.9 are activated for the transformed inputs in Table 5.8. 

Table 5.9 :Activated rules for threat scenario 1. 

 Antecedent  Consequent Activation 
weight 

∧
kw  

Activation 
weight 

∨
kw  Activated 

Rule 
IF TL ∧

∨ V ∧
∨ C THEN SR 

7  H3  H1  H1  H12 0.1120 0.5650 
12  H3  H1  H2  H22 0.1120 0.2169 
32  H3  H2  H1  H22 0.2169 0.8880 
37  H3  H2  H2  H23 0.1525 0.8880 
10  H4  H1  H1  H22 0.1120 0.5650 
16  H4  H1  H2  H23 0.1120 0.2034 
35  H4  H2  H1  H23 0.2034 0.8880 
41  H4  H2  H2  H33 0.1525 0.8880 
14  H5  H1  H1  H23 0.1120 0.5650 
18  H5  H1  H2  H33 0.1120 0.2020 
39  H5  H2  H1  H33 0.2020 0.8880 
43  H5  H2  H2  H34 0.1525 0.8880 

The activation weight for rule 7 is calculated for the given input as follows: 

7 min(0.2169,0.1120,0.5650) 0.1120∧ = =w                           

7 max(0.2169,0.1120,0.5650) 0.5650∨ = =w                          

Activations weights for identified scenarios are calculated using both disjunctive 

operator and conjunctive operator and presented in Table 5.10 and Table 5.11. 
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Table 5.10 : ∧
kw activation weights for threat scenarios. 

No. S (.)t  Activation weights 

1 
1 2 3 4
3 1 1 1S (a , a , a , a )t

 

12 22 22 23 22

23 23 33 23 33

33 34

( ,0.1120), ( ,0.1120), ( ,0.2169), ( ,0.1525),( ,0.1120),

( ,0.1120), ( ,0.2034), ( ,0.1525), ( ,0.1120),( ,0.1120),

( ,0.2020), ( ,0.1525)

 
 
 
 
 

H H H H H

H H H H H

H H
 

2 
1 2 3 4
3 1 2 1S (a ,a ,a , a )t

 
12 22 22 23{( ,0.0174), ( ,0.1120), ( ,0.0174), ( ,0.2119)}H H H H  

3 
1 2 3 4
3 1 1 2S (a , a , a , a )t

 

12 22 22 23 22

23 23 33

( ,0.1120), ( ,0.1120), ( ,0.2336), ( ,0.2336),( ,0.1120),

( ,0.1120), ( ,0.2067), ( ,0.2067)

 
 
 

H H H H H

H H H
 

4 
1 2 3 4
3 1 2 2S (a ,a ,a , a )t

 

11 11 11 12 11

12 12 22 22 23

23 33

( ,0.1120), ( ,0.1120), ( ,0.2023), ( ,0.2023),( ,0.1120),

( ,0.1120), ( ,0.2083), ( ,0.2083), ( ,0.1120),( ,0.1120),

( ,0.2003), ( ,0.2003)

 
 
 
 
 

H H H H H

H H H H H

H H
 

5 
1 2 3 4
4 2 2 1S (a ,a ,a ,a )t

 
{ }12 22 22 23( ,0.1714), ( ,0.2101), ( ,0.1714), ( ,0.2101)H H H H  

6 
1 2 3 4
4 2 2 2S (a ,a ,a ,a )t

 
{ }33 34 34 44( ,0.2077), ( ,0.0334), ( ,0.2077), ( ,0.0334)H H H H  

7 
1 2 3 4
5 1 1 1S (a ,a ,a ,a )t

 

12 22 22 23 23

33

( ,0.2025), ( ,0.2025), ( ,0.2025), ( ,0.2025),( ,0.2025),

( ,0.2025)

 
 
 

H H H H H

H
 

8 
1 2 3 4
5 1 2 1S (a ,a ,a ,a )t

 

11 11 11 11 11

11 11 12 12 22

22 23

( ,0.2003), ( ,0.2003), ( ,0.2003), ( ,0.2003),( ,0.2003),

( ,0.2003), ( ,0.2003), ( ,0.2003), ( ,0.2076),( ,0.2076),

( ,0.2076), ( ,0.2076)

 
 
 
 
 

H H H H H

H H H H H

H H
 

9 
1 2 3 4
5 1 1 2S (a ,a ,a ,a )t

 

12 22 22 23 22

23 23 33 23 33

33 34

( ,0.2064), ( ,0.1720), ( ,0.2064), ( ,0.1720),( ,0.1994),

( ,0.1720), ( ,0.1994), ( ,0.1720), ( ,0.1994),( ,0.1720),

( ,0.1994), ( ,0.1720)

 
 
 
 
 

H H H H H

H H H H H

H H
 

10 
1 2 3 4
5 1 2 2S (a ,a ,a ,a )t

 

11 11 11 11 11

11 11 12 12 22

22 23

( ,0.0600), ( ,0.2335), ( ,0.0600), ( ,0.2335),( ,0.0600),

( ,0.2104), ( ,0.0600), ( ,0.2104), ( ,0.0600),( ,0.1901),

( ,0.0600), ( ,0.1901)

 
 
 
 
 

H H H H H

H H H H H

H H
 

11 
1 2 3 4
11 1 1 1S (a ,a ,a ,a )t

 

11 11 11 12 12

22 22 23 22 23

23 33 23 33 33

34

( ,0.1906), ( ,0.0375), ( ,0.1906), ( ,0375), ( ,0.2435),

( ,0.0375), ( ,0.2435), ( ,0.0375), ( ,0.1894),( ,0.0375),

( ,0.1894), ( ,0.0375), ( ,0.1894), ( ,0.0375),( ,0.1894),

( ,0.

H H H H H

H H H H H

H H H H H

H 0375)

 
 
 
 
 
  
 

12 
1 2 3 4
11 1 1 2S (a ,a ,a ,a )t

 

12 22 22 23 22

23 23 33 23 33

33 34

( ,0.2323), ( ,0.2323), ( ,0.2323), ( ,0.2323),( ,0.1927),

( ,0.1927), ( ,0.1927), ( ,0.1927), ( ,0.1927),( ,0.1927),

( ,0.1927), ( ,0.1927)

 
 
 
 
 

H H H H H

H H H H H

H H
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Table 5.11 : ∨
kw activation weights for threat scenarios. 

No. S (.)t  Activation weights 

1 
1 2 3 4
3 1 1 1S (a , a , a , a )t

 

12 22 22 23 22

23 23 33 23 33

33 34

( ,0.5650), ( ,0.2169), ( ,0.8880), ( ,0.8880), ( ,0.5650),

( ,0.2034), ( ,0.8880), ( ,0.8880), ( ,0.5650),( ,0.2020),

( ,0.8880), ( ,0.8880)

 
 
 
 
 

H H H H H

H H H H H

H H
 

2 
1 2 3 4
3 1 2 1S (a ,a ,a , a )t

 
12 22 22 23{( ,0.2119), ( ,0.9740), ( ,0.8880), ( ,0.9740)}H H H H  

3 
1 2 3 4
3 1 1 2S (a , a , a , a )t

 

12 22 22 23 22

23 23 33

( ,0.4284), ( ,0.3575), ( ,0.8880), ( ,0.8880),( ,0.4284),

( ,0.3575), ( ,0.8880), ( ,0.8880)

 
 
 

H H H H H

H H H
 

4 
1 2 3 4
3 1 2 2S (a ,a ,a , a )t

 

11 11 11 12 11

12 12 22 22 23

23 33

( ,0.3370), ( ,0.6630), ( ,0.8880), ( ,0.8880),( ,0.3370),

( ,0.6630), ( ,0.8880), ( ,0.8880), ( ,0.3370),( ,0.6630),

( ,0.8880), ( ,0.8880)

 
 
 
 
 

H H H H H

H H H H H

H H
 

5 
1 2 3 4
4 2 2 1S (a ,a ,a ,a )t

 
{ }12 22 22 23( ,0.3140), ( ,0.7430), ( ,0.6860), ( ,0.7430)H H H H  

6 
1 2 3 4
4 2 2 2S (a ,a ,a ,a )t

 
{ }33 34 34 44( ,0.9667), ( ,0.3140), ( ,0.9667), ( ,0.6860)H H H H  

7 
1 2 3 4
5 1 1 1S (a ,a ,a ,a )t

 

12 22 22 23 23

33

( ,0.6804), ( ,0.7380), ( ,0.6804), ( ,0.7380),( ,0.6804),

( ,0.7380)

 
 
 

H H H H H

H
 

8 
1 2 3 4
5 1 2 1S (a ,a ,a ,a )t

 

11 11 11 11 11

11 11 12 12 22

22 23

( ,0.3610), ( ,0.4585), ( ,0.7380), ( ,0.7380),( ,0.3610),

( ,0.4585), ( ,0.7380), ( ,0.7380), ( ,0.3610),( ,0.4585),

( ,0.7380), ( ,0.7380)

 
 
 
 
 

H H H H H

H H H H H

H H
 

9 
1 2 3 4
5 1 1 2S (a ,a ,a ,a )t

 

12 22 22 23 22

23 23 33 23 33

33 34

( ,0.5520), ( ,0.2620), ( ,0.7380), ( ,0.7380),( ,0.5520),

( ,0.2620), ( ,0.7380), ( ,0.7380), ( ,0.5520),( ,0.2620),

( ,0.7380), ( ,0.7380)

 
 
 
 
 

H H H H H

H H H H H

H H
 

10 
1 2 3 4
5 1 2 2S (a ,a ,a ,a )t

 

11 11 11 11 11

11 11 12 12 22

22 23

( ,0.2620), ( ,0.9100), ( ,0.7380), ( ,0.9100),( ,0.2620),

( ,0.9100), ( ,0.7380), ( ,0.9100), ( ,0.2620),( ,0.9100),

( ,0.7380), ( ,0.9100)

 
 
 
 
 

H H H H H

H H H H H

H H
 

11 
1 2 3 4
11 1 1 1S (a ,a ,a ,a )t

 

11 11 11 12 12

22 22 23 22 23

23 33 23 33 33

34

( ,0.6417), ( ,0.3740), ( ,0.6417), ( ,0.6260),( ,0.6417),

( ,0.3740), ( ,0.6417), ( ,0.6260), ( ,0.6417),( ,0.3740),

( ,0.6417),( ,0.6260), ( ,0.6417), ( ,0.3740),( ,0.6417),

( ,

H H H H H

H H H H H

H H H H H

H 0.6260)

 
 
 
 
 
  
 

12 
1 2 3 4
11 1 1 2S (a ,a ,a ,a )t

 

12 22 22 23 22

23 23 33 23 33

33 34

( ,0.5070), ( ,0.3740), ( ,0.6260), ( ,0.6260),( ,0.5070),

( ,0.3740), ( ,0.6260), ( ,0.6260), ( ,0.5070),( ,0.3740),

( ,0.6260), ( ,0.6260)

 
 
 
 
 

H H H H H

H H H H H

H H
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Step 4: Aggregate the activated rules 

The inference procedure is implemented by applying ULWA operator to combine the 

activated rules,  ∧
kw  and ∧

kw using Equations 5.20-5.21 for in this study.  The final 

matching degree for activated rules of a scenario are calculated in the form of 

uncertain linguistic variables for identified scenarios and presented in Table 5.12.  

Table 5.12 :Aggregation results of the activated rules. 

No Threat Scenario 
ULWA˄ ULWA˅ 

Uncertain Linguistic 
variable 

Correspoding 
discrete terms 

Uncertain Linguistic 
variable 

Correspoding 
discrete terms 

1 1 2 3 4
3 1 1 1(a ,a ,a ,a ) 

2.2894 2.7714[s ,s ] 23H
 2.3010 2.8238[s ,s ] 23H

 

2 1 2 3 4
3 1 2 1(a ,a ,a ,a ) 

1.9515 2.5907[s ,s ] 13H
 1.9305 2.3196[s ,s ] 13H

 

3 1 2 3 4
3 1 1 2(a ,a ,a ,a ) 

2.0713 2.5713[s ,s ] 23H
 2.0897 2.5897[s ,s ] 23H

 

4 1 2 3 4
3 1 2 2(a ,a ,a ,a ) 

1.5456 1.9864[s ,s ] 12H
 1.5466 2.0257[s ,s ] 13H

 

5 1 2 3 4
4 2 2 1(a ,a ,a ,a ) 

1.7754 2.2754[s ,s ] 13H
 1.8737 2.2989[s ,s ] 13H

 

6 1 2 3 4
4 2 2 2(a ,a ,a ,a ) 

3.0693 3.5693[s ,s ] 34H
 3.2339 3.6705[s ,s ] 34H

 

7 1 2 3 4
5 1 1 1(a ,a ,a ,a ) 

2.0000 2.5000[s ,s ] 23H
 2.0135 2.5068[s ,s ] 23H

 

8 1 2 3 4
5 1 2 1(a ,a ,a ,a ) 

1.2560 1.5090[s ,s ] 12H
 1.2809 1.5477[s ,s ] 12H

 

9 1 2 3 4
5 1 1 2(a ,a ,a ,a ) 

2.2270 2.7270[s ,s ] 23H
 2.2801 2.8012[s ,s ] 23H

 

10 1 2 3 4
5 1 2 2(a ,a ,a ,a ) 1.2704 1.5533[s ,s ] 12H

 1.3024 1.5485[s ,s ] 12H
 

11 1 2 3 4
11 1 1 1(a ,a ,a ,a ) 1.7934 2.1945[s ,s ] 13H

 1.9280 2.3854[s ,s ] 13H
 

12 1 2 3 4
11 1 1 2(a ,a ,a ,a ) 2.2179 2.7179[s ,s ] 23H

 2.2727 2.7831[s ,s ] 23H
 

 
Step 5: Evaluate the security risks 

At this step, the security risk of identified scenarios are ranked and compared based 

on their uncertain linguistic variables. The results are interpreted to guide SRA. The 

ranking of 12 identified threat scenarios based on their security risks is calculated 

and presented in Table 5.13. Rankings enable the DMs to identify the higher security 

risk scenarios from the lower security risk ones.  

As seen from Table 5.12 and Table 5.13, after ranking, threat scenario 6 has the 

highest security risk with referential linguistic value, H34, “Medium-High” and threat 

scenario 8 has the lowest security risk with referential linguistic value, H12, “Very 

Low-Low” for both disjuntive and conjunctive rule antecedent aggregation. From the 
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results, it is observed that proposed model provides enough resolution for DMs to 

determine the security risk priorities of a critical facility. For example, although 

threat scenario 1, 3, 7, 9 and 12 have the same referential linguistic value, H23, “Low-

Medium”, their security risks can be distinguished based on their uncertain linguistic 

variables. The arbitrary numeric scale problem is also solved since the security risk is 

modelled as uncertain linguistic variable. Lastly, problem of multiplicative 

aggregation that produces exactly the same value of security risk scores for different 

sets of T, V and C ratings with different security risk implications is solved. For 

example, scenario 7 is a High Likelihood-Low Consequence scenario and scenario 

10 is a Low Likelihood-High Consequence scenario with the same vulnerability. But, 

scenario 7 and scenario 10 have different security risk interpretations. Therefore, the 

proposed model can also distinguish this kind of different security risk 

interpretations. When disjuntive and conjunctive rule antecedent aggregation 

operators are compared, the results are consistent. 

Table 5.13 :Security risk rankings of threat scenarios. 

No. Threat Scenario 

Ranking 

Threat 
Likelihood Vulnerability Consequence 

Security Risk 

Conjunctive Disconjuctive 

1 1 2 3 4
3 1 1 1(a ,a ,a ,a ) 3 8 10 2 2 

2 1 2 3 4
3 1 2 1(a ,a ,a ,a ) 7 8 3 6 8 

3 1 2 3 4
3 1 1 2(a ,a ,a ,a ) 6 8 7 5 5 

4 1 2 3 4
3 1 2 2(a ,a ,a ,a ) 11 8 2 10 10 

5 1 2 3 4
4 2 2 1(a ,a ,a ,a ) 8 14 5 8 9 

6 1 2 3 4
4 2 2 2(a ,a ,a ,a ) 9 14 1 1 1 

7 1 2 3 4
5 1 1 1(a ,a ,a ,a ) 1 12 12 7 6 

8 1 2 3 4
5 1 2 1(a ,a ,a ,a ) 10 12 6 12 12 

9 1 2 3 4
5 1 1 2(a ,a ,a ,a ) 2 12 9 3 3 

10 1 2 3 4
5 1 2 2(a ,a ,a ,a ) 12 12 4 11 11 

11 1 2 3 4
11 1 1 1(a ,a ,a ,a ) 5 15 11 9 7 

12 1 2 3 4
11 1 1 2(a ,a ,a ,a ) 4 15 8 4 4 

5.5 Concluding Remarks of Chapter 5 

After a structured set of scenarios, their likelihoods, vulnerabilities and consequences 

have been quantified with different modes of uncertainty from the corresponding 

models of proposed SRA framework, aggregating them properly for evaluating the 
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security risk is needed. Therefore, the main goal of this chapter is to evaluate the 

security risk of a critical facility by aggregating security risk factors correctly. For 

this purpose, a new rule based expert system is proposed.  

Firstly, problems about aggregation of security risk factors are addressed. It is stated 

that Security risk factors must be aggregated in a nonlinear rather than linear manner 

but multiplicative aggregation is not the right aggregation operator because of the 

inability to distinguish between High likelihood-low consequence and low 

likelihood-high consequence threat scenarios, unsuitable nonlinear manner, and 

arbitrary numeric scale problem. Then, handling various types of uncertain input 

information is investigated. 

Secondly, a new rule-based system is designed and implemented for evaluating 

security risk. Transformations of input variables are done depending on the 

uncertainty mode of input variables by either fuzzification or bet estimate. A rule-

base is designed with the rules having uncertain linguistic variable consequents for 

the reason of eliminating the arbitrary numeric scales problem. Since the outputs of 

activated rules are linguistic variables, ULWA operator is used for inference process. 

Therefore, proposed rule based expert system has different input variable 

transformation, different rule consequent and different rule aggregation method for 

inference process. For rule antecedent evaluation, two main aggregation strategies, 

both conjunctive and disconjunctive, are also applied and compared for the 

sensitivity analysis. 

To summarize, proposed method offers a rational, reliable way to aggregate model 

outputs. By this way different formats of available data and uncertain knowledge can 

be incorporated into SRA process. Such a rule base is capable of capturing 

vagueness, incompleteness, and nonlinear causal relationships by representing them 

with if–then rules. This approach can capture nonlinear casual relationships as well 

as different kinds of uncertainty. 

As a result, the proposed model is applied to a case study. Proposed methodology 

provides a flexible and effective inference procedure to deal with such multi 

uncertain information. It is capable of aggregating various types of uncertainties. 

According to the results of REM, suggestions for a critical facility protection can be 

put forward to reduce the security risks. REM enables security analyzers to identify 
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the higher security risk scenarios from the lower security risk ones. The proposed 

rule based expert system is generic rule-base inference methodology and can easily 

be applied to other applications that have arbitrary numeric scales problem and 

nonlinear casual relationships. 
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6.  CONCLUSION AND RECOMMENDATIONS 

SRA is a major component of modern security risk management and better risk 

management decisions are dependent on a better understanding of the concerned risk 

type. Correct SRA is crucial because defence resources are limited and there are not 

enough resources to eliminate all security risks of a critical facility. Realistic SRA is 

required to support strategies for identifying, controlling, reducing, and finally 

managing security risks. Without clear SRA, DMs cannot also benchmark 

improvements or progress to reduce the overall risk level.  

In this thesis, after the potential limitations of conventional RA methods are 

identified, the required theories, methodologies and information about SRA are 

explored and researched. Since the main goal of this thesis is to accomplish correct 

SRA by more realistically quantifying security risk factors and alleviating the 

previously mentioned concerns to some degree, systematic and rigorous SRA 

framework that provides adequate information to guide security risk management 

process is proposed. Since there are many challenges in the details of SRA, the main 

research questions addressed in this thesis are as follows: 

• How to measure/quantify/represent security risk factors: Threat likelihood, 

Vulnerability, Consequence, and Security risk considering appropriate uncertainty 

models? 

• How to aggregate threat likelihood, vulnerability and consequence for SRA? 

• How to improve SRA decisions? 

The proposed SRA framework focuses on quantification of the three fundamental 

factors used to assess the security risk: threat, vulnerability and consequence and 

aggregation of them for SRA. In order to accomplish SRA, four different models are 

developed for each factor of the SRA framework as Threat Assessment Model 

(TAM), Vulnerability Assessment Model (VAM), Consequence Assessment Model 

(CAM), and Risk Evaluation Model (REM). Each developed model in SRA 

framework proposes an approach for quantification of corresponding security risk 
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factor. Therefore, proposed SRA framework has been studied in three dimensions: 

theoretical framework, methodological framework and information processing 

framework and described in detail.  

The first model of the proposed SRA framework, TAM, identifies threats of a critical 

facility and estimates their likelihoods (Chapter 2). For this purpose, a novel 

approach called evidence based Morphological Analysis (EMA) model is proposed 

based on Dempster-Shafer theory of evidence (DST) and Morphological Analysis 

(MA) methodology by describing reasons for modelling uncertainty by DST, the 

fundamentals of DST and MA, and how DST is applied for threat likelihood 

estimation within MA. The proposed approach is presented step by step and applied 

to a simple case study on airport threat assessment. The results show that EMA can 

be used to reason about threat assessment by providing adequate precision and better 

captures the uncertainty in threat assessment than traditional probabilistic risk 

approaches that use point estimates. TAM also generates the initiating events, 

possible threat scenarios, for the other models of SRA framework. 

The second model of the proposed SRA framework, VAM, identifies and quantifies 

the weakness of the critical facility as a system, system functions and system 

components, and determines the most critical functions and components by 

simulating the system behaviour (Chapter 3). For this purpose, a new approach called 

fuzzy integrated vulnerability assessment model (FIVAM) based on fuzzy set theory, 

Simple Multi-Attribute Rating Technique (SMART) and Fuzzy Cognitive Maps 

(FCM) methodology in a group decision-making environment is proposed. The 

FIVAM approach is presented step by step and applied to a simple case study on 

airport vulnerability assessment. The results of the application are compared to those 

observed through a classical vulnerability assessment model to illustrate the 

effectiveness of the FIVAM.  The results show that FIVAM provides both a 

framework to identify the hidden vulnerabilities caused by the functional 

interdependencies within the system and a relative ranking of targets that might 

require improved protection. 

The third model of the proposed SRA framework, CAM, estimates the expected 

magnitudes and types of losses (e.g., deaths, injuries, or property damage) associated 

with a threat scenario given adversary success by identifying, quantifying and 

integrating all different types of losses specific to security risk of a critical facility 
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while estimating the total consequence (Chapter 4). For this purpose, Monte Carlo 

Simulation based CA model that combines different types of consequences for SRA 

is proposed. The proposed approach is presented step by step and applied to a simple 

case study on airport consequence assessment. The results show that proposed model 

can be used to reason about consequence assessment by enabling security analyzers 

to identify the higher consequence scenarios from the lower consequence ones. The 

proposed model also performs CA by considering all major losses of security risk 

with optimal complexity and time to improve the SRA.  

The last model of the proposed SRA framework, REM, is an inference model that 

aggregates the outputs of TAM, VAM and CAM for evaluating the security risk of a 

critical facility (Chapter 5). For this purpose, new rule-based expert system is 

proposed for capturing nonlinear causal relationships between security risk factors 

(threat likelihood, vulnerability and consequence) which have different uncertainty 

modes for evaluating security risks. The proposed approach is presented step by step 

and applied to a simple case study on airport security risk evaluation. The results 

show that proposed model can be used to reason about security risk evaluation by 

enabling security analyzers to identify the higher security risk scenarios from the 

lower security risk ones and can capture nonlinear casual relationships as well as 

different kinds of uncertainty. 

To summarize, proposed SRA framework is a multi methodological approach 

because methodologies relevant to address the special challenges of security risk 

factors are investigated and applied in a logical and efficient way. These include 

problem structuring methods (PSM) such as MA, multiple criteria/attribute decision 

making (MCDM) techniques such as SMART, data integration methods and 

evidence combination techniques such as rule based expert systems, DST 

combination rules and ULWA, and modelling and simulation techniques such as 

TNT equivalent method, FCM and Monte Carlo simulation. Secondly, since there are 

different sources/causes of uncertainty affecting security risk factors in SRA, 

different from conventional RA approaches proposed SRA framework represents 

each security factor with different uncertainty theory. Parameters of VAM are 

represented by belief functions of Dempster-Shafer (imprecision due to lack of 

knowledge/partial ignorance), parameters of CAM are represented by fuzzy 

membership functions (imprecision due to vagueness) and parameters of CAM are 
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represented by probability distributions (randomness due to variability). Therefore, 

proposed SRA framework handles various types of uncertainties as randomness, 

incompleteness and fuzziness. Thirdly, different uncertainty theories are combined 

effectively by the proposed SRA framework providing solutions for nonlinear 

aggregation problem as in multiplicative aggregation and arbitrary numeric scale 

problem. So, this thesis proposes a complete SRA framework that offers a 

comprehensive and logical multi methodological approach capable of handling and 

combining different uncertainties as partial ignorance, fuzziness and randomness for 

assessing the security risk of critical facilities.  

After SRA has been completed by applying proposed SRA framework, its results can 

be used to improve security risk management decision making by allocating 

available risk management resources to security risk-reducing countermeasures (e.g., 

for vulnerability reduction increasing surveillance and detection, hardening targets 

etc. or for consequence reduction increasing preparedness and response). SRA help 

to formulate the requirements for protection measures necessary to counter the 

perceived threat. 

Security risk is dynamic because security managers as defenders are constantly 

making investments to reduce threat, vulnerability and consequence, and adversaries 

as attackers constantly alter preferences of targets and capabilities. Since SRA is a 

continuous process, the new information obtained can be easily can be used easily as 

a feedback for the proposed framework to update security risk evaluation. As some 

standard for estimating and monitoring change is needed, proposed framework can 

also be used for security risk monitoring. In addition to this, the proposed SRA 

framework is generic enough to be applied to any type of critical facility with minor 

modifications such as dam, governmental facility, harbour, nuclear power plant, oil 

plant etc. by insurance companies, municipal managers, etc. 

As a result, proposed SRA framework has contributed to quantitative decision 

analysis by supporting decisions under different modes of uncertainty and provided a 

basis for more effective security risk management. Proposed framework also 

provides easy security risk communication and the dissemination of security risk 

information in an understandable form. The proposed framework is very useful for 

the systematic and rational SRA. Its feasibility and effectiveness are illustrated by 

numerical examples in each chapter. It is seen that useful insight about possible 
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security risks of a critical facility can be gained through applying proposed SRA 

framework and proposed framework provides valuable information to DMs in 

dealing with security risks of critical facility by increasing situational awareness and 

understanding. 
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