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SECURITY RISK ASSESSMENT FOR  CRITICAL  FACILITY
PROTECTION

SUMMARY

Although many countries have national security lemgjes, security risk has
infiltrated into the international arena just aftee attacks to twin towers in New
York/USA on September 11, 2001 called 9/11 attadkse 9/11 attacks are the
beginning of the new era where the classical aghem to contemporary security
challenges are questioned by security analysts amadlemics. There is also an
increase in malevolent attacks in recent years dwode. Developed societies
become more vulnerable to security risks causedumy events as they get more
dependent on critical facilities such as airportaclear power plants, oil plants,
dams, harbours, governmental facilities etc.

This thesis proposes a novel Security Risk Assess(®RA) framework consisting
of four models that quantifies corresponding segunisk factors: threat,
vulnerability and consequence, and aggregates thoposed SRA framework
helps to improve security risk assessment decidmmnesritical facilities considering
appropriate uncertainty theory, input data and autiata for each model. The four
developed models are presented step-by-step atiédpp an illustrative airport as
a critical facility case study. Therefore, all #gplication in each chapter covers an
illustrative airport. The results of the applicaisoare evaluated to illustrate the
effectiveness of proposed SRA framework.

The thesis consists of six chapters. The first tdragntroduction introduces the
motivation of the study and its aim and objectiesroductory chapter summarizes
also the theoretical, methodological and informratiwocessing frameworks utilized
in the thesis. Respectively, Chapters 2, 3 andovige threat, vulnerability and
consequence assessment models. Then, Chapter iBgax@ model that aggregates
the outputs of the threat, vulnerability and consgrge assessment models presented
until this chapter under a Security Risk Assessnfiemhework. Finally, the study
concludes by highlighting the major concluding reksa and offering some
recommendations.

Chapter 2 offers a Threat Assessment Model. Theimithis chapter is to identify
threats of a critical facility and estimates thigielihoods in order to generate the
initiating events, possible threat scenarios, theomodels of SRA framework.

The model offered in Chapter 3, Vulnerability Asseent Model identifies and

quantifies the weakness of the critical facility assystem, system functions and
system components, and determines the most critiogtions and components by
simulating the system behaviour.

Chapter 4 aims to quantify the likely loss or damagused due to anticipated threat
scenarios. Therefore, the Consequence Assessmet¢l Mstimates the expected

XV



magnitude and type of loss (e.g., deaths, injurbesproperty damage) associated
with a threat scenario given adversary succesa &oitical facility.

Chapter 5 gathers all the information together aaodtinues the calculation and
evaluation in order to aggregate the outputs ofedhrAssessment Model,

Vulnerability Assessment Model and Consequence #sssent Model for evaluating

the security risk of a critical facility. What idfered in Chapter 5 is basically the last
step of the SRA framework.

To summarize, this thesis proposes a complete SR&dwork that offers a
comprehensive and logical multi methodological apph capable of handling and
combining different uncertainties for assessingdeeurity risk of critical facilities.
lllustrative case study shows that useful insightdwt possible security risks of a
critical facility can be gained through applyingoposed SRA framework and
proposed framework provides valuable informationdézision makers in dealing
with security risks of critical facility by incress situational awareness and
understanding. As a result, proposed SRA framewaskcontributed to quantitative
decision analysis by supporting decisions unddediht modes of uncertainty and
provided a basis for more effective security risknagement.
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KRIiTiK TESISLERIN KORUNMASI iCiN GUVENLIK RiSKi
DEGERLEMESI

OZET

Pek cok Ulkede ulusal guvenlik sorunlari olmaseganen, 11 Eylul 2001 tarihinde
New York / ABD ikiz kuleler saldirlarindan - 921 saldirilari - hemen sonra
glvenlik riski uluslararasi arenanin gindemine gitim 9/11 saldirilari, guvenlik
analizcileri ve akademisyenler tarafindan guncelvegilik konularina klasik
yaklasimlarin sorgulandi yeni bir ¢cgin bglangici olmgtur. Ayrica, son yillarda
dinya capinda kota niyetli saldinlar daha da aktadhar. Gelgmis toplumlar,
havaalani, nikleer enerji santrali, petrol istasydrarajlar, limanlar, kamu tesisleri
gibi kritik tesislere git gide daha panh hale geldikleri icin bu tur kot niyetli
saldirilara kag1 daha savunmasiz hale gelmektedir.

Bu tez guvenlik riski faktorleri olan tehdit olaiiigini, guvenlik aggini ve
olusabilecek hasari sayisataacak ve birlgtirecek dort modeli iceren yeni bir
Guvenlik Riski Dgerlemesi (GRD) cercevesi onermektedir. Onerilen GRD
cercevesi, belirsizlik kurami, girdi verisi ve gqikterisini her model icin dikkate
alarak kritik tesisler icin GRD kararlarini ggirmede yardimci olmaktadir.
Gelistiren dort model adim adim sunulmakta ve kritikidkes icin drnek uygulama
olarak havalimanina uygulanmaktadir. Bdylece, herbblimde ayri ayri verilen
tum uygulamalarda havalimani 6gnekullaniimaktadir. Uygulamalarin sonuclari
Onerilen GRD c¢ergevesinin etkigini gostermek i¢in dgerlendirilmektedir.

Tez alti bolumden olmaktadir. Ik bolim olan, gig bolumu cakmanin Giks
noktasini, amacini ve hedeflerini tanitmaktadirigdiolimu ayrica tez de kullanilan
kuramsal, yontemsel ve bilgsleme cercevelerini de 6zetlemektedir. Sirasiyla,
Bolim 2,3 ve 4 tehdit, guvenlik @i ve hasar deerleme modellerini ortaya
koymaktadir. Sonrasinda, Bolim 5 bu modellerin il@akni Glvenlik Riski
Degerlemesi cgergevesi adi altinda tek bir modelde ri&tirmektedir. Son olarak,
calisma temel sonu¢ gerlendirmelerini vurgulayarak ve bazi 6nerilerdéabarak
sonuclanmaktadir.

Bolim 2, Tehdit Dgerleme Modelini sunmaktadir. Bu bolimde amagsldvayic
olaylari olan olasi tehdit senaryolarinigeli GRD c¢ergcevesindeki modeller igin
Ureterek kritik tesislerin kar kariya kaldgl tehditleri belirlemek ve olabilirliklerini
tahmin etmektir.

Bolim 3'te sunulan model, Guvenlik AgiDegerleme Modeli ise kritik tesisleri
sistem yaklaimi ¢ercevesinde bir sistem, sistegievleri ve sistem bilgenleri olarak

ele almakta ve bu tesislerin zayifliklarini beliniekte ve sayisaarmakta, ayrica
en kritik islevi ve bilgeni sistemin davragiarinin benzetimini yaparak
saptamaktadir.
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Bolum 4, beklenen tehdit senaryolarinca meydanabgecek muhtemel kayiplari
veya hasarlari sayisajtamayl amaclamaktadir. Boylece, Hasarg®deme Modeli
kritik tesis icin saldirganin bari sglayabilecgi bir tehdit senaryosunda beklenen
kayip buyukligini ve kayip tarand (6lim, yaralanma veya makaghizat kaybi
vs.) tahmin etmektedir.

Bolim 5 tim model ciktilarini bir araya getirip Dith Degerleme Modelinin,
Guvenlik Acgl Degerleme Modelinin ve Hasar Berleme Modelinin c¢iktilarini
batinletirerek kritik tesis icin guvenlik riski dgrlendirmesi yapmaktadir. Bu
bolimdeki model GRD cercevesi ici son adimdir.

Ozet olarak, bu c¢aima butuncil bir GRD gergevesi ve kritik tesisla@niguvenlik
riski dezerlemede farkli belirsizlikleri ele alabilen ve belirsizlikleri birlestirebilir
bitiinsel ve mantiksal coklu yontem yaktar sunmaktadir. Ornek uygulama
gostermektedir ki, onerilen GRD cercevesi uygulakakritik tesislerin olasi
guvenlik riskleri hakkinda kullagh sezgiler kazanilmakta ve Onerilen cerceve
durumsal farkinda@n ve anlamayi arttirarak kritik tesislerin giventikki ile bga
ctkmada karar vericilere derli bilgiler sunmaktadir. Sonu¢ olarak, onerileRD
cercevesi, farkh belirsizlikler icinde alinan kdeau destekleyerek sayisal karar
analizine katkida bulunmakta ve daha etkin bir glikeriski yonetimine zemin
sglamaktadir.
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1. INTRODUCTION

Although many countries have national security leimgles, security risk has
infiltrated into the international arena just aftee attacks to twin towers in New
York/USA on September 11, 2001 called 9/11 attadkse 9/11 attacks are the
beginning of the new era where the classical aghemto contemporary security
challenges are questioned by security analystsaaademics (Harris, 2004; Wright
et al., 2006; Keeney, 2007). The notion of the geain security mainly stems from
the changes in targets, weapons, and motives, dh&ioation of which make
malevolent attacks more dangerous than ever beldrere is also an increase in
malevolent attacks in recent years worldwide. Weapsuch as explosives
meanwhile became more lethal and efficient, andtelbbnology and skills enabled
them diffuse throughout the world easily. As a testithese progresses, developed
societies become more vulnerable to security rskthey more get more dependent
on critical facilities. In developed societies, tical facilities are the systems that
have a high impact to the psychology, health andlavesof the population, and are
essential to the operations of the economy andrgowent such as airports, nuclear
power plants, oil plants, dams, harbours, goverrateiacilities etc. Therefore,
critical facilities are attractive targets for madent attacks and should be given
special consideration for security risk assessni®RA). Traditionally, studies on
security have focused on military and defence sdug security in military terms is
inadequate at present. During this change of tlodil@rof security, 9/11 attacks
displayed that even the most powerful can not bmume to such attacks and
reminded that there is an obvious need to revisdusty risk with a view to
proposing adequate responses to emerging threlés than military threats.

1.1 Background — Motivation of the Study

Risk traditionally has a negative meaning and caméfined both qualitatively and
guantitatively. According to the qualitative defion of risk, which is the dictionary
definition, risk is “exposure to the possibility @dss, injury, or other adverse or



unwelcome circumstance; a chance or situation wiwgl such a possibility”
(Simpson and Weiner, 1989). The quantitative definiof risk is commonly defined
as a measure of expected loss which is the praduitelihood and severity of loss

based on the probability theory in the literature.

To manage risk in an efficient way, risk assessm{@&#) is required. RA is a
systematic decision analysis methodology for idginiy the expected loss incurred
by a system or process as a result of undesireut.eligpical RA is generally related
to expected losses from failures, accidents, ardraladisasters and is a kind of
safety analysis. There are different sources &f aisd Renn (1992) identifies five
major types of RA: technical RA, economic RA, pyldgical RA, sociological RA
and cultural RA. The first two types of RA are gti@tive and the last three are
qualitative. Each of RA has different assumptiobnsu the underlying reality under
consideration depending on the concerned risk tifpe.example, in economic RA,
risk is associated with the unexpected variabdityolatility of returns.

However, risk of random events is different frorskrbf intelligent events. The risk
arising from intelligent acts is called securitgkii Security risk includes intelligent,
deliberate, and unpredictable acts which are irgdrtd create fear, are committed
for an ideological goal, and deliberately targetdmregard the safety of civilians
(Garrick et al., 2004). Security risk differs imki from other type of risks because of
these special characteristics. Thus, protectingnagaecurity risk is fundamentally
different from protecting against natural disastaraccidents and has to be handled
in a different way. In the literature, most resbars agree that security risk is based
on the analysis and aggregation of three widelggeized factors: threat likelihood,

vulnerability, and consequence as (Willis et 200%):
Security Risk = Threat x Vulnerability x Consequenc (1.1)

Threat is the likelihood of the malevolent attacklnerability is the system response
to attack and the consequence is the result ohttaek. Each security risk has a
corresponding likelihood, vulnerability and conseqece. Security analysts attempt
to answer following three fundamental questionatesl to these factors: “How likely
Is it?”, “What can go wrong?”, and “How bad it che?” (Kaplan and Garrick,
1981). In the security domain, RA focuses on assgshe likelihood of attack,

likelihood of adversary success given attack, amisequences given success for a



variety of threat scenarios. Equation 1.1 provities main basis for many SRA
methodologies (Garrick et al., 2004). As in theeottypical risk types, to manage
security risk in an efficient way, SRA is requirddanaging security risk through
threat likelihood requires intelligence representapproach to SRA that focuses
specifically on threats. Managing security risk otgh vulnerability requires
increasing surveillance and detection, hardenimgeta, or other capabilities that
might reduce the success of attempted attacks. §itamasecurity risk through
consequences can be done through increasing pdeyesseand response that reduces
the effects of damage through mitigation or compgas. The main problems are
how these factors are quantified and aggregated.

Therefore, SRA is an important and challenging [@wob(Levitin and Ben-Haim,
2008). The main challenge of SRA is to provide lpessible situational awareness
to the decision makers (DM). Efficient SRA is edsdrand a valuable decision aid.
SRA is an objective and preferably quantitative leaton of security risks
considering threats, vulnerabilities, and consegeen SRA is a technique for
identifying, characterizing, quantifying, and ewaing the risk from an intelligent
event. Many methods/tools of typical RA have beppliad to support SRA. The
basic methods for SRA can be categorized in twonnecategories as: qualitative
SRA methods and quantitative SRA methods (Aposiw|&004; Cox et al., 2005).

In the qualitative SRA methods, the results areroEhown in the form of a simple
risk matrix where one axis of the matrix represehts probability and the other
represents the consequences (Figure 1.1).

Consequence
Likelihood

Serious CatastropHic
Very High

High

Medium

Low

Very Low

Figure 1.1 : Risk matrix.

In the Figure 1.1 darker the colour of the celghdar the risk is. The advantages of

qualitative SRA methods are as follows (Cox et200Q5):



« only a few qualitative judgments is required asuisp(ordered categorical labels

such as “low,” “medium,” and “high”),
 the rating logic is transparent and easy to apply,
» calculations are reduced to simple categorizatmngsk as outputs that can be

communicated relatively easily to DMs.
The disadvantages of qualitative SRA methods afellasvs:

« sufficient information to discriminate accuratelgtiveen quantitatively small and
quantitatively large risks is not provided,
» simple linguistic variables such as “High/Low” hatve limitations in quantifying

the risk and only represent subjective mental dognadequately.

Quantitative SRA methods include quantifying antégarizing risks within the risk
portfolio. When adequate data are available, qtaive SRA is preferred.
Quantitative methods of RA to analyze the securdly are fairly limited. There is
great uncertainty about the risk scenarios andribaning factors. Unfortunately,
detailed quantitative data are frequently not adé. There are two common

quantitative methods: scoring methods and protsigiimethods.

In the typical quantitative SRA scoring methodsusity risk is determined through
the risk score which is defined as the product he# threat, vulnerability and
consequence. The three factors threat, vulnengabdind consequence are all
evaluated using the ratings or scores. Typical isgomethod based on Eg.1.1
produce ambiguous or mistaken security risk esgémdiecause of the following

reasons:

» Directly estimating scores for the security riskttas (Threat, Vulnerability, and
Consequence),

 Intrinsic subjectivity and ambiguity of securitgkifactors,

* Not modelling uncertainty suitably in the light afvailable information and
experience,

 Inability to use risk-scoring results to optimadljocate defensive resources,

 Ignoring intelligent planning and adaptation.

The other most common quantitative SRA method ababilistic RA (PRA) (Ezell

et. al., 2010; McGill, 2007; Kirchsteiger, 1999).the PRA, probability theory is the

foundation of contemporary risk analysis. PRA whiglbased on probability theory
4



emphasizes random uncertainties and requireststatidata about each parameter.
Probabilistic method is an effective tool to stutk when a great amount of data
can be collected. For PRA, threat is measured byfrgquency of the intentional
attack, vulnerability is measured by the probapifitat the attack defeats the security
of the system, and consequence is the expectedf ligssystem fails. For example,
assume that based on the data available, Threaidelled with a normal probability
distribution with mean 0.005 per year and standdesliation 0.0008 per year.
Vulnerability is modelled with a lognormal probatyildistribution with mean 0.06
and standard deviation 0.02. Consequence is maddelitn a uniform probability
distribution with minimum 1 million and maximum 7ilion (mean 4 million) Liras
(L) per year. Using convolution of probability disutions under multiplication or
Monte Carlo simulation, the expected value (medmjsk can be calculated as L per

year.
Difficulties of PRA are as follows:

* Many of the events in the intentional attack arglyfarare events and their
probabilities cannot be estimated from data artérims of one single probability,

* Probability is not valid for non repeatable events,

» Expert opinion is frequently employed as a methddeliciting probability
estimates, but this is unreliable in the case & eaxents,

 When there are very few data, the end result ig gsagongly influenced by the

assumed prior distribution.

In this section limitations of conventional modiigbries are discussed and the

results of qualitative and quantitative RA systaresevaluated.

1.2 Aim and Objective

It is clear that analyzing the security risk ofeltigent acts with the potential for
severe consequences considering vulnerabilitieginesy methods of analysis that
systematically and rigorously quantify uncertaisti#dhere is a need for a realistic
quantification of security risk factors. The quéative description of security risk is
affected by the accuracy of the estimates of tkedihiood of events, vulnerability of
assets and the quality of the consequence study.tfibsis proposes a quantitative

SRA framework that offers a methodology for assegshe security risk of critical



facilities. The purpose of the proposed framewarka support effective decision
making to SRA for defending critical facilities agst malevolent attacks. This thesis
is about a description of the nature of securik,ria security risk assessment
methodology, information requirements to securigk,rand recommendations for
successful implementation. There are many chalkemgeahe details of SRA. The

main research questions are as follows:

* How to measure/quantify/represent security risktdiec Threat likelihood,
Vulnerability, Consequence, and Security risk?

» How to aggregate threat likelihood, vulnerabilitydaconsequence for SRA?

* What is the appropriate uncertainty model for SRA?

* How to improve SRA decisions?

The main objectives of this study are to proposew realistic framework to SRA
process for incorporating uncertainties using nexgliconcepts into conventional RA
frameworks, to understand the security risks ingdlthat might affect the critical
facility and to demonstrate how proposed SRA calp hie decision-making

considering research questions.

1.3 Theory, Methodology and Data

The three fundamental factors used to assess theitgerisk of threat scenario are
threat, vulnerability and consequence (Eqg.1.1). SBéuses on quantification of
these factors and aggregation of them for SRA.rtteoto accomplish SRA; four
different models are developed for each factorhaf S8RA framework as Threat
Assessment Model (TAM), Vulnerability Assessmentddb(VAM), Consequence
Assessment Model (CAM), and Security Risk Evaluatitodel (REM) (Figure 1.2).

Threat Assessment Model
(TAM)

Vulnerability Assessment Model Security Risk Evaluation Model
(VAM) (REM)

Consequence Assessment Model
(CAM)

Figure 1.2 : Models of security risk assessment framework.



» Threat Assessment Model (TAM): TAM identifies thieaf a critical facility and
estimates their likelihoods. The threat assessmaistt generates the initiating
events, possible threat scenarios, for the othedetsoof SRA framework
(Chapter 2).

* Vulnerability Assessment Model (VAM): VAM identifee and quantifies the
weakness of the critical facility as a system, aystfunctions and system
components, and determines the most critical fanstiand components by
simulating the system behaviour (Chapter 3).

* Consequence Assessment Model (CAM): CAM estimadies expected
magnitude and type of loss (e.g., deaths, injunegroperty damage) associated
with a threat scenario given adversary success fontical facility. This model
involves quantification of the likely loss or daneague to anticipated threat
scenarios (Chapter 4).

» Security Risk Evaluation Model (REM): REM aggregatbe outputs of TAM,
VAM and CAM for evaluating the security risk of atal facility (Chapter 5).

Each developed model in SRA framework proposegpanoach for quantification of
corresponding security risk factor. Quantificatiohsecurity risk factor means that
the factor is represented by a mathematical pasmitat embodies enough

information supported by the evidence for estingathre future values.

Proposed SRA framework has been studied in threeer@ions: theoretical
framework, methodological framework and informatimocessing framework and

described in the following sections.

1.3.1 Theoretical framework

The choice of the appropriate uncertainty theorg witical modelling decision and
context dependent. In typical RA, no distinction traditionally made between

different types of uncertainty for the factors amd the literature generally

uncertainty has been addressed using only oneedifirtbertainty theories within the
computations. Few studies have considered the kidegrating different modes

of representation of uncertainty in a single compahal procedure (Guyonnet et al.,
2003).

There are limitations in using only one uncertaititgory to quantify the security

risk factors in a framework because security rsgtdrs involve different types of
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uncertainty stem from technical, non technicalawia sources of the concerned risk
type: security risk. To quantify the any securitgkrfactor, it is first necessary to
choose the appropriate uncertainty theory. Theagm@te uncertainty theory used to
describe studied security risk factor should obsiplbe compatible with the features
of this factor, by the type of required input infaation, by the quality of required
output information and by the axiomatic assumptiabsut the cause of uncertainty.

Therefore, choosing an uncertainty theory is imgoarbecause:

* An uncertainty theory has to be appropriate to dkailable quantity and
quality of input information,

* An uncertainty theory determines the type of infation processing applied
to available information,

* An uncertainty theory determines the output.

Research advances in uncertainty modelling andgsidecmaking have produced new
opportunities for representing and processing madion. Most of the established
theories and methods for uncertainty modelling fa@ised on specific types of
uncertainty and they also require specific typegualities of information depending
on the type of information processing they use.r&he not any single method or

theory which is sufficient to model all types ofaantainty equally well.

Since parameter uncertainty is a major aspect @&, SR quantifying the security

risk, only one uncertainty theory is not enoughawse of different nature of security
risk factors. In order to handle various types o$gble uncertainties that occur in
the implication/application of SRA, this thesis poses a framework to represent
each factor with different uncertainty theory foRA The proposed uncertainty
modelling strategy for SRA is depicted in Figur8 based on the characteristics of

the uncertainty on security risk factors.

This thesis investigated the uncertainty affecsegurity factors in SRA and the use
of probability theory, fuzzy set theory, Dempstéagr theory of evidence (DST)
and other uncertainty theories for SRA. The possigpplication of different
uncertainty theories to the quantification of SRa&tbrs are explored and described

in the following chapters.



Threat Assessment Model (TAM)

Uncertainty Model :
Dempster-Shafer Theory of Evidence

Vulnerability Assessment Model (VAM)
Uncertainty Model : Security Risk Evaluation Model (REM)
Fuzzy Set Theory

Uncertainty Model :
Dempster-Shafer Theory of Evidence
Fuzzy Set Theory
Probability Theory

Consequence Assessment Model (CAM)

Uncertainty Model :

Probability Theory

Figure 1.3 : Theoretical framework.

1.3.2 Methodological framework

On methodological dimension, proposed SRA framewanRsists of four models
that apply several methodologies consistent witthesher for the quantification of
corresponding security risk factor. The proposedtimmethodological modelling

strategy for SRA is depicted in Figure 1.4 basedhencharacteristics of the special

challenges of security risk factors.

Threat Assessment Model (TAM)

Methods used:
Morphological Analysis
DST Combination Rules

Vulnerability Assessment Model (VAM)
Methods used: Security Risk Evaluation Model (REM)

'S:MARI: e Methods used:
uzzy Cognitive Maps Rule-based Expert System

Uncertain Linguistic Weighted Average
Consequence Assessment Model (CAM)

Methods used:
TNT Equivalent Method
Monte Carlo Simulation

Figure 1.4 : Methodological framework.

Methodologies relevant to address the special ehagdls of security risk factors that
can be applied to the quantification of securigkrfactors are investigated. These
include problem structuring methods (PSM) such aspWological Analysis (MA),

multiple criteria/attribute decision making (MCDMgchniques such as Simple
Multi-Attribute Rating Technique (SMART), data igrtion methods and evidence



combination techniques (combining data collectedmfrmultiple sources with
different sampling rates or data schemas to reacbnalusion) such as rule based
expert systems, DST combination rules and Uncettaiguistic Weighted Average
(ULWA), and modelling and simulation techniquestswas Trinitrotoluene (TNT)
equivalent method, Fuzz Cognitive Maps (FCM) andndoCarlo simulation. The
possible application of these methodologies togihentification of SRA factors are

explored and described in the following chapters.

1.3.3 Information processing framework

On information processing dimension, the factorsinie represented in a way that
Is consistent with the resolution of data/inforroatiat hand and the information at
hand must be structured in a suitable form as in@UBRA. The input and output
information requirements must be understood to srppeaningful analysis of the

security risks.

The available input information in SRA process tanvery different in nature for
security risk factors. The input data may be défarboth in type and in scale. It can
be qualitative and quantitative, can be incomplétgrecise (vague), unreliable,
conflicting, overloaded. So, there is a need taldsth a framework that provides a
basis for synthesis across multidimensional infdiomaof varying quality. The

available information is neither ignored nor exagted.

The historical data for SRA are limited and somesnmeaningless because of the
characteristic of intelligent events in securityskri Both linguistic data and
incomplete information are inevitable in SRA. Whagaling with security risk, two
extremes are avoided: reducing everything to ingmpate numerical forms and
reducing everything to plain language rejectinghtecal and quantitative data.
Because of lack of complete information, intuitiand judgement still play major
role in SRA. Methods for extracting reliable knodde from experts and
representing knowledge in more suitable form avestigated and developed.

The proposed information processing strategy foAS® depicted in Figure 1.5
based on the characteristics of the input inforomatvailable and the quality of

required output information.

10



Threat Assessment Model (TAM)

Input data (Information available):

Qualitative and quantitative data

Output data (Information required):
Belief Distribution

Vulnerability Assessment Model (VAM)

Security Risk Evaluation Model (REM)
Input data (Information available):

Qualitative and quantitative data Input data (Information available):
Output data (Information required): Outputs of models
Score Output data (Information required):

Linguistic variable

Consequence Assessment Model (CAM)

Input data (Information available):
Probabilistic data

Output data (Information required):
Probability Distribution

Figure 1.5 :Information processing framework.

Since data for the security parameter in each madel obtained via different
uncertainty models, data for the parameters in @a¢hese models can be obtained
in different forms, and can be specified in ternfslioguistic variables, point
estimates, means and standard deviations, intemadbability distributions, fuzzy
numbers or belief distributions. The handling vasiotypes of input and output
information of SRA factors are explored and destim the following chapters. An
illustrative example is also provided to demonstrah application of developed
models for a typical critical facility. The develegh models as described in following
chapters are applied to a hypothetical Airport Xdiscover threats, vulnerabilities,
consequences and security risks for improvingitéssecurity (Figure 1.6). A typical
airport is decomposed to the dimensions of funsti@nitical infrastructures and key
infrastructure elements. Modern airports with thainways, taxiways, aprons,
passenger terminals, ground handling and flightigeon equipment are very
complex facilities (Ashford et al., 1997). Simptiie mission of an airport is to land,
to unload payload, to load payload and to take adftrafts. When the security
requirements are considered against the possidievolant attacks, the challenge of
SRA for an airport becomes very complicated. Thareefit is thought that an airport
case can be an interesting example. Note thathallvalues used throughout this

thesis are purely generic and notional.
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Figure 1.6 : Sketch of airport X.
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2. THREAT ASSESSMENT MODELLING

2.1 Introduction to Threat Assessment

Critical facility threat assessment is consider@de the most difficult challenge in

security risk assessment (SRA). In the securitlyg fia threat is an intelligent event
that is defined as any human caused act, entitgntesr phenomenon with the
potential to cause harm or damage to a criticalifipdy adversely changing its

state. In other words, a threat is a human caustdligent event of undesired

consequence and different from random events.drsyistem perspective, the critical
facility, such as an airport, dam, governmentailitsic harbour, nuclear power plant,

oil plant etc., can be defined as a system thas@n a group of different physical
entities as system components which are attratangets subject to threats. Unlike
accidental failures, human caused threats are efald innovative, and

unpredictable acts against the targets of critfeaility. Forecasting threats are
difficult because adversaries will continue to ione tactics and enhance their
capabilities according to changing conditions. Befthe security risk is assessed,
threats and their likelihoods must be identified ajuantified. Therefore, threat
assessment is the task of identifying threats atoinating their likelihoods, and

involves two sub-phases: threat identification #néat likelihood estimation, which

are described in the following sections (Figure.2.1

Threat Assessment

| Threat Identification | Threat Likelihood Estimation

Figure 2.1 : Threat assessment.

The aim of this chapter is to present a realigtigraach to quantify the likelihood of
threats by identifying them based on the appropriahcertainty model and
supplementary methods for a critical facility catesing both information at hand
(input information) and information requirements@s (output information). The

proposed approach, called evidence based Morplwallognalysis (EMA) model, is
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based on Dempster-Shafer theory of evidence (D®d)Morphological Analysis
(MA) methodology. EMA model incorporates DST withAMor threat assessment of
a critical facility in this study. The proposed apgch is presented step by step and
applied to a simple case study on airport threaéssment. The results show that
EMA can be used to reason about threat assessyenbviding adequate precision.
After reviewing the existing approaches and thdofacthat influence the threat
identification and likelihood estimation, the remder of this chapter is organized as
follows: In Section 2.2, theoretical backgroundommation for the proposed
approach is represented. The proposed EMA model iengrocess flow are
introduced in Section 2.3. The illustrative appiica of the proposed approach is
performed over an airport case study in Section Ph¥s section also examines the
utility of findings and discusses the analysis lssiConclusions and further issues

are addressed respectively in the final section.
2.1.1 Threat identification

Threat identification sub-phase identifies threhtg a critical facility may suffer by
developing an exhaustive set of plausible threatnagos based on the
susceptibilities of its possible targets to possildttack profiles considering
information on the intentions and capabilities loé tattackers, targets and weapon
delivery systems. Threat identification is the bafr identification, filtering and
prioritizing of threat scenarios on which concetitra is needed. For developing
plausible threat scenarios, extensive involvemésteourity experts is required. The
aim is to develop a complete set of plausible thseanarios which are bounded in
terms of the intentions and capabilities of theckers. The development of threat
scenarios is different because of the intelligetsicker. An examination of historical
data is useful when identifying possible threatnsc®s, but it is also required to

identify possible threat scenarios that have nbeen happened in the past.

Since development of scenarios is critical for ahrelentification, a method for
developing threat scenarios is required. In thexdiure, a variety of tree structures
are often used to develop scenarios. Tree stricaneimportant tools for exploring
the scenario space, analyzing uncertain eventslafmang scenarios (Harris, 2004).
Tree structures can be categorized in two typesntetvees or fault trees that display

functional and logical relationships among eve@isen a set of initiating events, if

14



the structuring of scenarios is done by identifysugceeding events and tracing the
response of a system from an initiating event tffedint possible end-states,
scenarios constructed in this way form an ever (fendrews and Dunnett, 2000).
Each path through this tree represents a scenadieads up at an end state started
by an initiating event. Therefore, an event teea cause-and-effect representation of
logic. Given an end-state, if the structuring okrs@rios is done by projecting
backwards to determine the potential scenarios toald cause the end-state,
scenarios constructed in this way form a fault {Eegécson, 1999). A fault tree starts
with the end-state and attempts to determine athefcontributing system states.
Therefore, fault trees are effect-and-cause reptasens of logic. An event tree is
developed by inductive reasoning while a fault irebased on deductive reasoning.
In the literature, event trees and fault trees Hmeen used to identify threat scenarios
in several studies (Ezell et al., 2001; Rosoff &nd Winterfeldt, 2007). But, tree
structures as a hierarchical technique quickly beedlifficult to handle because of
the wide variety of possible scenarios. Proposetinigue must be fast enough to
quickly analyze a wide range of plausible scenardh modest computational

effort.

In this study, MA is used for threat identificatiomhe fundamentals of MA and

reasons for using MA are described in the followsegtions.

2.1.2 Threat likelihood estimation

Threat likelihood estimation is the most uncertagpect of the SRA problem. As
threat scenarios are about what will happen, thilegthood is about how likely it is
to happen. At this sub-phase, threat scenariolietls are determined. The critical
research question is “Which interpretation of likebd is the most informative and
is the preferred way of capturing and quantifyihg state of knowledge about the
likelihood of a defined threat scenario for a cati facility?” Quantification of
likelihood means that the threat likelihood is eanted by a mathematical
parameter that embodies enough information supgolig the evidence for
estimating the future occurrences of intentiondbcds. To quantify the threat
likelihood, it is first necessary to choose the rappate uncertainty model and
define the concept of likelihood. Modelling unceanty is one of the most critical
modelling decisions (Zimmermann, 2000). The choitthe appropriate uncertainty
model is context dependent. The appropriate uriogtanodel used to describe
15



studied situation should obviously be compatibléhvihe features of this situation,
by the type of required input information, by theatity of required output
information and by the axiomatic assumptions abitne cause of uncertainty.

Therefore, choosing an uncertainty model is impureecause:

* An uncertainty model has to be appropriate to tralable quantity and quality of
input information,

* An uncertainty model determines the type of infaiora processing applied to
available information,

* An uncertainty model determines the output.

There are two main types of uncertainty: aleatoncewtainty and epistemic

uncertainty. Epistemic uncertainty is referred sa@ducible, subjective and state-of-
knowledge uncertainty and aleatory uncertaintyefemred to as random, irreducible
and stochastic uncertainty (Helton, 1997; Oberkagtil., 2004).

Many researchers have investigated how to deal otihn uncertainties and there
exist a considerable number of theories, methogmmdigms to model uncertainty.
Some commonly used uncertainty models are as felloprobability theory

(Laplace, 1812; Kolmogorov, 1950), fuzzy set the@fadeh, 1965), possibility
theory (Zadeh, 1978; Dubois and Prade, 1988), aethf@3ter-Shafer theory of
evidence (Dempster, 1967; Shafer, 1976). But, tieneot any single method or
theory which is sufficient to model all types ofcentainty equally well. Each of
these theories makes assumptions about availatdemation, it contains a certain
calculus by which these information are processed aertain measures of
uncertainty. A specific uncertainty model should be used if its mathematical
operations require a higher level of informatiomrththat on which the available
information is provided. This is very important whepplying those models.
Uncertainty models transform input information toutmut information.

Underestimation and wrong interpretation of undetyais an important mistake.
Therefore, the choice of appropriate uncertaintydehofor threat likelihood

estimation is crucial.

In probabilistic risk assessment (PRA), quanti&tinterpretations of likelihood are
frequency, probability, and probability of frequgn&zell et. al., 2010; Kirchsteiger
1999). If the event happens repeatedly, its likedthcan be expressed as frequency

16



like in occurrences per day, per year, per tri@l, ¥ the event happens either once or
not, its likelihood can be quantified in terms ablpability. If the event happens
repeatedly and has a frequency, but the numeratakvof that frequency is not fully
known, its likelihood can be expressed as a prdibatf frequency. The most
appropriate mathematical representation of likethas probability theory when the
given information is perfect and complete. It iffidult to obtain precise relation
between events and their likelihoods. The PRA megunaving all the information on
the probability of all events. When such informatis not available, the uniform
distribution function is used. Uniform distributidanction states that all events in a
given sample space are equally likely. Becauséefakiom of additivity (where all
probabilities that satisfy specific properties msigin to 1) in the probability theory,
if it is believed that a likelihood of an event &0.25, it is necessarily believed that
likelihood of not event A (complement of A) is 0.7Bhis is a strict assumption for
threat likelihood. Even if there is a historicaltalaand predetermined probability
function fits the limited historical data well, threat likelihood estimation results
may not be good in practice because of the humetorfan deliberate and adaptive
events of security risk. In case of partial ign@@nthe use of a single probability
measure introduces information that is in fact andilable. This may seriously bias
the outcome of a threat assessment in a non catsermanner. Probability theory
is an appropriate uncertainty theory for analysis random events. But, is
randomness one of threat likelihood nature? Alttowspme threat has never
happened, it will be possible in the future. Thrblalihood estimation involves
uncertainty associated with predicting an eventhi future. Zadeh’s egg example
illustrated the difference between probability gradsibility simply by the following
example (Zadeh, 1978). Consider “Hans ate X eggdifeakfast” with X taking
valuesinu={1, 2, 3,4, 5,6, 7, 8 (Table 2.1).

Table 2.1: Egg example.

u 1 2 3 4 5 6 7 8
Possibility, (u) 1 1 1 1 08 06 04 02
Probability(u) 01 08 01 O 0 0 0 0

As shown in the Table 2.1, a high degree of pdgsilnioes not imply a high degree
of probability, nor does a low degree of probaypilibply a low degree of possibility.
But, a high degree of probability implies a higlgoee of possibility and low degree
of possibility implies low probability. If an evem$ impossible, it is bound to be
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improbable. This is called Zadeh’'s possibility-pabbity consistency principle
(Zadeh, 1978). Threats are also a class of evkatariay have a probability of zero
but may not be impossible. Although something hasen happened, it will be

possible in the future.

Fuzzy logic based approaches have been extensigely to model vagueness and
ambiguity, but it can not deal with such uncertasitas incomplete, imprecise and
missing information (ignorance). Vagueness is uag&ly about the classification of

a known event. For example, Hans is 22 years altljiths said that Hans is young

without the precise definition of young. At thisaemple, the word young is vague
and can be addressed by using fuzzy set theory.

The threat is chosen and executed for a reasohebgttacker. A threat, intentional
attack for a critical facility, is neither randoraest nor vague event and uncertainty
associated with such intelligent event involvessegnic uncertainty rather than
aleatory uncertainty. The threat likelihood paramenhust also be represented in a
way that is consistent with the information at haRdr threat likelihood estimation,
it is not possible to obtain a measurement fromeegrpents and the input
information is commonly obtained from expert ehtibn. Threat likelihood is
evaluated based on experience and judgement. The information for threat
likelihood is commonly expressed in qualitativenterand frequently described using
linguistic variables. There is a significant bodf kmowledge in qualitative or
linguistic form for determining threat likelihoodn@ this knowledge has to be

captured.

In this study, DST is used for uncertainty modejliand the input data for threat
likelihood are represented by DST variables dueepistemic uncertainty. The
fundamentals of DST, reasons for modelling uncetyaby DST, and how DST is
applied for threat likelihood estimation within Mi& described in the following

sections.

2.2 Theoretical Background for Threat Assessment Modeiihg

In this section, theoretical background informat@nMorphological Analysis (MA)
and fundamentals of Dempster-Shafer theory of emide(DST) are presented,

respectively
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2.2.1 Morphological analysis

MA, developed by Fritz Zwicky in 1969, is a quatit@® modelling method for

structuring parameter space of the multidimensiomai-quantifiable problems by
defining relationships between the parameters enbtsis of internal consistency
(Zwicky, 1969). As a qualitative problem structyiimethod, MA has been applied
to complex social, organizational and technicalbfgm fields for the scenario
planning, strategy formulation, policy developmestt;. (Sharif and Irani, 2006a;b;
Ritchey, 1998; 2009).

MA begins by forming a morphological field and @sponding cross-consistency
assessment (CCA) matrix in MA’s terms. A morphotadifield, matrix of the state
of all conditions in the system, is constructed idgntifying and defining the
parameters of the problem and assigning each péeameange of relevant values in
a multidimensional matrix. A configuration containge value from each of the
parameters and represents a particular statej@olut scenario in the problem. The
next step in the MA is to examine the internal tiefsships between the parameters
and reduce the morphological field by eliminatinty mutually contradictory
conditions. This is achieved by a process of comsssistency assessment in the CCA
matrix where all of the parameter values in thephotogical field are evaluated pair
wise with the other parameter values by definingspthat can not coexist and
removing the configurations that contain a sindlegical pair. The exponential
growth to unmanageable numbers of permutations eisredsed by discarding
illogical pairs through a process of cross-conaisgeassessment in the CCA matrix.
By doing this, solution space of the problem ised®ined. The solution space
consists of the subsets of configurations thatsfatthe condition of internal

consistency.

In MA different from event trees and failure tressucturing of a configuration is
done by using logical relationships instead of ehselationships. The important
feature of MA is to reduce the solution space. Tdtal number of configurations
(possible or not) is the product of the number allugs under each parameter. The
total number of configurations grows exponentiaith each new parameter but the
number of pair wise relationships between pararsegeows only as a quadratic

polynomial that is proportional to the triangulammber series (Ritchey, 1998; 2009).
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Therefore, even a morphological field involves maoyfigurations, fewer number
of pair wise evaluations is always required thanttital number of configurations in

order to create solution space. Advantages of MAaarfollows:
e The solution space of any given problem can bevddrsystematically,

* New configurations or relations that is not so ewnidcan be discovered more

easily,
« Impossible configurations can be screened rapidly,

e Multi-dimensions in columns can easily be represgérty morphological field
and MA matrix structure helps to keep the solutspace organized, accessible

and traceable even at large sizes,

« New parameters and new parameter values can éasdygded, and new relations

can easily be updated.

But, there is no mechanism to address the issuswfto deal with incomplete,
imprecise and ignorance in MA, which is essentiadhyerent and inevitable in expert
judgements. Pair wise evaluations can take difteiemms instead of binary decision
to determine the strength of the logical relatitbetween the parameter values as

proposed in this study.

In this study, MA is used for the purpose of thee#tt identification because MA is
fast enough to quickly analyze a wide range of gilale threat scenarios with modest

computational effort.

2.2.2 Dempster-Shafer theory of evidence

The Dempster-Shafer theory of evidence (DST) isaliarnative theory for the
mathematical representation of uncertainty (Demmpsi®67; Shafer, 1976). There
are many practical applications of DST in the &tare such as artificial intelligence,
expert systems, pattern recognition, data fusido, éOempster et al., 2008).
Applications of DST in typical risk assessment hdeen very limited because
probabilistic methods are successful where a loexgferimental data and expert

knowledge are available (Demotier et al., 2006).

The theory begins by defining the frame of disceen (FD), denoted by
® = {H4,..., H\}, which is a collectively exhaustive and mutuadiyclusive set of
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propositions or hypotheses. The power sé&, i constructed from® which
consists all subsets 08, including the empty set (&) an® itself i.e.

2° ={0{H}...H}{ H, Hhoo HyHioo B

DST uses three basic parameters, i.e., basic piipadssignment (bpa), belief
measure (Bel), and plausibility measure (PIs) taratterize the uncertainty in a
belief structure. The bpa (m) which is a function 2° - [0,1] satisfying following

axioms:

m(0)=0andy m A=1 (2.1)

AD®O

where A is any subset @& (AC2°). The bpa for a given set A, m(A), measures the
belief exactly assigned to A and represents hoangty the evidence supports A.
The bpa’s of all the subsets ® sum to unity and the bpa of @ is 0. The bp®pf
m(®), is called the degree of ignorance. Each subseth m(A)>0 is called a focal

element and all the focal elements are called ¢ty lof evidence.

The belief measure (Bel) and the plausibility meas(Pls) are the functions

associated with each bpa and defined by the foligwequations:

Bel(A) = > m(B) (2.2)

BOA

Pls(d)= >’ m(B) (2.3)

An Bzl

where A and B are subsets @f Bel(A) represents the exact support to A. PlIs(A)
represents the possible support to A. The two fanst are connected by the

equation:
Pls(A)= 1- Bel(A) (2.4)

where A denotes the complement of A. The difference betwienBel(A) and
Pls(A) describes the ignorance of the assessmettidset A (Figure 2.2).

A
A

- - —
Uncertainty I Bel(A)

I
< I
| Bel(4) |
I

Figure 2.2 :Belief and plausibility.
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[Bel(A), PIs(A)] constitutes the interval of suppto A and can be interpreted as the
lower and upper bounds of the probability to whighs supported due to lack of
information. The precise probability of an evergsliwithin the lower and upper
bounds of Bel and Pls, respectively (BeKRJA)<PIs(A)). The wider the interval,
the less informative it is. The measurements Blal, &d probability will converge
to a single probabilty when the information inged sufficiently
(Bel(A)=P(A)=PIs(A)). The sum of all the Bel andetlsum of all the Pls are not

required to be 1 and therefore, both Bel and Risxan-additive.

The other important aspect of DST is the combimatides that are the special types
of aggregation methods for data obtained from migtindependent information

sources. Detailed discussions on these rules céoube in the literature (Sentz and
Ferson, 2002; Smets, 2007). These rules can ber emjunctive rules (AND-based

on set intersection) or disjunctive rules (OR-bagedet union) from a set theoretic
standpoint. Two most common combination rules, lwth conjunction based rule
and one disconjunction based rule, are used anga@ua in this study: the Yager's

modified Dempster’s rule (Yager's rule) and the Disband Prade’s disjunctive

consensus rule (DP’s rule) (Dempster, 1967; Ya@@B7a;b; Dubois and Prade,
1992).

D om(A A E N, AD

mo, .0, mo_.0O m(A = ula=A
0 JA=0
(2.5)
> mMA* AT : N, A0
NLA=A
mo, .0,.m0,_ .0, m(A=¢ > n( A** h X * M)A+ K AO
NLA=A
0 ,A=0
(2.6)
K= 3 m(A)**m A** i A (2.7)
Niy A=

where A's are propositions from different information sources(A)s are

corresponding bpas, K represents bpa associatéd owitflict, and the symbol
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represents operator of combination. The symbg|, represents DP’s rule and the

symbol O represents Yager's rule.

Yager

In the case of multiple information sources, twgedlraic properties enable evidence
to be combined in any order: commutativity andsoagativity, i.e.
mOm=mO mand (MO m)d m= md( MO n). Therefore, commutativity
and associativity of the combination rules are megufor multiple information
combinations. These algebraic properties are satidfy each of the applied rules:
the Yager's rule is both commutative and quasi-@asive, and the DP’s rule is both

commutative and associative. These properties easeen in Sentz and Ferson
(2002).

Major difficulty in applying the DST is the comptitanal complexity. There is no
explicit function of the given imprecise informatian DST like the probability
density function. The significant difference of D&Tthat bpas are assigned to sets
and subsets of sample space rather than mutualljusixe singletons as in
probability theory. This implies an exponential riegse in computational
complexity. The subsets to which the bpas are msdigan be consonant (nested) or
non consonant and continuous or discrete. Underdbeiction that all the focal
subsets are nested, Pls is referred to as possiild Bel is referred to as necessity

in possibility theory (Dubois and Prade, 1988).

DST is selected for the likelihood estimation bessaboth epistemic uncertainty and
aleatory uncertainty can be handled by the helghef flexibility of DST basic
axioms. DST is also well suited for handling incdet@ information without any
additional assumptions as additivity. Lastly, DSDmbination rules allow
aggregating different types of evidence obtaineaimfrmultiple sources easily.
Details of the application of DST within MA to likkood estimation are described

in the next section.

2.3 Evidence based Morphological Analysis Model

Likelihood estimation of complex events like intenial attacks in threat assessment
is difficult to assess directly because it is naisgble to obtain a precise
measurement from experiments. Therefore, EMA maldglomposes these events

into simple relations and determine the overallnévikelihood by assembling the
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relations’ likelihoods using DST combination ruleEMA model provides an
efficient approach for breaking/making a large amamplex assessment into a
sequence of smaller and simpler relations thatlmmore easily addressed in a

structured way.

The proposed EMA model incorporates DST with MAthis study. Different from
typical MA applications, the strength of logicallations between the parameter
values are not limited to binary (Yes or No) demis since experts may express
likelihood of existence of relation which is chaexzed by the linguistic evaluation
grades that represent the qualitative expert asseds. Typical qualitative analysis
of MA identifies all the plausible scenarios, wheseroposed EMA both identifies
all the plausible scenarios and estimates theitiet of plausible scenarios based
on DST. The proposed model allows to express @uia judgements using belief
structures developed on the basis of DST and makede of available information
without information loss and exaggeration. A raatin MA may change when more
information is get by time. Thus, the notion of &int, is also introduced into the

problem formulation.

The proposed model first identifies the parametdrghe scenarios and defines a
range of values for each parameter. Original F@etermined for evaluation of CCA
matrix relations and bpas for evaluation of CCA nimatelations are assigned.
Relations within MA are combined using belief stuwres that are aggregated to
form the scenarios by two well-known DST combinatinules: DP’s rule and

Yager’s rule. Then, the belief intervals of all sago likelihoods are calculated. The
likelihoods of identified scenarios are ranked blagen their belief intervals

according to defined preference relation using kilsbrt algorithm. The proposed

approach consists of the following steps showniguie 2.3.
Step 1:Identify the parameters and define a range ofesfar each parameter

In this step, the scenario parameters are idedtdied a range of values for each
scenario parameters are defined. Suppose in a wlogptal field there are L basic

parameters and let be a set of parameters A={AA,,...A_}. A set of basic values

for parameter Ais defined asA ={4},...,d,...,4 ,,} where a, is the kth value of

the parameter fand L(A) is the total number of the values of parameter A
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Step 1. Identify the parameters and define a range of values
for each parameter

Step 2. Form Morphological Field

Step 3. Construct CCA matrix

Step 3.1. Determine the Frame of Discernment for
evaluation of CCA matrix relations

Step 3.2. Assign bpas for evaluation grades of CCA
matrix relations

:Step 4. Synthesize an internally
Iconsistent outcome space

Step 4.1. Combine beliefs in CCA matrix relations

Step 4.2. Construct the belief intervals for identified
scenarios

________________i ________________

Step 5. Evaluate the identified scenarios

F-——————=====

Figure 2.3 : The steps of EMA model.
Step 2:Form Morphological Field

Morphological field is formed as shown in Table.2.2

Table 2.2: Sample morphological field.

Parameter Ay .. Parameter A
3 e a
L
ven v A a)
1
8 (a)

Step 3: Construct Cross-Consistency Assessment (CCA)iMatr
At this step, definition and representation of C@Atrix is done based on DST.

Sub-step 3.1:Determine the Frame of Discernment for evaluatdbrCCA Matrix

relations
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Determination of the FD is context dependent any waportant. Since bpas are
assigned to subsets of the FD in DST, this imphaesexponential increase in
computational complexity (Liu et al., 2007). Thénet point is that FD affects the
way information captured. Therefore, FD is deteediconsidering both information

at hand and computational complexity in this study.

Qualitative judgement information given by secugtyperts is essential to quantify
likelihood. Security experts as in many fields tdandthink in linguistic terms and

usually give their subjective judgements lingusliy by means of a set of

evaluation grades. Different types of assessmdatnration, such as complete and
incomplete, precise and imprecise assessmentspmaypressed as follows (Yang
and Singh, 1994):

Assessment Bbsolutely (100%) believe that explosive attackaimet 1 is “Likely”
expressed by DST format as {(Likely,1)};

Assessment 2I0% believe that explosive attack to target 2Llikely” and 30%
believe that it is “Highly Likely” expressed by DS&rmat as {(Likely,0.7), (Highly
Likely,0.3)};

Assessment B0% believe that explosive attack to target 3Likely” expressed by
DST format as {(Likely,0.8)};

Assessment 490% believe that explosive attack to target 4asveen “Likely” to
“Highly Likely” and 10% believe that “Extremely Léty” expressed by DST format
as {(Likely-Highly Likely,0.9), (Extremely Likely,@)};

Assessment Mo judgement, which means experts can not praadassessment for
likelihood of relation under consideration, is eagsed by DST format asg(1)}.

In the above statements, the input is given asstilalition using linguistic terms

with the belief degrees (30%, 70%, etc.) basedutmestive judgments. Each belief
degree is the individual bpa of the input to thaleation grade. When all the belief
degrees are summed to one in an assessment, #dssrasat is said to be complete;
otherwise, it is said to be incomplete. Assessnigdtand 4 are complete while
assessment 3 is incomplete. No judgement is refeeas total ignorance as in
assessment 5. Total ignorance corresponds to wduieain of likelihood being

possible. The decision maker may not always be 180% that the state of a

relation is exactly confirmed to one of the evalwatgrades since FOY, consists all
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evaluation grades. Incomplete assessments may fesul lack of data, unavailable
data, partially known data or the inability of erseto provide valid and accurate
information. For handling incomplete informatiohe® is taken as a focal element
by assuming that the unknown evidence may let \aluation grades have equal
evaluation. For example, in assessment 3 the nyikid represents the degree of
ignorance and is assigned@o The decision maker also may not always be confide
enough to provide subjective assessments to indavigrades and may assess beliefs
to subsets of adjacent grades, intervals, likessessment 4. In assessment 4, the
individual grades are extended to include intemy@des such as “Likely-Highly
Likely”.

In order to reduce the computational complexity, odlthe CCA matrix relation
likelihoods between each scenario parameter aresssg on the basis ¢y
(p.9=1,...,N) evaluation grades whetg, is an individual evaluation grade, aHg,
for p=1to N and g=p+1 to N-1 is the interval exaian grade betwee,, andHqq
(p<q,9=2,...,N)H, (p=1....,N) are required to be mutually exclusiVkerefore, a set

of evaluation grades for relation likelihood, FB denoted by

©={H_,p=q,p=1..,N} (2.8)

©® constitutes a FD and interval evaluation gradessgecial subsets of mutually
exclusive individual evaluation grades in the terohogy of DST.H;; and Hyy are
set to be the worst and the best grades, resplctared Hy.1,+1iS to be preferred to

Hppamong evaluation grades.

In this study, uncertain subjective judgments, sashcomplete and incomplete,
precise and imprecise assessments, for evaluatiG&A matrix relation likelihoods
are acquired using statements similar to statemgsiswhereH,, represents an
evaluation grade to which relations between eaehato parameter in MA may be

assessed anéiq, m(Hyq)) represents the input information.
Sub-step 3.2:Assign bpas for evaluation grades of CCA matriatiehs

In the proposed EMA model, the relations among acemparameters in CCA matrix
are evaluated by assigning bpa to each linguistdduation grade and/or linguistic
interval evaluation grades. Likelihood bpa assigmi:ieare based on subjective

judgements because of the limited numeric data,haimdlan judgement is needed to
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weigh alternative interpretations of whatever datailable. It is assumed that group
of experts provide consensus evaluation for eatdtioa. Group decision making
techniques can be applied but beyond the scogeso$tudy.

The Cartesian product of any two parameters in @@#ix, A and A is determined

as.
AXA ={(alal)ld 0A, d0A) (2.9)

which forms ordered pair of every, €A; with every a/ €A;. The strength of

relationship between ordered pairs of elementsypical MA is measured by the
characteristic function, denotgedwhere a value of unity is associated with congplet

relationship and a value of zero is associated mathelationship as follows:

o 1 , | ,d A X
)(AiXA.(aL,d)={ @ 4p M XA (2.10)
: 0 , otherwise

However, in proposed approach the strength ofiogiship between ordered pairs of
elements is measured by the following DST charetiefunction as:

o H_ /R, ,d)) a .80 AXAH. O2
/YAiXAj (a.d ):{m( > R(ak 4) @ m J Hpq (2.11)
0 : otherwise

wherem(H_,/ R (a,.d ))expresses a bpa assigned to gajr, & )from kth value of

A; and Ith value of Aconfirmed toH,q at time t. Therefore, each relation in proposed

MA at time t is defined by the following expression

R (A,A)={@,.a)Im(H, /R @& .&)> 0,'a0 A,dd AH.O 2

L (2.12)
dF )0, =1L

The belief structure of each relatigg, ,§ )J R @ /A ; at time t can be defined as

follows:

S@E.aF{H,mH, /RGN @ a0 RAA D" (2.13)
For example, in Table 2.3 belief structure f@f,a )0 R, @&, A ) at time t is

Si(a.4 )= {H..05).H,,,05).
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Table 2.3: CCA matrix.

Parameter Parameter | o o A
Ax
i L . ;
a Ay || || A A (p)
Paramete
a:LL {(H24,0.5),
(H11,0.5)}
Parameter
AL
L
An)

Step 4:Synthesize an internally consistent outcome space
Sub-step 4.1:.Combine beliefs in CCA matrix relations

If a morphological field is defined by L basic paweters, there will bec} relations

in CCA matrix and each scenario is defined as guenicombination of relations in
CCA matrix. Therefore, each relation considereditisrent information source and
fused by using DST combination rules in order todpice an aggregated likelihood
estimation of the scenarios. The relations, aswdfit information sources, provide
different assessments for the same FD and the gajgye among the relations
produces the scenarios. The beliefs of relation€@A matrix is aggregated using
the DP’s rule (EqQ. 2.5) and the Yager’s rule (E§) As follows:

M(Hy/T@ @ )E Y DoppageM (Hyg /R (&8 ) DH,  (214)

ij0Cy
k,I0{al,...,a" pk#l

where the symbol] represents operator of combination: the symiBgl represents

DP’s rule and the symbal represents Yager's rule. Therefore, each sceirario

Yager

proposed MA at time t is defined by the followingeession:

T(A...A)={@,..a )m H, T(@,..,.ap 0'a A,.a AH, O °2
(2.15)

The belief structure of each scenaria'’,...,a J T@ ,..A at time t can be

defined as follows:

s@,.a¥ H, mH/TE,...a ) @G,...adT A .4 W02 (2.16)
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Sub-step 4.2:.Construct the belief intervals for identified sagns

After identifying scenarios by combining beliefs @CA matrix relations, Bel, Pls
and the belief intervals of evaluation grades tantified scenarios are determined

by applying Eg. 2.2 and Eq. 2.3 as:

Bel (H,, /T(@,..a)F > mH, M (@&,..a)p¢ 1.N (2.17)
PISH,, M@E,..a)F > mH, T &,.a)pg L.N (2.18)
S (@ v JoH, [Bel(Hy,/ T(@ .. d )P (Hy, /TG )Dp= LN (2.19)

The result is used as a belief intervalidating how strongly the evidence

support each scenario. The end points of the beliefterval

[Bel(H,, /T ,...a )),Plsii T, (a,.,a ) can be viewed as the lower and

upper bounds of the probability to whichpHs supported under the current evidence

for scenario(a’,...,& ). Figure 2.2 illustrates the interpretation of bedief interval.

For example;
« If [Bel(H, /T (,..a)),Plsd, T (a,.a )=[00], then there is no
evidence to supportddfor scenario(a’, ..., & .,

« If [Bel(H,/T(@,..,d)),Plsd T (a,.a)=[01], then there is no

evidence available either to support or not to supid,, for scenario(a’, ..., & |

« If [Bel(H,/T(@,..&)),Plsi T (a,.a)=[1,1], Hy for scenario
(@,...,a& ) has been completely confirmed,

 If [Bel,(H,, /T ,...a )),Plsi _ T (a,..a )=[0.6,0.9], then the probability
of exact support to Jd for scenario(a’, ..., & | is 0.6, and the maximal probability

of possible support to jdfor scenario(a',...,d | is 0.9, i.e., there is a probability

of 0.1 to refuse k} for scenario(a’', ..., a .

30



Step 5:Evaluate the identified scenarios

In order to evaluate the identified scenarios,ltkelihood of identified scenarios is
needed to be ranked and compared based on thielf ingérvals. Therefore, ranking

of identified scenarios based on their belief s is required.

For this purpose, preference function proposed angVis adopted (Wang et al.,
2005; Wang et al., 2006). In Wang’'s method eackradtive, here called scenario,
has one belief interval. But, because of the dfiédetermination of the FD in this
study, any scenario could have more than one bieliefval; one belief interval for
any evaluation grade,bi(p=1,...,N). Therefore, the degree of preferencecehario
A over scenario B for f (p=1,...,N) at time t, denoted by P(A > Byd € [0, 1], is

defined as follows:

max[0,Pls (H,, / A)- Be| (H,, / B)]- max[0, Bel (H,, / A~ Pls(H, / B]

P(A>B H,), =
[Pls(H,,/ A-Be|(H,/ A+ PI{ H/ B- B¢l H/ B
(2.20)
According to definition, it is obvious that
« P(A>BH,) =1ifandonlyifBel(H, /A= Pls(H,/ B,
« P(A>BH,) =0ifandonlyifPls(H,,/ A< Be|(H,/ B,
« P(A>BH,) = 05 if and only if Bel(H,/A+Pls(H,/ A=

Bel(H,,/ B+ PIS( H,,/ A,
+ P(A>BH,,)>05if

0 Bel(H,,/ A>Be|(H,/ B and Pls(H,/A>Pls(H,/ B or

0 Bel(H,,/ A<Bel(H,/ B , Pls(H,/A>Pls(H,/B , and
Bel(pr/A)+ Be( I-Lp/ B> Plg an/ M PIg I-Ap/ B
2 2 '

Therefore, based on above mentioned propertiearfprevaluation grade, 5l A is

superior to B ifP(A> B, H_),> 0.5, A is indifferent to B ifP(A> B H_),= 0.5,
and A is inferior to B if P(A> B H ), < 0.5. The preference function between

scenarios has transitivity, i.e., if scenario Asigperior to B, and scenario B is
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superior to C, then scenario A is superior to C.dpplying Eqg. 2.20, preference
relations among all scenarios can be determinedrfgprevaluation grade, g

In this study, for ranking of scenarios having mibv@ one belief interval, one belief
interval for several evaluation grades, new ranktggprithm based on bubble sort is
developed. Identified scenarios are sorted fromhdsg likelihood to lowest
likelihood according to preference function usingble sort (Knuth, 1997). Bubble
sort is used in this study because bubble somésod the simplest sorting algorithms
to understand and to implement. Bubble sort worksepeatedly stepping through
the list to be sorted, comparing each pair of ahjadems and swapping them if they
are in the wrong order. The pass through the $istepeated until no swaps are
needed, which indicates that the list is sortedth&t sorting process, there are two
alternatives of DM’'s attitude toward the decisionvieonment: pessimistic or
optimistic, in other words risk averse or risk dagk For the DM’s pessimistic
attitude, the proposed ranking algorithm is useddentify the worst evaluation
grade of any scenario and pick a scenario thath@abest of the worst evaluation
grade interval based on the preference functiontioreed above. For the DM's
optimistic attitude, the proposed ranking algoritisnused to select scenario with the
best of the best intervals. If one scenario haglaein (or more preferable) evaluation
grade value than any of the other scenarios, ttextagio is chosen and the sorting
process ends. However, if some scenarios are tigti@most important evaluation
grade, the subset of tied scenarios is then cormdpanethe next most important
evaluation grade. The process continues sequgntialil all the alternatives are
sorted. Pseudo code implementation of the two megaoanking algorithm called
BubbleSortByMinLikelihood and BubbleSortByMaxLikiebod can be expressed as:

procedur e Bubbl eSort ByM nLi kel i hood procedur e Bubbl eSort ByMaxLi kel i hood
( T: list of scenarios ) ( T: list of scenarios )
do do
swapped = fal se swapped = fal se
for i =1to length(T)-1 for i =1tolength(T)-1
if is_superior (T[i-1],T[i]) then if is_superior (T[i-1],T[i]) then
swap( T[i-1], T[i] ) swap( T[i-1], T[i] )
swapped = true swapped = true
end if end if
end for end for
whi | e swapped whi | e swapped
end procedure end procedure
function is_superior( A B: scenario) function is_superior( A B: scenario)
for p=1 to N for p=N down to 1
if P(A B, p)> 0.5 then if P(A/B,p)> 0.5 then
return i s_superior = fal se return i s_superior = true
end if end if
end for end for
return i s_superior = true return is_superior = fal se
end function end function
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The detailed descriptions of each step are elabkdiatthe following illustrative case
study section.

2.4 An lllustrative Example for Threat Assessment

In this section, the proposed EMA model as desdribeSection 2.3 is applied to a
hypothetical Airport X to identify the threat sceioa and evaluate their likelihoods.
Modern airports with their runways, taxiways, agopassenger terminals, ground
handling and flight navigation equipment are vegmelex facilities (Ashford,
1997). Simply, the mission of an airport is to latedunload payload, to load payload
and to take off aircrafts. When the security reguients are considered against the
possible malevolent attacks, the challenge of theessessment for an airport
becomes very complicated. Therefore, it is thought an airport case can be an
interesting example. Note that for security reasafighe data used throughout this
example are purely generic and notional. Even thdbts case study is very simple,
the resulting qualitative relationships and inssgtitawn from this example validate

the proposed approach.

Assume that at time t officials issued an inteltige bulletin to warn security
departments of critical facilities that says “tersts could target large crowds at
holiday gatherings and they might have enteredcityewith explosive loaded car”
and as a security manager of Airport X “what shautth to accomplish a realistic

threat assessment?” A step-by-step algorithm fsrekample is as follows:
Step 1:Identify the parameters and define a range ofesfar each parameter

In this step, the parameters of the threat scersmgadentified and range of values
for each parameter is defined for critical facilit4irport X. History of attacks

against similar assets and possible methods afksti@re examined. Many of these
attacks to date are one-time strike and run-awagntsv As the attack strategy,
attacking a single target is considered, attackindtiple targets is not considered.
After data of attacks were collected and compiladtiiis research from unclassified
resources, four critical most common parameterpassible threat scenarios are

determined as:

A= {Target (A1), Weapon type (4, Part of target attacked {A Magnitude (A)}
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Originally more parameters could be defined bug study considers four parameters
for possible threat scenarios against criticallitycassets. Based on available data
and expert knowledge, the detailed descriptionthese parameters and their values

are listed below:

»  Target (A): Targets are specific high value assets at titieadrfacility, Airport
X. After investigating Airport X, 20 possible tatgeare determined (Ashford,
1997; Akgun et al., 2010).

A = {"Airfield Maintenance Building” (a}), “Fuel Complex Building” &),
“Passenger Terminal” &), “Parking Facility” (g), “Bus Station” ),
“Custom Building” (&), “Cargo Terminal” &), “Air Traffic Control Tower”
(&), “Apron” (&), “Runway and Taxiway” §;,), “Main Entrance and
Security Control Building” &;,), “Security Building” (a},), “Aircraft
Rescue and Fire Fighting Building’af,), “Police Station Building” &7, ),
“Fuel Complex Guard Building” 4;.), “Guard Tower” @;,), “Fencing”
(a},), “Heating Centre Building” &;,), “Power Centre Building” 4}, ),

“Water Storage Building” &, )}

*  Weapon type (4): Possible types of the weapon or equipment usedhe
attacks are determined (Table 2.4). Explosive k$tamre most common in
historical analysis of past attacks (LaTourretteakt 2006). In this study,
chemical, biological, radiological and nuclear #isee are not considered.

following weapon types used in disruptive attadksiaterested:

A, = {“Explosives” (a7), “Truck/Car bomb” @2), “Fire/fire bomb” (a3),

“Firearms” (a3 )}

Table 2.4: Frequency by weapon type of adversary attacks P995-

Weapon Type All incidents
Number Percentage (%)

Explosives (nonsuicide and suicide) 6,538 51
Truck/Car bomb (nonsuicide and suicide) 221 1.7
Fire/fire bomb 1,378 10.7
Firearms 3,222 25.1
Knives and sharp objects 175 1.4
Chemical/Biological agent 41 0.3
Other\Unknown 1,256 9.8
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» Part of target attacked ¢p Different part of the target may be subjecattack.
Part of the targets subject to attack is class#ied

As={"Perimeter” (&), “Protected areas’a), “Infrastructure Systems"a)}

Perimeter is the peripheral/outside part, protecdeshs are inside part and
infrastructure systems are especially equipmergaleart of the targets.
* Magnitude (A): Intensity of the attack may vary. Intensity oftaaks are
categorized as:
As={'Low” ( &), “Medium” (af), "High” (&)}

Therefore, threat scenario of Airport X is defined a combination of four

parameters: target, weapon type, part of targatketl and magnitude.

Step 2:Form Morphological Field

The morphological field is constructed dependingtio@ information provided by
step 1 (Table 2.5). There are totally 20*4*3*3 =OABreat scenarios either possible
or not in the formed morphological field. For exdey@m threat scenario is developed
by the highlighted parameter values that describmvamagnitude explosive attack
to perimeter of power centre building in the morplgccal field (Table 2.5).

Step 3:Construct Cross-Consistency Assessment (CCA) xnatri

Sub-step 3.1:Determine the Frame of Discernment for evaluabdr€CA matrix

relations

Uncertain subjective judgments for evaluation ofAQ@atrix relation likelihoods are
acquired using statements similar to statementsIiiS important to capture fine
threat likelihood distinction among threat scemariwith proposed linguistic
evaluation grades that represent the input infdonatn this study, security experts
give their subjective judgements linguistically byeans of a following mutually
exclusive set of evaluation grades: “Likely” (L)Véry Likely” (VL), “Highly
Likely” (HL), “Very Highly Likely” (VHL) and “Extremely Likely” (EL). In the
terminology of DST, the FDY, is defined as follows:

© ={L,VL,HL,VHL,EL}={H,, H,, H ;;H ,,H .} (2.21)
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Therefore, all of the relations between each siermrameter are assessed on the
basis of individual evaluation gradelg, (p=q,p=1,...,5) and the interval evaluation

grades betweeH,andHqq (p<q,0=2,...,5) similar to statements 1-5 as:

L L-VL L-HL L-VHL L-EL H, H, H,; H, H;
VL VL-HL VL-VHL VL-EL H, H,, H,, H,
HL HL-VHL HL-EL ;= H,;, H, Hg
VHL VHL- EL Hy, Hus
EL He.
(2.22)
Table 2.5:Morphological field of the case study.
Target (4 TR | e T
ai Airfield Maintenance Buildin =2t SENEE a Perimeter a Low
a Fuel Complex Building & Truck/Car bomia Protected areas a Medium
a Passenger Terminal & Fire/Fire bomb |& Infrastructure systems High
al, Parking Facility & Firearms
a Bus Station
& Custom Building
al Cargo Terminal
& Air Traffic Control Tower
a Apron
aj, Runway and Taxiway

al Main Entrance and Security
! Control Building

a;, Security Building

al. Aircraft Rescue & Fire
'? Fighting Building

a;, Police Station Building

aj, Fuel Complex Guard Building

a;, Guard Tower

a;, Fencing

a;, Heating Centre Building

a;, Power Centre Building ‘

aj, Water Storage Building

36



Sub-step 3.2:Assign bpas for evaluation grades of CCA matriatiehs

In the proposed model, the relations among threanario parameters in CCA are
required to be evaluated. All the evidence of adhrwill be in the form of
intelligence information and analyses of past aslgr attacks. Reliable threat data
are the most difficult to assess because predictibradversary intentions are
complex and difficult. Although historical data chelp to define threat likelihood, it
must be interpreted by considering technical cdpiaisi of attacker, the attacker’'s
perception of both the vulnerability and the potEntonsequences from a successful
attack of the target. Attacker will attack the etgwith high consequence and high
vulnerable in order to maximize expected conseqeenthe attacker’s
intelligence/knowledge of the system may vary. Tditacker may have perfect
intelligence, partial intelligence, bad intelligenor no intelligence. Perception and
capabilities of attackers are also not known. Tioeeg identifying all of the actions
into the future is not possible.

The experts (intelligence, weapons, weapon deliveygtems, etc.) and their
knowledge base examining the current evidence bedbmbasis for assigning bpas
to evaluation grades of CCA matrix relations. Thpegts typically ask the question,
“If | were an attacker, | would ...” thinking liken attacker and assign bpas to simple
relations in CCA rather than complex relations with getting overloaded
considering above mentioned facts. The use of j@hgrs necessary because of the
subjective nature of these assessments and thetexpe cast this information into
an easy form provided by proposed EMA model.

In this study, the evidence is quantified by repréimg it as a belief structures that
clearly communicates the uncertainty based on tladity of the evidence. The belief

structures are easy to use and very flexible wagxert judgements and can help to
better evaluate the threat likelihood. In termstloé defined evaluation grades,
experts express their opinions using belief stmectand providing consensus

evaluation for each relation. Each relation is dbsd by evaluation grades and their
associated bpas. Explicitly, the assigned bpassepts the degree of expert belief
for each evaluation grade, and implicitly, it reggrpts the total evidence to clarify the
threat scenario likelihood.

By using expert judgement, the belief structur@amy relation based on intelligence
at time t reporting “possible bomb attack espegifaltusing on civilians” is given in
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Table 2.6. For example, in Table 2.6 the belieficttire of (a;,&’ )J R, (¢ ,& at
time tisS (& .4 )={ H,, .0.4) K 5 ,0.3).

Step 4: Synthesize an internally consistent outcome space
Sub-step 4.1:.Combine beliefs in CCA matrix relations

In this case study, the morphological field is defl by four basic parameters.

Therefore, there are sixC(; ) relations in CCA matrix, and the information eafted

by experts comes from these six different relatitihvad constructs a threat scenario.
These relations are independent pieces of evideffeging information on the
experts’ knowledge towards the likelihood of theeHt scenario. Threat scenarios
are constructed depending on evaluation gradesadf eelation using the DP’s rule
(Eq. 2.5) and the Yager’s rule (Eg. 2.6) as follows

m(H,/T@ &8 4> mH, R@2N M H, R (E2)
0m(Hy/ Ru(@ & )0 m(H,, /B, (& .4 )} (2.23)
Om(Hy/ Re(@ & )0 m(H, /R, (& 4 )

Sample combination of two relations by using batles is shown in Table 2.7 and
Table 2.8.
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Table 2.6: CCA matrix at time t.

Part of target attacked

Magnitude

&

3
a2

4
a'1

4
a2

{H,,0.7),(H,,0.3)}

{(H_0.6),(H_,.0.2)}*

{H,,05),(H,,0.5)}

{(H,,0.6),(H,,.0.4)}

{(H,,0.4),(H,,,0.6)}

{(H,,0.7),(H,,0.3)}

{(H.,,0.8),(H_,0.2)}

{(H,,0.2),(H,,0.8)}

{H,05),(H,,.05)}

{(H,0.6),(H,0.4)}

{(H,0.5),(H,,,0.4)}*

{(H,,0.7),(H,,0.3)}

{(H,0.6),(H,.,0.4)}

{(H,0.7),(H,.,0.3)}

Weapon Type
a; a’

ajé {(H ]_1'0'4)1 (H25,0.2)}*
5| {(H,,0.5),(H,,,0.2)}*
@
= a | {H,08),(H,,04)}

a, | {H,04),(H,03)
Syl &
o2 2
="| a3
o)
£y @
53
§° al

{H,,0.2),(H...0.8)}

{H,,0.7),(H,.,0.3)}

{(H,,0.6),(H,.,0.3)}*

{(H,,0.5)}

{H,,0.3),(H,.0.7)}

{(H,,0.4),(H,,05)}*

{(H_,0.4),(H,,,0.6)}

{H,,0.5),(H,,,0.5)}

{(H,0.6),(H,0.4)}

{H,0.7),(H,,0.3)}

{(H,,0.7), (H,,,0.3}

{(H,,0.8),(H,,,0.2)}

note

. “*" refers to incomplete information.
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Table 2.7: Combination ofR}, (&, ' and R},(a;, & Joy DP’s rule.

Interval Interval
Hs, 0.7 Hee 0.3
Interval| m,
Hu 0.4 |[HiHa]| 0.28 | HiHsg | 0.12
Has 0.2 Hos 0.14 Has 0.06
® 0.4 (©] 0.28 ® 0.12

2 aus-aM(B)M(B)

{([H11,Hs4], 0.28), (H11,Hss], 0.12), Hzs, 0.2)}

rT].DDP rQ(A

{([H11,Hz4], 0.28), (Hi1,Hss ], 0.12), Hzs, 0.2), ©, 0.4)}

Note that if there is an intersection, the unionved intervals in Table 2.7 is defined

by the set consisting minimum of the two lower bdgiand the maximum of the two
upper bounds corresponding to an intersectiorhdfe is no intersection, the union
of two intervals in Table 2.7 is defined by the seinsisting of two intervals

separately.

Table 2.8: Combination ofR}, (&, ,& ' andR},(a;,d ) by Yager's rule.

Interval

0.7

H55

Interval| m,
Hig 0.4 0] 0.28 0] 0.12
Hoeg 0.2 Hsy 0.14 Hss 0.06
(©) 0.4 Hs, 0.28 Hss 0.12
K 0.4
205 -aM(B)M(B) {(Hss, 0.42), Hss, 0.18)}
M, Oyager M( A {(Has 0.42), (Hs5,0.18), ©, 0.4)}

Note that the intersection of two intervals in T&@Bl8 is defined by the maximum of
the two lower bounds and the minimum of the twoardpunds corresponding to an
intersection. For K, there are two cells that cbwitie to conflict represented by

empty intersections and using Eq. 2.7, K= (0.4*§(0)4*0.3)=0.4.

Belief structures of identified threat scenariodiate t by using both combination

rules is shown in Table 2.9.
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Table 2.9: Belief structures of identified threat scenarios.

Rue No. S (.) Belief Structure
1 s(@.4.4.,4 {MH,00101),H, ,0.0720)F ,0.91%
2 s(@.4.4.4 {(H1400672) H,, ,0.0032)F ,0.929¢
s s@&.¢4,4,4 {(H,00196),d, ,0.0120)F ,0.968
(H,,,0.0230),H , ,0.0058)H,, ,0.0992H(. ,0.0014
cos@ddg o J}
5 S(d.,4.4.4 {(H,.0.0784),H,, ,0.0043)H,, ,0.00549( ,0.911
s 6 S@.4.4.4 {(H,0.0870),H,,,0.0026)H, ,0.0154p( ,0.8%
7 S@.4,4.,4 {(H,0.0052),H, ,0.0115)H,, ,0.0461( ,0.93y
¢ S(d.4.4.4 {(H,0.0756),H,,,0.0756)H,, ,0.0065( ,0.84p
o S(@.4.,4.,4 {(H,0.0076),H, ,0.0240)F ,0.968
10 S@.4,3.,4 {(H,0.0945),d,,,0.0945)H,, ,0.00249( ,0.808
1 S (@,.4.4 .4 { ,0.0212),H . ,0.0026)H,; ,0.0104( ,0.965
12 S (&,.4.4 .4 H,.,0.0240),H,, ,0.0135)F ,0.962¢
(H,,,0.0269),H,, ,0.0022)H,, ,0.0134H(. ,0.0131
boS@.4.4.8 {(@09444) 3}
2 S(@.4,43.4 {(H,,0.0149),0,0.985})
s S ((@d.4.4.4 {(H330047O) M, ,0.0202)F ,0.93%
4+ s@.4.4.,4 {(H,00077)H,,,0.0137)H,, ,0.00589( ,0.97R
5 S(d.4,4.4 {(H,,00126),0,0987}
P o s@.4.4.4 {(H,0009)6 0990y
7 s(@.4,4.,4 {(H,00061)H, ,0.0123)F ,0.983¢
& S(d.4.4.4 {(H,0.0088)H,,00118)F ,0.976
o S(&.¢4.4.4 {(H,0.0090),H, ,0.0038)3 ,0.98%
10 S@.4.4.4 {(H,,0.0504),H, ,0.0273)H,, ,0.00709( ,0.91p
1 S(d,.4.4.,4 {(H,,0.0035),H,,,0.0564)H,, ,0.00469( ,0.93p
12 S (d,,4.4.,4 {(H,0.0412),H, ,0.0032)F ,0.959¢

Sub-step 4.2:.Construct the belief intervals for identified sagns

After identifying threat scenarios by combiningibtd in CCA matrix relations, Bel,

Pls and the belief intervals of evaluation gradasidentified threat scenarios are

determined by applying Eg. 2.2 and Eq. 2.3 as:

Bel,(H,, /T.(&.& @& .d)F > mH,

HPQDHPP
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PlsH,, /T,(d.&.4.8 % mi, & (a’ajalapaogs 1. (2.25)

H,,nH

Pa PPiD

s@.&.d,8={H,.[BelH, /M@ & .8 ,8)PH, T ta‘a’a’a)Fl..j
(2.26)
The belief intervals calculated for the identifilireat scenarios by using both

combination rules are provided in Table 2.10 arwited in Figure 2.4 and Figure

2.5.

Table 2.10:Belief intervals for threat scenarios.

§ No Threat Scenario Hyy Haz Has Hag Hse
Bel Pls Bel Pls Bel Pls Bel Pls Bel Pls

1 S(&.9,4,4 0 09280 0 1 0 1 0 1 0  0.9899
2 S(&.9.4 .4 0 0998 0 1 0 1 0 1 0 09328
3 S(&.4 .49 .8 0 0980 0 1 0 1 0 1 0 09804
4+ S(@&.4.4 .48 0 09986 0 1 0 09770 0 09712 0 08720
5 S(4.4 .4 .48 0 0993 0 09946 0 1 0 1 0 09216

o 6 S@.g.4 .8 0 09820 0 1 0 1 0 1 0 09104
7 S@&.4,4 .4 0 09424 0 09539 O 1 0 09948 0  0.9948
8 S(d.¢4.3 .4 0 09935 0 09935 0 1 0 09244 0  0.8488
o S(.¢.4.48 0 09760 0 1 0 1 0 09924 0 09924
0 S@&.4.4 .8 0 09976 0 1 0 1 0 09055 0 08110
u s(d,.q4.4,48 0 09870 0 09896 O 1 0 09788 0 09788
12 S(a,.d .4 .8 0 0985 0 1 0 1 0 09760 0 09760
1 S(&.¢ .49 .4 00269 09734 00134 09600 00131 0.9574
2 S(&.9.4 .4 00149 1
3 S(&.4.4.8 00470 0.9798 0.0202 0.9530
4 S(&,4,3,8 00077 09806 00137 09866 0.0058 09786
5 S(4.4 .4 .48 00126 1

% 6 S(4.4.4 .8 00096 1

> 1 §(&.4.4 .48 00061 09877 0 09939 0  0.9939
8 S(@&.4.4,8 0 09882 0 09882 00118 0.9912
o S .¢.4.8 00090 0992 0 09910 0  0.9910
10 S(&,4.8 .8 00504 09657 00273 09426 0.0070 09223
1 S(a,.qd .4 .48 00035 09389 00564 009919 0 09400 0  0.9400
12 S(d,.4.4 .8 00412 09968 0 09588 0  0.9588
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H3| H4| H5| H1) H2 H3 H4 HS

1 H2 H3 H4 H5 K1 H2 H3 H4 H5

1 H2 H3 H4 H5 K1 H2 H3 H4 H51HH2| H3| H4) H5 H1 H2 H3 H4 H5 H1 H2 HB H4 H5

H1|H2| H3| H4 H5 H1 HZ H3 H4 H5 H1 H2 HB HA

Threat Scenarip 10 Threat Scéhgridhreat Scenario 1P

Threat Scenario 9

t Bueszario 8

Threat Scenarig 6  Threat Scenafio 7

Threwricé | Threat Scenario §

Threat Scenario 2~ Threat Scenatjio 3

Threat Scenario

1.0000

0.9000 4
0.8000
0.7000 4
0.6000 4
0.5000 1
0.4000 4
0.3000 1
0.2000 4
0.1000

0.0000 4

mBel »Pls

Figure 2.4 : The belief intervals of DP’s rule.
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Threat Scenario 7
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Threat Scenarjo 3
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Threat Scenario|2

!

Threat Scenario 1

1
0.9
0.8
0.7
0.6
0.5
0.4
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0.2
0.1

0

mBel wPIs

Figure 2.5 : The belief intervals of Yager’s rule.

43



When the two rules are compared, the Yager's ralesters the conflict into the total
ignorance by adding K to joint evidence®@but the DP’s rule does not generate any
conflict. In other words, the Yager’'s rule as caowtive rule (AND-based on set
intersection) discards the conflict information andreases the total ignorance but
the DP’s rule as a disjunctive rule (OR-based danusgon) does not reject any
information asserted by the sources. It is seeh tth@a DP’s rule provides larger
belief intervals to more evaluation grades for Haene threat scenarios than the
Yager’s rule. Therefore, when the conflict is higlfer a higher K value), the total
ignorance will increase significantly and the Yageawule gives more stable and
robust results than the DP’s rule. The drawbackBfs rule is that it yields more

imprecise result than desirable when there isagtconflict among relations.
Step 5 :Evaluate the identified scenarios

At this step, the likelihood of identified scenariare ranked and compared based on
their belief intervals by the developed sortingoaithm. The results are interpreted
to guide threat assessment. The ranking of 12 iftehtthreat scenarios based on
their likelihoods is calculated and presented ibl@&®.11. Since there are two DST
combination rules and two sorting algorithms, foanking alternatives are presented
in Table 2.11. Rankings enable the DMs to identify higher likelihood scenarios

from the lower likelihood ones.

Risk bearer’s attitude, either risk seeking or aserse, is important when choosing
the approporiate ranking among four different ragkalternatives. For risk seeking
attitude, ranking based on Yager's rule with sgrtialgorithm by maximum

likelihood is appropriate and for risk averse atté, ranking based on DP’s rule with
sorting algorithm by minimum likelihood is approge. As risk bearer’s attitude is

subjective, it is assumed that risk bearer is nali@nd aware of this issue.

After threat assessment has been completed basdbeomtelligence at time t,
depending on the ranking of security risks from hlesst likelihood to lowest
likelihood, security risk management can be accahptl by allocating available
security risk management resources to securityradkicing countermeasures (e.g.,
for vulnerability reduction or consequence mitiga)i from the top of the list down.
Fine threat likelihood distinction among threat rem#os can be captured with

proposed EMA model that represents the availabbeitinnformation. Therefore,
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EMA model can be used to reason about threat tikell and provide adequate

precision for threat assessment.

Table 2.11:Threat scenario rankings based on belief intervals.

Ranking
] DP Yager

No. Threat Scenario _ _

By Min By Max By Min By Max

Likelihood Likelihood Likelihood Likelihood
1 (a5.&.9 .4 1 3 2 3
2 (3.9 ,8 .4 10 7 6 7
3 (a.&.9 .8 7 4 7 6
4 (5.4.8 .3 12 10 10 11
5 (a.8%.8 .4 8
6 (.%.8.4 4 4
7 (a.& .3 .4 2 1
8 (a.4.3 .4 9 11 11 10
9 (a.& .9 .4 3 2 3 2

&.8 .4 11 12 12 12

e
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2.5 Concluding Remarks of Chapter 2

In SRA, there is a need for understanding the threaolved. Therefore, the main
goal of this study is to identify threats for whitttere is intelligence of an imminent
threat and estimate their likelihoods for crititadility protection. For this purpose, a
novel approach called Evidence based Morphologicellysis (EMA) is proposed
by describing reasons for modelling uncertaintyD§T, the fundamentals of DST
and MA, and how DST is applied for threat likeliloestimation within MA.

Firstly, the appropriate uncertainty model for #trassessment of a critical facility is
discussed in detail by considering the type of inptormation at hand, the quality
of required output information, and the axiomatssumptions about the cause of
uncertainty. It is stated that DST is the apprdpriancertainty model for threat
likelihood estimation since threat is neither ramdevent nor vague event and

uncertainty associated with such intelligent ewenblves epistemic uncertainty.
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Secondly, qualitative method MA is integrated WiXBT. Original FD is determined
for evaluation of relations considering computatiocomplexity. Determination of

the FD for input data is the most informative aadhe efficient way of capturing
and quantifying the state of knowledge about tlelihood of a defined threat
scenario for a critical facility. The proposed mbd#ows to express qualitative
judgements using belief structures developed orb#sts of DST and make full use
of available information without information lossich exaggeration. EMA also
converts limited information to quantifiable thredikelihood parameter for

quantitative analysis based on the complete ama¢omplete information which can
be both linguistic evaluation grades and interval@ation grades. The notion of
time, t, is also introduced into the problem foratidn because a relation in MA may

change when more information is get by time.

To summarize, EMA is a quantified MA that integeatdA with DST. The strength
of MA provides both identifying and developing thiwusible scenarios while DST
allows for both the definition and the quantificeti of relationships between
parameters of the scenario in MA. Scenarios areldped by combining simple
relations using two most common DST combinatioresulThe two most common
DST combination rules (conjunctive and disconjurejtiare analyzed for threat
likelihood estimation by considering DM'’s attitu@fesk averse and risk seeking) and
new interval sorting algorithm is developed forrsaéo ranking. EMA analyzes and
handles a wide range of plausible scenarios maiéydhan hierarchical techniques
as tree structures with modest computational efRytusing EMA, alternative threat
scenarios can be formulated, developed and evdluatex structured way. This
approach provides required output data precisiocdmparing and ranking of threat

scenarios systematically.

An important feature of EMA is the ability to updatasily with less computational
burden. The threat is usually assumed to be staticdynamic SRA requires
dynamic threat assessment. Intelligent attackersviate and threat scenarios evolve
based on changing conditions as changing defetexd@®jology and social situations
in an adaptive way. When new intelligence informatabout adversary intent and
assumed adversary capabilities become availabled Ebh be easily updated by
recalculating only the affected threat scenarioelifoods or extending the

morphological field (adding new parameters or agdiaw parameter values). Since
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likelihood estimation is a continuous process, ribe/ information obtained can be

used easily as a feedback for the proposed modgidate evaluation.

As a result, EMA has been successfully used toesgmt the threat likelihood for
critical facility by synthesizing linguistic judgeant information of experts. This
approach better captures the uncertainty in thesstessment than traditional
probabilistic risk approaches that use point estésia EMA improves threat
assessment and is shown to be a useful tool iattlssessment of critical facilities
in a simple case study. EMA is not limited to threasessment and can also be
applied to likelihood estimation problems involvirgpistemic uncertainty and

scenario development.
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3. VULNERABILITY ASSESSMENT MODELLING

3.1 Introduction to Vulnerability Assessment

Critical facility vulnerability assessment is a hig complex strategic activity in
security risk assessment (SRA) and necessitates@dwsed quantified methodology
to support the decision making process in defen@mnmg. In the system
perspective, the critical facility, such as airpaiam, governmental facility, harbour,
nuclear power plant, oil plant etc., can be definedh system that relies on a group
of different interdependent logical and physicatitees as system functions and

system components.

The aim of this chapter is to present a realisgogpreach to determine the
vulnerability of such a system defended againstatiheersary attack under multiple
criteria which can be both qualitative and quattiea by considering these
interdependencies. The proposed approach, callery fintegrated vulnerability
assessment model (FIVAM), is based on fuzzy setrtheSimple Multi-Attribute
Rating Technique (SMART) and Fuzzy Cognitive Map£Ii) methodology in a
group decision-making environment (Akgun et al.1@0 The FIVAM approach is
presented step by step and applied to a simple stagg on airport vulnerability
assessment. The results of the application are amd@do those observed through a
classical vulnerability assessment model to ilatstthe effectiveness of the FIVAM.
Furthermore, FIVAM provides a framework to identifiye hidden vulnerabilities
caused by the functional interdependencies withénsystem. The results also show
that FIVAM quantifies the vulnerability of the sgst, system functions and system
components, and determines the most critical fanstiand components by

simulating the system behaviour.

For SRA, vulnerability assessment of a system digfdragainst adversary attack is
initial and crucial step (Garrick et al., 2004; Saitz et al., 2003). Vulnerability can

be defined as a “weakness in the system defended’nnost common and simplest
way. Indeed, more vulnerable means easier to beagedhor harmed. Although a
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comprehensive list of vulnerability definitions che found in Ezell (2007), the term
vulnerability still remains as a vague term. Theref a workable definition of
vulnerability is especially difficult to formulatend quantify. Vulnerability must be
quantifiable so that vulnerability assessment leefmiversary attack occurs can be
done. Vulnerability assessment is a systematic gsocof identification and
evaluation of system vulnerabilities (Garrick et, #004). Firstly, vulnerability
assessment is intended to identify the weaknedsassgstem that adversaries can
exploit. Then, vulnerabilities that are most sigraht are evaluated and focused on.
It may be impractical or usually even impossible @étiminate all system
vulnerabilities because of time and resource caimgs. It is required to be aware of
these vulnerabilities for developing the necessi@fgnce methods and for assigning

the defence resources consistently.

As critical facilities are complex both topologilyabnd functionally, critical facility
vulnerability assessment is a challenging issue.thfs complexity of a system
increases, ability to make precise and yet siganficstatements about its behaviour
diminishes (Zadeh, 1975a;b;c). Each critical facilas a system contains some
degree of vulnerability and vulnerabilities may aalifferent effects on the system
and its functions/services. System functions adrested as purposeful actions that
system components contribute to accomplish systéssionm. System functions are
not physical entities like system components ared dapendence between system
functions and system components, physical deperetens frequently difficult to
assess accurately. In addition to this, systemtiome are not independent of each
other. Because of high degree of uncertaintiess ilso difficult to discover
quantitative and precise information on system fionc interdependencies.
Interaction among system functions produces the rggnee of complex
relationships that are not predictable by the keolgke of any single system function.
Designing a realistic vulnerability assessment sgitates consideration of complex
causal relationships among various system functiogscal dependencies. Both the
presence of either hidden or poorly understooddieigendencies and their cascading
effects are required to be handled. Previous stuzhethis issue have largely ignored
the possible interrelationships among the systenctions that affect the system

State.
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It is extremely difficult in security case to obtaxact data under uncertainty against
an adversarial and adaptive opponent. Much of th®rmation related to
vulnerability assessment is not quantitative. Ratti@s incomplete and imprecise
information is expressed qualitatively as wordgpbrases in a natural language by
experts of different fields such as terrorism expesecurity experts, engineers, and
academicians. Individual opinions, evaluations eatthgs from these experts must
be identified and applied to vulnerability assesstmé/ulnerability assessment
problem can be recognized as a group decision-gaBDM) problem under
multiple criteria. Therefore, there is a value onsidering the fuzzy set theory and
GDM methods for critical facility vulnerability asssment.

The purpose of this chapter is to present a fuaigrated vulnerability assessment
model (FIVAM) based on fuzzy SMART and FCM techreéquto assess the
vulnerability of a critical facility in the GDM emonment. The proposed FIVAM
approach enables to determine the vulnerabilityesunder multiple criteria as well
as provides a framework to simulate the systemerability behaviour depending
on the vulnerabilities of the interdependent systenttions. Additionally, FIVAM
allows the decision makers to identify the hiddarinerabilities caused by the
functional interdependencies within the system.

The remainder of this chapter is organized as ViloSection 3.2 overviews the
existing approaches and the factors that influettte system vulnerability
assessment. In Section 3.3, fundamentals of fuztytlseory, the theoretical
framework of SMART and the principles of FCM argmesented. The proposed
FIVAM and its process flow are introduced in Secti@.4. The illustrative
application of FIVAM is performed over an airpodse study in Section 3.5. This
section also examines the utility of findings andcdsses the analysis results.

Conclusions and further issues are addressed tasgpgan the final section.

3.2 Literature Review on Vulnerability Assessment

There is confusion in the terms “vulnerability” atribk” as applied to SRA in the
literature. To overcome this issue, Ezell (2007spnted a relationship emerging
between vulnerability and risk. According to hisidst, vulnerability highlights the
notion of susceptibility to a scenario, whereak riecuses on the severity of
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consequences within the context of a scenario.dilitian to this, Willis (2007)
defined security risk as a function of threat, ‘eméibility and consequences.
Vulnerability assessment is generally employed astaprocess of risk assessment

in the previous studies (Garrick et al., 2004).

Recently, vulnerability assessment has gained ardimand complex nature, and
become an active area of research due to its siagastrategic significance in
various application areas. However, the focus @ tthapter is limited to the
researches for critical facility vulnerability assenent in SRA. This survey also
incorporates the studies for critical infrastruesivulnerability assessment briefly, as
critical facilities rely on these critical infragttures and have some key critical
infrastructure components together with system iipecomponents within their
system bounds. The critical infrastructures candb@ned as a complex set of
interconnected, interdependent, geographically edggal systems on which the
nation depend as energy distribution, telecommuoics, rail, water supply

networks etc.

In the literature, there have been several appesafdr vulnerability assessment and
these approaches can be categorized into two nmraupg as follows: qualitative
approaches and quantitative approaches. Qualitapipeoaches are generally applied
in the sub process of the risk assessment stuBagpdi and Gupta, 2007). Despite
the increasing significance of vulnerability assesst in SRA, researches and
analyses using quantitative methodologies have hbaety seen in the literature.
Bajpai and Gupta (2005) have shown that secumsty status of oil and gas facilities
can be assessed qualitatively by developing a igcusk factor table and
vulnerability assessment worksheet. They dividedf#tility into various zones and
identified the factors that influence the overaiturity of the facility by rating them
on a scale from 0 to 5. Qualitative methods as ajp& and Gupta (2005) permit
vulnerability ranking or separation into descripticategories of vulnerability
(Garrick et al., 2004). Therefore, qualitative noeth can be used to pre-assess the

vulnerability but much more is required to quanttig vulnerability.

Generally, existing quantitative methodology stsdiecused on one kind of critical
infrastructure such as energy (Salmeron et al.4R@8lecommunications (Murray et

al., 2007), water system (Ezell, 2007). Salmeroal.e{2004) developed a max-min
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model to determine the weaknesses in the eleaiddq prepare for terrorist attacks.
Through decomposition, they solved the problem wathheuristic on two test
systems. Murray et al. (2007) presented an opétigiz approach for identifying
interdiction bounds with respect to connectivitylam flow associated with a system
of origins and destinations. They applied this apph to the telecommunications
flow in United States. Apostolakis and Lemon (2005ed Multi Attribute Utility
Theory (MAUT) for the identification and prioritisgan of vulnerabilities in an
infrastructure that they modelled using intercote@aligraphs and employed graph
theory to identify the candidate vulnerable scersariEzell (2007) proposed an
infrastructure vulnerability assessment model basedAUT and applied it to a
medium-sized clean water system. In this model, siistem is presented in a
hierarchical structure and clean water system mdeéebmposition serves as the
structure of the value model with deterrence, detecdelay, and response value

functions used to measure protection for componatse system.

There are also various studies that models critidahstructure interdependencies.
Brown et al. (2004) applied simulation to study timpacts of disruptions and used
risk analysis to assess infrastructure interdep®rids. Their purpose was to identify
infrastructure risks and ways to reduce them. Miale(2007) proposed a modelling
and analysis framework that uses system dynamiostibnal models and nonlinear
optimization algorithms to study the entire intemaected system of infrastructures.
Their purpose was to simulate the effects of |laealicapacity losses on the entire
integrated system and to predict the extent ofstit@tage and its impact across the

entire system.

From the previous researches, it is observed thlaevability assessment in SRA is
recognized as a worldwide problem. Despite thelabidity of the researches on this
iIssue, the nature of the problem additionally séek¢he utilization of fuzzy logic in

order to deal with the uncertainty and the vagueméghe decision environment in
practice. Furthermore, in addition to the physid@lpendencies of the system
functions, the interdependencies among the systemtions, logical dependencies,
in other words logical vulnerabilities, have to éensidered and included into the
vulnerability computations. Quantifying the vulnieitay of such a system defended
against the adversary attack by considering therdependencies among the
functions of the system has not been adequatelyeasield in the literature. That's
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why; these existing approaches and decision-makindels are not satisfying the
solution of this problem in a consistent mannernt¢g this chapter addresses a
quantified fuzzy approach based on SMART and FCNhodology for managing a
more realistic and structured vulnerability asses#nprocess to provide practical

solutions in real life applications.

3.3 Theoretical Background for Vulnerability AssessmentModelling

In this section, theoretical background information triangular fuzzy numbers
(TENSs), linguistic variables, fuzzy SMART and FCMethodologies are presented,

respectively

3.3.1 Triangular fuzzy number

A fuzzy number is a convex, normalized fuzzy sdingel on the real line whose
membership function is at least semi continuous had the functional value

w1y (x) =1 at precisely one element (Ross, 1995). In othedwa fuzzy number is a

quantity whose value is imprecise rather than exaegtong the various types of a
fuzzy number such as trapezoidal, bell-shaped B, is the most popular one as it
is easy to use and interpret. A TFN is completelgresented by a triplet such as

M =(a|b, b|c)or M =(a, b, ¢) whose membership function can be defined as

(Kaufmann and Gupta, 1991)

0, X &,
%, as<x<bh
Hyg (X) = (3.1)
(c-X
E— b<sx<c
(c-b)
0, X e .

The parameters, b andc, respectively, denote the smallest possible vaheemost

promising value, and the largest possible valuedbacribe a fuzzy event. A sample

TEN, M =(a, b, c), is shown in Figure 3.1.

The fuzzy algebraic operations (addition, multigtion, division and subtraction) of

two TFNs M, =(a,h,¢) and M, =(a,,b,,c,) are applied as expressed within the
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contents of various researches (Kaufmann and Gu@al; Chen and Hwang,
1992).
1)

A

Figure 3.1: A triangular fuzzy number.

The result of fuzzy operations is a fuzzy numbed &n some situations a single
scalar quantity is needed as an output. Therefoig,required to convert a fuzzy
number into a crisp value. There are several ablaildefuzzification methods for
this purpose in the literature. Mean of maximumhrodt centroid method (or centre
of area) andi-cut methods are the most common defuzzificatiothods (Sugeno,
1985; Lee, 1990). Each of these methods has adyemtand disadvantages. In this

study, the centroid method is utilized due to itadicity and widespread use. A

TEN, M =(a,b, 0), is defuzzified by using the following centroid thed equation:

Tx,uM (x)dx JC'( Xx:aj dx+f( Qj dx
D(M) =2 _a\ b-a b _laibeg (3.2)

J:#M(x)dx E(E:Zjdﬁi(i:gdx 3

3.3.2 Linguistic variables

A linguistic variable is a variable whose values aords or sentences in a natural or
artificial language (Zadeh, 1975a;b;c). AccordimgZdadeh (1975a;b;c), it is very
difficult for conventional quantification to expseseasonably those situations that
are overtly complex or hard to define; thus, théiamoof a linguistic variable is
necessary in such situations. Since linguistic ales are not directly
mathematically operable, each linguistic varialsl@ssociated with a fuzzy number
characterizing the meaning of each generic verbain.t In fuzzy set theory,

conversion scales are applied to transform linguistrms into fuzzy numbers.
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Determining the number of conversion scales is giyeintuitive (Chen and
Hwang, 1992).

Since the use of fuzzy logic becomes very importamt the decision making
problem in this study, linguistic variables are dis® express the qualitative
judgments such as the relative importance weightsvidnerability criteria,

component and function dependency values, thegath system components, and
the degree of influence (or causal relationshipsjorag system functions. The
possible values for these variables are presentdalle 3.1-3.3. For example, the
decision makers are asked to describe the degremflaEnce among system
functions using a linguistic variable given in Tald.3 and each linguistic variable is
indicated by a TFN within the interval of [0, 1]h& linguistic variables in Table 3.3

and their membership functions are shown in Fi@u?e

Table 3.1:Linguistic variables for the importance weights aegpendency values.

Linguistic variable Triangular fuzzy number
Very low (VL) (0,0,0.2)

Low (L) (0,0.1,0.3)

Medium low (ML) (0.1,0.3,0.5)

Medium (M) (0.3,0.5,0.7)

Medium High (MH) (0.5,0.7,0.9)

High (H) (0.7,0.9,1)

Very High (VH) (0.9,1,1)

Table 3.2:Linguistic variables for the ratings of system caments.

Linguistic variable Triangular fuzzy number

Very poor (VP) (0,0,1)
Poor (P) 0,1, 3)
Medium Poor (MP) (1, 3,5)
Fair (F) (3,5, 7)
Medium Good (MG) (5,7,9)
Good (G) (7,9, 10)

Very Good (VG) (9, 10, 10)

Table 3.3:Linguistic variables for causal relationships ameggtem functions.

Linguistic variable Membership function Triangular fuzzy number

Very very low (VVL) p (0,0.1,0.2)
Very low (VL) i (0.1, 0.2,0.35)
Low (L) W (0.2,0.35,0.5)
Medium (M) Wm (0.35, 0.5, 0.65)
High (H) Un (0.5, 0.65, 0.8)
Very high (VH) Hyh (0.65, 0.8, 0.9)
Very very high (VVH) (0.8,0.9,1)
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0 01 02 0.35 0.5 0.65 08 09 linfluence
Figure 3.2: Membership functions of linguistic variables fousal relationships.

Besides the decision makers’ qualitative judgmetits, TFN can also be used to
represent the quantitative terms. For example pfaximately equal t@0’ can be
represented by20, 30, 3}; “approximately between 20 and 24” can be rejgreted
by (20, 22, 2%; the crisp numbetO can be represented b0 10, 1) as a special
TFN for the fuzzy algebraic operations (Liang, 199

3.3.3 The fundamentals of SMART

SMART is a compensatory method of multiple critii@ibute decision making
(MCDM), developed by Edwards in 1971. This methaasvdesigned to provide a
simple way to implement the beginnings of MAUT. SKA uses the Simple
Additive Weight (SAW) method as a basis for obtagnihe total values of individual
alternatives to rank them according to the ordempdference (Edwards, 1971;
Edwards, 1977; Edwards and Barron, 1994).

In this method, a score is obtained by adding tridbution from each criterion.
Since two items with different measurement unitsncd be added, normalization is
required to permit addition among criteria valuBse total score for each alternative
can be computed by multiplying the normalized vabieeach criterion for the
alternatives with the importance weight of the estdn and then summing these
products over all the criteria (Yoon and Hwang, 39%ormally, the total score of

an alternative can be expressed as

§=>wr, i=12,..m (3.3)
=1

where S is the total score of alternativew ; is the importance weight of criterign

r; is the normalized rating of the alternativéor the criterionj, mis the number of
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alternatives andh is the number of criteria. Finally, the alternatwith the highest
score is selected as the preferred one.

In SMART, weights of criteria and ratings of altatives are assigned directly using
different scales. The simplicity of the questiommé to the decision maker and the
easiness of the analysis done on the answers argrélat advantages of SMART.
These issues directly influence on the understandirihe decision maker about the

process used in the solution of the problem.

Another advantage of the SMART is that the decisimdel is independent of the
alternatives (Brownlow and Watson, 1987). Sincer#iegs of alternatives are not
relative, changing the number of alternatives atgr&d will not in itself change the
decision scores of the original alternatives (Edisaand Barron, 1994). This issue is
particularly useful when new alternatives or crédesire needed to be added to the
existing decision model. In that case, the evabmaprocess does not require any
further evaluations and can continue from the neviscores obtained.

Furthermore, as the time is a crucial factor fonagerial decision making, SMART
becomes a better method than the other MCDM methedsoften requires a short

period of decision cycle.

Along the years, the SMART has been successfullyliegh to various MCDM
problems and became very popular as its analysisrporates a wide variety of
quantitative and qualitative criteria. Due to maagvantages mentioned above,
SMART becomes a better choice to evaluate thealnitulnerability of system
components, system functions and the system wsihext to determined criteria, and
to deal with the ratings of both qualitative andhaitative criteria. Hence, in this
study, a fuzzy SMART approach proposed by Chou@nang (2007) in the GDM

situation to solve a strategic MCDM problem isimét.

3.3.4 Brief overview on FCM methodology

FCM methodology is a natural extension to cognitivaps, which can be found in
the fields of economics, sociology and politicalesce (Axelrod, 1976; Kosko,
1986). It is originated from the combination of Eyz ogic and Neural Networks for
modelling complex systems. A FCM describes the Wielia of a system in terms of
concepts; each concept represents an entity, & statariable or a characteristic of
the system (Dickerson and Kosko, 1997). FCMs aegl tis represent and to model
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the knowledge on the examining system. Existingltadge on the behaviour of the
system is stored in the structure of nodes andcotmections of the map. The
graphical illustration of an FCM is a signed fuzgaph with feedback, consisting of
nodes and weighted interconnections. Signed anghtexl arcs connect various
nodes representing the causal relationships thist exong concepts. A simple
graphical representation of FCMs is depicted omuife@.3.

(=@

NS @

45

Figure 3.3: A simple fuzzy cognitive map.

In Figure 3.3C; is a concept with a state value. The state vadmebe a fuzzy value
within [0, 1] that represents the existent degrea oconcept. The weighty; of an
arrow indicates the influence degree from the cawseeptC; to the effect concept
G, which can be a fuzzy value within [-1, 1]. Pogtior negative sign and fuzzy
weights (e.gWi,) model the expert knowledge of the causal relatigrs (Kosko,
1991). ConcepC; causally increase€; if the weight valueW; > 0 and causally
decreaseL; if W; < 0. WhenWj; = 0; conceptC; has no causal effect dg. In
practice, the sign ofV; indicates whether the relationship between comscépt
positive or negative, while the value ¥®¥; indicates how strongly conce;
influences concepC;. The forward or backward direction of causalityliocates

whether concept; causes concefd; or vice versa, respectively.

The value of each concept in iterations can be cwegpofrom the values of the
concepts in the preceding state using the followéggation (Xirogiannis et al.,
2004):

qt+1 — fLCrt +Zn: \M (;t] (3.4)
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where C™** is the value of concepf; at the steg + 1, C' is the value of the

interconnected concefy at stept, W is a corresponding fuzzy weight between two
given nodes, fron€; to C; andf is a given threshold function that transforms the
result into a value in the interval where concegds take values. The threshold
function f can be bivalentf(x)= 0 or 1), trivalent f(x)= -1, 0 or 1), tangent
hyperbolic {(x)=tanh(x) or the unipolar sigmoid function f(X)=1/(1+¢&™),
where/ is a constant). Hyperbolic function is used whenoepts can be negative
and their values belong to the interval [-1, 1]eTumipolar sigmoid function where
A >0 determines the steepness of the continuous fumatid is used when the values
of the concepts lie within [0, 1]. Thus, we usedpoiar sigmoid function in this

study and assume that 1.

The initial values of the concepts in the inputtee@nd the weighted arcs are set to
specific values based on the expert’s beliefs. nMéeds, the system is free to

interact. This interaction continues until the mode

* Reaches equilibrium at a fixed point, with the auitgalues, being decimals in the

interval, stabilizing at fixed numerical values.

e Exhibits limit cycle behaviour, with the output uak falling in a loop of

numerical values under a specific time period.

» Exhibits a chaotic behaviour, with each output eakeaching a variety of

numerical values in a non-deterministic, random.way

Modelling a system using FCM has several advantag€ds are very simple,
flexible and powerful tools for analyzing and mduhg the real world as a collection
of concepts and causal relationships. This sintplivelps the decision makers better
understand the underlying formal model and its eten. In addition, they show an
abstract representation and are capable of fuzagoreng (Stach et al., 2005).
Furthermore, even if the initial map of the problsnmcomplete or incorrect, further
additions to the map can be included, and the wsffe€ new parameters can be
quickly seen (Sharif and Irani, 2006a;b). Theref¢f€M is chosen as a modelling
approach in this study to simulate the system wvalmbty behaviour by taking into
account the possible interrelationships among yetem functions.
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3.4 Fuzzy Integrated Vulnerability Assessment Model

The proposed FIVAM framework in this study is basedfuzzy set theory, SMART
and FCM methodology in the GDM environment. In tiniegrated utilization, fuzzy
SMART is used as a simple and effective MCDM teghei to weight the
vulnerability criteria and to calculate the initialinerability value of the components
with respect to these weighted criteria. After aldting the initial vulnerability
values of all components, the physical dependemfiésctions on components and
the logical dependencies of system on functionsdatermined. Then, the initial
vulnerability values of both the functions and #ystem are computed using these
dependencies and component vulnerability valuesorigg the possible
interdependencies among the system functions.eméixt phase, FCM methodology
is applied to simulate the system vulnerability debur depending on the
vulnerabilities and the interdependencies among slstem functions. After
calculating the vulnerability values of the funcioin the long run by using FCM,
the system function and component vulnerabilitiess r@calculated by considering
the effects of these possible interdependenciesngmthe system functions.
According to these results, the most critical fusrts and components in the system
are determined and ranked. Finally, the vulneradslibefore and after the FCM
simulation are compared and evaluated. The propaeggioach consists of the

following steps is shown in Figure 3.4.

Step 1: Form a working group. The group size influences éffectiveness of the
GDM. As Yetton and Bottger (1983) pointed out greupf five are the most

effective and odd numbered groups help avoid datideadlocks.

Assume that there is a groupoflecision makers/experts (DMH);( i =1, 2, ..., $

who are responsible for all the activities in thénerability assessment process.

Step 2: Characterize the system defended. The DMs orgaades of meetings for
identifying the system functions and system compteonsidering the system
mission and system boundaries. Then, a hierarchysaém structure is constructed

using this information.
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Assume that there atesystem functionsK;, j =1, 2, ..., } and there arel. system
componentsTy, j =1, 2, ..., t, k=1, 2, Mg ) that are required by functidf) to

work properly.

Step 1 Form a working group.

!

Step 2 Characterize the system by identifying system
functions and system components

'

Step 3 Identify the vulnerability criteria for system
components

Step 4 Determine the weights of the vulnerability criger

!

Step & Calculate the initial vulnerability value of the
components with respect to the weighted criteria

§ !

Step & Construct the physical dependencies of functimmg
components and calculate the initial vulnerabiliglue of
the functions

l

Step 7 Construct the logical dependencies of system on
functions and calculate the initial vulnerabilitpalue of the
system

Step 8 Define the logical dependencies among the
functions and construct the FCM model.

i I

Step 9 Simulate the system and calculate the vulnenabil
value of system functions in the long run

Step 10 Recalculate the vulnerability values of the
components, functions and the system

|

Step 11 Evaluate the results

Figure 3.4: The steps of FIVAM approach.

Step 3: Identify the vulnerability criteria for system cponents. The DMs use
brainstorming GDM method for identifying the relevariteria of the internal and

external environment on vulnerability assessmembafiponents. Then, these criteria
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are categorized as qualitative or quantitative, aodntitative criteria are also
categorized as cost or benefit (polarity).

LetC, | =1, 2, ..., vbe the vulnerability criteria.

Step 4: Determine the weights of the vulnerability criteriBach DM assigns
linguistic weighting variables shown in Table 3dr feach criterion. Then, these
fuzzy values are aggregated and the relative impoet of the criteria is determined.
Let W, =(a.,h,¢), i=1,2,...,s, 1=1,2,... be the TFN corresponding to the
linguistic variable given to criteriof; by decision makeb;. The aggregated fuzzy
criterion Weight,\ﬁg =(&. k. &) 1=12,..\ of criterionC assessed by the group

of sDMs is calculated as follows:
- 1. S~
We =3 0> W, (3.5)

where aq=éDZ;:aﬂ, bq=§DZ:lq, and Cq=§Dicl,. Then, the

i=1

defuzzification ofV\7CI , denoted byd(\%) is calculated using Eq.3.2 as follows:
~ 1
dW.)== +th +¢) 1=1,2,...0 3.6
(We)=3(a + b + ¢) (3.6)
As the fuzzy SMART requires cardinal weights that maormalized to sum to 1, the

crisp value of weight for criterio@,, denoted a¥\. , is given by

We, :M, 1=1,2,...,v (3.7)

> d(W,)
1=1

where ZV:WQ =1.
1=1

Step 5:Calculate the initial vulnerability value of themaponents with respect to the
weighted criteria. The DMs use linguistic ratingrisbles shown in Table 3.2 to
assess fuzzy ratings of components with respesulicerability criteria, and then

compute aggregated fuzzy ratings. While calculatimeginitial vulnerability value of
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the components, it is assumed that the vulneralofiany component does not affect
the vulnerability of the other components.

Let %k' :(qk' b % ’& )l i:1’21"'lS’ j:1’ 27"'”t k:lizllk ,|:1’2""\ be the

linguistic rating assigned to the componenfy of function F; for

qualitative/subjective  criterion C; by decision maker D;. Similarly, let
qjk' :(qld l% ) IJ.L )’ i:112""’S’ j:1121"'l’t k:1’2’L4:] l|:1’21"'\‘ be the TFN (Or
crisp) cost or benefit value assessed to the coemioRk of function F; for
quantitative/objective criterio@; by decision makeb;. The following equations are
applied to normalize the quantitative value.

qijkl - minjk {qjkl}
max, {fijkl} —min jk{ dijkl}

% = 010 (3.8)

where )~<ijk| denotes the normalized fuzzy rating of fuzzy binefy, .

mank {fijkl} - qjkl
maxjk {fijkl} —min jk{ dijkl}

% = 010 (3.9)

where )~(ijk| denotes the normalized fuzzy rating of fuzzy cqgt The aggregated

fuzzy rating, X =(8¢, B+ G ), 15128 k=125, [=1,2,...v, of component

Tj« for criterionC; is calculated as
. _1 S

Then, the initial fuzzy vulnerability value of compentk of functionj, \7T,-k , can be

obtained by:
Vi, :;Wq 0% J=1,2,.008 k=12, (3.11)

whereVy = (ay,b,,G), 151,20t k=12,
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The component vulnerability valu\%rjk Is defuzzified using Eqg.3.2 and component

vulnerability value d(\7rjk) is determined. Then, normalized crisp component

vulnerability vaIueVTjk is calculated as follows:

d(%,)

Ve =— K2 =12t k=1,2,...u (3.12)
TJk rnlkax(d (\/Tjk )) i

Step 6: Construct the physical dependencies of functionscomponents and
calculate the initial vulnerability value of thenittions. To determine the initial
function vulnerabilities that depend on componeualngrability values, the DMs
assign linguistic variables shown in Table 3.1tfe¥ degree of dependency between

function and component.
Let W, =(g, R, ) =12, j=1,2,..,t k=12,u. be the TFN

corresponding to the linguistic variable given he dependency degree of function

Fj on componenTjx by decision makeb;. The aggregated fuzzy dependency degree,

VV/TJ_k =(a .8 .G ) j=12,...,t k=1,2,..u of componentTy assessed by the

jk

group ofs DMs is determined as:
- 1 S
W, :ED;\M‘ (3.13)

Then, the defuzzified dependency degrli@'élnk), is calculated using Eq.3.2 and

normalized as follows:

»

> d(¥,)

Ur.
Fi

whereZWTjk =1,j=1,2,..1.
k=1

The initial fuzzy vulnerability value for functiofr;, denoted as/, , is the sum

product of all component vulnerability values arteit associated dependency

degree as follows:
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\7Fj = | (erjk |]\7le<)’ j:l’z""’t (315)
k=1

where\7Fj =(a,b,6), j=1,2,...,1

Since, the threshold function in FCM model requiceisp concept values within

[0, 1], normalized crisp function vulnerability szVFj is calculated as follows:

1,2,..t (3.16)

where d(\7Fj) is the defuzzified function vulnerability value.

Step 7:Construct the logical dependencies of system ontims and calculate the
initial vulnerability value of the system. To detene the system vulnerability that
depends on function vulnerability values, the DMsign linguistic variables shown

in Table 3.1 for the degree of dependency betwgsters and function.

Let \/\7” =(g,h.¢), 1=1,2,...,5, j=1,2,... be the TFN corresponding to the

linguistic variable given to the dependency degoéesystem on functiorf by
decision maker D;. The aggregated fuzzy dependency degree,

V\7Fi =(a.h.¢) i=1,2,..., of componenf; assessed by the groupDMs is

defined as:
- 1S -
W =§DZWJ (3.17)

As in the previous steps, the fuzzy dependencye@e@&j, is defuzzified and

normalized value\/lj , Is calculated. Then, the vulnerability value floe systent

denoted asVg, is the sum product of all function vulnerabilialues and their

associated dependency degree as follows:

Vg = Zt:(WFj 0V ) (3.18)

=
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Step 8: Define the logical dependencies among the functamisconstruct the FCM
model. The DMs use linguistic influence variablémwn in Table 3.3 to assess

fuzzy causal relationships (influences) among trstesn functions.
Let 7, = @n.0n.Gn), i=1,2,...,8, jm=1,2,..., be the TFN corresponding to the

linguistic variable assigned to the influence degoé functionF; to functionF, by

decision maker D,. The aggregated fuzzy influence value,
Fim = @0 0jms Cin)s 1, M=1,2,..., whererle =0, is calculated as:
s 1S
fin =30 D Fin (3.19)
i=1

As the unipolar sigmoid function in FCM model remsi crisp values, the crisp

influence valuer, is determined by defuzzifying the aggregated fuadjuence

valuer,  using Eq.3.2.

Step 9: Simulate the system and calculate the vulnerabudiue of the system
functions in the long run. The vulnerability valeé a system function in each

iteration is calculated using Eq.3.4 as follows:

t
Vi, = f[VFJ D M, ] =12t (3.20)
mEL e |
When the model reaches equilibrium at a fixed paftér some iterations, new crisp

vulnerability value of for functioffr;, denoted ase , is determined.

Step 10:Recalculate the vulnerability values of the compasgefunctions and the
system. As the result of the FCM simulation is thection vulnerabilities at the
equilibrium point, first of all, the hidden vulnduifity of the functions have to be
determined. If functiorfF; influences functiorfr,, there is a hidden vulnerability on
cause functiorF; because of the dependencyFaf on F;. This hidden vulnerability
Vg of a functionF; is calculated as

t

VP = lZﬁ‘tw(rjmv;;), j=1,2,..t (3.21)
m=1,m |

Then, the real vulnerability value of functiéiis the sum of initial and the hidden

vulnerabilities as follows:
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Vi =V +thJ_ L j=1,2,...t (3.22)

The hidden vulnerability value of the systevg‘, is calculated by the sum product

of hidden function vulnerability values and thegsaciated dependency degree as

t
AED Y \AVLY (3.23)
=1

The real vulnerability value of the systeW;, is therefore given by
VY =Vg+Vy (3.24)

Similarly, the hidden function vulnerabilities calated by the FCM simulation have
to be reflected to the component vulnerabilitiesportional to the component-
function dependencies. To do this, the vulnerabilues of the components are

recalculated by the following equations:

Vi o=We fVe, j=1,2,.,0 k=120 (3.25)

Vi =Vo +VE L =120 k=12, (3.26)
Step 11:Evaluate the results. The system components araddidas based on their
vulnerability values before and after FCM simulatiare ranked and compared.

Furthermore, the hidden vulnerabilities are presgtaind discussed.

The detailed descriptions of each step are elabdiatthe following illustrative case

study section.

3.5An lllustrative Example for Vulnerability Assessmert

In this section, the proposed FIVAM approach azidesd in Section 4 is applied to
a hypothetical Airport X to discover hidden vulngigies for improving its site
security. When the security requirements are cemsdlagainst the possible terrorist
attacks, the challenge of vulnerability assessnfentan airport becomes very
complicated.

Note that all the values used throughout this exarage purely generic and notional.

Even though this case study is very simple andréselts may not increase our
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knowledge about the system, it validates the FIVAproach. A step-by-step
algorithm for this example is as follows:

Step 1:In this case study, the number of DMs who werelved in the decision-
making process is selected as five. In order terekthe assessment to account for
the conflicts among different interest groups wheedndifferent objectives, goals and
criteria; one terrorism expert, one security expémo representatives from the
airport administration and one academician from Faeulty of Aeronautics have

participated in the decision process as DMs.

In the evaluation process, while the terrorism aeadurity experts mostly deal with
the security issues, representatives from an dir@aministration and the
academician concern the functionality of Airport Phe authors support these DMs
with their technical knowledge on the methodolo@eries of meetings were
organized with participation of these DMs and lal tssues including comments and
suggestions are discussed at these meetings.

Step 2: The DMs identified the relevant functions and comgrats of Airport X by
considering the following three questions: “Whathie principal mission of Airport
X?”, “What system functions are essential to cauy this mission by Airport X?”
and “What system components do these system funsctdepend on for their
success?”. For simplification, only the criticahf@iions have been considered and
their most relevant components have been focusedat tile component abstraction

level in this study.

In order to accomplish its mission, the DMs deteedi that Airport X has to provide
six main functions: (1) Ground handling service &Hor servicing, maintenance
and engineering of aircrafts; (2) Passenger se(A&} for gate-management, check-
in desk allocation, and flight-information display8) Cargo and baggage service
(CBS) function for transportation of payload; (4)r Araffic management service
(ATMS) for approach, landing, taxiing, take off ami@parture of aircrafts; (5)
Emergency services (ES) for fire fighting, medieald security services; and (6)
Infrastructure services (IS) for maintaining thengel service capability of the

airport.

After identifying the relevant functions of AirpoX, the DMs determined 20 system

components by answering the third question menti@a®ve. Table 3.4 summarizes
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the functions and the components of Airport X ihi@rarchical structure and Figure
1.6 illustrates the sketch of Airport X.

Table 3.4:Hierarchical system structure of airport X.

Components Functions System
T,1 Airfield Maintenance Building F Ground Handling Service Airport X (S)
T1, Fuel Complex Building (GHS)

T,; Passenger Terminal , F Passenger Service (PS)

T,, Parking Facility

T, Bus Station

Ta; Custom Building F Cargo andBaggage Servic
Ts, Cargo Terminal (CBS)

T4 Air Traffic Control and Tower F Air Traffic Management
T., Apron Service (ATMS)

T4 Runway and Taxiway

Ts; Main Entrance and Security Control Buildifg Emergency Service (ES)
Ts, Security Building

Tss Aircraft Rescue and Fire Fighting Building

Ts4 Police Station Building

Tss Fuel Complex Guard Building

Tss Guard Tower

Ts; Fencing

Te1 Heating Centre Building & Infrastructure Service (IS)
Te> Power Centre Building

Tes Water Storage Building

Step 3:In this study, the key factors for assessing thaenability of Airport X are

derived from literature reviews, comprehensive stigation and consultation with
DMs. After a comprehensive discussion, all the eatbn criteria for the component
vulnerability assessment are identified accordinglye five DMs collectively set up

five criteria and the detail descriptions of thes&eria are listed below:

* Deterrence (9: Deterrence is defined as defence methods impieedehat are
perceived by terrorists as too difficult to defeBtie presence of security controls
such as access control, perimeter protection, prbgleting and use of metal
detector/X-ray/Closed Circuit Television at entrarand at all critical locations
increase the deterrence of the component by logelte attractiveness of a
component as a target.

* Detection (G): Detection is defined as the capability of detaing that an

unauthorized terrorist action has occurred or isuging, including: sensing,
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communicating alarm to control centre, and assgstia alarm (Ezell, 2007).
The high value of detection decreases the vulnirabf a component.

« Delay (G): Delay is defined as the time that an elemerd physical protection
system is designed to impede terrorist penetratitmor exit from the protected
area (Ezell, 2007). Decreasing the delay will redilne potential for a component
to be a target.

* Response (§: Response is defined as a time to respond toeatthResponse
activities occurred immediately after a terroridtaek includes stabilizing
affected areas, immediate medical care and evacudtiring the terrorist attack.
Short response time decreases the vulnerabiliayammponent.

* Recovery (G): Recovery is defined as a time to return thecif@ areas and
persons to their pre-event status. It includesoriggg critical elements, assisting
affected persons, and coordinating relief effoftesrahe possible terrorist attacks
for the worst case scenario. Quicker recovery @bmponent from an attack
indicates that the component is less vulnerable.

As a result, Deterrence {ICand Detection (g are the qualitative criteria; whereas

Delay (G), Response (§ and Recovery (£} are the quantitative benefit criteria.

Step 4: The linguistic weighting variables (Table 3.1) atieir respective fuzzy

numbers for DMs are then used to assess the inmoertaeights of the evaluation
criteria. These assigned fuzzy values are aggreédayearithmetic mean method
using Eq.3.1 and the fuzzy weights of individuatesia can then be determined
(Table 3.5). Furthermore, crisp and normalized Weiglues are also calculated by
using Egs. 3.2-3.3 and included in the table.

Table 3.5:The relative importance weights of the five criggoy five DMs.

Criteria Polarity DM'’s linguistics weights Aggregated weights
DM; DM, DM; DM, DMs Fuzzy number Defuzzified Normalized

C: - H H VH MH M (0.62,0.8,0.92) 0.780 0.275
G, - H MH M M ML (0.38,0.58,0.76) 0.573 0.202
Cs + M ML L M ML (0.16, 0.34,0.54) 0.347 0.122
C, + MH M H M MH (0.46, 0.66, 0.84) 0.653 0.231
Cs + M VL H M M (0.32,0.48,0.64) 0.480 0.169
Polarity : ‘+’ = benefit criteria, ‘-’ = cost critéa
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The weights of the criteria presented in Table i&&eal that the most important

criteria for assessing vulnerability of a componentdeterrence” WC1 =0.275);

whereas the least important criteria is “dela\WCS( =0.122).

Step 5: The linguistic rating variables (Table 3.2) andithrespective fuzzy numbers
for DMs are used to assess the fuzzy ratings oRtheomponents with respect to
each qualitative/quantitative criterion. As the DM®metimes have different
understandings of the same performance data, the &Mpted linguistic terms in
Table 2 to express their opinions about the radingvery component regarding each
guantitative criterion, Delay @, Response (§, and Recovery (§ in this case
study. For instance, some DMs might think that Butes was a “good” or “very
good” delay for “Air Traffic Control and Towertomponent, while the others
might think that value was “fair” or “medium pa®. Alternatively, in accordance
with crisp data, the normalized values of individugantitative criteria can be
computed by using Eq.3.3 or Eq.3.5. The aggregatery rating of each criterion
can be computed by EQ.3.6, and then, the aggre@aey ratings are formed. The
fuzzy vulnerability values of components are ol#diusing Eq.3.7 and the results
are listed in Table 3.6. Furthermore, crisp andmadized vulnerability values of
components and their rankings are also calculayedsing Eq.3.8 and included in
the table.

Table 3.6:Aggregated fuzzy ratings and vulnerability of comeots.

Aggregated fuzzy ratings regarding each criterion ©mponent vulnerability value

Ci C Cs Csy Cs Fuzzy number Defuz.Norm. Rank
T (2.6,4.6,6.6)(1.8,3.2,5) (4.6,6.6,8.4)(5,7,8.6) (4.6,6.6,8.48B.58, 5.45, 7.26)5.430 0.904 5
Tz (3,57 (3.2,5,7) (3.4,54,7.8.8,5.8,7.8Y4.2,6.2,8.2(3.48, 5.44, 7.445.450 0.907 4
T2 (4.6,6.6,8.4)(0.2,1.2,3) (0.2,1.2,3) (2,3.8,5.8) (6.6,84)(2.91, 4.51, 6.254.556 0.758 9
T2 (1,2.6,4.6) (58,7.6,8.8) (3,5, 7) (2.2,4.2,6.2Y0.2,1.2,3) (2.36,4.04,5.84.079 0.679 11
T,: (0.8,2.6,4.6) (5,7,8.6) (4.6,6.6,84B.4,54,7.4)(0.2,1.2,3) (2.61,4.39,6.29).417 0.735 10
T (3,5,7) (4.2,6.2,8.2(4.2,6.2,8) (1.8,3.8,5.8]1,2.4,4.2) (2.77,4.67,6.614.687 0.780 8
Ts; (2.6, 4.6, 6.6) (5,7, 8.8) (5,7,8.8) (4.2,6.2,8.2D.8,2,3.8) (3.44,5.31,7.2H.320 0.886 6
T4 (3.8,5.8,7.6(0.4, 1.8, 3.8)0.4, 1.6, 3.4)2.6, 4.6, 6.6)(7.4,9,9.8) (3.03,4.74, 6.46).744 0.790 7
Taz (1,26,46) (5.4,74,9) (12,3,5 (2.6,48) (0,04,1.8) (2.11,3.71,5.58.783 0.630 12
Ts: (1,2.6,4.6) (3.4,54,742.2,42,6.2) (3,5,7) (0.2,1.2,3) (1.96, 3.68,5.68)760 0.626 13
Ts; (0,04,18) (0,0.2,14) (0,0.2,1.4) (0,a8) (0.8,2.2,4.20.14, 0.64, 2.08)0.951 0.158 20
Ts; (0,0.2,1.4) (0,0.2,1.4) (0,0,1 (0,0.2,14)8,3.8,5.8)(0.3,0.79,2.1) 1.0620.177 19
Ts: (1.6, 3.4,5.4(0.6,2.2,4.2)(0.2,1,2.6) (1.2,3,5) (1,2.6,4.6) (1.03,2449)2.752 0.458 14
Tsa (0,0.2,1.4) (0,04,18) (0,0.2,14) (0.228) (2.6, 4.6, 6.6]0.49, 1.17, 2.64)1.432 0.238 16
Ts: (0,0.6,2.2) (0.4,1.8,3.8f04,14,3) (0,0.6,2.2) (0.2,1.2,3) (0.1841.2.76)1.321 0.220 17
Tse (0,0.6,2.2) (0.4,1.8,3.8]0.2,1.2,3) (0,0.6,2.2) (0,0.4,1.8) (0.1B8).2.55)1.181 0.197 18
Ts; (0,0.6,2.2) (0.2,1.2,3) (3.8,5.8,7(8)2,1.4,3.4)(0,0.2,1.4) (0.55,1.47,3.19.738 0.289 15
Tes (3,5,7) (3.8,5.8,7.6.6,4.6,6.6(2.6,4.6,6.6)(7,8.8,9.8) (3.7,5.66, 7.45p.606 0.933 2
Te2(3.8,58,78) (3,5,7) (3.8,58,78) (3,5,7) (7.8,9.4,10§4.13, 6.06, 7.83%6.007 1.000 1
Tez (2.6, 4.6, 6.6(3.4,5.4,7.4(3.4,5.4,7.4)2.6,4.6,6.6)(7.4,9,9.8) (3.67,5.61,7.4p.560 0.926 3
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In Table 3.6, it is identified that the three mustnerable components are “Power
Centre Building” (\/T62 =1.000), “Heating Centre Building” ‘(/T61 =0.933) and

“Water Storage Building” ‘(T63 =0.926); whereas the three least vulnerable
components are “Main Entrance and Security Corgrolding” (VT51 =0.158),
“Security Building” (\/T52 =0.177) and “Guard Tower”‘(/T56 =0.197). These are the

most and the least probable possible targets éotatiorist attacks.

Step 6: In this step, the DMs use the linguistic weightiragiables in Table 3.1 to
assess the physical degree of dependency betweetiofuts and components. These
assigned fuzzy values are aggregated and defukaifseng EQs.3.9-3.10 and the
crisp dependency degrees (weights) are determifi@bld 3.7). The fuzzy
vulnerability values of functions are then calcethtby the sum product of all
component vulnerability values and their associatiependency degrees using
Eq.3.11 (Table 3.7). In addition to this, crisp ama¥malized vulnerability values of
functions and their rankings are also computedgugig.3.12 and included in the
table.

Table 3.7:Dependency degree of components and vulnerabflityn@tions.

Func. Comp Aggregated degree of dependency Function vulnerdity value
Fuzzy number Defuzzified Normalized Fuzzy number  Defuzzified Normalized Rank
Fy T (0.66, 0.84, 0.96) 0.82 0.52 (3.53,5.45,7.35) 4486. 0.932 2
T, (0.58,0.78, 0.92) 0.76 0.48
F, To (0.82,0.96, 1) 0.93 0.73 (2.79,4.42,6.19) 4.470 0.766 4
Ta (0.04, 0.16, 0.34) 0.18 0.14
Tos (0.04, 0.14,0.3) 0.16 0.13
Fs Tag (0.38,0.58, 0.78) 0.58 0.42 (3.16,5.04, 6.96) 055. 0.865 3
T, (0.62, 0.8, 0.94) 0.79 0.58
F4 Taz (0.82,0.96, 1) 0.93 0.50 (2.52, 4.22, 6.03) 4.256 0.729 5
T4z (0.16, 0.34, 0.54) 0.35 0.19
Tas (0.38,0.58,0.78) 0.58 0.31
Fs Tss (0.46, 0.66, 0.84) 0.65 0.21 (0.38,1.17,2.74) 4249. 0.245 6
Ts, (0.38, 0.58, 0.76) 0.57 0.19
Tss (0.26, 0.46, 0.66) 0.46 0.15
Tsq (0.26, 0.46, 0.66) 0.46 0.15
Tss (0.1, 0.26, 0.46) 0.27 0.09
Tse (0.26, 0.46, 0.66) 0.46 0.15
Ts; (0.04, 0.16, 0.34) 0.18 0.06
Fe Te1 (0.1, 0.24, 0.42) 0.25 0.19 (3.95,5.89,7.67) 38.8 1.000 1
Tez (0.62, 0.82, 0.96) 0.80 0.60
Tes (0.1, 0.26, 0.46) 0.27 0.21
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In Table 3.7, it is seen that the most vulnerablecfion is “Infrastructure Service
(1S)” (VF6 =1.000). On the other hand, the least vulnerable funcisofEmergency

Service (ES)” ’(/F5 =0.245).

Step 7:The DMs assign the linguistic weighting variakile3able 3.1 for the logical
degree of dependency between Airport X and itstfans. These assigned fuzzy
values are aggregated using Eq.3.13. The crisperaibility value of Airport X is
then calculated by the sum product of all functiarinerability values and their
associated aggregated dependency degrees usind£@rable 3.8). As seen from
the table, the Airport X has a vulnerability valoe0.749. By the end of this step,
vulnerability assessment is conducted using the BWMApproach like the other
classical models. However, in the next steps FCMapplied to identify and
determine the real and hidden vulnerabilities cdudey the functional

interdependencies among the system functions.

Table 3.8:Dependency degree of functions and vulnerabilitye®f airport X.

Func. Aggregated degree of dependency System vulnerability
Fuzzy number Defuzzified Normalized value

F (0.42,0.62, 0.82) 0.62 0.15

F> (0.7,0.88, 0.98) 0.85 0.21

Fs (0.34,0.54,0.74) 0.54 0.13 0.749

F4 (0.74, 0.9, 0.98) 0.87 0.22 '

Fs (0.42,0.62, 0.8) 0.61 0.15

Fe (0.34, 0.54,0.74) 0.54 0.13

Step 8: The linguistic influence variables (Table 3.3) atheir respective fuzzy
numbers for DMs are then used to define the causakionships among the
functions of Airport X. These fuzzy values are aggted by using Eq.3.15 and crisp
influence matrix is constructed after defuzzicatfon the FCM simulation (Table
3.9). Furthermore, the FCM model for the functiaisAirport X is presented in
Figure 3.5.

Table 3.9:Causal relationships among the functions of airgort

Functions F F F; Fs Fs Fs

F. 0.00 0.36 0.00 0.27 0.00 0.00
F, 0.00 0.00 0.00 0.25 0.00 0.00
Fs 0.00 0.27 0.00 0.00 0.00 0.00
F. 0.00 0.64 0.00 0.00 0.00 0.00
Fs 0.67 0.44 0.35 0.59 0.00 0.64
Fs 0.56 0.38 0.27 0.38 0.50 0.00
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0.50

Figure 3.5: FCM model for airport X.

Step 9: The FCM model is simulated using Eq.3.16 and fonctulnerability values
reach an equilibrium state after a few iteratidrtse calculated function vulnerability
values for 10 iterations are presented in Tabl® arid equilibrium of concept values
are shown in Figure 3.6.

Table 3.10:The vulnerability values of functions for 10 itacats.

Functions Iterations

1 2 3 4 5 6 7 8 9 10
F. 0.932 0.840 0.848 0.855 0.858 0.859 0.859 0.85859. 0.859
F, 0.766 0.908 0.928 0.933 0.934 0.935 0.935 0.93®350. 0.935
Fs 0.865 0.773 0.772 0.776 0.778 0.779 0.779 0.77979. 0.779
Fs 0.729 0.845 0.879 0.888 0.890 0.890 0.891 0.89B910. 0.891
Fs 0.245 0.678 0.742 0.755 0.758 0.759 0.759 0.75959. 0.759
Fs 1.000 0.761 0.768 0.777 0.779 0.780 0.781 0.787810. 0.781

As seen from Table 3.10 and Figure 3.6, after @& Fsimulation, PS function has
become the most vulnerable function in the long with a vulnerability value of

Vi, =0.935. The reason is that, this function is affectedaliythe other functions.

This means an increase in the vulnerability valuany function creates an increase
in the vulnerability value of PS function. On thiher hand, ES function has become

relatively the least vulnerable function with. = 0.759 after the simulation as it is

|
5

the least affected function in the system. Theltesao Table 3.10 also show that
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after the FCM simulation the most influenced fuothas the highest vulnerability

value; whereas the least influenced function haddtvest vulnerability value.

Function vulnerability value
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Figure 3.6: Equilibrium state of the function vulnerability was.

Step 10:The hidden and real vulnerability values of the poments, functions and

the system are calculated using Eqs.3.17-3.26 lamdrsin Table 3.11.

Step 11:The rankings and the vulnerability values befard after FCM simulation
are presented in Table 3.11. It is observed tlatahks of functions and components
are different due to the hidden vulnerabilitiessmliby the logical interdependencies
among the functions. For instance, while IS functias the same rank before and
after the simulation, ES functions has greatlyedéht ranks. Although, this function
has the least vulnerability before simulation,ecbmes the second most vulnerable

after simulation as it has the highest hidden walbidity (VF*; =2.293). On the other

hand, PS function becomes the least critical famctf Airport X having the least
real vulnerability value after simulation. It cae lboncluded that the IS function,

with the real vulnerability o/ =2.774, is determined as the most critical function
for Airport X.

At the component level, this rank difference is astmuch as it is at the functional
level. From Table 3.11, it is identified that “Paw€entre Building” having the
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highest real vulnerability o\f/T62 =2.069, is the most critical component for Airport
X. This component also has the highest hidden vabikty (VT:2 =1.069). “Main
Entrance and Security Control Building” has thast vulnerability‘qT51 =0.158)

and rank before the simulation, but its rank anticality is increased by five after

the simulation since it has the second highestdmiddilnerability (/T:1 =0.490).

Table 3.11:Comparison of the vulnerability values.

Before FCM After FCM Hidden
simulation simulation vulnerability
Vulnerability Rank Vulnerability Rank

System 0.749 - 1.621 - 0.872
Functions
F 0.932 2 1.506 3 0.574
F, 0.766 4 0.985 6 0.220
Fs 0.865 3 1.121 5 0.256
F4 0.729 5 1.330 4 0.601
Fs 0.245 6 2.538 2 2.293
Fs 1.000 1 2.774 1 1.774
Components
Ti 0.904 5 1.202 4 0.298
Tiz 0.907 4 1.183 5 0.276
T 0.758 9 0.919 8 0.161
T 0.679 11 0.710 14 0.031
Tz 0.735 10 0.763 12 0.028
Ta 0.780 8 0.889 9 0.108
Ts; 0.886 6 1.033 7 0.147
Ta 0.790 7 1.090 6 0.301
Taz 0.630 12 0.742 13 0.112
Tz 0.626 13 0.814 10 0.188
Ts 0.158 20 0.648 15 0.490
Ts; 0.177 19 0.606 16 0.430
Tsz 0.458 14 0.803 11 0.345
Tsy 0.238 16 0.583 17 0.345
Tse 0.220 17 0.425 19 0.205
Tse 0.197 18 0.541 18 0.345
Tsy 0.289 15 0.424 20 0.135
Te 0.933 2 1.272 3 0.339
Te: 1.000 1 2.069 1 1.069
Tez 0.926 3 1.291 2 0.365

The high vulnerable or in other words most criticamponents of Airport X are the
most probable possible targets for the terrorishcas. Hence, the appropriate
defence resource should be allocated in the foigwdefence resource planning

process to improve site security of Airport X.
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Finally, the systematic application of the FIVAMtiséactorily contributes the
overall vulnerability assessment process of AirparfThis approach can originally
be utilized as a decision aid by the related marsagaeoreover, it provides both
motivation and contributions on vulnerability assaent process as one of the

critical administrative issue consistently.

3.6 Concluding Remarks of Chapter 3

In the last decade, the number of adversary atté@wkthe critical facilities has
increased dramatically and SRA has gained more ritapce. Managing the risk of
these facilities for the adversary attacks depemussystematic and quantitative

vulnerability assessment.

Vulnerability assessment should be conducted aethevels: system level, system
function level and system component level. Furtteeanthe most critical functions
and components in the system have to be deternanddranked to support the

following defence resource planning process.

When the nature of this problem is analyzed, inse¢hat the fuzzy SMART and
FCM integration, proposed FIVAM framework, can leragnized as a suitable
research methodology towards the solution of thisblem. FIVAM takes the
advantages of the fuzzy SMART for determining tlnerability of system under
multiple qualitative/quantitative criteria in GDMneironment, and FCM for

modelling the behaviour of the system to moniter\hinerability.

The case application of an example airport illussahe utility and effectiveness of
the proposed FIVAM framework. The quantitative fimgs on the case study
highlight that possible interrelationships among thystem functions are very
significant in vulnerability assessment of a cati€acility and they have to be taken
into account in the system perspective. By doing, thidden vulnerabilities can be
identified consistently. That's why; the FIVAM fraawork becomes more realistic
and applicable to overcome this issue. FurthermBPréAM can be utilized as a
simple and practical toolkit for this type of rddk problems for enhancing the
current procedures in vulnerability assessmentga®cTo realize this idea, FIVAM
can be applied similarly in some cases to assessviinerability of any other
facilities that can be a metro station, shoppingll,m@etro station, harbour,
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governmental facility, military bases, chemicalnfg oil refinery etc. In addition to
this, both the number of evaluation criteria ansteyn components can be increased

in order to conduct a detailed assessment at tbatipnal and tactical level.

The further research can be performed on exterttiméIVAM framework to assign
defence resources for the most vulnerable compsrtentomprehensively support
this critical decision-making problem. For this pose, SWOT analysis as a
strategy-making tool can be integrated into the AW framework for identifying

and formulating appropriate counter-measure stiegéeg defence planning.
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4. CONSEQUENCE ASSESSMENT MODELLING

4.1 Introduction to Consequence Assessment

In SRA, the objective of consequence assessmen) C# estimate the expected
magnitudes and types of losses (e.g., deathsjasjwr property damage) associated
with a threat scenario given adversary success.iSCAn important part of SRA
because wrong CA leads to the wrong estimatiorhefdecurity risk. The most
important aspect of CA is the identification, qufacdition and integration of all
different types of losses specific to security rigkile estimating the total

consequence of a critical facility.

In the literature, there are models that estintagedamage to a building based on the
guantity of fire, explosion, and toxic release ahsbersion. The CA schemes for
chemical process industries are mainly common énliterature and they are based
on the models of accidental fire, explosion, andctoelease and dispersion (Khan
and Abbasi, 1998; 1999; 2000; Arunraj and MaitiD20 The existing models of
accidental fire, explosion, and toxic release asgatsion are mainly based on either
empirical methods or numerical methods (Remennii2®@3). Empirical methods
are analytical methods that are correlations wijpeemental data while numerical
methods are computational fluid dynamics model$ #na based on mathematical

equations of basic physic laws.

The available complex methodologies lacks in edtimgathe losses due to security
risk consequences. Threat scenario as an initi@uegt causes explosions and fire
or combinations of these main events leading tedesTherefore, model estimating
the effects of explosive blast on humans and strastdue to size of explosions and
fire is needed. Therefore, the consequence moddiin SRA has to be performed
by considering all major losses of security riskhaoptimal complexity and optimal

time to improve the SRA.

This chapter proposes the Monte Carlo SimulatioselaCA model (CAM) that
combines different types of consequences for SRaerAreviewing the existing
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approaches and the factors that influence the @& rémainder of this chapter is
organized as follows: In Section 4.2, theoreticatkground information for the
proposed approach is represented. The proposed| randeits process flow are
introduced in Section 4.3. The illustrative appiica of the proposed approach is
performed over an airport case study in Section Bids section also examines the
utility of findings and discusses the analysis lssi/Conclusions and further issues

are addressed respectively in the final section.

4.2 Theoretical Background for Consequence Assessmentddelling

In this section, theoretical background information Monte Carlo simulation
(MCS) and Trinitrotoluene (TNT) equivalent methad presented, respectively.

4.2.1 Monte Carlo simulation

MCS is a complex stochastic problem technique usedolve a wide range of
mathematical problems in numerous fields such ashenaatics, physics and
engineering (Rubinstein and Kroese, 2007). MCS ssduto approximate the
probability of certain outcomes by running multiptels, called simulations, using
random variables. The basic idea of MCS is as Wi@dloMCS randomly selects
values from given distributions for the defined dam variables of the given
problem. Then, it forms one possible solution t® pmoblem for each trial. Finally,
these trials give a range of possible solutionsuyltiag in a probability distribution
for the outcome parameter. MCS is also called sandampling technique or

statistical experimental approach.

In this study, MCS is used to calculate the consaqge of given threat scenarios for
CA.

4.2.2 TNT equivalent method

TNT equivalent method is a set of equations whedhte the energy of explosion in
terms of TNT equivalent weight, distance from espdo, and blast pressure in the
literature (Cooper, 1996; Diaz Alonso et al., 2006az Alonso et al., 2007; Diaz
Alonso et al., 2008; Usmani and Kirk, 2008; Usmenal., 2009). TNT equivalent
method is widely used empirical method and compratly simple for loss

calculation. The experimental data show that whdferdnt amount of TNT
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explodes, the shock wave overpressure producetheaalculated by the following
scaling law of equation (Cooper, 1996):

1/3
R _[ Wi —
— = ,AP_AF()J 4.1
[ W ] @y

R

where R is the distance between target and expiasatre in meters (m),oRs the
distance between target and reference explosiotrecam m, W is the reference
TNT equivalent weight in kilograms (kg), ¥ is the TNT equivalent weight of
threat scenario in kg\P is the overpressure at the target in MPa, ARgis the
overpressure at the reference target in mega p@deal). Eq. 4.1 shows that ratio of
the distance R to (Rs equal to the cube root of the ratio of\Wto Wy under the

Same overpressure.

The typical shock wave overpressure produced bgreate explosion of 1000kg
TNT is listed in Table 4.1 and the possible lossassed by shock wave overpressure
are listed in Table 4.2 (Huang and Cheng, 2009)ufdgg the experimental data like
in Table 4.1 and in Table 4.2,Rnd APy in Egq. 4.1 can be determined by
interpolation for all loss types.

Table 4.1 The shock wave overpressure of3¥/000kg TNT explosion.

Distance B OverpressurdP, | Distance B (m) OverpressuraPy
(m) (10°MPa) (10°MPa)
5 30 25 0.81
6 21 30 0.59
7 17 35 0.44
8 13 40 0.34
9 9.7 45 0.28
10 7.8 50 0.24
12 5.1 55 0.21
14 3.4 60 0.184
16 2.4 65 0.164
18 1.74 70 0.146
20 1.29 75 0.132

In this study, TNT equivalent method is used tocdbs the energy of threat
scenario by converting the weapon type and magaitfdthreat scenario to the
amount of TNT that releases the same amount ofggnand then using the

experimental data related to TNT explosion effectptedict the effect of threat

scenario.
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Table 4.2 Possible losses caused by shock wave overpressure.

OverpressuraPy

(10°MPa) Losses
0.05 ~0.06 Part of glasses of door and window damok
0.06 ~0.10 Most of pressurized glasses of doomandow broken

0.15~0.20 Window frame damaged
0.20 ~0.30 Wall cracked, slight injury of personhne
0.40 ~ 0.50 Big cracks in wall, tiles falling off, intermediatejury of
personnel
Column of wooden buildings broken, building frarmese,
0.60 ~0.70 . e
serious injury or death of personnel
0.70 ~ 1.00 Brick wall collapsed, serious injurydeath of personnel
Vibration-proof reinforced concrete damaged, srhallse
1.00 ~ 2.00
collapsed, most personnel dead
2.00 ~ 3.00 Large steel structure damaged, majofipersonnel dead

4.3 Monte Carlo Simulation based Consequence Assessmédbdel

Given a threat scenario, there are three main eaigdls in CA: identification,
estimation and aggregation of consequence dimessiéior identification of
consequence dimensions, literature is reviewedtlaadypes of losses are classified
for security risk of a critical facility (Khan andHaddara, 2004). Since the
consequence from a threat scenario is multidimeasiothe proposed model
examines three main consequence dimensions (Figudne Additional or fewer
dimensions can also be considered. The definitiohsdentified consequence

dimensions are as follows:

* Assets loss (AL): This loss is the loss due todbeurrence of both equipment

damage and building damage resulted from a giveatiscenario.

e Human loss (HL): This loss is the loss due to tbeuorence of fatalities and/or

injuries resulted from a given threat scenario.

e Operational loss (OL): This loss is the loss du¢h® occurrence of profit loss

from downtime resulted from a given threat scenario

For estimation of consequence dimensions, TNT edemi method described in
Section 4.2.2 is applied for the transformatiomdhreat scenario into corresponding
consequence. TNT equivalent method is applied to f6A AL, HL and OL
calculations in this study.

84



Equipment
damage

Asset Loss —
Building
damage

Injuries
Fatalities

Downtime

Operational

Loss Crime scen

investigation
time

Figure 4.1 The consequence dimensions.

For comparison and aggregation of consequence d€ioms) a single measure of
total consequence is required. The loss is assdésse@dch consequence dimension
with different unit of measure. A single measureadél loss can be obtained through
converting losses from their natural units to aehsion that facilitates comparison
and aggregation. There are different consequenesumes in the literature. Many of
the consequence measures focus on financial Idseibre, in this study all the
consequence dimensions are measured in monetary.t€he asset loss is measured
in Liras (L) to repair or replace the damaged eopgpt and building. Although the
value of life is immeasurable and there is a didootrassociated with monetary
valuation of human life, this loss is calculatedenms of number of fatalities and/or
injuries times the life insurance cost and/or rditabon costs. Different
rehabilitation costs are also considered sincedhabilitation costs for injuries vary
according to the severity of the injury. The opieral loss is measured in Liras (L)
due to profit loss to resume critical facility fummmality. As a result, all the
consequence types are expressed in units of cppef(lconsequence dimension, and

this provides a measure of the loss given the oenae of a specific threat scenario.

In the estimation of the total consequence, stdihaature of the input parameters
is taken into consideration. Data relating to alhgequence types in security risk is
collected from the existing scientific literaturerfa critical facility. The input
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parameters for all types of losses to which an texalue can not be assigned are
determined and described with probability distibog. These parameters are
modelled as a random variable which accepts spegifobability distribution
function. Values for the random variables in CAM determined by MCS. Detailed
descriptions of the input parameters are discussedtables of model inputs and
distributions are provided in following sub-secsorifter defining the parameters
and their probabilistic behaviours, total consegeers estimated with respect to
these parameters by using MCS and TNT equivalettiaddor a critical facility.

The proposed approach consists of the followingssghown in Figure 4.2.

Step 1. Find TNT equivalent of given threat scenarios

Step 2. Calculate damage area

Step 3. Calculate losses
A4

Step 3.1. Calculate Asset Loss

v

Step 3.2. Calculate Human Loss

v

Step 3.3. Calculate Operational Loss

Step 4. Estimate total consequence

v

Step 5. Evaluate the threat scenarios

Figure 4.2 Steps of proposed approach.
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Step 1:Find TNT equivalent

TNT equivalent weight of threat scenario is deteedi by weapon type and
magnitude of a given scenario. MCS is used to geeegandom numbers following
determined distribution for TNT weight based on p@a type and magnitude of

given threat scenario from both historical data &uthnical data of weapon type.
Wi = f(weapon type magnitude (4.2)

where Wi is the TNT equivalent weight of scenario i in kasbd on weapon type

and magnitude of threat scenario i.
Step 2:Calculate damage radius

Damage radiuses are used to quantify the deterntiyges of losses. Different
damage radiuses are calculated for all differepiesyof losses based on TNT
equivalent of a given threat scenario. The damagaises are computed by using

the scaling law of equation as follows:

%:(%J AP=AR (4.3)

whereR is the radius (m) of type k loss given, RVy andAPy. Ry is the distance
between target and reference explosion centre inWg,is the reference TNT
equivalent weight in kg, Wi is the TNT equivalent weight of threat scenaria i
kg, AP is the overpressure at the target in MRB; is the overpressure at the
reference target in MPa, and k is the type of IfEsquipment Damage (ED),
Building Damage (BD), Fatality (Fat), Serious Inj§6el), Slight Injury (SII)}.

Step 3:Calculate losses

The calculated damage radiuses are used to corttputeffects on assets, humans,
and operations. It is assumed that physical obj@aswalls, furniture etc. in the
buildings and blockage effect of human to humanndbd provide protection as

obstacles/shields or do not cause extra harm.
Step 3.1:Calculate asset loss

Asset loss involves both equipment damage and ibgildamage. Therefore, asset

loss is calculated as in the following sub-steps.
Step 3.1.1:Calculate equipment damage cost
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Equipment damage is formulated as follows:

EDC= nRZ, * EDj (4.4)
where EDG is the equipment damage cost (L) of threat scenari@ep is the
equipment damage radius (m), {£S the equipment density in the vicinity of thie jt

part of target related to threat scenario i (fyrand j is the part of the target

{perimeter, protected areas, infrastructure sysjems
Step 3.1.2:Calculate building damage cost

Building damage is formulated as follows:
2
BDC =7 +pc (4.5)
BA

where BDGis the building damage cost (L) of threat scengriRsp is the building
damage radius (m), BAs the total area of target building related tee&t scenario i

(m?) and BGis the value of the target building related tettrscenario i (L).

After equipment damage cost (EpCand building damage cost (BPCare
calculated, asset loss is computed by using thewolg formula:

AL;= EDG + BDG (4.6)
where AL is asset loss of the threat scenario i.
Step 3.2:Calculate human loss

Human loss involves both fatalities and injurigguties can be either serious injury

or slight injury. Therefore, human loss is calcathas in the following sub-steps.
Step 3.2.1:.Calculate fatality cost

Fatality cost is formulated as follows:

nRe,
FC = a__ * HD; * HFC 4.7
= 10,0007 ! *.7)

where FCis the fatality cost (L/person) of threat scenayriBgz is the fatality radius
(m), HD; is the human population density in the vicinitytbeé jth part of target
related to threat scenario i (person/hectare(l5¥; is the cost of one fatality and |
is the part of the target {perimeter, protectedhayénfrastructure systems}. Note that
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damage area is calculated irf and than converted to ha by dividing the damage
area to 10,000frsince 1ha is equal to 10,008m

Step 3.2.2:Calculate serious injury cost

Serious injury cost is formulated as follows:

R,
SelG= ——Se__ *HD, * SeC 4.8
G 10, 000 ! (4.8)

where SelCis the serious injury cost (L/person) of threatnsg® i, Rse is the
serious injury radius (m), HDis the human population density in the vicinitytioé

jth part of target related to threat scenario rgpa/ha), SeC is the serious injury cost
and j is the part of the target {perimeter, pratecareas, infrastructure systems}.

Step 3.2.3:Calculate slight injury cost

Slight injury cost is formulated as follows:

2
siic = "R ’S“z * HD; * SIC (4.9)
10,000n

where SlIGis the slight injury cost (L/person) of threat saga i, R is the slight
injury radius (m), HIp is the human population density in the vicinitytioé jth part
of target related to threat scenario i (person/8&J, is the slight injury cost and j is

the part of the target {perimeter, protected argdsstructure systems}.

After fatality cost (FQ, serious injury cost (SejjCand slight injury cost (SIIE are

calculated, human loss is computed by using tHevihg formula:

HL; = FG + SelG + SIIG (4.10)
where HL is human loss of the threat scenario i.

Step 3.3:Calculate operational loss

OL is estimated using the following relation:

td = max@ERa:ov er ’t BReov er’tCSI ) (411)

where § is the time spent for repairs or downtime (hotgeoveriS the speed of time
for replacement and reinstallation of damaged eqams (hour/damage ratio),

terecover IS the speed of time for reconstruction of damaleitding (hour/damage
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ratio), and ¢s is the speed of time for crime scene inspectia@uiflamage ratio).
Note that damage ratio is a proportion of damaga & building area.

OLi= OuC * (4.12)

where OL is the operational loss of threat scenario i (Igd aOuC is the

service/production value per hour (L/hour).

Step 4:Estimate total consequence

Total consequence is formulated as follows:

TC = AL, + HL; + OL (4.13)

where TG is the total consequence, Ak the asset loss, Kis the human loss and
OL, is the operational loss of threat scenario i.

Step 5:Evaluate the threat scenarios

At this step, the threat scenarios are ranked amdpared based on their total

consequences. Furthermore, CA is presented andsdisd.

4.4 An illustrative example for Consequence Assessment

In this section, the proposed model as describegertion 4.3 is applied to the CA
of a hypothetical Airport X. Possible threat scemaidentified in Chapter 2 are used
for CA (Table 2.11). Note that for security reasassthe data used throughout this
example are purely generic and notional. Even thdbts case study is very simple,
the resulting qualitative relationships and inssgtitawn from this example validate

the proposed approach. A step-by-step algorithnthisrexample is as follows:
Step 1:Find TNT equivalent

TNT equivalent weight of threat scenario is deteedi by weapon type and
magnitude of a given scenario. Both historical datd technical data of weapon
type are reviewed in the unclassified literatulteis seen that: Large trucks typically
contain 11,340 kilograms or more of TNT equivalesmd vans typically contain
2,268 to 11,340 kilograms. Small automobiles camaia 23 to 2,268 kilograms of
TNT equivalent. A briefcase bomb is about 23 kibogs, and a suicide bomber
wearing a vest belt generally carries up to 14g¢kians of TNT equivalent (Usmani

and Kirk, 2008). It is assumed that TNT equivalevgight of weapon type-
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magnitude pairs follows triangular distribution.erafore, minimum, most likely and
maximum ranges of TNT weight in kg for threat sce®are given in the Table 4.3.

MCS generates random numbers following triangul&stridution with given

parameters for TNT weight based on weapon typenaaghitude.

Table 4.3 TNT Equivalent weights.

: TNT equivalent weight (k
Weapon Type and Magnitude Minimum I\jOSt Likely ? M;xgi]Znum
Explosives-Low(a’, &} ) 5 9 13
Explosives-Mediunga? , ! ) 14 18 22
Truck/Car bomb-LowaZ , &' ) 31 1,150 2,267
Truck/Car bomb-Mediunga’, & ) 2,268 6,804 11,339

Step 2:Calculate damage radius

By using Table 4.1 and Table 4.2, Rnd APy in Eg. 4.3 are determined by

interpolation for all loss types.
Step 2.1:Calculate asset loss radius
Step 2.1.1:Calculate equipment damage radius

By using Table 4.1 and Table 42P, and R are determined by interpolation for
equipment damage ad\P,=0.2MPa and R56.9m respectively. Therefore,

equipment damage radiusgd} is calculated based on Eq. 4.3 as follows:

1/3
%Dg:(%oj AP =0.2MPa (4.14)

Step 2.1.2:Calculate building damage radius

As airports are generally constructed as eitherfoeted concrete structures or large
steel structures, the shockwave pressure valudiahwhese structures are damaged
is used. According to Table 4.1 and Table AP, and R are determined by
interpolation for building damage aaP,=2MPa and BR=17.2m respectively.

Therefore, building damage radiuss@Ris calculated based on Eq. 4.3 as follows:

1/3
Reo (W | Ap=2MPa (4.15)
17.2 1000
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Step 2.2:Calculate human loss radius
Step 2.2.1:Calculate fatality radius

By using Table 4.1 and Table 42P, and R are determined by interpolation for
fatality asAPy;=0.6MPa and R=30m respectively. Therefore, fatality radius{Ris
calculated based on Eg. 4.3 as follows:

1/3
%:GVFTBTOJ AP = 0.6 MP3 (4.16)

Step 2.2.2:Calculate serious injury radius

By using Table 4.1 and Table 42P, and R are determined by interpolation for
serious injury asAPy;=0.3MPa and R44m respectively. Therefore, equipment
serious injury radius (&) is calculated based on Eq. 4.3 as follows:

1/3
%:(\{VO;(N)TOJ /AP =0.3MPz (4.17)

Step 2.2.3:Calculate slight injury radius

By using Table 4.1 and Table 42P, and R are determined by interpolation for
slight injury asAPy=0.138MPa and &72.1m respectively. Therefore, slight injury
radius (Ry) is calculated based on Eq. 4.3 as follows:

1/3
Ry (W | Ap=0.138MPe (4.18)
72.1 \ 1000

Step 3:Calculate Losses

Step 3.1:Calculate Asset Loss

Step 3.1.1:Calculate equipment damage cost

All the equipments of Airport X are assumed as gtouhey were uniformly
distributed over the entire unit area in this studliyport X parameters for equipment

damage are given in the Table 4.4 and equipmentigansost is calculated for a

threat scenario i by using Eq. 4.4.
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Table 4.4 Airport X parameters for equipment damage.

Equipment Density

. (EDy), L/ n?? Equipment
Target| . Protected Cost (EG), L
Perimeter
Areas

aé Passenger Terminal 200 600 113,400,000
a’, Parking Facility 5 250 25,075,000

a Bus Station 10 100 253,750

1 . .
a;, Main Entrance and Security Control 90 200 256,200

Building

Step 3.1.2:Calculate building damage

Airport X parameters for building damage are giwerthe Table 4.5 and building

damage cost is calculated for a threat scenaausing Eq. 4.5.

Table 4.5 Airport X parameters for building damage .

- Building Total -~
Building . . Building
. Peripheral Building .
Target i Area (ZBA), Area (BPA), Cost (TBQ), Unit Cost2
m 2 (BC,), L/m
m L
aé Passenger Terminal 180,000 207,000 222,300,000 1,235
ai Parking Facility 100,000 115,000 15,000,000 150
& Bus Station 2,500 2,875 1,752,500 701
ail Main Entrance and Security 1200 1380 356.400 297

Control Building

Step 3.2:Calculate Human Loss

Airport X parameters for human loss are determireagonably by using historical
data and given in the Table 4.6 and Table 4.7 (SE®9; Turkstat 2009).

Table 4.6 Airport X parameters for human density of humarslos

Human Density
(HD;), persons/ha

Targetl . Protected
Perimeter
Areas
aé Passenger Terminal 1000 3500
al, Parking Facility 15 25
a Bus Station 500 2000
ail Main Entrance and Security Control Building 250 1500

Different rehabilitation costs are also considesaite the rehabilitation costs for

injuries vary according to the severity of the mjult is assumed that injury costs

93



follow triangular distributions. Therefore, minimynmost likely and maximum

ranges of cost (L) for injury types are given ie thable 4.7.

Table 4.7 Airport X parameters for injury types of human loss

Injury Min Most Likely Max
Fatality cost - 50,000 -
Serious Injury cost 11,000 25,500 40,000
Slight Injury cost 1,000 5,500 10,000

Fatality cost, serious injury cost, slight injurgst and human loss is calculated for a

threat scenario i by using Eq. 4.7-4.10.
Step 3.3:Calculate Operational Loss

Airport X parameters for operational loss are giuethe Table 4.8 and operational

loss for threat sceanrio i is calculated for aghszenario i by using Eq. 4.11.

In this study, it is assumed that operational lcategory speeds follows triangular
distribution. Minimum, most likely and maximum rasgy of time (hours) for
operational loss categories are given in the Tdle The service value per hour
(OuC) is taken 270,000L/hour.

Table 4.8 Airport X parameters for operational loss .

speed (houn) Damage ratio<33% 3?;?02221;)96 66%<Damage ratio

Min Ll\i/II:;T)t/ l\il(a Min L'\i/lkcs)t/ Max Min Ll\i/II:;T)t/ Max

Equipment Recovery speeg 1 3 5 3 5 8 5 8 12
Building Recovery speedsf) 2 4 6 5 8 10 8 10 12
CSl speed () 2 4 6 4 6 8 6 8 12

Step 4:Estimate total consequence

The model is developed in Microsoft Excel. The masleun for 500 iterations using
Monte Carlo sampling. The model is performed usitng parameters and
calculations presented. The model simulates theoaisequence types for the given
threat scenario. The simulated minimum, maximum ameln values of total
consequence and all the loss types are calcul@bedresults of overall consequence

calculation are shown in Table 4.9 and Figure 4.3.
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Table 4.9 Simulation results.

Total Consequence (L) Asset Loss (L) Human Loss (L) Operational Loss (L)
ST(:er?::io Min Mean Max Min Mean Max Min Mean Max Min Mean Max
1(a.8.4.4 | 1,855044 2,557,4973,306,72| 95416 136,179 171,33  736,642,203,190 1,735,559 707,918 1,218,128607,31
2(a,,d,4.,4 | 4,114,586 5,776,0557,920,88| 218,557 312,922 395561 2,535,876,240,495 6,430,380 727,513 1,222,638601,08
3(a.8.4.4 | 2,601,305 3,360,7894,176,25 186,769 218,373 247,723 1,223,938,934,325 2,497,974 683,784 1,208,091,587,44
4(a;. .4 .4 | 6,001,308 8,477,6180,877,33 425979 497,807 565,492 4,742,648,769,266 9,189,841 683,969 1,210,544613,63
5(a, & .4 .4 | 2,048,342 4,871,7827,350,82| 631,447 2,888,314 4,548,318 161,160756,807 1,340,322 757,047 1,226,66P,614,40
6 (a,.8.4 .4 | 7,406,773 13,913,5409,595,16/ 5,088,904 9,569,270 13,376,230 1,154,8@7509,098 3,965,474 822,482 1,835,17%107,36
7(a.4.,4.4 | 1,274,131 1,879,9002,838,69| 23,045 32,182 41,329 374,382 605,091 908,647 711,069 1,242,62%,907,52
8(a;.d .4 .4 | 2685732 3,7557685,321,71| 52413 72,362 91,398 1,530,23@,418,364 3,458,504 738,661 1,265,042058,48
9 (.4 .4.4 | 2,021,381 2,632,7103,338,91| 44,199 51,678 58,857 689,978 964,269 1,302,507 1,111,675 1,616,762118,39
10 (5.4 .4 .4 | 4,208,345 5,526,1087,031,54| 97,564 114,103 130,115 2,657,468,802,663 4,994,112 1,089,563 1,609,342157,96
11 (ay,.a .4 .4 | 1,471,245 2,105,7313,667,20| 35527 51,424 65422 180,743 301,508 439,273 1,112,241 1,752,798,192,10
12 (a,,& ,d4 .4 | 2,175,763 2,899,0423,769,000 70,223 81,181 93,122 321,500 477,262 614,628 1,646,463 2,340,608,121,38
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Figure 4.3 Histograms of simulation results.
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Step 5:Evaluate the threat scenarios

The model resulted in a number of output distritmsithat can be used to predict the
minimum, maximum and mean values of all consequéypes given in Table 4.9.
Rankings of consequences (total consequence,lassehuman loss and operational
loss) for threat scenarios are shown in Table 4.Rankings enable the DMs to

identify the higher consequence scenarios fronia¥ver consequence ones.

As seen from Table 4.9 and Figure 4.3, after theSMtreat scenario 6 has the
highest total consequnece with a total consequeake 0f13,913,540 L andhreat
scenario 7 has the lowest total consequnece withtal consequence value of
1,879,900 L. From the MCS results, it is obsenred targets with higher equipment density
have higher asset loss and targets with higher huteasity have higher human lo3he
results are useful to determine the precautiont siscarchitectural and geometric
changes of a critical facility considering battjuipment density and human dengay
reducing asset loss, human loss, and operatiossl Io addition, all the consequence

types can also be evaluated on the basis of tangmts of target attacked and weapon type-

magnitude pairs.

Table 4.10 Ranking of the simulation results.

Threat Total Consequence Asset Loss Human Loss  Operationabss
Scenario Mean (L) Rank Mean (L) Rank Mean (L) Rank Mean (L) Rank
1(a.q.d.4 2557497 10 136,179 6 1,203,190 7 1,218129 10
2(a.9.4.4 5776055 3 312,922 4 4240495 2 1222638 9

3(a.d.4.4 3360780 7 218373 5 1,934325 6  1,208,0912
4(a.8.8.4 8477618 2 497,807 3 6,769,2661 1,210,544 11
5(a,.&.4 .4 4871782 5 2888314 2 756,807 9 1,226,662 8
6(a,.8.4 .4 13913540 1 9,569,270 1 2,509,098 4 1835176 2
7(a.49,4.4 1879900 12 32,182 12 605001 10 1,242,627 7
8(a.&.4.4 3755768 6 72,362 O 2418364 5 1265042 6
9(a.d.4d.4 2632710 9 51678 10 964,269 8 1,616,762 4

d.4.4 552108 4 114103 7 3,802,663 3 1,609,342 5
11 (a,.8 .4 .4 2105731 11 51,424 11 301,508 12 1,752,799 3
d.4 2899042 8 81,181 8 477262 11  2,340,6001

The case study results are compared with the girmpdat events such as the 2011

Domodedovo International Airport/Moscow bombing aride 2003 Brtitish
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Consulate/Istanbul truck bomb attack for validataod verification. It is observed
that result are reasonable.

4.5 Concluding Remarks of Chapter 4

CA is an important part of SRA because wrong CAl¢etm the wrong estimation of
the security risk. Therefore, the main goal of ¢thepter is to develop a model that
identifies, quantifies and integrates major typédosses specific to security risk
while estimating the total consequence of a ctitigeility. For this purpose, Monte
Carlo simulation based consequence assessment nusdel TNT equivalent

method is proposed and complete logical model #®i<Cconstructed in this study.

Firstly, CA schemes for different process industrseiggested by various authors
applicable to SRA are reviewed and CA model that gaantify impacts from
identified threat scenarios for SRA is examined.e Thvailable complex
methodologies lacks in estimating the losses dusetwrrity risk consequences and
CA is required to be done with less calculation ptaxity by reducing efforts and
time in SRA. Then, for identification of consequendimensions, literature is
reviewed and the types of losses are classifieddourity risk of a critical facility.
Since the consequence from a threat scenario isidmensional, the proposed
model examines three main consequence dimensidnsHA and OL. Different
from existing studies, CSI time is also considefedoperational loss specific to
SRA. Secondly, for estimation of consequence dimess TNT equivalent method
integrated with MCS is applied for the transforroatiof a threat scenario into
corresponding consequence. TNT equivalent methappdied to CA for AL, HL

and OL calculations in this study.

To summarize, the proposed CA model identifies,ngtias and integrates all
different types of losses specific to security ridla threat scenario while estimating
the total consequence. The proposed model perf@$y considering all major
losses of security risk with optimal complexity ande to improve the SRA.

Although the main objective of the proposed modeCA, by using real data, the
results of CAM can be used to determine the prémasitsuch as architectural and

geometric changes of a critical facility for redugiAL, HL, and OL. The correlation
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between AL and equipment density, the correlatietwben HL and human density,
and the correlations between all types of losskanidiing areas can also be explored.

In this study, total consequence is calculated loyreing three equally weighted
consequence type costs (Eq. 4.13). By changing wieeghts on the three

consequence types (AL, HL, and OL), sensitivitylgsia can be applied easily. If a
greater proportion of the weight is allocated te @L, this results in an increase in
the OL cost of scenarios with operational assetd s1$ air traffic control centre of

an airport due to increased emphasis on serviagevall equipments. If a greater
proportion of the weight is allocated to HL, thesults in an increase in the HL cost
of scenarios with heavily populated facilities suak passenger terminal of an

airport.

Finally, as an illustration, the proposed modehpplied to a case study. According
to the results of CAM, suggestions for a critiatifity protection can be put forward
to reduce the losses. CAM enables security anayzer identify the higher

consequence scenarios from the lower consequeree Bnoposed model helps to

improve SRA.
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5. SECURITY RISK EVALUATION

5.1 Introduction to Security Risk Evaluation

The main objective of proposed SRA framework igvaluate the security risk of a
critical facility. This model of proposed SRA framerk, security risk evaluation
model (REM), involves determining the security nsforities of a critical facility by

guantifying the security risk.

Till now, a structured set of scenarios, their lilkeods, vulnerabilities and
consequences have been quantified with differemtemo@f uncertainty since security
risk is measured in terms of threat likelihood M)Inerability (V), and consequence
(C). In order to make correct decisions on thedatbthe scenarios, T, V and C, the
next thing is to properly aggregate them for evihgathe security risk. So, in this
chapter, the key problem is to integrate T, V, @b quantify the security risk. The
choice of aggregation operators is crucial to tleedviour of the proposed SRA
framework output. Therefore, aggregation operatoorie of the basic brick of the

proposed SRA framework.

Traditional methods require humans to translater therceptions into numerical
scales, frequently through mechanisms like a Likedle. Following typical scoring
method can be applied to security risk as qualtgaBRA method. As security risk is
a function of T, V, and C, one way to calculatesito quantitatively assess T, V, and
C, multiply the three factors to obtain a risk ®and make comparisons based on
this risk score for a threat scenario. The riskagovides a quantitative measure of
security risk associated with a threat scenario.example, let the three factors T, V
and C are all evaluated using the ratings (scdres) 1 to 5 as described in Table
5.1.
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Table 5.1 Ratings of security risk factors.

Qualitative definition Quantitative definition
Threat Likelihood  Vulnerability Consequence (Score)
Extremely Likely Very High Catastrophic 5
Very Highly Likely High Major 4
Highly Likely Medium Very serious 3
Very Likely Low Serious 2
Likely Very Low Minor 1

Problems about typical security risk scoring metheshg multiplicative aggregation

are as follows:

» Different sets of T, V and C ratings may producaatly the same value of
security risk score, but their hidden risk implioas may be totally different.
For example, two different threat scenarios witluga of 1, 2, 6 and 6, 2, 1
for T, V and C respectively, will have the sameusiyg risk score value of
12. High likelihood-low consequence and low likeldd-high consequence
threat scenarios can not be distinguished (limre=iblution) since they may

have same risk score.

* Small variations in one rating may lead to vastiffedent effects on the
security risk score depending on the values obther factors. For example,
if T and V are both 5, then a 1 point differenceQrrating results in a 25
point difference in the security risk score. If idaV are equal to 1, then the
same 1 point difference results in only a 1 poiffecence in the security risk

score. This is valid for all combinations of T, WdaC.

« These factors are difficult to quantify and can betadequately described
numerically. For example, when security risk pare@nés considered, the
appropriate numeric scale for security risk is krmtwn, does it range from 0
to 1, 1 to 10, or -10 to 107 If arbitrary numeroales are used, the problem
increases when factors are combined and the rasultaneric answer can

not be understood.

As a result, multiplication is not the right aggaéign operator and security risk

factors must be aggregated in a nonlinear rattzar lihear manner.

The input information for REM in SRA framework cosnérom three different
models: Threat Assessment Model (TAM), Vulnerapifssessment Model (VAM),
and Consequence Assessment Model (CAM) that qyanti¥/ and C respectively as
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shown in Figure 1.3 and Figure 1.4. Since eactofand corresponding proposed
model has different uncertainty model, the othebjfgm is how these three modes
of representation of parameter uncertainty can rilegrated for evaluating the
security risk. Therefore, different formats of dable data and uncertain knowledge

must also be incorporated into SRA process.

This chapter proposes rule-based expert systemémfe methodology for
evaluating security risk with multiple uncertairfarmation in SRA process. After
reviewing the existing approaches and the factoas influence the security risk
calculation and evaluation, the remainder of tlinapter is organized as follows: In
Section 5.2, theoretical background information fbe proposed approach is
represented. The proposed model and its processafle introduced in Section 5.3.
The illustrative application of the proposed appto#s performed over an airport
case study in Section 5.4. This section also exasnthe utility of findings and
discusses the analysis results. Conclusions anthefurissues are addressed

respectively in the final section.

5.2 Theoretical Background for Security Risk Evaluation

In this section, theoretical background informat@nrule-based expert systems and
Linguistic Aggregation operators are presenteqeetively.

5.2.1 Rule-based expert systems

In the literature, rule-based expert systems agd as a way to store and manipulate
knowledge to interpret information in a useful wayemulating the decision-making
ability of a human expert (Ross, 1995). They aterofised in artificial intelligence
applications and research as the domain-specifierexsystems that use rules to
make deductions or choices (Jackson, 1998). Typidal based systems have two
main components: a rule-base and an inference engimule base is a list of rules,
which is a specific type of knowledge base. Knogkeds stored as if-then rules in
the rule-base. An inference engine infers infororator takes action based on the

interaction of input and the rule base.

There are two common inference techniques in teealure: Mamdani method and
Sugeno method (Ross, 1995; Jang et al., 1997)mids commonly used inference
technique is the so-called Mamdani method. In 1%#5fessor Ebrahim Mamdani
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built one of the first fuzzy systems to controlteasn engine and boiler combination.
He applied a set of fuzzy rules supplied by expeeel human operators (Mamdani

and Assilian, 1976). The format of the Mamdani-estyizzy rule is as follows:

IFxisAllyisBTHEN zis C (5.1)

where X, y and z are linguistic variables; A, B adre fuzzy sets on universe of

discourses X,Y and Z, respectively. An antecedentorule is linked by [

connective that is a logical connective to represeationship.

Mamdani method is widely accepted for capturing eekgknowledge. It allows
describing the expertise in more intuitive, moremian-like manner. However,
Mamdani-type fuzzy inference entails a substant@inputational burden (Ross,
1995; Jang et al., 1997). Mamdani-style infererempuires finding the centroid of a
two-dimensional shape by integrating across a woaoatisly varying function. In

general, this process is not computationally effici

Michio Sugeno suggested using a singleton, as #rmbarship function of the rule
consequent (Jang et al., 1997). Sugeno-style fudeyence is very similar to the
Mamdani method. Sugeno changed only a rule consédgunstead of a fuzzy set, he
used a mathematical function of the input varialflesingleton is a set with a
membership function that is unity at a single gafar point on the universe of
discourse and zero everywhere else. The most comgnused zero-order Sugeno
fuzzy model applies fuzzy rules in the followingria

IF xis A Lyis B THEN z is k (5.2)

where X, y and z are linguistic variables; A ancaf® fuzzy sets on universe of
discourses X and Y, respectively; and k is a canista this case, the output of each
fuzzy rule is constant. All consequent membershipcfions are represented by
singletons. Sugeno method is computationally affectand works well with
optimisation and adaptive techniques, which makesgery attractive in control

problems, particularly for dynamic nonlinear syssem

In this study, Sugeno method is adopted for REMyeBo method is used for the
purpose of aggregating security risk factors inoalimear manner based on a rule

base. Details of the application of Sugeno methiedlascribed in the next sections.
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5.2.2 Linguistic aggregation

In the literature, many linguistic aggregation a@ters exist (Merigo and Casanovas
2010; Xu, 2004). In this section, main properti€siacertain linguistic aggregation
operators and uncertain linguistic weighted aver@dieWA) operator to be used
throughout this chapter are described briefly.

Let S={s |i=1,...,t} is a finite and totally ordered discrete term sehere s
represents a possible value for a linguistic vdeiddu, 2004). For example, a set of
five terms S could be:

S ={s = very low, s=low, $= medium, $= high, = very high}

Main characteristics of set S are:

» ordered set iBgifi>] (5.3)
e Max operator ‘max(sg) =sifsi>s (5.4)
e Min operator :min(ssg) =sifsi<s (5.5)
* Negation operator : negjs= g such thatj=t—i (5.6)

The discrete term set S is extended to a continudesm set

S={s,|s< s < saO [Lt], whose elements also meet characteristics abdve. |
s,0S, s is called the original term, otherwise, is called the virtual term. Let
5=[s,,5 ], Where sa,sﬂD_S, and s, and s, are the lower and the upper limits
respectively. Therefores is called the uncertain linguistic variable.

Consider any two uncertain linguistic variablgs=[s, ,s, Jand s, =[s, ,s, Ithen

their operational laws are defined as follows:

« Commutativity 50735 =7507% (5.7)

Addition '50%=1[s,,5 D [s, .5, (5.8)
=[s, 08,808, F [$:a, 15us,

* Scalarproduct §=A[s, .5, N, AS F (S, 5, A00,1] (5.9)

« A303)=13047 A0 (5.10)

. (ALOA)5=235045 AL0] (5.11)
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An ULWA operator of dimension n is a mapping ULWAS' - S that has

associated n vector w = {W,...,w,)" such that w[I[0,1], i = 1,2,...,n, and

ULWA(S,S, ;.. § ):Zn: W s (5.12)

i=1

For example, assumg =[s,,s, ], 5 =I[s,,5 ., S =[s.s ], and w = (0.3, 0.5, 0.)
then ULWA is calculated as follows (Eg. 5.1):

ULWA(S,S,$)= 0.3 .5 I 0.5%s ,s0 0.2*fs .5
=[S3: S0l [S1:8 51 [Sp2: S04l
=[S15:S,6]

In this study different from previous studies, ttmmsequent of a rule is defines as an
uncertain linguistic variable and the ULWA operai®rused to aggregate activated
rules in Sugeno method. The reasons for using tigertain linguistic variable and
ULWA operator and how ULWA operator is applied fthe activated rule

aggregation in Sugeno inference method is descriibt following sections.

5.3 Rule-based Expert System for Security Risk Evaluatin Model

In this study, new rule based expert system is gse@ for aggregating threat
likelihood, vulnerability and consequence inforroatifor evaluating security risk.
Proposed method captures nonlinear causal relaifmhsbetween security risk
factors (threat likelihood, vulnerability and cogsence) which have different

uncertainty modes.

As security risk factors must be aggregated in @inear manner, the relationship

between security risk factors and a specific sécuisk level can be regarded as a
rule. Once given an input, rule based system carsbed to inference and generate an
output. Given security factors and its strengtinule makes one infers the possible

presence of a specific security risk level or mod inonlinear manner.

In a rule-based system, a rule is used to desaé#esal relationships between

antecedent attributes and their associated consedqrele-based expert systems are
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constructed from human judgments and domain knaydad the form of if-then
rules. For example, typical if-then rule for SRA is

IF Threat Likelihood is “Highly Likely” AND Vulnerability is “High” AND
Consequencis “High” THEN Security Risk is “High-Very High”

Therefore, SRA is a three input-one output probléathen rules are normally based
on linguistic variables because they are more ahfand expressive than numerical
numbers. Linguistic rule base can capture sophigticinferences with a reasonable
effort. This allows using a linguistic approachpmcess quantitative information.
Using linguistic variables instead of precise numsbare more appropriate for
analysis using these three parameters as they lasgy/saassociated with great
uncertainty. Therefore, transforming quantitativaetad in the form of linguistic

variables into a format that can be used along guidlitative data is required.

Both the Mamdani-style and Sugeno-style inferenaegss is performed in four
steps: fuzzification of the input variables, ruleakiation, aggregation of the rule
outputs, and defuzzification. But these inferen@thods can not be directly applied
to REM, because outputs from different models vdifierent uncertainty modes

could be implemented.

Knowledge representation, handling various typesrafertain input information is

investigated first. Output information of modelsasinput information to proposed
method are represented by the matching degreefekntial values describing the
attributes of antecedent of a rule using a two-disienal variable. The output

information of models is converted into a matchdegree of referential values by
using fuzzification and bet estimate. By this wdifferent formats of available data
and various types of uncertainties such as igneraara vagueness in inference

process can be incorporated into REM process.

Because of the arbitrary numeric scales problemtioreed in Section 5.1, the
consequent of a rule is neither fuzzy set like ianMiani-style inference nor constant
like in Mamdani-style inference. Different from preus studies, the consequent of a
rule is uncertain linguistic variables in this studThis definition also allows
consequents to be either individual grades or ssbsfeadjacent grades, intervals
such as “High-Very High” interval grades.
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Since the consequent of rules are uncertain litigwsriables, rule aggregation of
the proposed method is also different from typicdérence methods. In Sugeno
method, weighted average (WA) is used to aggreaetigated rules. However, the
WA operator can only be used in situations wheee ittput arguments are exact
numerical values. But in this study, consequentaofule in the rule base is
determined as an uncertain linguistic variable.réfeee, the ULWA operator is used
for rule aggregation where the consequent of ratesuncertain linguistic variables.
A rule base constructed by the rules given in threnfabove represents functional
mappings between antecedents and consequentsvitigs a more informative and
realistic scheme for various uncertain knowledgeeasentation. When a rule base is
established, the knowledge contained in the ruse fsan be used to perform security
risk inference of a critical facility for given imps. The inference procedure is

investigated in the following subsections.

The proposed approach consists of the followingssgdhown in Figure 5.1.

Step 1. Construct the rule base

v

Step 2. Transform the inputs

v

Step 3.Calculate the rule activation weights

v

Step 4. Aggregate the activated rules

v

Step 5. Evaluate the security risks

Figure 5.1 : Steps of proposed approach.
Step 1:Construct the rule base

The starting point of constructing a rule-basedeysis to collect if-then rules from
human experts based on domain knowledge. Then avl&dge base and an
inference engine are designed to infer useful emiehs from the rules and inputs
provided by output of SRA models. Suppose a rusehagiven by R={R ..., R
,..., R.}. L is the total number of rules in the rule baBermally, the kth rule, Rin

a rule base can be written as
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R:IFHfO..0H 0.0 HS THEN HY, (5.13)

where H* (i=1,..,M) is a referential value of the ith antdeat attribute in the kth
rule, and M is the number of the antecedent atedbuwsed in the kth rule.

H :{Hlk,...,Hik,...,HMk} is the packet antecedent in the kth rufi, is an uncertain
linguistic variable referential value of the consent whereH ., =[H ,H_]. An

antecedent of a rule is linked byl connective that is a logical connective to
represent relationship. Since, each rule has nhellgtecedents, both disjunctive
opertor and conjunctive operator are used for tie antecedent evaluation in this
study. To evaluate the disjunction of the rule eedents, the ORV] operation is

applied as:
R :IFHf O..O0H/O..0OH} THEN HY, (5.14)

Similarly, in order to evaluate the conjunctiontbé rule antecedents, the AND)(

operation is applied as:

R IFH O..0HO..0H,; THEN Hf, (5.15)

A referential value describing the attributes ofeaedentH and consequeriﬁgq is

a Hy (p,g=1,...,N) evaluation grade whergytdre individual evaluation grade, and
Hpq for p=1 to N and g=p+1 to N-1 is the interval eaxslon grade betweenyfkand
Hqq In this study. H, (p=1,...,N) are mutually exclusive. Therefore, & of

evaluation grades for each referential value itehby
H ={Hpq,p=q,p= 1@! (5.16)

HiiandHyn are set to be the worst and the best grades, tesggcandHp.1p+1iS to
be preferred toHp,, among evaluation grades. Therefore, a basic ruke ba

composed of if-then rules as in Equation 5.14 agqalaion 5.15.
Step 2: Transform the input

Before starting an inference process, the relatipnbetween an input and each
referential value in the antecedents of a rule sdedbe determined so that an
activation weight for each rule can be generatéd Qasic idea is to examine all the
referential values of each attribute in order ttedaine a similarity/matching degree
to which an input belongs to a referential value.
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The matching degree of referential values desaibiie attributes of antecedent of a
rule is provided by the outputs of SRA models. Tfarmation of input variables
from different models with different uncertainty des is implemented in this step.
Inputs are transformed into matching degree of reeftal values. After
transformations, a general input form correspondm@ll antecedent attributes is

given as

H ={(H, )} i=1...M,j=1..T} (5.17)

where ,Bi; expresses the matching degree assigned to th'el—lﬁjpuhe jth referential

value of ith attribute. Tis the total number of number of the referentaues used
for describing the ith antecedent attribute andsMhie total number of antecedent

attributes involved in all the rules in a rule hase

For example, an input in REM transformed into timy aule is given by Threat
Likelihood is {(highly likely, 0.8)} and Vulnerahity is {(high,0.3),(medium,0.7)}
and consequence is {(high,0.3),(medium,0.7)}.

Step 3:Calculate the rule activation weights

At this step the rule activation weights are cated. Once the matching degree
between an input and the referential values of atecedents in a rule are
determined, they are processed to generate arattiweight for the rule which is

used to measure the degree to which the packeteafemt of the rule k, 'H is

activated by the input.

Since, each rule has multiple antecedents, bojbrdisve operator and conjunctive
operator are used to obtain a single number thaesents the result of the rule
antecedent evaluation for the purpose of sengitiamalysis. To evaluate the
disjunction of the rule antecedents, the OR ¢peration is applied (Eq. 5.14).
Similarly, in order to evaluate the conjunctiontbé rule antecedents, the ANDB)(

operation is applied (Eg. 5.15).

Given the input for the packet antecedeftitHthe kth rule, denoted bb‘l*and the
corresponding activation weight (wto which the input matches the packet
antecedent Kin the kth rule can be calculated using the folfmyformulas:

W, =max(3;)i=1,..M H  OH"Oi j (5.18)
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wo =min(B),i=1,..M H  OHOi | (5.19)

where ,[S’i;f expresses the matching degree assigned to thH—Iﬁjpuhe jth referential

value of ith attribute and M is the total numberaotecedent attributes involved in
all the rules in a rule base. Note thai@<1 and w=0 if the kth rule is not activated.
Wk is the activation weight of rule k which measuitess degree to which the kth rule
Is weighted and activated. Input activates differeles depending on activation
weights of each rule. The activation weighisfar all the rules R(k = 1,..., K) are

generated using Equations 5.18-5.19.
Step 4:Aggregate the activated rules

At this step, the inference procedure is impleneimeorder to combine all rules for
generating the final matching degree for activatates of a scenario. Since
consequent is uncertain linguistic variable, ULWpewator is employed to combine

the activated rules in this study.

Let R ={R,..., R,... R} set of L' rules which are activated by the actual in[blh*t

and the inference of a rule-based system is impiéede using the linguistic
aggregation operator as :

H.; =ULWA (H") = i W, H, (5.20)
H, =ULWA (H') = i w! HE, (5.21)

where I—TE[’;D is the final matching degree for activated rulea ecenario in the form
of an uncertain linguistic variable wherd ;" =[H,, H ], wk is the activation
weight of the kth rule, aneﬁgq is an uncertain linguistic variable referentialueof

the consequent wherid f_ =[H , H ]. The final result generated by aggregating the

L' rules, which are activated by the actual input wecH of a scenario is

represented in the form of an uncertain linguistidable, H ;" , that is produced by

ULWA operator.
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Step 5:Evaluate the security risk

In order to evaluate the identified scenarios,d@eurity risk of identified scenarios
is needed to be ranked and compared based onuthegrtain linguistic variables
which are also intervals. Therefore, ranking ofnitfeed scenarios based on their
intervals is required. For this purpose, preferehwetion proposed by Wang is
adopted (Wang et al., 2005; Wang et al., 2006).rbperties of Wang’'s method are

discussed in Chapter 2 in detalil.

Let H, , and H, , be the uncertain linguistic variables of A and Bpectively.
Then the degree of preference of A over B, denbieB(A > B)e [0, 1], is defined

as follows:

P(A> B) — maX[O:IBA —ag ]_ max[oﬂA_IBB ] (522)
[IBA_aA] +[IBB_aE’]

Therefore, based on the properties of preferencetifun, A is superior to B if
P(A> B> 0.5, A is indifferent to B ifP(A>B)= 0.5, and A is inferior to B if
P(A> B) < 0.5. The preference function between scenarassttansitivity, i.e., if
scenario A is superior to B, and scenario B is gapdo C, then scenario A is

superior to C. By applying Eq. 5.22, preferencatrehs among all scenarios can be

determined for any evaluation gradey,H

5.4 An lllustrative Example for Security Risk Evaluation

In this section, the proposed rule based expetesysapproach as described in
Section 5.3 is applied to a hypothetical AirporttX evaluate security risk of
identified threat scenarios. Note that for securgsons, all the data used throughout
this example are purely generic and notional. Etveugh this case study is very
simple, the resulting qualitative relationships amsights drawn from this example
validate the proposed approach. A step-by-steprithgo for this example is as

follows:
Step 1:Construct the rule base

Typical If-then rules for REM are defined basedkmjuation 5.13-15 as follows:

R, IFHOH; OH;THEN H,, (5.23)
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R.:IFHOH; OH;THEN H,, (5.24)

where H)is the referential value of antecedent attributedhlikelihood (T),HJis
the referential value of antecedent attribute wahity (V) and HJ is the referential

value of antecedent attribute consequence (C),ectisgly. The number of

antecedent attributes used in any rule for REM, i$3. I—TEq is the uncertain

linguistic variable referential value of consequatttibute security risk (SR).

The granularity of linguistic term sets used fosaéing each fundamental factor is
decided according to the situation of the casentérest. In the literature, the
granularity from three to nine labels is commonbed to represent any factor.

Therefore, the referential value set of definedlaites are determined as follows:
* The referential value set for threat likelihoodjigen by

T = {"Likely” (H 1), “Very Likely” (H2), “Highly Likely” (H3), “Very Highly
Likely” (H ), "Extremely Likely” (Hs)}.

« The referential value set for vulnerability is giMey
V = {“"Low” (H j), “Medium” (Hy), “High” (H3)}.

« The referential value set for consequence is giyen
C = {*Very Low” (H3), “Low” (H3), “Medium” (Hs), “High” (H4), “Very High”
(Hs)}.

« The referential value set for security risk is gimgy

SR = {*Very Low” (H11), “Low” (H22), “Medium” (Hs3), “High” (Ha4), “Very
High” (Hss)}

H, H, H; H, H, (VL VL-L VL-M VL-H VL-VH
Hy, Hy Hy Hy L L-M L-H L-VH
H = Hy Hy Hggp= M M-H M-VH
Hiu Hgs H H -VH
Hgs VH

Organizations differ in the amount of risk they andling to accept. Preference for

risk and interpretation of risk differ. Such if-theules are collected from security
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experts based on domain knowledge that constitutdeabase with both individual
and interval based grades and L=5*3*5=75 ruleglafmed:

R={Ry, ... Rg (5.25)

Sample rule base for security risk evaluation ofpAit X is given in Table 5.2.
When sample rule base is examined, rule®fRhave the minimum security risk and
rules Ri1- Rzs have the maximum security risk. High Likelihoodew Consequence
rules are RRs and Low Likelihood — High Consequence rules ardRR Based on
the domain knowledge, the rules are interpretetemdiftly in a nonlinear manner

rather than linear.
Step 2: Transform the input

Since the matching degree of referential valuescrdesg the attributes of
antecedent of a rule is needed for the input of REM outputs of SRA models are
transformed into the required form of Equation Srithis step. The input is given as
linguistic terms with the matching degrees basetherthree models described in the
previous chapters. The fuzzification is applied/#&M and CAM, and bet estimate is
applied to TAM in this study. The details of thartsformation for the models are
described in the following sub sections.

Step 2.1 :Transform TAM output

In TAM, DST is used for uncertainty modelling andetoutput data for threat
likelihood are represented by DST variables dueepistemic uncertainty. Bet
estimate gives a point estimate in a belief stmecgimilar to defuzzification in the
fuzzy set theory as follows (Smets, 2000):

bet(p)zzﬂ

5.26
28 (5.26)

where |B|is the cardinality (number of elements) in the BetFor example, as a

belief structure of threat scenario 1 {§H.,0.0269),H.,,0.0022)H ,, ,0.0134

(H..,0.0131), ©,0.9444), bet estimate of this scenario is calculated as:

551

bet( H,) = m(le) + m(sz“) + m(:)) =0.0269+ 0.001% 0.1888 0.21
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Bet estimates of likelihood belief structures ofntlfied threat scenarios are
calculated and results are presented in Table 5.3.

Table 5.2 Sample rule base.

IF Antecedent Hk) THEN Consequentif.)

H Hy H; Hio 45 Ho Has Hag

H H Hs Hio 46 Ho  Hy Haz

Antecedent | Consequent Antecedent | Consequent

No TL V C SR No \% C SR

1 H]_ H]_ H]_ H11 39 H2 Hl H33

2 Hi Hi H Hiq 40 H, Hs Haz

3 H H H; Hi, 41 H, H Haiz

4 H, H; H; Hiq 42 H, Hy Hay

5 H Hy Hs Hi, 43 H, H H34

6 Hi H;y Hg Hio 44 H, Hs Hag

7

8

9

Hh Hi Hs Ha> 47 Ho Has Has

TL

|_l5

l_lz

H,

l_b

|_l5

l_b

H,

H,

|_l5
10 H» H H Haz 48 Hy, Hz Hs Hse
11 H H;p Hg Ha2 49 H Hx Hy Hse
12 H H H Haz 50 H Hz; Hs Hse
13 H H; Hsj Hos 51 H H; H; Hiq
14 H H H; Has 52 Hi Hs H Hiz
15 H, H; Hs Hos 53 H H; H; His
16 H» Hy H Haz 54 H Hs H: Ha;
17 B Hi Hy Has 55 H  Hz Hs Ha;
18 B Hi H Haz 56 H Hs Ha Haz
19 H H; Hs Hz4 57 Hs H; H; Ho=
20 Hb Hi1 Hs Ha4 58 H Hs Hs Haz
21 Hy Hi Hg Haa 59 H  Hz Hs Haz
22 B Hi Hs Haq 60 H» Hs H; Haz
23 M, Hy Hs | Ha 61 H Hs Hi | Ha
24 H Hi Ha Has 62 H Hs H Haz
25 H H; Hs Hss 63 H; H; H; Hay4
26 Hh H H; Hi1 64 H Hz H; Haq
27 W H, H Hiq 65 H H; Hs Hay4
28 H, Hy H; Hi1 66 Hi Hs H> Hz4
20 M Hy Hp | Hp 67 H Hs Hi | Ha
30 i Hz; Hs Hio 68 H Hs H; Hay
31 M Hy Hi | M 69 H Hs Hs | Ha
32 H Hy H; Haz 70 Hs Hs Hs Haz
33 Hb Hx Hs Ha: 71 Hy Hs Hyg Hse
34 H H; Hs Haz 72 H Hs Hs Hse
35 Hy H H; Has 73 Hi  Hz Hs Hse
36 b H; Ha Haz 74 H Hs Hs Hse
37 B Hx H: Has 75 H Hs; Hs Hse
38 H  H, Hs Has
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Table 5.3 TAM output.

Threat Likelihood

Threat scenario

H, H, Hs H, Hs Rank
1 (a.4.9.4 0.2169  0.2034  0.2020 3
2 (a.,4.,4 .4 0.2119 . i 7
3 (.,4.9.4 ) ) 0.2336  0.2067 . 6
4 (a.4.8 .4 0.2023  0.2083  0.2003 . ] 11
5 (a,.8.4.4 02101 .
6 (a,.8.4.4 02077 . ]
7 (x.,9 .4 ] ] 0.2025  0.2025  0.2025 4
8 (a.4.d .4 0.2003  0.2003  0.2076 . ) 10
9 (.4.,9.4 . . 0.2064  0.1994  0.1994
10 (a,&,d .4 0.2335  0.2104  0.1901 . 12
11 (a,,&,9 .4 0.1906  0.2435 0.1894 0.1894 5
12 (a,,&,4 .3 0.2323 01927  0.1927 4

Step 2.2 :Transform VAM output

In VAM, the fuzzy set theory is used for uncertgimodelling and the output data
for vulnerability are represented by vulnerabiligores. Fuzzification is the process
of making a crisp quantity fuzzy by taking the priaput and determining the degree
to which this input belongs to each of the appumprifuzzy sets. Therefore,
vulnerability can be quantified by the degree ofmbership of a numerical value to
a fuzzy set. The output of VAM is described usimgliistic variables given in Table

5.4 and each linguistic variable is indicated byFN within the interval of [0, 1].

The linguistic variables in Table 5.4 and their nbemship functions are shown in

Figure 5.2.

By using the linguistic variables in Table 5.4 dhdir membership functions shown
in Figure 5.1, vulnerability scores are fuzzifieddaresults are presented for the

identified threat scenarios in Table 5.5.

Table 5.4 Linguistic variables for the vulnerability of tatge

Linguistic variable Triangular fuzzy number
Low (L) (0, 0,0.5)
Medium (M) (0, 0.5,1)
High (H) (0.5,1,1)
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»

0 0.5 1 vulnerability

Figure 5.2 : Membership functions of linguistic variables fordwerability.

Table 5.5 VAM output.

Target Vulnerability Rank V'\L ?;r;rzlgziﬁg/ H, Vulni'r:\bility M

a 1.202 4 0.581 - 0.838 0.162
a, 1.183 5 0.572 - 0.856 0.144
a, 0.919 8 0.444 0.112 0.888 -
a, 0.710 14 0.343 0.314 0.686 -
a, 0.763 12 0.369 0.262 0.738 -
a, 0.889 9 0.430 0.140 0.860 -
a; 1.033 7 0.499 0.002 0.998

a, 1.090 6 0.527 - 0.946 0.054
a, 0.742 13 0.359 0.282 0.718 -
' 0.814 10 0.393 0.214 0.786 -
a, 0.648 15 0.313 0.374 0.626 -
a, 0.606 16 0.293 0.414 0.586 -

L, 0.803 11 0.388 0.224 0.776 -
L 0.583 17 0.282 0.436 0.564 -
a, 0.425 19 0.205 0.590 0.410 -

9 0.541 18 0.262 0.476 0.524 -
a, 0.424 20 0.204 0.592 0.408 -

L, 1.272 3 0.615 - 0.770 0.230
L, 2.069 1 1.000 - - 1.000
; 1.291 2 0.624 - 0.752 0.248

S
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Step 2.3:Transform CAM output

In CAM, probability theory is used for uncertaintyodelling and the output data for
consequence are represented by random variable® dtechastic uncertainty. By
using the expected values of consequence, consegjuam be quantified by the
degree of membership of a numerical value to ayfiset like the fuzzification of

vulnerability score. The output of CAM is describgging linguistic variables given
in Table 5.6 and each linguistic variable is intekchby a TFN within the interval of
[0, 1]. The linguistic variables in Table 5.6 arteit membership functions are

shown in Figure 5.3.

Table 5.6 Linguistic variables for the consequence of theeaharios.

Linguistic variable Triangular fuzzy number
Very low (VL) (0,0,0.3)

Low (L) (0.1,0.3,0.5)

Medium (M) (0.3,0.5,0.7)

High (H) (0.5,0.7,1)

Very High (VH) 0.7,1,1)

1}

»
»

0 01 03 0.5 0.7 1 consequence

Figure 5.3 : Membership functions of linguistic variables fonsequence.

By using the linguistic variables in Table 5.6 d@hdir membership functions shown
in Figure 5.3, expected values of consequenceuam@fied and results are presented
for the identified threat scenarios in Table 5.7.

The fuzzification is applied to VAM and CAM, andtbestimate is applied to TAM
for transforming the input in the required formExjuation 5.17 in this study. All the

transformed inputs for the identified threat scesare shown in Table 5.8.
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Table 5.7 CAM output.

Consequence

Normalized
Threat Scenario ConsequencePeoqﬁsequence

T

1 H2 H3 H4 H5

1(a,&,4,4 2,557,497 10 01305 0.5650 0.1525 - - .

2 (a;,&,3,4 5776055 3  0.2948 0.0174 0.9740 - - -
3(a;,&,4,4 3360789 7  0.1715 04284 0.3575 - - -
4 (a5,&,8,4 8477618 2  0.4326 - 03370 06630 - -
5(a;,& ,d ,4 4,871,782 5  0.2486  0.1714 0.7430 - - -
6(a;,&,d ,4§ 13913540 1  0.7100 - - - 0.96670.0334
7(a,&,4,4 1,879,900 12 0.0959 0.6804 - - - -
8(a,&,d,4 3755768 6  0.1917 03610 0.4585 - - -
9(a;,&,4,4 2632710 9  0.1344 05520 0.1720 - - -
10(a;,&,d8 ,4 5,526,108 4 02820 0.0600 0.9100 - - -
11(a},, &, ,4 2,105,731 11 0.1075 0.6417 0.0375 - - -
12(ay,,& ,4 ,4 2,899,042 8 01479 05070 02395 - - -
Table 5.8 Transformed inputs.
N H' ={(H;,, A}
Threat Likelihood, i=1 Vulnerability, i=2 Consequend=3

{(H,,0.2169),H,,,0.2034) .
(H,,.,0.2020)} {(

2{(H,,0.2119)} {(H,,0.1120),H,,,0.8880) {(H,,0.0174),H , ,, 0.9740)
3{(H,,0.2336),H,,,0.2067) {(H,,0.1120),H , ,,0.8880) {(H, ,0.4284),H , ,, 0.3575)

0.1120),H, ,,0.8880) {(H,,0.5650),H , ,,0.1525)

2,1

{(H,,0.2023),H,,,0.2083) (H

(H,,,0.2003)} 0.1120),H,,,0.8880) {(H,,0.3370),H, ,,0.6630),

2,1

5{(H,,0.2101)} {(H,,0.3140),H ,,,0.6860) {(H,,0.1714),H, ,,0.7430)

6 {(H,,0.2077)} {(H,,0.3140),H , ,,0.6860) {(H, ,0.9667),H , ,,0.0334)
{((ﬂllj,oozzoozg)}(H”’0'2025) {(H,,0.2620),H,,,0.7380) {(H,,0.6804)}

8 {((';11-}3’%?208%}“* 12:0-2003) 4y 0.2620), M, ,,0.7380) {(H,,0.3610), H, , , 0.4585)

9 {((';ﬁ%?fQG;ZS}O* 140 0-1998) 1y 0.2620),H,,.0.7380) {(H, ,0.5520), H,, .0.1720)

10{((';11-}3’%?5’%}“* 12:0-2104) 4y 0.2620), M, ,,0.7380) {(H,,0.0600), H, ,,0.9100)

{(H,,0.1906),H ,,,0.2435)
(H,,,0.1894), H,,,0.1894)

{(H,,0.2323),H,,,0.1927)
(H,.,0.1927)} {(H

11 {(H,,0.3740),H ,,,0.6260) {(H,,0.6417),H ,,,0.0375)

12 0.3740),H, ,,0.6260) {(H,,0.5070),H , ,,0.2395)

2,1
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Step 3:Calculate the rule activation weights

The activation weights wfor all the activated rulesR ={R,..., R,... R} are

generated by using both disjunctive operator (O &nd conjunctive operator
(AND (7)) (Egs. 5.18-19). For example, for threat scenafmlowing rules in Table

5.9 are activated for the transformed inputs inl@ &h8.

Table 5.9 Activated rules for threat scenario 1.

Antecedent ConsequentActivation Activation
weight weight

Activated w? w?

Rule IF TL % \% % C THEN SR k k
7 Hs H; H; Hi, 0.1120 0.5650
12 H H; H, H,, 0.1120 0.2169
32 H H, H, H,, 0.2169 0.8880
37 H H, H, H,s 0.1525 0.8880
10 H, H; H, H,, 0.1120 0.5650
16 H, H; H, H,s 0.1120 0.2034
35 H, H, H, H,s 0.2034 0.8880
41 H, H, H, Hasa 0.1525 0.8880
14 H H; H; H,s 0.1120 0.5650
18 H H; H, Has 0.1120 0.2020
39 H H, H; Has 0.2020 0.8880
43 H; H, H, Hay4 0.1525 0.8880

The activation weight for rule 7 is calculated fioe given input as follows:

w,’ =min(0.2169,0.1120,0.5656) 0.11

w,’ =max(0.2169,0.1120,0.5656) 0.5¢€

Activations weights for identified scenarios ardcafated using both disjunctive

operator and conjunctive operator and present@alite 5.10 and Table 5.11.
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Table 5.10 :w, activation weights for threat scenarios.

No. S (.) Activation weights
(H,,,0.1120),H,, ,0.1120)H ,, ,0.2169H(,, ,0.152(5),220.1120)1
. Si(a&.g .4 .4 1(H,,0.1120),H,, ,0.2034)H,, ,0.1525H(,, ,0.1120},,,0.1120),
(H,,,0.2020),H,, ,0.1525) J
> S(&.4.8.8 g _00174),H,,,0.1120),, 0.0174K,, ,0.21}
(H,,0.1120),H, ,0.1120)H,, ,0.2336}(, ,0.2338),,,0.1120)]
s S(®.d.4.3 (H..,0.1120),H,. ,0.2067)H .. ,0.2067) |
(H,,,0.1120),H,, ,0.1120)H,, ,0.2023H(, ,0.202(31),110.1120),1
. S(@&.4.4.4 §(H,0.1120),H,,0.2083)H,, ,0.2083H(,, ,0.112(),,,0.1120)
(H,,,0.2003),H.,, ,0.2003) J
s S(@&.3.4.8 (H,01714),H, 0210DH,, 0.1714M(, 0.21p
e S@.8.4.8 (¢H,02077).H,, 0.0334)H, 0.2077H(, .0.03B
(H,,,0.2025),H,, ,0.2025)H,, ,0.2025)(,, ,0.202%),,,0.2025)
r S@E.E.4.8 {(Hgg,o.zozs) }
(H,,,0.2003),H,, ,0.2003)H,, ,0.2003H(, ,0.200@®},,,0.2003),
¢ S(&.g.d4.,4 4(H,,02003),H, 0.2003)H,, ,0.2003H(, ,0.207@),,,0.2076)
(H,,,0.2076),H,, ,0.2076)
(H,,,0.2064),H,, ,0.1720)H ,, ,0.2064H(,, ,0.172(),,,0.1994)
s S(&.4.4d.4 1(H,0.1720),H,, ,0.1994)H,, ,0.1720H(,, ,0.199%),,,0.1720),
(H,,,0.1994),H,, ,0.1720)
(H,,,0.0600),H,, ,0.2335)H,, ,0.0600H(, ,0.2338},,,0.0600),
o S(@&.%.3.,4 4(H,,0.2104),H,,,0.0600)H,, ,0.2104H(, ,0.060@),,,0.1901)
(H,,,0.0600),H ,, ,0.1901)
(H,,,0.1906),H,, ,0.0375)H,, ,0.1906H(, ,0375Y,(,0.2435),
< (H,,,0.0375),H,, ,0.2435)H ,, ,0.0375M(,, ,0.1894),,,0.0375)
n (8.4 (H,,,0.1894),H ,, ,0.0375)H ,, ,0.1894H(, ,0.037(5),,,0.1894),
(H,,,00375)
(H,,,0.2323),H,, ,0.2323)H,, ,0.2323H(,, ,o.23a$a,220.1927)1
» S @8 ,d,4 {(H,01927)H,,,0.1927)H,, ,0.1927H(, ,0.192#,,0.1927)
(H,,,0.1927),H.,, ,0.1927) J
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Table 5.11 :w,’ activation weights for threat scenarios.

No. S (.) Activation weights
(H,,,0.5650), H,, ,0.2169)H,, ,0.8880H(, ,0.888®) 22,0.5650)1
. S(&.g .4 .4 {(H,0.2034),H,, ,0.8880)H,, ,0.8880H(, ,0.5650),,,0.2020),
(H,,,0.8880),H,, ,0.8880) J
> S(&.4.3.4 gH_02119),H,,,0.9740)4,, 0.8880H,, ,0.974
(H,,,0.4284),H, ,0.3575)H,, ,0.8880}(, ,0.8888),,,0.4284)]
s S(®.d.4.38 (H..,0.3575),H . ,0.8880)H.. ,0.8880) J
(H,,,0.3370),H,, ,0.6630)H,, ,0.8880)(, ,0.88§8),,0.3370),
. S@&.4.4 .8 (H,,,0.6630),H,, ,0.8880)H ,, ,0.8880)(,, ,0.337@®),,,0.6630)
(H,,,0.8880),H.,, ,0.8880)
s S(&.4.4.8& ((H,03140),H,, 0.7430)H,, ,0.6860H(, .0.74B
e S(&.4.38.8 ((H,09667).H, 03140)H, .0.9667H(, .0.68p
(H,,,0.6804),d,, ,0.7380)H,, ,0.6804M(, ,0.7380),,,0.6804)
r SE.d.4.4 {(H33,0.7380) }
(H,,,0.3610),H,, ,0.4585)H,, ,0.7380H(, ,0.7380,,,0.3610),
s S(a&.4.4.4 <(H,04585),H, ,07380)H,, ,0.7380H(, ,0.361(),,,0.4585)
(H,,,0.7380),H ,, ,0.7380)
(H,,,0.5520),H ,, ,0.2620)H ,, ,0.7380H(,, ,0.738@®),,,0.5520)
o S(d.,d,8,4 {(H,.0.2620),H,, ,0.7380)H,, ,0.7380H(, ,0.5520),,,0.2620),
(H,,,0.7380),H,, ,0.7380)
(H,,,0.2620),H, ,0.9100)H,, ,0.7380H(, ,0.9100},,,0.2620),
o S(&.%.4.,4 (H,,0.9100),H,, ,0.7380)H,, ,0.9100H(, ,0.2620,,,0.9100)
(H,,,0.7380),H,, ,0.9100)
(H,,,0.6417),d . ,0.3740)H,, ,0.6417H(, ,0.6260),,,0.6417),
< (H,,,0.3740),H,, ,0.6417)H,, ,0.6260H(, ,0.641(H,,,0.3740)
n (4.4, (H,,,0.6417),d, ,0.6260)H,, ,0.6417)(, ,0.3740),,,0.6417),
(H,,,0.6260)
(H,,,0.5070),H,, ,0.3740)H ,, ,0.6260H(,, ,0.62603,220.5070)1
5 S@,.d,d,4 4(H,0.3740),H,, ,0.6260)H,, ,0.6260H(,

(H,,,0.6260),H,, ,0.6260)

,0.507@),330.3740)]
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Step 4:Aggregate the activated rules

The inference procedure is implemented by applyhbgVA operator to combine the

activated rules, w, and w,' using Equations 5.20-5.21 for in this study. Timalf

matching degree for activated rules of a scenar& calculated in the form of

uncertain linguistic variables for identified scena and presented in Table 5.12.

Table 5.12 Aggregation results of the activated rules.

ULWA, ULWA,
No  ThreatScenario ™ ain Linguistic ~ Correspoding  Uncertain Linguistic  Correspoding
variable discrete terms variable discrete terms
! (aé’af ’ﬁ ’4 [52.2894’52.7714] H23 [32.3010’ 52.8238] H23
2 (aé,af ’é ’é [S1.9515 S2.5007] His [S1.0305+ S2.3106] Hys
3 (a.%.,9 .4 [S2.0719 S2574] Hys [S; 0897+ S2.5607] Hye
4 (aé’af ’é ’é [Sl.5456’ Sl.9864] H12 [31.5466’ S2.0257] H13
5 (a,8,4.4 [S1.7754s S2.2754] His [S1 67371 S2.2080] Hys
6 (aﬂ,aﬁ ’é ’é [S5.0693 S3.5603l Hy, [Ss 2330 Sa.670¢] Ha,
! (aé’af ’é ’4 [S2.0000 S2.5000] Hos [S2 0135 S2.506¢] Hys
8 (aé’af ’é ’4 [S: 25601 S1.5000] H, [S1 26001 S1.5477] Hy,
9 (CHESE ST [S2.2270: S2.7270l Hos [S5 28015 S2.8012] Hos
10 (&.% .8 .4 [S1 5704 S1 5533 H,, [S1 3024 15483 H,,
1 (ail’af ’éi ’4 [S1 79341 S2.1045] His [S1.280 S2.3854] Hi
12 (ail’af ,?:i ’é 221791 S2.7179] Hos [S2.2727:S2.7831] Hys

Step 5:Evaluate the security risks

At this step, the security risk of identified sceaa are ranked and compared based
on their uncertain linguistic variables. The resw@lte interpreted to guide SRA. The
ranking of 12 identified threat scenarios basedhwir security risks is calculated
and presented in Table 5.13. Rankings enable the ©@Ntentify the higher security

risk scenarios from the lower security risk ones.

As seen from Table 5.12 and Table 5.13, after rapkihreat scenario 6 has the
highest security risk with referential linguistialue, H4, “Medium-High” and threat
scenario 8 has the lowest security risk with refeat linguistic value, Hb, “Very

Low-Low” for both disjuntive and conjunctive rul@t@cedent aggregation. From the
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results, it is observed that proposed model previelgough resolution for DMs to
determine the security risk priorities of a critidacility. For example, although
threat scenario 1, 3, 7, 9 and 12 have the saraeergfal linguistic value, b, “Low-
Medium?”, their security risks can be distinguistmsed on their uncertain linguistic
variables. The arbitrary numeric scale problenigs aolved since the security risk is
modelled as uncertain linguistic variable. Lastlgroblem of multiplicative
aggregation that produces exactly the same valseairity risk scores for different
sets of T, V and C ratings with different securnitsk implications is solved. For
example, scenario 7 is a High Likelihood-Low Consatpe scenario and scenario
10 is a Low Likelihood-High Consequence scenariththe same vulnerability. But,
scenario 7 and scenario 10 have different sectiskyinterpretations. Therefore, the
proposed model can also distinguish this kind offetent security risk
interpretations. When disjuntive and conjunctiveleruantecedent aggregation

operators are compared, the results are consistent.

Table 5.13 Security risk rankings of threat scenarios.

Ranking

z
©

Threat Scenario Threat Security Risk

Likelihood Vulnerability =~ Consequence _ ] _ o
Conjunctive  Disconjuctive

1 (.89 .4 3 8 10 2 2
2 (a5.4.4 .4 8 3 6 8
3 (a,4.9.4 6 8 7 5 5
4 (a5,9.4,4 11 8 2 10 10
5 (a.%.d.4 8 14 5 8 9
6 (a,8.d.4 14 1

7 (a4 .9 .4 1 12 12 7 6
8 (.4,8 .4 10 12 6 12 12
o (.9.9.4 2 12 3 3
10 (a.%.8,4 12 12 4 11 11
11 (a4 .4 .4 15 11

12 (a,,4.4 .4 4 15 8 4 4

5.5 Concluding Remarks of Chapter 5

After a structured set of scenarios, their liketils, vulnerabilities and consequences
have been quantified with different modes of uraiaty from the corresponding

models of proposed SRA framework, aggregating tpeoperly for evaluating the
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security risk is needed. Therefore, the main gdahs chapter is to evaluate the
security risk of a critical facility by aggregatirsgcurity risk factors correctly. For

this purpose, a new rule based expert system mopeal.

Firstly, problems about aggregation of securiti fectors are addressed. It is stated
that Security risk factors must be aggregatednordinear rather than linear manner
but multiplicative aggregation is not the right eggption operator because of the
inability to distinguish between High likelihoodwo consequence and low
likelihood-high consequence threat scenarios, taisiei nonlinear manner, and
arbitrary numeric scale problem. Then, handlingiowes types of uncertain input

information is investigated.

Secondly, a new rule-based system is designed mpteinented for evaluating

security risk. Transformations of input variableee adone depending on the
uncertainty mode of input variables by either flization or bet estimate. A rule-

base is designed with the rules having uncertaiguistic variable consequents for
the reason of eliminating the arbitrary numericlesgroblem. Since the outputs of
activated rules are linguistic variables, ULWA ager is used for inference process.
Therefore, proposed rule based expert system hé#eredit input variable

transformation, different rule consequent and diffé rule aggregation method for
inference process. For rule antecedent evaluatwem,main aggregation strategies,
both conjunctive and disconjunctive, are also a&pliand compared for the

sensitivity analysis.

To summarize, proposed method offers a rationdghle way to aggregate model
outputs. By this way different formats of availaldita and uncertain knowledge can
be incorporated into SRA process. Such a rule haseapable of capturing
vagueness, incompleteness, and nonlinear caussibrehips by representing them
with if—then rules. This approach can capture mmar casual relationships as well
as different kinds of uncertainty.

As a result, the proposed model is applied to & sasdy. Proposed methodology
provides a flexible and effective inference progedtio deal with such multi
uncertain information. It is capable of aggregatiagious types of uncertainties.
According to the results of REM, suggestions faritical facility protection can be

put forward to reduce the security risks. REM easldecurity analyzers to identify
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the higher security risk scenarios from the loweecuwsity risk ones. The proposed
rule based expert system is generic rule-baseeinéer methodology and can easily

be applied to other applications that have arhjitnraumeric scales problem and
nonlinear casual relationships.
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6. CONCLUSION AND RECOMMENDATIONS

SRA is a major component of modern security risknagement and better risk
management decisions are dependent on a betterstantting of the concerned risk
type. Correct SRA is crucial because defence ressuare limited and there are not
enough resources to eliminate all security riska ofitical facility. Realistic SRA is
required to support strategies for identifying, ttoling, reducing, and finally
managing security risks. Without clear SRA, DMs man also benchmark

improvements or progress to reduce the overallleig&l.

In this thesis, after the potential limitations obnventional RA methods are
identified, the required theories, methodologiesl amformation about SRA are
explored and researched. Since the main goal sftli@sis is to accomplish correct
SRA by more realistically quantifying security ridactors and alleviating the
previously mentioned concerns to some degree, mmgsie and rigorous SRA
framework that provides adequate information todgusecurity risk management
process is proposed. Since there are many chafiendgbe details of SRA, the main
research questions addressed in this thesis fod@sgs:

e How to measure/quantify/represent security risktdiec Threat likelihood,
Vulnerability, Consequence, and Security risk cdesng appropriate uncertainty

models?
» How to aggregate threat likelihood, vulnerabilidaconsequence for SRA?
* How to improve SRA decisions?

The proposed SRA framework focuses on quantificatib the three fundamental
factors used to assess the security risk: thredhevability and consequence and
aggregation of them for SRA. In order to accomp&$bA, four different models are
developed for each factor of the SRA framework dsedt Assessment Model
(TAM), Vulnerability Assessment Model (VAM), Consgence Assessment Model
(CAM), and Risk Evaluation Model (REM). Each deymd model in SRA

framework proposes an approach for quantificatibrcayresponding security risk
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factor. Therefore, proposed SRA framework has Istadied in three dimensions:
theoretical framework, methodological framework amdormation processing

framework and described in detalil.

The first model of the proposed SRA framework, TAbEntifies threats of a critical
facility and estimates their likelihoods (Chaptex. For this purpose, a novel
approach called evidence based Morphological Amal{isMA) model is proposed
based on Dempster-Shafer theory of evidence (D®d)Morphological Analysis
(MA) methodology by describing reasons for modelliancertainty by DST, the
fundamentals of DST and MA, and how DST is applfed threat likelihood
estimation within MA. The proposed approach is pnésd step by step and applied
to a simple case study on airport threat assessimbatresults show that EMA can
be used to reason about threat assessment by ipgpaidequate precision and better
captures the uncertainty in threat assessment trahtional probabilistic risk
approaches that use point estimates. TAM also g&werthe initiating events,

possible threat scenarios, for the other modesRA framework.

The second model of the proposed SRA framework, YVAMntifies and quantifies
the weakness of the critical facility as a systaystem functions and system
components, and determines the most critical fanstiand components by
simulating the system behaviour (Chapter 3). Fisrglrpose, a new approach called
fuzzy integrated vulnerability assessment modeV ) based on fuzzy set theory,
Simple Multi-Attribute Rating Technique (SMART) arfuzzy Cognitive Maps
(FCM) methodology in a group decision-making enwim@nt is proposed. The
FIVAM approach is presented step by step and appgbea simple case study on
airport vulnerability assessment. The results efapplication are compared to those
observed through a classical vulnerability assessnmeodel to illustrate the
effectiveness of the FIVAM. The results show thdWVAM provides both a
framework to identify the hidden vulnerabilities usad by the functional
interdependencies within the system and a relatanking of targets that might

require improved protection.

The third model of the proposed SRA framework, CAddtimates the expected
magnitudes and types of losses (e.g., deathsjasjur property damage) associated
with a threat scenario given adversary successdewntifying, quantifying and

integrating all different types of losses spectficsecurity risk of a critical facility
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while estimating the total consequence (Chaptefdj.this purpose, Monte Carlo
Simulation based CA model that combines differgpes of consequences for SRA
is proposed. The proposed approach is presentedgtetep and applied to a simple
case study on airport consequence assessmenteduiesrshow that proposed model
can be used to reason about consequence assesgnerabling security analyzers
to identify the higher consequence scenarios frieeldwer consequence ones. The
proposed model also performs CA by consideringradjor losses of security risk

with optimal complexity and time to improve the SRA

The last model of the proposed SRA framework, REVEN inference model that
aggregates the outputs of TAM, VAM and CAM for exating the security risk of a
critical facility (Chapter 5). For this purpose,weule-based expert system is
proposed for capturing nonlinear causal relatigpstietween security risk factors
(threat likelihood, vulnerability and consequenedjich have different uncertainty
modes for evaluating security risks. The propoggat@ach is presented step by step
and applied to a simple case study on airport ggcrsk evaluation. The results
show that proposed model can be used to reasort abourity risk evaluation by
enabling security analyzers to identify the higkecurity risk scenarios from the
lower security risk ones and can capture nonlire@aual relationships as well as

different kinds of uncertainty.

To summarize, proposed SRA framework is a multi hoeéblogical approach
because methodologies relevant to address theaspdwllenges of security risk
factors are investigated and applied in a logicad afficient way. These include
problem structuring methods (PSM) such as MA, mldtcriteria/attribute decision
making (MCDM) techniques such as SMART, data iraégn methods and
evidence combination techniques such as rule basquert systems, DST
combination rules and ULWA, and modelling and siatioin techniques such as
TNT equivalent method, FCM and Monte Carlo simwolatiSecondly, since there are
different sources/causes of uncertainty affectimgusty risk factors in SRA,
different from conventional RA approaches propoS&A framework represents
each security factor with different uncertainty dhe Parameters of VAM are
represented by belief functions of Dempster-Shéii@precision due to lack of
knowledge/partial ignorance), parameters of CAM aepresented by fuzzy

membership functions (imprecision due to vaguenasd) parameters of CAM are
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represented by probability distributions (randonsndae to variability). Therefore,
proposed SRA framework handles various types ofedamties as randomness,
incompleteness and fuzziness. Thirdly, differentestainty theories are combined
effectively by the proposed SRA framework providisglutions for nonlinear
aggregation problem as in multiplicative aggregatand arbitrary numeric scale
problem. So, this thesis proposes a complete SRa#ndwork that offers a
comprehensive and logical multi methodological apph capable of handling and
combining different uncertainties as partial igma®, fuzziness and randomness for

assessing the security risk of critical facilities.

After SRA has been completed by applying propodeA 8amework, its results can
be used to improve security risk management detismaking by allocating
available risk management resources to securityreducing countermeasures (e.g.,
for vulnerability reduction increasing surveillanaad detection, hardening targets
etc. or for consequence reduction increasing pegimgss and response). SRA help
to formulate the requirements for protection measunecessary to counter the

perceived threat.

Security risk is dynamic because security managsrdefenders are constantly
making investments to reduce threat, vulnerabditg consequence, and adversaries
as attackers constantly alter preferences of targed capabilities. Since SRA is a
continuous process, the new information obtainedbzaeasily can be used easily as
a feedback for the proposed framework to updatarggaisk evaluation. As some
standard for estimating and monitoring change eded, proposed framework can
also be used for security risk monitoring. In aidditto this, the proposed SRA
framework is generic enough to be applied to ape tyf critical facility with minor
modifications such as dam, governmental facilitgrblour, nuclear power plant, oil

plant etc. by insurance companies, municipal masagéc.

As a result, proposed SRA framework has contributedquantitative decision
analysis by supporting decisions under differentlesoof uncertainty and provided a
basis for more effective security risk managemdmtoposed framework also
provides easy security risk communication and tissemnination of security risk
information in an understandable form. The propdsachework is very useful for
the systematic and rational SRA. Its feasibilityd affectiveness are illustrated by

numerical examples in each chapter. It is seen ubaful insight about possible
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security risks of a critical facility can be gainddough applying proposed SRA
framework and proposed framework provides valuabfermation to DMs in

dealing with security risks of critical facility hycreasing situational awareness and
understanding.
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