
İSTANBUL TECHNICAL UNIVERSITY F INSTITUTE OF SCIENCE AND TECHNOLOGY

OPTIMIZATION ALGORITHMS FOR
THE MULTIPLE CONSTANT MULTIPLICATIONS PROBLEM

Ph.D. Thesis by
Levent AKSOY

Department : Electronics and Communication Engineering

Programme : Electronics Engineering

MARCH 2009

İSTANBUL TECHNICAL UNIVERSITY F INSTITUTE OF SCIENCE AND TECHNOLOGY

OPTIMIZATION ALGORITHMS FOR
THE MULTIPLE CONSTANT MULTIPLICATIONS PROBLEM

Ph.D. Thesis by
Levent AKSOY

(504032202)

Date of submission : 7 November 2008
Date of defence examination : 11 March 2009

Supervisor (Chairman) : Prof. Dr. Ece Olcay GÜNEŞ
Members of the Examining Committee : Assis. Prof. Dr. Ahmet ONAT (SU)

Assoc. Prof. Dr. Serdar ÖZOĞUZ (ITU)
Prof. Dr. Ertuğrul ÇELEBİ (ITU)
Assoc. Prof. Dr. Arda YURDAKUL (BU)

MARCH 2009

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

BİRDEN FAZLA KATSAYININ ÇARPIMI PROBLEMİ İÇİN
OPTİMİZASYON ALGORİTMALARI

DOKTORA TEZİ
Levent AKSOY

(504032202)

Tezin Enstitüye Verildiği Tarih : 7 Kasım 2008
Tezin Savunulduğu Tarih : 11 Mart 2009

Tez Danışmanı : Prof. Dr. Ece Olcay GÜNEŞ
Diğer Jüri Üyeleri : Yrd. Doç. Dr. Ahmet ONAT (SÜ)

Doç. Dr. Serdar ÖZOĞUZ (İTÜ)
Prof. Dr. Ertuğrul ÇELEBİ (İTÜ)
Doç. Dr. Arda YURDAKUL (BÜ)

MART 2009

FOREWORD

When I look back to three years in my Ph.D. research, I see many people whom I
would like to express my deepest gratitude for their support, contributions, friendship,
encouragement, and wisdom.

First of all, to my family, to my parents and sisters for their support and
encouragement during all these years, and to my little nephew and niece for adding
joy and happiness into the exhaustive days.

To my advisor, Prof. Dr. Ece Olcay Güneş, for her constant support, dedication,
suggestions, and reviews, without whom, this thesis simply would not exist.

Also, to Prof. Dr. Ahmet Onat and Prof. Dr. Serdar Özoğuz for their effort and useful
suggestions through my Ph.D. study.

To Prof. José Monteiro who invited me to work as a visiting researcher at ALGOS
research unit in INESC-ID where the ideas in this thesis were born. His motivation,
constitutive suggestions, inspiring thoughts, fruitful comments, and detailed reviews
are always acknowledged.

To Prof. Paulo Flores whom I had a privilege and pleasure to work with. I appreciate
his great contributions throughout this work, encouraging ideas, helpful comments,
and so many useful suggestions.

Also, to Prof. Eduardo Costa for the pleasant conversations we had, his forthcoming
suggestions, and above all, for his friendship.

To Anup Hosangadi, Yevgen Voronenko, Vasco Manquinho, Hossein Sheini,
Prof. Oscar Gustafsson, and Prof. Andrew Dempster for providing me their
algorithms or the results of their algorithms given in this work, and for fruitful
discussions we made on their and our algorithms.

To Prof. Luis Silveira, Jorge Villena, Ana Jesus, Teresa, James, Sandy, Cathy, and
many others in Lisbon who made my stay enjoyable, comfortable, and also, exciting.

To all my colleagues and friends in Istanbul for their assistance and friendship.

At last, but not least, to my previous professors, Prof. Dr. Ertuğrul Eriş and
Prof. Dr. Ahmet Dervişoğlu, who have great influences on me and my research all
over these years.

Without any of them, I think this thesis would not be as it is.

November 2008 Levent AKSOY

v

vi

TABLE OF CONTENTS

Page

ABBREVATIONS . x
LIST OF TABLES . xi
LIST OF FIGURES . xiii
SUMMARY . xv
ÖZET . xvii
1. INTRODUCTION . 1

1.1. Motivation and Objectives . 1
1.2. Original Contributions . 3
1.3. Thesis Organization . 5

2. BACKGROUND . 7
2.1. Number Representations . 7
2.2. Complexity Classes . 9
2.3. Boolean Satisfiability . 11

2.3.1. Preliminaries . 11
2.3.2. Satisfiability problem . 12
2.3.3. Satisfiability algorithms 12

2.4. 0-1 Integer Linear Programming 14
2.5. Pseudo-Boolean Optimization Algorithms 15

3. CONSTANT MULTIPLICATIONS . 19
3.1. Single Constant Multiplication . 19
3.2. Multiple Constant Multiplications 23

3.2.1. Common subexpression elimination algorithms 25
3.2.2. Extensions to the common subexpression elimination

algorithms . 28
3.2.3. Graph-based algorithms 29

4. OPTIMIZATION ALGORITHMS FOR THE MCM PROBLEM 33
4.1. Common Subexpression Elimination Algorithms 33

4.1.1. The exact common subexpression elimination algorithm . . . 33
4.1.1.1. Finding the implementations of constants 34
4.1.1.2. Construction of the Boolean network 35
4.1.1.3. Optimization models 37
4.1.1.4. Network simplifications 40
4.1.1.5. Conversion to 0-1 ILP problem 42
4.1.1.6. Analysis of 0-1 ILP problem complexity 42

4.1.2. The approximate common subexpression elimination algorithm 45
4.1.3. Experimental results . 48

4.1.3.1. The effect of number representation on the
achievable minimum number of operations 48

vii

4.1.3.2. The effect of problem reduction techniques on 0-1
ILP problem size 53

4.1.3.3. Comparison of SAT-based 0-1 ILP solvers on
optimization models 54

4.1.3.4. Comparison of CSE algorithms 56
4.1.4. Conclusions . 59

4.2. Minimum Number of Operations under General Number Representation 60
4.2.1. Implementations of constants under general number

representation . 60
4.2.2. The exact algorithm under general number representation . . 62
4.2.3. Experimental results . 64
4.2.4. Conclusions . 67

4.3. Graph-based Algorithms . 68
4.3.1. Preliminaries . 68
4.3.2. The exact graph-based algorithm 69
4.3.3. The approximate graph-based algorithm 75
4.3.4. Experimental results . 80
4.3.5. Conclusions . 86

5. OPTIMIZATION OF AREA UNDER A DELAY CONSTRAINT 87
5.1. Background . 87
5.2. The Exact Common Subexpression Elimination Algorithm 90

5.2.1. Computing the levels of operations in the Boolean network . 91
5.2.2. Finding the delay constraints 92

5.3. The Approximate Common Subexpression Elimination Algorithm . 94
5.4. Experimental Results . 96

5.4.1. The effect of number representation on the achievable
minimum number of operations under a delay constraint . . . 96

5.4.2. Comparison of CSE algorithms 98
5.4.3. Comparison of SAT-based 0-1 ILP solvers 100
5.4.4. Comparison of the CSE and graph-based algorithms 101

5.5. Conclusions . 102
6. OPTIMIZATION OF AREA AT GATE-LEVEL 103

6.1. Addition and Subtraction Architectures under Unsigned and Signed
Input . 104
6.1.1. Addition operation A+B¿S 105
6.1.2. Subtraction operation A¿S−B 106
6.1.3. Subtraction operation A−B¿S 107

6.2. The Exact Common Subexpression Elimination Algorithm 108
6.3. Experimental Results . 110
6.4. Conclusions . 115

7. OPTIMIZATION OF AREA IN HIGH-SPEED DIGITAL FIR FILTERS 117
7.1. Background . 117
7.2. An Exact Common Subexpression Elimination Algorithm 121

7.2.1. Generation of operations 121
7.2.2. The Boolean network . 123
7.2.3. Conversion to 0-1 ILP problem 124

7.3. Approximate Algorithms . 124
7.3.1. The approximate common subexpression elimination algorithm124

viii

7.3.2. The approximate algorithm under general number
representation . 125

7.4. Experimental Results . 127
7.5. Conclusions . 130

8. DISCUSSIONS AND CONCLUSIONS 133
REFERENCES . 137
CURRICULUM VITA . 146

ix

ABBREVATIONS

BCP : Binate Covering Problem
BHM : Bull-Horrocks Modified
CNF : Conjunctive Normal Form
CSA : Carry Save Adder
CSE : Common Subexpression Elimination
CSD : Canonical Signed Digit
DAG : Directed Acyclic Graph
DLL : Davis Logemann Loveland
DSP : Digital Signal Processing
EDA : Electronic Design Automation
FA : Full Adder
FFT : Fast Fourier Transform
FIR : Finite Impulse Response
HA : Half Adder
ILP : Integer Linear Programming
MCM : Multiple Constant Multiplications
MSD : Minimum Signed Digit
NP : Nondeterministic Polynomial time
P : Polynomial time
PB : Pseudo Boolean
PC : Personal Computer
RCA : Ripple Carry Adder
SAT : Satisfiability
SCM : Single Constant Multiplication
VMA : Vector Merging Adder

x

LIST OF TABLES

Page

Table 2.1 : Time complexity of problems with different functions. 10
Table 4.1 : Upper bounds on the size of network and 0-1 ILP problem in the

minimization of the number of operations model. 45
Table 4.2 : Upper bounds on the size of network and 0-1 ILP problem in the

minimization of the number of partial terms model. 45
Table 4.3 : Characteristics of the FIR filters. 51
Table 4.4 : 0-1 ILP problem sizes of the FIR filter instances. 52
Table 4.5 : Summary of results of the exact CSE algorithm on the FIR filter

instances. 52
Table 4.6 : The effect of problem reduction techniques on 0-1 ILP problem

size and performance of the SAT-based 0-1 ILP solver. 53
Table 4.7 : Characteristics of the FIR filters. 54
Table 4.8 : 0-1 ILP problem sizes of the proposed optimization models. . . 55
Table 4.9 : Run time comparison of the SAT-based 0-1 ILP solvers. 55
Table 4.10 : Summary of results of algorithms on the FIR filter instances. . . 57
Table 4.11 : Characteristics of filter instances and 0-1 ILP problem sizes. . . 58
Table 4.12 : Summary of results of the exact and heuristic algorithms. 58
Table 4.13 : Characteristics of the FIR filters. 65
Table 4.14 : 0-1 ILP problem sizes of the FIR filter instances. 66
Table 4.15 : Summary of the results of the exact algorithm under different

number representations on the FIR filter instances. 67
Table 4.16 : Upper bounds on the number of ready sets exploited by the exact

graph-based algorithm under different bit-widths. 74
Table 4.17 : Characteristics of the FIR filters. 81
Table 4.18 : Summary of results of the graph-based algorithms on the FIR

filter instances. 82
Table 4.19 : Summary of results of the graph-based algorithms on randomly

generated hard instances. 85
Table 5.1 : Summary of results of algorithms on the FIR filter instances. . . 100
Table 5.2 : Summary of results of the CSE heuristics on the filter instances. 100
Table 5.3 : 0-1 ILP problem sizes of the FIR filters and run-time

performance of the SAT-based 0-1 ILP solvers. 101
Table 5.4 : Summary of results of the graph-based heuristics and the exact

CSE algorithm on the FIR filter instances. 102
Table 6.1 : The cost of an A+B¿S operation. 105
Table 6.2 : The cost of an A¿S−B operation. 106
Table 6.3 : The cost of an A−B¿S operation. 107
Table 6.4 : Experimental settings. 110
Table 6.5 : Filter specifications. 111

xi

Table 6.6 : Experimental results on unsigned input model. 112
Table 6.7 : Experimental results on signed input model. 113
Table 6.8 : Effect of the bit widths of filter input over area on unsigned input

model. 114
Table 7.1 : 0-1 ILP problem sizes of the FIR filter instances. 129
Table 7.2 : Summary of results of algorithms on the FIR filter instances. . . 130

xii

LIST OF FIGURES

Page

Figure 1.1 : Transposed form of a hardwired FIR filter implementation. . . . 1
Figure 2.1 : (a) A combinational circuit; (b) its CNF formula. 12
Figure 3.1 : Comparison of the algorithms designed for the SCM problem. . 22
Figure 3.2 : (a) Multiple constant multiplications; The shift-adds

implementations of MCM: (b) without partial product sharing;
(c) with partial product sharing. 24

Figure 3.3 : Comparison of the exact algorithms designed for the SCM and
MCM problems on randomly generated MCM instances. 25

Figure 4.1 : Implementations of 51 under CSD representation. 35
Figure 4.2 : The network constructed for the target constant 51 under CSD

representation. 36
Figure 4.3 : Addition of optimization variables in the network: (a) the

minimization of the number of operations model; (b) the
minimization of the number of partial terms model. 38

Figure 4.4 : Simplification of the network of Figure 4.2 after optimization
variables for minimizing the number of operations are added. . . 41

Figure 4.5 : Simplification of the network of Figure 4.2 after optimization
variables for minimizing the number of partial terms are added. . 41

Figure 4.6 : Results of the exact CSE algorithm under binary, CSD, and MSD
representations on randomly generated instances: (a) Constants
in 10 bits; (b) Constants in 12 bits; (c) Constants in 14-bits. . . . 49

Figure 4.7 : Comparison of the number of adder-steps of solutions obtained
under binary, CSD, and MSD representations. 51

Figure 4.8 : Comparison of the exact and heuristic algorithms on randomly
generated instances. 56

Figure 4.9 : Implementations of 7, 11, and 19 in general number representation. 60
Figure 4.10 : Comparison of the solutions obtained under binary, CSD, MSD,

and general number representations. 65
Figure 4.11 : The representation of the A-operation in a graph. 69
Figure 4.12 : The flow of the exact algorithm in two iterations. 72
Figure 4.13 : The results of algorithms for the target constants 307 and 439: (a)

5 operations with Hcub; (b) 4 operations with the exact algorithm. 73
Figure 4.14 : The results of algorithms for the target constants 287, 307, and

487: (a) 6 operations with Hcub; (b) 5 operations with the
approximate algorithm. 79

Figure 4.15 : The implementations of the target constants 287 and 411:
(a) 4 operations with Hcub; (b) 3 operations after using the
RemoveRedundant function. 80

xiii

Figure 4.16 : Comparison of the solutions of the exact CSE algorithm and
exact algorithm under general number representation with the
minimum number of operations solutions. 81

Figure 4.17 : Results of graph-based algorithms on randomly generated hard
instances: (a) Constants in 12 bits; (b) Constants in 14 bits; (c)
Constants in 16-bits. 84

Figure 5.1 : Two implementations of 23x: (a) 23x = 24x +(22x +(21x + x)),
with three adder-steps; (b) 23x = (24x + 22x) + (21x + x), with
two adder-steps. 88

Figure 5.2 : Comparison of the number of adder-step of constants between 8
and 19 bit-width defined in binary and CSD. 88

Figure 5.3 : The implementation of the target set {3,13,219,221}: (a) with 4
adder-steps; (b) with the minimum number of adder-steps. 89

Figure 5.4 : An illustrative example on determining the paths that exceed the
maximum delay constraint. 93

Figure 5.5 : The results of the exact CSE algorithm under binary, CSD, and
MSD representation: (a) The average number of operations; (b)
The average number of adder-steps; (c) The average number of
additional operations to obtain the minimum delay solutions. . . 97

Figure 5.6 : Comparison of the exact and approximate CSE algorithms for the
minimization of the number of operations under a delay constraint. 99

Figure 6.1 : Examples on the computation of the area cost of an A + B¿S
operation. 106

Figure 6.2 : Examples on the computation of the area cost of an A¿S − B
operation. 107

Figure 6.3 : Examples on the computation of the area cost of an A− B¿S
operation. 108

Figure 6.4 : The network generated for the target constant 51 in CSD. 109
Figure 7.1 : Addition architectures: (a) Ripple carry adder block; (b)

Carry-save adder block. 118
Figure 7.2 : The implementation of the transposed form of a high-speed

digital FIR filter. 118
Figure 7.3 : Conversion of RCA operations to CSA operations in MCM. . . 119
Figure 7.4 : Comparison of the minimum number of RCA and CSA blocks

solutions with the solutions obtained using the RCA to CSA
conversion technique. 120

Figure 7.5 : Implementations of 51 in CSD using CSA blocks. 122
Figure 7.6 : Implementation of 63 in binary using 2 CSA blocks. 123
Figure 7.7 : The Boolean network constructed for the coefficient 51 in CSD. 123
Figure 7.8 : Area overhead between the approximate and exact CSE

algorithms on randomly generated instances. 126
Figure 7.9 : Implementations of 51 under general number representation. . . 126
Figure 7.10 : Comparison of the heuristic algorithms on randomly generated

instances: (a) Constants in 12 bit-width; (b) Constants in 14
bit-width. 128

xiv

OPTIMIZATION ALGORITHMS FOR THE MULTIPLE CONSTANT
MULTIPLICATIONS PROBLEM

SUMMARY

The Multiple Constant Multiplications (MCM), i.e, the multiplication of a variable by
a set of constants, has been a central operation and performance bottleneck in many
digital signal processing applications such as, video processing, digital television,
data transmission, and wireless communications. Since the design of multiplications
is expensive in terms of area, delay, and power consumption in hardware and the
values of the constants are known beforehand, the area-delay optimization of the
MCM operation has often been accomplished by using the shift-adds architecture.

The last decade has seen much progress in the design of efficient algorithms for the
MCM problem, i.e., the implementation of the MCM operation using the fewest
number of addition and subtraction operations. The design of efficient algorithms
for the MCM problem has also provided motivations to design the MCM operation
by taking into account the area, delay, and power consumption objectives, that are
the most important and crucial parameters in the design of hardware implementations
and directly influence the performance of the implementation.

However, since the MCM problem is a Nondeterministic Polynomial time
(NP)-complete problem, the previously proposed exact algorithms have high
computational complexity. As finding the exact optimal solution is intractable, almost
all existing algorithms are heuristics in nature and the obtained solutions are highly
possibly suboptimal due to the local minima.

On the other hand, recent impressive speed-ups of solvers for Boolean satisfiability
(SAT) enabled their adaptations to solve Boolean optimization problems that were
traditionally handled as instances of 0-1 Integer Linear Programming (ILP) and their
applications to new optimization problems in electronic design automation.

In this thesis, the MCM problem and its variants are modeled as 0-1 ILP problems
and the exact solutions are found using 0-1 ILP solvers equipped with recent
improvements in both areas, SAT and ILP. Also, the problem reduction and
model simplification techniques that significantly reduce the size of the 0-1 ILP
problem, consequently, increase the performance of the 0-1 ILP solvers, enabling
the applications of the exact algorithms to larger size instances are introduced.

Due to the NP-completeness of the MCM problem, naturally, there are more complex
instances that the exact algorithms cannot handle. Hence, in this thesis, approximate
algorithms that find competitive results with the minimum solutions and obtain better
solutions than those of the previously proposed heuristics are also introduced.

xv

xvi

BİRDEN FAZLA KATSAYININ ÇARPIMI PROBLEMİ İÇİN
OPTİMİZASYON ALGORİTMALARI

ÖZET

Birden fazla katsayının çarpımı (MCM), bir başka deyişle, bir küme içindeki
katsayıların bir değişken ile çarpımı, video işleme, sayısal televizyon, bilgi
aktarımı ve kablosuz haberleşme gibi birçok sayısal sinyal işleme uygulamalarında
performansı etkileyen merkezi bir işlem olmuştur. Donanım içinde çarpma işlemleri
alan, gecikme ve güç tüketimi açısından maliyetli olduklarından ve katsayıların
değerleri daha önceden bilindiğinden dolayı MCM işleminin alan-gecikme
optimizasyonu genellikle ötele-topla mimarisi kullanılarak sağlanmıştır.

Son on yıl, MCM problemi, bir başka deyişle, MCM işleminin en az sayıda
toplama ve çıkarma işlemleri kullanılarak gerçeklenmesi, için etkili algoritmaların
tasarımındaki oldukça büyük gelişmelere tanıklık etmiştir. MCM problemi için etkili
algoritmaların tasarımı, MCM işleminin, donanım tasarımında oldukça önemli ve
vazgeçilmez ve aynı zamanda tasarımın başarımını doğrudan etkileyen alan, gecikme
ve güç tüketimi ölçütleri de dikkate alınarak tasarlanmasına imkan sağlamıştır.

Yine de, MCM problemi bir belirleyici olmayan polinom (NP)-bütün problem
olduğundan dolayı daha önceden önerilen kesin algoritmalar yüksek hesaplama
karmaşıklığına sahiptirler. Kesin en iyi sonucu bulmak oldukça zor olduğundan,
varolan bütün algoritmaların çoğu sezgisel algoritmalardır ve elde edilen sonuçlar
arama uzayı içindeki yerel minimum noktalarının varlığından dolayı büyük bir
olasılıkla minimum sonuçlar değildir.

Bunun yanında, Boolean sağlanabilirlik (SAT) problemi için önerilen çözücülerin
yakın zamanlardaki etkileyici başarımları daha önceden 0-1 tamsayı doğrusal
programlama (ILP) örnekleri olarak ele alınan Boolean optimizasyon problemlerini
çözmek için uyarlanmalarına ve elektronik tasarım otomasyonu içinde yeni
uygulamaların ele alınmasına olanak sağlamıştır.

Bu tezde, MCM problemi ve onun değişik biçimleri 0-1 ILP problemleri olarak
modellenmekte ve kesin sonuçlar SAT ve ILP alanındaki yeni gelişmeler ile
donatılmış 0-1 ILP çözücüler kullanılarak bulunmaktadır. Bunun yanında, 0-1 ILP
problem boyutunu azaltan, böylelikle 0-1 ILP çözücülerin başarımını arttıran ve
kesin algoritmaların geniş boyutlu örneklere uygulanmasına olanak sağlayan problem
indirgeme ve model basitleştirme teknikleri sunulmaktadır.

MCM probleminin bir NP-bütün problem olmasından dolayı, doğal olarak kesin
algoritmaların ele alamayacakları çok daha karmaşık örnekler bulunmaktadır.
Bundan dolayı, bu tez içinde minimum sonuçlar ile rekabet edecek sonuçlar elde
edebilen ve daha önceden önerilmiş sezgisel yöntemlerden daha iyi sonuçlar bulabilen
yaklaşık algoritmalar sunulmaktadır.

xvii

xviii

1. INTRODUCTION

1.1 Motivation and Objectives

In several computationally intensive operations, such as Finite Impulse Response

(FIR) filters as illustrated in Figure 1.1 and Fast Fourier Transforms (FFT), the same

input is multiplied by a set of coefficients, an operation known as Multiple Constant

Multiplications (MCM). These operations are typical in Digital Signal Processing

(DSP) applications and hardwired dedicated architectures are the best option for

maximum performance and minimum power consumption.

However, the design complexity of these applications is dominated by a large number

of constant multiplications leading to excessive area, delay, and power consumption

even if implemented in a full custom integrated circuit. Since the values of the

constants are known beforehand, the constant multiplications can be designed using

addition/subtraction and shifting operations in the shift-adds architecture [1]. When

the same input is to be multiplied by a set of constant coefficients, significant

reductions in hardware can also be obtained by sharing the partial products of the

input among the set of multiplications. Since shifts are free in terms of hardware,

the MCM problem is defined as finding the minimum number of addition/subtraction

operations to implement the constant multiplications. The MCM problem has been

proven to be NP-complete in [2].

In the last two decades, many efficient algorithms have been proposed for the

optimization of the number of operations in MCM. These methods can be categorized

��� �

� �� �

� � �� � 	

 �

� � �� � � �

 � �

� � ���� ��� � � ����

���

���

Figure 1.1: Transposed form of a hardwired FIR filter implementation.

1

in two classes: the Common Subexpression Elimination (CSE) and the graph-based

algorithms. The CSE algorithms basically find common non-zero digit patterns on

the representations of the constants. The exact CSE algorithms that formalize the

MCM problem as a 0-1 Integer Linear Programming (ILP) problem and find the

minimum number of operations solution of the MCM problem by maximizing the

partial product sharing have been proposed in [3,4]. However, these exact algorithms

are not equipped with the problem reduction and model simplification techniques that

significantly reduce the 0-1 ILP problem size, consequently, the required time to find

the minimum solution. Hence, the exact CSE algorithms can be applied on small

size instances. On the other hand, the graph-based algorithms are not restricted to a

particular number representation and synthesize the constants iteratively by building

a graph. The previously proposed graph-based algorithms have been heuristics and

provide no indication on how far from the minimum their solutions are. To the best

of our knowledge, there is no exact graph-based algorithm designed for the MCM

problem.

The primary objective of this thesis is to introduce exact CSE and graph-based

algorithms that can be applied on real size instances of the MCM problem. However,

due to the NP-completeness of the MCM problem, there are more complex instances

that the exact algorithms find them difficult to obtain the minimum solutions. Hence,

the primary objective of this thesis is also to propose approximate algorithms that find

similar results with the exact algorithms using a little computational effort.

In many applications, performance is a critical parameter. Hence, circuit area

is generally expandable in order to achieve a given performance target. As the

delay is dependent on several implementation issues, such as circuit technology,

placement, and routing, in the MCM problem the delay is generally considered as the

maximum number of addition/subtraction operations in series to produce any constant

multiplication [5]. Thus, CSE and graph-based algorithms [5–8] have been proposed

to find the fewest number of operations solutions under a delay constraint in MCM.

However, the previously proposed algorithms have been based on heuristics and

may find suboptimal solutions that are far from the minimum number of operations

solutions under a delay constraint.

2

In the synthesis of the constant multiplications at the gate-level, each

addition/subtraction operation implementing a constant multiplication occupies

different scale of area based on its architecture. To obtain the minimum area

implementation of the MCM, the area cost of each operation should be also

considered in the MCM problem. The previously proposed heuristic [9] relies on

the ripple carry architecture of addition/subtraction operations including Half Adders

(HAs) and Full Adders (FAs), and aims to find the smallest area solutions of the

constant multiplications in terms of HAs and FAs. However, the area cost of each

operation can be determined more precisely by taking into account specific cases

and the minimum area solutions in terms of gate-level metrics can be obtained by

modeling the minimization of area problem as a 0-1 ILP problem.

In the algorithms proposed for the MCM problem, an addition/subtraction operation

is assumed to be a two-input operation that is generally implemented with Ripple

Carry Adders (RCAs) increasing the delay of the computation. On the other hand,

Carry-Save Adders (CSAs) are commonly used for high-speed implementation of

multi-operand additions. Although there exist mapping techniques [10, 11] that

convert addition/subtraction operations into high-speed operations using CSAs, they

do not attempt to minimize the number of required CSAs. Also, the previously

proposed CSE and graph-based algorithms [12, 13] designed for the optimization of

the number of CSA blocks have been heuristics.

The secondary objective of this thesis is to introduce exact CSE algorithms for the

minimization of the number of operations under a delay constraint, the minimization

of area, and the minimization of the number of CSA blocks.

1.2 Original Contributions

The original contributions of this thesis are given as follows:

• An alternative exact CSE model for the MCM problem - In this thesis, the

problem reduction and simplification techniques for the exact CSE algorithm of [4]

that enables the exact algorithm to be applied on large size instances [14] are

introduced. Also, for the MCM problem, an alternative exact CSE model [15] that

considers the minimization of the number of operations rather than maximizing

3

the partial product sharing as considered in [4] is proposed. This model allows the

exact CSE algorithm to be applied on more sophisticated optimization problems.

Also, an approximate CSE algorithm [16] that can be applied on more complex

instances is presented. Furthermore, an exact algorithm [17] that can handle the

constants under general number representation and obtains better solutions than

those of the exact CSE algorithm [4] is introduced.

• An exact graph-based algorithm for the MCM problem - Although the

exact CSE algorithms proposed for the MCM problem give good results, their

solutions depend on the number representation. Hence, the exact CSE algorithms

cannot guarantee their solutions as the minimum solutions when the constant

multiplications are not restricted to any particular number representation. In this

thesis, an exact graph-based algorithm [18] that finds the minimum number of

operations solution of the MCM problem is introduced. Although the proposed

exact algorithm is based on a breadth-first search and can be applied on less

complex instances, it can handle real size instances in a reasonable time and may

find better solutions than those of the prominent graph-based heuristics. Also, an

approximate algorithm [19] based on the exact algorithm that finds competitive

and better solutions than efficient graph-based heuristics on large size instances is

introduced.

• An exact CSE algorithm for the optimization of the number of operations

under a delay constraint in MCM - In this thesis, the exact CSE algorithm

designed for the MCM problem is extended to find the minimum number

of operations solution under a delay constraint by using the alternative exact

model [20]. In this algorithm, delay constraints are also added to the 0-1 ILP

problem so that the minimum number of operations solution does not violate

the delay constraint. Also, an approximate CSE algorithm [16] that finds better

solutions than the CSE heuristics and competitive results with the exact CSE

algorithm is introduced.

• An exact CSE algorithm for the optimization of area in terms of gate-level

metrics in MCM - In this thesis, addition and subtraction architectures for the

constant multiplications based on HAs, FAs, and additional logic gates under

4

signed and unsigned input are introduced. In the exact CSE algorithm [21], the

area cost of each operation is determined by the data given in the design library

and the minimum area solutions of constant multiplications are found by using the

alternative exact model.

• Exact and approximate algorithms for the optimization of the number of

CSA blocks in MCM - In this thesis, an exact CSE algorithm designed for the

minimization of the number of CSA blocks is presented. Also, an approximate

CSE algorithm that can deal with large size instances is introduced. Furthermore,

the approximate CSE algorithm is extended to handle the constants under general

number representation [22].

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives the background

concepts related with the optimization algorithms designed for the MCM problem. In

Chapter 3, initially, we introduce the single constant multiplication (SCM) problem

and give an overview of the algorithms designed for the SCM problem. Then,

we define the MCM problem and describe the algorithms proposed for the MCM

problem. Chapter 4 presents the exact and approximate algorithms designed for the

MCM problem. This chapter starts with the introduction of the exact and approximate

CSE algorithms. Then, it is followed by the presentation of the exact algorithm that

can handle the constants under general number representation. Finally, this chapter

ends with the introduction of the exact and approximate graph-based algorithms. In

the following three chapters, the exact and approximate CSE algorithms designed

for the optimization of area and delay in MCM are introduced. Chapter 5 describes

the exact and approximate CSE algorithms designed for the minimization of the

number of operations under a delay constraint. In Chapter 6, the exact CSE algorithm

designed for the minimization of area of the MCM implementation in terms of

gate-level metrics is introduced. Chapter 7 describes the exact and approximate

algorithms designed for the minimization of the number of CSA blocks in MCM.

Finally, discussions on the proposed algorithms, conclusions, and directions for future

work are given in Chapter 8.

5

6

2. BACKGROUND

This chapter starts with the description of the number representations and the number

representation conversion algorithms. It is followed by the introduction of basic

definitions on complexity classes. Also, the Satisfiability (SAT) problem is presented

and a generic backtrack search SAT algorithm is described. Then, the 0-1 Integer

Linear Programming (ILP) problem is defined. Finally, this chapter ends with the

overview of pseudo-Boolean (PB) optimization algorithms.

2.1 Number Representations

The binary representation decomposes a number in a set of additions of powers of

two. The representation of numbers using a signed digit system makes the use of

positive and negative digits. Thus, a number in the binary signed digit representation

is decomposed in a set of additions and subtractions of powers of two. Hence, an

integer k represented in the binary signed digit system including n digits can be

written as:

k =
n−1

∑
i=0

ci2i (2.1)

where ci ∈ {1,0,−1}. Hereafter, the digit −1 will be denoted by 1. Observe that the

binary signed digit system is a redundant number system, for example, both 0101 and

1011 correspond the integer value 5.

The Canonical Signed Digit (CSD) representation [23] is a signed digit system

that has a unique representation for each integer and verifies two main properties:

(i) the number of non-zero digits is minimal, (ii) two non-zero digits are not

adjacent. Any n digit number in CSD format has at most d(n + 1)/2e non-zero

digits. On average, the number of non-zero digits is reduced by 33% when

compared with the binary representation [24]. This representation is widely used

in multiplierless implementations of constant multiplications, because it reduces the

hardware requirements due to the minimum number of non-zero digits.

7

Algorithm 2.1 Binary to CSD conversion algorithm. The algorithm takes the binary
representation of the constant, b, including n digits and returns the CSD representation
of the constant, c, using the conversion table.

Binary2CSD(b, n)
1: bn = 0
2: bn+1 = 0
3: state = 0
4: for i = 0 to n do
5: ci = get_value_from_table(state, bi+1, bi)
6: state = get_next_state_from_table(state, bi+1, bi)
7: return c

Conversion Table
Inputs Outputs

state bi+1 bi ci next_state
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

There are several techniques to find the CSD representation of a constant. The method

described in [25], given in Algorithm 2.1, initially, obtains the binary representation

of the constant and then, starts replacing all the sequences found as "01...11" by the

sequence "10...01" with the same number of digits, while traversing on the digits of

the binary representation from the least significant digit to the most significant digit,

i.e., from right to left. This procedure uses a conversion table and a state variable

to detect the 1s sequences. The method of [26] finds the CSD representation of a

constant by traversing in both directions. Also, an efficient method presented in [27]

avoids the need to represent the constant in binary and uses the Hamming weight

pyramid to find the CSD representation of the constant.

The Minimal Signed Digit (MSD) representation [28] is obtained by dropping the

second property of the CSD representation. Thus, a constant can have several

representations under MSD, but all with a minimum number of non-zero digits. The

MSD representations of a constant can be computed from its CSD representation

by replacing all possible combinations of the sequences "101" and "101" by the

sequences "011" and "011" respectively by traversing on the digits of the CSD

representation from left to right. For each replacement, a new MSD representation

is obtained, since the number of non-zero digits is not increased. Algorithm 2.2

presents the procedure described in [28] that computes the MSD representations of

the constant from its CSD representation.

As an example, suppose the constant 23 defined in six bits. The representation of

23 in binary, i.e., 010111, includes 4 non-zero digits. The constant is represented as

8

Algorithm 2.2 CSD to MSD conversion algorithm. The algorithm takes the CSD
representation of the constant, c, including n digits and returns the set of MSD
representation(s) of the constant, S, including m elements.

Pi : the digit position of the i. MSD representation of the constant in S
CSD2MSD(c, n)

1: i = 1, m = 1
2: S1 = {c}
3: P1 = n−1
4: while 1 do
5: while Pi ≥ 2 do
6: if Si[Pi, Pi−1, Pi−2] = 101 then
7: m = m+1, Sm = Si

8: Sm = replace_three_digits(Pi, Sm, "011")
9: Pi = Pi−2, Pm = Pi−2

10: else if Si[Pi, Pi−1, Pi−2] = 101 then
11: m = m+1, Sm = Si

12: Sm = replace_three_digits(Pi, Sm, "011")
13: Pi = Pi−2, Pm = Pi−2
14: else
15: Pi = Pi−1
16: i = i+1
17: if i > m then
18: return S

101001 in CSD and both 101001 and 011001 denote 23 in MSD with the minimum

number of non-zero digits, i.e., 3.

2.2 Complexity Classes

The complexity of a process or an algorithm is a measure of how difficult it is to

perform. The study of the complexity of algorithms, also known as complexity theory,

deals with the resources required during the computation to solve a given problem.

The most common resources are time, i.e., how many steps does it take to solve a

problem, and space, i.e., how much memory does it take to solve a problem. The

time complexity of a problem, generally determined as a function of the size of the

input, is the number of steps taken to solve an instance of the problem using the most

efficient algorithm. Table 2.1 compares the CPU time required for solving instances

with different time complexity.

To generalize the time complexity of a problem, since the number of computer

instructions depends on what machine or language is used, the Big O notation is

9

Table 2.1: Time complexity of problems with different functions.

n f (n) = n f (n) = n2 f (n) = 2n f (n) = n!
10 0.01 µs 0.1 µs 1 µs 3.63 ms
20 0.02 µs 0.4 µs 1 ms 77.1 years
30 0.03 µs 0.9 µs 1 s 8.4∗1015 years
40 0.04 µs 1.6 µs 18.3 minutes
50 0.05 µs 2.5 µs 13 days
100 0.1 µs 10 µs 4∗1013 years
1000 1 µs 1 ms

used. For example, if a problem has time complexity O(n2) on one typical computer,

then it will also have complexity O(n2) on most other computers.

A decision problem is a problem where the answer is always yes or no. As an example,

for the problem is-prime, an integer is given and the answer indicates whether it is a

prime number or not. Decision problems are important, because an arbitrary problem

can always be reduced to a decision problem.

Decision problems fall into sets of comparable complexity, called complexity

classes. The most well-known complexity classes are Polynomial time (P) and

Nondeterministic Polynomial time (NP). The complexity class P is the set of decision

problems that can be solved by a deterministic machine with a number of steps

bounded by a power of the problem’s size. This class of problems can be effectively

solved even in the worst cases. On the other hand, the complexity class NP is the

set of decision problems where a nondeterministic solution can be verified with the

number of steps bounded by a power of the problem’s size.

The class of P-problems is a subset of the class of NP-problems. The question of

whether P is the same set as NP is the most important open question in theoretical

computer science, i.e., one of the 7 Millennium Prize Problems1. Observe that if

P and NP are not equivalent, then finding a solution for NP-problems requires an

exhaustive search in the worst case.

The question of whether P = NP motivates the concepts of hard and complete. A

set of problems X is hard for a set of problems Y if every problem instance in Y

can be transformed in polynomial time into some problem instance in X with the

same answer. A problem is said to be NP-hard if an algorithm for solving it can be
1http://www.claymath.org/millennium/

10

translated into one for solving any other problem in the NP complexity class. A set

of problems X is complete for a set of problems Y if every problem instance in X is

hard for a problem instance in Y, and X is also a subset of Y. Thus, an NP-complete

problem is both NP-hard, i.e., any other problem in the NP complexity class can

be easily translated into this problem, and NP, i.e., a nondeterministic solution is

verifiable in polynomial time.

2.3 Boolean Satisfiability

2.3.1 Preliminaries

A propositional formula denotes a Boolean function f : {0,1}n → {0,1}. A

Conjunctive Normal Form (CNF) is a representation of a propositional formula

ϕ consisting of a conjunction of propositional clauses where each clause ω is a

disjunction of literals, and a literal l j is either a variable x j or its complement x j.

Observe that if a literal of a clause assumes value 1, then the clause is satisfied. If all

literals of a clause assume value 0, then the clause is unsatisfied.

A combinational circuit is a directed acyclic graph (DAG) with nodes corresponding

to logic gates and directed edges corresponding to wires connecting the gates.

Incoming edges of a node are called fanins and outgoing edges are called fanouts.

The primary inputs of the network are the nodes without fanins. The primary outputs

are the nodes without fanouts. The primary inputs and outputs define the external

connections of the network.

The CNF formula of a combinational circuit is the conjunction of the CNF formulas of

each gate output, where the CNF formula of each gate denotes the valid input-output

assignments to the gate. The derivation of the CNF formulas of logic gates can

be found in [29]. As a small example, consider the combinational circuit and its

CNF formula given in Figure 2.1. In the formula given in Figure 2.1(b), the first

three clauses represent the CNF formula of the AND gate, and the last three clauses

denote the CNF formula of the OR gate. Observe from Figure 2.1 that the assignment

x1 = x3 = x4 = x5 = 0 and x2 = 1 makes the formula ϕ equal to 1 indicating a valid

assignment. However, the assignment x1 = x3 = x4 = 0 and x2 = x5 = 1 makes the last

11

� �

� � � �

� �

� �

ϕ = (x1 + x4).(x2 + x4).(x1 + x2 + x4).
(x3 + x5).(x4 + x5).(x3 + x4 + x5)

(a) (b)

Figure 2.1: (a) A combinational circuit; (b) its CNF formula.

clause of the formula equal to 0, consequently the formula ϕ , indicating the conflict

between the values of the inputs and the output of the OR gate.

2.3.2 Satisfiability problem

The satisfiability problem is to find an assignment on n variables of the Boolean

formula in CNF that evaluates the formula to 1 or to prove that the formula is equal

to the constant 0. The time complexity of the SAT problem in the worst case is

O(2n). The SAT problem is the first problem proven to be NP-complete by Stephen

Cook [30].

Boolean SAT is intrinsic to many problems in Electronic Design Automation

(EDA). Hence, SAT models and techniques have been applied to EDA problems,

such as, circuit delay computation [31], test pattern generation [29], equivalence

checking [32], fault diagnosis [33] among many other problems. Also, SAT plays

a central role in solving instances of binate covering problems [34–36]. Moreover,

SAT is a key issue in other domains including artificial intelligence and operations

research [37].

2.3.3 Satisfiability algorithms

The proposed SAT algorithms can be categorized in two classes as incomplete

and complete algorithms. The incomplete SAT algorithms based on local search

methods [38, 39], simulated annealing technique [40], genetic algorithms [41], and

the hybrid of these methods [42, 43] may find a satisfying solution if it exists, but

cannot prove that the formula is unsatisfiable if there is no satisfying solution. On the

other hand, the complete SAT algorithms can find a satisfying solution if it exists, or

otherwise, prove that the formula is equal to constant 0.

Over the years, many efficient SAT algorithms based on the backtrack search

algorithm [44], called DLL, have been proposed. The backtrack search algorithm

12

Algorithm 2.3 A generic backtrack search SAT algorithm. The algorithm takes the
Boolean formula ϕ in CNF and returns a value, SATISFIABLE or UNSATISFIABLE.

SAT(ϕ)
1: d = 0
2: while Decide(ϕ ,d) == DECISION do
3: if Deduce(ϕ ,d) == CONFLICT then
4: β = Diagnose(ϕ ,d)
5: if β =−1 then
6: return UNSATISFIABLE
7: else
8: Backtrack(ϕ ,d,β)
9: β = d

10: else
11: d = d +1
12: return SATISFIABLE

is implemented by a search process that implicitly enumerates the search space of

2n possible binary assignments to the n variables. The pseudo-code for a generic

DLL-based backtrack search algorithm is given in Algorithm 2.3.

Given an SAT problem, formulated as a CNF formula, ϕ , the SAT algorithm conducts

a search through the space of all possible assignments to the n problem variables. At

each stage of the search, a variable assignment is selected with the Decide function.

A decision level d is then associated with each selection of an assignment. Implied

assignments are identified with the Deduce function. Whenever a clause becomes

unsatisfied, the Deduce function returns a Conflict indication which is then analyzed

using the Diagnose function. The diagnosis of a given conflict returns a backtracking

decision level, β , which denotes the decision level to which the search process is

required to backtrack to. Afterwards, the Backtrack function clears all assignments,

both decision and implied assignments, from the current decision level d through the

backtrack decision level β . Furthermore, considering that the search process should

resume at the backtrack level, the current decision level d becomes β . Finally, the

current decision level d is incremented. This process is interrupted whenever the

formula is found to be satisfiable or unsatisfiable. The formula is satisfied when all

variables are assigned and therefore, all clauses must be satisfied. The formula is

unsatisfied when the empty clause is derived, which is implicit when the Diagnose

function returns −1 as the backtrack level [45].

13

Important improvements in the generic backtrack search SAT algorithm, such as

non-chronological backtracking, conflict-based learning mechanisms, clause deletion

policies, branching heuristics, and lazy data structures, have led to efficient SAT

algorithms [46–48]. Recent SAT algorithms can handle and solve SAT instances

with tens of thousands of variables and millions of clauses in a matter of seconds or

minutes [49].

2.4 0-1 Integer Linear Programming

The 0-1 Integer Linear Programming (ILP) problem is the minimization or the

maximization of a linear cost function subject to a set of linear constraints and is

generally defined as follows2:

Minimize cT ·x (2.2)

Subject to A ·x≥ b, x ∈ {0,1}n (2.3)

In (2.2), c j in c is an integer cost associated with each of the n variables x j, 1≤ j≤ n,

in the cost function, and in (2.3), A · x ≥ b denotes the set of m linear constraints

where b,c ∈ Zn and A ∈ Zm×Zn. These linear constraints are commonly referred

to as pseudo-Boolean (PB) inequalities to distinguish them from those that admit

unrestricted integer variables.

A clause to be satisfied in a Boolean CNF formula, l1 + . . . + lk, k ≤ n, can be

interpreted as a linear inequality, l1 + . . . + lk ≥ 1, where x j is represented by

1− x j as shown in [50]. These linear inequalities are the special cases of the PB

constraints, where ai j ∈ {−1,0,1} and bi is equal to 1 minus the total number of the

complemented variables in its CNF formula, and are commonly referred to as CNF

constraints. For instance, the set of clauses, (x1 + x2 + x3), (x2 + x4), (x1 + x3), has

the equivalent linear inequalities given as follows:

x1 + x2 + x3 ≥ 1,

−x2− x4 ≥ −1, (2.4)

x1− x3 ≥ 0.

2The maximization objective can be easily converted to the minimization objective by negating the
cost function. Less-than-or-equal and equality constraints are easily accommodated by the equivalences,
A ·x≤ b⇔−A ·x≥−b and A ·x = b⇔ (A ·x≥ b)∧ (A ·x≤ b), respectively.

14

On the other hand, PB constraints represent a natural generalization of CNF

constraints and are more expressive than CNF constraints. Thus, a single PB

constraint may in some cases correspond to an exponential number of CNF

clauses [49]. The techniques used for the conversion of PB constraints to CNF clauses

can be found in [51, 52]. For instance, the PB constraint,

3x1−2x2 +4x3 ≥ 2, (2.5)

where x1,x2,x3 ∈ {0,1}, corresponds to the Boolean equality constraint,

x1x2 + x3 = 1, (2.6)

that can be written in CNF with two clauses as:

(x1 + x3).(x2 + x3) = 1. (2.7)

There are special forms of the 0-1 ILP problem. For example, if every entry in the

m×n matrix A is in the set {0,1} and bi = 1,1≤ i≤ m, then the 0-1 ILP problem is

an instance of the unate covering problem. Moreover, if the entries ai j of A belong

to {-1,0,1} and bi = 1− | {ai j : ai j =−1,1≤ j ≤ n} |, then the 0-1 ILP problem is an

instance of the binate covering problem (BCP).

Note that in a BCP, each constraint is a CNF constraint and can be interpreted as a

propositional clause. Thus, there is an intimate relation between 0-1 ILP and binate

covering problems. For every instance of 0-1 ILP problem, there is an instance of

BCP with the same satisfying solutions and therefore with the optimum solutions,

and vice versa. Given a problem instance, it is not clear a-priori which formulation is

better. It is an interesting question to characterize the class of problems that can be

better formulated and solved with one technique or the other [53].

2.5 Pseudo-Boolean Optimization Algorithms

In [50], Peter Barth first proposed an approach based on Boolean SAT techniques for

solving 0-1 ILP problems that are generally referred to as PB optimization problems.

This approach performs a linear search on the possible values of the cost function,

starting from the highest, at each step requiring the next computed solution to have a

cost lower than the most recently computed upper bound. Whenever a new solution

15

is found that satisfies all the constraints, the value of the cost function is recorded

as the current lowest computed upper bound. If the resulting instance of SAT is

unsatisfiable, then the solution to the instance of PB optimization problem is given

by the last recorded solution. The algorithm of [52] follows the same approach

of [50], but it converts the PB constraints to Boolean clauses efficiently and applies

the SAT solver [48], i.e., equipped with the recent improvements in Boolean SAT,

iteratively to find a minimal cost assignment. This SAT-based approach focuses

primarily on finding solutions for the problem constraints. Therefore, for highly

constrained problems these techniques are very effective. However, these algorithms

find it difficult to deal with the information from the cost function.

Unlike the SAT-based approach, branch-and-bound algorithms [54, 55] have been

proved to be very effective when the instances to be solved are not highly constrained,

since they are able to prune the search tree earlier due to estimate of the value

of the cost function. In branch-and-bound algorithms, upper bounds on the value

of the cost function are identified for each solution to the constraints, and lower

bounds on the value of the cost function are estimated considering the current

set of variable assignments. The procedures used for lower bound estimation

are the approximation of a maximum independent set of constraints [54, 56],

linear-programming relaxations [55], and Lagrangian relaxations [57]. For a given

PB optimization problem, let ub denote the upper bound on the value of the cost

function. The search is pruned whenever the lower bound estimation is higher than

or equal to ub. In this case, it is guaranteed that a better solution cannot be found

with the current variable assignments and therefore, the search can be pruned. The

algorithms of [54–56,58] designed for the binate covering problem and several integer

programming solvers follow this approach.

The hybrid PB optimization algorithms that include efficient SAT and ILP techniques

in their structures have been proposed in [59, 60]. The algorithm of [59] incorporates

the most significant features from both approaches, namely, the lower bound

estimation methods such as linear programming and Lagrangian relaxations, and

the reduction techniques from branch-and-bound algorithms, and the search pruning

techniques from SAT algorithms. The algorithm of [60] integrates logic-based

reasoning and integer programming methods like the cutting plane technique to solve

16

PB optimization problems. It uses an efficient literal watching strategy and several

learning techniques that take advantage of the pruning power of PB constraints while

minimizing the overhead.

Although there are many efficient PB solvers [61], in this thesis, we worked with

bsolo [59], glpPB [62], and minisat+ [52], since they obtained better solutions than

other solvers on our instances.3

3The results of PB solvers on the MCM problems, the MCM problems under a delay constraint,
and the minimization of area problems described in this thesis can be reached from the web address,
http://atlas.cc.itu.edu.tr/˜aksoyl/bench.html. Also, more detailed results on the performance of PB solvers
on a comprehensive set of benchmarks can be found at http://www.cril.univ-artois.fr/PB07/.

17

18

3. CONSTANT MULTIPLICATIONS

This chapter addresses the problem of efficiently multiplying the known constant(s)

with a variable multiplierless, i.e., using the fewest number of addition/subtraction

operations, and presents an overview of algorithms designed for the single and

multiple constant multiplication problems.

We note that in these problems, the complexity of an adder and a subtracter is assumed

to be equal in hardware. It is also assumed that the sign of the constant can be

adjusted at some part of the design and the shifting operation has no cost, since shifts

can be implemented with only wires in hardware. Hence, the algorithms designed

for the single and multiple constant multiplication problems generally focus on the

minimization of the number of addition/subtraction operations. However, we note

that the structures of these algorithms enable their adaptations to handle the objectives

that also take into account the different complexities of an adder and a subtracter, and

also, the number of shifts.

3.1 Single Constant Multiplication

The multiplication of a variable by a single known target constant, i.e., t1, can

be decomposed into additions, subtractions, and binary shifts. The problem of

finding the decomposition using minimum number of addition/subtraction operations

is known as the Single Constant Multiplication (SCM) problem and it is proven to be

NP-complete in [2]. The SCM problem is similar to the addition chain problem [63]

where the constant multiplication is realized using only addition and shift operations.

The multiplication by a single constant occurs in many applications such as, multiple

precision arithmetic, cryptography, and in the design of compilers.

The lower bound on the minimum number of operations required to implement the

SCM is investigated in [64] and is given as follows:

19

#operationslb,SCM = dlog2S(t1)e (3.1)

where S(t1) denotes the number of non-zero digits of t1 when it is defined under CSD,

i.e., the minimum number of non-zero digits required to represent t1. We note that the

given lower bound indicates that the solution of the SCM problem cannot include the

number of operations less than the lower bound.

The algorithms designed for the SCM problem is generally categorized in three

classes:

• Digit-based methods;

• Common Subexpression Elimination (CSE) algorithms;

• Graph-based algorithms.

A digit-based method defines the constant in a particular number representation and

realizes the multiplierless implementation of the constant multiplication from its

representation. This method is the fastest, i.e., its computational complexity is linear

in the number of digits in the representation of the constant. Thus, the multiplication

of the constant including hundred and thousands of digits with a variable can be easily

implemented. But, this method is the worst-performing, i.e., its solution is generally

far from the minimum implementation. For instance, suppose 1687 is multiplied with

the variable x and the constant is represented under binary. Thus, the implementation

of 1687x,

1687x = (11010010111)binx = x¿10 + x¿9 + x¿7 + x¿4 + x¿2 + x¿1 + x, (3.2)

requires six addition operations. However, when the constant is defined under CSD

representation,

1687x = (101010101001)CSDx = x¿11− x¿9 + x¿7 + x¿5− x¿3− x, (3.3)

the constant multiplication requires five operations. Note that the use of CSD

representation yields similar or better results than binary representation in the

digit-based method, since a constant is represented using minimum number of

20

non-zero digits in CSD. As shown in [65], the use of binary representation yields

a solution with bw/2 + O(1) operations on average, where bw denotes the bit-width

of the constant. In the use of CSD representation, the average case is determined as

bw/3+O(1).

The sharing of partial products among the constant multiplication has a significant

impact on the reduction of the number of operations. The CSE algorithms basically

find the most-common patterns on the representation of the constants. The CSE

heuristic of [66] designed for the SCM problem has the polynomial complexity of

O(bw3) in the worst-case and can be used to find the solution of the SCM problem

including large size constants, e.g., 32 bits or 64 bits. Also, the algorithm of [67],

initially, represents the constant in double-base number system and then, finds a

solution by sharing the partial products, 3x, 5x, or 7x, in a sublinear time. Returning

to our example, the solution of the exact CSE algorithm [4], which is described in

Section 3.2.1, when the constant is defined under CSD representation includes four

operations and is given as follows:

3x = x¿2− x,

13x = 3x¿2 + x, (3.4)

23x = 3x¿3− x,

1687x = 13x¿7 +23x.

Observe that the common partial product 3x = x¿2− x identified by the exact CSE

algorithm is included in 1687x twice when the constant 1687 is defined under CSD

representation.

However, the solutions of these algorithms depend on the number representation.

Thus, the minimum number of operations solution of the SCM problem cannot be

guaranteed by these algorithms, although the constant is represented using minimum

number of non-zero digits and the sharing of possible common partial products is

utilized. On the other hand, graph-based algorithms are not restricted to a number

representation and consider the constant in its decimal value. The graph-based

algorithms synthesize constants by building a graph where the vertices are labeled

with constants and the edges are labeled with the sign and shifts. The exact

graph-based algorithm of [68] proposed for the SCM problem, initially, finds all

21

8 10 12 14 16 18

2

3

4

5

6

Bit−width of the constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances between 8 and 19 bits

Digit−based − CSD
Exact CSE − CSD
Exact Graph−based

Figure 3.1: Comparison of the algorithms designed for the SCM problem.

possible graph topologies that include at most four operations. Thus, the minimum

number of operations implementations of constants up to 12 bits are found by

assigning the intermediate constants to the nodes of the networks exhaustively.

The method described in [69] introduces simplifications on the graph topologies

and extends the exact algorithm of [68] to consider all possible implementations

of at most five operations. Thus, for the constants up to 19 bits, the minimum

number of operations solutions are obtained. However, the exact graph-based

algorithm [69] requires immense computational time as well as memory sources due

to its exhaustiveness. The minimum number of operations realization of our example

obtained by the exact graph-based algorithm of [69] requires three operations and is

given as follows:

7x = x¿3− x,

105x = 7x¿4−7x, (3.5)

1687x = 7x¿8−105x.

In Figure 3.1, we compare the algorithms proposed for the SCM problem in terms

of the number of operations. In this experiment, for each bit-width, bw, between

8 and 19, 200 constants were generated randomly in
[
2bw−1 +1,2bw−1

]
. For the

digit-based and the exact CSE algorithms, the constants were defined under CSD

representation.

22

Observe from Figure 3.1 that the digit-based method finds worse solutions than

those of the exact CSE and graph-based algorithms. Also, note that the difference

of average number of operations solutions obtained with the digit-based and CSE

algorithms between those of the exact graph-based algorithm increases, as the

bit-width of the constant increases. We note that the difference of average number

of operations solutions obtained by the digit-based method and the exact graph-based

algorithm on constants defined in 19 bit-width reaches to 1.24. This value between

the exact CSE and graph-based algorithms is 0.58. This experiment clearly indicates

that an exact graph-based algorithm is indispensable to find the minimum number of

operations solution.

3.2 Multiple Constant Multiplications

An extension of the SCM problem is the problem of multiplying a variable by a set of

target constants, i.e., the target set T = {t1, t2, . . . , tm}, in parallel. The implementation

of multiple constant multiplications using minimum number of addition/subtraction

operations is known as the Multiple Constant Multiplications (MCM) problem. Since

the MCM problem is the generalization of the SCM problem, it also NP-complete [2].

The MCM problem finds itself and its variants in many applications such as, digital

FIR filters, linear signal transforms, image processing, and computer arithmetic.

The lower bound on the minimum number of operations required to implement the

MCM is also examined in [64] and is given as follows:

#operationslb,MCM = min
i
{dlog2S(ti)e}+m−1 (3.6)

where, again, S(ti) denotes the minimum number of non-zero digits required to

represent ti and m indicates the number of positive and odd unrepeated target constants

in the target set T. Hence, the lower bound is equal to the minimum number of

operations required to realize the simplest constant plus the number of remaining

constants.

However, when the target constants are sorted in ascending order of S(ti), the given

lower bound can be increased as follows:

23

#operationslb,MCM = dlog2S(ti)e+
m−1

∑
i=1

E(S(ti),S(ti+1)) (3.7)

where E(S(ti),S(ti+1)) is computed as given in the following.

E(S(ti),S(ti+1)) =
{

1, S(ti) = S(ti+1)
dlog2(S(ti+1)/S(ti))e, S(ti) < S(ti+1)

(3.8)

The latter case, i.e., S(ti) < S(ti+1), in the computation of E(S(ti),S(ti+1)) indicates

that it is not possible to compute the target constant with S(ti+1) non-zero digits using

only one additional operation, if there are only target constants with at most S(ti)

non-zero digits available. Hence, by taking into account this case the lower bound can

be increased. Again, we note that the given lower bound indicates that the solution

of the MCM problem cannot include the number of operations less than the lower

bound.

To obtain a solution of the MCM problem, one may apply one of the algorithms

proposed for the SCM problem on each target constant of the MCM problem without

taking into account the sharing of partial products in constant multiplications. As an

example, suppose the multiplication of multiple constants 11 and 13 by the variable

x as given in Figure 3.2(a). Observe from Figure 3.2(b) that the multiplierless

implementation without partial product sharing requires four operations. However,

the sharing of partial product 9x in both multiplications reduces the number of

required operations to 3 as illustrated in Figure 3.2(c).

�� �� ��

������

� �

��

�

���

���

���

�

�

��

�

���

���

���

�

�

�� ��

��

�

���

���

���

�

�

�

���

���

�

��

(a) (b) (c)

Figure 3.2: (a) Multiple constant multiplications; The shift-adds implementations of
MCM: (b) without partial product sharing; (c) with partial product sharing.

The effect of the partial product sharing on the number of required operations in

MCM is investigated in Figure 3.3. In this figure, the solutions obtained by the exact

24

10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

Number of the constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 12 bits

Exact SCM
Exact MCM

Figure 3.3: Comparison of the exact algorithms designed for the SCM and MCM
problems on randomly generated MCM instances.

algorithm [69] designed for the SCM problem without considering the sharing of

partial products and the results found by the exact algorithm [18] designed for the

MCM problem are given. The experiment set includes randomly generated instances

where constants are defined under 12 bit-width. The number of constants ranges

between 10 and 100, and we generated 30 instances for each of them. As can be

easily observed from Figure 3.3, the partial product sharing significantly reduces the

number of required operations indicating its great effectiveness in MCM.

In the following, we give an overview of CSE and graph-based algorithms designed

for the MCM problem that consider the partial product sharing. However, we

also note that a large amount of work that considers the MCM problem in many

applications, specially, in the design of digital FIR filters, has addressed the use of

efficient implementations of multiplierless MCM. These methods include the use of

different architectures, implementation styles, and constant optimization techniques,

e.g., [70–74].

3.2.1 Common subexpression elimination algorithms

In CSE algorithms, initially, the constants are defined under a particular

number representation. Then, all possible subexpressions are extracted from the

representations of the constants and the "best" subexpression, generally, the most

common, is chosen to be shared in constant multiplications. For the example

given in Figure 3.2, the sharing of partial product 9x illustrated in Figure 3.2(c) is

25

possible, when constants in multiplications 11x and 13x are defined in binary, i.e.,

11x = (1011)binx and 13x = (1101)binx respectively, and the common partial product,

i.e., 9x = (1001)binx, is identified in both multiplications. The CSE algorithms

designed for the MCM problem can be categorized in two classes as heuristic and

exact algorithms.

The first CSE heuristic based on the CSD representation was introduced in [75] and

was applied to the digital FIR filter synthesis. The proposed heuristic defines the

constants under CSD representation, finds the two-terms common subexpressions,

and then, chooses the one among possible subexpressions according to a benefit

function. The benefit function is determined in terms of the number of operations and

delay latches in the implementation of the digital FIR filter. Additionally, in [76], the

algorithm that implements the constant multiplications using the most common two

subexpressions, i.e., 3x and 5x, was also described. The heuristic of [77], similar to

the CSE heuristic of [75], initially, defines the constant multiplications as expressions

and then, iteratively finds the most common two-term divisor among the possible

divisors, i.e., the best divisor, and redefines the expressions by replacing the best

divisor in the expressions. The use of different selection criteria for the common

subexpressions in CSE algorithms were also described in [78, 79]. However, these

algorithms suffer from the fact that once a common subexpression is identified as

the "best" common subexpression, the decision cannot be reverted. Thus, these

greedy algorithms are easily trapped to the local minima, and consequently, obtain

suboptimal solutions. In [80], a CSE algorithm that relaxes the rigidity of the search

for common subexpressions by allowing the earlier chosen subexpressions to be

replaced with new subexpressions was introduced. This CSE heuristic considers the

two-term subexpressions and also, aims to find a solution with the minimum number

of adder-steps, i.e., the maximum number of operations in series.

However, the structures of these algorithms allow them to consider only the constants

defined under binary or CSD representation that yields a unique representation for a

constant. In these algorithms, the CSD representation is generally preferred because,

a constant is represented with the minimum number of non-zero digits in CSD,

reducing the complexity of the algorithms. In [28], a heuristic algorithm that exploits

the redundancy of the MSD representation was proposed. It is shown that the use

26

of MSD representation yields less number of operations solutions with respect to

the solutions obtained under CSD representation. This results from the fact that,

in general, there exist several alternatives to represent a given constant in MSD.

Consequently, there are more ways to decompose the constant multiplications with

different partial products that can be shared with other constant multiplications.

In a recent paper [81], a heuristic algorithm that handles the constants under binary

representation rather than CSD and MSD was proposed. In this paper, initially, the

most common binary subexpressions, i.e., 3x, 5x, 7x, and 9x, are determined by

analyzing the frequency of occurrences of binary subexpressions on a comprehensive

set of FIR filter instances. Then, the constant multiplications are realized using

these four subexpressions. It is shown that the use of binary representation that

leads a design including only addition operations, achieves significant reductions

in hardware when compared to the solutions obtained under CSD representation

where the constant multiplications can be implemented using addition or subtraction

operations.

The first 0-1 ILP formalization of the common subexpression sharing was introduced

in [82]. However, in this method, only the subexpressions with at most two non-zero

digits are considered due to the search space of the 0-1 ILP problem. As shown

in [3], this model does not yield the minimum number of operations solution due to

this limitation. On the other hand, in the exact CSE algorithms of [3, 4], all possible

subexpressions are utilized. In these algorithms, initially, the target constants are

defined under a number representation, namely, binary, CSD, or MSD. Then, all

possible implementations of constant multiplications that can be extracted from the

representations of the constants are obtained. In [3], the 0-1 ILP problem is obtained

by constructing the cost function and formalizing the implementations of constant

multiplications as constraints. To obtain the minimum number of operations solution,

a generic branch-and-bound algorithm is used. In [4], all possible implementations

of constant multiplications are represented in a Boolean combinational circuit that

includes only AND and OR gates. An AND gate in the network represents an operation

and an OR gate associated with a constant multiplication gathers all operations that

implement the constant multiplication. Then, the 0-1 ILP problem is formed with

a cost function to be minimized and constraints to be satisfied. The cost function

27

is the linear function of optimization variables associated with the partial products.

The constraints of the 0-1 ILP problem are obtained by finding the CNF formulas

of each gate in the Boolean network and converting each clause in CNF formulas to

linear inequalities as described in [50]. The minimum number of operations solution

is obtained using a generic SAT-based 0-1 ILP solver.

In [14], problem reduction and model simplification techniques that significantly

reduce the size of 0-1 ILP problem obtained by the exact algorithm of [4] were

introduced. In this paper, the effect of number representation on the achievable

minimum number of operations was also evaluated. It is observed that, as opposed

to common usage, CSD representation does not tend to give the minimum number

of operation solutions in MCM. This is because, using a single representation of a

constant with the minimum number of non-zero digits and both positive and negative

signs may produce partial products that are less common in the implementations of

constant multiplications. This drawback can be overcome using MSD that considers

alternative representations of a constant with the minimum number of non-zero

digits. However, the use of binary representation where a constant has a unique

representation with more non-zero digits and only positive sign, increases the partial

product sharing, and consequently, achieves more promising solutions than the CSD

representation.

3.2.2 Extensions to the common subexpression elimination algorithms

It is argued in [83] that being limited to a number representation does not yield the

minimum number of operations solutions. This heuristic algorithm obtains much

better solutions than the CSE heuristics by extending the possible implementations of

constants based on MSD representation. Furthermore, the algorithm of [84] applies

the CSE technique of [76] to all signed-digit representations of a constant by taking

into account up to k additional signed digits to the CSD representation, i.e., for a

constant including n signed digits in CSD, the constant is represented with up to

n + k signed digits. This approach is applied to multiple constants using exhaustive

searches in [85]. Also, the algorithm of [17] extends the exact CSE algorithm of [4] to

handle the constants under general number representation increasing the search space

and finds more promising solutions than those of the exact CSE algorithm. Since the

28

algorithm of [17] has limitations on the implementation of constants to guarantee the

solution to be represented in a directed acyclic graph, it does not consider the whole

search space as graph-based algorithms.

3.2.3 Graph-based algorithms

In graph-based algorithms, the implementations of the constant multiplications are

not restricted with the operations that can be extracted from the number representation

of constants as done in CSE algorithms. Thus, the graph-based algorithms are not

limited to any particular number representation and are bottom-up methods that

construct a graph representing the constant multiplications. Similar to the CSE

algorithms, the graph-based algorithms can be classified in two categories as heuristic

and exact algorithms.

The first graph-based heuristics designed for the MCM problem, ’add-only’,

’add/subtract’, ’add/shift’, and ’add/subtract/shift’, were introduced in [86]. The latter

algorithm, i.e., ’add/subtract/shift’, was modified in [87], called BHM, by extending

the possible implementations of a constant, considering only odd numbers, and

processing constants in order of increasing single constant cost that is evaluated by

the algorithm of [68]. A graph-based algorithm, called RAG-n, was also introduced

in [87]. RAG-n has two parts: optimal and heuristic. In the optimal part, each

target constant that can be implemented with a single operation is synthesized. If

there exist unimplemented element(s) left in the target set, the algorithm switches to

the heuristic part where in each iteration a single unimplemented target constant is

synthesized including intermediate constant(s). In its heuristic part, RAG-n chooses

an unimplemented target constant with the smallest single constant cost previously

computed by the algorithm of [68] and synthesizes it with an operation including

intermediate constant(s) that has the smallest value among the possible constants.

However, the main drawback of BHM and RAG-n is that the effect of the chosen

intermediate constant(s) over the not-yet synthesized target constant implementations

is not completely considered. Thus, the intermediate constants chosen for the

synthesis of the target constants in previous iterations may not be shared for the

implementation of not-yet synthesized target constants in later iterations, yielding

a local minimum solution. To increase the possible sharing of intermediate constants,

29

the graph-based algorithm, called Hcub, that includes the same optimal part of

RAG-n, but uses a better heuristic than RAG-n was introduced in [88]. In its

heuristic part, Hcub considers the impact of each possible intermediate constant

on the not-yet synthesized target constants while implementing a target constant

and chooses the one that yields the best cumulative benefit. Also, Hcub is not

restricted to the lookup table that includes the single constant cost of constants as

RAG-n, thus it is applicable to larger size constants. However, it is limited to the

MCM problem instances including up to 200 target constants. The algorithm of [89]

follows the similar approach proposed in Hcub and considers alternative intermediate

constants while implementing a target constant. It is shown in [88, 89] that these

graph-based heuristics obtain better results than the prominent CSE heuristics and

also, the graph-based heuristics BHM and RAG-n.

We make two simple observations on RAG-n and Hcub. In these observations, |T |
denotes the number of target constants to be implemented, i.e., the lowest bound on

the minimum number of operations solution of an MCM problem.

Lemma 3.1: If RAG-n or Hcub find a solution with |T | operations, then the found

solution is minimum.

Since the elements of the target set cannot be synthesized using less than |T |
operations as shown in [87] and the solution is obtained in the optimal part, then

the found solution is the minimum solution. 2

Lemma 3.2: If RAG-n or Hcub find a solution with |T |+1 operations, then the found

solution is minimum.

If a solution cannot be obtained in the optimal part, then it is obvious that at least

one additional operation is required to find the minimum solution. So, if the found

solution includes |T |+1 operations, then it is the minimum solution. 2

Note that RAG-n and Hcub cannot determine their solutions as minimum if the

obtained solutions include the number of operations more than the number of target

constants to be implemented plus 1. Because, in this case, the target and intermediate

constants are synthesized once at a time in the heuristic parts of RAG-n and Hcub.

30

Observe that the case described in Lemma 3.1 is general for all algorithms designed

for the MCM problem and the cases described in Lemma 3.1 and Lemma 3.2 are

general for all graph-based algorithms that include the same optimal part of RAG-n

and Hcub. We also note that the solution found by any heuristic algorithm designed

for the MCM problem can be determined as minimum, if the number of operations in

its solution is equal to the lower bound on the minimum number of operations given

in (3.7).

On the other hand, in the approximate graph-based algorithm introduced in [19],

rather than synthesizing the target constants once at a time by finding the "best"

intermediate constants as done in the previously proposed graph-based algorithms, the

proposed algorithm searches the fewest number of intermediate constants such that

the target and intermediate constants can be implemented using a single operation at

the end of the algorithm. Also, the design of the approximate algorithm in this scheme

allows the algorithm to guarantee the minimum solution on more instances than the

previously proposed graph-based heuristics. It is shown in [19] that the approximate

graph-based algorithm finds competitive and better results than previously proposed

graph-based heuristics.

The exact graph-based algorithm that finds the minimum number of operations

solution of the MCM problem was introduced in [18]. The exact algorithm is based on

the breadth-first search and explores all possible intermediate constants exhaustively.

It is shown in [18] that although the exact graph-based algorithm can be applied

on medium-size instances, it obtains better results than the prominent graph-based

heuristics.

In the following chapter, we introduce the exact and approximate CSE and

graph-based algorithms [14–19] designed for the MCM problem and compare with

the previously proposed efficient CSE and graph-based algorithms.

31

32

4. OPTIMIZATION ALGORITHMS FOR THE MCM PROBLEM

In this chapter, initially, we introduce the exact and approximate CSE algorithms

designed for the MCM problem. Then, we extend the exact CSE algorithm to handle

the constants under general number representation. Finally, we describe the exact and

approximate graph-based algorithms.

We note that since the multiple constants are multiplied by the same input, finding

the minimum number of operations solution for the MCM is equivalent to finding the

decompositions of multiple constants using minimum number of operations. Hence,

in the description of the proposed algorithms for the MCM problem, the latter is

favored for the sake of clarity.

4.1 Common Subexpression Elimination Algorithms

In this section, initially, we describe the exact CSE algorithm [15] designed for the

MCM problem and then, we present the approximate CSE algorithm [16] based on

the exact CSE algorithm that can be applied on more complex instances which the

exact CSE algorithm cannot handle.

4.1.1 The exact common subexpression elimination algorithm

The exact CSE algorithm consists of four main steps: Firstly, all possible

implementations of constants are extracted from the non-zero digits of the constants

defined under a number representation, namely, binary, CSD, or MSD. Secondly, the

implementations of constants are represented in a Boolean network that includes only

AND and OR gates. Thirdly, the MCM problem is formalized as a 0-1 ILP problem

with a cost function to be minimized and constraints to be satisfied. Finally, the

minimum number of operations solution is obtained using a generic SAT-based 0-1

ILP solver.

33

We note that in the exact CSE algorithm, the MCM problem can be modeled as the

minimization of the number of operations or the minimization of the number of partial

terms, i.e., the maximization of the partial term sharing.

4.1.1.1 Finding the implementations of constants

In the preprocessing phase of the exact algorithm, the target constants to be

implemented are converted to positive and then, made odd by successive divisions

by 2. The resulting constants are stored in a set called target set, T, without repetition.

Thus, the target set includes the minimum number of necessary target constants to

be implemented. The part of the exact algorithm where the implementations of the

target constants and the partial terms, i.e., also called as intermediate constants in this

thesis, are found is given as follows:

1. Take an element from the target set, ti, find its representation(s) under the given

number representation, and store them in a set called S. Form an empty set, Oi,

associated with ti that includes the inputs of all addition/subtraction operations

that implement ti as pairs.

2. For each representation of ti in the S,

(a) Compute all non-symmetric partial term pairs that cover the representation

of ti.

(b) Make each partial term positive and odd.

(c) Add each partial term pair to the set Oi.

(d) Add each partial term to the target set, if it does not represent the input that

is the constants are multiplied with, i.e., denoted by 1, and is not in the target

set.

3. Repeat Step 1 until all elements of the target set are considered.

Observe that the target set that only includes the target constants to be implemented in

the beginning of the iterative loop is augmented with the partial terms that are required

for the implementation of target constants. Note that all possible implementations of

an element in the target set, ti, are found by decomposing the non-zero digits in the

representations of ti into two partial terms.

34

51 = 1000000+0010101 = 1¿6−13 51 = 1010000+0000101 = 3¿4 +3
51 = 0010000+1000101 =−1¿4 +67 51 = 1000100+0010001 = 17¿2−17
51 = 0000100+1010001 = 1¿2 +47 51 = 1000001+0010100 = 63−3¿2

Figure 4.1: Implementations of 51 under CSD representation.

As an example on finding all possible implementations of a constant, suppose 51 as

a target constant defined under CSD representation as 1010101 with four non-zero

digits. The possible implementations of 51 are given in Figure 4.1.

We note that the duplications of implementations that can be obtained with the

commutative law of the addition/subtraction operation, such as 63−3¿2 = −3¿2 +

63, and that contain the same positive and odd partial term pair at the inputs of an

operation, such as 1¿6−13=13¿2−1, are not listed in Figure 4.1. Observe that after

the partial terms required for the implementation of 51 under CSD, i.e., 3, 13, 17, 47,

63, and 67, are found, they are added to the target set without repetition, and their

implementations are also found in similar way.

4.1.1.2 Construction of the Boolean network

After all possible implementations of target constants and partial terms are found,

these implementations are represented in a Boolean combinational network that

includes only AND and OR gates. The part of the algorithm where the network is

constructed is as follows:

1. Take an element from the target set, ti.

2. For each pair in Oi, generate a two-input AND gate. The inputs of the AND gate are

the elements of the pair, i.e., 1, denoting the input that the constants are multiplied

with, or the outputs of the OR gates representing the target constants and partial

terms in the network.

3. Generate an OR gate associated with ti where its inputs are the outputs of the AND

gates determined in Step 2.

4. If ti is a target constant, assign the output of the corresponding OR gate as the

output of the network.

5. Repeat Step 1 until all elements in the target set are considered.

35

�

�

��

��

��

�
�

��

�

��
��

�
��

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

Figure 4.2: The network constructed for the target constant 51 under CSD
representation.

The properties of the Boolean network that represents the implementations of target

constants and partial terms are as follows:

1. The primary input of the network is the input to be multiplied with the constants

denoted by 1.

2. An AND gate in the network represents an addition/subtraction operation and has

two inputs.

3. An OR gate in the network represents a target constant or a partial term and

combines all possible implementations of the constant.

4. The primary outputs of the network are the OR gate outputs associated with the

target constants.

The Boolean network generated for the target constant 51 defined in CSD

representation is given in Figure 4.2 where the 1-input OR gates for the partial terms

3, 17, and 63 are omitted.

Observe from Figure 4.2 that the network represents all possible implementations

of the target constant 51 when it is defined under CSD representation. Note that

when constants are defined in CSD or MSD representation, an AND gate represents

36

an addition/subtraction operation. For example, consider the value 3. Its CSD

representation is 101 and therefore, this value can be obtained with a single subtracter

as 1¿2− 1. In MSD, the value 3 can be represented both by 011 and 101 that can

be obtained with an adder as 1¿1 + 1 and with a subtracter as 1¿2− 1 respectively.

Note that if the constants are defined in binary representation, then each AND gate

represents an addition operation.

Also, observe that the exact CSE algorithm can easily handle the constants defined in

MSD representation that achieves alternative representations of a constant, since all

the implementations of a constant are simply the inputs of an OR gate representing

the constant.

4.1.1.3 Optimization models

In the conversion of the MCM problem to a 0-1 ILP problem, we need to include the

optimization variables to the network, so that the cost function to be minimized, i.e.,

the linear function of the optimization variables, can be constructed. To do this, the

optimization variables can be associated with operations or partial terms that yield

the same minimum number of operations solution as shown in the following three

lemmas.

In the minimization of the number of operations model, the optimization variables

are associated with the operations that are required for the implementations of target

constants and partial terms. Thus, we add a third input denoting an optimization

variable to each AND gate that represents an operation in the network. The inclusion

of optimization variables is exemplified in Figure 4.3(a) for the implementation of the

target constant 51 defined under CSD.

We make a simple observation on the minimization of the number of operations

model.

Lemma 4.1: In the optimum solution, the number of optimization variables set to 1

among the AND gates that feed the same OR gate is 1.

We note that any optimization variable in an AND gate with another input set to 0

will necessarily be 0. Otherwise, we have a contradiction as setting it to 0 would be a

solution with a lower cost. For the remaining AND gates, one suffices to set the output

37

��

�
�

��

�

��

��

�

��

�

��

��

� ���

���

���

���

���

���

��� ����	
�

��� ���	
	

��� ����
��

��� �����
��

��� ���	
�	

��� �����
�

��

�
�

��

�

��

��

�

��

�

��

��

� ���

���

���

���

���

���

��� ��

(a) (b)

Figure 4.3: Addition of optimization variables in the network: (a) the minimization of
the number of operations model; (b) the minimization of the number of
partial terms model.

of the OR gate to 1. Hence, only one optimization variable over those AND gates will

be 1 in order to minimize the cost function. 2

Note that in this model, the solution to the minimization of the cost function will

indicate directly which operations are required. Thus, in the realization of target

constants and partial terms, the operations whose optimization variables evaluate to 1

are synthesized.

In the minimization of the number of partial terms model, optimization variables are

associated with the partial terms that are required to implement the target constants.

Thus, we add a 2-input AND gate for each OR gate representing a target constant or a

partial term in the network, where one input is the output of the OR gate and the other

is the optimization variable. The inclusion of optimization variables is exemplified in

Figure 4.3(b) for the implementation of the target constant 51 defined under CSD.

We make a simple observation on the minimization of the number of partial terms

model.

Lemma 4.2: If the optimization variable evaluates to 1 in the optimum solution, then

the output of the corresponding OR gate evaluates to 1.

Since the cost function to be minimized is the linear function of the optimization

variables, if the optimization variable evaluates to 1, then the output of the

38

corresponding OR gate is required in the optimum solution. Otherwise, the

optimization variable could be set to 0 and we would have a better solution, which is

a contradiction. 2

Note that the converse is not true. If a pair of partial terms that can be combined

to generate a partial term with a single operation is available, then the output of the

OR gate will evaluate to 1. However, this does not mean that this particular constant

is going to be computed, i.e., the optimization variable associated with the constant

will evaluate to 1. Thus, in the realization of each target constant and partial term

with an optimization variable set to 1 in the optimum solution, one of the associated

operations whose AND gate output is set to 1 is synthesized. Since there may be more

than one available implementation of the constant, we choose the one that yields the

minimum delay of the constant multiplications defined in terms of the number of

operations in series, i.e., generally known as the number of adder-steps. Thus, by

traversing from primary inputs to primary outputs, the minimum delay synthesis of

the found minimum number of operations solution is realized.

Observe that the minimization of the number of partial terms in the exact model is

equivalent to the maximization of the partial term sharing.

The following conclusion can be drawn from Lemma 4.1 and 4.2.

Lemma 4.3: The minimization of the number of operations is equivalent to the

minimization of the number of partial terms.

In the minimization of the number of operations, we obtain one operation per partial

term as given by Lemma 4.1.

In the minimization of the number of partial terms, if the optimization variable at

the output of an OR gate evaluates to 1, then one of the AND gates whose output

evaluate to 1 is selected arbitrarily. Thus, we obtain one operation per required partial

term, i.e., also the same as the number of optimization variables set to 1 as given by

Lemma 4.2.

Thus, in both approaches, since we have a one to one correspondence between

operation and partial term, and since both solutions are optimum, they have to yield

the same cost. 2

39

Although these models yield the same solution in terms of the number of operations,

they put their own characteristics into the 0-1 ILP problem. In the minimization

of the number of operations model, the optimum solution indicates directly which

operations to be implemented. For the MCM problem, this is not so relevant, since

it is indifferent which of the available operations is used to compute a target constant

or a partial term. However, as will be discussed in Chapter 5-7, it is essential in

more sophisticated optimization problems. However, by using the minimization of

the number of operations model, the number of optimization variables is increased

with respect to the minimization of the number of partial terms model. As shown

in Section 4.1.3.3, although this may signify an increased difficulty for SAT-based

0-1 ILP solvers that solve the PB optimization problem iteratively using an efficient

SAT-engine, the SAT-based 0-1 ILP solvers that are also equipped with ILP methods

perform well on these problems.

4.1.1.4 Network simplifications

Problem reduction techniques can also be used to reduce the size of the network,

and consequently, the size of the 0-1 ILP problem. Thus, the performance of a

generic 0-1 ILP solver can be increased. The following rules can be applied to remove

unnecessary inputs from the gates and redundant gates from the network.

1. Since there is no need to implement the primary input, we assign 1 value to

the variable indicating the primary input and propagate this value to remove

unnecessary gates in the network.

2. Since the implementation of target constants is aimed, we assign 1 value to

the outputs of OR gates and AND gates representing the target constants in the

minimization of the number of operations model and in the minimization of the

number of partial terms model respectively, and make these implications.

3. If an operation includes two identical partial terms at the inputs, then we may

remove one of them from the inputs.

4. If the requirements of an operation are more stringent than another operation that

implements the same constant, then we may remove it. For example, in Figure 4.2,

for the implementation of 51, the operation 51 = 63− 3¿2 requires partial terms

40

63 and 3, whereas the operation 51 = 3¿4 + 3 only requires the partial term 3,

thus we may eliminate the former, because if the partial term 3 is available, we can

always use the latter.

The impact of these simplifications depends heavily on the particular instance. They

may yield few simplifications in the network or an immediate solution, hence avoiding

the 0-1 ILP solver altogether. The impact of these simplifications on the network of

Figure 4.2 are presented in Figure 4.4 and 4.5 for the minimization of the number

of operations model and the minimization of the number of partial terms model

respectively.

��

��

��

��� �����

��� ������

��� ������

��� �������

��� ������

��� �������

��� ������

��� �������

��� 	�����

��� 	������

��� 	������

���
������

���
������

���
��	���

��� ������

���
�������

��� �����

���
�����

��

Figure 4.4: Simplification of the network of Figure 4.2 after optimization variables for
minimizing the number of operations are added.

��

��

��

��� ��

��� ��

��� ��

����� �

��� ��

��� ��

Figure 4.5: Simplification of the network of Figure 4.2 after optimization variables for
minimizing the number of partial terms are added.

41

Additionally, during the construction of the network, the issues described in [90] that

speed-up a generic SAT-based 0-1 ILP solver are also considered.

4.1.1.5 Conversion to 0-1 ILP problem

After the Boolean network is constructed, the conversion of the MCM problem into

a 0-1 ILP problem is then straight-forward. The cost function is formed as a linear

function of optimization variables where the cost value of each optimization variable

is 1. The constraints of the 0-1 ILP problem are obtained by finding the CNF formulas

of each gate in the network and expressing each clause in CNF formulas as a linear

inequality as described in [50]. For example, a 2-input AND gate, c = a ∧ b, is

translated to CNF as (a + c)(b + c)(a + b + c) and converted to PB constraints as

follows:

a− c ≥ 0

b− c ≥ 0 (4.1)

−a−b+ c ≥ −1

Also, the outputs of the OR gates associated with the target constant are set to 1 in

the 0-1 ILP problem, since the implementation of target constants is aimed. Thus, the

obtained model can serve as an input to a generic 0-1 ILP solver.

4.1.1.6 Analysis of 0-1 ILP problem complexity

In this section, we present the complexity analysis of the MCM problem in terms of

the size of the Boolean network, i.e., the number of AND and OR gates, and the size

of the 0-1 ILP problem, i.e., the number of variables, constraints, and optimization

variables, generated by the exact CSE algorithm under both models.

The complexity analysis is based on a single target constant represented with n

non-zero digits. As a special case, suppose the constant is represented in binary with

all n digits set to 1. In this case, the Boolean network includes all partial terms

with b bits, b ≤ n, set to 1. Thus, all target constants that include the number of

1 bits less than n are considered in the network. Hence, for n-bit target constants

in any representation, the complexity of the problem is bounded above by the case

of a single coefficient with all the n bits set to 1. Also, in this analysis, network

42

simplification techniques described in Section 4.1.1.4 are not taken into account thus,

the upper-bounds on the problem complexity are obtained.

In the minimization of the number of operations model1, the number of gates in the

network is given as follows:

#ORs =
n

∑
i=2

(
n

n− i

)
(4.2)

#ANDs =
n

∑
i=2

(2i−1−1)
(

n
n− i

)
(4.3)

The number of variables, constraints, and optimization variables of the 0-1 ILP

problem for this model is given as follows:

#vars = #optvars +#ORs +#ANDs +1 (4.4)

#cons =
due to ANDs︷ ︸︸ ︷

4#ANDs +

due to ORs︷ ︸︸ ︷
(#ANDs +#ORs) (4.5)

#optvars = #ANDs (4.6)

Observe from (4.4) that the number of variables is the number of optimization

variables plus the number of gates of the network plus 1, i.e., the primary input of the

network. As can be easily observed from (4.6), the number of optimization variables

is the number of AND gates in the network. Note that the number of constraints

given by (4.5) is the number of constraints due to the AND gates plus the number of

constraints due to the OR gates in the network. Since the number of fanins of each

AND gate is three in this model, the number of constraints obtained by the AND gates

is 4#ANDs. Since each AND gate output is the fanin of an OR gate in the network, the

number of constraints obtained by the OR gates is the number of AND and OR gates

in the network.

In the minimization of the number of partial terms model2, the number of gates in the

network is given as follows:

#ORs =
n

∑
i=2

(
n

n− i

)
(4.7)

#ANDs = #ORs +
n

∑
i=2

(2i−1−1)
(

n
n− i

)
(4.8)

1Recall that in the minimization of the number of operations model, the optimization variables are
associated with the operations, i.e, the AND gates in the network.

2Recall that in the minimization of the number of partial terms model, the optimization variables are
associated with the partial terms, i.e, the OR gates in the network.

43

Observe from (4.2) and (4.7) that the number of OR gates in both optimization models

is the same. However, in the minimization of the number of partial terms model, the

number of AND gates is augmented with the number of OR gates with respect to (4.3).

Because, in this model, an additional 2-input AND gate is included for each constant

represented by the OR gates in the network.

The number of variables, constraints, and optimization variables of the 0-1 ILP

problem for this model is given as follows:

#vars = #optvars +#ORs +#ANDs +1 (4.9)

#cons =
due to ANDs︷ ︸︸ ︷

3#ANDs +

due to ORs︷ ︸︸ ︷
(#ANDs +#ORs) (4.10)

#optvars = #ORs (4.11)

Observe from (4.11) that the number of optimization variables is the number of OR

gates in the network. Also, since the number of fanins of each AND gate is two in this

model, the number of constraints due to the AND gates is 3#ANDs as given in (4.10).

Table 4.1 and 4.2 give the size of the Boolean network in terms of the number of AND

and OR gates, and the size of the 0-1 ILP problem in terms of the number of variables,

constraints, and optimization variables for a single constant with different values of

n bits, all set to 1, for the minimization of the number of operations model and the

minimization of the number of partial terms model respectively.

Although we can observe the exponential growth in the size of Boolean network

and 0-1 ILP problem in both models, the size of the 0-1 ILP problem for up to

n = 12 is within the reach of current 0-1 ILP solvers. In practice, constants with 12

bits set to 1 may suffice for many real problems. Observe that the exact algorithm

can be efficiently applied to larger constants, when they are defined in CSD or

MSD representations, since the constants are represented with minimum number of

non-zero digits under CSD and MSD. We also note that the network simplifications

described in Section 4.1.1.4 reduce the 0-1 ILP problem size significantly, especially,

in the model of minimizing the number of partial terms [14], hence allowing the exact

algorithm to be applied to larger size problem instances.

44

Table 4.1: Upper bounds on the size of network and 0-1 ILP problem in the minimization
of the number of operations model.

n #ORs #ANDs #vars #cons #optvars

4 11 25 62 136 25
6 57 301 660 1,562 301
8 247 3,025 6,298 15,372 3,025
10 1,013 28,501 58,016 143,518 28,501
12 4,083 261,625 527,334 1,312,208 261,625
14 16,369 2,375,101 4,766,572 11,891,874 2,375,101
16 65,519 21,457,825 42,981,170 107,354,644 21,457,825

Table 4.2: Upper bounds on the size of network and 0-1 ILP problem in the minimization
of the number of partial terms model.

n #ORs #ANDs #vars #cons #optvars

4 11 36 59 155 11
6 57 358 473 1,489 57
8 247 3,272 3,767 13,335 247
10 1,013 29,514 31,541 119,069 1,013
12 4,083 265,708 273,875 1,066,915 4,083
14 16,369 2,391,470 2,424,209 9,582,249 16,369
16 65,519 21,523,344 21,654,383 86,158,895 65,519

4.1.2 The approximate common subexpression elimination algorithm

Although the exact CSE algorithm presented in the previous section can be applied

effectively to relatively large size MCM problems, the execution time to obtain the

minimum number of operations solution does tend to grow exponentially with the

size of 0-1 ILP problem, limiting its application to more complex instances. Thus,

heuristic algorithms that obtain similar results with the minimum solution using very

little computational resources are indispensable for the problem instances that the

exact algorithms cannot handle.

In this section, we describe the approximate algorithm called ASSUME-A [16]

designed for the optimization of the number of operations in MCM. The approximate

algorithm we propose uses as the underlying model the Boolean network generated

by the exact algorithm, as described in Section 4.1.1.2. In the approximate algorithm,

the constants are synthesized one at a time using a single operation selected among the

set of possible operations. In the selection of an operation for the implementation of a

constant, initially, the implementation costs of all operations are found by considering

the not-yet synthesized constants and then, the operation that has the minimum

45

implementation cost is chosen to implement the constant. The advantages of the

proposed algorithm are the use of the network that has the view of all the possible

manners a constant can be synthesized and the use of a selection criteria that also

considers the not-yet synthesized constants while choosing an operation to implement

a constant. These properties make the approximate algorithm quite different from the

heuristics that find pairs of the most common non-zero digits [76] or the two-term

common subexpressions [77]. Since the heuristics of [76] and [77] build the constants

starting at the most simple (in the number of non-zero digits) to the most complex by

combining existing partial terms, this bottom-up approach yields a much more limited

view of the search space.

In the preprocessing phase of ASSUME-A, by traversing the Boolean network from

primary inputs to primary outputs, the min_adder and max_level values of each

operation and constant are computed. The min_adder is the minimum number of

operations that are required to implement an operation or a constant. The min_adder

value of the primary input is 0. The min_adder value of a constant, i.e., represented

by an OR gate, is determined by finding the minimum of the min_adder values of

operations, i.e., the AND gates, that implement the constant. The min_adder value

of an operation is the sum of the min_adder values of its inputs plus 1, if the inputs

are different; otherwise, it is the min_adder value of an input plus 1. As an example,

consider the network given in Figure 4.2 with the target constant 51 defined under

CSD. The min_adder value of the constant 51 is 2, determined, for instance, by the

operations 51 = 3¿4 + 3 and 3 = 1¿2− 1. The max_level is the maximum number

of operations in series to implement a constant. Again, consider the network of

Figure 4.2. The max_level of the target constant 51 is 3, determined, for instance,

by the operation 51 = 13¿2−1 that can be implemented with maximum 2 operations

in series.

In a similar manner to the algorithms of [87] and [88], ASSUME-A has two main

parts: optimal and heuristic. The algorithm is as follows:

1. Store the pre-processed positive and odd target constants in a set called Aset

without repetition and label them as unimplemented.

46

2. The optimal part: For each element labeled as unimplemented in Aset, Aset(i), if

Aset(i) is implemented in the network with an operation whose inputs are either

primary inputs or are in Aset, then synthesize the element with this operation and

label it as implemented.

3. If there are no more elements labeled as unimplemented in Aset, return the solution

and stop.

4. The heuristic part: Take an unimplemented element from Aset, Aset(i), that has the

lowest max_level value.

5. For each operation, O(j), that implements Aset(i), set its cost value, C(j), to

its min_adder value, as determined in the preprocessing phase and for each

unimplemented element in Aset, Aset(k), with i 6= k:

(a) Determine Cbefore(k) by finding the min_adder value of Aset(k), when the

min_adder values of the elements in Aset are assigned to 0. Cbefore(k) is the

cost of implementation of Aset(k) at this phase of the algorithm, since all

elements in Aset will be implemented at the end of the algorithm.

(b) Determine Cafter(k) as done in (a), but also assume that the inputs of O(j) are

in Aset. Cafter(k) is the cost of implementing Aset(k), if Aset(i) is synthesized

with O(j) at this phase of the algorithm.

(c) Update the cost value, C(j), as C(j) = C(j)− (Cbefore(k)−Cafter(k)).

6. After the cost value of each operation, C(j), has been computed, select the

operation to synthesize Aset(i) that has the minimum cost. If there are operations

that have the same minimum cost, select the operation that has the minimum

min_adder value among these operations. Label Aset(i) as implemented.

7. Add each input of the selected operation to Aset, provided that they do not already

exist in Aset, and label them as unimplemented. Go to Step 2.

We note that in the first iteration, the elements of Aset are the target constants and

in later iterations, Aset may include the partial terms needed for the synthesized

operations. Observe that all elements of Aset are implemented at the end of the

algorithm. Also, we note that if all elements of Aset are implemented in the

47

optimal part, then the global minimum solution is obtained. If an element of Aset

is implemented in the heuristic part, the local minimum solution is obtained.

4.1.3 Experimental results

This section starts with the investigation of the effect of number representation on the

achievable minimum number of operations in MCM. It is followed by the examination

of the effect of the problem reduction techniques on 0-1 ILP problem size and the

performance of the SAT-based 0-1 ILP solver. Then, it includes the comparison of

the performance of the SAT-based 0-1 ILP solvers that have different algorithmic

architectures on the optimization models used in the exact CSE algorithm. Finally,

this section ends with the comparison of the exact and approximate CSE algorithms

introduced in this work with the previously proposed prominent CSE heuristics.

4.1.3.1 The effect of number representation on the achievable minimum number

of operations

For this experiment, we used randomly generated instances where constants are

defined in 10, 12, and 14 bit-widths. In this experiment set, the number of

constants ranges between 10 and 120, and we generated 30 instances for each of

them. In this experiment, constants are defined under binary, CSD, and MSD

representations. Figure 4.6(a)-(c) present the results of the exact CSE algorithm on

randomly generated instances where constants are defined under 10, 12, and 14 bits

respectively.

As can be observed from Fig. 4.6(a)-(c), using binary representation yields better

results than CSD on average. Also, as the number and bit-width of the constants

increase, the difference of the number of operations on average between CSD and

binary representations tends to increase. While the difference of the average number

of operations under 10 bit-widths on problem instances including 120 constants

between CSD and binary is 1.1, this value on problem instances including 120

constants under 14 bit-widths is 3.9.

Also, we note that the exact solutions obtained under binary and MSD are quite

similar. However, as the number and bit-width of constants are increased, using

binary representation achieves better solutions than MSD. For example, while the

48

10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

100

110

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 10−bits

Binary
CSD
MSD

(a)

10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

100

110

120

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 12−bits

Binary
CSD
MSD

(b)

10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

100

110

120

130

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 14−bits

Binary
CSD
MSD

(c)

Figure 4.6: Results of the exact CSE algorithm under binary, CSD, and MSD
representations on randomly generated instances: (a) Constants in 10 bits;
(b) Constants in 12 bits; (c) Constants in 14-bits.

49

difference of the average number of operations under 10 bit-widths on problem

instances with 120 constants between MSD and binary is 0.6, this value on problem

instances with 120 constants under 14 bit-widths reaches to 1.1.

In this experiment, we observe that as opposed to common usage, CSD representation

does not tend to give the minimum number of operation solutions in MCM. Because,

using a single representation of a constant with the minimum number of non-zero

digits and both positive and negative signs may produce partial terms that are less

common in the implementations of constants. This drawback can be overcome

using MSD that considers alternative representations of a constant with the minimum

number of non-zero digits. However, we observe that binary representation achieves

more promising solutions than CSD, since using a unique representation of a constant

with more non-zero digits and only positive sign increases the partial term sharing.

Also, we note that the use of binary representation becomes more effective on finding

the minimum number of operation solutions, as the number and bit-width of constants

increase.

However, the main disadvantage of using binary representation is that the design can

be obtained in greater number of adder-steps than those of designs when constants

are defined under CSD or MSD. The average number of adder-steps of the exact

solutions obtained on randomly generated instances in 14 bit-widths under binary,

CSD, and MSD are presented in Fig. 4.7. We note that while the average number of

adder-steps of solutions obtained under binary representation on problem instances

with 120 constants is 6.1, this value is 4.6 for both CSD and MSD.

This experiment clearly indicates that the MSD representation that also yields better

solutions than CSD representation should be used when seeking solutions with less

number of adder-steps.

For this experiment, we also used FIR filters where the filter coefficients were

computed with the remez algorithm in MATLAB. The filter specifications are given in

Table 4.3 where pass and stop are normalized frequencies that define the passband and

stopband respectively, #tap is the number of coefficients, and width is the bit-width

of the coefficients.

50

10 20 30 40 50 60 70 80 90 100 110 120
1

2

3

4

5

6

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 a

dd
er

−
st

ep
s

Randomly generated instances in 14−bits

Binary
CSD
MSD

Figure 4.7: Comparison of the number of adder-steps of solutions obtained under binary,
CSD, and MSD representations.

Table 4.3: Characteristics of the FIR filters.

Filter pass stop #tap width
1 0.10 0.15 200 16
2 0.10 0.15 240 16
3 0.10 0.25 180 16
4 0.10 0.25 200 16
5 0.10 0.20 240 16
6 0.10 0.20 300 16
7 0.15 0.25 200 16
8 0.15 0.25 240 16
9 0.20 0.25 240 16
10 0.20 0.25 300 16

The 0-1 ILP problem sizes of filter instances when filter coefficients are defined under

binary, CSD, and MSD representations are given in Table 4.4. In this table, vars, cons,

and optvars stand for the number of variables, constraints, and optimization variables

respectively, when the MCM problem is formalized under the minimization of the

number of partial terms model.

As can be easily observed from Table 4.4, the size of 0-1 ILP problems under

binary representation is generally larger than the size of problems defined under

CSD and MSD. This is because the binary representation of a constant includes

more non-zero digits. Also, observe that the use of MSD representation yields larger

size 0-1 ILP problems than those of instances when coefficients are defined under

CSD representation, since a constant may have several MSD representations with the

minimum number of non-zero digits including the CSD representation of the constant.

51

Table 4.4: 0-1 ILP problem sizes of the FIR filter instances.

Filter Binary CSD MSD
vars cons optvars vars cons optvars vars cons optvars

1 3862 13550 944 633 1427 316 2103 6877 602
2 9904 38038 1500 618 1460 289 1776 5024 623
3 16226 67753 1433 1833 6014 476 10054 38972 1354
4 15992 63884 1928 1210 3545 420 656 1460 333
5 6808 27119 873 827 2174 329 2606 8127 751
6 13581 55759 1012 1121 3059 417 2778 8862 763
7 2413 8674 567 371 808 188 434 1043 200
8 2781 10119 642 394 824 221 861 2272 370
9 140 162 119 231 344 166 348 562 227
10 171 289 122 126 147 109 152 211 119

Total 71878 285347 9140 7364 19802 2931 21768 73410 5342

Table 4.5: Summary of results of the exact CSE algorithm on the FIR filter instances.

Filter Binary CSD MSD
adder step CPU adder step CPU adder step CPU

1 81 7 7 83 5 0.1 82 5 0.7
2 86 6 5.5 88 5 0 87 5 0.2
3 52 5 14.2 56 4 1.3 53 5 20
4 92 7 7 94 5 0.1 93 5 0.1
5 65 6 22 66 4 0.1 66 5 8.4
6 71 6 3.1 74 5 0.2 72 4 0.3
7 62 5 0.1 65 4 0.1 64 4 0
8 71 5 0.1 73 4 0 72 4 0.1
9 79 7 0 80 4 0 80 4 0
10 82 7 0 84 4 0 84 4 0

Total 741 61 59 763 44 1.9 753 45 29.8

The results of the exact CSE algorithm on the FIR filter instances when filter

coefficients are defined under binary, CSD, and MSD are presented in Table 4.5.

In this table, adder denotes the number of addition/subtraction operations and step

denotes the maximum number of operations in series needed to synthesize the filter

coefficients. Also, CPU is the CPU time in seconds required for the SAT-based 0-1

ILP solver minisat+ [52] to compute the exact solutions on a personal computer (PC)

with Intel Xeon at 3.16GHz with 8GB of main memory. Since the CPU time required

to construct the network in the preprocessing phase and to synthesize the MCM in

the post-processing phase are also negligible, CPU only indicates the run time of

minisat+.

As can be observed from Table 4.5, the use of binary representation yields better

solutions than solutions obtained under CSD and MSD representation on every

instances. We note that using binary representation leads solutions less than 2 and

52

Table 4.6: The effect of problem reduction techniques on 0-1 ILP problem size and
performance of the SAT-based 0-1 ILP solver.

Filter [4] This work
vars cons optvars CPU vars cons optvars CPU

1 60416 194552 1595 405 3862 13550 944 7
2 79707 262024 1886 278 9904 38038 1500 5.5
3 59069 191764 1510 678.2 16226 67753 1433 14.2
4 129530 444146 2366 503.1 15992 63884 1928 7
5 63076 207012 1519 52.3 6808 27119 873 22
6 58286 188294 1533 44.9 13581 55759 1012 3.1
7 47004 154086 1142 3.6 2413 8674 567 0.1
8 32044 98816 1048 3 2781 10119 642 0.1
9 133493 461220 2300 2.8 140 162 119 0

10 116294 405186 1880 2.6 171 289 122 0
Avg. 100% 100% 100% 100% 9.2% 10.9% 54.5% 3.0%

1 operation on average with respect to CSD and MSD respectively. However, the

delay of the filter designs is increased when compared to the solutions obtained under

CSD and MSD. Also, we note that since the CSD representation of a constant includes

the minimum number of non-zero digits yielding 0-1 ILP problems in a smaller size,

the exact solutions can be found in less amount of CPU time than binary and MSD

representations.

4.1.3.2 The effect of problem reduction techniques on 0-1 ILP problem size

The effect of using problem reduction techniques described in Section 4.1.1.4 on the

filter instances given in Table 4.3 is shown in Table 4.6. In this table, the exact CSE

algorithm introduced in Section 4.1.1 is compared with the previously proposed exact

CSE algorithm [4], which is not equipped with the problem reduction techniques, in

terms of the size of 0-1 ILP problems they generated and the runtime of the SAT-based

0-1 ILP solver minisat+ on these 0-1 ILP problems. We note that the results of

the exact CSE algorithms on filter instances are obtained when filter coefficients are

defined under binary representation.

As can be easily observed from Table 4.6, a 0-1 ILP problem that represents an MCM

problem can be obtained in a smaller problem size, when the problem reduction

techniques are applied. On these filter instances, while the number of variables and

constraints is reduced by almost 90%, the number of optimization variables is reduced

53

by 45%. Also, the reduction of problem size enables the SAT-based 0-1 ILP solver,

minisat+, to obtain the exact solutions with a very low computational effort.

4.1.3.3 Comparison of SAT-based 0-1 ILP solvers on optimization models

For this experiment, we used FIR filters where filter coefficients were computed

with the remez algorithm in MATLAB. The specifications of filters are presented in

Table 4.7.

Table 4.7: Characteristics of the FIR filters.

Filter pass stop #tap width
1 0.20 0.25 120 8
2 0.10 0.25 100 10
3 0.15 0.25 40 12
4 0.20 0.25 80 12
5 0.24 0.25 120 12
6 0.15 0.25 60 14
7 0.15 0.20 60 14
8 0.10 0.15 60 14
9 0.10 0.15 100 16

The 0-1 ILP problem size of the proposed models, i.e., the minimization of the

number of partial terms and the minimization of the number of operations models,

for the filter coefficients defined under MSD representation are given in Table 4.8.

As can be seen from the Table 4.8, the use of the minimization of the number of partial

terms model in the formalization of an MCM problem as a 0-1 ILP problem achieves

a smaller size 0-1 ILP problem with respect to the minimization of the number of

operations model due to the network simplifications.

On the problem instances given in Table 4.8, we compare the SAT-based 0-1 ILP

solvers bsolo and minisat+, that have different algorithmic structures, in terms of

CPU time required to find a solution. The results are given in Table 4.9 where CPU

denotes the CPU time of SAT-based 0-1 ILP solvers in seconds under a PC with dual

Pentium Xeon at 2.4GHz, with 4GB of main memory, running Linux. The allowed

CPU time for the 0-1 ILP solvers was 3600 seconds. In this table, the italic results

indicate that a suboptimal solution rather than the minimum is obtained in the given

CPU time limit.

As can be seen from Table 4.9, bsolo finds the minimum solutions for all instances

under both models where minisat+ cannot conclude with the minimum solution for

54

Table 4.8: 0-1 ILP problem sizes of the proposed optimization models.

Minimization of the Minimization of the
Filter Number of Partial Terms Number of Operations

vars cons optvars vars cons optvars
1 10 10 10 247 347 144
2 76 97 56 635 1027 345
3 151 298 80 1327 2387 677
4 93 139 64 1926 3331 1023
5 34 34 34 1142 1769 651
6 107 144 74 4324 8547 2153
7 205 455 93 2250 4828 1062
8 546 1405 200 3915 8542 1856
9 4010 14880 779 26778 55489 13329

Total 5232 17462 1390 42544 86267 21240

Table 4.9: Run time comparison of the SAT-based 0-1 ILP solvers.

Minimization of the Minimization of the
Filter Number of Partial Terms Number of Operations

bsolo minisat+ bsolo minisat+
adder CPU adder CPU adder CPU adder CPU

1 10 0.1 10 0 10 0.2 10 0.1
2 18 0 18 0 18 0.2 18 0.1
3 16 0.1 16 0 16 0.5 16 0.7
4 29 0 29 0 29 1.4 29 0.5
5 34 0.1 34 0 34 0.3 34 0.3
6 22 0.1 22 0 22 6.8 22 3600.1
7 34 0.1 34 0.1 34 4 34 19.5
8 33 9.8 33 0.1 33 27.4 33 60.8
9 49 380.6 49 4.3 49 1974.8 59 3600.1

Total 245 390.9 245 4.5 245 2015.6 255 7282.2

Filter 6 and 9 under the minimization of the number of operations model in an hour.

We note that even if the solution of minisat+ on Filter 6 includes the minimum number

of operations, it could not prove that the found solution is the minimum solution in

the given CPU time limit. However, we note that the minimization of the number

of partial terms model is more appropriate for minisat+, since this model includes

less number of optimization variables with respect to the minimization of the number

of operations model. Also, the minimization of the number of operations model is

more appropriate for bsolo than minisat+, since bsolo incorporates problem reduction

techniques from both sides, i.e., SAT and branch-and-bound algorithms.

55

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

Constants in 12 bits under CSD representation

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

[76]
[28]
ASSUME−A
Exact CSE

Figure 4.8: Comparison of the exact and heuristic algorithms on randomly generated
instances.

4.1.3.4 Comparison of CSE algorithms

In this experiment, we compare the results of the exact and approximate CSE

algorithms introduced in this chapter with those of the CSE heuristics of [76] and [28],

which we have also implemented, and those of the CSE heuristic [77], that have been

provided by Anup Hosangadi.

As the first experiment set, we used randomly generated instances defined in 12

bit-widths. The number of constants ranges between 10 and 100, and there exist

30 instances for each set. Figure 4.8 presents the results of CSE algorithms when

constants are defined under CSD representation.

We note from Figure 4.8 that while the average number of operations between

ASSUME-A and the exact CSE algorithm is almost 1 on all instances, the average

number of operations between the heuristic of [28] and the exact algorithm reaches

up to 7.4 operations. Also, since the heuristic of [76] is a greedy algorithm that finds

the most common subexpression in each iteration of the algorithm, it is easily trapped

to the local minima on instances that include more than 40 constants. On the instances

with 100 constants, the average number of operations between this heuristic and the

exact algorithm is almost 10 operations. This experiment clearly indicates that the

exact CSE algorithm finds better solutions than the heuristic algorithms and among

these heuristics, ASSUME-A finds much better solutions than the CSE heuristics

of [76] and [28].

56

Table 4.10: Summary of results of algorithms on the FIR filter instances.

CSD MSD
Filter [76] ASSUME-A Exact [28] ASSUME-A Exact

adder step adder step adder step adder step adder step adder step
1 10 3 10 2 10 2 10 3 10 3 10 2
2 18 3 18 3 18 3 18 3 18 3 18 3
3 19 3 16 3 16 3 18 4 16 3 16 3
4 30 3 29 3 29 4 29 4 29 4 29 3
5 36 3 34 3 34 3 34 3 34 3 34 3
6 25 3 23 3 23 4 22 4 22 4 22 4
7 35 3 35 3 35 3 35 3 34 3 34 3
8 37 4 35 3 35 3 36 4 34 4 33 3
9 55 4 52 4 51 4 51 5 49 4 49 4

Total 265 29 252 27 251 29 253 33 246 31 245 28

As the second experiment set, we used the filter instances introduced in Table 4.7.

Table 4.10 compares the exact and approximate CSE algorithms with the CSE

heuristics [28, 76] when filter coefficients are defined under CSD and MSD

representations.

As can be observed from Table 4.10, while ASSUME-A finds similar solutions with

the exact algorithm, it finds better solutions than other heuristics on overall filter

instances. While the average difference of the number of operations between [28] and

the exact algorithm is almost 1, the average difference of the number of operations

between the heuristic of [76] and the exact CSE algorithm is greater than 1.

As the third experiment set, we used filter instances introduced in [6] to find out

the limitations of the exact CSE algorithm. Table 4.11 presents these filter instances

where filter coefficients are defined in 24 bit-width. In this table, the 0-1 ILP problem

size of each filter instance when coefficients are defined under CSD representation is

also presented. We note that the MCM problem is formalized under the minimization

of the number of partial terms model.

Table 4.12 compares the results of the exact CSE algorithm with those of the CSE

heuristics [28,76,77]. We note that the SAT-based 0-1 ILP solver, minisat+, was used

to obtain the exact solutions on a PC with dual Pentium Xeon at 2.4GHz, with 4GB of

main memory, and the allowed CPU-time was determined as 1 day. The italic results

indicate that a suboptimal solution rather than the minimum is obtained in the given

CPU time limit. We note that the results of heuristic algorithms are obtained with a

very low computational effort.

57

Table 4.11: Characteristics of filter instances and 0-1 ILP problem sizes.

Filter Filter Specifications 0-1 ILP Problem Size
Type pass stop #tap width vars cons optvars

1 Butterworth 0.25 0.3 20 24 50732 202698 2158
2 Elliptical 0.25 0.3 6 24 3410 12303 350
3 Least Square 0.25 0.3 41 24 58652 230136 3269
4 Park Mc-Clennan 0.25 0.3 28 24 20572 77736 1703
5 Butterworth 0.27 0.2875 71 24 81641 324765 3984
6 Elliptical 0.27 0.2875 8 24 27614 108062 1266
7 Least Square 0.27 0.2875 172 24 46959 183081 4037
8 Park Mc-Clennan 0.27 0.2875 119 24 74334 294575 4905
9 Elliptical 0.27 0.29 13 24 34969 137129 1746
10 Least Square 0.27 0.29 326 24 38742 150786 3802
11 Park Mc-Clennan 0.27 0.29 189 24 55816 218351 4820

Table 4.12: Summary of results of the exact and heuristic algorithms.

Filter [77] [76] [28] ASSUME-A Exact
adder step adder step adder step adder step adder step CPU

1 26 4 26 7 31 5 24 4 21 5 6244.2
2 10 3 11 7 11 4 11 5 10 4 27.7
3 58 4 61 7 67 6 52 4 77 4 86400.1
4 45 4 46 7 48 6 43 4 45 4 86400.1
5 61 4 57 6 61 6 54 4 63 4 86400.1
6 14 4 15 7 16 5 16 5 12 5 2387.7
7 178 4 167 5 203 6 156 5 228 5 86400.1
8 136 4 137 6 158 6 124 5 192 4 86400.1
9 24 4 24 6 27 6 23 4 23 4 86400.1
10 266 4 238 5 240 6 211 5 249 5 86400.1
11 199 4 204 6 223 5 176 4 247 5 86400.1

Total 1017 43 986 69 1085 61 890 49 1167 49 > 8 days

In this experiment, we observe that the minimum solutions of three out of 11 filters,

i.e., Filter 1, 2, and 6, are obtained in the CPU-time limit. However, the minimum

solutions of eight filters could not be found in one day. We note that even if the

size of the 0-1 ILP problem obtained for Filter 1 is greater than that of Filter 4, a

minimum solution could not be obtained for Filter 4. This shows that the size of

the 0-1 ILP problem and the hardness of the 0-1 ILP problem depend heavily on

the filter coefficients. We observe that for the filter instances where the minimum

solutions could not be found in the CPU-time limit, the obtained solution by the exact

algorithm can be far from the solutions that are obtained by a heuristic algorithm,

e.g., Filter 7 and 8. On overall instances, ASSUME-A finds the best solutions among

these algorithms. This experiment also shows that the use of a heuristic algorithm

58

is indispensable, when an exact algorithm could not conclude with the minimum

solution.

4.1.4 Conclusions

In this section, we introduce an exact CSE algorithm where the MCM problem

can be formalized in either the minimization of the number of operations model

or the minimization of the number of partial terms model. The problem reduction

techniques that significantly reduce the 0-1 ILP size, consequently, the CPU time of a

generic 0-1 ILP solver required to find the minimum solution, are also included in the

exact algorithm. It is shown by the experimental results that the exact CSE algorithm

can be applied on real-size instances.

Since there exist instances that the proposed exact CSE algorithm finds them difficult

to obtain the minimum solutions, we also introduce an approximate CSE algorithm

that finds competitive results with the minimum solutions and better solutions than

those of the previously proposed prominent CSE heuristics.

An interesting and original result shown by the exact CSE algorithm is that the

binary representation allows for a greater amount of sharing, hence, producing more

area-efficient implementations for the MCM problems than the CSD representation

that is commonly preferred. However, we note that when seeking area and delay

efficient solutions, the MSD representation should be used.

59

4.2 Minimum Number of Operations under General Number Representation

In this section, we extend the exact CSE algorithm introduced in Section 4.1.1 to

handle multiple constants under general number representation as described in [17].

Since the implementations of a constant are not limited to any number representation

in the proposed algorithm, we increase the search space, allowing our algorithm to be

significantly more effective in the optimization of the number of operations. To help

the search in this larger solution space, we consider the minimization of the number

of partial terms model described in Section 4.1.1.3, the problem reduction techniques

described in Section 4.1.1.4, and also, the model simplification methods.

4.2.1 Implementations of constants under general number representation

The solution of the exact CSE algorithm depends on number representation, since

all possible implementations of constants are extracted from the non-zero digits of

the constants representations. While it is true that there is a higher probability of

a representation with the minimal number of non-zero digits being selected for the

optimized solution, it is also true that there are situations where a non-minimal

representation may fit better with the existing partial terms and lead to a better

solution.

However, in general number representation, finding the operations that implement a

constant has some limitations, since it must be ensured that the obtained solution has

no feedback. To illustrate the problem, consider the target constants 7, 11, and 19

to be implemented. The possible implementations of these constants under general

number representation are given in Figure 4.9.

Implementations of 7 Implementations of 11 Implementations of 19

7 = 1+6 = 1+3¿1 11 = 1+10 = 1+5¿1 19 = 1+18 = 1+9¿1
7 = 2+5 = 1¿1 +5 11 = 2+9 = 1¿1 +9 19 = 2+17 = 1¿1 +17
...
7 = 11−4 = 11−1¿2 11 = 7+4 = 7+1¿2 19 = 7+12 = 7+3¿2
...
7 = 19−12 = 19−3¿2 11 = 19−8 = 19−1¿3 19 = 11+8 = 11+1¿3
...

Figure 4.9: Implementations of 7, 11, and 19 in general number representation.

60

If all operations listed in Figure 4.9 are accepted for the target constants, a minimum

solution that includes a feedback loop can be obtained. For example, 7 = 11− 1¿2,

11 = 19− 1¿3, and 19 = 1¿3 + 11. To avoid these feedback loops, only addition

operations can be considered or additional constraints that break the loops should

be added to the 0-1 ILP problem. Since more promising results are obtained with

both addition and subtraction operations and the number of additional constraints

grows exponentially with the number of partial terms, neither approaches were used.

Instead, for each target constant, ti, odd numbers between 1 and 2dlog2(ti)e+1 − 1

are sorted in ascending order of the number of non-zero digits in their CSD

representations in a set called Nset. In fact, Nset is a set where the odd numbers

are ordered according to the number of operations required to implement each single

constant when it is defined in CSD. Also, in Nset, the constants can also be sorted

according to their single constant cost values obtained by the algorithm of [69].3

After Nset is formed, the operations for a target constant are found by traversing

from the first element to the element before the target constant in Nset and assigning

each element to the first input of an addition operation with positive and negative

sign. The operation that implements the target constant is accepted, if its second

input is placed in a lower position than the position of the target constant in Nset.

By doing so, the implementations of a target constant that can be considered in

the exact CSE algorithm under CSD and MSD representations are also extracted

in the exact algorithm under general number representation, and furthermore, the

implementations of a target constant that cannot be extracted from the non-zero

digits combinations of the constant representation are also obtained. As an example,

consider the target constant 51, i.e., 1010101 in CSD. Suppose 23, that is defined

in CSD as 101001 and is located in a lower position than that of 51 in Nset, is

assigned to the first input of addition operations with positive and negative sign. The

operations, 51 = 23+7¿2 and 51 =−23+37¿1, are accepted for the implementation

of 51, since the second inputs, i.e., the partial terms 7 and 37, are located before

51 in Nset. For the target constant 51, we note that the partial term 23 cannot be

considered in the exact CSE algorithm when the target constant is defined under

CSD representation. Also, under general number representation, the partial terms
3This approach was also implemented and it was observed that the obtained results were similar to

those of the described approach.

61

may include equal number of non-zero digits, which cannot be encountered in the

exact CSE algorithm where the partial terms are simply obtained by decomposing

the non-zero digits in the representations of constants. Again, for the implementation

of the target constant 51, the operation 51 = 43 + 1¿3 thus, the partial term 43, i.e.,

1010101 in CSD, cannot be considered in the exact CSE algorithm under binary,

CSD, or MSD representation. Thus, the use of Nset enables us to avoid feedback

loops and increases the possible sharing of partial terms by providing more possible

implementations of a constant with respect to the number of operations obtained

under any particular number representation in the exact CSE algorithm.

4.2.2 The exact algorithm under general number representation

As shown in Lemma 4.3, the minimization of the number of operations in MCM

is equivalent to finding the minimum number of partial terms such that each target

constant and partial term can be implemented using a single operation whose

inputs are target constants, found partial terms, or the input that is the constants

are multiplied with, denoted by 1. The exact algorithm under general number

representation is based on the model of minimizing the number of partial terms, since

this model formalizes the MCM problem as a 0-1 ILP problem with smaller size

than the model of minimizing the number of operations. Also, we include model

simplification techniques in the network for the minimization of the number of partial

terms required to implement the target constants. The proposed exact algorithm

follows the same steps of the exact CSE algorithm described in Section 4.1.1.

In the preprocessing phase of the algorithm, after the target constants are made

positive and odd, they are stored without repetition in a target set, T , and labeled

as unimplemented. The part of the algorithm where the partial terms are found for

each element in the target set is as follows:

1. Take an unimplemented element from the target set, ti. Form an empty set of

arrays called Pi associated with ti. Pi will contain all partial terms that are required

to implement ti.

2. Find an operation that implements ti;

62

(a) Find the positive and odd unrepeated inputs of the operation that are neither a

target constant nor 1, and store them in an empty array called Iarray. Hence,

observe that Iarray may be an empty set, or it may contain a single partial

term or a pair of partial terms.

(b) If Iarray is empty, then make Pi empty and go to Step 5. In this case, ti can

be implemented with an operation whose inputs are target constants or 1, and

this is the minimum cost implementation of ti.

(c) If Iarray is not empty, then check for each array of Pi, Pi(k), if Pi(k)⊆ Iarray.

If Iarray is included in Pi, then go to Step 3.

(d) If Iarray is not empty, then check for each array of Pi, Pi(k), if Iarray ⊂
Pseti(k). If Iarray dominates Pi(k), then delete Pi(k).

(e) Add Iarray to Pi.

3. Repeat Step 2 until all the implementations of ti are considered.

4. Add each partial terms of Pi to the target set, if it is not 1 and is not in the target

set, and label it as unimplemented.

5. Label ti as implemented and repeat Step 1 until all elements in the target set are

labeled as implemented.

We note that the operations that implement the constants, Step 2 of the algorithm,

are found as described in Section 4.2.1. The partial terms required to implement the

constants are extracted from the inputs of the operations. Since, there is no need

to implement the input that is the constants are multiplied with, denoted by 1, and

the aim is to implement the target constants, the partial terms are determined as the

constants that are neither 1 nor the target constants. Thus, it is obvious that a pair of

partial terms or a single partial term simply represents an operation implementing the

constant.

After all partial terms required to implement each target constant and partial term

are found, these implementations are represented in a combinational network that

includes only AND and OR gates. An OR gate, representing a target constant or

a partial term, combines all partial terms that can be used for the synthesis of the

associated target constant or partial term. An AND gate, representing a pair of partial

63

terms, combines two partial terms. The primary inputs of the network are the target

constants and partial terms that can be implemented with an operation whose inputs

are 1 or target constants. The primary outputs of the network are the outputs of the

OR gates associated with the target constants.

After the Boolean network is constructed, additional hardware, i.e., a 2-input AND

gate with an optimization variable for each partial term, is added to the network, as

done in the minimization of the number of partial terms model. Then, the MCM

problem is modeled as a 0-1 ILP problem with a cost function to be minimized and

constraints to be satisfied. The cost function is the linear function of the optimization

variables that represent the partial terms. The constraints of the 0-1 ILP problem are

obtained by assigning the optimization variables that represent the target constants to

1 and expressing each clause in CNF formulas of each gate in the network as a linear

inequality.

We note that the proposed algorithm is an exact algorithm under general number

representation with its limitations on considering all possible implementations of the

constant, since the MCM problem is formalized as a 0-1 ILP problem and the solution

is obtained using a generic 0-1 ILP solver. However, the proposed algorithm is not an

exact graph-based algorithm since all possible implementations of a constant are not

considered due to the limitations described in Section 4.2.1.

4.2.3 Experimental results

In this section, we present the results of the exact algorithm under general number

representation on randomly generated and FIR filter instances and compare with the

solutions of the exact CSE algorithm when constants are defined under binary, CSD,

and MSD representations.

As the first experiment set, randomly generated instances where the number of

constants ranges between 10 and 100, and the constants are defined in 12 bit-widths

were used. We generated 30 instances for each number of constants. We compare

the results of exact algorithm under binary, CSD, MSD, and general number

representations in Fig. 4.10.

64

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 12 bits

Binary
CSD
MSD
General number

Figure 4.10: Comparison of the solutions obtained under binary, CSD, MSD, and
general number representations.

In this experiment, we observe that the maximum difference of average number

of operations obtained under binary, CSD, and MSD with respect to solutions

obtained under general number representation is 5.8, 8.7, and 6.5 respectively. This

clearly shows the advantage of using general number representation over a particular

number representation when searching for the maximal sharing of partial terms in the

optimization of the number of operations.

As the second experiment set, the FIR filters where the coefficients were computed

using the remez algorithm in MATLAB were used. The filter specifications are given

in Table 4.13.

Table 4.13: Characteristics of the FIR filters.

Filter pass stop #tap width
1 0.15 0.25 40 12
2 0.20 0.25 80 12
3 0.24 0.25 120 12
4 0.15 0.25 60 14
5 0.15 0.20 60 14
6 0.10 0.15 60 14
7 0.10 0.15 100 16
8 0.15 0.25 120 16
9 0.10 0.15 160 16

The 0-1 ILP problem size of the exact algorithm on filter instances when coefficients

are defined under CSD, MSD, and general number representations are presented in

Table 4.14.

65

Table 4.14: 0-1 ILP problem sizes of the FIR filter instances.

Filter CSD MSD General Number
vars cons optvars vars cons optvars vars cons optvars

1 77 119 50 151 302 80 21231 96222 475
2 61 83 47 92 137 64 28 28 28
3 34 34 34 34 34 34 34 34 34
4 168 345 95 107 146 74 20 20 20
5 241 562 107 203 466 93 29 29 29
6 331 799 137 541 1446 200 17647 77268 556
7 938 3131 259 4009 16037 779 45 45 45
8 511 1271 218 673 1918 239 1722 5489 449
9 1866 6671 467 9510 40050 1384 70 70 70

Total 4227 13015 1414 15320 60534 2947 40826 179205 1706

As can be easily observed from Table 4.14, on some instances, such as Filter 7 and 9,

when filter coefficients are defined under general number representation, each filter

coefficient can be implemented using a single operation where the inputs are filter

coefficients or the filter input. This occurs because the general number representation

considers more possible implementations that can cover the coefficients. In this case,

there is no need to represent the problem as an optimization problem. Thus, the

0-1 ILP problem size can be much smaller under general number representation with

respect to those of 0-1 ILP problems obtained by the exact CSE algorithm under a

particular number representation. On the other hand, the 0-1 ILP problem size can

be too large under general number representation when partial terms are required

to implement the coefficients, since the number of possible implementations of the

coefficients are increased with the use of general number representation. For instance,

on Filter 1, only two coefficients need to be synthesized with the partial terms.

The results of the exact algorithm under binary, CSD, MSD, and general number

representations are given in Table 4.15. In this table, CPU is the CPU time in seconds

required for the SAT-based 0-1 ILP solver, minisat+, to compute the exact solutions

on a PC with dual Pentium Xeon at 2.4GHz, with 4GB of main memory, running

Linux.

As can be easily observed from Table 4.15, the solutions obtained under general

number representation are superior than the solutions obtained under binary, CSD, or

MSD representation. We note that the reduction in the number of operations obtained

by using general number representation is 9%, 10%, and 8% on average, and up to a

66

Table 4.15: Summary of the results of the exact algorithm under different number
representations on the FIR filter instances.

Filter Binary CSD MSD General Number
adder step CPU adder step CPU adder step CPU adder step CPU

1 17 5 0 16 3 0 16 3 0 15 4 1.2
2 29 5 0 29 3 0 29 4 0 28 3 0
3 35 5 0 34 3 0 34 3 0 34 3 0
4 23 4 0.1 23 3 0 22 3 0 20 4 0
5 32 5 0 35 4 0 34 3 0 29 4 0
6 34 5 1.2 35 4 0 33 3 0.1 29 5 0.1
7 51 5 10.8 51 4 0.2 49 4 12.8 45 5 0
8 53 5 1.7 54 4 0.3 53 4 0.2 48 4 0.4
9 75 5 3.2 77 5 4.7 77 4 63.9 70 4 0

Total 349 44 17.0 354 33 5.2 347 31 77.0 318 36 1.7

maximum of 15%, 17%, and 15%, according to binary, CSD, and MSD representation

respectively. Also, we note that despite a larger search space in general number

representation, the exact solution is found using very low computational effort by

minisat+. Observe that although the solutions including less number of operations are

obtained under general number representation, the delay of the solutions is increased

with respect to the solutions found by the exact CSE algorithm when coefficients are

defined under CSD and MSD representation.

4.2.4 Conclusions

In this section, we extend the exact CSE algorithm described in Section 4.1.1 to

handle the constants under general number representation. In this algorithm, the

possible implementations of the constants are extracted from the decimal values

of the constants rather than the non-zero digits of the constant representation in

the exact CSE algorithm. Thus, the number of possible implementations of a

constant, consequently, the possible sharing of partial terms, is increased. To deal

with the increased search space, we also include the problem reduction and model

simplification techniques in the exact algorithm. It is shown by the experimental

results that the exact algorithm under general number representation can be applied

on real-size instances and finds better solutions than those of the exact CSE algorithm

under a particular number representation.

67

4.3 Graph-based Algorithms

In this section, initially, we give the main concepts in graph-based algorithms and

redefine the MCM problem. Then, we introduce the exact graph-based algorithm [18]

designed for the MCM problem and then, we present the approximate graph-based

algorithm [19] that can handle more complex instances.

4.3.1 Preliminaries

In the graph-based algorithms, the main operation, called A-operation in [88], is

an operation with two integer inputs and one integer output that performs a single

addition or a subtraction, and an arbitrary number of shifts. It is defined as follows:

w = A(u,v) = |(u¿ l1)+(−1)s(v¿ l2)| À r = |2l1u+(−1)s2l2v|2−r (4.12)

where l1, l2 ≥ 0 are integers denoting left shifts, r ≥ 0 is an integer indicating the

right shift, and s ∈ {0,1} is the sign that denotes the addition/subtraction operation

to be performed. The operation that implements a constant can be represented in a

graph where the vertices are labeled with constants and the edges are labeled with

the sign and shifts as illustrated in Figure 4.11. Recall that in the MCM problem,

the complexity of an adder and a subtracter is assumed to be equal in hardware. It

is also assumed that the sign of the constant can be adjusted at some part of the

design and the shifting operation has no cost, since shifts can be implemented with

only wires in hardware. Thus, in the MCM problem, only positive and odd constants

are considered. Observe from (4.12) that in the implementation of an odd constant

considering odd constants at the inputs, one of the left shifts, l1 or l2, is zero and

r is zero, or l1 and l2 are zero and r is greater than zero. We note that in CSE

algorithms, the latter case is not taken into account, since the implementations of

a positive and odd constant are extracted from the non-zero digit combinations of the

constant defined under a number representation. However, the latter case allows to

consider more possible implementations of a constant thus, enables the graph-based

algorithms to find a solution with the fewest number of operations. For instance,

suppose the target constants 27, 41, and 67 to be implemented. Note that the target

constants require intermediate constant(s), or partial term(s), to be synthesized. At

a decision level, suppose the intermediate constant 33 is considered. Then, the

operations, 33 = 1¿5 + 1, 41 = 33 + 1¿3, 67 = 33¿1 + 1, and 27 = (41 + 67)À2,

68

�

�

�

� ��

��� �	� ��

� �

� �
� ��� � ��� �	� ���
� �

Figure 4.11: The representation of the A-operation in a graph.

that implement the target and intermediate constants can be obtained. Observe that

the target constant 27 is synthesized with an operation that includes odd constants at

its inputs that cannot be considered in the exact CSE algorithm.

In finding an operation to implement a constant, it is necessary to constrain the left

shifts, l1 and l2, otherwise a constant can be implemented in infinite ways. As shown

in [87], it is sufficient to limit the shifts by the maximum bit-width of the constants

to be implemented, i.e., bw, and allowing larger shifts than bw does not improve the

solutions obtained with the former limits. In the proposed exact algorithm and also,

in the algorithm of [88], the number of shifts is allowed to be at most bw+1.

Thus, the MCM problem can also be defined as follows:

Definition 4.1: THE MCM PROBLEM. Given the target set including the positive and

odd unrepeated target constants, T = {t1, . . . , tm} ⊂ N, find the smallest ready set

R = {r0,r1, . . . ,rn} with T ⊂ R such that r0 = 1 and for all rk with 1 ≤ k ≤ m, there

exist ri,r j with 0≤ i, j < k and an operation rk = A(ri,r j).

Hence, the number of operations required to implement the MCM is |R|−1 [88].

4.3.2 The exact graph-based algorithm

The MCM problem is to find the minimum number of intermediate constants such that

each constant, target and intermediate, can be implemented with an operation as given

in (4.12) where u and v are 1, target, or intermediate constants. It is obvious that the

minimum number of intermediate constants, thus the minimum number of operations

solution of the MCM problem, can be found using a breadth-first search [18]. In the

preprocessing phase of the exact algorithm, the target constants are made positive

and odd, and added to the target set, T , without repetition. The maximum bit-width

of the target constants, bw, is determined. In the main part of the exact algorithm

69

Algorithm 4.1 The exact algorithm. The algorithm takes the target set, T , including
target constants to be implemented and returns the ready set, R, with the minimum
number of elements including 1, target, and intermediate constants.

BFSearch(T, bw)
1: R←{1}
2: (R, T) = Synthesize(R, T)
3: if T = /0 then
4: return R
5: else
6: n = 1, WR1 ← R, WT1 ← T
7: while 1 do
8: m = n, XR = WR, XT = WT
9: n = 0, WR = WT = []

10: for i = 1 to m do
11: for j = 1 to 2bw+1−1 step 2 do
12: if j /∈ XRi and j /∈ XTi then
13: (A, B) = Synthesize(XRi , { j})
14: if B = /0 then
15: XRi ← XRi ∪{ j}
16: n = n+1
17: (WRn , WTn) = Synthesize(XRi , XTi)
18: if WTn = /0 then
19: return WRn

Synthesize(R, T)
1: repeat
2: isadded = 0
3: for k = 1 to |T | do
4: if tk can be synthesized with the elements of R then
5: isadded = 1
6: R← R∪{tk}
7: T ← T \{tk}
8: until isadded = 0
9: return (R, T)

given in Algorithm 4.1, the ready set that includes the minimum number of elements

is computed.

In BFSearch function, initially, the target constants that can be implemented with

the elements of the ready set, {1}, are found iteratively and removed to the ready set

using the Synthesize function, i.e., the lines 1-2, as done in the optimal parts of RAG-n

and Hcub. If there is no element left in the target set, then the minimum number of

operations solution is obtained. Otherwise, the intermediate constants to be added to

the ready set are considered exhaustively in the infinite loop, i.e., the line 7 of the

algorithm, until all the target constants are synthesized. The infinite loop starts with

70

the array of ready and target sets, WR1 and WT1 , i.e., the ready and target sets obtained

on the line 2 of the algorithm. Note that the size of the array W including ready

and target sets as a pair is denoted by n. Then, in the infinite loop, another array X

is assigned to the array W and its size is represented with m. In an iteration of the

infinite loop, for each ready set of the array X, the possible intermediate constants are

found and added to the associated ready set forming new ready sets. The possible

intermediate constants are determined from odd constants that are not included in the

current ready and target sets, XRi and XTi , and can be implemented with the elements

of the current ready set, i.e., the lines 11-14 of BFSearch function. Note that there

is no need to consider the constants that cannot be implemented with the elements

of the current ready set, since all these constants are considered in other ready sets

due to the exhaustiveness of the algorithm. After the intermediate constant is added

to the ready set XRi , its implications on the target set XTi are found by the Synthesize

function and the modified ready and target sets are stored to the array W as a new

pair, i.e., the line 17 of BFSearch function.

The flow of the algorithm in two iterations is sketched in Figure 4.12 indicating the

array W at the end of iterations. In this figure, the edges labeled with the intermediate

constants represent the inclusions of constants to the ready set. An intermediate

constant is denoted by icabc where a, b, and c denote the number of iteration it

is included, the index of the ready set it is added, and its index in the iteration

respectively.

Observe from Figure 4.12 that the exact algorithm explores the search space in a

breadth-first manner. In each iteration, each ready set is augmented with a single

intermediate constant. For example, while the ready set WR1 at the end of the second

iteration includes 1, the intermediate constants ic111, ic211, and the target constants

that can be implemented with the elements of WR1 , the associated target set WT1

consists of the target constants have not been implemented by the elements of WR1

so far. Hence, when there is no element left in a target set, the minimum number of

operations solution is obtained with the associated ready set, i.e., the lines 18-19 of

BFSearch function.

71

�� �� � � �� �

�	 ��� �	 ��

�� �� � � �� � �� �� � � �� ��� �
 � � �
 �

�	 ������
���

�� �� � � �� � �� �� � � �� �

��� ��� ����	
�� �	
��

�� �
� � �
� ������
�	

��� �� ���� �

��� �� ���� �

��� �� ����

Figure 4.12: The flow of the exact algorithm in two iterations.

We make a simple observation on the exact graph-based algorithm. In this

observation, |T | denotes the number of unrepeated positive and odd target constants

to be implemented.

Lemma 4.4: The solution obtained by the Algorithm 4.1 yields the minimum number

of operations solution.

If a solution is returned on the line 4 of the BFSearch function, then no intermediate

constant is required to implement the target constants. Hence, each target constant

can be implemented using a single operation whose inputs are 1 or target constants

as ensured by the Synthesize function. In this case, the number of required operations

to implement the target constants is |T |. Because the target constants cannot be

implemented using less than |T | operations as shown in [87], the obtained ready set

yields the minimum solution.

If a solution is returned on the line 19 of the BFSearch function, then intermediate

constant(s) are required to implement the target constants. In this case, the number

of required operations to implement the target constants is |T | plus the number

of intermediate constant(s). Because each element of the ready set, except 1, is

guaranteed to be implemented using a single operation and all possible intermediate

constants are considered in a breadth-first manner, the obtained ready set yields the

minimum number of operations solution. 2

As can be easily observed from Lemma 4.4, after the ready set including minimum

number of intermediate constants is obtained by the BFSearch algorithm, the

minimum number of operations implementation of the MCM problem can be realized

by synthesizing the target and intermediate constants using a single operation whose

inputs are 1, target, or intermediate constants as given in (4.12).

72

�

��� ���

�
�

�

�

��

��

�

�

��

	�

��

��

�

	�

���

���

�
�

�

�

�
��

	�

��

��

��
 ��

Figure 4.13: The results of algorithms for the target constants 307 and 439: (a) 5
operations with Hcub; (b) 4 operations with the exact algorithm.

As a small example, suppose the target set including 307 and 439. Figure 4.13

presents the solutions obtained by Hcub and the exact graph-based algorithm. As can

be easily observed from Figure 4.13(a), since Hcub synthesizes each target constant in

an iteration by including an intermediate constant, the intermediate constants included

for the implementation of target constants in previous iterations may not be shared in

the implementation of target constants in later iterations, although Hcub is particularly

designed for this case. In the exact graph-based algorithm, initially, it is observed that

the target constants cannot be implemented using a single operation whose inputs are

the elements of the ready set, i.e., {1}. Then, in the first iteration, the intermediate

constants that can be implemented using a single operation with the elements of the

ready set {1}, i.e., 3,5, . . . ,1023, are found. However, all the possible ready sets

including one intermediate constant, i.e., {1,3},{1,5}, . . . ,{1,1023}, also cannot

synthesize all the target constants. In the second iteration, for each ready set obtained

in the first iteration, the intermediate constants that can be implemented with the

elements of the associated ready set are found and added to the associated ready set.

As can be observed from Figure 4.13(b), all the target constants are synthesized when

the intermediate constant 55 is added to the ready set {1,63}, i.e., one of the ready

sets obtained in the first iteration of the exact algorithm.

The complexity of search space in the exact graph-based algorithm is dependent

on both the number of considered ready sets and the maximum bit-width of the

target constants, i.e., bw, since the number of considered ready sets increases as

bw increases. Table 4.16 presents the number of ready sets exploited by the exact

graph-based algorithm including up to 4 intermediate constants when bw is in

between 8 and 14. The exponential growth of the search space can be clearly observed

73

Table 4.16: Upper bounds on the number of ready sets exploited by the exact
graph-based algorithm under different bit-widths.

bw #ready sets considered in iterations
1 2 3 4 Total

8 15 378 12,398 1,668,403 1,681,194
9 17 504 20,118 5,897,424 5,918,063
10 19 648 30,428 19,000,657 19,031,752
11 21 810 43,761 57,559,925 57,604,517
12 23 990 60,435 165,546,959 165,608,407
13 25 1,188 80,907 458,873,308 458,955,428
14 27 1,404 105,462 1,230,677,125 1,230,784,018

when the number of iterations increases. This is simply because the inclusion of an

intermediate constant to a ready set in the current iteration increases the number of

possible intermediate constants to be considered in the next iteration.

We note that the complexity of the search space also depends on the target constants

to be implemented in an MCM instance. There are cases where multiple constants

may reduce the complexity of the search space. For example, consider the single

target constant 981 defined in 10 bit-width. The minimum number of operations

implementation of 981 requires four operations, i.e., 3 = 1¿2−1, 5 = 1¿2 +1, 43 =

5¿3 + 3, and 981 = 1¿10− 43, thus three intermediate constants, 3, 5, and 43. To

find this minimum solution, in the worst case, a total of 31905, i.e., 19+648+30428,

ready sets must be considered. Now, suppose the multiple target constants 43 and 981.

In this case, the minimum number of operations solution is found in two iterations

with the ready set, {1,3,5}, including two intermediate constants, i.e., in the worst

case, 19+648 = 667 ready sets are exploited. As can be observed from this example,

the number of ready sets exploited by the exact algorithm depends heavily on the

target constants to be implemented. Hence, the exact algorithm can be efficiently

applied on instances including large number of constants as shown in Section 4.3.4.

Also, note that the minimum solution is generally obtained before the total number

of ready sets are considered. Hence, Table 4.16 presents the upper bounds on the

number of ready sets exploited by the exact graph-based algorithm. We note that the

exact algorithm can obtain the minimum solutions of the MCM instances that require

less than 5 intermediate constants in a reasonable time.

74

4.3.3 The approximate graph-based algorithm

In this section, we introduce an approximate algorithm [19] based on the exact

graph-based algorithm described in the previous section that can be applied on large

size instances. The preprocessing phase of the approximate algorithm is similar to

that of the exact algorithm, where the target constants are made positive and odd,

added to the target set, T , without repetition, and the maximum bit-width of the target

constants, bw, is determined. The main part of the approximate algorithm is given in

Algorithm 4.2.

In the ApproximateSearch function, initially, the ready set including only 1 is formed

as given on the line 1 of the algorithm. Then, the target constants that can be

implemented with the elements of the ready set using a single operation are found

iteratively and removed to the ready set using the Synthesize function. If there exist

unimplemented constant(s) in the target set, then in each iteration of the infinite loop,

i.e., the line 6 of the algorithm, an intermediate constant is added to the ready set

until there is no element left in the target set. The approximate algorithm considers

the positive and odd constants that are not included in the current ready and target

sets and can be implemented with the elements of the current ready set as possible

intermediate constants, as seen on the lines 7-10 of the algorithm. Note that the

ready and target sets denoted by A and B represent the working ready and target

sets respectively. Then, each possible intermediate constant is added to the working

ready set and its implications on the current target set are found by the Synthesize

function. If there exist unimplemented target constants in the working target set,

the implementation cost of the unimplemented target constants is found in terms of

the single constant cost evaluated in [69] and is assigned to the cost value of the

intermediate constant, as given on line 17 of the algorithm. After the cost value of

each intermediate constant is found, the one with the minimum cost is chosen to be

added to the current ready set and the target constants that can be implemented with

the elements of the ready set are found. The infinite loop is interrupted whenever

there is no element left in the working target set, thus, the solution is obtained with

the working ready set. However, note that by adding an intermediate constant to

the ready set in each iteration, the previously added intermediate constants can be

redundant due to the recently added constant. Hence, the RemoveRedundant function

75

Algorithm 4.2 The approximate algorithm. The algorithm takes the target set, T ,
including target constants to be implemented and returns the ready set, R, that includes
1, target, and intermediate constants.

ApproximateSearch(T, bw)
1: R←{1}
2: (R, T) = Synthesize(R, T)
3: if T = /0 then
4: return R
5: else
6: while 1 do
7: for j = 1 to 2bw+1−1 step 2 do
8: if j /∈ R and j /∈ T then
9: (A, B) = Synthesize(R, { j})

10: if B = /0 then
11: A← A∪{ j}
12: (A, B) = Synthesize(A, T)
13: if B = /0 then
14: A = RemoveRedundant(A)
15: return A
16: else
17: cost j = EvaluateCost(B)
18: Find the intermediate constant, ic, with the minimum cost among all possible

intermediate constants, j.
19: R← R∪{ic}
20: (R, T) = Synthesize(R, T)

Synthesize(R, T)
1: repeat
2: isadded = 0
3: for k = 1 to |T | do
4: if tk can be synthesized with the elements of R then
5: isadded = 1
6: R← R∪{tk}
7: T ← T \{tk}
8: until isadded = 0
9: return (R, T)

EvaluateCost(T)
1: cost = 0
2: for k = 1 to |T | do
3: cost = cost + SingleConstantCost(tk)
4: return cost

RemoveRedundant(R)
1: for k = 1 to |R| do
2: if rk is an intermediate constant then
3: R← R\{rk}
4: (R, T) = Synthesize({1}, R)
5: if T 6= /0 then
6: R← R∪{rk}
7: return R

76

is applied on the final ready set to remove the redundant intermediate constants. After

the ready set that consists of the fewest number of constants is obtained, each element

in the ready set, except 1, is synthesized with a single operation whose inputs are the

elements of the ready set.

We make some simple observations on the approximate algorithm. In these

observations, again, |T | denotes the number of unrepeated positive and odd target

constants to be implemented, i.e., the lowest bound on the minimum number of

operations solution.

Lemma 4.5: If the approximate algorithm finds a solution with |T | operations, then

the found solution is minimum.

In this case, no intermediate constant is required to implement the target constants.

Because the elements of the target set cannot be synthesized using less than |T |
operations as shown in [87], if the approximate algorithm finds a solution including

|T | operations, then the found solution is the minimum solution. 2

Lemma 4.6: If the approximate algorithm finds a solution with |T |+ 1 operations,

then the found solution is minimum.

In this case, only one intermediate constant is required to implement the target

constants. Because the case described in Lemma 4.5 is checked on the lines 2-3

of the algorithm, if there exist unimplemented target constants, then the minimum

solution requires at least one intermediate constant. So, if the solution found by the

approximate algorithm includes |T |+1 operations, then it is the minimum solution. 2

Lemma 4.7: If the approximate algorithm finds a solution with |T |+ 2 operations,

then the found solution is minimum.

In this case, two intermediate constants are required to implement the target constants.

Because the case described in Lemma 4.5 is checked on the lines 2-3 of the algorithm

and the case described in Lemma 4.6 is explored exhaustively on the line 7 of the

algorithm, if there exist unimplemented target constants at the end of the first iteration,

then the minimum solution requires at least two intermediate constants. So, if the

solution found by the approximate algorithm includes |T |+ 2 operations, then it is

the minimum solution. 2

77

It is obvious that if the approximate algorithm finds a solution including more

than |T |+ 2 operations, then the approximate algorithm cannot guarantee the found

solution is minimum, since all possible intermediate constant combinations including

more than two constants are not explored exhaustively in the algorithm. However,

observe that the bound on the minimum number of operations solution determined by

the approximate algorithm can be increased when the exhaustive search is applied on

these cases.

Recall from Lemmas 3.1 and 3.2 that the graph-based heuristics RAG-n [87] and

Hcub [88] can guarantee the minimum solution if the solutions found by these

heuristics include the number of operations up to |T |+1.

The following conclusion can be drawn from the Lemmas 4.5-4.7.

Lemma 4.8: If the approximate algorithm cannot guarantee its solution as the

minimum solution, then the lower bound on the minimum number of operations

solution is |T |+2.

In this case, the approximate algorithm finds a solution including more than |T |+ 2

operations. Since the cases described in Lemma 4.5 and 4.6 are searched exactly and

the case described in Lemma 4.7 is not explored exhaustively in the approximate

algorithm, the solution of the MCM problem cannot include |T | and |T | + 1

operations, and may include |T |+2 operations. Hence, in this case, the lower bound

on the minimum number of operations solution is |T |+2. 2

We note that when RAG-n and Hcub cannot guarantee the minimum solution, they

can ensure that the lower bound on the minimum number of operations solution is

|T |+1.

Also, note that when the approximate algorithm cannot guarantee its solution as the

minimum solution, the upper bound on the minimum number of operations solution

can also be determined as the number of operations in its solution. Thus, the solution

of the approximate algorithm can be used to obtain highly constricted lower and upper

bounds on the minimum number of operations solution such that an exact depth-first

algorithm can find the minimum solution in a reasonable time by searching in a

narrow search space.

78

�� �

�

�

��

�

�

��

��

�

�	
 ��

���

���

�
�
��

��

��

��

�

�

� �� ��� ��� �
�� � �� � �

� �

���

��

�

Figure 4.14: The results of algorithms for the target constants 287, 307, and 487: (a) 6
operations with Hcub; (b) 5 operations with the approximate algorithm.

As a small example on the approximate algorithm, suppose the target set including

287, 307, and 487. Figure 4.14 presents the results obtained by Hcub and the

approximate algorithm. Observe from Figure 4.14(a) that since Hcub synthesizes

target constants once at a time by including intermediate constants, it may find a

worse solution than the approximate algorithm. On the other hand, in each iteration

of the approximate algorithm, an intermediate constant that can be implemented with

the elements of the current ready set is added to the ready set. On this example, the

intermediate constants 5 and 25 are added to the ready set in the first and second

iterations respectively, Figure 4.14(b). The intermediate constant chosen in each

iteration is the constant that implements more not-yet synthesized target constants

with the elements of the current ready set using a single operation. Note that the

target constants that can be implemented with the elements of the current ready set are

removed from the target set to the ready set in each iteration. Hence, the approximate

algorithm may obtain better solutions than Hcub. Observe from Lemma 4.7 that the

approximate algorithm also ensures the minimum solution on this example.

We also note that in the previously proposed graph-based heuristics, once

intermediate constant(s) is selected for the implementation of a single target constant

in one iteration, it cannot be reverted although new intermediate constants are

included in later iterations. Hence, the final solution of the prominent graph-based

heuristics may include redundant intermediate constants. For example, consider the

target constants 287 and 411 to be implemented. The solution of Hcub is presented

in Figure 4.15(a) including four operations with the intermediate constants 9 and 31.

However, as can be easily observed from Figure 4.15(b), the intermediate constant 9 is

redundant, determined by the RemoveRedundant function, since the target constants

287 and 411 can be synthesized with the intermediate constant 31 only. Thus, by

79

��� ����

�

��

�

�

��

��

�
�� ��� ���

�
�

��

��

��	

�

� �

 �

��

��

� �

Figure 4.15: The implementations of the target constants 287 and 411: (a) 4 operations
with Hcub; (b) 3 operations after using the RemoveRedundant function.

using the RemoveRedundant function in the approximate algorithm, the redundant

intermediate constants can be eliminated from the final solution yielding a fewer

number of operations solution.

4.3.4 Experimental results

In this section, we present the results of the exact and approximate graph-based

algorithms. Initially, we compare the exact graph-based algorithm with the exact CSE

algorithm described in Section 4.1.1 and the exact algorithm under general number

representation given in Section 4.2. Then, the exact and approximate graph-based

algorithms are compared with the previously proposed graph-based heuristics of [87]

and [88]. The graph-based heuristics were obtained from [91].

As the first experiment set, we used randomly generated instances where constants

were defined under 12 bit-width. The number of constants ranges between 10 and

100, and we generated 30 instances for each of them. Thus, the experiment set

includes 300 instances. Figure 4.16 compares the solutions obtained by the exact

algorithms when constants are defined under binary, CSD, MSD, and general number

representations with the minimum number of operations solutions obtained by the

exact graph-based algorithm.

As can be easily observed from Figure 4.16, the solutions obtained by the exact

CSE algorithm are far from the minimum number of operations solutions, since the

implementations of constants in the exact CSE algorithm are restricted to the number

representation. The average difference of the number of operations solutions between

the exact CSE algorithm under binary, CSD, and MSD representations, and the exact

graph-based algorithm is 5.7, 7.5, and 5.8 respectively on overall 300 instances. Also,

80

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Number of the constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 12 bits

Exact − Binary
Exact − CSD
Exact − MSD
Exact − General number
Exact − Graph−based

Figure 4.16: Comparison of the solutions of the exact CSE algorithm and exact
algorithm under general number representation with the minimum number
of operations solutions.

observe that the exact algorithm under general number representation obtains similar

results with the minimum number of operations solutions. However, since the exact

algorithm under general number representation cannot consider the whole search

space as the exact graph-based algorithm, it may yield suboptimal solutions. We note

that the average difference of the number of operations solutions between the exact

algorithm under general number representation and the exact graph-based algorithm

is 0.6 on overall 300 instances.

As the second experiment set, we used FIR filter instances where filter coefficients

were computed with the remez algorithm in MATLAB. The specifications of filters are

presented in Table 4.17. We note that Filter 11 was used as an example filter in [8,64].

Table 4.17: Characteristics of the FIR filters.

Filter pass stop #tap width
1 0.10 0.15 40 14
2 0.10 0.15 80 16
3 0.10 0.25 30 14
4 0.10 0.25 80 16
5 0.10 0.20 40 14
6 0.10 0.20 80 16
7 0.15 0.25 40 14
8 0.15 0.25 60 16
9 0.20 0.25 40 14
10 0.20 0.25 60 16
11 0.25 0.30 25 12

81

Table 4.18: Summary of results of the graph-based algorithms on the FIR filter instances.

Filter |T | LBs [64] RAG-n [87] Hcub [88] Approximate Exact
adder step adder step adder step adder step adder step CPU

1 19 20 3 24 10 23 7 22 9 22 8 126.8
2 39 40 3 44 9 42 8 41 10 41 9 25.3
3 14 14 3 19 5 16 5 16 5 16 5 42.3
4 33 33 3 37 5 34 5 34 5 34 5 1.1
5 18 19 3 22 5 20 5 20 5 20 5 4.5
6 36 37 3 40 5 38 5 37 6 37 6 0.6
7 19 19 3 22 5 21 7 21 7 21 5 2.9
8 29 29 3 33 7 31 7 31 7 31 7 17.5
9 19 20 3 25 5 21 6 21 7 21 7 28.9

10 29 30 3 34 6 31 7 31 7 31 7 20.4
11 13 14 3 17 9 16 7 16 8 16 8 210.8

Total 268 275 33 317 71 293 69 290 76 290 72 481.1

Table 4.18 presents the results of the graph-based algorithms. In this table, |T |
denotes the number of positive and odd unrepeated filter coefficients, i.e., the lowest

bound on the number of operations, and LBs indicates the lower bounds on the

number of operations and the number of adder-steps, obtained by the formulas given

in [64]. Also, CPU denotes the required CPU time in seconds of the exact algorithm

implemented in MATLAB to obtain the minimum solution on a PC with 2.4GHz Intel

Core 2 Quad CPU and 3.5GB memory. We note the solutions of the heuristics and

the approximate algorithm are obtained in a few seconds.

As can be easily observed from Table 4.18, the exact algorithm finds the minimum

number of operations solutions with a little computational effort, since the minimum

solutions require at most three extra intermediate constants for the implementation of

filter coefficients. Observe that the CPU time required to find the minimum solution

increases, as the minimum number of the required intermediate constants increases.

Note that the approximate algorithm obtains solutions same as those of the exact

algorithm in terms of the number of operations. According to the Lemmas 4.5, 4.6,

and 4.7, the approximate algorithm guarantees the minimum solution on 9 filter

instances. The filter instances that the approximate algorithm cannot guarantee the

minimum solutions are Filter 1 and 11. However, the solutions of the approximate

algorithm on these filter instances are the minimum solutions ensured by the solutions

of the exact algorithm on these instances. Also, we note that Hcub finds similar results

with the exact algorithm, but it obtains worse solutions on Filter 1, 2, and 6, and Hcub

determines only its solution on Filter 4 as the minimum solution. On the other hand,

82

RAG-n obtains suboptimal results on all filter instances that are far from the minimum

solutions. Also, observe that the lower bound on the minimum number of required

operations can only be used to determine the solution of the approximate algorithm

on Filter 6 as the minimum solution, although it is also proven to be minimum by the

given lemmas. This is because the formula given in (3.7) computes a lower bound

on the minimum number of operations close to the lowest bound, i.e., |T |. Thus, this

experiment indicates that an exact algorithm is indispensable to ensure the minimum

solution.

As can be observed from Table 4.18, the approximate algorithm finds the fewest

number of operations solution of a filter instance in a greater number of adder-steps

with respect to its lower bound, indicating, in general, the traditional tradeoff between

area and delay. This is simply because the sharing of intermediate constants in

MCM generally increases the logic depth of constant multiplications as shown in [5].

However, we note that the proposed approximate algorithm can be easily modified to

find the fewest number of operations solution under a delay constraint as described

in [5, 8]. In this case, only the intermediate constants that do not violate the delay

constraint must be considered in the algorithm.

As the third experiment set, we used randomly generated instances where the

constants were defined in between 10 and 16 bit-width. We tried to generate hard

instances to distinguish the algorithms clearly. Hence, under each bit-width, i.e., bw,

the constants were generated randomly in [2bw−2 +1,2bw−1−1]. Also, the number of

constants were determined as 2, 5, 10, 15, 20, 30, 50, 75, and 100, and we generated

30 instances for each of them. Thus, the experiment set includes 1890 instances.

Figure 4.17 presents the results of the algorithms only on randomly generated hard

instances defined under 12, 14, and 16 bit-width.

We note that the exact graph-based algorithm was applied on randomly generated hard

instances defined in 10, 11, and 12 bit-width, since the solutions of all these instances

can be obtained in a reasonable time. As can be easily observed from Figure 4.17(a),

the graph-based heuristics, except BHM, obtain competitive results with those of the

exact algorithm. However, we note that on the instances with 30 constants defined in

12 bits, the difference of the average number of operations between the approximate

and exact algorithms is 0.5, and this value on the same instances between Hcub and

83

2 5 10 15 20 30 50 75 100

10

20

30

40

50

60

70

80

90

100

110

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 12 bits

BHM
RAG−n
Hcub
Approximate
Exact

(a)

2 5 10 15 20 30 50 75 100

10

20

30

40

50

60

70

80

90

100

110

120

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 14 bits

BHM
RAG−n
Hcub
Approximate

(b)

2 5 10 15 20 30 50 75 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 16 bits

BHM
RAG−n
Hcub
Approximate

(c)

Figure 4.17: Results of graph-based algorithms on randomly generated hard instances:
(a) Constants in 12 bits; (b) Constants in 14 bits; (c) Constants in 16-bits.

84

Table 4.19: Summary of results of the graph-based algorithms on randomly generated
hard instances.

> BHM [87] RAG-n [87] Hcub [88] Approximate
BHM [87] 0 410 3 15

RAG-n [87] 1209 0 101 15
Hcub [88] 1751 1215 0 173

Approximate 1738 1319 688 0

the exact algorithm is almost 1. Also, on the instances with 15 constants defined in

12 bits, the difference of the average number of operations between RAG-n and the

exact algorithm is 2.7.

As can be easily observed from Figure 4.17(b)-(c), the approximate and Hcub

algorithms obtain significantly better results than RAG-n and BHM as the bit-width

increases. Also, observe that the approximate algorithm obtains better solutions than

Hcub as the number of constants increases. For example, while the difference of

the average number of operations between the approximate algorithm and Hcub is

0.7 on the instances with 2 constants defined in 16 bits, this value between Hcub

and the approximate algorithm reaches to 1.2 on the instances with 100 constants

defined in 16 bits. This is because the number of considered intermediate constants is

increased with the number of constants to be implemented, yielding better solutions

in the approximate algorithm.

The results of graph-based heuristic algorithms on overall 1890 instances are

summarized in Table 4.19 where X>Y denotes the number of instances that the

algorithm X finds better solutions than the algorithm Y. As can be easily observed

from Table 4.19, the number of instances that the approximate algorithm finds better

solutions than Hcub is 688, while the number of instances that Hcub obtains better

solutions than the approximate algorithm is 173 on overall 1890 instances. When the

approximate algorithm is compared with BHM and RAG-n, it finds better solutions

than these heuristics on 1738 and 1319 instances respectively. We also note that the

number of instances that the approximate algorithm guarantees the minimum solution

is 701, i.e., 37% of the experiment set, and the number of instances that RAG-n

and Hcub ensure the minimum solution is 394 and 386 respectively on overall 1890

instances.

85

This experiment clearly indicates that an approximate algorithm that guarantees the

minimum solution on more instances is indispensable to ensure the minimum solution

of the MCM problem where an exact algorithm cannot be applied.

4.3.5 Conclusions

In this section, we introduce an exact graph-based algorithm that searches the

minimum number of operations solution of the MCM problem in a breadth-first

manner. Unlike the exact CSE algorithm, the proposed exact graph-based algorithm

is independent from the number representation used for constants. The experimental

results show that the exact graph-based algorithm can be efficiently applied on low

complex instances of real size FIR filters.

Also, we present an approximate graph-based algorithm that finds the fewest number

of intermediate constants such that the target and intermediate constants can be

synthesized using a single operation at the end of the algorithm, rather than

synthesizing the target constants once at a time by including intermediate constant(s).

The design of the approximate algorithm in this scheme allows the algorithm to

guarantee the minimum solution on more instances than the previously proposed

graph-based heuristics. It is shown by the experimental results that the proposed

approximate algorithm finds competitive and better solutions than the previously

proposed prominent graph-based heuristics.

As future work, we are currently working on the implementation of an exact

depth-first search algorithm that takes the upper and lower bounds from the solution

of the approximate algorithm and seeks the optimal solution in a highly constricted

search space.

86

5. OPTIMIZATION OF AREA UNDER A DELAY CONSTRAINT

In many designs, particularly in DSP systems, performance is an important and

crucial parameter. Hence, circuit area is generally expendable in order to achieve

a given performance target. In this chapter, we address the problem of finding

the fewest number of operations implementation of MCM under a delay constraint.

Although the delay is dependent on several implementation issues, such as circuit

technology, placement, and routing, the delay in MCM is generally considered as the

number of adder-steps, which denotes the maximal number of adders/subtracters in

series to produce any constant multiplication [5].

The number of adder-steps of the MCM implementation has a significant impact on

the switching speed, consequently, the power consumption due to the switching [8].

Because, longer paths in the design allow glitches to propagate via many operations.

Hence, the implementation of the MCM with the minimum number of adder-steps

also leads a design that consumes lower power.

In this chapter, initially, we present the background concepts and give the problem

definition. Then, we introduce exact and approximate CSE algorithms designed

for the minimization of operations under a delay constraint. We note that since

the definition of adder-steps is identical to the definition of levels in combinational

circuits, we use both definitions interchangeably in this chapter.

5.1 Background

A single constant represented with n non-zero digits can be implemented in a tree

of operations with the minimum latency, i.e., dlog2 ne adder-steps, or in a chain

of operations with the maximum latency, i.e., n− 1 adder-steps. For example, the

constant multiplication 23x, defined in binary as (10111)binx, can be implemented as

23x = 24x+(22x+(21x+x)) with three adder-steps, or as 23x = (24x+22x)+(21x+

x) with two adder-steps as shown in Figure 5.1.

87

�

���

���

�

�

��

���

���

��

��

�

�

�

���

���

�

���

� �
���

���

����

(a) (b)

Figure 5.1: Two implementations of 23x: (a) 23x = 24x +(22x +(21x + x)), with three
adder-steps; (b) 23x = (24x+22x)+(21x+ x), with two adder-steps.

8 9 10 11 12 13 14 15 16 17 18 19
1

2

3

4

5

6

7

8

9

10

Number of bit−width

A
ve

ra
ge

 n
um

be
r

of
 a

dd
er

−
st

ep
s

Odd constants between 8 and 19 bits

Maximum Level − Binary
Minimum Level − Binary
Maximum Level − CSD
Minimum Level − CSD

Figure 5.2: Comparison of the number of adder-step of constants between 8 and 19
bit-width defined in binary and CSD.

The effect of number representation on the number of adder-steps of a single constant

multiplication is presented in Figure 5.2 that compares the average minimum and

maximum number of adder-steps of odd constants between 8 and 19 bit-width when

they are represented in binary and CSD. As can be easily observed from Figure 5.2,

the use of binary representation in SCM yields greater delay than CSD, since the

binary representation of a constant generally includes more non-zero digits than those

of CSD.

Obviously, the maximum of the minimum number of adder-steps of each constant in

an MCM problem defines the minimum delay of the multiple constant multiplications.

Hence, for a target set, T = {t1, t2, t3, . . . , tm}, the lowest bound on the number of

88

��
��

�

�

�

��

�

�

�

�� 	

�

��

��

�

�

�

��

�

��

� ��
��

�
�

�
��

�

�

��

�
 	

�

�

�

Figure 5.3: The implementation of the target set {3,13,219,221}: (a) with 4 adder-steps;
(b) with the minimum number of adder-steps.

adder-steps in MCM [5, 64] is determined as

#adder− steplb,MCM = max
ti
{dlog2S(ti)e} (5.1)

where S(ti) is the number of non-zero digits in the CSD representation of the target

constant ti.

As an example, consider a set of target constants, T = {3,13,219,221}, to be

implemented. We note that the minimum number of adder-steps of the MCM

implementation is 2 as computed by (5.1). Figure 5.3(a) presents the minimum

number of operations solution. Observe that the solution includes 4 operations

with 4 adder-steps. However, the minimum number of operations solution under

the minimum number of adder-steps constraint given in Figure 5.3(b) includes 6

operations with 2 adder-steps. Observe that the minimum number of operations

solution under the minimum number of adder-steps constraint includes the number

of operations equal to, or generally, greater than that of the minimum number of

operations solution.

Thus, the minimization of the number of operations under a delay constraint problem

can be defined as follows:

Definition 5.1: THE MCM PROBLEM UNDER A DELAY CONSTRAINT. Given a set of

target constants and a maximum number of adder-steps, find the minimum number

of additions/subtractions operations required to implement the MCM such that the

user-specified maximum number of adder-steps is not exceeded.

Despite the large number of techniques proposed for the optimization of the number

of operations, there are not many methods that also consider the delay of the design,

89

which is essential for high-speed systems. In the nonrecursive CSE algorithm of [92],

contrary to the CSE heuristics of [75, 93], the subexpressions extracted from a

constant multiplication are not shared with those of different constant multiplications.

This modification leads to independent structures of constant multiplications where

the relation between the number of operations and the number of adder-steps is

compromised by the proposed method. In the CSE heuristic of [6], that is based

on the CSE heuristic of [77] designed for the MCM problem, the subexpressions

that meet the desired delay are considered among possible subexpressions in the

implementations of the expressions. The same approach is also applied in the

graph-based heuristic of [7] to control the delay of the MCM while synthesizing

the constants in each iteration. In the graph-based heuristic of [94], three methods

that reduce the number of adder-steps are applied in BHM [87] and RAG-n [87]. On

the other hand, the graph-based heuristic of [8], initially, finds a solution including

generally more number of operations but, with a small number of adder-steps and

then, reduces the number of operations without increasing the number of adder-steps

in an iterative loop. Obviously, in this heuristic, the final solution with a smaller

number of adder-steps is dependent on the initial solution obtained by the graph-based

heuristic designed for the MCM problem. To the best of our knowledge, there is no

exact algorithm proposed for the MCM problem under a delay constraint.

5.2 The Exact Common Subexpression Elimination Algorithm

In this section, we introduce the exact CSE algorithm [20], which is obtained by

parameterizing the exact CSE algorithm designed for the MCM problem described in

Section 4.1.1 with a delay constraint so that, only the implementations that meet the

desired delay are considered.

The algorithm includes similar steps with the exact CSE algorithm given in

Section 4.1.1. Initially, the target constants are made positive and odd, and stored

in a target set. Then, the possible implementations of target constants and partial

terms are found when constants are defined under a number representation. Note that

the exact CSE algorithm can handle constants defined under binary, CSD, and MSD.

After all possible implementations of constants are found, these implementations are

represented in a Boolean network that includes only AND and OR gates as given in

90

Section 4.1.1.2. Then, as described in the following two sections, the paths that

exceed the delay constraint are found in the network. The MCM problem under

a delay constraint is formalized as a 0-1 ILP problem under the minimization of

the number of operations model described in Section 4.1.1.3. The cost function of

the 0-1 ILP problem is determined as the linear function of optimization variables

representing the operations. The constraints of the 0-1 ILP problem are the constraints

obtained from the network and the constraints obtained from the paths that violate the

delay constraint. Finally, a generic 0-1 ILP solver is used to find the minimum number

of operations solution.

5.2.1 Computing the levels of operations in the Boolean network

In the Boolean network that represents the implementations of constants, i.e.,

partial terms and target constants, it can be easily observed that a constant can be

implemented with operations that have different number of adder-steps. Therefore,

we can define a range of levels for each constant, and consequently, a range of levels

for the operations that compute this constant. In the Boolean network, an OR gate

associated with the constant gathers all of these operations. So, a constant can be

synthesized with the number of adder-steps ranging from its minimum to maximum

latency implementations. As can be seen from Figure 4.2, the target constant 51

defined in CSD can be implemented with minimum 2 and maximum 3 adder-steps,

determined, for instance, by 51 = 3¿4 + 3 which has a minimum and a maximum

of 2 adder-steps and by 51 = 13¿2− 1 which has a minimum and a maximum of 3

adder-steps.

We note that the proposed exact CSE algorithm can find the minimum number

of operations solution with either the minimum delay that the network can have,

min_delay, or a user-specified maximum delay constraint, user_delay. Observe

from (5.1) that when constants are defined under CSD or MSD representation, the

min_delay is equal to the minimum delay of the MCM.

After the Boolean network is constructed, we compute the minimum level, min_level,

and maximum level, max_level, values of each operation and constant by traversing

the network from primary inputs to primary outputs. Then, we find the min_delay

value by computing the maximum of the min_level values of the primary outputs. By

91

setting user_delay = min_delay as the maximum delay constraint, the algorithm that

we propose is an exact algorithm that gives the minimum number of operations with

the minimum delay. Naturally, if the user sets user_delay < min_delay, no solution

is possible.

5.2.2 Finding the delay constraints

The paths that exceed the maximum delay constraint are found using the information

on minimum and maximum levels of operations and constants. The part of the

algorithm where the paths that exceed the user_delay are found is as follows:

1. Preprocessing phase: Determine the primary outputs of the network that have

max_level values higher than user_delay and store them in a set called Pset.

2. For each element in the Pset, Pseti,

(a) If an operation that computes Pseti has min_level value higher than

user_delay, remove this operation from the network. Because it can never

be used to meet the user_delay.

(b) Otherwise, if the operation has max_level value higher than user_delay, add

this operation to a set called path j as an initial node and also, add this

operation to a set called Oset with a upper_level value, i.e., user_delay−1,

and the associated path identifier, j.

3. Main loop: Remove an operation from the Oset with its upper level value,

upper_level, and the associated path identifier, j. For each input of the operation,

Pk, i.e., a partial term,

(a) If an operation that implements Pk has min_level value higher than

upper_level, add this operation to path j as a terminal node, and construct

the path.

(b) Otherwise, if an operation has max_level value higher than upper_level, form

a new path by adding this operation to the path j. Also, insert this operation

into the Oset with its upper level value, upper_level−1, and a path identifier.

4. Repeat Step 3 until there is no element left in the Oset.

92

Observe that in the preprocessing phase of the algorithm, the Pset includes the target

constants that can be implemented in a greater delay than user_delay and at the end of

the preprocessing phase, the initial nodes of the paths, i.e., the operations that violate

the user_delay constraint are found. We also note that in the main loop, the paths are

constructed in a breadth-first manner and the Oset includes the operations that are the

last nodes of the paths have not been determined yet.

As an example, suppose that the target constant represented with the output of the

OR gate A is to be implemented in 5 adder-steps, i.e., the user_delay, as given in

Figure 5.4. In this figure, optimization variables are omitted and the relevant paths

are highlighted for the sake of clarity. The operations and partial terms are labeled

with letters inside the gates and the min_level and max_level values are given with a

min-max pair above the gates. Note that the path includes the operations that exceed

the user_delay, determined when traversing the network from the primary output to

the primary inputs.

�

�

�

�

�

�

�

�

�

	

 ��

 ��

 ��

 �

� �

� �

� ��

 �

�� �� �� �� �
���� �� 	�
� 	��
��

�� �� �� ��� �

�� �� �� ��� �
���� �� 	�
� 	��
��

Figure 5.4: An illustrative example on determining the paths that exceed the maximum
delay constraint.

In the preprocessing phase, the operation B is added to the initial node of path1 and

to the Oset with its upper level value 4 and path identifier 1, since its max_level

value is higher than the user_delay. Observe that while the operation C never meets

the user_delay and thus, can be removed from the network, the operation D never

violates the user_delay. In the main loop, the operation B with its upper level value,

upper_level(B) = 4, and associated path identifier, 1, is removed from the Oset.

Suppose that the partial term E is considered as the input of B. The operation H is

93

added to the path1 as a terminal node and the path is constructed, since the operation

H can be implemented in minimum 5 adder-steps that exceeds the upper_level(B).

Also, a new path, path2, is formed by inserting the operation F to the path1, since

the max_level value of the operation F is higher than upper_level(B) indicating

that there is(are) operation(s) that cause greater delay than the user_delay with the

operations in this path. Thus, the operation F with its upper level upper_level(F) =

upper_level(B)− 1 and associated path identifier, 2, is added to the Oset. We note

that the operation G is not considered to be added to the path1, because it can be

implemented in maximum of 4 adder-steps that does not exceed the upper_level(B)

value.

After all paths that violate the user_delay have been determined, for each path, a delay

constraint, −OPT1−OPT2− . . .−OPTk ≥ 1−k, where OPTj, 1≤ j ≤ k, denotes the

optimization variable of an operation in the path and k is the number of operations in

the path, is added to the 0-1 ILP problem. Each delay constraint expresses that the

operations in the path must not be included together in the solution. This guarantees

that the solution to be found by the 0-1 ILP solver respects the delay constraints and

allows for the possible sharing of partial terms in the paths with other partial terms

not in the critical paths. Finally, the 0-1 ILP problem with the cost function to be

minimized, i.e., the linear function of optimization variables representing operations,

and the constraints obtained from the Boolean network together with these delay

constraints is given to the 0-1 ILP solver to find a solution with the minimum

number of operations. Thus, the obtained minimum number of operations solution

guarantees that it does not violate the delay constraint. Observe that without these

delay constraints the problem to be solved is simply the MCM problem.

5.3 The Approximate Common Subexpression Elimination Algorithm

Although the exact CSE algorithm can find the minimum number of operations

solutions under a delay constraint in MCM on real size instances as shown in

Section 5.4, naturally, there are instances that the exact algorithm find them difficult

to cope with. Hence, in this section, we introduce an approximate CSE algorithm [16]

that can find competitive results with the exact solutions and can deal with the

94

instances that the exact CSE algorithm cannot conclude with the minimum solutions

in a reasonable time.

The approximate CSE algorithm, called ASSUME-D, synthesizes each constant with

an operation one at a time, similar to the ASSUME-A described in Section 4.1.2,

but ASSUME-D considers only the operations that meet the desired delay in the

implementation of a constant. Just as the exact version, ASSUME-D can also find

a solution with either the minimum delay of the network, min_delay, or a maximum

user-specified delay constraint, user_delay.

Again, as done in ASSUME-A, the algorithm starts by traversing the Boolean network

to obtain the min_adder, min_level, and max_level values of each operation and

partial term. As described in Section 4.1.2, the min_adder denotes the minimum

number of operations that are required to implement an operation or a constant in the

network. As defined in Section 5.2, the min_delay is determined as the maximum

of the min_level values of the primary outputs. A minimum delay solution can be

obtained when the user_delay is assigned to the min_delay.

In each iteration of ASSUME-D, a target constant or a partial term is synthesized in

a top-down approach that yields more possible implementations of a constant while

controlling the delay. The algorithm is as follows:

1. Store the pre-processed positive and odd target constants in a set called Dset and

label them as unimplemented. Assign the delay_limit value of each element in

Dset to user_delay.

2. Take an element labeled as unimplemented from Dset, Dset(i), that has the highest

max_level value. Store the operations that implement Dset(i) and whose min_level

values do not exceed the delay_limit(i) in an empty set called Oset.

3. If Dset(i) can be implemented with an operation in Oset whose inputs are primary

inputs or are in Dset, then synthesize Dset(i) with this operation and label it as

implemented. Determine the delay limit of each input of the operation, j, as

delay_limit(j) = min(delay_limit(j),delay_limit(i)−1).

4. Otherwise, choose an operation from Oset to synthesize Dset(i) as done in steps

5 and 6 of ASSUME-A given in Section 4.1.2, and label it as implemented.

95

If the input(s) of the operation is in Dset, then assign the delay limit of the

input, j, delay_limit(j) = min(delay_limit(j),delay_limit(i)−1). If not, add this

element to Dset, label it as unimplemented, and assign its delay limit value to

delay_limit(i)−1.

5. If there is an element left labeled as unimplemented in Dset, go to step 2, otherwise

return the solution.

5.4 Experimental Results

In this section, we present the results of the proposed exact and approximate CSE

algorithms on randomly generated and FIR filter instances, and compare with those

of the CSE heuristics [6, 92] and the graph-based heuristics [7, 8].

This section starts with the investigation of the effect of number representation on the

minimum number of operations under the minimum delay constraint. It is followed

by the comparison of CSE algorithms. Then, the performance of SAT-based 0-1 ILP

solvers on this problem is examined. Finally, this section ends with the comparison

of the exact CSE algorithm with the graph-based heuristics.

We note that in the exact and approximate CSE algorithms, the delay constraint was

set to the minimum delay of the network, i.e., user_delay = min_delay.

5.4.1 The effect of number representation on the achievable minimum number

of operations under a delay constraint

In this experiment, we used randomly generated instances where the constants are

defined in 12 bit-width. The number of constants ranges between 10 and 100,

and for each of them we generated 30 instances. Figure 5.5(a)-(b) presents the

average number of operations and the average number of adder-steps of the solutions,

respectively, obtained by the exact CSE algorithm when constants are defined under

binary, CSD, and MSD.

As can be observed from Figure 5.5(a), the use of MSD representation yields

better solutions than those obtained under CSD representation, since the alternative

representations of the constants in MSD increase the possible sharing of partial terms.

Also, observe from Figure 5.5(b) that since both CSD and MSD representations define

96

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Randomly generated instances in 12 bits

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Binary
CSD
MSD

(a)

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

Randomly generated instances in 12 bits

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 a

dd
er

−
st

ep

Binary
CSD
MSD

(b)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Randomly generated instances in 12 bits

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 a

dd
iti

on
al

 o
pe

ra
tio

ns

Binary
CSD
MSD

(c)

Figure 5.5: The results of the exact CSE algorithm under binary, CSD, and MSD
representation: (a) The average number of operations; (b) The average
number of adder-steps; (c) The average number of additional operations to
obtain the minimum delay solutions.

97

the constants using the minimum number of non-zero digits, the minimum number of

adder-steps solutions are obtained using these representations. On the other hand,

the use of binary representation leads similar solutions with those obtained under

MSD representation in terms of the number of operations. However, as can be

easily observed from Figure 5.5(b), the delay of the solutions obtained under binary

representation is greater than those of the solutions obtained under MSD. This is

because the binary representation of a constant generally includes more non-zero

digits than that of MSD.

In Figure 5.5(c), the average number of additional operations required to obtain the

minimum delay solution, i.e., the difference of the results presented in the graphs

in Figure 5.5(a) and Figure 4.6(b), is also presented. As can be easily observed

from Figure 5.5(c), under the CSD and MSD representations, the cost of obtaining

the minimum number of operations under the minimum delay solution is negligible.

Under the binary representation, obtaining the minimum delay solutions requires

more additional operations than CSD and MSD, although there are more alternative

sharing patterns that reduce the overhead for the binary representation for instances

including large number of constants.

5.4.2 Comparison of CSE algorithms

In this experiment, we used randomly generated instances where the constants are

defined in 12 bit-width. The number of constants ranges between 10 and 100, and for

each of them we generated 30 instances. Figure 5.6 gives the results of the exact and

approximate CSE algorithms when constants are defined under CSD representation.

In this experiment, we observe that ASSUME-D finds solutions with almost 2

additional operations on average compared to the exact solutions. This experiment

clearly indicates that the exact algorithm is indispensable to find the minimum number

of operations under the delay constraint.

In this experiment, we also used FIR filter instances presented in Table 4.7. The

results of the CSE algorithms are given in Table 5.1. Note that the results of the

CSE heuristic [6] were provided by Anup Hosangadi. We also note that since

ASSUME-D found the same solutions in terms of the number of operations as those

98

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Randomly generated instances in 12 bits

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

ASSUME−D
Exact Algorithm

Figure 5.6: Comparison of the exact and approximate CSE algorithms for the
minimization of the number of operations under a delay constraint.

of the exact algorithm on all filter instances when filter coefficients are defined under

CSD representation, its results were not included in this table.

As can be easily observed from Table 5.1, ASSUME-D finds similar results with

those of the exact algorithm, and better solutions than the CSE heuristic of [6].

The difference of the number of operations between the CSE heuristic [6] and the

exact CSE algorithm is 1.8 operations on average. Also, observe that the use of

MSD representation yields better solutions in terms of the number of operations than

those obtained under binary and CSD representations. While the minimum delay

solutions are obtained when constants are defined under CSD or MSD representation,

the binary representation yields solutions in a greater delay than those of solutions

obtained under CSD or MSD.

Also, in this experiment, we used FIR filters given in Table 4.11. The results of

the approximate algorithm and the CSE heuristics of [6, 92] when filter coefficients

are defined under CSD representation are presented in Table 5.2. In this table,

original denotes the results of the minimum delay implementations of the coefficient

multiplications when the sharing of partial products is not considered. We note that

the results of the CSE heuristics were provided by Anup Hosangadi.

As can be easily observed from Table 5.2, the CSE heuristic of [92] obtains solutions

that are far from those of the CSE heuristic [6] and the approximate algorithm. On

99

Table 5.1: Summary of results of algorithms on the FIR filter instances.

Binary CSD MSD
Filter ASSUME-D Exact [6] Exact ASSUME-D Exact

adder step adder step adder step adder step adder step adder step
1 10 3 10 3 11 2 10 2 10 2 10 2
2 18 3 18 3 18 3 18 3 18 3 18 3
3 18 3 18 3 18 3 16 3 16 3 16 3
4 29 3 29 3 30 3 29 3 29 3 29 3
5 36 3 35 3 35 3 34 3 34 3 34 3
6 25 3 25 3 26 3 23 3 22 3 22 3
7 33 4 32 4 36 3 35 3 34 3 34 3
8 36 4 34 4 37 3 35 3 35 3 33 3
9 53 4 51 4 58 3 52 3 49 3 49 3

Total 258 30 252 30 269 26 252 26 247 26 245 26

Table 5.2: Summary of results of the CSE heuristics on the filter instances.

Filter Original [92] [6] ASSUME-D
adder step adder step adder step adder step

1 106 4 59 4 23 4 23 4
2 26 3 16 3 10 3 11 3
3 238 4 146 4 54 4 53 4
4 158 4 102 4 41 4 41 4
5 234 4 129 4 55 4 56 4
6 44 4 27 4 14 4 13 4
7 868 4 527 4 163 4 154 4
8 656 4 378 4 128 4 127 4
9 82 4 49 4 24 4 24 4
10 1414 4 917 4 229 4 219 4
11 988 4 652 4 182 4 175 4

Total 4814 43 3002 43 923 43 896 43

the other hand, ASSUME-D obtains better solutions than the CSE heuristic [6] on

overall these filter instances, i.e., less than 2.4 operations on average.

5.4.3 Comparison of SAT-based 0-1 ILP solvers

In this experiment, we used FIR filter instances presented in Table 4.7. The 0-1 ILP

problem size of filter instances when constants are defined under MSD representation

are presented in Table 5.3. In this table, while cons indicates the total number

of constraints, delay cons denotes the number of delay constraints in the 0-1 ILP

problem. The run-time of SAT-based 0-1 ILP solvers, bsolo and minisat+, on the

filter instances are also presented in this table where CPU denotes the CPU time in

seconds required for the SAT-based 0-1 ILP solvers to find the minimum solution

under a PC with dual Pentium Xeon at 2.4GHz, with 4GB of main memory, running

100

Table 5.3: 0-1 ILP problem sizes of the FIR filters and run-time performance of the
SAT-based 0-1 ILP solvers.

Filter 0-1 ILP Problem Size bsolo minisat+
vars cons delay cons optvars adder CPU adder CPU

1 247 372 25 144 10 0.2 10 0
2 635 1075 48 345 18 0.2 18 0.6
3 1327 2546 159 677 16 0.4 16 2.1
4 1926 3616 285 1023 29 2.7 29 0.7
5 1142 1897 128 651 34 0.3 34 0.3
6 4324 10127 1580 2153 22 25.4 22 3600.1
7 2250 5081 253 1062 34 5.2 34 8.9
8 3915 9230 688 1856 33 41.6 33 29.2
9 26778 71670 16181 13329 49 1332.2 53 3600.1

Linux. The allowed CPU time for the 0-1 ILP solvers was 3600 seconds and again, the

italic results indicate that a suboptimal solution rather than the minimum is obtained

in the given CPU time limit.

As can be observed from Table 5.3, the number of delay constraints that guarantee

the minimum number of operations solution to be obtained in minimum number of

adder-steps is less than 10% of the total number of constraints on filter instances,

except on Filter 6 and 9 where these values are 15.6% and 22.6% respectively. Also,

observe that bsolo, which is also equipped with ILP techniques obtains the minimum

number of operations solutions with a very little computational effort and minisat+

obtains a suboptimal result on Filter 9 in a given CPU time limit.

5.4.4 Comparison of the CSE and graph-based algorithms

In this experiment, we used FIR filter instances presented in Table 4.7. Table 5.4

compares the solutions of the exact CSE algorithm when coefficients are represented

under MSD with those of the graph-based heuristics [7, 8]. The results of the

graph-based heuristic [7] were taken from its paper [7] and the results of the

graph-based heuristic [8] were provided by Andrew Dempster.

As can be observed from Table 5.4, although the graph-based algorithms [7, 8]

do not always ensure the minimum delay solution, they find better solutions in

terms of the number of operations than the exact CSE algorithm on the instances

obtained with the minimum delay, e.g., Filter 2. This is simply because the

implementations of the constants considered in these algorithms are not limited with

101

Table 5.4: Summary of results of the graph-based heuristics and the exact CSE algorithm
on the FIR filter instances.

[7] [8] Exact CSE
Filter MSD

adder step adder step adder step
1 10 3 10 2 10 2
2 17 3 17 3 18 3
3 17 4 16 3 16 3
4 28 5 28 3 29 3
5 34 3 34 3 34 3
6 20 4 20 4 22 3
7 29 6 30 3 34 3
8 28 6 29 4 33 3
9 47 6 47 4 49 3

Total 230 40 231 29 245 26

only the implementations that can be extracted from the number representations of

constants.

5.5 Conclusions

In this chapter, we introduce an exact CSE algorithm designed for the MCM problem

under a delay constraint. The exact algorithm is based on the exact CSE algorithm

designed for the MCM problem. To guarantee the minimum number of operations

solution under the minimum delay, the paths that violate the delay constraint in the

network are found, expressed as PB constraints, and added to the 0-1 ILP problem

that models the MCM problem. It is shown by the experimental results that delay can

be minimized practically with no area overhead in a reasonable time for real-sized

instances.

In this chapter, we also present an approximate algorithm that can handle more

complex instances. It is shown by the experimental results that the approximate

algorithm finds competitive results with the exact CSE algorithm and better solutions

than the CSE heuristics.

As future work, we are currently working on a graph-based algorithm designed for

the MCM problem under a delay constraint that can guarantee the minimum number

of adder-steps solutions and also, can find better solutions in terms of the number of

operations than the previously proposed graph-based heuristics.

102

6. OPTIMIZATION OF AREA AT GATE-LEVEL

Although the exact algorithms designed for the MCM problem introduced in

Chapter 4 find the minimum number of operations solutions, these solutions may

not yield the minimum area solutions when implemented at the gate level. In this

chapter, we address the problem of finding the minimum area of MCM in terms of

gate-level metrics.

To find the minimum area solutions of the MCM problem, one has to consider

the area of addition/subtraction operations during the synthesis of MCM and take

into account these cost values in the selection of operations that implement the

constant multiplications. We note that the area of an operation in the design of MCM

implemented at the gate-level depends on:

• the type of the operation (addition or subtraction),

• the shifted input (minuend or subtrahend) in a subtraction,

• the number of shifts at the inputs,

• the position of the operation in the architecture (that influences the number of bits),

• the range and type of numbers considered (unsigned or signed).

Thus, we define the minimization of area problem as follows:

Definition 6.1: MINIMIZATION OF AREA AT THE GATE-LEVEL. Given a set of target

constants, find a set of operations that implement the MCM such that the constant

multiplications are synthesized using minimum area in terms of gate-level metrics.

Despite the large number of algorithms designed for the minimization of the number

of operations, there is only a graph-based heuristic [9] that considers the number of

half adders (HAs) and full adders (FAs) required to implement the operations when

103

finding a solution that implements the MCM. However, the selection criteria in the

proposed heuristic is based on only the number of HAs and FAs needed to synthesize

the constant multiplications and special cases are not taken into account. To the best

of our knowledge, there is no exact algorithm designed for the minimization of area

in MCM in terms of gate-level metrics.

In this chapter, we introduce the actual architectures based on HAs and FAs for

addition and subtraction operations under unsigned and signed inputs in MCM, and

describe the exact CSE algorithm [21] that finds the minimum area solution of the

MCM problem. The exact CSE algorithm is based on the minimization of the number

of operations model where optimization variables are associated with the operations.

The minimization of area problem is formalized as a 0-1 ILP problem with a cost

function to be minimized and constraints to be satisfied. The cost function of the 0-1

ILP problem is determined as a linear function of optimization variables representing

operations, where the cost value of each optimization variable is the area of the

associated operation computed in terms of gate-level metrics. The constraints of

the 0-1 ILP problem are obtained from the possible implementations of constants

represented in a Boolean network.

6.1 Addition and Subtraction Architectures under Unsigned and Signed Input

In this section, we describe the implementations of addition and subtraction

operations in the design of MCM and determine the cost of each operation in terms

of HAs, FAs, and logic gates in a given technology library. Since the shifts are free in

terms of hardware, the constants are considered as odd numbers in MCM algorithms.

So, there are three different types of operations:

1. A¿SA +B¿SB (an adder where SA = 0, SB = S)

2. A¿SA −B¿SB (a subtracter where SA = S, SB = 0)

3. A¿SA −B¿SB (a subtracter where SA = 0, SB = S)

In given operations, A and B represent the constants at the inputs of the operation, SA

and SB denote the number of shifts on the inputs A and B respectively. Note that we

can always consider one of SA and SB is zero and the other is greater than zero. When

104

both are greater than zero, one can make one of them (the smallest) zero by shifting

the output of the operation by the smallest times.

The parameters considered during the computation of the operation cost are given as

follows:

• S: the number of shifts

• nA: the number of bits of the input A

• nB: the number of bits of the input B

• nm: minimum number of bits at the inputs: min(nA +SA,nB +SB)

• nM: maximum number of bits at the inputs: max(nA +SA,nB +SB)

We note that the number of the bits at the inputs of an operation also depends on the

bit-width of the input that is the constants are multiplied with, denoted by N.

The cost of each operation is determined considering unsigned and signed numbers,

since these lead to different implementations due to the sign extension and is

formulated by considering the overlap between inputs and taking into account specific

cases.

6.1.1 Addition operation A+B¿S

The cost of implementation of an addition operation in terms of HAs and FAs is given

in Table 6.1.

Table 6.1: The cost of an A+B¿S operation.

Cost Parameters Unsigned Input Signed Input
#FA nm - S - 1 nM - S - 1
#HA nM - nm + 1 1

In Figure 6.1, examples on unsigned and signed input models are given. Observe that

larger number of shifts at the input achieves smaller area, since shifts are implemented

with only wires in the design. Note that when the number of FAs is negative in the

unsigned input case, no hardware is needed and the operation can be implemented

with only wires as illustrated in the second example on unsigned input. This situation

105

��� ����� ��	
 � �
�� 	 ���

� � � ���

� ���������

�

�

��� � � � � �� � �
��� � �! � � � � � �

�"�"�"

!!!!

!!

�"�"#"

$ � �
� � � �
� � � %
�� � �
�& � �!

$ ����� ��	
 � �
�� 	 ���

� � � ���

� ���������

�

�

��� � �! � � �� � '
��� � �

�"�"�"

!!!!�"�"#"

� ��� �
 ���� �(�
	(� ���)� (� ���� ��)�

� � � ��� � � � ���

� ���

�

�

��� � � � � �� � ��
�((� �� ��(�� ������

�"

!!!!

!!!

� ���

�" !!!!

$ � �
� � � �
� � � �
�� � �
�& � ��

� ���

�

�

��� � �� � � �� � #
��� � �

�"

!!!!#" !!!!�"

����

� ��� �
 ���� �(�
	(� ���)� (� ���� ��)�

Figure 6.1: Examples on the computation of the area cost of an A+B¿S operation.

occurs when the number of shifts of the operand B is equal to or higher than the

number of bits of the operand A. In the signed input case, this situation never occurs,

due to the sign extension of the operand A.

6.1.2 Subtraction operation A¿S−B

The cost of implementation of this subtraction operation is given in Table 6.2. A

subtraction operation is implemented using 2’s complement, i.e., A + B + 1. So,

the number of inverters, #inv, is included in the cost of subtraction operations.

Additionally, a different type of HA denoted by HA′ is introduced. HA′ is the special

implementation of an FA when one of the inputs is 1 as opposed to the HA, i.e.,

another special implementation of FA, when one of the inputs is 0. In the FA, suppose

the input Bi is 1. Then, the sum (Si) and carry (Ci+1) outputs are the functions of the

input Ai and the carry input (Ci) given as Si = Ci⊕Ai and Ci+1 = Ci +Ai.

Table 6.2: The cost of an A¿S−B operation.

Cost Parameters Unsigned Input Signed Input
#FA nB - S nA

#HA S - 1 S - 1
#HA′ nA + S - nB 0
#inv nB nB

In Figure 6.2, examples on unsigned and signed input models are given. Observe that

in both examples, the first digit of the result is the first digit of the operand B and the

106

��� ����� ��	
 � �
�� 	 ��

� ��� � �

������ �

�

�

��� � � � � � �
��� � � � � � �
��� � � � � � � � !
� ��" � �

�#!#

�#�#�#

$ � �
� � � �
� � � �
�� � �
�% � �&

''''

��"� (���

�������

�

� ��� �
 ���� �)�
*���� ��"� +

,) (& �� -)� 	 ��� �� �
)	� (� ��)�

$ ����� ��	
 � �
�� 	 ��

� ��� � �

������ �

�

�

��� � �
��� � � � � � �
��� � � '
� ��" � �

�#!#

�#�#�#

$ � �
� � � �
� � � �
�� � �
�% � �&

''''

��"� (���

�

� ��� �
 ���� �)�
*)� ���"�) (���� ��"� +

,) (& �� -)� 	 ��� �� �
)	� (� ��)�

Figure 6.2: Examples on the computation of the area cost of an A¿S−B operation.

carry taken to the second digit, in this example to the input of HA, is the complement

of the first digit of B. So, only one inverter is needed to obtain the first digit of the

result.

6.1.3 Subtraction operation A−B¿S

The cost of implementation of this subtraction operation is given in Table 6.3.

Observe that the cost of the operation is computed without HAs as opposed to the

A¿S−B subtraction operation.

Table 6.3: The cost of an A−B¿S operation.

Cost Parameters Unsigned Input Signed Input
#FA nB - 1 nM - S -1
#HA′ nA - nB - S +1 1
#inv nB nB

107

��� ����� ��	
 � �
�� 	 ��

� � � ���

�� ����� �

�

�

��� � � � � � �
��� � � � � � � � � � �
� ��! � �

�"�"

�" �"

� �
� � � �
� � � �
�� � $
�% � �

&

��!� '���

��

�

� ��� �
 ���� �(�
)���� ��!� *

+(' , �� -(� 	 ��� �� �
(� '� ��(�

�","

. �'�

# ����� ��	
 � �
�� 	 ��

� � � ���

�� �����

�

�

��� � � � � �� � $
��� � � �
� ��! � �

�"�"

�" �"

� �
� � � �
� � � �
�� � $
�% � �

&

��!� '���

�

� ��� �
 ���� �(�
)	(� ���!� (' ���� ��!� *

+(' , �� -(� 	 ��� �� �
(� '� ��(�

�","

. �'�

Figure 6.3: Examples on the computation of the area cost of an A−B¿S operation.

In Figure 6.3, examples on unsigned and signed input models are given. Observe that

the shifts can be fully utilized by starting addition with the first digit of the inverted

operand B resulting in a smaller area.

6.2 The Exact Common Subexpression Elimination Algorithm

In this section, we present the exact CSE algorithm designed for the minimization

of area and describe the combinational network constructed by the algorithm. We

note that the proposed exact CSE algorithm follows the same steps of the exact

CSE algorithm designed for the MCM problem given in Section 4.1.1. In the exact

algorithm, the constants can be defined under any type of number representation,

namely, binary, CSD, or MSD.

Initially, all possible implementations of each target constant and also partial term are

obtained by decomposing the non-zero digits in the representation(s) of the constant

as described in Section 4.1.1.1. Then, the Boolean network that represents the

possible implementations of the constants is constructed as given in Section 4.1.1.2.

The Boolean network includes only AND and OR gates, where an AND gate in the

108

�

�

��

��

��

�
�

��

��
��

�
��

���

��

�

�

�

�

�

�

�

�

�

�

�

�

���

���

���

���

���

���

���

���

���

���

��� ���

���

���

�

�

�

���

���

���

������ �
��� �

��� �

��� �

��� 	

��� �

���

��� �

��� �

��� �

��� ��

�

���
��� ��

��� ��

��� �	

��� ��

��� �

��� ��

��� ��

�

�

�

�

�

�

�

�

��� ��

�

�

�

�

�

�

�

�

�

�

�

�

Figure 6.4: The network generated for the target constant 51 in CSD.

network represents an addition/subtraction operation and an OR gate represents a

constant and combines all operations that implement the constant. The minimization

of area problem is formalized under the minimization of the number of operations

model. Hence, the optimization variables associated with the operations are added to

the AND gates in the network as the third input. As an example, suppose the target

constant 51 defined in CSD. The Boolean network generated for the target constant is

given in Figure 6.4, where the 1-input OR gates for the partial terms 3, 17, and 63 are

omitted and the type of each operation, i.e., an adder or a subtracter, is given inside of

each AND gate. As can be easily observed, the target constant 51 defined under CSD

has 7 alternative implementations including additions and subtractions.

Observe from Figure 6.4 that the operations associated with the optimization variables

OPT4 and OPT5 have the same positive and odd inputs, similar to the operations with

the optimization variables OPT13 and OPT14. Although these operations are included

in the network, because they have different area cost as described in Section 6.1, we

note that only one of these operations that has the minimum area cost among these

operations can be kept for the implementation of the constant, and the other can be

deleted from the network.

109

After the Boolean network is constructed, the formalization of the minimization of

area problem as a 0-1 ILP problem is then straight-forward. Initially, the cost function

of the 0-1 ILP problem is determined as the linear function of optimization variables

representing operations, where the cost value of each optimization variable is the area

cost of each operation computed as described in Section 6.1. Then, the constraints

of the 0-1 ILP problem are determined as the PB constraints of each gate in the

network. Also, we assign 1 value to the variables denoting the outputs of OR gates

associated with the target constants and to the variables representing the input that is

the constants are multiplied with. Observe that if the cost value of each optimization

variable is assigned to 1, then the problem turns to the minimization of the number of

operations problem.

Finally, a generic 0-1 ILP solver is used to find the minimum area solution of the

MCM problem. Note that the minimum solution directly indicates the operations to

be synthesized to implement the MCM.

6.3 Experimental Results

In this section, we present the results of the exact CSE algorithm that are obtained

with the minimum number of operations and the minimum area objectives. The

data associated with the HA, HA′, FA, and an inverter were taken from UMC Logic

0.18µm Generic II library and are given in Table 6.4. We note that while inv, HA, and

FA were the primitive gates of the library, HA′ was implemented using XNOR and OR

gates in the library as defined in Section 6.1.2.

Table 6.4: Experimental settings.

Gate Area (µm2) Max Delay (ns) Max Delay Carry (ns)

inv 6 0.06 –
HA 32 0.185 0.137
HA′ 35 0.185 0.085
FA 58 0.261 0.194

As an experiment set, we used filter instances where the filter coefficients were

computed using the remez algorithm in MATLAB. The specifications of filters are

given in Table 6.5. In the exact CSE algorithm, the filter coefficients are defined in

MSD representation.

110

Table 6.5: Filter specifications.

Filter pass stop #tap width
1 0.20 0.25 120 8
2 0.10 0.25 100 10
3 0.15 0.25 40 12
4 0.20 0.25 80 12
5 0.24 0.25 120 12
6 0.15 0.25 60 14
7 0.15 0.20 60 14
8 0.15 0.20 100 16
9 0.10 0.15 60 14
10 0.10 0.15 100 16

The exact solutions with the minimum number of operations and minimum area

objectives are obtained on filter instances for unsigned and signed input models, when

the bit widths of the filter inputs, i.e., N, are 8, 16, and 24. The results on unsigned

and signed models are given in Table 6.6 and Table 6.7, respectively. In these tables,

adder denotes the number of operations, area and delay denote the total area and the

delay of the multiplier block of the filter, respectively. We note that after a solution is

found with any given objective by the exact algorithm, the area and delay results are

obtained with the described gate-level metrics.

In this experiment, we observe that a minimum solution in terms of the number of

operations may not give the minimum area design, e.g., Filter 10 when N = 8 for

the unsigned and signed input models. Also, even if the number of operations in the

solutions obtained under both objectives are the same, the solution found under the

minimum number of operations objective may yield larger area in the design, e.g.,

Filter 5 when N = 8 for the unsigned and signed input models. As can be seen from

experimental results, the reduction in area can be 13.5% and 12.5% on average for

unsigned and signed models respectively. We note that since the optimization of area

yields the optimization of the number of HAs and FAs, the delay of the design is also

decreased on most of the filter instances.

This experiment clearly indicates that the minimum number of operations solution

of an MCM problem does not yield the minimum area solution at the gate-level.

To obtain the minimum area solution, the actual area data of addition/subtraction

operations implementing the MCM should be added into the optimization problem.

111

Ta
bl

e
6.

6:
E

xp
er

im
en

ta
lr

es
ul

ts
on

un
si

gn
ed

in
pu

tm
od

el
.

N
8

bi
ts

16
bi

ts
24

bi
ts

O
bj

ec
tiv

e
#

O
pe

ra
tio

ns
A

re
a

#O
pe

ra
tio

ns
A

re
a

#
O

pe
ra

tio
ns

A
re

a
Fi

lte
r

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

1
10

51
14

4.
2

10
44

77
4.

9
10

99
94

7.
3

10
92

13
9.

6
10

14
87

4
10

.4
10

13
94

9
14

.3
2

18
94

65
7.

1
18

78
98

5.
7

18
18

24
9

11
.7

18
16

39
4

10
.3

18
27

03
3

16
.4

18
24

89
0

15
.0

3
16

88
47

6.
7

17
84

07
5.

8
16

16
75

1
11

.4
16

16
21

8
10

.4
16

24
65

5
16

.0
16

23
97

8
15

.1
4

29
16

46
2

6.
9

29
13

53
7

6.
0

29
30

63
8

11
.2

29
27

41
0

12
.2

29
44

81
4

16
.2

29
41

20
2

18
.4

5
34

17
64

5
7.

1
34

15
31

0
6.

6
34

33
94

9
11

.7
34

31
32

6
11

.3
34

50
25

3
16

.4
34

47
34

2
15

.9
6

22
12

67
3

8.
4

23
12

00
8

7.
3

22
23

45
7

14
.6

22
22

81
6

12
.4

22
34

24
1

20
.8

22
33

45
6

17
.1

7
34

20
31

0
7.

5
35

17
51

8
7.

0
34

36
85

4
12

.2
34

33
87

1
12

.2
34

53
39

8
16

.8
34

50
16

2
16

.4
8

47
27

79
8

7.
8

51
24

09
2

7.
3

47
51

00
3

14
.1

47
47

90
1

12
.8

47
73

81
9

20
.3

47
70

31
1

19
.0

9
33

20
78

7
8.

2
35

16
99

8
6.

2
33

37
14

0
14

.4
35

34
13

4
10

.8
33

53
31

6
20

.6
34

50
76

9
16

.2
10

49
29

47
4

8.
6

54
25

49
7

7.
6

49
53

71
4

15
.6

49
50

14
5

15
.5

49
77

45
8

21
.8

49
73

64
9

21
.7

A
vg

.(
%

)
10

0
10

0
10

0
10

4.
8

86
.5

88
.9

10
0

10
0

10
0

10
0.

7
92

.8
94

.7
10

0
10

0
10

0
10

0.
3

94
.7

96
.2

M
in

.(
%

)
–

–
–

10
0.

0
81

.8
75

.5
–

–
–

10
0.

0
89

.5
75

.1
–

–
–

10
0.

0
91

.9
78

.7
M

ax
.(

%
)

–
–

–
11

0.
2

95
.0

11
7.

3
–

–
–

10
6.

1
97

.3
13

1.
7

–
–

–
10

3.
0

97
.7

13
6.

9

11
2

Ta
bl

e
6.

7:
E

xp
er

im
en

ta
lr

es
ul

ts
on

si
gn

ed
in

pu
tm

od
el

.

N
8

bi
ts

16
bi

ts
24

bi
ts

O
bj

ec
tiv

e
#

O
pe

ra
tio

ns
A

re
a

#O
pe

ra
tio

ns
A

re
a

#
O

pe
ra

tio
ns

A
re

a
Fi

lte
r

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

ad
de

r
ar

ea
de

la
y

1
10

59
24

4.
6

10
51

52
4.

1
10

10
80

4
7.

7
10

98
88

7.
2

10
15

68
4

10
.8

10
14

62
4

10
.3

2
18

11
09

8
7.

8
18

90
50

5.
7

18
19

88
2

12
.5

18
17

54
6

10
.4

18
28

66
6

17
.1

18
26

04
2

15
.1

3
16

10
55

2
7.

3
16

10
05

4
6.

1
16

18
45

6
12

.0
16

17
81

4
10

.8
16

26
36

0
16

.6
16

25
57

4
15

.4
4

29
19

33
3

7.
5

29
15

94
4

6.
2

29
33

50
9

12
.1

29
29

73
6

12
.5

29
47

68
5

16
.8

29
43

52
8

18
.7

5
34

20
68

2
7.

9
34

17
88

4
6.

7
34

36
98

6
12

.5
34

33
90

0
11

.3
34

53
29

0
17

.2
34

49
91

6
16

.0
6

22
15

39
6

9.
4

23
14

72
1

8.
0

22
26

18
0

15
.6

22
25

61
2

13
.3

22
36

96
4

21
.9

22
36

25
2

18
.0

7
34

24
62

5
8.

5
35

21
24

8
7.

3
34

41
16

9
13

.2
34

37
76

2
13

.2
34

57
71

3
17

.8
34

54
06

6
17

.8
8

47
34

14
9

9.
2

50
29

95
0

8.
5

47
56

96
5

15
.4

47
52

60
9

13
.4

47
79

78
1

21
.6

47
74

99
3

19
.6

9
33

24
37

5
9.

2
36

21
21

6
6.

7
33

40
55

1
15

.4
34

37
82

2
12

.1
33

56
72

7
21

.6
34

54
07

8
16

.8
10

49
36

28
0

10
.5

52
31

83
7

8.
5

49
60

02
4

16
.7

49
55

71
9

16
.2

49
83

76
8

22
.9

49
79

22
3

22
.4

A
vg

.(
%

)
10

0
10

0
10

0
10

3.
8

87
.5

82
.9

10
0

10
0

10
0

10
0.

3
92

.4
90

.5
10

0
10

0
10

0
10

0.
3

94
.2

92
.3

M
in

.(
%

)
–

–
–

10
0.

0
81

.5
72

.8
–

–
–

10
0.

0
88

.3
78

.9
–

–
–

10
0.

0
90

.8
77

.8
M

ax
.(

%
)

–
–

–
10

9.
1

95
.6

93
.3

–
–

–
10

3.
0

96
.5

10
2.

6
–

–
–

10
3.

0
98

.1
11

1.
1

11
3

Table 6.8: Effect of the bit widths of filter input over area on unsigned input model.

Filter D8
8 D8

16 D8
24 D16

8 D16
16 D16

24 D24
8 D24

16 D24
24

1 4477 4477 4477 9213 9213 9213 13949 13949 13949
2 7898 7898 7898 16394 16394 16394 24890 24890 24890
3 8407 8458 8458 16850 16218 16218 25026 23978 23978
4 13537 13618 13618 27532 27410 27410 41324 41202 41202
5 15310 15310 15310 31326 31326 31326 47342 47342 47342
6 12008 12176 12176 23064 22816 22816 34120 33456 33456
7 17518 17567 17650 34489 33871 33906 51257 50175 50162
8 24092 25469 25543 49379 47901 47927 73523 70333 70311
9 16998 17137 17932 34262 34134 34513 50934 50806 50769
10 25497 26641 26641 51776 50145 50145 77408 73649 73649

Avg. (%) 100 102.1 102.7 101.7 100 100.2 102.3 100.02 100
Min. (%) – 100.0 100.0 100.0 – 100.0 100.0 100.0 –
Max. (%) – 105.7 106.0 103.9 – 101.1 105.1 100.1 –

To find the effect of the bit width of the filter input, N, on the area of the multiplier

block of the FIR filters, we have also conducted an experiment under the unsigned

input model. In this experiment, initially, the optimum area filter implementations,

i.e., the set of operations that yields the minimum area, for N is 8, 16, and 24 bits

is obtained. Then, these implementations are synthesized at the gate-level when N

is 8, 16, and 24. The area of the designs are presented in Table 6.8, where Dsyn
opt ,

opt,syn ∈ {8,16,24} represents the area of the design optimized for area when the

bit width of the filter input is opt and synthesized when the bit width of the filter input

is syn.

In this experiment, we observe that the bit width of the filter input affects the

minimum area solutions slightly in the proposed approach. This result can be

interpreted as follows. For instance, suppose the set of operations that yields the

minimum area when the bit width of the filter input is 16 has been obtained and these

operations have been designed at gate-level when the bit width of the filter input is

8 and 24. The area of these designs are denoted by D8
16 and D24

16 respectively. When

these values are compared with their optimum values, i.e., D8
8 and D24

24 respectively, it

can be easily observed that the area overhead according to the minimum area designs

is only 2.1% and 0.02% on average respectively. Thus, once the set of operations that

yields the minimum area under a specific number of bit widths of the filter input was

found, it could be designed for any number of bit-widths of the filter input and the

114

area overhead with respect to the optimum area solution would be small. We note that

similar results are observed on the signed input model.

6.4 Conclusions

In this chapter, an exact CSE algorithm that minimizes the area of multiple constant

multiplications at the gate-level is proposed and demonstrated on the synthesis of

the multiplier block of digital FIR filters. In the exact algorithm, the area value of

each operation is defined in terms of gate-level metrics and is assigned to the cost

value of each operation in the cost function of the 0-1 ILP problem. The area of

addition/subtraction operations are obtained from their actual architectures proposed

in this work. We present results indicating that if the objective is limited to the

minimization of the number of operations, the actual hardware implementation can

be far from optimum. Although the experimental results are based on FIR filters,

this method can be directly applied to any system that includes multiple constant

multiplications.

115

116

7. OPTIMIZATION OF AREA IN HIGH-SPEED DIGITAL FIR FILTERS

In the algorithms designed for the MCM problem described in Chapter 4, an

addition/subtraction operation is assumed to be a 2-input operation that is generally

implemented using ripple carry adder (RCA) blocks [9,21] that yield great latency in

the implementation of MCM. In high-speed applications, particularly in DSP systems,

carry-save adder (CSA) blocks are preferred to RCA blocks taking into account the

increase in area. This chapter addresses the problem of finding the fewest number of

CSA blocks for the implementation of the MCM that achieves a high throughput.

In this chapter, initially, we introduce the background concepts and give the

problem definition. Then, we present the exact CSE algorithm [22] designed for

the minimization of the number of CSA blocks problem. Also, we introduce an

approximate CSE algorithm [22] based on the proposed exact CSE algorithm that

can deal with large size instances. Since the solutions obtained by the proposed

CSE algorithms depend on the number representation, in the approximate algorithm,

we further increase the number of possible implementations of constants using a

general number representation allowing our algorithm to be more effective in area

optimization [22].

7.1 Background

A CSA block has three inputs and two outputs, i.e., sum (S) and carry (C). The two

outputs together form the result. An n-bit CSA block includes n FAs. Since there is

no need to propagate the carry as required in an RCA block, Figure 7.1(a), the latency

of an addition is equal to the gate delay of an FA, Figure 7.1(b).

The implementation of a digital FIR filter that achieves a high throughput as described

in [95] is illustrated in Figure 7.2 where each addition represents a CSA block and

the filter output is obtained using a vector merging adder (VMA). The proposed exact

117

��

� � � �

� �

� ���

� � 	
 � � 	

� � 	

��

� � 	� � � 	�

� � 	�

� � ��

� � � �

� �

���

� �

�
�

� � �

�

��

� �

� � � � � �

� �

��

� �

� � � � � �

�

��

� � 	

� � 	
 � � 	
 � � 	

� � 	�

��

� � 	�

� � 	� � � 	� � � 	�

� �

�� �

�� �

���

���

Figure 7.1: Addition architectures: (a) Ripple carry adder block; (b) Carry-save adder
block.

� �
�
�

� �
�
�

� �

��� �

� �� �

� � 	
 � � 	� � �

�
�

� �

� � ���� ��� � � �������

������

Figure 7.2: The implementation of the transposed form of a high-speed digital FIR filter.

and approximate algorithms are demonstrated on the design of the multiplier block of

a high-speed FIR filter given in Figure 7.2.

Thus, the minimization of the number of CSA blocks problem is defined as follows:

Definition 7.1: MINIMIZATION OF THE NUMBER OF CSA BLOCKS. Given a set

of filter coefficients, find the minimum number of CSA blocks that implement the

coefficient multiplications in the multiplier block of a digital FIR filter.

To design the multiplier block of a digital FIR filter using CSA blocks, one may,

initially, find a set of operations implemented using RCA blocks, i.e., the operations

have two inputs, and then, transform these RCA blocks into CSA blocks using a

mapping technique. To do this, a technique that converts RCA blocks into CSA blocks

for the implementation of MCM in a digital FIR filter is described in [13]. In this

scenario, three different cases may occur:

118

���

���

���

���

�

���
���

� ��� � ���

� �� � �� �����

���

���

�	�

���
���

� ��� � ���� �� � ��

���

���

� �	� � �	�

��

���

���

��

�

���

� �� � ��

�

� �

 �
� �

Figure 7.3: Conversion of RCA operations to CSA operations in MCM.

• If both inputs of an RCA block are filter inputs, then no CSA block is required,

since these two inputs can be represented as sum and carry outputs, Figure 7.3(a).

• If only one of the inputs of an RCA block is the filter input, then one CSA block

is required, Figure 7.3(b).

• If an RCA block has inputs that are not filter inputs, then two CSA blocks are

required, Figure 7.3(c).

In Figure 7.4, we compare the solutions obtained by the exact CSE algorithm [22]

designed for the minimization of the number of CSA blocks with the solutions

obtained by the described RCA to CSA conversion technique [13]. We note that

the minimum number of RCA blocks solutions were obtained using the exact CSE

algorithm of [14]. In this experiment, the constants were generated randomly in 12

bit-width and defined under CSD representation. The number of constants varies

between 10 and 100, and each set includes 30 instances.

As can be easily observed from Figure 7.4, the mapping from RCAs to CSAs yields

suboptimal solutions that are far from the solutions obtained by the exact CSE

algorithm [22]. This experiment clearly indicates that taking into account of the

CSA block architecture in the optimization is indispensable to find the minimum area

solution.

The mapping techniques, similar to the RCA to CSA conversion technique of [13],

proposed for the design of more complex arithmetic circuits using CSA blocks can

be found in [10,11]. However, we note that these techniques also do not focus on the

optimization of the number of CSA blocks.

119

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

120

130

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 a

dd
iti

on
 b

lo
ck

s

Randomly generated instances in 12−bits under CSD

Number of RCAs [14]
Number of CSAs [22]
Number of CSAs after RCA to CSA conversion [13]

Figure 7.4: Comparison of the minimum number of RCA and CSA blocks solutions with
the solutions obtained using the RCA to CSA conversion technique.

The algorithms designed for the optimization of the number of CSA blocks can be

categorized in two classes: CSE and graph-based algorithms. The CSE heuristic

of [12], initially, defines the coefficient multiplications in expressions and then,

iteratively extracts all possible three-term divisors from the expressions, finds the

best divisor, i.e., the most common divisor, among these divisors, and redefines the

expressions by replacing the best divisor in the expressions with two terms, i.e., sum

and carry outputs of a CSA block. The graph-based heuristic of [13] includes optimal

and heuristic parts. In the optimal part, the coefficients that can be implemented

using one CSA block are synthesized. If there exist unrealized coefficients after

the optimal part, then in the heuristic part, an unrealized coefficient is synthesized

with two CSA blocks or with its minimum number of CSA block implementation

obtained from [96] by including intermediate constant(s). It is shown in [13] that the

graph-based heuristic finds better solutions than a CSE heuristic, since it considers

more possible implementations of constants. To the best of our knowledge, there is

no exact algorithm proposed for the optimization of the number of CSA blocks in

MCM.

120

7.2 An Exact Common Subexpression Elimination Algorithm

In this section, we introduce the exact CSE algorithm that can handle coefficients

defined under binary, CSD, or MSD representation. The algorithm has three main

parts: (i) generation of all possible implementations of filter coefficients using CSA

blocks, (ii) construction of the Boolean network that represents the implementations

of coefficients, (iii) formalization of the minimization of the number of CSA blocks

problem as a 0-1 ILP problem.

7.2.1 Generation of operations

In the preprocessing phase of the algorithm, initially, an empty set called Cset is

formed and the filter input, denoted by 1, is added to the Cset and labeled as

implemented. Then, filter coefficients are converted to positive and made odd by

successive divisions by 2. The resulting coefficients are stored in Cset without

repetition and labeled as unimplemented. The Cset includes the filter input and

unrepeated positive and odd coefficients to be implemented. In the following iterative

loop, for each element labeled as unimplemented in Cset, all possible operations that

implement the constant are found and their cost values are determined as the number

of required CSA blocks.

1. Take an unimplemented element from Cset, Cseti, and find its representation(s)

under a given number representation. Form an empty set called Oseti that includes

the required operations for the implementation of Cseti with their positive and odd

inputs.

2. If the representation of Cseti includes 2 non-zero digits, then label Cseti as

implemented and go to Step 6. In this case, the implementation of Cseti requires

no CSA block.

3. If the representation of Cseti includes 3 non-zero digits, then store the positive and

odd inputs of the operation in Oseti and assign the cost value of the operation

as 1. Label Cseti as implemented and go to Step 6. In this case, the Cseti

can be implemented using a single CSA block and this is the minimum cost

implementation.

121

4. Otherwise, on each representation of Cseti, find all possible operations that

implement Cseti. Store the positive and odd inputs of operations in Oseti and

determine the cost values of the operations.

5. Label Cseti as implemented, add all elements of Oseti to Cset without repetition,

and label them as unimplemented.

6. Repeat Step 1 until all elements in Cset are labeled as implemented.

Observe that the Cset that includes the filter input, and positive and odd filter

coefficients to be implemented in the beginning of the iterative loop is augmented

with partial terms that are required to implement the coefficients in later iterations.

In finding the operations that implement a constant including more than 3 non-zero

digits,1 i.e., the Step 4 of the iterative loop, the non-zero digits are decomposed into

two parts such that one of them includes more than two non-zero digits, and the other

includes one or more than two non-zero digits. Each partition including more than

two non-zero digits forms a partial term. A partial term is represented with its sum

and carry outputs at the inputs of the operation, since a partial term requires CSA

block(s) to be implemented. If one of the inputs of an operation is the filter input,

then the cost value of the operation is determined as 1 CSA block. If none of the

inputs is the filter input, then the cost value of the operation is 2 CSA blocks. As a

small example, suppose that 51 is given as the filter coefficient and defined in CSD as

1010101. The implementations of 51 are given in Figure 7.5.

I1 : S&C51 = 1010100+0000001 = 13¿2−1 = S&C13¿2−1
I2 : S&C51 = 1010001+0000100 = 47+1¿2 = S&C47 +1¿2
I3 : S&C51 = 1000101+0010000 = 67−1¿4 = S&C67−1¿4
I4 : S&C51 = 0010101+1000000 = −13+1¿6 = −S&C13 +1¿6

Figure 7.5: Implementations of 51 in CSD using CSA blocks.

Observe that since the partial terms, i.e., 13, 47, and 67, include 3 non-zero digits,

they are represented with sum and carry outputs. Because one of the inputs of these

operations is the filter input, denoted by 1, the cost value of each operation is 1. Note

that the implementation I4 is redundant, since it includes the same positive and odd

constants at the inputs as the implementation I1 and both of them require 1 CSA
1Recall that a CSA block has three inputs and two outputs, i.e., sum (S) and carry (C), and these two

outputs together indicate a value.

122

�

�� �

� �

� �

� �

� ��

� ��

���
���

���

���

Figure 7.6: Implementation of 63 in binary using 2 CSA blocks.

block. Note that after the partial terms are found, they are added to the Cset without

repetition, and their implementations are found as described above.

As an example on an operation that requires 2 CSA blocks, consider the constant 63 in

binary, 111111. One of the operations that implements S&C63, i.e., S&C7¿3 +S&C7,

requires 2 CSA blocks as illustrated in Figure 7.6.

7.2.2 The Boolean network

After all possible implementations of filter coefficients and partial terms are obtained,

the Boolean network that includes AND and OR gates is constructed. The primary

input of the network is the filter input. An AND gate in the network represents an

operation that includes CSA block(s). The output of an AND gate represents the

sum and carry outputs of the CSA block implementing a constant. An OR gate

associated with a coefficient or a partial term gathers all operations that implement the

constant. The output of an OR gate denotes the sum and carry outputs representing a

constant. The primary outputs of the network are the OR gate outputs associated with

the coefficients. The network generated for the coefficient 51 defined under CSD is

given in Figure 7.7, where 1-input OR gates for the partial terms, 13, 47, and 67, and

the redundant implementation of 51 are omitted.

�

�

�

��� ��

��� �� ��� ��

��� ��

�
�

�

�
�

�

�
�

�

Figure 7.7: The Boolean network constructed for the coefficient 51 in CSD.

123

Note that 51 can be implemented using 2 CSA blocks and the Boolean network

represents all possible implementations using CSA blocks with all possible partial

terms that can be extracted from the CSD representation of 51.

In the conversion of the minimizing the number of CSA blocks problem to a 0-1 ILP

problem, we need to include optimization variables to the network so that the cost

function can be constructed. To do this, we use the minimization of the number of

operations model described in Section 4.1.1.3, where the optimization variables are

associated with the operations, i.e., to each AND gate in the network, an extra input

denoting an optimization variable is added.

7.2.3 Conversion to 0-1 ILP problem

After the Boolean network is constructed, the modeling of the minimization of the

number of CSA blocks problem as a 0-1 ILP problem is then straight-forward. The

cost function is determined as the linear function of optimization variables associated

with the operations where the cost value of each optimization variable is the number

of CSA blocks required to implement each operation, i.e., 1 or 2. The outputs of

OR gates associated with the filter coefficients are assigned to 1 value, since the

implementation of the coefficients is aimed. The variable representing the filter input

is also assigned to 1. The constraints of the 0-1 ILP problem are obtained by finding

the CNF formulas of each gate in the network and expressing each clause in CNF

formulas as a linear inequality as described in [50]. Thus, the obtained model can

serve as an input to a generic 0-1 ILP solver that is used to obtain the minimum

number of CSA blocks solution.

7.3 Approximate Algorithms

In this section, initially, we present the approximate CSE algorithm and then, we

introduce the approximate algorithm that can handle the coefficients under general

number representation.

7.3.1 The approximate common subexpression elimination algorithm

Although the exact CSE algorithm presented in the previous section can be applied

on real size instances as shown in Section 7.4, naturally, there are more complex

124

instances that the exact algorithm cannot handle. It is because the required

computation time of a generic 0-1 ILP solver to find the minimum solution tends

to increase as the size of the 0-1 ILP problem increases. However, the problem size

can be significantly reduced by considering only the operations that require 1 CSA

block in finding the implementations of the constants, i.e., the operations whose one

of the inputs is the filter input or its shifted versions. The proposed approximate CSE

algorithm differs from the exact algorithm only in finding the implementations of the

coefficients as described in Section 7.2.1, where the operations that require 2 CSA

blocks are also considered.

In Figure 7.8, we present the average area overhead between the solutions of the

approximate and exact CSE algorithms on instances where constants are generated

randomly in 12 bit-width. In this experiment, the number of constants ranges

between 10 and 100, and each set includes 30 instances. The results of the exact

and approximate algorithms are obtained when constants are defined under binary,

CSD, and MSD.

As can be observed from Figure 7.8, the solutions obtained with the approximate

algorithm are quite similar to the solutions of the exact CSE algorithm, less than 0.7

CSA block on average, since the operations with 2 cost value are rarely implemented

in the exact algorithm. Observe that as the number of constants increases, the

difference of the solutions obtained with the approximate and exact algorithms

decreases, since the partial term sharing increases with the number of constants. Also,

we note that the approximate algorithm obtains solutions on 300 instances with only

one extra CSA block with respect to the exact CSE algorithm when constants are

defined under MSD representation.

7.3.2 The approximate algorithm under general number representation

Since the results of CSE algorithms depend on the number representation, the

minimum number of operations solutions cannot be obtained using an exact CSE

algorithm as shown in Chapter 4. We extend the approximate CSE algorithm to

handle coefficients in general number representation as described in Section 4.2. The

proposed approximate algorithm under general number representation differs from

the approximate CSE algorithm only in considering the operations that can be used

125

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Randomly generated instances in 12−bits

Number of constants

A
ve

ra
ge

 a
re

a
ov

er
he

ad

Binary
CSD
MSD

Figure 7.8: Area overhead between the approximate and exact CSE algorithms on
randomly generated instances.

to implement the constants. In the proposed algorithm, initially, the positive and

odd numbers between 1 and 2bw+1− 1, where bw denotes the maximum bit-width

of coefficients, are sorted in ascending order of the number of non-zero digits in

CSD and stored in a set called Nset. Then, for each coefficient and partial term, the

operations that implement the constant are generated by assigning the filter input and

its shifted versions with positive and negative sign to the first input of the operations

and finding the partial terms required to implement the constant. The sum and carry

outputs of the CSA block that implements the partial term are assigned to the other

two inputs of the operations. The valid operations are determined as the operations

that include partial terms located in the Nset before the position of the constant in the

Nset to guarantee the solution to be acyclic as described in Section 4.2. For example,

again, consider 51 as a filter coefficient. All implementations of 51 generated under

general number representation are given in Figure 7.9.

I1 : S&C51 = 1+25¿1 = 1+S&C25¿1 I8 : S&C51 = −1¿3 +59 = −1¿3 +S&C59
I2 : S&C51 = −1+13¿2 = −1+S&C13¿2 I9 : S&C51 = 1¿4 +35 = 1¿4 +S&C35
I3 : S&C51 = 1¿1 +49 = 1¿1 +S&C49 I10 : S&C51 = −1¿4 +67 = −1¿4 +S&C67
I4 : S&C51 = −1¿1 +53 = −1¿1 +S&C53 I11 : S&C51 = 1¿5 +19 = 1¿5 +S&C19
I5 : S&C51 = 1¿2 +47 = 1¿2 +S&C47 I12 : S&C51 = −1¿5 +83 = −1¿5 +S&C83
I6 : S&C51 = −1¿2 +55 = −1¿2 +S&C55 I13 : S&C51 = 1¿6−13 = 1¿6−S&C13
I7 : S&C51 = 1¿3 +43 = 1¿3 +S&C43 I14 : S&C51 = −1¿6 +115 = −1¿6 +S&C115

Figure 7.9: Implementations of 51 under general number representation.

126

We note that the operations I4, I12, and I14 are not accepted for the implementation

of 51, since the locations of the partial terms in these implementations, i.e., 53,

83, and 115, in Nset are beyond the position of 51 in Nset. Also, observe that

the implementation I13 is redundant, since it includes the same positive and odd

inputs as the implementation I2. Thus, there are 10 implementations of 51 including

different partial terms that may increase the partial term sharing in MCM. As can

be easily observed, by using the general number representation we find the same

implementations that can be obtained in the approximate CSE algorithm under

any number representation and furthermore, we consider the implementations of

constants that cannot be obtained with the non-zero digit combinations under a

number representation of the constants.

After the implementations of filter coefficients and the partial terms are obtained, the

Boolean network is constructed and the 0-1 ILP problem that defines the minimization

of the number of CSA blocks is formed as described in Section 7.2. Finally, the

minimum solution is found using a generic 0-1 ILP solver.

7.4 Experimental Results

In this section, we present the results of the exact and approximate algorithms on

randomly generated and filter instances, and compare with the results of heuristics

of [12, 13]. The CSE heuristic of [12] was also implemented and the graph-based

heuristic of [13] was provided by Oscar Gustafsson.

As the first experiment set, we used randomly generated instances where constants

are defined in 12 and 14 bit-width. The number of constants ranges between 10

and 100, and each set includes 30 instances, totally 600 instances. The results of

the approximate algorithm and previously proposed heuristics on randomly generated

instances defined in 12 and 14 bits are presented in Figure 7.10(a) and (b) respectively.

As can be easily observed from Figure 7.10, the representation of constants in MSD

yields better solutions than those of binary and CSD. Also, the approximate CSE

algorithm gives superior results than the CSE heuristic of [12]. The difference of

average number of CSA blocks between the results of CSE heuristic [12] and the

approximate algorithm in CSD reaches up to 7.2 and 8.2 on instances with 100

127

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

120

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 C

S
A

 b
lo

ck
s

Randomly generated instances in 12−bits

CSE Heuristic [12] − CSD
Approximate Algorithm − binary
Approximate Algorithm − CSD
Approximate Algorithm − MSD
Approximate Algorithm − General Number
Graph−based Heuristic [13]

(a)

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

120

130

140

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 C

S
A

 b
lo

ck
s

Randomly generated instances in 14−bits

CSE Heuristic [12] − CSD
Approximate Algorithm − binary
Approximate Algorithm − CSD
Approximate Algorithm − MSD
Approximate Algorithm − General Number
Graph−based Heuristic [13]

(b)

Figure 7.10: Comparison of the heuristic algorithms on randomly generated instances:
(a) Constants in 12 bit-width; (b) Constants in 14 bit-width.

128

Table 7.1: 0-1 ILP problem sizes of the FIR filter instances.

Exact CSE Algorithm Approximate Algorithm
Filter MSD MSD General Number

vars cons optvars vars cons optvars vars cons optvars
1 506 809 271 126 165 96 5583 11138 2777
2 823 1345 426 84 74 74 3102 5882 1630
3 515 795 275 65 47 63 6638 12948 3398
4 1744 3108 871 141 205 105 9145 18357 4538
5 851 1362 442 199 275 145 24623 49916 12116
6 1581 2678 791 264 401 186 17479 35337 8615
7 11742 22726 5658 1768 4689 876 426650 876949 207350
8 8854 17091 4272 1338 3244 696 138176 283099 67358
9 27261 57079 13164 3117 8777 1397 539405 1106400 262733

Total 53877 106993 26170 7102 17877 3638 1170801 2400026 570515

constants under 12 and 14 bit-width respectively. Since the graph-based heuristic

of [13] is not limited to any number representation, it obtains better solutions

than CSE algorithms. However, it is interesting to note that the approximate

algorithm under MSD gives competitive solutions with the graph-based heuristic

of [13] on instances with small number of constants. On the other hand, the

approximate algorithm under general number representation gives better solutions

than the graph-based heuristic on average, except the instances with 90 and 100

constants in 12 bit-width. The maximum difference of the average number of CSA

blocks solutions between the graph-based heuristic and the approximate algorithm

under general number representation is obtained as 4.5 CSA blocks on instances with

90 constants under 14 bit-width.

As the second experiment set, we used FIR filter instances presented in Table 4.13.

The size of 0-1 ILP problems obtained with the exact and approximate algorithms

under MSD and general number representations are presented in Table 7.1.

As can be easily observed from Table 7.1, the approximate CSE algorithm generates

smaller size 0-1 ILP problems with respect to the 0-1 ILP problems obtained by the

exact CSE algorithm. Also, we note that the size of 0-1 ILP problems can be very

large when coefficients are defined under general number representation, e.g., Filter

7 and 9, since more possible implementations of coefficients are considered under

general number representation. It is worth to mention that current 0-1 ILP solvers can

deal with such large size problems as shown in Table 7.2.

129

Table 7.2: Summary of results of algorithms on the FIR filter instances.

[12] Exact CSE Algorithm Approximate Algorithm [13]
Filter CSD CSD MSD CSD MSD General Number

CSA CSA CSA CPU CSA CSA CPU CSA CPU CSA
1 16 16 16 0.1 16 16 0.1 15 2.7 16
2 30 28 27 0.2 28 27 0.1 25 0.3 25
3 31 31 31 0.1 31 31 0.1 31 0.6 31
4 25 25 21 0.3 25 21 0.1 21 3.9 22
5 36 35 34 0.3 35 34 0.1 34 13.5 35
6 36 34 32 0.5 34 32 0.1 32 6.8 34
7 60 60 55 52.1 60 55 0.5 53 4652.1 54
8 62 61 57 47.6 63 57 0.5 53 937.2 55
9 88 85 82 754.9 86 83 6.0 78 27165.9 81

Total 384 375 355 856.1 378 356 7.3 342 32783 353

The results of algorithms on filter instances are presented in Table 7.2. In this table,

CSA represents the number of CSA blocks and CPU is the required CPU time in

seconds of the 0-1 ILP solver, glpPB [62], to find the minimum solution on a PC with

Intel Xeon at 3.16GHz and 8GB memory.

As can be observed from Table 7.2, the exact CSE algorithm finds similar or better

solutions than the CSE heuristic of [12]. The difference of solutions between the

CSE heuristic and the exact CSE algorithm under CSD is 1 CSA block on average.

Also, the exact CSE algorithm finds better solutions than the graph-based heuristic

of [13] on Filter 4, 5, and 6 when coefficients are defined under MSD. We note

that the approximate algorithm finds similar solutions with the exact algorithm under

MSD using less computational effort. Observe that the approximate algorithm under

general number representation obtains the same or better results than the graph-based

heuristic of [13]. The difference of solutions between the graph-based heuristic and

the approximate algorithm under general number representation is 1.2 CSA blocks on

average.

7.5 Conclusions

In this chapter, we introduce an exact CSE algorithm designed for the minimization

of the number of CSA blocks in the implementation of the multiplier block of a

digital FIR filter. We also present an approximate algorithm based on the exact CSE

algorithm that considers limited implementations of the coefficients. It is shown that

the approximate algorithm obtains similar results with the exact CSE algorithm using

130

a little computational effort. Furthermore, the approximate algorithm is extended to

handle coefficients under general number representation that achieves more possible

implementations of the coefficients. The proposed algorithms in this chapter, exact

and approximate, have been tested on randomly generated and FIR filter instances

and it is shown that the proposed algorithms can be applied on real size instances.

Also, we compare our algorithms with the previously proposed heuristics. It is

observed from the experimental results that the exact and approximate algorithms

give much better results than the CSE heuristic and the approximate algorithm under

general number representation obtains more promising solutions than the graph-based

heuristic.

131

132

8. DISCUSSIONS AND CONCLUSIONS

In this thesis, the problem of finding the fewest number of addition/subtraction

operations to implement the multiple constant multiplications has been addressed. We

resorted to the previously proposed exact CSE algorithm that computes the minimum

number of operations solution of the MCM by modeling the MCM problem as a 0-1

ILP problem when constants are defined under a number representation. To extend the

applicability of the exact CSE algorithm to larger size instances, problem reduction

and model simplification techniques that significantly reduce the search space were

introduced. It was shown by the experimental results that the exact CSE algorithm

can be easily applied on real size instances including up to 16 bit-width constants

with these techniques. We note that the minimum solution of the MCM problem

instances including large number of constants, e.g., greater than 30 constants in 16

bit-width, can be obtained in a reasonable time by the exact CSE algorithm, since

large number of constants increases the possible partial term sharing. To cope with

more complex instances that the exact CSE algorithm cannot handle, such as MCM

instances including 24 bit-width constants, we introduced an approximate algorithm

that gives competitive solutions with the exact algorithm and significantly better

results than the previously proposed heuristics. However, since the approximate CSE

algorithm considers more parameters to make a better decision in each iteration of

its heuristic part, the run-time of the approximate algorithm is generally greater than

those of the previously proposed CSE heuristics.

Since the results of the CSE algorithms depend on the number representation, the

exact CSE algorithm was extended to handle the constants under general number

representation. It was observed from the experimental results that the proposed

algorithm under general number representation obtains significantly better solutions

than those of the exact CSE algorithm under any number representation, namely,

binary, CSD, or MSD. However, this advantage comes with the increase in the size

of ILP problems consequently, in the required time of the 0-1 ILP solver to find the

133

minimum solution. However, we note that the exact algorithm under general number

representation can be easily applied on MCM instances including up to 14 bit-width

constants.

We note that since the performance and applicability of the exact algorithms are

related with the 0-1 ILP solvers used to find the minimum solution and there is

a tremendous effort on the design of highly efficient 0-1 ILP solvers, specially on

SAT-based 0-1 ILP solvers, we believe that the MCM problems that cannot be solved

in a reasonable time or cannot be handled by the current 0-1 ILP solvers will be easily

solved in near future.

Furthermore, an exact graph-based algorithm that can be applied on less complex

instances including up to 14 bit-width constants was introduced. Because finding

the minimum number of operations solution of the MCM problem is intractable

on more complex instances, an approximate graph-based algorithm based on the

exact graph-based algorithm was proposed. It was shown by the experimental

results that the proposed approximate algorithm finds similar solutions with the exact

algorithm, and obtains competitive and better results than the prominent graph-based

heuristics. We note that the approximate graph-based algorithm can be easily applied

on instances including up to 18 bit-width constants. Same as the approximate

CSE algorithm, the approximate graph-based algorithm finds a solution using more

computational effort than the efficient graph-based heuristics. This is simply because,

finding the "best" decision at each iteration that gives the "best" final solution requires

to consider more parameters.

From all the experiments, we also observed that the constants as themselves in the

MCM problem is another parameter that determines the MCM problem as a hard

problem for the exact, approximate, and heuristic algorithms additional to other

parameters, i.e., the number of constants and their size.

To apply the exact CSE algorithm on more sophisticated problems such as, the

minimization of the number of operations under a delay constraint, the minimization

of area in terms of gate-level metrics, and the minimization of the number of CSA

blocks in MCM, we also introduced an alternative optimization model.

134

To design an exact CSE algorithm for the MCM problem under a delay constraint,

the delay constraints were determined and added to the 0-1 ILP problem that is

formalized to find the minimum number of operations solutions. To cope with large

size instances, an approximate CSE algorithm that finds competitive solutions with

the exact CSE algorithm and better solutions than the efficient CSE heuristics was

introduced.

To design an exact CSE algorithm that minimizes the area of the MCM in terms

of gate-level metrics, we relied on the actual architectures based on HAs and FAs

for addition and subtraction operations under unsigned and signed input models and

formalized the minimization of area problem as a 0-1 ILP problem. It was shown

by the experimental results that if the objective is limited to the minimization of the

number of operations, the actual area of the hardware implementation can be far from

the optimum.

To design an exact CSE algorithm for the minimization of the number of CSA

blocks in MCM, initially, all possible implementations of constants using CSA blocks

were found when constants are defined under a number representation and then, the

optimization problem was modeled as a 0-1 ILP problem. Also, an approximate

CSE algorithm that considers the limited implementations of constants was presented.

Furthermore, the approximate CSE algorithm was extended to handle the constants

under general number representation. It was shown by the experimental results that

the exact and approximate algorithms give much better results than the CSE heuristic

and the approximate algorithm under general number representation obtains more

promising solutions than the prominent graph-based heuristic.

As future work, we plan to apply the proposed algorithms to the systems that include

MCM such as, two-dimensional digital FIR filters and linear DSP transforms. Also,

we plan to apply the approximate graph-based algorithm designed for the MCM

problem to more sophisticated MCM problems.

135

136

REFERENCES

[1] Nguyen, H. and Chatterjee, A., 2000. Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis, IEEE Transactions on VLSI, 8(4), 419–424.

[2] Cappello, P. and Steiglitz, K., 1984. Some Complexity Issues in Digital
Signal Processing, IEEE Transactions on Acoustics, Speech, and Signal
Processing, 32(5), 1037–1041.

[3] Gustafsson, O. and Wanhammar, L., 2002. ILP Modelling of the
Common Subexpression Sharing Problem, Proceedings of International
Conference on Electronics, Circuits and Systems, pp. 1171–1174.

[4] Flores, P., Monteiro, J. and Costa, E., 2005. An Exact Algorithm for the
Maximal Sharing of Partial Terms in Multiple Constant Multiplications,
Proceedings of International Conference on Computer-Aided Design,
pp. 13–16.

[5] Kang, H.J. and Park, I.C., 2001. FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders, IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 48(8),
770–777.

[6] Hosangadi, A., Fallah, F. and Kastner, R., 2005. Simultaneous Optimization
of Delay and Number of Operations in Multiplierless Implementation
of Linear Systems, Proceedings of International Workshop on Logic
Synthesis.

[7] Costa, E., Flores, P. and Monteiro, J., 2005. Maximal Sharing of Partial Terms
in MCM under Minimal Signed Digit Representation, Proceedings of
IEEE European Conference on Circuit Theory and Design, pp. 221–224.

[8] Dempster, A., Demirsoy, S. and Kale, I., 2002. Designing Multiplier Blocks
with Low Logic Depth, Proceedings of IEEE International Symposium
on Circuits and Systems, pp. 773–776.

[9] Johansson, K., Gustafsson, O. and Wanhammar, L., 2005. A Detailed
Complexity Model for Multiple Constant Multiplication and an
Algorithm to Minimize the Complexity, Proceedings of IEEE European
Conference on Circuit Theory and Design, pp. 465–468.

[10] Kim, T., Jao, W. and Tjiang, S., 1998. Circuit Optimization using
Carry-Save-Adder Cells, IEEE Transactions on Computer-Aided Design
of Integrated Circuits, 17(10), 974–984.

137

[11] Verna, A. and Ienne, P., 2004. Improved Use of the Carry-Save Representation
for the Synthesis of Complex Arithmetic Circuits, Proceedings of
International Conference on Computer-Aided Design, pp. 791–798.

[12] Hosangadi, A., Fallah, F. and Kastner, R., 2006. Optimizing High
Speed Arithmetic Circuits using Three-Term Extraction, Proceedings of
Design, Automation and Test in Europe Conference, pp. 1294–1299.

[13] Gustafsson, O., Dempster, A. and Wanhammar, L., 2004. Multiplier
Blocks using Carry-Save Adders, Proceedings of IEEE International
Symposium on Circuits and Systems, pp. 473–476.

[14] Aksoy, L., Gunes, E., Costa, E., Flores, P. and Monteiro, J., 2007. Effect
of Number Representation on the Achievable Minimum Number of
Operations in Multiple Constant Multiplications, Proceedings of IEEE
Workshop in Signal Processing Systems, pp. 424–429.

[15] Aksoy, L., Costa, E., Flores, P. and Monteiro, J., 2008. Exact
and Approximate Algorithms for the Optimization of Area and
Delay in Multiple Constant Multiplications, IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 27(6), 1013–1026.

[16] Aksoy, L., Costa, E., Flores, P. and Monteiro, J., 2006. ASSUMEs: Heuristic
Algorithms for Optimization of Area and Delay in Digital Filter
Synthesis, Proceedings of International Conference on Electronics,
Circuits and Systems, pp. 748–751.

[17] Aksoy, L., Costa, E., Flores, P. and Monteiro, J., 2007. Minimum Number
of Operations under a General Number Representation for Digital Filter
Synthesis, Proceedings of IEEE European Conference on Circuit Theory
and Design, pp. 252–255.

[18] Aksoy, L., Gunes, E. and Flores, P., 2008. An Exact Breadth-First
Search Algorithm for the Multiple Constant Multiplications Problem,
Proceedings of IEEE Norchip Conference, pp. 41–46.

[19] Aksoy, L. and Gunes, E., 2008. An Approximate Algorithm for the
Multiple Constant Multiplications Problem, Proceedings of Symposium
on Integrated Circuits and Systems Design, pp. 58–63.

[20] Aksoy, L., Costa, E., Flores, P. and Monteiro, J., 2006. Optimization of Area
under a Delay Constraint in Digital Filter Synthesis using SAT-based
Integer Linear Programming, Proceedings of Design Automation
Conference, pp. 669–674.

[21] Aksoy, L., Costa, E., Flores, P. and Monteiro, J., 2007. Optimization of Area
in Digital FIR Filters using Gate-Level Metrics, Proceedings of Design
Automation Conference, pp. 420–423.

[22] Aksoy, L. and Gunes, E., 2008. Area Optimization Algorithms in High-Speed
Digital FIR Filter Synthesis, Proceedings of Symposium on Integrated
Circuits and Systems Design, pp. 64–69.

138

[23] Avizienis, A., 1961. Signed-digit Number Representation for Fast Parallel
Arithmetic, IRE Transactions on Electronic Computers, EC-10,
389–400.

[24] Garner, H., 1965. Number Systems and Arithmetic, Advances in Computers,
6, 131–194.

[25] Reitwiesner, G., 1960. Binary Arithmetic, Advances in Computers, 1,
261–265.

[26] Backenius, E., Sall, E. and Gustafsson, O., 2006. Bidirectional Conversion
to Minimum Signed-Digit Representation, Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 2413–2416.

[27] Xu, F., Chang, C.H. and Jong, C.C., 2004. HWP: A New Insight into
Canonical Signed Digit, Proceedings of IEEE International Symposium
on Circuits and Systems, pp. 201–204.

[28] Park, I.C. and Kang, H.J., 2001. Digital Filter Synthesis Based on Minimal
Signed Digit Representation, Proceedings of Design Automation
Conference, pp. 468–473.

[29] Larrabee, T., 1992. Test Pattern Generation Using Boolean Satisfiability, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 11(1),
4–15.

[30] Cook, S., 1971. The Complexity of Theorem-Proving Procedures, Proceedings
of Third Annual ACM Symposium on Theory of Computing, pp. 151–158.

[31] Devadas, S., Keutzer, K. and Malik, S., 1993. Computation of Floating Mode
Delay in Combinational Circuits: Practice and Implementation, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 12(12),
1923–1936.

[32] Mishchenko, A., Chatterjee, S., Brayton, R. and Een, N., 2006.
Improvements to Combinational Equivalence Checking, Proceedings of
International Conference on Computer-Aided Design, pp. 836–843.

[33] Smith, A., Veneris, A., Ali, M. and Viglas, A., 2005. Fault Diagnosis and
Logic Debugging using Boolean Satisfiability, IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 24(10), 1606–1621.

[34] Flores, P., Neto, H. and Marques-Silva, J., 2001. An Exact Solution to
the Minimum Size Test Pattern Problem, ACM Transactions on Design
Automation of Electronic Systems, 6(4), 629–644.

[35] Fuhrer, R. and Nowick, S., 1998. Exact Optimal State Minimization for
2-Level Output Logic, Proceedings of International Workshop on Logic
Synthesis.

[36] Taylor, B. and Pileggi, L., 2007. Exact Combinatorial Optimization Methods
for Physical Design of Regular Log, Proceedings of Design Automation
Conference, pp. 344–349.

139

[37] Zhang, H., 1997. SATO: An Efficient Propositional Prover, Proceedings of
International Conference on Automated Deduction, pp. 272–275.

[38] Selman, B., Levesque, H. and Mitchell, D., 1992. A New Method for Solving
Hard Satisfiability Problems, Proceedings of Tenth National Conference
on Artificial Intelligence, pp. 440–446.

[39] Selman, B., Kautz, H. and Cohen, B., 1994. Noise Strategies for Improving
Local Search, Proceedings of Twelfth National Conference on Artificial
Intelligence, pp. 337–343.

[40] Spears, V., 1996. Simulated Annealing for Hard Satisfiability Problems,
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 26, 533–558.

[41] Gottlieb, J., Marchiori, E. and Rossi, C., 2002. Evolutionary Algorithms for
the Satisfiability Problem, Evolutionary Computation, 10(1), 35–50.

[42] Lardeux, F., Saubion, F. and Hao, J.K., 2006. GASAT: A Genetic
Local Search Algorithm for the Satisfiability Problem, Evolutionary
Computation, 14(2), 223–253.

[43] Aksoy, L. and Gunes, E., 2006. An Evolutionary Local Search Algorithm for
the Satisfiability Problem, Lecture Notes in Computer Science, 3949,
185–193.

[44] Davis, M., Logemann, G. and Loveland, D., 1962. A Machine Program for
Theorem-Proving, Communications of the Association for Computing
Machinery, 5, 394–397.

[45] Lynce, I., 2004. Propositional Satisfiability: Techniques, Algorithms and
Applications, Ph.D. thesis, Universidade Técnica de Lisboa, Instituto
Superior Técnico.

[46] Marques-Silva, J. and Sakallah, K., 1999. GRASP: A Search Algorithm
for Propositional Satisfiability, IEEE Transactions on Computers, 48(5),
506–521.

[47] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S., 2001.
Chaff: Engineering an Efficient SAT Solver, Proceedings of Design
Automation Conference, pp. 530–535.

[48] Een, N. and Sorensson, N., 2003. An Extensible SAT-solver, Proceedings of
International Conference on Theory and Applications of Satisfiability
Testing, pp. 502–518.

[49] Aloul, F., Ramani, A., Markov, I. and Sakallah, K., 2002. Generic ILP
versus Specialized 0-1 ILP: An Update, Proceedings of International
Conference on Computer-Aided Design, pp. 450–457.

[50] Barth, P., 1995. A Davis-Putnam Based Enumeration Algorithm for Linear
Pseudo-Boolean Optimization, Technical report, Max-Planck-Institut
Fur Informatik.

140

[51] Warners, J., 1998. A Linear-time Transformation of Linear Inequalities
into Conjunctive Normal Form, Information Processing Letters, 68(2),
63–69.

[52] Een, N. and Sorensson, N., 2006. Translating Pseudo-Boolean Constraints into
SAT, Journal on Satisfiability, Boolean Modeling and Computation, 2,
1–26.

[53] Villa, T., 1995. Encoding Problems in Logic Synthesis, Ph.D. thesis, EECS
Department, University of California, Berkeley.

[54] Coudert, O., 1996. On Solving Covering Problems, Proceedings of Design
Automation Conference, pp. 197–202.

[55] Liao, S. and Devadas, S., 1997. Solving Covering Problems using LPR-Based
Lower Bounds, Proceedings of Design Automation Conference, pp.
117–120.

[56] Manquinho, V. and Marques-Silva, J., 2002. Search Pruning Techniques
in SAT-based Branch-and-Bound Algorithms for the Binate Covering
Problem, IEEE Transactions on Computer-Aided Design of Integrated
Circuits, 21(5), 505–516.

[57] Ahuja, T., Magnanti, T. and Orlin, J., 1993. Network Flows: Theory,
Algorithms, and Applications, Prentice Hall.

[58] Villa, T., Kam, T., Brayton, R. and Sangiovanni-Vincentelli, A., 1997.
Explicit and Implicit Algorithms for Binate Covering Problems, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 16(7),
677–691.

[59] Manquinho, V. and Marques-Silva, J., 2005. Effective Lower Bounding
Techniques for Pseudo-Boolean Optimization, Proceedings of Design,
Automation and Test in Europe Conference, pp. 660–665.

[60] Sheini, H. and Sakallah, K., 2006. Pueblo: A Hybrid Pseudo-Boolean SAT
Solver, Journal on Satisfiability, Boolean Modeling and Computation, 2,
61–96.

[61] Pseudo-Boolean Evaluation PB’07 website,
<http://www.cril.univ-artois.fr/PB07/>, accessed at 02.05.2009.

[62] glpPB website, <http://www.eecs.umich.edu/∼hsheini/>, accessed at
02.05.2009.

[63] Knuth, D., 1969. The Art of Computer Programming: Seminumerical
Algorithms Volume 2, Addison-Wesley.

[64] Gustafsson, O., 2007. Lower Bounds for Constant Multiplication Problems,
IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 54(11), 974–978.

141

[65] Wu, H. and Hasan, M., 1999. Closed-form Expression for the Average Weight
of Signed-Digit Representations, IEEE Transactions on Computers,
48(8), 848–851.

[66] Lefevre, V., 2001. Multiplication by an Integer Constant, Technical report,
Institut National de Recherche en Informatique et en Automatique.

[67] Dimitrov, V., Imbert, L. and Zakaluzny, A., 2007. Multiplication by a
Constant is Sublinear, Proceedings of the IEEE Symposium on Computer
Arithmetic, pp. 261–268.

[68] Dempster, A. and Macleod, M., 1994. Constant Integer Multiplication using
Minimum Adders, IEE Proceedings - Circuits, Devices, and Systems,
141(5), 407–413.

[69] Gustafsson, O., Dempster, A. and Wanhammar, L., 2002. Extended Results
for Minimum-adder Constant Integer Multipliers, Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 73–76.

[70] Jain, R., Yang, P. and Yoshino, T., 1991. FIRGEN: A Computer-Aided
Design System for High Performance FIR Filter Integrated Circuits,
IEEE Transactions on Signal Processing, 39(7), 1655–1668.

[71] Mehendale, M., Sherlekar, S. and Venkatesh, G., 1995. Techniques for Low
Power Realization of FIR Filters, Proceedings of Design Automation
Conference, pp. 404–416.

[72] Samueli, H., 1989. An Improved Search Algorithm for the Design of
Multiplierless FIR Filters with Power-of-Two Coefficients, IEEE
Transactions on Circuits and Systems, 36(7), 1044–1047.

[73] Nannarelli, A., Re, M. and Cardarilli, G., 2001. Tradeoffs between Residue
Number System and Traditional FIR Filters, Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 305–308.

[74] Muhammad, K. and Roy, K., 2002. A Graph Theoretic Approach for
Synthesizing Very Low-Complexity High-Speed Digital Filters, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 21(2),
204–216.

[75] Hartley, R., 1991. Optimization of Canonic Signed Digit Multipliers for Filter
Design, Proceedings of IEEE International Symposium on Circuits and
Systems, pp. 1992–1995.

[76] Hartley, R., 1996. Subexpression Sharing in Filters using Canonic Signed
Digit Multipliers, IEEE Transactions on Circuits and Systems II, 43(10),
677–688.

[77] Hosangadi, A., Fallah, F. and Kastner, R., 2005. Reducing Hardware
Complexity of Linear DSP Systems by Iteratively Eliminating
Two-Term Common Subexpressions, Proceedings of Asia and South
Pacific Design Automation Conference, pp. 523–528.

142

[78] Potkonjak, M., Srivastava, M. and Chandrakasan, A., 1996. Multiple
Constant Multiplications: Efficient and Versatile Framework and
Algorithms for Exploring Common Subexpression Elimination, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 15(2),
151–165.

[79] Pasko, R., Schaumont, P., Derudder, V., Vernalde, S. and Durackova, D.,
1999. A New Algorithm for Elimination of Common Subexpressions,
IEEE Transactions on Computer-Aided Design of Integrated Circuits,
18(1), 58–68.

[80] Xu, F., Chang, C.H. and Jong, C.C., 2005. Contention Resolution Algorithm
for Common Subexpression Elimination in Digital Filter Design, IEEE
Transactions on Circuits and Systems II: Express Briefs, 52(10),
695–700.

[81] Mahesh, R. and Vinod, A., 2008. A New Common Subexpression Elimination
Algorithm for Realizing Low-Complexity Higher Order Digital Filters,
IEEE Transactions on Computer-Aided Design of Integrated Circuits,
27(2), 217–229.

[82] Yurdakul, A. and Dundar, G., 1999. Multiplierless Realization of Linear DSP
Transforms by Using Common Two-Term Expressions, The Journal of
VLSI Signal Processing, 22(3), 163–172.

[83] Costa, E., Flores, P. and Monteiro, J., 2006. Exploiting General Coefficient
Representation for the Optimal Sharing of Partial Products in MCMs,
Proceedings of Symposium on Integrated Circuits and Systems Design,
pp. 161–166.

[84] Dempster, A. and Macleod, M., 2004. Using All Signed-Digit Representations
To Design Single Integer Multipliers Using Subexpression Elimination,
Proceedings of IEEE International Symposium on Circuits and Systems,
pp. 165–168.

[85] Dempster, A. and Macleod, M., 2004. Digital Filter Design using
Subexpression Elimination and All Signed-Digit Representations,
Proceedings of IEEE International Symposium on Circuits and Systems,
pp. 169–172.

[86] Bull, D. and Horrocks, D., 1991. Primitive Operator Digital Filters, IEE
Proceedings G: Circuits, Devices and Systems, 138(3), 401–412.

[87] Dempster, A. and Macleod, M., 1995. Use of Minimum-Adder Multiplier
Blocks in FIR Digital Filters, IEEE Transactions on Circuits and Systems
II, 42(9), 569–577.

[88] Voronenko, Y. and Püschel, M., 2007. Multiplierless Multiple Constant
Multiplication, ACM Transactions on Algorithms, 3(2).

[89] Han, J.H. and Park, I.C., 2008. FIR Filter Synthesis Considering Multiple
Adder Graphs for a Coefficient, IEEE Transactions on Computer-Aided
Design of Integrated Circuits, 27(5), 958–962.

143

[90] Velev, M., 2004. Efficient Translation of Boolean Formulas to CNF in Formal
Verification of Microprocessors, Proceedings of Asia and South Pacific
Design Automation Conference, pp. 310–315.

[91] Spiral website, <http://www.spiral.net>, accessed at 02.05.2009.

[92] Peiro, M., Boemo, E. and Wanhammar, L., 2002. Design of High-Speed
Multiplierless Filters using a Nonrecursive Signed Common
Subexpression Algorithm, IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, 49(3), 196–203.

[93] Potkonjak, M., Srivastava, M. and Chandrakasan, A., 1994. Efficient
Substitution of Multiple Constant Multiplication by Shifts and Additions
using Iterative Pairwise Matching, Proceedings of Design Automation
Conference, pp. 189–194.

[94] Kang, H.J., Kim, H. and Park, I.C., 2000. FIR Filter Synthesis Algorithms
for Minimizing the Delay and the Number of Adders, Proceedings of
International Conference on Computer-Aided Design, pp. 51–54.

[95] Hawley, R., Wong, B., Lin, T.J., Laskowski, J. and Samueli, H.,
1996. Design Techniques for Silicon Compiler Implementations of
High-Speed FIR Digital Filters, IEEE Journal of Solid-State Circuits,
31(5), 656–667.

[96] Gustafsson, O., Ohlsson, H. and Wanhammar, L., 2001. Minimum-Adder
Integer Multipliers using Carry-Save Adders, Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 709–712.

144

CURRICULUM VITA

Candidate’s full name: Levent Aksoy

Place and date of birth: İstanbul, 19.09.1976

Permanent Address: Tepeüstü Temel sokak No:65 Küçükçekmece,
34290, İstanbul

Universities and
Colleges attended: B.Sc., Yıldız Technical University

M.Sc., İstanbul Technical University

Publications:

• Aksoy, L. and Gunes, E.O., 2003. COM_TEST: A Test Pattern Generation
System, Proceedings of International Conference on Electrical and Electronics
Engineering, pp. 112-116.

• Aksoy, L. and Sengor, N.S., 2004. Mikroşerit Hat Endüktans Büyüklüğünün Bilgi
Tabanlı Yapay Sinir Ağları ile Modellenmesi, Proceedings of National Conference
on Electrical and Electronics Engineering, pp. 17-21.

• Aksoy, L. and Tekin, O.A., 2005. Hybridization of Local Search Methods
with a Simple Genetic Algorithm for the Satisfiability Problem, Proceedings of
International Symposium on Innovations in Intelligent Systems and Applications,
pp. 235-238.

• Aksoy, L. and Gunes, E.O., 2005. An Evolutionary Local Search Algorithm
for the Satisfiability Problem, Proceedings of Turkish Symposium on Artificial
Intelligence and Neural Networks, pp. 222-230.

• Aksoy, L. and Gunes, E.O., 2006. An Evolutionary Local Search Algorithm for
the Satisfiability Problem, Lecture Notes in Computer Science, 3949, 185-193.

• Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2006. Optimization of Area under
a Delay Constraint in Digital Filter Synthesis Using SAT-Based Integer Linear
Programming, Proceedings of Design Automation Conference, pp. 669-674.

• Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2006. ASSUMEs: Heuristic
Algorithms for Optimization of Area and Delay in Digital Filter Synthesis,
Proceedings of International Conference on Electronics, Circuits and Systems, pp.
748-751.

145

• Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2007. Optimization of Area in
Digital FIR Filters Using Gate-Level Metrics, Proceedings of Design Automation
Conference, pp. 420-423.

• Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2007. Minimum Number of
Operations under a General Number Representation for Digital Filter Synthesis,
Proceedings of European Conference on Circuit Theory and Design, pp. 252-255.

• Aksoy, L., Gunes, E.O., Costa, E., Flores, P. and Monteiro J., 2007. Effect
of Number Representation on the Achievable Minimum Number of Operations
in Multiple Constant Multiplications, Proceedings of IEEE Workshop on Signal
Processing Systems, pp. 424-429.

• Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2008. Exact and Approximate
Algorithms for the Optimization of Area and Delay in Multiple Constant
Multiplications, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(6), 1013-1026.

• Aksoy, L. and Gunes, E.O., 2008. An Approximate Algorithm for the Multiple
Constant Multiplications Problem, Proceedings of Symposium on Integrated
Circuits and Systems Design, pp. 58-63.

• Aksoy, L. and Gunes, E.O., 2008. Area Optimization Algorithms in High-Speed
Digital FIR Filter Synthesis, Proceedings of Symposium on Integrated Circuits and
Systems Design, pp. 64-69.

• Aksoy, L., Gunes, E.O. and Flores P., 2008. An Exact Breadth-First Search
Algorithm for the Multiple Constant Multiplications Problem, Proceedings of
IEEE Norchip Conference, pp. 41-46.

146

