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March 2017 İlhan MUTLU

x



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... x
TABLE OF CONTENTS........................................................................................ xi
ABBREVIATIONS ................................................................................................. xiii
SYMBOLS............................................................................................................... xv
LIST OF TABLES ..................................................................................................xvii
LIST OF FIGURES ................................................................................................ xix
SUMMARY ............................................................................................................. xxi
ÖZET ....................................................................................................................... xxv
1. INTRODUCTION .............................................................................................. 1

1.1 Motivation....................................................................................................... 1
1.2 Literature Survey ............................................................................................ 2
1.3 Goal and Unique Aspect of the Thesis ........................................................... 2
1.4 Structure of the Thesis.................................................................................... 4

2. INTERACTION MEASURES AND DECOUPLING METHODS ............... 7
2.1 Interaction Measures ...................................................................................... 8

2.1.1 Relative gain array.................................................................................. 8
2.1.2 Singular value decomposition and condition number ............................ 10

2.2 Decoupling Methods ...................................................................................... 12
2.2.1 Conventional decoupler .......................................................................... 12
2.2.2 Inverted decoupler .................................................................................. 14
2.2.3 Possible problems and illustrative examples .......................................... 15

3. DIAGONAL DOMINANCE .............................................................................. 19
3.1 Previously Proposed Approaches ................................................................... 20
3.2 Determining Parameter Regions That Achieves Diagonal Dominance.......... 22

3.2.1 Column diagonal dominance conditions ................................................ 25
3.2.2 Row diagonal dominance conditions...................................................... 28

3.3 Weighted Diagonal Dominance...................................................................... 31
3.3.1 Column diagonal dominance.................................................................. 32
3.3.2 Row diagonal dominance ....................................................................... 33
3.3.3 An algorithm to achieve weighted diagonal dominance ........................ 34

3.4 Determination of the Frequency Ranges ........................................................ 35
3.5 Case Studies.................................................................................................... 37

3.5.1 Static diagonal controller........................................................................ 37
3.5.2 Dynamic diagonal controller .................................................................. 45
3.5.3 Frequency ranges.................................................................................... 48

4. STABILITY OF MIMO SYSTEMS ................................................................. 53
4.1 Previously Proposed Approaches ................................................................... 54

xi



4.1.1 First studies on stability.......................................................................... 54
4.1.2 Major studies in the 20th century ........................................................... 55
4.1.3 Recent studies related with MIMO system stability............................... 56

4.2 Lyapunov Stability.......................................................................................... 58
4.2.1 Lyapunov stability of LTI systems ......................................................... 62

4.3 Lyapunov Equation Based Stability Mapping Approach ............................... 64
4.3.1 Transformations to eliminate redundancy .............................................. 69

4.4 Case Studies.................................................................................................... 70
4.4.1 Case study I: Finite root boundaries....................................................... 71
4.4.2 Case study II: Finite and infinite root boundaries .................................. 76
4.4.3 Case study III: Stability and diagonal dominance.................................. 78

4.5 Further Application Areas .............................................................................. 80
4.5.1 Controller integrity problem................................................................... 81

4.5.1.1 Problem formulation........................................................................ 83
4.5.1.2 Comparison with a benchmark example.......................................... 84

4.5.2 Discrete time systems ............................................................................. 87
4.5.2.1 Lyapunov formulation for discrete time systems............................. 88
4.5.2.2 Calculation of stabilizing PI and PID parameters............................ 91

4.5.3 Robust MPC calculations ....................................................................... 93
4.5.3.1 Robust MPC design based on stabilizing parameter spaces ............ 95
4.5.3.2 Case study: RMPC design for an uncertain system ........................ 97

5. THE CASE OF PARAMETRIC UNCERTAINTIES...................................... 101
5.1 Diagonal Dominance ...................................................................................... 102

5.1.1 Case study for diagonal dominance........................................................ 106
5.2 Stability of Parameter Uncertain MIMO Systems.......................................... 110

5.2.1 Parameter dependent Lyapunov functions and Lyapunov equation
based approach ....................................................................................... 111

5.2.2 A modified Kharitonov approach for MIMO systems............................ 115
6. CONCLUSION ................................................................................................... 123
REFERENCES........................................................................................................ 127
APPENDICES......................................................................................................... 141

APPENDIX A.1: Coefficient Terms for Weighted Diagonal Dominance ........... 143
APPENDIX A.2: Proof of Theorem 4.3 .............................................................. 144

CURRICULUM VITAE......................................................................................... 151

xii



ABBREVIATIONS

ARE : Algebraic Riccati Equation
CDD : Column Diagonal Dominance
CN : Condition Number
CRB : Complex Root Boundary
IRB : Infinite Root Boundary
LHP : Left Half Plane
LPV : Linear Parameter Varying
LTI : Linear Time Invariant
LTIPD : Linear Time Invariant Parameter Dependent
LTV : Linear Time Varying
MIMO : Multi Input Multi Output
MPC : Model Predictive Control
PD : Proportional Derivative
PI : Proportional Integral
PID : Proportional Integral Derivative
PSA : Parameter Space Approach
RDD : Row Diagonal Dominance
RGA : Relative Gain Array
RHP : Right Half Plane
RMPC : Robust Model Predictive Control
RRB : Real Root Boundary
SISO : Single Input Single Output
SVD : Singular Value Decomposition
TFM : Transfer Function Matrix
TITO : Two Input Two Output

xiii



xiv



SYMBOLS

R : Set of real numbers.
X : Set of admissible state values.
U : Set of admissible input values.
K : Set of admissible controller values.
x : State vector.
µci : Weighting factor for column diagonal dominance
µri : Weighting factor for row diagonal dominance
V (x) : Candidate Lyapunov function.
A(k) : Closed loop system matrix.
P(k) : Lyapunov matrix.
M(k) : Kronecker product based matrix.
I : Identity matrix.
D : Pre-compensator transfer function matrix.
λi : Eigenvalues of the corresponding matrix.
Gcl : Closed loop transfer function.
G(s) : Transfer function of the plant.
K(s) : Transfer function of the controller.
ui : Control sign.
yi : System output.
Re : Real part of the polynomial.
Im : Imaginary part of the polynomial.
j : Imaginary unit.
kd : Derivative gain for PID controller.
ki : Integral gain for PID controller.
kp : Proportional gain for PID controller.
kp1,kp2 : Diagonal static controller parameters.
αi : Real part of the controller.
βi : Imaginary part of the controller.
r : Reference input.
s : Complex argument for the Laplace transform.
× : Schur multiplication.
⊗ : Kronecker product.
δ (s,qi) : Parameter uncertain characteristic polynomial.
δ (s) : Characteristic polynomial.
G(s,qi) : Uncertain plant transfer function.
qi : Uncertain parameters.

xv



xvi



LIST OF TABLES

Page

Table 3.1 : Frequency ranges and the intervals of controller parameters that
satisfy column diagonal dominance conditions. ................................. 51

Table 5.1 : Derived weighting factors for ω = 0................................................... 107
Table 5.2 : Derived weighting factors for 10≥ ω ≥ 0.......................................... 108
Table 5.3 : Upper bounds of the uncertain coefficients a0,a1,a2 and a3 in the

first quadrant. ...................................................................................... 119
Table 5.4 : Lower bounds of the uncertain coefficients a0,a1,a2 and a3 in the

first quadrant. ...................................................................................... 119

xvii



xviii



LIST OF FIGURES

Page

Figure 2.1 : Process interaction in a TITO system................................................ 7
Figure 2.2 : Conventional decoupler block diagram. ............................................ 13
Figure 2.3 : Inverted decoupler block diagram. .................................................... 14
Figure 3.1 : Block diagram of the considered control system............................... 23
Figure 3.2 : Controller parameter regions for diagonal dominance at ω = 0. ..... 38
Figure 3.3 : Parameter regions that satisfy both CDD and RDD at ω = 0. .......... 39
Figure 3.4 : Controller parameter regions for weighted diagonal dominance at

ω = 0 (µc1 ,µr1 = 2 µc2,µr2 = 3). ....................................................... 40
Figure 3.5 : Parameter regions that satisfy weighted CDD and RDD at ω = 0

(µc1,µr1 = 2 µc2,µr2 = 3). .................................................................. 41
Figure 3.6 : kp1− kp2 regions that achieve CDD and RDD for 100≥ ω ≥ 0. ...... 42
Figure 3.7 : kp1 − kp2 regions that achieve CDD and RDD for 100 ≥ ω ≥ 0

(µc1,µr1 = 2 and µc2,µr2 = 3)............................................................. 42
Figure 3.8 : Nyquist Arrays and Gershgorin Discs for 100 ≥ ω ≥ 0 (kp1 =

0.25,kp2 = 2.5).................................................................................... 43
Figure 3.9 : Diagonal dominance ratio plots for 100 ≥ ω ≥ 0 (kp1 =

0.25,kp2 = 2.5).................................................................................... 44
Figure 3.10: Parameter regions that satisfy weighted CDD and RDD at ω = 10

(µc1 ,µr1,µc2,µr2 = 2).......................................................................... 46
Figure 3.11: kp1 − kp2 regions that achieve CDD and RDD for 100 ≥ ω ≥ 0

(µc1 ,µr1,µc2,µr2 = 2).......................................................................... 46
Figure 3.12: Gershgorin disc plot related with 2nd case study. ............................. 47
Figure 3.13: Diagonal dominance ratio plot. ......................................................... 48
Figure 3.14: a f1(ω)k2

p2
+b f1(ω)kp2 + c f1(ω) plot for different frequencies......... 49

Figure 3.15: a f2(ω)k2
p1
+b f2(ω)kp1 + c f2(ω) plot for 0≥ ω ≥ 0.2. ..................... 50

Figure 3.16: a f2(ω)k2
p1
+b f2(ω)kp1 + c f2(ω) plot for 7≥ ω ≥ 11. ...................... 50

Figure 4.1 : Lyapunov stability.............................................................................. 59
Figure 4.2 : Geometric representaion of the sets used in the proof....................... 61
Figure 4.3 : Corresponding eigenvalue characteristics of P and A with respect

to RRB, CRB and IRB. ....................................................................... 67
Figure 4.4 : Block diagram of the considered control system............................... 71
Figure 4.5 : Case study I: Stabilizing parameter space. ........................................ 73
Figure 4.6 : Case study I: Eigenvalues of P for k2 = 0. ........................................ 75
Figure 4.7 : Case study II: Stabilizing parameter space........................................ 76
Figure 4.8 : Case study II: Eigenvalues of P for k2 = 0 and k3 =−2................... 76
Figure 4.9 : Case study III: Stabilizing parameter space. ..................................... 78
Figure 4.10: Case study II: Eigenvalues of P for k2 = 0. ....................................... 78

xix



Figure 4.11: Case study III: Stabilizing parameter region. .................................... 79
Figure 4.12: Case study III: Parameter regions that achieve both diagonal

dominance conditions at ω = 0 rad/s and stability criteria................. 79
Figure 4.13: Case study III: Parameter regions that achieve both diagonal

dominance conditions for 100 rad/s ≥ ω ≥ 0 rad/s and stability
criteria. ................................................................................................ 80

Figure 4.14: Controller integrity: Stabilizing region for the nominal system........ 85
Figure 4.15: Controller integrity: Stabilizing region for the system to possess

integrity. .............................................................................................. 86
Figure 4.16: Controller integrity: Comparison between Lyapunov approach

and approach in literature.................................................................... 86
Figure 4.17: Discrete systems: Stabilizing boundaries for PI controller. .............. 92
Figure 4.18: Discrete systems: Stabilizing region for PI controller....................... 93
Figure 4.19: Discrete systems: Stabilizing region for PID controller. ................... 94
Figure 4.20: Robust MPC: Stabilizing parameter region....................................... 98
Figure 4.21: Robust MPC: Stabilizing controller parameter space. ..................... 98
Figure 4.22: Closed-loop control performance assured by robust MPC. .............. 100
Figure 5.1 : kp1 − kp2 region that makes the closed loop parameter uncertain

system diagonal dominant at ω = 0.................................................... 108
Figure 5.2 : kp1 − kp2 region that makes the closed loop parameter uncertain

system diagonal dominant at 10≥ ω ≥ 0........................................... 109
Figure 5.3 : Diagonal dominance ratio plots for parametric uncertain system

for 10≥ ω ≥ 0. ................................................................................... 109
Figure 5.4 : k1−q region that make the closed loop uncertain system stable. ..... 113
Figure 5.5 : q1−q2 region that make the closed loop uncertain system stable. ... 114
Figure 5.6 : k1− k2 region that make the closed loop system robustly stable. .... 120
Figure 5.7 : Derived k1−k2 region that make the closed loop uncertain system

stable. .................................................................................................. 121
Figure 5.8 : Derived k1−k2 region that make the closed loop uncertain system

stable by griding uncertain parameters. .............................................. 121

xx



DETERMINATION OF PARAMETER REGIONS FOR
DIAGONAL DOMINANCE AND STABILITY OF MIMO SYSTEMS

SUMMARY

Most of the industrial plants include more than one input and output variable.
Compared to Single Input Single Output (SISO) systems, such systems include
different structural properties. For instance, an output variable is effected by all input
variables in general.

On the other hand, in terms of controller structures, researchers have focused on
two main approaches for such systems, which are "centralized" and "decentralized"
controllers. However, it can be proposed that decentralized controllers are preferred
more in practice due to various reasons like less number of tuning parameter,
possibility to apply single loop controller design methods, ease of use for operators
etc. Whereas, in general, performance and efficiency of such controllers reduce when
there are significant interactions between different input-output pairs in a Multi Input
Multi Output (MIMO) system.

Reducing the interactions between different input-output pairs in MIMO systems is
crucial in terms of decentralized controller design due to the previously mentioned
reasons. Diagonal dominance which is a weaker condition compared to decoupling, is
one of the approaches that can be used to reduce interactions in MIMO systems. One
input variable is strongly related with one specific output variable in diagonal dominant
systems. One of the main aims of this thesis is to determine controller parameter
regions that achieve diagonal dominance conditions. Additionally, it is also aimed
to determine stabilizing parameter spaces, since diagonal dominance does not indicate
stability in general. As a result, controller parameter regions that achieve both diagonal
dominance and stability conditions in closed loop are determined in this thesis as the
first step of decentralized controller design.

In literature, the diagonal dominance concept has gained attraction since the pioneering
studies of Rosenbrock in early 1970s. However, in the meantime most of the
researchers focused on determining a specific controller parameter pair that optimizes
a predetermined condition. Such a case may restrict the designer in the next steps of
the design process. Additionally, the number of studies are limited that investigates
the diagonal dominance characteristics of the determined controller parameters in case
uncertainties or checks how the system is close to the diagonal dominance boundaries.

Two Input Two Output (TITO) systems are special subset of MIMO systems since in
practice many MIMO systems can be treated as several TITO subsystems as proposed
in literature. In terms of diagonal dominance, particularly, TITO systems and diagonal
type controllers are discussed in detail, since it is aimed to determine necessary and
sufficient conditions on diagonal dominance in terms of controller parameters. For
such systems, exact conditions on the controller parameters in terms of both column
and row diagonal dominance are derived at a given fixed frequency. Derived results
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are also valid for finite number of frequencies and practically applicable for a given
frequency range. Moreover, weighting factors are added to the original definition
of diagonal dominance in order to derive controller parameter regions that achieve
better diagonal dominance ratios. Necessary and sufficient conditions on diagonal type
controllers are also derived for the weighted diagonal dominance problem. Lastly,
critical frequencies that may possibly change the interval characteristics of static
diagonal controllers for the column diagonal dominance are derived. Effectiveness
of the derived results in terms of diagonal dominance are demonstrated over several
case studies using Gershgorin Disc plots and diagonal dominance ratio plots.

On the other hand, a Lyapunov equation based stability mapping approach is proposed
within the scope of this thesis to derive stabilizing controller parameter spaces of a
given MIMO system. In the present approach, it is not necessary to calculate singular
frequencies or apply frequency sweeping that most of the frequency based approaches
require. From the Lyapunov point of view, positive definiteness of the Lyapunov
matrix P(k) is necessary and sufficient for LTI systems. However, considering the
numerators and denominators of the leading principal minors it is required to solve 2n
parametric equation in order to determine positive definiteness of P(k). This number is
reduced to n+1 at the first step. After that, Lyapunov matrix equation is reduced to the
standard set of equation representation using the Kronecker products and vectorization
operator. At this point, a new matrix M(k) is defined over the Kronecker products
and it is shown that determinant of M(k) is the product of binary combinations of
A(k). Using the relations between the system matrix A(k), Lyapunov matrix P(k) and
M(k), it is shown that it is sufficient to solve at most 2 parametric equations which are
|M(k)|= 0 and |M(k)| → ∞. Determinant of M(k) includes redundant multiplications
of binary combinations of eigenvalue pairs of A(k) due to the matrices P(k) and Q that
are used in Lyapunov formulation are symmetric. In order to eliminate the redundant
multiplications and reduce the computational complexity, elimination and duplication
matrices are introduced as transformation matrices.

In addition to MIMO systems, the proposed stability mapping approach is applicable
to a broad range of systems, further system classes and sub problems where Lyapunov
formulation is possible. In order to demonstrate these properties of the proposed
approach, firstly, controller integrity problem of MIMO systems is discussed in
detail. An approach is proposed to determine stabilizing controller parameter regions
even in case of possible failures related with controller parameters. A benchmark
case study is included and effectiveness of the proposed approach is shown over a
comparative study with a currently existing approach. Additionally, discrete time
systems is also discussed in detail to demonstrate the further application areas of
the proposed Lyapunov equation based stability mapping approach. In this case,
the structure of the Lyapunov equation varies slightly compared to the continuous
time case. Another benefit of the proposed Lyapunov equation based approach is
the opportunity to determine analytical expressions of stability boundaries. So that,
it becomes possible to use Lyapunov equation based stability mapping approach in
optimization based approaches by inserting the stability boundaries as constraints on
such approaches. This case is also addressed through the robust Model Predictive
Control (MPC) problem. Analytical stability boundaries which is derived in the
off-line phase using the proposed stability mapping approach is inserted to the robust
MPC problem formulation to achieve stability. In this way, robust MPC problem
is transformed into the nominal MPC problem. The effectiveness of the proposed
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method is also demonstrated through a benchmark system that is frequently used in
the literature.

Diagonal dominance proposes weaker conditions compared to decoupling. As a result,
it becomes possible to determine controller parameter regions that achieve diagonal
dominance in case of parametric uncertainties. Within the scope of this thesis, two
conservative approaches which are based on triangular inequality and griding are
proposed for the systems that include interval type uncertainties in Transfer Function
Matrix (TFM) elements. Using these approaches diagonal dominance problem of
a parametric uncertain system is transferred to the weighted diagonal dominance
problem of the nominal plant. After that, previously derived results are used to
determine static diagonal controller parameter regions.

Lastly, stability of parameter uncertain multivariable systems is discussed in order to
determine robustly stabilizing parameter spaces. There are two main assumptions on
uncertain parameters in literature. In the first assumption, there is no restriction on
uncertain parameters and it is aimed to determine all uncertain parameter spaces that
preserve stability of the closed loop system. In this case, proposed Lyapunov equation
based stability mapping approach is directly applicable. Contrary to this approach,
many methods that is currently available in the literature include the results obtained
by making some assumptions on the number and the type of uncertain parameters.
The validity of the Lyapunov equation based method has been demonstrated through
different benchmark case studies. On the other hand, in some cases, it is assumed
that upper and lower bounds of uncertain parameters are known. It is aimed to
determine whether the whole polynomial family is stable in all cases where the
uncertain parameters take any value between these known intervals. In some special
cases, it was shown in literature that stability of finite number fixed polynomials
guarantee the stability of whole uncertain polynomial family in case of SISO systems.
However, the characteristic polynomial of MIMO systems includes the multiplication
of free controller parameters and individual transfer functions even in the simplest
cases. As a result, it can be proposed that compared to SISO systems, it is more
difficult to determine the controller parameter areas that provide robust stability in
such systems. In the discussed problem characteristic equation includes both uncertain
parameters that have known upper and lower bounds and free controller parameters. In
this thesis, an approach is presented to determine robustly stabilizing parameter spaces
using the Kharitonov Theorem in accordance with the Lyapunov method by applying
overbounding method on characteristic polynomial coefficients. The proposed method
reduces the computational complexity significantly, since Kharitonov Theorem is used.
However, it must also be noted that calculation of invariant controller parameter sub
regions in terms of overbounding also introduces additional analysis steps.

As a conclusion, in this thesis, it is mainly focused on determining controller parameter
regions of the diagonal type controllers that make both nominal and parametric MIMO
systems diagonal dominant and stable. The results are derived through TITO systems
from the standpoint of diagonal dominance, since it is aimed to determine the necessary
and sufficient conditions. On the other hand, there is no restriction on the system and
controller type for the proposed stability mapping approach.
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MIMO SİSTEMLERİN KÖŞEGEN BASKINLIĞI VE KARARLILIĞI İÇİN
PARAMETRE BÖLGELERİNİN BELİRLENMESİ

ÖZET

Endüstride karşılaşılan sistemlerin birçoğu birden fazla giriş ve çıkış değişkenine
sahiptir. Bu tarz sistemler SISO sistemlerle karşılaştırıldıklarında, birçok farklı yapısal
özellikleri göze çarpmaktadır. Örneğin, en genel durumda herhangi bir çıkış tüm
girişlerden az veya çok etkilenir.

Diğer taraftan, kontrolör türleri açısından bakıldığında ise araştırmacılar genel
olarak "merkezi" ve "merkezi olmayan" olmak üzere iki farklı kontrol yapısına
odaklanmışlardır. Ancak, ayarlanacak parametre sayısının azlığı, dayanıklılık ve
operatör açısından kullanım kolaylığı gibi nedenlerle merkezi olmayan kontrol
yapılarının uygulamalarda daha sık tercih edildiği ileri sürülebilir. Farklı giriş çıkış
çiftleri arasındaki etkileşimlerin önemli boyutlara ulaştığı durumlarda ise bu tür
kontrolörlerin performansı ve etkinliği genel olarak azalır.

Yukarıda bahsedilen nedenlerden dolayı MIMO sistemlerde etkileşimlerin azaltılması
özellikle merkezi olmayan kontrolör tasarımı açısından büyük bir önem arz etmektedir.
MIMO sistemlerde etkileşimleri azaltmak amacıyla kullanılabilecek yöntemlerden
bir tanesi de tam köşegenleştirme ile karşılaştırıldığında daha zayıf bir koşulun
sağlanmasını gerektiren köşegen baskınlık kavramıdır. Köşegen baskın sistemlerde
bir giriş değişkeni özel bir çıkış değişkeni ile diğer çıkışlara oranla çok daha
fazla ilişkilidir. Bu nedenle, bu tezin en temel hedeflerinden bir tanesi MIMO
sistemlerde köşegen baskınlık koşullarını sağlayan kontrolör parametre bölgelerinin
belirlenmesidir. Buna ek olarak, en genel durumda köşegen baskınlık kararlılığı
gerektirmediğinden çok değişkenli sistemleri kararlı kılan kontrolör parametrelerinin
belirlenmesi de yine bu tez kapsamında amaçlanan temel hedeflerden bir diğeridir.
Sonuç olarak, merkezi olmayan kontrolör tasarımına ön adım oluşturacak şekilde
hem köşegen baskınlık hem de kararlılık koşullarının sağlandığı kontrolör parametre
bölgelerinin belirlenmesi hedeflenmektedir.

Literatürde köşegen baskınlık kavramının önemi özellikle Rosenbrock’un 1970’lerin
başındaki çalışmalarından sonra artmıştır. Ancak süreç içerisinde araştırmacıların
büyük bir çoğunluğu köşegen baskınlık ile ilgili olarak belirli bir ölçütü en iyileyen
kontrolör parametre çiftlerinin belirlenmesine yönelmiştir. Bu durum ise bir sonraki
tasarım adımında kısıtlamalara neden olabilmektedir. Buna ek olarak, parametre
belirsizliği durumunda köşegen baskınlığın korunup korunmadığı ve/veya belirlenen
parametre çiftinin köşegen baskınlık sınırlarına ne kadar yakın olduğu genel olarak
detaylı bir şekilde araştırılmamıştır.

Bu tez kapsamında köşegen baskınlık üzerindeki gerek ve yeter koşulların belirlenmesi
hedeflendiğinden, özel olarak TITO sistemler ve köşegen yapıdaki kontrolör durumu
detaylı olarak ele alınmıştır. Bu tarz sistemleri, verilen sabit bir frekans değerinde
köşegen baskın kılan kontrolör parametreleri üzerindeki gerek ve yeter koşullar
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belirlenmiştir. Elde edilen sonuçlar sonlu sayıdaki frekans noktası için de
geçerlidir ve pratik açıdan bakıldığında verilen bir frekans aralığına da genişletilebilir
durumdadır. Buna ek olarak, daha iyi baskınlık oranı sağlayan parametre bölgelerinin
belirlenmesine yönelik olarak orjinal köşegen baskınlık tanımına ağırlık faktörleri
eklenmiş ve bu durum için gerek ve yeter koşullar belirlenmiştir. Son olarak
da statik köşegen kontrolör durumunda sütun köşegen baskınlığı için kontrolör
parametre bölgelerinin yapısını değiştiren kritik frekans değerleri belirlenmiştir.
Elde edilen sonuçların köşegen baskınlık açısından etkinlikleri, örnek sistemler ve
farklı kontrolörler üzerinden, Gershgorin Diskleri ve köşegen baskınlık çizimleri
kullanılarak gösterilmiştir.

MIMO sistemleri kapalı çevrimde kararlı kılan kontrolör parametrelere bölgelerinin
belirlenmesi için ise Lyapunov eşitliği temelli bir yöntem ileri sürülmüştür. Bu yöntem
sayesinde frekans tabanlı yöntemlerde karşılaşılan tekil frekansların hesaplanması
ve/veya frekans taraması gibi adımlara olan ihtiyaç ortadan kaldırılmıştır. Temel
Lyapunov yaklaşımı açısından bakıldığında LTI sistemler için Lyapunov matrisi
olan P(k)’nın pozitif tanımlılığı gerek ve yeter koşuldur. Ancak, Lyapunov matrisi
P(k)’nın pozitif tanımlılığı en genel durumda 2n adet parametrik eşitliğin çözümünü
gerektirir. Yapılan analizle bu sayı önce n+ 1’e indirilmiştir. Ardından, Lyapunov
matris eşitliği Kronecker çarpımları ve vektörizasyon operatörü kullanılarak standart
forma indirgenmiş ve tanımlanan yeni M(k) matrisinin determinantının tartışılan
sistem için bir kararlılık sınırı oluşturduğu sistem matrisi A(k), Lyapunov matrisi
P(k) ve Kronecker çarpımları üzerinden tanımlanan M(k)’nin birbirleriyle olan
ilişkileri üzerinden gösterilmiştir. Dolayısıyla M(k) matrisinin determinantını sıfır ve
sonsuz yapan kontrolör parametrelerinin ilgili sistemin kararlılık sınırını oluşturduğu
belirlenmiştir. Diğer bir deyişle, kararlılık sınırlarının belirlenmesi en fazla iki
adet parametrik ifadenin çözümüne indirgenmiştir. Lyapunov formulasyonunda
kullanılan P(k) ve Q matrislerinin simetrikliğinden kaynaklanan M(k) matrisinin
determinantınındaki tekrarlanan özdeğerler ise eleminasyon ve duplikasyon matrisleri
kullanılarak uygulanan dönüşümler yardımıyla ortadan kaldırılmıştır. Önerilen
yöntemin literatürde var olan PSA gibi yöntemlerle ilişkisi ise sonlu ve sonsuz kök
sınırları üzerinden gösterilmiştir.

Kararlı kılan kontrolör parametre bölgelerinin belirlenmesinde Lyapunov temelli
bir yaklaşım kullanıldığından öne sürülen yöntem sadece MIMO sistemlerde değil
Lyapunov formülasyonunun kurulabildiği çok geniş bir sistem sınıfına ve alt
problemlere de uygulanabilir durumdadır. Bu durumu gösterebilmek amacıyla ilk
olarak MIMO sistemlerde kontolör entegrasyonu problemi ele alınmıştır. MIMO
kontrolörlerde meydana gelebilecek olası hataları göz önünde bulundururak olası
hata durumlarında dahi sistemin kararlılığını garanti etmeyi amaçlayan bu probleme
bir çözüm önerisi sunulmuştur. Önerilen yöntemin etkinliği literatürde var olan
yaklaşımlar üzerinden karşılaştırmalı olarak gösterilmiştir. Buna ek olarak, yine
önerilen Lyapunov eşitliği temelli yöntemin olası diğer kullanım alanlarını vurgulamak
amacıyla ayrık zamanlı sistemlerin kararlılığı ayrıntılı olarak tartışılmıştır. Bu
durumda önerilen yaklaşımın nasıl değiştiği vurgulanmıştır. Lyapunov temelli
yaklaşım ile kararlılık sınırlarının analitik ifadelerinin belirlenmesi de mümkündür. Bu
durum da özellikle optimizasyon temelli tasarım yöntemlerinde farklı kullanım alanları
açmaktadır. Bu kapsamda dayanıklı MPC problemi detaylı olarak ele alınmıştır.
Lyapunov yöntemi kullanılarak belirlenen analitik kararlılık sınırları dayanıklı MPC
problem formülasyonunda kullanılarak ele alınan problem nominal MPC problemine
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dönüştürülmüştür. Önerilen yöntemin etkinliği literatürde sıklıkla kullanılan bir sistem
üzerinden de gösterilmiştir.

Tam köşegenleştirme ile karşılaştırıldığında, köşegen baskınlık daha zayıf bir koşul
olarak ortaya çıkar. Bu nedenle, parametre belirsizlikleri durumunda dahi bu koşulu
sağlayan kontrolör parametrelerini belirlemek mümkün hale gelir. Bu tez kapsamında,
TFM elemanlarının aralık tipi parametre belirsizliği içerdiği TITO sistemler detaylı
olarak tartışılmıştır. Bu tür sistemleri parametre belirsizlikleri durumunda dahi
köşegen baskın kılan statik köşegen kontrolörlerin belirlenmesi hedeflenmiştir. Bu
hedef doğrultusunda üçgen eşitsizliği ve tarama yöntemlerine dayanan iki farklı
konservatif yöntem önerilmiştir. Bu yaklaşımlar kullanılarak tartışılan problem ilk
aşamada nominal sistemin ağırlıklandırılmış baskınlık problemine dönüştürülmüştür.
Sonrasında da önceki bölümlerde elde edilen sonuçlar kullanılarak sonuca gidilmiştir.

Son olarak da belirsiz parametre içeren çok değişkenli sistemlerin kararlılığı
tartışılmıştır. Bu aşamada belirsiz parametreler için literatürde kullanılan iki farklı
varsayıma yer verilmiştir. İlk varsayımda belirsiz parametreler üzerinde herhangi
bir kısıtlama yoktur ve sistemi kararlı kılan tüm belirsiz parametre bölgelerinin
belirlenmesi hedeflenmektedir. Bu durumda önerilen Lyapunov temelli yöntem direkt
olarak uygulanabilir durumdadır. Bu yöntemin aksine literatürde var olan bir çok
yöntemde ise belirsiz parametre sayısı ve türü üzerinde bir takım varsayımlarda
bulunularak sonuçlar elde edilmiştir. Bu tez kapsamında önerilen yöntemin doğruluğu
literatürde var olan farklı örnek durumlar üzerinden gösterilmiştir. Diğer taraftan,
bazı durumlarda belirsiz sistem parametrelerinin alabileceği minimum ve maksimum
değerler belirlidir. İlgili parametrenin bilinen bu değerler arasında bir değer aldığı
tüm durumlarda polinom ailesinin kararlı kalıp kalmadığının belirlenmesi hedeflenir.
SISO sistemler için bazı özel durumlarda sonlu sayıda polinomun kararlı olmasının
tüm polinom ailesinin kararlığını garanti ettiği gösterilmiştir. MIMO sistemlerde
ise en basit durumlarda bile kontrolör parametrelerinin ve TFM’yi oluşturan transfer
fonksiyonlarının çarpımları karakteristik polinomda görünmektedir. Tartışılan bu
problemde karakteristik polinom, hem alt ve üst sınırları bilinen belirsiz parametreleri
hem de serbest kontrolör parametrelerini içermektedir. Bu tez kapsamında
yukarı yakınsama yaklaşımından da yararlanılarak, Kharitonov Teoremi ve önerilen
Lyapunov eşitliği temelli yaklaşımla bu tarz sistemleri dayanıklı kararlı kılan kontrolör
parametre bölgelerinin belirlenmesine yönelik bir yöntem önerilmiştir. Önerilen bu
yöntem Kharitonov Teoremi de kullanıldığından hesaplama yükünü önemli oranda
azaltmaktadır ancak değişmez kontrolör parametre bölgelerinin belirlenmesinde ek
analiz adımlarını da beraberinde getirmektedir.

Özetle, bu tez kapsamında nominal ve parametre belirsiz MIMO sistemeleri hem
köşegen baskın kılan hem de kararlı yapan köşegen tipteki kontrolörlerin parametre
bölgelerinin belirlenmesi hedeflenmiştir. Köşegen baskınlık açısından bakıldığında
gerek ve yeter koşulların belirlenmesi hedeflendiğinden TITO sistemler üzerinden
sonuçlar elde edilmiştir. Diğer taraftan kararlı kılan kontrolör parametrelerinin
belirlenmesinde ise herhangi bir sistem veya kontrolör kısıtı bulunmamaktadır.
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1. INTRODUCTION

1.1 Motivation

Decentralized controllers are preferred in practice due to various reasons like: less

number of tuning parameters, flexibility of the controller design, applicability of

single loop design methods, robustness against uncertainties and ease of use for

operators [1]. However, as indicated in various sources [2, 3], in general performance

and efficiency of such controllers decrease in case of significant interactions between

different input-output pairs. As a result, it becomes crucial to decrease the interaction

in a given multivariable system as the first step of decentralized controller design. In

literature various decoupling methods were proposed to fully decouple the discussed

MIMO system. However, most of the proposed decoupling methods face stability

and causality based realization problems and they are applicable for a limited class of

multivariable systems [4, 5]. Furthermore, their robustness against disturbances and

measurement noises is also questionable even in the cases where fully decoupling is

possible in theory. Moreover, it is also not possible to fully decouple the MIMO system

in case of parametric uncertainties.

Instead of decoupling, diagonal dominance concept that is known in literature for

years can be preferred in order to reduce interactions [6]. The conditions on

diagonal dominance are weaker compared to decoupling methods. As a result,

this condition is applicable for a broader range of systems. However, most of the

researchers were focused on determining specific controller parameter pairs using

different mathematical approaches like LMIs, global optimization approaches and

scaling matrices etc. [7–9]. Moreover, diagonal dominance characteristics of the

derived parameter pairs were not analyzed in detail for the case of parametric

uncertainties. There are limited number of studies in literature that aims to achieve

diagonal dominance conditions even in case of uncertainties [10–12]. For these
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reasons, it is aimed within the scope of this thesis to determine necessary and sufficient

conditions on diagonal type controllers for TITO systems.

On the other hand, since it is defined over magnitudes, diagonal dominance does

not indicates stability in general while there are some studies in terms of diagonal

dominance and stability for special cases [13–15]. Even in the simplest cases,

multiplication of the controller parameters and individual transfer functions are

included in MIMO systems. This also makes the problem of determining stability

boundaries more difficult compared to SISO systems. As a result, it is also aimed to

propose approaches in order to determine stabilizing parameter spaces of multivariable

systems.

As indicated earlier, the number of studies deals with robust diagonal dominance of

MIMO systems are limited [16–18]. So, one of the main motivations of this thesis

is to derive results on diagonal dominance even in case of parametric uncertainties.

In addition to this, parameter uncertain MIMO systems are also discussed from the

stability point of view since it is common to face uncertainties due to various reasons.

1.2 Literature Survey

Three main topics of the thesis which are diagonal dominance of TITO systems,

stability of multivariable systems and the case of parametric uncertainties are discussed

in three main sections. In order to preserve readability of the thesis, literature surveys

and previously proposed studies are presented at the beginning of each main section.

Literature survey related with the diagonal dominance of MIMO systems can be found

in Section 3.1. Previous studies related with the stability and stabilizing parameter

space calculation of multivariable system are presented in Section 4.1. For the case of

parametric uncertainty, literature reviews are respectively included in Section 5.1 and

Section 5.2 for diagonal dominance and stability.

1.3 Goal and Unique Aspect of the Thesis

Reducing the interactions in multivariable systems can be accepted as the first step of

decentralized controller design, since the performance of such controllers reduce in

case of significant interactions in general. For this reason, proposing new approaches
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to determine controller parameter spaces of diagonal type controllers that achieve

diagonal dominance is the focus of this thesis. More specifically, it is aimed to

determine diagonal dominance conditions at a given fixed frequency for a given TITO

system. Additionally, it is also intended to determine stabilizing parameter spaces,

since diagonal dominance concept does not guarantee stability in general. Exact

parameter spaces for a given nominal system and conservative regions for the case

of parametric uncertainties are targeted.

In the context of this thesis, necessary and sufficient conditions on diagonal type

controllers are derived for TITO systems at a given fixed frequency. Using the derived

results, it is also possible to obtain results in terms of diagonal dominance for a given

frequency range. Moreover, weighting factors are added to the original definition of

diagonal dominance in order to derive controller parameter regions that cause better

diagonal dominance ratios. Furthermore, for the case of static diagonal controllers and

column diagonal dominance, critical frequencies that effects the interval characteristics

of controller gains are derived.

Using the Kronecker products and vectorization operator a Lyapunov equation based

approach is presented to derive stabilizing controller parameters in MIMO systems.

Unlike the most of the previously proposed approached in literature, present approach

is independent from the type of controller and the number of free controller parameters.

Moreover, in addition to the MIMO systems, by minor modifications, it is also

applicable to broad range systems (discrete time, switching, descriptor systems

etc.) where Lyapunov formulation is possible. A solution strategy to derive exact

stability regions for the controller integrity problem is also presented using the present

approach.

It is also possible to derive analytical expressions of the stability boundaries in the

proposed approach. As a result, it is possible to use that approach in optimization

based techniques to reduce computational load. Derived results in terms of stability

are used in robust MPC problem formulation and robust MPC problem is translated to

nominal MPC by introducing the stability boundaries in the problem formulation.

Diagonal dominance problem of parameter uncertain TITO systems is also discussed

in the context of thesis. Two approaches are presented that depends on triangular
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inequality and griding in order to determine static diagonal controller parameter

regions. Using these approaches diagonal dominance problem of a parameter

uncertain system is translated to the weighted diagonal dominance problem over

certain weighting factors. Then, previously derived results are used to obtain controller

parameter regions.

On the other hand, related with the stability of parameter uncertain multivariable

systems first it is shown that in addition to free controller parameters Lyapunov

equation based approach is also suitable to determine the bounds of uncertain

parameters. Lastly, the case of interval type uncertainties discussed. A new approach

is proposed using the overbounding technique and Kharitonov Theorem in accordance

with the Lyapunov Equation based stability mapping approach to determine robustly

stabilizing controller parameters.

1.4 Structure of the Thesis

Firstly, the motivation and goal of the thesis are presented in Section 1 in addition to

the unique aspects of the thesis and brief literature survey.

After that, preliminary information related with the currently existing approaches

which are used as interaction measures like Relative Gain Array (RGA), Singular

Value Decomposition (SVD), Condition Number (CN) and decoupling methods are

presented in Section 2. Possible problems related with the decoupling methods are

also discussed over illustrative examples in the same section.

Derived necessary and sufficient conditions in terms of diagonal dominance and

weighted diagonal dominance are presented in Section 3 for the case of diagonal type

controllers. Using the derived results an algorithm is proposed in order to determine

controller parameter regions that achieve weighted diagonal dominance conditions. It

is possible to extend the proposed algorithm for a given frequency range while it is

initially proposed for fixed frequencies. Derived theoretical result in terms of diagonal

dominance are demonstrated over several case studies.

Stability of MIMO systems is discussed in Section 4 from the Lyapunov equation

point of view. It is shown that is possible to determine stability boundaries in terms

of free controller parameters using the Lyapunov equation based stability mapping
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approach. Its link with currently existing approaches like PSA is also set over finite

and infinite stability boundaries. In the proposed approach it is not necessary to

compute singular frequencies which is required in lots of frequency based approaches.

Moreover, proposed approach is independent from the controller type and the number

of free controller parameters. As a result, it is applicable to a broad range of systems.

Additionally, by applying minor modifications it is also possible to apply proposed

approach to other type of systems like discrete time systems, switching systems by

where Lyapunov formulation is possible. These further application areas are also

presented in Section 4.5.

The case of parametric uncertainties are discussed for both diagonal dominance and

stability problem in Section 5. Triangular inequality and griding based approaches

are presented in order to determine controller parameter regions that achieve diagonal

dominance even in the case of parametric uncertainties. Using the aforementioned

approached the problem is first translated to the weighted diagonal dominance and

previously derived results are used afterwards. In Section 5.2.1 it is shown that

proposed Lyapunov equation based approach is also suitable to determine the regions

of both uncertain and free control parameters. Additionally, using the Kharitonov

Theorem and Lyapunov equation based stability mapping technique an approach

is presented in Section 5.2.2 to determine robustly stabilizing controller parameter

spaces.

Derived results in terms of both diagonal dominance and stability of multivariable

systems are summarized in Section 6. Furthermore, planned future studies are also

expressed in the same section.
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2. INTERACTION MEASURES AND DECOUPLING METHODS

As indicated in [19,20], most of the industrial plants can be considered as multivariable

systems and a specific output variable is effected by all input variables in general as it

is shown in Figure 2.1 for the TITO case.

From the controller design point of view, there are two main approaches for

multivariable systems which are centralized and decentralized control. In the MIMO

systems where centralized controllers are applied, each manipulated variable may

depend on more than one manipulated variable. Due to various reasons like the number

of free control parameters complexity of the controller design increases in such cases.

Figure 2.1 : Process interaction in a TITO system.

On the other hand, diagonal type controllers are preferred in practice due to their

relatively simple structures and operability. These kind of controller are also referred

as decentralized controllers in literature. As indicated in [21], these kind of controllers

are easier to understand by operators, tuning parameters often localized effects and

they are in general less sensitive to uncertainties. Simplified implementation, reduced

computational cost are also proposed as other benefits of decentralized controllers.

However, performance of such type controllers increase in general when the original

multivariable system is close to the diagonal form. If the plant G(s) is in the diagonal

form, single loop design solution can be directly applicable. On the other hand, the

performance of multivariable plant controlled by decentralized controller reduces if

there are significant interactions between different input-output pairs. In such cases
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the level of interactions should be reduced as the first step of the design process. For

this purpose, the main approaches (RGA, SVD) in order to determine interaction levels

in a given MIMO system are presented within the scope of this section. Additionally,

currently existing decoupling methods are also presented in Sections 2.2.1 and 2.2.2.

Drawbacks of these methods are also discussed in Section 2.2.3 over illustrative

examples.

2.1 Interaction Measures

Determining the level of interactions is crucial from the decentralized controller design

point of view. Moreover, the methods like RGA is also suitable for pairing problem.

Pairing of highly interacted input-output variables is also important for multivariable

system design. In addition to RGA, SVD and CN that is also meaningful from

controllability and robustness point of view are also introduced within the scope of

this subsection.

2.1.1 Relative gain array

RGA is one of the first approaches that was proposed in literature to determine

interaction levels in a given multivariable system. It was first proposed by Bristol

in [22] and rigorous proofs were also presented in [23]. In addition to the determination

of interaction levels, it is also suitable for pairing problem. When the number of

inputs and outputs increases the number of possible pairings also increase significantly.

For a given multivariable system that has n inputs and n outputs there are n! pairing

combinations. However, pairing problem is out of scope of this thesis, since it is

possible to use permutation matrices to pair i− th input with i− th output.

An n×n dimensional linear multivariable system can be described as :

y(s) = G(s)u(s) (2.1)

where u(s) and y(s) represent respectively input and output vectors and G(s) represents

the TFM of the multivariable plant. RGA of the system that is given in (2.1) can be

expressed as:

Λ(G) = Gs× (G−1
s )T (2.2)
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where × denotes the Hadamart or Schur product (element by element product) and

Gs denoted the steady state gain matrix of G(s). Steady state gain matrix notation

is common in literature, since Bristol proposed the RGA approach as a steady state

interaction measure in [22]. However, RGA may be useful over the complete frequency

range especially around the crossover frequencies as indicated in [24, 25].

The resulting RGA matrix can be written in the following form:

Λ(G) =

β11 . . . β1n
... . . . ...

βn1 . . . βnn

 (2.3)

The following properties hold for a given real R matrix:

• The sum of the elements in each row (and each column) of the RGA is equal to 1.

• Any permutation of the rows and columns of R leads to the same permutations on

Λ(R)

• Λ(R) = I if and only if R is a lower or upper triangular matrix or a diagonal matrix.

• The relationship between the RGAs of inverse of R, transpose R and transpose of

the RGA is as follows: of

Λ(R−1) = Λ(RT ) = Λ(R)T (2.4)

• The norm of the RGA is closely related to the minimized condition number.

This can also be interpreted as if RGA includes larger entries then the system is

ill-conditioned in general.

Detailed information related with the properties of the RGA can be found in [24].

As indicated earlier, RGA can also be used to determine appropriate input-output pairs

in a multivariable system. Pairing with λi j ≈ 1 should be preferred and pairing with

λi j < 0 should be avoided in general.

Using the afore mentioned properties RGA of TITO system can be expressed as:

Λ(G) =

[
β11 β12
β21 β22

]
=

[
β11 1−β11

1−β11 β11

]
(2.5)
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where

β11 =
1

1− Gs12Gs21
Gs11Gs22

(2.6)

In (2.6) Gsi j represents the j− th column i− th row element of Gs.

RGA was originally proposed for steady state gain matrix. However, in the meantime

the results were extended to all frequencies by researchers. Whereas, it is better to use

RGA with other methods and metrics like SVD and CN in order to derive more insight

related with the discussed multivariable system. For this reason, SVD and CN will

be discussed in the next section to include more information related with the currenty

existing interaction and sensitivity measures.

2.1.2 Singular value decomposition and condition number

In addition to the RGA, SVD and Condition Number (CN) are also important metrics in

terms of multivariable system interactions, controllability and sensitivity. Furthermore,

it is also possible to use SVD in controller design. For instance different design

methods were proposed in [26] and [27] in using SVD.

Singular values of an n × m dimensional real valued 1 A matrix is defined as

the eigenvalues of the matrices AT A and AAT . Eigenvalues of both matrices are

nonnegative since AT A and AAT are non negative definite. Furthermore, as indicated

in [25], when the eigenvalues of both matrices ordered in a decreasing manner, the first

"min(n,m)" eigenvalues are equal to each other. This case can also be expressed as:

λi
(
AT A

)
= λi

(
AAT) ∀i = 1,2, ...min(n,m) (2.7)

where λi(.) represents the i− th eigenvalue. The remaining eigenvalues (if any) should

be zero. Then, the singular values of the A matrix can be defined as the square roots of

these eigenvalues as:

σi(A) =
(
λi
(
AT A

))1/2
=
(
λi
(
AAT))1/2 ∀i = 1,2, ...min(n,m) (2.8)

where σi(.) represents the i− th singular value of A. SVD can be applied in order

to determine singular values of a given matrix and SVD of a given A matrix can be

expressed as:

A =UΣV T (2.9)
1It is also possible to define singular values for complex valued matrices. In such cases transpose

operator should be replaced by "Hermitian transpose" operator.
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where U and V are appropriate dimensional unitary matrices (UUT = UTU = I and

VV T = V TV = I ) and Σ is an n×m dimensional rectangular matrix whose diagonal

entries are the singular values of A in decreasing order and all other entries are zero. So

that, maximum and minimum singular values of a given n×m dimensional A matrix

can be written as:

σ(A) = σ1(A), σ(A) = σmin(n,m)(A) (2.10)

For the case of MIMO systems, there are certain advantages of SVD over the

eigenvalue decomposition for analyzing gains and directionality [24]. For instance,

it is possible to derive better information related with the gain of the discussed system.

Moreover, direction derived from SVD are orthogonal and it is also possible to apply

SVD to non-square systems. Additionally, singular values are also related with the

maximum and minimum gains in a multivariable systems. This relation can be

expressed as:

σ(A)≤ ‖Ab‖2
‖b‖2

≤ σ(A) (2.11)

where b represents any non zero vector. Using the previously mentioned properties,

condition number (CN) which is an important metric for multivariable systems can be

defined as:

CN(A) = γ(A) =
σ(A)
σ(A)

(2.12)

is a possible measure of the difficulty of controlling the system. Larger CN values

indicate such difficulties and systems with larger CN is said to be ill-conditioned

(or poor-conditioned). Here it must be noted that the condition number is not

invariant under scaling and using pre and post scaling units it is possible to end up

with a different condition number [25]. Minimized CN can be defined as γ∗(A) =

minD1,D2 γ (D1AD2) where D1 and D2 diagonal scaling matrices. As indicated earlier,

there is a relation between the RGA and minimized CN. A lower and upper bound on

minimized CN can be determined using the sum norm of RGA.

A high CN can also be interpreted as that the systems is close to losing its full rank

since larger CN values in general requires small value of σ(A) which is also undesired.

Larger CN also implies the sensitivity against unstructured input uncertainties.

While RGA and CN are indicators of interactions, pairing and sensitivity for a given

multivariable system they were mainly proposed and used on the analysis basis. In
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order to reduce the interactions between the undesired input-output pairs, different

approaches were proposed in literature. In that manner, decoupling methods that aim

fully diagonalize multivariable systems will be discussed in the next section.

2.2 Decoupling Methods

The methods given in subsections 2.1.1 and 2.1.2 are suitable to determine interaction

levels in a given MIMO system and propose a solution strategy for the pairing problem.

Additionally, SVD and CN is also meaningful from the controllability and robustness

point of view.

In the case of significant interactions between different input-output pairs, each output

is effected by all inputs considerably. As a result, decentralized controller design

problem becomes more and more complex in such cases [28, 29]. Decentralized

controllers are popular in the control engineering area due their practical advantages

like less number of tuning parameters, relatively simple control structure and

robustness against sensor and/or actuator failures as indicated in [30].

In case of higher interactions, it is not possible to apply previously proposed

decentralized controller design methods and as a result, elimination of the such

interactions can be accepted as the first step of the decentralized controller design. In

order to eliminate such interaction a pre-compensator should be designed that brings

the system into the diagonal form. If the diagonal form is achieved then it can be

proposed that the interactions are eliminated and the system is suitable to apply single

loop design solutions. Several methods were proposed in literature in order to design

decoupling pre-compensators like dynamic and steady state decoupling as indicated

in [21]. It is focused on conventional and inverted decoupling within the scope of this

thesis since it is not possible point out the advantages and disadvantages of all the

proposed approaches. Detailed information related with decoupling controller design

can be found in textbooks like [3, 28].

2.2.1 Conventional decoupler

As indicated in [4], most of the decoupling methods use conventional decoupling

structure that the system inputs are derived by a weighted combination of controller

outputs. Block diagram of such a decoupler can be represented as it is given in

12



Figure 2.2 : Conventional decoupler block diagram.

Figure 2.2. In the case of conventional decoupling mainly, it is aimed to determine

the pre-compensator in the form of "D(s) = G−1(s)P(s)" where D(s) represents the

decoupler, G(s) represents the actual multivariable system and P(s) represents the

desired plant.

There are two main sub categories for the case of conventional decoupler which are

ideal and simplified decoupling as indicated in [31, 32]. In ideal decoupling, it is

generally aimed to end up with the process transfer functions as simple as the diagonal

entries of the original entries of the original TFM [4]. However, this method leads to

complicated decoupler expressions in general and has realization based problems as

indicated in [5].

On the other hand, simplified decoupling is widely preferred in literature. For a given

TITO system that is expressed as:[
y1
y2

]
=

[
g11 g12
g21 g22

][
u1
u2

]
(2.13)

using the decoupling structure given in Figure 2.2, resulting output expressions can be

calculated as: [
y1
y2

]
=

[
g11d11 +g12d21 g11d12 +g12d22
g21d11 +g22d21 g21d12 +g22d22

][
u1
u2

]
(2.14)

In (2.14) off diagonal terms should be zero. So that the following equations should be

satisfied by the decoupling pre-compensator.

g11d12 +g12d22 = 0

g21d11 +g22d21 = 0
(2.15)
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Figure 2.3 : Inverted decoupler block diagram.

By selecting the parameters d11,d22 as d11 = 1,d22 = 1 simplified decoupler can be

derived as:

D(s) =

[
1 −g12

g11
−g21

g22
1

]
(2.16)

Compared to ideal decoupling realization is relatively easier in simplified decoupling.

Relative degrees of individual transfer function and right half plane zeros becomes

crucial in terms of decoupler realization in such cases. On the other hand, resulting

transfer function matrix is more complex in this case. The resulting transfer function

matrix can be written as:

L(s) =

[
g11− g12g21

g22
0

0 g22− g12g21
g11

]
(2.17)

As it is seen in (2.17), diagonal entries of the resulting TFM includes the multiplication

and summation of extra transfer functions. As a result, the design problem is also

relatively harder in such cases.

2.2.2 Inverted decoupler

In order to overcome the complexity of the resulting transfer function matrix, a new

approach was proposed in [33] that depends on a modification of the block diagram

that was given in Figure 2.2. Proposed block diagram representation in the mentioned

study is given in Figure 2.3.

In this approach, output equations can be written as:

y1 = g11u1 +g12u2

y2 = g22u2 +g21u1

(2.18)
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where:
u1 = c1 +u2d12

u2 = c2 +u1d21

(2.19)

When equation (2.19) is inserted to (2.18) outputs can be expressed as:

y1 = g11c1 +(g11d12 +g12)u2

y2 = g22c2 +(g22d21 +g21)u1

(2.20)

In order to eliminate the effect of u2 on y1 and u1 on y2 using the decoupler parameters

corresponding coefficients should be eliminated [34]. So that, it can be proposed that

the decoupler transfer functions should be selected as:

d12 =−
g12

g11

d21 =−
g21

g22

(2.21)

The resulting equations that is given in (2.21) are same as (2.16). However, complexity

of the resulting TFM reduced significantly due to the block diagram modifications. In

addition to the above mentioned advantages of inverted decoupling, it is more sensitive

to modeling errors as indicated in [35]. However, due to its practical benefits researches

are trying to improve the existing approach as it is done in [4, 36, 37].

2.2.3 Possible problems and illustrative examples

Even if the original multivariable system is suitable for diagonalisation, there are some

practical disadvantages of decoupling control. Firstly, it can be proposed that resulting

TFM may be so sensitive against uncertainties and modeling errors [21]. Furthermore,

in some cases it is required to use inverse-based decoupler that is not desirable for

disturbance rejection problem. And it is also pointed out in [21], that the requirement

of diagonalisation generally introduces additional right half plane zeros to the closed

loop system is the system has right half plane zeros.

It was also pointed out that, in order to take into account the saturation of manipulated

variables inverted decoupling approach is suitable. Whereas, it is more sensitive

to modeling errors and uncertainties [38]. Using benchmark distillation column

models, ideal and simplified decoupling were compared in [32, 35]. In these studies,

it was concluded that simplified decoupling is more robust than ideal decoupling

15



approach. However, in [5] robust stability and robust performance of nominally stable

multivariable systems are discussed for the cases of ideal, simplified and inverted

decoupling and it was concluded that it is possible to obtain same levels of robustness

if the controller are tuned to obtain the same nominal performance.

In addition to the above mentioned issues, due to the realization related issues

decoupling is applicable for a certain class of multivariable systems. These realization

related problems can be summarized in two main topics which are causality and

stability.

A system is said to be a causal system if its output depends on present and past

inputs only. It is also named as strictly causal if it depends only on past inputs. This

corresponds the relative degrees of numerator and denominator polynomials. In order

to demonstrate such a casuality based realization problem the following TITO system

is considered as an illustrative example:

G(s) =

 4
(s+1)(s+2)

2s
s+1

2
s+1

2
s+2

 (2.22)

In simplified and inverted decoupling that was presented in Sections 2.2.1 and 2.2.2

it is required to use inverse based decouplers. For the case of system that is given in

2.22, the elements of decoupling controller can be determined as:

d12 =−
g12

g11
=−2s(s2 +3s+2)

4(s+1)

d21 =−
g21

g22
=−s+2

s+1

(2.23)

As seen, from equation (2.23), it is obvious that the degree of the numerator exceeds

the degree of the denominator resulting in improper transfer function.

On the other hand, RHP zeros of the individual transfer functions of TFM may lead to

stability related realization problems. For instance, let us assume that it is desired to

diagonalise the following multivariable system using afore mentioned methods

G(s) =

 17s−0.4
s+1

1.4s+0.4
s+1

0.8s+0.2
s+1

0.7s−0.3
s−1

 (2.24)
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The entries of the decoupler can be calculated as:

d12 =−
g12

g11
=−1.4s+0.4

17s−0.4

d21 =−
g21

g22
=−0.8s+0.2

0.7s−0.3

(2.25)

From (2.25), it is clear that the resulting decoupler is unstable. Moreover, it should

also be noted that RHP pole-zero cancellations may also occur, that lead to internal

instability of the transfer function. This case should also be discussed in detail to be

sure about the applicability of the decoupler.

The definition of decoupling proposes a strong condition on multivariable systems.

As a result of this strong condition, proposed approaches face causality and stability

based realization problems and they are suitable for a limited class of multivariable

systems. Moreover, as indicated earlier, sensitivity against disturbances and model

uncertainties are the other problems that diagonalisation methods face even if the

original system is suitable for decoupling. In order to overcome such difficulties,

extend the applicable class of multivariable systems diagonal dominance concept

which is a weaker condition compared to decoupling will be introduced in the

next section. Instead of eleminating the off diagonal terms it is aimed to limit

the magnitudes of off diagonal terms and reduce the interaction between different

input-output pairs in diagonal dominance concept.
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3. DIAGONAL DOMINANCE

Designing efficient control structures for MIMO systems is crucial, since most of the

industrial systems can be considered as MIMO systems as indicated in [19, 20]. A

specific output of a given MIMO system is effected by more than one input in general.

Consequently, it can be proposed that in general, enhancing the performance of a

specific output may easily disturb other outputs’ performance in case of significant

interactions as asserted in [39].

In some specific applications, the interactions between different input-output pairs can

be used to reduce the control effort. However, it is widely accepted that the controller

design problem becomes more complex in case of higher interactions and single loop

control solutions cannot be applied directly for these kind of systems [21, 29]. These

interactions between the different input-output pairs can be accepted as one of the

most challenging aspects of MIMO systems, especially for the case of decentralized

controller design. It can also be proposed that these kind of controllers are preferred in

practice due to the advantages like simple control structure, fewer tuning parameters,

and robustness against sensor and/or actuator failures [30].

As the first step of the decentralized controller design procedure, designer should

design a pre-compensator that eliminates or reduces the interactions between different

input-output pairs, since it is not possible to apply single loop controller design

approaches for the systems that include significant interactions [21]. Decentralized

controller design for a given MIMO system is not a straight forward procedure since

broad range of sytems include significant interactions.

As indicated in Section 2.2, decoupling methods can be applied if it is possible. In

the case of decoupling, the effect of all off diagonal terms have to be eliminated The

drawbacks and constraints of decoupling methods were pointed out in Section 2.2. In

order to overcome these constraints, diagonal dominance which is a weaker condition

compared to decoupling is preferred within the scope of this thesis.
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Compared to decoupling, diagonal dominance can be applicable for broader range of

systems. It is aimed to determine controller parameter regions that satisfy the diagonal

dominance conditions. For this purpose, firstly, previous studies are pointed in this

section. Then, the proposed method for deriving controller regions for both column

and row diagonal dominance are discussed in detail. After that, weighting factors are

inserted to the original diagonal dominance conditions. This case is discussed in detail

in Section 3.3. Derived results are combined in an algorithm and effectiveness of the

derived results are demonstrated over several case studies. Obtained results within the

scope of this section were published in [40–46].

3.1 Previously Proposed Approaches

The importance of diagonal dominance concept in MIMO systems were first pointed

in Rosenbrock’s early studies. In these studies, existing frequency domain design

techniques for SISO systems had been generalized to MIMO systems [13, 14, 47].

The proposed approaches mainly depend on a pre-compensator that achieves diagonal

dominance as indicated in [12].

After the pioneering studies of Rosenbrock, the problem of achieving diagonal

dominance has became a field of attraction for the researchers in control engineering as

indicated in [48]. Various methods and techniques has been proposed using different

mathematical approaches to determine pre-controllers that make multivariable system

diagonal dominant. For instance, using the inverse open loop TFM, an approach to

minimize the sum of squares of the magnitude of the off diagonal terms to achieve

diagonal dominance was proposed by Hawkins in 1972 for single and multiple

frequencies [49, 50].

In the successive years, ALIGN algorithm was proposed by MacFarlane and

Kouvaritakis [51, 52] as also indicated in [7]. Hawkins’s pseudodiagonalisation

approach was generalized in [53] and it was asserted that diagonal dominance can

be achieved for a wider range of plants compared to previous approaches. In 1979, an

approach to derive diagonal dominance was also proposed by Leininger in [54]. In this

method, it was aimed to achieve diagonal dominance for Nyquist array based design

methods. A conjugate direction function based minimization algorithm was used to

obtain diagonal dominance in a given frequency interval.
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In 1981, a Perron-Frobenius Theorem based approach was proposed by Mees to

achieve diagonal dominance [55]. With respect to the proposed approach, it is

possible to determine a specific pre-compensator that achieves diagonal dominance if

the Perron-Frobenius eigenvalue is less than 2. After that, expressing the frequency

dependent magnitude change as scalar rational functions, a Perron-Frobenius

eigenvector based approach was proposed by Munro in [56].

A scaling algorithm to balance the input-output pairs for a square MIMO system was

proposed by Edmunds in [9]. It was aimed to maximize the geometric mean of the

column diagonal dominance ratios.

In the recent years, various methods were proposed by researchers to obtain a specific

controller parameter set, using different mathematical perspectives, since the diagonal

dominance problem can be defined by several ways. For example, in [8], the diagonal

dominance problem was defined as an optimization problem. As a result, Genetic

Algorithm, which is one of the well-known global optimization methods, was used to

minimize the performance function and to achieve diagonal dominance.

After that a new eigenstructure assignment based technique was proposed by Labibi

et al. for the diagonal dominance of large-scale systems [57]. In this approach, after

defining an equivalent descriptor system in the input-output representation, sufficient

conditions for closed loop diagonal dominance were introduced. The necessity of

choosing a suitable frequency was also alleviated in this method as required in the

previous studies.

A frequency interpolation based approach was asserted by Nobakthi and Munro in

2004 to achieve diagonal dominance [58]. In this approach, the restrictions on the

structure of each element of dynamic pre-compensators were eliminated.

On the other hand, a new LMI based method was proposed by Chughtai and Munro to

reduce the effects of interaction for static and dynamic type controllers [7, 12]. It was

also aimed to reduce the conservativeness by using scaling methods in the proposed

approach. In 2006, a new method based on minimizing the H2 norm of a modified

system was asserted by Nobakthi and Wang [59]. Additionally, necessary conditions

for static pre-compensators were given in [60].
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At this point, it can be proposed that in the previously proposed approaches

it was aimed to determine specific controller parameters that achieve diagonal

dominance at a given certain frequency or frequency interval. As indicated earlier,

different mathematical perspectives and notations were used for this purpose and

to derive specific controller parameters. However, it can also be asserted that

deriving whole parameter region is also meaningful considering the parametric

uncertainties and disturbances that may effect the system. Additionally, determining

all parameter regions that satisfy diagonal dominance conditions can create more

flexible environment for the designer in terms of multivariable controller design. As

a result, within the scope of this thesis study, it is aimed to determine controller

parameter region(s) that achieve diagonal dominance conditions. Details of the

proposed approach is presented in the next sections.

3.2 Determining Parameter Regions That Achieves Diagonal Dominance

It is important to derive significant results for the case of TITO systems which is a

special subset of MIMO systems, since in practice many MIMO systems can be treated

as several TITO subsystems as proposed in [61]. Therefore, it can also be proposed

that it is important to derive significant results for TITO systems in terms of diagonal

dominance from the practical point of view. Consequently, within the scope of this

chapter it is aimed to determine conditions on diagonal type controllers for TITO

systems in order to achieve diagonal dominance at a given fixed frequency.

Compared to decoupling, it can be proposed that diagonal dominance is a weaker

condition, since it is not need to fully eliminate all the effects of off diagonal terms.

Magnitude of all diagonal terms should be greater than or equal to the sum of the

magnitudes of all off diagonal terms in the related row (or column) in order to achieve

diagonal dominance. As a result, it can be asserted that a specific input variable is

strongly related with a specific output variable in diagonal dominant system and other

inputs have limited impact on this specific output.

A square matrix D is named as column diagonal dominant matrix in mathematics if

for each column, the magnitude of the diagonal term is greater than or equal to the

sum of the magnitudes of all off diagonal terms. In other words, a matrix D is column
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Figure 3.1 : Block diagram of the considered control system.

diagonal diagonal dominant if

|dii| ≥∑
j 6=i

∣∣d ji
∣∣ (3.1)

where d ji represents the j− th row and i− th column term of the D matrix. Since

equality is included in (3.1), it is also named as weak diagonal dominance in some

sources. If the strict inequality is used in (3.1) then this case is named as strict diagonal

dominance as indicated in [62]. It can be proposed that there is not any significant

difference between both definitions in terms of the used algebra within the scope of this

thesis. Weak inequality is used in the determination of controller parameter regions.

However, it is also possible to determine easily the corresponding conditions for strict

equality.

On the other hand, a matrix D is named as row diagonal dominant if for each row the

magnitude of the diagonal entry is greater than or equal to the sum of the off diagonal

terms at the corresponding row. As a result, a square matrix D is named as row diagonal

dominant if:

|dii| ≥∑
j 6=i

∣∣di j
∣∣ (3.2)

where di j represents the i− th row and j− th column term of the D matrix.

Block diagram representation of the closed loop control system that is considered in

this study is given in Figure 3.1. In Figure 3.1, TITO transfer function matrix and

the diagonal type controller are represented by G(s) and K(s) respectively. So that,

considered system and controller can be expressed as:

G(s) =

g11(s) g12(s)

g21(s) g22(s)

 (3.3)

K(s) =
[

k1(s) 0
0 k2(s)

]
(3.4)
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In (3.3), gi j(s) represents the individual transfer functions from j th input to the i th

output. Corresponding closed loop TFM can be directly determined as:

Gcl = (I +GK)−1GK =
1

det (I +GK)

[
k1g11 + k1k2 gd k2g12

k1g21 k2g22 + k1k2 gd

]
(3.5)

where gd is defined as: gd = g11g22− g12g21. The controller parameters that make

det (I +GK)= 0 are related with the poles of the closed loop system and as a result also

related with the stability of overall multivariable system. However, from the diagonal

dominance point of view, it can be proposed that the controller parameters that make

this equation zero in the related frequencies makes the magnitudes of each term of TFM

equal to infinity. As a result, it is not possible to compare the magnitude of elements

of the closed loop system in such cases. For this reason, such controller parameter

values should be excluded from the region that makes the closed loop system diagonal

dominant at the related frequency.

Within the scope of this chapter, it is aimed to determine conditions on diagonal type

controller parameters to achieve diagonal dominance condition for TITO system at a

given fixed frequency and/or frequency interval. Column diagonal dominance and row

diagonal dominance are discussed in detail respectively in Section 3.2.1 and Section

3.2.2. The case of weighting factors will also be discussed in Section 3.3 in order to

derive more practically important regions. Furthermore, the stability problem will also

be discussed in the next chapter in detail. At this point, it must be pointed out that

the main aim of the diagonal controller is to make the closed loop system diagonal

dominant and stable. Further performance criteria can be achieved considering the

determined parameter regions and/or by designing a cascade controller for the diagonal

dominant and stable system.

Using the magnitudes of the resulting TFM elements conditions on controller

parameters are determined exactly. Derived results depend on the real and imaginary

parts of individual sub-controllers. In addition to this, it also possible to get

conservative results using the triangular inequality. Such approaches were presented

in our previous studies [42,43,45]. Additionally, triangular inequality can also be used

to derive conservative results in combination with weighting factors as it was done in

our previous study [41].
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3.2.1 Column diagonal dominance conditions

Considered system type (TITO systems) and the controller type (diagonal type

controllers) were briefly introduced in the previous section. In this section it is aimed

to give details related with the derivation of controller parameter conditions in terms

of column diagonal dominance.

A matrix is named as a column diagonal dominant if it satisfies (3.1). In the specific

case of TITO system it can be interpreted as the diagonal term should be greater than

or equal to the of diagonal term in the corresponding column. As a result, assuming

that the determinant of the closed loop system that is expressed in (3.5) is not equal to

zero, conditions for column diagonal dominance can be written as:

|k1g11 + k1k2gd| ≥ |k1g21| (3.6)

|k2g22 + k1k2gd| ≥ |k2g12| (3.7)

If the given inequalities are satisfied at a given frequency than it can proposed that the

considered system is column diagonal dominant at that frequency. Likewise, if both

of the conditions are satisfied at a given frequency range it can be concluded that the

closed loop system is column diagonal dominant at that range.

When the inequalities (3.6) and (3.7) analyzed it can be realized that controllers

respectively k1 and k2 are shown as multiplier term on both sides of equations. As

a result it is possible to simplify initial conditions as:

|g11 + k2gd| ≥ |g21| (3.8)

|g22 + k1gd| ≥ |g12| (3.9)

As indicated earlier, considering the (3.8) and (3.9) conservative results can be obtained

using the triangular inequality [42]. However, exact conditions can also be derived by

using the real and imaginary parts of both sides of the given inequalities. Without loss

of generality, using the real and the imaginary parts of the individual transfer functions

and controllers, conditions in (3.8) and (3.9) can be rewritten as:

(Re(g11 + k2gd))
2 +(Im(g11 + k2gd))

2 ≥ (Re(g21))
2 +(Im(g21))

2 (3.10)
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(Re(g22 + k1gd))
2 +(Im(g22 + k1gd))

2 ≥ (Re(g12))
2 +(Im(g12))

2 (3.11)

At this point, it can be proposed that for a given fixed frequency left hand side of the

given inequalities includes the summation of two complex numbers which is one of

these numbers also formed of multiplication of two complex numbers. Consequently,

the conditions given in (3.10) and (3.11) can be expressed in a more clear manner as:

(Re(g11)+Re(k2)Re(gd)− Im(k2) Im(gd))
2+

(Im(g11)+Re(k2) Im(gd)+ Im(k2)Re(gd))
2

≥ (Re(g21))
2 +(Im(g21))

2

(3.12)

(Re(g22)+Re(k1)Re(gd)− Im(k1) Im(gd))
2+

(Im(g22)+Re(k1) Im(gd)+ Im(k1)Re(gd))
2

≥ (Re(g12))
2 +(Im(g12))

2

(3.13)

Expanding the quadratic expressions in the left hand side of the inequalities (3.12) and

(3.13) leads to the new conditions on column diagonal dominance as:

(Re(g11))
2 +(Re(k2))

2 (Re(gd))
2 +(Im(k2))

2 (Im(gd))
2 +2Re(g11)Re(k2)Re(gd)−

2Re(g11) Im(k2) Im(gd)−2Re(k2)Re(gd) Im(k2) Im(gd)+

(Im(g11))
2 +(Re(k2))

2 (Im(gd))
2 +(Im(k2))

2 (Re(gd))
2 +2Im(g11)Re(k2) Im(gd)+

2Im(g11) Im(k2)Re(gd)+2Re(k2) Im(gd) Im(k2)Re(gd)≥

(Re(g21))
2 +(Im(g21))

2

(3.14)

(Re(g22))
2 +(Re(k1))

2 (Re(gd))
2 +(Im(k1))

2 (Im(gd))
2 +2Re(g22)Re(k1)Re(gd)−

2Re(g22) Im(k1) Im(gd)−2Re(k1)Re(gd) Im(k1) Im(gd)+

(Im(g22))
2 +(Re(k1))

2 (Im(gd))
2 +(Im(k1))

2 (Re(gd))
2 +2Im(g22)Re(k1) Im(gd)+

2Im(g22) Im(k1)Re(gd)+2Re(k1) Im(gd) Im(k1)Re(gd)≥

(Re(g12))
2 +(Im(g12))

2

(3.15)

For the sake of simplicity, real and imaginary parts of both controller can be defined

as:
α1 = Re(k1) β1 = Im(k1)

α2 = Re(k2) β2 = Im(k2)
(3.16)
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Using the definitions given in (3.16) the column diagonal dominance conditions that

are given in (3.14) and (3.15) can be rearranged as:

(Re(gd))
2

α
2
2 +2Re(g11)Re(gd)α2 +(Re(g11))

2 +(Im(gd))
2

β
2
2−

2Re(g11) Im(gd)β2 +(Im(gd))
2

α
2
2 +2Im(g11) Im(gd)α2 +(Re(gd))

2
β

2
2+

2Im(g11)Re(gd)β2 +(Im(g11))
2 ≥ (Re(g21))

2 +(Im(g21))
2

(3.17)

(Re(gd))
2

α
2
1 +2Re(g22)Re(gd)α1 +(Re(g22))

2 +(Im(gd))
2

β
2
1−

2Re(g22) Im(gd)β1 +(Im(gd))
2

α
2
1 +2Im(g22) Im(gd)α1 +(Re(gd))

2
β

2
1+

2Im(g22)Re(gd)β1 +(Im(g22))
2 ≥ (Re(g12))

2 +(Im(g12))
2

(3.18)

It can be observed from (3.17) and (3.18) at most quadratic terms of real and imaginary

parts of the individual controllers are included in derived conditions. As a result,

it becomes possible to construct two quadratic polynomials with respect to the real

and imaginary parts of controller transfer functions and rewrite the inequality as

comparison of these two quadratic polynomials. For this purpose, by defining the

coefficient terms as:

a1 =
(
(Re(gd))

2 +(Im(gd))
2
)

b1 = (2Re(g11)Re(gd)+2Im(g11) Im(gd))

c1 = (Re(g11))
2

a2 =−
(
(Re(gd))

2 +(Im(gd))
2
)

b2 =−(2Im(g11)Re(gd)−2Re(g11) Im(gd))

c2 = (Re(g21))
2 +(Im(g21))

2− (Im(g11))
2

(3.19)

a3 =
(
(Re(gd))

2 +(Im(gd))
2
)

b3 = (2Re(g22)Re(gd)+2Im(g22) Im(gd))

c3 = (Re(g22))
2

a4 =−
(
(Re(gd))

2 +(Im(gd))
2
)

b4 =−(2Im(g22)Re(gd)−2Re(g22) Im(gd))

c4 = (Re(g12))
2 +(Im(g12))

2− (Im(g22))
2

(3.20)

the conditions on diagonal dominance can be expressed as:

a1α
2
2 +b1α2 + c1 ≥ a2β

2
2 +b2β2 + c2

a3α
2
1 +b3α1 + c3 ≥ a4β

2
1 +b4β1 + c4

(3.21)

27



Here it must be pointed out that the all coefficient terms that are given in (3.19) and

(3.20) are functions of frequency. However, for a given fixed frequency all of these

coefficient terms corresponds to constant values. As a result, conditions that real

and imaginary parts of both controllers should satisfy in terms of column diagonal

dominance be easily determined from (3.21).

For the specific case of static diagonal controllers, derived results can be easily

simplified since the imaginary part of the controllers are zero for both frequencies.

In this specific case conditions that should be satisfied in order to achieve column

diagonal dominance can be written as:

a1α
2
2 +b1α2 +(c1− c2)≥ 0

a3α
2
1 +b3α1 +(c3− c4)≥ 0

(3.22)

In this specific case, in addition to determining the diagonal dominance characteristics

at a given fixed frequency, it becomes also possible to determine frequency intervals

that the column diagonal dominance conditions can be achieved.

3.2.2 Row diagonal dominance conditions

The definition of row diagonal dominance was given in Section 3.2. Within the scope

of this section, it is aimed to determine the conditions on diagonal type controllers for

the TITO control systems that the block diagram representation is given in Figure 3.1.

In order to be row diagonal dominant at a given fixed frequency, under the assumption

that the determinant of the closed loop system is not equal to zero, the following

conditions should be satisfied.

|k1g11 + k1k2gd| ≥ |k2g12| (3.23)

|k2g22 + k1k2gd| ≥ |k1g21| (3.24)

Direct simplification is not possible in this case since there is not any common

multiplier in both sides of inequalities. However, it is also possible to do some

algebraic manipulations. For instance left hand side of both inequalities (3.23) and

(3.24) can be written written as a factor of |k1| and |k2| respectively. In this case, new

variables g∗11,g∗22, g∗d12
and g∗d21

can be defined as:

g∗11 =
g11

g12
, g∗22 =

g22

g21
, g∗d12

=
gd

g12
, g∗d21

=
gd

g21
(3.25)
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Using this new notation, under the assumptions |g12| 6= 0, |g21| 6= 0, |k1| 6= 0 and |k2| 6=

0, conditions on row diagonal dominance at a given fixed frequency can be rewritten

as: ∣∣g∗11 + k2g∗d12

∣∣≥ ∣∣∣∣k2

k1

∣∣∣∣ (3.26)

∣∣g∗22 + k1g∗d21

∣∣≥ ∣∣∣∣k1

k2

∣∣∣∣ (3.27)

More or less the same methodology that was used in the previous section can be

followed to derive exact conditions on the real and imaginary part of controllers in

terms of row diagonal dominance. Without loss of generality, using the real and the

imaginary parts of the right and left hand side of the inequalities condition on row

diagonal dominance can be written as:(
Re(g∗11)+α2 Re

(
g∗d12

)
−β2 Im

(
g∗d12

))2
+(

Im(g∗11)+α2 Im
(
g∗d12

)
+β2 Re

(
g∗d12

))2 ≥
α2

2 +β 2
2

α2
1 +β 2

1

(3.28)

(
Re(g∗22)+α1 Re

(
g∗d21

)
−β1 Im

(
g∗d21

))2
+(

Im(g∗22)+α1 Im
(
g∗d21

)
+β1 Re

(
g∗d21

))2 ≥
α2

1 +β 2
1

α2
2 +β 2

2

(3.29)

where α1, α2, β1 and β2 represent the real and imaginary parts of the controllers as it

was given in (3.16). After expanding the quadratic expression on the left hand side of

the inequalities (3.28) and (3.29), conditions that should be satisfied can be rewritten

as:

(Re(g∗11))
2 +α

2
2
(
Re
(
g∗d12

))2
+β

2
2
(
Im
(
g∗d12

))2
+

2Re(g∗11)α2 Re
(
g∗d12

)
−2Re(g∗11)β2 Im

(
g∗d12

)
−2α2 Re

(
g∗d12

)
β2 Im

(
g∗d12

)
+

(Im(g∗11))
2 +α

2
2
(
Im
(
g∗d12

))2
+β

2
2
(
Re
(
g∗d12

))2
+

2Im(g∗11)α2 Im
(
g∗d12

)
+2Im(g∗11)β2 Re

(
g∗d12

)
≥

α2
2 +β 2

2
α2

1 +β 2
1

(3.30)

((
Re
(
g∗d21

))2
+
(
Im
(
g∗d21

))2
)

α
2
1+(

2Re(g∗22)Re
(
g∗d21

)
+2Im(g∗22) Im

(
g∗d21

))
α1+

(Re(g∗22))
2 +
((

Re
(
g∗d21

))2
+
(
Im
(
g∗d21

))2
)

β
2
1+(

2Im(g∗22)Re
(
g∗d21

)
−2Re(g∗22) Im

(
g∗d21

))
β1+

(Im(g∗22))
2 ≥

α2
1 +β 2

1
α2

2 +β 2
2

(3.31)
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In the case of column diagonal dominance there were no controller parameters on

the right hand side inequalities at that step. However, real and imaginary parts of

controllers are included on the right hand side of the inequalities(3.30) and (3.31).

When the inequalities expressed in (3.30) and (3.31) are analysed in detail, it can

be proposed that left hand side of both equations can be written as sum of two

quadratic equations whose parameters are the real and the imaginary parts of the

individual controllers. As a result, the conditions that should be satisfied at a given

fixed frequency in terms of row diagonal dominance can be determined as:

a5α
2
2 +b5α2 + c5 +a6β

2
2 +b6β2 + c6 ≥

α2
2 +β 2

2
α2

1 +β 2
1

a7α
2
1 +b7α1 + c7 +a8β

2
1 +b8β1 + c8 ≥

α2
1 +β 2

1
α2

2 +β 2
2

(3.32)

where the coefficient terms are:

a5 =
((

Re(g∗d12
)
)2

+
(
Im(g∗d12

)
)2
)

b5 =
(
2Re(g∗11)Re(g∗d12

)+2Im(g∗11) Im(g∗d12
)
)

c5 = (Re(g∗11))
2

a6 =
((

Re(g∗d12
)
)2

+
(
Im(g∗d12

)
)2
)

b6 =
(
2Im(g∗11)Re(g∗d12

)−2Re(g∗11) Im(g∗d12
)
)

c6 = (Im(g∗11))
2

(3.33)

a7 =
((

Re(g∗d21
)
)2

+
(
Im(g∗d21

)
)2
)

b7 =
(
2Re(g∗22)Re(g∗d21

)+2Im(g∗22) Im(g∗d21
)
)

c7 = (Re(g∗22))
2

a8 =
((

Re(g∗d21
)
)2

+
(
Im(g∗d21

)
)2
)

b8 =
(
2Im(g∗22)Re(g∗d21

)−2Re(g∗22) Im(g∗d21
)
)

c8 = (Im(g∗22))
2

(3.34)

In this case, as expected, it is not possible to separate the two quadratic polynomials

on the different sides of the inequalities. However, left hand side of the inequalities

are written as the sum of two quadratic polynomials that depend on real and imaginary

parts of controllers.

Further simplifications can be achieved in the specific case of constant diagonal

controllers. This kind of controllers only include real parts, so that imaginary part
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related terms can be eliminated. For the case of static diagonal controller, the

conditions that should be satisfied in terms of row diagonal dominance can be written

as:

a5α
2
2 +b5α2 +(c5 + c6)≥

α2
2 +β 2

2
α2

1 +β 2
1

a7α
2
1 +b7α1 +(c7 + c8)≥

α2
1 +β 2

1
α2

2 +β 2
2

(3.35)

At this point it can be proposed that derived results in terms of both column and row

diagonal dominance that are given in (3.21) and (3.32) do not include any frequency or

controller type restriction. Derived results are directly applicable for all frequencies.

Furthermore, it is also possible determine the conditions on real and imaginary parts

of the dynamic diagonal controller. Any controller can be chosen for the diagonal

entries of controller TFM. Derived results within the scope of the Section 3.2 were

also expressed in our studies [41, 44, 46].

3.3 Weighted Diagonal Dominance

Derived results within the scope of the previous section are important from the

theoretical point of view since by this approach it becomes possible to determine

exact conditions on the real and imaginary parts of the controllers. However, in some

practical applications it can be proposed that all controller gain pairs that fulfill the

original diagonal dominance definition may not give practically satisfactory results.

Therefore, within the scope of this section it is focused on determining the controller

parameter regions that achieve better diagonal dominance ratios.

For this purpose, weighting factors are applied to both diagonal dominance conditions.

Using the more or less the same approach that was also followed in the previous section

it becomes possible to determine controller regions that achieve the predetermined

diagonal dominance ratio(s). Since it is more focused on achieving weighted diagonal

dominance, weighting factors are assumed to be constants. However, it is also possible

to determine additional results using different weighting factor for different working

frequencies.
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Selected system and controller type is the same with the previous section(See Figure

3.1 and equations (3.3),(3.4)).

In the following equations, µc1 and µc2 are weighting factors for the first and the second

column respectively. Moreover, µr1 and µr2 are weighting factors for the first and the

second column. Without loss of generality all weighting factors are assumed to be

equal to one or greater than one. When all of these four weighting factors are selected

to be one then the conditions on column and row diagonal dominance correspond to

the original case. Column and row diagonal dominance are discussed in the next two

sections in terms of weighting factors. Derived results within the scope of weighting

factors were also used in our previous studies [40–42].

3.3.1 Column diagonal dominance

The original column diagonal dominance condition were given in (3.8) and (3.9).

Under the same assumptions weighted column diagonal dominance condition can be

written as

|k1g11 + k1k2gd| ≥ µc1 |k1g21| (3.36)

|k2g22 + k1k2gd| ≥ µc2 |k2g12| (3.37)

where µc1 ≥ 1 and µc2 ≥ 1 are the weighting factors for the first and second column

as indicated earlier. Since the added weighting factors are real numbers, conditions on

weighted column diagonal dominance can be determined using the same approach that

used in Section 3.2.1. After using the real and imaginary part notation on both sides

of the inequalities (3.36), (3.37) and expanding the quadratic terms, the conditions on

weighted column diagonal dominance at a given fixed frequency can be written as:

(Re(g11)+Re(k2)Re(gd)− Im(k2) Im(gd))
2+

(Im(g11)+Re(k2) Im(gd)+ Im(k2)Re(gd))
2

≥ µ
2
c1

(
(Re(g21))

2 +(Im(g21))
2
) (3.38)

(Re(g22)+Re(k1)Re(gd)− Im(k1) Im(gd))
2+

(Im(g22)+Re(k1) Im(gd)+ Im(k1)Re(gd))
2

≥ µ
2
c2

(
(Re(g12))

2 +(Im(g12))
2
) (3.39)

After that, real and imaginary parts of the controllers can be collected on the different

sides of the both inequalities. At the end it can be proposed that the weighted column
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diagonal condition can be represented as the comparison of two 2nd order polynomials

that depend on the real and imaginary part of the individual controllers. In other words

the conditions that should be satisfied by the controller parameters in terms of weighted

column diagonal dominance are:

aw1α
2
2 +bw1α2 + cw1 ≥ aw2β

2
2 +bw2β2 + cw2

aw3α
2
1 +bw3α1 + cw3 ≥ aw4β

2
1 +bw4β1 + cw4

(3.40)

where the coefficient terms awi , bwi and cwis are as given in Appendix 1 and αis and

βis represents the real and imaginary parts of the i− th controller as it was defined

in (3.16). It can be interpreted that some coefficient terms are identical with original

definition. For instance aw1 is equal to a1. However, like in the case of cw2 and cw4

the weighting factors are also included in some of the new coefficients. For given

weightings factors all the coefficient terms correspond to constant number at a given

frequency while in general all of them are functions of frequency variable.

Derived result can also be simplified further for the specific case of static diagonal

type controller. In this case, weighted column diagonal dominance conditions can be

determined as:
aw1α

2
2 +bw1α2 +(cw1− cw2)≥ 0

aw3α
2
1 +bw3α1 +(cw3− cw4)≥ 0

(3.41)

3.3.2 Row diagonal dominance

Under the same assumptions thaw was done in the previous sections it can be stated

the conditions that should be satisfied for the weighted diagonal dominance are:

|k1g11 + k1k2gd| ≥ µr1 |k2g12| (3.42)

|k2g22 + k1k2gd| ≥ µr2 |k1g21| (3.43)

Using the definitions that is given in (3.16) and (3.25), pre results on weighted row

diagonal dominance can be expressed as:(
Re(g∗11)+α2 Re

(
g∗d12

)
−β2 Im

(
g∗d12

))2
+(

Im(g∗11)+α2 Im
(
g∗d12

)
+β2 Re

(
g∗d12

))2 ≥ µ
2
r1

α2
2 +β 2

2
α2

1 +β 2
1

(3.44)

(
Re(g∗22)+α1 Re

(
g∗d21

)
−β1 Im

(
g∗d21

))2
+(

Im(g∗22)+α1 Im
(
g∗d21

)
+β1 Re

(
g∗d21

))2 ≥ µ
2
r2

α2
1 +β 2

1
α2

2 +β 2
2

(3.45)
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The same approach can be used the weighted row diagonal dominance results. In this

case conditions on weighted row diagonal dominance can be determined as:

aw5α
2
2 +bw5α2 + cw5 +aw6β

2
2 +bw6β2 + cw6 ≥ µ

2
r1

α2
2 +β 2

2
α2

1 +β 2
1

aw7α
2
1 +bw7α1 + cw7 +aw8β

2
1 +bw8β1 + cw8 ≥ µ

2
r2

α2
1 +β 2

1
α2

2 +β 2
2

(3.46)

Here the awi notation is preferred in order to be compatible with Section 3.3.1.

However, in this case all the coefficient terms are equal to their corresponding as given

in equations (3.33), (3.34) and in Appendix A. Additionally, the conditions for the

case of static diagonal controllers can be directly determined as:

aw5α
2
2 +bw5α2 +(cw5 + cw6)≥ µ

2
r1

α2
2 +β 2

2
α2

1 +β 2
1

aw7α
2
1 +bw7α1 +(cw7 + cw8)≥ µ

2
r2

α2
1 +β 2

1
α2

2 +β 2
2

(3.47)

3.3.3 An algorithm to achieve weighted diagonal dominance

Derived results for the original diagonal dominance conditions are generalized to the

case of weighted case in Section 3.3. An algorithm can be proposed to determine the

controller parameter regions for closed loop TITO systems at a given fixed frequency

using the theoretical results derived in this section.

The steps of the proposed algorithm in order to determine controller diagonal type

controller parameter regions that satisfy weighted diagonal dominance conditions are

as follows:

Step 1: Determine the weighting factors for column and row diagonal dominance

as µci ≥ 1, µri ≥ 1.

Step 2: Determine the controller parameter regions that achieve weighted column

diagonal dominance using the derived results given in (3.40).

Step 3: Using the inequalities that are given in (3.46) determine controller

parameter spaces that satisfy weighted row diagonal dominance.

Step 4: Take the intersection of the regions obtained in Step 2 and Step 3.

Step 5: Determine the controller parameters that makes determinant of the closed

loop system zero at the given frequency. If the solution intersects with the region

obtained in Step 4 exclude these parameter regions.
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The algorithm was proposed for a given fixed frequency but it can also be directly

applied for a given frequency sequence (combination of finite fixed frequencies).

Furthermore, it can also be easily expanded for a given frequency range. In such a

case, after griding the related frequency range into small intervals and determining

the specific frequency values, algorithm steps should be repeated for every specific

frequency value. However, it can be proposed that the accuracy of the results depends

on the griding step size in this case.

In the specific case of static diagonal type controllers, by replacing the equations

(3.40), (3.46) respectively with (3.41), (3.47) conditions that constant controllers k1

and k2 should satisfy determined directly.

3.4 Determination of the Frequency Ranges

In the previous sections, it was aimed to determine the conditions that should be

satisfied by controller parameter for a given fixed frequency. For the constant value

of the frequency parameter all conditions are simplified significantly. However, the

diagonal dominance problem can be also discussed from a different perspective.

Assuming the frequency as a free parameter, for the case of static diagonal controllers

it is possible to derive results on frequency intervals that the closed loop TITO system

can be made diagonal dominant.

In this section, the conditions on frequency intervals for static diagonal type controllers

are discussed in detail for column diagonal dominance. At this point it is aimed

to answer "Is it possible to determine critical frequencies that diagonal dominance

characteristic may change?" Determining the diagonal dominance characteristic of a

given system at a fixed frequency is a straight forwards task using results derived in

previous sections. However, this is not the case when it is aimed to determine critical

frequencies.

Considered controller type within the scope of this subsection can be written as:

K =

[
kp1 0
0 kp2

]
(3.48)

Using the (3.22), conditions on column diagonal dominance can be rewritten as:

a f1(ω)k2
p2
+b f1(ω)kp2 + c f1(ω)≥ 0

a f2(ω)k2
p1
+b f2(ω)kp1 + c f2(ω)≥ 0

(3.49)
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Conditions that are expressed in (3.49) are quadratic function with respect to kp2 and

kp1 . In this case, extremum points can be determined by taking the derivatives of both

conditions as:

∂ a f1(ω)k2
p2
+b f1(ω)kp2 + c f1(ω)

∂kp2

= 2a f1(ω)kp2 +b f1(ω) = 0

∂ a f2(ω)k2
p1
+b f2(ω)kp1 + c f2(ω)

∂kp1

= 2a f2(ω)kp1 +b f2(ω) = 0

(3.50)

Solutions of the corresponding equations in (3.50) can be written as:

k∗p2
=
−b f1(ω)

2a f1(ω)

k∗p1
=
−b f2(ω)

2a f2(ω)

(3.51)

By calculating the value of the second order polynomials at the points k∗p2
=
−b f1(ω)

2a f1(ω)

and k∗p1
=
−b f2(ω)

2a f2(ω) it can be written as:

a f1(ω)

(
−b f1(ω)

2a f1(ω)

)2

+b f1(ω)
−b f1(ω)

2a f1(ω)
+ c f1(ω) = 0

a f2(ω)

(
−b f2(ω)

2a f2(ω)

)2

+b f2(ω)
−b f2(ω)

2a f2(ω)
+ c f2(ω) = 0

(3.52)

When the derived equations that is given in simplified it can be concluded that

controller parameter ranges in terms of column diagonal dominance may change

at critical frequencies. These critical frequencies are the solution of the following

equations that can be expressed as:

4c f1(ω)
(
a f1(ω)

)2−a f1(ω)
(
b f1(ω)

)2
= 0 (3.53)

4c f2(ω)
(
a f2(ω)

)2−a f2(ω)
(
b f2(ω)

)2
= 0 (3.54)

The roots of the equation (3.53) and (3.54) are the candidate frequency values that

may change the answer of our question. After determining the roots of (3.53) and

(3.54) a random frequency value should be selected from every interval and the second

order polynomial should be plotted in order to interpret the results. In Section 3.5.3 a

case study is also included to demonstrate the derived results within the scope of this

subsection for a given TITO system.
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3.5 Case Studies

Within the scope of this subsection it is aimed to discuss the effectiveness of the derived

results and the proposed algorithm in terms of diagonal dominance. For this purpose,

two case studies are included for the static and dynamic diagonal type controllers. The

considered control system block diagram in all case studies are as given in Figure 3.1.

In the first two case studies, it is focused on determining controller parameter ranges

for a given frequency and/or frequency interval. Derived results for these cases are

verified for the selected controller parameter pairs using the Gershgorin disc plots and

diagonal dominance ratio plots. In the third and the last case study it was focused

on determining the critical frequency ranges that change the structure of controller

parameters in terms of column diagonal dominance.

3.5.1 Static diagonal controller

In this section it is aimed to determine controller parameter spaces that achieves

standard and weighted diagonal dominance conditions at a given frequency and

frequency interval. The TITO system and the controller that is discussed in this case

study can be written as:

G(s) =


6−2s
(2+5s)

1+4s
(2+7s)(1+10s)

1.5
(2+5s)

2
(1+10s)

 (3.55)

K =

[
kp1 0
0 kp2

]
(3.56)

For this specific case the equations (3.41), (3.47) are used instead of (3.40), (3.46) for

column and row diagonal dominance calculations respectively. At this point, it must

also be noted that the selected system is not suitable for diagonalization methods that

was introduced in the previous sections.

As the first step it is focused on the case of fixed frequency. In this case all the

coefficient terms correspond to scalar numbers. All weighting factors should be

selected as one to determine conditions for standard diagonal dominance definitions.

For ω = 0, using (3.41) the conditions that should be satisfied in terms of column
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(a) Column Diagonal Dominance (b) Row Diagonal Dominance

Figure 3.2 : Controller parameter regions for diagonal dominance at ω = 0.

diagoninal dominance can be expressed as:

31.64k2
p2
+33.75kp2 +8.44≥ 0

31.64k2
p1
+22.50kp1 +3.75≥ 0

(3.57)

Likewise, the following conditions should be satisfied for row diagonal dominance at

ω = 0.

126.56k2
p2
+135kp2 +36≥

k2
p2

k2
p1

56.25k2
p1
+40kp1 +7.11≥

k2
p1

k2
p2

(3.58)

As result, it can be proposed that the controller parameter regions that achieve column

and row diagonal dominance at can be determined respectively as it is given in Figure

3.2(a) and Figure 3.2(b). If it is desired to derive controller parameter regions that

achieves both conditions then the intersection area should be determined using 3.2(a)

and Figure 3.2(b). By this way, it can be asserted that kp1− kp2 parameter regions that

satisfy both standard column and row diagonal dominance at zero frequency is as given

in Figure 3.3.

As it is seen from Figure 3.3 it is possible to determine controller parameters that

achieve both column and diagonal dominance conditions. It can also be proposed

that in some specific cases it is not possible to find controller pairs that achieve both

conditions unlike the discussed case.
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Figure 3.3 : Parameter regions that satisfy both CDD and RDD at ω = 0.

As it was discussed in Section 3.3 standard definition may not be satisfactory enough

from the practical point of view. Derived results for the weighted diagonal dominance

can also be applied in this case. In order to demonstrate the results for the case

of weighted diagonal dominance the weighting factors are selected as µc1 ,µr1 = 2

µc2,µr2 = 3. It is aimed to determine controller parameters that make the magnitude

of the diagonal entry in the first column and first row two times greater that the

corresponding off diagonal element. Likewise, diagonal entry in the second column

and second row should be three times greater than the corresponding off diagonal term.

Under this selection of weighting factors new conditions for weighted and row

diagonal dominance can be written as:

31.64k2
p2
+33.75kp2 +6.75≥ 0

31.64k2
p1
+22.50kp1 +1.75≥ 0

(3.59)

126.56k2
p2
+135kp2 +36≥

4k2
p2

k2
p1

56.25k2
p1
+40kp1 +7.11≥

9k2
p1

k2
p2

(3.60)

In this case, using (3.59) and (3.60), static controller gain regions that satisfy weighted

column and row diagonal dominance can be determined as it is given in Figure 3.4.
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(a) Weighted Column Diagonal Dominance (b) Weighted Row Diagonal Dominance

Figure 3.4 : Controller parameter regions for weighted diagonal dominance at ω = 0
(µc1,µr1 = 2 µc2,µr2 = 3).

When Figure 3.4 and Figure 3.2 examined, it can be interpreted that resulting figures

are similar to each other. However, it can be clearly observed that in the case of

weighted diagonal dominance resulting regions are relatively narrow compared to the

standard case. It can also be interpreted that some regions that included in Figure 3.2

are not included in Figure 3.4 as expected.

By taking the intersection of the derived regions that are given in Figure 3.4(a) and

Figure 3.4(b) static controller gain intervals that achieve CDD and RDD at ω = 0 can

be determined directly as in 3.5.

For a given TITO system it can be proposed that achieving diagonal dominance at a

single frequency may not be sufficient from the practical point of view. Mostly, it

is desired to achieve diagonal dominance and to reduce the interactions in a specific

frequency range as indicated in [42]. As indicated earlier, derived results can be easily

extended for a given frequency range. In such a case, specified frequency interval

have to be grided and after that steps of the proposed algorithm have to be repeated

for every specific frequency. If it is desired to achieve diagonal dominance within the

frequency interval 100 ≥ ω ≥ 0 then static diagonal controller parameter regions can

be determined as given in Figure 3.6 for standard diagonal dominance. The parameter

regions that is given in Figure 3.6 satisfy both column and row diagonal dominance for

the given interval.
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Figure 3.5 : Parameter regions that satisfy weighted CDD and RDD at ω = 0
(µc1,µr1 = 2 µc2,µr2 = 3).

Corresponding parameter regions for the case of weighted diagonal dominance can

be derived as in Figure 3.7 for µc1 ,µr1 = 2 and µc2 ,µr2 = 3. It can be proposed that

certain amount of the parameter region is excluded in the case of weighted diagonal

dominance when 3.7 and 3.6 compared.

It can be proposed that there are two main graphical methods to verify the diagonal

dominance characteristics of a given MIMO system in a predetermined frequency

range [7]. These graphical methods are named as Gershgorin Disc Plot (or Nyquist

Arrays and Gershgorin Disc Plot) and Diagonal Dominance Ratio Plot.

In the case of Gershgorin Plot the magnitude of the sum of off diagonal terms are

superimposed to the Nyquist plot of the diagonal term as a circle. In order to be

a diagonal dominant system at the given frequency range resulting Gershgorin Plot

should exclude the origin. Moreover, Gershgorin Discs can be plotted separately

for the column and row diagonal dominance cases so that column and row diagonal

dominance characteristics can be analyzed separately

One controller gain pair is selected in order to analyse the diagonal dominance of the

closed loop system since it is not possible to apply the same process for all parameter

values that is given in Figure 3.7. When Figure 3.7 examined it can be proposed that

kp1 = 0.25,kp2 = 2.5 controller gain pair achieves the weighted CDD and RDD at
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Figure 3.6 : kp1− kp2 regions that achieve CDD and RDD for 100≥ ω ≥ 0.

Figure 3.7 : kp1− kp2 regions that achieve CDD and RDD for 100≥ ω ≥ 0
(µc1,µr1 = 2 and µc2,µr2 = 3).
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100 ≥ ω ≥ 0. For the selected controller parameter pair, Gershgorin Discs can be

plotted as it is given in Figure 3.8.

(a) Weighted Column Diagonal Dominance

(b) Weighted Row Diagonal Dominance

Figure 3.8 : Nyquist Arrays and Gershgorin Discs for 100≥ ω ≥ 0
(kp1 = 0.25,kp2 = 2.5).

As it is seen in Figure 3.8, Gershgorin Discs exclude the origin. As a result, it can be

interpreted that the given controller achieves both column and row diagonal dominance

at the desired frequency interval as expected.

While Gershgorin Discs give a useful graphical approach to determine that a given

specific system is diagonal dominant or not, it is sometimes hard to determine how

the system is close to the bounds of diagonal dominance. In order to determine the

exact dominance ratios at a given frequency range diagonal dominance ratio plots can

be preferred in such cases.

The row/column diagonal dominance ratio is defined as the ratio of the sum of all

off diagonal terms in a row/column, divided by the magnitude of the diagonal term

at the given frequency. So that it can be interpreted that smaller diagonal dominance

ratios indicate lower interaction at that frequency. For the case of standard diagonal
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dominance definition the ratio plots should not exceed one in order to be a diagonal

dominant system. Additionly, it can also be directly proposed that the ratio plots should

not exceed 1
µci

and 1
µri

in case of weighted diagonal dominance.

Diagonal dominance ratio plots for kp1 = 0.25,kp2 = 2.5 is as given in Figure 3.9

for the same frequency range. In this case diagonal dominance ratio plots indicate that

designed dynamic controller fulfills the weighted diagonal dominance conditions since

ratio plot of the first row and first column do not exceed 0.5 and the ratio plot of the

second row and second column do not exceed 0.33.

Figure 3.9 : Diagonal dominance ratio plots for 100≥ ω ≥ 0 (kp1 = 0.25,kp2 = 2.5).

Static controller parameter regions are derived for a given fixed frequency and

frequency intervals within the scope of this case study. It is also shown that parameter

regions that achieve weighted diagonal dominance can be derived directly. In order to

demonstrate the diagonal characteristics of the closed loop system graphical methods

like Diagonal Dominance Ratio Plots and Gershgorin Discs are applied for the selected

controller parameters. All derived results within the scope of this subsection verify the

effectiveness of the obtained results in terms of determining static diagonal controller

parameter regions that satisfy standard and weighted diagonal dominance conditions.

It must also be noted that weighting factors are chosen to be the same constant value in

all frequencies in the discussed case. However, they can be easily selected as different

values for different frequencies.

3.5.2 Dynamic diagonal controller
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In this case study, it is aimed to show that the derived results are also applicable for

dynamic diagonal type controller. The selected TITO system and dynamic controller

can be written as:

G(s) =

 5
1+5s

1+0.01s
1+8s

1.5+0.03s
1+10s

6
1+4s

 (3.61)

K(s) =

[
kp1 + kd1s 0

0 kp2 +
ki2
s

]
(3.62)

The conditions that are given in (3.40), (3.46) are used to determine controller

parameter regions. For the sake of simplicity and in order to be able to plot the

parameter regions kd1 and ki2 are assumed to be kd1 = ki2 = 1. However, at this point

it must be noted that this assumption was made only for the sake of simplicity. It is

possible to get results for any selection of kd1 and ki2 .

In this case study, only weighted diagonal dominance results are presented. All the

weighting factors are selected to be two (µc1,µr1 ,µc2 ,µr2 = 2) since it is desired to

determine controller parameter regions that make the magnitude of the diagonal term

at least two times greater than the corresponding off diagonal terms.

Under the given assumptions kp1 − kp2 parameter regions that satisfy both weighted

CRR and RDD can be determined by using (3.40) and (3.46). The parameter regions

that achieve both condition at the frequency ω = 10 can be determined as it is given in

3.10.

If it is desired to achieve weighted diagonal dominance in the frequency range

100 ≥ ω ≥ 0 under the same selection of weighting factors the same process that

was used in the previous section can be applied. So that, the parameter regions that

achieve weighted diagonal dominance can be derived as given in Figure 3.11. It can

be proposed that in this specific case the resulting parameter regions are narrowed

in higher frequencies, when the Figure 3.11 investigated in detail. It can also be

interpreted from the practical point of view that it becomes harder to determine

controller parameters that satisfy condition in higher frequencies.

When Figure 3.11 a controller pair that achieves the diagonal dominance conditions

in the desired frequency range can be selected as kp1 = 20,kp2 = 40. In this case, the

Gershgorin Discs plot can be obtained as it is given in Figure 3.12. It can be proposed

that in the related frequency range the effect of g12 is limited for the corresponding
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Figure 3.10 : Parameter regions that satisfy weighted CDD and RDD at ω = 10
(µc1,µr1,µc2,µr2 = 2).

Figure 3.11 : kp1− kp2 regions that achieve CDD and RDD for 100≥ ω ≥ 0
(µc1,µr1,µc2,µr2 = 2).
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weighted column and row diagonal dominance. However, it is not possible to propose

the same comments for g21. In the first sub figure of Figure 3.12(a) and in the

last sub figure of Figure 3.12(b) after a certain frequency the effect of g21 to the

corresponding diagonal term can be clearly observed. However, the origin is not

included by Gershgorin Discs in any case.

(a) Weighted Column Diagonal Dominance

(b) Weighted Row Diagonal Dominance

Figure 3.12 : Gershgorin disc plot related with 2nd case study.

In order to have more insight related with the diagonal dominance characteristics of the

given system diagonal dominance ratios can be plotted as it was done in the previous

section. For the same selection of controller parameters, diagonal dominance ratio

plots can be derived as it is given in Figure 3.13. In this case the ratio plots should

not exceed 0.5 since all weighting factors are selected as 2. It can be easily recognized

that all the ratio plots are less than 0.5 for the related frequency range. It can also

be interpreted that two of the ratio plots (column 1 CDD AND row 2 RDD) tend to
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Figure 3.13 : Diagonal dominance ratio plot.

increase after a certain frequency. This is also compatible with the Gershgorin disc

plot that is given in Figure 3.12(a).

A static controller have the same magnitude in all frequencies. From this point of

view, it can be proposed that such controller are relatively restricted to modify the

diagonal dominance characteristic of a given system. Instead of static controllers,

dynamic controllers can be used to fulfill the diagonal dominance conditions in

different frequencies or frequency ranges. With this aim, the case of dynamic diagonal

controller case was discussed within the scope of this case study. It is shown that

derived results are also applicable for dynamic diagonal type controllers. PI and PD

type controller are used in the diagonal entries of the controller TFM. Derived results

are also interpreted for a selected pair of controller parameter using Gershgorin Discs

and diagonal dominance ratio plots. In addition to the results that are presented in

this case study, triangular inquality and optimization algorithms can also be used for

determining dynamic diagonal controller as it was done in our previous study [42].

3.5.3 Frequency ranges

In this case study it is aimed to demonstrate the derived results in Section 3.4 and to

discuss the diagonal dominance problem from a different point of view. The TITO

system and the controller type that will be used as a case study in this section are:

G(s) =


(6−2s)
(5s+2)

(4s+1)
(5s+3)(10s+1)

1.5
(7s+1)

2
(s+1)(s+2)

 (3.63)
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Figure 3.14 : a f1(ω)k2
p2
+b f1(ω)kp2 + c f1(ω) plot for different frequencies.

K =

[
kp1 0
0 kp2

]
(3.64)

In order to analyze the column diagonal dominance firstly, the real roots of the equation

(3.53) and (3.54) should be determined. For the sake of simplicity the conditions for

first and second column are discussed separately.

The real roots of the equation (3.53) that will lead us to the determination of critical

frequencies in terms of the CDD of the first column can be calculated as:

4c f1(ω)
(
a f1(ω)

)2−a f1(ω)
(
b f1(ω)

)2
= 0⇒ ω1 =−0.2339 ω2 = 0.2339 (3.65)

There is a real root at ω2 = 0.2339 . This may lead to the interpretation that the range of

controller parameters that satisfy the diagonal dominance condition of the first column

may change at this frequency. So that this frequency can be named as critical frequency

in terms of column diagonal dominance. The second order polynomial a f1(ω)2 +

b f1(ω)kp2 + c f1(ω) is plotted for different frequency values ω (0 ≥ ω ≥ 5) as it is

given in Figure 3.14 .

As it is observed from Figure 3.14, from ω = 0 to ω = 2.339 there are two kp2 intervals

that satisfies the diagonal dominance condition given in (3.22). For instance at ω = 0

the inequality given in (3.22) is satisfied for −∞ < kp2 ≤−1.8 and −0.6≤ kp2 < ∞

Same procedure can also be applied for the second column. For this purpose firstly the

real roots of (3.54) should be determined. For the given system real roots of (3.54) can
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Figure 3.15 : a f2(ω)k2
p1
+b f2(ω)kp1 + c f2(ω) plot for 0≥ ω ≥ 0.2.

Figure 3.16 : a f2(ω)k2
p1
+b f2(ω)kp1 + c f2(ω) plot for 7≥ ω ≥ 11.

be determined as:

ω1 =−8.68376 ω2 =−0.114125 ω3 = 0.114125 ω4 = 8.68376 (3.66)

There are two critical frequencies (ω3 = 0.114125 and ω4 = 8.68376) for the

second column. The condition function for the second column diagonal dominance

a f2(ω)k2
p1
+b f2(ω)kp1 +c f2(ω) is plotted for different values of ω (0≥ ω ≥ 0.2) as it

is given in Figure 3.15. Likewise, the same function is also plotted for 7≥ ω ≥ 11 as

given in Figure 3.16.

By interpreting the Figure 3.15 and Figure 3.16 it can be asserted that all kp1 values in

the frequency interval 0.11 < ω < 8.68 satisfies the diagonal dominance condition of
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Table 3.1 : Frequency ranges and the intervals of controller parameters that satisfy
column diagonal dominance conditions.

0 < ω < 0.11 0.11 < ω < 0.2339 0.2339 < ω < 8.68 8.68 < ω < ∞

kp1 Interval All kp1 values All kp1 values Interval
kp2 Interval Interval All kp2 values All kp2 values

the second column. For all other frequencies there are varying parameter intervals that

satisfies the diagonal dominance condition. The frequency ranges and the parameter

values that satisfy the conditions are given in Table 3.1.

In this case study diagonal dominance was discussed from a different point of view

compared to the previous two case studies. It was shown that it is possible to

determine the critical frequencies in terms of column diagonal dominance that changes

the interval characteristics of controller parameters. However, it must also be noted

that derived result in terms of frequency intervals are only valid for the case of static

diagonal type controllers.
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4. STABILITY OF MIMO SYSTEMS

From the practical point of view, it can be proposed that the derived results in the

previous section in terms of diagonal dominance are crucial for MIMO system design,

especially when it is desired to design decentralized controllers for MIMO systems.

Additionally, Nyquist Theorem can be generalized to MIMO systems for the case of

diagonal dominant systems as indicated in the early studies of Rosenbrock. However,

in general, achieving diagonal dominance does not indicate that the closed loop

system is stable, since the diagonal dominance is defined over magnitude conditions

only. Therefore, it is aimed to determine stability mapping conditions and stabilizing

parameter spaces in this chapter.

Stability of dynamical systems is one of the core problems in control engineering.

It is possible to define stability from different perspectives (asymptotic stability,

exponential stability, BIBO stability etc.). However, these different definitions have

no practical significance for the case of linear time invariant systems [21]. In addition

to the stability, in general, the most important objective of a dynamical system is to

achieve certain performance specification(s). While these two problems can be seen

as two distinct problems at the first sight, it is possible to map performance criteria

to the stability conditions using eigenvalue specifications and parametrization [63],

[64]. As a result, it is also possible to set links between stability and performance

problems. Deriving powerful approaches in terms of stability is also meaningful from

this perspective.

In this chapter, it is aimed to propose a Lyapunov equation based stability mapping

approach, after pointing out the previous studies in terms of LTI and MIMO system

stability. Compared to the frequeny based approaches in literature, this method has

several advantages like eleminating the need for frequency sweeping, decoupling

at singular frequencies and controller type dependencies. Since the approach was

proposed in the sense of Lyapunov, it is also applicable to the other type of systems

where Lyapunov function formulation is possible (SISO systems, discrete time
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systems, switching systems etc.). Derived results within the scope of this section were

published in [40, 46, 65–69].

4.1 Previously Proposed Approaches

In order to increase the readability, previously proposed approaches are discussed in

three subsections. In the first subsection, it was aimed to point out the first major

studies in terms of LTI system stability. Later on, major studies both for SISO

and MIMO systems were pointed out in the second subsection. And lastly, it was

mentioned about the recent studies that has been proposed in litertature in terms of

MIMO stability in the last subsection.

4.1.1 First studies on stability

The first systematic studies in terms of stability of dynamical systems date back to

the second half of the 19th century. It was first proposed by Maxwell in 1868 that

the stability of a closed loop system could be determined by analyzing the roots of an

algebraic equation [70]. As indicated in [71], in this paper, Maxwell developed the

differential equations of the governor, linearized them and stated stability is related

with the real parts of the characteristic equation. However, only second and third order

cases were solved by him. In the meantime, a stability criteria was also developed by

Vyshnegradsky independently for cubic polynomials in 1876 [72].

The general problem of stability that was pointed out by Maxwell was first solved by

Routh in 1877 [73]. Necessary and sufficient stability conditions for a given system

were proposed by him in terms of the coefficients of the characteristic polynomial.

Years later, the results of Vyshnegradsky was used by Stodola in order to design

water turbine governors. As indicated in [74], he asked Hurwitz to solve the stability

problem. As a result, a general stability criterion was also developed by Hurwitz in

1895 using other methods than Routh [75, 76]. Independently developed methods of

Routh and Hurwitz are today’s well-known Routh-Hurwitz criterion.

While these developments were achieved in terms of linear systems, in his pioneering

doctoral thesis Lyapunov, bring a different point of view to the non linear system

stability. It is proposed in [77] that, at the current time he was also aware of and

acknowledged Routh’s approach to the stability. However, by using the work of

54



Poincare, series solutions of non-linear differential equations was proposed by him.

However, with respect to various sources, the most important contribution of Lyapunov

is to bring a different point of view to dynamical system stability. Instead of dealing

with rigorious time domain solutions of differential equations, Lyapunov basically

intriduced the energy like functions of state variable in his "second" or "indirect"

method [78]. In this approach, it is sufficient to show negativeness of the Lyapunov

function to ensure stability. His thesis was first translated to French in 1908 and

this translation was reprinted as a book by Princeton University [79]. However, the

contributions of Lyapunov are mainly realized by the western community after the late

1950s [77].

Detailed information on the first studies of dynamical system stability can be found

on [71, 74, 77]

4.1.2 Major studies in the 20th century

Visualisation of stability region can be traced back to the pioneering study

of Vyshnegradsky [80]. This study constituted the basis for the well known

D-decomposition. The rigorious approach to divide the parameter space into sub

regions where the number of unstable closed loop eigenvalues are invariant was first

developed by Neimark [81,82]. The perspective created a strong basis for the following

major contributions like [83, 84]. First counterparts of the studies of Neimark in the

western community can be found in [85–87].

The first systematic studies in terms of analysing the stability of multivariable feedback

systems dates back to late 1940s [88]. However, the later studies are more focused on

the non interacting synthesis problem where the stability analysis were not centre of

attraction [89–91]. Nyquist array based frequenc domain approached were proposed

in for the systems that achieve diagonal dominance conditions in [13, 92]. More

details related with the MIMO system design methods can be found in the survey

of MacFarlane [93].

From the stability perspective of linear multivariable systems, it was shown in [94] that

stability of these kind of systems depends on the closed loop difference matrix and

the characteristic polynomials. After that, using the dynamic equation representation
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necessary and sufficient conditions for a given MIMO system in order to be stable are

proved in [95].

The effect of loop gains on stability of MIMO systems were analyzed by Rosenbrock

in [14]. Nyquist criterion (Theorem 2,3) and the diagonal dominance properties

(Theorem 4) was the basis of this study. After that frequency based approaches were

studied by various researchers and gerelized Nyquist stability criterion was proposed

[96–99].

On the other hand, an approach to determine all stabilizing controllers for a given

control system was first proposed by Youla et al. in 1976 [100]. However, the order

of the controller cannot be fixed in this approach. In order to overcome this drawback,

in the forthcoming years, researchers in this area more focused on to determine the

stabilizing parameters spaces for a given fixed order controller as indicated in [101].

Parameter Space Approach (PSA) which was first proposed by Ackermann is one of

the most important approaches that aims to determine stability regions for a given fixed

type of controller [102]. For the specific case of PSA there are lots of studies that deal

with the determination of stabilizing P, PI, PD and PID controllers but for the case of

MIMO systems derived results for such cases are not directly applicable.

On the other hand, as indicated earlier, the studies of Lyapunov were recognized by the

western researchers during the late 1950s. The case of stability of linear differential

equations in terms of Lyapunov’s second method was first questioned by Kalman and

Bertram in 1960 [79]. Using the special solution of the Lyapunov matrix equation, the

connection with the classical results of Routh and Hurwitz were establised in [103].

Then, a new way of solving Lyapunov equation was proposed in [104] by using the

skew symmetric matrices. Additionally, stability conditions of a nominal system

matrix were given in [105]. Moreover, in some studies special types of Lyapunov

functions like V = ∑
n
i=1 |xi| and V = max

i
|xi| were used to discuss the stability problem

from a different point of view. This perspective is also related with the diagonal

dominance characteristics [79, 106].

4.1.3 Recent studies related with MIMO system stability

It can be proposed that a continuous time MIMO system is stable if and only if all of

its poles lie on the complex left half plane. The resulting characteristic polynomial
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can be so complex even for the basic controller types while the condition on stability

is like in the case of SISO systems. For instance, multiplication of the controller

parameters and multiplication of the individual transfer functions are included in the

characteristic equation in the case of a TITO system that is controlled with a static

diagonal controller.

In the recent years, some of the well known approaches that were initially proposed for

SISO systems were generalized for the MIMO case. For instance, D-decomposition

approach which is based on the regions where unstable roots remains the same in the

controller parameter space, was generalized to multivarible systems by Gryazina and

Polyak [80, 107].

Eigenvalue and ARE based mapping equation were presented in [63]. Moreover,

mappping specifications of these equations on to parameter space was also discussed

in detail in the same study. Additionally, an approach to extend the parameter space

approach to MIMO systems using the mapping of design objectives for MIMO systems

were presented in [108].

Additionally, PSA approach that was first proposed by Ackermann extended to the

cases of MIMO and multiloop control structures in [109, 110]. A decoupling based

approach were proposed in these studies. However, the generalisation approach for

the systems where decoupling is not possible due system limitation is still an ongoing

study.

Recently, Nyquist stability criteria was used in the PI controller design problem of

MIMO systems [15]. Furthermore, a stability analysis approach was proposed by Keel

and Bhattacharya for MIMO systems by using an equivalent scalar transfer function

representation [111]. In that approach, a scalar transfer function is constructed from

the leading principal minors of the original transfer function matrix. However, within

the scope of that study only square systems are considered. There are also some studies

in literature that deal with the stability problem of specific subsets of MIMO systems.

For instance, a frequency domain approach is presented in [112, 113] to determine

the stabilizing static diagonal controller parameters for TITO Systems. A frequency

sweeping is needed in this approach to determine stabilizing parameter regions.
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In most of the above mentioned approaches, frequency sweeping and griding are

required, since the stability problem was defined in the frequency domain. It can be

proposed that in case of interacted complex loops, lots of free parameters and higher

order of the characteristic polynomial these methods become inefficient.

On the other hand, within the scope of this thesis, it is aimed to Lyapunov based

approached to determine the stability boundaries of a given MIMO system. Since the

formulation of Lyapunov approach is independent from the type of the controller and

number free parameters, the proposed approach can be easily applied for diffent type

of controllers. Additionally, the case of parameteric uncertainties can also be discussed

from this point of view. This case is discussed in detail in Section 5.

4.2 Lyapunov Stability

In his pioneering doctoral thesis, Lyapunov proposed two main approaches for the

stability analysis of dynamical systems. Today, these approaches are named as the

"indirect" and "direct" methods (or "first" or "second" method respectively). While

these approaches initially proposed for the non linear systems, in the successive years

these theorems are also applied to the case of LTI and/or LTV system types.

While the indirect method of Lyapunov is out of scope of this thesis, it is also aimed

to give brief information related with it for the better understanding of the whole

Lyapunov Theorem.

The main idea of the Lyapunov’s indirect method is to use linearization around a given

working point and then solve the resulting linear equation. Local stability results can

be derived by this approach.

The idea of linearization around a given working point was used in the Lyapunov’s

indirect method and as a result, only local stability results with small stability region

can be achieved.

The following nonlinear system can used to express the methodology of the direct

approach

ẋ = f (x) (4.1)
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In the system described above (4.1), a state xe is called an equilibrium state of the

system if f (xe) = 0.

An equilibrium point is said to be locally stable in the sense of Lyapunov, if we start

from an initial condition x0 within the region S(δ ) and the trajectories of the system do

not exceed the boundary of region S(ε), as time increases as shown in Figure 4.1(a).

The equilibrium point xe is said to be asymptotically stable, if it is locally stable and

if every solution starting within region S(δ ) converges to xe without exceeding the

boundary of S(ε) as time increases indefinitely as shown in Figure 4.1(b). Finally, if

none of these two conditions are satisfied, then the system is said to be unstable. In

other words, a system is said to be unstable, if there is a state x0 in region S(δ ) such that

a trajectory starting from this state exceeds the boundary of S(ε) as t → ∞ as shown in

Figure 4.1(c).

(a) Local stability (b) Asymptotic stability (c) Unstability

Figure 4.1 : Lyapunov stability.

Using the indirect method of Lyapunov, the following therorem can be proposed to

determine the stability of that equilibrium point.

Theorem 4.1: Let x = 0 be an equilibrium point for the system that is given in (4.1)

where f is differentiable and defined as f : D→ Rn. Here D is a neighborhood of the

origin. A is the linearized version of f (x) around x = 0

A =
∂ f (x)

∂x
|x=0 (4.2)

Then, the origin is asymptotically stable, if all the eigenvalues of A have negative real

parts and the origin is unstable if at least one of the eigenvalues of A has positive real

part.
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Since the indirect method of Lyapunov is not within the scope of this study, the proof

will not be included in the thesis. However, the proof and the detailed anaysis related

with the indirect method can be found in [114].

On the other hand, in the direct method of Lyapunov energy-like functions were used

to determine the stability of a given system. This direct method eleminates the need

for the solution of nonlinear system equation. Instead of this, it was proposed that the

negative definiteness of a positive definite Lyapunov function is sufficient to achieve

stability. The following theorem can be proposed to determine a sufficient conditions

for the systems as it is given in (4.1).

Theorem 4.2: Let x = 0 be an equilibrium point for the system that is given in

(4.1). Moreover, assume that D ⊂ Rn is that includes x = 0. Let V is a continuously

differentiable function that is defined on the domain V : D→ R such that:

V (0) = 0 and V (x)> 0 in D−{0} (4.3)

Then if:

V̇ (x)≤ 0 in D (4.4)

x = 0 is stable.

In order to prove that theorem, the procedure that is also used in Khalil’s study will be

followed [114]. First of all, a positive real number r can be selected from the domain

r ∈ (0,ε] where ε > 0. In this case, a subset of D can be constructed as follows:

Br = {x ∈ Rn|‖x‖ ≤ r} ⊂ D (4.5)

Now, the new variable α can be defined as: α = min‖x‖=rV (x) . Then considering the

(4.3) it can be proposed that α > 0. In this case, a new variable β can be defined on

the interval β ∈ (0,α). For this new variable β , the set Ωβ can be defined as:

Ωβ = {x ∈ Br|V (x)≤ β} (4.6)

In this case it can be shown by contratiction that Ωβ is in the interior region of Br.

The relationship between the regions D, Br and Ωβ is sketched in Figure 4.2. As a

result, it can be stated that the set Ωβ is a closed set by definition and additionally, it

is also bounded, since it is contained by the set Br. So that, it can be proposed that
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Figure 4.2 : Geometric representaion of the sets used in the proof.

any trajectory that starts in Ωβ at time t = 0 stays in Ωβ for all t ≥ 0. This can also be

shown using the property (4.4) as:

V̇ (x(t))≤ 0⇒V (x(t))≤V (x(0))≤ β ,∀t ≥ 0 (4.7)

Using (4.7), it can be concluded that (4.1) has a unique solution for all t ≥ 0 when

x(0) ∈Ωβ . So that it can be proposed that there is δ > 0 such that

‖x‖ ≤ δ ⇒V (x)< β (4.8)

since V (x) is continuous and V (0) = 0. After that it can be written as:

Bδ ⊂Ωβ ⊂ Br (4.9)

The relation between the defined sets Bδ Ωβ and Br that is given in (4.9), can now be

used to propose that the trajectory of x lies in the set Br . Using (4.9) it can be written

as:

x(0) ∈ Bδ ⇒ x(0) ∈Ωβ ⇒ x(t) ∈Ωβ ⇒ x(t) ∈ Br (4.10)

Therefore (4.10) leads to:

‖x(0)‖< δ ⇒‖x(t)‖< r ≤ ε,∀t ≥ 0 (4.11)

that shows the equilibrium point x = 0 is stable. Using the same approach and algebra,

the results of the Theorem 4.2 can be extended to the cases "asymptotically stable" and

" globally asymptotically stable".
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Eleminating the need for solving the nonlinear differential equations in terms of

stability can be accepted as the main contribution of this theory. The Lyapunov theory

initially proposed for nonlinear systems and it gives a sufficient condition on stability

for these kind of systems. However, it can be proposed that it is possible to set a

link between the Hurwitz stability and the Lyapunov Theory for the case of linear

systems. Additionally, the results that is derived using the Lyapunov approach give

the necessary and sufficient conditions for the case of LTI systems. The case of LTI

systems is discussed in Section 4.2.1 and Section 4.3 in detail.

4.2.1 Lyapunov stability of LTI systems

One of the major problems that researchers deal with for nonlinear systems is the

determination of the Lyapunov function. Especially for the case of non linear systems,

it can be said that it can be diffiult to determine positive definite Lyapunov function

that can also be named as "Candidate Lyapunov Function". However, in the case of

linear systems, it is generally straightforward process to propose the Lyapunov funtion.

A closed loop LTI system can be represented in the state space as:

ẋ = Ax, x ∈ Rn (4.12)

where A is the closed loop system matrix. The case that A includes free controller

parameters and/or uncertain parameter will be discussed in detail in the next sections.

For the linear system that is given in (4.12) a Lyapunov function can be directly

proposed as:

V (x) = xT Px (4.13)

where P is a symmetric matrix. It can be proposed that the Lyapunov function

representation that is given in (4.13) in the general quadratic form. The following

proposition can be easily asserted for the positiveness of the Lyapunov function V (x).

Propositon 4.1: The function V (x) that is defined in (4.13) is a positive function if and

only if all the eigenvalues of P is positive.

Using the symmetricity of P, this proposition can be easily proven by rewritting the P

as:

P =UT DU (4.14)
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where UTU = I and D is a diagonal matrix that includes the eigenvalues of the P. Then

by defining a new variable y as y =Ux the original Lyapunov function can be rewritten

as:

V (x) = yT Py =
n

∑
i=1

λi |yi|2 (4.15)

As a result it can be concluded that:

∀x 6= 0,V (x)> 0⇔ λi > 0,∀i (4.16)

A matrix P is a positive definite matrix if and only if its all eigenvalues are positive.

Combining this property with the Preposition 4.1, the matrix P that is included in (4.13)

must be positive definite function for the positivity of the Lyapunov function V (x).

In the second step, it must be shown that time derivate of the proposed Lyapunov

function is negative.

By taking the derivative of V (x), it can be written as:

V̇ (x) =
∂V
∂ t

= ẋT Px+ xT Pẋ

= (Ax)T Px+ xT P(Ax)

= xT AT Px+ xT PAx

= xT (AT P+PA)x

(4.17)

In terms of Lyapunov, V̇ (x) must be negative definite in order to be a stable system.

Therefore, it can be directly proposed that the inequality:

AT P+PA < 0 (4.18)

should be satisfied. While (4.18) seem to be a LMI at first sight, in the case of LTI

systems it is equivalent to the matrix equation

AT P+PA =−Q (4.19)

where Q is a positive definite matrix. The equation that is given in (4.19) is a special

case of Sylvester and Algebraic Riccati Equations and it is named as "Lyapunov

Equation" or "Lyapunov Matrix Equation" in literature.

As indicated earlier, for non linear system only sufficient results can be derived

using the Lyapunov approach. However, it becomes possible to derive necessary and

sufficient conditions for LTI systems. This result is stated in the following theorem.
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Theorem 4.3: For the system that is given in (4.12) and for any Q > 0, there exist a

positive definite solution of the Lyapunov equation that is given in (4.19) if and only

if all the eigenvalues of the system matrix A lie in the open LHP. Additionally, the

solution P is unique.

In order to preserve the readability of the thesis, the proof of Theorem 4.3 is given in

Appendix A.

It can be proposed that two possible approaches can be followed to determine the

stability of a systems that is given in (4.12) [115]. First way is to calculate the solution

of the Lyapunov matrix equation for a given symmetric positive definite Q matrix.

On the other hand, second way is to solve the matrix Lyapunov equation for a given

positive definite P matrix. It can be proposed that it is meaningless to use the second

way for the case of LTI systems while both approaches can be applied for the other

system classes like Time Delay Systems, Switching Systems, etc. Theorem 4.3 is

necessary and sufficient and it is pointed out that for any given positive definite Q

there exist a unique solution P. Another result of Theorem 4.3 is that the Q matrix can

be selected as simple as possible (for instance identity matrix). However, in order to

preserve the generalized notation the Q matrix notation will be used with in the scope

of this thesis.

4.3 Lyapunov Equation Based Stability Mapping Approach

Instead of determining the stability characteristic of a given fixed system, Lyapunov

theory can also be used to determine stability boundaries for any given free parameter.

In such cases the closed loop system can be rewritten as

ẋ = A(k)x, x ∈ Rn (4.20)

where k ∈ Rp represents the controller parameters. For instance, in case of a

TITO system and a static diagonal controller control parameters can be written as

k =
[
k1 k2

]T . Here, it is aimed to determine for which values of the given free

parameter(s) k the closed loop system remains stable. For this purpose, considering

the free parameters the Lyapunov equation can be reformulated as:

A(k)T P(k)+P(k)A(k) =−Q (4.21)
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Actually, the matrix equation that is given in (4.21) is special case of Sylvester and

Algebraic Riccati Equations which can be represented as

AX +XB =C (4.22)

AT X +XA−XBR−1BT X +Q = 0 (4.23)

respectively. As indicated in [116], for the existence and uniqueness of the solution

a Sylvester equation, A and −B should not have common eigenvalues. As a result, it

can be proposed that in the Lyapunov equation case, the matrices A(k) and −A(k)T

should not have commom eigenvalues in terms of the existence and uniqueness of

the solution. Since a matrix A and its transpose AT have the same eigenvalues, this

also corresponds to the case where A have symmetric eigenvalues with respect to the

imaginary axis in the Lyapunov equation. This case was also discussed as "fictitious

stability boundaries" in [117].

The Lyapunov equation represented in (4.21) is a special matrix equation and it is

possible to transform it to a set of linear equations using the Kronecker product and

vectorization operator.

Kronecker product that has wide application areas in matrix calculus, matrix equations,

system theory, etc. [118] is defined as:

A⊗B :=
[
ai jB

]
=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 (4.24)

On the other hand, vectorization operator vec(.) transforms an n×m matrix to an

nm× 1 vector by rearranging the matrix entries column after column. As a result,

vectorization operation for a given n×m dimensional matrix is defined as follows:

vec(B) :=

b1
...

bm

 ∈ Rn×m (4.25)

Using the Kronecker product and vectorization operator Lyapunov equation can be

rewritten as: (
I⊗AT (k)+AT (k)⊗ I)

)
vec(P(k)) =−vec(Q) (4.26)
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where I is the n×n identity matrix. The equation that is given in (4.26) is in the linear

set of equations representation. Defining the new M(k) matrix as

M(k) =
(
I⊗AT (k)+AT (k)⊗ I

)
(4.27)

all entries of P(k) can be determined from

vec(P(k) = M−1(k)vec(−Q) (4.28)

With respect to the Lyapunov Theorem, P(k) must be a positive definite matrix for

the stability. In other words, all leading proncipal minors of P(k) must be positive in

terms of stability. Since all entries of P(k) can be determined from (4.28), it becomes

possible to determine all the leading principal minors of P(k). For a given stable

system, at least one of the leading principal minors of P(k) should change sign for

instability. Considering the numerators and denominators of these leading principal

minors, it can be proposed that 2n symbolic equations needed to be solved in order to

determine stability boundaries which needs dense computational effort. However, this

computational complexity can be reduced by analysing the (4.28) in detail.

All the denominator elements of the P(k) matrix that is given in (4.28) are equal

to the determinant of M(k). As a result, the denominators of the leading principal

minors of P(k) only include the determinant of M(k) and its increasing powers. So

that, it can be proposed that it is sufficient to solve only the determinant of M(k) to

check the denominators of the leading principal minors of P(k). The required number

of equations that should be solved in order to determine stabilizing parameters are

reduced to n+ 1 by this analysis. However, solving n+ 1 symbolic equations still

needs a high computational effort.

In addition to the previous analysis, significant reductions on the computational

complexity may occur if the relations between the A(k), P(k) and M(k) matrices are

analysed in detail. All eigenvalues of the A have negative real parts for the stability

while the eigenvalues of the P(k) be positive to be a positive definite matrix. As a

result, it can be proposed that stability crossing boundaries for these matrices are the

controller coefficients that the real parts of the eigenvalues of A(k) and P(k) change

sign.
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(a) Eigenvalues of P at
RRB

(b) Eigenvalues of P at
CRB

(c) Eigenvalues of P at
IRB

(d) Eigenvalues of A at
RRB

(e) Eigenvalues of A
at CRB

(f) Eigenvalues of A at
IRB

Figure 4.3 : Corresponding eigenvalue characteristics of P and A with respect to
RRB, CRB and IRB.

Another important connection between the eigenvalues of A(k) and the determinant of

M(k) can be given as [119]:

|M(k)|=
n

∏
i=1

n

∏
j=1

(λi +λ j) (4.29)

where λ1, ...,λn are the eigenvalues of the A(k).

A stable continuous time LTI system may become unstable in three different ways as

indicated in the Parameter Space Approach (PSA) [83]. These stability boundaries are

named as: Real Root Boundary (RRB s = 0), Complex Root Boundary(CRB s =± jω

and Infinite Root Boundary (IRB s→ ∞). Using these stability boundaries, it can be

proposed that it is necessary and sufficient to determine the parameter values that make

|M(k)|= 0 and |M(k)|→∞ under the condition that A(k) does not have any symmetric

eigenvalues with respect to the imaginary axis.

In the case of RRB or CRB (λ = 0 or λi, j = ± jω satisfy |λ I−A(k)| = 0), it can be

directly concluded that |M(k)| = 0. And in this case, at least one of the eigenvalue

of the P(k) traverses over the infinity, since all elements of P(k) include |M(k)| in the

denominator. It can also be interpreted that in this case the |P(k)| goes to infinity,

since denominator of the nth leading principle minor of P(k) which is |P(k)| is equal

to |M(k)|n. This case is also illustrated in Figure 4.3.
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On the other hand, under the assumption that A(k) does not have any symmetric

eigenvalues with respect to the imaginary axis 1, the condition |M(k)| = 0 can be

satisfied in two different ways. Considering the condition that is given in (4.29) either

λi = 0 (RRB case) or λi =−λ j (CRB case). As a result, it can be proposed that λ = 0

or λi, j =± jω satisfy |λ I−A(k)|= 0 if and only if |M(k)|= 0.

On the other hand, if at least one of the eigenvalues of A(k) goes to infinity, i.e. λ →∞

satisfied (IRB case), then this implies that |M(k)| → ∞ as well. In this, it can be stated

that |P(k)|= 0 since |M(k)| is included in the denominator of the |P(k)|. As a result, it

can be interpreted that while at least one eigenvalue of the closed loop system traverses

over the infinity at least one of the eigenvalue of P(k) passes to the left half plane over

the origin. This case is also illustrated in Figure 4.3.

Lastly, the case that |M(k)| → ∞ should be considered. It can be directly concluded

from (4.29) that |M(k)| includes finite product where all of the multipliers include sum

of two eigenvalue pairs. Here, it must be remembered that all of these eigenvalues are

in general complex numbers and have finite magnitude, unless they go to infinity. As

a result, it can be proposed that finite product of finite values can not lead to infinity

and it can be concluded that at least one of the eigenvalues of A(k) must go to infinity

if |M(k)| → ∞.

In general |M(k)| can be expressed in the rational form as:

|M(k)|= mnum(k)
mden(k)

(4.30)

where mnum(k) and mden(k) are the numerator and denominator polynomials

respectively. It is clear that when |M(k)| is a pure polynomial then mden(k) can be

taken as 1. The cases |M(k)| = 0 and |M(k)| → ∞ respectively leads to mnum(k) = 0

and mden(k) = 0. The intersection points of the IRB and RRB or IRB and CRB lead

to zero by zero division and the value of |M(k)| is undefined in these cases. It can be

interpreted that some eigenvalues may traverse to the right or left half plane by crossing

the origin or over the infinity in such cases.

1For the existence and the uniqueness of the solution of the Lyapunov Equation, A and −AT should
not have any common eigenvalues.
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At the end, considering all the further analysis that was given in this section, it can be

concluded that it is sufficient to check the following two conditions

|M(k)|= 0 and |M(k)| → ∞ (4.31)

in order to determine the stability boundaries.

The conditions that are given in (4.31) reduce the required number of equations

significantly. It is shown that, in order to determine the stability boundaries of the

original system that is given in (4.20), it is sufficient to solve at most 2 symbolic

equations.

Solutions of these equations divide the whole parameter space into several subregions

in terms of stability. A controller pair can be selected from ever subregion manually

and the stability of every sub region can be determined. However, it is also possible

to automatize this process by determining the intersection points of all solution

functions. After that, considering the gradient of these functions a controller pair

can be determined from each subregion. After that stabilizing parameter regions can

be determined automatically by checking the stability of the determined controller

parameter pairs.

4.3.1 Transformations to eliminate redundancy

When the |M(k)| that is given in (4.29) investigated in detail it can be observed that

duplicated products of eigenvalue pairs are included. For instance, both (λ1 +λ2) and

(λ2 +λ1) are included in (4.29). However, it is sufficient to check only one of them in

terms of stability.

Since both P(k) and Q are symmetric matrices, these redundant multipliers can be

eliminated using transformations. Any given n×n symmetric S matrix, includes only

n(n+ 1)/2 unique elements.vec(S) than only includes these unique elements can be

written as:

vec(S) =
[
S11 . . . Sn1 S22 . . . Sn2 . . . Snn

]T ∈ Rn(n+1)/2 (4.32)

It can be asserted that for any given symmetric S matrix there exists a full column rank

transformation Dn ∈ Rn2×n(n+1)/2 such that:

vec(S) = Dnvec(S) (4.33)
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In literature, this transformation matrix Dn is named as duplication matrix and as

indicated in [120] it is independent from the entries of S matrix and only depends on

the dimension of S. By using the duplication matrix (4.26) can be rewritten as follows:

MT (k)vec(P(k)) = vec(−Q) (4.34)

where

MT (k) = D+
n M(k)Dn (4.35)

In (4.35), D+
n represents the pseudo inverse of the duplication matrix Dn. In literature

the matrix D+
n is also named as the elimination matrix.

As a result, it can be proposed that all the unique entries of the original P(k) matrix

can be determined from:

vec(P(k)) = M−1
T (k)vec(−Q) (4.36)

It is also possible to set a connection between the eigenvalues of the A(k) and the

|MT (k)|. Using the Kronecker Sum and elemination matrix properties that is obtained

in [121], it can be proposed that the determinant of the new n(n+ 1)/2× n(n+ 1)/2

dimensional MT (k) matrix can be expressed as:

|MT (k)|=
n

∏
i=1

n

∏
j≥i

(λi +λ j) (4.37)

Compared to (4.29), it can be concluded that redundant multiplications are eliminated

in (4.37). By this further analysis now it is possible to determine the stability

boundaries of a given system by calculating the determinant of a n(n+ 1)/2× n(n+

1)/2 dimensional MT (k) instead of a n2×n2 dimensional M(k) matrix.

4.4 Case Studies

It is aimed to include several case studies in order to demonstrate the effectiveness

of the proposed Lyapunov equation based stability mapping approach. While the

proposed approach is also suitable for n input n output MIMO systems, within the

scope of this chapter TITO systems will be used as case studies. As indicated in [61],

many industrial processes which have higher dimensions can be practically divided

as several TITO subsystems for operation. Additionally, it can also be proposed that
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Figure 4.4 : Block diagram of the considered control system.

solutions to the TITO problems would be an effective tool to solve general case beyond

TITO systems [111].

4.4.1 Case study I: Finite root boundaries

In order to visualize the derived theoretical results for the case of finite root boundaries

the following TITO system and the controller type is selected as

G(s) =


1

(s+1)(s+2)
1

(s+2)

2
(s+1)

2
(s+2)

 (4.38)

K =

[
k1 0
0 k2

]
(4.39)

where the block diagram representation of the control systems that is considered in

this thesis in given in 4.4. Here, it must be point out that the selected model in (4.38)

has also a practical meaning, since in practice most of the dynamical systems can be

modelled as first or second order systems. Additionally, the system and controller pair

that are given in (4.38) and (4.39) were selected to their relatively simpler structure in

order to make it easier to visualize the theoretical results.

The corresponding characteristic equation for the given system and controller type can

be determined as:

δ (s) = s3 +(2k2 +5)s2 +(k1 +6k2−2k1k2 +8)s+(4+2k1 +4k2−2k1k2) (4.40)

It can be directly interpreted from (4.40) that multiplications of the controller

parameters are included in the characteristic equation in contrast to SISO systems.

So that, it can be proposed that in general it is more difficult to derive conditions

on controller parameters in terms of stability. Corresponding closed loop system

A(k) matrix for the given characteristic polynomail in (4.40) can be expressed in the
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canonical form as:

A(k) =

 0 1 0
0 0 1

a31 a32 a33


a31 =−(4+2k1 +4k2−2k1k2)

a32 =−(k1 +6k2−2k1k2 +8)

a33 =−(2k2 +5)

(4.41)

Using the equation (4.27), |M(k)| can be determined as:

|M(k)|= 16(−3(12+ k1)+6(−7+ k1)k2 +4(−3+ k1)k2
2)

2 (k1(−1+ k2)−2(1+ k2))

(4.42)

In this case |M(k)| is a polynomial expression as a result, there is only finite stability

boundaries (RRB and CRB). So that, it is sufficient to determine the controller

parameters that make |M(k)|= 0. Moreover, it can also be interpreted that duplicated

multiplier of |M(k)| which is (−3(12+ k1)+ 6(−7+ k1)k2 + 4(−3+ k1)k2
2)

2 can be

reduced to (−3(12+k1)+6(−7+k1)k2+4(−3+k1)k2
2) by using the transformations

that was introduced in Section 4.3.1.

In this specific case, the |M(k)| can be expressed as product of two functions that

depend on free controller parameters k1 and k2. And it is sufficient to find the zeros

of these functions in order to determine the the zeros of the |M(k)| and the stability

boundaries. These functions can be written as:

fM1 = (−3(12+ k1)+6(−7+ k1)k2 +4(−3+ k1)k2
2)

2 (4.43)

fM2 = (k1(−1+ k2)−2(1+ k2)) (4.44)

In order to solve the symbolic equations (4.43) and (4.44) Wolfram Mathematica 10.3

software was used. The zeros of these functions can be determined as:

k2 = fLY1(k1) =
21−3k1−

√
3
√

3−6k1 +7k2
1

4(−3+ k1)
(4.45)

k2 = fLY2(k1) =
21−3k1 +

√
3
√

3−6k1 +7k2
1

4(−3+ k1)
(4.46)

k2 = fLY3(k1) =
2+ k1

−2+ k1
(4.47)

The equations that are given in (4.45)-(4.47) are candidate functions for stability

boundaries. In this case study these stability boundaries divide the parameter space
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Figure 4.5 : Case study I: Stabilizing parameter space.

into 9 subregions in terms of stability. A controller parameter can be easily selected

from each sub region and after that stabilizing parameter regions can be determined by

checking the stability of the determined controller parameter pairs.

Stability boundaries for the given system and stabilizing parameter region that makes

the closed loop system stable is given in Figure 4.5. When the stabilizing parameter

space investigated, it can be interpreted that there is a large stabilizing area for the

negative values of k1 and positive values of k2. At this point, it must be noted that

this region is an open region. There is also relatively, small stabilizing area around

the k2 = 0 line after a specific value of k1. Stabilizing parameter region that is given

in Figure 4.5 is identical with region that can be obtained using the other methods in

literature like the traditional Routh-Hurwitz approach. Additionally, frequency domain

based approaches can also be applied to get the same stabilizing area. However, it

must be pointed out that most of the frequeny domain based approaches are controller

specific and generally it is not possible to generalize these approaches for all controller

types. Calculations should be renewed for every specific controller type. However,

proposed approach within the scope of this thesis is more general compared to these

approaches since it is independent from the controller type and the number of free

parameters. Furthermore, is also possible to apply this approach to the different system

classes where Lyapunov formulation is possible. For instance by minor modifications

it is possible to apply the same methodology to the discrete time systems.
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There are three functions that may affect the stability boundary in this specific case.

In Figure 4.5, it is seen that all of these functions have an effect on the stabilizing

region. When the Figure 4.5 examined, it is also seen that there are two jumps from

negative to positive infinity at k1 = 2 and k1 = 3. These jumps occur at the controller

parameter values that make denominators of fLY2 and fLY3 zero. It is also expected

to see a jump for fLY1 at k1 = 3 but for this specific point both the numerator and

denominator polynomials of fLY1 are zero. As a result, it can be proposed that fLY1 is

indefinite at this point and a jump over infinity was not observed as a result of this.

It can also be proposed that these jumps over the infinity for the stability boundaries

are not necessarily affect the resulting stabilizing regions directly. For instance, for

the case of fLY3 the jump at k1 = 2 directly affects the stabilizing region. On the other

hand, for the case of fLY2 the jump at k1 = 3 does not affect the stability area directly.

As it was discussed in the previous section, another indicator of the stability of the

closed loop system is the positive definiteness of the P(k) matrix. In order to be a

positive definite matrix all eigenvalues of P(k) must be positive.

The resulting stabilizing parameter region can also be verified by checking the

eigenvalues of the P(k). For example, for the case k2 = 0 the eigenvalue plot of the P

matrix is given in Figure 4.6. In this case, all of the three eigenvalues must be positive

for stability. n Figure 4.6, an eigenvalue of P(k) jumps from negative to positive

infinity at k1 = −2 and the system becomes stable for k1 ≥ −2. This result is also

compatible with the stabilizing parameter region that is given in Figure 4.5 (for k2 = 0).

As indicated earlier, the proposed approach can be directly applied for different type

of controllers. For instance, if the controller type is switched to static upper triangular

controller for the system (4.38) it is also possible to determine stabilizing parameter

regions. In this case, static upper triangular controller that can be written as follows:

K =

[
k1 k2
0 k3

]
(4.48)

In this case, |M| is also a pure polynomial expression like in the previous case and it

can be expressed as follows:

|M|=16((3+2k2)(12+ k1 +8k2)−2(−7+ k1)

(3+2k2)k3−4(−3+ k1)k2
3)

2

(k1(−1+ k3)−2(1+2k2 + k3))

(4.49)
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Figure 4.6 : Case study I: Eigenvalues of P for k2 = 0.

Since the controller is static upper triangular, in this case, dimension of the parameter

space is three. However, when (4.49) examined, it can be proposed that as in the

previous case |M(k)| matrix can be written as product of two functions. Stability

boundaries of the closed loop system can be determined by determining the zeros of

these functions.

Using these zeros, the stabilizing parameter region for the system (4.38) that is

controller by (4.48) can be determined as it is given in Figure 4.7. In this case, the

parameter values that make |M(k)| = 0 represent planes in three dimensional space.

Unlike the previous case, now the intersection of these planes corresponds to curves

instead of points. In this case, previous results can also be verified by selecting the k2

as k2 = 0. Then, the controller reduces to the static diagonal controller and the derived

parameter region is identical with Figure 4.5.

While it was mainly discussed the parameters that leads to stability, with this approach

it is also possible to make counter interpretations. For instance, if the controller

parameters k2, k3 are selected as k2 = 0, k3 = −2 then it is possible to conclude that

there is not any k1 parameter value that satisfies stability condition.
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Figure 4.7 : Case study II: Stabilizing parameter space.
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Figure 4.8 : Case study II: Eigenvalues of P for k2 = 0 and k3 =−2.

In addition to the Figure 4.7, this result can also be derived by plotting the eigenvalues

of P(k) for the selected controller parameters that is given in Figure 4.8. It can be

interpreted from Figure 4.8, it is not possible to make all eigenvalues of P(k) in this

case.

4.4.2 Case study II: Finite and infinite root boundaries

In this case study, both finite and infinite root boundary cases are discussed. In fact,

this case corresponds to the case where |M(k)| is a rational expression instead of

polynomial. The system and the controller type that is selected in order to visualize
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the effect of infinite stability boundaries written as:

G(s) =


(−2s+6)
(5s+2)

(4s+1)
(7s+2)(10s+1)

1.5
(5s+2)

2
(10s+2)

 (4.50)

K =

[
k1 0
0 k2

]
(4.51)

When the characteristic equation of the given system is determined, it can be observed

that the coefficient of the highest order term depends on controller parameters. This

parameter dependency actually is the source of the infinite root boundaries. More

precisely, the characteristic polynomial of the given system and the controller type can

be expressed as:

δ (s) = α3s3 +α2s2 +α1s1 +α0 (4.52)

where α3 = 350 − 140k1. Since the coefficient term depends on the controller

parameter k1, it is expected to end up with a infinite root boundary in addition to the

finite root boundaries in this specific case.

In this case study, complete expression of the |M| will not be given in order to ease the

readability. However, it can be said that |M| is a ration expression in this case and the

denominator of |M| is equal to (−2.5+ k1)5 as expected. As a result, in addition to

the parameter values that make |M|= 0, parameter values that |M(k)| → ∞ have to be

determined in terms of stability boundaries. By solving the corresponding symbolic

equations, finite and infinite stability boundaries can be determined as given in Figure

4.9. As discussed in the previous section, these boundaries divide the whole parameter

region into sub regions in terms of stability. By checking the stability of each region,

stabilizing controller parameter space can be determined as given in Figure 4.9.

As in the previous section it is also possible to verify these results by checking the

positive definiteness of P(k). For instance, if the parameter k2 is selected as zero,

then the eigenvalue plot of the P matrix can be derived as given in Figure 4.10. The

minimum value of the third eigenvalue is 50. As a result, in order to increase the

readability of the plot, only two eigenvalue of the P(k) matrix is included in Figure

4.10. It can be interpreted from Figure 4.10 that stabilizing region is 2.5 > k1 >

−0.334, if the k2 parameter is selected as zero. These results are compatible with

the stabilizing parameter region that is Figure 4.9 as expected.
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Figure 4.9 : Case study III: Stabilizing parameter space.
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Figure 4.10 : Case study II: Eigenvalues of P for k2 = 0.

4.4.3 Case study III: Stability and diagonal dominance

Compared to the previous case study, a slightly different system is discussed in this

case study in order to demonstrate both stability and diagonal dominance resuts.

Considered system model within the scope of this case study can be written as:

G(s) =


(−2s+6)
(5s+2)

(4s+1)
(7s+2)(10s+1)

1.5
(5s+2)

2
(10s+1)

 (4.53)

Controller type is static diagonal controller that is given in (4.51).

In this case, using the Lyapunov equation based stability mapping approach stabilizing

parameter region can be determined as it is given in Figure 4.11. Using the derived

diagonal dominance related results that are obtained in Section 3, it can be proposed
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Figure 4.11 : Case study III: Stabilizing parameter region.

that controller gain regions that satisfy both of the diagonal dominance conditions at

ω = 0 rad/s and stability criteria can be given as in Figure 4.12.

Figure 4.12 : Case study III: Parameter regions that achieve both diagonal dominance
conditions at ω = 0 rad/s and stability criteria.

As it was discussed in detail in Section 3, derived results in terms of diagonal

dominance can also be extended for a given frequency range. Here, it was assumed

that this range is 100 rad/s≥ ω ≥ 0 rad/s. Controller gain regions that achieve both
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of the diagonal dominance conditions for 100 rad/s ≥ ω ≥ 0 rad/s and the stability

criteria are given in Figure 4.13.

Figure 4.13 : Case study III: Parameter regions that achieve both diagonal dominance
conditions for 100 rad/s≥ ω ≥ 0 rad/s and stability criteria.

4.5 Further Application Areas

As it was pointed out in the previous sections, Lyapunov based stability mapping

approach is a powerful tool to determine the stabilizing parameter spaces. Since it

has its roots on the Lyapunov Theory, it is possible to extend application areas of the

proposed approach to the other type of systems where Lyapunov function formulation

is possible.

Procedure that should be followed is similar in both cases. However, as in the case of

discrete time systems, resulting Lyapunov equation and the M matrix formulation may

vary slightly.

Within the scope of this thesis, in addtion to the MIMO systems, other application

areas are also discussed. Three further application areas which are: controller integrity

problem of MIMO systems, discrete time systems and robust MPC calculations were

discussed in detail to demonstrate the effectiveness of the propsed stabilizing parameter

space calculation approach. Derived results for these subproblems were published

in [66–69].
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At this point, it must be said these system types and problem formulations are not the

only ones that a designer can apply the proposed Lyapunov equation based mapping

strategy. For instance, this approach was applied to switching systems in [122] and to

descriptor systems in [123] by other researchers.

4.5.1 Controller integrity problem

Due to their complex structures, many automated industrial systems are vulnerable

to faults [124]. Here the "fault" term corresponds to any kind of degradation in the

system that forces it to diverge far from its normal operating point. In such cases, the

system performance is effected by these faults or even worse the stability can be lost.

Therefore, it is meaningful, from the practical point of view, to synthesize controllers

considering the possible system failures and/or parameter perturbations.

An effective way to prevent system’s faults to cause instability is to consider the

"controller integrity" in the design phase. Here, integrity refers to a property where

in the presence of arbitrary failures of certain sensors or actuators, the system

retains stability and acceptable performance without reconfiguring controllers. A

multivariable feedback system possesses controller integrity, if it remains stable and

gives acceptable performance in the presence of arbitrary failure of certain sensors or

actuators without modifying controllers.

The integrity problem has drawn increasing attention due to the growing demand for

reliability and availability of industrial systems, especially in the last two decades.

In the meantime, different approaches were propsed from different mathematical

perspectives in order to achieve the controller integrity [125–129]. Details of these

approaches can be found in our previous study [67].

In the controller integrity problem, instead of only determining the stabilizing

parameter regions for the nominal system, it is also required to determine the

stability boundaries and stabilizing parameter regions for the subsystems resulted

under predicted/possible failures. As a result, it can be proposed that in such problems

it is important to use a suitable approach for the calculation of stability boundaries

calculations from the computational point of view.
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However, in general, it is very difficult for multivariable systems to achieve integrity

unless controllers are synthesized to possess this property from the design process.

Before going further into the details, firstly, it is aimed to demonstrate the importance

of taking the controller integrity problem into account during the design process using

an illustrative example as it is given in [129].

A motivational example :

Suppose that, the TITO system plant and the controller transfer matrix are given as

follows:

G(s) =

[
s−1

s2+3s+2
s

s2+3s+2
−6

s2+3s+2
s−2

s2+3s+2

]
(4.54)

K(s) =
[

k11 k12
k21 k22

]
=

[ −s−3
s

−3s−1.6
s

0.6s−0.4
s

−0.7s−0.3
s

]
(4.55)

The characteristic equation of the given system can be easily determined from the

numerator of the determinant
∣∣I +KG

∣∣ to be:

δ (s) = s6 +4.9s5 +28.9s4 +82.76s3 +88.74s2 +31.5s+0.52 (4.56)

It can be easily calculated that all the eigenvalues lie in the left half plane in this case.

However, if k11 becomes zero, in other words it fails to operate because of actuator

failure or any software failure related with that part of the system or controller, one

of the closed loop eigenvalue jumps to the right half plane and the system becomes

unstable. Closed loop system poles in this case can be calculates as:

s1,2 =−1.2154±4.4623 j

s3 =−0.5259

s4 =−1

s5 =−2

s6 = 0.0568

As it is seen from this simple example, the controller stabilizes the nominal plant,

however, it fails to stabilize the system when one of the entries of the transfer function

controller matrix fails to operate. Therefore, it can be proposed that in order to achieve

integrity, controllers must be designed carefully in the design phase.
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4.5.1.1 Problem formulation

For the sake of simplicity, it is preferred to use TITO systems within the scope of this

section. However, it must be pointed out that derived results in this section is also valid

for MIMO systems. The problem formulation slightly differs in such cases but the

methodology that should be followed is the same with TITO systems.

Additionally, as asserted in [111] deriving significant results for such systems would be

an effective tool to solve the general case. Furthermore, it is possible to accept TITO

systems as a special subset of MIMO systems. Many industrial systems that have

higher dimensions can be divided into several TITO subsystems as asserted in [61].To

have a better insight about the problem of controller integrity for multivariable systems,

the following general TITO closed loop system structure will be discussed.

Assume a stable plant G and a diagonal controller K are represented by the following

transfer functions respectively

G =

[
g11 g12
g21 g22

]
and K =

[
k1 0
0 k2

]
(4.57)

The closed loop stability of the nominal system is satisfied,if the roots of the following

characteristic equation are located in the left half plane. The characteristic equation

can be determined as:

δ (s) = 1+ k1g11 + k2g22 + k1k2(g11g22−g12g21) = 0 (4.58)

If k1 or k2 fails to operate due to any failure in software or in actuators, the

characteristic equation reduces to:

1+ k2g22 = 0 (4.59)

1+ k1g11 = 0 (4.60)

Therefore, in order to possess integrity, it is required to determine the set of k1 and

k2 that make the zeros of the above three characteristic equations lie in the LHP. As a

result, it is required to determine stabilizing parameter regions for all the subsystems

that result under various predicted failures.

Furthermore, the integrity problem can also be solved, even if the type of controller

is not diagonal since the proposed Lyapunov equation approach is independent from

the controller type and number of free control parameters. However, in this case the
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dimension and the complexity of the problem increase. The number of systems that

needs to be analyzed in terms of stability can easily be determined from the relation

(2n− 1) where n refers to the number of controller parameters. For instance, if the

type of the controller is static upper triangular controller, then the number of systems,

including the nominal system, that needs to be analyzed are seven for TITO systems.

These results can be merged in an algorithm. The steps of the proposed algorithm in

order to derive the parameter regions that achieve controller integrity can be stated as:

• Step 1: Determine parameter regions that guarantee nominal system stability.

• Step 2: Considering the controller structure and possible faults determine the

subsystem characteristic equations.

• Step 3: Using the Lyapunov equation based approach determine the controller gain

regions that stabilizes the subsystem characteristic equations.

• Step 4: Take the intersections of the regions derived in Step 1, and Step 3.

This algorithm is applied to a benchmark case study in next section.

4.5.1.2 Comparison with a benchmark example

To compare the derived results, a benchmark example is selected from literature. The

system and controller structure that was used in [129] are:

G(s) =

[
s+3

s2+2s+3
s+1

s2+2s+3
s+2

s2+2s+3
s+4

s2+2s+3

]
, K(s) =

[
k1(s) 0

0 k2(s)

]
=

[
kp1s+ki1

s 0
0

kp2s+ki2
s

]
(4.61)

A Bounded Phase Theorem based approach was proposed in that study to determine

conditions on controller parameters to achieve integrity. However, in our study [67] it

was shown that Lyapunov equation based approach can be used to obtain better result.

Since the problem is defined in four dimensional space that is not possible to be plotted,

ki1 and ki2 are selected to be 2 and 3, respectively. Then, the objective is to determine

the regions of the kp1 and kp2 parameters in term of integrity.

In the proposed controller integrity algorithm, the first step is to apply Lyapunov

approach to the nominal system. In order to ease the readability of this study, the

complete expression of | M(k) | will not be given. The parametric solutions of
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Figure 4.14 : Controller integrity: Stabilizing region for the nominal system.

|M(k) |= 0 are calculated to determine the finite stability boundaries for this specific

case as in Fig. 4.14.

Here, it should be pointed out that Fig. 4.14 is plotted for the parameter range kp1,kp2 ∈

[−2,3] and the parameter region in that figure is open and non-bounded.

As a second step, the number of subsystems should be determined. Since the number

of free control parameters is two in our case, it can be concluded that 2 additional

stability problems should be solved. Then, in the third step parameter conditions on

these additional subsystems should be determined in terms of stability.

When k1(s) fails to operate, |M(k) | can be written as:

|M(k) |=−384(kp2)
2(7+2kp2)

2 (4.62)

In this case parametric solutions of | M(k) | are kp2 = 0 and kp2 = −3.5. These

equations divide the kp2 parameter region into three regions. By checking the stability

of each region, it is found that, for the system to be stable, the following condition

must be satisfied:

kp2 ≥ 0 (4.63)

On the other hand, for the case that k2 fails to operate, the determinant of | M(k) | is

calculated to be:

|M(k) |=−48(4+ kp1(11+3kp1))
2 (4.64)
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By solving |M(k) |= 0, it can be determined that the condition:

kp1 ≥−0.4093 (4.65)

should be satisfied for stability.

The final step is to take the intersections of the region derived for the nominal system

as it is in Fig. 4.14 and conditions 4.63 and 4.65 in order to determine the stabilizing

parameter region for the system to possess integrity. This parameter regions can be

demonstrated as it is given in Fig. 4.15.

Figure 4.15 : Controller integrity: Stabilizing region for the system to possess
integrity.

Figure 4.16 : Controller integrity: Comparison between Lyapunov approach and
approach in literature.
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On the other hand, for the Bounded Phase Theorem based approach that was proposed

in [129], the bounds of the proportional parameters for the same conditions are:

0.5254≤ kp1 ≤ 1.3496, 0.5254≤ kp2 ≤ 2.7402 (4.66)

By comparing the results derived using both approaches, it is found that, the results

obtained by the Bounded Phase Theorem are significantly conservative. Both results

are plotted in Fig. 4.16.

4.5.2 Discrete time systems

This section aims to set the link between the proposed Lyapunov equation based

stability boundary mapping approach and the discrete time systems. While the

time derivative of the Lyapunov function is slightly different in this case, the main

methodology to determine stabilizing parameter spaces are quite similar. Derived

results in this section were published in [66, 68].

It can be proposed that calculation of all controller parameter combinations that satisfy

stability conditions is non trivial despite the existence of necessary and sufficient

conditions for the stability of discrete time linear systems.

Various methods were proposed in literature to determine stability boundaries and

stable parameter regions. The first systematic studies in that area date back to early

1960s [130]. D-decomposition method which was first proposed by Neimark in [81]

was also applicable for discrete time systems as asserted in [107]. Additionally,

Parameter Space Approach (PSA) based approached were also proposed in literature

for the determination of stabilizing parameters. [131, 132]. The main drawbacks of

these methods is the need for frequency sweeping and the need for decoupling at

singular frequencies. Such needs increases the computational complexity Another

drawback is that these kind of approaches are proposed for a specific type of controller.

More recently reflection segments based technique was proposed by Avanessov and

Nurges [133, 134]. However this method is only applicable for controllers with up to

three parameters due to computational complexity.

On the other hand, using transformations, the methods developed for continuous time

systems can also be used in order to analyze the stability of discrete time systems.

However, computational complexity is usually increased compared to the discrete
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time case: E.g. for the bi quadratic transformation the order of the polynomial is

doubled, which makes analysis and computation unfavorably expensive. Details of

the transformation and Tchebyshev representation based approaches can be found in

studies [135–137].

Instead of facing the drawbacks of the previously mentioned approaches like

decoupling at singular frequencies, frequency sweeping and transformations in this

chapter, it was aimed to extend the derived results in Section 4.3 to the discrete time

case. Proposed approach bypasses the addressed problems and further may be used for

many different control structures.

For this purpose the well-known Lyapunov conditions are reformulated for discrete

time systems. Instead of checking the absolute value of every single eigenvalue a

unified condition for all eigenvalues is examined, which is far more easy to carry out

and greatly reduces computational complexity.

4.5.2.1 Lyapunov formulation for discrete time systems

In this section, extension of the proposed Lyapunov based stability mapping technique

to LTI discrete time systems is discussed in detail. As indicated earlier, methodology

is similar to the continuous time case. However, there are some differences in terms

of time derivative of Lyapunov function and resulting Kronecker product based M(k)

matrix.

Within the scope of this thesis, the following LTI state space model of a closed loop

system in discrete-time is considered:

xt+1 = A(k)xt ; A(k) ∈ Rn×n, x ∈ Rn, k ∈ Rp (4.67)

In 4.67, x is the n dimensional state vector, A(k) is the system dynamics matrix, t is the

time index and k represents the controller parameters. For instance, in the case of static

state feedback controller for a given n− th order SISO system it can be represented as,

k = [k1,k2, ...,kn]
T .

In case of LTI systems, the determination of candidate Lyapunov fuction is a straight

forward process. In the specific case of LTI discrete-time systems Lyapunov function

V (xκ) can be selected as:

V (xt) = xT
t P(k)xt (4.68)
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In order to be a positive function for all values of xt except xt = 0, it is necessary and

sufficient that the matrix P in 4.68 should be positive definite.

The discrete derivative of the candidate Lyapunov function ∆V is evaluated to be:

∆V =Vt+1−Vt

∆V = xT
t+1P(k)xt+1− xT

t P(k)xt

∆V = (A(k)xt)
T P(k)(A(k)xt)− xT

t Pxt

∆V = xT
t (A

T (k)P(k)A(k)−P(k))xt

(4.69)

In terms of Lyapunov Theory, a negative definite time derivate indicates the stability.

In case of LTI systems it is both necessary and sufficient, while this condition is only

a sufficient condition in case of non-linear systems. When the last row of equation

4.69 investigated, it can be easily determined that it is a quadratic function since it is

multiplied by xT
t from the left and multiplied by xt from the right. As a result, it can be

directly concluded that the inner part of 4.69 should be negative definite which means

that:

AT (k)P(k)A(k)−P(k)< 0 (4.70)

While 4.70seems to be matrix inequality, for the case of LTI systems, it is possible to

represent it as a matrix equality as:

AT (k)P(k)A(k)−P(k) =−Q (4.71)

where the matrix Q is any symmetric positive definite matrix. As indicated in [138],

4.71 has a unique solution for a given Q. It must also be noted that 4.71 is not in the

standard linear matrix equation representation. However, it is possible to formulate

this problem in linear set of equation representation using the Kronecker product and

vectorization operator. Using these algebraic tools and operators, it is ossible to rewrite

4.71 as a standard linear set of equation format as follows:

(AT (k)⊗AT (k)− I)vec(P(k)) =−vec(Q) (4.72)

where I is a n2× n2 identity matrix and vec(.) represents matrix vectorization.Left

hand side of the equation 4.72 can be rewritten by defining the M(k) matrix as follows

M(k) = AT (k)⊗AT (k)− I. (4.73)
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Without loss of generality, Q can be selected as In×n where n is the order of the system.

All the entries of P(k) matrix can be calculated using the following equation:

vec(P) = M(k)−1vec(−Q) (4.74)

As it was done in the continous time case, by further analyzing the relations between

the stability indicators the number of equations that should be solved can be reduced.

From the Lyapunov point of view, positive defineteness of the P(k) indicates stability.

Considering the numerators and denominators of leading principal minors of P(k) as

a first step, it can be propsed that 2n sybolic equations should be solved. However,

4.74 indicates that denominator of every single entry of P(k) includes | M(k) |. This

indicates that the denominators of the leading principal minors of P(k) only include

|M(k) | and its increasing powers. As the first step of the analysis, this results with the

conclusion that instead of 2n equations n+1 symbolic equations needed to be solved

for determining the stability characteristics.

In addition to the positive definiteness of the P(k) matrix, eigenvalues of the closed

loop system matrix A(k) is the another indicator of stability. It is a well known fact

that all eigenvalues of A(k) should lie inside the unit circle. As indicated earlier, by

further analysis, it becomes possible to set a connection between the determinant of

the Kronecker product based M(k) matrix and eigenvalues of the closed loop system

A(k) matrix. |M(k) | can be evaluated as:

|M(k) |=
n

∏
i=1

n

∏
j=1

(λiλ j−1), (4.75)

where λi,...,λn are the eigenvalues of A(k).

For a given stable system that is represented as 4.67, corresponding |M(k) | becomes

equal to zero in two cases according to 4.75, either the A(k) matrix has an eigenvalue

equal to one or negative one i.e. λi = 1 or λ j =−1, which refers to the RRB of A(k).

Another possibility for A(k) to become unstable is the complex conjugate eigenvalues

i.e. λi, j = e± jω which refers to the CRB of A(k). In both cases it can be easily shown

that |M(k) | is equal to zero with respect to 4.75. So in this approach, it is only needed

to calculate the parameter values that makes | M(k) |= 0 in order to determine the

stability boundaries.
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Considering the drawbacks of PSA and frequency domain based approaches, it can

be stated that Lyapunov approach is so powerful and flexible for the calculation of

stabilizing parameter spaces. First of all, the computational complexity of this method

is tremendously minimized in the proposed approach. For instance, when utilizing

Lyapunov′s second method for determining the stabilizing controller parameter region

of a discrete-time system, it is required to solve 2n symbolic equations in order to

check for the positive definiteness of P(k) matrix. However, it is sufficient to solve

only one equation by investigating the relationships between A(k), P(k) and M(k)

matrices in case of using this novel approach. Moreover, this procedure avoids the

problems of frequency sweeping, decoupling at singular frequencies and discretization

of the parameter space.

The Lyapunov based mapping technique for LTI discrete-time systems is applicable

for systems with any controller structure. Moreover, it is independent on the number

of controller parameters. This proposed approach can also be utilized to determine the

stability boundaries of systems with uncertain parameters.

4.5.2.2 Calculation of stabilizing PI and PID parameters

In this subsection, the system that has been also used in [139] is selected as a

benchmark system in order to be able to compare the derived results. The system

and PI controller transfer functions are given as

g(z) =
z+1

z2−1.5z+0.5
, c(z) = kp +

kiz
z−1

, (4.76)

where backwards difference methods have been used to represent the PI controller.

The corresponding closed loop A(k) for the system and the controller type given in

4.76 can be determined in the controllable canonical form as:

A(k) =

 0 1 0
0 0 1

0.5+ kp −2− ki 2.5− ki− kp

 . (4.77)

For this case |MT (k)| can be calculated as

|MT (k)|=−12ki(1.5ki− kp + kikp +2k2
p). (4.78)
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Figure 4.17 : Discrete systems: Stabilizing boundaries for PI controller.

The parametric solution of |MT (k)| = 0 with respect to the ki parameter leads to the

following solution set:
ki = 0,

ki =
−2(−kp +2k2

p)

3+2kp
.

(4.79)

The solution functions which are given in 4.79, are plotten in Fig. 4.17. This two

functions are the possible stability boundaries for the given system and the dimensional

parameter space was divided into six subspaces in terms of stability as it is given in

4.17.

In order to determine the stability characteristics of these subregions a single controller

pair can be selected from every sub region and closed loop stability of the system can

be checked. By determining the intersection points of the solutions and using the

gradients of these functions at that point a the procedure can be proposed to select

points from every subspace and this stability checking process can be automatized.

After that analysis, it is determined that only the small region which is close to the

kp axis is stable. As a result, the stabilizing parameter space for this benchmark case

study is determined as it is given in Fig. 4.18.

The outer bounds of the derived region are identical with the stability region given

in [139]. However, the accuracy of the results in [139] depends on the griding step
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Figure 4.18 : Discrete systems: Stabilizing region for PI controller.

sizes, because of the frequency based approach and bilinear transformation that were

used to determine the stabilizing parameter regions. Since the stability problem is not

defined in frequency domain in our approach, there is no need for frequency sweeping.

Additionally, the approach in this study is independent from the controller type and

the number of free parameters. For example, the calculation of the stability boundaries

of a PID controller for the system that is given in (4.76) led to further calculations

in [139]. On the other hand, in our approach nearly the same methodology and code

are used to determine the stabilizing PID parameter range as it is given in Fig. 4.19.

Another advantage of the proposed approach is to derive the anaytical conditions

on controller parameters in terms of stability. These conditions can be inserted to

optimisation based algorithm to stay away from the parameter region. In order to

discuss the benefits of that point of view robust MPC problem will be discussed in the

next section in detail.

4.5.3 Robust MPC calculations

One of the most important advantages of the proposed Lyapunov equation based

approach is the opportunity to determine the analytical expressions of the stability

boundaries. It can be stated that this feature may lead to numerous application areas

where an optimization on controller parameters are needed. sing the derived conditions

for stability the parameter space that should be searched in these optimisation based
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Figure 4.19 : Discrete systems: Stabilizing region for PID controller.

approaches can be significantly reduced. Within the scope of this section, the stability

conditions that are derived from the proposed approach in this chapter are inserted to

the robust MPC problem formulation for the first time. Details of the derived results

within the scope of this section can be found in our study [69].

As indicated in various studies, Model Predictive Control (MPC) is one of the trending

state of the art methods in optimal operating of plants [140, 141].

The overall control performance of MPC is highly affected by the imperfect model

used for the future prediction of the plant behavior, i.e., so-called process-model

mismatch. If the model is highly effected by the uncertain parameters, then the control

performance can be significantly decreased, and, in the worst case, the closed-loop

system behavior can lead to unstable response. The influence of uncertain parameters

can be reduced by using robust MPC as indicated in [142]. However, the main

limitation of practical robust MPC implementation is the complexity of the solved

optimization problem in each control step. It was shown in robust MPC literature that

the linear matrix inequalities can be used to solve the case of parametric uncertainties

[143]. In the pioneering study of Kothare et al. [144], LMI based RMPC design

were formulated in the form of semidefinite programming [145]. This approach was

improved by the later studies like [146–148]. The non linear case and the output

feedback RMPC cases were respectively discussed in [149] and in [150]. Lastly, in

terms of the previous studies, it must also be pointed out that, another perspective in
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order to discuss the parametric uncertainties using the so-called tubes was proposed by

Zeilinger et al. in [151].

The proposed approach in this section to overcome the robust MPC problem consists

of two main steps. In the offline first step, considering the parametric uncertainties

stabilizing controller parameter spaces and the analytical conditions related with the

stabilizing regions needed to be determined. After that, in the second and the last

step, nominal MPC needed to be evaluated using these conditions as constraints on

controller parameters. In order to eliminate repetition, stabilizing parameter space

calculation step will not be expressed in this section. For details of that step the Section

4.5.2.1 or our study [69] can be investigated. On the other hand, details of the robust

MPC problem formulation is discussed in the next section.

4.5.3.1 Robust MPC design based on stabilizing parameter spaces

This section introduces design of a robust MPC design strategy in an indirect way. In

other words, MPC is evaluated over the robustly stabilizing set of controller parameters

K. As a consequence, the robust stability of the closed-loop control system is achieved

for slow variations of controller parameters. The main benefit of this approach is to

design an optimal controller that is subject to system uncertainties in an effective way.

An indirect implementation of robust stability is ensured by the calculus of stabilizing

parameters space K in off-line phase (for more details on stabilizing parameter space

calculations for discrete time systems please see Section 4.5.2.1). Then, it becomes

possible to achieve robust stability of the closed loop system using an arbitrary

controller k ∈ K. As the next step, in the on-line phase, it is sufficient to evaluate

the parameters of k ∈ K to optimize the overall control performance. Furthermore,

the constraints on control inputs u and system states x are also included in the MPC

problem formulation. As a result, it can be proposed that, the optimization problem of
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MPC can be formulated as:

min
K

(
xT

NPxN +
N−1

∑
t=0

(
xT

t Qxxt +uT
t Quut

))
, (4.80a)

s.t. : xt+1 = A(q)xt +B(q)ut , (4.80b)

ut =−Kt xt , (4.80c)

ut ∈ U, (4.80d)

xt ∈ X, (4.80e)

K ∈K, (4.80f)

x0 = x(0), (4.80g)

∀t ≥ 0, (4.80h)

where K ∈ K is a set of robustly stabilizing parameters of the controller, and P � 0,

Qx � 0, Qu � 0 are weighting matrices of appropriate dimensions.

In (4.80), it is aimed to minimize the quadratic objective function 4.80a subject to an

uncertain system that is given in (4.80b). At the same time, the constraints on control

inputs in (4.80d) and states constraints that is given in (4.80e) have to be satisfied.

The control input is evaluated using linear control law in (4.80c). The precomputed

conditions on robust stability are included in the MPC formulation as constraint on

controller parameters as it is given in (4.80f) where K represents the set of robustly

stabilizing parameters. The control problem in (4.80) is evaluated for given initial

conditions in (4.80g).

Although, the sets U, X, K in (4.80d)–(4.80f) can be convex, the optimization problem

in (4.80) is not convex, in general. The non-convex formulation originates in (4.80c),

where the prediction horizon N > 1 introduces the multi-linear terms into (4.80b).As a

result, the solution of the optimization problem in general form, (4.80) subject to N >

1, leads to a non-convex scenario. If the considered runtime prevents implementation

of NP-hard optimization problem in (4.80), then the one-step-ahead prediction horizon,

i.e., a convex scenario, should be considered.

Otherwise, if the limited hardware computational power prevents solving even a

convex optimization problem, then an optimal time-invariant controller K can be

designed for N > 1 in off-line phase, i.e, fast scenario is implemented. Note, then a
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time-invariant controller is implemented and the advantage of receding horizon control

strategy vanishes.

It is aimed to demonstrate the benefits of the proposed approach over a benchmark

example.

4.5.3.2 Case study: RMPC design for an uncertain system

In order to demonstrate the results of the proposed RMPC design strategy for the

systems with the parametric uncertainties, the following benchmark system was

adopted from [152]:

x(t +1) =
[

1 0
q 1

]
x(t)+

[
1
0

]
u(t), (4.81)

where the uncertain parameter is given as 0.5≤ q≤ 1.5. For a state-feedback controller

the closed-loop system matrix A(K,q) has the form:

A(K,q) =
[

1− k1 −k2
q 1

]
. (4.82)

As the first step, robustly stabilizing parameter space should be determined using the

proposed Lyapunov equation based approach. As a result, the stability boundaries of

the given system were determined using the parametric solution of |M(K) |= 0 in the

off-line phase. For this case |M(K) | and its roots can be expressed as:

|M(K) |= k2 q (k1− k2 q)2(4−2k1 + k2 q), (4.83)

k2 = 0, k2 = (2k1−4)/q, k2 = k1/q. (4.84)

Using the parametric solutions of |M(K) |= 0 given in (4.84) the stabilizing parameter

region for the given system was determined as shown in Fig. 4.20. In this case, the

intersections of stabilizing parameter spaces can be projected on the k1−k2 plane. The

stabilizing controller parameter space independent from the uncertain parameter can

be determined as shown in Fig. 4.21.

The corresponding analytical conditions on controller parameters in terms of the

stability of the closed loop system were expressed as:

0 < k2 < 1.6 ∧ 1.5k2 < k1 < 0.25(8+ k2). (4.85)

For the uncertain system in (4.81) a robust MPC is designed using the derived

stability conditions given in (4.85). These conditions are applied as constraints on
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Figure 4.20 : Robust MPC: Stabilizing parameter region.

Figure 4.21 : Robust MPC: Stabilizing controller parameter space.
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controller parameters in the MPC algorithm to ensure the optimal closed-loop control

performance.

In order to simulate the closed-loop response of the given system a time-varying

uncertain parameter sequence where 0.5 ≤ q(t) ≤ 1.5 is considered. This uncertain

parameter sequence is selected as, q(t) 6= q(t +1).

The conditions given in (4.85) correspond to a convex region. As a result, these

constraints can be directly used in the proposed robust MPC design approach described

in Section 4.5.3.1 to achieve an optimal control performance. Additionally, there are

active constraints on control inputs: −1.4 ≤ u(k) ≤ 0.6, prediction horizon is N = 3,

Qx = diag([1,1])×103, Qu = 1×10−3, for the initial conditions x(0) = [1,1]T in MPC

problem (4.80).

The computed initial values of controller parameters are K(1) = [0.0893,0.0224]T

that clearly satisfy robust stability condition in (4.85). The other controllers K(t)

evaluated for t > 1 also satisfy this condition. Fig. 4.22 shows simulation results of

the closed-loop control performance. As can be seen, the control trajectories of the

uncertain system converge into the origin (Fig. 4.22(a)), and the associated optimal

sequence of control actions is depicted in Fig. 4.22(b). Note that the trajectoris in

Fig. 4.22 are generated subject to the time-varying values of uncertain parameter q.

Implementing the stability conditions into the MPC problem formulation as constraints

is the main novelty of the proposed approach. By this way, it becomes possible to

design RMPCs by solving nominal MPC problems. In the proposed MPC design

approach, the stabilizing set of controller parameters are considered to ensure the

optimal system response.
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(a) Controlled states trajectories, x1 (blue), x2 (red),
reference (black dotted).

(b) Control inputs.

Figure 4.22 : Closed-loop control performance assured by robust MPC.
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5. THE CASE OF PARAMETRIC UNCERTAINTIES

In the previous sections, diagonal dominance and stability problems of multivariable

systems were discussed in detail for a given nominal system. The derived results are

meaningful from the controller parameter space determination point of view when

there is no parametric uncertainty. However, further analysis is required in case of

parametric uncertainties and in general (except limited class of uncertain systems) it is

not possible to determine necessary and sufficient conditions for such systems [153].

It can be proposed that in dynamical control systems, uncertainties are unavoidable and

typical sources of such uncertainties are unmodelled dynamics, effects of deliberate

reduced order models, neglected nonlinearities, system-parameter variations due to

torn and worn factors, equipment aging and environmental changes [154]. Ignoring

such uncertainties may affect the performance, diagonal dominance characteristics and

the stability of closed loop system in an adverse manner.

In dynamical control systems, uncertainties can be classified in different ways.

However, in general, it can be proposed that they are classified as unstructured and

parametric uncertainties. In representing the effect of neglected or unmodelled system

dynamics and nonlinearities, the unstructured uncertainty may be more efficient as

indicated in [154]. In a given dynamical system, these kind of uncertainties can be

represented in different ways like additive perturbation, inverse additive perturbation,

input and output multiplicative perturbation etc.

On the other hand, inaccurate representation of system component characteristics,

torn-and-worn effects, equipment aging, the effect of environmental conditions on

system parameters may lead to perturbations in most of the industrial control

systems [155]. These kind of uncertainties can be represented as variations in

certain parameters of the system. Such type of uncertainty representation is named

as "parametric uncertainty" in literature. It is also possible to divide parametric

uncertainties into subclasses like interval, multi linear, nonlinear etc. with respect to

how varying parameters effect the overall system and characteristic equation. Within
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the scope of this thesis, it is aimed to propose solutions for parametric uncertain MIMO

systems. More specifically, it was assumed that the individual transfer functions that

constitute overall MIMO transfer function matrix include interval type parametric

uncertainties.

In this section, first, diagonal dominance of TITO systems is discussed in detail for

the case of interval type parametric uncertainties in 5.1. It is shown that it is possible

to derive conservative results using the triangular inequality and weighting factors.

Derived results in that subsection was published in [41]. Additionally, the stability

of multivariable systems is also discussed in subsection 5.2. After pointing out the

existing methods in literature in terms of parameter dependent Lyapunov functions, it is

shown that proposed approach in Section 4.3 is also suitable for such problems. Lastly,

Kharitonov Theorem is used in accordance with the proposed Lyapunov equation

based method to determine robustly stabilizing parameter spaces for uncertain MIMO

systems. Detailed analysis of the derived results related with the stability of parameter

uncertain MIMO system can be found in our study [156].

5.1 Diagonal Dominance

Decoupling methods that was introduced in Section 2 is applicable for a limited class

of MIMO systems. Furthermore, it becomes impossible to achieve decoupling in case

of uncertainties. In such cases, diagonal dominance which is a weaker condition

compared to diagonalisation can be preferred in order to reduce the interactions.

However, the results derived in Section 3 are valid for the case of nominal systems

and cannot be directly applied to parameter uncertain MIMO system. For this reason,

it is aimed to propose an approach to determine static diagonal controller parameter

regions in case of interval type parametric uncertainties. Derived results within the

scope of this section was published in our previous study [41].

At this point, it must be noted that the number of studies that aims to determine

robust diagonal dominance conditions are very limited in literature. While some of

the existing studies aim to find specific controller values that satisfies the desired

predetermined conditions, others aim to use diagonal dominance characteristic of the

system to derive some conservative results on stability. For instance, fundamental

dominance condition is asserted by Kontogiannis and Munro for parameter uncertain
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MIMO systems in [10]. After that sufficient conditions for the robust stability of

interval and affine linear MIMO uncertain systems, based on the Rosenbrock’s Direct

Nyquist Array is proposed by Kontogiannis and Munro [11, 157]. Furthermore, using

the diagonal dominance property, a sufficient condition for robust stability of interval

type MIMO systems was proposed in [158]. In [159] robust Nyquist arrays and

Gershgorin bands were used for the same purpose and more recently, an H∞ norm

metric was proposed in [160] for the case of parameter uncertain MIMO systems

in order to reduce the interactions. However, all of the mentioned studies aim to

determine specific controller parameter pairs or to use diagonal dominance property

in robust stability calculations.

The main focus of this section is to determine controller parameter regions that satisfy

diagonal dominance at a given frequency and/or frequency interval. For this purpose,

using the triangular inequality, it is aimed to transform the diagonal dominance

problem of a given TITO system to the weighted diagonal dominance problem of the

nominal TITO system.

In the first triangular inequality based approach considering the parametric

uncertainties, minimum and maximum magnitude of the discussed transfer function

should be determined at a given fixed frequency. This task can be accepted as a

relatively simple for the case of interval type uncertainties. For example, the magnitude

of a given transfer function that is given in the following form:

g(s) =
n0 +n1s+n2s2 +n3s3

d0 +d1s+d2s2 +d3s3 (5.1)

can be directly derived as:

|g(s)|=

√√√√(n0−n2 ω2)
2
+(n1ω−n3 ω3)

2

(d0−d2 ω2)
2
+(d1ω−d3 ω3)

2 (5.2)

For the sake of simplicity, only maximization approach is discussed. However, a

similar methodology can be followed to determine the minimum magnitude of the

system that is given in (5.1). When (5.2) is examined, it can be observed that both

the numerator and the denominator terms include two quadratic equations. In order to

determine the maximum magnitude of the given transfer function, the ratio between

the numerator and denominator must be maximized. So that, it can be proposed that

the quadratic terms in the numerator should be maximized while the quadratic terms
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in denominator should be minimized in order to determine the maximum magnitude of

the given transfer function at a given fixed frequency. As a result, it can be proposed

that the maximum magnitude of a given transfer function as in (5.1) can be reduced to

the solution of the following sub optimization problems:

Max
[(

n0−n2 ω
2)2
]
, Max

[(
n1ω−n3 ω

3)2
]

Min
[(

d0−d2 ω
2)2
]
, Min

[(
d1ω−d3 ω

3)2
] (5.3)

Considering the interval type parametric uncertainties on the coefficient terms (ni ∈

[nimin nimax ] and di ∈ [dimin dimax ]), the optimization problems given in (5.3) can be

solved easily. Here, it must be pointed out that discussed system is a third order

system. If the order of the system increases, then the number of coefficient terms

that quadratic functions in (5.3) will increase. The presented methodology can also

be extended to the case of multiplication of transfer functions in a conservative way.

Multiplication of transfer functions that include interval type parametric uncertainties

can be converted to the formulation that is given in equations (5.1)-(5.3). In that case,

the upper and lower bounds of the resulting coefficient terms should be determined

firstly. Then, using the previously mentioned approach, maximum and the minimum

values of the resulting transfer function can be determined in the related frequency.

The same approach can also be followed for the summation of two parameter uncertain

transfer functions.

For the case of diagonal dominance of a given parameter uncertain MIMO system,

it can be proposed that controller terms are included in the initial conditions as

multipliers in general. If the related entry of the discussed transfer function matrix

includes a controller parameter which is not a multiplier of all terms in that entry, then

maximum and minimum magnitude values of the related element cannot be directly

determined using the previously proposed approach. However, it can be proposed that

it is still possible to propose conservative approaches in that case.

In this section, it is aimed to set a connection between the diagonal dominance problem

of parameter uncertain system and weighted diagonal dominance problem of the

nominal system. In principle, it is desired to represent the worst case coefficient term

values by nominal coefficients and the weighting factors. So that, the result that was

derived in Section 3.3 for the case of static diagonal controllers can be used directly

for parameter uncertain systems.
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When one of the static diagonal controller parameter is not the multiplier of the all

elements in the related entry of the transfer function matrix, triangular inequality can

be used to conservatively determine the maximum and the minimum magnitude values

in the desired frequency.

In order to express the aim of this approach in a simpler way, the following condition

on row diagonal dominance which is:

|k1g11 + k1k2gd| ≥ |k2g12| (5.4)

can be used as an example. It is assumed that in (5.4) all of the individual transfer

functions include interval type parametric uncertainties. Here, it is aimed to represent

(5.4) as:

|k1| |g11nom + k2gdnom| ≥ µr1 |k2| |g12nom| (5.5)

where both transfer functions are nominal and µr1 is the corresponding weighting

factor that should be determined. Considering the parametric uncertainties that g12

include, maximum value of |g12| at a given frequency can be determined directly using

the previously mentioned approach. As a result the ratio of the maximum magnitue to

the nominal magniute (Max |g12|/ |g12nom|) can be determined easily.

In order to determine the value of the weighting factor in (5.5), the ratio Min|g11+k2gd |
|g11nom+k2gdnom|

should be determined as a second step. In this step, triangular inequality can be used

to determine the required ratio conservatively. Here, it is aimed to determine minimum

magnitude of |g11 + k2gd| in the related k2 interval. Using the triangular inequality a

lower bound for |g11 + k2gd| can be expressed as:

|g11 + k2gd| ≥ |g11|− |k2| |gd| (5.6)

Using the aforementioned methods, maximum and minimum magnitudes of |g11| and

|gd| can be determined for the case of parametric uncertainties at a given frequency.

As a result, it can be proposed that it becomes possible to determine minimum value of

|g11|−|k2| |gd| conservatively in the related k2 interval. Furthermore, it is also possible

to determine the ratio:
Min |g11 + k2gd|
|g11nom + k2gdnom|

(5.7)

where g11nom and gdnom represent nominal transfer functions. This approach provides

an analytical method. Whereas, triangular inequality depends in the direction of

105



individual transfer function and in general results in high conservatism and it is suitable

for limited class of systems.

On the other hand, numerical (and in general computational complex) approaches can

be proposed in order to reduce the conservatism. From that point of view, a griding

approach is also proposed in this section. In that approach, uncertain parameter first

should be grided into uniformly spaced values and then the ratio (5.7) should be

determined for every predetermined value of uncertain parameters. The minimum

value of (5.7) is obtained by checking the each grided value of uncertain parameters. In

order to obtain more accurate results, uncertain parameters should be grided as much

as possible. This also increases the computational complexity of the problem, since

the more number of points determined as a result of griding uncertain parameters, the

more computational effort required. Using the griding approach, better results can be

derived for the case of less number of uncertain parameters.

Both of the proposed approaches in this section have their own pros and cons. An

analytical approach is proposed using the triangular inequality. In this approach,

conservativeness depends on the direction of the magnitudes of individual transfer

functions. On the other hand, griding based numerical approach requires significant

computational power. However, it is still sufficient in most cases to derive practical

results.

It is also shown in this section that diagonal dominance problem of parameter uncertain

system can be converted to weighted diagonal dominance problem of the nominal

system. As a result, previously derived results can be used to determine the static

diagonal controller gain regions that achieve diagonal dominance conditions for

parametric uncertain systems.

5.1.1 Case study for diagonal dominance

As discussed in the previous sections, the problem of determining static diagonal

controller parameters that achieve diagonal dominance for the case of parametric

uncertainties can be conservatively converted to weighted diagonal dominance

problem at a given frequency. In this section, it is aimed to demonstrate the results

of the griding approach over a given TITO system. The TITO system that will be
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Table 5.1 : Derived weighting factors for ω = 0.

µr1 µr2 µc1 µc2

1.50348 1.70897 1.65382 1.55361

considered as a case study and the structure of the controller are as follows:

G(s,qi) =


6q1−2s
(2+5q2s)

1+4q3s
(1+10s)(3q4+5s)

1.5q5
(q6+7s)

2q7
(1+q7s)(2+s)

 (5.8)

K =

[
kp1 0
0 kp2

]
(5.9)

where qi s represent the uncertain parameters and it is assumed that all uncertain

parameters may vary between 0.9 and 1.1 (0.9 ≤ qi ≤ 1.1). In that case, nominal

system can be written as:

G(s) =


6−2s
(2+5s)

1+4s
(1+10s)(3+5s)

1.5
(1+7s)

2
(1+s)(2+s)

 (5.10)

In this case study, griding method that was introduced in Section 5.1 was preferred,

since triangular inequality results in high conservatism for the considered system.

Assuming that static diagonal controller parameters vary between 0 and 5 uncertain

parameters qi are grided in order to determine maximum and minimum magnitude

values. Using these values, magnitude of the nominal magnitudes and the method

introduced in the previous section the weighting factors can be derived as it is given

in Table 5.1 for the zero frequency. Using the derived results in Section 3.3 and

the weighting factors that is given in Table 5.1, the controller parameter region that

achieves both row and column diagonal dominance conditions for the given parameter

uncertain system can be determined as it is given in Figure 5.1. Firstly, maximum value

of weighting factors should be determined in a given frequency range to extend the

results to frequency ranges. If the desired frequency range which is aimed to achieve

both of the diagonal dominance conditions is 10≥ω ≥ 0, then by griding the frequency

and repeating the same procedure can be followed to derive weighting factor. Using

this approach weighting factors for the related frequency interval can be determined as

it is given in Table 5.2.

When Table 5.1 and Table 5.2 are examined, it can be observed that all weighting

factors are greater in Table 5.2 except the weighting factor of the first column. This

107



Figure 5.1 : kp1− kp2 region that makes the closed loop parameter uncertain system
diagonal dominant at ω = 0.

Table 5.2 : Derived weighting factors for 10≥ ω ≥ 0.

µr1 µr2 µc1 µc2

1.56375 1.77103 1.65382 1.77151

means that the greatest weighting factor derived for the first column in the frequency

interval 10 ≥ ω ≥ 0 is obtained at ω = 0. As a result, µc1 are same in the given two

tables.

In that way, diagonal dominance problem of the parameter uncertain system is

converted to the weighted diagonal dominance problem of the nominal plant. Using

the weighting factors that is given in Table 5.2 and assuming that static diagonal

controller parameters vary between 0 and 5 controller region that achieves robust

diagonal dominance can be derived as it is given in Figure 5.2.

When Figure 5.2 is examined, it can be determined that the controller gain pair kp1 =

0.6, kp2 = 3 satisfy the conditions in the related frequency range. In order to analyze

the diagonal dominance of the closed loop parameter uncertain system, this controller

gain pair is selected. Using this controller pair, diagonal dominance ratio plots are

plotted for both the nominal system and different values of uncertain parameters as it

is given in Figure 5.3. Red curves in Figure 5.3 represents the diagonal dominance
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Figure 5.2 : kp1− kp2 region that makes the closed loop parameter uncertain system
diagonal dominant at 10≥ ω ≥ 0.

ratio plots of the nominal system while the blue lines are derived for different values

of the uncertain parameters. Each ratio plot should not exceed 1 in this case. Diagonal

dominance ratio plots do not exceed the critical value even in the worst case. As a

result, it can be proposed that selected controller pair achieves the diagonal dominance

conditions in the related frequency range as expected.

Within the scope of this section diagonal dominance problem of interval type parameter

uncertain systems is discussed from different perspectives. Two approaches that are

based on triangular inequality and griding was proposed to determine static diagonal

controller region in the case of parametric uncertainties. In that way, it is aimed

to convert the original problem to the weighted diagonal dominance of the nominal

system. Then, it is possible to use the derived results in previous sections in terms

Figure 5.3 : Diagonal dominance ratio plots for parametric uncertain system for
10≥ ω ≥ 0.
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of weighted diagonal dominance. A case study is also included to demonstrate the

applicability of proposed griding based approach.

5.2 Stability of Parameter Uncertain MIMO Systems

Stability of parameter uncertain systems can be discussed from two different main

perspectives. In the first one, it is assumed that the uncertainty bounds on the

parameter is known and it is searched that the whole set of polynomials that lie in

these intervals are stable or not. Significant progress was achieved in literature to

determine the stability of such systems. For instance, in 1978 Kharitonov proved

that it is necessary and sufficient to check the stability of only 4 polynomial for the

case of interval type parameter uncertain polynomials [161]. Later on, this number

of fixed polynomials also reduced to 3,2,1 for the systems of order 5,4,3 in [162] and

results derived for discrete time systems were presented in [163]. Further results were

also derived for the cases of affine linear type uncertain polynomials and multi-linear

type uncertainties. Edge and Mapping Theorems were proposed for such type of

uncertainties [164–166]. The stability characteristics of a given parameter uncertain

polynomial family is searched in the aforementioned approach for the given known

bounds on uncertain parameters. On the other hand, in some cases, it is not possible to

determine strict upper and lower bounds for uncertain parameters. So that, it becomes

more logical to determine the range of uncertain parameters that make the closed loop

system stable (or unstable).

A method to determine the bounds of uncertain parameters is the parameter dependent

Lyapunov functions. There are certain number of studies in literature that discuss

the stability of parameter uncertain systems from different perspectives [167–170].

Details of the parameter dependent Lyapunov functions and the type of uncertainties

considered in these studies will also be discussed in the next section. It is

possible to use the proposed Lyapunov equation based stability mapping approach

in order to determine the stability boundaries of uncertain parameters. However, the

computational complexity increases more and more, when the number of uncertain

parameters increase. In order to overcome such complexities, using the Kharitonov

theorem and proposed Lyapunov equation based approach, a combined approach was
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proposed for the case of parametric uncertainties. Details of the proposed approach are

discussed in Section 5.2.2.

5.2.1 Parameter dependent Lyapunov functions and Lyapunov equation based

approach

Lyapunov theorems can be also used for the case of LPV and LTIPD systems. It is

aimed to determine the range of uncertain parameters that make closed loop system

stable in such cases. Various approaches were proposed in literature to determine the

bounds of uncertain parameters in terms of stability [153,170–174]. It can be proposed

that in literature most of the studies focus on the cases single or double parameter

dependencies. For instance in [175, 176] an approach that is named as guardian maps

was proposed in the form of:

ẋ = A(q)x, A(q) = A0 +qA1 +q2A2 + ...+qmAm (5.11)

and

ẋ = A(q1,q2)x, A(q1,q2) =
i1+i2=m

∑
i1,i2=0

qi1
1 qi2

2 Ai1,i2 (5.12)

Using the guardian map approach proposed in [175, 176] it is possible to determine

necessary and sufficient conditions for the given uncertainty domains. In [177] derived

results were extended for the system class that is expressed as:

ẋ = A(q1,q2, ...qm)x, A(q1,q2, ...qm) = A0 +
m

∑
i=1

qiAi (5.13)

However, in that approach it is only possible to derive sufficient conditions as indicated

in [120].

The proposed approaches, that is given in [175–177] focus on determining the stability

characteristic of the system for given uncertainty bounds. However, parameter

dependent Lyapunov function approach can also be used to derive exact bounds of

uncertain parameters. Firstly, single parameter dependency will be discussed. For this

purpose let us consider the following LTI system

ẋ = A(q)x, A(q) = A0 +qA1 q ∈Φ (5.14)

where A0,A1 ∈ Rn×n and Φ ⊂ R. Using the Lyapunov approach it can be proposed

that the following conditions should be satisfied for the system that is given in terms
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of stability

P(q)> 0 (5.15)

A(q)T P(q)+P(q)A(q)< 0 (5.16)

As it was done in the case of nominal systems, (5.16) can be written as matrix equality

as:

A(q)T P(q)+P(q)A(q) =−Q(q) (5.17)

where Q(p) ∈ Rn×n is any positive definite matrix for all values of uncertain

parameters. The solution P(q) of (5.17) can be written as [178]:

P(q) =
∫

∞

0
etA(q)T

Q(q)etA(q)dt (5.18)

When Q(q) is analytic in q, it can be directly concluded that P(q) is also analytic in q.

As a result, solution can be expressed as the sum of infinite power series as:

P(q) = P0 +qP1 +q2P2 + ...=
∞

∑
i=0

qiPi (5.19)

It was shown in [179] that using the uniform convergence of the integral that is given

in (5.18), infinite power series can be truncated and Lyapunov matrix can be expressed

in the following form:

P(q) = P0 +qP1 +q2P2 + ...+qmPm =
m

∑
i=0

qiPi (5.20)

However, an upper bound for m was not proposed in [179]. Whereas, it was shown

in [178] that it is necessary and sufficient to select m as:

m≤min
{

1
2
(
2nr− r2 + r

)
,

(
1
2

n(n+1)−1
)}

(5.21)

for the stability of whole uncertain parameters q∈Φ. In (5.21), r represents the rank of

A1. Using these results, it becomes possible to propose the stability range of uncertain

parameter in the sense of Lyapunov. Details of the approach can be found in [178].

In order to demonstrate the result, the same system that was considered in [178] is

discussed in this section. Consider the system matrix A(q) = A0 +qA1, where

A0 =

 0.7493 −2.4358 −1.6503
−2.0590 −3.3003 −1.4833
−1.5019 1.2149 −4.8737

 and A1 =

1.2149 1.6640 −2.2091
0.7542 −0.1501 0.2109
2.1990 0.6493 −0.2214


(5.22)
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Figure 5.4 : k1−q region that make the closed loop uncertain system stable.

Using the proposed approach [178], the exact stability domain can be calculated

as: q ∈ (−18.3861,−1.2729) ∪ (2.1538,3.7973). It is also possible to determine

the same disconnected region using the Lyapunov equation based stability mapping

approach that was proposed in Section 4.3. Furthermore, it is possible to determine

the stabilizing parameter space, when there are more than one parameter using the

proposed approach in 4.3, while the approach proposed in [178] is valid for only

single parameter dependencies. For instance, if the discussed system includes one

free controller parameter k1 as:

A(k1,q) =

0.7493− k1 +1.2149q −2.4358+1.6640q −1.6503−2.2091q
−2.0590+0.7542q −3.3003−0.1501q −1.4833+0.2109q
−1.5019+2.1990q 1.2149+0.6493q −4.8737−0.2214q


(5.23)

then the stabilizing parameter region can be determined as it is given in Figure 5.4.

It is also possible to use Lyapunov equation based stability mapping approach, when

all the parameter are uncertain parameters. For instance, the system used in [173] as a

case study can be used to verify the results. For this purpose, the following system can

be considered

ẋ = (A0 +q1A1 +q2A2)x (5.24)
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Figure 5.5 : q1−q2 region that make the closed loop uncertain system stable.

where

A0 =

−2 0 −1
0 −3 0
−1 −1 −4

 ,A1 =

 0.916 −0.8119 −0.2168
−0.6863 −0.1001 −0.4944
−0.1673 0.7383 −0.2912


A2 =

 1.215 1.664 −2.209
0.7542 −0.1501 0.2109
2.199 0.6493 −0.2214

 (5.25)

Using the Lyapunov equation bases stability mapping approach uncertain parameter

region that makes the system stable is determined as it is given in Figure 5.5. Derived

region is exactly the same as given in [173]. As a result, it is shown that proposed

Lyapunov equation based stability mapping approach is also suitable for the systems

that include uncertain parameters. In such cases, the uncertain parameters should be

treated as free parameters and then the same procedure that was proposed in Section

4.3 can be applied. For the case of known uncertainty bounds on uncertain parameter,

proposed approach can still be applicable. However, in such a case, the given (or

known) uncertainty range should fully intersect with the exact stabilizing parameter

space in order to propose the robust stability of the given parameter uncertain system.

From the computational complexity point of view, it must be noted that complexity

of the problem increases significantly, if there are too many uncertain parameters

in the discussed system. As a result, further analysis is required to decrease the

computational need. For this purpose, using the Kharitonov theorem a combined
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approach will be presented in the next section to determine controller parameter

regions that make a given system robustly stable for the case of interval type

uncertainties.

5.2.2 A modified Kharitonov approach for MIMO systems

In 1978 Kharitonov proposed that it is necessary and sufficient to check stability

of four polynomials in order to determine the stability of interval type parameter

uncertain polynomials [161]. Derived stability results in that study is significant, since

it was required to check stability of infinitely many polynomials in general previously.

However, the original theorem only answers that a given interval type polynomial is

stable or not. It is not possible to determine directly stabilizing controller parameter

region using Kharitonov Theorem.

Within the scope of this subsection, it is aimed to propose an approach to

determine robustly stabilizing controller parameters using both Kharitonov Theorem

and proposed Lyapunov equation based stability mapping approach. Considered

subsystems (gi j) will include interval type uncertainties. However, characteristic

polynomial include the multiplication of uncertain parameters in general, since the

multiplication of transfer functions are also included in the characteristic polynomial.

Whereas, resulting uncertainties are not interval type in general. As a result, an over

bounding approach is required to apply Kharitonov theorem. After applying over

bounding Lyapunov equation based method can be used to determine the range of

controller parameters. Derived results in this subsection are aimed to be published

in [156].

An interval characteristic polynomial is the family of polynomials:

δ (s,qi) = q0 +q1s+q2s2 +q3s3 +q4s4 + ...+qnsn (5.26)

where the coefficients lie within the known intervals as:

q0 ∈
[
q−0 ,q

+
0
]
,q1 ∈

[
q−1 ,q

+
1
]
, ...,qn ∈

[
q−n ,q

+
n
]
. (5.27)

For the case of real coefficients, Kharitonov stated that it is necessary and sufficient

to test 4 specific polynomials from the uncertain polynomial family. In [161], it

was proven that uncertain polynomial family is robustly stable if and only if all 4
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fixed polynomials are stable. This number of polynomials were reduced to 3,2 and 1

respectively for the systems of order respectively 5,4 and 3 in [162].

The four so-called Kharitonov’s polynomials can be written as:

δ
+−(s) = q+0 +q−1 s+q−2 s2 +q+3 s3 +q+4 s4 + ...

δ
++(s) = q+0 +q+1 s+q−2 s2 +q−3 s3 +q+4 s4 + ...

δ
−+(s) = q−0 +q+1 s+q+2 s2 +q−3 s3 +q−4 s4 + ...

δ
−−(s) = q−0 +q−1 s+q+2 s2 +q+3 s3 +q−4 s4 + ...

(5.28)

Using the Kharitonov Theorem finite number of polynomials needed to be checked

in order to determine the stability of uncertain polynomial family instead of infinitely

many number of poynomials.

As indicated earlier, Kharitonov Theorem considers interval type characteristic

polynomial of the dynamic systems. However, for the case of parameter uncertain

multivariable systems, the characteristic polynomial includes multiplication of

individual transfer functions, controller and uncertain parameters in general. As a

result, overbounding is required for the resulting coefficients in order to be able use

Kharitonov approach. After that proposed Lyapunov equation based approach can

be used to determine controller parameter regions that robustly stabilize the given

multivariable system.

In general, overbounding process is relatively simple, when there is no free controller

parameter. However, it becomes more difficult to apply overbounding in the case of

free controller parameters. It is not possible to determine the value of the uncertain

parameters. They may take any value within the specified region. However, free

controller parameters will be determined by the designer at the end. This can also

be interpreted as such parameters can be treated as constants. Whereas there may be

certain regions for controller parameters that may effect the lower and upper bounds of

the resulting coefficients. For this reason, free controller parameter were also treated

like uncertain parameters at the beginning of the proposed approach and it is aimed

to determine stabilizing controller parameter regions in this predetermined region.

After brief analysis on resulting coefficients, controller parameter regions can also be

divided into subregions. Lastly, Lyapunov equation based approach can be applied for

all subregions to determined stabilizing parameter ranges in the determined regions.
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Last step should be taking the intersection of the stabilizing regions determined for all

Kharitonov polynomials.

The steps of the proposed approach that will be used to determine the controller

parameter regions that robustly stabilize the uncertain systems can be summarized as

follows:

• Step1: Divide the controller parameter regions into several sub regions based on the

sign of each controller parameter. The number of initial regions will be 2n where n

represents number of controller parameters.

• Step2: If necessary, divide the resulted regions into several intervals (if the same

uncertain parameter appears in the uncertain coefficient more than once with

different signs).

• Step 3: For each region, determine the upper and lower bound of each coefficient.

• Step 4: Using the derive bounds in Step 3 determine the Kharitonov polynomaials

for each interval.

• Step 5: For each region, apply Lyapunov equation based stability mapping

approach to the determined Kharitonov polynomials and then take the intersections

of the derived regions.

• Step 6: Combine the obtained parameter regions to determine the robustly

stabilizing parameter region(s).

In order to express the details of the proposed approach, a case study is included in this

section. Suppose that it is aimed to determine robustly stabilizing controller parameter

regions for the multivariable system and controller pair that is expressed as:

G(s,qi) =

[ q1
(s+1)(s+2)

1
s+q2

2q3
s+1

2
(s+2)

]
(5.29)

K =

[
k1 0
0 k2

]
(5.30)

where q1,q2 and q3 are the uncertain physical parameters of the system and all of them

are assumed to vary between 0.8 and 1.2 (qi ∈ [0.8,1.2]). These physical parameters

may include stiffness, inertia or viscosity coefficients in mechanical systems, the values
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of resistors and capacitors in electrical circuits and aerodynamic coefficients in flight

control. Moreover, this system has a practical meaning, since most of dynamic systems

can be modeled as first or second order systems. If it was desired to determine

the stabilizing controller parameter spaces for the given uncertain parameters, using

the Lyapunov approach then uncertain parameters should also be treated as free

parameter. Such a case increases the computational complexity significantly. However,

using the proposed approach within the scope of this section, it becomes possible to

determine robustly stabilizing controller parameter regions by solving finite number of

polynomials that depends on only two controller parameters.

In case of the unity feedback characteristic equation of the discussed system can be

determined as:

δcl(s,qi) = (4q2 +4k2q2 +2k1q1q2 +2k1k2q1q2−8k1k2q3)︸ ︷︷ ︸
a◦

+

(4+4k2 +2k1q1 +2k1k2q1 +8q2 +6k2q2 + k1q1q2−8k1k2q3)︸ ︷︷ ︸
a1

s

+(8+6k2 + k1q1 +5q2 +2k2q2−2k1k2q3)︸ ︷︷ ︸
a2

s2 +(5+2k2 +q2)︸ ︷︷ ︸
a3

s3 + s4

(5.31)

In this case study, it is aimed to determine robustly stabilizing k1 − k2 regions for

k1,k2 ∈ [−5,5]. Each quadrant may effect the lower and upper bounds in a different

way. As a result the following cases:

k1 > 0,k2 > 0

k1 < 0,k2 > 0

k1 < 0,k2 < 0

k1 > 0,k2 < 0

(5.32)

should be discussed separately. However, in order to improve the readability, only the

case of first quadrant will be expressed in detail. Whereas the uncertain parameter a3

is a special case since it only include one controller parameter as a sum. As a result,

upper and lower bounds for this parameter is the same for all quadrants and it can be

expressed as:
a+3 = 6.2+2k2⇒ q+2

a−3 = 5.8+2k2⇒ q−2
(5.33)

where "+" represents the maximum value of the uncertain parameter and "−"represents

the minimum value.
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Table 5.3 : Upper bounds of the uncertain coefficients a0,a1,a2 and a3 in the first
quadrant.

Parameters Upper Bound
a+0 q+1 , q+2 , q−3 4.8+2.88k1 +4.8k2−3.52k1k2
a+1 q+1 , q+2 , q−3 13.6+3.84k1 +11.2k2−4k1k2
a+2 q+1 , q+2 , q−3 14+1.2k1 +8.4k2−1.6k1k2
a+3 q+2 6.2+2k2

Table 5.4 : Lower bounds of the uncertain coefficients a0,a1,a2 and a3 in the first
quadrant.

Parameters Lower Bound
a−0 q−1 , q−2 , q+3 3.2+1.28k1 +3.2k2−8.32k1k2
a−1 q−1 , q−2 , q+3 10.4+2.24k1 +8.8k2−8k1k2
a−2 q−1 , q−2 , q+3 12+0.8k1 +7.6k2−2.4k1k2
a−3 q−2 5.8+2k2

A. First Quadrant: (k1 ∈ [0,5] and k2 ∈ [0,5])

It is relatively easier to determine the upper and lower bounds of the uncertain

coefficients since both k1 and k2 is positive in this quadrant. When the coefficients

of (5.31) examined in detail, it can be observed for all uncertain parameters a2,a1,a0

include uncertain parameter q1 and q2 with positive multipliers and q3 with negative

multiplier. As a result of this, in order to determine the maximum values of ai’s original

uncertain parameters q1 and q2 should be maximum while q3 should be minimum. This

case and resulting coefficient terms are also expressed in Table 5.3.

On the other hand, due to the same reasons original uncertain parameters q1 and q2

should be minimum while q3 should be maximum in order to determine the minimum

values of the resulting coefficients a0−a3. Lower bounds of the resulting coefficients

are given in Table 5.4.

For this quadrant Kharitonov polynomials can be written as follows:

δ
+−(s) = a+0 +a−1 s+a−2 s2 +a+3 s3 + s4

δ
++(s) = a+0 +a+1 s+a−2 s2 +a−3 s3 + s4

δ
−+(s) = a−0 +a+1 s+a+2 s2 +a−3 s3 + s4

δ
−−(s) = a−0 +a−1 s+a+2 s2 +a+3 s3 + s4

(5.34)
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Figure 5.6 : k1− k2 region that make the closed loop system robustly stable.

After that, using the Lyapunov equation based stability mapping approach stabilizing

controller parameter spaces within the range k1,k2 ∈ [0,5] for each polynomial can

be determined separately. Then, intersection of these regions should be taken to

determine the robustly stabilizing parameter space in the given controller parameter

region. Robustly stabilizing controller parameter region is given in Figure 5.6(b) for

the first quadrant. Using the same approach stabilizing controller parameter spaces can

be determined as it is given in Figures 5.6(a),5.6(c),5.6(d).

At this point, it must be noted that further partitioning in the controller parameter

regions were required for other quadrants in this case. As the last step of the proposed

approach derived regions given in Figure 5.6 should be combined to illustrate the

stabilizing controller parameter regions for k1,k2 ∈ [−5,5]. Resulting parameter region

is given in Figure 5.7.

In order to verify the correctness of the derived results and to be able to compare both

results griding method was preferred. In that approach, it is required to sweep over

the entire range of the uncertain parameters.As a result accuracy of the derived results

depends on the step size. Whereas, decreasing the step size increases the computational
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Figure 5.7 : Derived k1−k2 region that make the closed loop uncertain system stable.

effort significantly. In that approach, for a given valued of controller parameter

pair, each uncertain parameter is grided and resulting fixed coefficient characteristic

polynomials are checked in terms of stability.

After that, if the system is stable for each grided value of uncertain parameters, that

specific selection of controller parameters are assumed to be stabilizing parameters.

Of course accuracy of the results depend on the step sizes as indicated earlier in this

4
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Figure 5.8 : Derived k1− k2 region that make the closed loop uncertain system stable
by griding uncertain parameters.
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approach. In Figure 5.8, blue region represents the stabilizing controller parameter

regions while the orange region represents the unstable parameter area.

By investigating Figures 5.7 and 5.8, it is obvious that both stable regions are so close

to each other. When the number of uncertain parameters increases, after a certain point

it becomes practically impossible to derive accurate results using the griding approach.

On the other hand, computational complexity is significantly reduced in the proposed

combined approach since Kharitonov theorem is also used. However, it must also be

noted that a pre-step is required to determine the sub controller parameter intervals in

that approach.
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6. CONCLUSION

In this thesis, various approached are proposed to determine controller parameter

spaces that achieve diagonal dominance and stability in multivariable systems.

From the diagonal dominance point of view, necessary and sufficient conditions on

diagonal type controllers are determined for TITO systems at a given fixed frequency.

Derived results are also extended to the case of weighted diagonal dominance using

weighting factors for each column and row. Furthermore, an algorithm is proposed to

determine controller parameter regions that achieve weighted column and row diagonal

dominance at a given frequency. It is also shown that derived result can be extended to

a given frequency range. Gershgorin Discs plots and diagonal dominance ratio plots

were used in order to demonstrate the derived results. Additionally, critical frequencies

that may effect the interval characteristics of controller gains are derived for the case

of static diagonal controllers and column diagonal dominance. It is important to

determine all controller parameter regions that achieve diagonal dominance, since

most of the previously proposed approaches in terms of diagonal dominance aimed to

determine single controller parameter pair and did not check the fragility of diagonal

dominance. The derived results in this direction also create flexibility in controller

design and designer can also have more information on the controller parameter set(s).

Such an information can also be meaningful in order to interpret on how the system is

close to diagonal dominance boundaries.

Derived results in terms of diagonal dominance are important in order to reduce the

interactions. However, it is not possible to propose that a diagonal dominant systems

satisfies stability except some special cases since diagonal dominance is defined over

magnitudes. For this reason, stability of multivariable systems is also discussed

within the scope of this thesis. In order to overcome the difficulties that most of

the frequency based approaches face, using the Kronecker product and vectorization

operator a Lyapunov equation based stability mapping technique is proposed for

multivariable systems. Proposed approach is independent from the number and
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type of the parameters. Required number of equations reduced significantly when

Kronecker products and vectorization operator are used instead of checking the

positive definiteness of the P matrix. Lastly, it is shown that checking at most two

equations(|M(k)| = 0 and |M(k)| → ∞) is sufficient in terms of stability boundary

determination. As a result, it is applicable to a broad range of multivariable systems

and controller types including the decentralized controllers. In the proposed approach

using elimination and duplication matrices, transformations are also introduced to

reduce the computational load of the stability boundary calculations. In addition to

determining the stability boundaries using a Lyapunov equation based approach, its

link with currently existing approaches like PSA are also shown over finite and infinite

root boundaries.

It is possible to apply the proposed stability mapping approach to broad range of

systems where Lyapunov equation formulation is possible. In order to demonstrate

the further application areas, controller integrity problem of multivariable systems

is discussed. Exact stabilizing parameter spaces were derived for the controller

integrity problem. Effectiveness of the proposed method is shown with a comparative

benchmark case study. In order to demonstrate the further application areas of the

proposed Lyapunov equation based approach, the case of discrete time systems is also

discussed from the stabilizing parameter space point of view. In this case, resulting

Lyapunov equation is slightly different. And lastly, stability of parameter uncertain

MPC problem is discussed in the further application areas section. In the proposed

stability mapping approach it is possible to determine analytical expressions of stability

boundaries. This stability boundaries are inserted to the robust MPC design problem

in order to achieve the stability of parameter uncertain MPC problems. By this way,

it was shown that robust MPC design problem can be translated to nominal MPC case

by inserting the robust stability boundaries in the MPC formulation.

Two approaches that are based on triangular inequality and griding are presented

related with the diagonal dominance of parameter uncertain TITO systems. By this

way, diagonal dominance problem of parameter uncertain system was first translated

to the weighted diagonal dominance problem of the nominal plant. After that, using

the previously derived results on weighted diagonal dominance it becomes possible
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to conservatively determine static diagonal controller parameter regions that satisfy

robust diagonal dominance conditions at a given frequency or frequency range.

Stability of parameter uncertain multivariable systems is also discussed in the context

of thesis. Firstly, it is shown over the benchmark case studies that proposed

Lyapunov equation based stability mapping approach is also applicable in case

of parametric uncertainties. However, the required computational effort increases

significantly when the number of uncertain parameters increases. In order to overcome

such difficulties, the case that individual transfer functions of TFM include interval

type uncertainties is discussed in detail. A new approach is proposed using the

overbounding technique and Kharitonov Theorem in accordance with the Lyapunov

Equation based stability mapping approach to determine robustly stabilizing controller

parameters. The required computational effort is decreased in the proposed method

since the Kharitonov theorem is used. However, extra analysis steps are included in

the intermediate steps and robustly stabilizing parameter sets were derived for a given

range of controller parameters.

In addition to the derived results in terms of diagonal dominance, it is also aimed to

extend the range of results to the cases of triangular and full matrix controllers as

future studies. Additionally, it is also targeted to determine type of n by n systems that

the existing results are directly applicable. In the general case, determining necessary

and sufficient conditions on frequency variable in terms of diagonal dominance is also

aimed as a future work.

From the stability point of view, proposed approach is applicable to a broad range of

systems as indicated in the thesis. Some of these further application areas are also

presented in the thesis. However, it is also aimed to derive significant results in other

type of systems like descriptor and switching systems. Especially deriving stability

results for switching systems are aimed since the results can also be used in robust

MPC problem. After determining the stability boundaries using the Lyapunov equation

based approach, more or less a manual method is required in the currently existing
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approach. However, it is also targeted to use methods such as R-functions in order to

automate the derivation of the stabilizing parameter spaces as a future work.
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[65] Mutlu, İ., Schrödel, F., Bajcinca, N., Abel, D. and Söylemez, M.T. (2016).
Lyapunov Equation Based Stability Mapping Approach: A MIMO Case
Study, IFAC-PapersOnLine, 49(9), 130–135.
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[69] Mutlu, İ., Oravec, J., Schrödel, F., Abel, D., Bakosova, M. and Söylemez, M.
(2017). Robust Model Predictive Control Based on Stabilizing Parameter
Space Calculus, 17th IFAC World Congress (Submitted).

[70] Maxwell, J.C. (1868). On governors, Proceedings of the Royal Society of London,
16, 270–283.

131



[71] Franklin, G.F., Powell, J.D., Emami-Naeini, A. and Powell, J.D. (1994).
Feedback control of dynamic systems, volume 2, Addison-Wesley
Reading.

[72] Vyshnegradskii, I. (1876). Sur la théorie générale des régulateurs, CR Acad. Sci.
Paris, 83, 318–321.

[73] Routh, E.J. (1877). A treatise on the stability of a given state of motion:
particularly steady motion, Macmillan and Company.

[74] Kumar, P. et al. (2014). Control: A perspective, Automatica, 50(1), 3–43.

[75] Hurwitz, A. (1895). Ueber die Bedingungen, unter welchen eine Gleichung nur
Wurzeln mit negativen reellen Theilen besitzt, Mathematische Annalen,
46(2), 273–284.

[76] Hurwitz, A. (1964). On the conditions under which an equation has only roots
with negative real parts, Selected papers on mathematical trends in control
theory, 65, 273–284.

[77] Bissell, C. (1992). Russian and Soviet contributions to the development of control
engineering: a celebration of the Lyapunov centenary, Transactions of the
Institute of Measurement and Control, 14(4), 170–178.

[78] Lyapunov, A.M. (1892). The general problem of motion stability, Annals of
Mathematics Studies, 17.

[79] Parks, P.C. (1992). AM Lyapunov’s stability theory—100 years on, IMA journal
of Mathematical Control and Information, 9(4), 275–303.

[80] Gryazina, E.N., Polyak, B.T. and Tremba, A.A. (2008). D-decomposition
technique state-of-the-art, Automation and Remote Control, 69(12),
1991–2026.

[81] Neimark, Y.I. (1948). Search for the parameter values that make automatic control
system stable, Autom. and Telem, 9, 190–203.

[82] Neimark, J. (1949). D-subdivisions and spaces of quasi-polynomials, Prikladnaya
Matematika i Mekhanika, 13, 349–380.

[83] Ackermann, J. (2012). Robust control: the parameter space approach, Springer
Science & Business Media.

[84] Bhattacharyya, S., Chapellat, H. and Keel, L. (1995). Robust control: the
parametric approach, Upper Saddle River.

[85] Mitrovic, D. (1959). Graphical analysis and synthesis of feedback control systems,
AIEE Transactions, Pt, 2, 476–496.

[86] Siljak, D. (1964). Analysis and Synthesis of Feedback Control Systems in the
Parameter Plane I-Linear Continuous Systems, IEEE Transactions on
Applications and Industry, 83(75), 449–458.

132



[87] Siljak, D. (1966). Generalization of the parameter plane method, IEEE
Transactions on Automatic Control, 11(1), 63–70.

[88] Boksenbom, A.S. and Hood, R. (1949). General algebraic method applied to
control analysis of complex engine types.

[89] Freeman, H. (1957). A synthesis method for multipole control systems,
Transactions of the American Institute of Electrical Engineers, Part II:
Applications and Industry, 76(1), 28–31.

[90] Mesarovic, M.D. (1960). The control of multivariable systems, [Boston]; John
Wiley & Sons: New York, London.

[91] Horowitz, I. (1960). Synthesis of linear, multivariable feedback control systems,
IRE Transactions on Automatic Control, 5(2), 94–105.

[92] Rosenbrock, H.H. (1970). State-space and multivariable theory.

[93] MacFarlane, A. (1972). A survey of some recent results in linear multivariable
feedback theory, Automatica, 8(4), 455–492.

[94] Chen, C.T. (1968). Stability of linear multivariable feedback systems, Proceedings
of the IEEE, 56(5), 821–828.

[95] Hsu, C.H. and Chen, C.T. (1968). A proof of the stability of multivariable
feedback systems, Proceedings of the IEEE, 56(11), 2061–2062.

[96] MacFarlane, A. (1972). Notes on the vector frequency response approach to
the analysis and design of multivariable feedback systems, UMIST,
Manchester, England.

[97] Barmanj, J.F. and Katzenelson, J. (1974). A generalized Nyquist-type stability
criterion for multivariable feedback systems, International Journal of
Control, 20(4), 593–622.

[98] MacFarlane, A.G.J. and Postlethwaite, I. (1977). The generalized Nyquist
stability criterion and multivariable root loci, International Journal of
Control, 25(January 2015), 81–127.

[99] Desoer, C. and Wang, Y.t. (1980). On the Generalized Nyquist Stability Criterion
I ;, (2), 187–196.

[100] Youla, D.C., Bongiorno, J.J. and Lu, C.N. (1974). Single-loop
feedback-stabilization of linear multivariable dynamical plants,
Automatica, 10(2), 159–173.

[101] Zhou, K. and Gu, G. (1992). Robust stability of multivariable systems with both
real parametric and norm bounded uncertainties, IEEE transactions on
automatic control, 37(10), 1533–1537.

[102] Ackermann, J. (1980). Parameter space design of robust control systems, IEEE
Transactions on Automatic Control, 25(6), 1058–1072.

133



[103] Parks, P. (1964). A new look at the Routh–Hurwitz problem using Lyapunov’s
second method, Bull. de l’Acad. Polon. des Sciences, Ser. des Sciences
Techniques, 12, 19–21.

[104] Barnett, S. and Storey, C. (1967). Analysis and synthesis of stability matrices,
Journal of Differential Equations, 3(3), 414–422.

[105] Fuller, A.T. (1968). Conditions for a matrix to have only characteristic roots with
negative real parts, Journal of Mathematical Analysis and Applications,
23(1), 71–98.

[106] Rosenbrock, H. (1963). A method of investigating stability, Proc. 2nd IFAC
World Congress, pp.590–594.

[107] Gryazina, E.N. and Polyak, B.T. (2006). Stability regions in the parameter
space: D-decomposition revisited, Automatica, 42, 13–16.

[108] Muhler, M. (2002). Mapping MIMO control system specifications into parameter
space, Decision and Control, 2002, Proceedings of the 41st IEEE
Conference on, volume 4, IEEE, pp.4527–4532.

[109] Schrödel, F. and Abel, D. (2014). Expanding the parameter space approach to
multi loop control with multi time delays, Control Conference (ECC),
2014 European, IEEE, pp.73–78.

[110] Schrödel, F., Zöller, D., Elghandour, R. and Abel, D. (2015). Parameter space
approach based robust MIMO controller tuning for a vacuum thermal
evaporation process, Control Conference (ECC), 2015 European, IEEE,
pp.684–690.

[111] Keel, L. and Bhattacharyya, S. (2015). On the stability of multivariable
feedback systems, 2015 54th IEEE Conference on Decision and Control
(CDC), IEEE, pp.4627–4631.
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APPENDIX A.1: Coefficient Terms for Weighted Diagonal Dominance

Coefficient terms for the weighted column diagonal dominance can be written as:

aw1 =
(
(Re(gd))

2 +(Im(gd))
2
)

bw1 = (2Re(g11)Re(gd)+2Im(g11) Im(gd))

cw1 = (Re(g11))
2

aw2 =−
(
(Re(gd))

2 +(Im(gd))
2
)

bw2 =−(2Im(g11)Re(gd)−2Re(g11) Im(gd))

cw2 =
(

µ
2
c1
(Re(g21))

2 +(Im(g21))
2
)
− (Im(g11))

2

( A.1)

aw3 =
(
(Re(gd))

2 +(Im(gd))
2
)

bw3 = (2Re(g22)Re(gd)+2Im(g22) Im(gd))

cw3 = (Re(g22))
2

aw4 =−
(
(Re(gd))

2 +(Im(gd))
2
)

bw4 =−(2Im(g22)Re(gd)−2Re(g22) Im(gd))

cw4 =
(

µ
2
c2
(Re(g12))

2 +(Im(g12))
2
)
− (Im(g22))

2

( A.2)

Coefficient terms for the weighted row diagonal dominance can be given as:

aw5 =
((

Re(g∗d12
)
)2

+
(
Im(g∗d12

)
)2
)

bw5 =
(
2Re(g∗11)Re(g∗d12

)+2Im(g∗11) Im(g∗d12
)
)

cw5 = (Re(g∗11))
2

aw6 =
((

Re(g∗d12
)
)2

+
(
Im(g∗d12

)
)2
)

bw6 =
(
2Im(g∗11)Re(g∗d12

)−2Re(g∗11) Im(g∗d12
)
)

cw6 = (Im(g∗11))
2

( A.3)

aw7 =
((

Re(g∗d21
)
)2

+
(
Im(g∗d21

)
)2
)

bw7 =
(
2Re(g∗22)Re(g∗d21

)+2Im(g∗22) Im(g∗d21
)
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2
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)
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+
(
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)
)

cw8 = (Im(g∗22))
2

( A.4)

143



APPENDIX A.2: Proof of Theorem 4.3

Theorem 4.3: For the system that is given as:

ẋ = Ax, x ∈ Rn ( A.5)

and for any Q > 0, there exist a positive definite solution P of the Lyapunov equation
that is given as

AT P+PA =−Q ( A.6)

if and only if all the eigenvalues of the system matrix A lie in the open LHP.
Additionally the solution P is unique.

Proof: If there is postive definite solution P of ( A.6) then it is clear that V (x) = xT PX
is a Lyapunov function since V (x)> 0 for all x 6= 0 and V (x) = 0 for x = 0. And since
Lyapunov equation has a positive definite solution it can be concluded that V̇ (x) < 0
for all x 6= 0 and the given system is globally asympototically stable. Since the system
is globally asympototically stable then all the eigenvalues of A should lie on the open
LHP.

In order to prove the other way, let us assume that all eigenvalues of A lie on the open
LHP. In this case for any given Q > 0 the P can be defined as:

P =
∫

∞

0
etAT

QetAdt ( A.7)

So that ( A.6) can be written as:

AT P+PA = AT
∫

∞

0
etAT

QetAdt +
∫

∞

0
etAT

QetAdt A

=
∫

∞

0
AT etAT

QetAdt +
∫

∞

0
etAT

QetAAdt

=
∫

∞

0

d
dt

[
etAT

QetA
]

dt

( A.8)

Using the derived results in ( A.8), Lyapunov equation can be expressed as:

AT P+PA = etAT
QetA|∞0 = 0−Q =−Q ( A.9)

so this proves that defined P satisfies the Lyapunov equation. As the second step
positive definiteness of P must be proven. For any positive definite matrix P, xT Px
should be greater than zero for every n 6= 0. Additionaly, xT Px = 0 if x = 0. In order
to prove the positive definiteness of P, xT Px can be expressed as:

xT Px =
∫

∞

0
xT etAT

QetAxdt

=
∫

∞

0
(xT etAT

Q1/2)(Q1/2etAx)dt

=
∫

∞

0

∥∥∥Q1/2etAx
∥∥∥2

dt ≥ 0

( A.10)

where Q1/2 denotes the square root of Q. The case of zero equality can be shown as:

xT Px = 0 ⇒ Q1/2etAx = 0 ⇒ x = 0 ( A.11)
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The equations ( A.10) and ( A.11) proves the positive definiteness of P.

Lastly, uniquenes of P should be proven. In order to prove this contradiction method
can be followed. In order to prove that let us assume that P2 is another solution of the
Lyapunov equation in addition to the P. For a given P2 it can be written as:∫

∞

0

d
dt

[
etAT

P2etA
]

dt = etAT
P2etA|∞0 = 0−P2 =−P2 ( A.12)

Using ( A.12) it can be written as:

P2 =−
∫

∞

0

d
dt

[
etAT

P2etA
]

dt

=−
∫

∞

0
etAT (

AT P2 +P2A
)

etAdt
( A.13)

Since it is assumed that P2 is the solution of the Lyapunov equation (AT P2+P2A=−Q)
it can be concluded that:

P2 =
∫

∞

0
etAT

QetAdt = P ( A.14)

This completes the proof.
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• Yildirim U., Mutlu İ., Söylemez M.T., 2015. An Optimal Robust Tuning Method
for First Order plus Dead Time Systems with Parameter Uncertainty. 8th IFAC
Symposium on Robust Control Design (ROCOND), July 8-11, 2015 Bratislava,
Slovak Republic.
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• Mutlu İ., Gören L., 2010. Two Stage Control of an Inverted Pendulum with PD
and Static State Feedback Controllers (In Turkish). National Conference of Turkish
National Committee of Automatic Control, September 21-23, 2010 Gebze, Turkey.
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• Mutlu İ., Gören L., 2009. Comparision of PIλ Dµ and PID Controllers (In Turkish).
National Conference of Turkish National Committee of Automatic Control, October
13-16, 2009 Istanbul, Turkey.

150



INVOLVED PROJECTS:

• “Robust Control of Railway Traction Electric Drive Systems”, Istanbul Technical
University Control and Automation Department and The Scientific and Technolog-
ical Research Council of Turkey, Researcher (January 2017-ongoing).

• “Development of a Radio Block Center (RBC) and On-Board Train Unit
Simulator”, The Scientific and Technological Research Council of Turkey, ABE
Technological Engineering Services and Yapı Merkezi İDİS (Monitoring Control
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and Yapı Merkezi İDİS (Monitoring Control and Communication Systems) Inc.,
Researcher (July 2013-December 2015).

• “National Railway Signalization Project”, Istanbul Technical University Control
and Automation Department and The Scientific and Technological Research
Council of Turkey, Researcher (June 2009-March 2012).

151



152


