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NUMERICAL SIMULATION OF TWO-PHASE OIL AND WATER FLOW

SUMMARY

Two-phase oil and water flow is a subject of variety of applications in reservoir
engineering processes. For instance, waterflooding is a widely used secondary
recovery technique, based on the simultaneous flow of oil and water, to increase the
oil production. In this technique, water is injected into an oil reservoir through
injection wells to displace oil towards production wells. Another application of two-
phase oil and water flow is encountered in injection/falloff pressure transient tests.
Injection and fall-off tests are run for well and reservoir characterization purposes.
Especially in offshore fields, due to environmental concerns, water injection into an
oil reservoir is a common practice to test the wells for appraisal and development of
the oil reservoirs. Flow rate and pressure data under two-phase flow of oil and water
are stored and analyzed to obtain reservoir properties affecting the future
development of the field.

Diffusivity equations describing the two-phase flow of oil and water in a porous and
permeable medium are non-linear partial differential equations. Such equations are
not easily solvable by analytical methods. However, there exist numerous articles
that attempt to develop and present analytical solutions in the literature for the two-
phase flow of oil and water under some restricted assumptions (e.g., homogenous
reservoir). Analytical solutions may be easy and fast to apply, but may not well
represent the oil and water flow because of their restrictive assumptions. On the other
hand, numerical methods are more appealing to solve the oil and water phase flow
for more general cases. Due to its generality, in this study, we consider numerical
based methods (i.e., finite difference methods) to solve the diffusivity equation for
oil-water flow and investigate the pressure and water saturation behaviors of a
vertical well and reservoir for the cases where analytical solutions are not available.

A general discretized equation is derived for simulating two-phase water and oil flow
in three-dimensional (3-D) r-0-z cylindrical coordinate system using the finite
difference method. Then, this general difference equation is solved by considering
two different methods. The first method is based on a fully implicit solution of both
pressure and saturation (FIMPS) using the Newton method, and the other method is
based on a fully implicity solution of pressure and explicit solution of saturation,
which is known as the IMPES method. Derivations for both methods are given in this
study. The solutions generated from the simulators developed during the course of
this work were compared and validated with the solutions generated from a
commericial software CMG - IMEX. Moreover, we also validate the simulator for
some benchamark cases taken from the papers presented in the literature.

Finally, some well-test applications are run with the simulator and pressure
differences and their derivatives (diagnostic plots) are analyzed. This process is
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achieved with the commercial well-test software ECRIN. Behaviour and effects of
mechanical skin on diagnostic plots for injection and fall-off tests are discussed.
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IKi FAZLI PETROL VE SU AKISININ SAYISAL SIMULASYONU

OZET

Iki fazli petrol ve su akisi, pek ¢ok rezervuar miihendisligi uygulamasinin konusunu
olusturmaktadir. Ornegin, su ile petrolii dteleme, rezervuarlardan ek petrol iiretimini
arttirmak i¢in en yaygin olarak kullanilan ikincil yontemlerden biridir. En basit
haliyle, su ile Otelemenin amaci enjeksiyon kuyulari araciligiyla suyun rezervuara
enjekte edilerek petrol liretim kuyularina 6telenmeye calisilmasidir. Bu nedenle su ile
petrol Oteleme siirecinin planlanabilmesi i¢in iki fazli petrol ve su akiginin
temellerinin bilinmesi gerekmektedir.

Iki fazli petrol ve su akismin uygulama buldugu bir diger alan ise enjeksiyon ve
basing-diisiim kuyu testleridir. Son yillarda ¢evresel endiseler ve duyarlilik
nedeniyle, 6zellikle agikdenizde delinen kuyularda yapilan testler, rezervuara su
basilarak yapilmaktadir. Bu tiir testler, ylizeyde iiretim ve toplama tanklari
gerektirmediginden tercih edilmektedir. Bu testler, rezervuar dndegerlendirmesi ve
gelisimi hakkinda 6nemli bilgiler sunar. Su ile 6teleme projelerinde, enjeksiyon ve
basing diisiim testleri rezervuar karakterizasyonu i¢in Onemlidir. Debi ve basing
datalar1 kaydedilip analiz edilmekte ve sahanin gelisimini etkileyebilecek rezervuar
parametreleri bulunmaya ¢aligilmaktadir.

Yaygin kullanimi ve dnemi nedeniyle bu calismanin amaci, iki fazli petrol ve su
akisinin  temellerinin  anlagilmast  ve  basing-saturasyon  davraniglarinin
gbzlemlenebilmesi i¢in tek kuyulu bir sistem i¢in silindirik koordinat sisteminde
simiilator gelistirmektir.

Gozenekli ve gecirgen bir ortamda iki fazli petrol ve su akisini tanimlayan veya
modelleyen difusivite denklemleri dogrusal olmayan kismi diferansiyel
denklemlerdir. Bu tiir denklemler, bazi basitlestirici varsayimlar yapilamadikga,
analitik yontemlerle ¢éziimlenmesi zor olmaktadir. Literatiirde su ve petroliin iki
fazli akig1 i¢in bazi sinirlayict varsayimlar altinda (6rnegin homojen rezervuar
varsayimi gibi) gelistirilmis bir ¢ok analitik ¢6ztim bulunmaktadir. Analitik ¢ozliimler
uygulanmasi kolay ve hizli olmakla beraber igerdigi kisitlayici varsayimlar
nedeniyle, cok amacli genel bir kullanima uygun degildirler. Buna karsin, daha genel
oldugu ve smirlayici varsayimlarin  kullanimim1  gerektirmediginden, sayisal
yontemler su ve petrol akis problemlerini ¢cozmek i¢in daha ¢ok tercih edilmektedir.
Bu nedenle, bu c¢alismada sayisal tabanli sonlu fark yontemleri kullanarak iki fazl
petrol ve su akisini tanimlayan difusivite denklemleri c¢oziilmiis ve analitik
¢oziimlerin yetersiz kaldig1 bazi durumlar i¢in basing ve su duymusluk dagilimlarinin
davranisi incelenmistir.
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Calismada ilk Once matematiksel model belirlenmis ve c¢alisma siiresince
uygulanacak varsayimlar verilmistir. Gozenekli ortamda iki fazli petrol ve su akisini
tanimlayan difusivite denklemi kiitle korunum yasasi ve gozenekli ortamda hizi
tanimlayan Darcy denklemi kullanilarak tiiretilmistir. Tiiretilen difusivite denklemi
tic boyutlu r-Q-z silindirik koordinat sisteminde iki fazli su-petrol akisi simiilasyonu
icin sonlu farklar yontemi kullanilarak ¢oziilmiistiir ve genel fark denklemleri
tiiretilmistir. Daha sonra fark denklemleri iki farkli yontemle ¢oziilmiistiir ve bu
yontemlere gore tiiretimler bu calismada verilmistir.

Calismada uygulanan yontemlerden birincisi hem basincin hem de doymuslugun
Newton yontemiyle kapali olarak ¢oziildiigii, Tiimiiyle Kapali Basing ve Doymugsluk
(TKBD) olarak da isimlendirilen yontemdir. Yontemde genel fark denklemleri tekrar
diizenlenerek petrol, su ve kuyu kalici (residual) denklemleri bulunmustur. Bulunan
denklemler kullanilarak Jacobian matrisi olusturulmus ve matris igindeki tlirevler
niimerik yontemle hesaplanmigtir. Newton prosediiriine gére matris vektor problemi
coziilerek kuyu dibi basinci, gridlerdeki basing ve su saturasyonu degerleri
hesaplanmustir.

Ikinci olarak, basmcin kapali, doymuslugun agik olarak ¢oziildiigii, Kapali Basing-
Acik Doymusluk (KBAD) olarak da isimlendirilen sayisal ¢oziimleme yontemi
uygulanmistir. Bu yontemde ise petrol ve su genel fark denklemleri birlestirilerek
basing denklemi olusturulmustur. Kuyu denklemi ve basing denklemi kullanilarak
kuyu dibi basincit ve gridlerdeki basing degerleri kapali olarak hesaplanmistir.
Bulunan basing degerleri su denkleminde yerine konularak gridlerdeki su
saturasyonu agik olarak hesaplanmaistir.

Calismada silindirik koordinat sisteminde gridler r yoniinde MacDonalds and Coat
yontemi uygulanarak olusturulmustur. Yontem sayesinde degisimin en fazla oldugu
kuyu dibinde daha kiiciik gridler kullanilirken kuyudan uzaklastikca grid
biiyiikliikleri artmaktadir. Q ve z yoniinde ise esit aralikli gridler kullanilmistir.

Grid smirlarindaki gegirgenlikler harmonik ortalama kullanilarak hesaplanmistir.
Goreli gegirgenlik grid merkezlerinde Power-Law model kullanilarak hesaplanmustir.
Grid sinirlarinda ise akis yoniine (upstreaming) gore belirlenmistir. Akis yliksek
basingli ortamdan diisiik basingli ortama dogru olacagindan, iki grid sinirindaki
goreli gecirgenlik degeri, bu iki gridin merkezlerindeki basing degerlerinin
karsilastirilmasiyla bulunmustur. Petrol ve su formasyon hacim faktorii ve
gozenekliligin basincin bir fonksiyonu oldugu varsayilmis ve grid simirlarindaki
degerleri aritmetik ortalama kullanilarak hesaplanmistir. Yukarida bahsedilen
parametrelerin grid ve rezervuar sinirlarinda hesaplanmar1 Appendix — A’ da detayl
olarak verilmistir.

Gelistirilen simiilatdrde logaritmik olarak artan zaman araliklar1 kullanilmistir. Bu
sekilde degisimin fazla oldugu erken zamanlarda kiicik zaman araliklar
kullanilmistir. Artan zaman ile de§isimin azalmasi daha biiyiik zaman araliklarini
kullanimina izin vermektedir. Bu nedenle logaritmik olarak artan zaman araliklar
kullanmak toplam ¢6ziim siiresini kisaltmasindan dolay1 avantaj saglamaktadir.
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Cozilim i¢in uygulanan iki farkli yontem ig¢in ortaya ¢ikacak matris yapilar basit bir
rezervuar sisteminin gridlere ayrilmasiyla gosterilmistir. Olusan matris yapilarinin
seyrek matris (sparse matrix) olmasi nedeniyle depolama (storage) ve uzun ¢oziim
siireleri problemlerinden kurtulmak amaciyla Yale Universite’sinde gelistirilen
¢Oziim paketi kullanilmistir. Bu ¢6ziim paketi sadece matris igindeki sifir olmayan
elementleri depolamakta ve kendi icindeki 6zel algoritmayi kullanarak matrisin
biitiin elemanlarini depolayan ¢oziim yontemlerine gore ¢ok daha kisa siirede ¢oziim
yapabilmektedir.

Tiimiiyle Kapali Basing ve Doymusluk ve Kapali Basing-Ac¢ik Doymusluk
yontemlerini kullanan simiilatoriin dogrulugu ticari bir yazilim olan CMG - IMEX ile
kontrol edilmistir. Ayrica, gelistirilen simiilatoriin ¢ozlimleri, literatiirde sunulan
makalelerden alinan baz durumlara ait ¢oziimler ile de test edilmistir. Ug farkl
durum i¢in yapilan bu testlerle, gelistirilen simiilatériin dogrulugu hem basin¢ hemde
saturasyon i¢in ¢izilen grafiklerle gosterilmistir.

Kontrol asamasinda Kapali Basing-Ac¢ik Doymusluk yontemi kullanilirken uygun
grid yapist kullanilmadiginda saturasyonun acik olarak c¢oziilmesinden dolay1
karsilagilabilecek stabilite problemi bir 6rnekle gosterilmistir.

Simiilatoriin dogrulugu test edildikten sonra son olarak literatiirde bulunan bazi
ornek kuyu-testi verileri kullanilarak simiilator calistirilmis ve basing farki-basing
fark: tiirevi grafikleri simiilatorden alinan basing sonuglarina gore ¢izilmistir. Bu
islem ticari bir yazilim olam ECRIN programiyla yapilmistir. Farkli parametrelerin
etkileri simiilator kullanilarak incelenmistir.

Calismada ilk olarak simiilasyonun baslangi¢ zamaninin basing farki tlirevi {lizerine
etkisi gosterilmistir. Daha sonra enjeksiyon ve basing diisiim periyodlarinin basing
farki-basing fark: tiirevi davraniglart incelenmis ve literatiirden yapilan aragtirmaya
gore radyal akis periyodlarinin tiirev degerlerinin sayisal olarak nasil bulunacagi
gosterilmistir. Sonrasinda sinir noktalar goz Oniline alinarak bulunan mobilite
oraninin basing farki-basing farki tiirevi davranislari iizerine etkileri hem enjeksiyon
hemde basing diisiim periyodlari i¢in ayr1 ayr1 incelenmistir.

Son olarak zar etkisi Hawkins formiilasyonu kullanilarak simiilatdre uygulanmis ve
zar etkisinin basing farki-basing fark: tiirevi grafigine etkileri enjeksiyon ve basing
diisiim periyodlart i¢in incelenmis ve elde edilen sonuclar tartisilmistir. Ayrica,
Hawkins formiilasyonundaki parametrelerden biri olan zar etkisi yarigapinin basing
farki-basing farki tiirevi davranigin1 nasil degistirdigi farkli zar etkisi yapicapi
degerleri segilerek enjeksiyon periyodu igin gosterilmistir.

Calisma sonuglarin ve dnerilerin verilmesiyle sonlandirilmistir.
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1. INTRODUCTION

Two-phase oil and water flow finds variety of applications in reservoir engineering.
For instance, waterflooding is a widely used secondary recovery technique, based on
the simultaneous flow of oil and water, to increase the oil production. Once water is
injected to reservoir, oil is swept and displaced towards the production wells. The
design of this process in the field and the performance predicitons of additional oil
production via this process require the fundamental understanding and the solution of
two-phase oil and water flow in a porous and a permeable medium (Craig 1971,

Willhite 1986).

Another application of two-phase oil and water flow is for transient formation and
well tests involving injection and falloff periods. Injection and fall-off tests are run
for well and reservoir characterization purposes. Due to recent environmental
concerns regarding the handling of fluids to be be produced at the surface in
production tests, water injection into an oil reservoir, especially in offshore where
there is abundance of water, is a common practice to test the wells for appraisal and
development of the oil reservoirs. The pressure and rate data collected under two-
phase flow of oil and water are stored and analyzed to obtain reservoir properties
affecting the future performance and development of the reservoir. Over the last 30
years, there is an increased interest in developing analytical and numerical solutions
for the two-phase oil and water flow problems in porous and permeable media. For
example, Abbaszadeh and Kamal (1989) investigated the pressure transient testing of
water injection wells by considering analytical approach solving the diffusivity
equations for oil and water. Bratvold and Horne (1990) presented procedures to
interpret injection and falloff test data following cold water injection into a hot-oil
reservoir. Levitan and Michael (2003) developed a semi-analytical solution for the
variable rate injection and falloff tests in homogeneous single-layer reservoirs. Peres
et al. (2006) provided analytical solutions for analyzing the falloff tests following
injection tests. Amina (2007) provided a comprehensive investigation of injection

and falloff testing of vertical, limited-entry, and horizontal wells and developed



analytical solutions for the analysis of such well tests. Chen (2007) investigated the
in-situ determination of oil-water relative permeability curves from injection and

falloff tests.

Unlike the diffusivity equation for describing the single-phase liquid oil or water
flow, the diffusivity equations describing the two-phase flow of oil and water in a
porous and permeable medium are non-linear partial differential equations. Such
equations are not easily solvable by analytical methods. As stated and cited above,
there exist several articles that attempt to develop and present analytical solutions in
the literature for the two-phase flow of oil and water under some restricted
assumptions (e.g., homogenous reservoir). Analytical solutions may be easy and fast
to apply, but may not well represent the oil and water flow because of their
restrictive assumptions. On the other hand, numerical methods are more appealing to
solve the oil and water phase flow under more general cases. Hence, in this study, we
consider numerical based methods (i.e., finite difference methods) to solve the
diffusivity equation for oil-water flow and investigate the pressure and water
saturation behaviors of a vertical well and reservoir for the cases where analytical

solutions are not available.

1.1 Purpose and the Scope of Thesis

The main purpose of this study is to develop a general single-well simulator to
simulate pressure and saturation behavior of water and oil two-phase three-
dimensional flow in a 3-D cylindrical reservoir. The simulator can treat the reservoir
with homogeneous or heterogeneous porosity and isotropic or anisotropic
permeability fields. Another objective is to study the behavior of injection and falloff
tests by constructing diagnostic plots for the interpretation of injection and falloff

periods using the pressure and pressure-derivative results of the developed simulator.

In the second chapter, considering both oil and water, with the integration of Darcy's
law, the diffusivity equations, which are non-linear partial differantial equations, for
describing two phase flow of oil and water, will be derived. In Chapter III, we
consider the solutions of these non-linear partial differential equations with the
appropriate initial and boundary conditions by using two different numerical
methods based on the finite difference technique; fully implicit pressure and

saturation (FIMPS) and implicit pressure and explicit saturation methods (IMPES).



In Chapter 1V, the solutions generated from the simulators developed during the
course of this study were compared and validated with the solutions generated from a
commericial software IMEX-CMG. Moreover, the solutions from our simulators are
also validated with the solutions for some benchamark cases taken from the papers
presented in the literature. In Chapter V, we present some applications with the
simulator. Here, we use the simulator as a forward (direct) solution tool to simulate
various production, injection and falloff test cases to understand the pressure and
saturation behavior of the reservoir. Although not considered in the thesis, the
simulator developed can also be used as a tool for history matching or inverse
problem applications to infer the reservoir properties form observed pressure and/or

saturation data.






2. MATHEMATICAL MODEL

To solve the two-phase flow of oil and water in porous media we must first consider
the mathematical model. In this chapter, diffusivity equation is derived and initial

and boundary conditions are presented.

2.1 Assumptions

In this study, we assume immiscible flow of oil and water in a horizontal, isothermal
reservoir. We will neglect the gravity and capillary effects. Reservoir is assumed to
be in cylindrical shape with a vertical well located at the center. Oil and water
viscosities are assumed to be constant with pressure. We also assume that the
absolute permeability of the reservoir does not change with pressure. Of course, oil
and water relative permeability change with water saturation. We assume that the
power-law model for relative permeability of oil and water is applicable. Formation
volume factors of oil and water as well as porosity are treated as a function of

pressure. We treat oil and water as slightly compressible fluids.

2.2 Derivation of Continuity Equation

The continuity equation is a partial differential equation, which describes the flow in
porous media. When considering a multiphase flow in a three—dimensional space, the
continuity equation is derived by using the law of mass conversation. To derive the
continuity equation, we must start from general mass (or material) balance equation

given in the field units as follows:

0 S
(e mmaa L[S gy o

: constant and equals t05.615

m : phase of fluid (oil or water)



P : density of the fluid
\ : velocity of the fluid

(pv) :mass—flux vector

7/ : porosity
S : saturation
t : time

The integral in the left-hand side of Eq. 2.1 is performed over a surface areca A
perpendicular to flow direction, whereas the integral in the right-hand side of Eq. 2.1
is performed over the volume. The symbol “e” in the left-hand side of Eq. 2.1 is used
to represent the vector scalar product operation between the mass-flux vector (pvy,)
and the unit normal outward vector n to surface d4. We can relate the surface
integral in Eq. 2.1 to a volume integral by using the divergence theorem (Kreyszig

1979). Then, we can rewrite the general material balance equation as follows.

_;g(v.pmvm)dyzc_ll w@dv -
or
1 d(dp,S,
~(Vep,v,)= 0_1% @2.3)

where V is the gradient operator or vector, and the solid dot represents the scalar
product or divergence of the mass-flux. The divergence of of the mass-flux in

cylindrical coordinate system is given by (Kreyszig 1979):

10 10 0
(Vepr,v,)= ;E(me"m,r ) + ;%(Pm"m,e ) +§(Pm"m,z) (2.4)

Where the subscripts », €, and z will be used for the directions in this study.

If we substitute Eq. 2.4 in Eq. 2.3,



10 10 0 1 9(¢p,S,,
—K;a(rpmvmjr ) +;£ (,Ome,g) +§(Pm"m,z )j = Z% (2.5)

Eq. 2.5 is called the continuity equation for phase m in cylindrical coordinate system

considering fluid flow in a three-dimensional space in the directions of 7, 0 and z.

2.3 Integration of Darcy's Law

Velocity term in Eq. 2.5 is defined by the well-known Darcy's Law. Velocities
(assuming a horizontal reservoir) in »—6—z coordinate system in field units are

defined by.

_ krkrm %
vm,r e Bmlum or (2.6)
v =—c kekrm ai
m,0 2 erlle 89 (2.7)

v, . =—C,

kk (oP, o
- 2.8)

B u, o }/mg

: constant equal to1.127x107

P : pressure

B : formation volume factor

7 : viscosity

k. : absolute permeability in the » direction
k, : absolute permeability in the & direction
k., : absolute permeability in the z direction
k., ~ :relative permeability of phase m

Vo : gradient of phase m



It is important to note that as we neglect the effect of capillary pressure, i.e., we take
P = Phon-weting-Pwening = 0, water and oil phase pressures are the same and equal to P

(P, = P,=P) and hence Egs. 2.6 and 2.8 can be expressed in term of the pressure P.

Recall that, we assume gravity effect is negligible. Therefore, we rewrite velocity in

the z direction as

kZ kr m a_P

v, =—C,—"

m,z 2 Bm,l,lm aZ (2.9)

If we substitute Eq. 2.6, Eq. 2.7, and Eq. 2.9 into Eq. 2.5, we obtain

10 ( kk, ap] 1 0 ( ko, ap]
——rp, T — 5= p, T —
Bm’um 89 _ 1 a(¢pmSm)

ror\"""B u or) 00
C =
| o kk, oP ¢ o (2.10)
+ ~ p m A
Oz B u, Oz

Eq. 2.10 represents the diffusivity equation for phase m (oil or water) in cylindrical
coordinate system considering flow in three-directions; r, €, and z. In this study, we
will approximate Eq. 2.10 by using two different finite difference formulation as to

be discussed later.

A constraint that we need consider in solving Eq. 2.10 is that the sum of the oil and

water phase saturations at any given time in the reservoir should add up to unity, i.e.,
S, +5, =1 2.11)

where S, is the oil saturation, and S, is the water saturation at a given time and

point in the reservoir.

2.4 Initial and Outer Reservoir Boundary Conditions

Eq. 2.10 is a three-dimensional second order partial differential equation involving
two dependent variables P and saturation S,. We will solve Eq. 2.10 subject to
appropriately defined initial and boundary conditions to find a unique solution. Since
we would like to solve both pressure (P) and one of the phase saturations (S, m = w

or 0), we need two initial conditions:



1

P(r,0,z,t=0)=F, (2.12)
S, (r, 0,z,t= 0) =S, (2.13)

P, is the initial pressure assumed to be uniform, and S, ; is the initial saturation of

phase m.

Regarding outer reservoir boundary conditions, we consider all no-flow (a Neumann
type) boundary conditions at all reservoir outer boundaries. Hence, a no-flow outer

boundary condition in the r direction at » = r, is considered and can be expressed as:

OP
(r—j ) =0 0<0<27,0<z<h 2.14)

Moreover, it is also assumed that no-flow top and bottom boundaries are present at z
= 0 (bottom of the reservoir) and z = 4 (top of the reservoir). Therefore, we can write

no-flow top and bottom outer boundary conditions at z as follows.

OoP

= =0 r <r<r,0<0<2rx

(%), re= @19
oP

il =0 r <r<r,0<0<L2r

(%), e @1

In this study, we consider two different boundary conditions for the € direction. The
first consideration is for the case where the reservoir extends from 0 degrees (=0
radians) to 360 degrees (= 2n radians) in the @ direction; i.e., a full reservoir sector
with @=360". In this case we must consider the continuity of flux for phase m,
pressure, and saturation at #=0° and @ =360". Therefore, the appropriate boundary

conditions for this case are expressed as follows:

(krmkg 8_p] :[_k’mkg a_pJ r,<r<r,0<z<h (2.17)
ﬂm 89 r,0=0, 'llm 89 r,0=2rx,z )



p(r,0=0,z)=p(r,0=27,z) r,<r<r,0<z<h (2.18)

S, (r0=0,z)=S,(r.0=27,2) 1,<r<r,0<z<h (2.19)

The second consideration is for the case where the reservoir extends from 6 = 0, to 6
= 0., where 0., is less than 360 degrees and greater than 0,. This consideration is
useful for simulating pressure and saturation behavior of wedge-shaped reservoirs
with no-flow boundary conditions in the 6 direction. So, the appropriate no-flow

boundary conditions for this case in the 0 direction are expressed as:

(G_Pj =0 r,<r<r,0<z<h
r,0=0, .,z

00 w (2.20)
oP

— =0 <r<r.0<z<h
(aelﬁ_@,z P ST=loU=2 @2.21)

2.5 Well (or Inner) Boundary Conditions

In this study, we will solve Eq. 2.10 subject to a specified water injection rate or total
(oil and water) production rate history at the well. We ignore the wellbore storage
effects for simplicity. This assumption would be realistic if the gauge is placed to
middle of the open interval and/or if the downhole shut-in is operational during

buildups and falloffs.

In the case where we specify the total production rate as the inner boundary

condition, we use the following well constraint equation:

60=0, z=h

e kk kk_ | OP

qsu’ﬁzce :CZ J‘ J‘ [ e Jr_ dZd& (2 22)
0=0, z=h BW’uW Bo’uo 87’ r=r,,,z,0 .

The inner boundary condition given in Eq. 2.22 is general. It can be used for either a

fully penetrating vertical well or a limited entry vertical well. In Eq. 2.22, 4, and
h, represent the beginning and ending points of the open interval measured positive

from the bottom of the formation in the z direction. In the case where we consider a

10



fully penetrating well, we set Ay = 0 and A, = h, where & is the total reservoir
thickness. For the case where we model a limited-entry vertical well, it is convenient

to rewrite Eq. 2.22 as

N_ 6=, h,
g 7 B k. k, ) oP
Quiee =62, | [k[ | +—J”5} dzd® 2.23)
1 r=r,,,z,0

where Ny, represents the total number of open intervals, and /1, and /,; represents
the beginning and ending points of the /th open interval in the z-direction. Note that
Eq. 2.22 is quite general in the sense that it allows us to consider multiple open

segments along the wellbore.

It is important to note that Eqs. 2.22 and 23 considers that the open interval extends
from 0 = 6, to 6 = O, in the O direction. For a full sector reservoir, we set 0, = 0 and
0, = 2m. It is also worth noting that g, In Eqs. 2.22 and 2.23 represents the
specified total surface production rate (in STB/D) and is specified as positive, i.e.,

qsurﬁzce > 0.

For the case where we consider water injection at a specified surface rate, then we

use the following equation as the well constraint equation:
0=0, z=h,
kk  oOP
=c Ly — dzd @
qw 2 [/JWBW ar j ) , 2 (2.24)

0=0, z=h,

For a fully penetrating well and a full sector reservoir, we set 0, = 0 and 0, = 2w, /) =
0 and /4y = h in Eq. 2.24. Similarly, for a limited-entry vertical well with a specified

water injection rate, the appropriate well constraint equation is given by:
T kk, oP

q,=c¢ — 0 '

2 u,B, or

w

j dzd 6

r=r,,z,0

(2.25)

I=1 9=, z=h,

It is worth noting that ¢,, in Eqgs. 2.24 and 2.25 represents the specified surface water

injection rate (in STB/D) and is specified as negative, i.e., g,, <O0.

11



For simulating a buildup period following a production period or a falloff period
following an injection period, we simply set guuce = 0 in Eqs. 2.22 and 2.23 and ¢,,
=01in Egs. 2.24 and 2.25.
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3. FINITE DIFFERENCE FORMULATION

In numerical solution approach, partial differential equations are converted to
algebraic set of nonlinear equations by using finite difference methods and then this
set of equations are solved by direct or iterative techniques. Therefore, finite
difference methods plays a central role for the solution of differential equations,

especially boundary value problems.

3.1 Difference Equations

Three basic finite difference methods are given as follows.
e Forward Difference
e Backward Differnce
e (entral Difference

And their formulation for the first derivative of any function f(x,) are given as

follows, respectively.

S (x +Ax) = f(x))

J') = ™ (3.1)
— f(x, —Ax
f(x,) = S (x,) i:gxo ) 3.2)

o +AX)— A
f(x)= AR ; A){ (= 2) (3.3)

For simplicity, the following notations will be used for the diffences.

13



f(x)) = % Forward

f'(x)) = % Backward

f 1_f-1
(x,) =+—— Central
S(xp) e

3.1.1 Reservoir difference equation

34

(3.5)

(3.6)

In Chapter 2, the derivation of the general continuity equation for immisicible

multiphase flow has been presented. Since it is a nonlinear partial differential

equation, the continuity equation must be solved by using analytical or numerical

solution methods. In this study, we will derive the numerical solution for two-phase

flow of oil and water in r — @ — z directions.

Let's recall the general material balance equation given in Eq. 2.1.

{fe myas :Cll w% ”

As is well known, the formation volume factor for a phase m is defined by.

B = Vo
Vm,SC
B, : formation volume factor for phase m
v, : volume of phase m at reservoir conditions
V.. :volume of phase m at standard conditions

We can also write formation volume factor in the form of density as.

B”l = p’n
pm,sc
P, : density of phase m at reservoir conditions

14
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(3.9)



P - density of phase m at standard conditions

If we substitute Eq. 3.9 in material balance equation given in Eq. 3.7 we obtain the

following equation.

5

1 ¢ec 0 (95,
= I @10

Now, we express Eq. 3.10 on control volume as shown in Fig. 3.1. Note that when
using a numerical method based on a finite difference, we divide the reservoir into
gridblocks. So the control volume shown in Fig. 3.1 can be considered as the
gridblock with the indices (i,j,k), having a bulk volume of V};;:, where i, j, and k

represent the indices for the 7, 6, and z directions, respectively.

Let us consider the accumulation term or time derivative term in right hand side of
Eq. 3.10. Multiplying and dividing by the bulk volume V};;r, we can rewrite Eq.
3.10 as follows.

St () o) e

Vv bljkV

L 2
bijk :5[’7 1 leejAZk (3.12)

Using the definition of volumetric average, we can write,

o K o1y
G bz/kV ¢ O\ B, i)k .

In Chapter 2, the continuity equation was derived using divergence theorem and a

diffusivity equation was obtained in the form of partial differential equation. Of
course, we could directly start by differencing the diffusivity equation given by Eq.
2.10 in the form of a partial differential equation. However, for convenience, we will
start directly from Eq. 3.10 to derive our finite difference equations. Both approaches

yield the same difference equations.
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As it is clear from Fig. 3.1, there are six faces on the control volume. Therefore, we
need to find six surface areas and break the integral in Eq. 3.10 into six and apply
surface integral on each face. The surface areas for selected control volume are as

follow.

Face at r | witharea 4, —»n(-1,0,0)—> 4, =r A0Az,

2 2
Faceat r | witharea 4, ->n(1,0,0) > 4, =r AGAz,
1+5 1+5
Face at @ | with area 4, ->n(0,-1,0) > 4, = ArAz,

—

2

Face at @ | with area 4, > n(0,1,0) > 4, = ArAz,
i+

j—

1
Face at z | with area 4; —>n(0,0,—l)—>z‘l5 =E(I’21 —7”_21 jAH

i+—
2

Face at z | with area 4, > n(0,0,1) —> 4, =%(P21 —rzlJAH

(PVe) o+aer2

\

(PVe) oasr2
%

‘-pvr}r -Ari2

Figure 3.1 : Control volume in 7 — 68—z coordinate system
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If we take the surface integral for six faces, we can write the surface term given in

Eq. 3.10 as follows.

z 10 z 10
Je+- Jt= k+5 j+5
1
.o m i Lo . m il
k% /% =5l kiz /.712 2505
Zk+l r‘+l Zk+l r‘ﬁl
2 / 2 v 2 / 2 v
- [ g+ [ [| 22 dA
3 4 3.149)
z 1 V‘ 1 Bm i,j_l,k ZA 1 r‘ 1 Bm j,j+7k
2 2 2 2
Ol Tt Ol
2 / 2 V 2 / 2 V
-] ]| g+ | || dA ==Y [[| —=en|d4
0 yr m /i jk—— 0 r m 1],k+l I=1 S Bm
I = n 2

Substituting velocity definitions given in Chapter 2 (Egs. 2.6, 2.7, and 2.8) into Eq.

3.14 and solving the integral, one can obtain the following equations:

z 10 z 10
& (Vs e (kk oP
I I [f] dA, =—c, I J. (M_J r ,dfdz
S0 \Bu )iy RS B,u, Or) 1. i
o kk . ’ 3.15)
:_Cz[ rorm _] rlAejAZk
Bmlum 81’ [—%,j,k )
ZAFI 9# ZA 1 9#
(Vs " (kk, oP
| j[ j dd,=c, | I(B a_J r \dodz
210, m Jiv—,jk z 9171 mbn O +; v 2
o k : (3.16)
—02[ e 6_Pj r AG.Az,
B r) o i
mHn i+E, ko2
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z lrj% m l,j—%,k
e ki oP
=-c - = drdz
2 I I r[B U ae} | (3.17)
zk 17 mi—m _~k
1
=—c, kﬁkrm a_P l 2 AZk
B,pu,00) 1 |1,
)
k= v ZA+E /+~2
| j[ ’”J dA, = j[ '"Hj drdz
zZ 1t m i,j+%,k zk% rj% m i,j+E,k
@71k, oP
=c o s drdz
I I F(B Y7, 86&‘ 1 (3.18)
27] ,l mi—m l,j+*,k
1
B, 00) 1 |1,
)
6?k 17
(v c,AG. kk_ oP
- dAs__2 J[a_a}(zrm_ 3.19
9{1 1‘[( Bm jl ]k—% 2 H'E 1_5 Bm,um 6Z A 1 ( ° )
6?k 17
22 (v c,AG. kk OP
J. J.( mzj dA6: 2 j(r21_r21}( zrma_ (3.20)
‘9‘ 1 m /ij k+l 2 H—E 1_5 Bmﬂm 8 i k+l
Using the approximated integral expressions given by Eqs. 3.15-3.20 and the
accumulation term given by Eq. 3.13, we can rewrite Eq. 3.10 as:
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(3.21)

As mentioned earlier, finite difference approach is an important tool for the solution

of partial derivatives. Hence, we can apply the convenient finite difference formula

for the solution of position dependent partial derivatives.

( krkrm a_Pj _ [bmkrkrm ] PHlojok B Pi,j,k
B,u, or Lk B Judye Tin
( krkrm a_PJ — (bmkrkrm J B,j,k — Pf—l,j,k
By, or) 1. Fo Jidyw 17T

mbm i)k
5 J

[ kﬂkl‘m a_P] _ [bmkﬁkrm J Pi,j+1,k B Pi,j,k
Bmﬂm 00 i,j+%,k i i,j+%,k 0, 0,

J+ Y

[ kﬂkl‘m a_P] _ [bn kﬁk J Pi,j,k B Pi,jfl,k
Bmlum 89 i,jfl,k lum i,jfl,k J _ijl

2 2
( kzkrm a_PJ _ (bmkzkrm J (B,j,k‘*'l — Pi,f,k J
Bmll'lm aZ i,j,k+% ll’lm i,j,k-%% Zk+1 _Zk

( kzkrm a_PJ _ (bmkzkrm ] [Piajak B E,j,k*l J
Bmﬂm aZ i,j,k*% ILIm i,j,k*% Zk - Zkfl
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"= g (3.28)

As it is clear in Eq. 3.28, p_ is the inverse of formation volume factor. The reason to

use inverse of formation volume factor is for the simplicity.

Furthermore, let us define the transmissibility terms as follows.

T =c.r Angzk (bmkrkrmJ
m,r i+l J.k 2 i+% (}/;_+1 — rl) M, L (329)
T =c.r AH/ AZk bmkl krm
m,r,i—,jk 2 l—l (7,; _l:—l ) Ium L (3.30)
F o
A (bkk
Tgulk—czln 2 k [ 0 j (3.31)
m, ,l,]+5, l:_l (0]+1 _0]) /’lm i,j+%,k
2
r
i AZ bmk krm
T . =cn)— : ( . j (3.32)
Sl 1 (0,-0.)\ &, ik
2
m,z,i,j,k+% 2 H% i—% (Zk+1 - Zk) T 3.33)
2
T _&(’,2 —I"2 ] AH/ [bmkzkrm J
m,z,i,j,k% 2 i% i—% (Zk _Zk—l) Ho )yt (3.34)

Substituting the finite difference solutions from Eq. 3.22 to Eq. 3.27 and
transmissibility definitions given from Eq. 3.29 to Eq. 3.34 in Eq. 3.20, we obtain the

following equation.
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r (Rﬂ,j,k - B,‘/‘,k ) - (Pz’/k - P;*Lj:k )

m,r,i+5,j,k m,r,i—i,j,k
+T (P =P, )-T (P,x=P,)
m kI TR g e N L
(3.35)
+T (Psn=P,s)-T (P,,-P )—n”*94b¢s)
m,z,i,j,k-*—% LA+l L1k m,z,i,j,k—% Lk 1) k=1 Cl at mn m7i,j.k

As it is clear, the finite difference approach must also be applied on the time

dependent derivative in the accumulation term.

n+l

V i, n
(bm¢Sm )i,j,k = CIZZ‘]':I |:(bm¢Sm )i,j,k - (bm¢Sm )i,j,k:| (3.36)

V;J,i,j,k g
¢, Ot

Here, the superscript n is used to represent the old time level, whereas the superscript
n+1 represents the current time level at which the (b,,¢S,,) product in Eq. 3.36 is

evaluated. In the right-hand side of Eq. 3.36, A" denotes the time step taken from

time "to "L e, " =1+ AL

Finally, using Eq. 3.36 in Eq. 3.35, we can write general finite difference equation

for each phase m = 0 and w as:

T (Poji—P,,)-T (P, —Pyn)
m,r,i+5,j,k i)k i)k m,r,i—l,j,k i.j.k i-1,j.k
+T (Ps—P,.)-T (P,s—P,)
0.0, jamge N BIE TRIR pg j \TA TRITL
2 2
3.37
+T | (Pi,j,k+1 _Pi,j,k)_T o1 (Pi,j,k _Pi,j,k—l) ( )
m,zi j okt m,z.i,jk—
2 2
V..
T bi,jk n+l n
B c At [(b’"¢S'" )i,j,k _(bm¢Sm )i,j,k:|

3.1.2 Well constraint equations

To be able to produce from or inject into the reservoir, we need well constraint
equations where we specify the flow rate. As discussed in Chapter 2, in this study,
we specify total flow rate at wellbore. Recall the inner boundary condition given in

Eq. 2.23.
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top

h
¢ k. OP
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S

Applying forward difference formulation at time /! we can approximate Eq. 3.38

with the following difference equation:

Ntop n,  0=0,

q;’,;}m - Z Z Z (To,r,l/z,j,k + Tw,r,l/z,j}k ) (I)lnjllc E)n;lk ) 3.39)

I=1 k=n,; 6=,

B, :pressureat i=1,0=j,and z=k grid
R, ;. + pressure at well or can also be represented as Rf}*l .

In Eq. 3.39, n;; and n,; represent the grid block numbers in the z-direction for bottom
and top of the open interval /, respectively, for / = 1,2,...,Ny,. It is important to note
that we consider an infinite conductivity wellbore so that wellbore pressure is

uniform along the open interval in the z-direction.

In the case where we consider injection at a specified injection rate of ¢,,, we simply
delete the oil transmissibility term in the left-hand side of Eq. 3.39 and replace g

by ¢, so that we obtain the following equation:

1(1 n  6=6,

@ =YY T (BB (3.40)

I=1 k=n,, 6=0,

The computation of the well oil and water transmissibility terms 7,,,,,,and

T, .12, InEgs. 3.39 and 3.40 are discussed in Appendix A.

W,

3.2 Method of Solutions

There exist different methods to solve reservoir finite difference equations (Eq. 3.37)
together with the well constrain equations (Eq. 3.39 or 3.40). One of them is called
Fully Implicit Pressure and Saturation Method (FIMPS) where pressure and
saturation as well as their dependent variables are evaluated at time level 7"
Therefore, we need to rewrite general difference equation and well equation as

follows.
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Tn+1 1 (Pn+1 _Pn+1 )_Tn+1 1 (Pn+l _Pn+1 )

i+1,j.k i,j.k i,j.k i-l,j.k

m,r,i+5,j,k m,r,i—E,j,k
n+l n+l n+l1 n+l n+l n+l1
e by (B,_/H,k 3,_/,k) r. L (B,./,k Pi,./—l,k)
AR Gt g
+Tn+l | (Pinfrllc_*—1 _Panr]l( ) _Tn+1 ) (P’HII{ _ Pnf]l{_l) (3.41)
mzi = N D) o mzijh— N D />
’ 2 ’ 2
V..
N b.i,j.k n+l n
oA [(b’"¢S’" )i,./,k _(bm¢Sm ),-,_,-,J
1
]vlup g g:gg
n+l _ n-+1 n-+1
Dsurfuce = Z Z Z(To,r,l/z,j,k +T»v,r,1/2,j,k)(3,j,k Po,j,k) 3.42)
1=l k=n,; 6=0,

3.2.1 Newton's method

Newton's Method, also known as Newton - Raphson Method, is a method for finding
roots in numerical analysis and it describes an iterative procedure which is typically
used in reservoir simulation. Suppose, we have n system of equations with N

independent variables, i.e.,

£ =(x1,x2,...,xN):O
fr=(%,%,.,x, ) =0
(3.43)
Iy =(x1,x2,...,xN):O
or, simply,
ﬁ:(xl,xz,...,xN)=0 for i=1,2,...,N (3.44)
We would like to solve x,'s (/=1,2,...,N ) so that f, =0 for each /.
Let
Xz(xl,xz,...,xN) (3.45)
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Then, we can rewrite Eq. 3.42 as

Such that

If x is close to x, the following Taylor series is approximately satisfied.

ﬁ(§)=ﬁ(x)+i()}_i—xj)aﬁ(x) i=12,...N

j Ox j

Because f(x)=0 , we can rearrange Eq. 3.49 to obtain
g

ZN:aﬂ(X)(%—x,):—ﬁ(x) i=12,...N

o ox,

This suggests that the following iterative scheme with an iteration index 7.

iafi(xn)(ijﬂ X;H—l) _fi(xn) l=1,2, ,N
=ey

If we let & j'.’“ denote

S =x"-x) j=12,...N

J J

Then, we can rewrite Eq. 3.50 as
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(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)



Define

() o, B o, )
ox, Oox, ox,,
fori=2
) o ) ()
ox, 0ox, oxy
.for i=N
af" (Xn)é}nﬂ_'_af" (Xn) 2n+1+m+afN(Xn)
ox, Ox, ox,,
Define the Jacobian matrix
A |
ox, Ox, . ox,,
9 9% 9
ox, 0Ox, . ox,,
J(x” ) =
Iy Iy Yy
| Ox,  Ox, S oy |
_é-lnﬂ_ i I(Xn)_
5271+1 Jrz (Xn)
6n+l — f(Xn) —
_51’?1 J I (x")
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Then the system of equation given by Eq. 3.55 is

J(x")8"" =~ (x") (3.56)

Newton's procedure can be described as :

Step (1) - Set k=0, and guess x° :[xlo,x;’,...,xo ]T

N
Step (1) - Form J(x”) and f(x")
Step (il ) - Compute 8"*' from Eq. 3.56. Then propose a new iterate

Xn+1 — Xn +6n+1 (3.57)

Check the following criterion for convergence:

n+l n
i
X107

J

Max e, ¢ (3.58)

If satisfied, accept x""'

as the solution and stop iterating.
Step (1v) - If Eq. 3.58 is not satisfied, set n =n+1and go to Step (ii ).

This procedure will converge to x provided

(i) - Inverse of Jacobian exists, i.e., J is non - singular and J™' exists.
2
. o f, . . . . ~
(i) - o exist and are continuous in some neighborhood of x.
X.OX .
e

(iii) - x° (initial guess ) is sufficiently close to X.

Now, we apply the Newton's procedure to our difference equation given in Eq. 3.41.
As we deal with oil and water system, we write Eq. 3.41 for oil and water phases

separately.

For oil (Eq. 3.41 with m = 0) gives
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Tn+1 1 (Pn+l —Pn<+1 )_Tn+1 1 (Pn+1 Pn+1 )

orirk o ik ik ori L \Tigk ik
2 2
1 +1 +1 n+l +1 +1
+T (PP )-T (P -
0.0, Ly Lj+Lk i gk o,a,i,j—l,k Ljk o Tij-Lk
2 2
n+l +1 +1 n+1 +1 +1
T (B,nj,kﬂ _Bf/,k)_T y I(Bf/,k —Bf/,m)
0,z,1, ] ,k+— 0,z,0,j,k—
2 2
V..
U b .k |:(b ¢S )n+1 —(b ¢S )n :|
- n+l 070 )i, jk or—o/i,jk
oAt

For water (Eq. 3.41 with m = w) gives

7 1 (Pn+l _p )_Tn+1 1 (Pn+l _p )

woritk ik i+1,/,k wii, j,k wri L g\ gk Lin ik
2 2
1 7+1 +1 n+l +1 +1
+1 (B P )-T (B -E)
w0, Ly i,j+Lk i,k wﬂ,i,j—l,k i,k i,j-lk
2 2
+Tn+1 Pn+1 _Pn+l _Tn+1 Pn+1 _Pn+l
- i,j,k+1 i,j.k - i,j.k i,j,k=1
W,z,0, j k+— w,z,i,j k—
2 2
V..
b jk n+l n
- CAtn+l |:(bW¢SW)i,j,k (bW¢SW)i,j,k:|
1

(3.59)

(3.60)

Using requirement given in Eq. 2.11, that is, S, + S), = 1, we can rewrite oil equation

as

Tn+1 1 (Pn+1 _Pn+1 )_Tn+1 1 (Pn+1 _Pn+1 )

it ik i+1,j,k ik orid ik i,j.k i-1,j.k
2 2
1 +1 71+1 n+l 7+1 7+1
+7 (P —P)-T (P -£ )
O,H,i,j-%%,k i,j+1,k i,j,k O,H,i,j—;,k i,j,k i,j-1,k
n+l 7+1 +1 n+l +1 +1
+T . 1(B,j,k+1 _Pij},k)_T - 1(}?’7;1( _BZ',H)
o,z,t,J,k+5 o,z,l,J,k~2
V..
. b,i,j.k n+l n
—W[(Z’ﬂ(l—%))i, L (B(1=5,))
Cl

Rearranging oil equation given by Eq. 3.61 gives
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n+1 n+1 n+l n+l n+l n+l
Pt -t pt T P

P P NN AL L P 8 L
2 2 2

Tn+1 + Tn+1 + Tn+l
1 1

o,r,i——,j.k o,r,i+—,j.k 0,0.i,j——.k
> J 2 J J 2

1 n+l
- P+ T
+Tn+1 + Tn+1 + Tn+1 0,i,],k
09i'+lk ozi'kfl ozi'k#—l
s0,1,] 2 52505 > sZ515 ] > (3.62)

Pn+1 + Tn+l Pn+l

o,i,j+1,k 0,i,],k+1

Pn+l

1 0,i+1, ]k

o,r,i+—,j.k
2 J

n+l
+T .
0,01, j+—.k
2

4 i,j, n+ N
- c bAt/”fl [(b"¢ (1 -5, ))i,jfk a (bo¢ (1 =S, ))i,j,k J

1

4 ijl+]
20, k+—
2

Rearranging water equation given by Eq. 3.60 gives

Tn+1 Pn+1 _ Tn+1 Pn+1 _ Tn+1 Pn+1
1 1 j 1

S e A N L N A
2 2 2

Tn+l + Tn+1 + Tn+1
1 1

1
w,ri——, j .k w,ri+—,j,k w,0,i,j——.k
> J 2 J J

1 n+l
- P +T
n+l n+l n+l i,j.k
+T . +T T )
W,!g,l,j+5,k W,Z,l,J,k—E W,Z,l,J,k+E (3.63)

n+1 n+l n+1
B,j-*-l,k + Tw i k+lB,j,k+l
R

Pn+l

1 i+1,/,k

w,ri+—,j .k
B J

n+l
+1"
w,0,i, j+—.k
2

= Vb’i’j’k n+l .
=098 - (0950

For simplicity, let us define,

n+l

+ Vi i,
Ve = (b9(1=5,)), (3.64)

1
n b,i,j.k n
Vi ZCIA—;M( #(1-5,)). ., (3.65)
n+ KRR n+l
Vo :#( PS,), (3.66)

n _ b,i,j.k n
Vi oA (5.4S.,), .. (3.67)

Then, we can form the oil and water residuals, respectively, to be used in Newton’s

method by the rearrangements of Eqs. 3.62 and 3.63 as follows:
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n+l _ g+l n+l n+l n+l n+l n+1
f =T 1 P, -T 1 B,j—l,k -T lB,j,k—l

0,0,k -l jk

O,I‘J*E,J,k Oﬂal}j‘*g,k O,Z,i:j,kfi
Tn+1 + Tn+1 + Tn+1
o,r,i—%,j,k a,r,i+%,j,k a,ﬁ,i,j—%,k | | |
_ Pn+ + Tn+ Pn+ )
1 1 1 i,j.k L il ok 3.68
+T";H 1k+T"+Hk 1+Tn+“k ok (3-68)
WO, ]+, sZol, ] k= 22l ] K+
0,0,i,j 2 0,2,0,j 2 0,2,1,j 2
n+l n+1 n+1 n+1 n+l n _
AT BT B VotV =0
0,0,i,j+—k 0,2,1, ] k+—
2 2
fn+1 _ T;Hl Pn+l _ T;Hl Pn+l _ Tn+1 Pn+l
wii,j.k 1 il )Lk c 1 i,j—Lk R Gl A 25
wri=—,j.k w,0,i, j—.k w,z,i, j k=
2 2 2
Tn+1 + Tn+l + Tn+l
Wi gk ik Wk 1 1 |
_ Pn+ +Tn+ Pn+
1 1 1 i,j.k o Tk 3.69
+T" 4T 4T Witk (3.69)

w,0,i, j+—.k w,z,i,J k—— w,z,i, J k+—
J 5 J 5 J 5

n+1 n+l n+1 n+l n _
Pi,j+1,k +TWZ i k+lPi,j,k+1 - Vw,i,j,k + Vw,i,j,k =0
B

s

NS

for i =1,2,....N,, j = 1,2,...,Ng, and k = 1,2,...,N., where N,, Ny, and N, denote the
number of gridblocks in the », 0, and z directions, respectively. Note that we can
express the residual equations by using a block index (say /) instead of coordinate
indices (7,j,k). For example, if we order the difference equation first in the r-direction
(1), then in the 0 direction (j), and then in the z-direction (k), then we can define a

block index / by the formula:
l=i+(j—1)XNr+(k—l)XNrXN€ (370)

For i =1,2,....N,, j=1,2,...,Ng, and k = 1,2,...,N,. Thus, we can express the residual
(difference) equations given for oil and water (f,;; and f,,;;+) and the unknowns P;«
and S,,;;« in terms of the grid block index / instead of the coordinate index (i,j,k).
Note that / goes from 1 to Ng, where Ny, (=N,xNgxN;) is the total number of grid
blocks. In our ordering scheme, / = 1 represents the grid block having coordinate
indices (i=1, j=1, and £=1) (i.e., the bottommost grid block adjacent to the wellbore).
Our ordering scheme is from the bottom to top in the z-direction, as will be

illustrated later.

Pressure and water saturation are solved for each grid block from Eq. 3.68 and Eq.
3.69. Note that we solve water saturation and use Eq. 2.11 to find oil saturation. Of

course, this is arbitrary and we could have expressed the right-hand side of Egs. 3.62
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and 3.63 in terms of oil saturation and solve the residual equations for oil saturation.

Then use Eq. 2.11 to solve for the water saturation.

Using the residuals given by Eqgs. 3.68 and 3.69, we can construct the Jacobian

matrix to be used in Newton’s method as by ordering as unknowns as pressure and

water saturation using the grid block index. It should be noted that our first equation

when forming the Jacobian matrix will be the well constraint equation and the

reservoir residual equations for oil and water will respectively follow the well

constranint residual equation

1 1
. The unknowns are ordered as P, , P""', and S)"'.

i af well af well 6f well af well af well
oP™  oP"™' oS v’fll oP*'  aS T;
Ui Fou Y Y Y
opr, op™ oS optt  asyy
aj‘w,l aj‘w,l af;v,l aj‘w,l af;v,l
oP™  oP"' oS v’fll oP*'  aS T;
Yo Yor  Uor on Yod
opr, op™ oS opt  asyy
J = afw,z a.f‘W,Z af‘W,Z afw,z 8fW,2
aPM:Z]l aI)InJrl af)lnﬂ a})szrl aS]Z;l
P, Yon, Yon, Uon, Yon,
oP™  oP"' oS v’fll oP*'  aS T;
afw,Ngb afw,Ngb 6fW,Ngh afW,Ngh ﬁfw,Ngb
oP"  oP"' oS v’fll oP*'  aS T;

and
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af well 8f well ]
8P1§’: oS ‘Zf,\l,gb
Ui Yo
oPT oS
af w,l af;v,l
Py asiy
U Yoa
oPT oS
8f w,2 af w,2
o oS
Son,  Von,
8P1§’: oS zf]f,gb
afw,Ngb ﬁfw,Ngb
Pyt asiy

3.71)



n+l,k
[ pn+li+l Lk fwe” (P )
Pl‘l+ + _ Pl‘l+
1l 1l Lk
PM:leJrl k+1 _ PM:leJrl k f;,l (Pn+ )
1
n+l,k
S:jl e+l Svnvil,k fw,l (P )
Jk+1 n+l,k
Pn+l _P s f (Pn+1 k)
2 0,2
1k+1 n+lk
S}’l+ S »
nl w,2 w,2 ( n+l,k) _ f (Pn+l,k)
6 = f P = w,2 (3.72)
n+Lk+l _ pn+lk .
P Nob PNgb n+lk
Sn+1 Jk+1 Sn+1,k f‘O,Ngb (P )
w,N, b w,N, ‘
- n+lk
_fw Neb (P )_
where,
P"l+1,k _ Pn+l.k Pn+l.k Pn+l.k Pn+l.k r
=\ Livenr 1 2 <o Iy, (3.73)

Recall that we also need to integrate well equation given in Eq. 3.42 in the matrix as
discussed later. So, the well residual equation to be used in the Newton method is

obtained from the rearrangement of Eq. 39 or Eq. 40 depending on production or

injection.
tp n, 0=0,
n+l n+1 7+1 n+l
well Z Z Z( o,r,1/2 ]k wr1/2 ] k)(R,j,k _R),_/,k)_qsmface
I=1 k=n,, 66, (3.74)
lop ntl 0= 9
n+1 n+1 n+1 n+l
Soven z Tw P12, 7k (Pl,_/,k - P(),_/,k ) -q, (3.75)
1=l k=ny,; 6=6,

Other details for the treatment of transmissibility and volume terms in the reservoir
and well residual equations are given in Appendix A. We use a finite difference
perturbation method to calculate the derivatives in Jacobian matrix (see Appendix A

for details).
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3.2.2 Implicit pressure — explicit saturation (IMPES) method

Another method to solve non-linear difference equations for the two-phase oil and
water system is called the Implicit Pressure-Explicit Saturation (IMPES) method.
The method is widely used since it decreases the size of matrix. However, it may also
suffer from the stability problem because the saturation is solved explicitly in this

method.

Recall the general finite difference equation for oil and water given Eq. 3.41.

Tn+1 1 (Pn+1 _Pn+1 )_Tn+1 1 (Pn+1 _Pn+1 )

ik i+l, 7,k i,j.k Ly i,j.k i-1,j.k
2 2
n+l n+l1 n+l n+l n+l n+l
+T 1 B;’-Hk_B/k -T 1 Pi/k_Pij—lk
m,@.i,jr—k N i m,O,i,j——k > v
2 2
+Tn+1 Pn'+1 _Pn'+1 _Tn+1 Pnfl _Pn'+1 (3,76)
L. 1 i,j,k+1 i,j,k L. 1 i,j.k i,j,k—1
m,z,i, j.k+— m,z,i,j,k——
2 2
V
_ b.i,j.k n+l n
- C Atn+1 |:(bm¢Sm )i,j,k (bm¢Sm )i,j,k :|
1

Let us define difference operator as follows.

n

Aunﬂ _unH —u
ik = ik T Mk 3.77)

where u is any function of »,6,z, and ¢ so that

(Atufj,lk) z@(

Atnﬂ 81‘ ’,;’ej’zk’tnﬂ) (3,78)

Using the definition of difference operator, we can write derivative term in

accumulation term as

At (bm¢Sm ) = (bm¢Sm )I’I,J:/c - (bm¢Sm ):/',k (3,79)

We expand Eq. 3.79 as follows.

i n+1 n B
| B o
n+l " ik T ik
At (bm¢Sm ) = (bm¢)i’j’k AtSm + Sm,i,j,k bnﬂ bn (3.80)
+| B AP
L Pi,j,k - Pi,j,k )
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Substituting Eq. 3.80 in Eq. 3.76 gives

n+l n+l n+l n+l
T ny (Pm,j,k - Pi,j,k ) -T 1 ij.k
m,r,i+—, j.k m,ri=—,j.k
2 2
1 n+l n+l
-P')-T (P
i,j.k m,a,i,j—l?k i,j.k

n+l
(R,j+1,k

n+l n+l
(P N Pi—l,j,k )
_ Pn+1
i,j-1,k

P‘n'ﬂ - Ptn/Jrll(*l)

n+l
+7T
m,0,i,j+—.k
/ 2
n+l n+l n+l n+l
+T P —P" )-T
.. 1 i,j,k+1 i,j.k L. 1 i,j.k
m,z,i,j k+= m,z,i,jk—=
2 2
n+l n
n+l ¢i,j,k B ¢i,j,k
m,i,j.k n+l n
n+l n i,j.k i,j.k
AS, +S) .
t”m m,i,j,k b"“ Y
m,i,j.k m,i,j.k

— Vb,i,j,k (b ¢)
m ij.k
+¢i’,1j,k

n+l n
Pi,j,k - Pf,,',k

AP

AP

(3.81)

clAth

Applying the same derivation given from Eq. 3.59 to Eq. 3.64 on the surface term
given in the left hand side of Eq. 3.81, one can find following equations for oil and

water, respectively,

n+l n+l n+l

Pi,j—l,k -T . lpi,j,k—l
o,z,t,/,k—g

n+l
— T |

[ rn+l n+l
To ries ‘kp"‘l“j’k 0,0, j-
fL 21_/1 051, ] >
n+l n+1 n+l
T 1 +T . . + T |
o,r,zf?/,k o,r,z+3,1,k 0,'9,1,]*5,/( | . |
+ + +
- 1 1 1 I)an k + Tn I)lzl .k
n+ n+ n+ oS i ik 5J>
+T +T T 0T
0,'9,i,j+3,k o,z,i,A/,k*E a,z,i,j,k+5
n+l n+l n+l n+l
+T | Pl',j*l,k +T .. 17 4,7,k+1 3 82
0,0,i,j+—k 0,2,0,j,k+— ( . )
L 2 2 n
i B n+l n 717
n+l ¢i,j,k _¢i,j,k AP
V 0.i,j.k Pn+l _ pn t
_ b,i,j,k n+l n i,j.k i,jsk
- n+l (b0¢)1 Jok AISU + Sa,i,j,k 1
At , b =B
n 0,,/, 0,1/,
+¢i,jnk n+l _ pn AtP
i,jsk i,jsk
[+l n+l n+l n+l n+l n+l ]
T ) Pz‘—l,j,k -T Co 1 -1k -T R R N2
w,r,z—E,j,k w,n9,t,j—5,k W,Z,l,_],k—i
Tn+1 + Tn+1 + Trl+1 X
w,r,i—E,j,k w,r,i+5,j,k w,n9,i,j—5,k . . .
_ P}’I+ + T}’I+ Pn+ )
n+l n+l n+l ijsk AL R
+T +T T worit ook
w,g,i,j-f—i,k w,z,i,j,k—a w,z,i,j,k-ﬁ—i
n+l n+l n+l n+l
+T o1 })i,j+l,k +T . Il)i,j,kﬂ
w,0,i,j+—k w,z,i,j,k+—
L 2 2 i
i n+l n ]
b ¢i,j,k _¢i,j,k AP
V w,i,j.k Pn+l _ n t
_ b, ik ( ),,+1 n i,j.k i,j.k
B ClAtnﬂ bw¢ i,j.k A7SW + Sinvj*k bn+1 _p"
n m,i,j.k m,i,j.k
+ ij.k n+l n ATP
P -P
i,j.k i,j.k
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Now, we can combine oil and water equation in single pressure equation which we

will solve implicitly. To do so, we multiply oil equation (Eq. 3.82) by 1/ bjf,lj’k and

B

. l . .
water equation (Eq. 3.83) by 1/5b; ., and then add the resulting two equations to
obtain:

1 n+l + 1 Tn+1 n+l _ 1 n+l 1 n+l n+l
n+l o ifi ik bn+l wr ifi ik i-1,j.,k bn+l 0.0 j*ik bn+1 Wi /.71 P i,j-1,k
ik O Wi j A0 o jk OOy Wi ok Oh =2

_ 1 n+l 1 n+l Pn+l
n+l | n+l . 1 i,j,k-1
o 0,z,i,j,k—— . w,z,i, jk——
0,i,),k 2 wii,j .k 2
1 1 1
Tn+ . + Tn+ . + Tn+ X
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(3.84)
Note that,
_ n+l  _ Qn n+l _Qn

(AtSo +AtSw) _( 0,i,j,k So,[,j,k)+(Sw,[,j,k Sw,[,j,k)

_ n+l1 n+l1 n n _ _ (3.85)

= (So,i,j,k + Sk ) - (So,i,j,k + S8,k ) =1-1=0
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For convenience, we define rock, oil and water isothermal compressibility as:

n+l _ 1 ¢l:1;,lk - ¢:j,k
o (3.86)

rijk T
¢i,j,k pi,j,k_pi,j,k

n+l n
ntl 1 bo,i,j,k _bo,i,j,k
0.i,j.k T 1 n+l ntl ¢ (3.87)
ok \ Pijk = Pijk
n+l _n
cn+1 _ 1 w,i,j.k wii,j .k
wii,j.k T g n+l ntl o (3.88)
wiik \ Pijk ™ Pijk
Defining for simplicity,
ntl _ 1 n+l
P S | L 3.89
0,7 ,ziz,‘/,k ik 0,7 ,ziz,_/,k ( )
o+l _ 1 n+l
I L1 3.90
W,r,liz,j,k bw,i,j,k W,r,liz,j,k ( )
it _ l n+l
Ll T T - 3.91
o,H,z,‘/iz,k bo,i,j,k o,H,z,_/irz,k ( )
ol _ 1 n+l
.. i T n+l . i 3.92
w,@,t,]iz,k bw,i,j,k W,H,t,jiz,k ( )
~n+l . 1 il
.. i T yntl . l 3.93
U,r,l,j,kiz bo,i,j,k o,r,l,],kiz ( )
i+l _ l n+l
wzigkes B Tz ke (3.94)
2 w,i,j .k ’ 2

Using the definitions given from Eq. 3.85 to Eq. 3.94, we can rewrite Eq. 3.84 as

follows.
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In IMPES method, we linearize the above pressure equation by backdating nonlinear

coefficient to the old time step level. Also, assuming slightly compressible fluid, we

can write Eq. 3.95 as follows.
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Note that
AP=P, P, (3.97)
For simplicity, we define

n
on Vb,i,j,k¢i,j,k

n n n n n
ik T A [cr,i,j,k +Coi juSoiju T Cw,i,j,kSw,i,j,k] (3.98)
1

Finally, substituting Eq. 3.97 and Eq. 3.98 in Eq. 3.96,
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n i—v” +i—v” Pn+l _V” P’
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52505 ] 5 *2 W,Z,1, ], +2

(3.99)

Eq. 3.99 is called as the pressure equation for IMPES method. Once we solve Eq.
3.99 for pressure, we can use either water or oil material balance equation to solve
the water (or oil) saturation. We consider the material balance equation for water and
solve for the water saturation. To solve water saturation, let us rewrite water equation
given in Eq. 3.83 with the following modification to be consistent with the

assumptions used, i.e., transmissibility will be evaluated at the old time step.
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(3.101)

(3.102)

Once we solve saturation equation given in Eq. 3.101, we can compute the water

saturation as follows.

Sn+1_k — AtSw +Sn

wii,j,
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3.2.3 Example matrix structures

Here, we will present a matrix structure of one simple case for the Newton and
IMPES methods. Firstly, gridding used in the », 8, and z direction is described.
Secondly, we consider a simple example application with with considered grid
system to understand the structures of the matrices arising from the formulations of

the Newton and IMPES methods.

As it is widely used in reservoir simulation, non-uniform block centered grids are
used in rdirection. MacDonald-Coats (1970) method used is to create grids in r

direction. Simple example of gridding structure in » direction is given in Figure 3.2.

We also used block centered grids in € and z directions. Schematical presentation of

r—z and r—@ directions are given in Figure 3.3. and Figure 3.4., respectively.

r r,

Figure 3.2 : Grid structure for r direction using MacDonalds - Coats method (taken

from Gok, 2004).
'z
f1 T. ry r. 5 gy —rh
L L ] L - Az

Tom Tem Bz

T e T

Figure 3.3 : Schematic presentation of grids in r - z direction.
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¥

- -

Figure 3.4 : Schematic presentation of grids in » - @direction (taken from Gok,

2004).

As we present our gridding system briefly, we can now consider the structure of

matrix for Newton and IMPES method for simple case.

Assume that we have cylindrical reservoir and well is located at the center. If we use

N. =4, N,=3,and N_ =2, we will have reservoir structure as given in Figure 3.5.

N_ : number of grids in » direction

4

N, : number of grids in @ direction

N_ : number of grids z direction

z
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8,,70, 0;,=2n

Figure 3.5 : Simple reservoir structure in 7 — @ — z direction.

Let us assume, we have a fully penetrating vertical well meaning all the grids around
the well are open to flow. Under the assumptions, matrix structure for Newton and

IMPES method are given in Figure 3.6 and Figure 3.7, respectively.
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Figure 3.6
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Figure 3.7 : Matrix structure for IMPES method.

It is worth noting that the matrices (Figs. 3.6 and 3.7) given for the Newton method
and IMPES methods will be nonsymmetric matrices and require the use of

nonsymmetric matrix solvers as discussed next.

3.3 Matrix Problem Solver

As it is clear from Figure 3.6 and Figure 3.7, matrix size is bigger in the Fully
Implicit Pressure and Saturation (FIMPS) method using the Newton's method since
we solve pressures and saturations implicitly. However, as we solve only pressures in
IMPES method, we have smaller size matrix. Specifically, in the FIMPS method, the
total number of unknowns to be solved by the matrix problem is 2xNg, + 1, while in
the IMPES method, the total number of unknowns to be solved by the matrix
problem is Ng + 1. Recall that N, is the total number of grid blocks, i.e., Ny =
N, xNgxN3.

There exists different methods to solve matrix problem and most of the methods
store all the elements of the matrix. This might be efficient when the matrix size is
small. The amount of grid in typical reservoir simulation does not allow us to work

with smaller size matrices. Therefore, we might have storage problem or long
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solving time. To deal with these problems, we use special algorithms which only

store non-zero elements of the matrix.

In this study, we used matrix solver package by Yale University (Eisenstat, 1979) to
avoid storage and inefficient solving time problem. Moreover, this solver uses the

compressed row storage scheme to store the matrix.
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4. VERIFICATION OF THE RESULTS

After deriving the difference equation, we developed a simulator to solve the oil and
water flow problem in 3D »—6—z coordinate system using both FIMPS and IMPES
method. Microsoft Visual C# is used for the development of simulator. It is
important to note that we use FIMPS and Newton methods interchangeably. Results
are compared with commercial IMEX (2010) software for the validation of the

simulator developed in this study.

4.1 Case 1-Injection

In case 1, we will simply compare the results for Newton and IMPES method with
IMEX. Therefore, we will only consider injection period of 16 hours with an

injection rate of ¢, = -3000S7B/ D flow rate. For this case, we consider that flow

occurs in only r direction and we have a fully penetrating vertical well. So, we
simulate pressure and saturation behavior for 1-D radial flow case. This case has
been previously considered by Chen (2007). Unless otherwise stated, we use N, =
200 grid block in the r-direction, generated by using the McDonalds-Coats method.
Moreover, in this study, we used 200 grids in r-direction for all the cases for CMG.
Time steps are generated based on a scheme using logarithmically distributed time
points. Relative permeability data for oil and water were generated by using a power-
law model (see Appendix A, Egs. A.18 — A.20). Other input data are given in Table
4.1.

A comparison of the bottom-hole pressure vs. time data obtained from IMEX-CMG,
Newton and IMPES methods is presented in Figure 4.1. As can be seen from Fig.
4.1, the bottom-hole pressures from our simulator agrees very well with those from
the IMEX for the entire duration of the injection. It is interesting to note that both the
bottom-hole pressures obtained from the Newton and IMPES methods are also in

good agreement.
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Next, we investigate the accuracy of the saturation profiles. For instance, the water
saturation vs. radial distance data computed from the IMPES, FIMPS, and IMEX
methods at the end of injection period is shown in Figure 4.2. As can be seen, the
agreement between the saturations computed from our simulator using the Newton
method and IMEX is perfect. However, the saturations computed by our simulator
using the IMPES method show some differences, particularly near the front. This
indicates that IMPES method cannot produce saturation profiles as accurate as the
FIMPS (or Newton) method. This is in fact not surprising because the saturation is
solved explicitly and hence the accuracy of saturation in the IMPES method is more

susceptible to the grid size and time steps than that in the FIMPS.

To further investigate the accuracy and stability issues with the IMPES method, we
consider two different number of grid blocks; N, = 90, N, = 200, and N, = 400. In
other words, we investigate the effect of number of grid blocks (or equivalently the
grid block size) on the pressure and saturation solutions to be obtained from the
IMPES method. Comparisons of the bottom-hole pressures and saturations are shown
in Figure 4.3 and Figure 4.4, respectively. As it is seen from these figures, the
pressure and saturations computed from the IMPES method is very susceptible to the
grid block size. It should be noted that increasing the number of grid blocks (or
decreasing the grid block sizes) decreases the accuracy of the pressure and
saturations computed from the IMPES method and even can cause stability problems
in the saturation values (e.g., see saturation profile for the case N, = 400). The results

shown in Fig. 4.3 and 4.4 for the IMEX case is generated by N, = 200.

As Coats and McDonalds method is used for grid construction in r direction, when
we increase the grid number, grid size around the well decreases. In IMPES method,
we obtain good match only when the grid size are sufficiently big to not cause

stability issues.

Eventhough, we do not show it in this study, time step has the same effect on IMPES
method. In order the work properly with IMPES method, we need to use small time

steps.
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Table 4.1 : Data for Case 1 and Case 2.

Property Value
h 60 ft.
r, 0.35 ft.
r, 6800 ft.
k 300 md.
S, 0.1
S, 0.25
P 2500 psi
¢ 0.22
B, 1.0 RB/STB
B, 1.0 RB/STB
c, 8x107° psi™
c, 3.02x10° psi™'
C, 5.0x107 psi”’
kro@S,-w 1
krvapios,) 0.5
m 2
n 2
i, 3 cp.
M, 0.5 cp.

In reservoir simulation, we want to use small grids around the wellbore and small
time steps at the begining of the operation for better accuaracy in the solutions.
Usually, time steps increases with time to have a faster solution. Therefore, although
IMPES method works well when the conditions are met, we decided to continue with
Newton’s method to not suffer because of stability problem. To further support this,
we present the pressure and saturation solutions obtained from the our simulator
based on the Newton method in Figures 4.5 and 4.6 for three different values of N,
=90, 200, and 400. As can be seen, unlike the accuarcy and stability of the solutions
from the IMPES method, the accuracy and the stability of the solutions from the
Newton method are not strongly dependent on the number of grid blocks in the r-

direction for this example case.
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4.2 Case 2 - Injection-Fall off-Production

As we decided to work with Newton's method, we consider a more complicated case

to validate our results with the results from the IMEX software.

Here, we will use the same input data given in Table 4.1 for Case 1. However, we
will change the flow rate history. Firstly, we will inject water with the flow rate of ¢,,

=-3000 STB/ D for 16 hours. Secondly, we will have fall off period for 16 hours

(ie, g» = 0 STB/D). Finally, we will have a total production of gGumuce =
3000 STB/D for 24 hours. We use N, = 200 grid block in the r-direction, generated
by using the McDonalds-Coats method.

The results for the bottom-hole pressure vs. time are compared in Figure 4.7 As it is
clear that the bottom-hole pressure data generated from the simulator developed in
this study match quite well with the bottom-hole pressure data from the commercial
software IMEX-CMG. In the first 16 hours, bottom-hole pressure increases as it is
expected. During fall-off period between 16 hr. and 32 hr., we see a decrease in
bottom-hole pressure since the pressure stabilizes. Finally, after 32 hr., we see a
decrease in pressure because of production. Moreover, we see two sharp decrease in
pressure during production period. The reason for this is that we first produce only
the water in the near wellbore region formed during the injection period, and then we
start producing both water and oil from the reservoir. Although it is difficult to see
from Figure 4.7, after 45. hr., there is a small increase in pressure even though we

still produce from the reservoir.

As it is expected, the saturation profiles are very similar at the end of injection and at
end of falloff periods. Saturation profile given in Figure 4.2 also represents the

saturation profile at the end of injection for Case 2.

The saturation profiles obtained from our simulator and the IMEX for the end of fall-

off and production periods are compared in Figure 4.8 and Figure 4.9, respectively.

The results presented in Figures 4.7-4.9 for Case 2 were generated by considering
flow only in the r-direction, i.e., N, =200, N, = N, = 1. To validate that the simulator
works satisfactorily when we allow flow in the theta and z directions, we run the
simulator for Case 2 with N, =200, Ny= 6, and N, = 10 The bottom-hole pressures
computed with N, =200, Ny= N, =1 and with N, =200, Ny= 6, N, = 10 together with
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those from IMEX are compared in Figure 4.10. As expected, the pressures are the
same as the pressures when we consider only flow in the » direction for this fully
penetrating vertical case because we do not consider gravity effect and the well is
fully penetrated. Although not shown here, we also compared the saturation profiles
generated with N, = 200, Ny = N. = 1 and with N, =200, Ny = 6, N, = 10 and the
agreement between them were excellent. So, these comparisons validate that the
simulator is working properly for three-dimensional flow case since we have
excellent matches for pressure and saturation generated for the 1-D and the

equivalent 3-D flow cases.
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Figure 4.9 : Saturation profile in r direction for Case 2 (end of production).
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Figure 4.10 : Pressure vs. time plot for Case 2.

4.3 Case 3-Injection

In the first two cases, we compared our simulator results with IMEX-CMG software.
Now, we compare our results with some results presented in the literature. Here, for
comparison, we consider the results presented by Levitan (2003) for an injection case
(see Fig. 5 of Levitan, 2003). Table 4.2 contains the input data for Levitan’s case (or

referred to as Case 3 here).

Since he did not present any value for formation volume factor of oil and water, we

used 1 RB/STB for both oil and water. Moreover, we also need the external radius of

the reservoir. Since his results do not show any boundary effect, we used sufficiently

large external radius (7, = 68001t.) to avoid boundary effects on the solutions. For

the comparison, we inject water with the flow rate of ¢,, = - 500 RB/STB for 10 hours.
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We use N, = 400 grid block in the r-direction, generated by using the McDonalds-
Coats method.

Figure 4.11 presents a comparison of the Levitan's results for the rate normalized
pressure changes and its Bourdet derivative for a finite wellbore vertical well with
the corresponding results from our simulator. Here the Bourdet derivative refers to
the derivative of rate-normalized pressure change with respect to the natural
logarithm of time (Bourdet et al. 1989). As it is clear, an excellent agreement exists

between the solutions, validating our simulator.

Finally, we compare the results of Levitan (see Fig. 4 of Levitan) for the case where
the wellbore is treated as line-source (well radius is vanishingly small) with the
corresponding results from our simulator for the same case. This comparison is
presented in Figure 4.12. Note that we consider a sufficiently small wellbore radius
(0.0357 ft.) so that we can obtain a match with Levitan’s solutions. As it is seen from
Fig. 4.12, again, we have an excellent match with Levitan's analytical solution
assuming a line-source wellbore. It should be noted that although we simulate
pressure and saturation using a well bore radius of 0.0357 ft, we print the pressures at

the actual wellbore radius of 0.357 ft.

Table 4.2 : Data from Levitan’s paper

Property Value
h 100 ft.

r, 0.357 ft.

k 1000 md.
S, 0.2
S, 0.25

P 5000 psi

¢ 0.2

c, 9%x10™° psi’

c, 3x107 psi™

c, 5.0x107° psi”'
kro@S[W 0.8
krw@(l—Sw.) 0.2
m 2

n 2

M, 0.3 cp.
)78 0.25 cp.
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So, the pressure change and the pressure derivative shown in Figure 4.12 represents

the pressure and derivative data computed at », =0.357ft. In other words, while we

inject water at 0.0357 ft, we actually observe the pressure inside reservoir at the
radial distance equal to the actual wellbore radius of 0.357 ft. Hence, we observe a
rapid change in pressure-derivative for the "infinitesimally small" wellbore radius
case. This is in fact not surprising if we realize, the pressures are given at

r, =0.3571t, and until the water front reaches the radius of 0.357 ft, we first observe

a radial flow reflecting the properties of the oil zone. Hence, when the front reaches
the radius of 0.357 ft, we start to observe the radial flow reflecting the properties of
the water zone. This is reflected as a rapid change in derivative as the response goes

from the oil zone to water zone.
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Figure 4.11 : Rate normalized AP and AP' vs time (finite wellbore) for
Levitan’s (2003) case (Case 3).
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5. APPLICATIONS

In previous chapter, accuracy of the simulator is validated. In this chapter, effects of
some parameters such as end point mobility ratio and skin will be presented.

Moreover, simple analysis will be performed on diagnostic plot.

5.1 Effect of Initial Time Step of Simulation

During our work, we observed that starting simulation time (denoted by # here) has
important effect on the simulated pressure and saturation by the FIMPS method.
Here, we investigate the effect of ts on the solutions and for this investigation, we

consider Case 3 (Levitan's finite wellbore injection example) given in Chapter 4.

Figure 5.1 illustrates the effect of starting time on pressure-derivative curve for
Levitan's finite wellbore case. Recall that pressure difference and derivative of
pressure difference are calculated by the commercial well-test software ECRIN
(2009). Although we did not consider wellbore storage and skin effects, we observe a
hump on Bourdet derivative if the starting time of simulation is not sufficiently
small. We believe that this is because of non-linearity of the problem. Therefore, one
should be careful when selecting the starting time t;. Incorrect selection of t; may

give appearance of wellbore storage and skin effects on the pressure solutions.

5.2 Analysis of Derivatives for Injection-Falloff-Production Periods

One of the objectives of this study is to understand the pressure response of two-
phase flow condition. In previous chapter, we validated our simulator for various
cases. Here, we will interpret the injection-fall-off-production case given in Chapter

4 (see Figure 4.7 for Case 2).
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Figure 5.1 : Rate normalized AP and AP' vs time (infinite wellbore).

Figure 5.2 illustrates the pressure difference and its Bourdet derivative of injection

period. Two radial flows are observed since there exists two zero-slope lines on the

derivative data. The first radial flow occurs between 0.0003 hr. and 0.001 hr. When

we inject water into reservoir, pressure propagation is ahead of the water front at

early times. Therefore, pressure response comes from the oil zone. Based on the

work of Amina (2007), we can also calculate the early-time Bourdet derivative from

the formula given by

1

_70.6xq,,xB, 70.6x3000x1

X5
kh(kmj 300x60x(1j
A, 3

=35.3 psi

60

(5.1)
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Figure 5.2 : AP and AP' vs time for injection period.

We observe a second radial flow starting about from 1 hr. to the end of injection
period. As some amount of water is injected into the reservoir, pressure propagates in
the water zone. Therefore, second radial flow contains information about the water
zone. Based on the work of Amina (2007), the late time Bourdet-derivative reflecting
radial flow for injection period can be calculated by

70.6xq. xB
_ Dy X B _ 70.6x3000x1 —11.77 psi

0
kh K 300x 60 x [05) (5.2)
4, 0.5

k! /u, and k' /u,in Eq. 5.1 and Eq. 5.2 are called end point mobility for oil and

water, respectively. In oil water two phase problem, end point mobility have

significant effect on flow.

Figure 5.3 presents the pressure difference and its derivative of the falloff period.
We also observe two radial flow periods as in the case for the injection period. As
water is present around the wellbore, pressure propagates in the water zone first.

Therefore, the early-time radial flow for the falloff contains information about water
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zone, whereas the late-time (or second) radial flow reflects the properties of the oil
zone. Eq. 5.1 and Eq. 5.2 are still valid for the Bourdet derivative for these radial

flow periods.
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Figure 5.3 : AP and AP' vs time for falloff period.

Finally, we present the pressure difference and its Bourdet derivative for the
production period in Figure 5.4. Note that a comparison of Figures 5.3 and Figure
5.4 indicates that falloff and production periods give similar derivative responses .
However, we observe rapid change in the pressure and derivative data, and the
derivative data go to negative values at time of oil breakthrough during production
period. The reason for the rapid change in pressure and derivative data is due to the
rapid change in total mobility at the time of oil breakthrough. Recalling the definition

of total mobility gives

A=t (5.3)
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Figure 5.4 : AP and AP' ys time for production period.

Figure 5.5 represents the total mobility change with water saturation. Since water

mobility is higher than oil mobility, with the increasing water saturation total

mobility increases sharply. For the production period, we first produce the water and

when the oil breakthrough occurs, total mobility decreases significiantly.
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Figure 5.5 : Total mobility change («, =3 cp, u, =0.5)
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5.3 Effect of End Point Mobility Ratio

The mobility ratio is defined as the ratio of the mobility of the displacing phase
divided by the mobility of the displaced phase (for example see Willhite 1986).
There are various definitions of the mobility ratio. For the oil-water two-phase
problem, mobility ratio can be defined by using the end point of values of the oil and
water relative permeability. It is also referred to as the end-point mobility ratio,

which is defined by

M kfwuo

Tk, S

The water displacement is called as favorable if M~ is smaller than one and as

unfavorable is M~ is greater than one.

Here, we will consider an example of favorable and unfavorable of oil-water flow for
injection-falloff test. The input data used for simulation are given in Table 5.1, and

the same data was considered by Amina (2007).

Here, we will compare the diagnostic pressure change and its Bourdet derivative data

plots for the unfavorable case with x =5.1cpand for the favorable case with
1, =0.85 cp. We assume that water viscosity is the same for both cases and is equal
to u, =0.516 cp. Water is injected with a flow rate of ¢,, = -18869 STB/D for a 3-

day period. Then, we will have a falloff period of 3 days.

Table 5.1 : Injection-falloff data.

Property Value
h 78.74 ft.
r, 0.35 ft.
, 10000 ft.
k 2700 md.
S, 0.25
A 0.28
P 3461.4 psi
¢ 0.32
B, 1.318 RB/STB
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B, 1.008 RB/STB
c, 8x10° psi”’
c, 2.84x10° psi”’
c, 5.63x107° psi”’
keoas, 0.55
krw@(l—snr) 0.175
m 2
n 2

Figure 5.6 illustrates the diagnostic plots for the injection period. During early times
of injection period, the pressure propagates first in the oil zone. Since we only
change the oil viscosity, we observe two different radial flow periods at early times.

However, at late time, both derivative curves are identical since we used same water

viscosity for both cases.
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Figure 5.6 : Comparison of favorable and unfavorable case for injection period.
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Figure 5.7 illustrates the diagnostic plot of the falloff period. As the pressure
response comes from water zone at early times and the viscosities are equal for water
for both cases, we observe identical zero slope line at early times. Similar to the
injection period, since we used different oil viscosity, we observe two different zero
slope lines at late times. As the beginning time of falloff is the same for both cases,
pressure difference is identical at early time as the response comes from water zone.
However, as soon as pressure starts propagating in the oil zone, we start to observe
the difference on pressure difference. As in the injection test, pressure difference is

higher for unfavorable case.
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Figure 5.7 : Comparison of favorable and unfavorable case for fall-off period.

5.4 Effect of Skin on Injection-Falloff Tests

Here, we will consider the effect of skin on pressure difference and its Bourdet

derivative. The formulation of skin used in the simulator is given in Appendix A.
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Hawkins’ formula (Hawkins 1956) indicates that, if we know the skin factor and the
radius of the skin zone, we can calculate the skin zone permeability. For the
following example we will compare three different value of skin,§ =0, §=4.75,

and §=-1.We assumed that the skin zone extends from r, to », =1.15 ft. Using

Hawkins’ formula, permeability of the skin zone is calculated approximately
540 md. for positive skin case (S = 4.75) and 16942 md.for the negative skin case
(S = -1). Other input data are given in Table 5.1, and hence we consider the same
injection and falloff test sequence considered in the previous example for both

favorable and unfovaroble cases.

Figure 5.8 shows the effect of skin on diagnostic plots for injection period for a
favorable case. Firstly, Let us start to analyze the case where skin factor equals to
zero. At early time of injection, pressure propagates on oil zone. We calculate the

derivative of early time as follows.

70.6xqg..xB
,: Dinj v _ 70.6x18869x1.008 ~9.76 psi

0
k| K 2700x78.74x(0'55 ) (5.5)
L 0.85

As times goes on, water saturation increases in the reservoir. Therefore, pressure
propagates on water zone and we observe a second radial flow period from the

response of water zone. The numeric value of derivative can be calculated as follows.

_70.6xq,,xB,  70.6x18869x1.008

0 - e .
in| Ko 2700><78.74><(0'175) (5.6)
. 0516

'

Secondly, if we analyze the case with positive skin, we observe a sharp increase in
both pressure difference and its Bourdet derivative at early time. If the skin zone
radius is large enough, we expect that a radial flow occurs at early time, reflecting oil
zone properties, and the Bourdet derivative for this radial flow period is given by the

following formula (Amina 2007):
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1

70.6xq,. xB
_ Gy <D, 70.6x18869x1.008 — 48.80 psi

S
i h| Ko 540><78.74x(0'55) (5.7)
Mo 0.85

According to the Amina (2007), once the flood front moves outside the skin zone,
regardless of flow condition, pressure derivative can be negative only if the

following condition is satisfies.

k A,
i)

A : water mobility

W

As there is a rapid increase in total mobility, pressure decrases during injection
period. Therefore, discontinuity at the derivative occurs when the water front reaches

the skin zone diameter and has a negative value.

As sufficient amount of water is injected into a reservoir, pressure propagates on
water and we observe a zero-slope line which indicates radial flow. The numerical

value of derivative at late time is calculated from.

70.6xqg..xB
_ 9y XD, 70.6x18869x1.008 ~18.62 psi

Sl
| e 2700x78.74x(0'175j (5.9)
1, 0.516

Finally, we discuss the results for the negative skin case. We expect that first radial
flow will occur in the skin zone. However, as the skin zone permeaiblity is
sufficiently high we do not observe the first radial flow which should be the response
from oil present in the skin zone. Actually, if we could have data at earlier time,
derivative would be constant. The derivative is calculated from

70.6xq. X B
AP' = Qiny X Doy _ 70.6x18869x1.008 155 psi

0
ih| Koo 16942x78.74x(0'55 ) (5.10)
4 0.85
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However, since the permeability is too high because of negative skin, pressure
propagation is fast. Second derivative that we observe on derivative is caused by oil
zone response, since after passing the skin zone pressure propagates on oil zone. The

value of derivative can be calculated from

70.6xq,. x B
_ G XD, 70.6x18869x1.008 ~9.76 psi

: =
kh L 2700><78.74x(0'55) (5.11)
U, 0.85

1

As the time goes on, water saturation increases and pressure propagates on water
zone. Therefore, we observe a second radial flow containing information about water

zone. The late-time derivative is calculated from

, 70.6xq,,xB,  70.6x18869x1.008 .
- d - ~18.
kh(k“”j 2700x78.74x(3';75) (5.12)

ll’lw

When we consider three cases, we observe that the case with no-skin effect reach the
late radial before the others. So, displacement efficiency is better. Moreover, we

observe that we need much more pressure drop in the case of positive skin case.

Figure 5.9 illustrates the effect of skin on unfavorable flow. Similarly, we can find

the value of derivative for early time radial flow for no-skin case as follows.

70.6xq, x B
. 4> B, _ 706x18869x1.008 _ o oo

- =
kh Ky 2700x78.74x(0'55) (5.13)
U, 5.1
and late time derivative,
70.6xq,. xB
" Qi X B, __70.6x18869x1.008 _18.62 psi
k; 0.175
kh| — 2700x 78.74 x (5.14)
u, 0.516
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Figure 5.8 : Effect of skin on injection period (favorable).
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Figure 5.9 : Effect of skin on injection period (unfavorable).
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For the positive skin case, we observe a discontinuity in derivative as in favorable
case. According to Amina (2007), discontinuity occurs for unfavorable flow and

derivative can be negative at early times if the following condition is present.

Ak
M ( —f}l (5.15)

He also metion that it is possible only when the well is damaged and the mobility
ratio is unfavorable. When the water zone goes out of skin zone and the water
saturation increases, we observe a zero slope which indicates the radial flow with

same value as calculated in Eq. 5.14.

Recall that we should also see a radial flow because of the skin zone if we could start

the simulation at earlier times. The value of derivative would be,

70.6xqg..xB
,: Gy XD, 70.6x18869x1.008 ~292.8 psi

X5 _
in| Koo 540><78.74><(0'55) (5.16)
4 5.1

Finally, for negative skin case, we expect that early time response comes from the oil
which is in skin zone. However, as in the favorable case, pressure propagates fast and
that is why we do not see it on the plot. derivative of first radial flow which should

be the response of oil in skin zone can be calculated as follow.

1

70.6xq. . x B
_ q,,%B, 70.6x18869><1-(;)2§ =0.108 psi

. =
kh Ky 16942><78.74><(j (5.17)
75 5.1

Socondly, we should observe a response of oil zone. Numeric value of derivative is

calculated as follows.

70.6xqg.. xB
_ G w 70.6x18869x1.008 _ 58.59 pi

0
kh ke 2700><78.74><(0'55j (5.18)
u, 5.1

'

We observe a small pick on derivative around 0.007 hr. We belive that water front
reaches the skin zone radius. As the permeability decreases after this radius for

negative skin case, we start observing decrease on derivative. Finally, when
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sufficient amount of water is injected to the reservoir, pressure propagates on water

zone and we observe a zero slope. The value of derivative is calculated from

_ 70.6xg,,xB,  70.6x18869x1.008

<5 _ _
kh("mj 2700><78.74><(0'175j

1

i, 0.516

(5.19)

Figure 5.10 and Figure 5.11 illustrates the effect of skin on falloff period. We can

use the same anaylsis technique to determine the value of derivative. However, since

the water is present in the reservoir, we would observe a early radial flow from the

response of water zone and late radial flow from the response of oil zone.

One can see easily that, during fall off period, it is impossible to observe difference

on derivative. The only difference occurs at really early times. However, as in the

injection case, pressure change in the reservoir is different and higher for positive

skin case.
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Figure 5.10 : Effect of skin on fall-off period (favorable)
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Figure 5.11 : Effect of skin on fall-off period (unfavorable).

Here, we applied the Hawkins formula to impliment the skin in our solution. In the
formula, we use skin radius and actually for each well it may differ. Therefore, we
present the effect of skin zone radius on diagnostic plot in Figure 5.12. We used

same data that used previously and constant skin of 4.5 for unfavorable flow case.

As it is clear from Figure 5.12, skin radius does not significantly affect the pressure
difference. However, it shifts the derivative curve. As much as skin radius bigger,
pressure propagation is longer in skin zone. Therefore, derivative curve shifts
righthand side. Moreover, if the skin radius is small, late time radial flow occurs at

earlier time.
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Figure 5.12 : Effect of skin radius (unfavorable, s = 4.75).
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6. CONCLUSIONS AND RECOMMENDATIONS

On the basis of this study, following conclusions are warranted:

Although it is widely used, IMPES method may suffer because of stability
problems since saturation equation is solved explicitly if the number of grid
blocks is not appropriately chosen. The results indicate that the IMPES
requires sufficiently large sized grid blocks should be used in simulation to

improve the accuracy and avoid the stability problems of the solutions.

It is found that the FIMPS method is not susceptible as the IMPES method to
the number of grid blocks, and provides very accurate solutions without any
stability problem. However, the cost of the computations is larger for the
FIMPS as the matrix size to be solved in the FIMPS is about twice the size of
the matrix problem to be solved in the IMPES method.

It is found that initial time step of simulation has a great affect on the

Bourdet-derivative of pressure difference.

Unlike single phase flow, two radial flow is observed in two phase flow of oil
and water. In the injection period, first radial flow occur because of the
response of oil zone and second radial flow because of water zone that is
injected. However, during fall of period, first radial flow is the response of

water zone where second radial is the response of oil zone.

It is observed that the end point mobilities of oil and water have a great affect

on injection pressure response.

In injection tests, the derivative of pressure difference can be negative not
only because of positive damage around the wellbore but also rapid change in

total mobility.
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e [t is observed that better analysis can be applied on injection test when skin is
present because effect of skin on falloff tests occurs at sufficiently early

times.

The following recommendations are given:

e One should be careful to stability problem of IMPES method especially when
using MacDonalds and Coats method for gridding.

e Because of the non-linearity of the problem, starting time of simulation must

be sufficiently small in order to avoid misinterpretation of diagnostic plot.

¢ In this work, only forward problem solution is considered. It is recommended
that inverse problem should be studied to infer absolute and relative
permeability data as well as skin factor from observed pressure and saturation

data in a future work.
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APPENDIX A.1

Calculation of parameters at grid boundaries

Let us recall the general finite difference equation given in Eq. 3.41 for oil and water

flow.

Tn+1 1 (Pn+l _Pn+1 )_Tn+1 1 (Pn+1 _Pn+1 )

i j i+, 7,k i,j,k itk i,j,k i-1,7,k
2 2
+Tn+l (Pn+l _Pn+l )_Tn+l (Pn+l _Pn+l )
m,6’,i,j+i,k i,j+Lk i,j,k In,ﬁ,i,j—l,k i,j.k i,j-1k
2 2
n+l n+l n+l n+l n+1 n+1
+Tm ) (Pz',«/,kﬂ _Pz',j,k)_T ] (Pz',j,k _Pz',j,k—l)
,Z,0, ] k+ m,z,i,j,k
2 2
Vv ..
_ Ui,k ( )n+l _( )n
avve [(5,95,),, ~(5.95,),,
1

(A1)

As stated in Chapter 3, we solve Eq. A.1 with FIMPS (or Newton) and IMPES

methods. To do that, we need to discretize the partial differential equations as given

in Eq. A.1 for a grid system. From Eq. A.1, it is clear that we first need calculate

transmissibility in Eq. A.1 to solve the general finite difference equations.

Definitions of transmissibility are as follows.

n+l
Tn+1 =cr AH.fAZk (bmkrkrm j
1 1 )

oAt J K i+ -
R i (=, Hi

1
i+—,j,k
) J

=qr
m,r if1 i,k ! i*l
Ty 2 (7; U M,

n+l
Tn+1 AH.fAZk (bmkrkrm )

1
i—,j.k
D J

1

r n+l

i+ Az b k,k

Tn+l 1 :Cl ln 2 k m_- 0" rm
0., j+- .k r (9. 0. ) H,

,‘,l J+1 o J
2

1
i,j+—k
I
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(A3)
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r 1 n+l
- i+ Az b kyk,,
" | =¢In| 2 : ( . j (A.5)

1
m,0,i,j—.k
'

n+l
Tn+l | :ﬁ(rJl _r21 j Agj (bmkzkrm J
mzijhe 2\ iy i (Zk+1 _Zk) u, i’j’k% (A.6)
n+l
]"Wrl _ G [7,2 7"2 J A0] (bmkrkrmj
e
m,z,t,],k—E 2 H—E 1—5 (Zk _Zk—l) )um i,j,k_l (A.7)
2

Let us consider first the oil and water viscosity. In this study, we assumed that
constant viscosity. However, it may differ from grid to grid. We calculate the

viscosity at boundaries using simple arithmetic averaging formula given as follows.

Mg T
i%, ik B 2 (A-8)
Mg T
z,j+%,k - 2 (A9)
Mk T
Kol ™ > (A.10)
I

We use the same averaging technique for the calculation of formation volume
factors. However, as we assume that formation volume factor changes with pressure
we use simple formulation to calculate the inverse of volume factor as follows to

calculate them in grid centers.

bysu =b, (1 tCn (B,.f,k -5 )) (A.11)
b, .« :inverse of formation volume factor for phase m
b) : inverse of formation volume factor at base pressure for phase m
c, : isothermal compressibility of fluid phase m
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P

>« - pressure of the grid block with indices i,/,k
b : base pressure (14.7 psi)

Once we calculate the inverse of formation volume factor, we use arithmetic

averaging to calculate the inverse formation volume factors at grid boundaries.

b — b[,j,k +b[+l,j,k

Lk > (A.12)
b _ bi,j,k Lk

l]%,k 5 (A.13)
b _ M it 1 e

i’j’k% 5 (A.14)

Harmonic averaging technique applied to calculate the absolute permeaibility at grid
block boundaries. The definitions for harmonic average for absolute permeability are

as follows.

k| =
A+, .k
riy o (A.15)
i+1 2
kr,i,j,k hl +kr,i+1,j,k hl
r, 7,
. 1
i+—
2
k . ké?,i,j,kké?,i,jﬂ,k (‘9/+1 - 0,‘)
| =
0.1, j+—.k
2 (A.16)
ke,i,j+1,k (0. 1 _HjJ+k€,i,j,k (‘9141 _‘94 1 )
Jts Jts
2 2
k _ kz,i,j7kkz7i7j,k+l (Z/m _Zk)
L=
z,0,j+=.k
2 (A.17)
kz,i,j,k Zr TZ +kz,i,j,k+1 Z 7%
k+E k+E

Finally, the last parameter that we need to calculate in transmissibility terms is
relative permeability. There are different approaches to construct relative

permeability curves such as straight-line method and power law method. In this
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study, we use the power-law model to construct relative permeability curves. Model

parameters calculated as follows.

k,=ky(1-S,)" Kk, <1 and m=23,4 (A.18)
k,=k(S,,) ki<l and n=234 (A.19)
Where,
s - Siin = Sir
wp =T S, -5, (A.20)
k) : oil relative permeability at irreducible water saturation
k°  :water relative permeability at residual oil saturation

: water saturation of specified grid

wii, .k
S, :irreducible water saturation
S, :residual oil saturation
S,, :dimensionless water saturation

An example relative permeability curves are given in Figure A-1. For the

construction of the curves we used k., =055, k., =0.175, S, , =0.25,

wo

S,=028,n=m=2.

Once we calculate the relative permeability values, we used up winding technique to
calculate the values at grid boundaries. Basically, up winding technique is a method
to find the value at the grid boundary using flow direction. In this study, we used the
pressure to find the flow direction. We check the pressure between two grids and,

assumed flow will occur from higher pressured grid to lower one.
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Figure A.1 : Example relative permeability curves

Calculation of parameters at inner boundary

We call the first grid boundary located at well radius at » direction as inner

boundary. If we rewrite the transmissibility,

n+l
Tn+1 =c AejAZk mekrkrmj
1. 1"1
mogik S (=) e (A4.21)
We use the grid viscosity value for inner boundary since it is constant.
Hi = Hhos (A.22)

2

We do the same approach for absolute permeability.
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k, =k, fors=r0,orz
oh ik A (A.23)
However, inverse of formation volume factor is calculated using first grid and well
pressure using Eq. A.11. Then, we use arithmetic averaging to find the inverse of

formation volume factor at inner boundary as follows.

b _ b’"a@E),_/,k +bms@Pl.j,k

Lk > (A.24)

Calculation of relative permeability differ according to the operation. In injection
period, we assume that relative permeability of water equals to the value at residual
oil saturation. Similarly, we do the same approach for oil relative permeability.
Mathematically, for injection,

k =k__
ok MeS) (A.25)

k. =k, . =0
ok E(-5,) (A.26)

During falloff and production period, we use the value of the grid same as we did for

viscosity and absolute permeability.

Calculation of parameters at outer boundaries

Since we assumed that, no-flow boundaries are present at the edge of the reservoir,

outer boundaries conditions at » — z directions are as follows.

Tn+1 = 0
m 1oik (A.27)
Tn+1 | — O
ik (A.28)
Tn+1‘ ‘ — O
mrigN (A29)

2

For @ direction, we need to consider two options. If 8 = 360°,
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bm,i,l k = bm,i,l,k
bm,i,N0+l,k - m,i,Ng,k
2
krm’,",’k rm,i, 1k
klﬁm’[’Nﬁi’k = Km,iuNy ke

If 6=360°,

Mk T N

m,i,l,k m,i,Ny +l,k
2 2

ky, ok,

0,i.1,k"0.,i,N, .k

9,[,%,]( 9,[,N5+%,k
Koingi| O =61 |+koirs QNH  ~ Oy,
il
2

2

) bm,@ . +b

m,i,l,k
2

- m’i’Ng%’k - o)

(A.30)

(A31)

(A32)

(A.33)

(A34)

(A.35)

(A.36)

(A37)

(A.38)

(A.39)

(A.40)

Finally, up-winding (or upstream) method applied between first and last grid at &

direction to find the relative permeability at the boundary located at 8 = 0° =360° .
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Calculation of Skin Factor

Skin can be applied either rearranging transmissibility term or by well known

Hawkins formula given as follows. In this study, we applied the skin using Hawkins

formula.
|kl B

5= k- n - (A.41)
s : skin
k, : permeability of invaded zone
k : permeability of uninvaded zone
7, : radius of invaded zone
v : wellbore radius

Calculation of derivatives in Jacobian Matrix

In this study, derivatives in Jacobian matrix is calculated numerically. Our
expereiments show that the best results are obtained when using a central difference

method. Derivative of oil and water residual is calculated as follows.

%(P):ﬁ;(P+a))_ﬁ)(P_a))
oP 2% (A42)
%(S ):fo(Sm'i'a))_fo(Sm_a))
a5 o e (A43)
%(P):fw(P-’_a))_fw(P_a))
oP 2x (A44)
afw (S ):fw(Sm—i_a))_fw(Sm_a))
oS " 2X @ (A45)

m
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Moreover, we also applied the central difference method for well equation as

follows.

U e (P)= S (P+E)— f0/(P—&)
OP 2x¢g (A.46)

Log Time Step Selection

Beginning time for simulation : ¢,
End time for simulation : ¢,
npts =10

Step 1 — Compute the ratio
P (A47)
Step 2 — Compute the number of log cycles

neyc = int[log10 (R)]+1 (A.48)

Step 3 — Compute the total number of time points to be generated.

ncyc = ncyc X npts (A.49)

Step 4 — Compute the factor to be used for geometric progression.

1

FACT = RN® (A.50)
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Then set NTP = NTP+1

Step 5 — Generate the time points from ¢, to ¢,.

sett(1)=1,

doi=2 NTP

l‘(l')ZFACTxt(i—l) (A.51)
At(i)=t(i)—t(i-1)

End do
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