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NUMERICAL SIMULATION OF TWO-PHASE OIL AND WATER FLOW 

SUMMARY 

Two-phase oil and water flow is a subject of variety of applications in reservoir 
engineering processes. For instance, waterflooding is a widely used secondary 
recovery technique, based on the simultaneous flow of oil and water, to increase the 
oil production. In this technique, water is injected into an oil reservoir through 
injection wells to displace oil towards production wells. Another application of two-
phase oil and water flow is encountered in injection/falloff pressure transient tests. 
Injection and fall-off tests are run for well and reservoir characterization purposes. 
Especially in offshore fields, due to environmental concerns, water injection into an 
oil reservoir is a common practice to test the wells for appraisal and development of 
the oil reservoirs. Flow rate and pressure data under two-phase flow of oil and water 
are stored and analyzed to obtain reservoir properties affecting the future 
development of the field.  
 
Diffusivity equations describing the two-phase flow of oil and water in a porous and 
permeable medium are non-linear partial differential equations. Such equations are 
not easily solvable by analytical methods. However, there exist numerous articles 
that attempt to develop and present analytical solutions in the literature for the two-
phase flow of oil and water under some restricted assumptions (e.g., homogenous 
reservoir). Analytical solutions may be easy and fast to apply, but may not well 
represent the oil and water flow because of their restrictive assumptions. On the other 
hand, numerical methods are more appealing to solve the oil and water phase flow 
for more general cases. Due to its generality, in this study, we consider numerical 
based methods (i.e., finite difference methods) to solve the diffusivity equation for 
oil-water flow and investigate the pressure and water saturation behaviors of a 
vertical well and reservoir for the cases where analytical solutions are not available. 
 
A general discretized equation is derived for simulating two-phase water and oil flow 
in three-dimensional (3-D) r-θ-z cylindrical coordinate system using the finite 
difference method. Then, this general difference equation is solved by considering 
two different methods. The first method is based on a fully implicit solution of both 
pressure and saturation (FIMPS) using the Newton method, and the other method is 
based on a fully implicity solution of pressure and explicit solution of saturation, 
which is known as the IMPES method. Derivations for both methods are given in this 
study. The solutions generated from the simulators developed during the course of 
this work were compared and validated with the solutions generated from a 
commericial software CMG - IMEX. Moreover, we also validate the simulator for 
some benchamark cases taken from the papers presented in the literature.  
 
Finally, some well-test applications are run with the simulator and pressure 
differences and their derivatives (diagnostic plots) are analyzed. This process is 
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achieved with the commercial well-test software ECRIN. Behaviour and effects of 
mechanical skin on diagnostic plots for injection and fall-off tests are discussed. 
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ĐKĐ FAZLI PETROL VE SU AKIŞININ SAYISAL SĐMÜLASYONU 

ÖZET 

Đki fazlı petrol ve su akışı, pek çok rezervuar mühendisliği uygulamasının konusunu 
oluşturmaktadır. Örneğin, su ile petrolü öteleme, rezervuarlardan ek petrol üretimini 
arttırmak için en yaygın olarak kullanılan ikincil yöntemlerden biridir. En basit 
haliyle, su ile ötelemenin amacı enjeksiyon kuyuları aracılığıyla suyun rezervuara 
enjekte edilerek petrol üretim kuyularına ötelenmeye çalışılmasıdır. Bu nedenle su ile 
petrol öteleme sürecinin planlanabilmesi için iki fazlı petrol ve su akışının 
temellerinin bilinmesi gerekmektedir.  
 
Đki fazlı petrol ve su akışının uygulama bulduğu bir diğer alan ise enjeksiyon ve 
basınç-düşüm kuyu testleridir. Son yıllarda çevresel endişeler ve duyarlılık 
nedeniyle, özellikle açıkdenizde delinen kuyularda yapılan testler, rezervuara su 
basılarak yapılmaktadır. Bu tür testler, yüzeyde üretim ve toplama tankları 
gerektirmediğinden tercih edilmektedir. Bu testler, rezervuar öndeğerlendirmesi ve 
gelişimi hakkında önemli bilgiler sunar. Su ile öteleme projelerinde, enjeksiyon ve 
basınç düşüm testleri rezervuar karakterizasyonu için önemlidir. Debi ve basınç 
dataları kaydedilip analiz edilmekte ve sahanın gelişimini etkileyebilecek rezervuar 
parametreleri bulunmaya çalışılmaktadır. 
 
Yaygın kullanımı ve önemi nedeniyle bu çalışmanın amacı, iki fazlı petrol ve su 
akışının temellerinin anlaşılması ve basınç-saturasyon davranışlarının 
gözlemlenebilmesi için tek kuyulu bir sistem için silindirik koordinat sisteminde 
simülatör geliştirmektir.  
 
Gözenekli ve geçirgen bir ortamda iki fazlı petrol ve su akışını tanımlayan veya 
modelleyen difusivite denklemleri doğrusal olmayan kısmi diferansiyel 
denklemlerdir. Bu tür denklemler, bazı basitleştirici varsayımlar yapılamadıkça, 
analitik yöntemlerle çözümlenmesi zor olmaktadır. Literatürde su ve petrolün iki 
fazlı akışı için bazı sınırlayıcı varsayımlar altında (örneğin homojen rezervuar 
varsayımı gibi) geliştirilmiş bir çok analitik çözüm bulunmaktadır. Analitik çözümler 
uygulanması kolay ve hızlı olmakla beraber içerdiği kısıtlayıcı varsayımlar 
nedeniyle, çok amaçlı genel bir kullanıma uygun değildirler. Buna karşın, daha genel 
olduğu ve sınırlayıcı varsayımların kullanımını gerektirmediğinden, sayısal 
yöntemler su ve petrol akış problemlerini çözmek için daha çok tercih edilmektedir. 
Bu nedenle, bu çalışmada sayısal tabanlı sonlu fark yöntemleri kullanarak iki fazlı 
petrol ve su akışını tanımlayan difusivite denklemleri çözülmüş ve analitik 
çözümlerin yetersiz kaldığı bazı durumlar için basınç ve su duymuşluk dağılımlarının 
davranışı incelenmiştir.  
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Çalışmada ilk önce matematiksel model belirlenmiş ve çalışma süresince 
uygulanacak varsayımlar verilmiştir. Gözenekli ortamda iki fazlı petrol ve su akışını 
tanımlayan difusivite denklemi kütle korunum yasası ve gözenekli ortamda hızı 
tanımlayan Darcy denklemi kullanılarak türetilmiştir. Türetilen difusivite denklemi 
üç boyutlu r-Q-z silindirik koordinat sisteminde iki fazlı su-petrol akışı simülasyonu 
için sonlu farklar yöntemi kullanılarak çözülmüştür ve genel fark denklemleri 
türetilmiştir. Daha sonra fark denklemleri iki farklı yöntemle çözülmüştür ve bu 
yöntemlere göre türetimler bu çalışmada verilmiştir.  
 
Çalışmada uygulanan yöntemlerden birincisi hem basıncın hem de doymuşluğun 
Newton yöntemiyle kapalı olarak çözüldüğü, Tümüyle Kapalı Basınç ve Doymuşluk 
(TKBD) olarak da isimlendirilen yöntemdir. Yöntemde genel fark denklemleri tekrar 
düzenlenerek petrol, su ve kuyu kalıcı (residual) denklemleri bulunmuştur. Bulunan 
denklemler kullanılarak Jacobian matrisi oluşturulmuş ve matris içindeki türevler 
nümerik yöntemle hesaplanmıştır. Newton prosedürüne göre matris vektör problemi 
çözülerek kuyu dibi basıncı, gridlerdeki basınç ve su saturasyonu değerleri 
hesaplanmıştır.  
 
Đkinci olarak, basıncın kapalı, doymuşluğun açık olarak çözüldüğü, Kapalı Basınç-
Açık Doymuşluk (KBAD) olarak da isimlendirilen sayısal çözümleme yöntemi 
uygulanmıştır. Bu yöntemde ise petrol ve su genel fark denklemleri birleştirilerek 
basınç denklemi oluşturulmuştur. Kuyu denklemi ve basınç denklemi kullanılarak 
kuyu dibi basıncı ve gridlerdeki basınç değerleri kapalı olarak hesaplanmıştır. 
Bulunan basınç değerleri su denkleminde yerine konularak gridlerdeki su 
saturasyonu açık olarak hesaplanmıştır. 
 
Çalışmada silindirik koordinat sisteminde gridler  r yönünde MacDonalds and Coat 
yöntemi uygulanarak oluşturulmuştur. Yöntem sayesinde değişimin en fazla olduğu 
kuyu dibinde daha küçük gridler kullanılırken kuyudan uzaklaştıkça grid 
büyüklükleri artmaktadır. Q ve z yönünde ise eşit aralıklı gridler kullanılmıştır.  
 
Grid sınırlarındaki geçirgenlikler harmonik ortalama kullanılarak hesaplanmıştır. 
Göreli geçirgenlik grid merkezlerinde Power-Law model kullanılarak hesaplanmıştır. 
Grid sınırlarında ise akış yönüne (upstreaming) göre belirlenmiştir. Akış yüksek 
basınçlı ortamdan düşük basınçlı ortama doğru olacağından, iki grid sınırındaki 
göreli geçirgenlik değeri, bu iki gridin merkezlerindeki basınç değerlerinin 
karşılaştırılmasıyla bulunmuştur. Petrol ve su formasyon hacim faktörü ve 
gözenekliliğin basıncın bir fonksiyonu olduğu varsayılmış ve grid sınırlarındaki 
değerleri aritmetik ortalama kullanılarak hesaplanmıştır. Yukarıda bahsedilen  
parametrelerin grid ve rezervuar sınırlarında hesaplanmarı Appendix – A’ da detaylı 
olarak verilmiştir.  
 
Geliştirilen simülatörde logaritmik olarak artan zaman aralıkları kullanılmıştır. Bu 
şekilde değişimin fazla olduğu erken zamanlarda küçük zaman aralıkları 
kullanılmıştır. Artan zaman ile değişimin azalması daha büyük zaman aralıklarını 
kullanımına izin vermektedir. Bu nedenle logaritmik olarak artan zaman aralıkları 
kullanmak toplam çözüm süresini kısaltmasından dolayı avantaj sağlamaktadır.  
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Çözüm için uygulanan  iki farklı yöntem  için ortaya çıkacak matris yapıları basit bir 
rezervuar sisteminin gridlere ayrılmasıyla gösterilmiştir. Oluşan matris yapılarının 
seyrek matris (sparse matrix) olması nedeniyle depolama (storage) ve uzun çözüm 
süreleri problemlerinden kurtulmak amacıyla Yale Üniversite’sinde geliştirilen 
çözüm paketi kullanılmıştır. Bu çözüm paketi sadece matris içindeki sıfır olmayan 
elementleri depolamakta ve kendi içindeki özel algoritmayı kullanarak matrisin 
bütün elemanlarını depolayan çözüm yöntemlerine göre çok daha kısa sürede çözüm 
yapabilmektedir.  
 
Tümüyle Kapalı Basınç ve Doymuşluk ve Kapalı Basınç-Açık Doymuşluk 
yöntemlerini kullanan simülatörün doğruluğu ticari bir yazılım olan CMG - IMEX ile 
kontrol edilmiştir. Ayrıca, geliştirilen simülatörün çözümleri, literatürde sunulan 
makalelerden alınan baz durumlara ait çözümler ile de test edilmiştir. Üç farklı 
durum için yapılan bu testlerle, geliştirilen simülatörün doğruluğu hem basınç hemde 
saturasyon için çizilen grafiklerle gösterilmiştir. 
 
Kontrol aşamasında Kapalı Basınç-Açık Doymuşluk yöntemi kullanılırken uygun 
grid yapısı kullanılmadığında saturasyonun açık olarak çözülmesinden dolayı 
karşılaşılabilecek stabilite problemi bir örnekle gösterilmiştir.  
 
Simülatörün doğruluğu test edildikten sonra son olarak literatürde bulunan bazı 
örnek kuyu-testi verileri kullanılarak simülatör çalıştırılmış ve basınç farkı-basınç 
farkı türevi grafikleri simülatörden alınan basınç sonuçlarına göre çizilmiştir. Bu 
işlem ticari bir yazılım olam ECRĐN programıyla yapılmıştır. Farklı parametrelerin 
etkileri simülatör kullanılarak incelenmiştir. 
 
Çalışmada ilk olarak simülasyonun başlangıç zamanının basınç farkı türevi üzerine 
etkisi gösterilmiştir. Daha sonra enjeksiyon ve basınç düşüm periyodlarının basınç 
farkı-basınç farkı türevi davranışları incelenmiş ve literatürden yapılan araştırmaya 
göre radyal akış periyodlarının türev değerlerinin sayısal olarak nasıl bulunacağı 
gösterilmiştir. Sonrasında sınır noktalar göz önüne alınarak bulunan mobilite 
oranının basınç farkı-basınç farkı türevi davranışları üzerine etkileri hem enjeksiyon 
hemde basınç düşüm periyodları için ayrı ayrı incelenmiştir.  
 
Son olarak zar etkisi Hawkins formülasyonu kullanılarak simülatöre uygulanmış ve 
zar etkisinin basınç farkı-basınç farkı türevi grafigine etkileri enjeksiyon ve basınç 
düşüm periyodları için incelenmiş ve elde edilen sonuçlar tartışılmıştır. Ayrıca, 
Hawkins formülasyonundaki parametrelerden biri olan zar etkisi yarıçapının basınç 
farkı-basınç farkı türevi davranışını nasıl değiştirdiği farklı zar etkisi yapıçapı 
değerleri seçilerek enjeksiyon periyodu için gösterilmiştir. 
 
Çalışma sonuçların ve önerilerin verilmesiyle sonlandırılmıştır. 
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1. INTRODUCTION 

Two-phase oil and water flow finds variety of applications in reservoir engineering. 

For instance, waterflooding is a widely used secondary recovery technique, based on 

the simultaneous flow of oil and water, to increase the oil production. Once water is 

injected to reservoir, oil is swept and displaced towards the production wells. The 

design of this process in the field and the performance predicitons of additional oil 

production via this process require the fundamental understanding and the solution of 

two-phase oil and water flow in a porous and a permeable medium (Craig 1971, 

Willhite 1986).  

Another application of two-phase oil and water flow is for transient formation and 

well tests involving injection and falloff periods. Injection and fall-off tests are run 

for well and reservoir characterization purposes. Due to recent environmental 

concerns regarding the handling of fluids to be be produced at the surface in 

production tests, water injection into an oil reservoir, especially in offshore where 

there is abundance of water, is a common practice to test the wells for appraisal and 

development of the oil reservoirs. The pressure and rate data collected under two-

phase flow of oil and water are stored and analyzed to obtain reservoir properties 

affecting the future performance and development of the reservoir. Over the last 30 

years, there is an increased interest in developing analytical and numerical solutions 

for the two-phase oil and water flow problems in porous and permeable media. For 

example, Abbaszadeh and Kamal (1989) investigated the pressure transient testing of 

water injection wells by considering analytical approach solving the diffusivity 

equations for oil and water. Bratvold and Horne (1990) presented procedures to 

interpret injection and falloff test data following cold water injection into a hot-oil 

reservoir. Levitan and Michael (2003) developed a semi-analytical solution for the 

variable rate injection and falloff tests in homogeneous single-layer reservoirs. Peres 

et al. (2006) provided analytical solutions for analyzing the falloff tests following 

injection tests. Amina (2007) provided a comprehensive investigation of injection 

and falloff testing of vertical, limited-entry, and horizontal wells and developed 
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analytical solutions for the analysis of such well tests. Chen (2007) investigated the 

in-situ determination of oil-water relative permeability curves from injection and 

falloff tests.  

Unlike the diffusivity equation for describing the single-phase liquid oil or water 

flow, the diffusivity equations describing the two-phase flow of oil and water in a 

porous and permeable medium are non-linear partial differential equations. Such 

equations are not easily solvable by analytical methods. As stated and cited above, 

there exist several articles that attempt to develop and present analytical solutions in 

the literature for the two-phase flow of oil and water under some restricted 

assumptions (e.g., homogenous reservoir). Analytical solutions may be easy and fast 

to apply, but may not well represent the oil and water flow because of their 

restrictive assumptions. On the other hand, numerical methods are more appealing to 

solve the oil and water phase flow under more general cases. Hence, in this study, we 

consider numerical based methods (i.e., finite difference methods) to solve the 

diffusivity equation for oil-water flow and investigate the pressure and water 

saturation behaviors of a vertical well and reservoir for the cases where analytical 

solutions are not available. 

1.1 Purpose and the Scope of Thesis 

The main purpose of this study is to develop a general single-well simulator to 

simulate pressure and saturation behavior of water and oil two-phase three-

dimensional flow in a 3-D cylindrical reservoir. The simulator can treat the reservoir 

with homogeneous or heterogeneous porosity and isotropic or anisotropic 

permeability fields. Another objective is to study the behavior of injection and falloff 

tests by constructing diagnostic plots for the interpretation of injection and falloff 

periods using the pressure and pressure-derivative results of the developed simulator. 

In the second chapter, considering both oil and water, with the integration of Darcy's 

law, the diffusivity equations, which are non-linear partial differantial equations, for 

describing two phase flow of oil and water, will be derived. In Chapter III, we 

consider the solutions of these non-linear partial differential equations with the 

appropriate initial and boundary conditions by using two different numerical 

methods based on the finite difference technique; fully implicit pressure and 

saturation (FIMPS) and implicit pressure and explicit saturation methods (IMPES). 
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In Chapter IV, the solutions generated from the simulators developed during the 

course of this study were compared and validated with the solutions generated from a 

commericial software IMEX-CMG. Moreover, the solutions from our simulators are 

also validated with the solutions for some benchamark cases taken from the papers 

presented in the literature. In Chapter V, we present some applications with the 

simulator. Here, we use the simulator as a forward (direct) solution tool to simulate 

various production, injection and falloff test cases to understand the pressure and 

saturation behavior of the reservoir. Although not considered in the thesis, the 

simulator developed can also be used as a tool for history matching or inverse 

problem applications to infer the reservoir properties form observed pressure and/or 

saturation data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2.  MATHEMATICAL MODEL 

To solve the two-phase flow of oil and water in porous media we must first consider 

the mathematical model. In this chapter, diffusivity equation is derived and initial 

and boundary conditions are presented. 

2.1 Assumptions 

In this study, we assume immiscible flow of oil and water in a horizontal, isothermal 

reservoir. We will neglect the gravity and capillary effects. Reservoir is assumed to 

be in cylindrical shape with a vertical well located at the center. Oil and water 

viscosities are assumed to be constant with pressure. We also assume that the 

absolute permeability of the reservoir does not change with pressure. Of course, oil 

and water relative permeability change with water saturation. We assume that the 

power-law model for relative permeability of oil and water is applicable. Formation 

volume factors of oil and water as well as porosity are treated as a function of 

pressure. We treat oil and water as slightly compressible fluids.  

2.2 Derivation of Continuity Equation 

The continuity equation is a partial differential equation, which describes the flow in 

porous media. When considering a multiphase flow in a three–dimensional space, the 

continuity equation is derived by using the law of mass conversation. To derive the 

continuity equation, we must start from general mass (or material) balance equation 

given in the field units as follows: 

( ) ( )
1

1 m m

m

A V

S
dA dV

c t

φρ
ρ

∂
− =

∂∫∫ ∫∫∫mv •n  (2.1) 

1c   : constant and equals to 5.615  

m   : phase of fluid (oil or water) 



6 

ρ   : density of the fluid 

v   : velocity of the fluid 

( )ρv   : mass–flux vector 

φ   : porosity 

S   : saturation 

t : time  

The integral in the left-hand side of Eq. 2.1 is performed over a surface area A 

perpendicular to flow direction, whereas the integral in the right-hand side of Eq. 2.1 

is performed over the volume. The symbol “•” in the left-hand side of Eq. 2.1 is used 

to represent the vector scalar product operation between the mass-flux vector (ρvm) 

and the unit normal outward vector n to surface dA. We can relate the surface 

integral in Eq. 2.1 to a volume integral by using the divergence theorem (Kreyszig 

1979). Then, we can rewrite the general material balance equation as follows. 

( ) ( )
1

1 m m

m

V V

S
dV dV

c t

φρ
ρ

∂
− ∇• =

∂∫∫∫ ∫∫∫mv  (2.2) 

or 

( ) ( )
1

1 m m

m

S

c t

φρ
ρ

∂
− ∇• =

∂mv  (2.3) 

where ∇  is the gradient operator or vector, and the solid dot represents the scalar 

product or divergence of the mass-flux. The divergence of of the mass-flux in 

cylindrical coordinate system is given by (Kreyszig 1979):    

( ) ( ) ( ) ( ), , ,

1 1
m m m r m m m m zr v v v

r r r z
θρ ρ ρ ρ

θ
∂ ∂ ∂

∇• = + +
∂ ∂ ∂mv  (2.4) 

Where the subscripts r , θ , and z  will be used for the directions in this study. 

If we substitute Eq. 2.4 in Eq. 2.3, 
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( ) ( ) ( ) ( )
, , ,

1

1 1 1 m m

m m r m m m m z

S
r v v v

r r r z c t
θ

φρ
ρ ρ ρ

θ
∂∂ ∂ ∂ − + + = ∂ ∂ ∂ ∂ 

 (2.5) 

Eq. 2.5 is called the continuity equation for phase m in cylindrical coordinate system 

considering fluid flow in a three-dimensional space in the directions of r, θ and z.  

2.3 Integration of Darcy's Law 

Velocity term in Eq. 2.5 is defined by the well-known Darcy's Law. Velocities 

(assuming a horizontal reservoir) in r zθ− − coordinate system in field units are 

defined by. 

, 2
r rm m

m r

m m

k k P
v c

B rµ
∂

= −
∂

 (2.6) 

, 2
rm m

m

m m

k k P
v c

rB

θ
θ µ θ

∂
= −

∂
 (2.7) 

'

, 2
z rm m

m z m

m m

k k P z
v c

B z z
γ

µ
 ∂ ∂

= − − ∂ ∂ 
 (2.8) 

2c   : constant equal to 31.127 10−×  

P   : pressure 

B  : formation volume factor 

µ   : viscosity 

rk   : absolute permeability in the r  direction 

kθ   : absolute permeability in the θ  direction 

zk   : absolute permeability in the z  direction 

rmk   : relative permeability of phase m  

mγ   : gradient of phase m 
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It is important to note that as we neglect the effect of capillary pressure, i.e., we take 

Pc = Pnon-wetting-Pwetting = 0, water and oil phase pressures are the same and equal to P 

(Pw = Po = P) and hence Eqs. 2.6 and 2.8 can be expressed in term of the pressure P. 

Recall that, we assume gravity effect is negligible. Therefore, we rewrite velocity in 

the z direction as 

, 2
z rm

m z

m m

k k P
v c

B zµ
∂

= −
∂

 (2.9) 

If we substitute Eq. 2.6, Eq. 2.7, and Eq. 2.9 into Eq. 2.5, we obtain 

( )2

2

1

1 1

1

r rm rm
m m

m m m m m m

z rm
m

m m

k k k kP P
r

r r B r r B S
c

c tk k P

z B z

θρ ρ
µ θ µ θ φρ

ρ
µ

    ∂ ∂ ∂ ∂
+    ∂ ∂ ∂ ∂ ∂     =  ∂ ∂ ∂ +   ∂ ∂  

 (2.10) 

Eq. 2.10 represents the diffusivity equation for phase m (oil or water) in cylindrical 

coordinate system considering flow in three-directions; r, θ, and z. In this study, we 

will approximate Eq. 2.10 by using two different finite difference formulation as to 

be discussed later. 

A constraint that we need consider in solving Eq. 2.10 is that the sum of the oil and 

water phase saturations at any given time in the reservoir should add up to unity, i.e.,  

1o wS S+ =  (2.11) 

where 
oS  is the oil saturation, and 

wS  is the water saturation at a given time and 

point in the reservoir. 

2.4 Initial and Outer Reservoir Boundary Conditions 

Eq. 2.10 is a three-dimensional second order partial differential equation involving 

two dependent variables P and saturation Sm. We will solve Eq. 2.10 subject to 

appropriately defined initial and boundary conditions to find a unique solution. Since 

we would like to solve both pressure (P) and one of the phase saturations (Sm, m = w 

or o), we need two initial conditions: 
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( ), , , 0 iP r z t Pθ = =  (2.12) 

( ) ,, , , 0m m iS r z t Sθ = =  (2.13) 

iP  is the initial pressure assumed to be uniform, and ,m iS  is the initial saturation of 

phase m .  

Regarding outer reservoir boundary conditions, we consider all no-flow (a Neumann 

type) boundary conditions at all reservoir outer boundaries. Hence, a no-flow outer 

boundary condition in the r direction at r = re is considered and can be expressed as: 

, ,

0        0 2 ,0
er r z

P
r z h

r θ

θ π
=

∂  = ≤ ≤ ≤ ≤ ∂ 
 (2.14) 

Moreover, it is also assumed that no-flow top and bottom boundaries are present at z  

= 0 (bottom of the reservoir) and z = h (top of the reservoir). Therefore, we can write 

no-flow top and bottom outer boundary conditions at z as follows. 

, , 0

0        ,0 2w e

r z

P
r r r

z θ

θ π
=

∂  = ≤ ≤ ≤ ≤ ∂ 
 (2.15) 

, ,

0        ,0 2w e

r z h

P
r r r

z θ

θ π
=

∂  = ≤ ≤ ≤ ≤ ∂ 
 (2.16) 

In this study, we consider two different boundary conditions for the θ  direction. The 

first consideration is for the case where the reservoir extends from 0 degrees (=0 

radians) to 360 degrees (= 2π radians) in the θ direction; i.e., a full reservoir sector 

with 0360θ = . In this case we must consider the continuity of flux for phase m, 

pressure, and saturation at 00θ =  and 0360θ = . Therefore, the appropriate boundary 

conditions for this case are expressed as follows: 

, 0, , 2 ,

        ,0rm rm
w e

m mr z r z

k k k kp p
r r r z hθ θ

θ θ π
µ θ µ θ

= =

   ∂ ∂
= ≤ ≤ ≤ ≤   ∂ ∂   

 (2.17) 
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( ) ( ), 0, , 2 ,        ,0w ep r z p r z r r r z hθ θ π= = = ≤ ≤ ≤ ≤  (2.18) 

( ) ( ), 0, , 2 ,         , 0m m w eS r z S r z r r r z hθ θ π= = = ≤ ≤ ≤ ≤  (2.19) 

The second consideration is for the case where the reservoir extends from θ = θb to θ 

= θe, where θe, is less than 360 degrees and greater than θb. This consideration is 

useful for simulating pressure and saturation behavior of wedge-shaped reservoirs 

with no-flow boundary conditions in the θ direction. So, the appropriate no-flow 

boundary conditions for this case in the θ direction are expressed as:  

, ,

0        ,0
b

w e

r z

P
r r r z h

θ θθ =

∂  = ≤ ≤ ≤ ≤ ∂ 
 (2.20) 

, ,

0        ,0
e

w e

r z

P
r r r z h

θ θθ =

∂  = ≤ ≤ ≤ ≤ ∂ 
 (2.21) 

2.5 Well (or Inner) Boundary Conditions 

In this study, we will solve Eq. 2.10 subject to a specified water injection rate or total 

(oil and water) production rate history at the well. We ignore the wellbore storage 

effects for simplicity. This assumption would be realistic if the gauge is placed to 

middle of the open interval and/or if the downhole shut-in is operational during 

buildups and falloffs. 

In the case where we specify the total production rate as the inner boundary 

condition, we use the following well constraint equation: 

2

1

2

, ,

e

b w

z h

r rw r ro
surface

w w o oz h r r z

k k k k P
q c r dzd

B B r

θ θ

θ θ θ

θ
µ µ

= =

= = =

   ∂
= +   ∂  

∫ ∫  (2.22) 

The inner boundary condition given in Eq. 2.22 is general. It can be used for either a 

fully penetrating vertical well or a limited entry vertical well. In Eq. 2.22, 1h  and 

2h represent the beginning and ending points of the open interval measured positive 

from the bottom of the formation in the z direction. In the case where we consider a 
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fully penetrating well, we set h1 = 0 and h2 = h, where h is the total reservoir 

thickness. For the case where we model a limited-entry vertical well, it is convenient 

to rewrite Eq. 2.22 as 

2,

1,

2
1

, ,

letop

b l
w

hN

rw ro
surface r

l w w o oz h
r r z

k k P
q c k r dzd

B B r

θ θ

θ θ θ

θ
µ µ

=

= = = =

   ∂
= +   ∂  

∑ ∫ ∫  (2.23) 

where Ntop represents the total number of open intervals, and h1,l and h2,l represents 

the beginning and ending points of the lth open interval in the z-direction. Note that 

Eq. 2.22 is quite general in the sense that it allows us to consider multiple open 

segments along the wellbore.  

It is important to note that Eqs. 2.22 and 23 considers that the open interval extends 

from θ = θb to θ = θe in the θ direction. For a full sector reservoir, we set θb = 0 and 

θe = 2π. It is also worth noting that qsurface in Eqs. 2.22 and 2.23 represents the 

specified total surface production rate (in STB/D) and is specified as positive, i.e., 

qsurface > 0.  

For the case where we consider water injection at a specified surface rate, then we 

use the following equation as the well constraint equation:  

2

1

2

, ,

e

b
w

z h

r rw
w

w wz h r r z

k k P
q c r dzd

B r

θ θ

θ θ θ

θ
µ

= =

= = =

 ∂
=  ∂ 

∫ ∫  (2.24) 

For a fully penetrating well and a full sector reservoir, we set θb = 0 and θe = 2π, h1 = 

0 and h2 = h in Eq. 2.24. Similarly, for a limited-entry vertical well with a specified 

water injection rate, the appropriate well constraint equation is given by: 

2,

1,

2
1

, ,

letop

b l
w

z hN

r rw
w

l w wz h
r r z

k k P
q c r dzd

B r

θ θ

θ θ θ

θ
µ

==

= = = =

 ∂
=  ∂ 

∑ ∫ ∫  (2.25) 

It is worth noting that qw in Eqs. 2.24 and 2.25 represents the specified surface water 

injection rate (in STB/D) and is specified as negative, i.e., qw < 0.  
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For simulating a buildup period following a production period or a falloff period 

following an injection period, we simply set qsurface = 0 in Eqs. 2.22 and 2.23 and qw 

= 0 in Eqs. 2.24 and 2.25.  
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3.  FINITE DIFFERENCE FORMULATION 

In numerical solution approach, partial differential equations are converted to 

algebraic set of nonlinear equations by using finite difference methods and then this 

set of equations are solved by direct or iterative techniques. Therefore, finite 

difference methods plays a central role for the solution of differential equations, 

especially boundary value problems. 

3.1 Difference Equations 

Three basic finite difference methods are given as follows. 

• Forward Difference 

• Backward Differnce 

• Central Difference 

And their formulation for the first derivative of any function ( )0f x  are given as 

follows, respectively. 

0 0
0

( ) ( )
'( )

f x x f x
f x

x

+∆ −
=

∆
 (3.1) 

0 0
0

( ) ( )
'( )

f x f x x
f x

x

− −∆
=

∆
 (3.2) 

0 0
0

( ) ( )
'( )

2

f x x f x x
f x

x

+ ∆ − −∆
=

∆
 (3.3) 

For simplicity, the following notations will be used for the diffences. 
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1
0'( )         Forwardi if f

f x
x

+ −
=

∆
 (3.4) 

1
0'( )         Backwardi if f

f x
x

−−
=

∆
 (3.5) 

1 1
0'( )         Central

2
i if f

f x
x

+ −−
=

∆
 (3.6) 

3.1.1 Reservoir difference equation  

In Chapter 2, the derivation of the general continuity equation for immisicible 

multiphase flow has been presented. Since it is a nonlinear partial differential 

equation, the continuity equation must be solved by using analytical or numerical 

solution methods. In this study, we will derive the numerical solution for two-phase 

flow of oil and water in r zθ− − directions.  

Let's recall the general material balance equation given in Eq. 2.1. 

( ) ( )
1

1 m m

m m

S V

S
v dS dV

c t

φρ
ρ

∂
− =

∂∫∫ ∫∫∫•n  (3.7) 

As is well known, the formation volume factor for a phase m is defined by. 

,

m
m

m sc

V
B

V
=  (3.8) 

mB   : formation volume factor for phase m 

mV   : volume of phase m at reservoir conditions 

,m scV   : volume of phase m at standard conditions 

We can also write formation volume factor in the form of density as. 

,

m
m

m sc

B
ρ
ρ

=  (3.9) 

mρ   : density of phase m at reservoir conditions 
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,m scρ   : density of phase m at standard conditions 

If we substitute Eq. 3.9 in material balance equation given in Eq. 3.7 we obtain the 

following equation. 

1

1 m

m mA V

S
dA dV

B c t B

φ   ∂
− =   ∂   
∫∫ ∫∫∫mv

•n  (3.10) 

Now, we express Eq. 3.10 on control volume as shown in Fig. 3.1. Note that when 

using a numerical method based on a finite difference, we divide the reservoir into 

gridblocks. So the control volume shown in Fig. 3.1 can be considered as the 

gridblock with the indices (i,j,k), having a bulk volume of Vb,i,j,k, where i, j, and k 

represent the indices for the r, θ, and z directions, respectively.  

Let us consider the accumulation term or time derivative term in right hand side of 

Eq. 3.10. Multiplying and dividing by the bulk volume Vb,i,j,k, we can rewrite Eq. 

3.10 as follows. 

, ,

, , ,

1 1 , , , , ,

1 1

i j k

b i j km m

m b i j k mV V i j k

VS S
dV dV

c t B c t V B

φ φ    ∂ ∂  =    ∂ ∂    
∫∫∫ ∫∫∫  (3.11) 

2 2
, , , 1 1

2 2

1

2b i j k j k
i i

V r r zθ
+ −

 
= − ∆ ∆ 

 
 (3.12) 

Using the definition of volumetric average, we can write, 

, ,

, , , , , ,

1 , , , 1, , , ,

1

i j k

b i j k b i j km m

b i j k m mV i j k i j k

V VS S
dV

c t V B c t B

φ φ    ∂ ∂  =    ∂ ∂    
∫∫∫  (3.13) 

In Chapter 2, the continuity equation was derived using divergence theorem and a 

diffusivity equation was obtained in the form of partial differential equation. Of 

course, we could directly start by differencing the diffusivity equation given by Eq. 

2.10 in the form of a partial differential equation. However, for convenience, we will 

start directly from Eq. 3.10 to derive our finite difference equations. Both approaches 

yield the same difference equations.   
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As it is clear from Fig. 3.1, there are six faces on the control volume. Therefore, we 

need to find six surface areas and break the integral in Eq. 3.10 into six and apply 

surface integral on each face. The surface areas for selected control volume are as 

follow. 

Face at 1

2
i

r
−

with area ( )1 1 1

2

1,0,0 j k
i

A A r zθ
−

→ − → = ∆ ∆n      

Face at 1

2
i

r
+

with area ( )2 2 1

2

1,0,0 j k
i

A A r zθ
+

→ → = ∆ ∆n      

Face at 1

2
i

θ
−

with area ( )3 30, 1,0 i kA A r z→ − → = ∆ ∆n      

Face at 1

2
i

θ
+

with area ( )4 40,1,0 i kA A r z→ → = ∆ ∆n      

Face at 1

2
i

z
−

with area ( ) 2 2
5 5 1 1

2 2

1
0,0, 1

2 j
i i

A A r r θ
+ −

 
→ − → = − ∆ 

 
n     

Face at 1

2
i

z
+

with area ( ) 2 2
6 6 1 1

2 2

1
0,0,1

2 j
i i

A A r r θ
+ −

 
→ → = − ∆ 

 
n     

 

Figure 3.1 : Control volume in r zθ− − coordinate system  
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If we take the surface integral for six faces, we can write the surface term given in 

Eq. 3.10 as follows. 

 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

, ,
1 2

1 1
, , , ,

2 2

, ,
3 4

1 1
, , , ,

2 2

,

,

k j k j

k j k j

k j k j

k j k j

z z

m r m r

m mz zi j k i j k

z r z r

m m

m mz r z ri j k i j k

m z

m i j

v v
dA dA

B B

v v
dA dA

B B

v

B

θ θ

θ θ

θ θ

+ + + +

− − − −

+ + + +

− − − −

− +

− +

   
− +   

   

   
− +   

   

 
−  

 

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

6
,

5 6
1 1 1, , ,
2 2

k j k j

l
k j k j

r r

m z

lm mr r Sk i j k

v
dA dA dA

B B

θ θ

θ θ

+ + + +

− − − −
=− +

   
+ = −   

   
∑∫ ∫ ∫ ∫ ∫∫ mv

•n

 (3.14) 

 

Substituting velocity definitions given in Chapter 2 (Eqs. 2.6, 2.7, and 2.8) into Eq. 

3.14 and solving the integral, one can obtain the following equations: 

 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

,
1 2 1

1 1 2, , , ,
2 2

2 1
1 2, ,
2

                                

k j k j

k j k j

z z

m r r rm

i
m m mz zi j k i j k

r rm
j k

i
m m i j k

v k k P
dA c r d dz

B B r

k k P
c r z

B r

θ θ

θ θ

θ
µ

θ
µ

+ + + +

− − − −

−
− −

−
−

   ∂
= −   ∂   

 ∂
= − ∆ ∆ 

∂ 

∫ ∫ ∫ ∫
 (3.15) 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

,
2 2 1

1 1 2, , , ,
2 2

,
2 1

1 2, ,
2

                                

k j k j

k j k j

z z

m r r rm

i
m m mz zi j k i j k

m r

j k
i

m m i j k

v k k P
dA c r d dz

B B r

k P
c r z

B r

θ θ

θ θ

θ
µ

θ
µ

+ + + +

− − − −

+
+ +

+
+

   ∂
=   ∂   

 ∂
= ∆ ∆ 

∂ 

∫ ∫ ∫ ∫
 (3.16) 
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1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1

2 2

1 1

2 2

, ,
3

1 1
, , , ,

2 2

2
1

, ,
2

1
                                 

                

k j k j

k j k j

k j

k j

z r z r

m m

m mz r z ri j k i j k

z r

rm

m mz r i j k

v v
dA drdz

B B

k k P
c drdz

r B

θ θ

θ

µ θ

+ + + +

− − − −

+ +

− −

− −

−

   
=   

   

 ∂
= −  ∂ 

∫ ∫ ∫ ∫

∫ ∫

1

2
2

1 1, ,
2 2

                ln
i

rm
k

m m i j k i

r
k k P

c z
B r

θ

µ θ

+

− −

 
 ∂  

= − ∆   ∂   
 

 (3.17) 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1

2 2

1 1

2 2

, ,
4

1 1
, , , ,

2 2

2
1

, ,
2

1
                                 

                 

k j k j

k j k j

k j

k j

z r z r

m m

m mz r z ri j k i j k

z r

rm

m mz r i j k

v v
dA drdz

B B

k k P
c drdz

r B

θ θ

θ

µ θ

+ + + +

− − − −

+ +

− −

+ +

+

   
=   

   

 ∂
=  ∂ 

∫ ∫ ∫ ∫

∫ ∫

1

2
2

1 1, ,
2 2

               ln
i

rm
k

m m i j k i

r
k k P

c z
B r

θ

µ θ

+

+ −

 
 ∂  

= ∆   ∂   
 

 (3.18) 

1 1

2 2

1 1

2 2

2, 2 2
5 1 1

1 12 2, , , ,
2 2

2

k j

k j

r

jm z z rm

i i
m m mr i j k i j k

cv k k P
dA r r

B B z

θ

θ

θ

µ

+ +

− −

+ −
− −

∆     ∂
= − −    

∂    
∫ ∫  (3.19) 

1 1

2 2

1 1

2 2

2, 2 2
6 1 1

1 12 2, , , ,
2 2

2

k j

k j

r

jm z z rm

i i
m m mr i j k i j k

cv k k P
dA r r

B B z

θ

θ

θ

µ

+ +

− −

+ −
+ +

∆     ∂
= −    

∂    
∫ ∫  (3.20) 

 

Using the approximated integral expressions given by Eqs. 3.15-3.20 and the 

accumulation term given by Eq. 3.13, we can rewrite Eq. 3.10 as: 
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2
1 1

, , , ,
2 2

1

2
2

1 11 , , , ,
2 22

2 2 2
1 1

2 2

ln

2

r rm r rm
j k

m m m mi j k i j k

i
rm rm

k

m m m mi j k i j ki

j z rm

i i

k k k kP P
c z r r

B r B r

r
k k k kP P

c z
r B B

c k k
r r

B

θ θ

θ
µ µ

µ θ µ θ

θ

+ −

+

+ −−

+ −

 
   ∂ ∂ ∆ ∆ −    ∂ ∂     

      ∂ ∂   + ∆ −      ∂ ∂        

∆  
+ − 

 

, , ,

1 1 1, , , , , ,
2 2

= b i j kz rm m

m m m m mi j k i j k i j k

Vk k SP P

z B z c t B

φ
µ µ

+ −

 
     ∂ ∂ ∂ −      ∂ ∂ ∂       

 

(3.21) 

As mentioned earlier, finite difference approach is an important tool for the solution 

of partial derivatives. Hence, we can apply the convenient finite difference formula 

for the solution of position dependent partial derivatives. 

1, , , ,

1 1 1, , , ,
2 2

i j k i j kr rm m r rm

m m m i ii j k i j k

P Pk k b k kP

B r r rµ µ
+

++ +

−   ∂
=   ∂ −   

 (3.22) 

, , 1, ,

1 1 1, , , ,
2 2

i j k i j kr rm m r rm

m m m i ii j k i j k

P Pk k b k kP

B r r rµ µ
−

−− −

−   ∂
=   ∂ −   

 (3.23) 

, 1, , ,

1 1 1, , , ,
2 2

i j k i j krm m rm

m m m j ji j k i j k

P Pk k b k kP

B

θ θ

µ θ µ θ θ
+

++ +

−   ∂
=   ∂ −   

 (3.24) 

, , , 1,

1 1 1, , , ,
2 2

i j k i j krm m rm

m m m j ji j k i j k

P Pk k b k kP

B

θ θ

µ θ µ θ θ
−

−− −

−   ∂
=   ∂ −   

 (3.25) 

, , 1 , ,

1 1 1, , , ,
2 2

i j k i j kz rm m z rm

m m m k ki j k i j k

P Pk k b k kP

B z z zµ µ
+

++ +

 −   ∂
=       ∂ −     

 (3.26) 

, , , , 1

1 1 1, , , ,
2 2

i j k i j kz rm m z rm

m m m k ki j k i j k

P Pk k b k kP

B z z zµ µ
−

−− −

 −   ∂
=       ∂ −     

 (3.27) 
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1
m

m

b
B

=  (3.28) 

As it is clear in Eq. 3.28, 
mb  is the inverse of formation volume factor. The reason to 

use inverse of formation volume factor is for the simplicity.  

Furthermore, let us define the transmissibility terms as follows. 

( )1 2 1
, , , , 112 2 , ,

2

j k m r rm

m r i j k i
i i m i j k

z b k k
T c r

r r

θ

µ+ +
+ +

∆ ∆  
=  −  

 (3.29) 

( )1 2 1
, , , , 112 2 , ,

2

j k m r rm

m r i j k i
i i m i j k

z b k k
T c r

r r

θ

µ− −
− −

∆ ∆  
=  −  

 (3.30) 

( )
1

2
1 2

, , , , 112 1 , ,
22

ln
i

k m rm

m i j k
mj j i j ki

r
z b k k

T c
r

θ

θ µθ θ

+

+
+ +−

 
 ∆ 

=    −   
 

 (3.31) 

( )
1

2
1 2

, , , , 112 1 , ,
22

ln
i

k m rm

m i j k
mj j i j ki

r
z b k k

T c
r

θ

θ µθ θ

+

−
− −−

 
 ∆ 

=    −   
 

 (3.32) 

( )
2 22

1 1 1
, , , , 112 2 2 , ,

2

2
j m z rm

m z i j k i i
k k m i j k

b k kc
T r r

z z

θ

µ+ + −
+ +

∆   
= −   −   

 (3.33) 

( )
2 22

1 1 1
, , , , 112 2 2 , ,

2

2
j m z rm

m z i j k i i
k k m i j k

b k kc
T r r

z z

θ

µ− + −
− −

∆   
= −   −   

 (3.34) 

 

Substituting the finite difference solutions from Eq. 3.22 to Eq. 3.27 and 

transmissibility definitions given from Eq. 3.29 to Eq. 3.34 in Eq. 3.20, we obtain the 

following equation. 
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( ) ( )

( ) ( )

( ) ( ) ( )

1 1, , , , 1 , , 1, ,
, , , , , , , ,

2 2

1 , 1, , , 1 , , , 1,
, , , , , , , ,

2 2

, , ,

1 , , 1 , , 1 , , , , 1 , ,, , , , , , , ,
12 2

i j k i j k i j k i j k
m r i j k m r i j k

i j k i j k i j k i j k
m i j k m i j k

b i j k

i j k i j k i j k i j k m m i j km z i j k m z i j k

T P P T P P

T P P T P P

V
T P P T P P b S

c t

θ θ

φ

+ −
+ −

+ −
+ −

+ −
+ −

− − −

+ − − −

∂
+ − − − =

∂
 

(3.35) 

As it is clear, the finite difference approach must also be applied on the time 

dependent derivative in the accumulation term. 

( ) ( ) ( )1, , , , , ,

1, , , , , ,
1 1

n nb i j k b i j k

m m m m m mni j k i j k i j k

V V
b S b S b S

c t c t
φ φ φ

+

+

∂  = − ∂ ∆
 (3.36) 

Here, the superscript n is used to represent the old time level, whereas the superscript 

n+1 represents the current time level at which the (bmφSm) product in Eq. 3.36 is 

evaluated. In the right-hand side of Eq. 3.36, ∆t
n+1 denotes the time step taken from 

time nt to tn+1, i.e., tn+1 = tn + ∆t
n+1. 

Finally, using Eq. 3.36 in Eq. 3.35, we can write general finite difference equation 

for each phase m = o and w as: 

( ) ( )

( ) ( )

( ) ( )

( )

1 1, , , , 1 , , 1, ,
, , , , , , , ,

2 2

1 , 1, , , 1 , , , 1,
, , , , , , , ,

2 2

1 , , 1 , , 1 , , , , 1
, , , , , , , ,

2 2

, , ,

1 , ,
1

i j k i j k i j k i j k
m r i j k m r i j k

i j k i j k i j k i j k
m i j k m i j k

i j k i j k i j k i j k
m z i j k m z i j k

nb i j k

m mn i j k

T P P T P P

T P P T P P

T P P T P P

V
b S

c t

θ θ

φ

+ −
+ −

+ −
+ −

+ −
+ −

+

− − −

+ − − −

+ − − −

=
∆

( )1

, ,

n

m m i j k
b Sφ+ − 

 (3.37) 

3.1.2 Well constraint equations 

To be able to produce from or inject into the reservoir, we need well constraint 

equations where we specify the flow rate. As discussed in Chapter 2, in this study, 

we specify total flow rate at wellbore. Recall the inner boundary condition given in 

Eq. 2.23. 
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2,

1,

2
1

, ,

letop

b l
w

hN

rw ro
surface r

l w w o oz h
r r z

k k P
q c k r dzd

B B r

θ θ

θ θ θ

θ
µ µ

=

= = = =

   ∂
= +   ∂  

∑ ∫ ∫  (3.38) 

Applying forward difference formulation at time tn+1, we can approximate Eq. 3.38 

with the following difference equation:  

( )( )
,

,

1 1 1
, ,1/2, , , ,1/2, , 1, , 0, ,

1

top t l e

b l b

N n

n n n

surface o r j k w r j k j k j k

l k n

q T T P P
θ θ

θ θ

=
+ + +

= = =

= + −∑ ∑ ∑  (3.39) 

1, ,j kP  : pressure at 1i = , jθ = , and z k=  grid 

0, ,j kP  : pressure at well or can also be represented as 1+n

wfP .  

In Eq. 3.39, nb,l and nt,l represent the grid block numbers in the z-direction for bottom 

and top of the open interval l, respectively, for l = 1,2,…,Ntop. It is important to note 

that we consider an infinite conductivity wellbore so that wellbore pressure is 

uniform along the open interval in the z-direction.  

In the case where we consider injection at a specified injection rate of qw, we simply 

delete the oil transmissibility term in the left-hand side of Eq. 3.39 and replace qsurf 

by qw so that we obtain the following equation:  

( )
,

,

1 1 1
, ,1/2, , 1, , 0, ,

1

top t l e

b l b

N n

n n n

w w r j k j k j k

l k n

q T P P
θ θ

θ θ

=
+ + +

= = =

= −∑ ∑ ∑  (3.40) 

The computation of the well oil and water transmissibility terms kjroT ,,2/1,, and 

kjrwT ,,2/1,,  in Eqs. 3.39 and 3.40 are discussed in Appendix A. 

3.2 Method of Solutions 

There exist different methods to solve reservoir finite difference equations (Eq. 3.37) 

together with the well constrain equations (Eq. 3.39 or 3.40). One of them is called 

Fully Implicit Pressure and Saturation Method (FIMPS) where pressure and 

saturation as well as their dependent variables are evaluated at time level t
n+1. 

Therefore, we need to rewrite general difference equation and well equation as 

follows.  



23 

( ) ( )

( ) ( )

( )

1 1 1 1 1 1
1 1, , , , 1 , , 1, ,

, , , , , , , ,
2 2

1 1 1 1 1 1
1 , 1, , , 1 , , , 1,

, , , , , , , ,
2 2

1 1 1
1 , , 1 , ,

, , , , , , , ,
2

n n n n n n

i j k i j k i j k i j k
m r i j k m r i j k

n n n n n n

i j k i j k i j k i j k
m i j k m i j k

n n n

i j k i j k
m z i j k m z i j k

T P P T P P

T P P T P P

T P P T

θ θ

+ + + + + +
+ −

+ −

+ + + + + +
+ −

+ −

+ + +
+

+

− − −

+ − − −

+ − − ( )

( ) ( )

1 1 1
1 , , , , 1

2

1, , ,

1 , , , ,
1

n n n

i j k i j k

n nb i j k

m m m mn i j k i j k

P P

V
b S b S

c t
φ φ

+ + +
−

−

+

+

−

 = − ∆

 (3.41) 

( )( )
,

,

1 1 1
, ,1/2, , , ,1/2, , 1, , 0, ,

1

top t l e

b l b

N n

n n n

surface o r j k w r j k j k j k

l k n

q T T P P
θ θ

θ θ

=
+ + +

= = =

= + −∑ ∑ ∑  (3.42) 

 

3.2.1 Newton's method 

Newton's Method, also known as Newton - Raphson Method, is a method for finding 

roots in numerical analysis and it describes an iterative procedure which is typically 

used in reservoir simulation. Suppose, we have n  system of equations with N  

independent variables, i.e., 

( )
( )

( )

1 1 2

2 1 2

1 2

, ,..., 0

, ,..., 0

.

.

.

, ,..., 0

N

N

N N

f x x x

f x x x

f x x x

= =

= =

= =

 (3.43) 

or, simply, 

( )1 2, ,..., 0     for     1, 2,...,i Nf x x x i N= = =  (3.44) 

We would like to solve 
lx 's ( 1, 2,...,l N= ) so that 0lf =  for each l . 

Let  

( )1 2, ,..., Nx x x=x  (3.45) 
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Then, we can rewrite Eq. 3.42 as 

( ) 0        1if i N= ≤ ≤x  (3.46) 

We wish to find the solution 

ɵ ɵ ɵ ɵ( )1 2, ,..., N=x x x x  (3.47) 

Such that 

ɵ( ) 0        1if i N= ≤ ≤x  (3.48) 

If x  is close to ɵx , the following Taylor series is approximately satisfied. 

ɵ( ) ( ) ɵ( ) ( )
1

        1, 2,...,
N

i
ji i j

j j

f
f f i N

x=

∂
= + − =

∂∑
x

x x x x  (3.49) 

Because ɵ( ) 0f =x , we can rearrange Eq. 3.49 to obtain 

( ) ɵ( ) ( )
1

        1,2,...,
N

i
j j i

j j

f
f i N

x=

∂
− = − =

∂∑
x

x x x  (3.50) 

This suggests that the following iterative scheme with an iteration index n. 

( )
ɵ( ) ( )1

1

1

        1,2,...,

n
N ni n n

j j i

j j

f
f i N

x

+ +

=

∂
− = − =

∂∑
x

x x x  (3.51) 

If we let 1n

jδ +  denote 

1 1         1, 2,...,n n n

j j jx x j Nδ + += − =  
(3.52) 

Then, we can rewrite Eq. 3.50 as 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 11 1 1
1 2 1

1 2

2 2 21 1 1
1 2 2

1 2

1 1 1
1 2

1 2

for 1

...

for 2

...

.

.

.

for 

...

n n n

n n n n

N

N

n n n

n n n n

N

N

n n n

n n Nn n n n

N N

N

i

f f f
f

x x x

i

f f f
f

x x x

i N

f f f
f

x x x

δ δ δ

δ δ δ

δ δ δ

+ + +

+ + +

+ + +

=

∂ ∂ ∂
+ + + = −

∂ ∂ ∂

=

∂ ∂ ∂
+ + + = −

∂ ∂ ∂

=

∂ ∂ ∂
+ + + = −

∂ ∂ ∂

x x x
x

x x x
x

x x x
x

 
(3.53) 

Define the Jacobian matrix 

 

( )

1 1 1

1 2

2 2 2

1 2

1 2

. . .

. . .

. . . . . .

. . . . . .

. . . . . .

. . .

N

N

n

N N N

N

f f f

x x x

f f f

x x x

f f f

x x x

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂ 
 =
 
 
 
 
∂ ∂ ∂ 

 ∂ ∂ ∂ 

J x  (3.54) 

Define 

( )

( )
( )

( )

1 1
1

1
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1

1

. .        

. .

. .

n
n

nn

n n

n
n

N
N

f

f

f

δ
δ

δ

+

+

+

+

 
   
   
   
   = =   
   
   
   
     

x

x

δ f x

x

 (3.55) 
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Then the system of equation given by Eq. 3.55 is 

( ) ( )1n n nJ + = −x δ f x  (3.56) 

Newton's procedure can be described as : 

Step ( i ) - Set 0k = , and guess 0 0 0 0
1 2, ,...,

T

Nx x x =  x  

Step ( ii ) - Form ( )nJ x  and ( )nf x  

Step ( iii )  - Compute 1n+δ from Eq. 3.56. Then propose a new iterate  

1 1n n n+ += +x x δ  (3.57) 

Check the following criterion for convergence: 

1

1 1 1310

n n

j j

j n n

j

x x
Max

x
ε

+

≤ ≤ + −

−
≤

+
 (3.58) 

If satisfied, accept 1n+x  as the solution and stop iterating. 

Step ( iv ) - If Eq. 3.58 is not satisfied, set 1n n= + and go to Step ( ii ). 

This procedure will converge to ɵx  provided 

( i ) - Inverse of Jacobian exists, i.e., J  is non - singular and -1J exists. 

( ii ) - 
2

i

i j

f

x x

∂
∂ ∂

 exist and are continuous in some neighborhood of ɵx . 

( iii ) - 0x  ( initial guess ) is sufficiently close to ɵx . 

 

Now, we apply the Newton's procedure to our difference equation given in Eq. 3.41. 

As we deal with oil and water system, we write Eq. 3.41 for oil and water phases 

separately.  

For oil (Eq. 3.41 with m = o) gives 
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( ) ( )

( ) ( )

( )

1 1 1 1 1 1
1 1, , , , 1 , , 1, ,

, , , , , , , ,
2 2

1 1 1 1 1 1
1 , 1, , , 1 , , , 1,

, , , , , , , ,
2 2

1 1 1
1 , , 1 , ,

, , , , , , , ,
2

n n n n n n

i j k i j k i j k i j k
o r i j k o r i j k

n n n n n n

i j k i j k i j k i j k
o i j k o i j k

n n n

i j k i j k
o z i j k o z i j k

T P P T P P

T P P T P P

T P P T

θ θ

+ + + + + +
+ −

+ −

+ + + + + +
+ −

+ −

+ + +
+

+

− − −

+ − − −

+ − − ( )

( ) ( )

1 1 1
1 , , , , 1

2

1, , ,

1 , , , ,
1

n n n

i j k i j k

n nb i j k

o o o on i j k i j k

P P

V
b S b S

c t
φ φ

+ + +
−

−

+

+

−

 = − ∆

 (3.59) 

For water (Eq. 3.41 with m = w) gives 

( ) ( )

( ) ( )

( )

1 1 1 1 1 1
1 1, , , , , 1 , , 1, ,

, , , , , , , ,
2 2

1 1 1 1 1 1
1 , 1, , , 1 , , , 1,

, , , , , , , ,
2 2

1 1 1
1 , , 1 , ,

, , , , , , ,
2

n n n n n n

i j k w i j k i j k i j k
w r i j k w r i j k

n n n n n n

i j k i j k i j k i j k
w i j k w i j k

n n n

i j k i j k
w z i j k w z i j

T P P T P P

T P P T P P

T P P T

θ θ

+ + + + + +
+ −

+ −

+ + + + + +
+ −

+ −

+ + +
+

+

− − −

+ − − −

+ − − ( )

( ) ( )

1 1 1
1 , , , , 1

,
2

1, , ,

1 , , , ,
1

n n n

i j k i j k
k

n nb i j k

w w w wn i j k i j k

P P

V
b S b S

c t
φ φ

+ + +
−

−

+

+

−

 = − ∆

 (3.60) 

Using requirement given in Eq. 2.11, that is, So + Sw = 1, we can rewrite oil equation 

as 

( ) ( )

( ) ( )

( )

1 1 1 1 1 1
1 1, , , , 1 , , 1, ,

, , , , , , , ,
2 2

1 1 1 1 1 1
1 , 1, , , 1 , , , 1,

, , , , , , , ,
2 2

1 1 1
1 , , 1 , ,

, , , , , , , ,
2

n n n n n n

i j k i j k i j k i j k
o r i j k o r i j k

n n n n n n

i j k i j k i j k i j k
o i j k o i j k

n n n

i j k i j k
o z i j k o z i j k

T P P T P P

T P P T P P

T P P T

θ θ

+ + + + + +
+ −

+ −

+ + + + + +
+ −

+ −

+ + +
+

+

− − −

+ − − −

+ − − ( )

( )( ) ( )( )

1 1 1
1 , , , , 1

2

1, , ,

1 , , , ,
1

1 1

n n n

i j k i j k

n nb i j k

o w o wn i j k i j k

P P

V
b S b S

c t
φ φ

+ + +
−

−

+

+

−

 = − − −
 ∆

 (3.61) 

Rearranging oil equation given by Eq. 3.61 gives 
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1 1 1 1 1 1
1 , 1, , 1 , , 1, 1 , , , 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

n n n n n n

o i j k o i j k o i j k
o r i j k o i j k o z i j k

n n n

o r i j k o r i j k o i j k

n n n

o i j k o z i j k o z i j k

T P T P T P

T T T

T T T

θ

θ

θ

+ + + + + +
− − −

− − −

+ + +

− + −

+ + +

+ − +

− −

 + +
 

−  
+ + +

 

( )( ) ( )( )

1 1 1
, , , 1 , 1, ,

, , , ,
2

1 1 1 1
1 , , 1, 1 , , , 1

, , , , , , , ,
2 2

1, , ,

1 , , , ,
1

1 1

n n n

o i j k o i j k
o r i j k

n n n n

o i j k o i j k
o i j k o z i j k

n nb i j k

o w o wn i j k i j k

P T P

T P T P

V
b S b S

c t

θ

φ φ

+ + +
+

+

+ + + +
+ +

+ +

+

+

+


+ +

 = − − −
 ∆

 
(3.62) 

Rearranging water equation given by Eq. 3.60 gives

 

 

1 1 1 1 1 1
1 1, , 1 , 1, 1 , , 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

, ,1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

n n n n n n

i j k i j k i j k
w r i j k w i j k w z i j k

n n n

w r i j k w r i j k w i j k

i jn n n

w i j k w z i j k w z i j k

T P T P T P

T T T

P
T T T

θ

θ

θ

+ + + + + +
− − −

− − −

+ + +

− + −

+ + +

+ − +

− −

 + +
 

− 
+ + + 

 

( ) ( )

1 1 1
1 1, ,

, , , ,
2

1 1 1 1
1 , 1, 1 , , 1

, , , , , , , ,
2 2

1, , ,

1 , , , ,
1

n n n

k i j k
w r i j k

n n n n

i j k i j k
w i j k w z i j k

n nb i j k

w w w wn i j k i j k

T P

T P T P

V
b S b S

c t

θ

φ φ

+ + +
+

+

+ + + +
+ +

+ +

+

+

+

+ +

 = − ∆

 (3.63) 

For simplicity, let us define,

 

 

( )( ) 1, , ,1
, , , 1 , ,

1

1
nb i j kn

o i j k o wn i j k

V
V b S

c t
φ

++
+= −

∆
 (3.64) 

( )( ), , ,

, , , 1 , ,
1

1
nb i j kn

o i j k o wn i j k

V
V b S

c t
φ+= −

∆
 (3.65) 

( ) 1, , ,1
, , , 1 , ,

1

nb i j kn

w i j k w wn i j k

V
V b S

c t
φ

++
+=

∆
 (3.66) 

( ), , ,

, , , 1 , ,
1

nb i j kn

w i j k w wn i j k

V
V b S

c t
φ+=

∆
 (3.67) 

Then, we can form the oil and water residuals, respectively, to be used in Newton’s 

method by the rearrangements of Eqs. 3.62 and 3.63 as follows: 
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1 1 1 1 1 1 1
, , , 1 1, , 1 , 1, 1 , , 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

n n n n n n n

o i j k i j k i j k i j k
o r i j k o i j k o z i j k

n n n

o r i j k o r i j k o i j k

n n n

o i j k o z i j k o z i j k

f T P T P T P

T T T

T T T

θ

θ

θ

+ + + + + + +
− − −

− − −

+ + +

− + −

+ + +

+ − +

= − −

 + +


−
+ + +



1 1 1
, , 1 1, ,

, , , ,
2

1 1 1 1 1
1 , 1, 1 , , 1 , , , , , ,

, , , , , , , ,
2 2

0

n n n

i j k i j k
o r i j k

n n n n n n

i j k i j k o i j k o i j k
o i j k o z i j k

P T P

T P T P V V
θ

+ + +
+

+

+ + + + +
+ +

+ +




+ 
 



+ + − + =

 (3.68) 

1 1 1 1 1 1 1
, , , 1 1, , 1 , 1, 1 , , 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

n n n n n n n

w i j k i j k i j k i j k
w r i j k w i j k w z i j k

n n n

w r i j k w r i j k w i j k

n n n

w i j k w z i j k w z i j k

f T P T P T P

T T T

T T T

θ

θ

θ

+ + + + + + +
− − −

− − −

+ + +

− + −

+ + +

+ − +

= − −

 + +


−
+ + +



1 1 1
, , 1 1, ,

, , , ,
2

1 1 1 1 1
1 , 1, 1 , , 1 , , , , , ,

, , , , , , , ,
2 2

0

n n n

i j k i j k
w r i j k

n n n n n n

i j k i j k w i j k w i j k
w i j k w z i j k

P T P

T P T P V V
θ

+ + +
+

+

+ + + + +
+ +

+ +




+ 
 



+ + − + =

 (3.69) 

for i =1,2,…,Nr, j = 1,2,…,Nθ, and k = 1,2,…,Nz, where Nr, Nθ, and Nz denote the 

number of gridblocks in the r, θ, and z directions, respectively. Note that we can 

express the residual equations by using a block index (say l) instead of coordinate 

indices (i,j,k). For example, if we order the difference equation first in the r-direction 

(i), then in the θ direction (j), and then in the z-direction (k), then we can define a 

block index l by the formula: 

( 1) ( 1)r rl i j N k N Nθ= + − × + − × ×  (3.70) 

For i =1,2,...,Nr, j=1,2,…,Nθ, and k = 1,2,…,Nz. Thus, we can express the residual 

(difference) equations given for oil and water (fo,i,j,k and fw,i,j,k) and the unknowns Pi,j,k 

and Sw,i,j,k in terms of the grid block index l instead of the coordinate index (i,j,k). 

Note that l goes from 1 to Ngb, where Ngb (=Nr×Nθ×Nz) is the total number of grid 

blocks. In our ordering scheme, l = 1 represents the grid block having coordinate 

indices (i=1, j=1, and k=1) (i.e., the bottommost grid block adjacent to the wellbore). 

Our ordering scheme is from the bottom to top in the z-direction, as will be 

illustrated later.  

Pressure and water saturation are solved for each grid block from Eq. 3.68 and Eq. 

3.69. Note that we solve water saturation and use Eq. 2.11 to find oil saturation. Of 

course, this is arbitrary and we could have expressed the right-hand side of Eqs. 3.62 
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and 3.63 in terms of oil saturation and solve the residual equations for oil saturation. 

Then use Eq. 2.11 to solve for the water saturation.  

Using the residuals given by Eqs. 3.68 and 3.69, we can construct the Jacobian 

matrix to be used in Newton’s method as by ordering as unknowns as pressure and 

water saturation using the grid block index. It should be noted that our first equation 

when forming the Jacobian matrix will be the well constraint equation and the 

reservoir residual equations for oil and water will respectively follow the well 

constranint residual equation. The unknowns are ordered as 1n

wfP + , 1nP + , and 1n

wS + .  

 

1 1 1 1 1 1 1
1 ,1 2 ,2 ,

,1 ,1 ,1 ,1 ,1 ,1 ,1

1 1 1 1 1 1 1
1 ,1 2 ,2 ,

,1

. . .

. . .

gb gb
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well well well well well well well

n n n n n n n

well w w N w N

o o o o o o o
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well w w N w N
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f f f f f f f

P P S P S P S

f f f f f f f

P P S P S P S
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∂ ∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂

∂

=J
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1 ,1 2 ,2 ,

,2 ,2

1

. . .

. . .
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w w w w w w

n n n n n n n

well w w N w N

o o o o o o o

n n n n n n n
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n
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f f f f f f

P P S P S P S

f f f f f f f

P P S P S P S

f f

P
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+

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂

∂

.

,2 ,2 ,2 ,2 ,2

1 1 1 1 1 1
1 1 2 ,2 ,

, , , , , , ,

1 1 1 1 1 1
1 ,1 2 ,2

. . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . .

gb gb

gb gb gb gb gb gb gb

gb

w w w w w

n n n n n n

w N w N

o N o N o N o N o N o N o N

n n n n n n
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f f f f f

P P P S P S

f f f f f f f

P P S P S P
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∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ 1
,

, , , , , , ,

1 1 1 1 1 1 1
1 ,1 2 ,2 ,

. . .

gb

gb gb gb gb gb gb gb

gb gb

n

w N

w N w N w N w N w N w N w N

n n n n n n n

well w w N w N

S

f f f f f f f

P P S P S P S

+

+ + + + + + +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∂
 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

(3.71) 

and 
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( )

1, 1 1,

1, 1 1,
1 1

1, 1 1,
,1 ,1

1, 1 1,
2 2

1, 1 1,
,2 ,21 1,

1, 1 1,

1, 1 1,
, ,

        
.

.

.

gb gb

gb gb

n k n k

well well

n k n k

n k n k

w w

n k n k

n k n k

w wn n k

n k n k

N N

n k n k

w N w N

P P

P P

S S

P P

S S

P P

S S

+ + +

+ + +

+ + +

+ + +

+ + +

+ +

+ + +

+ + +

 −
 

− 
 −
 

− 
 −
 =
 
 
 
 
 − 
 − 
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( )
( )
( )
( )

( )
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1,
,1

1,
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1,
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1,
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,

.

.

.
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n k

o

n k

w

n k

o

n k

w
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o N

n k

w N

f

f

f

f

f

f

f

+

+

+

+

+

+

+

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 

P

P

P

P

P

P

P

 (3.72) 

where, 

1, 1, 1, 1,1,
1 2 . . .

n k n k n k n k

gb

T
n k

well NP P P P
+ + + ++  =  P  (3.73) 

 

Recall that we also need to integrate well equation given in Eq. 3.42 in the matrix as 

discussed later. So, the well residual equation to be used in the Newton method is 

obtained from the rearrangement of Eq. 39 or Eq. 40 depending on production or 

injection.  

( )( )
,

,

1 1 1 1
, ,1/2, , , ,1/2, , 1, , 0, ,

1

top t l e

b l b

N n

n n n n

well o r j k w r j k j k j k surface

l k n

f T T P P q
θ θ

θ θ

=
+ + + +

= = =

= + − −∑ ∑ ∑
 (3.74) 

( )
,

,

1 1 1 1
, ,1/2, , 1, , 0, ,

1

top t l e

b l b

N n

n n n n

well w r j k j k j k w

l k n

f T P P q
θ θ

θ θ

=
+ + + +

= = =

= − −∑ ∑ ∑  (3.75) 

Other details for the treatment of transmissibility and volume terms in the reservoir 

and well residual equations are given in Appendix A. We use a finite difference 

perturbation method to calculate the derivatives in Jacobian matrix (see Appendix A 

for details). 
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3.2.2 Implicit pressure – explicit saturation (IMPES) method 

Another method to solve non-linear difference equations for the two-phase oil and 

water system is called the Implicit Pressure-Explicit Saturation (IMPES) method. 

The method is widely used since it decreases the size of matrix. However, it may also 

suffer from the stability problem because the saturation is solved explicitly in this 

method. 

Recall the general finite difference equation for oil and water given Eq. 3.41. 

( ) ( )

( ) ( )

( )

1 1 1 1 1 1
1 1, , , , 1 , , 1, ,

, , , , , , , ,
2 2

1 1 1 1 1 1
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2

n n n n n n

i j k i j k i j k i j k
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θ θ

+ + + + + +
+ −

+ −

+ + + + + +
+ −

+ −

+ + +
+

+

− − −

+ − − −

+ − − ( )

( ) ( )

1 1 1
1 , , , , 1

2

1, , ,

1 , , , ,
1

n n n

i j k i j k

n nb i j k

m m m mn i j k i j k

P P

V
b S b S

c t
φ φ

+ + +
−

−

+

+

−

 = − ∆

 (3.76) 

Let us define difference operator as follows. 

1 1
, , , , , ,
n n n

t i j k i j k i j ku u u+ +∆ = −  (3.77) 

where u  is any function of r ,θ , z , and t  so that 

( ) ( )
1

, , 1

1
, , ,

n

t i j k n

i j kn

u u
r z t

t t
θ

+

+
+

∆ ∂
≈

∆ ∂
 (3.78) 

Using the definition of difference operator, we can write derivative term in 

accumulation term as  

( ) ( ) ( )1

, , , ,

n n

t m m m m m mi j k i j k
b S b S b Sφ φ φ+

∆ = −  (3.79) 

We expand Eq. 3.79 as follows. 

( ) ( )

1
, , , ,1

, , , 1
, , , ,1

, , ,, , 1
, , , , , ,

, , 1
, , , ,

n n

i j k i j kn

m i j k tn n

i j k i j kn n

t m m m t m m i j ki j k n n

m i j k m i j kn

i j k tn n

i j k i j k

b P
P P

b S b S S
b b

P
P P

φ φ

φ φ

φ

+
+

+
+

+

+

  −
∆   −  

∆ = ∆ +  
 − + ∆   −  

 
(3.80) 
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Substituting Eq. 3.80 in Eq. 3.76 gives 

( ) ( )

( ) ( )

( )

1 1 1 1 1 1
1 1, , , , 1 , , 1, ,

, , , , , , , ,
2 2

1 1 1 1 1 1
1 , 1, , , 1 , , , 1,

, , , , , , , ,
2 2

1 1 1
1 , , 1 , ,

, , , , , , , ,
2

n n n n n n

i j k i j k i j k i j k
m r i j k m r i j k

n n n n n n

i j k i j k i j k i j k
m i j k m i j k

n n n

i j k i j k
m z i j k m z i j k

T P P T P P

T P P T P P

T P P T

θ θ

+ + + + + +
+ −

+ −

+ + + + + +
+ −

+ −

+ + +
+

+

− − −

+ − − −

+ − − ( )

( )

1 1 1
1 , , , , 1

2

1
, , , ,1

, , , 1
, , , ,1, , ,

, , ,1 , , 1
1 , , , , , ,

, , 1
, , , ,

n n n

i j k i j k

n n

i j k i j kn

m i j k tn n

i j k i j knb i j k n

m t m m i j kn i j k n n

m i j k m i j kn

i j k tn n

i j k i j k

P P

b P
P PV

b S S
c t b b

P
P P

φ φ

φ

φ

+ + +
−

−

+
+

+
+

+ +

+

−

   −
 ∆   −   

= ∆ +  ∆  − + ∆   −  






 
 
 

 
(3.81) 

Applying the same derivation given from Eq. 3.59 to Eq. 3.64 on the surface term 

given in the left hand side of Eq. 3.81, one can find following equations for oil and 

water, respectively, 

1 1 1 1 1 1
1 1, , 1 , 1, 1 , , 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

, ,1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

n n n n n n

i j k i j k i j k
o r i j k o i j k o z i j k

n n n

o r i j k o r i j k o i j k

i jn n n

o i j k o z i j k o z i j k

T P T P T P

T T T

P
T T T

θ

θ

θ

+ + + + + +
− − −

− − −

+ + +

− + −

+ + +

+ − +

− −

 + +
 

−  
+ + + 

 

( )

1 1 1
1 1, ,

, , , ,
2

1 1 1 1
1 , 1, 1 , , 1

, , , , , , , ,
2 2

1
, , , ,1

, , , 1
, , , ,1, , ,

, , ,1 , ,
1

n n n

k i j k
o r i j k

n n n n

i j k i j k
o i j k o z i j k

n n

i j k i j kn

o i j k n n

i j k i j knb i j k n

o t o o i j kn i j k

T P

T P T P

b
P PV

b S S
c t

θ

φ φ

φ

+ + +
+

+

+ + + +
+ +

+ +

+
+

+
+

+

 
 
 
 
 +
 
 
 
+ + 

  

 −
 −

= ∆ +
∆ 1

, , , , , ,

, , 1
, , , ,

t

n n

o i j k o i j kn

i j k tn n

i j k i j k

P

b b
P

P P
φ

+

+

  
 ∆   
  

 −  + ∆    −    

 
(3.82) 

1 1 1 1 1 1
1 1, , 1 , 1, 1 , , 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

, ,1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

n n n n n n

i j k i j k i j k
w r i j k w i j k w z i j k

n n n

w r i j k w r i j k w i j k

i jn n n

w i j k w z i j k w z i j k

T P T P T P

T T T

P
T T T

θ

θ

θ

+ + + + + +
− − −

− − −

+ + +

− + −

+ + +

+ − +

− −

 + +
 

−  
+ + + 

 

( )

1 1 1
1 1, ,

, , , ,
2

1 1 1 1
1 , 1, 1 , , 1

, , , , , , , ,
2 2

1
, , , ,1

, , , 1
, , , ,1, , ,

, , ,1 , ,
1

n n n

k i j k
w r i j k

n n n n

i j k i j k
w i j k w z i j k

n n

i j k i j kn

w i j k n n

i j k i j knb i j k n

w t w w i j kn i j k

T P

T P T P

b
P PV

b S S
c t

θ

φ φ

φ

+ + +
+

+

+ + + +
+ +

+ +

+
+

+
+

+

 
 
 
 
 +
 
 
 
+ + 

  

 −
 −

= ∆ +
∆ 1

, , , , , ,
, , 1

, , , ,

t

n n

m i j k m i j kn

i j k tn n

i j k i j k

P

b b
P

P P
φ

+

+

  
 ∆   
  

 −  + ∆    −    

 

(3.83) 
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Now, we can combine oil and water equation in single pressure equation which we 

will solve implicitly. To do so, we multiply oil equation (Eq. 3.82) by 1
, , ,1/ n

o i j kb + and 

water equation (Eq. 3.83) by 1
, , ,1/ n

w i j kb +

 

and then add the resulting two equations to 

obtain: 

1 1 1 1 1 1
1 1 1, , 1 1 , 1,1 1 1 1, , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,2 2 2 2

1
11 1, , , , , ,

, , , , , ,2

1 1 1 1

1 1

n n n n n n

i j k i j kn n n n
o r i j k w r i j k o i j k w i j k

o i j k w i j k o i j k w i j k

n

n n
o z i j k w z

o i j k w i j k

T T P T T P
b b b b

T T
b b

θ θ

+ + + + + +
− −+ + + +− − − −

+
+ +−

   
+ − +      

   

− + 1 1
1 , , 1

, ,
2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

1 1 1 1
, , , 1 1 1

, , , , , , , , , , , ,
2 2 2

1 1
1 1

, , , , , , , ,
2 2

1
, , ,

1

1

n n

i j k
i j k

n n n

o r i j k o r i j k o i j k

n n n n
o i j k

o i j k o z i j k o z i j k

n n

w r i j k w r i j k

n

w i j k

P

T T T

b T T T

T T

b

θ

θ

+ +
−

−

+ + +

− + −

+ + + +

+ − +

+ +

− +

+

 
  
 

 + +
 
 
+ + + 

 
−

+

+

1
, ,1

1
, , , ,

2

1 1 1
1 1 1

, , , , , , , , , , , ,
2 2 2

1 1 1
1 1 1, ,1 1 1, , , , , , , ,

, , , , , , , , ,2 2

1 1 1

n

i j kn

w i j k

n n n

w i j k w z i j k w z i j k

n n n

i j kn n n
o r i j k w r i j k

o i j k w i j k o i j k

P
T

T T T

T T P T
b b b

θ

θ

+

+

−

+ + +

+ − +

+ + +
++ + ++ +

 
 
 
 
 
  +  
  
 + + +    

 
+ + +  
 

( ) ( )
( )

1 1 1
1 1 , 1,1, , , , , , , ,

, , ,2 2

1 1 1
1 1 , , 11 1, , , , , , , ,

, , , , , ,2 2

, , , , , ,

1

, , , ,

, , ,

1
1

1

1 1

n n n

i j kn
o i j k w i j k

w i j k

n n n

i j kn n
o z i j k w z i j k

o i j k w i j k

n n

o i j k w i j k

n

t o t wi j k i j k

b i j k

n

T P
b

T T P
b b

S S

S S

V

c t

θ θ

φ φ

+ + +
+++ +

+ + +
++ ++ +

+

+

 
+  

 

 
+ +  
 

+

∆ + ∆ +

=
∆

1
, ,

1
, , , ,

1
, , , , , , , ,

, , , 1 1
, , , , , , ,

1
, , , , , , , ,

, , , 1 1
, , , , , , ,

n n

i j k

tn n

i j k i j k

n n n

i j k o i j k o i j kn

o i j k tn n n

o i j k i j k i j k

n n n

i j k w i j k w i j kn

w i j k n n n

w i j k i j k i j k

P
p p

b b
S P

b p p

b b
S

b p p

φ

φ

φ

+

+

+

+ +

+

+ +

 
 
  −
 ∆   −  

 −
+ ∆  − 

 −
+  − 

t P

 
 
 
 
 
 
 
 
 
 
 ∆ 
 
 
 

 

(3.84) 

Note that, 

( ) ( ) ( )
( ) ( )

1 1
, , , , , , , , , , , ,

1 1
, , , , , , , , , , , , 1 1 0

n n n n

t o t w o i j k o i j k w i j k w i j k

n n n n

o i j k w i j k o i j k w i j k

S S S S S S

S S S S

+ +

+ +

∆ + ∆ = − + −

= + − + = − =
 (3.85) 
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For convenience, we define rock, oil and water isothermal compressibility as: 

1
, , , ,1

, , , 1
, , , , , ,

1
n n

i j k i j kn

r i j k n n n

i j k i j k i j k

c
p p

φ φ

φ

+
+

+

 −
=   − 

 (3.86) 

1
, , , , , ,1

, , , 1 1
, , , , , , ,

1
n n

o i j k o i j kn

o i j k n n n

o i j k i j k i j k

b b
c

b p p

+
+

+ +

 −
=   − 

 (3.87) 

1
, , , , , ,1

, , , 1 1
, , , , , , ,

1
n n

w i j k w i j kn

w i j k n n n

w i j k i j k i j k

b b
c

b p p

+
+

+ +

 −
=   − 

 (3.88) 

Defining for simplicity, 

�
1 1

1 11, , , , , , , ,
, , ,2 2

1n n

n
o r i j k o r i j k

o i j k

T T
b

+ +
+± ±

=  (3.89) 

�
1 1

1 11, , , , , , , ,
, , ,2 2

1n n

n
w r i j k w r i j k

w i j k

T T
b

+ +
+± ±

=  (3.90) 

�
1 1

1 11, , , , , , , ,
, , ,2 2

1n n

n
o i j k o i j k

o i j k

T T
bθ θ

+ +
+± ±

=  (3.91) 

�
1 1

1 11, , , , , , , ,
, , ,2 2

1n n

n
w i j k w i j k

w i j k

T T
bθ θ

+ +
+± ±

=  (3.92) 

�
1 1

1 11, , , , , , , ,
, , ,2 2

1n n

n
o r i j k o r i j k

o i j k

T T
b

+ +
+± ±

=  (3.93) 

�
1 1

1 11, , , , , , , ,
, , ,2 2

1n n

n
w z i j k w z i j k

w i j k

T T
b

+ +
+± ±

=  (3.94) 

Using the definitions given from Eq. 3.85 to Eq. 3.94, we can rewrite Eq. 3.84 as 

follows. 
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� � � �

� �

� � �

1 1 1 11 1
1 1 1 11, , , 1,

, , , , , , , , , , , , , , , ,
2 2 2 2

1 1

1 1 1
, , , , , , , , , , , ,

2 2 2

1 1 1
1 1 , , 1

, , , , , , , ,
2 2

n n n nn n

i j k i j k
o r i j k w r i j k o i j k w i j k

n n

o r i j k o r i j k o i j k

n n n

i j k
o z i j k w z i j k

T T P T T P

T T T

T T P

θ θ

θ

+ + + ++ +
− −

− − − −

+ +

− + −

+ + +
−

− −

   
+ − +   

   

+ +

 
− + − 
 

� � �

� � �

� � �

1

1 1 1

1 1 1
, , , , , , , , , , , ,

2 2 2

1 1 1

1 1 1
, , , , , , , , , , , ,

2 2 2

1 1 1

1 1 1
, , , , , , , , , , , ,

2 2 2

n

n n n

o i j k o z i j k o z i j k

n n n

w r i j k w r i j k w i j k

n n n

w i j k w z i j k w z i j k

T T T

T T T

T T T

θ

θ

θ

+

+ + +

+ − +

+ + +

− + −

+ + +

+ − +

  
  
  
  + + +
  
  
 + + + 
  
  

+ + +   

� � � �

� �

1
, ,

1 1 1 11 1
1 1 1 11, , , 1,

, , , , , , , , , , , , , , , ,
2 2 2 2

1 1 1
1 1 , , 1

, , , , , , , ,
2 2

, , , , , 1
, , ,1

1

n

i j k

n n n nn n

i j k i j k
o r i j k w r i j k o i j k w i j k

n n
n

i j k
o z i j k w z i j k

n

b i j k i j k n

r i j k tn

P

T T P T T P

T T P

V
c

c t

θ θ

φ

+

+ + + ++ +
+ +

+ + + +

+ + +
+

+ +

+
+



   
+ + + +   
   

 
+ + 
 

= ∆
∆

1 1
, , , , , , , , , , , ,

n n n n

o i j k o i j k t w i j k w i j k tP c S P c S P+ + + ∆ + ∆ 

 

(3.95) 

In IMPES method, we linearize the above pressure equation by backdating nonlinear 

coefficient to the old time step level. Also, assuming slightly compressible fluid, we 

can write Eq. 3.95 as follows. 

� � � �

� �

� � �

� �

1
1 1 1 11, , , 1,

, , , , , , , , , , , , , , , ,
2 2 2 2

1 1 1
, , , , , , , , , , , ,

2 2 2

1
, , , ,
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1 1 , , 1

, , , , , , , ,
2 2

n n n n
n n

i j k i j k
o r i j k w r i j k o i j k w i j k

n n n

o r i j k o r i j k o i j k

n

o i j kn n n

i j k
o z i j k w z i j k

T T P T T P

T T T

T T

T T P

θ θ

θ

θ

+
− −

− − − −

− + −

+
+

−
− −

   
+ − +   

   

+ +
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 

− + − 
 

�

� � �

� � �

� �

1 1
, , , , , , , ,

2 2 1
, ,

1 1 1
, , , , , , , , , , , ,

2 2 2

1 1 1
, , , , , , , , , , , ,

2 2 2

1 1
, , , , , , ,

2 2

n n

o z i j k o z i j k
n

i j kn n n

w r i j k w r i j k w i j k

n n n

w i j k w z i j k w z i j k

n

o r i j k w r i j

T

P

T T T

T T T

T T

θ

θ

− +
+

− + −

+ − +

+ +

  
  
  
  +
  
  
 + + + 
  
  

+ + +     
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1 1
1 11, , , 1,

, , , , , , , , ,
2 2

1
1 1 , , 1

, , , , , , , ,
2 2

, , , , ,
, , , , , , , , , , , , , , ,1

1

n n n
n n

i j k i j k
k o i j k w i j k

n n
n

i j k
o z i j k w z i j k

n

b i j k i j k n n n n n

r i j k o i j k o i j k w i j k w i j k tn

P T T P

T T P

V
c c S c S P

c t

θ θ

φ

+ +
+ +

+ +

+
+
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Note that 
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Finally, substituting Eq. 3.97 and Eq. 3.98 in Eq. 3.96, 
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(3.99) 

Eq. 3.99 is called as the pressure equation for IMPES method. Once we solve Eq. 

3.99 for pressure, we can use either water or oil material balance equation to solve 

the water (or oil) saturation. We consider the material balance equation for water and 

solve for the water saturation. To solve water saturation, let us rewrite water equation 

given in Eq. 3.83 with the following modification to be consistent with the 

assumptions used, i.e., transmissibility will be evaluated at the old time step. 
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Or solving for 
t wS∆  gives 
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where we defined 
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 (3.102) 

Once we solve saturation equation given in Eq. 3.101, we can compute the water 

saturation as follows. 

1
, , , , , ,

n n

w i j k t w w i j kS S S+ = ∆ +  (3.103) 
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3.2.3 Example matrix structures 

Here, we will present a matrix structure of one simple case for the Newton and 

IMPES methods. Firstly, gridding used in the r , θ , and z  direction is described. 

Secondly, we consider a simple example application with with considered grid 

system to understand the structures of the matrices arising from the formulations of 

the Newton and IMPES methods. 

As it is widely used in reservoir simulation, non-uniform block centered grids are 

used in r direction. MacDonald-Coats (1970) method used is to create grids in r  

direction. Simple example of gridding structure in r  direction is given in Figure 3.2.  

We also used block centered grids in θ  and z  directions. Schematical presentation of 

r z−  and r θ−  directions are given in Figure 3.3. and Figure 3.4., respectively. 

 

 

      

Figure 3.2 : Grid structure for r direction using MacDonalds - Coats method (taken 

from Gok, 2004).   

 

Figure 3.3 : Schematic presentation of grids in r - z direction.   

wr  
er  
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Figure 3.4 : Schematic presentation of grids in r - θ direction (taken from Gok, 

2004).  

 

As we present our gridding system briefly, we can now consider the structure of 

matrix for Newton and IMPES method for simple case. 

Assume that we have cylindrical reservoir and well is located at the center. If we use 

4rN = , 3Nθ = , and 2zN = , we will have reservoir structure as given in Figure 3.5. 

rN  : number of grids in r  direction 

Nθ  : number of grids in θ  direction 

zN  : number of grids z direction 
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Figure 3.5 : Simple reservoir structure in r zθ− − direction. 

 

Let us assume, we have a fully penetrating vertical well meaning all the grids around 

the well are open to flow. Under the assumptions, matrix structure for Newton and 

IMPES method are given in Figure 3.6 and Figure 3.7, respectively. 
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Figure 3.6 : Jacobian matrix structure for the FIMPS (or Newton) method. 
49x49 
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Figure 3.7 : Matrix structure for IMPES method. 

 

It is worth noting that the matrices (Figs. 3.6 and 3.7) given for the Newton method 

and IMPES methods will be nonsymmetric matrices and require the use of 

nonsymmetric matrix solvers as discussed next.  

3.3 Matrix Problem Solver 

As it is clear from Figure 3.6 and Figure 3.7, matrix size is bigger in the Fully 

Implicit Pressure and Saturation (FIMPS) method using the Newton's method since 

we solve pressures and saturations implicitly. However, as we solve only pressures in 

IMPES method, we have smaller size matrix. Specifically, in the FIMPS method, the 

total number of unknowns to be solved by the matrix problem is 2×Ngb + 1, while in 

the IMPES method, the total number of unknowns to be solved by the matrix 

problem is Ngb + 1. Recall that Ngb is the total number of grid blocks, i.e., Ngb = 

Nr×Nθ×Nz.  

There exists different methods to solve matrix problem and most of the methods 

store all the elements of the matrix. This might be efficient when the matrix size is 

small. The amount of grid in typical reservoir simulation does not allow us to work 

with smaller size matrices. Therefore, we might have storage problem or long 

25x25 
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solving time. To deal with these problems, we use special algorithms which only 

store non-zero elements of the matrix. 

In this study, we used matrix solver package by Yale University (Eisenstat, 1979) to 

avoid storage and inefficient solving time problem. Moreover, this solver uses the 

compressed row storage scheme to store the matrix.  
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4.  VERIFICATION OF THE RESULTS 

After deriving the difference equation, we developed a simulator to solve the oil and 

water flow problem in 3D r zθ− −  coordinate system using both FIMPS and IMPES 

method. Microsoft Visual C# is used for the development of simulator. It is 

important to note that we use FIMPS and Newton methods interchangeably. Results 

are compared with commercial IMEX (2010) software for the validation of the 

simulator developed in this study.  

4.1 Case 1-Injection 

In case 1, we will simply compare the results for Newton and IMPES method with 

IMEX. Therefore, we will only consider injection period of 16 hours with an 

injection rate of qw = - 3000 /STB D  flow rate. For this case, we consider that flow 

occurs in only r  direction and we have a fully penetrating vertical well. So, we 

simulate pressure and saturation behavior for 1-D radial flow case. This case has 

been previously considered by Chen (2007). Unless otherwise stated, we use Nr = 

200  grid block in the r-direction, generated by using the McDonalds-Coats method. 

Moreover, in this study, we used 200 grids in r-direction for all the cases for CMG. 

Time steps are generated based on a scheme using logarithmically distributed time 

points. Relative permeability data for oil and water were generated by using a power-

law model (see Appendix A, Eqs. A.18 – A.20). Other input data are given in Table 

4.1.  

A comparison of the bottom-hole pressure vs. time data obtained from IMEX-CMG, 

Newton and IMPES methods is presented in Figure 4.1. As can be seen from Fig. 

4.1, the bottom-hole pressures from our simulator agrees very well with those from 

the IMEX for the entire duration of the injection. It is interesting to note that both the 

bottom-hole pressures obtained from the Newton and IMPES methods are also in 

good agreement.  
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Next, we investigate the accuracy of the saturation profiles. For instance, the water 

saturation vs. radial distance data computed from the IMPES, FIMPS, and IMEX 

methods at the end of injection period is shown in Figure 4.2. As can be seen, the 

agreement between the saturations computed from our simulator using the Newton 

method and IMEX is perfect. However, the saturations computed by our simulator 

using the IMPES method show some differences, particularly near the front. This 

indicates that IMPES method cannot produce saturation profiles as accurate as the 

FIMPS (or Newton) method. This is in fact not surprising because the saturation is 

solved explicitly and hence the accuracy of saturation in the IMPES method is more 

susceptible to the grid size and time steps than that in the FIMPS.  

To further investigate the accuracy and stability issues with the IMPES method, we 

consider two different number of grid blocks; Nr = 90, Nr = 200, and Nr = 400. In 

other words, we investigate the effect of number of grid blocks (or equivalently the 

grid block size) on the pressure and saturation solutions to be obtained from the 

IMPES method. Comparisons of the bottom-hole pressures and saturations are shown 

in Figure 4.3 and Figure 4.4, respectively. As it is seen from these figures, the 

pressure and saturations computed from the IMPES method is very susceptible to the 

grid block size. It should be noted that increasing the number of grid blocks (or 

decreasing the grid block sizes) decreases the accuracy of the pressure and 

saturations computed from the IMPES method and even can cause stability problems 

in the saturation values (e.g., see saturation profile for the case Nr = 400). The results 

shown in Fig. 4.3 and 4.4 for the IMEX case is generated by Nr = 200.  

As Coats and McDonalds method is used for grid construction in r direction, when 

we increase the grid number, grid size around the well decreases. In IMPES method, 

we obtain good match only when the grid size are sufficiently big to not cause 

stability issues. 

Eventhough, we do not show it in this study, time step has the same effect on IMPES 

method. In order the work properly with IMPES method, we need to use small time 

steps.  
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Table 4.1 : Data for Case 1 and Case 2. 

Property Value 
h 60 ft. 

wr  0.35 ft. 

er  6800 ft. 

k 300 md. 

iwS  0.1 

orS  0.25 

iP  2500 psi 

φ  0.22 

oB  1.0 RB/STB 

wB  1.0 RB/STB 

oc  6 18 10 psi− −×  

wc  6 13.02 10 psi− −×  

rc  6 15.0 10  psi− −×  

@ iwro Sk  1 

( )@ 1 orrw S
k −

 0.5 

m 2 
n 2 

oµ  3 cp. 

wµ  0.5 cp. 

 

 

In reservoir simulation, we want to use small grids around the wellbore and small 

time steps at the begining of the operation for better accuaracy in the solutions. 

Usually, time steps increases with time to have a faster solution. Therefore, although 

IMPES method works well when the conditions are met, we decided to continue with 

Newton’s method to not suffer because of stability problem. To further support this, 

we present the pressure and saturation solutions obtained from the our simulator 

based on the Newton method in Figures 4.5 and 4.6 for three different values of Nr 

= 90, 200, and 400. As can be seen, unlike the accuarcy and stability of the solutions 

from the IMPES method, the accuracy and the stability of the solutions from the 

Newton method are not strongly dependent on the number of grid blocks in the r-

direction for this example case. 
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Figure 4.1 : Pressure vs. time for Case 1 (Nr = 200). 

 

Figure 4.2 : Saturation profile in r direction for Case 1 (end of injection) 
(Nr = 200). 
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Figure 4.3 : Bottom-hole pressures from IMPES method for different 
values of Nr  for Case 1. 

 

Figure 4.4 : Water saturation versus radial distance from IMPES method 
for different values of Nr for Case 1. 
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Figure 4.5 : Bottom-hole pressures from Newton method for different 
values of Nr for Case 1. 

 

Figure 4.6 : Water saturation versus radial distance from Newton method 
for different values of Nr for Case 1. 
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4.2 Case 2 - Injection-Fall off-Production 

As we decided to work with Newton's method, we consider a more complicated case 

to validate our results with the results from the IMEX software.  

Here, we will use the same input data given in Table 4.1 for Case 1. However, we 

will change the flow rate history. Firstly, we will inject water with the flow rate of qw 

= - 3000 /STB D  for 16 hours. Secondly, we will have fall off period for 16 hours 

(i.e, qw = 0 STB/D). Finally, we will have a total production of qsurface = 

3000 STB/D  for 24 hours. We use Nr = 200  grid block in the r-direction, generated 

by using the McDonalds-Coats method. 

The results for the bottom-hole pressure vs. time are compared in Figure 4.7 As it is 

clear that the bottom-hole pressure data generated from the simulator developed in 

this study match quite well with the bottom-hole pressure data from the commercial 

software IMEX-CMG. In the first 16 hours, bottom-hole pressure increases as it is 

expected. During fall-off period between 16 hr. and 32 hr., we see a decrease in 

bottom-hole pressure since the pressure stabilizes. Finally, after 32 hr., we see a 

decrease in pressure because of production. Moreover, we see two sharp decrease in 

pressure during production period.  The reason for this is that we first produce only 

the water in the near wellbore region formed during the injection period, and then we 

start producing both water and oil from the reservoir. Although it is difficult to see 

from Figure 4.7, after 45. hr., there is a small increase in pressure even though we 

still produce from the reservoir. 

As it is expected, the saturation profiles are very similar at the end of injection and at 

end of falloff periods. Saturation profile given in Figure 4.2 also represents the 

saturation profile at the end of injection for Case 2.  

The saturation profiles obtained from our simulator and the IMEX for the end of fall-

off and production periods are compared in Figure 4.8 and Figure 4.9, respectively.  

The results presented in Figures 4.7-4.9 for Case 2 were generated by considering 

flow only in the r-direction, i.e., Nr =200, Nt = Nz = 1. To validate that the simulator 

works satisfactorily when we allow flow in the theta and z directions, we run the 

simulator for Case 2 with Nr =200, Nθ = 6, and Nz = 10  The bottom-hole pressures 

computed with Nr = 200, Nθ = Nz = 1 and with Nr =200, Nθ = 6, Nz = 10 together with 
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Figure 4.7 : Pressure vs. time plot for Case 2.  

 

 

Figure 4.8 : Saturation profile in r direction (end of fall off) for Case 2. 
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those from IMEX are compared in Figure 4.10. As expected, the pressures are the 

same as the pressures when we consider only flow in the r  direction for this fully 

penetrating vertical case because we do not consider gravity effect and the well is 

fully penetrated. Although not shown here, we also compared the saturation profiles 

generated with Nr = 200, Nθ = Nz = 1 and with Nr =200, Nθ = 6, Nz = 10 and the 

agreement between them were excellent. So, these comparisons validate that the 

simulator is working properly for three-dimensional flow case since we have 

excellent matches for pressure and saturation generated for the 1-D and the 

equivalent 3-D flow cases. 

 

 

Figure 4.9 : Saturation profile in r direction for Case 2 (end of production). 
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Figure 4.10 : Pressure vs. time plot for Case 2. 

 

4.3 Case 3-Injection 

In the first two cases, we compared our simulator results with IMEX-CMG software. 

Now, we compare our results with some results presented in the literature. Here, for 

comparison, we consider the results presented by Levitan (2003) for an injection case 

(see Fig. 5 of Levitan, 2003).  Table 4.2 contains the input data for Levitan’s case (or 

referred to as Case 3 here). 

Since he did not present any value for formation volume factor of oil and water, we 

used 1 RB/STB for both oil and water. Moreover, we also need the external radius of 

the reservoir. Since his results do not show any boundary effect, we used sufficiently 

large external radius ( 6800er = ft.) to avoid boundary effects on the solutions. For 

the comparison, we inject water with the flow rate of qw = - 500 RB/STB for 10 hours. 
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We use Nr = 400  grid block in the r-direction, generated by using the McDonalds-

Coats method. 

Figure 4.11 presents a comparison of the Levitan's results for the rate normalized 

pressure changes and its Bourdet derivative for a finite wellbore vertical well with 

the corresponding results from our simulator. Here the Bourdet derivative refers to 

the derivative of rate-normalized pressure change with respect to the natural 

logarithm of time (Bourdet et al. 1989). As it is clear, an excellent agreement exists 

between the solutions, validating our simulator.  

Finally, we compare the results of Levitan (see Fig. 4 of Levitan) for the case where 

the wellbore is treated as line-source (well radius is vanishingly small) with the 

corresponding results from our simulator for the same case. This comparison is 

presented in Figure 4.12. Note that we consider a sufficiently small wellbore radius 

(0.0357 ft.) so that we can obtain a match with Levitan’s solutions. As it is seen from 

Fig. 4.12,  again, we have an excellent match with Levitan's analytical solution 

assuming a line-source wellbore. It should be noted that although we simulate 

pressure and saturation using a well bore radius of 0.0357 ft, we print the pressures at 

the actual wellbore radius of 0.357 ft.  

Table 4.2 : Data from Levitan’s paper 

Property Value 
h 100 ft. 

wr  0.357 ft. 

k 1000 md. 

,w irS  0.2 

orS  0.25 

iP  5000 psi 

φ  0.2 

oc  6 19 10 psi− −×  

wc  6 13 10 psi− −×  

rc  6 15.0 10  psi− −×  

@ iwro Sk  0.8 

( )@ 1 orrw S
k −

 0.2 

m 2 
n 2 

oµ  0.3 cp. 

wµ  0.25 cp. 
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So, the pressure change and the pressure derivative shown in Figure 4.12 represents 

the pressure and derivative data computed at 0.357 ftwr = .  In other words, while we 

inject water at 0.0357 ft, we actually observe the pressure inside reservoir at the 

radial distance equal to the actual wellbore radius of 0.357 ft. Hence, we observe a 

rapid change in pressure-derivative for the  "infinitesimally small" wellbore radius 

case. This is in fact not surprising if we realize,  the pressures are given  at 

0.357 ftwr = , and until the water front reaches the radius of 0.357 ft, we first observe 

a radial flow reflecting the properties of the oil zone. Hence, when  the front reaches 

the radius of 0.357 ft, we start to observe the radial flow reflecting the properties of 

the water zone. This is reflected as a rapid change in derivative as the response goes 

from the oil zone to water zone. 

 

 

Figure 4.11 : Rate normalized P∆  and 'P∆  vs time (finite wellbore) for 
Levitan’s (2003) case (Case 3). 
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Figure 4.12 : Rate normalized P∆  and 'P∆  vs time (linesource wellbore) 
for Levitan’s (2003) case (Case 3). 

 

 

 

 

 

 

 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

5.  APPLICATIONS 

In previous chapter, accuracy of the simulator is validated. In this chapter, effects of 

some parameters such as end point mobility ratio and skin will be presented. 

Moreover, simple analysis will be performed on diagnostic plot.   

5.1 Effect of Initial Time Step of Simulation 

During our work, we observed that starting simulation time (denoted by ts here) has 

important effect on the simulated pressure and saturation by the FIMPS method. 

Here, we investigate the effect of ts on the solutions and for this investigation, we 

consider Case 3 (Levitan's finite wellbore injection example) given in Chapter 4. 

Figure 5.1 illustrates the effect of starting time on pressure-derivative curve for 

Levitan's finite wellbore case. Recall that pressure difference and derivative of 

pressure difference are calculated by the commercial well-test software ECRIN 

(2009). Although we did not consider wellbore storage and skin effects, we observe a 

hump on Bourdet derivative if the starting time of simulation is not sufficiently 

small. We believe that this is because of non-linearity of the problem. Therefore, one 

should be careful when selecting the starting time ts. Incorrect selection of ts may 

give appearance of wellbore storage and skin effects on the pressure solutions. 

5.2 Analysis of Derivatives for Injection-Falloff-Production Periods 

One of the objectives of this study is to understand the pressure response of two-

phase flow condition. In previous chapter, we validated our simulator for various 

cases. Here, we will interpret the injection-fall-off-production case given in Chapter 

4 (see Figure 4.7 for Case 2). 
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Figure 5.1 : Rate normalized P∆  and 'P∆  vs time (infinite wellbore). 

 

Figure 5.2 illustrates the pressure difference and its Bourdet derivative of injection 

period. Two radial flows are observed since there exists two zero-slope lines on the 

derivative data. The first radial flow occurs between 0.0003 hr. and 0.001 hr. When 

we inject water into reservoir, pressure propagation is ahead of the water front at 

early times. Therefore, pressure response comes from the oil zone. Based on the 

work of Amina (2007), we can also calculate the early-time Bourdet derivative from 

the formula given by 
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(5.1) 
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Figure 5.2 : P∆  and 'P∆  vs time for injection period. 

 

We observe a second radial flow starting about from 1 hr. to the end of injection 

period. As some amount of water is injected into the reservoir, pressure propagates in 

the water zone. Therefore, second radial flow contains information about the water 

zone. Based on the work of Amina (2007), the late time Bourdet-derivative reflecting 

radial flow for injection period can be calculated by 
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(5.2) 

0 /ro ok µ  and 0 /rw wk µ in Eq. 5.1 and Eq. 5.2 are called end point mobility for oil and 

water, respectively. In oil water two phase problem, end point mobility have 

significant effect on flow.  

Figure 5.3 presents the pressure difference and its derivative of the falloff period. 

We also observe two radial flow periods as in the case for the injection period. As 

water is present around the wellbore, pressure propagates in the water zone first. 

Therefore, the early-time radial flow for the falloff contains information about water 
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zone, whereas the late-time (or second) radial flow reflects the properties of the oil 

zone. Eq. 5.1 and Eq. 5.2 are still valid for the Bourdet derivative for these radial 

flow periods. 

 

 

Figure 5.3 : P∆  and 'P∆  vs time for falloff  period. 

 

Finally, we present the pressure difference and its Bourdet derivative for the 

production period in Figure 5.4. Note that a comparison of Figures 5.3 and Figure 

5.4 indicates that falloff and production periods give similar derivative responses . 

However, we observe rapid change in the pressure and derivative data, and the 

derivative data go to negative values at time of oil breakthrough during production 

period. The reason for the rapid change in pressure and derivative data is due to the 

rapid change in total mobility at the time of oil breakthrough. Recalling the definition 

of total mobility gives 

rw ro
t

w o

k k
λ

µ µ
= +  (5.3) 
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Figure 5.4 : P∆  and 'P∆  vs time for production period. 

 

Figure 5.5 represents the total mobility change with water saturation. Since water  

mobility is higher than oil mobility, with the increasing water saturation total 

mobility increases sharply. For the production period, we first produce the water and 

when the oil breakthrough occurs, total mobility decreases significiantly.  

 

 

Figure 5.5 : Total mobility change ( 3 cpoµ = , 0.5wµ = ) 
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5.3 Effect of End Point Mobility Ratio 

The mobility ratio is defined as the ratio of the mobility of the displacing phase 

divided by the mobility of the displaced phase (for example see Willhite 1986). 

There are various definitions of the mobility ratio. For the oil-water two-phase 

problem, mobility ratio can be defined by using the end point of values of the oil and 

water relative permeability. It is also referred to as the end-point mobility ratio, 

which is defined by 

0
*

0
rw o

ro w

k
M

k

µ
µ

=  (5.4) 

The water displacement is called as favorable if *M  is smaller than one and as 

unfavorable is *M  is greater than one. 

Here, we will consider an example of favorable and unfavorable of oil-water flow for 

injection-falloff test. The input data used for simulation are given in Table 5.1, and 

the same data was considered by Amina (2007). 

Here, we will compare the diagnostic pressure change and its Bourdet derivative data 

plots for the unfavorable case with 5.1 cpoµ = and for the favorable case with 

0.85 cpoµ = . We assume that water viscosity is the same for both cases and is equal 

to 0.516 cpwµ = . Water is injected with a flow rate of qw = -18869 STB/D  for a 3-

day period. Then, we will have a falloff period of 3 days. 

 

Table 5.1 : Injection-falloff data. 

Property Value 
h 78.74 ft. 

wr  0.35 ft. 

er  10000 ft. 

k 2700 md. 

iwS  0.25 

orS  0.28 

iP  3461.4 psi 

φ  0.32 

oB  1.318 RB/STB 
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wB  1.008 RB/STB 

oc  6 18 10 psi− −×  

wc  6 12.84 10 psi− −×  

rc  6 15.63 10  psi− −×  

@ iwro S
k  0.55 

( )@ 1 orrw S
k −

 0.175 

m 2 
n 2 

 

Figure 5.6 illustrates the diagnostic plots for the injection period. During early times 

of injection period, the pressure propagates first in the oil zone. Since we only 

change the oil viscosity, we observe two different radial flow periods at early times. 

However, at late time, both derivative curves are identical since we used same water 

viscosity for both cases.  

 

Figure 5.6 : Comparison of favorable and unfavorable case for injection period. 

 



66 

Figure 5.7 illustrates the diagnostic plot of the falloff period. As the pressure 

response comes from water zone at early times and the viscosities are equal for water 

for both cases, we observe identical zero slope line at early times. Similar to the 

injection period, since we used different oil viscosity, we observe two different zero 

slope lines at late times. As the beginning time of falloff is the same for both cases, 

pressure difference is identical at early time as the response comes from water zone. 

However, as soon as pressure starts propagating in the oil zone, we start to observe 

the difference on pressure difference. As in the injection test, pressure difference is 

higher for unfavorable case. 

 

 

Figure 5.7 : Comparison of favorable and unfavorable case for fall-off period. 

 

5.4 Effect of Skin on Injection-Falloff Tests 

Here, we will consider the effect of skin on pressure difference and its Bourdet 

derivative. The formulation of skin used in the simulator is given in Appendix A. 
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Hawkins’ formula (Hawkins 1956) indicates that, if we know the skin factor and the 

radius of the skin zone, we can calculate the skin zone permeability. For the 

following example we will compare three different value of skin, 0S = , 4.75S = , 

and 1S = − .We assumed that the skin zone extends from rw to 1.15 ftsr = . Using 

Hawkins’ formula, permeability of the skin zone is calculated approximately 

540 md . for positive skin case (S = 4.75) and 16942 md.for the negative skin case 

(S = -1). Other input data are given in Table 5.1, and hence we consider the same 

injection and falloff test sequence considered in the previous example for both 

favorable and unfovaroble cases.  

Figure 5.8 shows the effect of skin on diagnostic plots for injection period for a 

favorable case. Firstly, Let us start to analyze the case where skin factor equals to 

zero. At early time of injection, pressure propagates on oil zone. We calculate the 

derivative of early time as follows. 
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(5.5) 

As times goes on, water saturation increases in the reservoir. Therefore, pressure 

propagates on water zone and we observe a second radial flow period from the 

response of water zone. The numeric value of derivative can be calculated as follows. 

0

70.6 70.6 18869 1.008
' 18.62 psi

0.175
2700 78.74

0.516

inj w

rw

w

q B
P

k
kh

µ

× × × ×
∆ = = =

   × ×     

 
(5.6) 

Secondly, if we analyze the case with positive skin, we observe a sharp increase in 

both pressure difference and its Bourdet derivative at early time. If the skin zone 

radius is large enough, we expect that a radial flow occurs at early time, reflecting oil 

zone properties, and the Bourdet derivative for this radial flow period is given by the 

following formula (Amina 2007): 
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(5.7) 

According to the Amina (2007), once the flood front moves outside the skin zone, 

regardless of flow condition, pressure derivative can be negative only if the 

following condition is satisfies.   
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 (5.8) 

wλ  : water mobility 

As there is a rapid increase in total mobility, pressure decrases during injection 

period. Therefore, discontinuity at the derivative occurs when the water front reaches 

the skin zone diameter and has a negative value. 

As sufficient amount of water is injected into a reservoir, pressure propagates on 

water and we observe a zero-slope line which indicates radial flow. The numerical 

value of derivative at late time is calculated from. 
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(5.9) 

Finally, we discuss the results for the negative skin case. We expect that first radial 

flow will occur in the skin zone. However, as the skin zone permeaiblity is 

sufficiently high we do not observe the first radial flow which should be the response 

from oil present in the skin zone. Actually, if we could have data at earlier time, 

derivative would be constant. The derivative is calculated from 
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(5.10) 
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However, since the permeability is too high because of negative skin, pressure 

propagation is fast. Second derivative that we observe on derivative is caused by oil 

zone response, since after passing the skin zone pressure propagates on oil zone. The 

value of derivative can be calculated from 
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(5.11) 

As the time goes on, water saturation increases and pressure propagates on water 

zone. Therefore, we observe a second radial flow containing information about water 

zone. The late-time derivative is calculated from 
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(5.12) 

When we consider three cases, we observe that the case with no-skin effect reach the 

late radial before the others. So, displacement efficiency is better. Moreover, we 

observe that we need much more pressure drop in the case of positive skin case. 

Figure 5.9 illustrates the effect of skin on unfavorable flow. Similarly, we can find 

the value of derivative for early time radial flow for no-skin case as follows. 
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(5.13) 

and late time derivative, 

0

70.6 70.6 18869 1.008
' 18.62 psi

0.175
2700 78.74

0.516

inj w

rw

w

q B
P

k
kh

µ

× × × ×
∆ = = =

   × ×     

 
(5.14) 
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Figure 5.8 : Effect of skin on injection period (favorable). 

 

 

Figure 5.9 : Effect of skin on injection period (unfavorable). 
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For the positive skin case, we observe a discontinuity in derivative as in favorable 

case. According to Amina (2007), discontinuity occurs for unfavorable flow and 

derivative can be negative at early times if the following condition is present. 

* 1 1s
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M
k

 − > 
 

 (5.15) 

He also metion that it is possible only when the well is damaged and the mobility 

ratio is unfavorable. When the water zone goes out of skin zone and the water 

saturation increases, we observe a zero slope which indicates the radial flow with 

same value as calculated in Eq. 5.14. 

Recall that we should also see a radial flow because of the skin zone if we could start 

the simulation at earlier times. The value of derivative would be, 
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(5.16) 

Finally, for negative skin case, we expect that early time response comes from the oil 

which is in skin zone. However, as in the favorable case, pressure propagates fast and 

that is why we do not see it on the plot. derivative of first radial flow which should 

be the response of oil in skin zone can be calculated as follow. 
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(5.17) 

Socondly, we should observe a response of oil zone. Numeric value of derivative is 

calculated as follows. 
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(5.18) 

We observe a small pick on derivative around 0.007 hr. We belive that water front 

reaches the skin zone radius. As the permeability decreases after this radius for 

negative skin case, we start observing decrease on derivative. Finally, when 
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sufficient amount of water is injected to the reservoir, pressure propagates on water 

zone and we observe a zero slope. The value of derivative is calculated from 
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(5.19) 

 

Figure 5.10 and Figure 5.11 illustrates the effect of skin on falloff period. We can 

use the same anaylsis technique to determine the value of derivative. However, since 

the water is present in the reservoir, we would observe a early radial flow from the 

response of water zone and late radial flow from the response of oil zone. 

One can see easily that, during fall off period, it is impossible to observe difference 

on derivative. The only difference occurs at really early times. However, as in the 

injection case, pressure change in the reservoir is different and higher for positive 

skin case. 

 

 

Figure 5.10 : Effect of skin on fall-off period (favorable) 
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Figure 5.11 : Effect of skin on fall-off period (unfavorable). 

 

Here, we applied the Hawkins formula to impliment the skin in our solution. In the 

formula, we use skin radius and actually for each well it may differ. Therefore, we 

present the effect of skin zone radius on diagnostic plot in Figure 5.12. We used 

same data that used previously and constant skin of 4.5 for unfavorable flow case. 

As it is clear from Figure 5.12, skin radius does not significantly affect the pressure 

difference. However, it shifts the derivative curve. As much as skin radius bigger, 

pressure propagation is longer in skin zone. Therefore, derivative curve shifts 

righthand side. Moreover, if the skin radius is small, late time radial flow occurs at 

earlier time. 
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Figure 5.12 : Effect of skin radius (unfavorable, s = 4.75). 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

On the basis of this study, following conclusions are warranted: 

• Although it is widely used, IMPES method may suffer because of stability 

problems since saturation equation is solved explicitly if the number of grid 

blocks is not appropriately chosen. The results indicate that the IMPES 

requires sufficiently large sized grid blocks should be used in simulation to 

improve the accuracy and avoid the stability problems of the solutions.  

• It is found that the FIMPS method is not susceptible as the IMPES method to 

the number of grid blocks, and provides very accurate solutions without any 

stability problem. However, the cost of the computations is larger for the 

FIMPS as the matrix size to be solved in the FIMPS is about twice the size of 

the matrix problem to be solved in the IMPES method. 

• It is found that initial time step of simulation has a great affect on the 

Bourdet-derivative of pressure difference. 

• Unlike single phase flow, two radial flow is observed in two phase flow of oil 

and water. In the injection period, first radial flow occur because of the 

response of oil zone and second radial flow because of water zone that is 

injected. However, during fall of period, first radial flow is the response of 

water zone where second radial is the response of oil zone. 

• It is observed that the end point mobilities of oil and water have a great affect 

on injection pressure response.  

• In injection tests, the derivative of pressure difference can be negative not 

only because of positive damage around the wellbore but also rapid change in 

total mobility. 



76 

• It is observed that better analysis can be applied on injection test when skin is 

present because effect of skin on falloff tests occurs at sufficiently early 

times. 

 
The following recommendations are given: 
 

• One should be careful to stability problem of IMPES method especially when 

using MacDonalds and Coats method for gridding. 

• Because of the non-linearity of the problem, starting time of simulation must 

be sufficiently small in order to avoid misinterpretation of diagnostic plot. 

• In this work, only forward problem solution is considered. It is recommended 

that inverse problem should be studied to infer absolute and relative 

permeability data as well as skin factor from observed pressure and saturation 

data in a future work. 
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APPENDIX A.1 

Calculation of parameters at grid boundaries 

Let us recall the general finite difference equation given in Eq. 3.41 for oil and water 

flow. 
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As stated in Chapter 3, we solve Eq. A.1 with FIMPS (or Newton) and IMPES 

methods. To do that, we need to discretize the partial differential equations as given 

in Eq. A.1 for a grid system. From Eq. A.1, it is clear that we first need calculate 

transmissibility in Eq. A.1 to solve the general finite difference equations. 

Definitions of transmissibility are as follows. 
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Let us consider first the oil and water viscosity. In this study, we assumed that 

constant viscosity. However, it may differ from grid to grid. We calculate the 

viscosity at boundaries using simple arithmetic averaging formula given as follows. 
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µ µ
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+
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=  (A.8) 
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µ µ
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+

+
=  (A.9) 

, , , , 1

1
, ,

2 2
i j k i j k

i j k

µ µ
µ +

+

+
=  (A.10) 

We use the same averaging technique for the calculation of formation volume 

factors. However, as we assume that formation volume factor changes with pressure 

we use simple formulation to calculate the inverse of volume factor as follows to 

calculate them in grid centers. 

( )( )0
, , , , ,1m i j k m m i j k bb b c P P= + −  (A.11) 

, , ,m i j k
b  : inverse of formation volume factor for phase m 

0
mb   : inverse of formation volume factor at base pressure for phase m 

mc  : isothermal compressibility of fluid phase m 
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, ,i j k
P   : pressure of the grid block with indices i,j,k 

bP   : base pressure (14.7 psi) 

Once we calculate the inverse of formation volume factor, we use arithmetic 

averaging to calculate the inverse formation volume factors at grid boundaries. 
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+

+
=  (A.14) 

Harmonic averaging technique applied to calculate the absolute permeaibility at grid 

block boundaries. The definitions for harmonic average for absolute permeability are 

as follows. 
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(A.17) 

Finally, the last parameter that we need to calculate in transmissibility terms is 

relative permeability. There are different approaches to construct relative 

permeability curves such as straight-line method and power law method. In this 
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study, we use the power-law model to construct relative permeability curves. Model 

parameters calculated as follows. 

( )0 01         1    and    2,3,4
m

ro ro wD ro
k k S k m= − ≤ =  (A.18) 

( )0 0        1    and     2,3,4
n

rw rw wD rw
k k S k n= ≤ =  (A.19) 

Where, 

, , , ,

,1
w i j k w ir

wD

w ir or

S S
S

S S

−
=

− −
 (A.20) 

0
rok  : oil relative permeability at irreducible water saturation 

0
rwk  : water relative permeability at residual oil saturation 

, , ,w i j kS  : water saturation of specified grid 

,w irS  : irreducible water saturation 

orS  : residual oil saturation 

wDS  : dimensionless water saturation 

An example relative permeability curves are given in Figure A-1. For the 

construction of the curves we used 0 0.55rok = , 0 0.175rwk = , , 0.25w irS = , 

0.28orS = , 2n m= = . 

Once we calculate the relative permeability values, we used up winding technique to 

calculate the values at grid boundaries. Basically, up winding technique is a method 

to find the value at the grid boundary using flow direction. In this study, we used the 

pressure to find the flow direction. We check the pressure between two grids and, 

assumed flow will occur from higher pressured grid to lower one.  
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Figure A.1 : Example relative permeability curves 

 

Calculation of parameters at inner boundary 

We call the first grid boundary located at well radius at r  direction as inner 

boundary. If we rewrite the transmissibility, 
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 (A.21) 

We use the grid viscosity value for inner boundary since it is constant.  

 

1 1, ,
, ,

2

j k
j k

µ µ=  
(A.22) 

We do the same approach for absolute permeability.  
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1 ,1, ,
, , ,
2

for , , ors j k
s j k

k k s r zθ= =  
(A.23) 

However, inverse of formation volume factor is calculated using first grid and well 

pressure using Eq. A.11. Then, we use arithmetic averaging to find the inverse of 

formation volume factor at inner boundary as follows. 

0, , 1, ,,@ ,@

1
, , ,
2 2

j k j km P m P

m j k

b b
b

+
=  (A.24) 

Calculation of relative permeability differ according to the operation. In injection 

period, we assume that relative permeability of water equals to the value at residual 

oil saturation. Similarly, we do the same approach for oil relative permeability. 

Mathematically, for injection, 

( )1 @ 1, , ,
2

or
rw S

rw j k
k k −=  

(A.25) 

( )1 @ 1, , ,
2

0
or

ro S
ro j k

k k −= =  
(A.26) 

During falloff and production period, we use the value of the grid same as we did for 

viscosity and absolute permeability. 

Calculation of parameters at outer boundaries 

Since we assumed that, no-flow boundaries are present at the edge of the reservoir, 

outer boundaries conditions at r z−  directions are as follows. 
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(A.29) 

For θ  direction, we need to consider two options. If 0360θ ≠ , 
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If 0360θ = , 
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(A.39) 
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Finally, up-winding (or upstream) method applied between first and last grid at θ  

direction to find the relative permeability at the boundary located at 0 00 360θ = = . 
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Calculation of Skin Factor 

Skin can be applied either rearranging transmissibility term or by well known 

Hawkins formula given as follows. In this study, we applied the skin using Hawkins 

formula. 

1 ln s

s w

rk
s

k r

   
= −   
   

 (A.41) 

s  : skin 

sk  : permeability of invaded zone 

k  : permeability of uninvaded zone 

sr  : radius of invaded zone 

wr  : wellbore radius 

 

Calculation of derivatives in Jacobian Matrix 

In this study, derivatives in Jacobian matrix is calculated numerically. Our 

expereiments show that the best results are obtained when using a central difference 

method. Derivative of oil and water residual is calculated as follows. 
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ω ω
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Moreover, we also applied the central difference method for well equation as 

follows. 

( ) ( )
( )

2
well well wellf f P f P

P
P

ε ε
ε

∂ + − −
=

∂ ×
 (A.46) 

Log Time Step Selection 

Beginning time for simulation : bt   

End time for simulation : et  

10npts =  

Step 1 – Compute the ratio 

e

b

t
R

t
=  (A.47) 

Step 2 – Compute the number of log cycles 

( )10int log 1ncyc R= +    (A.48) 

Step 3 – Compute the total number of time points to be generated. 

ncyc ncyc npts= ×  (A.49) 

Step 4 – Compute the factor to be used for geometric progression. 

1

NTPFACT R=  (A.50) 
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Then set 1NTP NTP= +  

Step 5 – Generate the time points from bt  to et . 

( )

( ) ( )
( ) ( ) ( )

set 1

do 2   NTP

1

1

End do

b
t t

i

t i FACT t i

t i t i t i

=

=
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 (A.51) 
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