ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

TRANSFORMING FEEDBACK CONTROL SYSTEMS
ON WHITEBOARD INTO MATLAB VIA
A DEEP LEARNING BASED INTELLIGENT SYSTEM

M.Sc. THESIS

Dorukhan ERDEM

Department of Control and Automation Engineering

Control and Automation Engineering Programme

JULY 2020






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

TRANSFORMING FEEDBACK CONTROL SYSTEMS
ON WHITEBOARD INTO MATLAB VIA
A DEEP LEARNING BASED INTELLIGENT SYSTEM

M.Sc. THESIS

Dorukhan ERDEM
(504181110)

Department of Control and Automation Engineering

Control and Automation Engineering Programme

Thesis Advisor: Assoc. Prof. Tufan KUMBASAR

JULY 2020






ISTANBUL TEKNIiK UNIiVERSITESI * FEN BIiLIMLERI ENSTITUSU

DERIN OGRENME TABANLI AKILLI BiR SiSTEM iLE
BEYAZ TAHTADAKI GERIiBESLEMELI
KONTROL SiISTEMLERININ MATLAB ORTAMINA AKTARILMASI

YUKSEK LiSANS TEZi

Dorukhan ERDEM
(504181110)

Kontrol ve Otomasyon Miihendisligi Anabilim Dah

Kontrol ve Otomasyon Miihendisligi Program

Tez Damismani: Do¢. Dr. Tufan KUMBASAR

TEMMUZ 2020






Dorukhan Erdem, a M.Sc. student of ITU Graduate School of Science Engineering
and Technology student ID 504181110, successfully defended the thesis entitled
“Transforming Feedback Control Systems on Whiteboard into Matlab via A Deep
Learning Based Intelligent System”, which he prepared after fulfilling the
requirements specified in the associated legislations, before the jury whose signatures
are below.

Thesis Advisor : Assoc. Prof. Tufan KUMBASAR e
Istanbul Technical University

Jury Members:  Assist. Prof. ilker USTOGLU ..o,
Istanbul Technical University

Assist. Prof. Giirkan SOYKAN .,
Bahgesehir University

Date of Submission : 7 July 2020
Date of Defense : 14 July 2020






To my family,

vii






FOREWORD

I would like to thank my thesis advisor Assoc. Prof. Dr Tufan Kumbasar for his
guidance and everlasting support. I am grateful to him for making me part of the
Artificial Intelligent and Intelligent Systems Laboratory team.

I would also like to thank Scientific and Technological Research Council of Turkey
(TUBITAK) for their aid under the research project 118E807.

Finally, i would like to thank Gamze for standing by my side through thick and thin
and thank my family for their unending support.

July 2020 Dorukhan ERDEM






TABLE OF CONTENTS

Page

FOREWORD ..ottt bbbttt bbbt IX
TABLE OF CONTENTS ..ottt Xi
ABBREVIATIONS ... .ottt bbb Xiii
SYMBOLS ... anas XV
LIST OF TABLES ... XVii
LIST OF FIGURES ......coooiiie et XiX
SUMMARY L.ttt ettt bbbt e b e e et et be st nrenrean XXI
OZET oottt XXV
1. INTRODUCTION ...ttt sttt sttt st ne e nens 1
2. DEEP LEARNING ....coooiiee ettt ettt sne e 9
2.1 Perceptron MOGEIS.......ccue i e 9
2.2 Gradient-Based LEAINING .......cccviieieiierieniesiesie sttt 12
2.3 Stochastic Gradient DESCENT.........ccciuurieriereieiie e 15
2.4 MUILHAYEE PEICEPIIONS ..ottt 15
2.5 BaCK-PrOPAgALION .....oveviieiiiiisie sttt sttt sttt 18
2.6 Training, Validating and Testing Datasets............ccccereriiereneneneseeeeeeens 19
2.7 Methods to Improve Performance.........ccoceveveiiiiniininesese e 21
2. 7.1 REQUIANIZALION ...oveiei it 21
2.7.2 Gradient descent With MOMENTUM ..........ccocviiiinieieieee e 21
2.7.3 Batch normalization ..........c.covviiiiieie s 22

2.8 Convolutional Neural NetWOrKS.........ccocoiiiiiiiiiinieeeee e 23
2.8.1 ConVOIULIONAl LAYET ....c..oiviiiiiiiieieee s 24
2.8.2 PO0ONING LAYEE ...ttt 28
2.8.3 Two Dimensional Batch Normalization ............c.ccoccvvveviienesieniieneeieenn, 29
2.8.4 ACHIVALION LAYEK ....cvieieciic ettt 30
2.8.5 TaSK-SPECITIC LAY .....oviiiiiiiiiieiieieie et 32

2.9 DEEP NEIWOIKS ...ttt sttt 33
2.10 TranSter LEAIMING ......ooviiiiiiiieeiieieie et 37
3. DL BASED PIPELINE .......ooiiiititeeeeee et 41
3.1 Handwritten Feedback Control Architecture Recognition............cc.cccvvevenennn, 43
3.2 Transfer Function BIOCK DeteCtion ..........ccccoovvinininiiieie e 44
3.2.1 Binarization Of HFCA .......ooioe et 45
3.2.2 Character and N0ise REMOVAL...........ccccvviiiiiiiiiieeieee e 46
3.2.3 Filling Transfer FUNCLION BIOCKS ...........cccooiiiiiiiiiieec e 47
3.2.4 Rectangle EXIraCtiON ........ccviiiieiieiie st 47
3.2.5 Handwritten Character RECOgNItION. ..........ccocvviviiieieieie e 48

3.3 Symbolic EXpression CONStIUCTION .........covveiiiieieeiinie e 51
3.4 Feedback Control Architecture Generation In Matlab®...............ccccccevveeennnee 54
3.5 Real-Time Performance of the Pipeline ... 55
4, CONCLUSION.....cot ittt re e ra e e 59
REFERENCES. ...ttt bbbt 61
CURRICULUM VITAE ..ottt 67

Xi






ABBREVIATIONS

FCA : Feedback Control Architecture
TF : Transfer Function

LQOR : Linear Quadratic Control

IMC . Internal Model Control

DL : Deep Learning

CNN : Convolutional Neural Networks
HFCA : Handwritten FCA

PR : Pattern Recognition

NN : Neural Network

ML : Machine Learning

Al . Artificial Intelligence

SL : Supervised Learning

GD : Gradient Descent

MSE : Mean Square Error

SGD : Stochastic Gradient Descent
FP : Forward Propagation

BP : Backward Propagation

BN : Batch Normalization

RGB : Red Green Blue

HFCAR : HFCA Recognition

HCR : Handwritten Character Recognition
BB : Bounding Box

Xiii






SYMBOLS

X; - Input of i layer

w; : Weight of i layer

b; : Bias term of i" layer

z; - Activation of i layer

yi - Output of i layer

gi - Activation function for i"" layer

a : Learning rate

y : Predicted output of a NN

(7] : Vector containing weights and biases of a neural network
A : Regularization constant

v : Momentum term in GD with momentum
X - Normalized inputs of i" layer

Up : Batch mean

op : Batch standard deviation

Y : Scaling constant in BN

B : Shifting constant in BN

Hy : Height of filter in 2D convolution

W;g : Width of filter in 2D

: Height of the input image in convolution

: Width of the input image in convolution

: Number of channels of a tensor

: Number of filters in a convolutional layer

: Output height in convolutional layer

: Output width

: Padding amount in a conv

: Stride amount in a convolutional or pooling layr
: Total number of classes in a classification network
- Binarization threshold

: Circularity measure

: Rectangularity measure

major : Length of major axis of a region

=

=

N

HOUTQLWWETIMOSETE

~ b~

minor : Length of minor axis of a region

XV






LIST OF TABLES

Table 1.1 :
Table 2.1 :
Table 2.2 :
Table 3.1 :
Table 3.2 :

Page
Descriptions of FCA’s defined in [14]......cocoviviiiiiiiiiiie e 2
Depth and error rates of major CNN architectures ..........ccccoeeveeervenenne. 34
Number of samples for some of the image datasets..............cccccvevvrenenne. 39
Performance of deep CNN for HFCAR........ccooiiiiiiiieeen 44
Performance of the deep CNN for HCR .........cccooviiiiiiiie e, 51

XVii






LIST OF FIGURES

Figure 1.1 :
Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 2.6 :
Figure 2.7 :
Figure 2.8 :
Figure 2.9 :

Figure 2.10 :
Figure 2.11 :
Figure 2.12 :
Figure 2.13 :
Figure 2.14 :
Figure 2.15 :
Figure 2.16 :
Figure 2.17 :
Figure 2.18 :
Figure 2.19 :
Figure 2.20 :
Figure 2.21 :
Figure 2.22 :
Figure 2.23 :
Figure 2.24 :

Figure 3.1 :
Figure 3.2 :
Figure 3.3 :
Figure 3.4 :
Figure 3.5 :
Figure 3.6 :
Figure 3.7 :
Figure 3.8 :
Figure 3.9 :

Figure 3.10 :
Figure 3.11 :
Figure 3.12 :
Figure 3.13:
Figure 3.14 :
Figure 3.15:
Figure 3.16 :

Figure 3.17 :
Figure 3.18 :

Page
[Hustration Of the FCAS ... 5
A visual representation of Perceptron...........coceovvvienineiieninieicee, 10
Perceptron with activation function..............cccccccevveveiiine e 11
Sigmoid activation fUNCHION ... 12
Visual representation 0f GD ........cccocveiiiiiiic e 13
AN example NIN ..o 17
Graph representation of multiplication operation.............cccccvevvevvennenn, 18
Computational graph of a three-layered network..............cccecvevereennenn, 19
Example partitioning of a dataset. ..........cccccvevvivieiveve i 20
An example GD with oscillating gradients ...........ccccoeiiiiiininiciene, 21
LeNet Architecture [60] .......ccovevveieeiiiieceere e 24
Convolution operation With CONSEraINtS ..........cccceveieiininiiieeee, 26
Convolution with zero padding ..........ccccovveveiieiieieseece e, 27
A visual representation of max pooling..........ccccevevereniniinieniinieens 29
A visual representation of average pooling..........cccccvevevivevviiieieenenn, 29
Hyperbolic activation fFUNCLION .............ccovriiieieies e 30
First-order derivatives of hyperbolic and sigmoid functions .............. 31
Plot of ReLU activation fUNCLION ..........cccooveiierieniie e 32
AlexNet architeCture [43] ......coovveieeiieie e 34
VGGNet architeCture [75] ...ccvoveieieieieie e 34
Residual block with two-layer SKipping .......cccccccvvveiiieviniieseece e, 36
Base plain NetwWork [44]........coooiiiiiiiiieee e 36
ResNet-34 architeCture [44] ..o oo 36
Residual block with three-layer sKipping.........ccccoveieiiiininiiniceen, 37
Feature extraction and task specific layers of a CNN .............cc.c....... 38
Overview of the proposed DL pipeline ........cccccooeviieninieniniiieieee, 42
AN example HFCA ... 43
EXample HFCA IMAJES .....ccviiiieieieieesie et 43
HFCAR mean (a) loss values (b) accuracy values.............ccccoveevenennen, 45
BINArized IMAGE.......oov i 46
Character and noise filtered binary image..........ccccceevvivevieeiecieseeennn, 47
Filled Dinary iMage.........cooooiiiiiiee e 47
Detected reCtangles........cccveiveiiiieee e 48
Extracted TF DIOCK IMAGE .....c.oviiiiiiiiiieeee e 49
Segmented TF BIOCK IMAQE ........ccvveiiiieii e 49
Example charaCter IMages.........cooeieiininineiieee e, 50
HCR mean (a) loss values (b) accuracy values ...........c.ccccceveveiveennen. 51
Labeled TF bIOCK IMAGE......ccoiiiiiiiiiicee e 52
Labeled numerator and denominator............cocevvevenieniencnie e 53
TF in Matlab® ........ccccviiiiiiiiiic e 53
(a) Matlab command window (b) Step Response (¢) Root-Locus and
Bode plots (d) Simulink diagram ..........cccceveverenenenineseeee e, 55
Flowchart of the real-time application .............ccceovevieiiiecie e, 56

(a) Experiment environment (b) Projected Simulink™ window (c)
SIMUIALION FESUIL........oviii

XiX






TRANSFORMING FEEDBACK CONTROL SYSTEMS ON WHITEBOARD
INTO MATLAB VIA A DEEP LEARNING BASED INTELLIGENT SYSTEM

SUMMARY

In control theory, some concepts can be better grasped with further visualization. Some
core concepts such as the transient and steady-state behavior of a system or the interval
at which it is stable can be better expressed using plots in time and frequency domains.
The introduction of these visual aids has an important place in control lectures. In the
classroom environment, instructors usually draw the corresponding graphs about a
system by hand after presenting its control diagram. Hand drawing a plot is a difficult
and time-consuming process and it is not possible to correctly scaled graphs this way.
In order to correctly analyze a system, a simulation environment like Matlab® should
be preferred. In this thesis, we have proposed a deep learning based pipeline that can
recognize and transfer a block diagram on the whiteboard to the Matlab® environment.
This way, control systems drawn by the lecturers can be properly analyzed with
computer-generated plots without redefining them in the Matlab®.

Generally, feedback control architectures are covered in control system lectures. These
architectures can be visually represented with block diagrams. In a block diagram,
transfer blocks are shown as rectangles and the connections between these blocks are
indicated with arrows. The arithmetic operations like summation and subtraction
between the signals are also shown inside small circles. A feedback control system
may contain transfer functions for the filter or noise dynamics along with the controller
and the plant. The number and the location of these transfer functions, their connection
schemes, the number of forward or backward paths separates an architecture from
another. In order to transfer a handwritten block diagram to Matlab® these
informations must be extracted first using computer vision techniques. Then, the
contents of each transfer function must be found in order to represent them in Matlab®.
An architecture with known connections and transfer functions can be easily expressed
in the Matlab® environment. If desired, a simulation model can be created Simulink™
or analyzed with Control System Designer App™.

The control architecture from a given picture can be found with different approaches.
A possible one is to handle the recognition task as a classification problem. In
classification problems, inputs are assigned to one of the pre-defined classes by
calculating a similarity ratio. In the context of feedback control architecture
recognition, frequently used architectures can be selected as the class set, and the
corresponding class can be found by examining the input image. Classification
problems usually require a feature extraction method. These methods transfer the
inputs to a feature space and the classification is done between the points in that space.
The accuracy of the classification task depends on the selected feature extraction
method and finding a proper method is the main challenge in classification problems.
An ideal feature extraction method should not be affected by the uncertainties in the
input image. Lighting condition is among the most common uncertainties in image
processing problems. The intensity of the light can cause dark areas to appear brighter
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and can cause information loss. Also, the quality of the lecturer’s handwriting quality
can cause further uncertainties in our handwritten architecture recognition problem.
Long sessions may deteriorate the lecturer’s handwriting quality or different
handwritings among various lecturers can harm the generalizability of the
classification model. VVarious feature extraction algorithms exist in the computer vision
literature, but a majority of them are not robust to transformations or noises in the input
images. Therefore, structures that automatically extract features such as neural
networks are preferred.

In this thesis, recognition of a handwritten feedback control architecture is handled as
a classification task where the classes are the 6 feedback control architectures defined
in the Control System Designer App™. In order to accomplish the classification task,
we have trained a deep Convolutional Neural Network (CNN). For the training, we
have collected images of handwritten feedback architectures with the help of various
lecturers. Although we have gathered as many samples as we can, constructing a
dataset is a time-consuming process. To avoid problems that may arise from the lack
of data, we have adopted the transfer learning approach. With the transfer learning
approach, a deep network trained on large datasets like ImageNet can be adapted to
new classification tasks by replacing its last layers. As the base network for our CNN,
we have selected ResNet-50 since it shows high classification accuracies in benchmark
tests and doesn’t suffer from a common problem called gradient vanishing.

The next step in our deep learning based pipeline is to construct the transfer functions.
To create the mathematical expressions of the transfer functions, characters in the input
images must first be recognized. Besides, we need to be able to determine which
characters belong to which transfer function. If the location and the dimensions of each
transfer function block in the input image are known, the corresponding characters can
be searched inside these regions. Considering the transfer functions are represented as
rectangles in block diagrams, we continued our pipeline with a rectangle detection step
in this context. First, the input image is binarized with a thresholding algorithm.
Possible noises caused by illuminations are then filtered from the binary image. After
the filtering operation, an edge detection algorithm is applied and the outermost edge
is removed from the binary image. With a filling method that fills closed contours, we
ended up with regions as candidate rectangles. Using the connected component
analysis and inspecting the rectangularity of each region, actual rectangles and their
locations are found. At this point, the architecture and the transfer functions it contains
are already known. Starting from the upper-left one, rectangles are then matched with
the transfer functions by comparing their locations.

Following the rectangle detection step, regions belonging to the transfer functions are
cropped from the filtered binary image. Then the characters are detected in these
cropped regions using the connected component analysis. In order to label the detected
characters, we have trained another CNN using a pre-trained ResNet-50 as a base
network. There are 20 possible labels for a character consisting of the arithmetic
operators, parentheses, digits, and the ‘s’ character. We have also constructed a second
dataset for the character classification task.

After detecting the transfer function blocks and recognizing the characters they
contain, symbolic expressions for each transfer function can be constructed. A transfer
function can be defined in Matlab® by finding the coefficients of its numerator and
denominator. The coefficients can easily found from the symbolic expressions with
the functions provided by Matlab®. For this purpose, the characters in each block are
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first sorted by their horizontal positions. Using the vertical position of the character
that represents the fraction sign, the remaining ones are then separated as numerator
and denominator. By concatenating the labels of the ordered characters, equation
strings are generated. From the equation strings, symbolic expressions are constructed
and the required coefficients are found. Thus, all the information necessary to transfer
the feedback architecture drawn on the board to the Matlab® environment was
obtained.

At the end of the deep learning based pipeline, the recognized architecture can easily
be transferred to the Control System Designer App™. The application requires the
type of the feedback control architecture and the expressions of the transfer functions
to create a new analysis, which is already present at this point. Alternatively, a
Simulink™ model can be generated by defining the connections and transfer functions.
To test the real-time capabilities of our pipeline, we finally created a test application
that uses our pipeline. It processes images gathered from a live camera and creates a
Simulink™ model if it detects a suitable feedback control architecture.
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DERIN OGRENME TABANLI AKILLI BiR SiSTEM iLE BEYAZ
TAHTADAKI GERIBESLEMELI KONTROL SiSTEMLERININ MATLAB
ORTAMINA AKTARILMASI

OZET

Kontrol teorisinde bazi konular, daha iyi kavranabilmeleri i¢in gérsel metotlara ihtiyag
duyar. Bir sistemin gegici ve siirekli haldeki davranist veya hangi araliklarda kararli
oldugu gibi temel bilgiler gorsel zaman veya frekans tanim bolgelerinde olusturulan
grafiklerle gosterildiginde daha iyi ifade edilebilmektedir. Ayrica koklerin yer egrisi
veya Bode grafikleri gibi zaman ve frekans bdlgesindeki gorsel yontemler ile
sistemlerin tasarimi da yapilabilmektedir. Kontrol derslerinde de bu gorsel araglarin
tanitimi 6nemli bir yer tutmaktadir. Sinif ortaminda islenen derslerde egitmenler blok
semasi verilen bir sistem ile ilgili grafikleri tahtaya yaklasik bir sekilde ¢izmektedirler.
Bu hem zaman alan zor bir siiregtir hem de 6lgeksiz ¢izilen grafikler yiiziinden
kavramlarin anlasilmasini giiglestirmektedir. Ele alinan sistem hakkinda dogru bir
sekilde yorum yapabilmek i¢cin Matlab® gibi bir benzetim ortami kullanilmalidir. Bu
tez kapsaminda, tahtaya ¢izilmis kontrol semalarini taniyan ve Matlab® ortamina
aktarabilen derin 6grenme tabanli bir ydntem 6nerilmistir. Onerilen bu yontem derin
O0grenme ve goriintii isleme yontemlerini kullanmakta ve kontrol semalarini gergek
zamanda bilgisayar ortamina aktarabilmektir. Boylece ders esnasinda egitmen
tarafindan tahtaya cizilen kontrol mimarilerinin sistem yaniti, kontroldr isareti gibi
grafikler kolaylikla ve dogru bir sekilde elde edilebilmektedir. Ustelik tahtadaki
mimarinin Matlab® ortaminda bir kez daha olusturulmasina gerek kalmamaktadir.
Onerilen yontem gercek zamanl calistigi igin el ile cizilmis semadaki herhangi bir
degisiklik de benzetim ortaminda goriilebilmektedir. Bu sekilde sistemin kutup ve
sifirlar giincellenerek sistem cevabi lizerindeki etkileri kolaylikla goriilebilmekte veya
farkli kontrolor parametrelerinin ayar1 yapilabilmektedir.

Kontrol sistemi derslerinde genellikle geri beslemeli kontrol mimarileri ele
alinmaktadir. Bu mimariler blok semalariyla gorsel olarak da ifade edilebilmektedir.
Bir kontrol semasinda transfer fonksiyonlar1 dortgenler ile temsil edilmekte ve oklar
araciligiyla birbirilerine baglanmaktadir. Ayrica sinyaller arasindaki toplama ve
¢ikarma gibi aritmetik islemler de daireler icerisinde gosterilmektedir. Geri beslemeli
bir kontrol yapisinda kontrol edilmek istenen sistemin ve kontroldrlerin yaninda sensor
dinamiklerini ve giriiltli filtrelerini temsil eden transfer fonksiyonlar1 da
bulunabilmektedir. Belirtilen transfer fonksiyonlarinin konumlari, aralarindaki
baglantilar, ileri ve geri yollarin sayilar1 gibi etkenler herhangi bir mimariyi bir
digerinden ayirmaktadir. Tahtaya c¢izilmis bir blok semasini Matlab® ortamina
aktarilabilmesi icin Oncelikle semanmn bilgisayar tarafindan algilanmasi
gerekmektedir. Bir kamera ile goriintiisii kaydedilen bir blok semasindan, goriintii
isleme yontemleri kullanilarak gerekli bilgiler elde edilebilir ve bu sema bilgisayar
ortaminda yeniden olusturulabilir. Bunu bagarabilmek i¢in 6ncelikle semada belirtilen
mimarinin yapist olusturulmalidir. Mimarinin kag¢ tane transfer blogu icerdigi,
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aralarindaki baglanti yapilar1 gibi bilgilerin bilinmesi daha sonraki adimlarini da
kolaylastiracaktir. Bir sonraki asamada ise her bir transfer blogunun igerigi elde
edilmeli ve transfer fonksiyonlari benzetim ortaminda olusturulmalidir. Baglantilart
ve transfer fonksiyonlar1 bilinen bir mimari kolaylikla Matlab® ortaminda ifade
edilebilmektedir. Istenirse Simulink™ ile benzetim modeli olusturulabilmekte veya
kontrol sistem tasarim uygulamasi (Control System Designer App™) ile analizi
yapilabilmektedir.

Verilen bir resimden kontrol mimarisi farkli yaklasimlarla bulunabilir. Bunlardan bir
tanesi, problemi bir smiflandirma gorevi olarak ele almaktir. Siniflandirma
problemlerinde girdiler benzerlik oranlarina gore 6nceden belirlenmis siniflardan bir
tanesine atanirlar. Kontrol mimarisi tespiti baglaminda da siklikla kullanilan mimariler
onceden belirlenebilir ve blok semasinin resmi incelenerek hangisine en ¢ok benzedigi
bulunabilir. Stniflandirma problemleri genellikle bir 6zellik ¢ikarma yontemine ihtiyag
duyar. Ozellik ¢ikarma ydntemleri girdileri bir 6zellik uzayina aktarir ve siniflandirma
islemi bu uzaydaki noktalar arasinda yapilir. Siiflandirma isleminin basarisi,
kullanilan 6zellik ¢ikarma yontemine dayanmaktadir ve uygun bir 6zellik ¢ikarma
yontemi bulmak smiflandirma problemlerinin baslica zorlugudur. Ideal bir 6zellik
¢ikarma yonteminin resimdeki belirsizliklerden etkilenmemesi gerekir. Goriintii
isleme problemlerinde ortam 15181 en ¢ok karsilasilan belirsizlikler arasindadir. Isigin
siddeti yer yer parlamalarla koyu bélgelerin aydinlik goziikmesine ve ilgilenen objenin
kaybolmasina neden olabilir. Ele alinan mimari tanima probleminde ise 1siktan
kaynaklanan giiriiltiilerin yam1 sira egitmenin yazi kalitesi de belirsizlik
yaratabilmektedir. Egitmenin yazist bir siire sonra bozulabilmekte veya egitmenler
arasinda karakter tipleri farklilik gosterebilmektedir. Goriintii igleme literatiiriinde
farkli ozellik cikarma algoritmalar1 bulunsa da bu yoOntemler giiriiltilere karsi
dayaniksiz kalmakta ya da telif hakkiyla korunmaktadirlar. Bu ylizden noral aglar gibi
otomatik 6zellik ¢ikaran yapilar tercih edilmektedir.

Bu tez kapsaminda mimari tespiti bir siniflandirma problemi olarak ele alinmis ve
kontrol derslerinde siklikla kullanilan 6 farkli mimari belirlenmistir. Ayrica
belirtilmelidir ki kontrol sistem tasarim uygulamasit da yine bu 6 farkli mimariye ait
yapilarla g¢alisabilmektedir. Siniflandirma goérevinde kullanilmak iizere derin bir
Evresimli Sinir Ag1 (CNN) egitilmistir. Goriintii isleme problemlerinde CNN yapilari
Egitim icin farkli egitmenlerden toplanan ve belirlenen 6 mimarinin sinif ortamindaki
beyaz tahta ¢izimlerini iceren bir veri seti olusturulmustur. Her ne kadar toplanan veri
sayist yiiksek tutulmaya calisilsa da genis bir veri seti olusturmak zaman almaktadir.
Veri azligindan kaynaklanabilecek sorunlari asabilmek icin 6grenme aktarimi
yaklasimi tercih edilmistir. Ogrenme aktarimi ile ImageNet gibi biiyiik veri setlerinde
egitilmis bir ag, son katmanlar1 degistirilerek yeni veri setlerine uyarlanabilmektedir.
Siniflandirma gérevinde kullanilan ag ise Onceden egitilmis bir ResNet-50 agina
dayanmaktadir.

Blok semas1 resmindeki mimari belirlendikten sonraki agsama transfer fonksiyonlarinin
elde edilmesidir. Bir transfer fonksiyonunun matematiksel ifadesini elde edebilmek
icin oOncelikle resimdeki karakterlerin taninmasi ve konumlarinin bulunmasi
gerekmektedir. Ayrica hangi karakterlerin hangi transfer fonksiyonuna ait olduklari da
belirlenmelidir. Transfer fonksiyonu bloklarmin konumu ve biiytikliikleri dnceden
belirlenebilirse ilgili karakterler sadece bu bloklar igerisinde aranabilir. Kontrol
sistemlerinin blok semalarinda transfer fonksiyonlarmin dortgenler igerisinde ifade
edildigi goz onilinde bulundurularak mimari tespitinden sonra resimdeki doértgenler
aranmustir. Dortgenlerin tespiti i¢in Oncelikle girdi resminin ikili hali elde edilmistir.
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Isiktan kaynaklanan belirsizlikler etkisini en ¢ok ikili resmin elde edilmesinde
gostermekte ve istenmeyen giiriiltiiler tiretmektedir. Bu giiriiltiiler, klasik goriintii
isleme yontemleri kullanilarak miimkiin olabildigince giderilmeye ¢aligilmis ve sadece
semaya ait piksellerin pozitif oldugu ikili resmin olusturulmasi amacglanmistir. Takip
eden adimlarda kenarlar tespit edilmis, en genis ¢evre silinmis ve kalan kapali gevreler
doldurulmustur. Boylece birbirinden ayr1 ve dortgen olma olasilig1 yiiksek pozitif
bolgeler elde edilmistir. Bagli bilesen analizi ile kalan bdlgelerin dortgenlikleri
belirlenmis ve transfer fonksiyonu bloklar1 tespit edilmistir. Bagli bilesen analizinde
bir bolgenin konumu ve boyutlar1 bulunabildigi i¢in resimdeki transfer
fonksiyonlarinin da konum ve boyutlar1 belirlenebilmistir. Ayrica, bir kontrol
mimarisinde sistemin, kontroloriin veya filtrelerin birbirilerine gore konumlari
bilinmektedir. Bu sayede dortgen tespiti ile elde edilen bolgelerin mimarideki hangi
transfer bloguna karsilik geldigi en sol iistteki dortgenden baslayarak
bulunabilmektedir.

Dortgen tespitinin ardindan belirlenen her bir transfer fonksiyonu blogunun bulundugu
bolge, giiriiltiilerden arindirilmis ikili resimden kirpilmistir. Kirpilan bu bolgelerdeki
karakterler yine bagli bilesen analizi kullanilarak tespit edilmistir. Bu asamada
yalnizca karakterlere ait bilesenler bilinmekte, hangi karakter olduklar
bilinmemektedir. Her bir blok icerisindeki karakterler bulunduktan sonra yine bir CNN
kullanilarak bu karakterler etiketlenmistir. Aritmetik operasyon sembolleri,
parantezler, rakamlar ve ‘s’ karakterini i¢ceren 20 siniflik bir siniflandirma problemini
¢ozen bu ag da ResNet-50 ile 6grenme aktarimi yontemini kullanmaktadir. Egitim i¢in
olusturulan veri seti, mimari tanima problemi i¢in olusturulmus c¢izimlerden
ayiklanmig karakter resimleri kullanilmistir. Siniflar arasi esit bir dagilim olmasi i¢in
eksik kalan siniflar yine farkli egitmenlerden toplanmis 6rneklerle tamamlanmistir.

Transfer fonksiyonu bloklari ve i¢erdikleri karakterler tespit edildikten sonra transfer
fonksiyonlarmin Matlab® ortaminda sembolik ifadeleri elde edilmistir. Matlab®
ortaminda bir transfer fonksiyonunu olusturabilmek i¢in pay ve payda polinomlarinin
katsayilarinin bulunmasi gerekmektedir. Sembolik ifadesi elde edilen bir polinomun
katsayilar1 yine Matlab® aracilig1 ile kolaylikla bulunabilir. Bu amagla karakterler
oncelikle yatay konumlarina gore siralanmistir. Ardindan, pay ve payda polinomlarini
ayiran kesir ¢izgisinin diiseydeki konumu kullanilarak karakterler pay ve payda olacak
sekilde iki kiimede toplanmistir. Karakterler yatayda sirali olduklari i¢in pay ve
payday1 temsil eden karakter katarlari, karakterlerin etiketleri pesi sira eklenerek
olusturulmustur. Karakter katarlar1 yaratilirken islii sayilar da komsu iki karakter
arasindaki diisey konum farkina bakilarak tespit edilmistir. Karakter katarindan
sembolik polinom olusturabilen bir fonksiyon tanimlanmis ve mimarideki transfer
fonksiyonlar1 bu sembolik ifadelerin katsayilar1 araciligi ile olusturulmustur. Boylece
tahtaya ¢izilmis geri beslemeli mimariyi Matlab® ortamina aktarmak i¢in gerekli
biitiin bilgiler elde edilmistir.

Geri beslemeli bir kontrol mimarisini, kontrol sistem tasarim uygulamasina aktarmak
oldukca kolaydir. Tek yapilmasi, gereken uygulama bilinyesinde tanimlanmis 6 farkli
mimariden birini segmek ve her bir transfer fonksiyonunun ifadesini belirlemektir.
Cizilen bir blok semasini1 Simulink™ ortamina aktarabilmek i¢in ise oncelikle 6 farkl
model olusturulmustur. Bu modellerde gerekli transfer fonksiyonlar1 birim olarak
tanimlanmis ve kontrol sistem tasarim uygulamasinda belirtildigi = gibi
isimlendirilmistir. Tanian kontrol blok semas1 Simulink™ ortamina aktarilirken i¢in
ilgili model dosyast acilir ve isim eslestirme ile transfer fonksiyonlarinin gercek
degerleri modele aktarilir. Onerilen derin 6grenme tabanli yontemin gercek zaman
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performansini 6lgmek i¢in ise son olarak bir test uygulamasi olusturulmustur. Bir
siniftaki beyaz tahtaya sabitlenmis bir kameradan canli alinan goriintiiler gercek
zamanli bir sekilde islenerek cizilen geri beslemeli kontrol mimarilerinin Simulink™
ortamina aktarilmasi amacglanmistir. Ayrica herhangi bir transfer blogunda yapilan
degisiklikler de takip edilerek modelin giincellenmesi saglanmistir.
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1. INTRODUCTION

Teaching control theory is difficult as there are many theoretical concepts to be
addressed. The main difficulty that students face is visualizing and understanding the
relationship between the time and frequency domain parameters of a control system
[1-3]. Therefore, the visualization of control systems is crucial to demonstrate the role
of mathematics in control system design [1]. As this problem is not new, various
approaches have been proposed to provide innovative techniques to enhance the
students’ motivation and improve their comprehension of control theory. For instance,
interactive software tools are presented for teaching control systems in [4-8]. Besides,
remote & virtual control laboratories are developed to provide students with a hands-

on experience of control systems [9-12].

In most of the control system design courses, the main focus is usually on Feedback
Control Architectures (FCAs) that are composed of controllers and Transfer Functions
(TFs) structured within single/multi loop configurations [13]. In Figure 1.1, the most
commonly handled FCAs are shown and their descriptions are provided in Table 1.1.
The teaching approach to control system design is usually performed in a threefold
approach. Firstly, the lecturer defines one of the FCA (shown in Figure 1.1) and then
analyses it in the time and/or frequency domain. Finally, the lecturer provides the
students with the theoretical background on controller design approaches such as
graphical (Bode and Root-Locus plots) or automatic (LQR and IMC tuning) tuning
methods [13]. To design and analyze FCAs, Matlab® provides an excellent
environment; especially the Simulink™ and the Control System Toolbox™ [14]. The
FCAs that are shown in Figure 1.1 can be easily analyzed and designed via the user

interface of the Control System Designer™ as they built-in structures.

Teaching control system design is usually performed in an old-fashion style with a
whiteboard. The lecturer basically defines one of the FCAs on the whiteboard as shown
in Figure 2. Although whiteboards are easy to use, we believe that this approach has
its disadvantages. First of all, control systems can not be accurately visualized with

hand-drawn plots. It may even be impossible for high-order control systems. Scaled



and accurate plots are vital to show how a parameter affects the overall system

dynamics.
Table 1.1 : Descriptions of FCA’s defined in [14].

FCA Descriptions

e Compensator (C(s)) and plant (G(s)) in forward path
FCA-1 e Sensor dynamics (H(s)) in feedback path

o Prefilter F(s)

Single feedback loop

FCA-2 Plant (G(s)) in forward path

Compensator (C(s)) and sensor dynamics (H(s)) in feedback path
Prefilter F(s)

e Compensator (C(s)) and plant (G(s)) in forward path
FCA-3 e Sensor dynamics (H(s)) in feedback path
o Feedforward prefilter F(s) for input disturbance attenuation

e Outer loop with compensator (C1(s)) in forward path
FCA-4 e Inner loop with compensator (C2(s)) in feedback path

e Plant (G(s)) in forward path

e Sensor dynamics (H(s)) in feedback path

e Compensator (C(s)) in forward path
FCA-5 e Plant G1(s) and plant predictive model G2(s)

o Prefilter F(s)

e Plant models (G1(s) and G2(s)), compensators (C1(s) and C2(s)) in the
FCA-6 forward path

e Sensor dynamics (H1(s) and H2(s)) in the feedback path of both loops
o Prefilter F(s)

It is also hard to represent the reference tracking and disturbance rejection
performances of a system with sketched plots. Additionally, it takes time to draw some
of the plots and some may even require computers to be generated. Due to these
problems, control lectures can be improved if a handwritten FCA (HFCA) can be
transferred into a simulation environment like Matlab® that can generate accurate

visual representations instead of rough sketches.

In the handwritten diagram detection literature, some of the studies deal with ink-input
devices and use the locational information of pen strokes in their recognition method
[15-19]. In ink-input devices, pen strokes are saved as collections of close points on a
two-dimensional space. Mentioned studies handle the mentioned recognition task by
assigning the strokes to distinct shapes. For example, a stroke can represent an arrow
while another defines a rectangle. Since the positions of the points that define a shape

are known, locations of the shapes can also be found, from which the complete chart



can be constructed. Although dealing with ink-input devices has its difficulties, the
information provided by a digital drawing tablet is noise-free and every point belongs
to the drawing with a high probability. For cases where the only input is a digital
image, this initial information is not known. The only available information in a digital
image is the finite number of evenly distributed two-dimensional points called pixels.
A pixel contains one or more integer intensity values that can be interpreted as the
brightness values for that particular pixel. For example, in a digital image where the
intensity value is between 0 and 255, 0 represents complete darkness while 255
represents full illumination. To be able to detect the diagram in a digital image, a
methodology that separates pixels belonging to the foreground from the background is
required for further operations. In the context of handwritten diagram detection, pixels
belonging to the diagram are considered as foreground while the rest are considered
background. Extracting such knowledge falls into the area of digital image processing,
which mainly deals with image manipulation problems.

Separating foreground pixels from the background can easily be accomplished for the
images where there is a high contrast between both groups. Unfortunately,
environmental lighting has disruptive effects in most of the cases. Light reflections on
surfaces can saturate pixels that should have low-intensity values. Also, the quality
and the resolution of the digital image can cause issues where elements in a scene are
not represented accurately. These problems can be considered as uncertainties in an
image processing task. Similar versions of the aforementioned uncertainties have been
widely encountered in the handwritten flowchart and character recognition [20, 21].
The common point of these studies is that they use image processing algorithms to
segment the desired parts from an image. Widely adopted approaches start by
removing the noise in an image using filtering methods [16]. Then a binarization
technique is applied to roughly separate foreground from the background [17].
Binarization techniques essentially apply a threshold to the pixels and generate a
binary image where a pixel can either be 1 or 0. For further improving the
segmentation, edge detection techniques that can detect sharp intensity changes in an
image can be applied [18]. At the end of the segmentation steps, we generally want to
end up with separate foreground pixel groups that may represent a character or any
other shape in the image. In this context, connected component analysis can be used

to find groups of pixels that form continuous regions [19].



The main purpose of separating foreground pixels using image processing techniques
in a detection task is to eliminate all the other pixels that don’t belong to the object of
interest. These preliminary steps are called pre-processing steps and they provide the
necessary information for further recognition operations. Being able to tell what a set
of inputs represents can be considered as pattern recognition (PR) task. In recent years,
imitating human behavior in machines gained more importance as automation became
an essential part of today's society. As a result, a great amount of work has been made
to develop computational methods that can recognize patterns in the last century [22].
For example, researchers successfully employed techniques that can recognize a
written character [23] or a recorded speech [24] in the past.

The general form of a PR task is given in 1.1 where the d-dimensional vector x
represents the input, scalar y represents the output, and 6 is the set of parameters of

function f.

y=f( 6)
x € R? (1.1)

yeER

In PR tasks, inputs are considered as the features of the pattern to be recognized while
the outputs are considered as the categorical data belonging to that pattern. A pattern
recognizer maps the features in feature space to their corresponding labels in the output
space. In handwritten diagram detection, the output can represent circles, rectangles,
arrows, or other commonly used shapes. The main challenge is to construct the feature
space. The area in terms of pixels, a value that represents the circularity or similar
metrics for a pixel region found by connected component analysis can be considered
as features. Examples of PR with such region metrics can be found in the literature
[25, 26]. Using region properties as features may cause problems if input space shifts,
rotates, or scales. There are feature extraction methods robust to these transformations
such as histograms of oriented gradients (HOG) and scale invariant feature transform

(SIFT) and studies that use these as feature extractors are present in literature [27,28].
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Figure 1.1 : lllustration of the FCAS

Choice of the feature extraction may depend on the task. A simple method that depends
on regional properties in a binary image may perform poorly. On the other hand, a
complex method such as SIFT can be too slow for real-time applications. Unlike these
algorithms, neural networks can automatically extract features and they are recognized

as an important tool in PR [29].

Generally compared to actual neurons in human brains, NNs consist of layers where
each layer scales its input with a set of parameters called weights. They can represent
any non-linear function by establishing a mapping between an input space and an
output space. Just like a human brain adjusts the firing rates of certain neurons to
represent new information, a NN also updates its weights to learn new mapping
functions. The number of layers a network contains defines its capabilities.



Constructing deep NNs by stacking more layers can help to create more accurate
models at the cost of computational resources. The field of Deep Learning (DL)
interests in developing deep NNs and it tries to overcome problems that may arise
because of the increasing layer depths. Regardless of their depths, NNs have been
widely used in PR tasks [30-32]. One of the main advantages of NNs is that they can
serve as an automatic feature extractor where the final outputs are the features of a
given input. Further task-specific layers can then be added to the network to produce
the desired results. The automatic feature extraction can be thought of as a mapping
function that translates the inputs to the feature space. To correctly approximate this
desired mapping function, the weights of the NN must be updated to give the best fit.
Since the main purpose of using NNs in PR is to automatically extract features, an
explicit form of this mapping function is unknown. Fortunately, if the correct outputs
for a sufficient amount of inputs are known, weights can be updated by comparing the
predictions with the ground truths and the network can learn from examples. The
extracted features can then be used for classification with additional NN layers. In fact,
there are early examples in the literature where NN is used solely in the classification
part [33, 34]. In cases where the training samples lie on low dimensional spaces, they
can be directly fed into a neural network without requiring complex feature extraction
algorithms [35, 36].

The main problem in integrating NNs with PR for computer vision is that even small
images lie on a high dimensional space when each pixel is considered as a dimension.
Assigning weights to each pixel will not only result in very complex networks it will
also transform the input into a one-dimensional vector. Flattening an image can harm
the overall performance of the network as it will lose the positional information on one
axis, depending on how the flattening is applied. Convolutional Neural Networks
(CNNs) can overcome these problems and achieve satisfactory performances in
various recognition tasks such as character recognition [37, 38], document recognition
[39], face recognition [40], image recognition [41]. The major difference of CNNs
from a regular NN is that they contain convolutional layers that use two-dimensional
convolution operation to calculate their outputs. In a two-dimensional convolution, a
set of weights arranged as a two-dimensional square matrix slide over the input image
along both vertical and horizontal axis. By linearly combining the currently covered

pixels with the weight matrix, the corresponding pixel of the output image can be



calculated. Since the same set of weights are used during this operation, CNNs need
less learnable parameters compared to regular NNs. Convolutional layers also remove
the necessity of flattening which saves the locational information of input pixels. It
should also be noted that as the input image goes through several layers in a CNN,
their dimensions change and they become less interpretable. Thus, the outputs in a
CNN are considered as feature maps instead of actual images.

In recent years, various CNN architectures that achieve high classification accuracies
on the ImageNet dataset [42] are developed by researchers. AlexNet can be considered
the first major architecture since it showed the capabilities of CNNs in computer vision
tasks [43]. Since AlexNet, architectures became deeper and more complex with
different connection schemes. For example, the winner of ILSVRC 2015 ResNet
contains up to 152 layers [44], while AlexNet contains 5 convolutional layers and 3
fully connected layers [43]. ResNet also introduces a new “skip connections” concept
which helps to solve a common problem in DL called “vanishing gradients”. Instead
of designing a new architecture for a classification task, one can copy the architecture
these networks that have already been proven successful. The main issue in this
approach is that these deep networks are trained on large datasets and they require
more time compared to simpler architectures. To avoid these problems, a pre-trained
network can be used by replacing its non-feature extraction layers. This approach is
called transfer learning and it enables researchers to make use of high performing
architectures in any PR task without long training times or needing a large dataset like
ImageNet [45]. In recent years, transfer learning approach have been widely used in
medical image classification problems since it is challenging to construct large datasets
in the medical field [46-48].

In this thesis, we proposed a DL based pipeline that is capable to recognize
Handwritten FCAs (HFCAs) on the whiteboard and to transform them into Matlab®
for visualization and analysis of FCAs. The main design challenge of the proposed DL
based pipeline is to find a set of instructions to recognize the HFCAs. Because of the
aforementioned uncertainties, it is challenging to employ classical image processing
methods in this context. To deal with these difficulties, we integrated DL methods into
our pipeline and trained two separate deep CNNs that can recognize HFCAs and
handwritten characters on a whiteboard. We preferred the transfer learning approach

to construct our deep CNNs and used a pre-trained ResNet-50 as our base model. For



the training of the task-specific layers, we constructed datasets containing images of
HFCAs and handwritten characters on a whiteboard collected from five control system

lecturers.

The proposed DL based pipeline starts by taking the image of an HFCA (shown in the
right of Figure 1.1) as input and recognizing the corresponding FCA class (shown in
the left of Figure 1.1) via the first deep CNN structure. Then, the recognized HFCA is
further processed to extract the TF blocks by using classical image processing
methods. In the next step, the characters of each extracted TFs are recognized and
labeled by the second deep CNN structure. After generating symbolic expressions,
continuous-time TF representations are generated that is compatible with Matlab®. The
visualization and analysis of the HFCA are then straightforwardly performed via the

Control System Design™ Toolbox and Simulink of Matlab® in real-time.

In the following chapter of this thesis, we give brief information about the history of
DL and present important concepts that are already used in this work. We also explain
the layers of a CNN with more details and further clarify the advantages of transfer
learning along with the ResNet architecture. In the third chapter, we describe each step

of the pipeline and represent the classification accuracies of our deep CNNs.



2. DEEP LEARNING

For long, humanity has imagined machines that can act on their own and only recently
this dream is starting to be realized [49] with the rise of computers. Although the
current technology hasn’t reached the point where an artificial agent can replace a
human, machine learning (ML) or more generally artificial intelligence (Al) became
an essential part of today's society. Especially neural networks (NN), which is a sub-
field of ML, are used frequently in engineering problems since they provide an
unexplicit way to establish behavior in machines. Although NNs were known for a
long time [50], they gained popularity in recent years with the advances in
computational powers. Using the parallelism provided by powerful graphical
processing units (GPUs), researches were able to construct NN architectures with high
amount of layers. Today, these deep networks are investigated under the field of DL.
In this chapter, we present a brief history of DL and NNs and give detailed information
about the popular architecture ResNet-50.

2.1 Perceptron Models

NNSs resemble networks in the human brain in the sense that the combination of simpler
structures that has adjustable weights constructs more complex ones that could
accomplish much harder tasks. In NNs, this simplest structure is called a perceptron.
The task of this smallest building block is to map a set of inputs x to an output y by
the means of linear combinations using a weight vector w and a bias b. A visual

representation of such a perceptron is also given in Figure 2.1.

f,w,b) =wix+b=1y
x,w € R4 (2.2)

b,y eR

The first computational model of a neuron proposed by McCulloh and Pitts [51] was

also based on the same principle. They showed that their model can be used in binary



classification tasks, given in (2.2), by choosing a threshold value T,,. Of course, the
accuracy of this method depends on w and T,,. In 1958, Rosenblatt proposed another
perceptron model [52] where these parameters could be learned from a set of labeled
examples. The proposed algorithm was to update w and T,, whenever the predicted
output was different from its target value. Today, this kind of learning where a teacher

exists is called supervised learning (SL) and it is an important concept in NNs.

(1 if fx,w,b) >T,
_{0 if f(x,w,b) <T, (2.2)

Figure 2.1 : A visual representation of perceptron

Although Rosenblatt’s perceptron was an important step in NN’s history, it was unable
to separate non linearly separable classes or imitate the XOR functionality since only
a single linear function was used to calculate the output. Also, thresholding was
preventing to see how weights affected the produced outputs when their values
changed. In 1960, Widrow and Hoff proposed a new perceptron model called
ADALINE, which stands for adaptive linear neurons [53]. The main difference
between ADALINE and its predecessor is that in ADALINE, errors are calculated
before thresholding operation. Calculating errors from continuous values instead of
quantized ones enabled a faster convergence. Widrow and Hoff also used their
perceptron model to predict real valued numbers. In other words, their model was able
to find the coefficients of a linear function given in (2.3). Approximating a function
with given inputs and outputs is called a regression problem in ML and ADALINE

was the first example of a linear regressor.

y:b+W1xl+"'ded; xERd (23)
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The perceptron model can also be improved by adding a non-linear activation function
right after calculating f(x,w, b). A perceptron with activation function is given in
Figure 2.2. One of the most commonly used activation functions in NNs is the sigmoid

activation function which is given in (2.4) where z is the activation of the perceptron.

1
1+e72

9(2) = (2.4)

Since inputs to this activation function are the output of f(x, w, b), the above equation

can be written as in (2.5).

1
9(fCew,0)) = (25)

Sum Activation
© °

Figure 2.2 : Perceptron with activation function

The sigmoid function is plotted in Figure 2.3. From the figure, it can be seen that the
output values vary in the (0,1) interval and they cross the 0.5 point when inputs are

zero. Using this knowledge, a classification using (2.6) can be accomplished.

_ {1 if g(f(x,w,b))>0.5
“ 0 if g(flxr,w,b)) <05 (2.6)

With the sigmoid function, the search for a T value isn’t needed. Also, the output
values can be treated as the class probabilities. Using these probability values, the
amount of error made by the perceptron can be calculated. In literature, classification

with perceptrons that use sigmoid function is called logistic regression.

If a function that expresses the prediction error can be constructed, finding the best set
of parameters would then become an optimization problem. Widrow and Hoff used a
similar approach to update their perceptron’s weights using a gradient-based numerical

optimization method.
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Figure 2.3 : Sigmoid activation function
2.2 Gradient-Based Learning

From calculus, it is known that the derivative of a function y = f(x) gives information
about how small changes in the input affect the output. Positive derivative means an
increase and negative derivative means a decrease in the output. When a function is
tried to be minimized, or in other words, a local minimum point is searched, derivative
information can be very useful. By moving in the opposite direction of the derivative
with small steps starting from a starting point, a minimum point for f(x) can be found
around a neighborhood. Since the movements are done in steps, this becomes an
iterative method where the current point is updated at each iteration. Update rule is
given in (2.6) where x[k] is the current point, x[k + 1] is the next point and « is a
constant that defines the step size called the learning rate.
df

x[k + 1] = x[k] — a— (2.7)

When the function that desired to be minimized has multiple inputs, update rule

becomes (2.7), where Vf is the gradient vector of f(x).
x[k + 1] = x[k] — aVf, x € R% (2.8)

The iterative process of searching a local minimum point can be terminated when Vf
becomes a zero vector by the definition of an extremum point, but this approach may
fail if x[k + 1] never rests at the solution, since @ may never be small enough. As a

stopping criteria, the process can be terminated when the value of f(x) increases
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instead of decreasing. This iterative approach of minimization is called Gradient
Descent (GD) and is one of the key ideas of NN’s. A visual representation of Gradient
Descent is given in Figure 2.4. It is also common practice to run the algorithm for a

pre-defined number of epochs (iterations) instead of establishing a stopping condition.

To train a perceptron using GD, a suitable f(x) must be found. This f(x) is called the
loss function in ML and it gives a measurement of the prediction error made by the
model. If the learnable parameters of the perceptron are given as arguments to the loss
function, GD can find a minimum point where the error is minimized, using the

derivatives of these parameters.

Loss

A

W
initial

Figure 2.4 : Visual representation of GD

A downside of the GD method is that the calculated minimum point may not be a
global one. Only if a convex function is chosen as a loss function a global solution for
the minimization problem can be found, since convex functions have a single

extremum point.

For a labeled training set of N samples, function to be minimized J(w, b) is expressed
in (2.8) where x* is the ith sample, $* is the label of the ith sample and y' is the
predicted label for the ith sample.

N
1 .
J(w,b) = NZ Loss(y‘,j/“,w, b) (2.8)
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As it can be seen, J(w, b) only depends on the learnable parameters of the perceptron
and it takes the average of the loss values calculated for all the samples in the training

set. With J(w, b) defined, update rule can be written as the following.

_ dJ(w,b)
wlk +1] =wlk] — a T
(2.9)
bk + 1] = b[k] — a LW D)
The partial differentials with respect to layer parameters are given in (2.10).
N . .
djw,b) 1 Z OLoss(y‘,yl,w,b )
ow N aw
(2.10)

6](W b) aLoss(y y w,b)
NZ

The selection of the proper loss function depends on the task at hand as different tasks
require different loss functions. One of the simplest loss function that could be used to
train a perceptron is the Mean Square Error (MSE) function. Using the MSE loss,

J(w, b) can be expressed as follows.

1w,
J(w,b) = NZ(YL -¥ )2 (2.11)

The MSE loss function is generally used for regression tasks. The problem arises for
the logistic regression. Using MSE loss along with sigmoid function results in a non-
convex J(w, b). For regression problems where the activation function can be linear
MSE will prove useful, but for classification tasks, another loss function must be
selected. In literature, a cross-entropy loss, presented in (2.12) is generally used for

classification tasks [54].

LosScross = — (' log(y') + (1 = $9)log(1 — y") (2.12)
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2.3 Stochastic Gradient Descent

Most of the NN models utilize a modified version of the GD algorithm called
Stochastic Gradient Descent (SGD) [54]. In GD, parameters are updated after
calculating loss values for all the samples in the training set. Ideally, this approach is
preferred for better generalization since the gradients calculated with every available
sample better represents the statistics of the input space. The downside is, it may not
be possible to calculate the gradient for large datasets because of the computational
costs. To handle datasets that are too large for GD, a smaller part of the dataset called
mini-batch can be sampled from the complete set. Gradient calculated from this mini-
batch may be different from the actual gradient since a small set can not completely
represent the whole set. For fast convergence, the mini-batch gradient should be
similar to the actual gradient as much as possible. This can only be achieved by
uniformly selecting examples from the dataset. For a mini-batch with m elements, the

mini-batch gradient is given in (2.13) where 6 is the learnable parameters.

1 i dLoss(y',9",0)

9= 00 (2.13)

i

Using the mini-batch gradient, parameters can be updated as in (2.14).

0[k +1] = 0[k] — ag (2.14)

As it can be seen, gradient calculation and update rule in SGD are nearly the same as
GD. If the randomly selected mini-batch is a good representative of the complete
dataset, there won’t be any significant performance hit. If the mini-batch size is
selected as too small, the actual gradient can’t be correctly estimated. On the other
hand, large mini-batch sizes require large amounts of memories and can cause long
training times. Since the choice of mini-batch size is a trade-off between computational

costs and good convergence, it is considered as a hyperparameter of SGD.

2.4 Multilayer Perceptrons

Using single perceptrons for classification or regression tasks may give poor results as
the complexity of the tackled problems increase. To better approximate the desired

mapping function, perceptrons can be used in a collection. Multilayer perceptrons are

15



structures where perceptrons are stacked in a layered fashion. The terms multilayer
perceptron and NN are used interchangeably in ML. A similar relation also exists

between the term perceptron and the term neuron.

In NNs, a layer can include any number of neurons while the whole structure usually
contains at least three layers. An example of NN is given in Figure 2.5. The first layer
of a NN is called the input layer while the last layer is called the output layer. All the
remaining layers are named as hidden layers. NNs process the fed data by propagating
it through its layers. For example, the ith layer uses the outputs of each neuron in (i-
1) layer to provide input for the (i+1)" layer. Calculations in a layer are similar to the
operations presented for the perceptron model, only difference is that the weights are
stored in matrices in NNs instead of vectors. Size of the weight matrix for a particular
layer depends on the neuron count of both that layer and the layer before it. If i layer
has m neurons and (i-1)" layer has n neurons, the weight matrix of i layer, which can
be defined as wt, will have n rows and m columns and its bias vector b* will be a
vector of m elements. If the same activation function g; is used throughout all the units
in layer i, its output can be calculated as in (2.15). This process of output generation

in NNs is called forward propagation (FP).

yi = gi(wi.x + by) = g,(z;)

xl (= Rnxl

2.15
Wi € ]Rmxn ( )

As it can be seen in (2.15), there is a matrix multiplication between the layer’s weight
matrix w; and input vector x. A row in the weight matrix holds the individual weights
going through a specific neuron in the layer. For example, r'" row in w; represents the
weights of the r" neuron in i layer. This implies that the term w;.x creates all the
possible connections between (i-1)" and 1M layer. Layers constructed this way also
called fully connected layers in the literature. A network consisting of solely fully
connected layers can also be called a fully connected network. Figure 2.5 is also an
example of a fully connected network (FCN). Researches show that when an adequate

number of neurons used, any linear function can be represented with a NN [55].
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Input Layer Hidden Layers Output Layer

Figure 2.5 : An example NN

A NN can generate multi-dimensional outputs since the final layer can have more than
one neuron. This way, regression problems in multi-dimensional spaces or multi-class
classification problems can be handled. For regression tasks, neurons at the final layer
represent dimensions of the predicted output. On the other hand, a classification task
consisting of Q classes aims to assign probability values for a given input for each of
the classes. The probability values assigned to the classes are a measure of how likely
they belong to those classes. Thus, the outputs of classification networks should be a
vector belonging to R?. The predicted label will then be the index of the maximum

element of the output vector.

In logistic regression, the sigmoid function was able to classify inputs since it was a
binary classification problem. Multi-class tasks however require another activation
layer at the final layer. In literature, the softmax activation function defined in (2.16)
is used at the final layer for multi-class classification problems [56]. Softmax can be
thought of as the extension of sigmoid to the multi-class domain. It takes the values in
the network’s final layer and produces the class probabilities. Similar to the sigmoid
function, softmax results in a non-convex loss function if MSE is used. Thus, the cross-
entropy loss function is preferred for multi-class classification tasks with NNs.

Vi

e .
softmax(y); = m fori=1..0Q (2.16)
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2.5 Back-propagation

With perceptrons, overall cost function was presented as J(w, b). In NN’s, this can be
re-written as J(6), where 6 is the collection vector of all weights and biases in the
network. While minimizing /(8), an analytical expression for its gradient can be
found, but it would be computationally expensive to evaluate. This issue can be solved
by an algorithm called back-propagation [54].

Back-propagation (BP) is a method that is used to compute the gradients of all the
parameters used in a function. The algorithm treats the operations in a NNs as a
computational graph and utilizes the chain rule of calculus to find the gradients. All
the variables that are required in the gradient calculation are represented as nodes and
operations are shown in computational graphs. Graph representation of the

multiplication operation is given in Figure 2.6.

Figure 2.6 : Graph representation of multiplication operation

The calculation of a node’s gradient starts by traversing the graph backward from the
output node. Along the way, gradients of all the traversed nodes must be calculated as
well. To avoid repeating the same computations, the algorithm first handles nodes that
are closer to the output and saves the calculated gradients. For demonstration, the
computational graph of a three layered NN is given in Figure 2.7. Parameters that need
update are w,, b,, w3 and b, where the second layer is the hidden layer and the third
layer is the output layer. Gradients of the third layer are given in (2.16) and in (2.17)
while the gradients of the second layer in (2.18) and in (2.19).
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Figure 2.7 : Computational graph of a three-layered network

2.6 Training, Validating and Testing Datasets

Training NNs uses labeled samples to learn the parameters since loss functions require
ground truth values. In ML, the collection of samples that are used to update the
learnable parameters is called a training dataset. After updating the parameters of the
network, some error measurement can be computed by applying a FP to the training
data to calculate the training error. The training error can also be calculated from the
mini-batches if SGD is used. If the optimizer is able to find a minimum point, the
training error should be small for the trained network. For a regression task the only
available error metric is the loss values. For a classification task, number of correctly
classified samples is more important than loss values. In ML the classification
accuracy is measured with a top-k error rate. Prediction for a sample is considered as

correct if the class probability assigned to it is in the top-k. For example, a prediction
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can only be considered as true if the highest probability assigned by the model is the

same as ground truth in a top-1 error rate measurment.

Performance of a model on a training dataset is important but in ML problems the aim
is to perform well on unseed data. A model that shows low error rates on unseen data
is said to be well-generalized. The generalization capacity of a model is tested on a test
set that consists of samples that haven’t been used during the training. The test samples
should be in the same domain as the training samples. If a model is trained to classify
dogs and cats, test set should contain images of dogs and cats that aren’t present in the
training set. Sometimes a model performs well on training dataset but gives large errors
for the test set. This phenomenon is called the overfitting and can be caused by small
sized training dataset [57].

In ML, an additional dataset called the validation set can be used during the training.
A ML model can contain various hyper-parameters such as the learning rate, number
of training epochs, mini-batch size and many more. There isn’t an established
methodology for the selection of these hyper-parameters and it is generally handled
with try and error. To be able to tell how the currently selected hyper-parameters
change the performance, the model can be tested with the validation set at certain
iterations. The feedback from the validation set can then be used to tune the hyper-
parameters. Although samples from validation set aren’t used to update the learnable
parameters, they are considered as a part of the training set. The final performance of

the model can only be measured on the dataset.

Generally, the training samples hold a great portion of the complete dataset. An
example partition for a dataset is given in Figure 2.8 where training samples consist
the 70% of all the data.

Training Set Test Set
. Validation Test
Training Samples
Samples Samples
70% 15% 15%

Figure 2.8 : Example partitioning of a dataset.
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2.7 Methods to Improve Performance

2.7.1 Regularization

A common problem in ML is that a model can perform poorly on test data while
achieving high accuracies or small loss values during the training [54]. A model that
behaves in such a way is said to be overfitted. This problem can be solved with
regularization methods which adds a parameter norm penalty function Q(w) to the loss

function. A loss function with regularization is given in (2.20).

J(6) =J(6) + 10(w) (2.20)

In the above equation, A is a non-negative hyperparameter that adjusts the
regularization effect where higher values mean more regularization. It should also be
noted that regularization affects only w. It has been observed that regularizing biases

cause underfitting in NNs [54].

Although Q(w) can be defined in many ways, these definitions must affect the weight
values to avoid overfitting. A simple type of Q(w) is the L? parameter norm penalty
which is defined in (2.21).

1
Qw) = 5 lIwliz (2.21)

In L? regularization, weights tend to decay since they appear on the loss function and

the optimizer would try to minimize them.

2.7.2 Gradient descent with momentum

A downside of the GD is that sometimes gradients may oscillate as it approaches to an
optimum point. An example case is given in Figure 2.9. From the figure, it can be seen

that the updates should be larger on the horizontal axis for faster convergence.

Figure 2.9 : An example GD with oscillating gradients
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The average of the past gradients can be useful during the optimization. Since the
moving average of the past gradients will show the direction towards the optimal point,
the update rule can be re-written to include this average. In (2.22) update rule for the

GD with momentum is given where m is a scalar in the interval [0,1].

vik + 1] = mv[k] — aVyJ(0)
(2.22)
Olk + 1] = 0[k] + v[k + 1]
GD with momentum speeds up the training process by accumulating the past gradients
as v. If these past gradients oscillate along an axis, their displacement along that axis
will cancel each other out since the current gradient is subtracted in (2.22). The scalar
B is usually called the momentum and it adjusts how much the past gradients will
affect the current direction.

2.7.3 Batch normalization

A problem that is encountered while training a NN is that distribution of the input data
can vary across the samples which makes it harder to learn an appropriate mapping.
Such a shift in the input distribution is called the covariate shift [58] and can be solved
by feeding the normalized. However, for a deep NN covariate shift can happen even
in the hidden layers [59] as the parameters are updated during the training. Batch
normalization (BN) aims to eliminate the internal covariate shift by fixing the means
and variances of the layer’s inputs [59]. Regular normalization can be realized by
subtracting the batch mean from each sample and dividing it with the batch standard

deviation. BN modifies this as shown in (2.23).

~ _ Xi— Hp

yi=vX +p

(2.23)

In the above equation, u;, and o are the mean and variance of the batch while € is a
very small constant to avoid division by zero. BN introduces two new learnable
parameters in the form of y and . These parameters scale and shift the normalized
layer inputs X; to produce the layer output y;. It is also observed that the parameters

also act as regularization term and they improve the generalization of the model [59].
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2.8 Convolutional Neural Networks

CNNs are special NNs that are commonly used in computer vision tasks like object
classification and detection. After their first proposal in 1995 by LeCun [60] they
gained popularity with AlexNet [44]. Unlike fully connected NN’s, CNN structures
use convolution operation in forward-propagation instead of matrix multiplication
[54]. This way, the data can be processed in a grid topology, meaning that CNNs can
deal with three-dimensional matrices called tensors. The third dimension in these
matrices is called channels. Images can be given as an example to tensors since colored

images contain three channels for red, green, and blue (RGB) colors.

The reason behind using CNNs in computer vision tasks is that they are much more
efficient in working with images compared to a regular NN. Very first drawback of
FCNs is that they can only accept two-dimensional inputs. In order to be able to feed
images to an FCN, they must be vectorized. Vectorization can be done by juxtaposing
the consecutive rows or the consecutive columns to each other for each channel. Then
the individual channel can be stacked to create a one-dimensional vector.
Transforming a three-dimensional data to a vector will cause an information loss on at
least two dimensions. CNNs on the other hand, do not require vectorization and saves
the locational information of pixels on all the axis.

The number of learnable parameters affects directly the network’s complexity and the
time required to train it. A very complex network may not even be trainable if it
requires large amounts of computational resources. That is why it is not efficient to
use FCNs in computer vision tasks. Even images with small resolutions contain many
pixels and will result in large weight matrices in fully connected layers. For example,
a single channeled image with a resolution of 32x32 contains 1024 pixels. If the neuron
count of the next layer is n, the weight matrix of the next will contain 1024 X n
learnable parameters. CNNs do not suffer from this problem as they use convolution

operation instead of matrix multiplication.

A typical CNN consists of dimension reduction and activation layers alongside its
convolutional layers. Outputs of these layers that accept n-channeled tensors as inputs
can be interpreted as feature maps. In classical image processing algorithms, various
methods are used just for feature extraction tasks [61]. Since CNN’s are essentially
neural networks that can efficiently process images, they can automatically extract

23



features without needing any other algorithm. In fact, past researches show that the
convolutional layers in a CNN act as a feature extractor and can be used in various
tasks [62]. An example CNN architecture called LeNet is given in Figure 2.9.

INPUT feature maps feature maps  feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

Figure 2.10 : LeNet Architecture [60]

In Figure 2.10, the final layer is visualized slightly differently from the rest. This last
layer is a fully-connected layer and it serves the purpose of assigning class
probabilities. While the remaining convolutional layers serve the purpose of feature
extraction, other task-specific layers are required to use the extracted features for a
desired task. That is why CNNs usually contains a task-specific layer at their ends.

2.8.1 Convolutional Layer

Convolutional layers can be considered as the backbones of CNN structures. In
convolutional layers, outputs are calculated by convolving a special tensor called
kernel over the input tensors. Kernel tensor holds the learnable parameters of the layer
and it can be compared to the weight matrix of the fully connected layers. Convolution

operation in one dimension for continuous signals is given in (2.24).

z(t) = (xxk)(t) = jx(a)k(t —a)da (2.24)

The same operation can be expressed as in (2.25) for two-dimensional signals where

Hp is the height (row count) and W is the width (column count) of the filter.

Hf Wy

26,1 = e+ AlLj1 = ) ) xli=m,j = nlffmn] (225)
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Convolution operation on tensors is conducted with a sliding window approach.
Equation (2.22) is repeated for each element of input matrix x where i and j represent
the row and column indices of the currently iterated element. At each iteration, i is
incremented by 1 and when j™"is completely traversed the algorithm returns to the first

column and increment j by one.

A problem arises during the convolution operation at the edges of the convolved image
where x[i — m, j — n] is not defined. This undefined element case occurs when either
the index values are negative or greater than the width or height of the x. To avoid this,
the following constraints can be applied where H, is the height of input image and W,

is the width of the input image at the cost of having a downsampled output image.

He .
— If Hfis even
i>{ 2
“)JH-1 ,
T lf Hf is odd

Hy .
H, —— if Hy is even

i< zy
H, — if Hy is odd
(2.26)
£ if Wy is even
> 2
JEY W -1
if isodd
W .
Wy —— if W iseven
j < ‘.
W, — > if Wrisodd

A convolution operation with the above constraints is shown in Figure 2.11.
Alternatively, classical image processing methods solve this problem by applying a
padding to the input image [63]. Padding can be in the form of 0 valued elements
added around the input image (zero padding) or by repeating the values at the edges.
Same principle can also be applied to the convolutional layers. A convolution

operation with zero padding is shown in Figure 2.12.

Convolution operation on two dimensions can be used with matrices, but for CNNs

where even a grayscale image is expressed as a tensor with a single channel, the above
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expression must be updated as follows, where C is the number of channels for both of
the tensors.

Hy Wy

C
z[i,j] = (e x P j, k] = 22 x[i —m,j —n,k]f[m,n k] (2.27)
k m

n

Although the input tensor and kernel may have multiple channels the result will be a
two-dimensional matrix in convolutional layers. It should also be noted that channel
sizes of input tensor and the filter must be the same. Since convolution on tensors
creates single channeled tensors, or simply two-dimensional matrices, a convolutional
layer can have multiple filters. In fact, the number of filter F is a hyperparameter that
should be decided by the designer. Other hyperparameters for a convolutional layer

are Hy and Wy, but not C. Number of channels of a filter and the filter count are not

the same thing. A convolutional layer can have F amount of C channeled filters, with
a total of H; x W; x C x F learnable parameters. The value of C on i" layer depends

on the value of F on the (i-1)" layer.

74 | 115 | 86

82 | 114 | 81

Figure 2.11 : Convolution operation with constraints



26 27 | 29 | 62 | 41

49 | 71 B | 49

330 74 | 115 | 86 | 47

45 82 | 114 | 8l 56

81 84 62 43 12

Figure 2.12 : Convolution with zero padding
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Another commonly used technique in the convolutional layer is to skip a few elements
in the tensor while conducting the convolution operation. Instead of incrementing i
and j by one as explained earlier, they can be incremented by a stride value S which is
also a hyperparameter. This technique is called strided convolution and can help to

diminish the dimensions of the output tensor.

All the hyperparameters will affect the dimensions of the output tensor. Its channel
number will the same as F. Output height H, and width W, values are given in (2.28)

and (2.29) respectively.

H,—Hs+ 2P
(-Hron)

g ] (2.28)

W, — We + 2P
_(m-wror)

Wz S

(2.29)

2.8.2 Pooling Layer

Although H, and W, values can be adjusted in convolutional layers, pooling layers
provides a way for dimension reduction without introducing new learnable parameters.
Pooling layers traverses the input tensor just like the convolutional layers and selects
a region of size Hy by W around x[i, j]. The corresponding element of the output
tensor z[i, j] then calculated by applying a desired operation to this region. Striding
can also be implemented in pooling layers. Output tensor’s H, and W, values in a
pooling layer are given in (2.30) and (2.31) respectively.
(Hx — Hf)

W, = (Wx;—Wf) +1 (2.31)

Most common operations on pooling layers are averaging [64] and max operation [65],
but any other operation can also be selected as long as they return a single element for
a pooled region. A visual representation of max pooling with S = 2 is given in Figure

2.13 and a visual representation of average pooing with S = 2 is given in Figure 2.14.
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Figure 2.13 : A visual representation of max pooling

575|775

525 6.25

Figure 2.14 : A visual representation of average pooling

Along with reducing dimensions, pooling layers can make the network more robust to
small translations in the input image [54]. It does so by summarizing the pixels in a

neighborhood and extracting the more important responses.

2.8.3 Two Dimensional Batch Normalization

It is common practice to apply BN in CNN for the benefits explained earlier. BN is
generally applied after the convolutional and before the activation layers. BN in CNNs
differs from BN in fully connected networks in the sense that the batch statistics are
calculated for each channel of the input to be normalized. This requires separate of y

and B for each channel. Other than that, the calculations remain the same.
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2.8.4 Activation Layer

The convolution operation is essentially a function that takes the linear combination
of its inputs and because of that, a CNN may not be able to perform well without non-
linear activations. Activation layers in CNNs generate their outputs by applying a non-
linear function to their inputs. The sigmoid function used in earlier perceptron models
can also be used in the activation layers of CNNs. Also, a slightly different version of
the sigmoid function called the hyperbolic function is another option. Unlike the
sigmoid function, the output range of the hyperbolic function is between -1 and 1. In
other words, it can also output negative values. The definition of hyperbolic function
is given in (2.32) and its plot is given in Figure 2.15.

2
9(z) = 1T1e22 1 (2.32)
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Figure 2.15 : Hyperbolic activation function

Both sigmoid and hyperbolic activation functions suffer from a similar problem. They
are good assigning probability values to the inputs but the gradients are non-zero for a
small portion of the input space. Values that are far away from the origin will always
produce zero gradients and the network’s weights won’t be updated. This can be seen
from the first-order derivative plots of the sigmoid and hyperbolic function given in
Figure 2.16.
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Figure 2.16 : First-order derivatives of hyperbolic and sigmoid functions

Getting zero gradients for changing inputs is called the vanishing gradient problem
and it can hinder the learning process of the network. This problem can be solved by
normalizing the inputs coming into the activation layer or using a normalized
initialization for the layer weights [66], [67]. With a mean and variance normalization,
data can be distributed along with the origin and zero gradients can be avoided.
Another possible solution of course is to use another activation function. Unlike the
mentioned activation functions, rectified linear unit (ReLU) [68] doesn’t cause
vanishing gradients. This activation function only sets the negative values zero. The
sharp behavioral change at point zero that could be seen in Figure 2.17 adds the non-
linear characteristic to the network. Another advantage of ReLU is that its gradients

are easier to calculate compared to sigmoid and hyperbolic activation functions.
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10

Figure 2.17 : Plot of ReLU activation function
2.8.5 Task-Specific Layer

The convolutional, pooling, and activation layers form the feature extraction part of a
CNN. A well-established feature extraction method has good generalizability and can
be used in various tasks. The purpose of the task-specific layers is to output the desired
results using the extracted features. In computer vision, the handled task can be

categorized as object detection and object classification.

Obiject detection is the task of finding the location of an object in an image. It is an
often addressed problem in computer vision and there exist different approaches in
object detection [69]. In the object detection literature, the location of an object is
generally defined by the smallest rectangle that contains the object called the bounding
box (BB) [70]. The BB is defined with four parameters; the horizontal position of its
top-left corner, the vertical position of its top-left corner, its width, and its height. One
of the possible approaches is to handle the task as a regression problem. With a FC
layer at the end, the network can be trained with MSE loss to predict the four values
that define the BB [71].

In case the CNN is desired to be used for a classification task, a set of FC layers that
output class probabilities can be added to convolutional layers. Then the network can

be trained with cross-entropy loss by applying softmax operation to the output layer.

One of the limitations of the task-specific layers is that they are generally in the form

of fully connected layers as explained. To be able to add a fully connected layer after
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a convolutional layer, tensors must be transformed into vectors. Unfortunately,
vectorization operation forces CNNs to accept images with a certain size. As an
example, AlexNet can only be trained on images with a resolution of 224x224 because

of its fully connected layers.

2.9 Deep Neural Networks

In NN literature, various types of architectures exist that excel in certain areas.
Previously presented FCNs and CNNs are two examples of major architectures.
Although each architecture has distinctive differences, they all consist of layers with
learnable parameters. As more layers stacked together, the network becomes more
complex and requires more computational power. That is why the average number of
layers increases with the advances in hardware. Today, networks can be categorized
as shallow and deep networks regardless of their architecture. Shallow networks
contain few layers while their counterpart has more. There is no sharp separation
between shallow and deep networks, but a model with more layers is said to be deeper
compared to a few layered network. Recent studies show that deeper networks perform

better since they contain more learnable parameters [72].

There are many modern deep CNN architectures that achieve high classification
accuracies on benchmark sets like GoogLeNet [73], VGGNet [74] and ResNet [44].
Being deep networks, they contain many layers with a high amount of learnable
parameters. AlexNet is considered as the architecture that proved the capabilities
CNNs and it contains 5 convolutional layers and 3 fully-connected layers with 60
million learnable parameters. VGGNet was proposed two years after AlexNet and it
has 19 layers with 138 million learnable parameters. For visual comparasion,
architecture of AlexNet is given in Figure 2.18 and the architecture of VGGNet is

given in Figure 2.19.
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Figure 2.18 : AlexNet architecture [43]
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Figure 2.19 : VGGNet architecture [75]

VGGNet showed that the depth of a network was an important factor in the accuracy
rates. In Table 2.1, we have given the depth, number of learnable parameters and top
5 error rate for some of the famous CNN architectures. The steady increase in the
network depths can be seen from the table.

Table 2.1 : Depth and error rates of major CNN architectures

Parameter Error Rate
Year Depth Count (Top-5)
LeNet 1998 5 0.06 M MNIST: 0.95%
AlexNet 2012 8 60 M ImageNet: 16.4%
VGG 2014 19 138 M ImageNet: 7.3%
GoogLeNet 2015 22 4M ImageNet: 6.7%
ResNet-152 2016 50 25.6 M ImageNet: 3.6%
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As the networks become deeper, researchers realized that the classification accuracies
saturated after a certain depth [76], [77]. Vanishing gradients were always an issue and
deep networks suffered more compared to shallow networks. The issue in deep
networks wasn’t the usage of sigmoid or hyperbolic activations functions. In fact, even
an early architecture such as VGGNet was using the ReLU activation function. The
problem was that the gradients were underflowing during BP [78]. As chain rule
requires, gradients in shallower layers are calculated by multiplying the gradients in
the deeper layers together. If the gradients are smaller than 1, they will diminish in
value during BP until the point that the gradients in shallower layers are too small to
be represented in the memory. To solve this issue, gradients needed to be transferred
into shallower layers without underflowing. Developed by Microsoft Research Team,
Residual Networks (or namely the ResNets) solve the underflowing gradients issue by

introducing a new concept called residual learning.

As mentioned before, a NN tries to find a mapping function between the input space
and the output space and there are even optimal mappings among stacked layers. Let
us call H(x) an optimal mapping to be fit by a stack of hidden layers. For the sake of
argument, assume that we know the target outputs y of this stacked. An optimal fitting
would minimize the prediction error given by F(x) = H(x) — y. In statistics, a
residual is the distance vector between the target and prediction, so F(x) represents
the residual for the stack. In the original paper of ResNet, it is argued that if a complex
function H(x) can be approximated by multiple layers its residual F(x) can also be
approximated. So it is safe to let layers update their weights to imitate F(x) instead,
but it should also be noted that the desired behavior is still defined by H(x). The
difference between residual learning and non-residual learning is that layers
approximate F(x) and H (x) is achieved by summing the target values to the residuals

in residual learning. Reformulation of H(x) is given in (2.29).

Hx)=F(x)+y (2.29)

In real applications, it is not possible to apply (2.29) since target values are unknown,
but residual learning can be used for identity mappings where y = x. This way (2.29)

becomes the following.

H(x) =F(x)+x (2.30)
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The above equation can easily be implemented in CNNs with skip connections. ResNet
uses stacks of skipped layers called residual blocks to learn identity mappings. A

residual block with two-layer skipping is given in Figure 2.20.

y

Conv. laver ‘

Batch Norm.

Relu
F(x) < y X

Conv. layer ‘

Batch Norm.
Relu

Flx)+x

Figure 2.20 : Residual block with two-layer skipping

A residual network can be built by stacking residual blocks stacking one after another.
A plain network without any skip connections is given in Figure 2.21. This plain
network contains 34 layers and is the base architecture of the 34 layered version of the
ResNet. The ResNet-34 has the same layers, but it also includes skip connections as

shown in Figure 2.22.

Figure 2.22 : ResNet-34 architecture [44]

The importance of identity mappings is that they can transfer the gradients to shallower
layers without diminishing them. For example, if there is a skip connection from the

end of i layer to the end of (i+2)" layer, gradients in layer (i+2) can be directly
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transferred to i™ layer during the BP. To mathematically represent, the gradient of a
residual block’s input is given in (2.31).

9] 9JoH 9 ((’)F 1) 9 OF 9] .31

9x OHox oH\ox ') 3Hox oH
Even with residual blocks, gradients can still vanish if the network is deep enough.
Skip connections are just providing a way to add more layers to an existing architecture
until underflowing happens. If more layers are skipped at each residual blocks,
network depth can be further increased. In fact, the residual block given in Figure 2.19
belongs to the ResNet-34. There are also 50 layered (ResNet-50), 101 layered (ResNet-
101) and 152 layered (ResNet-152) versions of ResNet and they use the residual block
given in Figure 2.23.

Conv. layer ‘

Batch Norm.
Relu

‘ Conv. layer ‘
Fix) 4

Batch Norm.
Relu

‘ Conv. layer ‘

Batch Norm.
Relu

Fx)+x
Figure 2.23 : Residual block with three-layer skipping

2.10 Transfer Learning

In computer vision, a feature extraction algorithm can be integrated into various
classification or detection tasks where different object sets are handled. A good feature
extraction algorithm should be task agnostic while mapping the input space to a feature
space. We have already mentioned that a CNN consists of non-task specific and task
specific layers. The non-task specific layers serve the purpose of feature extraction and
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they are in the form of convolutional and pooling layers. Task-specific layers on the
other hand usually consist of FC layers and solves a classification or detection task.

The task specific layers are further emphasized in Figure 2.24.

Input image Feature Exfraction Layers Task speaficlayers  Class Probabilities

Conwolution Podling

Figure 2.24 : Feature extraction and task specific layers of a CNN

Having a seperation between the feature extraction and task specific layers provides a
way to adapt an existing network to a different task just by replacing its feature
extraction layers. By only replacing the task specific layers, the existing knowledge of
feature extraction can be transferred into any computer vision task. The newly added
layer would still require further training, but this approach is more efficient compared
to training a new model from scratch, since the task-specific layers form a small
portion of the complete architecture. Adapting an existing network for new tasks is

called transfer learning and can be used to incorporate existing deep CNNs.

The feature extraction layers of a CNN is given below where 6, represents the

learnable parameters of these layers and z¢, is the extracted features.

Zfe = 9oy (*) (2.32)

The complete CNN model can be expressed as in (2.33) where 6, is the learnable

parameters of the task-specific layers.
Y = fo.. (9o, (X)) (2.33)

The transfer learning approach is to replace fy, . with a new one as shown below where

0., is the learnable parameters of new task-specific layers.
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y = fglgs(gefe(x)) (2.34)

Re-training the modified network to learn 6/ is called fine-tuning. Since the feature
extraction layers are already optimized, gradient calculation is not needed for &,
during the BP stage of the fine-tuning. Layers or weights that aren’t being updated
during the BP stage are said to be frozen and it is common practice to freeze 6y, in
fine-tuning. This way a training iteration (FP and BP together) completes faster
compared to training from scratch. Even if 8¢, is not, the network will converge much

faster with fewer epoch counts.

Using a pre-trained network not only saves training time, it also enables high accuracy
performance for a network without needing a large amount of data [79]. In Table 2.2,
we have given the number of samples for some of the popular image datasets. From
the table it can be seen that these datasets contain very large amounts of samples and
it is not always possible to construct such large datasets. For example in medical
imaging problems number of collected samples tend to be smaller compared to other
tasks. The transfer learning approaches is therefore essential for cases where datasets

are not sufficiently large.

Table 2.2 : Number of samples for some of the image datasets

Number Sizein
Of Samples Memory
MNIST 70 000 50 MB
Fashion MNIST 70 000 30 MB
CIFAR-10 60 000 170 MB
COCO 330x10° 25 GB
ImageNet 1.5x10° 150 GB
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3. DEEP LEARNING BASED PIPELINE

In control lectures, lecturers frequently use plots in time and frequency domains to
better explain core concepts. Although the dynamics of a system, its stability margins
can be expressed mathematically it is also convenient to visualize these metrics.
Today, control lectures are usually conducted in classroom environments where
lecturers heavily use drawing boards. The corresponding plots for the handled systems
are drawn to these drawing boards. While drawing boards have their advantages,
plotting a system response or similar graphs may prove challenging and time-
consuming. It is also not possible to correctly scale these visuals and only their
approximations can be presented to students. In some cases, the plots can’t even be
drawn if the handled system is not simple enough. A better approach is to define and
analyze systems in a simulation environment such as Matlab®, but then the lecturer
would be deprived of the advantages of using a whiteboard. Instead, the block
diagrams drawn on the whiteboard can be recognized with a computer and be

transferred to a simulation program for further analysis.

In this thesis, we proposed a DL based pipeline that can transfer an HFCA to the
Matlab® environment. An overview of the DL based pipeline is given in Figure 3.1
that is summarized with the following steps:

Step-1: Recognizing the structure of the HFCA with DL.
Step-2: Detecting TF blocks using image processing.
Step-3: Segmenting and recognizing the characters with DL.

Step-4: Constructing symbolic expressions from the recognized characters to

construct continuous-time TFs in Matlab®.
Step-5: Generating the recognized continuous-time HFCA in Matlab®.

In Step-1 and Step-3 of the proposed DL based pipeline, the following two PR
problems are defined.

e HFCA Recognition (HFCAR)
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e Handwritten Character Recognition (HCR)

The main challenge arises from the quality of the lecturer’s handwriting and lighting
conditions, especially in HFCAR and HCR problems. To handle such uncertainties,
we used the transfer learning approach of ResNet-50 described to construct deep
CNN:s.

To train the deep CNNs, an image dataset collected from lecturers of Control System
Design courses in a small-sized classroom environment in the presence of different
lighting conditions has been constructed. The implementation of deep CNNs has been
done with the Deep Learning Toolbox™ to have easy integration with Control System
Toolbox™ and Simulink™ of Matlab®. Both of the networks are trained with SGDM
as the optimizer for the sake of simplicity as it has only a single hyperparameter, which
IS a. We also used the cross-entropy loss function with defined in (2.12) L2

regularization defined in (3.1) where A is the regularization term, y, is the predicted

output, 3, is the target label and Q is the total number of classes.

: wlw
D Dalogdg +(1-y)log(1 - 9)] + 2= (1)
q=1

Q| =

L(yq'f’q) Shy

In this chapter, a detailed description of the steps of DL based pipeline as shown in
Figure 3.1 is given. For illustrative purposes, the steps of pipeline are illustrated on an
example HFCA which is shown in Figure 3.2.

DL based HFCAR

RGB Image of HFCA HFCA in Matlab®

DL based HCR

Transfer Function
Block Detection

Figure 3.1 : Overview of the proposed DL pipeline
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Figure 3.2 : An example HFCA
3.1 Handwritten Feedback Control Architecture Recognition

The first task to be accomplished in the proposed DL based pipeline is to solve the
HFCAR problem to identify one of the architectures shown in Figure 1.1 (i.e. Q=6
classes). In this context, we constructed a dataset with 306 RGB HFCA images with a
resolution of 4032x3024 which were captured from an actual whiteboard. The dataset
is then labeled manually with the classes and is then split as 216 images (36 per class)
for training, 36 images (6 per class) for validation, and 54 images (9 per class) for

testing. Examples from each class are given in Fig. 3.3.

Figure 3.3 : Example HFCA images
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The multi-label HFCAR problem is solved with a ResNet-50 based CNN as described
in chapter 2.3. In learning of the deep CNN, all images are resized to a resolution of
224x224 without any further pre-processing. Furthermore, we employed the online
data augmentation method to create artificially modified versions of images to increase
the size of training dataset by slightly rotating and scaling each image at each training
epoch. The DL hyperparameters are set as: 100 epochs, minibatch size of 1, and a

learning rate of 10~ with a drop rate factor of 0.1 at every 10 epochs.

The best and mean training, validation and testing accuracies over 5 experiments are
tabulated in Table 3.1. The mean training and validation accuracy values are given in
Figure 3.3 (only the first 3000 iterations are given). It can be concluded that the
performance of the deep CNN is statisfactory as it resulted with mean testing accuracy
value of 89.25%.

Table 3.1 : Performance of deep CNN for HFCAR

Best Accuracy  Mean Accuracy

Training 100% 100%
Validation 97.2% 94.4%
Testing 94.4% 89.25%

3.2 Transfer Function Block Detection

After recognizing the class of the HFCA, TF blocks in the image that are enclosed with
rectangular shapes must be extracted. Taking into account the fact that TF blocks are
represented as rectangles in FCAs, an algorithm that can detect rectangles can be used
for this task. Detection of a rectangle simply means to find the position and the
dimensions of the smallest box that contains it. As it can be guessed, TF blocks on an
HFCA may not be perfect rectangles unlike their bounding boxes (BB).

Finding the BBs of TF blocks is accomplished by an algorithm that contains image
processing techniques like binarization, edge detection, and connected component
analysis. The steps of this algorithm are explained in detail in the following sections.
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Figure 3.4 : HFCAR mean (a) loss values (b) accuracy values

3.2.1 Binarization of HFCA

Transforming a colored image into an array of logical elements is required for applying
morphological operations [52]. A binary image can be obtained by thresholding the
input image like the following where x;; is the element of the input image at position
(i.), b;j is the corresponding element in the resulting binary image and T is the

threshold value.
Lifx;; =T

The binarization technique with a single threshold value given in (3.2) is called global
thresholding. For images where shadows and nonuniform illumination exist, a global

thresholding method will not be able to give satisfying results.

To deal with faded fonts and light reflections like in Figure 3.2, a convolution

operation with zero padding is employed with the following n by n kernel k;;:
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1 .. n-1 n-1
ky ={1/n 1= 5= (33)
-1 else

If a pixel’s intensity value is darker when compared to its n by n neighborhood, the
result of the convolution operation has a positive value at that pixel’s location. We
defined a positive threshold value D to determine the binary version of the input image.
Mathematical expression for the used thresholding method is given in (3.4) where ¢ =
x * k.

_{1lfCUZD

By trial and error, we found that a 15x15 kernel with D = 15 is a suitable value for

our purposes. The binary version of Figure 3.2 is given in Figure 3.5.

Figure 3.5 : Binarized image

3.2.2 Character and Noise Removal

In the next step of the rectangle detection, the characters inside the rectangles are
removed. In FCA diagrams, all the lines except the characters and symbols inside TF
and operation blocks are connected. When the characters and all the noise are removed,

it is expected to end up with a binary image where only the mentioned lines remain.

It can safely be assumed that the biggest connected component (i.e. connected
component with highest pixel count) in Fig 3.5 is the diagram itself. With that
assumption, undesired pixels can be removed by finding the biggest connected
component. Using 8 connectivity, the resulting segmentation of the HFCA image is
shown in Figure 3.6. Note that it is very likely that the lecturer might not connect all
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the blocks perfectly. Thus, a dilation operation was also applied to close such

disconnections.

Figure 3.6 : Character and noise filtered binary image
3.2.3 Filling Transfer Function Blocks

In rectangle detection, the aim is to have filled blobs where rectangles reside. A filling
can’t be applied directly to Figure 3.6 or it will result in a single large blob. Instead,
the Canny edge detection algorithm is deployed to remove the outermost edge loop
that wraps the whole diagram first. Then, a morphological fill algorithm is employed
for the remaining image. The result of the filling operation is given in Figure 3.7.

Figure 3.7 : Filled binary image

3.2.4 Rectangle Extraction

As it can be seen from Figure 3.7, not all the remaining white regions belong to a TF

block. By performing a shape analysis, desired rectangles can be extracted. For the
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shape analysis, the circularity and rectangularity of each connected component is
calculated. The circularity measure (C) is defined in (3.5) where A is the area and P is

the perimeter of the region in terms of pixels.

_ 4mA

=57 (3.5)
The rectangularity measure (R) is given in (3.6) where Ly, j, is the length of the major

axis and L,,inor 1S the length of the minor axis of the region.
R A
=5 3.6
Lmajoerinor ( )
Regions that satisfy the conditions given in (3.7) are selected as rectangles.

<09

07<R<15 (3.7)

Once the rectangle regions are segmented, their BB informations are saved for further

use. Segmented regions for Figure 3.2 are shown in Figure 3.8.

Figure 3.8 : Detected rectangles

3.2.5 Handwritten Character Recognition

In the next step of the pipeline, characters inside the TF blocks are recognized using a
deep CNN. To be able to classify characters with DL, they must be located first.
Instead of searching for characters over the whole image, small patches are cropped
from the input image for each TF block using their BB information. An example

cropped image patch is shown in Figure 3.9. A character segmentation algorithm can
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then be employed on individual patches to be able to tell which character belongs to

which TF block.

T\\
S 4 125-4

Figure 3.9 : Extracted TF block image

The adopted character segmentation method starts with the binarization of the
extracted image patch. Although a binarized version of the whole image already
generated in the rectangle detection, we have seen that the previously mentioned
binarization technique doesn’t provide satisfactory results for small image patches.
Global binarization technique as described in (3.2) is adopted instead with a T of 125
(half instensity value in RGB images). Binary version of Figure 3.9 is given in Figure
3.10. After the binarization, connected components are found in the patches. It is
assumed that the characters do not touch each other and consists of single blobs and
because of these assumptions all the found components are treated as characters. A
morphological close operation is employed before to deal with possible
discontinuities. Once the characters are segmented and their BBs are found, they are
cropped and resized into 224x224 resolution to be fed into a deep CNN for labeling.

Figure 3.10 : Segmented TF block image
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The characters to be recognized are digits (0-9), arithmetic operators (‘+’, -, ‘x’, “*”),
round and square bracket pairs, and the ‘s’ and ‘.’ characters, which makes in total
Q = 20 classes. In the dataset construction for HCR, we used the whole constructed
HFCA dataset containing 306 samples by first extracting TF blocks then segmenting
characters via the aforementioned approach. It is worth to underline that we have
observed that lighting conditions had a much bigger impact on small images and
therefore we decided to extract the characters from the binary version of the HFCA

images.

Each extracted character is labeled manually by the authors. An example of the used
character images is shown in Figure 3.11. Moreover, we would like to point out that
the dataset is enriched with extra handwritten character images to end up with evenly
distributed samples for each class. The resulting HCR dataset has 3920 images in total
which is split as 155 images per class for training, 32 images per class for validation

and 9 images per class for testing.

Figure 3.11 : Example character images

The HCR problem is solved with a deep CNN that is trained as described previously
with hyperparameter settings of 50 epochs, minibatch size of 4, and a learning rate of
10~ with a drop rate factor of 0.1 at every 10 epochs. We also employed online data

augmentation during the learning.

The best and mean training, validation, and testing accuracies over 5 experiments are
given in Table 3.2. The mean training and validation accuracy values are illustrated in
Figure 3.12 (only the first 500 iterations are given). It can be seen that the learning

performance of the ResNet-50 based deep CNN is satisfactory since it resulted in a
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mean accuracy of more than 96%. As it can be seen from Figure 3.13, the trained deep
CNN is capable to successfully label the characters of the segmented TF image.

Table 3.2 : Performance of the deep CNN for HCR

Best Accuracy  Mean Accuracy

Training 100% 100%
Validation 98.39% 97.2%
Testing 96.17% 96.08%
Training Validation
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Figure 3.12 : HCR mean (a) loss values (b) accuracy values

3.3 Symbolic Expression Construction

A single input-single output TF is expressed as a ratio of two polynomials, namely the
numerator and denominator. In Matlab®, a TF can be defined using the coefficients of
these polynomials. For that reason, symbolic expressions from the unordered but
labeled characters for each TF are constructed. With Matlab®’s Symbolic Math

Toolbox™, required coefficients can be found from the constructed expressions.
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First step in symbolic expression construction is to build the equation string using the
recognized characters as illustrated in Figure 3.13. This process starts with finding the
fraction signs that seperates the numerator from the denominator. Although not very
likely, we consider the cases where multiple fractional terms exist in TFs. It is not safe
to consider all the characters with “-* labels as the same label is used also for the minus
sign. To distinguish the numerator and denominator polynomials of the recognized TF,
the characters labeled with the class “-” are initially examined. To differentiate
whether this label represents the subtraction or fraction operator, we simply checked
if there is another labeled character above and below of its position. If this condition
results in a non-empty set, then we concluded that the labeled character is a fraction
symbol that separates the numerator and denominator of TF as shown in Figure 3.14.
Then, the remaining characters are allocated as elements of the sets defining the
numerator and denominator part of TF with respect to their position. In this step, we
have also handled exponent characters in the polynomials. A character is labeled as an
exponent if it is positioned (slightly) above of its preceding character. As shown in
Figure 3.14, the first character labeled as “2” is an exponent, because of its relative
vertical position to the first occurring “s” character. Thus, we add a caret character (")

between the base and the exponent characters.

Figure 3.13 : Labeled TF block image
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Figure 3.14 : Labeled numerator and denominator

Once all the characters are allocated in order, the character sets of the numerators and
denominators are turned into strings and then merged with a division symbol to obtain
a string expression of the extracted TF image. This string expression is then
transformed into a symbolic expression to obtain TF representation in which the “s”
character becomes the only symbolic variable. Finally, the coefficients of the symbolic
expressions of the numerator and denominator are extracted to define TFs in Matlab®.

A screenshot of transfer function construction in Matlab® is given in Fig 3.15.

>> [num, den] = numden(symbolic);
G = tf(double(coeffs(num, 'Al1l')),...
double (coeffs(den, 'All')))

Continuous-time transfer function.

Figure 3.15 : TF in Matlab®
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3.4 Feedback Control Architecture Generation In Matlab®

Once the deep CNN trained to solve HFCAR problem recognizes the FCA class (all
classes are shown in Figure 1.1), the extracted TF representations of the image have to
be matched with their appropriate slots in the FCA. In this context, using the center
coordinates of the extracted TF blocks that are calculated via their BB information, we
assign the extracted TFs that have similar vertical positions in the image to the same
path, match and name them with the corresponding TFs (such as G(s), C(s), H(s),...)
defined in the FCAs through their horizontal positions in the image. Note that, we
defined a path as a horizontal route a signal can follow in FCAs (i.e. feedforward or
feedback path).

In order to provide a clear understanding, let us explain the matching and naming of
the TFs on the FCA-1 structure for illustrative purposes. As can be observed from
Figure 1.1a, the FCA-1 has two paths including a feedforward path with 3 TFs (F(s),
C(s) and (G(s)) at top and a feedback path with a single TF (H(s)). If a HFCA is
recognized as FCA-1 and all the TFs are extracted in the image frame, then we end up
with 3 TFs aligned and a single TF near the upper and lower half of the image,
respectively. In the FCA-1, since we know that the prefilter F(s) is the first TF in the
feedforward path, we name and match the extracted TF with smaller horizontal
coordinate at the upper path as the TF F(s), while the next one to its right as the
compensator TF C(s) and the rightmost one as the plant TF G(s). The remaining
extracted TF is directly matched and named as the TF that defines the sensor dynamics
H(s) since the feedback path of FCA-1 contains a single TF. In a similar manner, the
rest 6 FCAs are matched with the extracted TFs in the proposed DL based pipeline.
Now, the FCA constructed from HFCA can be directly processed and analyzed in
Matlab® since all the TFs of FCA are defined in the workspace of Matlab®.

In order to analyze the FCAs via the Control System Designer App™ of Matlab®, we
define a Matlab object in which the recognized FCA class is defined with the extracted
and matched TFs and then import it to the graphical user interface of the application.
As shown in Figure 3.16, the user can now not only visualize the control system in the

time and frequency domains but also tune compensator C(s) if desired.

It is also worth mentioning that the DL based pipeline automatically generates also a

Simulink™ diagram as shown in Figure 3.16d which can be directly used for
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simulation purposes. To accomplish such a goal, we created template Simulink files in
advance for all the FCAs in which all TFs are named as defined in Table I. In the
template Simulink files, the simulation time and solver options are defined with the
default settings of Simulink™. Once the HFCA is recognized, the corresponding

Simulink file is automatically opened and the matched TFs are loaded into the file.

3.5 Real-Time Performance of the Pipeline

To test the real-time performance of the pipeline, a series of experiments are conducted
in a small-sized classroom containing a whiteboard and a projection board. For the
experiments, we created a simple program in Matlab® that detects the HFCA currently
drawn on the whiteboard in a continuous loop. At each time-step, a snapshot is taken
from a camera that is fixed to the whiteboard. The image is then fed to the pipeline and

if a valid FCA is detected the program sends it to the Simulink™ environment.

(c) (d)

Figure 3.16 : (a) Matlab command window (b) Step Response (c) Root-Locus and
Bode plots (d) Simulink diagram

The program does not terminate after recognizing the HFCA and completing the
pipeline. It repeats the first step of the pipeline (HFCAR) at the start of each iteration.
If a different HFCA is successfully recognized it completes the remaining steps (block
detection, HCR, symbolic expression construction) and opens a new Simulink™

model. If the recognized HFCA is the same as before, it checks the TF blocks for any
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possible changes. In case of modification inside a TF block, HCR and symbolic
expression construction steps are repeated for that specific block. This way, we were
able to avoid repeating the block detection step at each iteration. Flowchart of the real-

time program is given in Figure 3.17.

We also projected the Simulink™ window with a projection device to a projection
board as in Figure 3.18a. We observed that the pipeline takes roughly a second to
generate a result and concluded that the pipeline can handle inter-quality uncertainty
as it is capable to recognize FCAs from different users in real-time. It can also handle
intra-quality uncertainties as it can recognize FCAs from in the presence of various
lighting conditions in real-time. Snapshots from the real-time experiment are given in

Figure 3.1.
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Figure 3.17 : Flowchart of the real-time application
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Figure 3.18 : (a) Experiment environment (b) Projected Simulink™ window (c)
Simulation result
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4. CONCLUSION

In this thesis, we established a DL based pipeline that can recognize an HFCA along
with the TFs it contains in real-time. We also presented the DL concepts used in this
work. We believe that being able to transform an HFCA to a simulation environment
such as Matlab® provides the opportunity to the lecturers/researchers to easily
visualize and analyze HFCAs during a lecture. The proposed pipeline has been
accomplished by integrating frameworks of deep learning and using various PR and
image processing techniques. We provided all the details and necessary information
about each step of the proposed DL based pipeline. For steps that include classification
with DL, we integrated deep CNNs to solve the corresponding PR problems (HFCAR
and HCR). Instead of designing a new architecture, we used the transfer learning
approach. We selected ResNet-50 as the base model since we believe that it is capable
of handling the intra-quality and inter-quality uncertainties that mainly occur due to
handwriting quality of the lecturers and lighting conditions. We also created separate
datasets for both of the recognition problems for the fine-tuning with the help of

different lecturers.

We tested the capabilities of our pipeline by conducting experiments in a small-sized
classroom with a camera fixed on a whiteboard. During the experiments, we tried to
transfer the currently drawn HFCA on the whiteboard to the Matlab® in real-time. The
experiments showed that the DL based pipeline is a powerful tool to visualize and
analyze HFCAs as it can recognize the FCA with high accuracy in a short amount of
time. It is also worth underlining that the developed DL based pipeline is capable to
detect changes in each TF block and it can update the current representation. This way
lecturers can show how poles and zeros affect a system, adjust the controller

parameters, or employ similar alterations to further analyze an FCA.

We think that the DL based pipeline has the potential to ease the difficulty in teaching
control systems as real-time visualizations of control systems and simulations are

generated as the lecturer is sketching FCAs during the lectures.
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