

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JULY 2020

TRANSFORMING FEEDBACK CONTROL SYSTEMS

ON WHITEBOARD INTO MATLAB VIA

A DEEP LEARNING BASED INTELLIGENT SYSTEM

Dorukhan ERDEM

Department of Control and Automation Engineering

Control and Automation Engineering Programme

Department of Control and Automation Engineering

Control and Automation Engineering Programme

JULY 2020

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

TRANSFORMING FEEDBACK CONTROL SYSTEMS

ON WHITEBOARD INTO MATLAB VIA

A DEEP LEARNING BASED INTELLIGENT SYSTEM

M.Sc. THESIS

Dorukhan ERDEM

 (504181110)

Thesis Advisor: Assoc. Prof. Tufan KUMBASAR

Kontrol ve Otomasyon Mühendisliği Anabilim Dalı

Kontrol ve Otomasyon Mühendisliği Programı

TEMMUZ 2020

ISTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

DERİN ÖĞRENME TABANLI AKILLI BİR SİSTEM İLE

BEYAZ TAHTADAKİ GERİBESLEMELİ

KONTROL SİSTEMLERİNİN MATLAB ORTAMINA AKTARILMASI

YÜKSEK LİSANS TEZİ

Dorukhan ERDEM

(504181110)

Tez Danışmanı: Doç. Dr. Tufan KUMBASAR

v

Thesis Advisor : Assoc. Prof. Tufan KUMBASAR

 İstanbul Technical University

Jury Members : Assist. Prof. İlker ÜSTOĞLU

Istanbul Technical University

Assist. Prof. Gürkan SOYKAN

Bahçeşehir University

Dorukhan Erdem, a M.Sc. student of İTU Graduate School of Science Engineering

and Technology student ID 504181110, successfully defended the thesis entitled

“Transforming Feedback Control Systems on Whiteboard into Matlab via A Deep

Learning Based Intelligent System”, which he prepared after fulfilling the

requirements specified in the associated legislations, before the jury whose signatures

are below.

Date of Submission : 7 July 2020

Date of Defense : 14 July 2020

vi

vii

To my family,

viii

ix

FOREWORD

I would like to thank my thesis advisor Assoc. Prof. Dr Tufan Kumbasar for his

guidance and everlasting support. I am grateful to him for making me part of the

Artificial Intelligent and Intelligent Systems Laboratory team.

I would also like to thank Scientific and Technological Research Council of Turkey

(TUBITAK) for their aid under the research project 118E807.

Finally, i would like to thank Gamze for standing by my side through thick and thin

and thank my family for their unending support.

July 2020

Dorukhan ERDEM

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xiii

SYMBOLS .. xv
LIST OF TABLES ... xvii
LIST OF FIGURES .. xix

SUMMARY ... xxi
ÖZET .. xxv

 INTRODUCTION .. 1
 DEEP LEARNING .. 9

 Perceptron Models .. 9

 Gradient-Based Learning ... 12
 Stochastic Gradient Descent ... 15
 Multilayer Perceptrons ... 15

 Back-propagation ... 18
 Training, Validating and Testing Datasets ... 19

 Methods to Improve Performance .. 21
2.7.1 Regularization ... 21
2.7.2 Gradient descent with momentum .. 21

2.7.3 Batch normalization .. 22

 Convolutional Neural Networks ... 23
2.8.1 Convolutional Layer ... 24
2.8.2 Pooling Layer .. 28

2.8.3 Two Dimensional Batch Normalization ... 29
2.8.4 Activation Layer ... 30
2.8.5 Task-Specific Layer .. 32

 Deep Networks ... 33
 Transfer Learning ... 37

 DL BASED PIPELINE .. 41
 Handwritten Feedback Control Architecture Recognition 43
 Transfer Function Block Detection .. 44

3.2.1 Binarization of HFCA ... 45
3.2.2 Character and Noise Removal ... 46

3.2.3 Filling Transfer Function Blocks .. 47
3.2.4 Rectangle Extraction ... 47

3.2.5 Handwritten Character Recognition .. 48
 Symbolic Expression Construction .. 51
 Feedback Control Architecture Generation In Matlab® 54
 Real-Time Performance of the Pipeline ... 55

 CONCLUSION ... 59
REFERENCES ... 61

CURRICULUM VITAE .. 67

xii

xiii

ABBREVIATIONS

FCA : Feedback Control Architecture

TF : Transfer Function

LQR : Linear Quadratic Control

IMC : Internal Model Control

DL : Deep Learning

CNN : Convolutional Neural Networks

HFCA : Handwritten FCA

PR : Pattern Recognition

NN : Neural Network

ML : Machine Learning

AI : Artificial Intelligence

SL : Supervised Learning

GD : Gradient Descent

MSE : Mean Square Error

SGD : Stochastic Gradient Descent

FP : Forward Propagation

BP : Backward Propagation

BN : Batch Normalization

RGB : Red Green Blue

HFCAR : HFCA Recognition

HCR : Handwritten Character Recognition

BB : Bounding Box

xiv

xv

SYMBOLS

𝒙𝒊 : Input of ith layer

𝒘𝒊 : Weight of ith layer

𝒃𝒊 : Bias term of ith layer

𝒛𝒊 : Activation of ith layer

𝒚𝒊 : Output of ith layer

𝒈𝒊 : Activation function for ith layer

𝜶 : Learning rate

𝒚̂ : Predicted output of a NN

𝜽 : Vector containing weights and biases of a neural network

𝝀 : Regularization constant

𝒗 : Momentum term in GD with momentum

𝒙̂𝒊 : Normalized inputs of ith layer

𝝁𝒃 : Batch mean

𝝈𝒃 : Batch standard deviation

𝜸 : Scaling constant in BN

𝜷 : Shifting constant in BN

𝑯𝒇 : Height of filter in 2D convolution

𝑾𝒇 : Width of filter in 2D

𝑯𝒙 : Height of the input image in convolution

𝑾𝒙 : Width of the input image in convolution

𝑪 : Number of channels of a tensor

𝑭 : Number of filters in a convolutional layer

𝑯𝒛 : Output height in convolutional layer

𝑾𝒛 : Output width

𝑷 : Padding amount in a conv

𝑺 : Stride amount in a convolutional or pooling layr

𝑸 : Total number of classes in a classification network

D : Binarization threshold

𝑪 : Circularity measure

𝑹 : Rectangularity measure

𝑳𝒎𝒂𝒋𝒐𝒓 : Length of major axis of a region

𝑳𝒎𝒊𝒏𝒐𝒓 : Length of minor axis of a region

xvi

xvii

LIST OF TABLES

Page

Table 1.1 : Descriptions of FCA’s defined in [14]. ... 2
Table 2.1 : Depth and error rates of major CNN architectures 34
Table 2.2 : Number of samples for some of the image datasets................................ 39

Table 3.1 : Performance of deep CNN for HFCAR .. 44
Table 3.2 : Performance of the deep CNN for HCR ... 51

xviii

xix

LIST OF FIGURES

Page

Figure 1.1 : Illustration of the FCAs ... 5
Figure 2.1 : A visual representation of perceptron.. 10
Figure 2.2 : Perceptron with activation function... 11

Figure 2.3 : Sigmoid activation function .. 12
Figure 2.4 : Visual representation of GD .. 13
Figure 2.5 : An example NN ... 17
Figure 2.6 : Graph representation of multiplication operation.................................. 18
Figure 2.7 : Computational graph of a three-layered network 19

Figure 2.8 : Example partitioning of a dataset. ... 20
Figure 2.9 : An example GD with oscillating gradients ... 21

Figure 2.10 : LeNet Architecture [60] .. 24
Figure 2.11 : Convolution operation with constraints .. 26
Figure 2.12 : Convolution with zero padding ... 27
Figure 2.13 : A visual representation of max pooling... 29

Figure 2.14 : A visual representation of average pooling ... 29
Figure 2.15 : Hyperbolic activation function .. 30

Figure 2.16 : First-order derivatives of hyperbolic and sigmoid functions 31
Figure 2.17 : Plot of ReLU activation function .. 32
Figure 2.18 : AlexNet architecture [43] .. 34

Figure 2.19 : VGGNet architecture [75] ... 34
Figure 2.20 : Residual block with two-layer skipping .. 36

Figure 2.21 : Base plain network [44]... 36
Figure 2.22 : ResNet-34 architecture [44] .. 36
Figure 2.23 : Residual block with three-layer skipping .. 37

Figure 2.24 : Feature extraction and task specific layers of a CNN 38

Figure 3.1 : Overview of the proposed DL pipeline ... 42
Figure 3.2 : An example HFCA .. 43
Figure 3.3 : Example HFCA images ... 43

Figure 3.4 : HFCAR mean (a) loss values (b) accuracy values 45
Figure 3.5 : Binarized image ... 46
Figure 3.6 : Character and noise filtered binary image ... 47

Figure 3.7 : Filled binary image .. 47
Figure 3.8 : Detected rectangles .. 48
Figure 3.9 : Extracted TF block image ... 49
Figure 3.10 : Segmented TF block image ... 49
Figure 3.11 : Example character images ... 50

Figure 3.12 : HCR mean (a) loss values (b) accuracy values 51

Figure 3.13 : Labeled TF block image .. 52

Figure 3.14 : Labeled numerator and denominator ... 53
Figure 3.15 : TF in Matlab® ... 53

Figure 3.16 : (a) Matlab command window (b) Step Response (c) Root-Locus and

Bode plots (d) Simulink diagram ... 55
Figure 3.17 : Flowchart of the real-time application .. 56
Figure 3.18 : (a) Experiment environment (b) Projected Simulink™ window (c)

Simulation result ... 57

xx

xxi

TRANSFORMING FEEDBACK CONTROL SYSTEMS ON WHITEBOARD

INTO MATLAB VIA A DEEP LEARNING BASED INTELLIGENT SYSTEM

SUMMARY

In control theory, some concepts can be better grasped with further visualization. Some

core concepts such as the transient and steady-state behavior of a system or the interval

at which it is stable can be better expressed using plots in time and frequency domains.

The introduction of these visual aids has an important place in control lectures. In the

classroom environment, instructors usually draw the corresponding graphs about a

system by hand after presenting its control diagram. Hand drawing a plot is a difficult

and time-consuming process and it is not possible to correctly scaled graphs this way.

In order to correctly analyze a system, a simulation environment like Matlab® should

be preferred. In this thesis, we have proposed a deep learning based pipeline that can

recognize and transfer a block diagram on the whiteboard to the Matlab® environment.

This way, control systems drawn by the lecturers can be properly analyzed with

computer-generated plots without redefining them in the Matlab®.

Generally, feedback control architectures are covered in control system lectures. These

architectures can be visually represented with block diagrams. In a block diagram,

transfer blocks are shown as rectangles and the connections between these blocks are

indicated with arrows. The arithmetic operations like summation and subtraction

between the signals are also shown inside small circles. A feedback control system

may contain transfer functions for the filter or noise dynamics along with the controller

and the plant. The number and the location of these transfer functions, their connection

schemes, the number of forward or backward paths separates an architecture from

another. In order to transfer a handwritten block diagram to Matlab® these

informations must be extracted first using computer vision techniques. Then, the

contents of each transfer function must be found in order to represent them in Matlab®.

An architecture with known connections and transfer functions can be easily expressed

in the Matlab® environment. If desired, a simulation model can be created Simulink™

or analyzed with Control System Designer App™.

The control architecture from a given picture can be found with different approaches.

A possible one is to handle the recognition task as a classification problem. In

classification problems, inputs are assigned to one of the pre-defined classes by

calculating a similarity ratio. In the context of feedback control architecture

recognition, frequently used architectures can be selected as the class set, and the

corresponding class can be found by examining the input image. Classification

problems usually require a feature extraction method. These methods transfer the

inputs to a feature space and the classification is done between the points in that space.

The accuracy of the classification task depends on the selected feature extraction

method and finding a proper method is the main challenge in classification problems.

An ideal feature extraction method should not be affected by the uncertainties in the

input image. Lighting condition is among the most common uncertainties in image

processing problems. The intensity of the light can cause dark areas to appear brighter

xxii

and can cause information loss. Also, the quality of the lecturer’s handwriting quality

can cause further uncertainties in our handwritten architecture recognition problem.

Long sessions may deteriorate the lecturer’s handwriting quality or different

handwritings among various lecturers can harm the generalizability of the

classification model. Various feature extraction algorithms exist in the computer vision

literature, but a majority of them are not robust to transformations or noises in the input

images. Therefore, structures that automatically extract features such as neural

networks are preferred.

In this thesis, recognition of a handwritten feedback control architecture is handled as

a classification task where the classes are the 6 feedback control architectures defined

in the Control System Designer App™. In order to accomplish the classification task,

we have trained a deep Convolutional Neural Network (CNN). For the training, we

have collected images of handwritten feedback architectures with the help of various

lecturers. Although we have gathered as many samples as we can, constructing a

dataset is a time-consuming process. To avoid problems that may arise from the lack

of data, we have adopted the transfer learning approach. With the transfer learning

approach, a deep network trained on large datasets like ImageNet can be adapted to

new classification tasks by replacing its last layers. As the base network for our CNN,

we have selected ResNet-50 since it shows high classification accuracies in benchmark

tests and doesn’t suffer from a common problem called gradient vanishing.

The next step in our deep learning based pipeline is to construct the transfer functions.

To create the mathematical expressions of the transfer functions, characters in the input

images must first be recognized. Besides, we need to be able to determine which

characters belong to which transfer function. If the location and the dimensions of each

transfer function block in the input image are known, the corresponding characters can

be searched inside these regions. Considering the transfer functions are represented as

rectangles in block diagrams, we continued our pipeline with a rectangle detection step

in this context. First, the input image is binarized with a thresholding algorithm.

Possible noises caused by illuminations are then filtered from the binary image. After

the filtering operation, an edge detection algorithm is applied and the outermost edge

is removed from the binary image. With a filling method that fills closed contours, we

ended up with regions as candidate rectangles. Using the connected component

analysis and inspecting the rectangularity of each region, actual rectangles and their

locations are found. At this point, the architecture and the transfer functions it contains

are already known. Starting from the upper-left one, rectangles are then matched with

the transfer functions by comparing their locations.

Following the rectangle detection step, regions belonging to the transfer functions are

cropped from the filtered binary image. Then the characters are detected in these

cropped regions using the connected component analysis. In order to label the detected

characters, we have trained another CNN using a pre-trained ResNet-50 as a base

network. There are 20 possible labels for a character consisting of the arithmetic

operators, parentheses, digits, and the ‘s’ character. We have also constructed a second

dataset for the character classification task.

After detecting the transfer function blocks and recognizing the characters they

contain, symbolic expressions for each transfer function can be constructed. A transfer

function can be defined in Matlab® by finding the coefficients of its numerator and

denominator. The coefficients can easily found from the symbolic expressions with

the functions provided by Matlab®. For this purpose, the characters in each block are

xxiii

first sorted by their horizontal positions. Using the vertical position of the character

that represents the fraction sign, the remaining ones are then separated as numerator

and denominator. By concatenating the labels of the ordered characters, equation

strings are generated. From the equation strings, symbolic expressions are constructed

and the required coefficients are found. Thus, all the information necessary to transfer

the feedback architecture drawn on the board to the Matlab® environment was

obtained.

At the end of the deep learning based pipeline, the recognized architecture can easily

be transferred to the Control System Designer App™. The application requires the

type of the feedback control architecture and the expressions of the transfer functions

to create a new analysis, which is already present at this point. Alternatively, a

Simulink™ model can be generated by defining the connections and transfer functions.

To test the real-time capabilities of our pipeline, we finally created a test application

that uses our pipeline. It processes images gathered from a live camera and creates a

Simulink™ model if it detects a suitable feedback control architecture.

xxiv

xxv

DERİN ÖĞRENME TABANLI AKILLI BİR SİSTEM İLE BEYAZ

TAHTADAKİ GERİBESLEMELİ KONTROL SİSTEMLERİNİN MATLAB

ORTAMINA AKTARILMASI

ÖZET

Kontrol teorisinde bazı konular, daha iyi kavranabilmeleri için görsel metotlara ihtiyaç

duyar. Bir sistemin geçici ve sürekli haldeki davranışı veya hangi aralıklarda kararlı

olduğu gibi temel bilgiler görsel zaman veya frekans tanım bölgelerinde oluşturulan

grafiklerle gösterildiğinde daha iyi ifade edilebilmektedir. Ayrıca köklerin yer eğrisi

veya Bode grafikleri gibi zaman ve frekans bölgesindeki görsel yöntemler ile

sistemlerin tasarımı da yapılabilmektedir. Kontrol derslerinde de bu görsel araçların

tanıtımı önemli bir yer tutmaktadır. Sınıf ortamında işlenen derslerde eğitmenler blok

şeması verilen bir sistem ile ilgili grafikleri tahtaya yaklaşık bir şekilde çizmektedirler.

Bu hem zaman alan zor bir süreçtir hem de ölçeksiz çizilen grafikler yüzünden

kavramların anlaşılmasını güçleştirmektedir. Ele alınan sistem hakkında doğru bir

şekilde yorum yapabilmek için Matlab® gibi bir benzetim ortamı kullanılmalıdır. Bu

tez kapsamında, tahtaya çizilmiş kontrol şemalarını tanıyan ve Matlab® ortamına

aktarabilen derin öğrenme tabanlı bir yöntem önerilmiştir. Önerilen bu yöntem derin

öğrenme ve görüntü işleme yöntemlerini kullanmakta ve kontrol şemalarını gerçek

zamanda bilgisayar ortamına aktarabilmektir. Böylece ders esnasında eğitmen

tarafından tahtaya çizilen kontrol mimarilerinin sistem yanıtı, kontrolör işareti gibi

grafikler kolaylıkla ve doğru bir şekilde elde edilebilmektedir. Üstelik tahtadaki

mimarinin Matlab® ortamında bir kez daha oluşturulmasına gerek kalmamaktadır.

Önerilen yöntem gerçek zamanlı çalıştığı için el ile çizilmiş şemadaki herhangi bir

değişiklik de benzetim ortamında görülebilmektedir. Bu şekilde sistemin kutup ve

sıfırları güncellenerek sistem cevabı üzerindeki etkileri kolaylıkla görülebilmekte veya

farklı kontrolör parametrelerinin ayarı yapılabilmektedir.

Kontrol sistemi derslerinde genellikle geri beslemeli kontrol mimarileri ele

alınmaktadır. Bu mimariler blok şemalarıyla görsel olarak da ifade edilebilmektedir.

Bir kontrol şemasında transfer fonksiyonları dörtgenler ile temsil edilmekte ve oklar

aracılığıyla birbirilerine bağlanmaktadır. Ayrıca sinyaller arasındaki toplama ve

çıkarma gibi aritmetik işlemler de daireler içerisinde gösterilmektedir. Geri beslemeli

bir kontrol yapısında kontrol edilmek istenen sistemin ve kontrolörlerin yanında sensor

dinamiklerini ve gürültü filtrelerini temsil eden transfer fonksiyonları da

bulunabilmektedir. Belirtilen transfer fonksiyonlarının konumları, aralarındaki

bağlantılar, ileri ve geri yolların sayıları gibi etkenler herhangi bir mimariyi bir

diğerinden ayırmaktadır. Tahtaya çizilmiş bir blok şemasını Matlab® ortamına

aktarılabilmesi için öncelikle şemanın bilgisayar tarafından algılanması

gerekmektedir. Bir kamera ile görüntüsü kaydedilen bir blok şemasından, görüntü

işleme yöntemleri kullanılarak gerekli bilgiler elde edilebilir ve bu şema bilgisayar

ortamında yeniden oluşturulabilir. Bunu başarabilmek için öncelikle şemada belirtilen

mimarinin yapısı oluşturulmalıdır. Mimarinin kaç tane transfer bloğu içerdiği,

xxvi

aralarındaki bağlantı yapıları gibi bilgilerin bilinmesi daha sonraki adımlarını da

kolaylaştıracaktır. Bir sonraki aşamada ise her bir transfer bloğunun içeriği elde

edilmeli ve transfer fonksiyonları benzetim ortamında oluşturulmalıdır. Bağlantıları

ve transfer fonksiyonları bilinen bir mimari kolaylıkla Matlab® ortamında ifade

edilebilmektedir. İstenirse Simulink™ ile benzetim modeli oluşturulabilmekte veya

kontrol sistem tasarım uygulaması (Control System Designer App™) ile analizi

yapılabilmektedir.

Verilen bir resimden kontrol mimarisi farklı yaklaşımlarla bulunabilir. Bunlardan bir

tanesi, problemi bir sınıflandırma görevi olarak ele almaktır. Sınıflandırma

problemlerinde girdiler benzerlik oranlarına göre önceden belirlenmiş sınıflardan bir

tanesine atanırlar. Kontrol mimarisi tespiti bağlamında da sıklıkla kullanılan mimariler

önceden belirlenebilir ve blok şemasının resmi incelenerek hangisine en çok benzediği

bulunabilir. Sınıflandırma problemleri genellikle bir özellik çıkarma yöntemine ihtiyaç

duyar. Özellik çıkarma yöntemleri girdileri bir özellik uzayına aktarır ve sınıflandırma

işlemi bu uzaydaki noktalar arasında yapılır. Sınıflandırma işleminin başarısı,

kullanılan özellik çıkarma yöntemine dayanmaktadır ve uygun bir özellik çıkarma

yöntemi bulmak sınıflandırma problemlerinin başlıca zorluğudur. İdeal bir özellik

çıkarma yönteminin resimdeki belirsizliklerden etkilenmemesi gerekir. Görüntü

işleme problemlerinde ortam ışığı en çok karşılaşılan belirsizlikler arasındadır. Işığın

şiddeti yer yer parlamalarla koyu bölgelerin aydınlık gözükmesine ve ilgilenen objenin

kaybolmasına neden olabilir. Ele alınan mimari tanıma probleminde ise ışıktan

kaynaklanan gürültülerin yanı sıra eğitmenin yazı kalitesi de belirsizlik

yaratabilmektedir. Eğitmenin yazısı bir süre sonra bozulabilmekte veya eğitmenler

arasında karakter tipleri farklılık gösterebilmektedir. Görüntü işleme literatüründe

farklı özellik çıkarma algoritmaları bulunsa da bu yöntemler gürültülere karşı

dayanıksız kalmakta ya da telif hakkıyla korunmaktadırlar. Bu yüzden nöral ağlar gibi

otomatik özellik çıkaran yapılar tercih edilmektedir.

Bu tez kapsamında mimari tespiti bir sınıflandırma problemi olarak ele alınmış ve

kontrol derslerinde sıklıkla kullanılan 6 farklı mimari belirlenmiştir. Ayrıca

belirtilmelidir ki kontrol sistem tasarım uygulaması da yine bu 6 farklı mimariye ait

yapılarla çalışabilmektedir. Sınıflandırma görevinde kullanılmak üzere derin bir

Evreşimli Sinir Ağı (CNN) eğitilmiştir. Görüntü işleme problemlerinde CNN yapıları

Eğitim için farklı eğitmenlerden toplanan ve belirlenen 6 mimarinin sınıf ortamındaki

beyaz tahta çizimlerini içeren bir veri seti oluşturulmuştur. Her ne kadar toplanan veri

sayısı yüksek tutulmaya çalışılsa da geniş bir veri seti oluşturmak zaman almaktadır.

Veri azlığından kaynaklanabilecek sorunları aşabilmek için öğrenme aktarımı

yaklaşımı tercih edilmiştir. Öğrenme aktarımı ile ImageNet gibi büyük veri setlerinde

eğitilmiş bir ağ, son katmanları değiştirilerek yeni veri setlerine uyarlanabilmektedir.

Sınıflandırma görevinde kullanılan ağ ise önceden eğitilmiş bir ResNet-50 ağına

dayanmaktadır.

Blok şeması resmindeki mimari belirlendikten sonraki aşama transfer fonksiyonlarının

elde edilmesidir. Bir transfer fonksiyonunun matematiksel ifadesini elde edebilmek

için öncelikle resimdeki karakterlerin tanınması ve konumlarının bulunması

gerekmektedir. Ayrıca hangi karakterlerin hangi transfer fonksiyonuna ait oldukları da

belirlenmelidir. Transfer fonksiyonu bloklarının konumu ve büyüklükleri önceden

belirlenebilirse ilgili karakterler sadece bu bloklar içerisinde aranabilir. Kontrol

sistemlerinin blok şemalarında transfer fonksiyonlarının dörtgenler içerisinde ifade

edildiği göz önünde bulundurularak mimari tespitinden sonra resimdeki dörtgenler

aranmıştır. Dörtgenlerin tespiti için öncelikle girdi resminin ikili hali elde edilmiştir.

xxvii

Işıktan kaynaklanan belirsizlikler etkisini en çok ikili resmin elde edilmesinde

göstermekte ve istenmeyen gürültüler üretmektedir. Bu gürültüler, klasik görüntü

işleme yöntemleri kullanılarak mümkün olabildiğince giderilmeye çalışılmış ve sadece

şemaya ait piksellerin pozitif olduğu ikili resmin oluşturulması amaçlanmıştır. Takip

eden adımlarda kenarlar tespit edilmiş, en geniş çevre silinmiş ve kalan kapalı çevreler

doldurulmuştur. Böylece birbirinden ayrı ve dörtgen olma olasılığı yüksek pozitif

bölgeler elde edilmiştir. Bağlı bileşen analizi ile kalan bölgelerin dörtgenlikleri

belirlenmiş ve transfer fonksiyonu blokları tespit edilmiştir. Bağlı bileşen analizinde

bir bölgenin konumu ve boyutları bulunabildiği için resimdeki transfer

fonksiyonlarının da konum ve boyutları belirlenebilmiştir. Ayrıca, bir kontrol

mimarisinde sistemin, kontrolörün veya filtrelerin birbirilerine göre konumları

bilinmektedir. Bu sayede dörtgen tespiti ile elde edilen bölgelerin mimarideki hangi

transfer bloğuna karşılık geldiği en sol üstteki dörtgenden başlayarak

bulunabilmektedir.

Dörtgen tespitinin ardından belirlenen her bir transfer fonksiyonu bloğunun bulunduğu

bölge, gürültülerden arındırılmış ikili resimden kırpılmıştır. Kırpılan bu bölgelerdeki

karakterler yine bağlı bileşen analizi kullanılarak tespit edilmiştir. Bu aşamada

yalnızca karakterlere ait bileşenler bilinmekte, hangi karakter oldukları

bilinmemektedir. Her bir blok içerisindeki karakterler bulunduktan sonra yine bir CNN

kullanılarak bu karakterler etiketlenmiştir. Aritmetik operasyon sembolleri,

parantezler, rakamlar ve ‘s’ karakterini içeren 20 sınıflık bir sınıflandırma problemini

çözen bu ağ da ResNet-50 ile öğrenme aktarımı yöntemini kullanmaktadır. Eğitim için

oluşturulan veri seti, mimari tanıma problemi için oluşturulmuş çizimlerden

ayıklanmış karakter resimleri kullanılmıştır. Sınıflar arası eşit bir dağılım olması için

eksik kalan sınıflar yine farklı eğitmenlerden toplanmış örneklerle tamamlanmıştır.

Transfer fonksiyonu blokları ve içerdikleri karakterler tespit edildikten sonra transfer

fonksiyonlarının Matlab® ortamında sembolik ifadeleri elde edilmiştir. Matlab®

ortamında bir transfer fonksiyonunu oluşturabilmek için pay ve payda polinomlarının

katsayılarının bulunması gerekmektedir. Sembolik ifadesi elde edilen bir polinomun

katsayıları yine Matlab® aracılığı ile kolaylıkla bulunabilir. Bu amaçla karakterler

öncelikle yatay konumlarına göre sıralanmıştır. Ardından, pay ve payda polinomlarını

ayıran kesir çizgisinin düşeydeki konumu kullanılarak karakterler pay ve payda olacak

şekilde iki kümede toplanmıştır. Karakterler yatayda sıralı oldukları için pay ve

paydayı temsil eden karakter katarları, karakterlerin etiketleri peşi sıra eklenerek

oluşturulmuştur. Karakter katarları yaratılırken üslü sayılar da komşu iki karakter

arasındaki düşey konum farkına bakılarak tespit edilmiştir. Karakter katarından

sembolik polinom oluşturabilen bir fonksiyon tanımlanmış ve mimarideki transfer

fonksiyonları bu sembolik ifadelerin katsayıları aracılığı ile oluşturulmuştur. Böylece

tahtaya çizilmiş geri beslemeli mimariyi Matlab® ortamına aktarmak için gerekli

bütün bilgiler elde edilmiştir.

Geri beslemeli bir kontrol mimarisini, kontrol sistem tasarım uygulamasına aktarmak

oldukça kolaydır. Tek yapılması, gereken uygulama bünyesinde tanımlanmış 6 farklı

mimariden birini seçmek ve her bir transfer fonksiyonunun ifadesini belirlemektir.

Çizilen bir blok şemasını Simulink™ ortamına aktarabilmek için ise öncelikle 6 farklı

model oluşturulmuştur. Bu modellerde gerekli transfer fonksiyonları birim olarak

tanımlanmış ve kontrol sistem tasarım uygulamasında belirtildiği gibi

isimlendirilmiştir. Tanınan kontrol blok şeması Simulink™ ortamına aktarılırken için

ilgili model dosyası açılır ve isim eşleştirme ile transfer fonksiyonlarının gerçek

değerleri modele aktarılır. Önerilen derin öğrenme tabanlı yöntemin gerçek zaman

xxviii

performansını ölçmek için ise son olarak bir test uygulaması oluşturulmuştur. Bir

sınıftaki beyaz tahtaya sabitlenmiş bir kameradan canlı alınan görüntüler gerçek

zamanlı bir şekilde işlenerek çizilen geri beslemeli kontrol mimarilerinin Simulink™

ortamına aktarılması amaçlanmıştır. Ayrıca herhangi bir transfer bloğunda yapılan

değişiklikler de takip edilerek modelin güncellenmesi sağlanmıştır.

1

 INTRODUCTION

Teaching control theory is difficult as there are many theoretical concepts to be

addressed. The main difficulty that students face is visualizing and understanding the

relationship between the time and frequency domain parameters of a control system

[1-3]. Therefore, the visualization of control systems is crucial to demonstrate the role

of mathematics in control system design [1]. As this problem is not new, various

approaches have been proposed to provide innovative techniques to enhance the

students’ motivation and improve their comprehension of control theory. For instance,

interactive software tools are presented for teaching control systems in [4-8]. Besides,

remote & virtual control laboratories are developed to provide students with a hands-

on experience of control systems [9-12].

In most of the control system design courses, the main focus is usually on Feedback

Control Architectures (FCAs) that are composed of controllers and Transfer Functions

(TFs) structured within single/multi loop configurations [13]. In Figure 1.1, the most

commonly handled FCAs are shown and their descriptions are provided in Table 1.1.

The teaching approach to control system design is usually performed in a threefold

approach. Firstly, the lecturer defines one of the FCA (shown in Figure 1.1) and then

analyses it in the time and/or frequency domain. Finally, the lecturer provides the

students with the theoretical background on controller design approaches such as

graphical (Bode and Root-Locus plots) or automatic (LQR and IMC tuning) tuning

methods [13]. To design and analyze FCAs, Matlab® provides an excellent

environment; especially the Simulink™ and the Control System Toolbox™ [14]. The

FCAs that are shown in Figure 1.1 can be easily analyzed and designed via the user

interface of the Control System Designer™ as they built-in structures.

Teaching control system design is usually performed in an old-fashion style with a

whiteboard. The lecturer basically defines one of the FCAs on the whiteboard as shown

in Figure 2. Although whiteboards are easy to use, we believe that this approach has

its disadvantages. First of all, control systems can not be accurately visualized with

hand-drawn plots. It may even be impossible for high-order control systems. Scaled

2

and accurate plots are vital to show how a parameter affects the overall system

dynamics.

Table 1.1 : Descriptions of FCA’s defined in [14].

FCA Descriptions

FCA-1

• Compensator (C(s)) and plant (G(s)) in forward path

• Sensor dynamics (H(s)) in feedback path

• Prefilter F(s)

FCA-2

• Single feedback loop

• Plant (G(s)) in forward path

• Compensator (C(s)) and sensor dynamics (H(s)) in feedback path

• Prefilter F(s)

FCA-3

• Compensator (C(s)) and plant (G(s)) in forward path

• Sensor dynamics (H(s)) in feedback path

• Feedforward prefilter F(s) for input disturbance attenuation

FCA-4

• Outer loop with compensator (C1(s)) in forward path

• Inner loop with compensator (C2(s)) in feedback path

• Plant (G(s)) in forward path

• Sensor dynamics (H(s)) in feedback path

FCA-5

• Compensator (C(s)) in forward path

• Plant G1(s) and plant predictive model G2(s)

• Prefilter F(s)

FCA-6

• Plant models (G1(s) and G2(s)), compensators (C1(s) and C2(s)) in the

forward path

• Sensor dynamics (H1(s) and H2(s)) in the feedback path of both loops

• Prefilter F(s)

It is also hard to represent the reference tracking and disturbance rejection

performances of a system with sketched plots. Additionally, it takes time to draw some

of the plots and some may even require computers to be generated. Due to these

problems, control lectures can be improved if a handwritten FCA (HFCA) can be

transferred into a simulation environment like Matlab® that can generate accurate

visual representations instead of rough sketches.

In the handwritten diagram detection literature, some of the studies deal with ink-input

devices and use the locational information of pen strokes in their recognition method

[15-19]. In ink-input devices, pen strokes are saved as collections of close points on a

two-dimensional space. Mentioned studies handle the mentioned recognition task by

assigning the strokes to distinct shapes. For example, a stroke can represent an arrow

while another defines a rectangle. Since the positions of the points that define a shape

are known, locations of the shapes can also be found, from which the complete chart

3

can be constructed. Although dealing with ink-input devices has its difficulties, the

information provided by a digital drawing tablet is noise-free and every point belongs

to the drawing with a high probability. For cases where the only input is a digital

image, this initial information is not known. The only available information in a digital

image is the finite number of evenly distributed two-dimensional points called pixels.

A pixel contains one or more integer intensity values that can be interpreted as the

brightness values for that particular pixel. For example, in a digital image where the

intensity value is between 0 and 255, 0 represents complete darkness while 255

represents full illumination. To be able to detect the diagram in a digital image, a

methodology that separates pixels belonging to the foreground from the background is

required for further operations. In the context of handwritten diagram detection, pixels

belonging to the diagram are considered as foreground while the rest are considered

background. Extracting such knowledge falls into the area of digital image processing,

which mainly deals with image manipulation problems.

Separating foreground pixels from the background can easily be accomplished for the

images where there is a high contrast between both groups. Unfortunately,

environmental lighting has disruptive effects in most of the cases. Light reflections on

surfaces can saturate pixels that should have low-intensity values. Also, the quality

and the resolution of the digital image can cause issues where elements in a scene are

not represented accurately. These problems can be considered as uncertainties in an

image processing task. Similar versions of the aforementioned uncertainties have been

widely encountered in the handwritten flowchart and character recognition [20, 21].

The common point of these studies is that they use image processing algorithms to

segment the desired parts from an image. Widely adopted approaches start by

removing the noise in an image using filtering methods [16]. Then a binarization

technique is applied to roughly separate foreground from the background [17].

Binarization techniques essentially apply a threshold to the pixels and generate a

binary image where a pixel can either be 1 or 0. For further improving the

segmentation, edge detection techniques that can detect sharp intensity changes in an

image can be applied [18]. At the end of the segmentation steps, we generally want to

end up with separate foreground pixel groups that may represent a character or any

other shape in the image. In this context, connected component analysis can be used

to find groups of pixels that form continuous regions [19].

4

The main purpose of separating foreground pixels using image processing techniques

in a detection task is to eliminate all the other pixels that don’t belong to the object of

interest. These preliminary steps are called pre-processing steps and they provide the

necessary information for further recognition operations. Being able to tell what a set

of inputs represents can be considered as pattern recognition (PR) task. In recent years,

imitating human behavior in machines gained more importance as automation became

an essential part of today's society. As a result, a great amount of work has been made

to develop computational methods that can recognize patterns in the last century [22].

For example, researchers successfully employed techniques that can recognize a

written character [23] or a recorded speech [24] in the past.

The general form of a PR task is given in 1.1 where the d-dimensional vector 𝑥

represents the input, scalar 𝑦 represents the output, and 𝜃 is the set of parameters of

function 𝑓.

𝑦 = 𝑓(𝑥; 𝜃)

𝑥 ∈ ℝ𝑑

𝑦 ∈ ℝ

(1.1)

In PR tasks, inputs are considered as the features of the pattern to be recognized while

the outputs are considered as the categorical data belonging to that pattern. A pattern

recognizer maps the features in feature space to their corresponding labels in the output

space. In handwritten diagram detection, the output can represent circles, rectangles,

arrows, or other commonly used shapes. The main challenge is to construct the feature

space. The area in terms of pixels, a value that represents the circularity or similar

metrics for a pixel region found by connected component analysis can be considered

as features. Examples of PR with such region metrics can be found in the literature

[25, 26]. Using region properties as features may cause problems if input space shifts,

rotates, or scales. There are feature extraction methods robust to these transformations

such as histograms of oriented gradients (HOG) and scale invariant feature transform

(SIFT) and studies that use these as feature extractors are present in literature [27,28].

5

Figure 1.1 : Illustration of the FCAs

Choice of the feature extraction may depend on the task. A simple method that depends

on regional properties in a binary image may perform poorly. On the other hand, a

complex method such as SIFT can be too slow for real-time applications. Unlike these

algorithms, neural networks can automatically extract features and they are recognized

as an important tool in PR [29].

Generally compared to actual neurons in human brains, NNs consist of layers where

each layer scales its input with a set of parameters called weights. They can represent

any non-linear function by establishing a mapping between an input space and an

output space. Just like a human brain adjusts the firing rates of certain neurons to

represent new information, a NN also updates its weights to learn new mapping

functions. The number of layers a network contains defines its capabilities.

6

Constructing deep NNs by stacking more layers can help to create more accurate

models at the cost of computational resources. The field of Deep Learning (DL)

interests in developing deep NNs and it tries to overcome problems that may arise

because of the increasing layer depths. Regardless of their depths, NNs have been

widely used in PR tasks [30-32]. One of the main advantages of NNs is that they can

serve as an automatic feature extractor where the final outputs are the features of a

given input. Further task-specific layers can then be added to the network to produce

the desired results. The automatic feature extraction can be thought of as a mapping

function that translates the inputs to the feature space. To correctly approximate this

desired mapping function, the weights of the NN must be updated to give the best fit.

Since the main purpose of using NNs in PR is to automatically extract features, an

explicit form of this mapping function is unknown. Fortunately, if the correct outputs

for a sufficient amount of inputs are known, weights can be updated by comparing the

predictions with the ground truths and the network can learn from examples. The

extracted features can then be used for classification with additional NN layers. In fact,

there are early examples in the literature where NN is used solely in the classification

part [33, 34]. In cases where the training samples lie on low dimensional spaces, they

can be directly fed into a neural network without requiring complex feature extraction

algorithms [35, 36].

The main problem in integrating NNs with PR for computer vision is that even small

images lie on a high dimensional space when each pixel is considered as a dimension.

Assigning weights to each pixel will not only result in very complex networks it will

also transform the input into a one-dimensional vector. Flattening an image can harm

the overall performance of the network as it will lose the positional information on one

axis, depending on how the flattening is applied. Convolutional Neural Networks

(CNNs) can overcome these problems and achieve satisfactory performances in

various recognition tasks such as character recognition [37, 38], document recognition

[39], face recognition [40], image recognition [41]. The major difference of CNNs

from a regular NN is that they contain convolutional layers that use two-dimensional

convolution operation to calculate their outputs. In a two-dimensional convolution, a

set of weights arranged as a two-dimensional square matrix slide over the input image

along both vertical and horizontal axis. By linearly combining the currently covered

pixels with the weight matrix, the corresponding pixel of the output image can be

7

calculated. Since the same set of weights are used during this operation, CNNs need

less learnable parameters compared to regular NNs. Convolutional layers also remove

the necessity of flattening which saves the locational information of input pixels. It

should also be noted that as the input image goes through several layers in a CNN,

their dimensions change and they become less interpretable. Thus, the outputs in a

CNN are considered as feature maps instead of actual images.

In recent years, various CNN architectures that achieve high classification accuracies

on the ImageNet dataset [42] are developed by researchers. AlexNet can be considered

the first major architecture since it showed the capabilities of CNNs in computer vision

tasks [43]. Since AlexNet, architectures became deeper and more complex with

different connection schemes. For example, the winner of ILSVRC 2015 ResNet

contains up to 152 layers [44], while AlexNet contains 5 convolutional layers and 3

fully connected layers [43]. ResNet also introduces a new “skip connections” concept

which helps to solve a common problem in DL called “vanishing gradients”. Instead

of designing a new architecture for a classification task, one can copy the architecture

these networks that have already been proven successful. The main issue in this

approach is that these deep networks are trained on large datasets and they require

more time compared to simpler architectures. To avoid these problems, a pre-trained

network can be used by replacing its non-feature extraction layers. This approach is

called transfer learning and it enables researchers to make use of high performing

architectures in any PR task without long training times or needing a large dataset like

ImageNet [45]. In recent years, transfer learning approach have been widely used in

medical image classification problems since it is challenging to construct large datasets

in the medical field [46-48].

In this thesis, we proposed a DL based pipeline that is capable to recognize

Handwritten FCAs (HFCAs) on the whiteboard and to transform them into Matlab®

for visualization and analysis of FCAs. The main design challenge of the proposed DL

based pipeline is to find a set of instructions to recognize the HFCAs. Because of the

aforementioned uncertainties, it is challenging to employ classical image processing

methods in this context. To deal with these difficulties, we integrated DL methods into

our pipeline and trained two separate deep CNNs that can recognize HFCAs and

handwritten characters on a whiteboard. We preferred the transfer learning approach

to construct our deep CNNs and used a pre-trained ResNet-50 as our base model. For

8

the training of the task-specific layers, we constructed datasets containing images of

HFCAs and handwritten characters on a whiteboard collected from five control system

lecturers.

The proposed DL based pipeline starts by taking the image of an HFCA (shown in the

right of Figure 1.1) as input and recognizing the corresponding FCA class (shown in

the left of Figure 1.1) via the first deep CNN structure. Then, the recognized HFCA is

further processed to extract the TF blocks by using classical image processing

methods. In the next step, the characters of each extracted TFs are recognized and

labeled by the second deep CNN structure. After generating symbolic expressions,

continuous-time TF representations are generated that is compatible with Matlab®. The

visualization and analysis of the HFCA are then straightforwardly performed via the

Control System Design™ Toolbox and Simulink of Matlab® in real-time.

In the following chapter of this thesis, we give brief information about the history of

DL and present important concepts that are already used in this work. We also explain

the layers of a CNN with more details and further clarify the advantages of transfer

learning along with the ResNet architecture. In the third chapter, we describe each step

of the pipeline and represent the classification accuracies of our deep CNNs.

9

 DEEP LEARNING

For long, humanity has imagined machines that can act on their own and only recently

this dream is starting to be realized [49] with the rise of computers. Although the

current technology hasn’t reached the point where an artificial agent can replace a

human, machine learning (ML) or more generally artificial intelligence (AI) became

an essential part of today's society. Especially neural networks (NN), which is a sub-

field of ML, are used frequently in engineering problems since they provide an

unexplicit way to establish behavior in machines. Although NNs were known for a

long time [50], they gained popularity in recent years with the advances in

computational powers. Using the parallelism provided by powerful graphical

processing units (GPUs), researches were able to construct NN architectures with high

amount of layers. Today, these deep networks are investigated under the field of DL.

In this chapter, we present a brief history of DL and NNs and give detailed information

about the popular architecture ResNet-50.

 Perceptron Models

NNs resemble networks in the human brain in the sense that the combination of simpler

structures that has adjustable weights constructs more complex ones that could

accomplish much harder tasks. In NNs, this simplest structure is called a perceptron.

The task of this smallest building block is to map a set of inputs 𝑥 to an output 𝑦 by

the means of linear combinations using a weight vector 𝑤 and a bias 𝑏. A visual

representation of such a perceptron is also given in Figure 2.1.

𝑓(𝑥, 𝑤, 𝑏) = 𝑤𝑇𝑥 + 𝑏 = 𝑦

𝑥, 𝑤 ∈ ℝ𝑑

𝑏, 𝑦 ∈ ℝ

(2.2)

The first computational model of a neuron proposed by McCulloh and Pitts [51] was

also based on the same principle. They showed that their model can be used in binary

10

classification tasks, given in (2.2), by choosing a threshold value 𝑇𝑝. Of course, the

accuracy of this method depends on 𝑤 and 𝑇𝑝. In 1958, Rosenblatt proposed another

perceptron model [52] where these parameters could be learned from a set of labeled

examples. The proposed algorithm was to update 𝑤 and 𝑇𝑝 whenever the predicted

output was different from its target value. Today, this kind of learning where a teacher

exists is called supervised learning (SL) and it is an important concept in NNs.

𝑦 = {
1 𝑖𝑓 𝑓(𝑥, 𝑤, 𝑏) > 𝑇𝑝

0 𝑖𝑓 𝑓(𝑥, 𝑤, 𝑏) < 𝑇𝑝
 (2.2)

Figure 2.1 : A visual representation of perceptron

Although Rosenblatt’s perceptron was an important step in NN’s history, it was unable

to separate non linearly separable classes or imitate the XOR functionality since only

a single linear function was used to calculate the output. Also, thresholding was

preventing to see how weights affected the produced outputs when their values

changed. In 1960, Widrow and Hoff proposed a new perceptron model called

ADALINE, which stands for adaptive linear neurons [53]. The main difference

between ADALINE and its predecessor is that in ADALINE, errors are calculated

before thresholding operation. Calculating errors from continuous values instead of

quantized ones enabled a faster convergence. Widrow and Hoff also used their

perceptron model to predict real valued numbers. In other words, their model was able

to find the coefficients of a linear function given in (2.3). Approximating a function

with given inputs and outputs is called a regression problem in ML and ADALINE

was the first example of a linear regressor.

𝑦 = 𝑏 + 𝑤1𝑥1 + ⋯ 𝑤𝑑𝑥𝑑 , 𝑥 ∈ ℝ𝑑 (2.3)

11

The perceptron model can also be improved by adding a non-linear activation function

right after calculating 𝑓(𝑥, 𝑤, 𝑏). A perceptron with activation function is given in

Figure 2.2. One of the most commonly used activation functions in NNs is the sigmoid

activation function which is given in (2.4) where 𝑧 is the activation of the perceptron.

𝑔(𝑧) =
1

1 + 𝑒−𝑧
 (2.4)

Since inputs to this activation function are the output of 𝑓(𝑥, 𝑤, 𝑏), the above equation

can be written as in (2.5).

𝑔(𝑓(𝑥, 𝑤, 𝑏)) =
1

1 + 𝑒−(𝑤𝑇𝑥+𝑏)
 (2.5)

Figure 2.2 : Perceptron with activation function

The sigmoid function is plotted in Figure 2.3. From the figure, it can be seen that the

output values vary in the (0,1) interval and they cross the 0.5 point when inputs are

zero. Using this knowledge, a classification using (2.6) can be accomplished.

𝑦 = {
1 𝑖𝑓 𝑔(𝑓(𝑥, 𝑤, 𝑏)) > 0.5

0 𝑖𝑓 𝑔(𝑓(𝑥, 𝑤, 𝑏)) < 0.5
 (2.6)

With the sigmoid function, the search for a 𝑇 value isn’t needed. Also, the output

values can be treated as the class probabilities. Using these probability values, the

amount of error made by the perceptron can be calculated. In literature, classification

with perceptrons that use sigmoid function is called logistic regression.

If a function that expresses the prediction error can be constructed, finding the best set

of parameters would then become an optimization problem. Widrow and Hoff used a

similar approach to update their perceptron’s weights using a gradient-based numerical

optimization method.

12

Figure 2.3 : Sigmoid activation function

 Gradient-Based Learning

From calculus, it is known that the derivative of a function 𝑦 = 𝑓(𝑥) gives information

about how small changes in the input affect the output. Positive derivative means an

increase and negative derivative means a decrease in the output. When a function is

tried to be minimized, or in other words, a local minimum point is searched, derivative

information can be very useful. By moving in the opposite direction of the derivative

with small steps starting from a starting point, a minimum point for 𝑓(𝑥) can be found

around a neighborhood. Since the movements are done in steps, this becomes an

iterative method where the current point is updated at each iteration. Update rule is

given in (2.6) where 𝑥[𝑘] is the current point, 𝑥[𝑘 + 1] is the next point and 𝛼 is a

constant that defines the step size called the learning rate.

𝑥[𝑘 + 1] = 𝑥[𝑘] − 𝛼
𝑑𝑓

𝑑𝑥
 (2.7)

When the function that desired to be minimized has multiple inputs, update rule

becomes (2.7), where ∇𝑓 is the gradient vector of 𝑓(𝑥).

𝑥[𝑘 + 1] = 𝑥[𝑘] − 𝛼∇𝑓, 𝑥 ∈ ℝ𝑑 (2.8)

The iterative process of searching a local minimum point can be terminated when ∇𝑓

becomes a zero vector by the definition of an extremum point, but this approach may

fail if 𝑥[𝑘 + 1] never rests at the solution, since 𝛼 may never be small enough. As a

stopping criteria, the process can be terminated when the value of 𝑓(𝑥) increases

13

instead of decreasing. This iterative approach of minimization is called Gradient

Descent (GD) and is one of the key ideas of NN’s. A visual representation of Gradient

Descent is given in Figure 2.4. It is also common practice to run the algorithm for a

pre-defined number of epochs (iterations) instead of establishing a stopping condition.

To train a perceptron using GD, a suitable 𝑓(𝑥) must be found. This 𝑓(𝑥) is called the

loss function in ML and it gives a measurement of the prediction error made by the

model. If the learnable parameters of the perceptron are given as arguments to the loss

function, GD can find a minimum point where the error is minimized, using the

derivatives of these parameters.

Figure 2.4 : Visual representation of GD

A downside of the GD method is that the calculated minimum point may not be a

global one. Only if a convex function is chosen as a loss function a global solution for

the minimization problem can be found, since convex functions have a single

extremum point.

For a labeled training set of 𝑁 samples, function to be minimized 𝐽(𝑤, 𝑏) is expressed

in (2.8) where 𝑥𝑖 is the ith sample, 𝑦̂𝑖 is the label of the ith sample and 𝑦𝑖 is the

predicted label for the ith sample.

𝐽(𝑤, 𝑏) =
1

𝑁
∑ 𝐿𝑜𝑠𝑠(𝑦𝑖, 𝑦̂𝑖 , 𝑤, 𝑏)

𝑁

𝑖

 (2.8)

14

As it can be seen, 𝐽(𝑤, 𝑏) only depends on the learnable parameters of the perceptron

and it takes the average of the loss values calculated for all the samples in the training

set. With 𝐽(𝑤, 𝑏) defined, update rule can be written as the following.

𝑤[𝑘 + 1] = 𝑤[𝑘] − 𝛼
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤

𝑏[𝑘 + 1] = 𝑏[𝑘] − 𝛼
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏

(2.9)

The partial differentials with respect to layer parameters are given in (2.10).

𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
=

1

𝑁
∑

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖, 𝑦̂𝑖, 𝑤, 𝑏)

𝜕𝑤

𝑁

𝑖

𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
=

1

𝑁
∑

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖, 𝑦̂𝑖, 𝑤, 𝑏)

𝜕𝑏

𝑁

𝑖

(2.10)

The selection of the proper loss function depends on the task at hand as different tasks

require different loss functions. One of the simplest loss function that could be used to

train a perceptron is the Mean Square Error (MSE) function. Using the MSE loss,

𝐽(𝑤, 𝑏) can be expressed as follows.

𝐽(𝑤, 𝑏) =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2
𝑁

𝑖

 (2.11)

The MSE loss function is generally used for regression tasks. The problem arises for

the logistic regression. Using MSE loss along with sigmoid function results in a non-

convex 𝐽(𝑤, 𝑏). For regression problems where the activation function can be linear

MSE will prove useful, but for classification tasks, another loss function must be

selected. In literature, a cross-entropy loss, presented in (2.12) is generally used for

classification tasks [54].

𝐿𝑜𝑠𝑠𝐶𝑟𝑜𝑠𝑠 = −(𝑦̂𝑖 log(𝑦𝑖) + (1 − 𝑦̂𝑖)log (1 − 𝑦𝑖)) (2.12)

15

 Stochastic Gradient Descent

Most of the NN models utilize a modified version of the GD algorithm called

Stochastic Gradient Descent (SGD) [54]. In GD, parameters are updated after

calculating loss values for all the samples in the training set. Ideally, this approach is

preferred for better generalization since the gradients calculated with every available

sample better represents the statistics of the input space. The downside is, it may not

be possible to calculate the gradient for large datasets because of the computational

costs. To handle datasets that are too large for GD, a smaller part of the dataset called

mini-batch can be sampled from the complete set. Gradient calculated from this mini-

batch may be different from the actual gradient since a small set can not completely

represent the whole set. For fast convergence, the mini-batch gradient should be

similar to the actual gradient as much as possible. This can only be achieved by

uniformly selecting examples from the dataset. For a mini-batch with 𝑚 elements, the

mini-batch gradient is given in (2.13) where 𝜃 is the learnable parameters.

𝑔 =
1

𝑚
∇𝜃 ∑

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖, 𝑦̂𝑖 , 𝜃)

𝜕𝜃

𝑚

𝑖

 (2.13)

Using the mini-batch gradient, parameters can be updated as in (2.14).

𝜃[𝑘 + 1] = 𝜃[𝑘] − 𝛼𝑔 (2.14)

As it can be seen, gradient calculation and update rule in SGD are nearly the same as

GD. If the randomly selected mini-batch is a good representative of the complete

dataset, there won’t be any significant performance hit. If the mini-batch size is

selected as too small, the actual gradient can’t be correctly estimated. On the other

hand, large mini-batch sizes require large amounts of memories and can cause long

training times. Since the choice of mini-batch size is a trade-off between computational

costs and good convergence, it is considered as a hyperparameter of SGD.

 Multilayer Perceptrons

Using single perceptrons for classification or regression tasks may give poor results as

the complexity of the tackled problems increase. To better approximate the desired

mapping function, perceptrons can be used in a collection. Multilayer perceptrons are

16

structures where perceptrons are stacked in a layered fashion. The terms multilayer

perceptron and NN are used interchangeably in ML. A similar relation also exists

between the term perceptron and the term neuron.

In NNs, a layer can include any number of neurons while the whole structure usually

contains at least three layers. An example of NN is given in Figure 2.5. The first layer

of a NN is called the input layer while the last layer is called the output layer. All the

remaining layers are named as hidden layers. NNs process the fed data by propagating

it through its layers. For example, the ith layer uses the outputs of each neuron in (i-

1)th layer to provide input for the (i+1)th layer. Calculations in a layer are similar to the

operations presented for the perceptron model, only difference is that the weights are

stored in matrices in NNs instead of vectors. Size of the weight matrix for a particular

layer depends on the neuron count of both that layer and the layer before it. If ith layer

has m neurons and (i-1)th layer has n neurons, the weight matrix of ith layer, which can

be defined as 𝑤𝑖, will have n rows and m columns and its bias vector 𝑏𝑖 will be a

vector of m elements. If the same activation function 𝑔𝑖 is used throughout all the units

in layer i, its output can be calculated as in (2.15). This process of output generation

in NNs is called forward propagation (FP).

𝑦𝑖 = 𝑔𝑖(𝑤𝑖. 𝑥 + 𝑏𝑖) = 𝑔𝑖(𝑧𝑖)

𝑥𝑖 ∈ ℝ𝑛×1

𝑤𝑖 ∈ ℝ𝑚×𝑛

𝑏𝑖 ∈ ℝ𝑚×1

(2.15)

As it can be seen in (2.15), there is a matrix multiplication between the layer’s weight

matrix 𝑤𝑖 and input vector 𝑥. A row in the weight matrix holds the individual weights

going through a specific neuron in the layer. For example, rth row in 𝑤𝑖 represents the

weights of the rth neuron in ith layer. This implies that the term 𝑤𝑖. 𝑥 creates all the

possible connections between (i-1)th and Ith layer. Layers constructed this way also

called fully connected layers in the literature. A network consisting of solely fully

connected layers can also be called a fully connected network. Figure 2.5 is also an

example of a fully connected network (FCN). Researches show that when an adequate

number of neurons used, any linear function can be represented with a NN [55].

17

Figure 2.5 : An example NN

A NN can generate multi-dimensional outputs since the final layer can have more than

one neuron. This way, regression problems in multi-dimensional spaces or multi-class

classification problems can be handled. For regression tasks, neurons at the final layer

represent dimensions of the predicted output. On the other hand, a classification task

consisting of 𝑄 classes aims to assign probability values for a given input for each of

the classes. The probability values assigned to the classes are a measure of how likely

they belong to those classes. Thus, the outputs of classification networks should be a

vector belonging to ℝ𝑄. The predicted label will then be the index of the maximum

element of the output vector.

In logistic regression, the sigmoid function was able to classify inputs since it was a

binary classification problem. Multi-class tasks however require another activation

layer at the final layer. In literature, the softmax activation function defined in (2.16)

is used at the final layer for multi-class classification problems [56]. Softmax can be

thought of as the extension of sigmoid to the multi-class domain. It takes the values in

the network’s final layer and produces the class probabilities. Similar to the sigmoid

function, softmax results in a non-convex loss function if MSE is used. Thus, the cross-

entropy loss function is preferred for multi-class classification tasks with NNs.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦)𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑘
𝑄
𝑘=1

 𝑓𝑜𝑟 𝑖 = 1 … 𝑄 (2.16)

18

 Back-propagation

With perceptrons, overall cost function was presented as 𝐽(𝑤, 𝑏). In NN’s, this can be

re-written as 𝐽(𝜃), where 𝜃 is the collection vector of all weights and biases in the

network. While minimizing 𝐽(𝜃), an analytical expression for its gradient can be

found, but it would be computationally expensive to evaluate. This issue can be solved

by an algorithm called back-propagation [54].

Back-propagation (BP) is a method that is used to compute the gradients of all the

parameters used in a function. The algorithm treats the operations in a NNs as a

computational graph and utilizes the chain rule of calculus to find the gradients. All

the variables that are required in the gradient calculation are represented as nodes and

operations are shown in computational graphs. Graph representation of the

multiplication operation is given in Figure 2.6.

Figure 2.6 : Graph representation of multiplication operation

The calculation of a node’s gradient starts by traversing the graph backward from the

output node. Along the way, gradients of all the traversed nodes must be calculated as

well. To avoid repeating the same computations, the algorithm first handles nodes that

are closer to the output and saves the calculated gradients. For demonstration, the

computational graph of a three layered NN is given in Figure 2.7. Parameters that need

update are 𝑤2, 𝑏2, 𝑤3 and 𝑏2 where the second layer is the hidden layer and the third

layer is the output layer. Gradients of the third layer are given in (2.16) and in (2.17)

while the gradients of the second layer in (2.18) and in (2.19).

19

𝜕𝐽

𝜕𝑤3
=

𝜕𝐽

𝜕𝑦3

𝜕𝑦3

𝜕𝑧3

𝜕𝑧3

𝜕𝑤3
 (2.16)

𝜕𝐽

𝜕𝑏3
=

𝜕𝐽

𝜕𝑦3

𝜕𝑦3

𝜕𝑧3

𝜕𝑧3

𝜕𝑏3
 (2.17)

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑦2

𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑤2
 (2.18)

𝜕𝐽

𝜕𝑏2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑦2

𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑏2
 (2.19)

Figure 2.7 : Computational graph of a three-layered network

 Training, Validating and Testing Datasets

Training NNs uses labeled samples to learn the parameters since loss functions require

ground truth values. In ML, the collection of samples that are used to update the

learnable parameters is called a training dataset. After updating the parameters of the

network, some error measurement can be computed by applying a FP to the training

data to calculate the training error. The training error can also be calculated from the

mini-batches if SGD is used. If the optimizer is able to find a minimum point, the

training error should be small for the trained network. For a regression task the only

available error metric is the loss values. For a classification task, number of correctly

classified samples is more important than loss values. In ML the classification

accuracy is measured with a top-k error rate. Prediction for a sample is considered as

correct if the class probability assigned to it is in the top-k. For example, a prediction

20

can only be considered as true if the highest probability assigned by the model is the

same as ground truth in a top-1 error rate measurment.

Performance of a model on a training dataset is important but in ML problems the aim

is to perform well on unseed data. A model that shows low error rates on unseen data

is said to be well-generalized. The generalization capacity of a model is tested on a test

set that consists of samples that haven’t been used during the training. The test samples

should be in the same domain as the training samples. If a model is trained to classify

dogs and cats, test set should contain images of dogs and cats that aren’t present in the

training set. Sometimes a model performs well on training dataset but gives large errors

for the test set. This phenomenon is called the overfitting and can be caused by small

sized training dataset [57].

In ML, an additional dataset called the validation set can be used during the training.

A ML model can contain various hyper-parameters such as the learning rate, number

of training epochs, mini-batch size and many more. There isn’t an established

methodology for the selection of these hyper-parameters and it is generally handled

with try and error. To be able to tell how the currently selected hyper-parameters

change the performance, the model can be tested with the validation set at certain

iterations. The feedback from the validation set can then be used to tune the hyper-

parameters. Although samples from validation set aren’t used to update the learnable

parameters, they are considered as a part of the training set. The final performance of

the model can only be measured on the dataset.

Generally, the training samples hold a great portion of the complete dataset. An

example partition for a dataset is given in Figure 2.8 where training samples consist

the 70% of all the data.

Figure 2.8 : Example partitioning of a dataset.

21

 Methods to Improve Performance

2.7.1 Regularization

A common problem in ML is that a model can perform poorly on test data while

achieving high accuracies or small loss values during the training [54]. A model that

behaves in such a way is said to be overfitted. This problem can be solved with

regularization methods which adds a parameter norm penalty function Ω(𝑤) to the loss

function. A loss function with regularization is given in (2.20).

𝐽(𝜃) = 𝐽(𝜃) + 𝜆Ω(𝑤) (2.20)

In the above equation, 𝜆 is a non-negative hyperparameter that adjusts the

regularization effect where higher values mean more regularization. It should also be

noted that regularization affects only 𝑤. It has been observed that regularizing biases

cause underfitting in NNs [54].

Although Ω(𝑤) can be defined in many ways, these definitions must affect the weight

values to avoid overfitting. A simple type of Ω(𝑤) is the 𝐿2 parameter norm penalty

which is defined in (2.21).

Ω(𝑤) =
1

2
‖𝑤‖2

2 (2.21)

In 𝐿2 regularization, weights tend to decay since they appear on the loss function and

the optimizer would try to minimize them.

2.7.2 Gradient descent with momentum

A downside of the GD is that sometimes gradients may oscillate as it approaches to an

optimum point. An example case is given in Figure 2.9. From the figure, it can be seen

that the updates should be larger on the horizontal axis for faster convergence.

Figure 2.9 : An example GD with oscillating gradients

22

The average of the past gradients can be useful during the optimization. Since the

moving average of the past gradients will show the direction towards the optimal point,

the update rule can be re-written to include this average. In (2.22) update rule for the

GD with momentum is given where 𝑚 is a scalar in the interval [0,1].

𝑣[𝑘 + 1] = 𝑚𝑣[𝑘] − 𝛼∇𝜃𝐽(𝜃)

𝜃[𝑘 + 1] = 𝜃[𝑘] + 𝑣[𝑘 + 1]
(2.22)

GD with momentum speeds up the training process by accumulating the past gradients

as 𝑣. If these past gradients oscillate along an axis, their displacement along that axis

will cancel each other out since the current gradient is subtracted in (2.22). The scalar

𝛽 is usually called the momentum and it adjusts how much the past gradients will

affect the current direction.

2.7.3 Batch normalization

A problem that is encountered while training a NN is that distribution of the input data

can vary across the samples which makes it harder to learn an appropriate mapping.

Such a shift in the input distribution is called the covariate shift [58] and can be solved

by feeding the normalized. However, for a deep NN covariate shift can happen even

in the hidden layers [59] as the parameters are updated during the training. Batch

normalization (BN) aims to eliminate the internal covariate shift by fixing the means

and variances of the layer’s inputs [59]. Regular normalization can be realized by

subtracting the batch mean from each sample and dividing it with the batch standard

deviation. BN modifies this as shown in (2.23).

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝑏

√𝜎𝑏
2 + 𝜖

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽

(2.23)

In the above equation, 𝜇𝑏 and 𝜎𝑏
2 are the mean and variance of the batch while 𝜖 is a

very small constant to avoid division by zero. BN introduces two new learnable

parameters in the form of 𝛾 and 𝛽. These parameters scale and shift the normalized

layer inputs 𝑥̂𝑖 to produce the layer output 𝑦𝑖. It is also observed that the parameters

also act as regularization term and they improve the generalization of the model [59].

23

 Convolutional Neural Networks

CNNs are special NNs that are commonly used in computer vision tasks like object

classification and detection. After their first proposal in 1995 by LeCun [60] they

gained popularity with AlexNet [44]. Unlike fully connected NN’s, CNN structures

use convolution operation in forward-propagation instead of matrix multiplication

[54]. This way, the data can be processed in a grid topology, meaning that CNNs can

deal with three-dimensional matrices called tensors. The third dimension in these

matrices is called channels. Images can be given as an example to tensors since colored

images contain three channels for red, green, and blue (RGB) colors.

The reason behind using CNNs in computer vision tasks is that they are much more

efficient in working with images compared to a regular NN. Very first drawback of

FCNs is that they can only accept two-dimensional inputs. In order to be able to feed

images to an FCN, they must be vectorized. Vectorization can be done by juxtaposing

the consecutive rows or the consecutive columns to each other for each channel. Then

the individual channel can be stacked to create a one-dimensional vector.

Transforming a three-dimensional data to a vector will cause an information loss on at

least two dimensions. CNNs on the other hand, do not require vectorization and saves

the locational information of pixels on all the axis.

The number of learnable parameters affects directly the network’s complexity and the

time required to train it. A very complex network may not even be trainable if it

requires large amounts of computational resources. That is why it is not efficient to

use FCNs in computer vision tasks. Even images with small resolutions contain many

pixels and will result in large weight matrices in fully connected layers. For example,

a single channeled image with a resolution of 32x32 contains 1024 pixels. If the neuron

count of the next layer is 𝑛, the weight matrix of the next will contain 1024 × 𝑛

learnable parameters. CNNs do not suffer from this problem as they use convolution

operation instead of matrix multiplication.

A typical CNN consists of dimension reduction and activation layers alongside its

convolutional layers. Outputs of these layers that accept n-channeled tensors as inputs

can be interpreted as feature maps. In classical image processing algorithms, various

methods are used just for feature extraction tasks [61]. Since CNN’s are essentially

neural networks that can efficiently process images, they can automatically extract

24

features without needing any other algorithm. In fact, past researches show that the

convolutional layers in a CNN act as a feature extractor and can be used in various

tasks [62]. An example CNN architecture called LeNet is given in Figure 2.9.

Figure 2.10 : LeNet Architecture [60]

In Figure 2.10, the final layer is visualized slightly differently from the rest. This last

layer is a fully-connected layer and it serves the purpose of assigning class

probabilities. While the remaining convolutional layers serve the purpose of feature

extraction, other task-specific layers are required to use the extracted features for a

desired task. That is why CNNs usually contains a task-specific layer at their ends.

2.8.1 Convolutional Layer

Convolutional layers can be considered as the backbones of CNN structures. In

convolutional layers, outputs are calculated by convolving a special tensor called

kernel over the input tensors. Kernel tensor holds the learnable parameters of the layer

and it can be compared to the weight matrix of the fully connected layers. Convolution

operation in one dimension for continuous signals is given in (2.24).

𝑧(𝑡) = (𝑥 ∗ 𝑘)(𝑡) = ∫ 𝑥(𝑎)𝑘(𝑡 − 𝑎)𝑑𝑎 (2.24)

The same operation can be expressed as in (2.25) for two-dimensional signals where

𝐻𝑓 is the height (row count) and 𝑊𝑓 is the width (column count) of the filter.

𝑧[𝑖, 𝑗] = (𝑥 ∗ 𝑓)[𝑖, 𝑗] = ∑ ∑ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]𝑓[𝑚, 𝑛]

𝑊𝑓

𝑛

𝐻𝑓

𝑚

 (2.25)

25

Convolution operation on tensors is conducted with a sliding window approach.

Equation (2.22) is repeated for each element of input matrix 𝑥 where 𝑖 and 𝑗 represent

the row and column indices of the currently iterated element. At each iteration, 𝑖 is

incremented by 1 and when 𝑗th is completely traversed the algorithm returns to the first

column and increment 𝑗 by one.

A problem arises during the convolution operation at the edges of the convolved image

where 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛] is not defined. This undefined element case occurs when either

the index values are negative or greater than the width or height of the 𝑥. To avoid this,

the following constraints can be applied where 𝐻𝑥 is the height of input image and 𝑊𝑥

is the width of the input image at the cost of having a downsampled output image.

𝑖 ≥ {

𝐻𝑓

2
 𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐻 − 1

2
 𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑜𝑑𝑑

𝑖 ≤ {
𝐻𝑥 −

𝐻𝑓

2
 𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐻𝑥 −
𝐻𝑓 − 1

2
 𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑜𝑑𝑑

𝑗 ≥ {

𝑊𝑓

2
 𝑖𝑓 𝑊𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑊𝑓 − 1

2
 𝑖𝑓 𝑖𝑠 𝑜𝑑𝑑

𝑗 ≤ {
𝑊𝑥 −

𝑊𝑓

2
 𝑖𝑓 𝑊𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑊𝑥 −
𝑊𝑓 − 1

2
 𝑖𝑓 𝑊𝑓 𝑖𝑠 𝑜𝑑𝑑

(2.26)

A convolution operation with the above constraints is shown in Figure 2.11.

Alternatively, classical image processing methods solve this problem by applying a

padding to the input image [63]. Padding can be in the form of 0 valued elements

added around the input image (zero padding) or by repeating the values at the edges.

Same principle can also be applied to the convolutional layers. A convolution

operation with zero padding is shown in Figure 2.12.

Convolution operation on two dimensions can be used with matrices, but for CNNs

where even a grayscale image is expressed as a tensor with a single channel, the above

26

expression must be updated as follows, where 𝐶 is the number of channels for both of

the tensors.

𝑧[𝑖, 𝑗] = (𝑥 ∗ 𝑓)[𝑖, 𝑗, 𝑘] = ∑ ∑ ∑ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘]𝑓[𝑚, 𝑛, 𝑘]

𝑊𝑓

𝑛

𝐻𝑓

𝑚

𝐶

𝑘

 (2.27)

Although the input tensor and kernel may have multiple channels the result will be a

two-dimensional matrix in convolutional layers. It should also be noted that channel

sizes of input tensor and the filter must be the same. Since convolution on tensors

creates single channeled tensors, or simply two-dimensional matrices, a convolutional

layer can have multiple filters. In fact, the number of filter 𝐹 is a hyperparameter that

should be decided by the designer. Other hyperparameters for a convolutional layer

are 𝐻𝑓 and 𝑊𝑓, but not 𝐶. Number of channels of a filter and the filter count are not

the same thing. A convolutional layer can have 𝐹 amount of 𝐶 channeled filters, with

a total of 𝐻𝑓 × 𝑊𝑓 × 𝐶 × 𝐹 learnable parameters. The value of 𝐶 on ith layer depends

on the value of 𝐹 on the (i-1)th layer.

Figure 2.11 : Convolution operation with constraints

27

Figure 2.12 : Convolution with zero padding

28

Another commonly used technique in the convolutional layer is to skip a few elements

in the tensor while conducting the convolution operation. Instead of incrementing 𝑖

and 𝑗 by one as explained earlier, they can be incremented by a stride value 𝑆 which is

also a hyperparameter. This technique is called strided convolution and can help to

diminish the dimensions of the output tensor.

All the hyperparameters will affect the dimensions of the output tensor. Its channel

number will the same as 𝐹. Output height 𝐻𝑧 and width 𝑊𝑧 values are given in (2.28)

and (2.29) respectively.

𝐻𝑧 =
(𝐻𝑥 − 𝐻𝑓 + 2𝑃)

𝑆
+ 1 (2.28)

𝑊𝑧 =
(𝑊𝑥 − 𝑊𝑓 + 2𝑃)

𝑆
+ 1 (2.29)

2.8.2 Pooling Layer

Although 𝐻𝑧 and 𝑊𝑧 values can be adjusted in convolutional layers, pooling layers

provides a way for dimension reduction without introducing new learnable parameters.

Pooling layers traverses the input tensor just like the convolutional layers and selects

a region of size 𝐻𝑓 by 𝑊𝑓 around 𝑥[𝑖, 𝑗]. The corresponding element of the output

tensor 𝑧[𝑖, 𝑗] then calculated by applying a desired operation to this region. Striding

can also be implemented in pooling layers. Output tensor’s 𝐻𝑧 and 𝑊𝑧 values in a

pooling layer are given in (2.30) and (2.31) respectively.

𝐻𝑧 =
(𝐻𝑥 − 𝐻𝑓)

𝑆
+ 1 (2.30)

𝑊𝑧 =
(𝑊𝑥 − 𝑊𝑓)

𝑆
+ 1

(2.31)

Most common operations on pooling layers are averaging [64] and max operation [65],

but any other operation can also be selected as long as they return a single element for

a pooled region. A visual representation of max pooling with 𝑆 = 2 is given in Figure

2.13 and a visual representation of average pooing with 𝑆 = 2 is given in Figure 2.14.

29

Figure 2.13 : A visual representation of max pooling

Figure 2.14 : A visual representation of average pooling

Along with reducing dimensions, pooling layers can make the network more robust to

small translations in the input image [54]. It does so by summarizing the pixels in a

neighborhood and extracting the more important responses.

2.8.3 Two Dimensional Batch Normalization

It is common practice to apply BN in CNN for the benefits explained earlier. BN is

generally applied after the convolutional and before the activation layers. BN in CNNs

differs from BN in fully connected networks in the sense that the batch statistics are

calculated for each channel of the input to be normalized. This requires separate of 𝛾

and 𝛽 for each channel. Other than that, the calculations remain the same.

30

2.8.4 Activation Layer

The convolution operation is essentially a function that takes the linear combination

of its inputs and because of that, a CNN may not be able to perform well without non-

linear activations. Activation layers in CNNs generate their outputs by applying a non-

linear function to their inputs. The sigmoid function used in earlier perceptron models

can also be used in the activation layers of CNNs. Also, a slightly different version of

the sigmoid function called the hyperbolic function is another option. Unlike the

sigmoid function, the output range of the hyperbolic function is between -1 and 1. In

other words, it can also output negative values. The definition of hyperbolic function

is given in (2.32) and its plot is given in Figure 2.15.

𝑔(𝑧) =
2

1 + 𝑒−2𝑧
− 1 (2.32)

Figure 2.15 : Hyperbolic activation function

Both sigmoid and hyperbolic activation functions suffer from a similar problem. They

are good assigning probability values to the inputs but the gradients are non-zero for a

small portion of the input space. Values that are far away from the origin will always

produce zero gradients and the network’s weights won’t be updated. This can be seen

from the first-order derivative plots of the sigmoid and hyperbolic function given in

Figure 2.16.

31

Figure 2.16 : First-order derivatives of hyperbolic and sigmoid functions

Getting zero gradients for changing inputs is called the vanishing gradient problem

and it can hinder the learning process of the network. This problem can be solved by

normalizing the inputs coming into the activation layer or using a normalized

initialization for the layer weights [66], [67]. With a mean and variance normalization,

data can be distributed along with the origin and zero gradients can be avoided.

Another possible solution of course is to use another activation function. Unlike the

mentioned activation functions, rectified linear unit (ReLU) [68] doesn’t cause

vanishing gradients. This activation function only sets the negative values zero. The

sharp behavioral change at point zero that could be seen in Figure 2.17 adds the non-

linear characteristic to the network. Another advantage of ReLU is that its gradients

are easier to calculate compared to sigmoid and hyperbolic activation functions.

32

Figure 2.17 : Plot of ReLU activation function

2.8.5 Task-Specific Layer

The convolutional, pooling, and activation layers form the feature extraction part of a

CNN. A well-established feature extraction method has good generalizability and can

be used in various tasks. The purpose of the task-specific layers is to output the desired

results using the extracted features. In computer vision, the handled task can be

categorized as object detection and object classification.

Object detection is the task of finding the location of an object in an image. It is an

often addressed problem in computer vision and there exist different approaches in

object detection [69]. In the object detection literature, the location of an object is

generally defined by the smallest rectangle that contains the object called the bounding

box (BB) [70]. The BB is defined with four parameters; the horizontal position of its

top-left corner, the vertical position of its top-left corner, its width, and its height. One

of the possible approaches is to handle the task as a regression problem. With a FC

layer at the end, the network can be trained with MSE loss to predict the four values

that define the BB [71].

In case the CNN is desired to be used for a classification task, a set of FC layers that

output class probabilities can be added to convolutional layers. Then the network can

be trained with cross-entropy loss by applying softmax operation to the output layer.

One of the limitations of the task-specific layers is that they are generally in the form

of fully connected layers as explained. To be able to add a fully connected layer after

33

a convolutional layer, tensors must be transformed into vectors. Unfortunately,

vectorization operation forces CNNs to accept images with a certain size. As an

example, AlexNet can only be trained on images with a resolution of 224x224 because

of its fully connected layers.

 Deep Neural Networks

In NN literature, various types of architectures exist that excel in certain areas.

Previously presented FCNs and CNNs are two examples of major architectures.

Although each architecture has distinctive differences, they all consist of layers with

learnable parameters. As more layers stacked together, the network becomes more

complex and requires more computational power. That is why the average number of

layers increases with the advances in hardware. Today, networks can be categorized

as shallow and deep networks regardless of their architecture. Shallow networks

contain few layers while their counterpart has more. There is no sharp separation

between shallow and deep networks, but a model with more layers is said to be deeper

compared to a few layered network. Recent studies show that deeper networks perform

better since they contain more learnable parameters [72].

There are many modern deep CNN architectures that achieve high classification

accuracies on benchmark sets like GoogLeNet [73], VGGNet [74] and ResNet [44].

Being deep networks, they contain many layers with a high amount of learnable

parameters. AlexNet is considered as the architecture that proved the capabilities

CNNs and it contains 5 convolutional layers and 3 fully-connected layers with 60

million learnable parameters. VGGNet was proposed two years after AlexNet and it

has 19 layers with 138 million learnable parameters. For visual comparasion,

architecture of AlexNet is given in Figure 2.18 and the architecture of VGGNet is

given in Figure 2.19.

34

Figure 2.18 : AlexNet architecture [43]

Figure 2.19 : VGGNet architecture [75]

VGGNet showed that the depth of a network was an important factor in the accuracy

rates. In Table 2.1, we have given the depth, number of learnable parameters and top

5 error rate for some of the famous CNN architectures. The steady increase in the

network depths can be seen from the table.

Table 2.1 : Depth and error rates of major CNN architectures

Year Depth

Parameter

Count

Error Rate

(Top-5)

LeNet 1998 5 0.06 M MNIST: 0.95%

AlexNet 2012 8 60 M ImageNet: 16.4%

VGG 2014 19 138 M ImageNet: 7.3%

GoogLeNet 2015 22 4 M ImageNet: 6.7%

ResNet-152 2016 50 25.6 M ImageNet: 3.6%

35

As the networks become deeper, researchers realized that the classification accuracies

saturated after a certain depth [76], [77]. Vanishing gradients were always an issue and

deep networks suffered more compared to shallow networks. The issue in deep

networks wasn’t the usage of sigmoid or hyperbolic activations functions. In fact, even

an early architecture such as VGGNet was using the ReLU activation function. The

problem was that the gradients were underflowing during BP [78]. As chain rule

requires, gradients in shallower layers are calculated by multiplying the gradients in

the deeper layers together. If the gradients are smaller than 1, they will diminish in

value during BP until the point that the gradients in shallower layers are too small to

be represented in the memory. To solve this issue, gradients needed to be transferred

into shallower layers without underflowing. Developed by Microsoft Research Team,

Residual Networks (or namely the ResNets) solve the underflowing gradients issue by

introducing a new concept called residual learning.

As mentioned before, a NN tries to find a mapping function between the input space

and the output space and there are even optimal mappings among stacked layers. Let

us call 𝐻(𝑥) an optimal mapping to be fit by a stack of hidden layers. For the sake of

argument, assume that we know the target outputs 𝑦̂ of this stacked. An optimal fitting

would minimize the prediction error given by 𝐹(𝑥) = 𝐻(𝑥) − 𝑦̂. In statistics, a

residual is the distance vector between the target and prediction, so 𝐹(𝑥) represents

the residual for the stack. In the original paper of ResNet, it is argued that if a complex

function 𝐻(𝑥) can be approximated by multiple layers its residual 𝐹(𝑥) can also be

approximated. So it is safe to let layers update their weights to imitate 𝐹(𝑥) instead,

but it should also be noted that the desired behavior is still defined by 𝐻(𝑥). The

difference between residual learning and non-residual learning is that layers

approximate 𝐹(𝑥) and 𝐻(𝑥) is achieved by summing the target values to the residuals

in residual learning. Reformulation of 𝐻(𝑥) is given in (2.29).

𝐻(𝑥) = 𝐹(𝑥) + 𝑦̂ (2.29)

In real applications, it is not possible to apply (2.29) since target values are unknown,

but residual learning can be used for identity mappings where 𝑦̂ = 𝑥. This way (2.29)

becomes the following.

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (2.30)

36

The above equation can easily be implemented in CNNs with skip connections. ResNet

uses stacks of skipped layers called residual blocks to learn identity mappings. A

residual block with two-layer skipping is given in Figure 2.20.

Figure 2.20 : Residual block with two-layer skipping

A residual network can be built by stacking residual blocks stacking one after another.

A plain network without any skip connections is given in Figure 2.21. This plain

network contains 34 layers and is the base architecture of the 34 layered version of the

ResNet. The ResNet-34 has the same layers, but it also includes skip connections as

shown in Figure 2.22.

Figure 2.21 : Base plain network [44]

Figure 2.22 : ResNet-34 architecture [44]

The importance of identity mappings is that they can transfer the gradients to shallower

layers without diminishing them. For example, if there is a skip connection from the

end of ith layer to the end of (i+2)th layer, gradients in layer (i+2) can be directly

37

transferred to ith layer during the BP. To mathematically represent, the gradient of a

residual block’s input is given in (2.31).

𝜕𝐽

𝜕𝑥
=

𝜕𝐽

𝜕𝐻

𝜕𝐻

𝜕𝑥
=

𝜕𝐽

𝜕𝐻
(

𝜕𝐹

𝜕𝑥
+ 1) =

𝜕𝐽

𝜕𝐻

𝜕𝐹

𝜕𝑥
+

𝜕𝐽

𝜕𝐻

(2.31)

Even with residual blocks, gradients can still vanish if the network is deep enough.

Skip connections are just providing a way to add more layers to an existing architecture

until underflowing happens. If more layers are skipped at each residual blocks,

network depth can be further increased. In fact, the residual block given in Figure 2.19

belongs to the ResNet-34. There are also 50 layered (ResNet-50), 101 layered (ResNet-

101) and 152 layered (ResNet-152) versions of ResNet and they use the residual block

given in Figure 2.23.

Figure 2.23 : Residual block with three-layer skipping

 Transfer Learning

In computer vision, a feature extraction algorithm can be integrated into various

classification or detection tasks where different object sets are handled. A good feature

extraction algorithm should be task agnostic while mapping the input space to a feature

space. We have already mentioned that a CNN consists of non-task specific and task

specific layers. The non-task specific layers serve the purpose of feature extraction and

38

they are in the form of convolutional and pooling layers. Task-specific layers on the

other hand usually consist of FC layers and solves a classification or detection task.

The task specific layers are further emphasized in Figure 2.24.

Figure 2.24 : Feature extraction and task specific layers of a CNN

Having a seperation between the feature extraction and task specific layers provides a

way to adapt an existing network to a different task just by replacing its feature

extraction layers. By only replacing the task specific layers, the existing knowledge of

feature extraction can be transferred into any computer vision task. The newly added

layer would still require further training, but this approach is more efficient compared

to training a new model from scratch, since the task-specific layers form a small

portion of the complete architecture. Adapting an existing network for new tasks is

called transfer learning and can be used to incorporate existing deep CNNs.

The feature extraction layers of a CNN is given below where 𝜃𝑓𝑒 represents the

learnable parameters of these layers and 𝑧𝑓𝑒 is the extracted features.

𝑧𝑓𝑒 = 𝑔𝜃𝑓𝑒
(𝑥)

(2.32)

The complete CNN model can be expressed as in (2.33) where 𝜃𝑡𝑠 is the learnable

parameters of the task-specific layers.

𝑦 = 𝑓𝜃𝑡𝑠
(𝑔𝜃𝑓𝑒

(𝑥))
(2.33)

The transfer learning approach is to replace 𝑓𝜃𝑡𝑠
 with a new one as shown below where

𝜃𝑡𝑠
′ is the learnable parameters of new task-specific layers.

39

𝑦 = 𝑓𝜃𝑡𝑠
′

′ (𝑔𝜃𝑓𝑒
(𝑥))

(2.34)

Re-training the modified network to learn 𝜃𝑡𝑠
′ is called fine-tuning. Since the feature

extraction layers are already optimized, gradient calculation is not needed for 𝜃𝑓𝑒

during the BP stage of the fine-tuning. Layers or weights that aren’t being updated

during the BP stage are said to be frozen and it is common practice to freeze 𝜃𝑓𝑒 in

fine-tuning. This way a training iteration (FP and BP together) completes faster

compared to training from scratch. Even if 𝜃𝑓𝑒 is not, the network will converge much

faster with fewer epoch counts.

Using a pre-trained network not only saves training time, it also enables high accuracy

performance for a network without needing a large amount of data [79]. In Table 2.2,

we have given the number of samples for some of the popular image datasets. From

the table it can be seen that these datasets contain very large amounts of samples and

it is not always possible to construct such large datasets. For example in medical

imaging problems number of collected samples tend to be smaller compared to other

tasks. The transfer learning approaches is therefore essential for cases where datasets

are not sufficiently large.

Table 2.2 : Number of samples for some of the image datasets

 Number

Of Samples

Size in

Memory

MNIST 70 000 50 MB

Fashion MNIST 70 000 30 MB

CIFAR-10 60 000 170 MB

COCO 330x103 25 GB

ImageNet 1.5x106 150 GB

40

41

 DEEP LEARNING BASED PIPELINE

In control lectures, lecturers frequently use plots in time and frequency domains to

better explain core concepts. Although the dynamics of a system, its stability margins

can be expressed mathematically it is also convenient to visualize these metrics.

Today, control lectures are usually conducted in classroom environments where

lecturers heavily use drawing boards. The corresponding plots for the handled systems

are drawn to these drawing boards. While drawing boards have their advantages,

plotting a system response or similar graphs may prove challenging and time-

consuming. It is also not possible to correctly scale these visuals and only their

approximations can be presented to students. In some cases, the plots can’t even be

drawn if the handled system is not simple enough. A better approach is to define and

analyze systems in a simulation environment such as Matlab®, but then the lecturer

would be deprived of the advantages of using a whiteboard. Instead, the block

diagrams drawn on the whiteboard can be recognized with a computer and be

transferred to a simulation program for further analysis.

In this thesis, we proposed a DL based pipeline that can transfer an HFCA to the

Matlab® environment. An overview of the DL based pipeline is given in Figure 3.1

that is summarized with the following steps:

Step-1: Recognizing the structure of the HFCA with DL.

Step-2: Detecting TF blocks using image processing.

Step-3: Segmenting and recognizing the characters with DL.

Step-4: Constructing symbolic expressions from the recognized characters to

construct continuous-time TFs in Matlab®.

Step-5: Generating the recognized continuous-time HFCA in Matlab®.

In Step-1 and Step-3 of the proposed DL based pipeline, the following two PR

problems are defined.

• HFCA Recognition (HFCAR)

42

• Handwritten Character Recognition (HCR)

The main challenge arises from the quality of the lecturer’s handwriting and lighting

conditions, especially in HFCAR and HCR problems. To handle such uncertainties,

we used the transfer learning approach of ResNet-50 described to construct deep

CNNs.

To train the deep CNNs, an image dataset collected from lecturers of Control System

Design courses in a small-sized classroom environment in the presence of different

lighting conditions has been constructed. The implementation of deep CNNs has been

done with the Deep Learning Toolbox™ to have easy integration with Control System

Toolbox™ and Simulink™ of Matlab®. Both of the networks are trained with SGDM

as the optimizer for the sake of simplicity as it has only a single hyperparameter, which

is 𝛼. We also used the cross-entropy loss function with defined in (2.12) L2

regularization defined in (3.1) where 𝜆 is the regularization term, 𝑦𝑞 is the predicted

output, 𝑦̂𝑞 is the target label and 𝑄 is the total number of classes.

𝐿(𝑦𝑞 , 𝑦̂𝑞) = −
1

𝑄
∑[𝑦𝑞 log 𝑦̂𝑞 + (1 − 𝑦𝑞) log(1 − 𝑦̂𝑞)]

𝑄

𝑞=1

+ 𝜆
𝑤𝑇𝑤

2
 (3.1)

In this chapter, a detailed description of the steps of DL based pipeline as shown in

Figure 3.1 is given. For illustrative purposes, the steps of pipeline are illustrated on an

example HFCA which is shown in Figure 3.2.

Figure 3.1 : Overview of the proposed DL pipeline

43

Figure 3.2 : An example HFCA

 Handwritten Feedback Control Architecture Recognition

The first task to be accomplished in the proposed DL based pipeline is to solve the

HFCAR problem to identify one of the architectures shown in Figure 1.1 (i.e. Q=6

classes). In this context, we constructed a dataset with 306 RGB HFCA images with a

resolution of 4032x3024 which were captured from an actual whiteboard. The dataset

is then labeled manually with the classes and is then split as 216 images (36 per class)

for training, 36 images (6 per class) for validation, and 54 images (9 per class) for

testing. Examples from each class are given in Fig. 3.3.

Figure 3.3 : Example HFCA images

44

The multi-label HFCAR problem is solved with a ResNet-50 based CNN as described

in chapter 2.3. In learning of the deep CNN, all images are resized to a resolution of

224x224 without any further pre-processing. Furthermore, we employed the online

data augmentation method to create artificially modified versions of images to increase

the size of training dataset by slightly rotating and scaling each image at each training

epoch. The DL hyperparameters are set as: 100 epochs, minibatch size of 1, and a

learning rate of 10-3 with a drop rate factor of 0.1 at every 10 epochs.

The best and mean training, validation and testing accuracies over 5 experiments are

tabulated in Table 3.1. The mean training and validation accuracy values are given in

Figure 3.3 (only the first 3000 iterations are given). It can be concluded that the

performance of the deep CNN is statisfactory as it resulted with mean testing accuracy

value of 89.25%.

Table 3.1 : Performance of deep CNN for HFCAR

 Best Accuracy Mean Accuracy

Training 100% 100%

Validation 97.2% 94.4%

Testing 94.4% 89.25%

 Transfer Function Block Detection

After recognizing the class of the HFCA, TF blocks in the image that are enclosed with

rectangular shapes must be extracted. Taking into account the fact that TF blocks are

represented as rectangles in FCAs, an algorithm that can detect rectangles can be used

for this task. Detection of a rectangle simply means to find the position and the

dimensions of the smallest box that contains it. As it can be guessed, TF blocks on an

HFCA may not be perfect rectangles unlike their bounding boxes (BB).

Finding the BBs of TF blocks is accomplished by an algorithm that contains image

processing techniques like binarization, edge detection, and connected component

analysis. The steps of this algorithm are explained in detail in the following sections.

45

Figure 3.4 : HFCAR mean (a) loss values (b) accuracy values

3.2.1 Binarization of HFCA

Transforming a colored image into an array of logical elements is required for applying

morphological operations [52]. A binary image can be obtained by thresholding the

input image like the following where 𝑥𝑖𝑗 is the element of the input image at position

(i,j), 𝑏𝑖𝑗 is the corresponding element in the resulting binary image and 𝑇 is the

threshold value.

𝑏𝑖𝑗 = {
1 𝑖𝑓 𝑥𝑖𝑗 ≥ 𝑇

0 𝑖𝑓 𝑥𝑖𝑗 < 𝑇
 (3.2)

The binarization technique with a single threshold value given in (3.2) is called global

thresholding. For images where shadows and nonuniform illumination exist, a global

thresholding method will not be able to give satisfying results.

To deal with faded fonts and light reflections like in Figure 3.2, a convolution

operation with zero padding is employed with the following n by n kernel 𝑘𝑖𝑗:

46

𝑘𝑖𝑗 = {1/𝑛 𝑖 =
𝑛 − 1

2
, 𝑗 =

𝑛 − 1

2
−1 𝑒𝑙𝑠𝑒

 (3.3)

If a pixel’s intensity value is darker when compared to its n by n neighborhood, the

result of the convolution operation has a positive value at that pixel’s location. We

defined a positive threshold value D to determine the binary version of the input image.

Mathematical expression for the used thresholding method is given in (3.4) where 𝑐 =

𝑥 ∗ 𝑘.

𝑏𝑖𝑗 = {
 1 𝑖𝑓 𝑐𝑖𝑗 ≥ 𝐷

 0 𝑖𝑓 𝑐𝑖𝑗 < 𝐷
 (3.4)

By trial and error, we found that a 15x15 kernel with 𝐷 = 15 is a suitable value for

our purposes. The binary version of Figure 3.2 is given in Figure 3.5.

Figure 3.5 : Binarized image

3.2.2 Character and Noise Removal

In the next step of the rectangle detection, the characters inside the rectangles are

removed. In FCA diagrams, all the lines except the characters and symbols inside TF

and operation blocks are connected. When the characters and all the noise are removed,

it is expected to end up with a binary image where only the mentioned lines remain.

It can safely be assumed that the biggest connected component (i.e. connected

component with highest pixel count) in Fig 3.5 is the diagram itself. With that

assumption, undesired pixels can be removed by finding the biggest connected

component. Using 8 connectivity, the resulting segmentation of the HFCA image is

shown in Figure 3.6. Note that it is very likely that the lecturer might not connect all

47

the blocks perfectly. Thus, a dilation operation was also applied to close such

disconnections.

Figure 3.6 : Character and noise filtered binary image

3.2.3 Filling Transfer Function Blocks

In rectangle detection, the aim is to have filled blobs where rectangles reside. A filling

can’t be applied directly to Figure 3.6 or it will result in a single large blob. Instead,

the Canny edge detection algorithm is deployed to remove the outermost edge loop

that wraps the whole diagram first. Then, a morphological fill algorithm is employed

for the remaining image. The result of the filling operation is given in Figure 3.7.

Figure 3.7 : Filled binary image

3.2.4 Rectangle Extraction

As it can be seen from Figure 3.7, not all the remaining white regions belong to a TF

block. By performing a shape analysis, desired rectangles can be extracted. For the

48

shape analysis, the circularity and rectangularity of each connected component is

calculated. The circularity measure (𝐶) is defined in (3.5) where 𝐴 is the area and 𝑃 is

the perimeter of the region in terms of pixels.

𝐶 =
4𝜋𝐴

𝑃2
 (3.5)

The rectangularity measure (𝑅) is given in (3.6) where 𝐿𝑚𝑎𝑗𝑜𝑟 is the length of the major

axis and 𝐿𝑚𝑖𝑛𝑜𝑟 is the length of the minor axis of the region.

𝑅 =
𝐴

𝐿𝑚𝑎𝑗𝑜𝑟𝐿𝑚𝑖𝑛𝑜𝑟
 (3.6)

Regions that satisfy the conditions given in (3.7) are selected as rectangles.

𝐶 ≤ 0.9
0.7 ≤ 𝑅 ≤ 1.5

 (3.7)

Once the rectangle regions are segmented, their BB informations are saved for further

use. Segmented regions for Figure 3.2 are shown in Figure 3.8.

Figure 3.8 : Detected rectangles

3.2.5 Handwritten Character Recognition

In the next step of the pipeline, characters inside the TF blocks are recognized using a

deep CNN. To be able to classify characters with DL, they must be located first.

Instead of searching for characters over the whole image, small patches are cropped

from the input image for each TF block using their BB information. An example

cropped image patch is shown in Figure 3.9. A character segmentation algorithm can

49

then be employed on individual patches to be able to tell which character belongs to

which TF block.

Figure 3.9 : Extracted TF block image

The adopted character segmentation method starts with the binarization of the

extracted image patch. Although a binarized version of the whole image already

generated in the rectangle detection, we have seen that the previously mentioned

binarization technique doesn’t provide satisfactory results for small image patches.

Global binarization technique as described in (3.2) is adopted instead with a 𝑇 of 125

(half instensity value in RGB images). Binary version of Figure 3.9 is given in Figure

3.10. After the binarization, connected components are found in the patches. It is

assumed that the characters do not touch each other and consists of single blobs and

because of these assumptions all the found components are treated as characters. A

morphological close operation is employed before to deal with possible

discontinuities. Once the characters are segmented and their BBs are found, they are

cropped and resized into 224x224 resolution to be fed into a deep CNN for labeling.

Figure 3.10 : Segmented TF block image

50

The characters to be recognized are digits (0-9), arithmetic operators (‘+’, ‘-‘, ‘x’, ‘*’),

round and square bracket pairs, and the ‘s’ and ‘.’ characters, which makes in total

𝑄 = 20 classes. In the dataset construction for HCR, we used the whole constructed

HFCA dataset containing 306 samples by first extracting TF blocks then segmenting

characters via the aforementioned approach. It is worth to underline that we have

observed that lighting conditions had a much bigger impact on small images and

therefore we decided to extract the characters from the binary version of the HFCA

images.

Each extracted character is labeled manually by the authors. An example of the used

character images is shown in Figure 3.11. Moreover, we would like to point out that

the dataset is enriched with extra handwritten character images to end up with evenly

distributed samples for each class. The resulting HCR dataset has 3920 images in total

which is split as 155 images per class for training, 32 images per class for validation

and 9 images per class for testing.

Figure 3.11 : Example character images

The HCR problem is solved with a deep CNN that is trained as described previously

with hyperparameter settings of 50 epochs, minibatch size of 4, and a learning rate of

10-3 with a drop rate factor of 0.1 at every 10 epochs. We also employed online data

augmentation during the learning.

The best and mean training, validation, and testing accuracies over 5 experiments are

given in Table 3.2. The mean training and validation accuracy values are illustrated in

Figure 3.12 (only the first 500 iterations are given). It can be seen that the learning

performance of the ResNet-50 based deep CNN is satisfactory since it resulted in a

51

mean accuracy of more than 96%. As it can be seen from Figure 3.13, the trained deep

CNN is capable to successfully label the characters of the segmented TF image.

Table 3.2 : Performance of the deep CNN for HCR

 Best Accuracy Mean Accuracy

Training 100% 100%

Validation 98.39% 97.2%

Testing 96.17% 96.08%

Figure 3.12 : HCR mean (a) loss values (b) accuracy values

 Symbolic Expression Construction

A single input-single output TF is expressed as a ratio of two polynomials, namely the

numerator and denominator. In Matlab®, a TF can be defined using the coefficients of

these polynomials. For that reason, symbolic expressions from the unordered but

labeled characters for each TF are constructed. With Matlab®’s Symbolic Math

Toolbox™, required coefficients can be found from the constructed expressions.

52

First step in symbolic expression construction is to build the equation string using the

recognized characters as illustrated in Figure 3.13. This process starts with finding the

fraction signs that seperates the numerator from the denominator. Although not very

likely, we consider the cases where multiple fractional terms exist in TFs. It is not safe

to consider all the characters with “-“ labels as the same label is used also for the minus

sign. To distinguish the numerator and denominator polynomials of the recognized TF,

the characters labeled with the class “-” are initially examined. To differentiate

whether this label represents the subtraction or fraction operator, we simply checked

if there is another labeled character above and below of its position. If this condition

results in a non-empty set, then we concluded that the labeled character is a fraction

symbol that separates the numerator and denominator of TF as shown in Figure 3.14.

Then, the remaining characters are allocated as elements of the sets defining the

numerator and denominator part of TF with respect to their position. In this step, we

have also handled exponent characters in the polynomials. A character is labeled as an

exponent if it is positioned (slightly) above of its preceding character. As shown in

Figure 3.14, the first character labeled as “2” is an exponent, because of its relative

vertical position to the first occurring “s” character. Thus, we add a caret character (^)

between the base and the exponent characters.

Figure 3.13 : Labeled TF block image

53

Figure 3.14 : Labeled numerator and denominator

Once all the characters are allocated in order, the character sets of the numerators and

denominators are turned into strings and then merged with a division symbol to obtain

a string expression of the extracted TF image. This string expression is then

transformed into a symbolic expression to obtain TF representation in which the “s”

character becomes the only symbolic variable. Finally, the coefficients of the symbolic

expressions of the numerator and denominator are extracted to define TFs in Matlab®.

A screenshot of transfer function construction in Matlab® is given in Fig 3.15.

Figure 3.15 : TF in Matlab®

54

 Feedback Control Architecture Generation In Matlab®

Once the deep CNN trained to solve HFCAR problem recognizes the FCA class (all

classes are shown in Figure 1.1), the extracted TF representations of the image have to

be matched with their appropriate slots in the FCA. In this context, using the center

coordinates of the extracted TF blocks that are calculated via their BB information, we

assign the extracted TFs that have similar vertical positions in the image to the same

path, match and name them with the corresponding TFs (such as G(s), C(s), H(s),…)

defined in the FCAs through their horizontal positions in the image. Note that, we

defined a path as a horizontal route a signal can follow in FCAs (i.e. feedforward or

feedback path).

In order to provide a clear understanding, let us explain the matching and naming of

the TFs on the FCA-1 structure for illustrative purposes. As can be observed from

Figure 1.1a, the FCA-1 has two paths including a feedforward path with 3 TFs (F(s),

C(s) and (G(s)) at top and a feedback path with a single TF (H(s)). If a HFCA is

recognized as FCA-1 and all the TFs are extracted in the image frame, then we end up

with 3 TFs aligned and a single TF near the upper and lower half of the image,

respectively. In the FCA-1, since we know that the prefilter F(s) is the first TF in the

feedforward path, we name and match the extracted TF with smaller horizontal

coordinate at the upper path as the TF F(s), while the next one to its right as the

compensator TF C(s) and the rightmost one as the plant TF G(s). The remaining

extracted TF is directly matched and named as the TF that defines the sensor dynamics

H(s) since the feedback path of FCA-1 contains a single TF. In a similar manner, the

rest 6 FCAs are matched with the extracted TFs in the proposed DL based pipeline.

Now, the FCA constructed from HFCA can be directly processed and analyzed in

Matlab® since all the TFs of FCA are defined in the workspace of Matlab®.

In order to analyze the FCAs via the Control System Designer App™ of Matlab®, we

define a Matlab object in which the recognized FCA class is defined with the extracted

and matched TFs and then import it to the graphical user interface of the application.

As shown in Figure 3.16, the user can now not only visualize the control system in the

time and frequency domains but also tune compensator C(s) if desired.

It is also worth mentioning that the DL based pipeline automatically generates also a

Simulink™ diagram as shown in Figure 3.16d which can be directly used for

55

simulation purposes. To accomplish such a goal, we created template Simulink files in

advance for all the FCAs in which all TFs are named as defined in Table I. In the

template Simulink files, the simulation time and solver options are defined with the

default settings of Simulink™. Once the HFCA is recognized, the corresponding

Simulink file is automatically opened and the matched TFs are loaded into the file.

 Real-Time Performance of the Pipeline

To test the real-time performance of the pipeline, a series of experiments are conducted

in a small-sized classroom containing a whiteboard and a projection board. For the

experiments, we created a simple program in Matlab® that detects the HFCA currently

drawn on the whiteboard in a continuous loop. At each time-step, a snapshot is taken

from a camera that is fixed to the whiteboard. The image is then fed to the pipeline and

if a valid FCA is detected the program sends it to the Simulink™ environment.

Figure 3.16 : (a) Matlab command window (b) Step Response (c) Root-Locus and

Bode plots (d) Simulink diagram

The program does not terminate after recognizing the HFCA and completing the

pipeline. It repeats the first step of the pipeline (HFCAR) at the start of each iteration.

If a different HFCA is successfully recognized it completes the remaining steps (block

detection, HCR, symbolic expression construction) and opens a new Simulink™

model. If the recognized HFCA is the same as before, it checks the TF blocks for any

56

possible changes. In case of modification inside a TF block, HCR and symbolic

expression construction steps are repeated for that specific block. This way, we were

able to avoid repeating the block detection step at each iteration. Flowchart of the real-

time program is given in Figure 3.17.

We also projected the Simulink™ window with a projection device to a projection

board as in Figure 3.18a. We observed that the pipeline takes roughly a second to

generate a result and concluded that the pipeline can handle inter-quality uncertainty

as it is capable to recognize FCAs from different users in real-time. It can also handle

intra-quality uncertainties as it can recognize FCAs from in the presence of various

lighting conditions in real-time. Snapshots from the real-time experiment are given in

Figure 3.1.

Figure 3.17 : Flowchart of the real-time application

57

Figure 3.18 : (a) Experiment environment (b) Projected Simulink™ window (c)

Simulation result

58

59

 CONCLUSION

In this thesis, we established a DL based pipeline that can recognize an HFCA along

with the TFs it contains in real-time. We also presented the DL concepts used in this

work. We believe that being able to transform an HFCA to a simulation environment

such as Matlab® provides the opportunity to the lecturers/researchers to easily

visualize and analyze HFCAs during a lecture. The proposed pipeline has been

accomplished by integrating frameworks of deep learning and using various PR and

image processing techniques. We provided all the details and necessary information

about each step of the proposed DL based pipeline. For steps that include classification

with DL, we integrated deep CNNs to solve the corresponding PR problems (HFCAR

and HCR). Instead of designing a new architecture, we used the transfer learning

approach. We selected ResNet-50 as the base model since we believe that it is capable

of handling the intra-quality and inter-quality uncertainties that mainly occur due to

handwriting quality of the lecturers and lighting conditions. We also created separate

datasets for both of the recognition problems for the fine-tuning with the help of

different lecturers.

We tested the capabilities of our pipeline by conducting experiments in a small-sized

classroom with a camera fixed on a whiteboard. During the experiments, we tried to

transfer the currently drawn HFCA on the whiteboard to the Matlab® in real-time. The

experiments showed that the DL based pipeline is a powerful tool to visualize and

analyze HFCAs as it can recognize the FCA with high accuracy in a short amount of

time. It is also worth underlining that the developed DL based pipeline is capable to

detect changes in each TF block and it can update the current representation. This way

lecturers can show how poles and zeros affect a system, adjust the controller

parameters, or employ similar alterations to further analyze an FCA.

We think that the DL based pipeline has the potential to ease the difficulty in teaching

control systems as real-time visualizations of control systems and simulations are

generated as the lecturer is sketching FCAs during the lectures.

60

61

REFERENCES

[1] Prendergast, D. P., & Eydgahi, A. M. (1993). EDCON: An educational control systems

analysis and design program. IEEE Trans. Educ., 42-44.

[2] Kheir, N. A., Astrom, K. J., Austander, D., Cheok, K. C., Franklin, G. F., Masten, M.,

& Rabins, M. (1996). Control systems engineering education. Automatica, 147-

166.

[3] Johansson, M., Gafvert, M., & Astrom, K. (1998). Interactive tools for education in

automatic control. Control Systems IEEE, 33-40.

[4] Kroumov, V., Shibayama, K., & Inoue, A. (2003). Interactive learning tools for

enhancing the education in control systems. Frontiers in Education, 23-28.

[5] Rodriguez, A. A., DeHerrera, M. F., & Metzger, R. P. (1996). An interactive MATLAB-

based tool for teaching classical systems and controls. Technology-Based Re-

Engineering Engineering Education Proceedings of Frontiers in Education

FIE'96 26th Annual Conference, (s. 624-627). Salt Lake City.

[6] Chow, J. H., & Cheung, K. W. (1992). A toolbox for power system dynamics and control

engineering education and research. IEEE Trans. Power Syst., 7(4), 1559-1564.

[7] Dormido, S., Dormido-Canto, S., Dormido, R., Sanchez, J., & Duro, N. (2005). The role

of interactivity in control learning",. Int. J. Eng. Educ., 21(6), 1122-1133.

[8] Vargas, H., Moreno, J. S., Jara, C., Candelas, F., Torres, F., & Dormido, S. (2011). A

network of automatic control web-based laboratories. IEEE Trans. Learn.

Technol., 4(3), 197-208.

[9] Maiti, A., Zutin, D. G., Wuttke, H., Henke, K., Maxwell, A. D., & Kist, A. A. (2018). A

framework for analyzing and evaluating architectures and control strategies in

distributed remote laboratories. IEEE Trans. Learn. Technol., 11(4), 441-455.

[10] Bencomo, S. D. (2004). Control learning: Present and future. Annu. Rev. Control, 28(1).

[11] Sanchez, J., Dormido, S., Pastor, R., & Morilla, F. (2004). A Java/MATLAB-based

environment for remote control system laboratories: Illustrated with an inverted

pendulum. IEEE Trans. Educ., 47(3), 321-329.

[12] Leva, A., & Donida, F. (2008). "Multifunctional remote laboratory for education in

automatic control: The CrAutoLab experience. IEEE Trans. Ind. Electron, 55(6),

2376-2385.

[13] Dorf, R. C., & Bishop, R. H. (2011). Modern Control Systems. Pearson.

[14] The MathWorks Inc. (2019). MATLAB® Control System Toolbox™ Users Guide.

https://www.mathworks.com/help/pdf_doc/control/control_ug.pdf adresinden

alındı

[15] Kara, L., & Stahovich, T. (2005). An Image-Based Trainable Symbol Recognizer for

Hand-Drawn Sketches. Computers & Graphics, 29(4), 501-517.

[16] Bresler, M., Phan, T. V., Prusa, D., Nakagawa, M., & Hlavác, V. (2014). Recognition

System for On-Line Sketched Diagrams. 14th International Conference on

Frontiers in Handwriting Recognition, (s. 563-568). Heraklion.

[17] Chen, Q., Shi, D., Feng, G., Zhao, X., & Luo, B. (2015). On-line handwritten flowchart

recognition based on logical structure and graph grammar. 5th International

Conference on Information Science and Technology, (s. 424-429). Changsha.

62

[18] Hammond, T., & Paulson, B. (2011). Recognizing sketched multistroke primitives. ACM

Trans. Interact. Intell. Syst.,.

[19] Kara, L., & Stahovich, T. (2004). Hierarchical parsing and recognition of hand-sketched.

Proc. 17th ACM Symp. User Interface Software and Technology, (s. 13-22).

Santa Fe.

[20] Davis, L. S. (1975). A survey of edge detection techniques. Computer Graphics and

Image Processing, 4(3), 248-270.

[21] Teow, L., & Loe, K. (2002). Robust vision-Based features and classification schemes for

off-Line handwritten digit recognition. Pattern Recognition, 35(11), 2355-2364.

[22] Holmström, L., & Koistinen, P. (2010). Pattern recognition. Wiley Interdisciplinary

Reviews: Computational Statistics, 2(4), 404-413.

[23] Mantas, J. (1986). An overview of character recognition methodologies. Pattern

Recognition, 19(6), 425-430.

[24] Atal, B., & Rabiner, L. (1976). A pattern recognition approach to voiced-unvoiced-

silence classification with applications to speech recognition. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 24(3), 201-212.

[25] Azad, R., & Shayegh, H. R. (2013). New method for optimization of license plate

recognition system with use of edge detection and connected component. ICCKE

2013, 21-25.

[26] Cheng, M.-M., Zhang, Z., Lin, W.-Y., & Torr, P. (2014). BING: Binarized normed

gradients for objectness estimation at 300fps. IEEE Conference on Computer

Vision and Pattern Recognition (s. 3286-3293). Columbus: IEEE.

[27] Uijlings, J., & van de Sande, K. G. (2013). Selective Search for Object Recognition. Int J

Comput Vis 104, 154-171.

[28] Zhou, H., Yuan, Y., & Shi, C. (2009). Object tracking using SIFT features and mean

shift. Computer Vision and Image Understanding, 113(3), 345-352.

[29] Bezdek, J. C. (1992). On the relationship between neural networks, pattern recognition

and intelligence. International Journal of Approximate Reasoning, 6(2), 85-107.

[30] Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based

activity recognition: A survey. Pattern Recognition Letter, 119, 3-11.

[31] Lu, Q., Liu, C., Jiang, Z., Men, A., & Yang, B. (2017). G-CNN: object detection via

grid convolutional network. IEEE Access, 5, 24023-24031.

[32] Beke, A., & Kumbasar, T. (2019). Learning with type-2 fuzzy activation functions to

improve the performance of deep neural networks. Engineering Applications of

Artificial Intelligence, 85, 372–384.

[33] Tsujii, O., Freedman, M. T., & Mun, S. K. (1999). Classification of microcalcifications

in digital mammograms using trend-oriented radial basis function neural

network. Pattern Recognition, 891-903.

[34] Reddick, W. E., Glass, J. O., Cook, E. N., Elkin, T. D., & Deaton, R. J. (1997).

Automated segmentation and classification of multispectral magnetic resonance

images of brain using artificial neural networks. IEEE Transactions on Medical

Imaging, 16(6), 911-918.

[35] Auld, T., Moore, A. W., & Gull, S. F. (2007). Bayesian Neural Networks for Internet

Traffic Classification. IEEE Transactions on Neural Networks, 18(1), 223-239.

[36] Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classification of

radar returns from the ionosphere using neural networks. Johns Hopkins APL

Technical Digest, 10(3), 262-266.

[37] Simard, D., Steinkraus, P., & Platt, J. (2003). Best practices for convolutional neural

networks. Proc. 7th Int'l Conf. Document Analysis and Recognition. Edinburgh.

63

[38] Zhang, X.-Y., Bengio, Y., & Liu, C.-L. (2017). Online and offline handwritten chinese

character recognition. Pattern Recognit, 61, 348-360.

[39] LeCun, Y., Bottou, L., Bengioi, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE, 86(11), 2278-2324.

[40] Ling, H., Wu, J., Wu, L., Huang, J., Chen, J., & Li, P. (2019). Self residual attention

network for deep face recognition. IEEE Access, 7, 55159-55168.

[41] Wang, Y., Lei, B., Elazab, A., Tan, E.-L., Wang, W., Huang, F., Wang, T. (2020).

Breast cancer image classification via multi-network features and dual-network

orthogonal low-rank learning. IEEE Access, 8, 27779-27792.

[42] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A

large-scale hierarchical image database. IEEE Conference on Computer Vision

and Pattern Recognition.

[43] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep

convolutional neural networks. Proc. Neural Information and Processing

Systems.

[44] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. IEEE Conf. Comput. Vis. and Pattern Recognition, (s. 770-778).

Las Vegas.

[45] Ng, H.-W., Nguyen, V. D., Vonikakis, V., & Winkler, S. (2015). Deep Learning for

Emotion Recognition on Small Datasets using Transfer Learning. ACM

International Conference on Multimodal Interaction, (s. 443-449). Seattle.

[46] Phan, H. T., Kumar, A., Kim, J., & Feng, D. (2016). Transfer learning of a

convolutional neural network for HEp-2 cell image classification. IEEE 13th

International Symposium on Biomedical Imaging (ISBI), (s. 1208-1211). Prague.

[47] Nguyen, L. D., Lin, D., Lin, Z., & Cao, J. (2018). Deep CNNs for microscopic image

classification by exploiting transfer learning and feature concatenation. IEEE

International Symposium on Circuits and Systems (ISCAS), (s. 1-5). Florence.

[48] Li, X., Pang, T., Xiong, B., Liu, W., Liang, P., & Wang, T. (2017). Convolutional

neural networks based transfer learning for diabetic retinopathy fundus image

classification. 10th International Congress on Image and Signal Processing,

BioMedical Engineering and Informatics (CISP-BMEI),, (pp. 1-11). Shanghai.

[49] Buchanan, B. (2006). A (very) brief history of artificial intelligence. AI Mag., 26, 53-60.

[50] Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron,

Madaline and backpropagation. Proceedings of the IEEE, 79(9), 1415-1442.

[51] W. S. McCulloch, W. P. (1943). A logical calculus of the ideas imminent in nervous

activity. Bulletin of Mathematical Biophysics, 115-133.

[52] Rosenblatt, F. (1957). The Perceptron — a perceiving and recognizing automaton.

Cornell Aeronautical Laboratory.

[53] Widrow, B. (1960). Adaptive ”Adaline” neuron using chemical ”memistors”. Stanford:

Stanford Electron. Labs.

[54] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge: The

MIT Press.

[55] Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner’s Approach.

Sebastopol: O’Reilly Media.

[56] Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016). Large-Margin Softmax Loss for

Convolutional Neural Networks. International Conference on Machine

Learning. New York.

[57] Hawkins, D. M. (2004). The Problem of Overfitting. Chemical Information and Computer

Sciences, 44, 1-12.

64

[58] Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting

the log-likelihood function. J. Statistical Planning and Inference, 90, 227-244.

[59] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. Proc. 32nd Int. Conf. Mach. Learn., (s. 448–

456).

[60] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images speech and time-

series. M. A. Arbib içinde, Handbook of brain theory and neural networks.

Cambridge: MIT Press.

[61] Kumar, G., & Bhatia, P. K. (2014). A detailed review of feature extraction in image

processing systems. IEEE Fourth International Conference on Advanced

Computing & Communication Technologies. Rohtak.

[62] Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-

the-shelf: An astounding baseline for recognition. Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. DeepVision Workshop, (s. 806-813). Columbus.

[63] Gonzalez, R. C., & Woods, R. E. (2006). Digital Image Processing. Englewood Cliffs:

Prentice-Hall.

[64] Mittal, S. (2018). A survey of FPGA-based accelerators for convolutional neural

networks. Neural Computer and Applications, 1-31.

[65] Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2011).

Flexible, high performance convolutional neural networks for image

classification. International Joint Conference on Artificial Intelligence, (s. 1237-

1242). Barcelona.

[66] LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-B. (1998). Efficient BackProp. G.

Montavon, G. B. Orr, & K.-R. Müller içinde, Neural Networks: Tricks of the

Trade (s. 9-48). Berlin: Springer.

[67] Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, (s. 249-256). Sardinia.

[68] Hinton, G., & Nair, V. (2010). Rectified Linear Units Improve Restricted Boltzmann

Machines. Proceedings of ICML. 27., (s. 807-814).

[69] Liu, L., Quyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M.

(2019). Deep Learning for Generic Object Detection: A Survey. International

Journal of Computer Vision, 128, 261-318.

[70] Zitnick, C. L., & Dollár, P. (2014). Edge Boxes: Locating Object Proposals from Edges.

European Conference on Computer Vision (s. 391-406). Zurich: Springer.

[71]Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019).

Generalized Intersection Over Union: A Metric and a Loss for Bounding Box

Regression. The IEEE Conference on Computer Vision and Pattern Recognition,

(s. 658-666). Long Beach.

[72] Mhaskar, H. N., & Poggio, T. (2016). Deep vs. shallow networks: An approximation

theory perspective. Analysis and Applications, 14(6).

[73] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.

(2015). Going deeper with convolutions. Proc. IEEE Conf. Comput. Vis. Pattern

Recognşt., 1-9.

[74] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. Proc. Int. Conf. Learn. Representations.

[75] Bezdan, T., & Džakula, N. B. (2019). Convolutional Neural Network Layers and

Architectures. Sinteza 2019 - International Scientific Conference on Information

Technology and Data Related Research, (s. 445-451). Belgrade.

65

[76] Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks.

Advances in Neural Information Processing Systems 28 (NIPS 2015). Montreal.

[77] He, K., & Sun, J. (2015). Convolutional Neural Networks at Constrained Time Cost.

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (s.

5353-5360). Boston: IEEE.

[78] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-

166.

[79] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data

Eng., 22(10), 1345-1359.

66

67

CURRICULUM VITAE

Name Surname : Dorukhan Erdem

Place and Date of Birth : Ankara, 01.01.1993

E-Mail : dorukhan.erdem@gmail.com

EDUCATION :

• B.Sc. : 2018, Istanbul Technical University, Faculty of

Electrical and Electronics Engineering, Control and Automation Engineering

PROFESSIONAL EXPERIENCE:

• 2018-2019 : Software developper at Vircon Group Technologies

• 2020-… : Research asistant at Istanbul Technical University, Control and

Automation Engineering Department

