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TRANSFORMING FEEDBACK CONTROL SYSTEMS ON WHITEBOARD 

INTO MATLAB VIA A DEEP LEARNING BASED INTELLIGENT SYSTEM 

SUMMARY 

In control theory, some concepts can be better grasped with further visualization. Some 

core concepts such as the transient and steady-state behavior of a system or the interval 

at which it is stable can be better expressed using plots in time and frequency domains. 

The introduction of these visual aids has an important place in control lectures. In the 

classroom environment, instructors usually draw the corresponding graphs about a 

system by hand after presenting its control diagram. Hand drawing a plot is a difficult 

and time-consuming process and it is not possible to correctly scaled graphs this way. 

In order to correctly analyze a system, a simulation environment like Matlab® should 

be preferred. In this thesis, we have proposed a deep learning based pipeline that can 

recognize and transfer a block diagram on the whiteboard to the Matlab® environment. 

This way, control systems drawn by the lecturers can be properly analyzed with 

computer-generated plots without redefining them in the Matlab®.  

Generally, feedback control architectures are covered in control system lectures. These 

architectures can be visually represented with block diagrams. In a block diagram, 

transfer blocks are shown as rectangles and the connections between these blocks are 

indicated with arrows.  The arithmetic operations like summation and subtraction 

between the signals are also shown inside small circles. A feedback control system 

may contain transfer functions for the filter or noise dynamics along with the controller 

and the plant. The number and the location of these transfer functions, their connection 

schemes, the number of forward or backward paths separates an architecture from 

another. In order to transfer a handwritten block diagram to Matlab® these 

informations must be extracted first using computer vision techniques. Then, the 

contents of each transfer function must be found in order to represent them in Matlab®. 

An architecture with known connections and transfer functions can be easily expressed 

in the Matlab® environment. If desired, a simulation model can be created Simulink™ 

or analyzed with Control System Designer App™. 

The control architecture from a given picture can be found with different approaches. 

A possible one is to handle the recognition task as a classification problem. In 

classification problems, inputs are assigned to one of the pre-defined classes by 

calculating a similarity ratio. In the context of feedback control architecture 

recognition, frequently used architectures can be selected as the class set, and the 

corresponding class can be found by examining the input image. Classification 

problems usually require a feature extraction method. These methods transfer the 

inputs to a feature space and the classification is done between the points in that space. 

The accuracy of the classification task depends on the selected feature extraction 

method and finding a proper method is the main challenge in classification problems. 

An ideal feature extraction method should not be affected by the uncertainties in the 

input image. Lighting condition is among the most common uncertainties in image 

processing problems. The intensity of the light can cause dark areas to appear brighter 
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and can cause information loss. Also, the quality of the lecturer’s handwriting quality 

can cause further uncertainties in our handwritten architecture recognition problem. 

Long sessions may deteriorate the lecturer’s handwriting quality or different 

handwritings among various lecturers can harm the generalizability of the 

classification model. Various feature extraction algorithms exist in the computer vision 

literature, but a majority of them are not robust to transformations or noises in the input 

images. Therefore, structures that automatically extract features such as neural 

networks are preferred. 

In this thesis, recognition of a handwritten feedback control architecture is handled as 

a classification task where the classes are the 6 feedback control architectures defined 

in the Control System Designer App™. In order to accomplish the classification task, 

we have trained a deep Convolutional Neural Network (CNN). For the training, we 

have collected images of handwritten feedback architectures with the help of various 

lecturers. Although we have gathered as many samples as we can, constructing a 

dataset is a time-consuming process. To avoid problems that may arise from the lack 

of data, we have adopted the transfer learning approach. With the transfer learning 

approach, a deep network trained on large datasets like ImageNet can be adapted to 

new classification tasks by replacing its last layers. As the base network for our CNN, 

we have selected ResNet-50 since it shows high classification accuracies in benchmark 

tests and doesn’t suffer from a common problem called gradient vanishing. 

The next step in our deep learning based pipeline is to construct the transfer functions. 

To create the mathematical expressions of the transfer functions, characters in the input 

images must first be recognized. Besides,  we need to be able to determine which 

characters belong to which transfer function. If the location and the dimensions of each 

transfer function block in the input image are known, the corresponding characters can 

be searched inside these regions. Considering the transfer functions are represented as 

rectangles in block diagrams, we continued our pipeline with a rectangle detection step 

in this context. First, the input image is binarized with a thresholding algorithm. 

Possible noises caused by illuminations are then filtered from the binary image. After 

the filtering operation, an edge detection algorithm is applied and the outermost edge 

is removed from the binary image. With a filling method that fills closed contours, we 

ended up with regions as candidate rectangles. Using the connected component 

analysis and inspecting the rectangularity of each region, actual rectangles and their 

locations are found. At this point, the architecture and the transfer functions it contains 

are already known. Starting from the upper-left one, rectangles are then matched with 

the transfer functions by comparing their locations. 

Following the rectangle detection step, regions belonging to the transfer functions are 

cropped from the filtered binary image. Then the characters are detected in these 

cropped regions using the connected component analysis. In order to label the detected 

characters, we have trained another CNN using a pre-trained ResNet-50 as a base 

network. There are 20 possible labels for a character consisting of the arithmetic 

operators, parentheses, digits, and the ‘s’ character. We have also constructed a second 

dataset for the character classification task. 

After detecting the transfer function blocks and recognizing the characters they 

contain, symbolic expressions for each transfer function can be constructed. A transfer 

function can be defined in Matlab® by finding the coefficients of its numerator and 

denominator. The coefficients can easily found from the symbolic expressions with 

the functions provided by Matlab®. For this purpose, the characters in each block are 
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first sorted by their horizontal positions. Using the vertical position of the character 

that represents the fraction sign, the remaining ones are then separated as numerator 

and denominator. By concatenating the labels of the ordered characters, equation 

strings are generated. From the equation strings, symbolic expressions are constructed 

and the required coefficients are found. Thus, all the information necessary to transfer 

the feedback architecture drawn on the board to the Matlab® environment was 

obtained. 

At the end of the deep learning based pipeline, the recognized architecture can easily 

be transferred to the Control System Designer App™. The application requires the 

type of the feedback control architecture and the expressions of the transfer functions 

to create a new analysis, which is already present at this point. Alternatively, a 

Simulink™ model can be generated by defining the connections and transfer functions. 

To test the real-time capabilities of our pipeline, we finally created a test application 

that uses our pipeline. It processes images gathered from a live camera and creates a 

Simulink™ model if it detects a suitable feedback control architecture. 
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DERİN ÖĞRENME TABANLI AKILLI BİR SİSTEM İLE BEYAZ 

TAHTADAKİ GERİBESLEMELİ KONTROL SİSTEMLERİNİN MATLAB 

ORTAMINA AKTARILMASI 

ÖZET 

Kontrol teorisinde bazı konular, daha iyi kavranabilmeleri için görsel metotlara ihtiyaç 

duyar. Bir sistemin geçici ve sürekli haldeki davranışı veya hangi aralıklarda kararlı 

olduğu gibi temel bilgiler görsel zaman veya frekans tanım bölgelerinde oluşturulan 

grafiklerle gösterildiğinde daha iyi ifade edilebilmektedir. Ayrıca köklerin yer eğrisi 

veya Bode grafikleri gibi zaman ve frekans bölgesindeki görsel yöntemler ile 

sistemlerin tasarımı da yapılabilmektedir. Kontrol derslerinde de bu görsel araçların 

tanıtımı önemli bir yer tutmaktadır. Sınıf ortamında işlenen derslerde eğitmenler blok 

şeması verilen bir sistem ile ilgili grafikleri tahtaya yaklaşık bir şekilde çizmektedirler. 

Bu hem zaman alan zor bir süreçtir hem de ölçeksiz çizilen grafikler yüzünden 

kavramların anlaşılmasını güçleştirmektedir. Ele alınan sistem hakkında doğru bir 

şekilde yorum yapabilmek için Matlab® gibi bir benzetim ortamı kullanılmalıdır. Bu 

tez kapsamında, tahtaya çizilmiş kontrol şemalarını tanıyan ve Matlab® ortamına 

aktarabilen derin öğrenme tabanlı bir yöntem önerilmiştir. Önerilen bu yöntem derin 

öğrenme ve görüntü işleme yöntemlerini kullanmakta ve kontrol şemalarını gerçek 

zamanda bilgisayar ortamına aktarabilmektir. Böylece ders esnasında eğitmen 

tarafından tahtaya çizilen kontrol mimarilerinin sistem yanıtı, kontrolör işareti gibi 

grafikler kolaylıkla ve doğru bir şekilde elde edilebilmektedir. Üstelik tahtadaki 

mimarinin Matlab® ortamında bir kez daha oluşturulmasına gerek kalmamaktadır. 

Önerilen yöntem gerçek zamanlı çalıştığı için el ile çizilmiş şemadaki herhangi bir 

değişiklik de benzetim ortamında görülebilmektedir. Bu şekilde sistemin kutup ve 

sıfırları güncellenerek sistem cevabı üzerindeki etkileri kolaylıkla görülebilmekte veya 

farklı kontrolör parametrelerinin ayarı yapılabilmektedir. 

Kontrol sistemi derslerinde genellikle geri beslemeli kontrol mimarileri ele 

alınmaktadır. Bu mimariler blok şemalarıyla görsel olarak da ifade edilebilmektedir. 

Bir kontrol şemasında transfer fonksiyonları dörtgenler ile temsil edilmekte ve oklar 

aracılığıyla birbirilerine bağlanmaktadır. Ayrıca sinyaller arasındaki toplama ve 

çıkarma gibi aritmetik işlemler de daireler içerisinde gösterilmektedir. Geri beslemeli 

bir kontrol yapısında kontrol edilmek istenen sistemin ve kontrolörlerin yanında sensor 

dinamiklerini ve gürültü filtrelerini temsil eden transfer fonksiyonları da 

bulunabilmektedir. Belirtilen transfer fonksiyonlarının konumları, aralarındaki 

bağlantılar, ileri ve geri yolların sayıları gibi etkenler herhangi bir mimariyi bir 

diğerinden ayırmaktadır. Tahtaya çizilmiş bir blok şemasını Matlab® ortamına 

aktarılabilmesi için öncelikle şemanın bilgisayar tarafından algılanması 

gerekmektedir. Bir kamera ile görüntüsü kaydedilen bir blok şemasından, görüntü 

işleme yöntemleri kullanılarak gerekli bilgiler elde edilebilir ve bu şema bilgisayar 

ortamında yeniden oluşturulabilir. Bunu başarabilmek için öncelikle şemada belirtilen 

mimarinin yapısı oluşturulmalıdır. Mimarinin kaç tane transfer bloğu içerdiği, 
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aralarındaki bağlantı yapıları gibi bilgilerin bilinmesi daha sonraki adımlarını da 

kolaylaştıracaktır. Bir sonraki aşamada ise her bir transfer bloğunun içeriği elde 

edilmeli ve transfer fonksiyonları benzetim ortamında oluşturulmalıdır. Bağlantıları 

ve transfer fonksiyonları bilinen bir mimari kolaylıkla Matlab® ortamında ifade 

edilebilmektedir. İstenirse Simulink™ ile benzetim modeli oluşturulabilmekte veya 

kontrol sistem tasarım uygulaması (Control System Designer App™)  ile analizi 

yapılabilmektedir. 

Verilen bir resimden kontrol mimarisi farklı yaklaşımlarla bulunabilir. Bunlardan bir 

tanesi, problemi bir sınıflandırma görevi olarak ele almaktır. Sınıflandırma 

problemlerinde girdiler benzerlik oranlarına göre önceden belirlenmiş sınıflardan bir 

tanesine atanırlar. Kontrol mimarisi tespiti bağlamında da sıklıkla kullanılan mimariler 

önceden belirlenebilir ve blok şemasının resmi incelenerek hangisine en çok benzediği 

bulunabilir. Sınıflandırma problemleri genellikle bir özellik çıkarma yöntemine ihtiyaç 

duyar. Özellik çıkarma yöntemleri girdileri bir özellik uzayına aktarır ve sınıflandırma 

işlemi bu uzaydaki noktalar arasında yapılır. Sınıflandırma işleminin başarısı, 

kullanılan özellik çıkarma yöntemine dayanmaktadır ve uygun bir özellik çıkarma 

yöntemi bulmak sınıflandırma problemlerinin başlıca zorluğudur. İdeal bir özellik 

çıkarma yönteminin resimdeki belirsizliklerden etkilenmemesi gerekir. Görüntü 

işleme problemlerinde ortam ışığı en çok karşılaşılan belirsizlikler arasındadır. Işığın 

şiddeti yer yer parlamalarla koyu bölgelerin aydınlık gözükmesine ve ilgilenen objenin 

kaybolmasına neden olabilir. Ele alınan mimari tanıma probleminde ise ışıktan 

kaynaklanan gürültülerin yanı sıra eğitmenin yazı kalitesi de belirsizlik 

yaratabilmektedir. Eğitmenin yazısı bir süre sonra bozulabilmekte veya eğitmenler 

arasında karakter tipleri farklılık gösterebilmektedir. Görüntü işleme literatüründe 

farklı özellik çıkarma algoritmaları bulunsa da bu yöntemler gürültülere karşı 

dayanıksız kalmakta ya da telif hakkıyla korunmaktadırlar. Bu yüzden nöral ağlar gibi 

otomatik özellik çıkaran yapılar tercih edilmektedir.  

Bu tez kapsamında mimari tespiti bir sınıflandırma problemi olarak ele alınmış ve 

kontrol derslerinde sıklıkla kullanılan 6 farklı mimari belirlenmiştir. Ayrıca 

belirtilmelidir ki kontrol sistem tasarım uygulaması da yine bu 6 farklı mimariye ait 

yapılarla çalışabilmektedir. Sınıflandırma görevinde kullanılmak üzere derin bir 

Evreşimli Sinir Ağı (CNN) eğitilmiştir. Görüntü işleme problemlerinde CNN yapıları 

Eğitim için farklı eğitmenlerden toplanan ve belirlenen 6 mimarinin sınıf ortamındaki 

beyaz tahta çizimlerini içeren bir veri seti oluşturulmuştur. Her ne kadar toplanan veri 

sayısı yüksek tutulmaya çalışılsa da geniş bir veri seti oluşturmak zaman almaktadır. 

Veri azlığından kaynaklanabilecek sorunları aşabilmek için öğrenme aktarımı 

yaklaşımı tercih edilmiştir. Öğrenme aktarımı ile ImageNet gibi büyük veri setlerinde 

eğitilmiş bir ağ, son katmanları değiştirilerek yeni veri setlerine uyarlanabilmektedir. 

Sınıflandırma görevinde kullanılan ağ ise önceden eğitilmiş bir ResNet-50 ağına 

dayanmaktadır. 

Blok şeması resmindeki mimari belirlendikten sonraki aşama transfer fonksiyonlarının 

elde edilmesidir. Bir transfer fonksiyonunun matematiksel ifadesini elde edebilmek 

için öncelikle resimdeki karakterlerin tanınması ve konumlarının bulunması 

gerekmektedir. Ayrıca hangi karakterlerin hangi transfer fonksiyonuna ait oldukları da 

belirlenmelidir. Transfer fonksiyonu bloklarının konumu ve büyüklükleri önceden 

belirlenebilirse ilgili karakterler sadece bu bloklar içerisinde aranabilir. Kontrol 

sistemlerinin blok şemalarında transfer fonksiyonlarının dörtgenler içerisinde ifade 

edildiği göz önünde bulundurularak mimari tespitinden sonra resimdeki dörtgenler 

aranmıştır. Dörtgenlerin tespiti için öncelikle girdi resminin ikili hali elde edilmiştir. 
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Işıktan kaynaklanan belirsizlikler etkisini en çok ikili resmin elde edilmesinde 

göstermekte ve istenmeyen gürültüler üretmektedir. Bu gürültüler, klasik görüntü 

işleme yöntemleri kullanılarak mümkün olabildiğince giderilmeye çalışılmış ve sadece 

şemaya ait piksellerin pozitif olduğu ikili resmin oluşturulması amaçlanmıştır. Takip 

eden adımlarda kenarlar tespit edilmiş, en geniş çevre silinmiş ve kalan kapalı çevreler 

doldurulmuştur. Böylece birbirinden ayrı ve dörtgen olma olasılığı yüksek pozitif 

bölgeler elde edilmiştir. Bağlı bileşen analizi ile kalan bölgelerin dörtgenlikleri 

belirlenmiş ve transfer fonksiyonu blokları tespit edilmiştir. Bağlı bileşen analizinde 

bir bölgenin konumu ve boyutları bulunabildiği için resimdeki transfer 

fonksiyonlarının da konum ve boyutları belirlenebilmiştir. Ayrıca, bir kontrol 

mimarisinde sistemin, kontrolörün veya filtrelerin birbirilerine göre konumları 

bilinmektedir. Bu sayede dörtgen tespiti ile elde edilen bölgelerin mimarideki hangi 

transfer bloğuna karşılık geldiği en sol üstteki dörtgenden başlayarak 

bulunabilmektedir.  

Dörtgen tespitinin ardından belirlenen her bir transfer fonksiyonu bloğunun bulunduğu 

bölge, gürültülerden arındırılmış ikili resimden kırpılmıştır. Kırpılan bu bölgelerdeki 

karakterler yine bağlı bileşen analizi kullanılarak tespit edilmiştir. Bu aşamada 

yalnızca karakterlere ait bileşenler bilinmekte, hangi karakter oldukları 

bilinmemektedir. Her bir blok içerisindeki karakterler bulunduktan sonra yine bir CNN 

kullanılarak bu karakterler etiketlenmiştir. Aritmetik operasyon sembolleri, 

parantezler, rakamlar ve ‘s’ karakterini içeren 20 sınıflık bir sınıflandırma problemini 

çözen bu ağ da ResNet-50 ile öğrenme aktarımı yöntemini kullanmaktadır. Eğitim için 

oluşturulan veri seti, mimari tanıma problemi için oluşturulmuş çizimlerden 

ayıklanmış karakter resimleri kullanılmıştır. Sınıflar arası eşit bir dağılım olması için 

eksik kalan sınıflar yine farklı eğitmenlerden toplanmış örneklerle tamamlanmıştır. 

Transfer fonksiyonu blokları ve içerdikleri karakterler tespit edildikten sonra transfer 

fonksiyonlarının Matlab® ortamında sembolik ifadeleri elde edilmiştir. Matlab® 

ortamında bir transfer fonksiyonunu oluşturabilmek için pay ve payda polinomlarının 

katsayılarının bulunması gerekmektedir. Sembolik ifadesi elde edilen bir polinomun 

katsayıları yine Matlab® aracılığı ile kolaylıkla bulunabilir. Bu amaçla karakterler 

öncelikle yatay konumlarına göre sıralanmıştır. Ardından, pay ve payda polinomlarını 

ayıran kesir çizgisinin düşeydeki konumu kullanılarak karakterler pay ve payda olacak 

şekilde iki kümede toplanmıştır. Karakterler yatayda sıralı oldukları için pay ve 

paydayı temsil eden karakter katarları, karakterlerin etiketleri peşi sıra eklenerek 

oluşturulmuştur. Karakter katarları yaratılırken üslü sayılar da komşu iki karakter 

arasındaki düşey konum farkına bakılarak tespit edilmiştir. Karakter katarından 

sembolik polinom oluşturabilen bir fonksiyon tanımlanmış ve mimarideki transfer 

fonksiyonları bu sembolik ifadelerin katsayıları aracılığı ile oluşturulmuştur. Böylece 

tahtaya çizilmiş geri beslemeli mimariyi Matlab® ortamına aktarmak için gerekli 

bütün bilgiler elde edilmiştir. 

Geri beslemeli bir kontrol mimarisini, kontrol sistem tasarım uygulamasına aktarmak 

oldukça kolaydır. Tek yapılması, gereken uygulama bünyesinde tanımlanmış 6 farklı 

mimariden birini seçmek ve her bir transfer fonksiyonunun ifadesini belirlemektir. 

Çizilen bir blok şemasını Simulink™ ortamına aktarabilmek için ise öncelikle 6 farklı 

model oluşturulmuştur. Bu modellerde gerekli transfer fonksiyonları birim olarak 

tanımlanmış ve kontrol sistem tasarım uygulamasında belirtildiği gibi 

isimlendirilmiştir. Tanınan kontrol blok şeması Simulink™ ortamına aktarılırken için 

ilgili model dosyası açılır ve isim eşleştirme ile transfer fonksiyonlarının gerçek 

değerleri modele aktarılır. Önerilen derin öğrenme tabanlı yöntemin gerçek zaman 
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performansını ölçmek için ise son olarak bir test uygulaması oluşturulmuştur. Bir 

sınıftaki beyaz tahtaya sabitlenmiş bir kameradan canlı alınan görüntüler gerçek 

zamanlı bir şekilde işlenerek çizilen geri beslemeli kontrol mimarilerinin Simulink™ 

ortamına aktarılması amaçlanmıştır. Ayrıca herhangi bir transfer bloğunda yapılan 

değişiklikler de takip edilerek modelin güncellenmesi sağlanmıştır. 
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 INTRODUCTION 

Teaching control theory is difficult as there are many theoretical concepts to be 

addressed. The main difficulty that students face is visualizing and understanding the 

relationship between the time and frequency domain parameters of a control system  

[1-3]. Therefore, the visualization of control systems is crucial to demonstrate the role 

of mathematics in control system design [1]. As this problem is not new, various 

approaches have been proposed to provide innovative techniques to enhance the 

students’ motivation and improve their comprehension of control theory. For instance, 

interactive software tools are presented for teaching control systems in [4-8]. Besides, 

remote & virtual control laboratories are developed to provide students with a hands-

on experience of control systems [9-12]. 

In most of the control system design courses, the main focus is usually on Feedback 

Control Architectures (FCAs) that are composed of controllers and Transfer Functions 

(TFs) structured within single/multi loop configurations [13]. In Figure 1.1, the most 

commonly handled FCAs are shown and their descriptions are provided in Table 1.1. 

The teaching approach to control system design is usually performed in a threefold 

approach. Firstly, the lecturer defines one of the FCA (shown in Figure 1.1) and then 

analyses it in the time and/or frequency domain. Finally, the lecturer provides the 

students with the theoretical background on controller design approaches such as 

graphical (Bode and Root-Locus plots) or automatic (LQR and IMC tuning) tuning 

methods [13]. To design and analyze FCAs, Matlab® provides an excellent 

environment; especially the Simulink™ and the Control System Toolbox™ [14]. The 

FCAs that are shown in Figure 1.1 can be easily analyzed and designed via the user 

interface of the Control System Designer™ as they built-in structures.  

Teaching control system design is usually performed in an old-fashion style with a 

whiteboard. The lecturer basically defines one of the FCAs on the whiteboard as shown 

in Figure 2. Although whiteboards are easy to use, we believe that this approach has 

its disadvantages. First of all, control systems can not be accurately visualized with 

hand-drawn plots. It may even be impossible for high-order control systems. Scaled 
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and accurate plots are vital to show how a parameter affects the overall system 

dynamics. 

Table 1.1 : Descriptions of FCA’s defined in [14]. 

FCA Descriptions 

FCA-1 

• Compensator (C(s)) and plant (G(s)) in forward path 

• Sensor dynamics (H(s)) in feedback path 

• Prefilter F(s) 

FCA-2 

• Single feedback loop 

• Plant (G(s)) in forward path 

• Compensator (C(s)) and sensor dynamics (H(s)) in feedback path 

• Prefilter F(s) 

FCA-3 

• Compensator (C(s)) and plant (G(s)) in forward path 

• Sensor dynamics (H(s)) in feedback path 

• Feedforward prefilter F(s) for input disturbance attenuation 

FCA-4 

• Outer loop with compensator (C1(s)) in forward path 

• Inner loop with compensator (C2(s)) in feedback path 

• Plant (G(s)) in forward path 

• Sensor dynamics (H(s)) in feedback path 

FCA-5 

• Compensator (C(s)) in forward path 

• Plant G1(s) and plant predictive model G2(s) 

• Prefilter F(s) 

FCA-6 

• Plant models (G1(s) and G2(s)), compensators (C1(s) and C2(s)) in the 

forward path  

• Sensor dynamics (H1(s) and H2(s)) in the feedback path of both loops 

• Prefilter F(s) 

 

It is also hard to represent the reference tracking and disturbance rejection 

performances of a system with sketched plots. Additionally, it takes time to draw some 

of the plots and some may even require computers to be generated. Due to these 

problems, control lectures can be improved if a handwritten FCA (HFCA) can be 

transferred into a simulation environment like Matlab® that can generate accurate 

visual representations instead of rough sketches. 

In the handwritten diagram detection literature, some of the studies deal with ink-input 

devices and use the locational information of pen strokes in their recognition method 

[15-19]. In ink-input devices, pen strokes are saved as collections of close points on a 

two-dimensional space. Mentioned studies handle the mentioned recognition task by 

assigning the strokes to distinct shapes. For example, a stroke can represent an arrow 

while another defines a rectangle. Since the positions of the points that define a shape 

are known, locations of the shapes can also be found, from which the complete chart 
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can be constructed. Although dealing with ink-input devices has its difficulties, the 

information provided by a digital drawing tablet is noise-free and every point belongs 

to the drawing with a high probability. For cases where the only input is a digital 

image, this initial information is not known. The only available information in a digital 

image is the finite number of evenly distributed two-dimensional points called pixels. 

A pixel contains one or more integer intensity values that can be interpreted as the 

brightness values for that particular pixel. For example, in a digital image where the 

intensity value is between 0 and 255, 0 represents complete darkness while 255 

represents full illumination. To be able to detect the diagram in a digital image, a 

methodology that separates pixels belonging to the foreground from the background is 

required for further operations. In the context of handwritten diagram detection, pixels 

belonging to the diagram are considered as foreground while the rest are considered 

background. Extracting such knowledge falls into the area of digital image processing, 

which mainly deals with image manipulation problems. 

Separating foreground pixels from the background can easily be accomplished for the 

images where there is a high contrast between both groups. Unfortunately, 

environmental lighting has disruptive effects in most of the cases. Light reflections on 

surfaces can saturate pixels that should have low-intensity values. Also, the quality 

and the resolution of the digital image can cause issues where elements in a scene are 

not represented accurately. These problems can be considered as uncertainties in an 

image processing task. Similar versions of the aforementioned uncertainties have been 

widely encountered in the handwritten flowchart and character recognition [20, 21]. 

The common point of these studies is that they use image processing algorithms to 

segment the desired parts from an image. Widely adopted approaches start by 

removing the noise in an image using filtering methods [16]. Then a binarization 

technique is applied to roughly separate foreground from the background [17]. 

Binarization techniques essentially apply a threshold to the pixels and generate a 

binary image where a pixel can either be 1 or 0. For further improving the 

segmentation, edge detection techniques that can detect sharp intensity changes in an 

image can be applied [18]. At the end of the segmentation steps, we generally want to 

end up with separate foreground pixel groups that may represent a character or any 

other shape in the image. In this context, connected component analysis can be used 

to find groups of pixels that form continuous regions [19]. 
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The main purpose of separating foreground pixels using image processing techniques 

in a detection task is to eliminate all the other pixels that don’t belong to the object of 

interest. These preliminary steps are called pre-processing steps and they provide the 

necessary information for further recognition operations. Being able to tell what a set 

of inputs represents can be considered as pattern recognition (PR) task. In recent years, 

imitating human behavior in machines gained more importance as automation became 

an essential part of today's society. As a result, a great amount of work has been made 

to develop computational methods that can recognize patterns in the last century [22]. 

For example, researchers successfully employed techniques that can recognize a 

written character [23] or a recorded speech [24] in the past.  

The general form of a PR task is given in 1.1 where the d-dimensional vector 𝑥 

represents the input, scalar 𝑦 represents the output, and 𝜃 is the set of parameters of 

function 𝑓. 

𝑦 = 𝑓(𝑥;  𝜃) 

𝑥 ∈ ℝ𝑑 

𝑦 ∈ ℝ 

(1.1) 

In PR tasks, inputs are considered as the features of the pattern to be recognized while 

the outputs are considered as the categorical data belonging to that pattern. A pattern 

recognizer maps the features in feature space to their corresponding labels in the output 

space. In handwritten diagram detection, the output can represent circles, rectangles, 

arrows, or other commonly used shapes. The main challenge is to construct the feature 

space. The area in terms of pixels, a value that represents the circularity or similar 

metrics for a pixel region found by connected component analysis can be considered 

as features. Examples of PR with such region metrics can be found in the literature 

[25, 26]. Using region properties as features may cause problems if input space shifts, 

rotates, or scales. There are feature extraction methods robust to these transformations 

such as histograms of oriented gradients (HOG) and scale invariant feature transform 

(SIFT) and studies that use these as feature extractors are present in literature [27,28]. 
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Figure 1.1 : Illustration of the FCAs 

Choice of the feature extraction may depend on the task. A simple method that depends 

on regional properties in a binary image may perform poorly. On the other hand, a 

complex method such as SIFT can be too slow for real-time applications. Unlike these 

algorithms, neural networks can automatically extract features and they are recognized 

as an important tool in PR [29].  

Generally compared to actual neurons in human brains, NNs consist of layers where 

each layer scales its input with a set of parameters called weights. They can represent 

any non-linear function by establishing a mapping between an input space and an 

output space. Just like a human brain adjusts the firing rates of certain neurons to 

represent new information, a NN also updates its weights to learn new mapping 

functions. The number of layers a network contains defines its capabilities. 
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Constructing deep NNs by stacking more layers can help to create more accurate 

models at the cost of computational resources. The field of Deep Learning (DL) 

interests in developing deep NNs and it tries to overcome problems that may arise 

because of the increasing layer depths. Regardless of their depths, NNs have been 

widely used in PR tasks  [30-32]. One of the main advantages of NNs is that they can 

serve as an automatic feature extractor where the final outputs are the features of a 

given input. Further task-specific layers can then be added to the network to produce 

the desired results. The automatic feature extraction can be thought of as a mapping 

function that translates the inputs to the feature space. To correctly approximate this 

desired mapping function, the weights of the NN must be updated to give the best fit. 

Since the main purpose of using NNs in PR is to automatically extract features, an 

explicit form of this mapping function is unknown. Fortunately, if the correct outputs 

for a sufficient amount of inputs are known, weights can be updated by comparing the 

predictions with the ground truths and the network can learn from examples. The 

extracted features can then be used for classification with additional NN layers. In fact, 

there are early examples in the literature where NN is used solely in the classification 

part [33, 34]. In cases where the training samples lie on low dimensional spaces, they 

can be directly fed into a neural network without requiring complex feature extraction 

algorithms [35, 36].  

The main problem in integrating NNs with PR for computer vision is that even small 

images lie on a high dimensional space when each pixel is considered as a dimension. 

Assigning weights to each pixel will not only result in very complex networks it will 

also transform the input into a one-dimensional vector. Flattening an image can harm 

the overall performance of the network as it will lose the positional information on one 

axis, depending on how the flattening is applied. Convolutional Neural Networks 

(CNNs) can overcome these problems and achieve satisfactory performances in 

various recognition tasks such as character recognition [37, 38], document recognition 

[39], face recognition [40], image recognition [41]. The major difference of CNNs 

from a regular NN is that they contain convolutional layers that use two-dimensional 

convolution operation to calculate their outputs. In a two-dimensional convolution, a 

set of weights arranged as a two-dimensional square matrix slide over the input image 

along both vertical and horizontal axis. By linearly combining the currently covered 

pixels with the weight matrix, the corresponding pixel of the output image can be 
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calculated. Since the same set of weights are used during this operation, CNNs need 

less learnable parameters compared to regular NNs. Convolutional layers also remove 

the necessity of flattening which saves the locational information of input pixels. It 

should also be noted that as the input image goes through several layers in a CNN, 

their dimensions change and they become less interpretable. Thus, the outputs in a 

CNN are considered as feature maps instead of actual images.  

In recent years, various CNN architectures that achieve high classification accuracies 

on the ImageNet dataset [42] are developed by researchers. AlexNet can be considered 

the first major architecture since it showed the capabilities of CNNs in computer vision 

tasks [43]. Since AlexNet, architectures became deeper and more complex with 

different connection schemes. For example, the winner of ILSVRC 2015 ResNet 

contains up to 152 layers [44], while AlexNet contains 5 convolutional layers and 3 

fully connected layers [43]. ResNet also introduces a new “skip connections” concept 

which helps to solve a common problem in DL called “vanishing gradients”. Instead 

of designing a new architecture for a classification task, one can copy the architecture 

these networks that have already been proven successful. The main issue in this 

approach is that these deep networks are trained on large datasets and they require 

more time compared to simpler architectures. To avoid these problems, a pre-trained 

network can be used by replacing its non-feature extraction layers. This approach is 

called transfer learning and it enables researchers to make use of high performing 

architectures in any PR task without long training times or needing a large dataset like 

ImageNet [45]. In recent years, transfer learning approach have been widely used in 

medical image classification problems since it is challenging to construct large datasets 

in the medical field [46-48]. 

In this thesis, we proposed a DL based pipeline that is capable to recognize 

Handwritten FCAs (HFCAs) on the whiteboard and to transform them into Matlab® 

for visualization and analysis of FCAs. The main design challenge of the proposed DL 

based pipeline is to find a set of instructions to recognize the HFCAs. Because of the 

aforementioned uncertainties, it is challenging to employ classical image processing 

methods in this context. To deal with these difficulties, we integrated DL methods into 

our pipeline and trained two separate deep CNNs that can recognize HFCAs and 

handwritten characters on a whiteboard. We preferred the transfer learning approach 

to construct our deep CNNs and used a pre-trained ResNet-50 as our base model. For 
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the training of the task-specific layers, we constructed datasets containing images of 

HFCAs and handwritten characters on a whiteboard collected from five control system 

lecturers.  

The proposed DL based pipeline starts by taking the image of an HFCA (shown in the 

right of Figure 1.1) as input and recognizing the corresponding FCA class (shown in 

the left of Figure 1.1) via the first deep CNN structure. Then, the recognized HFCA is 

further processed to extract the TF blocks by using classical image processing 

methods. In the next step, the characters of each extracted TFs are recognized and 

labeled by the second deep CNN structure. After generating symbolic expressions, 

continuous-time TF representations are generated that is compatible with Matlab®. The 

visualization and analysis of the HFCA are then straightforwardly performed via the 

Control System Design™ Toolbox and Simulink of Matlab® in real-time. 

In the following chapter of this thesis, we give brief information about the history of 

DL and present important concepts that are already used in this work. We also explain 

the layers of a CNN with more details and further clarify the advantages of transfer 

learning along with the ResNet architecture. In the third chapter, we describe each step 

of the pipeline and represent the classification accuracies of our deep CNNs. 
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 DEEP LEARNING  

For long, humanity has imagined machines that can act on their own and only recently 

this dream is starting to be realized [49] with the rise of computers. Although the 

current technology hasn’t reached the point where an artificial agent can replace a 

human, machine learning (ML) or more generally artificial intelligence (AI) became 

an essential part of today's society. Especially neural networks (NN), which is a sub-

field of ML, are used frequently in engineering problems since they provide an 

unexplicit way to establish behavior in machines. Although NNs were known for a 

long time [50], they gained popularity in recent years with the advances in 

computational powers. Using the parallelism provided by powerful graphical 

processing units (GPUs), researches were able to construct NN architectures with high 

amount of layers. Today, these deep networks are investigated under the field of DL. 

In this chapter, we present a brief history of DL and NNs and give detailed information 

about the popular architecture ResNet-50. 

 Perceptron Models 

NNs resemble networks in the human brain in the sense that the combination of simpler 

structures that has adjustable weights constructs more complex ones that could 

accomplish much harder tasks. In NNs, this simplest structure is called a perceptron. 

The task of this smallest building block is to map a set of inputs 𝑥  to an output 𝑦 by 

the means of linear combinations using a weight vector 𝑤 and a bias 𝑏. A visual 

representation of such a perceptron is also given in Figure 2.1. 

𝑓(𝑥, 𝑤, 𝑏) = 𝑤𝑇𝑥 + 𝑏 = 𝑦 

𝑥, 𝑤 ∈ ℝ𝑑 

𝑏, 𝑦 ∈ ℝ 

(2.2) 

The first computational model of a neuron proposed by McCulloh and Pitts [51] was 

also based on the same principle. They showed that their model can be used in binary 
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classification tasks, given in (2.2),  by choosing a threshold value 𝑇𝑝. Of course, the 

accuracy of this method depends on 𝑤 and 𝑇𝑝. In 1958, Rosenblatt proposed another 

perceptron model [52] where these parameters could be learned from a set of labeled 

examples. The proposed algorithm was to update 𝑤 and 𝑇𝑝 whenever the predicted 

output was different from its target value. Today, this kind of learning where a teacher 

exists is called supervised learning (SL) and it is an important concept in NNs. 

𝑦 = { 
1  𝑖𝑓  𝑓(𝑥, 𝑤, 𝑏)  > 𝑇𝑝 

0  𝑖𝑓  𝑓(𝑥, 𝑤, 𝑏)  < 𝑇𝑝
 (2.2) 

 

Figure 2.1 : A visual representation of perceptron 

Although Rosenblatt’s perceptron was an important step in NN’s history, it was unable 

to separate non linearly separable classes or imitate the XOR functionality since only 

a single linear function was used to calculate the output. Also, thresholding was 

preventing to see how weights affected the produced outputs when their values 

changed. In 1960, Widrow and Hoff proposed a new perceptron model called 

ADALINE, which stands for adaptive linear neurons [53]. The main difference 

between ADALINE and its predecessor is that in ADALINE, errors are calculated 

before thresholding operation. Calculating errors from continuous values instead of 

quantized ones enabled a faster convergence. Widrow and Hoff also used their 

perceptron model to predict real valued numbers. In other words, their model was able 

to find the coefficients of a linear function given in (2.3). Approximating a function 

with given inputs and outputs is called a regression problem in ML and ADALINE 

was the first example of a linear regressor. 

𝑦 = 𝑏 + 𝑤1𝑥1 + ⋯ 𝑤𝑑𝑥𝑑  ,   𝑥 ∈ ℝ𝑑 (2.3) 
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The perceptron model can also be improved by adding a non-linear activation function 

right after calculating 𝑓(𝑥, 𝑤, 𝑏). A perceptron with activation function is given in 

Figure 2.2. One of the most commonly used activation functions in NNs is the sigmoid 

activation function which is given in (2.4) where 𝑧 is the activation of the perceptron.  

𝑔(𝑧) =
1

1 + 𝑒−𝑧
 (2.4) 

Since inputs to this activation function are the output of 𝑓(𝑥, 𝑤, 𝑏), the above equation 

can be written as in (2.5). 

𝑔(𝑓(𝑥, 𝑤, 𝑏)) =
1

1 + 𝑒−(𝑤𝑇𝑥+𝑏)
 (2.5) 

 

Figure 2.2 : Perceptron with activation function 

The sigmoid function is plotted in Figure 2.3. From the figure, it can be seen that the 

output values vary in the (0,1) interval and they cross the 0.5 point when inputs are 

zero. Using this knowledge, a classification using (2.6) can be accomplished. 

𝑦 = { 
1  𝑖𝑓  𝑔(𝑓(𝑥, 𝑤, 𝑏)) > 0.5 

0  𝑖𝑓 𝑔( 𝑓(𝑥, 𝑤, 𝑏))  < 0.5
 (2.6) 

With the sigmoid function, the search for a 𝑇 value isn’t needed. Also, the output 

values can be treated as the class probabilities. Using these probability values, the 

amount of error made by the perceptron can be calculated. In literature, classification 

with perceptrons that use sigmoid function is called logistic regression. 

If a function that expresses the prediction error can be constructed, finding the best set 

of parameters would then become an optimization problem. Widrow and Hoff used a 

similar approach to update their perceptron’s weights using a gradient-based numerical 

optimization method. 
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Figure 2.3 : Sigmoid activation function 

 Gradient-Based Learning 

From calculus, it is known that the derivative of a function 𝑦 = 𝑓(𝑥) gives information 

about how small changes in the input affect the output. Positive derivative means an 

increase and negative derivative means a decrease in the output. When a function is 

tried to be minimized, or in other words, a local minimum point is searched, derivative 

information can be very useful. By moving in the opposite direction of the derivative 

with small steps starting from a starting point, a minimum point for  𝑓(𝑥)  can be found 

around a neighborhood. Since the movements are done in steps, this becomes an 

iterative method where the current point is updated at each iteration. Update rule is 

given in (2.6) where 𝑥[𝑘] is the current point, 𝑥[𝑘 + 1] is the next point and 𝛼 is a 

constant that defines the step size called the learning rate. 

𝑥[𝑘 + 1] = 𝑥[𝑘] − 𝛼
𝑑𝑓

𝑑𝑥
 (2.7) 

When the function that desired to be minimized has multiple inputs, update rule 

becomes (2.7), where ∇𝑓 is the gradient vector of  𝑓(𝑥). 

𝑥[𝑘 + 1] = 𝑥[𝑘] − 𝛼∇𝑓,    𝑥 ∈ ℝ𝑑  (2.8) 

The iterative process of searching a local minimum point can be terminated when ∇𝑓 

becomes a zero vector by the definition of an extremum point, but this approach may 

fail if 𝑥[𝑘 + 1] never rests at the solution, since 𝛼 may never be small enough. As a 

stopping criteria, the process can be terminated when the value of 𝑓(𝑥)  increases 
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instead of decreasing. This iterative approach of minimization is called Gradient 

Descent (GD) and is one of the key ideas of NN’s. A visual representation of Gradient 

Descent is given in Figure 2.4. It is also common practice to run the algorithm for a 

pre-defined number of epochs (iterations) instead of establishing a stopping condition. 

To train a perceptron using GD, a suitable 𝑓(𝑥) must be found. This 𝑓(𝑥) is called the 

loss function in ML and it gives a measurement of the prediction error made by the 

model. If the learnable parameters of the perceptron are given as arguments to the loss 

function, GD can find a minimum point where the error is minimized, using the 

derivatives of these parameters.  

 

Figure 2.4 : Visual representation of GD 

A downside of the GD method is that the calculated minimum point may not be a 

global one. Only if a convex function is chosen as a loss function a global solution for 

the minimization problem can be found, since convex functions have a single 

extremum point.  

For a labeled training set of 𝑁 samples, function to be minimized 𝐽(𝑤, 𝑏) is expressed 

in (2.8) where 𝑥𝑖 is the ith sample, �̂�𝑖 is the label of the ith sample and 𝑦𝑖 is the 

predicted label for the ith sample. 

𝐽(𝑤, 𝑏) =
1

𝑁
∑ 𝐿𝑜𝑠𝑠(𝑦𝑖, �̂�𝑖 , 𝑤, 𝑏)

𝑁

𝑖

 (2.8) 
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As it can be seen,  𝐽(𝑤, 𝑏) only depends on the learnable parameters of the perceptron 

and it takes the average of the loss values calculated for all the samples in the training 

set. With 𝐽(𝑤, 𝑏) defined, update rule can be written as the following. 

𝑤[𝑘 + 1] = 𝑤[𝑘] − 𝛼
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
 

𝑏[𝑘 + 1] = 𝑏[𝑘] − 𝛼
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
 

(2.9) 

The partial differentials with respect to layer parameters are given in (2.10). 

𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
=

1

𝑁
∑

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖, �̂�𝑖, 𝑤, 𝑏 )

𝜕𝑤

𝑁

𝑖

  

𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
=

1

𝑁
∑

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖, �̂�𝑖, 𝑤, 𝑏 )

𝜕𝑏

𝑁

𝑖

 

(2.10) 

The selection of the proper loss function depends on the task at hand as different tasks 

require different loss functions. One of the simplest loss function that could be used to 

train a perceptron is the Mean Square Error (MSE) function. Using the MSE loss,  

𝐽(𝑤, 𝑏) can be expressed as follows. 

𝐽(𝑤, 𝑏) =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖 )

2
𝑁

𝑖

 (2.11) 

The MSE loss function is generally used for regression tasks. The problem arises for 

the logistic regression. Using MSE loss along with sigmoid function results in a non-

convex 𝐽(𝑤, 𝑏). For regression problems where the activation function can be linear 

MSE will prove useful, but for classification tasks, another loss function must be 

selected. In literature, a cross-entropy loss, presented in (2.12) is generally used for 

classification tasks [54]. 

𝐿𝑜𝑠𝑠𝐶𝑟𝑜𝑠𝑠 = −(�̂�𝑖 log(𝑦𝑖) + (1 − �̂�𝑖)log (1 − 𝑦𝑖)) (2.12) 
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 Stochastic Gradient Descent 

Most of the NN models utilize a modified version of the GD algorithm called 

Stochastic Gradient Descent (SGD) [54]. In GD, parameters are updated after 

calculating loss values for all the samples in the training set. Ideally, this approach is 

preferred for better generalization since the gradients calculated with every available 

sample better represents the statistics of the input space. The downside is, it may not 

be possible to calculate the gradient for large datasets because of the computational 

costs. To handle datasets that are too large for GD, a smaller part of the dataset called 

mini-batch can be sampled from the complete set. Gradient calculated from this mini-

batch may be different from the actual gradient since a small set can not completely 

represent the whole set. For fast convergence, the mini-batch gradient should be 

similar to the actual gradient as much as possible. This can only be achieved by 

uniformly selecting examples from the dataset. For a mini-batch with 𝑚 elements, the 

mini-batch gradient is given in (2.13) where 𝜃 is the learnable parameters. 

𝑔 =
1

𝑚
∇𝜃 ∑

𝜕𝐿𝑜𝑠𝑠(𝑦𝑖, �̂�𝑖 , 𝜃)

𝜕𝜃

𝑚

𝑖

  (2.13) 

Using the mini-batch gradient, parameters can be updated as in (2.14). 

𝜃[𝑘 + 1] = 𝜃[𝑘] − 𝛼𝑔 (2.14) 

As it can be seen, gradient calculation and update rule in SGD are nearly the same as 

GD. If the randomly selected mini-batch is a good representative of the complete 

dataset, there won’t be any significant performance hit. If the mini-batch size is 

selected as too small, the actual gradient can’t be correctly estimated. On the other 

hand, large mini-batch sizes require large amounts of memories and can cause long 

training times. Since the choice of mini-batch size is a trade-off between computational 

costs and good convergence, it is considered as a hyperparameter of SGD. 

 Multilayer Perceptrons 

Using single perceptrons for classification or regression tasks may give poor results as 

the complexity of the tackled problems increase. To better approximate the desired 

mapping function, perceptrons can be used in a collection. Multilayer perceptrons are 
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structures where perceptrons are stacked in a layered fashion. The terms multilayer 

perceptron and NN are used interchangeably in ML. A similar relation also exists 

between the term perceptron and the term neuron. 

In NNs, a layer can include any number of neurons while the whole structure usually 

contains at least three layers. An example of NN is given in Figure 2.5. The first layer 

of a NN is called the input layer while the last layer is called the output layer. All the 

remaining layers are named as hidden layers. NNs process the fed data by propagating 

it through its layers. For example, the ith layer uses the outputs of each neuron in (i-

1)th layer to provide input for the (i+1)th layer. Calculations in a layer are similar to the 

operations presented for the perceptron model, only difference is that the weights are 

stored in matrices in NNs instead of vectors. Size of the weight matrix for a particular 

layer depends on the neuron count of both that layer and the layer before it. If ith layer 

has m neurons and (i-1)th layer has n neurons, the weight matrix of ith layer, which can 

be defined as 𝑤𝑖, will have n rows and m columns and its bias vector 𝑏𝑖 will be a 

vector of m elements. If the same activation function 𝑔𝑖 is used throughout all the units 

in layer i, its output can be calculated as in (2.15). This process of output generation 

in NNs is called forward propagation (FP).  

𝑦𝑖 = 𝑔𝑖(𝑤𝑖. 𝑥 + 𝑏𝑖) = 𝑔𝑖(𝑧𝑖) 

𝑥𝑖 ∈ ℝ𝑛×1 

𝑤𝑖 ∈ ℝ𝑚×𝑛 

𝑏𝑖 ∈ ℝ𝑚×1 

(2.15) 

As it can be seen in (2.15), there is a matrix multiplication between the layer’s weight 

matrix 𝑤𝑖 and input vector 𝑥. A row in the weight matrix holds the individual weights 

going through a specific neuron in the layer. For example, rth row in  𝑤𝑖 represents the 

weights of the rth neuron in ith layer. This implies that the term 𝑤𝑖. 𝑥 creates all the 

possible connections between (i-1)th and Ith layer. Layers constructed this way also 

called fully connected layers in the literature. A network consisting of solely fully 

connected layers can also be called a fully connected network. Figure 2.5 is also an 

example of a fully connected network (FCN). Researches show that when an adequate 

number of neurons used, any linear function can be represented with a NN [55]. 
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Figure 2.5 : An example NN 

A NN can generate multi-dimensional outputs since the final layer can have more than 

one neuron. This way, regression problems in multi-dimensional spaces or multi-class 

classification problems can be handled. For regression tasks, neurons at the final layer 

represent dimensions of the predicted output. On the other hand, a classification task 

consisting of 𝑄 classes aims to assign probability values for a given input for each of 

the classes. The probability values assigned to the classes are a measure of how likely 

they belong to those classes. Thus, the outputs of classification networks should be a 

vector belonging to ℝ𝑄. The predicted label will then be the index of the maximum 

element of the output vector. 

In logistic regression, the sigmoid function was able to classify inputs since it was a 

binary classification problem. Multi-class tasks however require another activation 

layer at the final layer. In literature, the softmax activation function defined in (2.16) 

is used at the final layer for multi-class classification problems [56]. Softmax can be 

thought of as the extension of sigmoid to the multi-class domain. It takes the values in 

the network’s final layer and produces the class probabilities. Similar to the sigmoid 

function, softmax results in a non-convex loss function if MSE is used. Thus, the cross-

entropy loss function is preferred for multi-class classification tasks with NNs. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦)𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑘
𝑄
𝑘=1

 𝑓𝑜𝑟 𝑖 = 1 … 𝑄 (2.16) 
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 Back-propagation 

With perceptrons, overall cost function was presented as 𝐽(𝑤, 𝑏). In NN’s, this can be 

re-written as 𝐽(𝜃), where 𝜃 is the collection vector of all weights and biases in the 

network. While minimizing 𝐽(𝜃), an analytical expression for its gradient can be 

found, but it would be computationally expensive to evaluate. This issue can be solved 

by an algorithm called back-propagation [54]. 

Back-propagation (BP) is a method that is used to compute the gradients of all the 

parameters used in a function. The algorithm treats the operations in a NNs as a 

computational graph and utilizes the chain rule of calculus to find the gradients. All 

the variables that are required in the gradient calculation are represented as nodes and 

operations are shown in computational graphs. Graph representation of the 

multiplication operation is given in Figure 2.6. 

 

Figure 2.6 : Graph representation of multiplication operation 

The calculation of a node’s gradient starts by traversing the graph backward from the 

output node. Along the way, gradients of all the traversed nodes must be calculated as 

well. To avoid repeating the same computations, the algorithm first handles nodes that 

are closer to the output and saves the calculated gradients. For demonstration, the 

computational graph of a three layered NN is given in Figure 2.7. Parameters that need 

update are 𝑤2, 𝑏2, 𝑤3 and 𝑏2 where the second layer is the hidden layer and the third 

layer is the output layer. Gradients of the third layer are given in (2.16) and in (2.17) 

while the gradients of the second layer in (2.18) and in (2.19). 
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𝜕𝐽

𝜕𝑤3
=

𝜕𝐽

𝜕𝑦3

𝜕𝑦3

𝜕𝑧3

𝜕𝑧3

𝜕𝑤3
 (2.16) 

𝜕𝐽

𝜕𝑏3
=

𝜕𝐽

𝜕𝑦3

𝜕𝑦3

𝜕𝑧3

𝜕𝑧3

𝜕𝑏3
 (2.17) 

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑦2

𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑤2
 (2.18) 

𝜕𝐽

𝜕𝑏2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑦2

𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑏2
 (2.19) 

 

Figure 2.7 : Computational graph of a three-layered network 

 Training, Validating and Testing Datasets 

Training NNs uses labeled samples to learn the parameters since loss functions require 

ground truth values. In ML, the collection of samples that are used to update the 

learnable parameters is called a training dataset. After updating the parameters of the 

network, some error measurement can be computed by applying a FP to the training 

data to calculate the training error. The training error can also be calculated from the 

mini-batches if SGD is used. If the optimizer is able to find a minimum point, the 

training error should be small for the trained network. For a regression task the only 

available error metric is the loss values. For a classification task, number of correctly 

classified samples is more important than loss values. In ML the classification 

accuracy is measured with a top-k error rate.  Prediction for a sample is considered as 

correct if the class probability assigned to it is in the top-k. For example, a prediction 
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can only be considered as true if the highest probability assigned by the model is the 

same as ground truth in a top-1 error rate measurment. 

Performance of a model on a training dataset is important but in ML problems the aim 

is to perform well on unseed data. A model that shows low error rates on unseen data 

is said to be well-generalized. The generalization capacity of a model is tested on a test 

set that consists of samples that haven’t been used during the training. The test samples 

should be in the same domain as the training samples. If a model is trained to classify 

dogs and cats, test set should contain images of dogs and cats that aren’t present in the 

training set. Sometimes a model performs well on training dataset but gives large errors 

for the test set. This phenomenon is called the overfitting and can be caused by small 

sized training dataset [57]. 

In ML, an additional dataset called the validation set can be used during the training. 

A ML model can contain various hyper-parameters such as the learning rate, number 

of training epochs, mini-batch size and many more. There isn’t an established 

methodology for the selection of these hyper-parameters and it is generally handled 

with try and error. To be able to tell how the currently selected hyper-parameters 

change the performance, the model can be tested with the validation set at certain 

iterations. The feedback from the validation set can then be used to tune the hyper-

parameters. Although samples from validation set aren’t used to update the learnable 

parameters, they are considered as a part of the training set. The final performance of 

the model can only be measured on the dataset. 

Generally, the training samples hold a great portion of the complete dataset. An 

example partition for a dataset is given in Figure 2.8 where training samples consist 

the 70% of all the data. 

 

Figure 2.8 : Example partitioning of a dataset. 
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 Methods to Improve Performance 

2.7.1 Regularization 

A common problem in ML is that a model can perform poorly on test data while 

achieving high accuracies or small loss values during the training [54].  A model that 

behaves in such a way is said to be overfitted. This problem can be solved with 

regularization methods which adds a parameter norm penalty function Ω(𝑤) to the loss 

function. A  loss function with regularization is given in (2.20). 

𝐽(𝜃) = 𝐽(𝜃) +  𝜆Ω(𝑤) (2.20) 

In the above equation, 𝜆 is a non-negative hyperparameter that adjusts the 

regularization effect where higher values mean more regularization. It should also be 

noted that regularization affects only 𝑤. It has been observed that regularizing biases 

cause underfitting in NNs [54]. 

Although Ω(𝑤) can be defined in many ways, these definitions must affect the weight 

values to avoid overfitting. A simple type of Ω(𝑤) is the 𝐿2 parameter norm penalty 

which is defined in (2.21). 

Ω(𝑤) =
1

2
‖𝑤‖2

2 (2.21) 

In 𝐿2 regularization, weights tend to decay since they appear on the loss function and 

the optimizer would try to minimize them.  

2.7.2 Gradient descent with momentum 

A downside of the GD is that sometimes gradients may oscillate as it approaches to an 

optimum point. An example case is given in Figure 2.9. From the figure, it can be seen 

that the updates should be larger on the horizontal axis for faster convergence.  

 

Figure 2.9 : An example GD with oscillating gradients 
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The average of the past gradients can be useful during the optimization. Since the 

moving average of the past gradients will show the direction towards the optimal point, 

the update rule can be re-written to include this average. In (2.22) update rule for the 

GD with momentum is given where 𝑚 is a scalar in the interval [0,1]. 

𝑣[𝑘 + 1] = 𝑚𝑣[𝑘] − 𝛼∇𝜃𝐽(𝜃) 

𝜃[𝑘 + 1] = 𝜃[𝑘] + 𝑣[𝑘 + 1] 
(2.22) 

GD with momentum speeds up the training process by accumulating the past gradients 

as 𝑣. If these past gradients oscillate along an axis, their displacement along that axis 

will cancel each other out since the current gradient is subtracted in (2.22). The scalar 

𝛽 is usually called the momentum and it adjusts how much the past gradients will 

affect the current direction. 

2.7.3 Batch normalization 

A problem that is encountered while training a NN is that distribution of the input data 

can vary across the samples which makes it harder to learn an appropriate mapping. 

Such a shift in the input distribution is called the covariate shift [58] and can be solved 

by feeding the normalized. However, for a deep NN covariate shift can happen even 

in the hidden layers [59] as the parameters are updated during the training. Batch 

normalization (BN) aims to eliminate the internal covariate shift by fixing the means 

and variances of the layer’s inputs [59]. Regular normalization can be realized by 

subtracting the batch mean from each sample and dividing it with the batch standard 

deviation. BN modifies this as shown in (2.23). 

�̂�𝑖 =
𝑥𝑖 − 𝜇𝑏

√𝜎𝑏
2 + 𝜖

 

𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽 

(2.23) 

In the above equation, 𝜇𝑏 and 𝜎𝑏
2 are the mean and variance of the batch while 𝜖 is a 

very small constant to avoid division by zero. BN introduces two new learnable 

parameters in the form of 𝛾 and 𝛽. These parameters scale and shift the normalized 

layer inputs �̂�𝑖 to produce the layer output 𝑦𝑖. It is also observed that the parameters 

also act as regularization term and they improve the generalization of the model [59]. 



23 

 Convolutional Neural Networks 

CNNs are special NNs that are commonly used in computer vision tasks like object 

classification and detection. After their first proposal in 1995 by LeCun [60] they 

gained popularity with AlexNet [44]. Unlike fully connected NN’s, CNN structures 

use convolution operation in forward-propagation instead of matrix multiplication 

[54]. This way, the data can be processed in a grid topology, meaning that CNNs can 

deal with three-dimensional matrices called tensors. The third dimension in these 

matrices is called channels. Images can be given as an example to tensors since colored 

images contain three channels for red, green, and blue (RGB) colors.  

The reason behind using CNNs in computer vision tasks is that they are much more 

efficient in working with images compared to a regular NN. Very first drawback of 

FCNs is that they can only accept two-dimensional inputs. In order to be able to feed 

images to an FCN, they must be vectorized. Vectorization can be done by juxtaposing 

the consecutive rows or the consecutive columns to each other for each channel. Then 

the individual channel can be stacked to create a one-dimensional vector. 

Transforming a three-dimensional data to a vector will cause an information loss on at 

least two dimensions. CNNs on the other hand, do not require vectorization and saves 

the locational information of pixels on all the axis. 

The number of learnable parameters affects directly the network’s complexity and the 

time required to train it. A very complex network may not even be trainable if it 

requires large amounts of computational resources. That is why it is not efficient to 

use FCNs in computer vision tasks. Even images with small resolutions contain many 

pixels and will result in large weight matrices in fully connected layers. For example, 

a single channeled image with a resolution of 32x32 contains 1024 pixels. If the neuron 

count of the next layer is 𝑛, the weight matrix of the next will contain 1024 × 𝑛 

learnable parameters. CNNs do not suffer from this problem as they use convolution 

operation instead of matrix multiplication.  

A typical CNN consists of dimension reduction and activation layers alongside its 

convolutional layers. Outputs of these layers that accept n-channeled tensors as inputs 

can be interpreted as feature maps. In classical image processing algorithms, various 

methods are used just for feature extraction tasks [61]. Since CNN’s are essentially 

neural networks that can efficiently process images, they can automatically extract 
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features without needing any other algorithm. In fact, past researches show that the 

convolutional layers in a CNN act as a feature extractor and can be used in various 

tasks [62]. An example CNN architecture called LeNet is given in Figure 2.9. 

 

Figure 2.10 : LeNet Architecture [60] 

In Figure 2.10, the final layer is visualized slightly differently from the rest. This last 

layer is a fully-connected layer and it serves the purpose of assigning class 

probabilities. While the remaining convolutional layers serve the purpose of feature 

extraction, other task-specific layers are required to use the extracted features for a 

desired task. That is why CNNs usually contains a task-specific layer at their ends. 

2.8.1 Convolutional Layer 

Convolutional layers can be considered as the backbones of CNN structures. In 

convolutional layers, outputs are calculated by convolving a special tensor called 

kernel over the input tensors. Kernel tensor holds the learnable parameters of the layer 

and it can be compared to the weight matrix of the fully connected layers. Convolution 

operation in one dimension for continuous signals is given in (2.24).  

𝑧(𝑡) = (𝑥 ∗ 𝑘)(𝑡) = ∫ 𝑥(𝑎)𝑘(𝑡 − 𝑎)𝑑𝑎 (2.24) 

The same operation can be expressed as in (2.25) for two-dimensional signals where 

𝐻𝑓 is the height (row count) and 𝑊𝑓 is the width (column count) of the filter. 

𝑧[𝑖, 𝑗] = (𝑥 ∗ 𝑓)[𝑖, 𝑗] = ∑ ∑ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]𝑓[𝑚, 𝑛]

𝑊𝑓

𝑛

𝐻𝑓

𝑚

 (2.25) 
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Convolution operation on tensors is conducted with a sliding window approach. 

Equation (2.22) is repeated for each element of input matrix 𝑥 where 𝑖 and 𝑗 represent 

the row and column indices of the currently iterated element. At each iteration, 𝑖 is 

incremented by 1 and when 𝑗th is completely traversed the algorithm returns to the first 

column and increment 𝑗 by one.  

A problem arises during the convolution operation at the edges of the convolved image 

where 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛] is not defined. This undefined element case occurs when either 

the index values are negative or greater than the width or height of the 𝑥. To avoid this, 

the following constraints can be applied where  𝐻𝑥 is the height of input image and 𝑊𝑥 

is the width of the input image at the cost of having a downsampled output image. 

𝑖 ≥ {

𝐻𝑓

2
    𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐻 − 1

2
    𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑜𝑑𝑑

 

 

𝑖 ≤ {
𝐻𝑥 −

𝐻𝑓

2
    𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐻𝑥 −
𝐻𝑓 − 1

2
   𝑖𝑓 𝐻𝑓 𝑖𝑠 𝑜𝑑𝑑

 

 

𝑗 ≥ {

𝑊𝑓

2
    𝑖𝑓 𝑊𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑊𝑓 − 1

2
    𝑖𝑓 𝑖𝑠 𝑜𝑑𝑑

 

 

𝑗 ≤ {
𝑊𝑥 −

𝑊𝑓

2
    𝑖𝑓 𝑊𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑊𝑥 −
𝑊𝑓 − 1

2
    𝑖𝑓 𝑊𝑓 𝑖𝑠 𝑜𝑑𝑑

 

(2.26) 

A convolution operation with the above constraints is shown in Figure 2.11. 

Alternatively, classical image processing methods solve this problem by applying a 

padding to the input image [63]. Padding can be in the form of  0 valued elements 

added around the input image (zero padding) or by repeating the values at the edges. 

Same principle can also be applied to the convolutional layers. A convolution 

operation with zero padding is shown in Figure 2.12. 

Convolution operation on two dimensions can be used with matrices, but for CNNs 

where even a grayscale image is expressed as a tensor with a single channel, the above 
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expression must be updated as follows, where 𝐶 is the number of channels for both of 

the tensors. 

𝑧[𝑖, 𝑗] = (𝑥 ∗ 𝑓)[𝑖, 𝑗, 𝑘] = ∑ ∑ ∑ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘]𝑓[𝑚, 𝑛, 𝑘]

𝑊𝑓

𝑛

𝐻𝑓

𝑚

𝐶

𝑘

 (2.27) 

Although the input tensor and kernel may have multiple channels the result will be a 

two-dimensional matrix in convolutional layers. It should also be noted that channel 

sizes of input tensor and the filter must be the same. Since convolution on tensors 

creates single channeled tensors, or simply two-dimensional matrices, a convolutional 

layer can have multiple filters. In fact, the number of filter 𝐹 is a hyperparameter that 

should be decided by the designer. Other hyperparameters for a convolutional layer 

are 𝐻𝑓 and 𝑊𝑓, but not 𝐶. Number of channels of a filter and the filter count are not 

the same thing. A convolutional layer can have 𝐹 amount of 𝐶 channeled filters, with 

a total of 𝐻𝑓 × 𝑊𝑓 × 𝐶 × 𝐹 learnable parameters. The value of 𝐶 on ith layer depends 

on the value of 𝐹 on the (i-1)th layer. 

 

 

Figure 2.11 : Convolution operation with constraints 
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Figure 2.12 : Convolution with zero padding 
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Another commonly used technique in the convolutional layer is to skip a few elements 

in the tensor while conducting the convolution operation. Instead of incrementing 𝑖 

and 𝑗 by one as explained earlier, they can be incremented by a stride value 𝑆 which is 

also a hyperparameter. This technique is called strided convolution and can help to 

diminish the dimensions of the output tensor. 

All the hyperparameters will affect the dimensions of the output tensor. Its channel 

number will the same as 𝐹. Output height 𝐻𝑧 and width 𝑊𝑧 values are given in (2.28) 

and (2.29) respectively. 

𝐻𝑧 =
(𝐻𝑥 − 𝐻𝑓 + 2𝑃)

𝑆
+ 1 (2.28) 

𝑊𝑧 =
(𝑊𝑥 − 𝑊𝑓 + 2𝑃)

𝑆
+ 1 (2.29) 

2.8.2 Pooling Layer 

Although  𝐻𝑧 and 𝑊𝑧 values can be adjusted in convolutional layers, pooling layers 

provides a way for dimension reduction without introducing new learnable parameters. 

Pooling layers traverses the input tensor just like the convolutional layers and selects 

a region of size 𝐻𝑓 by 𝑊𝑓 around 𝑥[𝑖, 𝑗]. The corresponding element of the output 

tensor 𝑧[𝑖, 𝑗] then calculated by applying a desired operation to this region. Striding 

can also be implemented in pooling layers. Output tensor’s 𝐻𝑧 and 𝑊𝑧 values in a 

pooling layer are given in (2.30) and (2.31) respectively. 

𝐻𝑧 =
(𝐻𝑥 − 𝐻𝑓)

𝑆
+ 1 (2.30) 

𝑊𝑧 =
(𝑊𝑥 − 𝑊𝑓)

𝑆
+ 1 

 

(2.31) 

Most common operations on pooling layers are averaging [64] and max operation [65], 

but any other operation can also be selected as long as they return a single element for 

a pooled region. A visual representation of max pooling with 𝑆 = 2 is given in Figure 

2.13 and a visual representation of average pooing with 𝑆 = 2 is given in Figure 2.14.  
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Figure 2.13 : A visual representation of max pooling 

 

Figure 2.14 : A visual representation of average pooling 

Along with reducing dimensions, pooling layers can make the network more robust to 

small translations in the input image [54]. It does so by summarizing the pixels in a 

neighborhood and extracting the more important responses. 

2.8.3 Two Dimensional Batch Normalization  

It is common practice to apply BN in CNN for the benefits explained earlier. BN  is 

generally applied after the convolutional and before the activation layers. BN in CNNs 

differs from BN  in fully connected networks in the sense that the batch statistics are 

calculated for each channel of the input to be normalized. This requires separate of 𝛾 

and 𝛽 for each channel. Other than that, the calculations remain the same. 
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2.8.4 Activation Layer 

The convolution operation is essentially a function that takes the linear combination 

of its inputs and because of that, a CNN may not be able to perform well without non-

linear activations. Activation layers in CNNs generate their outputs by applying a non-

linear function to their inputs. The sigmoid function used in earlier perceptron models 

can also be used in the activation layers of CNNs. Also, a slightly different version of 

the sigmoid function called the hyperbolic function is another option. Unlike the 

sigmoid function, the output range of the hyperbolic function is between -1 and 1. In 

other words, it can also output negative values. The definition of hyperbolic function 

is given in (2.32) and its plot is given in Figure 2.15. 

𝑔(𝑧) =
2

1 + 𝑒−2𝑧
− 1 (2.32) 

 

Figure 2.15 : Hyperbolic activation function 

Both sigmoid and hyperbolic activation functions suffer from a similar problem. They 

are good assigning probability values to the inputs but the gradients are non-zero for a 

small portion of the input space. Values that are far away from the origin will always 

produce zero gradients and the network’s weights won’t be updated. This can be seen 

from the first-order derivative plots of the sigmoid and hyperbolic function given in 

Figure 2.16.  
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Figure 2.16 : First-order derivatives of hyperbolic and sigmoid functions 

Getting zero gradients for changing inputs is called the vanishing gradient problem 

and it can hinder the learning process of the network. This problem can be solved by 

normalizing the inputs coming into the activation layer or using a normalized 

initialization for the layer weights [66], [67]. With a mean and variance normalization, 

data can be distributed along with the origin and zero gradients can be avoided. 

Another possible solution of course is to use another activation function. Unlike the 

mentioned activation functions, rectified linear unit (ReLU) [68] doesn’t cause 

vanishing gradients. This activation function only sets the negative values zero.  The 

sharp behavioral change at point zero that could be seen in Figure 2.17 adds the non-

linear characteristic to the network. Another advantage of ReLU is that its gradients 

are easier to calculate compared to sigmoid and hyperbolic activation functions. 
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Figure 2.17 : Plot of ReLU activation function 

2.8.5 Task-Specific Layer 

The convolutional, pooling, and activation layers form the feature extraction part of a 

CNN. A well-established feature extraction method has good generalizability and can 

be used in various tasks. The purpose of the task-specific layers is to output the desired 

results using the extracted features. In computer vision, the handled task can be 

categorized as object detection and object classification. 

Object detection is the task of finding the location of an object in an image. It is an 

often addressed problem in computer vision and there exist different approaches in 

object detection [69]. In the object detection literature, the location of an object is 

generally defined by the smallest rectangle that contains the object called the bounding 

box (BB) [70]. The BB is defined with four parameters; the horizontal position of its 

top-left corner, the vertical position of its top-left corner, its width, and its height. One 

of the possible approaches is to handle the task as a regression problem. With a FC 

layer at the end, the network can be trained with MSE loss to predict the four values 

that define the BB [71].  

In case the CNN is desired to be used for a classification task, a set of FC layers that 

output class probabilities can  be added to convolutional layers. Then the network can 

be trained with cross-entropy loss by applying softmax operation to the output layer.  

One of the limitations of the task-specific layers is that they are generally in the form 

of fully connected layers as explained. To be able to add a fully connected layer after 
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a convolutional layer, tensors must be transformed into vectors. Unfortunately, 

vectorization operation forces CNNs to accept images with a certain size. As an 

example, AlexNet can only be trained on images with a resolution of 224x224 because 

of its fully connected layers.  

 Deep Neural Networks 

In NN literature, various types of architectures exist that excel in certain areas. 

Previously presented FCNs and CNNs are two examples of major architectures. 

Although each architecture has distinctive differences, they all consist of layers with 

learnable parameters. As more layers stacked together, the network becomes more 

complex and requires more computational power. That is why the average number of 

layers increases with the advances in hardware. Today, networks can be categorized 

as shallow and deep networks regardless of their architecture. Shallow networks 

contain few layers while their counterpart has more. There is no sharp separation 

between shallow and deep networks, but a model with more layers is said to be deeper 

compared to a few layered network. Recent studies show that deeper networks perform 

better since they contain more learnable parameters [72].  

There are many modern deep CNN architectures that achieve high classification 

accuracies on benchmark sets like GoogLeNet [73], VGGNet [74] and ResNet [44]. 

Being deep networks, they contain many layers with a high amount of learnable 

parameters. AlexNet is considered as the architecture that proved the capabilities 

CNNs and it contains 5 convolutional layers and 3 fully-connected layers with 60 

million learnable parameters. VGGNet was proposed two years after AlexNet and it 

has 19 layers with 138 million learnable parameters. For visual comparasion, 

architecture of AlexNet is given in Figure 2.18 and the architecture of VGGNet is 

given in Figure 2.19. 
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Figure 2.18 : AlexNet architecture [43] 

 

Figure 2.19 : VGGNet architecture [75] 

VGGNet showed that the depth of a network was an important factor in  the accuracy 

rates. In Table 2.1, we have given the depth, number of learnable parameters and top 

5 error rate for some of the famous CNN architectures. The steady increase in the 

network depths can be seen from the table.  

Table 2.1 : Depth and error rates of major CNN architectures 

 
Year Depth 

Parameter 

Count 

Error Rate  

(Top-5) 

LeNet 1998 5 0.06 M MNIST: 0.95% 

AlexNet 2012 8 60 M ImageNet: 16.4% 

VGG 2014 19 138 M ImageNet: 7.3% 

GoogLeNet 2015 22 4 M ImageNet: 6.7% 

ResNet-152 2016 50 25.6 M ImageNet: 3.6% 
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As the networks become deeper, researchers realized that the classification accuracies 

saturated after a certain depth [76], [77]. Vanishing gradients were always an issue and 

deep networks suffered more compared to shallow networks. The issue in deep 

networks wasn’t the usage of sigmoid or hyperbolic activations functions. In fact, even 

an early architecture such as VGGNet was using the ReLU activation function. The 

problem was that the gradients were underflowing during BP [78]. As chain rule 

requires, gradients in shallower layers are calculated by multiplying the gradients in 

the deeper layers together. If the gradients are smaller than 1, they will diminish in 

value during BP until the point that the gradients in shallower layers are too small to 

be represented in the memory. To solve this issue, gradients needed to be transferred 

into shallower layers without underflowing. Developed by Microsoft Research Team, 

Residual Networks (or namely the ResNets) solve the underflowing gradients issue by 

introducing a new concept called residual learning. 

As mentioned before, a NN tries to find a mapping function between the input space 

and the output space and there are even optimal mappings among stacked layers. Let 

us call 𝐻(𝑥) an optimal mapping to be fit by a stack of hidden layers. For the sake of 

argument, assume that we know the target outputs �̂� of this stacked. An optimal fitting 

would minimize the prediction error given by 𝐹(𝑥) = 𝐻(𝑥) − �̂�. In statistics, a 

residual is the distance vector between the target and prediction, so 𝐹(𝑥) represents 

the residual for the stack. In the original paper of  ResNet, it is argued that if a complex 

function 𝐻(𝑥) can be approximated by multiple layers its residual 𝐹(𝑥) can also be 

approximated. So it is safe to let layers update their weights to imitate 𝐹(𝑥) instead, 

but it should also be noted that the desired behavior is still defined by 𝐻(𝑥). The 

difference between residual learning and non-residual learning is that layers 

approximate 𝐹(𝑥) and 𝐻(𝑥) is achieved by summing the target values to the residuals 

in residual learning. Reformulation of 𝐻(𝑥) is given in (2.29). 

𝐻(𝑥) = 𝐹(𝑥) + �̂� (2.29) 

In real applications, it is not possible to apply (2.29) since target values are unknown, 

but residual learning can be used for identity mappings where �̂� = 𝑥. This way (2.29) 

becomes the following. 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (2.30) 
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The above equation can easily be implemented in CNNs with skip connections. ResNet 

uses stacks of skipped layers called residual blocks to learn identity mappings. A 

residual block with two-layer skipping is given in Figure 2.20. 

 

Figure 2.20 : Residual block with two-layer skipping 

A residual network can be built by stacking residual blocks stacking one after another. 

A plain network without any skip connections is given in Figure 2.21. This plain 

network contains 34 layers and is the base architecture of the 34 layered version of the 

ResNet. The ResNet-34 has the same layers, but it also includes skip connections as 

shown in Figure 2.22. 

 

Figure 2.21 : Base plain network [44] 

 

Figure 2.22 : ResNet-34 architecture [44] 

The importance of identity mappings is that they can transfer the gradients to shallower 

layers without diminishing them. For example, if there is a skip connection from the 

end of ith layer to the end of (i+2)th layer,  gradients in layer (i+2) can be directly 
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transferred to ith layer during the BP. To mathematically represent, the gradient of a 

residual block’s input is given in (2.31). 

𝜕𝐽

𝜕𝑥
=

𝜕𝐽

𝜕𝐻

𝜕𝐻

𝜕𝑥
=

𝜕𝐽

𝜕𝐻
(

𝜕𝐹

𝜕𝑥
+ 1) =

𝜕𝐽

𝜕𝐻

𝜕𝐹

𝜕𝑥
+

𝜕𝐽

𝜕𝐻
 

 

(2.31) 

Even with residual blocks, gradients can still vanish if the network is deep enough.  

Skip connections are just providing a way to add more layers to an existing architecture 

until underflowing happens. If more layers are skipped at each residual blocks, 

network depth can be further increased. In fact, the residual block given in Figure 2.19 

belongs to the ResNet-34. There are also 50 layered (ResNet-50), 101 layered (ResNet-

101) and 152 layered (ResNet-152) versions of ResNet and they use the residual block 

given in Figure 2.23. 

 

Figure 2.23 : Residual block with three-layer skipping 

 Transfer Learning 

In computer vision, a feature extraction algorithm can be integrated into various 

classification or detection tasks where different object sets are handled. A good feature 

extraction algorithm should be task agnostic while mapping the input space to a feature 

space. We have already mentioned that a CNN consists of non-task specific and task 

specific layers. The non-task specific layers serve the purpose of feature extraction and 
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they are in the form of convolutional and pooling layers. Task-specific layers on the 

other hand usually consist of FC layers and solves a classification or detection task. 

The task specific layers are further emphasized in Figure 2.24. 

 

Figure 2.24 : Feature extraction and task specific layers of a CNN 

Having a seperation between the feature extraction and task specific layers provides a 

way to adapt an existing network to a different task just by replacing its feature 

extraction layers. By only replacing the task specific layers, the existing knowledge of 

feature extraction can be transferred into any computer vision task. The newly added 

layer would still require further training, but this approach is more efficient compared 

to training a new model from scratch, since the task-specific layers form a small 

portion of the complete architecture. Adapting an existing network for new tasks is 

called transfer learning and can be used to incorporate existing deep CNNs.  

The feature extraction layers of a CNN is given below where 𝜃𝑓𝑒 represents the 

learnable parameters of these layers and 𝑧𝑓𝑒 is the extracted features. 

𝑧𝑓𝑒 = 𝑔𝜃𝑓𝑒
(𝑥) 

(2.32) 

The complete CNN model can be expressed as in (2.33) where  𝜃𝑡𝑠 is the learnable 

parameters of the task-specific layers. 

𝑦 = 𝑓𝜃𝑡𝑠
(𝑔𝜃𝑓𝑒

(𝑥)) 
(2.33) 

The transfer learning approach is to replace 𝑓𝜃𝑡𝑠
 with a new one as shown below where 

𝜃𝑡𝑠
′  is the learnable parameters of new task-specific layers. 



39 

𝑦 = 𝑓𝜃𝑡𝑠
′

′ (𝑔𝜃𝑓𝑒
(𝑥)) 

(2.34) 

Re-training the modified network to learn 𝜃𝑡𝑠
′  is called fine-tuning. Since the feature 

extraction layers are already optimized, gradient calculation is not needed for 𝜃𝑓𝑒 

during the BP stage of the fine-tuning. Layers or weights that aren’t being updated 

during the BP stage are said to be frozen and it is common practice to freeze 𝜃𝑓𝑒 in 

fine-tuning. This way a training iteration (FP and BP together) completes faster 

compared to training from scratch. Even if 𝜃𝑓𝑒 is not, the network will converge much 

faster with fewer epoch counts. 

Using a pre-trained network not only saves training time, it also enables high accuracy 

performance for a network without needing a large amount of data [79].  In Table  2.2, 

we have given the number of samples for some of the popular  image datasets.  From 

the table it can be seen that these  datasets contain very large amounts of samples and 

it is not always possible to construct  such large datasets. For example in medical 

imaging problems number of collected samples tend to be smaller compared to other 

tasks. The transfer learning approaches is therefore essential for cases where datasets  

are not sufficiently large. 

Table 2.2 : Number of samples for some of the image datasets 

 Number  

Of Samples 

Size in 

Memory 

MNIST 70 000 50 MB 

Fashion MNIST 70 000 30 MB 

CIFAR-10 60 000 170 MB 

COCO 330x103 25 GB 

ImageNet 1.5x106 150 GB 
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 DEEP LEARNING BASED PIPELINE 

In control lectures, lecturers frequently use plots in time and frequency domains to 

better explain core concepts. Although the dynamics of a system, its stability margins 

can be expressed mathematically it is also convenient to visualize these metrics. 

Today, control lectures are usually conducted in classroom environments where 

lecturers heavily use drawing boards. The corresponding plots for the handled systems 

are drawn to these drawing boards. While drawing boards have their advantages,  

plotting a system response or similar graphs may prove challenging and time-

consuming. It is also not possible to correctly scale these visuals and only their 

approximations can be presented to students. In some cases, the plots can’t even be 

drawn if the handled system is not simple enough. A better approach is to define and 

analyze systems in a simulation environment such as Matlab®, but then the lecturer 

would be deprived of the advantages of using a whiteboard. Instead, the block 

diagrams drawn on the whiteboard can be recognized with a computer and be 

transferred to a simulation program for further analysis. 

In this thesis, we proposed a DL based pipeline that can transfer an HFCA to the 

Matlab® environment. An overview of the DL based pipeline is given in  Figure 3.1 

that is summarized with the following steps: 

Step-1: Recognizing the structure of the HFCA with DL. 

Step-2: Detecting TF blocks using image processing. 

Step-3: Segmenting and recognizing the characters with DL. 

Step-4: Constructing symbolic expressions from the recognized characters to 

construct continuous-time TFs in Matlab®. 

Step-5: Generating the recognized continuous-time HFCA in Matlab®. 

In Step-1 and Step-3 of the proposed DL based pipeline, the following two PR 

problems are defined. 

• HFCA Recognition (HFCAR) 
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• Handwritten Character Recognition (HCR) 

The main challenge arises from the quality of the lecturer’s handwriting and lighting 

conditions, especially in HFCAR and HCR problems. To handle such uncertainties, 

we used the transfer learning approach of ResNet-50 described to construct deep 

CNNs.  

To train the deep CNNs, an image dataset collected from lecturers of Control System 

Design courses in a small-sized classroom environment in the presence of different 

lighting conditions has been constructed. The implementation of deep CNNs has been 

done with the Deep Learning Toolbox™ to have easy integration with Control System 

Toolbox™ and Simulink™ of Matlab®. Both of the networks are trained with SGDM 

as the optimizer for the sake of simplicity as it has only a single hyperparameter, which 

is 𝛼. We also used the cross-entropy loss function with defined in (2.12) L2 

regularization defined in (3.1) where 𝜆 is the regularization term, 𝑦𝑞 is the predicted 

output, �̂�𝑞 is the target label and 𝑄 is the total number of classes. 

𝐿(𝑦𝑞 , �̂�𝑞 ) = −
1

𝑄
∑[𝑦𝑞 log �̂�𝑞 + (1 − 𝑦𝑞) log(1 − �̂�𝑞)]

𝑄

𝑞=1

+ 𝜆
𝑤𝑇𝑤

2
 (3.1) 

In this chapter, a detailed description of the steps of DL based pipeline as shown in 

Figure 3.1 is given. For illustrative purposes, the steps of pipeline are illustrated on an 

example HFCA which is shown in Figure 3.2. 

 

Figure 3.1 : Overview of the proposed DL pipeline 
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Figure 3.2 : An example HFCA 

 Handwritten Feedback Control Architecture Recognition 

The first task to be accomplished in the proposed DL based pipeline is to solve the 

HFCAR problem to identify one of the architectures shown in Figure 1.1 (i.e. Q=6 

classes). In this context, we constructed a dataset with 306 RGB HFCA images with a 

resolution of 4032x3024 which were captured from an actual whiteboard. The dataset 

is then labeled manually with the classes and is then split as 216 images (36 per class) 

for training, 36 images (6 per class) for validation, and 54 images (9 per class) for 

testing. Examples from each class are given in Fig. 3.3. 

 

Figure 3.3 : Example HFCA images 
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The multi-label HFCAR problem is solved with a ResNet-50 based CNN as described 

in chapter 2.3. In learning of the deep CNN, all images are resized to a resolution of 

224x224 without any further pre-processing. Furthermore, we employed the online 

data augmentation method to create artificially modified versions of images to increase 

the size of training dataset by slightly rotating and scaling each image at each training 

epoch. The DL hyperparameters are set as: 100 epochs, minibatch size of 1, and a 

learning rate of 10-3 with a drop rate factor of 0.1 at every 10 epochs. 

The best and mean training, validation and testing accuracies over 5 experiments are 

tabulated in Table 3.1. The mean training and validation accuracy values are given in 

Figure 3.3 (only the first 3000 iterations are given). It can be concluded that the 

performance of the deep CNN is statisfactory as it resulted with mean testing accuracy 

value of 89.25%. 

Table 3.1 : Performance of deep CNN for HFCAR 

 Best Accuracy Mean Accuracy 

Training 100% 100% 

Validation 97.2% 94.4% 

Testing 94.4% 89.25% 

 Transfer Function Block Detection 

After recognizing the class of the HFCA, TF blocks in the image that are enclosed with 

rectangular shapes must be extracted. Taking into account the fact that TF blocks are 

represented as rectangles in FCAs, an algorithm that can detect rectangles can be used 

for this task. Detection of a rectangle simply means to find the position and the 

dimensions of the smallest box that contains it. As it can be guessed, TF blocks on an 

HFCA may not be perfect rectangles unlike their bounding boxes (BB). 

Finding the BBs of TF blocks is accomplished by an algorithm that contains image 

processing techniques like binarization, edge detection, and connected component 

analysis. The steps of this algorithm are explained in detail in the following sections. 
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Figure 3.4 : HFCAR mean (a) loss values (b) accuracy values 

3.2.1 Binarization of HFCA 

Transforming a colored image into an array of logical elements is required for applying 

morphological operations [52]. A binary image can be obtained by thresholding the 

input image like the following where  𝑥𝑖𝑗 is the element of the input image at position 

(i,j), 𝑏𝑖𝑗 is the corresponding element in the resulting binary image and 𝑇 is the 

threshold value. 

𝑏𝑖𝑗 = {
1 𝑖𝑓 𝑥𝑖𝑗 ≥ 𝑇

0 𝑖𝑓 𝑥𝑖𝑗 < 𝑇
 (3.2) 

The binarization technique with a single threshold value given in (3.2) is called global 

thresholding. For images where shadows and nonuniform illumination exist, a global 

thresholding method will not be able to give satisfying results. 

To deal with faded fonts and light reflections like in Figure 3.2, a convolution 

operation with zero padding is employed with the following n by n kernel 𝑘𝑖𝑗: 



46 

𝑘𝑖𝑗 = {1/𝑛 𝑖 =  
𝑛 − 1

2
, 𝑗 =

𝑛 − 1

2
−1 𝑒𝑙𝑠𝑒

 (3.3) 

If a pixel’s intensity value is darker when compared to its n by n neighborhood, the 

result of the convolution operation has a positive value at that pixel’s location. We 

defined a positive threshold value D to determine the binary version of the input image. 

Mathematical expression for the used thresholding method is given in (3.4) where 𝑐 =

𝑥 ∗ 𝑘. 

𝑏𝑖𝑗 = {
 1 𝑖𝑓 𝑐𝑖𝑗 ≥ 𝐷

 0 𝑖𝑓 𝑐𝑖𝑗 < 𝐷
 (3.4) 

By trial and error, we found that a 15x15 kernel with 𝐷 = 15 is a suitable value for 

our purposes. The binary version of  Figure 3.2 is given in Figure 3.5. 

 

Figure 3.5 : Binarized image 

3.2.2 Character and Noise Removal 

In the next step of the rectangle detection, the characters inside the rectangles are 

removed. In FCA diagrams, all the lines except the characters and symbols inside TF 

and operation blocks are connected. When the characters and all the noise are removed, 

it is expected to end up with a binary image where only the mentioned lines remain. 

It can safely be assumed that the biggest connected component (i.e. connected 

component with highest pixel count) in Fig 3.5 is the diagram itself. With that 

assumption, undesired pixels can be removed by finding the biggest connected 

component. Using 8 connectivity, the resulting segmentation of the HFCA image is 

shown in Figure 3.6. Note that it is very likely that the lecturer might not connect all 
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the blocks perfectly. Thus, a dilation operation was also applied to close such 

disconnections. 

 

Figure 3.6 : Character and noise filtered binary image 

3.2.3 Filling Transfer Function Blocks 

In rectangle detection, the aim is to have filled blobs where rectangles reside. A filling 

can’t be applied directly to Figure 3.6 or it will result in a single large blob. Instead, 

the Canny edge detection algorithm is deployed to remove the outermost edge loop 

that wraps the whole diagram first. Then, a morphological fill algorithm is employed 

for the remaining image. The result of the filling operation is given in Figure 3.7. 

 

Figure 3.7 : Filled binary image 

3.2.4  Rectangle Extraction 

As it can be seen from Figure 3.7, not all the remaining white regions belong to a TF 

block. By performing a shape analysis, desired rectangles can be extracted. For the 
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shape analysis, the circularity and rectangularity of each connected component is 

calculated. The circularity measure (𝐶) is defined in (3.5) where 𝐴 is the area and 𝑃 is 

the perimeter of the region in terms of pixels. 

𝐶 =
4𝜋𝐴

𝑃2
 (3.5) 

The rectangularity measure (𝑅) is given in (3.6) where 𝐿𝑚𝑎𝑗𝑜𝑟 is the length of the major 

axis and 𝐿𝑚𝑖𝑛𝑜𝑟 is the length of the minor axis of the region.  

𝑅 =
𝐴

𝐿𝑚𝑎𝑗𝑜𝑟𝐿𝑚𝑖𝑛𝑜𝑟
 (3.6) 

Regions that satisfy the conditions given in (3.7) are selected as rectangles. 

𝐶 ≤ 0.9
0.7 ≤ 𝑅 ≤ 1.5

 (3.7) 

Once the rectangle regions are segmented, their BB informations are saved for further 

use. Segmented regions for Figure 3.2 are shown in Figure 3.8. 

 

Figure 3.8 : Detected rectangles 

3.2.5 Handwritten Character Recognition 

In the next step of the pipeline, characters inside the TF blocks are recognized using a 

deep CNN. To be able to classify characters with DL, they must be located first. 

Instead of searching for characters over the whole image, small patches are cropped 

from the input image for each TF block using their BB information. An example 

cropped image patch is shown in Figure 3.9. A character segmentation algorithm can 
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then be employed on individual patches to be able to tell which character belongs to 

which TF block. 

 

Figure 3.9 : Extracted TF block image 

The adopted character segmentation method starts with the binarization of the 

extracted image patch. Although a binarized version of the whole image already 

generated in the rectangle detection, we have seen that the previously mentioned 

binarization technique doesn’t provide satisfactory results for small image patches. 

Global binarization technique as described in (3.2) is adopted instead with a 𝑇 of 125 

(half instensity value in RGB images). Binary version of Figure 3.9 is given in Figure 

3.10. After the binarization, connected components are found in the patches. It is 

assumed that the characters do not touch each other and consists of single blobs and 

because of these assumptions all the found components are treated as characters.  A 

morphological close operation is employed before to deal with possible 

discontinuities. Once the characters are segmented and their BBs are found, they are 

cropped and resized into 224x224 resolution to be fed into a deep CNN for labeling. 

 

Figure 3.10 : Segmented TF block image  
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The characters to be recognized are digits (0-9), arithmetic operators (‘+’, ‘-‘, ‘x’, ‘*’), 

round and square bracket pairs, and the ‘s’ and ‘.’ characters, which makes in total 

𝑄 = 20 classes. In the dataset construction for HCR, we used the whole constructed 

HFCA dataset containing 306 samples by first extracting TF blocks then segmenting 

characters via the aforementioned approach. It is worth to underline that we have 

observed that lighting conditions had a much bigger impact on small images and 

therefore we decided to extract the characters from the binary version of the HFCA 

images.  

Each extracted character is labeled manually by the authors. An example of the used 

character images is shown in Figure 3.11. Moreover, we would like to point out that 

the dataset is enriched with extra handwritten character images to end up with evenly 

distributed samples for each class. The resulting HCR dataset has 3920 images in total 

which is split as 155 images per class for training, 32 images per class for validation 

and 9 images per class for testing. 

 

Figure 3.11 : Example character images 

The HCR problem is solved with a deep CNN that is trained as described previously 

with hyperparameter settings of 50 epochs, minibatch size of 4, and a learning rate of 

10-3 with a drop rate factor of 0.1 at every 10 epochs. We also employed online data 

augmentation during the learning.  

The best and mean training, validation, and testing accuracies over 5 experiments are 

given in Table 3.2. The mean training and validation accuracy values are illustrated in 

Figure 3.12 (only the first 500 iterations are given). It can be seen that the learning 

performance of the ResNet-50 based deep CNN is satisfactory since it resulted in a 
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mean accuracy of more than 96%. As it can be seen from Figure 3.13, the trained deep 

CNN is capable to successfully label the characters of the segmented TF image. 

 

Table 3.2 : Performance of the deep CNN for HCR 

 Best Accuracy Mean Accuracy 

Training 100% 100% 

Validation 98.39% 97.2% 

Testing 96.17% 96.08% 

 

 

Figure 3.12 : HCR mean (a) loss values (b) accuracy values 

 Symbolic Expression Construction 

A single input-single output TF is expressed as a ratio of two polynomials, namely the 

numerator and denominator. In Matlab®, a TF can be defined using the coefficients of 

these polynomials. For that reason, symbolic expressions from the unordered but 

labeled characters for each TF are constructed. With Matlab®’s Symbolic Math 

Toolbox™, required coefficients can be found from the constructed expressions. 
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First step in symbolic expression construction is to build the equation string using the 

recognized characters as illustrated in Figure 3.13. This process starts with finding the 

fraction signs that seperates the numerator from the denominator. Although not very 

likely, we consider the cases where multiple fractional terms exist in TFs. It is not safe 

to consider all the characters with “-“ labels as the same label is used also for the minus 

sign. To distinguish the numerator and denominator polynomials of the recognized TF, 

the characters labeled with the class “-” are initially examined. To differentiate 

whether this label represents the subtraction or fraction operator, we simply checked 

if there is another labeled character above and below of its position. If this condition 

results in a non-empty set, then we concluded that the labeled character is a fraction 

symbol that separates the numerator and denominator of TF as shown in Figure 3.14. 

Then, the remaining characters are allocated as elements of the sets defining the 

numerator and denominator part of TF with respect to their position. In this step, we 

have also handled exponent characters in the polynomials. A character is labeled as an 

exponent if it is positioned (slightly) above of its preceding character. As shown in 

Figure 3.14, the first character labeled as “2” is an exponent, because of its relative 

vertical position to the first occurring “s” character. Thus, we add a caret character (^) 

between the base and the exponent characters.  

 

Figure 3.13 : Labeled TF block image  
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Figure 3.14 : Labeled numerator and denominator 

Once all the characters are allocated in order, the character sets of the numerators and 

denominators are turned into strings and then merged with a division symbol to obtain 

a string expression of the extracted TF image. This string expression is then 

transformed into a symbolic expression to obtain TF representation in which the “s” 

character becomes the only symbolic variable. Finally, the coefficients of the symbolic 

expressions of the numerator and denominator are extracted to define TFs in Matlab®. 

A screenshot of transfer function construction in Matlab® is given in Fig 3.15. 

 

Figure 3.15 : TF in Matlab® 
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 Feedback Control Architecture Generation In Matlab® 

Once the deep CNN trained to solve HFCAR problem recognizes the FCA class (all 

classes are shown in Figure 1.1), the extracted TF representations of the image have to 

be matched with their appropriate slots in the FCA. In this context, using the center 

coordinates of the extracted TF blocks that are calculated via their BB information, we 

assign the extracted TFs that have similar vertical positions in the image to the same 

path, match and name them with the corresponding TFs (such as G(s), C(s), H(s),…) 

defined in the FCAs through their horizontal positions in the image. Note that, we 

defined a path as a horizontal route a signal can follow in FCAs (i.e. feedforward or 

feedback path).  

In order to provide a clear understanding, let us explain the matching and naming of 

the TFs on the FCA-1 structure for illustrative purposes. As can be observed from 

Figure 1.1a, the FCA-1 has two paths including a feedforward path with 3 TFs (F(s), 

C(s) and (G(s)) at top and a feedback path with a single TF (H(s)). If a HFCA is 

recognized as FCA-1 and all the TFs are extracted in the image frame, then we end up 

with 3 TFs aligned and a single TF near the upper and lower half of the image, 

respectively. In the FCA-1, since we know that the prefilter F(s) is the first TF in the 

feedforward path, we name and match the extracted TF with smaller horizontal 

coordinate at the upper path as the TF F(s), while the next one to its right as the 

compensator TF C(s) and the rightmost one as the plant TF G(s). The remaining 

extracted TF is directly matched and named as the TF that defines the sensor dynamics 

H(s) since the feedback path of FCA-1 contains a single TF. In a similar manner, the 

rest 6 FCAs are matched with the extracted TFs in the proposed DL based pipeline. 

Now, the FCA constructed from HFCA can be directly processed and analyzed in 

Matlab® since all the TFs of FCA are defined in the workspace of Matlab®. 

In order to analyze the FCAs via the Control System Designer App™ of Matlab®, we 

define a Matlab object in which the recognized FCA class is defined with the extracted 

and matched TFs and then import it to the graphical user interface of the application. 

As shown in Figure 3.16, the user can now not only visualize the control system in the 

time and frequency domains but also tune compensator C(s) if desired.  

It is also worth mentioning that the DL based pipeline automatically generates also a 

Simulink™ diagram as shown in Figure 3.16d which can be directly used for 
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simulation purposes. To accomplish such a goal, we created template Simulink files in 

advance for all the FCAs in which all TFs are named as defined in Table I. In the 

template Simulink files, the simulation time and solver options are defined with the 

default settings of Simulink™. Once the HFCA is recognized, the corresponding 

Simulink file is automatically opened and the matched TFs are loaded into the file.  

 Real-Time Performance of the Pipeline 

To test the real-time performance of the pipeline, a series of experiments are conducted 

in a small-sized classroom containing a whiteboard and a projection board. For the 

experiments, we created a simple program in Matlab® that detects the HFCA currently 

drawn on the whiteboard in a continuous loop. At each time-step, a snapshot is taken 

from a camera that is fixed to the whiteboard. The image is then fed to the pipeline and 

if a valid FCA is detected the program sends it to the Simulink™ environment. 

 

 

Figure 3.16 : (a) Matlab command window (b) Step Response (c) Root-Locus and 

Bode plots (d) Simulink diagram 

The program does not terminate after recognizing the HFCA and completing the 

pipeline. It repeats the first step of the pipeline (HFCAR) at the start of each iteration. 

If a different HFCA is successfully recognized it completes the remaining steps (block 

detection, HCR, symbolic expression construction) and opens a new Simulink™ 

model. If the recognized HFCA is the same as before, it checks the TF blocks for any 
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possible changes. In case of modification inside a TF block, HCR and symbolic 

expression construction steps are repeated for that specific block. This way, we were 

able to avoid repeating the block detection step at each iteration. Flowchart of the real-

time program is given in Figure 3.17.  

We also projected the Simulink™ window with a projection device to a projection 

board as in Figure 3.18a. We observed that the pipeline takes roughly a second to 

generate a result and concluded that the pipeline can handle inter-quality uncertainty 

as it is capable to recognize FCAs from different users in real-time. It can also handle 

intra-quality uncertainties as it can recognize FCAs from in the presence of various 

lighting conditions in real-time. Snapshots from the real-time experiment are given in 

Figure 3.1. 

 

Figure 3.17 : Flowchart of the real-time application 
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Figure 3.18 : (a) Experiment environment (b) Projected Simulink™ window (c) 

Simulation result 
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 CONCLUSION 

In this thesis, we established a DL based pipeline that can recognize an HFCA along 

with the TFs it contains in real-time. We also presented the DL concepts used in this 

work.  We believe that being able to transform an HFCA to a simulation environment 

such as Matlab® provides the opportunity to the lecturers/researchers to easily 

visualize and analyze HFCAs during a lecture. The proposed pipeline has been 

accomplished by integrating frameworks of deep learning and using various PR and 

image processing techniques. We provided all the details and necessary information 

about each step of the proposed DL based pipeline. For steps that include classification 

with DL, we integrated deep CNNs to solve the corresponding PR problems (HFCAR 

and HCR). Instead of designing a new architecture, we used the transfer learning 

approach. We selected ResNet-50 as the base model since we believe that it is capable 

of handling the intra-quality and inter-quality uncertainties that mainly occur due to 

handwriting quality of the lecturers and lighting conditions. We also created separate 

datasets for both of the recognition problems for the fine-tuning with the help of 

different lecturers.  

We tested the capabilities of our pipeline by conducting experiments in a small-sized 

classroom with a camera fixed on a whiteboard. During the experiments, we tried to 

transfer the currently drawn HFCA on the whiteboard to the Matlab® in real-time. The 

experiments showed that the DL based pipeline is a powerful tool to visualize and 

analyze HFCAs as it can recognize the FCA with high accuracy in a short amount of 

time. It is also worth underlining that the developed DL based pipeline is capable to 

detect changes in each TF block and it can update the current representation. This way 

lecturers can show how poles and zeros affect a system, adjust the controller 

parameters, or employ similar alterations to further analyze an FCA. 

We think that the DL based pipeline has the potential to ease the difficulty in teaching 

control systems as real-time visualizations of control systems and simulations are 

generated as the lecturer is sketching FCAs during the lectures.  
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