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ABSTRACT

This thesis is mainly concerned with the surface reconstruction, edge de-
tection, edge integration, restoration, image coding and compression problems of
image processing and computer vision. In this thesis; a unified approach bascd
on regularization theory has been applied in solving these problems.

Some of the edge detection and surface reconstruction methods based on non-
standard regularization by using weak membrane modeling has been investigated
and also compared to a convolution based method. In addition to edge detec-
tion and surface reconstruction, non-standard regularization has been expanded
to solve problems in image coding and restoration Then a new multiscale edge
integration method is developed where edges are obtained by another multiscale
regularization based edge detection method called DORS. The energy functional
related with membrane is modified to reach a predefined effect such as deblurring
or surface reconstruction from sparse data, or the edges are used to obtain a form
of coding and compression, or multiple reconstructed surfaces are used for edge
detection.

In the first chapter, two different approaches to edge detection are qualita-
tively and quantitatively compared and thus possible relations with the other edge
detection algorithms are tried to be figured out. The methods under considera-
tion are adaptive smoothing which accomplishes detection of edges by nonlinear
filtering and weak membrane modeling which is a non-standard regularization
method. In the second chapter, restoration of an tmage blurred with a known
blurring function is considered. By modifying the energy functional of weak mem-
brane model, it is aimed to obtain a clear and noise free image by eliminating
the blurring effect caused by misfocusing and the noise added onto this blurred
image.

In the third chapter, a regularized approach to image coding is explained. In
this approach, both coding part and the decoding part arve based on the regular-
ized solutions of the weak membrane modeling. In the fourth chapter, a multiscale
edge representation using difference of regularized solutions and a multiscale edge
integration scheme using weighted accumulation are presented.



OZET

STANDART OLMAYAN DUZGUNLESTIRME
KULLANARAK GORUNTU ISLEME
PROBLEMLERININ COZUMU

Kelime olarak gorii (vision) sozlilk anlaminda, “gérme yeteneg” ' olarak
tanimlanmaktadiv. Insanlarin gorme sistemi bu yetencge sahiptir ve ck olarak
cevredeki pek ¢ok karmasik nesneyi anlamamiza ve diizenlememize olanak ta-
mmaktadir. Bilgisayarla gdrmenin de, insanlarim dig diinyayr nasil gordigiing
ve anladigint agiklayan insan gormesiyle cok yakindan ilgisi vardie. Bu alanda
caligan aragtirmacilar, en gii¢li sistemleri kullanarak insan gorme sisteminin ben-
zelisimine caligmakta, farkli yontemlerle problemlere ¢oziim aramaktadir, ancak
hentiz hig biri tam bir bagariya ulasamamusgtir. Bunun nedenleri arasinda, bil-
gisayarlarin insan gorme sistemine gore hentiz ilkel olmast, bilgisayarla gormedeki
gelismelerin heniiz olgun bir asamaya gelmemesi, insan gorme sisteminin ¢ok lazla
karmasik olmasi yer almaktadir. Neden her ne olursa olsun, bilgisayarla gorme
alanidaki aragtirma ¢aligmalart diger alanlardakilere gére ug noktada, iglem giicii
gerektiren, matemalik olarak karmasik, yiiksek teknoloji gerektiren ve ¢ok genig
bilgisayar olanaklar: isteyen yapida olmugtur.

Uc¢ boyutlu ditnyanin iki boyuttaki izdiigiimleri, ¢evremizdeki iig boyutlu
diinyanin karmagikbg hakkinda bize az miktarda bilgi vermektedir. Ilerhangi
bir goril sistemi, gercek {i¢ boyutlu bir nesnenin bir veya birden fazla ardigil
resim cercevesini kullanarak, o nesnenin 6z niteliklerini ¢ikartabilmelidir. Tanima
507 konusu oldugunda bu nitelikler, nesne smirlatit bularak veya biitiin bir
goriintityt bolitlendirmeyle daha kiicitk parcalara ayirarak, her nesneyi dige-
rinden ayirmada kullamlabilmektedir.

Bolge (region), biitiin bencklerin yamndakilerle bitigik oldugu baglantili be-
nekler kitmesi olarak tanimlanmaktacie. Goriinti bolitlendirme (segmentation)

HLongman Diclionary of Contemporary English,” Longman Group Lid. 1978



ise, sayisal bir resmin anlamh ve birbiriyle 6rtiigmeyecek bi¢imde bolgelere parga-
lanmast anlamina gelmektedir. Bolitlendirme, temel olarak iki degisik yaklagimla.
gergeklenmektedir. Bolge temelli yaklagimda, belli nesnelere veya bolgelere ayni
benek degerleri atanmaktadir. Ayrit temelli yaklagimda ise, bolgeler arasindalki
sinirlarim bulunmasima ¢aligtlmalktadir.

Ayrit, yiizey yapisindaki degisiklik, aydinlatma veya goriinen yuzeylerin iz-
leyiciden uzakligs gibi nedenlerden ortaya ¢ikan, nesnelerin fiziksel degigiklikle-
rinin gorintiye de yansimasimdan olugan simrlar veya hatlar olarak tanunlan-
maktadir. Nesne tamima gibi st diizey iglemlerin bagarumi, ayntlarin tam ve
dogruluguna bagh oldugu i¢in, ayrit saptama bilgisayarla gdrmenin csas aragtirma
konularmdan birisini olusturmaktadir. Nesnelerin fiziksel yapilarindan kaynakla-
nan ve goriintilye yogunluk (intensity) degisimleri olarak yansiyan ayritlarn sap-
tanmasinin amact, seyrek olmasimin yani sira nesneler hakkinda tam ve anlamb
tanimlar elde etmektir. Buna bagh olarak ileriki bolimlerde, aynt saptamada goz
ontine alinmast gereken kriterler sunulmakta, iyi bir ayrit saptayicidan beklenen
ozellikler verilmektedir.

Ayrit saptama yontemleri, evrigtirmeye (convolution) ve enerji azaltilmasina
dayanan algoritmalar olarak da ikiye aymlmaktadir 2. Bu tez i¢inde her iki yon-
teme de dayanan aynit saptayiclar ele alimnuagtie. Tkinei holimde cle alman iki
ayrit saptayicidan birisi olan uyarlanir dizleme [1] katlamaya dayanmaktadir.
Diizenleme teorisine dayanan zar modellemesi ve bunun yirtidabilir [2] hali ise
enerji indirgenmesiyle gergeklenmektedir. Ayrit saptamanin tizerine inga edilen
kodlamada enerji en aza indirgenmesi, seyrek veri olmast durumunda gergeklen-
mektedir.  Resimdeki siireksizlik noktalarindan faydalanan bulanikhik giderme
yonteminde ise en aza indirilecck enerji fonksiyoneli icinde evristirme igeren bir
fonksiyon yer almaktadir.

Ditzgtinlegtivme teorisi icinde yer alan zar modeliy, bu caligmacicinde ayrit sap-
Lama, yiizey kurma, kodlama, netlestivme, yeni biv cok olcekli gosterilim elde elime
amaciyla kullamlnugtir. Bu tezde, dizgiinlegtirme teorisine dayanan tiimlesik
bir yaklagim, bu problemlerin ¢éziimiinde kullanilmigtir.  Ozellikle yurtilabiliv
zarin kullanilmasiyla gergeklegtirilen ayrit saptamadan yola ¢ikilarak geligtirilen
kodlama ve netlegtirme gibi diger yontemler, dizginlegtirme teorisinin kullannm
alaniny genigletmektedir. Boylece goriinti igleme alanindaki pek ¢ok probleme
ayni teorinin kullamilmasiyla ¢oztim getirilmektedir.

Burada incelenen ve geligtirilen yontemlerde yirtilabiliv zar modeli kulland-
mistir. Bu modele iliskin enerji fonksiyoneli dighiikeydir. Yani fonksiyonelin
birden fazla en az durumu vardir, ancak bunlardan ancak bir tanesi biittnsel en

?Aynt saptamadan once yapilan dizleme iglemleri de, saptayicilarin énemli bir ézelligidir.
érneg’;in iki aynt saptama yonteminin kargilagtirilmasininin yapildigs boliimde (sayfa 7) resim
diizleme ydntemleri, algak gegiren stizgeglerin kullanilmasy, giiriiltiilii resme yerel olarak egriler

uydurma ve biitiinsel egri uydurma olmak {izere ii¢ ana béllime ayrilmaktadir.

®ii
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Sekil 1. Digbitkeylik. (a) ve (b) durumlarn kararh durnmlardir. Ancak ortadaki (c¢)
durumu digerlerine gore daha yiiksek enerjiye sahiptir.

azdir, digerleri yerel en az durumlardir. Sistem bu tiir yerel en az durumlarindan
birisine takildiginda, disaridan yeterinee bityiik bir etkinin gelmesiyle diger bir en
az duruma gegebilmektedir. Bu durum Sekil 1 ile de gosterilebilir. Bu durumda
vay, deformasyon veya kivilma noktasim gegecek sekilde uzatilnmgtie.  Kirilma
noktasini gegen yay da kararh olimasina ragmen yapisal olarak ilk haldeki yaydan
farkh bir yapidadir ve her iki hal farkh en az durnmlanmn temsil etimektedir.
Buradeki yaym da birden fazla en az duramu vardir,

Bu nedenle, yirtilabilir zar modellemesinde elde edilen enerji fonksiyonelinin
en aza indirilmesinde standart en iyileme yontemleri kullanmilamamalktadir. Rassal
yontemlerin kullanminu her ne kadar olasi ise de, bu tip yontemler ¢ok fazla islem
yitkit gerektirmektedir [3]. Bu caligmada standart olmayan nedensel bir yontem
olan agamali dig bitkeylik algoritmast kullambmaktadir,

Diizginlegtirme teorisindeki yietilabiliv zar modelinde ayritlar saptanacak
resmin, once parca parca duzlenmis bir fonksiyonla modellemesi yapilmaktadir.
ki boyutta yirtilabiliv zar ile modellenen resim agagidaki enerji fonksiyoneliyle
ifade edilmektedir [2):

E = ZZ(UW:J —di ;)* + (1)
TG
2’ ZZ(Ui,j — i) (0 =) + (wey — weo1)?(1 — £i5) +
[

o Z Z(E,‘_J' -+ m,-_j)
v

Xit




Burada d girig resmi, u olusturulan resim, £ ve m sadece 0 veya 1 degeri alabilen
cizgi islev degiskenleri, A ve a da pozitif degerli iki parametredir. Olugturulan
resim u parga parca diizlenmistir, Zara yitilabiliv ozelligini ¢izgi tglevi ady veri-
len mantiksal degiskenler vermektediv. Coziim olarak bulunacak w fonksiyonu, bu
enerji fonksiyonelinin en aza indirilmesiyle elde edilmektedir. Ancak bu fonksiyo-
nelin ichitkeylik (convezity) ozelligi yoktur [2, 3]. Bu nedenle standart olmayan
bir en aza indirme yontemiyle ¢oziim yoluna gidilmektedir.

Asamalh dig bitkeylik (Graduated Non-Convezity) adi verilen ve gerekimei
olan bu yontem temel olarak, dighitkey bir enerji fonksiyonelinin bir parametre-
ye bagl olarak igbiikeyliginin kontrol edilmesine dayanmaktadir. Bu paramet-
reyle enerji fonksiyoneli degistirilmekte ve en aza indirme degistirilmig fonksiyo-
nel dizerinde gergeklenmektedir. Yirtilabilie zar modellemesinden ortaya gikan
dighiikey enerji fonksiyonelinin bu gekilde degigtivilmesi Blake ve Zisserman [2]
tarafindan onerilmigtir. Degigtirilmis enerji fonksiyoneli su sekilde verilmektedir:

E®) = 33N (ui;—di)? + (2)
75
Y oAy = wia) + Y g (i = i)
i i

Ve
A2 [t < q

g(:l = a—c(lt|-r)?/2 ¢<l|t|<r (3)
o ity = r.

Burada ¢ = ¢*/p, 72 = a(2/c + 1/)?), ¢ = a/(A?*r) olarak verilmektedir
(2, 3]. g,(:?\ fonksiyonuna, yerel etkilegim fonksivonu adi verilinektedir. Ortadan
kaldirilmig cizgi islevlert,

() - Lt > e/A ()

0 diger hallerde.

ile tekrar elde edilebilmektedir.

Yirtilabilir zar modelinde kallanilan degigtirtimig fonksiyonel, sadece bu mo-
dele dzgudiic ve farkh tirdeki enerji fonksiyonelleri i¢in ¢aligmas: soz konusu
degildir. Daha bagka digbiikey enerji fonksiyonellerinin de bu yontemle en aza
indirilmesi gerektiginde, burada kullanilan yonteme benzer bi¢imde, enerji fonk-
siyonelinde dightikeylige neden olan kisimin degistirilmest gerekmektedir.
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[kinci boliimde, aymit saptama amaciyla geligtirilen iki degisik yaklagim nice-
liksel ve niteliksel olarak kargilagtinImakta ve boylece daha dnce bu gekilde kargi-
lagtirtlan degisik ayrit saptama yontemleriyle iligkileri ortaya ¢ikarilmaya ¢aligil-
maktadir. Ele alinan yontemler, ayrit saptamayi stizgecleme kullanarak gergekles-
tiren uyarlamr dizleme (adaptive smoothing) [1] yontemi ile, bunu yirtilabilir zar
(weak membrane) [2] modeliyle ger¢eklestiren en azlama yontemidir. Aynt sapta-
mada kargilagilan problemlerin goriilebilecegi yapay resimler tiretilmis (dama tah-
tasi ve gubuklar), bu resimlere giirtiltii eklenmig ve her iki algoritmanin bagarimu
bu resimler tzerinde incelenmistir. Algoritmalarin ayrit saptama basarumlarinin
karsilagtirilmasinda gorsel degerlendirmenin yamsira, FoM, P(1E/AL), P(AE/IE)
[4] gibi sayisal dl¢litler de kullamilmigtir. Bunun yamsira her iki yontem gergek re-
simler Gizerinde de denenmis, sonuglar gorsel olarak yorumlanmigtir. Elde edilen
sonuclardan, kargilagtivilan iki yontemden yirtilabilic zar yonteminin, uyarlante
diizlemeye gore, ayrit saptama agisindan daha iyi sonuglar verdigi gozlenmistir.

Uclincii bolitmde, resmin bulaniklagma nedeninin bilinmesi halinde, bulantk
resmin netlestirilerck onarilmasi problemi ele alinmaktadir [5]. Odaklama hata-
larmdan kaynaklanan bulaniklagmanin ve bunun tizerine eklenen giiriiltinin or-
tadan kaldmilarak, net ve gliriltiisiiz resmin elde edilmesi amag¢lanmaktadir. Diiz-
ginlegtirme yaklagum yardimiyla yiizey kurarak netlesmis resim elde edilmeye
caliglmaktadir. Diizenlemede, yuetilabilivc zar (weak membrane) modelinden or-
taya ¢ikan digbiikey enerji fonksiyonelinin, agamali digbtikeylik ( Graduated Non-
Convezity) algoritmasiyla ¢ozimil gergeklenmektedir.  Bulamklik giderilmesi
amaciyla degigtirilmig zara iliskin degigtirilmis enerji fonksiyoneli

——
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E = }:Z((f *b);; — dij)? +
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seklinde ifade edilmektedir. Burada d bozuk resim, f netlegtivilmiy resim, & bu-
laniklastirma siizgeci, m ve £ ¢izgi iglevleri. A ve a da yutilabiliv zara iligkin
parametrelerdir. Netlegmis resim, E fonksiyonelinin en azlanmast sonucunda elde
edilimektedir. Boylece resimdeki siireksizlik noktalarinin korunmasimin yamsira,
bulaniklagnng olan siireksizliklerin de ortaya ¢rkarihmast saglanmmaya ¢aligihmgtir.
Yontem, ortalama alan siizgecle bulaniklagtirilan ve tizerine giriltii eklenen ya-
pay ve gercek resimler iizerinde uygulanmistir. Elde edilen onarilmig resimlerde
streksizliklerin baskmlagticilmasiyla bulanmikhigin ortadan kalktign gozlenmistiv.

Dordiinett boliunde, diizgiinlegtirme teorisine dayanan bir goriintii kodlama
algoritmast tamtilmaktadiv. Tamtilan kodlama algoritmasi kayipl bir kodlama
yontemidir., Bu yaklagimda kodlama boliimii, yirtilabilir zar modelinden ortaya,



ctkan cighiikey encrji fonksiyonelinin en aza indirilmesine dayanmaktadir. Kod
cozme asamasinda ise ayntlar disinda kurulan zar modellemesinden ortaya ¢ikan
ichitkey enerji fonksiyonelinin en aza indirilerek, seyrek veriden yiizey kurma
yontemi kullanidmaktadir.

Bu bolimde iki agamali bir kodlama yontemi tamitilmaktadir. Birinci agama-
da stireksizlikleri bulmak icin yirtilabilir zar yontemi kullamlarak c¢izgi islevleri
(line processes) bulunmakta, ikinci bdliimde ise bu ¢izgi islevlerinin mantiksal
degerler almasindan yola gikilarak seyirtim uzunlugu (run-length) yontemiyle kod-
lanmaktadir. Kod ¢ozme icin gerckli olan siiveksizlik etrafindaki veriler de entropi
kodlamasiyla kodlanmaktadir. Kod ¢oziicti boliimde ise oncelikle ¢izgi iglevleriyle
stireksizlik noktalarimim yerleri tespit edilmektedir. Daha sonra yerleri bulunan
kodlannug verilerin kodlar1 ¢ozillerek yerlerine yerlegtirilmigtir. Bundan sonra
yirtilmig zar modeli kullanilarak parga parca siirekli bir enerji fonksiyonelinin en
aza indirilmesiyle ytizey kurularak resim elde edilmigtir. Parca par¢a surekliligin
burada kullanilmasr, stireksizlik olmayan yerlerde zar modellemesinin kullamlmasi
seklinde ortaya ¢ikmakia, bu tiir bolgeler igindeki zarin enerji fouksiyoneli i¢htikey
ozellik gosterdiginden, en aza indirilmesinde zorluk olmamaktadir.

Burada tamtilan kodlama ydntemi sonucunda, ¢izgi iglevleri ve bunlarla belir-
lenen stireksizlik noktalarr etrafindaki benek degerleriyle kodlanan resmin, boyut
olarak girig resminden kii¢iik olmasi, 86z konusu yontemin resim sikigtirma ama-
ayla da kullanlabilecegini ortaya ¢ikarmaktadie. Bu calismada yontem gergek
ve yapay resimler tizerinde denenmis, farkli resimlerdeki degisik sikigtirma oran-
lat1 elde edilmig ve elde edilen resimlerdeki bozulmalar da nicel ve nitel olarak
belirlenmistir. Elde edilen sikigtirmada ortalama olarak 5:1 oraminda sikigtirma
elde edilmigtiv. Bununla birlikte, aynitlar ¢cevresindeki verilerin ¢ok daha etkin
bi¢cimde kodlanabilecegi gorithmektedir,

Beginci bolimde, Gokmen taralindan tamtilan dizgiinlestivmenin kullanildig
gok olcekli bir aynt gosterilimi ve ¢ok ol¢ekli bir ayrit birlestirme algoritmasi in-
celenmektedir [6, 7). DORS (Difference Of Regularized Solutions) adi verilen ve
her seviyesi, farkl diizgiinlestirme parametresiyle elde edilen 1ki diizgtinlestirilmig
¢oziim arasindaki larkin alinmasiyla elde edilen gosterilim ele ahinmaktadir. Her
bir diizgiinlestivilmig ¢oziim, zar fonksiyoneliyle ilade edilen bir enerji fonksiyo-
nelinin en aza indirilmesiyle elde edilmektedir. Bir boyutlu durumda, DORS
gosterilimi, resmin Vietnam gapkast operatort adi verilen bir stizgecle katlan-
mastyla da elde edilmektedir [6]. Bir boyntta yay fonksiyoneline kargr diigen,

fonksiyoneline karsy diigen iki R-stizgecinin farkimin alimmasiyla elde edilen bir
hoyuttaki DORS siizgeci Sekil 3'de gosterilmektedir.

Ayritlarm, bu gosterilimde farkh olceklerdeki davramsglarimin ineclenmesiyle,
daha once bir hoyutlu durum i¢in gelistivilimig olan ¢ok dlgekli biv birlegtirme al-
goritmas iki boyutlu durum igin geligtirilmistiv [6]. Agirhikh toplama yonteminin
kullamldigr algoritma, ol¢ek uzayinda kargilagilan ayritlarin kaymasi, ortaya ¢ik-
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Sekil 2. ki R-siizgeci. hl(x) igin A = 1, h2(2) i¢in A = 3 olarak alinmugtur.

mast, ortadan kaybolmast ve dallanmasi problemlerine ¢oziim getirmektedir,

Zar modellemesiyle elde edilecek ¢oziim su sekilde ifade edilmektedir [7):

7)(3)73/; )‘1) = {'U(:E,y) : Em(f: )‘i) =
mr//n(fw d)? dady + \; /A (f2+ £2) dady} (6)

fev

burada f girig resmi, v modellemeyle elde edilen ¢oziim, A dizginlestirme pa-
rametresi, fp ve f, de girig resmi f'nin sirasiyla  ve y'ye gore birinci mertebe
turevleridiv. Farkh A dizginlestivme parametreleri ile elde edilmis resimlerden

DORS gosterilimu

DORS(z,y; Xi, Aj) = v(z,y; X)) —v(z,y; A)), Ai # ;. (7)

seklinde elde edilmektedir. A; ve A; birbirinden farkh iki diizgiinlestirme para-
metresi ve v(z,y, A) de A ile elde edilmis zar ¢oziimiidir. Sekil 3'de, bir boyutlu
durumda DORS gosteriliminin, resmin Vietnam sapkasi operaldrii adi verilen bir
sizgecle katlanmasiyla da elde edildigi gdsterilmektedir.

Bu gosterilimde, ayritlarin farkh olgeklerdeki davramglarimin incelenmesin-
den yola ¢ikilarak, ¢ok 6lgekli bir birlegtirme algoritmasi gelistirilmistir. Birles-
tirmede, ¢ok olgekli ayrit resimleri girig olarak kullamilmaktadir. Girig olarak
ahman aynt resimleri en kabadan en ince dlgege dogru sirayla kullamimaktadir,
Birlegtirme en kaba dlgekten baglamaktadir. IKaba dleekteki her ayrit noktas
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Sekil 3. A = 1 ve Ay = 3 alinarak elde edilen iki R-siizgecinin kullamilmasiyla elde
edilmig Vietnam sapkasi operatorii.

icin ince olcekte 3 x 3 genigligindeki pencere i¢inde ayril noktast aranmalktadir.
Ayrit bulunmasi halinde, kaba dl¢ekteki ayrit noktast ince dlgekte bulunan nok-
taya, toplama dizisi yardimiyla baglanmaktadir. Her baglama iglemi, haglanan
noktaya kargt diigsen toplama dizisi degerinin uygun sckilde artinlmasiyla gercek-
lenmektedir.

Bulunulan ol¢ege gore, ince olgekte ayrit bulunmamast durumunda kaba 61-
cekteki ayrit noktas ince dlgege dogru devam ettirilebilmektedir. Bunun tersi
olarak kaba ol¢ekte ayrit olmayan yerlerde, ince olgekte ayrit, olmast durumunda,
yeni ayrit ortaya cikmasma izin verilebilimektediv, Girig olarak aliman aynit ves-
imleri dizisindeki ardigil her resim igin bu iglem tekrarlanmaktadic. Biitin ayrt
vesiimleri iglendikten sonra, hell hir degere pelmig toplama dizisindeki verler ayrit,
olarak atanmaktadir.

Aguhikl toplama kullanilmasiyla gergeklenen birlegtirme algoritmasi, dlgek
uzayinda kargilagilan ayritlarin kaymasi, ortaya ¢ikmasi, ortadan kaybolmasi ve
dallanmasi problemlerine ¢oztiim getirmektedir. Bu haliyle birlegtirme algorit-
mast, ¢ok Olgekli diger ayrit saptayicilarla elde edilmig aynit resunlerine de uygu-
lanabilecek durumdadir. Birlegtirme algoritmasinin bagarimi niceliksel ve nitelik-
sel olarak yapay ve gercek resimler igin ¢gikartilmugtir.

Sonug olarak bu c¢aligma iginde, diizgiinlestivmedceki yirtilabiliv zar modelin-
den yola ¢ikilarak goriintii igleme ve bilgisayarla gorme alanindaki ayrit saptama,
yiizey kurma, netlestirme, kodlama ve sikigtirma, ¢ok olcekli ayrit clde etme ve
birlegtirme problemlerine, aym yaklagimlar kallamlarak, ¢oziim getirilmistir.
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CHAPTER 1.

INTRODUCTION

Vision as a word has a dictionary meaning of “(the) ability to see” . Hu-
man visual system has this ability and furthermore, allows us to organize and
understand the many complex elements of the environment. Computer vision is
closely tied to human vision which explains how humans see and perceive the
outside world. One approach to solve these problems in this field is to simulate
the human vision system which can be realized by using the most powerful ma-
chines, but a complete simulation has not been achieved yet. The reasons of this
may be that the computers are too primitive, or the developments in the arca of
computer vision have not reached a mature degree, or the over-complex structure
of the human visual system. But the major difliculty is that the solution of vision
problems is not unique. Thus the ill-posed nature of these problems is one of the
mosl important obstacles in achieving a complete solution. Whatever the reason
is, the research studies in computer vision have been in the leading extreme edge,
power consuming, mathematically complex, requiring very high technology and

starving for vast computer resources compared to others.

Two dimensional projections ol the three dimensional world gives us compar-
atively small amount of information about the 3-D world around us. This small
information is not sufficient to encode the full complexity of a natural 3-D scene.
Any vision system must be able to extract the features of a real 3-1) object from
a single or mulliple consequent [rames of a scene. In terms of recognition, these

features may be used to separate cach object from the other one by detecting the

H9,ongman Dictionary of Contemporary Bnglish,” Longman Group Ltd. 1978



boundaries or segmenting the whole image into smaller components.

Region is defined as a connected set of pixels in which all of the pixels are
adjacent or touching to each other. lLinage segmentation is the process of par-
titioning a digital image into meaningful and disjoint (non-overlapping) regions.
There are basically two different approaches to segmentation: In the region based
approach, the pixels are assigned to particular objects or regions. The boundary

(edge) based approach attempts to locate the boundaries between regions.

The edge is a boundary at which a signilicant change occurs in image intensi-
ties. Edge detection is one of the the main research areas of computer vision and
image processing since the performance of higher level processes such as object
recognition rely heavily on the correctness and completeness of detected edges.
The main goal in edge detection is to obtain a complete and meaningful informa-
tion apart from being sparse. The edges arise from the physical properties of the
objects and manifest themselves as intensity changes in the image. Related to this
definition, the criteria in edge detection are presented and important properties

ol a good edge detector are given in the foregoing chapters.

The edge detection methods may be divided into two major classes where
one is based on convolution and the other one is based on encrgy minimization 2.
The investigated methods in this thesis fall into two of the classes. The adaptive
smoothing relics on convolution and the weak membrane modeling is based on

regularization which also relies on energy minimization.

Weak membrane modeling which is based on regularization is used for edge
detection and surface reconstruction, for image coding and restoration, and to
obtain a new multiscale image representation. The image coding scheme is based
on edge detection which is performed by using weak membrane modeling. The
encoding part of this scheme is a regular membrane modeling of regularization
theory where sparse data is used as input. Image restoration method is based
on a slightly modified energy functional of the weak membrane model. Thus,

image restoration is also performed by using the regularization thcory where the

2Noise smoothing operation performed before edge detection is also an important part of an
edge detector. In chapter 2, the noise smoothing operations are classified as i. using low-pass

filters, 7. fitting local curves to noisy image and i#:. fitting a global curve to image.



solution is obtained by a non-standard algorithm.

The energy functional emerging from weak membrane modeling lacks the
mathematical property of convexity. The modeling is realized by finding the
minimum of the derived energy functional related to weak membrane. The weak
membrane energy functional has many local minima and only one of them is the
global minimum. A non-standard method is used in minimizing this tunctional.
hence there exist more than one solution of the functional if a regular optimization
method is used. A standard minimization algorithm may easily stick to one of
those local minima, thus causing the solution to be the wrong one. Even though
there exist stochastic optimization methods to find the minimum of such non-
convex functionals, the computation required is very high in such algorithms. The
method used in this work is graduated non-convexity algorithm (GNC) which is

a deterministic algorithm.

In the second chapter, adaptive smoothing and weak membrane modeling is
compared for edge detection performance. Synthetic images are produced and two
methods are used to detect edge maps of these images for comparison. Numer-
ical values are calculated for quantitative comparison, such as FoM. P(IE/AE),
P(AE/IE) in addition to qualitative results. Real images are also used and edges
of these images are obtained for qualitative evaluation of edge detection perfor-
mance. It is observed that weak membrane modeling has superior edge detection

performance than adaptive smoothing method.

A regularized approach to image restoration is derived in the third chapter
where energy functional related to weak membrane is used. [t is aimed to reduce
the blurring caused from misfocusing and eliminate the noise added onto blurred
images. In this approach, it is assumed that the blurring effect can be modeled
by an appropriate filter. Even though there is no restriction on the size and
coefficient values of the degrading filter, 3x3 averaging filter is used to obtain the

images presented in this chapter.

A different approach to image coding is presented in the fourth chapter where
the coding part is based on edge detection and the decoding part is based on
surface reconstruction methods. Since regularization combines edge detection and

surface reconstruction in one energy functional, the same regularization functional



is used in the coding and the decoding part.

In the fifth chapter, a multiscale image representation based on difference
of two regularized solutions is investigated together with a multiscale edge in-
tegration method. In difference of regularized solutions (DORS) representation,
two images are obtained by solving the membrane functional with two diflerent
regularization parameters [6, 7]. Then the edge image is obtained by finding the
zero crossings on this DORS image. By using multiple couples of regularization
parameters to obtain multiple DORS images, multiscale edges can be obtained.
Then a multiscale edge integration algorithm which is based on weighted accu-
mulation and presented in [6] for one dimension is expanded to two dimensions
which can use the edge maps obtained hy DORS. The integration algorithm tracks
down the edge points starting (rom the coarsest level down to the finest level by
updating an accumulation array. The edge tracking operation can be reduced
to finding the appropriate correspondence between two consequent edge images
in scale space and updating the accumulation array by using this velation. The
integration method allows new edge points to appear by also preventing the old
ones to survive and permits branching of one edge point into more edge points in

scale space.

In this thesis, image processing problems are integrated under a unified frame-
work based on regularization theory. By using the weak membrane model of regu-
larization, edge detection and surface reconstruction, image restoration, compres-
sion, multiscale image representation and multiscale edge integration problems

arc investigated.



CHAPTER 2.

COMPARISON OF EDGE DETECTION
ALGORITHMS BASED ON ADAPTIVE

SMOOTHING AND WEAK MEMBRANE
MODELING

2.1 Introduction

[n this chapter, two dilferent approaches to edge detection are qualitatively
and quantitatively compared and thus possible relations with the other edge de-
tection algorithms are tried to be figured out. The methods under consideration
are adaptive smoothing which accomplishes detection of edges by nonlinear fil-
tering and weak membrane modelling which performs this process by minimizing
a non-convex energy functional. The algorithms are tested on both real and syn-
thetic images. The synthetic images (noisy checkerboard and bar images) are
created to reveal the detection and localization performance of the algorithms.
In addition to the visual comparison of results, the performances of the algo-
rithms are quantitatively compared by using quantitative measures such as 'oM,
P(IE/ATL) and P(AE/TE). Based on these results, it’s concluded that the weak
membrane modelling has a superior edge detection performance as compared to

the adaptive smoothing method.
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2.1.1 Boundary Detection

Detection of boundaries from images which are two dimensional projections
of physical ohjecls is one of the most important subjects of computer vision. Edge
detection is one of the main research areas of computer vision, since performance
ol higher level processes such as object recognition relies heavily on the correct-
ness and completeness ol edges. It is the main goal of edge detection to obtain
complete and meaningful information, while being sparse, where edges resulting
from physical structure of objects appear as sharp intensity changes in their im-
ages. In this chapter, qualitative and quantitative comparison of edge detection

methods realized by two different approaches is evaluated.

An edge detection algorithm is expected to satisly the following criteria when

applied to a noisy image [8]:

cl. Good detection: True edge points must be marked by the detector and
probability of falsely marking non-cdge points must be reduced.

c2. Good localization: Location ol detected edges should be as close as possible
lo true edges.

c8. Robustness: The algorithm should be robust to noise and perform well for
various 1mages.

c{. Efficiency: The implementation of the algorithm should lead itself to be an
efficient. one. Parallel form of the algorithm with small neighbour interac-
tions improves the efliciency.

cb. Applicability to sparse data: The algorithm should reach a reasonable per-

formance when applied to sparse data which allows usage of depth data.
] g

Main problems of edge detection are noise produced by imaging and sampling,
tradeoll hbetween detection and localization, and multiscale behavionr of informa-
tion obtained from the image. Detection of sharp changes in image intensities
requires various derivatives of pixel values on the noisy image. But taking deriva-
tives on a noisy data amplifies noise, thus causing instability. lFor this reason,
many edge detection algorithms perform some kind of noise smoothing method

before taking derivatives. Noise smoothing generally is achieved by one of the



following methods [6]:

i. Smoothing with a low pass (ilter,
1. fitting edge templates or curves locally to notsy data,

iii. fitting a global curve to data.

After the smoothing process, some method for detection of discontinuities is used
to extract boundary information from the image. The most of the edge detection
methods nse the first or the second order derivatives, hut the processing of the
derivative differs in each method. In the following subscction, a briel overview of

the main edge detection algoritlims is presented.

2.1.2 Overview of Edge Detection Methods

Iidge detector introduced by Marr and Hildreth [9] smoothes the image by
convolving the image with the Gaussian filter where the smoothing is controtled by
the standard deviation of Gaussian, o. In this model, zevo crossings of laplacian
of the image is assigned as edge pixels. Canny’s edge detector also uses Gaussian
smoothing [10]. Canny has showun that the first derivative of the Gaussian is a
very good approximation to optimal edge detector by formulating the first ¢ and
the second ¢2 criteria of edge detection. Haralick’s step edge detector falls into the
sccond category (1) [L1]: A part of the surface is modelled by the interpolation
of intensity values with the Chebychev polynomials up to the third degree. Then
by using the coeflicients of this function, zero crossings of directional second
derivative in the direction of the gradient is calculated. And finally the pixel is
assigned as an edge point if a zero crossing exists in the neighbourhood of this

pixel and the slope of the zero crossing is negative.

Algorithims based on regularization falls into the third category. This sort of
algorithms is based on minimization of an energy functional including one or more
smoothness constraints [3, 4, 6]. Weak string and membrane models used in this
chapter are introdueced by Blake and Zisserman [2]. These models use regular-
ization with the first order derivatives as the smoothness constraint, and use line

processes Lo preserve discontinuities. This non-standard smoothness constraint



with line processes is introduced by Geman and Geman [12]. Terzoponlos [13]
has integrated the first and the second order derivatives in one energy functional
for discontinuity preserving surface reconstruction. In these type of algorithms,
the system is assumed to have high encrgy at discontinuities, and this energy is
minimized by breaking the string or tearing the membrane at sufliciently large
discontinuous locations. This kind of encrgy functional is non-convex and re-
quires special minimization algorithms such as simulated annecaling or graduated
non-convexity [2]. Gokmen [6, 8] has developed an edge detection scheme based
on regularization theory in which the smoothness is controlled spatially over the

image space.

Another major difficully in edge detection is the tradeofl between localization
and detection criteria. Correct localization of an edge requires a small neighbour-
hood to be processed around this pixel. The detection criteria requires that noise
should be smoothed and noisy edges should not appear in the resultant edge
map. Thus the smoothing of noise requires a large support such as convolving
the il'na,gé with a Gaussian filter with large standard deviation. Another im-
portant difficulty is the multisize nature of images. The images are composed
ol different sized objects with different properties and different distances to the
camera. The two dimensional projections of such variety of objects result in an
image with spatially changing signal-to-noise ratio and intensity values. Hence
images obtained are not homogeneous in itself, as well as not homogeneous in
different frames. Detection of edges from such images requires multiscale filters
or multiscale methods to be used. But linear edge operators cannot cope with the
multisize features since they behave equal in each spatial location in the image.
To overcome these problems, three methods are usually used to detect multisized

edges [6]:

Iy

. Specily the best scale and use this throughout the whole image.

S

. Detect features in multiscales and combine them.

3. Control the scale in the image space.

The best scale correspounds to the best filter size in methods of class (1), and to

neighbourhood size in algorithins of class (2). Multiscale solutions in convolution
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based methods of class (1) are obtained by using multiple standard deviation
values with a Gaussian-like filter. In methods of class (2), multiscale solutions
are calculated by fitting polynomials to local image data with different kernel
sizes.  Adaptive smoothing is based on convolution of the input image with a
fixed sized filter where filter coefficients are changed in each spatial location.
The multiscale solutions are not obtained by changing the size of the filter, but
by changing the coeflicients of the constant sized nonlinear filter with the scale
parameter k. Adaptive smoothing falls into the third class since it’s a filter
though being adaptive which imposes local curve fitting. Algorithms based on
regularization fall into the third class: In this class, smoothing is achicved by
minimizing an energy functional where smoothing is induced into the functional
by a constraint which usnally includes first and second order derivatives of the
signal. In this chapter, convolution based adaptive smoothing where size of the
convolving filter is fixed but the contents are changed spatially across the data,
and weak membrane modelling of regularization are compared for edge detection

performance [14].

2.2 Adaptive Smoothing

In adaptive smoothing, it’s aimed to keep discontinuities between regions
while performing smoothing operation in the regions [1]. Smoothing is performed
by convolving the image with a filter where the cocflicients depend on the neigh-
bouring pixel values in a small neighbourhood, such as 3 x 3, until a prede-
fined convergence criteria is satisfied or a predefined maximum iteration count is
reached. [Filter coeflicients are related to the first order derivative of the input
signal in a nonlinear fashion. The method becomes adaptive by the recalcula-
tion ol filter coellicients at cach spatial location as well as in cach iteration. The
smoothing performed in this way relies on discontinuity preserving nonlinear fil-
tering. The filtering is a iterative process and number of iteralions needed for
convergence may grow too many even though the smoothing filter size is as small
as b Tncach iteration bwo major eflect of the convolution is observed: 2. 'T'he
discontinuitics are preserved and enhanced, 2. continuous regions are smoothed.

Discontinuities are emphasized alter several iterations and are not. changed there
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alter. But the smoothing of regions require hig counts of iterations. Thus in the

purpose of edge detection, iterations are terminated afler several iterations and

edge detection is performed with a convenient thresholding scheme.

2.2.1 The Nonlinear Filtering

If the filter at (¢)th iteration is denoted by w(®)(z,y), the signal by I)(z,y),

smoothed signal IHtD(z ) at (¢ + 1)th iteration is expressed as,

1 +1  +1
(t+1) I Ozt iut i) w it (2
1) (2, y) N(m,y)w,.;“;f (z+4,547) wz 44,y +7) (2.1)
where,
+1 41
N(z,y) = 37 3 w9z +iy+7). (2:2)
tm=-] j==—1

The small size of the filter is expected to be an advantage which should decrease

the computation time. The suggested filter is given by the following equation [1]:

1alt) z.y)ﬁ

wO(a,y) = f(d(z,y) = (2:3)

dz,y) = /GI1 G (2.4)

where d®(z,y) denotes the discontinuity at (z,y) of the signal at the (£)th iter-
ation and the first order derivative is used to express discontinuity. Gz and Gy
represent the first order derivatives of the signal in ¢ and y directions respectively.
The scale parameter k remains the same over an image and multiscale edges are

obtained by changing k.

The filter in Fq. 2.3 is not lincar since it does not satisfy the [ollowing condi-

tion:
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Linearity <= Tlazi(ni,n2) + bza(ny,na)] = ay1(n1, na) + bya(ny,ne),  (2.5)

where Tlz1(n1,n2)] = y1(n1,n2), @ and b are any scalar constants, and A <= B

means that A implies B and B implies A [15].

Parameter k signifies magnitude of edges that should survive during smooth-
ing. kis presented to be the scale parameter of this algorithm [1]. Very smoothed
results are obtained for large values of k, and small contrasts are preserved for

small k values. Effect of scale parameter £ may be summarized as following:

e Discontinuities are smoothed [or Jarge values of k,

e Discontinuities are preserved for small values of k.

The order of smoothing is not determined solely by k&, the first order derivative
at that localion is also used. First order derivative means a change in intensity
values where noise may be one of the reasons of this intensity change. So, very low
sioothing may be achieved for even large values of scale parameter, thus causing
noige effect to survive. This is only the case for large k values since smoothing is
not very strong in small scales. But noise is preserved at even the coarse scales

which results in false edge occurrences to appear.

2.2.2 Iterative Weighted Averaging

Weighted averaging is defined as “convolving the image with a filter where
coeflicients are changed in cach iteration, or coeflicients differ for cach spatial
location” [1]. The goal is to smooth continuous regions by taking d®(z,y) = 0,
and taking a positive value for d® al discontinnities. By this approach, the filter
cocflicients are changed by 4. iterations, and 2. spatial locations. The coceflicients
are modified by the first ovder derivative which means that they are eflected from
a very small neighbourhood, i.e. 3x3 sized neighbourhood. Small sized filters
are known to have good localization performance [6, 10, 11]. But taking a small
sized kernel has the disadvantage of poor detection, since a tradeoll exists between

localization and detection performance of edge defectors.
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2.3 Weak Membrane Modelling

2.3.1 Piecewise Continuous Reconstruction

Detection of discontinuities from an image is customarily done by first blur-
ring the image with a lowpass filter, and then edges are extracted [rom the blurred
version of the image by finding the large values of the first order derivative or zero
crossings of the second derivative. Butl smoothing the image destroys data as well
as smoothes noise. This distortion of the image causes shifting of discontinuities

in scale space.

In the weak string which is the 1D model of weak membrane, discontinuities
arc detected without dislocalization. This is very important since the images
generally include noise and this noise is desired to be reduced before an edge
detection algorithm is applied. The noise reduction may be done by using large
spatial scaled filters for blurring the image. But lincar filters cause dislocalization,
rounding of corners, disconnection of T-junctions and occurrence of edge shifts

near intensity changes. These errors increase as the scale of the filter increases.

The weak string and weak membrane modelling preserves the discontinuities
without necessitating any a priori knowledge about the location and existence
of edge points, and does not exhibit the errors of lincar filters even in relatively
high noise levels. Tidges can be detected without causing serious dislocalization.
The edge segments detected are in forms of smooth curves and separate regions.
These regions ol continuity are smoothed to suppress noise and to produce smootlh
as well as natural surfaces. Thus, weak membrane modelling establishes two
major facilities: The first is the preservation of discontinuities, 1.c. detection
of edges accomplished by using line processes. The other is to produce smooth
and continuous regions where edges do not exist. This behaviour gives weak

membrane model the property of piccewise continuous reconstruction.
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2.3.2 Weak Membrane Modelling And Line Processes

The membrane modelling is based on regularization theory, String functional

is given as [2, 6]:

Fy = / (u(e) - d(z))’de + Az/ 2 (z)dz (2.6)

Q, ’
where d(z) is the input function, u(z) is the reconstructed function, uz(z) is the
first order derivative with respect to @ and X is the regularization parameter. The
membrane may be thought as the 2D version of the string functional above. The

membrane energy functional is given as:

By = //n(u(m,y)—d(:c y))dzdy + )\2// (z,y) +ui(ex,y))dedy. (2.7)

The first term assures that the reconstructed function u(z,y) to be close to the
input function d(z,y). The second term which includes derivatives of u(z,y) with
respect to ¢ and y imp()ses the smoothness constraint. The energy functionals
shown in [5q. 2.6 and [9q. 2.7 are known as string functional in 1D and membrane
functional in 2D, rc‘,s;')(—‘,ctivcly. If the smoothness term includes the second order
derivatives, then that energy functional will be named as rod functional in 1D
and plate functional in 2D [2]. In this chapter, string and membrane functionals

are investigated.

2.3.2.1 Weak String

Detection of discontinuities (edges) on the 1D data can be realized by con-
struction of a 1D function u(z) which is a good fit to some input data d(z) in
I5q. 2.6. The construction can be done by modelling u(z) as a weak elastic string,
which is an elastic string under weak continuity constraints. The discontinuities
may be seen as the breaks in the string where the weak continuity comes into

scene.



14

The weak form of string functional in L. 2.6 is specified by its energy shown

below,

E, = [ (u(x) - d(z))ds + A2/s w2(2)(1 — £(z))dz + a/M Uz)ds  (2.8)

where ug(z) denotes the first order derivative, and £ is the line process. Line
process marks discontinuities and assures piecewise smoothing. When £(z) = 1,
the second term vanishes and the overall functional will have lower energy, which
permits any value for the first derivative to take, hence causing discontinuity.
The last term with a coeflicient s the penalty term added to prevent all line
processes to be 1. In this way, balance between discontinuily occurrence by £ = |
and continuity preservation by £ = 0 is established by a and X coeflicients. This

linctional may be written in discrete form as

By =Y (ui—di)? + M) (i —uin1)?(1 — &) +a ¥ L. (2.9)

1 1 1

The first summation term assures that the reconstructed function u to be close
to the input d. The second and third summation terms which include the first
order derivatives and line processes imposes the smoothness constraint together

with breaking by line processes.

2.3.2.2 Weak Membrane

In weak membrane modelling, image is first modelled by a piecewise contin-
uous [unction where the modelling is carried out by non-convex weak membrane
functional. This functional is the 2D version of weak string functional in 19q. 2.8

and expressed in continuous form as

B = / / (u(z,y) — d(z,y)) dzdy + (2.10)
b

o «

—~—

D



3 [ [ (2o, 0)(1 = miz,y) + (@, 0)(1 ~ Uz,y))dedy +

5

of [ (mlz.u)+tzp).

-

P

where m(z,y) and £(z,y) are vertical and horizontal line processes, respectively.
The image is reconstructed by minimizing this non-convex functional of weak

membrane which preserves discontinuities using line processes £(z,y) and m(z,y).

The energy functional E of weak membrane is composed ol three main parts:
D, § and P part as in Eq. 2.10. If u;; denotes the reconstructed image, and
d;; denotes the original input image, the energy functional in discrete case is

expressed as,

E = D+S5+0P (2.11)
I) == ZZ('(I'ivjhd‘-‘j)z (212)
P
S = NP (uiy = wie1 ) (1= mig) + (wig — ugia)* (1 — £iy) (2.13)
g

P o= o)) (b +mig) (2.14)
i

where £ ; and my; denotes horizontal and vertical line processes respectively., D
term is a measure of laithfulness to input data. S term represents deformation
of the membrane surface and allows the membrane to break at locations where
line process is 1. P is a levied measure of penalty incorporated by line processes.
S and P terms form the balance hetween smoothness of surlace and occurrence
ol discontinuities. The locations of edges are the points where the corresponding

line process is 1.

2.3.3 Graduated Non-Convexity Algorithm

The nuntimization of the energy functional in . 2.11 cannol he performed
) |

by a regular minimization method since this functional lacks the mathematical
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Figure 2.1, Non-convexity. The states of weak string (a) and (b) are stable, the
intermediate state (¢) has higher energy than those.

property of convexity. 'I'his means that the system may have many v minimizing
E. but only one of those minima is the global minimum while the others are
all the local minima of energy functional E. Such local states resists to small
perturbations and resists back to the same stable state when disturbed, but when
a larger perturbation is applied, the system jumps and locks onto some other
minimum and won’l, come hack. This may he thought as, the string is extended
passed its deformation or mayhe break point, thus not keeping the old properties

(such as Iook's constant k). This is illustrated in Tig. 2.1.

Descent algorithms will not sullice to find the global minimum of E. Local
descent, algorithms tend to stick to a local minimum point like the myopic fly
m Ihg. 2.2, Stochastic methods such as simulated anncaling searches for the
global minimum by random fluctualions. The computation needed may be very

intensive in this sort of methods.

A method developed by Blake and Zisserman to solve this problem is Gradu-
ated Non-Convezity algorithm [2]. A preprocessing is lirst performed 1o eliminate
line processes, and S and P terms are combined into a single term which exhibit
the function of each term. The combined function is called neighbourhood inter-

action function and denoted by g a. A further modification is done in the energy
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functional by adding a parameter p which controls the convexity, and the local
neighbourhood interaction function gaa is further modified by incorporating this

p paramecter.

Energy
(b)
(c)
(a)
Nor-convexity. Myaopic fly thinks (a) is the minimurm, it cannat
see that (c) has lower energy than (a).

Figure 2.2, The non-convexity, The myopic fly thinks state a is the best, it has no way

of seeing state c.

2.3.3.1 Elimination of Line Processes

The energy functional obtained in Iq. 2.9 is a function of the nodal variables
u and the line variables £. Since the line variables may be recovered in advance,
a first step minimization will be performed on line processes. To eliminate the

line processes, the energy functional Ey in I3q. 2.9 is expressed as

E,=D+ }_: B (i — uio1,4;) (2.15)

where
Do 3w di)? (2.16)
har(t, ) = A%(1 —£) + of. (2.17)

Beware that the function hyy is obtained by combining the § and P terms and

that the overall functional in Iiq. 2.16 is the same one as in Eq. 2.9. The depen-
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neighbow pixels. over line process.
h{t]) a(t)
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Figure 2.3, Neighbour interaction function and elimination of line variables. The linc
process € can be eliminated by minimization over € € [0,1]. ¢ denotes the first order
derivative.

dency on £ is now contamned in the kg a part. The hex function is plotted in

IMig. 2.3.

The function hq ) controls the local interactions between u; nodes. The prob-

lem 1s
min By, = min(D 4 min > Ao a(u — w1, 4 918
{ui i} {u;}( {t;} Z ,A( 1 )) ( L)

One should note that D term docs not include 4, hence minimization over £ can

be performed immediately in Eq. 2.18. Then the problem reduces to

u(z: X, a) = {u(z): E,(u,A a)=
it [[ U drdat ¥ [ garfis]y(210)

feq,

and in discrete case,
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U = {u : y(u, A, o) = inf X(f — ci)2 + 22 Zga,,\(f,- - fi~1)]} (2.20)

fef,
where
wn(t) = min_ hga(t,£). 2.21
Gar(t) = min hax(t,0) (2.21)
The function gg,» is shown on the right side of I'ig. 2.3, which is simply the

minimum of two graphs on the left side, and named the neighbourhood interaction

function. This function may be written from Eq. 2.17 as
A2 40t < Va /X (£ =10)
gon(t) = Vel (2.22)
o otherwise (£=1).
The line processes can be recovered at any time from gaa(t) by
L[t > A
oy =4 L= Vel (2.23)
0 otherwise.

where t is the first order derivative. The above modification may be extended to

2D case and the 2D Tunctional may be derived from I5q. 2.11 as

Bo= 3 (wi—di)’+ (2.24)
i
A2 hapa (Ui = tica g, mag) + A D haa(u; — uij-1, i j)
7 0

and by using neighbourhood interaction function,

4,7
A2 gaa(tig — tier) + A Y gan(ui; — wijo1)

1,7 1,5
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is obtained. Recovery of line variables m and £ is the same as in FEq. 2.23. The

solution of this functional is now expressed as

{u: E(u, A ) = }gf[Z(f —d)? + (2.26)
A2 Zga,x(f;,j — fic1,5) + el fij — fij-1)+]}

2.3.3.2 Modification of Energy Functional

Minimization of the non-convex energy functional in I%q. 2.26 is carried out
by GNC which is an iterative scheme. In this method, the cost functional E
is first approximated by a convex functional E*, which has only one minimumn
that is the global one. Then a sequence of [unctionals is used to approach to
the original non-convex functional E. Thus, a general strategy for small or large
A, is to use a sequence of cost functionals E® for 1 > p > 0, to approach to
the global minimum of E by decreasing p values at cach step. These arc chosen
so that EO) = E*. the convex approximation to E; and EO® = E. the non-
convex [unctional itself. Here, E® is changed continuously from E®) to E©)
as GNC proceeds. This algorithim will then find the global minimum of I with
appropriate steps for p, such as p = {1,1/2,1/4,1/8,1/16}, and using the result
of one optimization in the succeeding one [2]. A simple GNC algorithm may be

tabulated as in Table 2.1

The modified energy functional where the line processes are eliminated and

local interaction function used is expressed as,

ZZ uig — dij)? + (2.27)
ZzgaA Uij — Ui-1,5 +Zlqrx)\ Uyj — ?l’i.j“l))
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Table 2.1. A simple GNC algorithm.

1.

v,

V1.

Make a good approximation to E* to E.

(‘This problem expands to finding an appropriate u(®) to start
with. A good choice to reduce the iteration count is to start

with the input data d, i.e. ¥, ugo) =d;.)

. Start with p == 1, thus making (! = E*_ the convex approximation

of the energy functional.

Find the local minimum of E® by a local minimization method.

(Direct descent, Successive-Over-Relaxation (SOR) may be

chosen. In this implementation, SOR. is used.)
Decrease p, c.g. p = p/2.

if p > Prin then goto (i), (¢.g. Pmin = 1/16).

done.

annn
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Iligure 2.4. The local interaction function in 1D used in GNC. The graph on the left
side is the original function. The graph on the right side shows how g4,z is changed by
p. gl(x) denotes the unmodified neighbourhood functional when p = 1. The value of p

is | for gl(x), 1/2 for g2(x), 1/4 for g3(x), 1/8 for g4(x) and 1/16 for g5(x). A is 0.24

200 2 200 e ang v 200 400

and «a is 2000.
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and
e lt] < q
g = {a—offt|-r2/2 q< i<y (2.28)
a t] >,

where ¢ = ¢*/p, 72 = a(2/c+ 1/X?), q = a/(A%r) [2, 3]. ¢{P)) is called
the neighborhood interaction function.  The eliminated line processes can be
recovered by Fa. 2.23. The modified neighbour interaction function in 1q. 2.28

s plotted in e, 24,

The energy functional is convex at the start, i.c. E®=1)is a convex functional.
The functional E®) hecomes non-convex as p decreases in each iteration. There
are Lwo iterations during the GNC process. During the outer ileration, p is started
from 1 and procecds down to the smallest value in the p set. Then for each value
ol p. there are inner iterations, which are selected to be the SOR iterations. For
cach p value, the minimization is realized by SOR (Successive Over Relazation)
method. This is a gradient descent method and the minimization of E®) in each

step of p must satisly

A E®)

=0 2.29
Fur, (2.29)

condition. The first derivative of E®) in Bq. 2.27 with respect to u; ; is

O E(P) . ‘
5’11' . feed Z[(’U,,',]' - d{yj) + (230)
i g
gffi (Wij — Uio15) + gfﬂ (ut,J Uiy1,;) +
gap)x (Wi~ tij-1) + 9.;,72\ (i — i j11))

The first derivative of modified local interaction function in Eq. 2.28 with respect

o u;; can be calculated as



2A2 lt] < q
gZ\(t) = & —c(|t] —r)sign(t) q<|t| <r (2.31)
0 It| >r

where g and r are defined in Eq. 2.28.

2.3.3.3 The SOR Iterations
The SOR iterations proceed as

ur1) g W OBE
Bl 12,5 T Ou;

The updating of u, ; in serial SOR iterations is performed by

n+1) (n) ‘ n 4 -

5,3 ) = u? —w | Z(u( ) _ d, - (2.33)
gfﬁ’l(uf'}) ul1)) + o8N @l — i) +

g7 ()~ ull) ;) + o) (ud (") ulha) 1/ (2 +83%)

where T = 2(1 4 4X2) for regular clements. The 1is for D term, and cach one
- . ' r N p . .

of fonr A2 is for cach g®'(\) term. The multiplier 2 comes from the squares in

cach term. This iterative equation needs special treatment at the boundaries.

For example at the upper left corner the u; ; update becomes

Wo =l - w [2(uld ~ doo) + (2.34)
»)

A convenient convergence norm is checked for each p iteration. The conver-

gence norm used in this implementation is the infinite norm and defined as
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Figure 2.5. Noisy checkerboard and bars images. SNR(dB) values are (from left to
right) 10, 7, 5,4 and 3.

Ui g 1,7

(n+1) _ (") (2.3

Lo, = max

In addition to this norm, maximum iteralion count in cach SOR iteration is

bounded to an upper value.

2.4 Results and Analysis of Edge Detection

Performance of the Methods

Adaptive smoothing and weak membrane modelling methods are applied to
various synthetic images to exhibit different problems of edge detection. Gaussian
noise is added to synthetic checkerboard and bars images to obtain varions SNR
valued images, and two methods under consideration are applied on these samples

(Fig 2.5).

Synthetic images are used to obtain the reconstructed surfaces and edge im-
ages to evaluate the qualitative performance of the methods. The surfaces recon-
structed by weak membrane modeling for checkerboard and bars images are given
in IFig. 2.6 and Tig. 2.8, respectively. The smoothed surfaces obtained by adaptive
smoothing for checkerboard and bars images are given in Iig. 2.10 and Fig. 2.12,

respectively. The edges obtained by adaptive smoothing for checkerboard and



Table 2.2, Onalitative analysis of edee detection perlormance of weak membrane mod
A 5 |

eling over checkerboard images with different SNR values,

G.Noise GNC SOR CHECKERBOARD
SNR o || A o | w Iter | P(AE/IE) P(IE/AE) FoM MSD MAD
-l o 1.4] 2400 1.3 7| 1.0000 1.0000 | 1.0000 | 0.0000 | 0.0000
10dB | 10 || 1.4 | 2400 | 1.3 | 11 || 1.0000 1.0000 | 1.0000 | 0.0000 | 0.0000
7dB |20 || 1.6 | 2800 | 1.4 | 317 || 0.9980 0.9990 | 0.9981 | 0,0201 | 0.0010
5dB |30 || 1.9 | 4400 | 1.4 | 418 || 0.9939 0.9939 | 0.9945 | 0.0493 | 0.0061
4dB | 40 || 1.8 | 4400 | 1.4 | 510 || 0.9565 0.9184 | 0.9246 | 0.3244 | 0.2632
3dB | 50 || 1.8 | 4400 | 1.4 | 510 || 0.8836 0.7251 | 0.7427 | 0.6514 | 1.0608

Table 2.3. Qualitative analysis of edge detection performance of weak memb
eling over bars images with different SNR values.

rane mod-

G.Noine GNC SOR BARS
SNR o ||l A o | w Iter || P(AE/IE) P(IE/AE) FoM MSD MAD
-l ofl1al2400f 13 7| t.0000 1.0000 | 1.0000 | 0.0000 | 0.0000
10dB | 10 1.4 | 2400 | 1.3 11 1.0000 1.0000 1.0000 | 0.0000 | 0.0000
7dB |20 || 1.6 [ 2800 | 1.4 | 317 { 0.9980 0.9990 | 0.9981 | 0.0201 | 0.0010
5dB |30 || 1.9 | 4400 | 1.4 | 418 || 0.9939 0.9939 | 0.9945 | 0.0493 | 0.0061
4dR | 40 || 1.8 | 4400 | 1.4 | 510 || 0.9565 0.9184 | 0.9246 | 0.3244 | 0.2632
3dB |50 || 1.8 | 5000 | 1.4 | 510 || 0.8684 0.7974 | 0.8116 | 0.5385 | 0.7249

bars images are presented in g, 2.11 and g, 2.13, vespectively. 18dge maps of
checkerboards and bars images obtained by weak membrane modelling are shown

in Ihg. 2.7 and Iig. 2.9, respectively.

In order to evaluate the quantitative performance, some numerics are calcu-
lated on the resultant edge images, such as FoM (Figure Of Merit), P(AE/IE),
P(IE/AE), and edge location errors (MAD and MSD) [8, 6]. P(ALL/IE) denotes
the probability of assigned edge occurrence provided that an ideal edge exists.
P(11/AE) is the probability of the reverse condition. Table 2.2 and 2.3 shows
these numerical values for checkerboard and bars images for weak membrane

modelling. Table 2.4 and 2.5 shows similar results for adaptive smoothing.

['rom the investigation ol edge images and tables showing numerical perfor-
mance results, it can be seen that the edge image obtained by minimizing the
non-convex encrgy functional with GNC emerging from weak membrane is much

better than the edge images obtained by adaptive smoothing. T is scen that
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Figure 2.6. Reconstructed surfaces obtained by weak membrane modeling from noisy
checkerboard images. SNR(dB) values from left to right: The first row: No noise, 10,
7. The second row: 5, 4, 3.

Figure 2.7. Edge maps obtained by weak membrane modeling from noisy checkerboard
images. SNR(dB) values from left to right: The first row: No noise, 10, 7. The second
row: 5,4, 3.
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Figure 2.8. Reconstructed surfaces obtained by weak membrane modeling from noisy

bars images. SNR(dB) values from left to right: The first row: No noise, 10, 7. The
second row: b, 4, 3.

L L 1.
e : i
.T .

Figure 2.9. Tdge maps obtained by weak membrane modeling from noisy bars images.
120 2 A ! A i

SNR{dB) values from left to right: The first row: No noise, 10, 7. The second row: 5,
1, 3.



28

Table 2.4, Qualitative analysis of edge detection performance of adaptive smoothing
over checkerboard images with different SNR values.

Noise (Gauss) | Scale  Thrs. CHECKERBOARD

SNR o k r I P(AB/IE) P(IE/AE)  FoM  MSD  MAD
o 0 2| 32| 04809 | 0.5000 | 0.5389 | 0.4472 | 0.5000
17 B 2 2| 32| 04858 | 0.5000 | 0.5344 | 0.4477 | 0.5010
1248 6 2 32| 04798 0.4938 | 0.5289 | 0.4505 | 0.5073
1043 ] 10 6 32 04909 | 04393 | 04897 | 0.6198 | 0.960
9 N 12 61 a2l 04919 | 03108 | 03881 | 0.8080 | 2.0161
CRAB | 15 Al 320l 04808 | 02167 | 0.2573 | 1.2279 | 3.7693
C7d| 20 10| 2] 03691 | 00096 |0.1327 | 14785 | 54650 |

Table 2.5. Qualitative analysis of edge detection performance of adaptive smoothing
over bars images with different SNR values.

Noise (Gauss) || Scale  Thrs. BARS
SNR o k || P(AB/IE) POE/AE)  FoM  MSD  MAD
' 0 2| 32| 1.0000 1.0000 | 1.0000 | 0.0000 | 0.0000
17 41 9 21 320 04858 0.5000 | 0.5344 | 0.4477 | 0.5010
124D 6 o 32| 04798 0.1938 | 0.5289 | 0.4505 | 0.5073
10 aB 10 6| 320 0.4909 0.4393 | 0.4897 | 0.6198 | 0.9603
- 9dB 12 6| a2 04919 0.3108 | 0.3881 | 0.8980 | 2.0161
8 dB3 15 Al 32 04808 | 02167 | 0.2573 | 1.2279 | 3.7693
7aB | 200 10] 320 o0.3694 0.0996 | 0.1327 | 1.4785 | 5.1650
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Iligure 2.10.  Reconstructed surfaces obtained by adaptive smoothing from noisy
checkerboard images. SNR(dB) values from left to right: The first row: No noise,
17, 12, The secoud row: 10, 8, 7.

.:.. 1 1 H;H—h" : '
CrT 0 e o

Figure 2,110 Bdges obtained by adaptive smoothing from noisy checkerboard images,

SNR(dAB) valnes from left to right: The first vow: no noise, 17, 12. The second row:
10, 8, 7.
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Figure 2.12. Reconstructed surfaces obtained by adaptive smoothing from noisy bars

images. SNR(dB) values from left to right: The first row: No noise, 17, 12. The second
row: 10, 8, 7.
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Figure 2.13. Edges obtained by adaptive simoothing from noisy bars images. SNR(dB)
valnes from left to right: The first row: no noise, 17, 12. The second row: 10, 8, 7.
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noise immunity of adaptive smoothing is not good. Use ol a function including
the first derivatives to calculate the filter coeflicients is found to be the main
reason which decreases the noise immunity of this method. Use of the smooth-
ing term constructed from the local neighbourhood function goa in the energy
functional of weak membrane model eliminates the effect of noise even for very
low SNR values. This neighbourhood function also balances the breaking of the

membrane and preservation of continuity in this model.

The weak membrane model is torn in continuous locations without causing
excessive speckles in the membrane surface. Hence the edges detected by this
model are continnous smooth curves. The smoothing operation is performed in a
small neighbourhood and the resultant edge map is locally continuous in adaptive
smoothing. For this reason, the detection performance of adaptive smoothing is

seriously degraded.
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Figure 2.14. Edges obtained by weak membrane modeling (middle row) and adaptive
smoothing (last row) from Lenna and House (first row) iimages where the same pa-
rameters are used for two of the images. A = 1.8, a = 1000 and SOR —w = 1.2 in
weak membrane modeling. Scale parameter & = 2 and threshold 7 = 24 in adaptive

smoothing.



CHAPTER 3.

IMAGE RESTORATION USING REGULARIZATION

3.1 Introduction

In this chapter, restoration of blurred images in the case of a known blurring
function is studied and a new approach to this kind of restoration is presented.
It’s aimed to obtain a clear and noiseless image by removing the blurring caused
by misfocusing and noise added onto the degraded image. Regularization is used
to obtain the restored image by surface reconstruction using the weak membrane
functional. The non-convex energy functional emerging from weak membrane
modeling is minimized by using the graduated non-convexity algorithm described
in chapter 2. The blurred discontinuities are enhanced while the existing ones are
preserved. The method is applied to real and synthetic iimages blurred by averag-
ing with various filter sizes. The results are given and it is observed qualitatively
and quantitatively that the method works quite good for this kind of degraded

images.

The main goal in image restoration is to obtain an image as close as to the
original one from the degraded one. Degradation is generally caused by the mo-
tion of objects or the imaging apparatus such as a camera, misfocusing of the lens
system or the atmospheric effects. In addition to blurring, the noise coming from
the recording media such as particles on the film, quantization or measurement
error is added to the image and thus cause degradation. The degraded image g

can be denoted as



BY!

=Bf4+n (3.1)

where B is the blurring function, f is the original image and n is the additive
noise. Since the noise is a stochastic process, the original image can be restored
to some degree only. For this reason, it’s usually impossible to obtain a perfect
restoration from the degraded image g. In the restoration process, the aim is
to obtain a f as close as to the original image f. A restoration method should

satisfy the following criteria:

e Deblurring,
e Suppression of noise,

o Preservation of discontinuitics,

Reducing the ringing effect.

The linear restoration methods developed for this purpose generally cause
ringing eflects at locations of fast intensity changes. These ringing effects are not
desired since they don’t exist in the original image and some authors have studied

to overcome this problem using the regularization approach [16].

3.1.1 Reduction of Image Blurring

When the blurred image model is expressed as

g(nl,n2) = f(nl,n2) * b(nl,n2) (3.2)

which is a part of the degraded image function Fq. 3.1 without the noise addition.
b(n1,n2) is the blurring function (point spread function). The restoration from
degraded image g can be performed by two conventional methods [15]:

1. Deconvolution (inverse filtering),

2. Blind deconvolution (b(nl,n2) is not known).



3.1.2 Inverse Filtering

Il the point spread function is known, an iterative procedure can be imple-
mented for inverse filtering. If fk is a good estimate to the restored image, fk * b
will be close to the degraded image g. Then fiy; is estimated by adding a cor-
rection term proportional to difference between fi, % b and g to fi. An ilerative

function may be written as [15]

f,cﬂ(nl,n?) = fi(nl,n2) + Ag(nl,n2) — fk(rzl,rLQ) * b (3.3)

~

where A > 0 and the initial estimate for fo may be chosen as

A

fo(nl,n2) = Ag(nl,n2). (3.4)

As k — oo in I5q. 3.3, the restored solution f will be closer to f in Eq. 3.2. The
difference between the degraded image and the blurred version of the restored

image is also used in the presented approach in this chapter.

In this study, the restoration is tried to be solved by modifying the weak mem-
brane functional develeped {or surface reconstruction and edge detection which is
explained in chapter 2 and in [2, 14, 5]. The blurring function is supposed to be
known as in inverse filtering. The blurring mainly infects the discontinuities on
an image. The edges are smoothed, corner points and T-junctions are rounded
and details caused by discontinuities are disappeared. In this method, the dis-
continuities are tried to be enhanced, edges are sharpened, hence removing the
blurring effect. A blurring term is added to the energy functional of weak mem-
brane and the blurring effect is tried to be removed while keeping and enhancing
the discontinuitics by using line processes. The additive noise is suppressed by
constructing piccewise smooth surfaces separated by line processes, and the sur-
face reconstruction property of the method also reduces the ringing effect seen in

many restoration methods.
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3.2 Regularized Approach to Image Restora-

tion

The ringing eflect of restoration algorithms may be divided into two major

parts:

1. Ringings near the boundary points of the image,

2. Ringings around the discontinuities on the image.

The ringing effect at discontinuities can be removed by using line processes, hence

r

tearing the membrane. This situation separates smooth regions by line processes

and prevents one region to be effected from the other one, which in turn disallows

ringing at discontinuities. There are two major reasons to use linc processes: The

first one is to preserve discontinuities, and the other one is to prevent ringing

effect of this type.

The membrane functional of the regulanzation theory is givenin 15q. 2.7. The

weak membrane functional emerging from this equation may be written as given

in log. 2,11,

])

D+S+P (3.
};Z_(fi,j — i) 56)
g Z S (fus = fira (0= mag) + (g = fago) (0 = £) (37)
“ZEZJW ). (3.8)

o~
it
~—

This functional is modified for the purpose of restoration of blurred images.
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3.2.1 Modified Encrgy Functional for Deblurring

The blurring function b is supposed to be known in this approach. This
function corresponds to B in lig, 3.1. The blurred image is supposed to be
degraded by convolving it with this function. The function & is the space-invariant
point-spread function (PSF). When the image f is degraded by b, the f in Eq. 3.6
hecomes fxb. The blurved version of restored image (f#b) should be close to the
input degraded image, when only blurring is considered [17]. This is the main

idea of the proposed method.

The modified energy functional in Eq. 3.6 has its D term changed as [5]
D=3 03 (% b)iy - diy)?. (3.9)
LI

When the neighbourhood interaction function is used as in Iq. 2.27 and

g, 2.28, the weak membrane functional becomes

E = Z((f * b),"j = d,',]')z + (3]0)
A Zga,A(fi,j — fic1,) + A? }:ga,x(fi,j — fij-1)

where gqa is the neighbourhood interaction function, b is the space-invariant
point-spread function, d is the degraded image and f is the reconstructed image

(17]. a and X are two real-valued parameters of weak membrane [2].
3.3 Discontinuity Preserving Surface Recon-
struction for Deblurring

Local neighbourhood [unction g imposes sioothing by using a and X pa-

rameters al continuous regions where discontinnous regions are selected by line



processes. There is a tradeoll between the first term and the term including in-
teraction functions. The first term in B 3.9 forees the solution to be close to the
degraded input image. The term with g [unctions imposes smoothing operation
while line processes £ and m shown in Eq. 3.9 try to break the membrane at
discontinuous locations of the restored image. This breaking results in piecewise
smoothing. Since the sharp changes are selected by line processes and smoothing
is not performed at these locations, the restored image will be piecewise contin-

uonts. The sharp changes will not be smoothed but will be enhanced.

3.3.1 The Blurring Filter

The blurring function b, in general, can have any form and size. The method,
in fact, does not put any burden on the shape of this filter. When b is taken as
a low pass filter, the method works as an image deblurring system. Sample low
pass {ilters are tried in this study. The first one if the averaging filter with size
£21¢

I

L3 L) B 1. 03 ., . JUONRINGEERINT SN
-;Xf) '(I,lld tnis Niter may be sinowi as

N
b=g |1l 11| (3.11)
111

This function may be a Gaussian function and may be written as

1 “12+ 2 .
b(z,y) = rorC 207 (3.12)

Any other filter which does not need to be a blurring function and does not
need to have a functional description can be used to implement for different
purposes. ['or example, if the function b is taken to be a sharpening flter, then
the solution of Fq. 3.10 is expected to be a piecewise smoothed version of the

input image f.
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3.3.2 Iterative Solution of The Modified Energy Func-

tional

In the solution of the non-convex energy functional shown in Iq. 3.10, grad-
uated non-convexity (GNC) algorithm is used. This algorithm is explained in
detail in chapter 2. This algorithm uses an iterative approach to solve the func-
tional. In each iteration, successive over relaxation method is used as in chapter

2. The iterations of this method may be written as

" " 0 " .
15 = A el (™ by = dig) + (3.13)
1,7
on (£ = FEE) + gla (£ — £ +
n n 1 n ]
Gealf7 = F) + 0anl£3 = 30 55

where f(®) is the image at nth iteration, X is the regularization parameter, w is
the relaxation parameter of SOR method, d is the degraded image, and ¢/, , is

the derivative of local interaction function w.r.t f;; (see Chp. 2).

When the PSI is taken to be the averaging filter as in Tiq. 3.11, the 57“( )
i,

part of this equation will be [5]

g .1
——“[ ( ficij-1+ ficrg + ficiger + fijor + fij + fijer + (3.14)

0fi; 9
Sovvg oot fing Flogn) - dil?
) |
2{ g[fi,j + fijr1 + fijee +
Jivrg + firrgir + firrgee +

fivag + firager + fivajra] +

%Uﬂz,jaz + fiago1+ ficzg +
ficijoa + ficijoa + ficry +
fig-2 + fig-1 + fi]

—d;; }.
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This iteration is performed all over the image. But this equation must be mod-
ificd at boundaries appropriately as specified in chapter 2. These iterations are
terminated when a pre-defined convergence norm is reached or a maximum num-
ber of iteration count is performed. The convergence norm used in this study is

the infintte norm.

3.3.3 Effect of The Blurring Filter on Iterative Equa-

tions

The structure of iterative equation will remain the same as in Iiq. 3.13 for
various PSIPs. But the open form of the iterative equation will change dramati-
cally. The part specified in Eq. 3,14 will be different. All of the f values will have
corresponding cocflicients of the blurring filter. In addition to the coellicients,
the size of the filter may change. In this situation, this equation will have extra

terms of f as the size grows larger than 3x3.

That part of the iterations may be expressed by defining a variable sized and
variable coeflicient molecule to implement different PSFs. For the averaging filter
in Eq. 3.11, the molecule will be a square with each side having a length of 3,
and cach member having 1. If blurring function b is any other function, such as
Gaussian with a changing o, then the length of each side and coeflicient at each

corner will be a function of o.

When the blurring function is represented by b with size By x B, (where

B; = B, usually), the convolution term in Eq. 3.10 may be formulated as

| Bz B2

(f * b)i.j = e Z Z fi+m,j+n : bm+%‘—,n+%1 ({315)

S m:vBl /2 n:—-B;/?
By-1B,;-1

S = >3 byn (3.16)
- r=0

p=0

By locating this equation in Ji¢. 3.10, the most general functional for M x N

image is expressed as in the following equation
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M~-1N-1 1 B /2 B,/2

E= Y Ylg X X fampnbymgm—di] +

2 2

1220 3220 m::»--Bl/z n:rsz/Z
M-1N-1 M-1N-1 )

22 ar(fig = firrd) + X D0 30 ganlfis = fig-1). (3.17)
i=0 j=0 =0 =0

The S term in Bq. 3.17 is calculated as specified in g, 3.16.

3.4 Implementation, Results and Discussions

The method is applied to several blurred synthetic and real images. The
images are first blurred with a known blurring function and then the restoration

algorithm is used to obtain the deblurred versions. T'ypical parameter values are

A = 1.6 and a = 1600. These are experimental results obtained by using the
averaging filter as PSI® with real and synthetic degraded tmages

Degraded checkerboard images are seen in the top row of Fig. 3.1 which
arc 128x128 sized images blurred two and three times by the averaging filter
given in Fe. 3,11, In the last row, the corresponding restored images that are
deblurred with the presented method are given. In I'ig. 3.2, similar results are
given for 256x2H6 House image. In Fig. 3.3, the degraded images are obtained
by first blurring by the same averaging filter and then adding Gaussian noise
with SNR=25d13. The variance of the zero mean Gaussian noise added onto the

bhurred images is calenlated by

7\}“5 Ei,j(fi,j - Mf)z

2
O

SNRag = 101g,, (3.18)

where iy is the mean of the input image onto which noise is to he added and o2
! : !

is the variance ol this image. The variance of the Gaussian noise is caleulated by

2
2 i

" " 10SNRas/10° (3.19)

(o}
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Figure 3.1. Top row: The blurred checkerboard images degraded by applying a 3x3
averaging filter two (left) and three (right) times. Bottom row: Restored versions of
the images. :



Figure 3.2. Top row: The blurred house images degraded by applying a 3x3 averaging
filter two (left) and three (right) times. Bottom row: Restored versions of the house
images.




Figure 3.3. Blurred and noise added (SNR=25 dB) checkerboard and house images and
their restored versions.



Table 3.1. Normalized mean square error values for blurred and noise added checker-

hoard and house images,

Image - SNR=30 dB
Gauss o, | NMSE || Gausso, | NMSE
chel - 133 7 6563
che2 - 22 7 6509
che3 - 113 6.9 6664
housel - 798 5.5 8283
house2 - 544 5.4 8222
house3 - 570 5.3 8283
clockl - 1314 5.6 6533
clock?2 - 852 5.5 6501
clock3 - 902 5.5 6723

In Table 3.1, normalized mean square error values are calculated between the
otiginal and the restored images from their degraded ones. The sample images
are checkerboard (che), house and clock images. The numbers written after the
name of the images denote how many times the image is blurred by the averaging
ilter in Fq. 3.11. From the NMSE values of the results given in Table 3.1, it can
be seen that the method works better for two times blurred images. For the noisy
images, the NMSE values are almost the same and the method usually amplifies
noise if the parameters of weak membrane model are not chosen carvelully. It is
observed that A and « parameters have significant effect on the restored image
auality and the number of SOR iterations. Even a very small change results in a
blurred or noisy restored image and causes the SOR iteration count to grow too
large. For example, a 0.1 change in A value in the restoration of checkerboard
image shown in Fig. 3.1 rises the SOR iteration count from 50 to 260. When X is
smaller than 1, it’s observed that a projection onto convex set, operation is needed
for the calculated f values. Otherwise, the calculated value (f(*+1)) grows larger
than 255 for an 8 bit image. This projection p may be expressed for an 8-bit,

image as
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p(fi;) = min(255, maz(fi;0)) (3.20)

or with a ¢-bit image

p(fi;) = min(2' — 1, maz(fi;,0)). (3.21)

This operation prevents the calculated f values to stay in meaningful pixel value

range especially for small A values.

The FMigures 3.1, 3.2, 3.3 and Table 3.1 show that the restoration using weak
membrane modeling successlully enhances discontinuities even in the existence of
noise. The blurring effect can be removed, noise can be suppressed, discontinu-
ities on the image can be preserved and ringing effect seen in linear restoration
methods can be eliminated in the image. The preservation ol discontinuities and
climination of ringing effect is realized by using line processes of weak membrane

model.

The main disadvantage of this method is the extravacant sensitivity ol noise
upon the parameters. In this case, the reasonable results can be obtained for only
a narrow range ol weak membrane parameters. The values that the parameters
can have cannot be chosen arbitrarily and it’s found to be hard to find a good
parameter set for general usage for noisy images. The main advantage is the
removal of ringing effect near the discontinuities which is seen in many of the

restoration methods.



CHAPTER 4.

IMAGE COMPRESSION USING WEAK
MEMBRANE MODEL OF IMAGES

4.1 Introduction

Discontinuous regions in a scene carry important information to identify and
locate the objects from the image data. These boundaries manifest themselves as
sharp changes in image intensities [8, 10, 13]. Regions between these discontinu-
itics are smooth and pixel values don’t represent sharp changes. This allows us
to determine the pixel values of smooth regions by using data along edges which
present, at discontinuities. In a 2D image, the edge data correspond to a very
sparse image where data exist only along the edge points. The non-edge data
may be reconstructed by using an appropriate surface reconstruction algorithm
which can cope with very sparse data and this sparse data consist of the pixel

values on both sides of a discontinuity.

The coding and decoding parts are built on a surface reconstruction algo-
rithm. The weak membrane modeling is used in both parts. Using the same
energy functional derived from weak membrane modeling for both coding and
decoding results in a compact algorithim. The scheme introduced in this chapter
can be synthetically divided into two separate parts where the first part is the
coding and the second is the decoding part. The coding part is again divided
into two consequent sections: In the first section, edge detection is performed

via line processes using weak membrane model of image [2, 14] as explained in
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chapter 2. Then the binary valued line processes are run-length coded. In the

second section, data around the line processes are coded using entropy coding.

The decoding part accepts 2D sparse data and line processes as input. In
this part, encoded data is located by using line processes which are obtained
by encoding the run-length coded line processes. Then, this data is used to
construct surface between edge points identified by line processes. Thus, the
surface reconstruction algorithm must be able to work with sparse data, and must

perform piecewise continuous reconstruction while preserving discontinuities.

4.2 The Coding Part

This part is divided into two sections in itself. In the first section, input
image is modcled by weak membrane and discontinuous points are detected by
line processes as explained in chapter 2. Then two separate information are coded
to reconstruct the image at the receiving side. These information are the binary

valued line processes and pixel values at both sides of the discontinuities.

4.2.1 Weak Membrane Modelling With Sparse Data

Weak membrane modeling is a discontinuity preserving surface reconstruc-
tion method and produces very smooth and continuous edges. 1idges are located
by a boolean valued array called line processes. This model is expressed by a
non-convex energy functional [2]. The following energy functional has a slightly

different notation from Liq. 2.11:

E = D+S+P (4.1)
D= XDy ) (4.2)

S = )\2 Z}_‘(l Zh” Ui 5 — u,-_l,]-)z + (], - E,,i'j)(u,-,]- - u,-yj_l)z (4.3)

P = QLZ Ui,j+£hi,j) (4"4)
i J
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where, d is the input and wu is the reconstructed image, £, and £y are boolean
valued vertical and horizontal line process arrays respectively. X is the scale
parameter, prescribing the smoothness and edge occurrence threshold together
with a which is the penalty coeflicient for P term. D is faithfulness to input
data, § expresses the deformation or smoothness of reconstructed surface, P is

the penalty introduced into the functional by assigning a point as an edge.

Surface reconstruction is performed by finding v which minimizes this non-
convex functional in Fq. 4.1, During the minimization process, D term assures
that the reconstructed surface u will be close to the original one, d. Smoothing is
imposed by the second term S, by using the first order derivatives. Discontinuities
are preserved by preventing the sioothing operation al edge points where edges
arc identified by £, = 1 or £, = 1, which signifies that the membrane is torn
at these locations. The penalty introduced into the overall energy functional by
assigning a point as an edge point is maintained by the last term P which prevents
all line processes to become 1. Edges are the points where line processes have the

value 1, and in smooth regions line processes resemble the value 0.

[n minimising this non-convex functional, graduated non-convexity (GNC)
algorithm is used [2, 14]. This algorithm uses a modified version of the encrgy
functional given in Eq. 4.1 where the approximation of modified [unctional to
non-convex one is controlled by a parameter. A comprehensive study on this

method may be found in chapter 2.

In addition to producing continuous edge segments, this method can be used
for both edge detection and surface reconstruction from sparse data. To handle

the sparse data, the weak membrane functional may be expressed as:

= D+S+P (4.5)
D = 305 Busldij — ui)? (4.6)
T
S o= N3N (0=l )iy — tieng)? + (1= Loy )i — wgia)? (4.7)
TG

P = OAZZ(Eh;,janu;J) (4.8)

&



whcm,

il data is available at (z,7),

ﬁt,] prasny ! (4'9)

0, otherwise.

The sparsc information marked by g can be coded efficiently. The information

is only a portion of the entire image.

4.2.2 Sparse Information for Surface Reconstruction

An edge point means that a discontinuity exists at that spatial location and
these discontinuities are denoted by two line process arrays. Each line process
(£n;; and £y, ;) resides on one side of a discontinuity which resulted from two very
different pixel values (Eq. 4.5). To reconstruct pixel values on either side of a
discontinuity, u;; and u;_yj for £y, and u;; and u; ;. for £, ; are needed. The
location of line processes and related pixels are illustrated in Iig. 4.1. The surface
reconstruction algorithm cannot construct surfaces lying on both sides of an edge

point without knowing both of these pixel values on these surfaces.

(=277
O
/5 ly;; © vertical line process
lp, ; » horizontal line process
!T,". .
o i S
(ti-1) (L5}

Figure 4.1. Line processes in two dimensions.



4.2.2.1 Line Processes — Rectangular Array Formation

There are two sort of discontinuity, one vertical (£,, ), and one horizontal
(€n; ;) line process (Fig. 4.1). A vertical discontinuity means that there is a
sharp intensity change from pixel (4,7 — 1) to (3, 7), resulting corresponding line
process to become 1, that is £, ; = 1. Similarly, A horizontal discontinuity means,
that there is a sharp intensity change from pixel (2 — 1,7) to (z,7), resulting
corresponding line process to become 1, that is £y, ; = 1. Using this kind of two
separate line process arrays results in a hexagonal grid of line processes for the

final image. This 1s illustrated in I'1g. 4.2.

To obtain a rectangular line process array with the same size as the input
image, the point (z,7) is marked to be an edge point if any one of £y, ; or £, ;
represents a discontinuity. Then, these points are denoted by a single line process
array k. The components of k& may be computed by simply applying the OR
Op(:l,‘a‘t/.lOlll to horizontal and vertical line processes, i.e. kij = £y, ; OR £y, ;. The

S term in Eq. 4.7 may now be expressed as,

§= X373 (1 — kij)l(wij — wimr )" + (i — i j-1)’] (4.10)

where,

I, (n,;, =1) OR (L, =1

kij=9q (s _ ) OF by =) (4.11)
0, otherwise.

a

a

L]

L]

Pixel arrangament Line process location

Figure 4.2. Hexagonal grid formation of line processes.
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This form attaches just one line process to both of the directional first order
derivatives (I'ig. 4.3). This results in a rectangular line processes array instead of
an hexagonal grid occurred with vertical and horizontal ones. Then, the sparse
data may be marked by the rectangular line processes where existing data is

marked by line process with value of 1.

4.2.2.2 Marking Sparse Data

If a point on the line process array k is 1 at (4,7), there is a discontinuity
and three data values al (7,7), (¢ — 1,7), and (2,7 — 1) are needed in the surface

reconstruction step (Fig. 4.3). The information to code may now be summarized

as below:

e Rectangular grid array of line processes which denotes the location of edges.
This is a boolean valued 2D array.
e For each line process with a value of 1, i.e. k; ; = 1, three data (pixel) values
as,
i1. the current pixel at (z,7),
12. neighbouring pixel at (z — 1,7) and,

3. neighbouring pixel at (2,7 — 1).

'gz'-zui T

I, kigry=1or
Bij = kijon =1, (4.12)

0, otherwise.

L
-

;v

Figure 1.3, Extraction of /7 from k.
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Locations with value I on the line process array k describes locations of edges,
hence the first item. Pixels for i1 are marked by k;; = 1, and data for 42 and
i3 arc marked by Bi-1; = 1 and Bij-1 = 1 respectively (Fig. 4.3). Line process
array k is used to locate discontinuities, and 3 is used to mark pixels which caused

discontinuities.

In this way, location of pixels at both sides of discontinuous regions are made
available lor reconstruction al the decoder. 'To find a single arvay to locate sparse
data, we use arrays k and 8. k may be obtained from £ as defined in Iiq. 4.11. B
array may be extracted uniquely from k as in IYig. 4.3. Then, k is the least space

occupying one that can be used to locate discontinuities and needed pixels.

4.2.2.3 The Energy Functional

The energy lunctional at the coding part deals with non-sparse data, which
means that there should be no 8 term in the functional. The energy functional

to be minimized is expressed by combining 5q. 4.5, Kq. 4.10 and Iiq. 4.11:

&
i

D4+ S+P (4.13)

D = ZZ(d,',j - u,-,]-)z (4.14)
§ o= N3 —kig) ((wig —wicag)® + (wes — uig1)’] (4.15)

P = aZZk;‘j. (’Jl())
i

The functional in Eq. 4.13 is non-convex and the minimization method used
for this functional is explained in chapter 2. Graduated non-convexity together
with SOR is used to find the solution for this functional. There are two arrays
found after minimization: One is the image array u which is the reconstructed
surface. The other one is the line process array k which denotes the locations of
discontinuities. The coded line processes and sparse data are the two outcomes

of this functional.



4.2.3 Coding of Line Processes and Data

The line process and data array are coded separately. The line process array
is composed of ones and zeros, that is, one bit is enough to code each member of
line process array. For an image with size M x N, the line process array occupies
M x N bits. Another property of line process array is thal it is very sparse;
most of the entries are zero. That means, there arc long runs of zeros in this
array. This is the reason of using run-length coding for line process array. Since
computation of 8 array from line processes k is unique (Fig. 4.1), coding of only
line processes is enough to obtain the following G array at the decoder part by

Eq. 4.17. B array marks the locations of needed data and defined as

Bij = (ki = Vor(Bii1j = Nor(Bijor = 1). (4.17)

The data portion of the information which is located along the boundaries is

sparse. This data is coded using dynamic entropy coding.

4.2.3.1 Run-Length Coding of Line Processes

[lach row of the line process array is coded separately, that is, the next row
is not trecated as the continualion of the current row. FEFach entry of the line
process array is represented by either 0 or 1. Thus, in coding of the binary valued
line processes the value is not sent. But only the number of same valued bits
are coded in a stream composed of consequent zeros or ones. When the coder—
decoder couple has agreed on the starting bit value (either 0 or 1), at arrival of
cach number, the value is toggled from 0 1o | or vice-versa. In Uhis way, only
the run-length is coded. The maximum allowed size of this stream, which is the
blocksize, is simply 2™ — 1, where m is the number of bits rescrved to code this
number. To find the optimal blocksize which gives the smallest size of coded line
processes, we've tried for a range of blocksizes and chosen the best one which
requires the smallest space to code this array. The blocksize is retained at the
decoder side by sending m in one byte. Once optimal blocksize is found, this is

used for the whole line process array.



Whenever the actual length of the same valued bit stream exceeds the block-
size, the number represented by blocksize is sent. Then a zero is inserted and
the counter is resct. The zero causes the line process value to be toggled without
receiving a new information. The next number toggles the value once more which
returns back to the one before zero is sent. The remaining part of this length is
coded in a similar manner. The space wasted by this method is m, which is the
number of bits required to represent blocksize. Since the length of the coded line
processes is calculated including this kind of wastings, the blocksize used is still

the least space occupying one.

4.2.3.2 Huffman Coding of Sparse Data

Once B array is calculated as in I5q. 4.17, location of pixels to be coded is
known. By locating this data on the input image with ﬁ array, all available 2D
data where ,[Ai,-'j = | is converted to an 11) array. This is a reversible process, since
this 11 data can he located onto two dimensional image arvay by using [3 array

by scanning the image in the same order.

The 1D array obtained in this way is coded by entropy coding (or Huffman
coding) [15]. For each image, a separate coding tree is built, which means that
dynamic Huffman coding is used. This coding method does not yield low bit rates
for the coded image. In most of the 8-bit real images, the bit rate ol entropy coded
image has been around 7. The reason of this is that, the data has a broad spanning
range, i.c. it has nearly an homogeneous histogram distribution. Data to code
are the pixels causing discontinuities, which means that two neighbouring values
are too much different. This property results high bit rates without a convenient

preprocessing of edge data.

4.3 The Decoding Part

The decoding part is built on a surface reconstruction algorithm. The input is
composed of two separate data parts: The first is a very sparse 1D data containing

the pixel values along edges. The second part is a binary valued 2D array which is



Table 4.1. The decoding algorithm.

e Retain number of rows and columns of the image and the blocksize.
o Decode run-length coded line processes onto k array.
e Extract 8 from k by Eq. 4.3 and Eq. 4.17.

¢ Decode one pixel value from entropy coded data whenever /Bi,j = ]

and locate this data at (z,7) on the image array.

e Perform surface reconstruction from sparse data by weak membrane
modeling using Eq. 4.25 and Eq. 4.26.

used to locate the sparse data on 2D image array. When sparse data is located on
image array, surface reconstruction algorithm based on weak membrane modeling
is applied and image is reconstructed. The surface reconstruction method is the

onc used in the coding part with the addition of sparsity.

4.3.1 The Main Algorithm

At the receiver part, just the reverse process is done for decoding. Run-length
coded line processes are extracted and B array is calculated from the line process
array k as in Eq. 4.3. 1D data is decoded and converted to 2D array by locating
the exact co-ordinates with the help of 8;; values: Pixel value is assigned to zero

il B;; is zero, or a non-zero pixel value is extracted from 1D data when §;; = 1.

After locating the available data, surface reconstruction from sparse data is

realized to construct surfaces between edges.

4.3.2 Extraction of Line Processes and Data

Line process array is obtained by encoding the run-lengths of zeros or ones.

Fach row is encoded separately. In most of the images, the boundaries need



57

special treatment, and except pixels on boundaries, probability of edge existence
is very small at the outer pixels. For this rcason, cach row is assumed to start
with zero in the implementation. The boundaries are studied in a separate section

helow,

After line process array, k, has been encoded, 8 array is calculated by using
Fq. 4.3. Line processes k and sparse data indicator 8 mark where data exist for
surface reconstruction. That’s why, these two arrays are combined into a single
array B by Eq. 4.17. This array will be used in the surface reconstruction step

explained below.,

The sparse data is located by using this B array by the method given in the
main algorithm on Table 4.1. The values of input data which is denoted by d
array, will not be modified by the surface reconstruction algorithm furthermore.

B array is used to satisfy this, too.

4.3.3 Boundary Conditions

In general, boundaries do not represent edge information. In the surface
reconstruction scheme from sparse data, boundary pixels must be known. If the
boundaries are not known, then they are initialized with any value, and presuin-
ably with zero. In the case of itcrative solution of weak membrane functional,
propagation from the nearest available data will take too much time, and even
with the tightest convergence criteria, boundaries will still remain dark, if ini-
tialized with zero. Il a boundary point takes any other value as the initial value,
that value won’t change if there is not sufficiently near available data to that
boundary point. To prevent this, all pixel values at the boundaries are coded.
This boundary condition is satisfied by simply assigning | to boundary locations

on B array in the decoding part.

As a boundary condition, the four corners and four sides of the image are
known to have one in @ array, in advance. That’s why, the line processes at the
boundaries need not be coded. The size of the line process array to code is thus

reduced from M x N from (M —2) x (N — 2). This is used to obtain the sample
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images in this study.

SOR iterations to minimize regular membrane functional need special treat-
ment for boundaries as well as corner points. Assigning 1 to # at boundaries
eliminates this kind of special treatment to boundaries in the reconstruction step,
reducing code size as well as time consumed during iterations. The only disad-

vanlage is that data values at the boundaries must also be coded.

4.3.4 Image Reconstruction From Sparse Data

To reconstruct the image at the decoder part, weak membrane modeling
is used. The weak membrane modeling is expressed by a non-convex energy
functional as given in Eq. 4.5 and in Eq. 4.20. The solution of this equation by
GNC, u, is the reconstructed image. SOR (Successive Over Relazation) is used in
the solution of energy equation in Eq. 4.5 by GNC. By solving the Euler-Lagrange

equation, this iterative scheme is obtained,

(ni1) ) AU

= U, 1.18
1,7 1,] T Bui,j ’ ( )

(4

where w is the relaxation parameter and w € [0,2]. This parameter controls
convergence together with T and a good selection for w is found to be 1.25 [18].
T is defined to be 2(B;; + 42) [2]. n denotes the iteration number in increasing

order. By taking derivatives and rearranging we obtain,

(nt1) _ o (n) _ y2 v .
‘U,;,]' Uy 4 2(,61',]' + 4}\2)
i~ (i1, + vign; + Uigo1 + Uiz

(4.19)

1 .
where B;; = 0, and uET ) = d;; where [;; = 1. At the boundaries 8 array
is 1; this means that pixels at boundaries will not be modified. Thus boundary
conditions tell us that SOR iterations will not be performed at boundaries. This

condition result in a single SOR iteration as given in Eq. 4.19.



]
<X

With & in hand and 8 extracted from k; energy equation for weak membrane

in . 4.5 becomes

=

— D+S+P (4.20)
D o= 320 Bisldi;— i)’ (4.21)

S = NI = kig) - [(wig — wie1g) + (wig = wig1)’]+ (4.22)

P = oS k. (4.23)
t g

By investigating the modification conditions of SOR iterations, the encrgy
functional will be reduced in the following section. This reduced functional will
make the solution easier than the regular iterations used in the graduated non-

convexity algorithm in chapter 2.

4.3.5 The Reduced Energy Functional

During the SOR iterations, pre-existing data should not be modified and
iterative calculations must be performed only for non-existing data in Eq. 4.19.
Similarly, line process atray k and B array are not modified, either. If goal is
to construct surface from sparse data, it is not important whether the data is at
an edge location or in the middle of a smooth region. The important thing is to
locate and use available data for reconstruction. The available data is indicated
by either # or k array, and it makes no difference whether data is marked by
either # or k. The molecule of a membrane has a structure with five elements.
This molecule has its center and the four connected components which are only
one pixel apart as illustrated in Fig. 4.4. This means that any molecule cannot
contain pixels in different regions separated by edges, each pixel in one molecule
belongs to the same region. Thus an ordinary sparse membrane functional is

enough for reconstruction.

The P term in Eq. 4.20 is always constant since line process array k won’t

change, so P term can easily be eliminated from the minimization step. D term is
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Figure 4.4. Regular membrane molecule.

not processed at available data locations to satisly u; ; = d; j where Bi,j = 1. This
term is not processed for unavailable data either, since no d; ; exists when §; ; = 0.
These two conditions eliminates D term {rom energy functional. In advance, it’s
known that surfaces on the regions of unavailable data will be smooth, which

indicates S term in Eq. 4.20 to be sufficient for reconstruction.

Hence, only the § term of Eq. 4.20 is lelt which includes the first order
derivatives imposing smoothness, which is what we are looking for. The § term

alone results in a yet incomplete functional:

E = XYY (1 —ky) (4.24)

(i — wiz1,)® + (i — uij-1)’].

But, using & alone does not provide the restriction for modification based on g8
array in [iq. 4.19, which is the reason of incompleteness of equation in 4.24. To
satisfy this restriction, 8 is used instead of k in Eq. 4.24 which can be obtained

by Eq. 4.17. The energy functional then becomes

E = XY (-8, (4.25)

(i = wiz1,5)? 4 (i — wij-1)°]

which means that updating of pixels during iterations is performed only when
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ﬂAM = 0. The SOR iteration in Eq. 4.19 now becomes

n+1)

(
Uy 5

n w oo
ull) — g Mg = (imag o+ i g o+ g+ Ui (4.26)

where f; ; = 0 to construct pixel values of unavailable data locations.

4.4 Results and Discussions

The prescribed method is applied to various synthetic and real images. All
of the images are coded and encoded using the same parameter values. A, «
and SOR-w are taken the same values for all of the images for easy comparison
between different images. In the coding part, A is 0.8, a is 250 and SOR-w is 1.2.

In the decoding part, A is 6 and SOR-w is 1.2. & is not used in the decoding part.

Various information including the sizes, blocksize and compression ratio of
different imalges is presented in Table 4.2. The first column shows the name
of sample images where their respective sizes are given in bytes in the second
column. In the compression size section of the table, the first column gives the
number of bits used for blocksize. The blocksize may be thus calculated by 2™ — |
where m is the run-bits given in the table. The line proc. column is the coded

size of the line processes.

Table 4.2. Size and compression ratio information of coded images.

Compressed Size (bytes) Compression
Run | Line Data Data | Coded
Image | Size || bits | proc. | entropy | size Data | Total || Ratio | % | NMSE
Che. 16kb 6 527 0.876 | 1258 188 715 23:1 | 96 62
Bars 16kb 708 0.942 1636 234 942 17:1 | 94 142
House | 64kb 3153 7.538 | 8613 9037 | 12190 §| 5.3:1 | 81 313
Lenna | 64kb 5203 7.572 | 14004 | 14663 | 19866 || 3.2:1 | 70 238.
Clock | 64kb 4121 7.607 | 10302 | 11028 | 15149 || 4.3:1 | 77 4998
Brain | 30kb 3522 6.281 | 14693 | 11954 | 15476 2:1 |50 89

W A O
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The data size given is the number of pixel values to code, or the number Jéi
locations with value of 1. Data entropy is the value calculated in the entropy
coding part. Coded data is the entropy coded data size and can roughly be
calculated by multiplying the entropy by the data size. The total size is given after
run-length and entropy coding is done and is the size of the whole compressad
image. The ratio section shows simply the ratio of the original image to the

compressed images size. The compression percentage is calculated by

a""Ca

Percentage =
where I, denotes the size of the original image and C, shows the size of the
compressed image. NMST is calculated between the original input image and the

reconstrircted image at the decoder part.

The overall flow diagram of the presented algorithm is illustrated in IMig. 4.5.
The left side of the figure shows the coding part and the right side shows the

decoding part.

There are checkerboard and bars images in the synthetic image set. The
original synthetic images are shown in the upper row in Fig. 4.6. The images in the
lower row are reconstructed versions of the coded ones. From the investigation of
reconstructed checkerboard image in this figure, it can be seen that in continuous
regions, there are circular slightly darkened arcas. This kind of regions appear at
locations residing apart from the discontinuities. During the SOR. iterations of
surface reconstruction, The propagation of pixels to this kind of places will take
time, but the convergence criteria will be satisfied before this propogation is fully
completed. A similar sinking efect is also seen in the reconstructed bars image.
The large darkened circular region near the upper left corner of clock image is

also a sinking effect.

These figures show that, the effect of sinking is proportional to the distance
of this region to the discontinuities. In this figures, the locations corresponding
to B,r',» = 0 are {illed with zeros belore the reconstruction begins. If these locations
are filled with all ones, then the sinking effect will be reversed and these regions

will be brighter. One solution to prevent this kind of sinking effects, the locations
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Fignure 4.6. First row: Original 128x128 checkerboard and bars images. Second row:
Reconstructed versions of checkerboard and bars images.

at B,-,j = 0 may be filled by the local mean. But the locality cannot be taken
constant over the image as well as for different images. The windows used to

calculate the mean must include sufficiently large number of existent data.

In this study, data to be coded is used without any preprocessing. This is
the main reason of a rather lower com pression ratio. A good approach to make
the histogram of this data more narrow is to perform a differentiation along the
edges. This transformation should be done along the edges, since at the edges
two neighbouring pixel values differ too rapidly. But, since an edge separates
two different pixel values and the edges are, in general, smooth and continuous,

subtraction process should give very small values which are gathered around



Figure 4.7. First row: Original 256x256 House and Lenna images. Second row: Recon-
strueted versions of House and Lenna images,
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Iigure 4.8. First row: Original 256x256 Clock and 175x175 Brain images. Second row:
Reconstructed versions of Clock and Brain images.
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zero, on either side of an edge. By having a narrower histogram, entropy coding

performs better. This is not performed at the current work.



CHAPTER 5.

MULTISCALE IMAGE REPRESENTATION AND
EDGE INTEGRATION BY WEIGHTED
ACCUMULATION

5.1 Introduction

In this chapter, a multiscale edge representation using regularization is in-
vestigated. Fach level of this representation, called the Difference of Regularized
Solutions (DORS) representation, is obtained by taking the difference between
two regularized solutions with different regularization parameter values [6, 7).
Each regularized solution is obtained by minimizing an energy functional asso-
ciated with membrane functional. It is shown that, in 1-Dimensional case, the
DORS representation can be also attained by convolving the image data with a
kernel named the Vietnamese hat operator. After analyzing the multiscale be-
haviour of edges in this representation, a multiscale edge integration scheme is
developed. By means ol a weighted accumulation process, the algorithm is ca-
pable of overcoming problems ol shift of edges, appearance and disappearance
ol edges, and branching in the scale space. Thus it can be applicd to the other
multiscale edge representations as well. Performance of the integration scheme

on different edge representations is evalnated by using synthetic and real images.

Edge detection is a crucial step toward ultimate goal of computer vision, since
the performance of the higher level processes such as object recognition relies

heavily on the accuracy of the detected edges. In general an edge detector is
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expected to have good detection and good localization performance when applied
Lo a noisy image. Major diflicultics in edge detection are the noise corrupting data
during the imaging and sampling processes, the tradeofl between detection and
localization performance and the multisize features to be extracted {from image.

These are studied in chapter 2in detail.

One approach to overcome these problems is to use locally adjusted schemes
[2, 8] and another is to exiract edges al various scales and then to integrate the
multiscale results into a single edge map, the multiscale edges are combined into
a single edge image by solving the matching problem of edges at different scales.
However several difficulties are encountered in integration process. Iirst of all,
edges may shift as the scale changes and the amount of shift is increased al coarse
scales. In addition, some of the edges may disappear at coarse scales and some

edges may be split to different branches as the scale parameter increases [19)].

Several integration schemes have been proposed to overcome these problems
such as edge focusing [19], feature synthesis [10] and edge linking [7]. Among these
integration schemes, the edge focusing algorithm appears to be the most complete
scheme in terms of utilizing the behaviour of edges in multiple scales. However
the fact that the major edges may disappear at coarse scales is disregarded in

this scheme.

In this study, a multiscale edge representation called the DORS representation
based on regularization is investigated at first. Fach level of the DORS repre-
sentation is obtained by taking the difference between two regularized solutions

obtained with different regularization parameter values.

Continuity in the scale space to ease the integration is achieved by using
all possible pairs of the regularized solutions. Then a multiscale edge integra-
tion scheme using weighted accumulation is expanded from its one dimensional
version introduced by (Gokmen to two dimensional case [6]. This coarse-to-fine
integration scheme attempts to overcome all difficulties encountered in multiscale
edge integration, that is, shift, new appearance, disappearance and branching of
edges in scale space. The integration scheme was applied to edges from the DORS

representation and the multiscale edges obtained by Canny detector.



5.2 Difference of Regularized Solutions

Regularization is a general framework to solve ill posed problems by imposing
constraints on the solution. A multiscale image representation can be obtained
by imposing the smoothness constraint on the solution and then continuously
sweeping the regularization parameter which controls the amount of smoothing

(6, 7).

52.1 The Membrane Functional

The smoothness constraint can be imposed on the solution by finding the

function f that minimizes

En(£i0) = [ [(F = @ dady+ 2 [ [ (72 + 57) dady (5.1)

or

E,,(f,/\)://n(f — d)? dzdy +A//n( 2 4 of2 4 f2)dady  (5.2)

where f, and f, are the first order derivatives of f with respect to = and y
respectively and fz, aud fy, are the sccond order derivatives similarly. En,(f, A)
and E,(f,A) are the energy functionals associated with membrane (string in 1-
D) and thin plate (rod in 1-D) respectively. In these functionals, the first term
on the right side is a measure of the closeness of the solution f to the input
data d and the second term, stabilizer, is a measure of the smoothness. The
smoothness is imposed by the first order derivatives in membrane and by the
second order derivatives in plate functional. The compromise between these two
terms is controlled by the regularization parameter A. In this study, the multiscale

representation is obtained using membrane functional E,,(f,A) in Eq. 5.1.

The scale parameter in this representation is the regularization parameter A

so that the coarse levels of representation are obtained by minimizing the string
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[unctional with a large A, while fine levels are obtained by using small A. Sweeping
the parameter A continuously generates the scale space representation. Surfaces
are reconstructed for each A value and the reconstructed surfaces are identified

by their respective scale parameter values.

5.2.2 Multiscale Edge Detection using DORS

In the following discussion, the sequence of different scales are obtained by
using A; values from a A set consisting of ordered A; values. Let v(z,y; A;) be the

regularized solution with the regularization parameter J;, that is,

v(z,y,N) = {v(z,y): Ea(f,A) = (5.3)
inf [ [(f = P dody + 2 [ [ (2 + 52) dody)

where A; is a member of some A set defined later in this section, and d is the

input data.

Now we define DORS(z,y; A, Aj) as the difference of two regularized solutions

with regularization parameters A; and Aj, that is,

DORS(z,y; Ai, Aj) = v(z,y; M) — v(z,9; A5), Ai # A (5.4)

FFor 1-Dimensional case, it was shown that [2, 7]

v(z; A) = d * he(z; ) (5.5)

where
l
ho(m:)) = —e 1o/, (5.6)
20
which means that minimizing the string functional is equivalent to convolv-

ing the data with a filter whose impulse response is h.(z;A). In this case,

DORS(z,y; A, Aj) can be written as
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DORS(z; i, A;) = d * H(z; Ay, \;) (5.7)

where

H(z; Ay A5) = he(z; Xi) — he(25 25) (5.8)

is called the Vietnamese hat operator [6]. Ilig. 5.1 shows the filters hy(z;1.5)
and h,(z;3), and Fig. 5.2 shows the Vietnamese hat operator H(z;1.5,3). The
Vietnamese hat operator has one positive lobe at the center and two negative
lobes at sides like the Mexican hat operator, so that the zero crossings of the
signal convolved with filter can be marked as edge points. The properties of
he(z; ;) and H(z; i, A;) filters as well as relationship with other edge operators

are considered in [7].

Let k. (z; A;) and h.(z; };) denote two regularized solutions obtained by using

Ioq. 5.6. The DORS representation may then be rewritten as
| i 3

DORS(z; X, A;) = h(z; ) = he(x;4)) (5.9)
1 1
il lel/A: _ lz1/A;
v . N

In order to detect zero crossings, the DORS image is equated to zero, that is,

Ai . lalin _ gtel/ (5.10)
Ai
and by rearranging
A Aj
e = (). (5.11)

where w,e is used instead of |z]. This means, after convolving the image with
Vietnamese Hal operator given in Fq. 5.8, the pixels with value w,e caleulated
in Iiq. 5.11 are assigned as edge points. It can easily be seen that w,. is always

a positive number. The two conditions are
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Figure 5.2. The Vietnamese hat operator I1(2;1.5,3).

I. A; > A leads to In 1;1 >0, A; — Ay > 0. This gives w,e > 0.

2. X5 < X leads to hl% <0, A; — X < 0. This gives w,e > 0.

Now, given a set of regularization parameters

A = {/\1)/\2"‘->/\n}1 Vi, A < Ait1,

we construct the multiscale image representation V as
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V = {v(z,y; M), v(2,¥5 A2), -, v(2, 95 An) ), A Aj €A (5.13)

and the multiscale edge representation W is formed as

W = {’U)Lz,wl'a, vy Wi, W2 3, Wa 4, ..y Wan, ...,wn-l,n}, /\,‘, AJ & A. (5 l’l)

where

w;j = zc | DORS(z,y; Xi, A;) ]

—
-t
o ]

—

and

L il DORS(z,y; A, Aj)
zc[DORS(z,y; M, Aj)] = has a zero crossing at (z,y) (5.16)

0 otherwise.

As seen from Iiq. 5.14 the set W contains not only the pairs w; ;41, but also all
other pairs provided that 7 < 7. Thus m = n(n—1)/2 levels are constructed from
n regularized solutions. The use of all pairs w;; with 2 < j creates intermediate
scales and this continuity in scale space makes tracking from course to fine scale
casier during integration. I"ig. 5.3 shows regularized solutions and the multiscale

edges obtained from them.

5.3 Multiscale Edge Integration  Using
Weighted Accumulation

In the multiscale algorithms, a common approach is to consider a few num-
ber of images at different scales and try to match the edge segments at these
levels. While a small number of levels is desirable to reduce the computation,
a continuous transform of features from level to level is also crucial to solve the

correspondence problem in the matching process, which requires a large number
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Figure 5.3. Checkerboard images (SNR=7dB) used in DORS and integration. The
first column and the last row show regularized solutions with the indicated parameters.
The noisy edge images obtained by using two images with DORS in the corresponding
row and column are presented in the lower part of the diagonal. In the right-most
column, results of intermediate integration for DORS and in the lower-right corne, the
final integrated edge image are presented.
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of levels in scale space representation. In the presented integration scheme, it’s
aimed to achieve this continuity in scale space without proportionally increasing
the required computation. This is attained by considering all pairs that can be

constructed from available regularized solutions.

The integration algorithm uses a set of edge images as input. If the number
of these images is denoted by m, then the image set can be represented by W

array as

W = {wi,ws, ..., Wnm} (5.17)

where the scale increases with increasing indices. In this case, wy corresponds to

the finest scale and w, corresponds to the coarsest scale.

The edge image set in Eq. 5.17 is obtained from DORS images by an inter-
mediate integration. The edge images for W in Eq. 5.17 are obtained by keeping
the edge points which exist in at least two images with the same first parameter
in Eq. 5.15. To obtain wy, from DORS images, the intermediated integration
of DORS edge images wpmx where k € [, N] are performed. The input images
to this intermediate level integration and the integrated edges are illustrated in

Fig. 5.3.

5.3.1 Behaviour of Edges in Scale Space

In integration scheme, scale space is divided into three categories: Coarse
scales, mid scales and fine scales. Based on the behaviour of edges in scale space,
we know that coarse scales Tavour the detection performance of edge detection,
i.e., most of the edges are true edges but their locations may be wrong. The fine
scales, however, favour the localization performance, i.c., the edge locations are
correct. but there may be many spurious edges due to noise. In the integration
scheme, the edges detected at the coarse scales are tracked down to the finest
scale in order to determine the correct position of the actual edges. In order to
handle disappearance, appearance of edges and branching in the scale space, a

scheme based on the weighted accumulation of edges is developed.



5.3.2 Weighted Accumulation and Edge Tracking in

Scale Space

In a coarse-to-fine tracking, first the accumulation array is set to the coarsest

scale edge (wy,) image values by

acc(z,7) = wm(1,7) (5.18)

where 17 and j correspond to row and coluinn number, respectively. The coarsest
scale image w,, is taken from the multiscale image set given in Eq. 5.17. Then for
each edge point in the current level we try to find corresponding edges at the finer
level by scarching its small neighbourhood such as 3 x 3. Two kinds of search
operation are performed to find one or more corresponding edge points. The first
one is called forward search and the other one is called backward search which is

performed just after the first one.

5.3.2.1 Forward Search

This is the primary search stage and edge points in the finer level are de-
termined which will be used in the backward search. For each edge point in the
coarse level, a search in a 3 x 3 window is performed to find edge points in the
finer level, The detected points are sorted by their distances to the location of the
coarse level point. These points are processed in the linking operation starting

from the nearest one to prevent false connections.

This forward scarch operation is illustrated in Fig. 5.4. In this figure, Level
n is the coarser level and Level n — 1 is the finer level where n denotes the
scale number as smaller n corresponds to finer scale. Black points denote the
edge points in both levels. Shaded points denote the non-edge points in the
3 x 3 scarch window. Scarch operation is performed between cach of two such
consequent levels in the multiscale image set. Edge points in Level n — | is

scanned for correspondence to point wu(z,7) al Level n in the scarch window.

The size of the secarch window size is taken as 3 x 3 in this figure and in the
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Figure 5.4. The forward search operation to find edge points in the finer level.

implemented integration algorithm. Two edge points are found in Level n — 1,
and they are labeled wf,l_)l(k, l) and wf,z_zl(k, [) in this figure. The other edge point
in Level n — 1 is not in the active search window which is drawn by thick lines,
therefore not processed. wfll_)l(k,l) may also be denoted by w,_1(z,7 — 1) and
wffz.l( k,l) may also be denoted by wu-1(2 + 1,7). Il we assume thal a coarser
level edge point may be connected upto three points in the finer level, then the

point wy(z,7) will be connected to both of these points.

An edge point may be linked to at most three possible edge points in the
finer level in order to handle branching that may occur as the scale parameter
decreases. I'ig. 5.4 illustrates a branching operation where there are {wo branches

from point w,(t,7) to 'wsll_)l(k, 1) and wslz_)l(k:, 1).

5.3.2.2 Backward Search

After the candidate edge points at the finer level are found, a backward search
operation is performed to connect the finer level points to the nearest coarse level
point. A separate backward search operation is performed for each candidate
point thal has been found at the forward search operation. The backward search
is realized to prevent more than one coarse level point to be linked to the same

fine level point thus leaving some of the fine level points unconnected.
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Figure 5.5. The backward search operation for the candidate points detected at the
forward search.

The backward scarch operation is illustrated in Fig. 5.5. In the figure, black
points denote edge points in both levels and shaded places are non-edge points.
Row numbers are denoted by 7 and column numbers are denoted by 7. There
are only two edge points in the fine level and their locations do not coincide with
any of the points in the coarse level. In the absence of backward search, point
wn(1—1,7) and wa(z, 7) will be connected to wn_1(¢,7 —1). The point wp(2 41, 7)
and w,(2 + 2,7) will be connected to wa—q(z + 2,7 — 1). This causes the line
in coarse level to be broken into disconnected points even though this line is
continuous in Level n — 2. To prevent this, backward search is used. It’s satisfied
in backward search that each fine level point may be connected at most one coarse
level point. The connected fine level points are marked so that, another search

will not link any other coarse level point to this one.

I'ig 5.6 represents the difference between edge linking with and without the
existence of edge linking. The edge points are shown by X and non-edge points
are represented by 0. The arrows denote the linking direction and are directed
toward the connected point in the finer level. The coarse level edge points are
linked to a finer level edge point if one is found in the scarch window in the case
on the left side. This permits more than one coarse level point to be connected
to the same location in the finer level. This condition is illustrated on the left

side of Fig. 5.6. In this situation, edges are disconnected after the linking. In the
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Figure 5.6. The advantage of backward search in edge linking.

existence of backward search, this permission is not granted and thus edges are
obtained in forms of continuous curves. This situation is illustrated on the right
side of the figure. The propogated locations ate 1 —3 and 1 — 1. All other linkages

are true connections.

The coarse level edge points to which no correspondent fine level point is
found, are propogated to the same location. This kind of propogation is illus-
trated in Fig. 5.5 at points (z — 1,7) and (2 + 1,7). In this figure, there are two
connections and two propogations. One of the connections is from wn(3 + 2,7)
10 Wno1(2 + 2,7 — 1) and wn(i,7) to wp—1(3,7 — 1). The propogations are [rom

Wn(t = 1,7) to wu-1(2 — 1,7) and wa(t + 1,7) to wa_1(2 + 1,7).

5.3.2.3 Weighted Accumulation

Then, the weight of the edge at the current level is passed to the finer level
by updating the value of the accumulation array at the point where the coarse

level edge is linked, that is,
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acc(k,l) = an(2, 7)wn(k, 1) + acc(t, 7) k-1 <3, |l—j]<3, (5.19)

which indicates that wn(z,7) is linked to wn-1(k,{). This accumulation process
is done for each fine level connected point. In Fig. 5.4, updating of the accumu-
lation array is done for w(1) and w(2). The weight a(i,7) is determined by the

appearance or disappearance of the edge point in scale space.

The updating of the accumulation array is different in coarse, mid and fine
scales. At the coarse and mid scales, we allow the appearance of the new edge.
If the point (k, 1) is the first point that an edge is linked, that ace(k, ) = 0, then
the weight a(z,7) is set to the distance between the current level and the coarsest
level, so that edges that appear at any level of the coarse and mid scales are
promoted by this scheme. In coarse and mid scales, an edge is propogated to the

same location even if no connection is found in the finer level for that point.

The promotion of the new appearance of edges is terminated at fine scales
since most of the new edges at these scales are due to noise. Furthermore at
the fine scales an edge at the coarse level is linked to at most one edge at the
finer level. In order to promote the edges that disappear during this coarse-to-
fine tracking, which is identified when we cannot find any corresponding edges at
the finer scale for the edge under consideration, the weight a(z,7) is set to the

distance between the current scale and the finest scale.

After the accumulation array is updated at the curvent level, we move to the
finer level and repeat the same process until the finest level 1s reached. Thus
in this integration scheme where edge images are obtained by DORS with n
regularization parameters, the accumulation array will contain n(n — 1)/2 al the
correct location of edge even il it docs not appear al all levels. The combined
edges are detected by picking the points where the accumulation array has a value

of n(n — 1)/2 for a representation obtained from n regularized solutions.
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5.4 Results and Discussions

In order to explore the properties of the DORS representation, considered

synthetic and real images with different SN R values are considered.

Fig. 5.3 shows the multiscale DORS representation of a noisy checkerboard
image with SNR=T7 dB. The noise is synthetically added by using Gaussian noise
generator [6]. The images in the first column and the last row of this figure
show the regularized solutions with specified regularization parameter values.
Each image in the second, third, fourth and fifth columns demonstrates the edge
image w; ; obtained from the difference of two regularized solutions shown in its
associaled row and column. The edge images in cach row of this representation
are integrated by keeping the edge points which exist in at least two edge images
in this row. These intermediate edges shown in the last column of this figure are
integrated using the weighted accumulation scheme and the final integrated edge

image is shown in the lower right corner.

In order to explore the localization and detection performances of the method,
this multiscale integration algorithm was applied to various synthetic and real
images. 'T'he checkerboard and bar images with various SNR values were used
in the synthetic data set. Two of these synthetic images with SNR=7 dB are
shown in the first and the second columns of Fig. 5.7. Real images, House and
Lenna, are shown in the last two columns. The first row shows the original noisy
synthetic images and original real images. The last row exhibits the integrated
edge images obtained by the weighted accumulation scheme. The intermediate

levels show the edges [tom DORS representation.

DORS edge images are obtained by using

A =1{1,2,4,8,16} (5.20)

A set where A; = 1 and A5 = 16. A parameters shown on the left side of each row
is the smaller one of two X values used by DORS. For example, for the second

row the Ay = 8 and A5 = 16 where only A4 is given.
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Figure 5.7. Multiscale edge images of checkerboard (128x128, SNR=7dB), bars
(128x128, SNR=7dB), house (256x256), lenna (256x256) obtained by DORS, and inte-
grated edges (last row).
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As seen from Fig. 5.7, the integration algorithm can combine the results suc-
cessfully by eliminatling the noise and completing the missing parts in some scales.
The figure exhibits that the integration algorithm can recover sharp corners of
checks and actual thickness of bars. In Lenna and Touse images, the integration
scheme can successfully locate the contours which are heavily dislocated at coarse
scales. The algorithm can track down these dislocated edges to actual locations

and complete the missing parts.

I'ig. 5.8 shows the similar results when the integration scheme applied to the
edges obtained with Canny edge detector [10]. The first row shows the original
images. The o parameter of Canny edge detector is given on the left side of each
row. The images of the same row is obtained by this parameter. The edge images

on last row show the integrated edge images for their corresponding columns.

The integration algorithm can pull down the dislocated edges to the actual
locations and results in a complete edge map by properly combining the edges
in different scales. These figures exhibit that the integration scheme correctly lo-
calizes edges using multiscale information and eliminates noisy edge occurrences.
The integration scheme tends to separate the noisy segments into smaller parts
while keeping almost all of actual edges, so that noisy and isolated edges can be
easily eliminated. It can also combine edge segments presented only at interme-

diate scales, for which the edge focusing scheme {19] fails.

In conclusion, a multiscale image representation based on the difference of
two regularized solutions, and an integration scheme which can handle the shift,
appearance, disappearance and branching of edges in the scale space are pre-

sented.
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Figure 5.8. Multiscale edges of checkerhoard (SNR=T7dB), bars (SNR=7dB), House
and Lenna images obtained by applying Canny edge detector. Integrated edge images

are shown on the last row.



CHAPTER 6.

CONCLUSIONS

In this chapter, the results and contributions of this thesis have been sum-

marized and possible problems for future research have been suggested.

6.1 Summary Of Results

The non-standard regularization has been used to solve image processing
problems in this thesis. The investigated problems are edge detection and surface
reconstriction, image restoralion, image coding and compression, a mnltiscale

image representation and edge integration.

The overview of edge detection algorithims show that the main problems in
edge detection are the tradeofl between localization and detection criteria, noise
corruption and the multisize nature of the features in the image. It is identified
that good detection, good localization, robustness, efliciency and applicability to
sparse data are the requirements of good edge detector. The comparison of the
studied algorithms are realized by quantitative measures in addition to the qual-
itative ones to present an objective comparison measure of the edge detectors.
The. numerical measures are Figure of Merit, P(IE/AE), P(AE/1E), MAD and
MSD. Edge maps are obtained from the synthetic and real images which con-
tain Gaussian noise. By inspecling the tables denoting the quantitative results
together with the obtained edge images, it’s determined that the edge images

obtained by weak membrane model are much more satisfactory than the ones



obtained by the adaptive smoothing.

A regularized approach to image restoration which uses discontinuities are
presented. The discontinuities are enhanced to remove blurring effect of weak
membrane modeling while smoothing is performed in the continuous regions sep-
arated by line processes. It’s observed that the ringing effect in the image is
eliminated significantly by preventing the interaction between separated regions

by line processes.

Chapter 4 presents a regularization based coding/decoding scheme which uses
membrane modeling. 11 is assumed that the regions between discontinuities are
smooth and continuous, and can be reconstructed by a surface reconstruction
algorithm from sparse data. The boundary detection and surface reconstruction
are realized by using the same process. The discontinuities are detected by weak
membrane model using line processes in the coding part. The data which causes
discontinuities are used to reconstruct the smooth regions using membrane mod-
cling. Thus a coder/decoder algorithm is developed where the same model of

regularization is used in both parts.

In the last chapter, a new multiscale representation is investigated where the
multiscale edges are obtained by using {wo regularized solutions using membrane
modeling. The DORS (Difference Of Regularized Solutions) representation is
used by taking the difference between two regularized solutions with different
regularization parameters. Then by inspecting the behaviour of edges in scale
space, a multiscale edge integration algorithm is expanded from its one dimen-
sional case to two dimensional case. This integration scheme scans the multiscale
edge images starting from the coarsest one by using two consequent edge images
to update an accumulation array. The experimental results show that the inte-
gration method can successlully track down the edges in scale space and locates

them in correct positions by eliminating the noise effect.
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6.2 Summary Of Contributions

Two existing edge detection algorithms were compared and a number of
research contributions were presented in this thesis. These studies can be sum-

marized as follows:

e It is observed that, edge detection performance of the weak membrane mod-
eling which is a non-standard regularization based approach, is superior

than that of the adaptive smoothing.

e A non-standard regularization based image restoration algorithm is devel-
oped and it is seen that the method can successfully removes blurring and

obtain the restored image.

e A new image coding/decoding scheme is introduced where sparse informa-
tion along discontinuities is used in the surface reconstruction algorithim

using membrane model.

e The DORS representation is used in two dimensions to obtain multiscale

edge images from two regularized solutions.

e A multiscale edge integration algorithm has been extended for two dimen-
sional images which uses a weighted accumulation array to integrate mul-

tiscale edge images.

6.3 Suggestions for Future Research

The resulls are obtained by using 3 x 3 averaging filter in chapter 3. The
introduced method can handle different blurring filters to obtain the restored
images. The application of this scheme to other blurring filters should be consid-

ered.

The coding algorithm can be improved to achieve higher compression ratio.

The first stage that should be considered is to implement differential Huffman
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coding in the coding of data along discontinuities. Since data along an edge con-
tour does not represent abrupt changes, the difference of adjacent values will not
yield large values. The differentiation process will result in a narrower histogram

and the entropy will have smaller value.
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APPENDIX A.

USER MANUAL OF DEVELOPED PROGRAMS

In each chapter, the method or methods are turned into application programs
all written in the C programming language. All of the programs are composed
of several modules and should be linked externally after compilation, or one can
use the make utility to obtain an executable module from the source codes. The
source code of the programs may be compiled in any system having an ANSI
compatible C compiler. Fach program has a Makefile to simplily the compil-
ing/linking process. All of the programs work on HIPS formatted images, but
may easily be converted to work on any other format. HIPS is a binary format
file having a short ASCII text header specifying information such as the size of
the image, bits per pixel, number of frames, creator of the image, and optional
remark lines. The current versions of the |)1'ogra,msvwork on gray scale HIPS

[ormatted images with any size.

Fach program is compiled and executed on SUN workstations running SunOS
1.1.3, Hewlett-Packard 9000 series 400 and 700 running HP/UX 9.02, NCR Tower
32/600 running UNIX Rel. 4, Data General - aviion series 300 running DG/UX
and 1BM compatible PCs running some version of MS-DOS. The developed pro-
grams are expected torun on any system running UNIX System V or derivatives.
1

¢ compilers used in UNIX or UNIX-like operating systems are the default C

compilers shipped with the operating system, i.e. cc. On SUN workstations, C

TAll brands and names are the property of their respective owners.
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and AT&T Rel. 2.1 C++ translator/compilers are used even though the program
source codes are not written in C++. Under the MS-DOS operating system,
Watcom C compiler v8.0 and Pharlab 386 DOS-Iixtender are used, thus the
system must have at least 386sx or an higher processor. Not all of the programs
are experienced with 16-bit C compilers such as Microsoft or Borland series of

C/C++ compilers.

The machine named as media is a SUN Sparcstation IPX having Internet address
of 160.75.26.1. The machine named cadmain is an HP 9000 series 400 having
Internet address 160.75.26.2. Both of the workstations reside in the computer

science department ol the university.

A.1 Adaptive Smoothing

Directory : /home/acar/edge-detection/adaptive_smooth@media
Backup : /users/acar/backup/adaptive.tar.Z@cadmain
Program name : adaptive

Usage : adaptive Inputlmage [ k [r] [iterations]]

Default parameter values may be seen by running the program without any pa-
rameters. InputImage must be an HIPS formattied image. The output image files

will have the following names:

Table A.1. Filenames in adaptive smoothing.

Filename UNIX and derivatives MS-DOS
Output lmage Inputlmage.adp | InputImage.adp

lidge Tmage InputImage.edge_adp | Inputlmage.edg

The k is the scale of adaptive smoothing (see the related chapter lor details). The
7 is the threshold value for edge existence: In detecting edges {rom the smoothed
image, a point will become an edge candidate if any one of the first directional
derivatives is greater than the 7 value. Smoothing of the Inputimage with the

adaptive filler is perforimed tteration times.



94
An example may he as,
adaptive house.hips 0.4 32 20

where Inputlmage is house.hips, scale k is 0.4, 7 is 32 and the number of
smoothing iterations is 20. Then two images with the same size as the Inputim-
age named house.adp (house.adp) lor smoothed image, and house.edge adp
(house.edg) for edge image will be created. The heading of the created images
will contain the parameters used to obtain these images in text form. Thus, one

may sce the parameters by executing a command like “head house.adp” to sce

these parameters.

A.2 Weak Membrane Modelling with Gradu-

ated Non-Convexity

Directory : /home/acar/edge-detection/gnc@media
Backup : /users/acar/backup/gnc.tar.Z@cadmain
Program name : gnc

Usage : gne Inputlmage [ A [a] [SOR-wl]

Default parameter values may be scen by running the program without any pa-
rameters or with the “~h” option. This program outputs two image files: One
is the reconstructed surface and the other one is the edge map. The naming

convention of these output image files is specified in the following table:

Table A.2. Filenames in weak membrane with GNC.

Filename - UNIX and derivatives MS-DOS
Output Image InputImage.gnc_out | Inputlmage.gno

Edge Tmage InputImage.edge gnc | InputImage.edg

A and a values are the coellicients of the energy lfunctional of weak membrane

model. SOR-w is the relaxation parameter of the SOR (Successive Qver Relaz-



ation) minimization method. This parameter value should be in [0, 2] interval to

satisly convergence.

An example of running this program may be as the following line,
gnc lenna.hips 0.9 800

where InputImage is lenna.hips, A is 0.9, a is 800 and the SOR-w is calculated
by the program. After program completion two images with the same size as
the InputImage will be created: house.gnc_out (lenna.gno) for reconstructed
image, and lenna.edge gnc (lenna.edg) for the edgé image. The paramecters
used to create these images are written in the header of each output image in the

same way as in the adaptive smoothing.

A.3 Image Restoration Using Regularization

Directory : /home/acar/deblurring@media
Backup : [fusers/acar/backup/deblur-gnc.tar.Z@cadmain
Program name : deblur

Usage : deblur InpImg [A [ad [SOR-w] [averagelgauss [c]]]

The InpImg is expected to be blurred by either an averaging or a Gaussian filter
with standard deviation of o. The deblurring program must already know what
kind of blurring is realized on the Inplmg, hence either average or gauss should
he given. 1f none is given, then the input image is supposed to be blurred by an
averaging filter with size 3x3. Il gauss specilied, then the input image is expected
to be blurred by a Gaussian filter. The standard deviation of this Gaussian filter
may be given optionally in the o parameter. If no o parameter is present in the
command line, then this value is taken to be 1. A and a are two parameters of
weak membrane modeling. Typical values are, A = 1.6 and a = 1600. SOR-w is
the relaxation parameter of the SOR minimization method. Recommended value

range of SOR-w is [0, 2)].

After program completion, one image is created named InpImg.deblur_out (In-
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pImg.debin M5-DOS systems). This is the deblurred image obtained by applying
the algorithm onto the InpImg with the specified parameters. The parameters

used to obtain this image are written into the header part of the output image.

Sample usage may be as,
deblur housel4.hips 1.6 1600 1.2 gauss 1.4

where blurred InpImg is house14.hips, A is 1.6, a is 1600 and SOR-w is 1.2.
The last two parameters denote that the input image is blurred by a Gaus-
sian filter with o = 1.4. The output image will be named housel4.deblur out

(housel4d.deb in MS-DOS systcins).

Another sample usage may be,
deblur lennaa.hips

where the blurred InpImg is lennaa.hips. The rest of the parameters are taken
to have their default values: A = 1.6, a = 1600, SOR-w is calculated, and
blurring is performed by a 3x3 averaging filter. The output image will be named

lennaa.deblur out (lennaa.deb in MS5-DOS systems).

A.4 Image Coding and Compression Using
Weak Membrane Model of Images

Dircctory : /home/acar/compression/gnc~compraas/gneccompress@media
Backup : /users/acar/backup/gnc-compress.tar.Z@cadmain
Program name . gnccompress

Usage : gnccompress -(sr) <InputFile> [\ [a] [SOR-w]]

The default values are A = 1 and a = 1000. SOR-w is calculated from the given

param eters.

The program includes the coder and the decoder parts together. The action is

selected by giving any one ol the command line parameters of s or r, but not
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both. The s corresponds to sender (coder) and the r parameter corresponds to
receiver (decoder) part. To simplify the sender/receiver program invoking with

appropriate parameter lists separate batch files are written.

send This batch file needs one parameter which is the name of the input HIPS
file with its full file name. This is the coding part. The gnccompress pro-
gram is invoked with A = 0.8, @ = 250 and w = 1.2. If the FileName is
filename.hips, then compressed file is created with name filename. lproc.
Compressed line processes and sparse data reside in this file. This file has
a special format. In addition to this file, an HIPS formatted file named
inputfile.betadata is created (if enabled in the source code) which is the
sparse data residing along the discontinuities. This file may be viewed on

the screen as an ordinary HIPS fle.

recv This balch file needs one parameter which is the name ol the compressed
file. This is the decoding part. The gnccompress program is invoked with
A=6and SOR—w = 1.2. a parameter is not used in the decoding part. If
the InputFile is named inputfile.lproc typically, then the decoded image

will be named inputfile.compr.

The program displays appropriate processing information such as the bit count
used in run-length coding, the number of data and its percentage in the whole

image, the size of the coded line processes, entropy of the sparse data.

An example usage is,

gnccompress -s house.hips 0.8 250 1.2

send house.hips

for the sender part. After the program completion, house.lproc file is created.
This is a special format file and cannot be viewed as expected. Then the decoding

part is run by



98
gnccompress —r house.lproc 6 1 1.2

or
recv house.lproc

where number 1 for a after 6 signifying X is given just to obey formal description
and then Lo give SOR — w parameter. Alter program termination house. compr
file is created which may be viewed on the screen as an HIPS file. In the remark

line of this HIPS file, appropriate parameters are written for later accesses.

A.5 Membrane Modelling

Directory : /home/acar/edge-detection/dors/membrane®media
Backup : /users/acar/backup/membrane.tar.Z@cadmain

Program name : membrane

Usage : membrane [-h] [A [SOR-wl]l < InputFile > OutputFile

The default values are: A = 1.6 and w = 1.3. “~h” option is used to display a
I pilay

short usage message. The file naming convention is explained below.

Let Filename denote the name of the file without extension, e.g.
.hips. The constructed image by membrane program with A; will
have the form Filename.ext.); where,

.ext. is the extension (usually .hips), thus forming the inputfile-
name as Filename.ext for InputFile parameter of membrane pro-
gram.

A; is a number representing the A value used in reconstruction. Hence

the QutputFile scction of membrane program is Filename.ext. ;.

An example usage 1s,

membrane 1 1.2 < house.hips > house.hips.1
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The X is 1, SOR-w is 1.2. The parameters used to reconstruct the image are
written onto the header of the output image, here house.hips.1. The A value
nsed in reconstruction may also be extracted from the remark line of the header
in the output image in the form “Lambda=)". So that, the remark line is searched
for the string “Lambda=", then the next characters denote the numerical value of

X until a non-numeric character.

A.6 Multiscale Image Representation — DORS

Directory : /home/acar/edge-detection/dors/dors@media
Backup : /users/acar/backup/dors.tar.Z@cadmain
Program name : dors

Usage : dors Inputlmagel [edgel] < Inputlmage? > Edgelmage

Both InputImagel and InputImage2 must be given. The output is Edgelmage
which is obtained by detecting the zero crossings of DORS (Inputimagel, In-
putImage2). The threshold value used in zero crossing detection is calculated in
the program. This threshold is calculated so that edge% of the difference image
(DORS (Inputlmagel, Inputimage2)) will be edge points. Delault value for op-
tional parameter edge% is 10. The calculated threshold value is also written onto

the header of the Edgelmage together with the other parameters.

If realimage macro is defined by ~-Drealimage during the compilation phase, the
output edge image Edgelmage will have black (0) in the background and white
(255) in the foreground, i.e. edge locations. If this macro is not defined, then the

edge image will have 0 in the background and 1 in the edge locations.

The file naming convention used throughout the study is explained below.

InputImagel and InputImage2 are typically the two image files of
the membrane program, thus having the form Filename.ext.A;. Assume
that the names of InputImagel and Inputlmage? be imagel.ext. Ay
and image2.ext. A, respectively. Then the output filename of DORS

is expected to he filename.ext.dors. ;. Ay where filename, imagel
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and image?2 are usually equal to each other, which means that they

are processed forms of the same image (e.g. house).
A sample usage will be,
dors house.hips.1 15 < house.hips.2 > house.hips.dors.1.2

where InputImagel is house.hips.1, InputImage2is house.hips.2, edge% is 15,
and the output edge image will be called house.hips.dors.1.2. Then A; which
is 1, and Ay which is 2, may be lound in the remark line in the header of the output
image in a similar format as of the membrane program, having “Lambdal=" and

“Lambda2=" being the specifiers of A; and A, respectively.

A.7 DMultiscale Edge Integration Using
Weighted Accumulation

Dircctory : /home/acar/edge-detection/dors/integration@media

Backup : /users/acar/backup/integrate.tar.ZQcadmain

Program name : integrate

Usage : integrate [-fh[l LogFile]] EdgeImage [IntEdgeFile] [>
IntEdgeFile]

The options and their usage is explained in Table A3,

The file naming convention is explained below.

The integration program accepts a filename from which all file-
names that will be used in the integralion process is extracted. The
series of files ma..y be the output of dors program or some other edge
detection program. The file names are treated differently in each con-
dition:

o Ifthe edge images are created by dors, then they have names like

filename.ext.dors.A1.Xy. Then only filename.ext.dors part must
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Table A.3. Command line option for integration program.

Option IExplanation

-f Use weighted accumulation directly on the
Edgelmage, i.c. don’t perform  intermediate
AND/OR integration process.

~h The help screen like this explanations.

-1 LogFile || writes information messages onto LogFile instead

of stderr.

Edgelmage || is the name ol a series of edge files without exten-
sions. These extensions will be appended two in-
tegers separated by dors, whose values differ from
0 to 32.

be given to the integration program. The integration program
uses all files whose names match filename.ext.dors.x.x where *
will have numeric values between 0 and 32.

o [f the edge images are created by some other edge detection pro-
gram such as canny, then the “~£” option must have been given
on the command line. If the name of the command line file is
filename.ext, then the integration program will use all files whose
names match filename.x where * will have numeric values rang-

ing from 0 to 32.
An example may be as the following;:
integrate house.hips.dors > house.edge.hips

The multiscale edge images should be created by dors and have names beginning
with house.hips.dors. Files with names house.hips.dors.)\;.A; are searched
where Ay and A, ranges from 0 to 32. Files with the same A; are processed
with intermediate AND/OR integration to give just one edge file with the name

house.hips.dors.A;. Then the outputs of each intermediate integration are
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integrated to give the final integrated edge image house.edge.hips as indicated

on the command line.



APPENDIX B.

VOCABULARY

accumulation ............ ..ol toplama
adaptive ..........oiiiiiiiiae, uyarlanir
AVETAZING e vvveeerneennnernaeenns ortalama
blurring .....cocooiiiiiiiiiiiia bulaniklagtirma
CONVEXILY . ovvviiriieiiei i ichiikeylik
convolution ...............oii.. katlama
CIeASE +.vvvvrer.os " ETTI. . J . kirilma
Criteria .......oiiiiiiiiiiiien oo, Olglit
detection ...........coeviiune. .... saptama
deterministic ................ooll gerekimci
edEe i ayrt
efficiency .......cocvvviiiiiiinin.., etkinlik
filter ....oovveiiiii i filtre, stizgeg
graduated ...............ooaall .. agamali
1Mage processing .......c..oeeeuens. gorinti igleme
immunity ......oiiiiieiiiiii .., bagisiklik
impulse .................... e duarti
integration ............coiiienn.. birlegtirme
intensity ........cc.oiiiiiiiiin yogunluk
interaction .............oieiel etkilegim
isolated ... yalitilimg
iterative ... . ciiiiiiiiiiiiiiiian, ardigil

line process ....ooveviiiiiiininan.. cizgi iglevi
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multi-resolution ................... cok olcekli
nonconvexity .......oeeviniiiiian.. digbiikeylik
performance ...............0on.l bagarim
PIECEWISE .. ...vvurvniiiiiiiiinnns parga parga
pixel ... benek
reconstruction ............... ... kurma
TECUTSIVE ..vvreiiivnnnnnnnennnnns ozyineleme
TEEION .vviniiiit i bolge
regularization ................0.00 diizginlegtirme
relaxation ......... ..o, gevseme
representation ... gosterilim
robusl oo giirbiiz
run-length ...... ...l seyirtim
scale ....iiiiiiiiii olgek
segment ... bolit

signal ...l i aret
simulated annealing ............... tavlama benzetimi
simulation ............. ..o il benzetigim
smoothing ...l diizleme
SEED it basamak
surface ... vviviiiiiiin i, ylzey
threshold ............cooiiiiintn. egik
tracking .........cooiiiiiie, izleme
object ...t nesne

occluding ........oviiiiiies e, Orten

VISION tiiviiriiiiii i goérme
weighted ............ooiiiii agirlikl
T.@, ¥

Uksey,
mamfii‘;?,,gﬂ g
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