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NEW STATISTICAL DOWNSCALING METHODS AND APPLICATIONS
FOR TURKEY

SUMMARY

Weather and climate have a profound influence on life on earth. Understanding the
impacts of climate variability and climate change reveal the increasing need for
improvements in regional and local scale climate diagnoses, which are the main
goals of climate research.

The climate impact studies usually require detailed information with high resolution
and accuracy for past, present, and future. The main and important tools of studying
climate are the general circulation models (GCMs). Unfortunately, GCMs running on
coarse resolution may not able to detect the local scale climate variability.
Correspondingly, the limitations concerning spatial resolution and accuracy of
simulated data by GCMs arise to need a downscaling strategy. For instance,
hydrologists ask for daily total precipitation with spatial resolutions corresponding to
their catchments areas of interest. The ecologists who are studying the dynamics and
responses of forests in the mountainous terrain need to know monthly mean
precipitation and temperature values with a resolution of a few kilometers.

In most cases comprehensive information is required, with a spatial resolution of
order of 50-100 km or less, and variables describing the surface processes. However,
GCMs can not simulate such surface variables with high accuracy, and the output of
those models is often implicitly considered as a continuous domain. Then, gridding is
just a convenient way to store the output economically; the information determined
by grid is dependable and sub-grid scale information may be recovered from the
gridded data simply by spatial interpolation methods.

With such a background, it is fully acceptable to use the output of a GCM model,

which runs typically on the order of 400x400km?”grid scale, and to infer the
possible climate variability and climate change on Istanbul and Bolu which have
different locations and different climates. Therefore, it is obvious that the resolution
is one of the drawbacks associated with the GCMs to derive the local climate
information.

The spatial-scale difference between climate research and climate impact studies has
to be bridged by “downscaling” on the side of the climate research and “upscaling”
on the side of the climate impact research.

This study is the first one to search and develop downscaling strategies for Turkey.
Two new downscaling strategies for climate diagnosis are developed in this study.
The proposed methods are based on artificial recurrent neural networks (RNN) and
multivariate statistical techniques that derive transfer functions from the large scale
free troposphere variables which are assumed to steer the regional climate over
Turkey.
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Any downscaling model is sensitive to the asymmetric relations between the large
scale variables and the local scale variables. Therefore, before building the model the
relations between the large scale and local scale variables are analyzed by Sampson
Correlation ratio. Hence, the large scale influences are interpreted readily by
Sampson Correlation ratio. On the other hand, extraction the relationships between
local and large scale variables with the canonical correlation patterns (a common
applied multivariate method based upon the symmetrical assumptions between
different climate variables) observed less exposition than the Sampson correlation
ratio patterns.

The first RNN model employs canonical correlation variates based on Independent
Component Analysis (ICA) from significant Principal Components Analysis (PCA)
of mean sea level pressure (MSLP), 500 and 700 hPa geopotential height, 500-1000
hPa thickness, and 500 hPa vertical pressure-velocity (omega) which are mentioned
as the predictors of the monthly total precipitation for Turkey stations. The proposed
RNN model originated from Jordan type RNN is able not only to reflect the
influences of the large scale circulations but also impose the local scale climate
features. o

The performance of the proposed downscaling model decreases towards the inner
parts of the Anatolian Peninsula of Turkey. However, the achievement of the model
over the transition Mediterranean is relatively superior to the Black Sea region. The
large errors over Black Sea region are due to the local factors such as topography that
causes the rain-shadows and orographic rainfalls; thus the large scale predictors fail
to capture these local climate features.

The second downscaling model is based on multivariate statistical techniques for the
monthly near-surface air temperatures over Turkey. Since the periodic components in
the temperature series are dominant, in the first stage of the model, Singular
Spectrum Analysis (SSA) based on time lagged covariance matrix of statistical
preprocessing of both the predictors and predictands is employed to filter out these
periodicities.

In the second stage, principal component analysis is employed to the non-periodic
components in order to reproduce the noise-free components-of the near-surface air
temperature series. The model is constructed via redundancy analysis (RA) due to the
asymmetric relations between the large scale and local scale processes. The large
scale noise-free 500 hPa geopotential heights and 500-1000 hPa thickness are
selected as the predictors for the monthly near-surface air temperatures. The second
model is able to explain 90% variance in the near surface air temperatures.

The results of the developed downscaling strategies demonstrate that the ability of
the RNN and RA to downscale realistically the relationships between the large scale
circulation fields and monthly total precipitation—near surface air temperature series.
The results of this study also reveal that the statistical preprocessing by PCA, ICA,
CCA, RA and SSA increases the performance of the models during simulations.
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YENI ISTATISTIKSEL OLCEK KUCULTME YONTEMLERI VE TURKIYE
iCIN UYGULAMALAR

OZET

Hava ve iklim siireglerinin yeryliziindeki yasam {izerinde hayati etkileri vardir. Iklim
degiskenligi ve degisikliginin etkisinin anlagilabilmesi, bolgesel ve yerel iklim
tanularinin geligtirilmesi, iklim ¢aligmalarinin temel konulandir.

iklim etkilerini aragtiranlar, genelde iklim degiskenliginin gegmigi, bugiinii ve
gelecegi hakkinda detayli ve dogru bilgilere gereksinim duyarlar. Iklim degisimi
(degiskenligi) konusunda 6énemli ve temel araglar Genel Dolagim Modelleridir
(GDM). Ne yazik ki kaba sayisal ¢oziintirliik {izerinde galigtirilan GDM’ler yerel
iklim degigkenligi hakkinda detayli bilgi veremezler. Bu baglamda, GDM’lerin
uzaysal ¢Oziiniirlilkkteki ve benzegim verilerinin dogrulugundaki kisitlamalardan
dolayr “uzaysal Olgek Kkiigiiltme (downscaling)” stratejilerinin gelistirilmesine
-gereksinim duyulur. Ornegin, hidrolojistler, ele aldiklari havza 6lgegine bagh
¢oziiniirliikte, giinliik toplam yagis verilerine gereksinim duyarlar. Ekolojistler,
daglik bolgelerdeki ormanlarin dinamigi ve yanitlar1 konusunda aylik yagis ve
sicakliklarin birkag km’lik ¢6ztintirliikteki verisine gereksinim duyarlar.

Yapilan galismalarin biiyiik bir kisminda, ylizey degiskenligi (degisim) siireglerini
niteleyen yiizey degiskenlerinin, 50-100 km veya daha kigik &lgekteki
benzegimlerinin dogru ve anlagihir bilgisine gereksinim duyulur. Ancak, GDM’ler
ylizey degiskenlerin degiskenliginin benzesimini dogrulukla veremedikleri gibi, bu
model ¢iktilar, ¢aligma ortamini, siirekli kabul ederler. Boylece, sayisal ag, sadece
ekonomik anlamda, verilerin depolanmasi anlamina gelir ki alt-grid (sub-grid) 6lgek
bilgisi gride bagimli ve siradan uzaysal enterpolasyona doniistir.

Yukaridaki bilgilere bagli olarak; 6megin Istanbul ve Bolu gibi iklimi birbirinden
farkli iki bolgenin iklim degigkenligini veya degisimini, tipik olarak segilen
400x400km?> sayisal-ag olgeginde calistmlan GDM’lerden ¢ikarnima varmanin
yanhs sonuca gotlirdiigii basitge goriilebilir.

Iklim ve etkilerinin arasindaki bu uzaysal dlgek fark, iklim aragtirmalar i¢in “uzaysal
Olgek kiigiiltme” ve iklim etkileri aragtirmalar1 i¢in de “wzaysal olgek biiytiltme
(upscaling)” yontemleri ile kapatilmalidir.

Bu caligma, Tiirkiye lizerinde, uzaysal 6lgek kiigliltme stratejilerinin geligtirilmesi
konusunda ilk aragtirmadir. Caligmada, iklim tamsi igin iki yeni model
gelistirilmigtir. Onerilen modeller, Tiirkiye lizerindeki yerel iklimi idare ettigi
diigiiniilen biiyiik Slgekli serbest troposferin degiskenlerinden elde edilen déniigiim
fonksiyonlarini kullanan, Yinelemeli Yapay Sinir Aglar1 (YYSA) ve cok degiskenli
istatistik yontemleri izerine dayanmaktadir.

Herhangi bir 6lgek kiigliltme modeli, biiyiik Slgekli degiskenler ile kiigiik 6lgekli
degiskenler arasindaki asimetrik (bakigik olmayan) bagntilara duyarlidir; dolayisiyla
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model kurulmadan Once biiyiik 6lgekli ve kiiglik 6lgekli degiskenler -arasindaki
bagintilar, Sampson iliski oran: ile incelemeye tabi tutulmustur. Bu baglamda, biiyiik
Olgekli degiskenlerinin etkilerinin yorumlanmasi, Sampson iliski oraniyla daha basite

indirgenebilmektedir. Diger taraftan, biiyiik ve kiiciik 6lgekli degiskenler arasindaki
bagmntilarin kiimeleraras: iligki desenleri ile incelenmesi (farkli iklim degiskenleri
arasindaki iligkilerin bakigik oldugunu kabul eden ve yaygin kullamlan ¢ok
degiskenli istatistiksel bir yéntem), Sampson iligki desenleri ile 1ncelenmesme gére
daha az a<;1k1ay101 oldugu gézlenmisgtir.

Birinci uygulanan YYSA 6l¢ek kiigiiltme modelinde; ilk adim olarak biiyiik dlgekli
ortalama deniz seviyesi basinglarinn (ODSB), 500 ve 700 hPa jeopotansiyel
yiiksekliklerinin, 500-1000 hPa jeopotansiyel kalinliklarin ve 500 hPa diisey basing-
hizlarimin (omega) anlamli Asal Bilesenleri (AB) bulunmus, daha sonra AB’lerden
Bagimsiz Bilesenleri Analizi (BBA) ile bulunan Bag1ms1z Bilesenlerin (BB)
Kiimeler Aras1 Iliski (KAI) degigkenleri, Tiirkiye’nin aylik toplam yafislarinin
tahmin edicileri olarak ele alinmugtir. Onerilen Jordan tiirti YYSA modelinin, sadece
biiyiik-6l¢ekli cevrimlerin etkisini yansitmakla kalmayip, yerel-6lgekli iklim
Ozelliklerini yansitmakta oldugu da goriilmiigtiir.

Modelin veriminin, Tirkiye’nin Anadolu Yarimadasi’nin i¢ bolgelerine dogru
azaldig1 goriilmiistiir. Oysa Akdeniz gecis bolgesinde, modelin verimi, Karadeniz
bolgesine goére, bagil olarak, cok daha iyi sonu¢ vermektedir. Karadeniz bolgesinde
goriilen biiylik hatalarin ise biiyiik 6lcekli tahmin edicilerin yakalayamadigi, 6rnegin
topografya, ki yagmur-golgelerine ve orografik yagislara neden olur, gibi yerel
Ozellikli faktorlerden kaynaklandig: sonucuna varimisgtir.

iIkinci model, Tiirkiye ylizeye-yakin hava sicakliklarinin 6lgek kiigiiltmesinde
kullanilan, ¢ok degiskenli istatistik yaklagimlara dayanmaktadir. Yere-yakin hava
sicaklik serilerinde goriilen baskin periyodiklerden dolayi, modelin birinci adiminda,
hem tahmin edicilerin hem de tahmin edilenlerin, zaman ortaminda kaydirilmig
dzvaryans (covariance) matrisleri izerine uygulanan tekil spektrum analizinin (TSA)
istatistiksel On-incelemesi uygulanarak, bu periyodik yapilar slizgeglesmigtir
(filtering).

Modelin ikinci adiminda, periyodik olmayan bilesenlere asal bilegenler analizi
_uygulanarak, sonugta, giiriiltiilerden armndirilmig bilesenlerden sicaklik serileri tekrar
elde edilmigtir. Biiyiik 6lcekli deZiskenler ile kiigtik 6lgekli degiskenler arasindaki
asimetrik iliskilerden dolayi, model, gereksizlik analizine (redundancy analysis)
dayali olarak olusturulmustur. Biiytik olgekli giirilttistiz 500 hPa jeopotansiyel
ytiksekligi ve 500-1000 hPa kalnligi, Tirkiye yere-yakin hava sicakliklarimn tahmin
edicileri olarak ele alinmustir. ikinci modelin Tirkiye yere-yakin hava sicaklik
varyansini %90 oraninda yakalamay bagardig gézlemlenmistir.

Onerilen model sonuglarindan goriilecegi tizere, modeller, basaril bir sekilde biiyiik
Olgekli dolagim desenleri ile Tiirkiye yafislari ve yere-yakin hava sicakliklarimimn
olcek kiigtiltmesini yapabilmektedir. Bu aragtirmanin sonuglan gdstermektedir ki
ABA, BBA, KiA, GA ve TSA ile istatistiksel &n-inceleme yapilmasi, model
benzegim verimine artirict etkisi olmaktadir.



1. INTRODUCTION

Weather and climate have a profound influence on life on earth. Understanding the
causes of climate variability is one of the main goals of climate research. The
increased CO, concentrations in the atmosphere due to the human activities will
enhance the greenhouse effect of the atmosphere which will therefore change the
global climate in the future. In order to predict how the climate will change in the
future, the knowledge of the climate variability is fundamental. General Circulation
Models (GCMs) with coarse-resolution are very important tools to simulate past and
future climate. However, GCMs fail to simulate the climate variability on the spatial

scales of which represents the local scale climate features.

Climate variability exists on all time and space scales, ranging from time scales as
short as months and ending on the time scales comparable to the age of the Earth.
Climate variations and change, caused by external forcing, may be partly predictable,
particularly on the larger, continental and global, spatial scales. In this context the
climate system is defined to consist of the entire atmosphere, the oceans, the
cryosphere, and the biosphere. The sources of climate variability can therefore be
attributed to external forcing and internal variability. Climate variability, which is
generated within the climate subsystems, is internal variability, whereas climate
variability driven by external forcing, such as solar variability, volcanoes and human

activities, is considered as externally forced climate variability.

GCMs are powerful tools for analysis of large scale climate features based on
physical laws for atmospheric composition through numerical solutions of partial
differential equations which are highly nonlinear. However, at local scales or scales

near surface, the outputs of GCMs may not able to estimate the nature of climate.

During the first half of 20™ Century, climatology was thought as a sub-discipline of
meteorology and geography studying the atmosphere, oceans, cryosphere, solid earth
and biosphere independently; while meteorology was concerned with the general

circulation of the atmosphere, climatology was interested in the statistical properties



of climate-variables at the surface (Malone, 1951; Peixoto and Oort, 1992; Bryant,
1997; Holland ef al., 1999).

The Numerical Weather Prediction (NWP) models and GCMs developed as a result
of more readily available computation resources. Using three-dimensional physical
models, the entire climate system could be studied in an understandable framework
of an integrated system consisting of the atmosphere, oceans, solid earth, cryosphere,
and biosphere (Houghton ef al., 2001; Watson, 2002).

The principal way to validate the GCMs involves performing a simulation of the
present climate and comparing the results with observations. It seems that these
models can simulate the free troposphere climate variables quite well (Giorgi and
Mearns, 1991; McGregor et al., 1993; von Storch, 1995; McGregor, 1997). On the
other hand, climate elements, such as fronts, precipitation and cloudiness are less
well modeled. Consequently, all GCMs experiments have shown serious deficiencies
in simulating regional or local scale surface features. Another common technical
problem is that, much more data are generated than it can be storéd and managed.
This leads to only a selection of climate variables being archived in those
experiments and even then only at a limited temporal resclution, e.g., monthly
temporal resolution. Due to these limitations they provide relatively little information

on climate change for climate impact studies on regional or local scale.

Since this local scale information is required, a number of techniques have been
suggested to infer the likely local characteristics which would accompany the
changes seen in the large scale of a GCM simulations (Klein, 1982; Kim et al., 1984;
Wilks, 1989; Wilks, 1992; Wigley et al., 1990; Karl et al., 1990; Giorgi and Mearns,
1991; Cubasch et al., 1992; Zorita et al., 1992; McGregor ef al., 1993; von Storch et
al., 1993; Gyalistras et al., 1994; von Storch, 1995, Matyasovsky et al., 1994,
Noguer, 1994; Bardossy, 1994; Houghton et al., 1996; Hewitson and Crane, 1996;
Cubasch et al., 1996; McGregor, 1997; Schubert and Henderson-Sellers, 1997;
Kidson and Thomson, 1998; Conway and Jones, 1998; Heimann and Sept, 2000;
Smith, 1999; Sailor and Li, 1999; Solman and Niinez, 1999; Murphy, 1999; Murphy,
2000; Landman and Tennant, 2000; Wilby and Wigley, 2000; Houghton et al., 2001;
Stein et al., 2001; Geerts, 2003; Tatl et al., 2004; Tath et al., 2005).



‘Large scale’ is defined as anything from the grid-scale of a GCM to its skillful scale
(to be defined from comparisons to observed climate) or even to the global scale
(Rummukainen, 1997). One way to classify downscaling techniques is to distinguish
between five types. These are:

1. Conventional methods
2. Statistical downscaling
3. Stochastic methods
4. Dynamical downscaling
5. Composite methods

Except ‘statistical downscaling’, the other four types are not considered in this study.
The concepts of statistical downscaling are presented in Chapter 3. The aim of
downscaling is to provide local scale climate data. The same goal is also addressed
by purely empirical methods, which work via locating and employing analogues
from the past. The conventional and composite techniques superimpose GCM-
derived changes on observed local time series. In statistical downscaling, large scale
free troposphere variables are used as predictors. The predictands are then the desired
surface or near-surface climate variables such as surface temperature and

precipitation series.

Constructing and validating statistical downscaling needs a source of local scale time
series in practice, conventional, composite methods and statistical downscaling in
practice work on spatial downscaling; whereas stochastic approaches include weather
generators, (e.g., Richardson, 1981; Wilks, 1992) whfch aim at high temporal

resolution and most often focus on hydrological applications.

On the other hand, dynamical downscaling involves running either a high-resolution
limited area model with GCM output as boundary conditions, or performing so called
‘time slice experiments’. In the latter, a high resolution AGCM (atmosphere GCM)
run is performed, using the results of a coarser-resolution GCM as the initial and
lateral boundary conditibns. The AGCM is then integrated for a relative short period
(Giorgi and Mearns, 1991; McGregor ef al., 1993; McGregor, 1997; Fuentes and
Heimann, 2000).



A major limitation of GCMs is that coupling between atmosphere’s processes and
surface conditions is limited. In particular, the coupling between biosphere (forests)
and the atmosphere has been very poor. This is an important limitation as this
coupling is known to be significant, e.g., through precipitation, surface temperature,
heat fluxes, albedo and other processes. For instance, hydrologists ask for daily
precipitation data with a spatial resolution corresponding to catchments. The
ecologists who are studying the dynamics and responses of forests in mountain areas
need knowledge of monthly mean precipitation and temperature with a resolution of
a few kilometers. Consequently, the main problem of the spatial-scale difference
between climate research and climate impact studies is to be bridged by
“downscaling” on the side of the climate research and “upscaling” on the side of the

climate impact research (Gyalistras e al., 1994; von Storch, 1995).

Analyses of climate variability show that, there is a characteristic spatial scale related
to the synoptic features of the atmosphere which is about 1000 km horizontal linear
scale or 10° km? characteristic area scales, and evidently, a global scale of 10* km
(10® km?) (von Storch, 1995; Dobrovolski, 2000).

Synoptic processes impose their spatial scales not only on changes with characteristic
time of several days but also on month-to-month, year-to-year, and larger climatic
changes, because temporal averaging preserves the spatial structure of the processes’
features. In other words, if there is a long term anomaly of some climatic parameter,
this anomaly has a horizontal size comparable with the characteristic size of cyclones
and anticyclones. Spatial correlation of atmospheric, oceanic, and land surface
variables are indications of this feature of climatic processes. For example, spatial
auto-covariance of monthly anomalies of precipitation and surface temperature are
shown in Figure 1.1. This figure shows that correlation radius which is a measure of
spatial structure corresponding to an auto-covariance level which equals to 0.368 for
monthly anomalies is from 750 km to 1500 km and more. For many climatic
parameters spatial correlations become zero at a distance of 2000 km to 2500 km
. (Dobrovolski, 2000).

The starting point of the study of the impact of large scale climate features on local
to regional scales may be casted as Global Climate Scenarios (GCS). Regarding to
IPCC (Houghton et al., 2001), the mean values and the standard deviations of the 17



types of climate scenarios are demonstrated in Figurel.2. The relations between local

scale and large scale climate features based on these GCS are the key issues,

Autocovariances, dimensionless
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Distance (km)

Figure 1.1. Spatial correlation functions of monthly anomalies: I precipitation,
longitudinal direction, (65°N, January); 2 the same but for July; 3 North Atlantic Sea
Surface Temperature (SST), latitudinal direction; 4 North Atlantic SST, longitudinal
direction (Dobrovolski, 2000).

However, General Circulation Models (GCM:s) satisfactorily describe global fields of
ahnospheric'temperature and air pressure at global, continental, and sub-continental
scales, particularly the free atmospheric variables. The major causes of these and
other errors of GCMs are related to a lacking description of the specific physical,
chemical, or biological mechanisms for components of the climate system. The
technical problems may be due to the lack of observational data which are required
to construct physical models and to validate their outputs. In the following, some
examples of problems of the GCMs are investigated by Houghton ef al. (1996):

1. Radiative effects of clouds remain an area of difficulty.

2. The large scale dynamics of current ocean models are not completely

validated, in part because of a dearth of appropriate observations.

3. Fluxes at the ocean-atmosphere interface have not been yet fully examined.



. Existing oceanic models use very crude parameterizations of sub-grid scale =

processes for near-surface and interior mixing and for deep convection.

. The role of sea ice in climate change is especially uncertain because of poorly

known interface feedbacks.

Gilobal Temperature 2000-2100
Mean and std. dev. of 17 Climate Scenarios
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Figure 1.2. The results of the 17 Climate Scenarios from IPCC (Houghton et
al., 2001) > http://ipcc-ddc.cru.uea.ac.uk/

. Current models do not satisfactorily simulate climate indices such as the ones
related to El Nifio -Southern Oscillation (ENSO) process.
. Solar fluxes at the land surface are currently highlighted as being

significantly in error compared to observations due to the inadequate

treatment of clouds.

. There are intrinsic difficulties in parametrizing slope effects to determine

runoff in a climate model.

Biases and uncertainties in the surface energy balance and radiation and

water budgets are a significant source of error in simulations of climate.

10. Models of runoff, in general show great uncertainty in global models, there

are no convincing treatments of the scaling of the responsible processes over
the many orders of magnitude involved, and in high latitudes of the effects of

frozen soils.



11. How the integrated stomatal resistance for global vegetation might change

with changing climate and CO; concentrations is largely unknown.

It was confirmed that there are considerable differences between the local scale
processes and large scale processes, especially in the near-surface layer. Hence, the
GCMs may be of use to understanding and describe the large scale features of
climate. However, for water management, farming, energy-planning, land-use
management, and for the others we need to assess the local-features such as
precipitation and surface temperature in future. Since the free troposphere is more
spatially and temporally homogeneous than the earth’s surface, the logic behind
-downscaling using large scale processes from free troposphere variables is

understandable.

The problem statement of the estimation of local climate variables at specific stations
or within relatively small areas from large scale GCMs-generated fields is called

downscaling.

There are three possible approaches to study climatic variability. The first is
deterministic, i.e. it is postulated that the value of some variable of the climate
system is explicitly determined by the value of this and other variables of the climate
system, also by relevant parameters outside the climate system, at previous moment’s
time. From this point of view, to obtain enough detailed information to be able to
give an exact forecast of the variable under consideration. In other words, if we have
detailed information on the state of the atmosphere and oceanic surface for the past
few weeks, we can deterministically describe and explain the present and future next

few days’ behavior of the atmosphere.

If we consider the climatic scale be one month or more, then the deterministic
approach fails to determine the variables plainly, particular near-surface and/or in
local scale. Hence, the value of the climatic variable might be considered as a
random variable (Dobrovolski, 2000). So it can be determined in a probabilistic

space frame. This second approach is called stochastic method.

On the other hand, GCMs might be able to determine temporally averaged free
atmospheric variables (upper air circulation variables) at large scale. Bridging of the
deterministic and stochastic methods leads to a new approach called as ‘statistical

downscaling’. In this study, this third approach named as ‘grey approach’ is used.



Since, the deterministic way might be seen as white-box (all the constants have
physical meaning) and stochastic frame could be considered as black-box (the
constants have no physical meaning), the mixture of a stochastic and deterministic

approach can be called grey-box (white + black = grey).

The constraints on both the deterministic and stochastic approaches now should be
valid in the third approach (statistical downscaling). Therefore, particularly in
implementing the new techniques based on probability theory, such as probabilistic

framework of multivariate techniques are employed.

In this study, the problem of statistical linkages between the local scale climate
features over Turkey and large-scale climate features are investigated by the new

proposed downscaling models based on multivariate techniques and recurrent neural

networks (RNN).

The dissertation is organized as follows: In the following chapter, the data and
mathematical-statistical methods are introduced and discussed. The properties of the
conventional statistical downscaling types and proposed downscaling models are
presented in Chapter 3, followed by a description of the near-surface air temperature
and precipitation of Turkey with the view of their major characteristics in Chapter 4.
The applications of the new proposed downscaling strategies are given in Chapter 5,

and the study is concluded with an outlook and a summary in Chapter 6.



2. DATA AND METHODS

2.1 Data and Data Preparation

Several data sets are used in this study: gridded large scale National Centers for
Environmental Prediction-National Center of Atmospheric Research (NCEP-NCAR)
reanalysis data (Figure 2.1) (Kalnay et al., 1996) and the data from Turkish stations.

The large scale data is used as the predictor, and the station data as the predictand.
The choice of the predictands is ultimately governed by the need of the end-users,
but limited by the variability of the local time series. In the study, the monthly
temperature series and monthly total precipitation series are chosen, the primary
climate variables, which can not be simulated as perfectly as by the GCMs. The fact
that the GCMs perform best on large scales and on time-averaged basis (monthly or
seasonal means), and in additional; the GCMs produce a better simulation of the free
troposphere variables. Therefore the predictors are selected based upon the large
scale upper air circulation and mean sea level pressure. The employed predictors are
divided into the precipitation-related and temperature-related predictors. The

precipitation-related large scale predictors are:
1) 500 hPa geopotential height
2) 700 hPa geopotential height
3) 500-1000 hPa thickness
4) Mean sea level pressure
5) 500 hPa vertical pressure-velocity

The period of the precipitation data over Turkey covers the entire months of the
1961-1998 interval. The geographical distribution of the selected 31 Turkish stations
for the monthly total precipitation is given in Figure 2.2a. The reasons of why these
predictors are selected are explained in the “application sections” of the study. The

temperature-related predictors are:



1) 500 hPa geopotential height
2) 500-1000 hPa geopotential thickness

The record length of the both large scale temperature-related predictors and station
temperature series is the 1951-1998 interval. Figure 2.2b is the geographical
distribution of the 62 Turkish stations for monthly near-surface air temperature data

sets (namely maximum, mean and minimum) respectively.
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Figure 2.1 Distribution of the 221 grid points (2.5° longitude by 2.5° latitude) for
NCAR/NCEP re-analysis data field. The area of Turkey enclosed by the rectangular
box is shown in additional detail in Figure 2.2.

The chosen data records and stations are basis upon the quality of the data and the
meaningful statistical relationships between the large scale and station scale variables
in addition the performance of the typical GCMs, and also the availability of data.
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Figure 2.2. Geographical distribution for Turkey stations: (a) The stations of the
monthly total precipitation; (b) the stations of the near-surface air temperatures.

2.2 Methods

2.2.1 Singular Value Decomposition (SVD)

In this study, Singular Value Decomposition (SVD) of matrices which is-a key
method in the course of applying Principal Components Analysis (PCA), Canonical
Correlation Analysis (CCA) and Redundancy Analysis (RA) which are the major

11



techniques are applied. Therefore, the concepts of SVD are discussed in the
following, and the module of F-Language (FORTRAN) source code of SVD is also
given in Appendix.

Assume X is a pxg (g < p) matrix and it can be decomposed as follows

(Wilkinson and Reinsch, 1971):
X =UDV’ 2.1D)

where T indicates the transpose of the relevant matrix. Here, U is an pxp
orthogonal matrix, V is an g x g orthogonal matrix, and D = (ﬂl ..,Aq) is a diagonal

matrix with elements 4, where singular values are 4, =4,and 4, =0 for i# j

respectively.

If X is a symmetric matrix then the SVD is equivalent to a spectral decomposition
operation. WhenU =V, this condition indicates the orthonormal (orthogonal and

normal) matrix of the eigenvectors of X.

2.2.2 Principal Component Analysis (PCA), Factor Analysis (FA) and Independent
Component Analysis (ICA)

Principal component analysis and closely related to factor analysis techniques are
widely applied in meteorology or climatology literature (Kidson 1975; Diaz and
Fullbright, 1981; North 1984; Preisendorfer, 1998). This technique can be
summarized as follows: PCA is a multivariate technique classified as a non-
dependent variable method. The goal in PCA is to create a set of orthogonal variables
(components) from some given data by creating linear combinations of the original
data that maximizes the variance of each new variable. The goal is accomplished by
rotating either the centered data or centered and scaled data, so that the axis along
which the variance is maximum coincides with the axis of the first principal
component (PC). The next step is to rotate the data orthogonally to the first
component’s axis so as to maximize the remaining variance in the second principal
component. This process is repeated until a zero eigenvalue is encountered or the
number of components equals the number of variables in the original data. The
rotation is accomplished by using either the covariance matrix or the correlation

matrix of the original data. The choice of which to use results in different solutions.

12



If all the variables are not measured on the same scale it is common to remove the

units by using the correlation matrix to perform the rotation.

Assume the first and second order statistics of a multivariate X is known or can be
estimated from the sample. In PCA transform, the variables of X are centered by
subtracting their means, and then the covariance matrix of X is defined as expected
value of minor products of its variables. In the study, all matrices are organized such
that rows represent simultaneous observations and columns observed variables at

different sites.
Syx = E(XTX) 2.2)

One has to keep in mind that PCs are not invariant under scaling.v Without loss of the

generality, an orthogonal decomposition of Sxx is given as follows.
Sy = E4DE} 2.3)

where Ex is a matrix of the orthonormal -eigenvectors of Sxx and
D, = diag(kI seens xk) is the diagonal matrix represents the eigenvalues of Sxx in a
decreasing magnitude order, respectively. The principal components are then

computed by

Vy = XE, 2.4)
where Vy illustrates the PCs and the reconstruction of X follows:

X =V,E} (2.5)

The PCA model was discussed above as a distribution free method with no
underlying statistical model, but in the case of factor analysis, the multivariate X is

reconstructed as in the following:
X =F A+ Gx (2.6)

where Fx and Gx are called common factors (CFs) (or latent variables) and white
noise components (or specific components), respectively. Ax is called factor loadings
defined as:

13



S,y = Ay AL @2.7)

There are no statistical constraints on PCs, but CFs must be Gaussian in a FA model.
Furthermore, PCs are easily calculated by a unique way, whereas there is not a
unique method for CFs, but a possible way according to Reyment and Joreskog

(1993) by the expression:
F, = XS;X AT 2.8)

The CFs may be rotated for easier interpretation of the patterns (Richman, 1985) by a

method such as varimax (Kaiser, 1959).

On the other hand, Independent Component Analysis (ICA) may be seen as a special
kind of rotation of CFs (or PCs) but using high order statistics rather than the second
order statistics. If probability density of concerning data set is Gaussian then FA and
ICA are identical; because the high order statistics of Gaussian variables are all zero
(assume the variables have zero mean and variance one). ICA has been widely used
in data analysis and decomposition, particularly, in signal processing research (Jutten
and Herault, 1991; Comon, 1994; Everson and Roberts, 1999; Hyvarinen ef al.,
2001). ICA, typically aims to solve the blind source separation problem in which a
set of unknown sources are mixed in some way to form the data. An ICA model
assumes that the multivariate data set X is a mixing of the Independent Components
(ICs) as:

X=SA 2.9)
or, by the terms of PCA:
S=XW=V,EIW (2.10)

where A is called the mixing matrix and W = A, and S (like PCs or CFs) represents
ICs, respectively. The starting point for ICA is the very simple assumption that the
all ICs are statistically independent. However, the basic model of ICA does not
assume that the probability distribution of data is known. After determining the
matrix A, its inverse W is then computed to obtain the ICs by Equation (2.10) from
PCs.

14



The restriction in a PCA (or FA) is that the entire PCs are mutually uncorrelated, but
the restriction in an ICA is that the all ICs are statistically 'independent.
Uncorrelatedness is weaker form of independence. That is, two random variables are
uncorrelated if their covariance is zero. On the other hand, if the variables are
independent, they are uncorrelated, which follows that uncorrelatedness does not
imply independence (Comon, 1994). Two random variables y; and y, are said to be
mutually independent, if given two arbitrary functions, h;(yl) and hy(y2) satisfy the

following condition (Hyvarinen et al., 2001):

E{h (), ()} = E{h ()} E{h, (¥,)} (2.11)

where E represents the expected value. According to the definition of statistical
independency, ICA has a stronger definition than the uncorrelatedness concerning
PCA or FA. Unlike PCA or FA, ICA uses high order statistics that can separate the
data into the true sources. In this study, the ICs are computed via a fixed-point
algorithm which is called Fast Independent Component Analysis (FASTICA)
introduced by Hyvarinen and Oja (1997). The algorithm of FASTICA is based on
maximizing the absolute value of kurtosis of the variable by using ‘information

measure (or negentropy)’:

J(y)=%E{y3}2+%kurr(y)2 ©.12)

where J(y)e [0,1] indicates negentropy, and kurtosis of y is illustrated by kurt(y)
defined as:

kurt(y) = E(*} - 3(E{y"}f @.13)
Since the negentropy of Gaussian variables among equivalent variances is zero, it
can be used as an indicator to measure the degree of normality in the data series.
However, there are some basic ambiguities in the ICA model:

1. The variances of ICs can not be determined, whereas the variances are

explained by eigenvalues of PCs (or CFs) in a PCA (or FA) approach.

2. The order of ICs can not be determined.
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In the study, the ICA process is done by the Matlab Toolbox called FASTICA which
is introduced by Hyvarienen and Oja (1997).

2.2.3 Canonical Correlation Analysis (CCA)

The other central multivariate statistical method applied in this study, is the canonical
correlation analysis (Glahn 1968; Mardia et al., 1979; van de Geer, 1984; Jackson
1991; Rencher, 1992; Chen and Chang 1994; Chen et al., 1994; Rencher, 1995;
Wilks, 1995; TenBerge 1988; Rencher, 1998). Hotelling (1936) proposed CCA as a
model to relate two sets of variables. He derived linear combinations of the X
variables (in this study the large scale variables) and the Y variables (in this study the
local scale variables) that were maximally correlated, subject to the constraint that
each derived variate is uncorrelated with other variates. Denote one vector of X by x,

and one vector of Y by y; CCA can reduce linear components of x and y, t; and u; as:
t = w,Tx, u, = V,Ty 2.14)

choosing w; and v; such as to maximize the correlation between t; and u; subject to

the following constraints:

WiCxW; =0, v{Cyyv, =0 forVi= j (2.15)
W CyyW, =1, v]Cyyv, =1 (2.16)

where Cxx and Cyy denote the covariance matrices, respectively. Canonical
correlation vectors (or weights) w; and v; can be obtained by orthogonal

decomposition procedure of the related matrices, where w; and v; are the eigenvectors
of C;(IXCXYC;‘;,CYX and C3yCyxCixCyy respectively. The square-roots of the
eigenvalues of these two matrices are equal and represent canonmical correlation
coefficients between the pairs of t; and w;. CCA has a property of biorthogonality
satisfying the diagonalizability of Cxy:

W'C,, V=D 2.17)
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where D is the diagonal matrix representing the squares of canonical correlation
coefficients. However, a CCA approach is symmetrical and can not recognize which

of the components is the predictor and predictand, that is:
VIC,W =D (2.18)

Furthermore, the structure matrices for X and Y can be defined as the correlation

matrices between variables and canonical correlation variates (CCVs):

Cx W, for X }

2.19
CyV.forY )

where the maps of CxxW and CyyV denote canonical correlation patterns (structure

matrices), respectively.

2.2.4 Redundancy Analysis (RA)

Canonical correlation analysis finds variates that are correlated, but it is not so
practical in the prediction frame since they do not explain enough covariance. A
statistical prediction model must satisfy asymmetric features, such as to predict local
scale processes from large scale processes (downscaling) may not be invertible to
predict large scale features from local scale features (upscaling), particularly in
climate processes. Van den Wollenberg (1977) devised a linear model of RA as an
alternative CCA that avoids this problem. The weights for redundancy variates

(RVs), w; are determined by solution of the following equation:
[CovCox —5,Cyx [, =0 (2.20)

where b; is the covariance explained by the i-th variate pair. In RA technique, the
redundancy weights for X and Y can be obtained as (Gower, 1975; Tyler 1982):

v, = ’Cpw, (2.21)
The same redundancy weights can also be obtained by using SVD:

C2C,y =HEVT
XX R } (2.22)

W=C¥H
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where H is the left-side eigenvector matrix for C¢'Cyy, W is the matrix of variates

for the X variables and V is the matrix of the variates for the Y variables

respectively, and E is the diagonal matrix whose elements are square roots of b;.

However, obtaining RVs from asymmetric matrices is not a preferred way; Tyler
(1982) proposed another method for RA from symmetric matrices. First, the

orthonormal eigenvectors of C,,CzCxy, U and the corresponding matrix of R

roots are obtained, and then the weight matrix for RVs can be written as:
W =Cy;Cyy UR™? (2.23)

where Y and X represent the local scale predictands and large scale predictors,

respectively.

2.2.5 Sampson correlation ratio (Rs)

The first step in downscaling is to determine the appropriate predictors. There are
many statistical methods according to the scientific literature, two such possibilities
are CCA and stepwise regression (Noguer 1994; von Storch and Zwiers 1999). But
in this study, Sampson (1984) correlation ratio is used to recognize the predictors and
predictands (e.g. Tath et al., 2004, 2005). It is defined as:

Tr(Cyx CixCoy )
Ry = YRR X 2.24
’ \/ Ir (CYY) 229

where Cxy, Cxx and Cyy indicate multivariate cross-covariance and covariance
matrices and 77 denotes the trace of the related matrices, respectively. Sampson
correlation ratio, Rge [0,1], represents the correlation between two matrices and it is
not symmetric in particular, whereas Pearson moment correlation is symmetric
representing the correlation between two vectors. In this study, the contour map
based on data sets between the set of time series of gridded data and the multiple

time series of observations is named Sampson correlation pattern (Rs pattern).

2.2.6 Singular Spectrum Analysis (SSA)

Before constructing a downscaling model, a statistical preprocessing is required in

order to determine the significant large scale variables in a compressed manner (such
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as principal components or independent components (Tatli et al., 2004)). If we plot
the time series of the monthly temperature series of station data series, and, for
instance, of 500 hPa geopotential heights and 500-1000 hPa geopotential thicknesses,
then the irregular noise components emerge. In order to remove of such noise in data
sets, Fourier analysis (Richardson 1981) is a possible way, but Fourier analysis
assumes the stationarity constraint in the process. Singular spectrum analysis is
another possible way based on eigenvalue techniques without satisfying stationarity
constraints. The SSA approach or temporal principal component analysis is well-
known in climate studies (e.g. Ghil and Vautard 1991; Vautard et al., 1992; Green et
al, 1993; Elsner and Tsonis 1994, Elsner and Tsonis 1996; Schlesinger and
Ramankutty 1994; Allen and Smith 1996).

To point out the method, let x (t) be a univariate time series that can be decomposed

into three components as:
x(t) = x,(t) + x,(1) + X, (¢) (2.25)

where xq4(#) is the deterministic component (trend and/or periodic cycles) being
predictable by mathematical models (e.g. GCMs); xs(#) represents the statistical
component which can be estimated by statistical models (e.g. regression, AR,
ARMA); and x.(2) indicates the noise component being not predictable by both
mathematical and statistical models, respectively. However, a problem might arise if
the process is constituted by the product of the deterministic and statistical

components in addition to the noise component as:
X() = X4 (1)xX, (1) +X,(t) (2.26)

The constraint of our approach is based on the assumption of Equation (2.25) the

analysis of Equation (2.26) is beyond the scope of this study.

SSA consists of the diagonalisation of the lagged auto-covariance (or auto-
correlation) matrix, like in PCA, the eigenvectors represent patterns of temporal
behavior, and PCs are significant embedding dimensions (or characteristic series).
When two eigenvalues of the lagged auto-covariance (or auto-correlation) matrix are
nearly equal and their corresponding eigenvectors are 90° phase-shift they represent

oscillation. If there is a trend, then the first eigenvalue, the biggest, represents the
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trend, and the following nearly equal eigenvalue pairs represent periodic cycles. In
this study, the reconstruction of the univariate time series is mentioned as a low-pass

filter. Table 2.1 represents the concept of SSA.

Table 2.1. The look up table of SSA of the maximum near-surface air temperature
series for some Turkey stations '

Cycles Eigenvalue Sites and Captured Variance (%)
Meaning No Mersin | Antalya Adana Gaziantep | Sanlwrfa | Mugla
Periodic 1 38.67 | 46.883 42.701 47.131 47.634 46.644
Cycles
2 38.56 | 46.708 42.545 46.949 47.457 46.489
3 5.046 0.157 3.037 0.621 0.551 0.355
2 4 5.013 0.154 3.013 0.617 0.549 0.355
g 5 0.301 0.131 0.274 0.132 0.122 0.127
g 6 0.284 0.129 0.274 0.116 0.114 0.125
fg 7 0.268 0.112 0.184 0.111 0.102 0.119
d"; 8 0.245 0.112 0.181 0.109 0.097 0.118
= 9 0.245 0.111 0.160 0.107 | 0.089 0.113
10 0.226 0.110 0.158 0.095 0.069 0.112

Due to the huge volume size of the predictors, any model structure will be so
complex and the parsimonies properties of the model may disappear. Furthermore,
the noise may aléo have an effect the model parameters while constructing an
economical downscaling model. In other words, the model tries to estimate the
predictable components, but on the other hand it may estimate the non-predictable
components due to the noise. To solve this problem, both the SSA and PCA
approaches are proposed to remove these non-predictable components. After SSA,
the residuals are decomposed via PCA and then the following step is the
reconstruction of the data series with the significant PCs. Consequently, the resulting

time series are now noise-free according to the applied methods.

2.2.7 Neural networks

Neural networks, which are based on biological structures, were investigated in the

1940s and in the 1950s. The well-known neural networks were modeled by
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McCulloch and Pitts, and perceptron proposed by Rosenblatt (Haykin, 1999), on the
other hand. The negative results occurred during the investigation of networks aﬁd/or
perceptron caused a stagnation of neuro-computing in the sixties and seventies.
Later, the rediscovery of the back-propagation algorithm (Rumelhart and
McClelland, 1986), which was developed in beginning of the seventies by Hopfield

(Haykin, 1999) entailed intensive research in various disciplines up to the present.

A formal neuron N is a quadruple of (%, w, i, ¢) which consists of a vector of inputs
T . . . -

X = (xl,xz,...,x,,) , a vector of weights w = (w,,wz,...w,,)T, an integration function

w(x,w), and an activation function ¢(y/). An important point of this definition is the

locality of the information processed by the formal neurons. Each neuron gets
information only by its incoming connections. Therefore, it is possible for a formal
neuron to possess local memory, i.e., there is no global information interchange. This

allows parallel information processing.

Neurcns within a neural network are normally arranged in layers (Figure 2.3). If the
input connections of a layer gain information only from the output of the proceeding

layer the net is called feed forward network.

Several alternative functions have been used in the processing elements in a neural
network, but the more popular training procedures is the back-propagation

(Rumelhart and McClelland, 1986) which requires ¢ being a continuously

differentiable and bounded scalar function (known as basis function). In this regard,

sigmoid neurons are often selected for network training.

The matching functions are continuous and characterized by the following limits.
limg(¢)=1, Jim $(¢)=~-1 .27)

The functions,

1
1+e™%

(&)= tanh¢, ¢(&)=

2.28)

are examples of such sigmoid functions. The back-propagation algorithm is based
upon the method of steepest descent. The goal is minimizing the following error

function.
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r=L5y 0

where y is the observed value, and y is the estimated value from the network. For
example, for training the element of w; with respect to minimizing Equation (2.29);
we assume that the model is represented by ¥ =3(a,(w,;)) then minimizing

procedure follows the following steps.

OR(w,) _ OR(w,) & Oa,
ow, & oaodw,

H

1.

(2.30)

old
5 o ooy _ o OROW) +8(w ™ — ) (2.31)

ow™ ’ ’

wherer € (0,1) and & € [0,1] represent ‘the learning rate’ and ‘the momentum
factor’, respectively. At the first step of the training, J is taken as zero. Additionally,
at the initial step, the elements of w are fed randomly. The detailed information about
neural networks may be found in (Hornik, 1991; Becker and Hiriton, 1992; Kohonen,
1995; Haykin, 1999; Haykin, 2001).

i 2 Y3
Yi
X1 X2 ver eee aes Xn
Xi X2
(@) (b)

Figure 2.3. Structure of a formal neuron (a), and a multilayer network (b)
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Also, there are some structurally different neural networks which may be found in
(Ito, 1991; Park and Sandberg, 1991; Pati and Krishnaprasad, 1993).

Moreover, if the input connections of a network layer gain information both from the
outputs of the proceeding layer and intermediated layer and the input layer then the
net is so called Recurrent Neural Networks (RNN), where Figure 2.4 shows such a
network type of Jordan (1986) and Figure 2.5 is the Elman (1990) RNN.

Detailed information about RNN can be found in (Jordan, 1986), Elman (1990),
Robinson and Fallside (1991), Puskorius and Feldkamp (1994), Connor et al. (1994),
Pearlmutter (1995), Haykin (1999, 2001), and Hochreiter ez al. (2001).

X1

X2

input layer

context layer

Figure 2.4. Structure of the Jordan-type recurrent neural network

SEEEEABRENERNR
&

input layer

output layer

context layer

Figure 2.5. Structure of the Elman type recurrent neural network
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2.3 Statistical Significance Tests

2.3.1 Tests for PCA, FA and CCA

In this work, the maximum-likelihood method (ML) of J6reskog and Sérbom (1989)
is employed in order to asses the fit of the number of PCs and CFs, Let S indicate the
correlation matrix of p-dimensional data and C indicate the correlation matrix of q-

dimensional data (¢ < p). Herein g is the number of significant PCs and p is the

number of entire PCs. Then ML method suggests minimizing the following equation
. (Joreskog and Sorbom, 1989).

loglC]+ T(SC™ )~ logl$| - » ~ min 2.32)

If the correct number of PCs is g then Equation (2.36) is approximately distributed in

large samples as y (chi-squared) with degrees of freedom expressed by:

%[(P-qr)2 ~(r+4)] 233

A small value of z?, relative to the degrees of freedom means a good fitting of the
model.

Furthermore, there are other alternatives to test for PCA, CCA and FA which can be
written in terms of eigenvalues, in which4, > 4, > ... > 1, , where & = min(p,q)

indicates the rank of the corresponding data matrix. There are four most common
test-statistics according to Rencher, 1992; Rencher, 1995; Rencher, 1998; Jackson,
1991; Jackson, 1993; Johson and Wichern, 1998. These are:

-

Wilk's lambda A=TI, 1_1171_
Roy' s root 0= 2
1+ 4, > (2.34)
Pillai' s trace I'= Z; N ftﬂ
Lawley - Hotelling H= Z; 2,

The squared canonical correlation for each canonical variate can be written in terms

of its associated eigenvalue as:
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r} = A fori= 1,2,.., k 2.35)
1+ 4

i

and is interpreted in the same way as the univariate r-square (Jong and Kotz, 1999).

For interpretation of the CFs, Kaiser (1959) test is employed. This test is so simple
that the corresponding eigenvalues of greater than 1 are attained as the significant

common factors.

2.3.2 Tests for the sample correlation

To test the sample correlation, r, we have employed the statistics of 7-distribution is

applied with the following hypothesis (Berenson et al., 1993).

H,:p=0 .
0P } 2.36)
H:p#0
where p represents the population correlation. Then we have
r —_—
=1L, (237)

here » is the number of observations with n-2 degrees of freedom, and the standard

error of the correlation coefficient is given by

(2.38)

Using an « -level of significance, Hp may be rejected if ¢ > ¢,_,,,.,, orif ¢ <t,,,,

n-2°
Unless p equals zero, the sampling distribution of the sample correlation coefficient

r is not normally distributed. In order to adjust its distribution to normal distribution,

Fisher z-transformation can be used by the following procedure.

1. In the first step r is transformed to the z by:

25 =%ln[(l+r)/(l—r)] (2.39)
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2. Instead of S,, the estimated standard error of the transformed correlation

value o, is used.

oy = (2.40)

3. Instead of z-distribution, Z, . is used.

4. The 100(1- &) confidence interval is estimated as:

Zp

r

tZ 02 Cr 2.41)

5. After determining the reconverting the lower and upper limits of Equation

2.41), the confidence interval estimate of Z,, back to units of r and then
the 100(1- &) confidence interval estimate of p is obtained.
On other hand, in order to test the Sampson correlation, both z-distribution and F-

distribution statistics are employed. The F-statistics can be obtained from the

r-square statistics as:

Fo_t__n-p-l (2.42)
p
where 7 is the sample size and p is the number of variables, and

2 xd (2.43)

where S, are the sums of squares and cross product matrices, or equivalently, the

corresponding covariance (or correlation) matrices.
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3. PROPOSED DOWNSCALING MODELS

In the conventional statistical downscaling methods, the models are generally
constructed based on the statistical relationships between local scale observed
variables and large scale troposphere variables. The relations are intended to
represent the effects of the climate-modifying local factors, such as variable
topography (Rummukainen, 1997). The local sites should cover an area comparable
to the GCM grid box size. The necessary constraint is that the large scale variables

are selected subject to represent the variability of large scale climate features.

Based on these arguments; in this study, the area of interest to represent those
climatic fluctuations is selected between 30—60°N and 10— 50°E (Figure 2.1) in
order to capture the large scale climatic fluctuations which affect local scale climate
variability over Turkey. Some of these large scale climate characteristics are the
Mediterranean high-low situations, Azores high, Siberian high, north-western part of
the Monsoon low, and additionally, and the northerly effects of Sahara.

3.1 Downscaling Methods

There are three very-well known methods to determine the relationships between the
large scale and local scale variables concerned with downscaling in the literature.

These are:

1. Downscaling with surface variables: This method is self-explanatory to involve
the establishment of statistical relations between large scale aerial averages of
surface variables and local scale variables (e.g., Kim et al., 1984; Wilks, 1989;
Wigley et al., 1990). In the application, the same local scale surface variables are
selected as predictands while the predictors for each predictand could be the relevant
large scale average or a combination of large scale averages. However, downscaling
with surface variables is not a good approach, since the GCMs are not capable of

simulating surface variables.
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2. Perfect Prognosis (PP): This methodology is a familiar concept from numerical
weather prediction. The constraint of this method involves the development of
relations between large scale free atmospheric observations and local scale surface
observations (e.g., Klein, 1982). Furthermore, the grid-scale predictors of large scale
variables may be used. For example, in Jonsson et al. (1994) and in Johanneson et al.
(1995), the training data for downscaling purpose are gridded 500 hPa geopotential
heights and 500-1000 hPa geopotential thicknesses related to observed station data to

obtain the regression relationships between the large scale and local scale variables.

The other example may be seen in Tath er al. (2004) in which NCEP-NCAR
reanalysis data sets (Kalnay er al., 1996) was applied as large scale predictors
(namely 500 hPa heights, 700 hPa heights, 500-1000 hPa thicknesses, 500 hPa
vertical pressure velocities (omega), and mean sea level pressure) for downscaling
Turkish rainfall data.

3. Model Output Statistics (MOS): This method is similar to the PP, but the large
scale free atmospheric variables are obtained from GCMs outputs. In the case of
MOS, the applicability of the technique is related to the performance of the model
providing the free atmospheric data. Hence, this approach is sensitive to the model
types, as the model of the large scale data is changed then the relationships might

have to be redone.

On the other hand, PP based downscaling is a model-type-free method (independent
of the model-type) but, of course, depends on the quality and extent of the observed
data.

- The methods which are traditionally applied for downscaling purposes depend on the
variability of predictors according to scale-based features. Figure 3.1 illustrates such

issues of the spatial-scales according to the climate variability.
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Figure 3.1 Formal representation the issues of scales associated with the climate
features

In the following sub-sections, the proposed downscaling models are presented of

which are the applications for Turkey in this work.

3.2 Proposed Downscaling Model Based on Multivariate Techniques

The details of the redundancy analysis are given in the Section 2.2.4. If it is assumed
that X represents the large scale variables (predictors) and Y the local scale variables
(predictands) then once the redundancy variaties are obtained by Equation (2.22) or
Equation (2.23) as W then the regression equation for downscaling can be written as

in the following.
Y = XWW'C,, (3.1)

where Cxy indicates the cross-covariance matrix. This proposed method was applied
to downscale monthly surface temperature series in Turkey from large scale upper air
circulations (Tatli et al., 2005). The proposed downscaling model components are

given in Figure 3.2.
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Figure 3.2. The proposed model components

The monthly surface temperature series have dominant periodic components that
cause to prevent a true statistical analysis, for instance, in the trend and, both in the
stochastic components and noise, on the other hand. Hence, Fourier analysis
(Richardson, 1981) may not be directly applied since Fourier method needs the
assumption of stationarity in the process. Thus, SSA may be performed to
decompose the variables as into the deterministic, mixed statistical and random
components. The main concepts of SSA are not described here, since this method has

been introduced in Section 2.2.6.

After determining the periodic and/or the trend components; principal component
analysis is performed on the residuals to extract the statistical and noise components.
In order to obtain the noise-free spatial modes of climatic variability, the

deterministic components (periodic cycles and/or trend) are subtracted from the raw
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data series and then the significant spatial principal components are selected for
residuals of the data sets assessing the fit of the model based on maximum likelihood

method under I* (chi-squared) distribution of 95% significance level of unequal
variances of PCs with the degrees of freedom expressed by: 1/ 2|_(p—q)2 —(p+q)J

(Joroskog and Strbom, 1989). Here p and g represent the entire PCs and the number
of unequal-significant PCs, respectively. In the final stage, the both predictors and

predictands are assumed to be now noise-free according to the methods.

3.3 Proposed Downscaling Model Based on Recurrent Neural Networks

A downscaling model may be divided into a naive (e.g., AR, ARMA) and causal
(e.g., regression) components. One must distinguish between causal models and
naive models. A naive model approach involves using only historical data. Thus it
assumes that the trend of the dependent variables, which in this study are the monthly
total precipitation series, remains constant over the time, and the value of the
dependent variables Y (¢ + k) where 7 is the present month and % is the number of the

predicted months which can be extrapolated from historical data.

On the other hand, a causal model approach assumes that there are some (causal)
variables (e.g., GCMs outputs) that are responsible for changes in the dependent
variables. In the causal models, previous information is available from the GCMs,
which can be considered in the process of the model building for downscaling

purposes (i.e. a Bayesian approach).

Assuming now that Ar illustrates the prediction time step and G is an unknown
transformation (such as AR coefficients in the AR model), then to predict the
multivariate Y from its own finite countable previous states, the following relation

can be used:
Y(+4) =G> Y(t —kat)|+e(t); k=0,1...n 3.2)

In order to distinguish the models, let Y1 (z) and Y3 (¢) denote the outputs of the
causal model and the naive model, respectively. Assume that' the static
transformation (causal) is linear and the dynamic prediction model (naive) is first
order (Richardson 1981); then these two separated prediction models can be written

as:
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Y, (t + At)= A[X(r + Ar)] (causal model) (3.3)
Y, (¢ + Ar) = B[Y(¢)] (naive model) (3.4)

here X (t) represents causal variables, and for simplification, the error term e(t) is
omitted. The main problem arises to select the best outputs from these models.
However, it is not clear which of the model outputs is important for local scale
processes, but one may propose a multivariate difference equation as in the following
(Bras and Rodriguez-Iturbe, 1993).

Y(e)= M, [¥ (e - ar)]+ M, [X()]+ M, [e0)] 35)

where Mj, M, and M3 are linear operators, and the vector e(t) consists of

uncorrelated white noise. The vector covariance of e (t) is a diagonal matrix,
D, = E(e(®)" e(®)) (3.6)

where E illustrates the expected value, but in practice it is generally taken as sample
average. The definition of Equation (3.5) forms a possible way for accommodating
of the naive and a causal model into a new model with linear structure.
Meteorological or climate processes are generally expected to behave nonlinearly,
whereas the process represented by Equation (3.5) has a linear static part and a linear
dynamic part, one can claim that it represents a linearization approximation.
Therefore, Equation (3.5) may not be enough to. satisfy non-linearity constraint.
Hence, a more sophisticated approximate approach for solving this problem is
developed. If two downscaled sets from Equation (3.3) and Equation (3.4) are
combined as Z(¢) = [Yl ®,Y, (t)], then the suggested model can be written as:

Y(®) = M[H[Z@®) ]|+ e(r) (3.7)

where e (?) is the multivariate Gaussian noise. M is a linear operator that it predicts
local variables from the { H[Z(z)]} basis functions, and H is a non-linear scalar
function given in Equation (3.8) that can generate the basis functions, respectively.

This is a new version of the downscaling method which constitutes both the

knowledge from the static model of the causal large scale variables given in Equation

32



(3.3), and the knowledge from the first order local linear dynamic model given in
Equation (3.4).

However, the regression equation in Equation (3.3) can be applied for homogenous
sets of the predictors and predictands, for which the regression is evaluated.
Therefore, linear regression given in Equation (3.3) can not be applied due to
heterogeneity, if heterogeneity is introduced to the dependence. In this study, the
‘homogeneity in dependency’ is an assumption to describe the invariance of the
relation (deterministic rule) between predictors and predictands. Hence, a method is
proposed to solve this problem. First by canonical correlation analysis, which may be
seen as a classification of predictors and predictands, the significant canonical
" correlation variates are determined. Second, the so-called causal model is evaluated
between these CCVs. In this study, CCA is employed after independent component

analysis.

Now the structure of the scalar function H can be determined. It should be non-linear
in its structure to satisfy the constraint of non-linearity. So, we transform Z (z)
element by element to generate the basis variables of the system in Equation (3.7)
with a non-linear H function (Equation (3.8)), thereafter the degrees of problem may
be reduced. Two such possible non-linear functions from neural network applications
are (Connor et al., 1994; Haykin 1999; Haykin 2001):

H,(y) = tanh (a y)

i (3.38)
H,()= 1+ exp(—c y)

where o is a scalar constant. The preceding proposed method algorithm stages are
summarized in Table 3.1, and a flow chart diagram that describes the model

components is also shown in Figure 3.3.

The proposed approach is indeed an originating form of a recurrent neural network
(RNN) model (Jordan, 1986; Elman, 1990; Robinson and Fallside, 1991; Puskorius
and Feldkamp, 1994; Connor et al., 1994; Pearlmutter, 1995; Haykin, 1999; Haykin,
2001; Hochreiter et al., 2001).

33



Table 3.1. The proposed method algorithm

1. Perform a statistical large scale analysis by ICA based on PCA, and employ CCA
‘between ICs and monthly total precipitation series for reducing the proper
predictors and predictands (see text).

2. Divide all the data sets into two parts. Select one part for model identification and
leave the second part for validation.

3. Normalize all data sets in use to make their means zero and variances one.

4. Construct anaive and a causal model separately.

5. Transform the outputs of the linear static (causal) and dynamic (naive) models by

one of the functions given in Equation (3.8).

6. Construct a multivariate linear regression mode] between the responses of the

fifth step and the predictand variables.

7. Apply a training through-time algorithm (e.g. Puskorius and Feldkamp, 1994;
Pearlmutter, 1995; Haykin, 2001; Hochreiter et al., 2001) a case in the RNN
models via part (causal) by part (naive)

8. Test the model to see whether it is appropriate or not (validatibn)

Large-scale| X(t) Y{(t-1) Local-scale o
PCAl Naive model o
o
PCs Y2(8) o
ICA -
ICs o
Basls functions :_’

CCA Linear modsl

[ covs |-Causalmodel _["vq¢g) |
Y(t)

X(t)

l

Statistical preprocessing | CCVs
| Y1) RNN _"‘1(*)

Figure 3.3. The flow chart of the components in the proposed downscaling approach
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In the conventional RNN models, the training process is based on minimizing the
variance of the error between estimated and observed values. Hence the structure of a
RNN is sensitive to dynamics of the process. The RNN model of Jordan (1986) could

be represented as:

Z(t + A1) = H[M,Y(£) + M,X(t + A1)

Y(t+Af) = MLZ(t + Ar) (3.9)

where H is a non-linear scalar function defined as in Equation (3.8) and Z illustrates
the states of the system (outputs of hidden neurons), and My, M, and Mj are linear

operators.

In the proposed RNN, the initial weights (M; and M; in Equation (3.9)) between
inputs and hidden neurons are selected as A, given in Equation (3.3), and as B, given
in Equation (3.4). If the initial weights are selected randomly, then the conventional
RNN may capture only the dynamical features of the local scale process. To solve
this problem, the training process is employed part by part. The elements of A
(naive) are kept constant while updating the elements of B (causal); similarly the
elements of A are updated while keeping constant the elements of recently updated
B. Consequently, the proposed RNN can satisfy not only the non-linearity such as in
the case of conventional RNN but also satisfies and distinguishes the naive and the

causal relationships (linear or non-linear).

In this study, the well-known training process algorithms of RNN are not described,
but one may find the effective algorithms, e.g., in Puskorius and Feldkamp (1994),
Pearlmutter (1995), Haykin (2001), Hochreiter ez al. (2001), for example.
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4. A GENERAL LOOK AT THE CLIMATE-CHARACTERISTICS OF
PRECIPITATION AND TEMPERATURE OVER TURKEY

4.1 Precipitation

In general terms, Turkey is associated with a subtropical climatic regime that is
referred to as Mediterranean. Because of its geographic location, the atmospheric
systems that shape the weather regimes affecting Turkey have both polar and tropical

origins, which are dominant in the winter and summer respectively.

During the autumn and winter, polar fronts have a determining effect on the mid-
latitudes. Large scale atmospheric motions are translated into local weather
conditions due to different land characteristics. These local conditions have both
thermal and dynamical features. On the other hand, the different local conditions
have sparse local climate features due to the land-sea distribution, elevation and
other local physical-geographical properties that make those macro-climate features
highly variable.

Turkey (despite being surrounded by the sea on three sides), because of its coastal
regions characterized by high topography, includes a rather large inland area (central
Anatolia) that has a continental climate character (Taha et al., 1981; Ering, 1984;
Kadioglu, 2000). The topography causes strong variations in the climate. The coastal
sides of the mountains receive heavy precipitation, but there are also thermal effects

due to topographic height differences coupled with other factors.

4.1.1 Precipitation in summer months

Since the maritime-polar (mp) and continental-polar (cp) air systems move towards
northern regions, the tropical air systems have a dominant effect the Mediterranean
basin in this season. The southern and southeastern parts of the country are under the
influence of continental tropical air system due to the Azores high and the
circulation-based Monsoon low which are quite dry and warm. The maritime tropical

air system that travels from the Atlantic towards Turkey (a northwesterly motion)
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gets heated and loses most of its relative humidity during its passage across the
mainland and presents a stable structure. The Azores high-pressure centre locates
over Europe during its northward and eastward displacement; and this situation

affects the weather and climate, especially for the western parts of Turkey.

Both the marine and continental air systems, especially during the June—August
period, have stable structures characterized by hot and dry conditions, and cloudless

summers are quite typical for Turkey, except in the Black Sea region.

Exceptions do occur, as sometimes the western, and especially northwestern, parts of
the country get heavy precipitation. The precipitation is the result of the frontal
systems forming as the northeastern Atlantic originated air system interacts with the

tropical maritime air system.

The northern part of the country, having high topography along the Black Sea coast,
also experiences some heavy precipitation of the orographic origin. In the west, the
‘mountains are not parallel to the coast; as a result, the orographic precipitation has a
more local character. The mountains also divert the air flow in various ways, causing

central Turkey to possess a peculiar wind regime.

4.1.2 Precipitation in winter months

The Mediterranean basin, which includes all the European countries having a coast
on the Mediterranean, becomes an active frontogenesis region at the beginning of
autumn. The Azores high shifts to south and the Siberian high-pressure system starts
to affect the northern and eastern Europe (due to thermal reasons); the Mediterranean
belt becomes a convergence zone. The frontal systems that travel along various
trajectories towards the east affect Turkey. These cyclonic depressions have two

main paths across Turkey.

The first affects the western and southern parts of the country and then continues
towards the southeastern parts. The second has a trajectory towards the northeast and
is the cause of most of the precipitation in the northwestern, northern and central

parts of the country.

The other trajectory of the polar front that affects Turkey is felt when the Azores
high becomes strong enough to affect the Western Europe. When this comes onto the

scene the depressions travel from the Thrace-Marmara and western part of the Black

37



Sea region towards southeastern Turkey by northerly and northwesterly flows; most
of Turkey is affected by those motions. The effect is more pronounced when the
mechanisms related to the Azores High create northerly and northwesterly winds

over the Anatolian Plateau.

The principal effects of the Mediterranean cyclones on Turkey are southwesterly
winds on the Turkish Mediterranean coast. Topography creates important local
effects in the western and Black Sea coasts of Turkey: the seaward (wind) sides of
the mountains are washed by heavy precipitation and the precipitation decreases
towards the inner parts of the Anatolian Peninsula. There exists a very sharp negative
orographic precipitation gradient from the coastal regions towards central Anatolia.

In central Anatolia, there is a plateau effect rather than a sharp topography effect.

During the winter, a convergence zone also forms in the eastern part of the Black
Sea. This is a consequence of the interaction between the north-easterly and easterly
currents created by the Asian high (Siberian high) and the local southerly currents
created by the small-scale high-pressure centers due to the thermal effects in the
eastern Anatolia. Foehn winds and rain shadows are, therefore, common in this
region during cold, winter periods. Dry conditions (drier than normal) associated
with the Foehn winds (southerly and south-easterly upper air flows) are common

during the spring months on the middle and eastern Black Sea coastal belt.

In the winter the passage of the frontal cyclones causes precipitation in the coastal
regions, but central ‘and eastern Anatolia remain largely continental in terms of

climatic features and become a divergence field.

During the spring, depressions gradually decrease over Turkey, and the depression
frequencies reaching a minimum during the summer (Tatli er al., 2003). The
depressions that are seen during the summer mainly affect the northern part of the
Marmara region, the Black Sea coastal area and the north-eastern Anatolia sub-

region.

Spring and summer are seasons that are dominated mainly by the local effects. The
mountains that run parallel to the Black Sea coast of Turkey prevent the northerly
currents from penetrating inland. However, the situation in the west is different, as

the mountains run perpendicular to the coast, so they cannot block the westerly
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currents very effectively, and the mid-latitude depressions penetrate into the mid-

western parts of the country through the gaps between these mountains.

4.2 Temperature

Turkey is in a region which is often described to have a warm and moderate climate
(Ering, 1984). The highest maximum temperaturé is observed in the south-east of the
country, particularly in summer months. Towards the north-west and north-east the
temperature decreases gradually, yet this decrease is less strong during the summers
due to the continental effects of the inner regions. At low altitudes, the coastal
regions are warmer than the inner regions which are separated from the former by
high mountains. On average the Mediterranean coast has the highest temperature,
followed by the Aegean, the eastern part of the Black Sea region and the Marmara
coasts. In the eastern Anatolia, due to the continental effects and high altitudes, there

is a widespread temperature decrease.

The extensions of the continental and topographic effects are important in
determining the distribution of temperature variability. The most interesting thermal
character of Turkey is the rise of temperature in all the regions due to continental
effects and thereby a decrease in regional contrasts during summer. The resulting
temperature field has a negative gradient towards the north-west. Central Anatolia
becomes very hot during the summer and its temperature contrast with the coastal
areas decreases. Roughly speaking, from a macro-climate point of view, Turkey

represents a more homogeneous region during the summers.

During winter, continental influence, topographic-height, and of course the latitude
are determining factors for the minimum temperature. The main difference between
summer and winter is that during winter the regional temperature contrasts are very
strong, implying that there is negative temperature gradient from the coasts towards
the inner parts. In the inner parts, the continental effects are pretty much the same
and there are no huge temperature differences from region to region, but still there is

a gradual temperature decrease towards the east within the Anatolian Plateau.

There is a negative temperature gradient towards the west in the Thrace region. This

means mostly closed isotherms over Turkey and positive temperature anomalies
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towards the coasts while negative temperature anomalies are observed towards the

inner parts.

The highest temperatures during winter are observed along the Mediterranean coast
which is influenced by the air systems of sub-tropical origin. In the Aegean and
eastern part of the Black Sea region the temperature does not fall very much due to
marine effects (also due to the foehn winds in the case of the eastern part of the
Black Sea region). Southerly winds are generally common in the central part and
move towards the convergence field in the eastern Black Sea. The lowest

temperature values are observed in the north-eastern Anatolian Plateau.

The annual temperature is least contrasting at the coasts (especially in the eastern
Black Sea coast due to the additional effects of the foehn winds). The annual
temperature contrast increases towards the inner parts. The transitions from the cold

to the warm period are more abrupt in the inner parts than in the coastal areas.

The daily temperature has a similar character with a small contrast at the coasts, and
a high contrast in the inner parts. Especially in the high plateaus of Anatolia, during
winter there is a strong daily contrast when frontal activities are common, but also in

the transitional seasons of spring and autumn.

In Turkey, the monthly extreme temperature averages are quite different from the
monthly averages. This is mainly due to the continental effects. .The above
mentioned difference increases towards the inner parts of the country and becomes
very large in the eastern Anatolia. During summer, the differences between the
monthly mean temperature series and those of the extremes are the largest in the
coastai areas. The extreme temperatures have maxima in the south-eastern region of
Anatolia during summer. The average maxima are smallest in the Black Sea region.
In central Anatolia it is common for the monthly mean temperature to fall below zero
in January. In winter, these values are usually well below zero towards the eastern

Anatolia, while moderate values are observed in the coastal areas.
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5.RESULTS

5.1 Downscaling Monthly Total Precipitation over Turkey

In this section, a statistical downscaling approaéh of monthly total precipitation over
Turkey, which is an integral part of system identification for analysis of local scale
climate variables, is investigated. Based on perfect prognosis, a new computationally
effective working method which was introduced in Section 3.2 by the proper
predictors selected from NCEP-NCAR reanalysis data sets of which are simulated as
possible as perfectly by the GCMs during the period of 1961-1998.

Sampson correlation ratio is used to determine the relationships between the monthly
total precipitation series and set of large scale processes (namely 500 and 700 hPa
geopotential height, mean sea level pressure, 500 hPa vertical pressure velocity and
500-1000 hPa geopotential thickness).

In the study, statistical preprocessing is implemented by independent component
analysis rather than principal component analysis or principal factor analysis. The
proposed downscaling method is originating from a recurrent neural network model
of Jordan (1986) that it uses not only the large scale predictors but also the previous
states of the relevant local scale variables. Finally, some possible improvements and

suggestions for further study are mentioned.

A number of studies regarding the spatial and temporal properties of precipitation or
rainfall in Turkey have been published (e.g., Tiirkes, 1996; Tiirkes, 1998; Tiirkes et
al., 2002a; Kutiel et al., 1996; Kutiel et al.; 2001; Kadioglu, 2000; Touchan et al.,
2003). However, this work is the first study regarding the statistical downscaling of
the local variables for Turkey (Tath et al., 2004).

In the study, the monthly total precipitation data for 31 Turkish stations has been
selected as an application of the proposed approach. It is demonstrated that the
proposed method can well suppress the increase of the downscaling error due fo
nonlinearities, improving greatly the accuracy of the downscaling compared to the

conventional regression-based techniques.
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5.1.1 Problem statement

The basic data consists of the monthly total precipitation for 31 Turkey stations
Turkey (Table 5.1 and the additional detail is shown in Figure 2.2a) with a record
length 38 years, during the period 1961-1998. The selected meteorology stations
have no missing data in the prescribed period, and represent the major characteristics

of the precipitation over Turkey.

In order to perform a successful statistical large scale analysis (Rummukainen,
1997), NCEP-NCAR reanalysis data sets are windowed between 10-50°E and 30-
60°N; since this area is assumed large enough to represent the large scale climate, or
synoptic features being considered to affect the monthly total precipitation series
over Turkey. The following large scale data sets from NCEP-NCAR reanalysis data
sets are used as predictors in this study (the details of the geographical distribution of
both the large scale and local scale variables is given in Chapter 2).

1) The interactions of long (Rossby) and short waves are identified at 500 hPa level.
At this level, the long waves generally show a barotropic character whereas the
short waves are baroclinic. Therefore, the short waves at this level have
determining effects on the development of surface cyclonic and anti-cyclonic
systems. The cyclonic and anti-cyclonic vorticity at all high levels is a result of
the interactions of short waves of high level flows and surface systems. As a
consequence of these arguments; 500 hPa geopotential heights are considered as

predictors.

2) 700 hPa geopotential heights are also considered as one of the predictors. The
clouds and precipitation occur by the vertical motions in regions with short
waves. Especially, the local precipitation is significantly related to the short-
waves at 700 hPa and 500 hPa levels.

3) Due to the thermal effects of troposphere, 500-1000 hPa geopotential thicknesses

are considered.

4) In order to represent surface weather systems features, mean sea level pressure (a
prognostic variable in the GCMs) is considered. MSLP is the most important
causal variable of the proposed model, since (Kutiel et al., 2001) have recently
studied the relationships of the MSLP patterns associated with the dry or wet

monthly rainfall conditions in Turkey.
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5) The diagnostic predictor is 500 hPa pressure vertical-velocities (omega), since it
is considered to represent the vertical dynamics of the troposphere (Holton, 1992;
Bluestein, 1993), and vertical dynamics properties are associated with occurrence

of precipitation process.

In order to represent jet streams in the troposphere, one may take 200 hPa and 300
hPa wind speeds (e.g., Xoplaki et al., 2003), but as seen below, while preprocessing
large scale variables, 500 hPa vertical pressure velocities can satisfactorily represent

the vertical dynamics characteristics.

The significant canonical correlation variates (CCVs) are selected such that the each
of the CCVs can explain the maximum variance of the monthly total precipitation
series for Turkey stations. The significant PCs and CCVs are shown in Table 5.2 and
Table 5.3, and Figure 5.1 displays the contrast between the PCs and ICs.

In actual fact, a true statistical downscaling may be done within the data sets with
similar power spectra. Indeed the CCVs of the large scale processes and CCVs of the
local scale processes show similar spectral spectra. As a consequence, the
downscaling process is said to be in conformance with the constraint of
‘homogeneity in dependence’. As a result, the low frequency large scale predictors
induce instabilities in the prediction of the high frequency local scale predictands,
and vice-versa. The first three spectral densities of the CCVs of the large scale and
the local scale data sets are computed by Climlab2000 Software Package of Tourre
(2000), and the results are shown in Figure 5.2.
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Figure 5.1. The first three principal components and independent components of
mean sea level pressure series
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Table 5.1. The Turkey stations of monthly total precipitation in the application

Latitude Longitude International
Station Name
(° North) (° East) Station Number

Zonguldak 41.27 31.48 17022
Sinop 42.01 35.10 17026
Samsun 41.17 36.18 17030
Trabzon 41.00 39.43 17037
Rize 41.02 40.31 17040
Edirne 41.40 26.34 17050
Goztepe (Istanbul) 40.58 29.05 17062
Bolu 40.44 31.31 17070
Kastamonu 41.22 33.47 17074
Sivas 41.00 39.43 17090
Erzurum 37.18 40.44 17096
Kars 41.27 31.48 17098
Igdir 42.01 35.10 17100
Canakkale 40.09 26.25 17112
Bursa 40.11 29.04 17116
Ankara 39.55 44.03 17130
Van 41.40 26.34 17172
Afyon 38.45 30.32 17190
Kayseri 41.17 36.18 17196
Malatya 39.45 37.01 17199
Izmir 38.26 27.10 17220
Isparta 40.58 29.05 17240
Konya 41.02 40.31 17244
Gaziantep 40.11 29.04 17261
Sanlturfa 40.37 43.06 17270
Mardin 40.44 31.31 17275
Diyarbakir 39.55 41.16 17280
Mugla 37.13 28.22 17292
Antalya 36.53 30.42 17300
Mersin 36.48 34.36 17340
Adana 37.00 35.20 17351
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Figure 5.2. The spectral densities of the first three CCVs. The horizontal and vertical
axes represent frequency (in cycle/month) and spectral density, respectively: (a) the
large scale variables (on left); (b) the local scale variables (on right).

Table 5.2. The significant principal components of the large scale variables
according to the criterion of (Jéreskog and S6érbom, 1989)

Large Scale Predictors Su\l;;:iiﬁfgl(a;n)ed 1\(1:;'!;2?
500 hPa geopotential height 96.4 3
700 hPa geopotential height 94.8 3
Mean sea level pressure 90.4 3
500-1000 hPa thickness 96.6 2
500 hPa vertical pressure-velocity 69.7 6
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Table 5.3. The canonical correlation variates of the large scale variables (7th
canonical correlation variate is more significant than the 6th canonical correlation
variate) '

CCVs of Explained Variance of the Monthly.
The Large Scale Variables Total Precipitation Series (%)

CCv, 46.213
CCV, 18.931
CCV3 10.375
CCV,4 7.748

CCVs 2.934
CcCcV; 1.581

Sum 87.782

5.1.2 Sampson correlation pattern analysis of Turkish rainfall associated with large

scale climate features

In order to explore the relationships between the large scale data predictors and
monthly total precipitation series; the Sampson correlation patterns are computed
between the individual large scale variables (namely 500 hPa and 700 hPa
geopotential heights, mean sea level pressures, 500 hPa vertical pressure velocities
and 500-1000 hPa geopotential thicknesses) and precipitation series for four seasons;
but in this study only the results for winter and summer are shown in Figures 5.3 to
5.7.

In these figures, the significance of Rs correlations (based on «-level statistics) is
shown in a gray-scale from light to dark to represent the decreasing order of

significance.

Figure 5.3 shows the Sampson correlation coefficients between the seasonal sea-level
atmospheric pressures (wet and dry seasons being characterized by the winter and the
summer respectively) and the precipitation series of Turkey. The most important
correlations are observed in the region that encompasses Italy, the entire Balkans

region, Turkey and Eastern Mediterranean.
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Figure 5.3. The Rs pattern between the MSLP and monthl'y total precipitation series:
(a) winter months; (b) summer months

This explains the effects of the low pressure anomalies on the Turkish precipitation
regimes during winter. These correlations are in agreement with the work of Kutiel ez
al. (2001). The strongest correlations are observed in the Central and Southern

Aegean. For the summer, weaker correlations exist for the Eastern Mediterranean.

As seen in Figure 5.4, there is an important correlation between the values of the 500
hPa geopotential heights and winter precipitation series. The correlation pattern in
the area that includes the western part of Turkey, Adriatic Sea, the Balkans and
eastern part of Italy is at appreciable level. In winter, the geopotential low center at
500 hPa affects Turkey from the north-west. Such conditions are observed at high
levels (500 hPa) when the low pressure centers and related frontal systems are

_observed at surface.

‘Significant correlations for the summer occur in the Eastern Mediterranean (namely
Southern Turkey and Cyprus). During the summers, Turkey is under the influence of
‘warm air masses (systems) of tropical origin, which is visible in terms of positive
anomalies for the 500 hPa geopotential heights. Spring and autumn form transitions

between the above-mentioned regimes.
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Figure 5.4. The Rs pattern between the 500hPa geopotential heights and the monthly
total precipitation series: (a) winter months; (b) summer months

In Figure 5.5, 700 hPa geopotential heights data set gives a similar result to that of
500 hPa in term of its correlations with the precipitation regimes during the winter.
In this figure, the significant correlations are seen over western-part. However, no
such a significant correlation pattern exists for the summer (according to 95 % of
statistical alpha level).
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Figure 5.5. The Rg pattern between the 700 hPa geopotential heights and the monthly
total precipitation series: (a) winter months; (b) summer months

The anomalies related to the geopotential thicknesses of 500-1000 hPa (in a similar
way to the 500 hPa geopotential heights themselves) in Central Europe have a
correlation with the Turkish precipitation regimes as it can be seen in Figure 5.6. It
can be postulated that, especially during the winter, the negative thickness anomalies
are related to the cold advection, because the thickness itself is an indicator of

thermal advection.
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As it can be seen from the contours, a similar correlation is valid for the Caucasus
and the Caspian region as well (this correlation is related to the positive thickness
anomalies that indicate the lack of precipitation during winter, i.e. winter with dry
conditions). As discussed for Figure 5.3, Turkey is under the influence of Iceland and
Mediterranean Lows in winter, therefore those regions are characterized as
convergent fields. That is, the upward motions are effective. The pronunciation of
such cold advection at the high levels (from 850 hPa to 500 hPa) has a determining

effect on the occurrence of the precipitation.

In winter, on the eastern part of Turkey (especially the eastern Black Sea part of
Turkey) there is an important convergent field (see Section 4) while exists of cold
advection over of these upward motions has important effects on the formation of

clouds and precipitation occurrence conditions. In summer, the effect of the air

system which is originated from Sahara (dry and warm) is clearly seen in Figure

5.6b. This period indicates the dry period for Turkey.

Figure 5.6. The Rs pattern between the 500-1000 hPa thicknesses and the monthly
total precipitation series: (a) winter months; (b) summer months

The correlation patterns between the 500 hPa vertical pressure velocity (omega)
series and the precipitation series can be observed on Figure 5.7. For both seasons,
there is a strong correlation pattern for the area that includes the east of Greece,
entire Black Sea and entire Eastern Mediterranean. There is also a strong correlation

pattern for the southwestern corner of Turkey and Cyprus.
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Figure 5.7. The Rs pattern between the 500 hPa vertical pressure velocities and
monthly total precipitation series: (a) winter months; (b) summer months

During the winter, the area of omega-anomalies is on the trajectory of Mediterranean
low pressure systems (Alpert et al., 1990). For the summer the strong correlation
patterns have a more 'patchy' nature, having maxima in the Balkans, Northern Africa
(Sahara), Central Mediterranean, Arabic Peninsula and Persian Gulf. These centers
have a potential to be related to the droughts as they are mainly characterized by the
Azores high connected to sinking motions, and northwestern part of the monsoon

low (the Arabic low) which has a dry characteristic during summers.

5.1.3 Downscaling results

In order to show the proposed model spatial performance, the pseudo principal
component patterns of both the observed and downscaled precipitation series are
shown in Figures 5.8 to 5.10 (since the amount of data is insufficient to extract the
true principal component patterns; these are termed as pseudo-patterns). The model
performance is also shown in Figure 5.11 to underline how the mean square errors
are distributed over Turkey for the validation period of the proposed model output
(the last half part of the data, i.e., 228 months).

The scatter plots of the downscaled versus observed monthly total precipitation time
series for Goztepe (Istanbul), Ankara, Diyarbakir, Izmir, Rize, Adana and Erzurum
are selected from the rainfall regions according to Tiirkes (1996) and Tiirkeg (1998)
are shown in Figure 5.12. In order to distinguish the performance for validation, the
correlation coefficients (r1, 2) between the observed and downscaled data sets are

computed. In this figure, r; and r; represent the correlation coefficients for training
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Figure 5.9. The second PC pattern of the monthly total precipitation series: (a)

indicates the correlation coefficients between the monthly total precipitation time
observed

Figure 5.8. The first PC pattern of the monthly total precipitation series (the map

series and the first PC)

Figure 5.10. The third PC pattern of the monthly total precipitation series
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The performance of the proposed model increases from the continental regions of
Turkey to the coastal regions of Turkey except in the Black Sea and in southern
Anatolia regions. This result is expected, because the precipitation conditions over
the western and southern coastal regions (including mainly the Marmara Transition
and Mediterranean rainfall regions of Turkey) are dominantly controlled by the large

scale systems, whereas in the continental parts the added precipitation is due to the

local conditions.

43N

Mean Square Error
¥ 10to 20

41N; A 20 to 35
o Wl 5070
2 39N - -i- - -
(]
—

3Njo- -2 - -1 -5

o U M L BV = 4\ B

5E 27E 29E 31E 33E 35E 37E 39E 41E 43E 45E

Longitude

Figure 5.11. Geographical distribution of the mean square errors of the proposed
model output for the validation period of the 1980-1998 interval.

In the Black Sea region, the additional precipitation is due to the topographical
characteristics of a region includes such as the rain-shadows and/or exposure that the

large scale processes may not capture.

The other unexpected result is for Diyarbakir. The performance of downscaling at
this station is superior to the other non-coastal stations. Diyarbakir’s precipitation is
affected by both the Mediterranean frontal low-pressure systems and large scale dry
climate conditions (especially in summers). Therefore, Diyarbakir is not a typical
continental station; this result is in agreement with the works of Tiirkes (1996) and

Tiirkes (1998), where he named this region as “Continental Mediterranean”,
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Figure 5.12. The scatter plots of the identified model outputs versus actual monthly
total precipitation series. The correlation coefficients between the observed and
model outputs are abbreviated as r; for the training part and r, for non-training part
respectively: (a) Goztepe (Istanbul); (b) Ankara; (c) Diyarbakir; (d) Izmir; (e) Rize;
(f) Adana; (g) Erzurum
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5.1.4 Summary

In this section, a new proposed method which is introduced in the Section 3.2 for
downscaling regional climate processes is presented. The model results show that the
precipitation regime (both wet and dry periods) of the coastal regions for Turkey (the
Mediterranean, Aegean and Marmara), and region of southern Anatolia are under the

influence of large scale pressure system and upper-air circulation.

On the other hand, especially in the Black Sea region, in addition to the large scale
processes, the local features (namely topographical conditions) determine the
likelihood and intensity of precipitation. For inland regions, the local processes are
more effective than the large scale processes. The southeastern part of the country is
affected by both the Meditérranean and Monsoon lows. Therefore, this region can be
called a Transition Mediterranean precipitation regime, which is in agreement with
the works of Tiirkeg (1996, 1998).

Before model building, a large scale analysis is needed because of the relationships
between the large scale processes and local processes based on the meaningful
statistical linkages. However, according to many studies (e.g., Nicholls, 1987;
Ozeren et al., 2003; Tiirkes and Erlat, 2003) the other climate indices, such as North
Atlantic oscillation, may be considered to relate remote effects on the local

precipitation series.

The model is constructed following a three-stage process. In the first stage, the
potential predictors are preprocessed with PCA based on the maximum likelihood
criterion of Joreskog and Sérbom (1989). In this way, 1105 time series (five type
predictors on 221 grid points) are reduced to 17 time series of PCs (Table 5.2).

If the data in use do not have a Gaussian distribution, as is the case of the
precipitation series, then CCA after PCA may not able to produce true correlated
components; therefore, the‘ significant PCs are transformed into ICs by the ICA
procedure to satisfy the probability distribution constraint. Since a prediction
technique’s performance is sensitive to the independence of the predictors; a better
performance of CCA with ICs is not a surprising result according to this study. After
employing CCA, six significant CCVs of ICs of the predictor time series are
produced based on their explanatory performance of the maximum variances in the

precipitation series for Turkey stations (Table 5.3).
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In the second stage, a causal model is identified between the monthly total
precipitation series and CCVs of ICs of the large scale déta sets. Thereafter, a naive
model is identified as a first order model (Richardson, 1981). In this step, the causal
and naive models are run in parallel (or online), and the outputs of the models are
transformed into the basis functions by the hyperbolic tangent function (see Section

3.2) to satisfy nonlinearity requirements.

In the third stage, a classical multivariate regression model is built between the
extracted basis functions in the second stage and the set of the monthly total
precipitation series. Finally, for the proposed RNN, the training through time process
is applied to the naive and causal components of the model separately. The method is
equivalent to the Jordan-type recurrent neural network in terms of its structure. The
final model is so simple in its structure that it can easily be updated when new data

sets are available.

Generally, we have two types of knowledge about large scale processes: those
coming from the models and those inferred from the observations. Knowledge from
the observations may be divided into three parts: physical based linkages, such as
weather types (Lamb, 1972; Conway and Jones, 1998); ‘summarized’ knowledge,
such as climate indices; and time series of large scale oBservations or GCM-
generated fields. In this study, we only developed statistical linkages based on the
large scale NCEP-NCAR reanalysis data sets.

- Finally, one has to emphasize that the performance of the resulting prediction scheme
(grey = white + black) depends not only on the performance of the statistical (black-
box) downscaling techniques, but also on the GCM’s (white-box) performance in

simulating large scale fields.

5.2 Surface Air Temperature Variability over Turkey and Its Connection to the
Large Scale Upper Air Circulation

5.2.1 Problem statement

In this Section, the problem of statistical linkages between the large scale and local
scale processes is investigated through noise-reduction by singular spectrum analysis
and spatial principal component analysis in order to construct an appropriate

statistical model to downscale the local scale climate variables from the large scale
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climate processes for Turkey stations. This study presents an approach for
downscaling monthly near-surface air temperature series over Turkey by the upper
air circulations from NCEP-NCAR reanalysis data sets (namely 500 hPa geopotential
heights and 500-1000 hPa thicknesses) which are windowed the range of 10-50°E
and 30-60°N where additional details were previously shown in Figure 2.1 and

Figure 2.2b in Section 2.

The proposed approach procedure consists of three stages. First, the available data
sets are separated into deterministic and statistical components), and random

componehts by SSA.

Secondly, the deterministic components are saved and the random components are
eliminated by spatial PCA. Later, the statistical components and deterministic
components are combined of which the new data set is called noise-free. Secondly,
so called Sampson correlation patterns are determined between the noise-free large
scale and local scale variables for interpreting the large scale processes impacts on

local scale features for Turkey stations.

Thirdly, the significant redundancy variates based on CCA are extracted in order to
identify the statistical-downscaling model for the temperature series of 62 Turkey
stations (Table 5.4). The results show that the interpretation of the local scale

processes with the noise-free data sets is more significant than the raw data sets.

A number of applications regarding to the temperature series of Turkey associated
with the statistical analysis have been published, e.g., (Jones et al., 1986; Jones,
1995; Kadioglu, 1997; Tayang et al., 1997; Komiisgti, 1998; Tiirkes et al., 1995;
Tiirkes et al., 2002b).

The predictands are monthly maximum, mean and minimum temperature series of 62
stations in Turkey, during the period of 1951 to 1998. Since data sets of the
temperature time series have dominantly periodic cycles these components can easily
be estimated by any linear prediction model. On the other hand, these periodic
components may hide the non-seasonal components which are called non-periodic
or/and trend components (linear or non-linear) according to the stochastic literature
(Richardson 1981; Bras and Rodriguez-Iturbe 1993; Box et al., 1994; Hipel and
Mcleod 1994; von Storch and Zwiers 1999), respectively.
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Table 5.4. Turkish stations for near-surface air temperature used in the application

Station Longitude Latitude Station Longitude Latitude
Name (°E) (°N) Name (°E) (°N)
Zonguldak 31.48 41.27 Afyon 30.32 3845
Inebolu 33.46 41.59 Kayseri 35.29 38.44
Sinop 35.10 42.01 Malatya 38.19 38.21
Samsun 36.18 41.17 Elazig 39.14 38.40
Giresun 38.24 40.55 Siirt 41.57 37.55
Trabzon 3943 41.00 Izmir 27.10 38.26
Rize 40.31 41.02 Aydin 27.51 37.51
Artvin 41.49 41.11 Burdur 30.17 3743
Edirne 26.34 41.40 Isparta 30.33 37.46
Tekirdag 27.33 40.59 Konya 32.29 37.52
Kirecburnu 29.03 41.10 Nigde 34.41 37.58
Goztepe 29.05 40.58 Gaziantep 37.23 37.04
Kocaeli 29.56 40.47 Sanliurfa 38.46 37.08
Bolu 31.31 40.44 Mardin 40.44 37.18
Kastamonu 33.47 41.22 Diyarbakir 40.14 37.54
Merzifon 35.20 40.52 Bodrum 27.26 37.03
Corum 34.57 40.33 Mugla 28.22 37.13
Sivas 37.01 39.45 Fethiye 29.07 36.37
Erzincan 39.30 39.45 Anamur 32.50 36.05
Erzurum 41.16 39.55 Mersin 34.36 36.48
Agri 43.03 3943 Adana 35.20 37.00
Bandirma 27.58 40.21 Iskenderun 36.10 36.35
Bursa 29.04 40.11 Luleburgaz 27.21 41.24
Bilecik 29.59 40.09 Sile 30.25 40.47
Yozgat 34.48 39.49 Florya 28.45 40.59
Balikesir 27.53 39.38 Kutahya 29.58 39.25
Van 43.23 38.30 Dortyol 36.13 36.51
Dikili 26.53 39.04 Islahiye 36.38 37.02
Akhisar 27.51 38.55 Antakya 36.10 36.12
Manisa 27.26 38.37 Eskisehir 30.31 39.49
Usak 29.24 38.41 Ankara 32.53 39.57

The variability of climate may usually be in the non-seasonal components which may
show non-stationary characteristics. Hence, SSA is applied to both the large scale
predictors and local scale predictands before preprocessing the data sets by spatial
PCA in order to extract the predictable components. In SSA procedure, if the length
of a univariate time series is N then the lag-window is generally selected between
N/3 and N/4 interval according to Elsner and Tsonis (1996). Accordingly, in this
study, the selected lag-window is N/4.

Both the NCAR/NCEP reanalysis data sets and observations are divided into four
seasons in order to study the relationships between the temperature series and large

scale processes. To test the performance of the proposed model, the first 360 months
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(30 years) are used during the model calibration and the other 216 months (18 years)

are used for model validation.

5.2.2 Sampson correlation pattern analysis of Turkish surface air temperatures

associated with upper air circulation

The relationships between menthly near-surface air temperature series in Turkey and
upper air circulations (500 hPa geopotential heights and 500-1000 hPa geopotential
thicknesses) are shown in Figures 5.13-5.18 as Sampson correlation patterns in the

seasonal-scale months for four seasons.

As depicted in these figures, based on the 99% (Rs > 3) significance level of
correlations between maximum temperatures and 500 hPa geopotential heights, the
area that includes the southern and western parts of Turkey is at appreciable levels in

summer and spring.
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Figure 5.13. Rg pattern between the 500 hPa geopotential heights and maximum
temperature series: (a) winter; (b) spring, (c) summer; and (d) autumn months
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Figure 5.14. Rs pattern between the 500-1000 hPa thicknesses and maximum
temperature series: (a) winter; (b) spring; (c) summer; and (d) autumn

Since in the beginning of spring, Turkey gets under the influence of warm sub-’
tropical air systems, 500 hPa geopotential heights are transformed into ridges over
the corresponding locations. This leads to an increase of maximum temperatures. On
the other hand, while the 500 hPa high center extends its influence over Europe,
further effects on maximum temperatures arise. Displacing of the Azores high center
over Europe leads northerly further east currents in summer. As a result of this
mechanism, the maximum temperature decreases especially in the regions of western

and northern parts of Turkey.

During winter, sub-tropical air systems just affect the southern parts of the country.
The second effect is seen from central and northern Europe. In this season, the

Iceland low pressure and Siberian high pressure systems start to affect northern and
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Figure 5.15. Rg pattern between the 500 hPa geopotential heights and minimum
temperature series: (a) winter; (b) spring; (c) summer; and (d) autumn

eastern Europe (due to dynamical and thermal reasons) since both systems have cold
characteristics leading a decrease of 500 hPa geopotential heights. The northerly
currents have effects on decreasing maximum temperatures in Turkey (especially in
northern parts). The effect of the Icelandic low is mentioned through its connection
with the North Atlantic Oscillation (NAO) during winters (Tiirkes and Erlat, 2003).

The effects of large scale upper air circulations on maximum, minimum and mean
near-surface air temperatures show similar patterns during the winter season. On the
other hand, those effects mostly resemble to the Rs correlation patterns for maximum
and mean temperatures, whereas the minimum temperature series show very

different patterns in other seasons (summer, autumn and spring).
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In autumn, the influenced areas by sub-tropical air systems which are effective
during summer are shifted towards southern and south-eastern part of Turkey.
According to 500 hPa geopotential heights, another area of influence is linked to the
Azores high affects the Western Europe encompassing Italy and France.

There are strong correlations between 500-1000 hPa thicknesses and maximum-mean
temperatures. The thicknesses have positive effects to increase the Turkish
maximum-mean temperatures, starting in spring and continuing in summer. In this
season, the movement of the tropical (Monsoon) low to higher latitudes over the
eastern and south-eastern part of Turkey (including the eastern and central Black Sea
part of Turkey) has important effects for those regions. The warm features of this air
system lead to increased thicknesses and ridges at the 500 hPa level.
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Figure 5.16. Rs pattern between the 500 hPa-1000 hPa thicknesses and minimum
temperature series: (a) winter; (b) spring); (c) summer; and (d) autumn
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Figure 5.17 Rs pattern between the 500 hPa geopotential heights and mean
temperature series: (a) winter; (b) spring; (c) summer; (d) autumn

In autumn, tropical air systems shift to the south as a result of cooling land areas. In
summer, the significant correlations are observed over north-western parts of Europe.

Those areas and the influence of Azores high center’s area are overlapping.

As may be seen in these figures, the discussion of Ry patterns for the maximum and

mean temperatures is also valid for the minimum temperature series during winter.

However, in summer and the transition seasons, the locations of significant
correlations are different since the large scale circulation features of winter are more
effective than these of three seasons. In other words, Turkey is under the influence of
large scale systems in winter, hence similar correlation patterns are expected for all

three temperature types. Minimum temperature patterns, in addition to large scale
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features, are also affected by so-called local topographical conditions. In spring,
summer and autumn, the significant correlations are observed in eastern and north-

eastern parts of the country.
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Figure 5.18. Ry pattern between the 500-1000 hPa thicknesses and meaﬁ temperature
series: (a) winter; (b) spring; (c) summer; and (d) autumn

5.2.3 Downscaling results

To show spatial performance of the model, the significant varimax rotated (Kaiser
1959) principal components of both the downscaled and the observed monthly
temperature series are shown in Figures 5.19-5.21; additionally Figure 5.22
demonstrates which parts of the country’s temperature fields can be estimated from
the large scale upper-air circulations by the proposed downscaling approach by the

means of the mean square error geographical distribution.
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Figure 5.19. The varimax rotated principal component patterns of the downscaling
model outputs and the actual maximum temperature: a and b show the first two PC
patterns of noise-free data; ¢ and d indicate the first two PC patterns of model
outputs; e, f, and g indicate the first three PC patterns of actual raw data. The third
PC patterns of both noise-free and model-output data are not significant in contrast to
the third PC pattern of raw data (the patterns represent correlation coefficients
between individual station’s temperature series and rotated principal components.
These patterns are generally called loadings). The period of the extracted principal
components is the period of validation period of the suggested model (18 years data).

A et

As may be seen in these figures, without noise-reduction procedure the number of
the significant PCs is increased, only for maximum temperature series. However, the
third PC of maximum temperature series can not be connected with the large scale
processes; therefore noise-free data sets may be seen more appropriate for
downscaling purposes. As seen in these figures, temperature variability over Turkey

is represented by two PC patterns. One indicates seaside regions and the other
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represents inland regions. The similar patterns are also extracted from proposed

downscaling model.
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model; and Figure 5.24 is prepared to show the performance of the model for the

validation part of the data.
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Figure 5.23. The frequency scatter plots of the minimum temperatures of the
observations and model outputs during the calibration period of the proposed model.
The observations are the series of which are not filtered by SSA. The ellipses
indicate the 95% confidence interval, and the data in the outside of the ellipses is the
unpredictable part of the data by the proposed model: (a) Goztepe (Istanbul); (b)
Ankara; (c) Diyarbakir; (d) Izmir; (e) Adana; (f) Adana; (g) Erzurum.
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Figure 5.24. The frequency scatter plots of the observed minimum temperatures and model
outputs during the validation period of the proposed model. The observations are the series
which are not filtered by SSA. The ellipses indicate the 95% confidence interval, and the
data in the outside of the ellipses is the unpredictable part of the data by the proposed model.
The entire data of the validation period is 216 months (18 years). As seen in Figures 5.23 and
in this figure, the outliers of the both calibration and validation part data show parallel
features according to 95% significant level: (a) Goztepe (Istanbul); (b) Ankara; (c)
Diyarbakir; (d) Izmir; (¢) Adana; (f) Adana; (g) Erzurum.
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5.2.4 Summary

In this section, the problem of statistical linkages between the monthly near-surface
air temperature series over Turkey and large scale upper air circulations from NCEP-
NCAR reanalysis data sets are investigated by a particular downscaling approach
based on multivariate redundancy and Sampson correlation anaIysis during the
period of 1951-1998. The noise-reduction techniques of singular spectrum and
principal component analysis are employed in order to filter data mention as the

deterministic (trend and/or cycles) and the statistical components.

The suggested approach shows that the effects of the large scale upper air
circulations on monthly maximum, minimum and mean temperature series show
similar patterns in winter. On the other hand, these effects resemble in the Sampson
correlation patterns for monthly maximum and mean temperatures whereas the
minimum temperature series show very different patterns in other seasons (summer,
autumn and spring). In the autumn, the influence areas of sub-tropical air systems
which are effective in summer form a belt towards southern and south-castern

regions of Turkey.

The Sampson correlation patterns indicate that the correlations between maximum
temperatures and 500 hPa geopotential heights in the area covering the southern and
western parts of Turkey are at significant level in summer and spring. Since Turkey
in under the influence of warm sub-tropical air systems in early spring, the
geopotential heights having ridge characteristics lead to an increase in temperatures.
On the other hand, while 500 hPa high centers extending towards Europe, and
therefore, its signature may be seen as the variability of the temperature fields. In
summer, displacement of Azores high center over Europe generates northerly current
flows lead to decrease temperature especially in the regions of western and northern
parts of Turkey.

The Sampson correlation pattern between 500-1000 hPa thickness and temperature
series shows that the thickness increases the Turkish temperature starting in the
spring and continuing in summer. In this season, the moving of the sub-tropical air
system (Monsoon low) to high latitudes over eastern and south-eastern parts of

Turkey (includes eastern and central Black Sea region of Turkey) has important
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effects. The warm features of this air system lead to increase thicknesses and create

ridges on 500 hPa levels.

Additional effects of thickness anomalies are observed for Caucasus and Caspian
where the cold advection invades the topographic depression between Balkans
highlands and the Caucasus, and even across the Anatolian upland and the Balkans,

this cold air being derived mainly from Russian and Balkan sources.

The methods applied in this study are selected according to the large scale and local
scale climate variability and asymmetric relationships. Data assimilation or upscaling
is indeed a processing of convolution between large scale and local scale variables.
The problem of reconstructing the local scale variables is, on the other hand, an
inverse problem. In more general terms, the deconvolution probleﬁn is to reconstruct
the inputs (local scale) of a climate system (represented by a GCM) from its outputs
(large scale). However, the interactions of large scale and local scale climate features
make the processes separation highly nonlinear to a great extent. In the majority of
downscaling studies it is assumed that it is possible to identify the local scale
variables by means of suitable analysis of free troposphere variables, for instance 500
hPa geopotential heights and 500-1000 hPa geopotential thicknesses which are also
used in this study. These variables can be simulated as perfectly as by GCMs might

be considered.

For further case studies over Turkey, the design of proposed model in this study may
be bridged by the nested models in order to extract climate impacts with physical-
based model approaches. Additionally, during the parameterization of nested models,
the results of the proposed analyses methods may be supportive to explain the
linkages between the local scale and large scale climate variability and the
atmospheric disturbances. The proposed model ability to downscale the local scale
climate features from a nested model for Turkey is still one of the open questions in
this work.
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6. SUMMARY AND CONCLUSIONS

In this study, from the presentations and discussions of the proposed downscaling
strategies, it is clear that, there is no valid universal downscaling method for all
variables and for all regions. Instead, statistical downscaling requires the design of

statistical models on a case by case basis.

The strategy for downscaling Turkish rainfall, the proposed method is more complex
than the method for downscaling surface air temperature series over Turkey. For
instance, local scale climate characteristics have more influences on precipitation
variations. The first model results show that the precipitation regime (both wet and
dry periods) of the coastal regions of Turkey (Mediterranean, Aegean, Marmara,
western Black Sea) is under the influence of large scale pressure system and upper-
air circulation. However, especially in the Black Sea region, in addition to the large
scale processes, the local features (namely topography and rain-shadows) determine

the likelihood and intensity of precipitation.

For inland regions, the local processes are more effective than the large scale
processes. The southeastern part of the country (particularly Diyarbakir) is affected
by both the Mediterranean and Monsoon lows. Therefore, this region could be called

a Transition Mediterranean precipitation regime.

Before identifying the first proposed downscaling model, the relationships between
large scale variables (namely 500 hPa and 700 hPa geopotential heights, 500-1000
hPa geopotential thicknesses, mean sea level pressures and 500 hPa vertical pressure-
velocities) and local scale monthly total precipitation over Turkey are explored by
Sampson correlation patterns; where the large scale variables are extracted from
National Centers for Environmental Prediction-National Center for Atmospheric
Research reanalysis data sets (Kalnay et al., 1996) windowed between 10-50°E and
30-60°N range. Sampson correlation patterns show that there are meaningful
correlations between precipitation series and both 500 and 700 hPa geopotential

heights, especially, in winter months in the area that includes the western parts of
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Turkey. However, in summer months, significant but weaker correlations exist in the

Eastern Mediterranean (namely southern Turkey and Cyprus).

The significant correlations associated with thickness anomalies reflect the thermal
relations located in Central Europe (in a similar way to the 500 and 700 hPa
geopotential heights). Additional effects of thickness anomalies are observed for
Caucasus and Caspian where the cold advection invades the topographic depression
between the Balkans Highlands and the Caucasus, and even across the Anatolian
upland and the Balkans, this cold air being derived mainly from Russian and Balkan

sources.

In summer months, the effect of air flow which is originated from Sahara (dry and
warm) is clearly seen in the correlation patterns of thicknesses and precipitation. The
very important correlations are observed between precipitation and both the mean sea
level pressure and 500 hPa vertical pressure-velocities from reflecting Sampson
-correlation patterns. Those results are expected because precipitation occurrence
situations are dominantly related such upward and surface weather systems, and

those features are characterized being the sources of frontal systems.

In the study, the results of proposed downscaling outputs are compared with the
actual precipitation series by extracting the pseudo spatial principal components and
mean square errors distribution. The eigenvector patterns show that the proposed
model outputs are consistent with the actual precipitation series. The first model
performance is superior to the conventional techniques (a list of conventional
techniques may be seen in Wilby and Wigley (2000)) because the proposed statistical
model is constructed after three stages. In the first stage, the potential predictors are
preprocessed with principal component analysis based on maximum likelihood
criterion of Joreskog and Sérbom (1989). The data in use do not follow Gaussian
distribution, then canonical correlation analysis after PCA may not be able to
reproduce the true correlated components. Due to this constraint, the data series are
transformed into the independent components by independent component analysis in

order to satisfy probability assumptions.

In the second stage, the naive and causal skeletons of the climate features of the local
scale precipitation series can be reproduced by the proposed RNN-based

downscaling model. The final stage is a simple regression model between the
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independent components and precipitation series. The model training process is the
training trough-tiine algorithm of which leads to capture the dynamical effects duriﬁg
downscaling procedure. This point has big advantages while comparing to classical
static-relations methods; in the model, if the predictors are changed then the model
can able to fnodify its structure without regenerating the statistical model. This is the

main reason of why the model is named as a grey prediction scheme in this study.

In the second model, the problem of statistical linkages between the large scale
upper-air circulations (namely 500-1000 hPa thicknesses and 500 hPa geopotential
heights from NCEP-NCAR reanalysis data sets) and near-surface air temperature
series (monthly mean, maximum and minimum) during the period of 1951-1998 are
investigated by using the noise-reduction techniques of SSA and PCA. The noise
filtered data consist of the deterministic (trend and/or seasonal cycles) and statistical

components.

Before model building, Sampson correlation patterns are reproduced; similar to the
first model, between the upper-air circulations and near-surface air temperatures.
Both the NCEP-NCAR reanalysis data sets and observations are divided into four

seasons in order to extract the seasonal climate feature statistical linkages.

The effects of the large scale upper air circulation on monthly maximum, minimum
and mean temperature series show similar patterns in winter months. On the other
hand, those effects resemble in the Sampson correlation patterns for the monthly
"maximum and mean temperatures whereas the minimum temperature series show
very different patterns in the other seasons (summer, autumn and spring). In the
autumn months, the influence areas of the tropical air systems which are effective in

summer months form a belt towards southern and south-eastern parts of Turkey.

The Sampson correlation patterns show that the correlations between maximum
temperatures and 500 hPa geopotential heights in the area covering the southern and
western part of Turkey are at significant levels in summer and spring. Since Turkey
is under influence of warm tropical air systems in early spring, the geopotential
heights having ridge characteristics lead to an increase in the temperatures. On the
other hand, 500 hPa geopotential pattern high centers extend towards Europe and its

signature can be seen in the variability of the temperature fields.
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In summer months, over this area, there is a ridge effect on 500 hPa level due to
Azores high which shows a warm-high geopotential height center extending its
influence to the Europe. Displacement of Azores High center over Europe generates
northerly current flows. As a result of this mechanism, the temperature decreases

especially in the regions of western and northern parts of Turkey.

The Sampson correlation ratio patterns show that there are strong positive
correlations between 500-1000 hPa thicknesses and mean and maximum
temperatures. The thicknesses increase Turkish mean and maximum temperatures
starting in the spring and continuing in summer. In this season, the tropical air
system (Monsoon low) moving to high latitudes over the eastern and south-eastern
part of Turkey (includes the eastern and central Black Sea Region of Turkey) has
important effects over of these regions. The warm features of this air system lead to

increase the thicknesses and create ridges on 500 hPa levels.

The second model design is not more complex than the first model. Because the
temperature series over Turkey show similar patterns of general circulation
characteristics, evidently, the downscaling strategy for the temperature series is
constructed by well-known technique of redundancy analysis.. The CCA may be a
way to extract the symmetrical relationships; on the other hand, RA is able to extract
the asymmetric relationships. This is the major reason why RA is preferred to CCA
in this study.

The downscaling model results reveal that without noise-reduction procedure, the
number of the. significant principal components is increased, particularly, for
maximum temperature series. However, the third PC of maximum temperature series
can not be connected with the large scale processes therefore noise-free data sets are

more appropriate for downscaling purposes.

For further studies, the designs of proposed model schemes may be bridged by
nested models in order to extract climate impacts based on physical model
approaches. Additionally, during the parameterization of nested models, the results
of the proposed model outputs may be very supportive to explain the large scale
climate variability and atmospheric disturbances. Its ability to downscale local scale

climate features from a nested model is still one of the open questions in this work.
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The applications are restricted with the region over Turkey; however the proposed
model designs may also be modified to apply to any region over the world. Finally,
in most cases, a statistical downscaling model should be developed and tested by
reproducing the observed low-frequency variability of the regional climate when

GCMs simulate correctly the large scale climate variables.
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APPENDIX

F-Language (FORTRAN) Source Code of SVD

The following subroutines compute the Singular Value Decomposition (SVD) of a
general rectangular matrix X; but the declaration of the integer variable should be
changed as “dr = 8” on a unix machine. If the left and right eigenvectors are
represented by u and v, and the eigenvalues by d respectively, then the calling

subroutine of ‘svd’ requires only the following two statements in the main program.

use svd_computation
call svd (x, u, d, v)

module svd_computation
implicit none
public::drotg,dswap1,drotl ,svd
integer,parameter,public:: dr=2

IBased upon routines from the
Inswc (naval surface warfare
Icenter) which were based
lupon lapack routines

1Code converted from mixed
IF77 and F_90 to F_language by

tHasan TATLI
IDate: 09/ 02/2002

contains

subroutine drotg (da,db,dc, ds)
Iconstruct Givens transformation
! normally, the subprogram drot

I(n,dx,incx,dy,incy,dc,ds) will
Inext be called to apply the

ltransformation to a 2 by n matrix.

real(kind=dr),intent(inout) :: da

real (kind=dr), intent(in out) :: db

real (kind = dr), intent(out) ::dc
real (kind = dr), intent(out)
real (kind=dr) ::u, v, r

if (abs(da) <= abs(db)) then
goto 10

endif

u=da+da

v=db/u

r=sqrt(0.25_dr + v**2) *u

dc=da/r

ds=v*(dc+dc)

db=ds

da=r

return

10 continue

if (db == 0.0_dr) then

goto 20

endif

u=db+db

v=da/u

da = sqrt(0.25_dr + v**2) * u
ds=db/da
dc=v * (ds + ds)

if (dc == 0.0_dr) then

goto 15

endif

db=1.0_dr/dc

return

15 continue

db=1.0_dr

return

20 continue

dec=1.0_dr

ds=0.0_dr

return

end subroutine drotg

1
subroutine dswapl (n, dx, dy)
!Jack Dongarra, linpack,

o ds 3/11/78.

integer, intent (in) = n
real(kind=dr),dimension(:),
intent(inout):: dx
real(kind=dr),dimension(:),
intent(inout):: dy

real (kind =dr) :: dtemp
integer ::i, m, mpl

if (n <= 0) then

return
endif
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m = modulo (n, 3)
m=n-m
if(m==0) then
go to 40
endif
do i=1m
dtemp = dx(i)
dx(i).= dy(i)
dy(i) = dtemp
end do
if(n <3 ) then
return
endif
40 continue
mpl=m+1
do i =mpl,n,3
dtemp = dx(i)
dx(i) = dy(i)
dy(i) = dtemp
dtemp = dx(i + 1)
dx(i+ 1) =dy(i+1)
dy(i + 1) = dtemp
dtemp = dx(i + 2)
dx(i +2)=dy(i +2)
dy(i + 2) = dtemp
end do
return
end subroutine dswapl
1
subroutine
drotl (n,dx,dy,c,s)

!Jack Dongarra, Linpack,
13/11/78.

integer, intent(in):: n



real(kind=dr),dimension(:), &
intent(inout):: dx
real(kind=dr),dimension(:), &
intent(inout):: dy
real(kind=dr), intent(in) :: ¢
real(kind=dr), intent(in) :: s
real(kind=dr) :: dtemp
integer i

if(n <= 0) then
return
endif
do i=1,n
dtemp = c*dx(i) + s*dy(i)
dy(i) = c*dy(i) - s*dx(i)
dx(i) = dtemp
end do
return
end subroutine drotl
!
subroutine svd (x,u,diag,v)
integer,parameter:: job=1
real(kind=dr),dimension(:,:), &
intent(inout):: x
real(kind=dr),dimension(:,:), &
intent(out):: diag
real(kind=dr), &
dimension(:, :), intent(out) :: u
real(kind=dr), &
dimension(:,:), intent(out) :: v
real(kind=dr), &
dimension(size(x,1)):: e
real(kind=dr), &
dimension(size(x,2)):: s

! Linpack, this version dated
103/19/79.

! G.W. Stewart, University of
IMaryland

real(kind=dr), & -
dimension (size(x,1)) :: work
integer :: iter, j,jobu, k, kase, &
kk, 1, 1L, ils, Im1, Ip1, Is, Iu, &
m, maxit, mm, mml, mpl, &
nct, nctpl, ncu, nrt, nrtpl, &
info, n, p

real (kind =dr) :: t,b,c, cs, &
el, emm], £, g, scale, shift, &
sl, sm, sn, smml1, tl, test, &
ztest

logical :: wantu, wantv

n=size(x,1)
p=size(x,2)
! Maximum number of iterations
maxit = 30
wantu = false.
wantv = .false.
jobu=2

ncu=n
if (jobu > 1) then
ncu = min(n,p)

endif
if (jobu /= 0) then
wantu = .true.
endif

if (job /= 0) then
wantv = .true.
endif

info=0

nct = min(n-1, p)
s(l:nct+1) =0.0_dr
nrt = max(0, min(p-2,n)) &
lu = max(nct,nrt)
if (lu < 1) then
goto 170
endif
dol=1,1Iu
Ipl=1+1
if (1> nct) then
go to 20
endif
s(D)=sqrt (sum(x(L:n,)**2)) &
if (s(1) == 0.0_dr) then
goto 10
endif
if (x(LD) /= 0.0_dr) then
s() = sign(s(D), x(L1))
endif
x(I:n,D) = x(l:n,1) / s()
x(LD) =1.0_dr +x(L])
10 continue
s(l) = -s()
20 continue
if (p <Ip1) then
go to 50
endif
do j=Ipl,p
if (I > nct) then
go to 30
endif
if (s(1) = 0.0_dr) then
go to 30
endif
t=-dot_product(x(l:n,l), &
x(L:n,j)) /x(LD
x(Ln,j)=x(l:nj)+t*x(I:n,l) &
30 continue
e(j) = x(L)
end do
50 continue
if (.not. wantu .or. | > nct) then
go to 70
endif
u(l:n,l) = x(I:n,1)
70 continue
if (1 > nrt) then
cycle
endif
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e(D)=sqrt(sum(e(lp1:p)**2 )
)&

if (e(l) == 0.0_dr) then
goto 80
endif
if (e(lp1) /= 0.0_dr) then
e(l) = sign(e(l), e(lp1))
endif
e(IpL:lpl+p-l-1)=&
e(Ipl:p) e()
e(lp1) = 1.0_dr + e(Ip1)
80 continue
e(D) = -e(l)
if(lpl>n.or.e(l=&
0.0_dr) then
go to 120
endif
work(Ipl:n) = 0.0_dr
do j=lpl,p
work(Ipl:lpl+n-I-1) = &
work(Ipl:IpI+n-I-1)+e(j)* &
x(Ipl:Ipl+n-I-1,j)
end do
do j=Ipl,p
x(Ilpl:Ipl+n-l-1,j) = &
x(lpl:Ipl+ &
n-1-1,j)-e(j)/e(lpl)) &
*work(lp1;lp1+ n-I-1)
end do
120 continue
if (_riot. wantv) then
cycle
endif
v(Ipl:p,)) =e(lpl:p)
end do
170 continue
m = min(p,n+1)
nctpl =nct + 1
nrtpl =nrt+1
if (nct < p) then
s(nctpl) = x(nctpl,nctpl)
endif
if (n <m) then
s(m) = 0.0_dr
endif
if (nrtp1 <m) then
e(nrtpl) = x(nrtp1,m)
endif
e(m)=0.0_dr
if (.not. wantu) then
£0 t0.300
_endif
if (ncu < nctpl) then
go to 200
endif
do j=nctpl, ncu
u(l:n,j)=0.0_dr
u(j.j)=1.0_dr
end do
200 continue



do I1=1, nct
I=nct-11+1
if (s(I) == 0.0_dr) then
go to 250
end if
Ipl=1+1
if (ncu' < Ip1) then
go to 220
end if
do j=Ipl, ncu
t = -dot_product(u(l:n,l), &
u (In,j)) /u(L,l)
u(ln,j) = u(l:nj) +t *uin,l)
end do
220 continue
u(l:n,1) = -u(l:n,l)
u(L,h) =1.0_dr +u(L])

Iml=1-1
if Im1 <1) then
cycle
end if
u(1:Im1,1y=0.0_dr
cycle

250 continue

u(l:n,])=0.0_dr
u,)=1.0_dr
end do
300 continue
if (.not. wantv) then
go to 350
end if
do ll=1,p
I=p-1l+1
Ipl=1+1
if (1> nrt) then
go to 320
endif
if (e(1) == 0.0_dr) then
go to 320
endif
do j=Ipl,p
t=-dot_product(v(lpl:lp1+ &
p-l-1,D, v(Ipl:lp1+p-1-1,j)) &
/v(lpl, 1)
v(lpL:Ipl+p-I-1,j)=v(Ipl:lpl+ &
p-1-1,j) +t * v(IpL:lp1+p-1-1,1)
end do
320 continue
v(1:p,) =0.0_dr
v(L)=1.0_dr
end do
350 continue
mm=m
iter=0
do
if (m == 0) then
go to 620
endif
if (iter < maxit) then
go to 370

endif
info=m
go to 620
370 continue
do ll=1,m
I=m-1l
if (1 == 0) then
exit
end if .
test=abs(s(l))+abs(s(1+1))
ztest = test + abs(e(1))
if (ztest /= test) then
cycle
end if
e(1)=0.0_dr
exit
end do
if (1/=m- 1) then
goto 410
end if
kase = 4
go to 480
410 continue
Ipl=1+1
mpl=m+1
do lls=1pl, mpl
Is=m-lls+Ipl
if (Is ==1I) then
exit
endif
test=0.0_dr
if (Is /= m) then
test = test + abs(e(ls))
endif
"if (Is /=1+ 1) then
test = test + abs(e(ls-1))
endif
ztest = test + abs(s(ls))
if (ztest /= test) then
cycle
endif
s(Is)=0.0_dr
exit
end do
if (Is /=1) then
go to 450
endif
kase =3
go to 480
450 continue
if (Is /= m) then
go to 460
endif
kase=1
go to 480
460 continue
kase =2
l=1Is
480 continue
I=1+1
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select case (kase)
case (1)
go to 490
case (2)
go to 520
case (3)
go to 540
case (4)
go to 570
end select
490 continue
mml=m-1
f=-e(m-1)
e(m-1)=0.0_dr
do kk=1, mml
k=mml -kk +1
tl = s(k)
call drotg (t1, f, cs, sn)
s(k) =tl1
if (k==1) then
go to 500
end if
f=-sn*e(k-1)
e(k-1) = cs*e(k-1)
500 continue
if (wantv) then
call drot1(p,v(1:,k), &
v(1:;m), cs, sn)
end if
end do
go to 610
520 continue
f=e(-1)
e(l-1)=0.0_dr
do k=1 m
tl =s(k)
call drotg(tl, f, cs, sn)
s(k) =tl
f=-sn*e(k)
e(k) = cs*e(k)
if (wantu) then
call drot1(n,u(1:k), &
u(1:,l-1),cs, sn)
end if
end do
goto 610
540 continue
scale=max(abs(s(m)), &
abs(s(m-1)),
abs(e(m-1)), abs(s(l)), &
abs(e(1)))
sm = s(m)/scale
smml = s(m-1)/scale
emm] = e(m-1)/scale
sl = s(I)/scale
el =e(l)/scale
b=((smml-+sm)*(smml- &
sm)+ emm1**2)/2.0_dr
¢ = (sm*emm1)**2
shift=0.0_dr



if(b==0.0_dr .and. & if (wantv .and. | < p) then

¢ ==0.0_dr) then call dswap1(p, v(1:,1),

go to 550 v(1:,1+1))
endif endif
shift = sqrt(b**2-+c) if (wantu .and. [ <n) then
if (b < 0.0_dr) then call dswap1(n,u(l:,D,u(l:,1+1))
shift = -shift endif
endif I=1+1

shift = c/(b + shift) end do

550 continue 600 continue

f= (sl + sm)*(sl - sm) - shift iter=0

g=sl*el m=m-1
mml=m-1 . 610 continue
do k=1, mml end do

call drotg (f, g, cs, sn) 620 continue

if (k /="1) then diag=0

ek-1)=f doj=l,p

endif diag(i,j)=s@)

= cs*s(k) + sn*e(k) enddo

e(k) = cs*e(k) - sn*s(k) return

g =sn*s(k+1) end subroutine svd

s(k+1) = cs*s(k+1) !

if (wanty) then end module svd_computation

call drot1(p, v(1:,k), v(1:k+1),
cs, sn)

endif

call drotg(f, g, cs, sn)

s(k)=f

f=cs*e(k) + sn*s(k+1)
s(k+1) = -sn*e(k)+
cs*s(k+1)
g =sn*e(k+1)
e(k+1) = cs*e(k+1)
if (wantu .and. k < n) then
call
drotl(n,u(1:,k),u(1:,k+1),cs,sn)
endif
end do
em-1)=f
iter = iter + 1
goto 610
570 continue
if (s(I) >= 0.0_dr) then
go to 590
endif
s()=-s()
if (wantv) then
v(1:p,l) = -v(L:p,})
endif
590 continue
do
if (1 == mm) then
g0 to 600
endif
if (s(I) >=s(1+1)) then
go to 600
endif
t=s(l)
s(l) = s(1+1)
s(1+1) =t
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