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PREDICTION OF MECHANICAL BEHAVIOR OF CARBON- BASED 

NANO STRUCTURES 

SUMMARY 

In this thesis, mechanical behavior of carbon-based nanostructures such as graphene 

sheets, carbon nanotubes and carbon nanocones  are investigated by using a 

molecular mechanic based finite element and coupled molecular/continuum 

mechanic modeling approaches. 

The proposed molecular mechanic based finite element approach links the molecular 

mechanics and structural mechanics, and is based on simulating the covalent bonds 

between carbon-carbon atoms with Euler-Bernoulli beam elements. The harmonic 

and modified Morse molecular mechanic potential functions are used for small and 

large deformation problems. Elastic, vibrational, buckling and nonlinear fracture 

behavior of carbon nanotubes, vibrational and elastic buckling characteristics of 

carbon nanocones and elastic, vibrational and nonlinear fracture behavior of 

graphene sheets are investigated by using molecular mechanic based finite element 

approach. In addition, an equivalent dynamic model is developed for carbon based 

nanostructures and transient behavior of graphene sheets are investigated by using 

proposed approach. It is shown that the proposed approach can reflect elastic, 

vibrational, buckling, transient and fracture characteristics of carbon based 

nanostructures.  

In this thesis, a coupling method for molecular mechanic and continuum mechanic 

models is also derived based on an augmented formulation of atomistic and 

continuum displacement fields in a least square sense, which yields an optimization 

problem solved by using the Lagrange multiplier method. It allows coupled analyses 

of multiple numbers of molecular mechanic domains in a continuum mechanic 

domain. For the proposed approach, there is no need for a constraint on the meshes 

of the molecular mechanic and continuum mechanics domains and no overlapping 

domain is employed. Efficiency of the proposed approach is illustrated by solving 

fracture problems of graphene layers. Comparisons are made with the results given in 

literature. In sum, the proposed approach can compute the deformations of graphene 

layers in high accuracy, is very flexible to compute local solutions and can easily be 

applied to other materials. 
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KARBON ESASLI NANO YAPILARIN MEKANĠK DAVRANIġLARININ 

BELĠRLENMESĠ 

ÖZET 

Temel olarak kovalent bağ ile bağlı karbon atomlarının hegzagonal kafes yapısı 

içinde değişik formlarda sıkıca paketlenmesi ile oluşan grafen tabakalarının, karbon 

nanotüplerin ve nanokonilerin mükemmel mekanik, termal ve elektriksel özellikleri, 

onları nano elektro-mekanik, nano sensör ve nano kompozit sistem uygulamaları için 

potansiyel adaylar yapmıştır. Karbon esaslı bu malzemelerin mekanik özelliklerinin 

belirlenmesi, bu yapıların tasarımı ve kontrolü için oldukça önemli ve yararlıdır. Bu 

malzemelerin mekanik özelliklerinin belirlenmesi için deneysel ölçümler ve 

hesaplamalı yöntemler kullanılmaktadır. Deneysel olarak bu yapıların mekanik 

özelliklerinin elde edilmesi oldukça yüksek maliyetli ve zordur. Bundan dolayı, 

günümüzde hesaplamalı yöntemler karbon esaslı malzemelerin mekanik 

özelliklerinin tespitinde oldukça sık kullanılmaktadır. Kuantum mekanik, moleküler 

dinamik, moleküler mekanik yöntemleri, nano malzemelerin mekanik özelliklerinin 

tespiti için sıkça kullanılan hesaplamalı yöntemlerdir. Kuantum mekanik ve 

moleküler dinamik modelleme yöntemlerini kullanılarak oldukça doğru sonuçlar elde 

edilebilmesine rağmen, bu yöntemlerin hesaplama yükü çok fazladır ve pratikte 

sadece belirli sayıda atom içeren sistemler için kullanılabilirler. Atomsal dünyadan 

alınan bilgiler kullanılarak, moleküler mekanik temelli, hesaplama yükü çok daha az 

ve dolayısıyla çok daha fazla atom içeren modelleme yaklaşımları kurulabilir. Bu 

tezde grafen tabakalarının, karbon nanotüplerin, karbon nanokonilerin temel mekanik 

özellikleri, geliştirilen moleküler mekanik temelli sonlu elemanlar yaklaşımları ve 

çok ölçekli bir moleküler mekanik / sürekli ortamlar mekaniği yaklaşımı kullanılarak 

elde edilmiştir. 

Kabul edilen moleküler mekanik temelli sonlu elemanlar modelleri, karbon esaslı 

malzemelerin  dış kuvvetlerin etkisi altında, uzay kafes yapısı gibi davrandığı 

varsayımına dayanmaktadır. Karbon atomları sonlu elemanlar düğüm noktaları 

karbon atomları arasındaki kovalent bağlar ise Euler-Bernoulli kiriş elemanları 

kullanılarak modellenmiştir.  

Karbon esaslı bu nanoyapıların küçük ve büyük yerdeğiştirme problemleri 

incelenirken sırasıyla harmonik ve geliştirilmiş Morse moleküler mekanik 

potansiyelleri kullanılmıştır. Küçük şekil değiştirme problemleri için bilinmeyen 

Euler-Bernoulli kiriş eleman parametreleri moleküler mekanik harmonik enerji 

terimleriyle ve benzer yapısal mekanik enerji terimlerinin eşitlenmesi yoluyla elde 

edilmiştir. Elde edilen bu değerler kullanılarak tek katmanlı karbon nano tüplerin, 

elastiklik modülleri, kayma modülleri, Poisson oranları, burkulma yükleri ve doğal 

frekans değerleri; grafen tabakalarının benzer şekilde elastiklik modülleri, kayma 

modülleri, Poisson oranları ve doğal frekans değerleri ve karbon nanokonilerin yatay 

ve dikey burkulma yükleri ve doğal frekanslar değerleri elde edilmiştir. Yapılan 

analizlerin sonucunda, karbon nanotüplerin ve grafen tabakalarının 1 TPa civarında 
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elastiklik modülüne, 0.5 TPa civarında kayma modülüne ve 1.5 THz varan doğal 

frekans değerlerine sahip olduğu ve ayrıca karbon nanokonilerin kritik burkulma 

yüklerinin ve doğal frekans değerlerinin, karbon nanotüplerin ve grafen tabakalarının 

kritik burkulma yükleri ve/veya doğal frekans değerlerinden birçok analizde yüksek 

olduğu bulunmuştur. Yapılan analizler sonucunda elde edilen bu sonuçların mevcut 

literatürdeki deneysel ve sayısal çalışma sonuçları ile uyumlu olduğu görülmüştür. 

Bu tezde ayrıca bir grafen tabakasının dinamik davranışı geliştirilen moleküler 

mekanik temelli bir sonlu elemenlar yöntemi kullanılarak incelenmiştir. Literatürde 

bu yöntem kullanılarak grafen karbon esaslı nano yapıların titreşim özellikleri 

incelenirken global kütle matrisi genellikle karbon çekirdeklerinin kütleleri kafes 

yapıların düğüm noktalarına yapısal kütle olarak tatbik edilmesi ile elde edilir. Bu 

yaklaşım karbon esaslı nano yapıların titreşim özelliklerinin incelenmesi için 

yeterlidir. Fakat dinamik özellikleri incelenirken yakınsamama problemi doğurur. Bu 

yakınsama problemini ortadan kaldırmak için elemanların uyumlu kütle matrisleri 

kullanılmıştır. Uyumlu kütle matrislerini hesaplamak için gerekli eşdeğer eleman 

yoğunlukları, oluşturulan düzlem gerilme modeli doğal frekansları ile moleküler 

mekanik modellerin doğal frekanslarının eşitlenmesi ile elde edilmiştir. Sonuçta 

uyumlu kütle matrisi kullanılarak elde edilen doğal frekanslar ile toplanmış kütle 

matrisi ve düzlem gerilme modelleri kullanılarak elde edilen doğal frekans 

değerlerinin tutarlı olduğu görülmüştür. Grafen tabakalarının dinamik analizlerinde 

Newmark metodu kullanılmış ve grafen tabakalarının iki ve üç boyutlu  dinamik 

davranışları incelenmiştir. Analizler sonucunda zamana karşı elde edilen yer 

değiştirme değerlerinin spektral analizlerinden, dinamik modellerin yapının 

davranışını çok iyi yansıttığı görülmüştür.  

Tez kapsamında hatasız ve değişik hatalar barındıran grafen tabakalarının ve karbon 

nanotüplerin doğrusal olmayan kırılma davranışları incelenmiştir. Grafen 

tabakalarının ve karbon nanotüplerin doğrusal olmayan kırılma davranışları 

incelenirken küçük şekil değiştirme kabulü artık geçerli olmadığından, geliştirilmiş 

Morse potansiyel fonksiyonu kullanılarak Euler-Bernoulli kiriş elemanlarının 

doğrusal olmayan davranışları belirlenmiştir. Geliştirilen yöntem hem doğrusal 

olmayan malzeme davranışlarını hemde doğrusal olmayan geometrik etkileri dikkate 

almaktadır. Analizlerde hatasız, Stone-Wales ve tek atom boşluk hatası içeren grafen 

tabakaları ve hatasız, yeniden yapılandırılmış tek ve iki atom boşluk hatası içeren 

karbon nanotüplerin kırılma davranışları incelenmiştir. Hesaplamalar sonucunda 

hatasız ve hatalı grafen tabakalarına ve karbon nanotüplere ait kırılma gerilmesi, 

kırılma birim şekil değiştirme değerleri ve hasarların nasıl bir tarzda olduğu 

belirlenmiştir. Analizler sonucunda, doğrusal olmayan geometrik etkilerin grafen 

tabakalarının ve karbon nanotüplerin kırılma davranışlarında etkili olduğu, Stone-

Wales ve atom boşluk hatalarının bu malzemelerin kırılma değerlerini oldukça 

düşürdüğü, her iki malzemede de kırılmanın gevrek tarzlarda olduğu görülmüştür. 

Ayrıca grafen tabakalarının ve karbon nanotüplerin kırılma davranışlarının yöne 

bağımlı olduğu; belirli yönlerde bu malzemelerin kırılmaya karşı daha dayanıklı 

oldukları görülmüştür. Elde edilen sonuçlar incelendiğinde, bulunan kırılma 

gerilmesi ve birim şekil değiştirme değerleri ile kırılma tarzının literatürdeki sonuçlar 

ile oldukça uyumlu olduğu görülmüştür.  

Büyük boyutlarda veya fazla sayıda atom içeren nano yapıların tümü atomsal 

modeller kullanılarak yapılan analizlerin hesaplama yükleri oldukça fazladır. Bu 

hesaplama yüklerini kabul edilebilir seviyelere düşürmek, bunun yanında hesaplama 

hatalarını kabul edilebilir sınırlar içinde tutmak için bu çalışmada, grafen 
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tabakalarının statik ve kırılma davranışlarının belirlenmesi için çok ölçekli bir 

modelleme yaklaşımı geliştirilmiştir. Moleküler mekanik ve düzlem gerilme 

modellerinin birleşik formülasyonunu elde etmek için geliştirilen bu çok ölçekli 

bağlama yaklaşım; moleküler mekanik ve düzlem gerilme yer değiştirme alanlarının 

en küçük kareler yöntemi mantığıyla birleştirilip, oluşan kısıtsız optimizasyon 

probleminin çözülmesine dayanır. Birleşik moleküler mekanik ve düzlem gerilme  

modellerinin çözümü için Lagrange çarpanları yöntemi kullanılmıştır. Kabul edilen 

bu çok ölçekli yaklaşımın ana avantajı, moleküler mekanik alanı veya alanları ile 

herhangi bir düzlem gerilme elemanı veya elemanları arasındaki birleşimin, doğru 

izdüşüm matrislerinin kullanılması ile çözüm ağını değiştirmeden kolaylıkla 

sağlanabilmesidir. Bu sayede, geliştirilen yaklaşım düzlem gerilme alanı üzerindeki 

herhangi bir eleman veya elemanlarda atomsal ölçeklerde çok hızlı analizler 

yapılabilmesine olanak sağlar. Kabul edilen yaklaşımın etkinliği, hatasız ve hatalı 

grafen tabakalarının statik ve/veya kırılma problemlerinde gösterilmiştir. Atomsal 

modellerde, harmonik ve geliştirilmiş Morse potansiyel fonksiyonları kullanılmıştır. 

Sonuçta, kabul edilen çok ölçekli formülasyonun grafen tabakalarının statik ve 

kırılma davranışlarını oldukça yüksek doğrulukta hesapladığı görülmüştür. Bu 

yaklaşım diğer birçok nano yapıdaki malzemelerde atomsal sonuç istenen bölge veya 

bölgelere kolaylıkla uygulanabilir. 
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1.  INTRODUCTION 

Since the experimental detection of carbon nanotubes (CNTs) in 1991 [1], extensive 

studies have been conducted on its extraordinary properties and researchers have 

been interested in other carbon based nanostructures such as graphene sheets (GSs) 

and carbon nanocones (CNCs). CNT can be viewed as a GS rolled into a tube and 

exhibits exceptional mechanical, thermal and electrical properties such as 

approximate Young's modulus of 1.0 TPa and thermal conductivity of 3000 W/mK 

[2,3].  

On the other hand, GSs possess most of the extraordinary properties of CNTs [3-5]. 

Graphene is the basic structural element of CNTs, CNCs and fullerenes; as a result, it 

is the starting point of material models of these carbon structures. Recently, new 

techniques were developed for mass production of GSs [5, 6], and subsequently the 

potential of using these nanostructures for multiple usages such as nanosensors, 

nanocomposites, nanooscillators and nano-electro-mechanical systems has been 

increasing [7, 8].  

Similar to CNTs and GSs, CNCs are conical graphitic structures and have very 

promising mechanical, electrical and thermal properties [9-14]. Ge and Sattler [15] 

first proposed that five apex angles such as 19.2°, 38.9°, 60°, 86.6° and 123.6° can be 

used to distinguish CNCs . Krishnan et al. [16] verified the existence of the five types 

of CNCs experimentally. CNCs are suited for high resolution and/or high intensity 

applications due to its small size, high stiffness and conical geometry; thus, it can be 

used as scanning probe tips (i.e., atomic force microscope (AFM) and scanning 

tunneling microscope (STM) probes), electron field emitters and in nanoindentation 

applications [16-20]. 

Prediction of mechanical properties of carbon base structures is important and very 

useful in the design of materials made of these structures. Experimental 

measurements [21-29] and computational simulations are commonly used to 

characterize carbon base structures. Since experimental measurements of mechanical 
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properties of carbon based structres are very costly due to its nanoscale dimensions, 

powerful computational simulation tools are widely employed to characterize these 

nano structures.  

Computational approaches can be classified as atomistic and continuum modeling 

methods. Known as being very accurate, atomistic modeling methods are based on 

principles of quantum-molecular mechanics including the classical molecular 

dynamics (MD) and ab initio methods; on the other hand, they are computationally 

much more expensive than using the continuum models and only suitable for small 

systems having limited number of atoms and very short time scales [30-32]. 

Continuum modeling approaches are based on simulating carbon base structures with 

well-known structural members such as beams, shells and plates.  

Atomistic based finite element (FE) modeling approaches have been used to analyze 

carbon based structures in many recent works in literature due to its computational 

cost and CPU time advantages. In this thesis, equivalent models of single-layer 

graphene sheets (SLGSs), single wall carbon nanotubes (SWCNTs) and single wall 

carbon nanocones (SWCNCs) are developed by using molecular mechanic (MM) 

based FE approach. Then, elastic, fracture, vibrational and buckling characteristics of 

SWCNTs; vibrational and elastic buckling characteristics of SWCNCs, and elastic, 

fracture and vibrational characteristics of SLGSs are investigated. In addition, an 

equivalent dynamic model is developed for SLGSs, and then 2-D and 3-D transient 

behavior of SLGSs are investigated. Moreover, multiscale models of SLGSs are 

developed for coupling of atomistic and continuum methods. 

Relevant works about elastic, vibrational and buckling behavior of GSs, CNTs and 

CNC in literature are summarized as follows. Odegard et al. [33] developed a model 

that links the molecular mechanics and solid mechanics, which is established by 

equating the molecular potential energy terms with the mechanical strain energy of a 

representative volume element of a continuum model. Li and Chou in the works [34-

36] developed a similar approach named “molecular structural mechanics” to model 

CNTs and GSs similar to space-frame structures and investigated the elastic and 

vibrational characteristics of CNTs and GSs. In their approach, Euler-Bernoulli beam 

elements are used to represent covalent bonds between carbon atoms; then, unknown 

beam parameters are obtained by using energy equivalence of the MM and 

continuum mechanic (CM) models. Harmonic expressions for potential energy term 
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are used in molecular structural mechanics [34] and applied to small deformation of 

CNTs and GSs. Tserpes and Papanikos [37] introduced an atomistic base FE method, 

based on the approach of Li and Chou [34] to model CNTs by using commercial FE 

codes. Elastic characteristics of SLGSs are studied by Sakhaee-Pour [38]. By using 

the methods developed by Li and Chou [34] and Tserpes and Papanikos [37], 

Sakhaee-Pour et al. [39] and Hashemnia et al. [40] studied natural frequencies and 

mode shapes of SLGSs, and Fan et al. [41] and Cheng et al. [42] examined 

mechanical properties of CNTs such as Young‟s modulus, natural frequency and 

buckling load. In addition, Lee and Lee [43] examined vibration properties of CNTs 

and CNCs by using the approach presented in [34,37] and predicted fundamental 

frequencies of SWCNCs below 20 GHz with a cone having the height of 20 Ǻ. 

Sadeghi and Naghdabadi [44] introduced a hybrid atomistic-structural element to 

model linear and nonlinear vibrations of GSs in which hybrid element formulation is 

based on a nonlinear inter-atomic potential function that can model nonlinear 

dynamic response of GSs. Wang et al. [45], Kitipornchai et al. [46] and He et al. [47] 

presented the vibration analysis of multi-walled graphene sheets (MWGSs) using 

continuum-plate models. Atalaya et al. [48] derived a nonlinear finite elasticity 

theory for graphene resonators for both elastostatics and elastodynamics problems. 

Scarpa et al. [49] developed truss-type analytical models to describe linear elastic 

properties of GSs. Then, Scarpa et al. [50] analyzed natural frequencies and acoustic 

wave propagation characteristics of graphene nanoribbons where an equivalent 

atomistic-continuum FE model is employed by using the formulation in [49]. 

Chowdhury et al. [51] studied transverse vibrations of GSs using the MM approach. 

Gupta and Batra [52] analyzed elastic and vibrational properties of GSs by using 

MM simulations. Mianroodi et al. [53] examined nonlinear vibration properties of 

SLGSs using a membrane model. Ansari et al. [54] studied to investigate the 

vibrations of single layer GSs using a nonlocal continuum plate model. Arash and 

Wang [55] investigated free vibrations of SLGSs and MLGSs by employing nonlocal 

continuum theory and molecular dynamics simulations. Chandra et al. [56] examined 

the vibrations of bilayer GSs by using analytical and atomistic FE models. Avila et 

al. [57] analyzed elastic and vibrational properties of graphene based nanostructures 

by using MM based FE approach. Gibson et al [58] briefly reviewed some numerical 

and experimental studies about the vibrations of CNTs and their composites. Li and 

Chou in the works [59] investigated buckling characteristics of CNTs by using 
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molecular structural mechanic approach. Both axial compression and bending 

loading conditions are considered in the elastic buckling behavior of the CNTs in 

[59] where buckling forces are reported to be in the range of ~0.1– 39 nN. Li and 

Chou [59] reported that the buckling load in axial compression is higher than 

bending load for CNTs. Sakhaee-Pour [60] analyzed elastic buckling of SLGSs by 

using atomistic based FE approach. Mir et al. [61] studied natural frequencies and 

mode shapes of SWCNTs by using atomistic based FE approach. Computational 

tools are widely used to characterize mechanical properties of CNCs [13, 14, 43, 62-

65]. Kumar et al. [13] investigated the Young‟s and shear modulus of CNCs 

employing second-generation reactive empirical bond-order potential. Wei et al. [14] 

examined the elastic and plastic properties of SWCNCs by using MD simulations. 

Tsai and Fang [62] and Liew et al. [63] analyzed the buckling behavior of CNCs by 

using MD simulations. Liao et al. [64] investigated tensile and compressive 

behaviors of open-tip CNCs employing MD simulations. Abadi et al. [65] studied 

free vibrational properties of CNCs based on a nonlocal continuum shell model.  

In the works [34-42, 57, 59-61], Euler-Bernoulli beam elements are used to represent 

bond interactions between C-C atoms in GSs, CNTs and CNCs. On the other hand, 

Scarpa and Adhikari [49] proposed a beam model considering the shear deformation 

effects and they found the C-C bond thickness d, Poisson‟s ratio ν, Young‟s modulus 

E and shear modulus G by using the AMBER force model constants [34]. Both of the 

models in Li and Chou [34] and Scarpa and Adhikari [49] yield the same 

deformation results as the structural mechanic stiffness constants in the AMBER 

force model are equal if the corresponding element properties are used. Lee and Lee 

[43] used Timoshenko beam element formulations which include shear deformation 

effects but they employed Euler-Bernoulli beam element constants [37]; this 

assumption affects the natural frequencies of SWCNC that are found to be lower than 

those of Euler-Bernoulli beam elements. If shear deformation effects are considered, 

parameters of shear beam formulations given in Scarpa and Adhikari [49] should be 

used. Even though there are some studies on nanocones, a few studies exists on 

buckling behavior of SWCNCs by using atomic based FE approach. In addition, Lee 

and Lee [43] studied of vibrations of SWCNCs; however, they did not examine the 

effects of cone height and used Timoshenko beam formulations with Euler-Bernoulli 

beam parameters which may lead to lower modal frequencies than actual values. 
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Motivated by these facts, mechanical properties of SLGSs, SWCNTs and SWCNCs 

are obtained by using the MM based FE approach [34, 37] where Euler-Bernoulli 

beam elements with consistent mass matrix is used.  

Although there are numerous studies on static and quasi-static problems of SLGSs 

and CNTs in literature [34-43], no work exists on dynamic analyses of SLGSs and 

CNTS by the use of beam analogy and FE formulations based on the MM model. 

Development of accurate FE models based on the MM principles will enable fast 

analysis of nanostructures. In this thesis, modal and dynamic analyses of SLGSs are 

completed by using the beam analogy and consistent mass matrices. In the works 

[35, 36, 39-43, 55, 57] studying the vibrations of GSs and CNTs, the global mass 

matrix is derived based on the assumption that the carbon nuclei masses (e.g., 1.9926 

× 10
-26

 kg) are concentrated at the joints of the frame structure. Due to the negligible 

radius of carbon atomic nucleus (e.g., rc= 2.75 × 10
-5

 Ǻ), torsional and flexural 

rotation coefficients of mass matrices are assumed to be zero and a lumped mass 

matrix for the beam elements is used, which is sufficient to study the vibrations of 

GSs and CNTs; nonetheless, it yields singularity problems in transient analyses 

unless special measures are taken. On the other hand, to obtain natural frequencies 

and corresponding modes of CNTs, consistent mass matrices are considered in [61], 

where the density of beam elements is selected to be the density of the CNT in the 

associated MM models. However, due to this assumption, the total mass of the MM 

model is different from the mass of the original structure which also affects the 

associated natural frequencies. Hence, an equivalent model for SLGSs in transient 

analyses is developed in this thesis by using an atomistic FE approach [34] that 

employs a consistent mass matrix of Euler Bernoulli beam elements in which an 

equivalent density parameter for the beam elements is derived by the equivalency of 

natural frequencies of the MM model and continuum plane-stress FE model. In 

addition, the Young‟s modulus and Poisson‟s ratio of plane stress model are obtained 

by using the MM model. It is shown that the proposed approach can reflect 2-D and 

3-D vibrational characteristics of SLGSs. Moreover, the response to initial 

displacements are computed for two- and three-dimensional FE models where initial 

displacements are applied incrementally on SLGSs and nodal coordinates of the 

original SLGS structure are updated at each displacement increment; hence, large 

deformation effects and uniform initial displacement conditions are considered in all 
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analyses. It is noteworthy that the Morse potential can easily be adapted to include 

nonlinear effects in our analyses. The Newmark method is employed to integrate the 

associated equations of transient analyses. It is also shown that power spectral 

density (PSD) properties of transient analyses are in good agreement with modal 

features of SLGSs, that verifies the numerical results. Comparisons are made among 

the results of the MM based model, CM based model and relevant works in 

literature. 

Relevant works about fracture behavior of GSs and CNTs in literature are 

summarized as follows. Experimental observations show that some defects such as 

one atom vacancy and Stone-Wales (SW) defects commonly exist in CNTs and GSs. 

These defects may be induced due to stress or may emerge during the growth or 

processing [29, 66- 71] and negatively affect mechanical strength of these carbon 

based structures. Hence, prediction of mechanical behavior of defected carbon based 

structures is important and very useful in the design of materials having 

nanographene structures. Lee et al. [21] studied experimentally the elastic properties 

and intrinsic breaking strength of free-standing monolayer graphene membranes and 

measured the Young's modulus of 1.0 TPa and tensile strength of 130 ± 10 GPa. Yu 

et al. [29] investigated the tensile strength of MWCNTs experimentally and found it 

in the range of 11 to 63 GPa. Atomistic modeling methods such as quantum 

mechanic (QM) and MD simulations are commonly used to determine the effects of 

defects on mechanical properties of GSs and CNTs in literature [72-84]. However, 

despite of their accuracy, atomistic modeling approaches are computationally very 

expensive than continuum modeling approaches. Tserpes et al. [85] proposed an 

atomistic-based progressive fracture model for simulating the fracture behavior of 

SWCNTs by using commercial FE codes, where non-linear characteristic of Euler-

Bernoulli (EB) beam elements (i.e., Beam4 element in ANSYS) is obtained by using 

the modified Morse potential. Tserpes and Papanikos [86] studied the effect of the 

SW defect on the fracture behavior of SWCNTs. By using commercial FE codes, 

Mohammadpour and Awang [87] studied tensile properties of SWCNTs by using an 

approach similar to Tserpes et al. [85] and represented carbon-carbon (C-C) bonds by 

using Timoshenko beam elements (i.e., Beam188 element in ANSYS). Wernik and 

Meguid [88] analyzed the nonlinear mechanical properties of SWCNTs by using an 

atomistic-based continuum modeling technique, where beam and rotational spring 
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elements are used to represent stretching and angle-bending component of the 

modified Morse interatomic potential. Xiao et al. [89] developed an atomistic based 

finite bond element model for the prediction of fracture and progressive failure of 

defect-free and defected SLGSs and SWCNTs, whose model is equivalent to the 

analytical molecular structural mechanical model in the work [90] for defect-free 

SWCNT. Xiao et al. [91] also studied effects of multiple SW defects on mechanical 

properties of GSs and CNTs. Rossi and Meo [92] studied mechanical properties of 

SWCNTs by using FE models based on the MM models. The interactions between 

the C-C bonds are modeled by using non-linear elastic and torsional spring elements 

in [92]. Rossi and Meo [93, 94] also examined tensile properties (i.e., ultimate 

strength and strain) of SWCNTs. Georgantzinos et al. [95] analyzed stress-strain 

behavior of SLGSs by using a spring-based FE model. Sun and Zhao [96] 

investigated tensile stiffness and strength of SWCNTs by using the MM based FE 

approach where the C-C bonds are simulated with two node elastic rod elements. 

Although progressive fracture of SLGSs and SWCNTs are studied earlier, they are 

obtained without consideration of geometric nonlinear effects. However, the fracture 

in these nanostructures occur at relatively large strain values; hence, large 

deformation effects and geometric nonlinearities have to considered which are the 

main motivation behind this study and examined in this paper. In this study, 

equivalent nonlinear SLGS and SWCNTs fracture models are developed by using the 

atomistic based FE approach in which the modified Morse potential along with an 

iterative solution procedure is used. The proposed model is basically a combination 

of the structural mechanic approach of Li and Chou [34] and the atomistic-based 

progressive fracture model of Tserpes et al. [37]. To this end, we coded our own 

SLGSs and SWCNTs FE models by using MATLAB®, and large deformation and 

nonlinear geometric effects are taken into account. At each load step, initial 

displacement is applied incrementally on SLGSs and SWCNTs, and atomistic 

coordinates of the original SLGS and SWCNTs structures are updated. Formulation 

underlying the proposed approach is applied to pristine and defected (i.e., SW and 

one atom vacancy defects) zigzag and armchair SLGSs and pristine, reconstructed 

and non-reconstructed one- and two-atom vacancy defected zigzag and armchair 

SWCNTs. The initial reconstructed nanotube models are obtained by using MD 
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simulations. The numerical results are compared with and found to be in good 

agreement with the results reported in literature. 

Recently developed multiscale modeling techniques yield promising results in 

treating the bridging phenomena at atomistic and continuum scales. The aim of these 

methods is to solve problems in different scales efficiently such as QM/MM/quasi-

continuum mechanics (QCM)/CM [77, 97-99]. Those methods have taken the 

advantages of both atomistic and continuum models. For example, in studying 

fracture, the MM models are used to obtain more accurate results in the small domain 

around the crack where bond breaking is expected, while the CM models based on 

the FE method are used to obtain more efficient solution away from the crack where 

a homogeneous and smooth deformation field is expected. The bridging scale 

method [100-101], Arlequin method [102-103], bridging domain method [76, 104-

107], handshake or coupled length scale methods  [108-110] and generalized space-

time mathematical homogenization theory [111] are some of these methods used to 

link atomistic and continuum models. The Arlequin, bridging domain and handshake 

methods are overlapping domain decomposition methods, in which strain energies of 

the atomistic and continuum models are scaled in the overlapping domain. 

Compatibility of the models is enforced by using Lagrange multipliers in the 

Arlequin and bridging domain methods. On the other hand, the bridging scale 

method used for coupling of MD and CM models does not contain an overlapping 

domain. This method consists of a two-scale decomposition such as a coarse scale to 

represent the CM model and a fine scale to represent atomistic model, and these 

scales evolve on separate time scales. A projection of the fine scale solution onto the 

solution of the coarse scale model is used to link the models. The handshake methods 

use continuum and atomistic models; atomistic and continuum models are 

overlapped and contribution of each model to the Hamiltonian is taken to be average 

of the two Hamiltonians. The homogenization theory constructs an equivalent 

continuum description directly from MD equations. A brief review of available these 

coupling methods can be found in [112-114].  

In this thesis, a coupling method for the MM and CM models is derived based on an 

augmented formulation of atomistic and continuum displacement fields in a moving 

least square sense, which originates from an unconstrained optimization problem to 

be solved. In order to solve the augmented problem, the Lagrange multiplier method 
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is used which allows multiscale analyses of multiple numbers of MM domains in a 

single CM domain. The CM domain covers entire domain and the MM domain is 

patched on the element(s) of the CM domain.  In contrast to alternative approaches 

existing in literature, there is no need for an overlapping domain in the proposed 

approach and the MM domain(s) can be placed arbitrarily in the CM domain; hence, 

one can focus on any desired subdomain where we need to obtain atomistic solution. 

In addition, there is no need for a constraint on the meshes of the MM and CM 

domains. Efficiency of the proposed approach is illustrated by using defect-free and 

defected monolayer graphene layers. In the atomistic models, harmonic potentials 

and modified Morse potentials are employed. In the CM domain, it is assumed that 

deformations are elastic and plane stress conditions exist, for which elasticity 

modulus and Poisson‟s ratio values of the CM domain are obtained by the use of full 

MM models, and compared with the results presented in literature. It is shown that 

the proposed formulation can compute the deformations of monolayer graphenes in 

high accuracy, enables to obtain the MM solution(s) in any part of the CM domain 

and can be applied to other nano structured materials. Main advantage of the 

proposed formulation is that it can be used to connect the MM domain(s) to any 

subdomain of the CM domain by proper choice of projection matrices without 

changing the mesh. Therefore, it enables fast reanalysis of any subdomain of the CM 

domain at fine scales. In addition, appropriate stiffness matrices of the MM and CM 

domains which exported as superelements can be embedded into the formulations 

that enables linking by commercial softwares. By updating the elasticity parameters 

of the CM domain based on the MM solutions, nonlinear effects are easily 

considered in iterative solutions of large deformation problems that provide more 

accurate nonlinear solutions. 
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2.  STRUCTURES OF CARBON- BASED NANOSTRUCTURES 

Graphene is a term that refers to one atom thick planar sheet of covalently bonded 

carbon atoms which are densely packed in a honeycomb crystal lattice. Graphite is a 

basic material found in nature and when taken apart graphite sheets become 

graphene. Rolled up layer of a GS forms CNT and folded up of a GS becomes 

fullerene (i.e., see Figure 2.1).  

 

Figure 2.1: Graphite, graphene, CNT and fullerene [115]. 
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Figure 2.2: (a) Multi-layer carbon nanotube (MLCNTs) [1,116], (b) graphene 

membrane [117]. 

Figure 2.2 (a) shows the electron micrographs of microtubules of graphitic carbon 

with outher diameter of 4-30 nm and length of up to 1 μm. These tubes consisted of 

two or more seamless graphene cylinders concentrically arranged [116]. Figure 2.2 

(b) shows the TEM image of a few-layer graphene membrane near its edge where the 

number of dark lines indicates the thickness of two to four layers [117]. Figure 2.3 

shows the transmission electron micrographs (TEM) of the four distinctly different 

types of nano cones. 

  

Figure 2.3: TEM images of carbon nanocones, (a)-(d) shows cones with nominal 

apex angle α = 19.2°, 38.9°, 60° and 83.6°, respectively [118]. 
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The CNTs, GSs and CNCS are composed of covalently bonded carbon atoms which 

are densely packed in a hegzagonal carbon rings. The covalent bond is a very strong 

bond and significantly contributes to the mechanical properties of carbon based 

structures. The atomic structures of CNTs depend on the tube chirality, which is 

defined by the chiral vector Ch and the chiral angle θ (see Figure 2.4). The chiral 

vector Ch can be defined in terms of the lattice translation indices (m,n) and the basic 

vectors 1a and 2a of the hexagonal lattice as follows 

21 aa nmCh
 (2.1) 

 

Figure 2.4: Roll-up vector defining the structures of CNTs (a) GS and (b) SWCNTs 

[119]. 

The chiral angle θ is defined as the angle between vectors Ch and a1 and calculated as 

follows 

22

1

2

3
sin

mmnn

m
 (2.2) 

The CNT diameter and chirality are completely specified by the two integers (m,n), 

which are referred as the chiral indices of the CNTs. Table 2.1 shows the three major 

categories of CNTs and Figure 2.5 shows these types of CNTs.  
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Table 2.1: Types of CNTs based on chiral indices. 

Nanotube type Chiral indices (m,n) Chiral angle, θ 

Armchair (m,m) 30 º 

Zig-zag (m,0) 0 

Chiral (m,n); 0nm  0 < θ < 30º 

 

 

Figure 2.5: CNTs (a) armchair (6,6), (b) zig-zag (8,0), (c) chiral (8,5) (d) MWCNT 

(7,7) (10,10). 

The length of chiral vector and the diameter of any CNT can be respectively 

calculated as follows 

22 mmnnaL hC  (2.3) 

22 mmnnaL
d t

 

(2.4) 

where a  is the lattice constant of graphite and equal to CCaa 321 aa  and 

CCa  is the carbon-carbon (C-C) bond length and equal to 1.421 Ǻ. 

The electronic properties of CNTs are dependent on the chirality. The condition for 

achieving metallic CNTs can be expressed by m-n=3q, where q being an integer 

[120]. Figure 2.6 shows that every possible CNTs configuration (m,n) can be mapped 

by symmetry operations on the red and blue colored circles.  
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Figure 2.6: A map showing which (m,n) gives semiconducting and metallic tubes 

can be drawn. Only armchair CNTs (m=n) are strictly metallic [120]. 

CNCs having five possible closed cone structures can be constructed by using GSs  

[121, 122]. By rotating a fragment of GSs in multiples of 60°, we obtain the original 

structure due to the hexagonal symmetry of GSs that is the only way to generate 

smoothly joined CNCs by folding over a GS and the overlaps are called the 

disclinations. Folding over a GS in this manner creates five possible closed distinct 

CNC structures and the apex angles of a cone can be calculated as follows [123] 

)
360

1arcsin(2  (2.5) 

where θ is the disclination angle in degrees. Taking θ as 60°, 120°, 180°, 240° and 

300°, the apex angles of CNCs are calculated 112.9°, 83.6°, 60°, 38,9° and 19.2°, 

respectively (i.e., see Figure 2.3). The CNTs can be seen as a special case of the 

CNCs with a zero apex angle. Figure 2.7 shows the cone sheet with the dislocation 

angle of 240° corresponding to the cone with the apex angle of 38.9° SWCNC. 
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Figure 2.7: The cone sheet with the dislocation angle of 240° corresponding to the 

cone with the apex angle of 38.9° SWCNC. 
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3.  FINITE ELEMENT MODELS OF CARBON-BASED 

NANOSTRUCTURES 

3.1 FE Formulation 

For the simulation of static and dynamic behaviors of SLGSs, SWCNTs and 

SWCNCs, an atomistic modeling approach is used. When carbon based 

nanostructures such as GSs, CNTs and CNCs are subjected to external forces, the 

positions of the atomic nuclei are controlled by the covalent bonds between C-C 

atoms. Hence, deformation pattern of these nanostructures is very similar to 

deformation of frame structures. To this end, SLGSs, SWCNTs and SWCNCs are 

modeled as 2- D and/or 3-D frame-like structures in simulations and a covalent bond 

between two carbon atoms is represented by an Euler-Bernoulli beam element having 

consistent mass matrices. Figures 3.1-3.3 show the molecular and equivalent FE 

models of the SLGS, SWCNT and SWCNCs, respectively. 

Figure 3.1: Molecular and equivalent FE models of the graphene layer. 
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Figure 3.2: Molecular and equivalent FE models of the SWCNT. 

 

 

Figure 3.3: Molecular and equivalent FE models of the SWCNC.  

The element stiffness matrix and consistent mass matrix for a planar Euler-

Bernoulli beam element are given by equations (3.1) and (3.2), respectively. 
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(3.2) 

 

The element stiffness matrix and consistent mass matrix for a 3-D Euler-Bernoulli 

beam element are given by equations (3.3) and (3.4).  

 

,                                                                                      

 

(3.3) 

 

where the sub-matrices, Kii, Kij, Kjj, Mii, Mij and Mjj are given by 
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     (3.4) 

where L denotes the initial length of a C-C bond and equals to 0.1421 nm. In 

addition, for the computational model, numerical values of the following stiffness 

parameters should be given a priori: A is the cross-sectional area, E and G are 

respectively the Young‟s and shear moduli, I and J are respectively the moment of 

inertia and polar moment of inertia of the cross section and ρ is the beam element 

density.  

Note that the consistent mass matrix formulation does not neglect the effects of 

rotational degrees-of-freedom (DOF). On the other hand, neglecting these rotational 

DOF yield singularity in time integration of associated dynamic equations unless 

special measures are taken; thus, although the effects of rotational DOF are very 

small, they are considered in all subsequent analyses. 

2-D Euler-Bernoulli beam element having three nodal DOF such as two translational 

DOF in the x- and y- directions and a rotational DOF about the z- axis. This element 

is designed to resist axial and bending deformations. 

 

Figure 3.4 Local and global DOF of the 2-D EB element [124].  
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Figure 3.4 shows the local and global coordinate systems of a planar EB beam 

element. The local s axis is along the element axis and t axis is aligned 90° 

counterclockwise from the s axis. The nodal DOF in local coordinate system for a 

planar EB beam element are defined as follows 

 

d1, d2     Displacements at node 1 

d3          Rotation at node 1 

d4, d5     Displacements at node 2   

d6          Rotation at node 2 

 

In global x and y coordinate system, the nodal displacements and rotations are 

defined for a planar beam element as follows  

 

u1, v1     x and y displacements at node 1 

θ1          Rotation about z axis at node 1 

u2, v2     x and y displacements at node 2 

θ2          Rotation about z- axis at node 2 

 

The transformation between the global and local DOF can be written for a planar 

EB beam element as follows  
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(3.8) 

 

where α is the angle between the local s axis and global x axis measured 

counterclockwise, (x1, y1) and (x2, y2) are the coordinates of the two nodes at the EB 

beam element ends, and L is the length of the EB element. Equation (3.5) can be 

written as 

dTd Dl 2  (3.9) 

 

                                    (3.10) 

 

 

 

                                                                             

(3.11) 

 

 

                             (3.12) 

 

3-D Euler-Bernoulli beam element has six nodal DOF per node; translations in the 

nodal x, y and z directions and rotations about the nodal x, y and z axes. This 

element is an extension of the 2-D  beam element to 3-D. This element is designed 

to resist axial, bending and torsional deformations.  Figure 3.5 shows the local 

coordinate system of a 3-D EB beam element. The local t- axis runs along the 

centroidal axis of the EB element. The local s- and r- axes are the principal 

moment of inertia axes for the cross section. 

 

Figure 3.5 Local DOF of the 3-D EB element [124]. 
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The nodal DOF in local coordinate system for a 3-D EB beam element are defined 

as follows 

 

d1, d2, d3      Displacements at node 1 

d4, d5, d6      Rotation at node 1 

d7, d8, d9      Displacements at node 2   

d10, d11, d12   Rotation at node 2 

 

In global x,y and z coordinate system, the nodal displacements and rotations are 

defined for a 3-D beam element as follows  

 

u1, v1, w1        x, y and z displacements at node 1 

θx1, θy1, θz1   Rotations about z axis at node 1 

u2, v2, w2        x, y and z displacements at node 2 

θx2, θy2, θz2   Rotations about z axis at node 2 

 

The transformation between the global and local DOF can be written for a 3-D EB 

beam element as follows  
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   (3.13) 

 

Equation (3.13) can be written as 

dTd Dl 3     (3.14) 
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T
l dddddddddddd 121110987654321d     (3.15) 
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   (3.17) 

 

where H is the 3 × 3 rotation matrix and 0 is a 3 × 3 zero matrix. Thus, the complete 

transformation matrix T3D is a 12 × 12 matrix.  The rotation matrix H transforms a 

vector quantity from the local coordinate system to the global one. The components 

of a vector along the local s, t and r coordinates simply the sum of projections of its 

x, y and z components along the local axes. In matrix form, the transformation can be 

written as follows 
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   (3.19) 

 

where lt is the cosine of the angle between the t and x axes; mt is the cosine of the 

angle between the t and y axes; nt is the cosine of the angle between the t and z 

axes; ls is the cosine of the angle between the s and x axes; ms is the cosine of the 

angle between the s and y axes; ns is the cosine of the angle between the s and z 

axes; lr is the cosine of the angle between the r and x axes; mr is the cosine of the 

angle between the r and y axes; nr is the cosine of the angle between the r and z 

axes. 

The stiffness matrix in the local coordinate system can be related to those in the 

global coordinate system for 2-D or 3-D beam elements as follows 
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TKTK l
T

 

   (3.20) 

where K is the global element stiffness matrix of the EB beam element; Kl is the 

local element stiffness matrix of the EB beam element (i.e., Equations 3.1 and 3.4).  

In addition, by using the transformation matrix T, the mass matrix in the global 

coordinate system is obtained as follows 

TMTM l
T

 

   (3.21) 

where M is the global element mass matrix of the EB beam element; Ml is the local 

element mass matrix of the EB beam element (i.e., Equations 3.2 and 3.4). 

 

3.2 Solution Procedure For Small Deformation Static Problems  

 

After the assembly procedure, the global system of equations consists of n 

equations in n unknowns for small deformation static analyses 

FdKglob

 

   (3.22) 

where  Kglob is the global stiffness matrix, F is the vector of applied force and d is  

the displacement vector. After the application of boundary conditions, solutions for 

global nodal unknowns follow the standard FE procedure. For computing the 

element solution, the global DOF for each element are first transformed into the local 

DOF by multiplying them by the transformation matrix T for the element. 

For the computational models, numerical values of the following parameters should 

be given a priori: E, G, A, I, J and ρ. To obtain these parameters energy equivalence 

concept is employed. This concept is summarized in the following sections.  

3.3 Application of Atomistic Modeling Approach  

To obtain geometric and material properties of the beam elements, energy 

equivalence concept is employed. In this analogy, stretching, bending and twisting 

potential energy terms based on the MM and structural mechanic models are 

assumed to be independent of each other and then corresponding terms are set equal 
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to each other in these two models. In graphite structures, bonded such as the covalent 

bond and non-bonded such as van der Waals and electrostatic forces interactions are 

generally taken into account. Comparing the bonded interaction, non-bonded 

interactions have less contribution on the mechanical characteristics of carbon based 

structures. As a result, the general expression of the total potential energy of the 

force field in the MM model can be expressed as the sum of energies of bonded 

interactions [33, 34] 

UUUUU rtotal

 

   (3.23) 

where rU  is the potential energy for bond stretching, U  for bond angle bending, U

for a dihedral angle torsion and U  for out-of-plane torsion. Nonetheless, U and U  

terms can be merged into a single term. Figure 3.6 shows the different types of MM 

potential energies. 

 

Figure 3.6: Potential energies in MMs [38].  

 

Under the small deformation assumption, the following simple harmonic 

expressions of potential energy components are adequate for describing the total 

potential energy [34] 
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   (3.24) 
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    (3.25) 
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    (3.26) 

where rk , k  and k  respectively denote the bond stretching, angle bending and 

torsional force constant and the symbols r ,  and  represent the bond 

stretching increment, bond angle change and twisting angle change, respectively. 

In this study, the AMBER force model is chosen [33, 34]. The AMBER force 

model constants rk , k and k  are taken as 171052.6 nmN , 

2101076.8 radnmN  and 2101078.2 radnmN respectively.  

 

 

Figure 3.7: Bond stretching energy in MMs.  
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Figure 3.8: Angle bending energy in MMs.  

There are two approaches to model interatomic behavior by the use of beam elements 

such as the model proposed by Li and Chou [34] that neglects the shear deformation 

effect and the model proposed by Scarpa and Adhikari [49] that considers the shear 

deformation effect.  

Following the approach of Li and Chou [34], the strain energy of a uniform beam 

due to pure tension, bending and torsion can be written as 
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    (3.29) 

where AU , BU  and TU  are respectively axial, bending and torsion strain energies, 

L is the length of the beam element, A is the cross-sectional area, E and G are 

respectively Young‟s and shear moduli, I and J are respectively the moment of 

inertia and polar moment of inertia of the cross section, L  is the axial stretching 

deformation,  is the rotational angle at the ends of the beam element, and  is 

the relative rotation between the two ends of the beam element. According to 

structural mechanics, Figure 3.9 shows the potential energies of a beam. 
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Figure 3.9: Potential energies in structural mechanics [38].  

Using the equivalency of the corresponding terms in potential energy components 

of the MM and CM models, the following relations are obtained [34] 
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Assuming that the cross section of beam elements is uniform and circular, then the 

Young‟s modulus E, the shear modulus G and diameter of the cross section d are 

obtained by plugging in the cross sectional area 4/2dA , moment of inertia  

64/4dI and polar moment of inertia 32/4dJ as follows [37] 
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   (3.31) 

Table 3.1 summarizes the geometric and material properties of the beam element 

which are the inputs to the FE models.  
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Table 3.1: Geometric and material properties of beam elements. 

 Present work Scarpa and Adhikari [49] 

Thickness, d 1.47 Ǻ 0.84 Ǻ 

Elastic modulus, E 5.488 x 10
-8

 N/Ǻ
2 16.71 x 10

-8
 N/Ǻ

2 

Shear modulus, G 8.711 x 10
-9

 N/Ǻ
2 80.8 x 10

-9
 N/Ǻ

2 

On the other hand, Scarpa and Adhikari [49] proposed a beam model considering the 

shear deformation effects where, instead of Equation (3.25), the following bending 

strain energy expression is suggested 

    (3.32) 

where Φ is the shear deformation constant defined by    

    (3.33) 

where As =A/Fs, and Fs is the shear correction factor given by 

    (3.34) 

where ν is the Poisson‟s ratio of the beam element. By equating the Equations (3.24) 

and (3.26) to Equations (3.27) and (3.29) respectively, expressions for E and G are 

obtained. Then, by plugging-in the expressions of E and G together with the 

Equation (3.34) into the Equation (3.33), the shear deformation constant is found as 

follows  

    (3.35) 

After substituting the Equation (3.35) into the Equation (3.32) which is then equated 

with the Equation (3.25), the resulting equation is minimized to obtain ν and d that 

are used to calculate E and G.  In sum, the thickness, Young‟s modulus and shear 

modulus of the beam element representing the interatomic bond are listed in Table 

3.1 [49].   
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Both of the beam models proposed by Li and Chou [34] and  Scarpa and Adhikari 

[49] employ identical axial and torsion strain energy expressions, but they 

approximate the bending strain energy term by using different approaches. The strain 

energy term of Li and Chou [34] (i.e., given by the Equations (3.33) to (3.35)) and 

the strain energy term of Scarpa and Adhikari [49] (i.e., given by Equations (3.33), 

(3.35) and (3.38)) give the same AMBER force model constants                       (

, and )  

when the data set given in Table 3.1 are employed. On the other hand, the 

deformation in graphene and graphitic layers are due to hinging-stretching 

mechanism [49] and hinging creates shear stresses. Nonetheless, our aim is to 

represent the potential energy of interatomic bonds and the beam model proposed by 

Li and Chou [34] can exactly represent this potential energy of interatomic bonds. 

Consequently, even though the beam model proposed by Li and Chou [34] neglects 

the shear deformation effect which is valid for slender beams. As long as its spring 

constant is equal to the corresponding AMBER force model constants, it will yield 

correct deformation results. Subsequently, the analyses are carried out by using the 

beam model of Li and Chou [34] due to its simplicity. In addition, the Poisson‟s ratio 

is not needed to construct equivalent FE formulation [34], and E, G, d and L values 

are sufficient to set up the FE model.  

If small deformation assumption exists, both of the models in Li and Chou [34] and 

Scarpa and Adhikari [49] are sufficient to determine the behavior of an atomic bond. 

However, this assumption is not adequate for failure analysis which should be 

analyzed as a large deformation problem and geometric nonlinear effects have to 

considered. For large deformation problems, shear beam element (i.e., Timoshenko 

beam element) is not preferred since it is more difficult to be adapted for the 

modified Morse potential energy terms than the EB beam element. To this end, the 

modified Morse potential along with an iterative solution procedure is used for large 

deformation problems in this thesis. Implementation of this pairwise potential 

function is very easy in comparison with some other multibody potentials such as 

Brenner potential function whose some applications  can be found in literature [72, 

85-95].  

Under the uniaxial loading and small strain hypothesis [33, 90, 92-94], the atomistic 

interaction is mainly governed by the bond stretching and bond angle bending terms. 

171052.6 nmNrk 2101076.8 radnmNk 2101078.2 radnmNk
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As a result, according to the modified Morse potential, the potential energy can be 

expressed as 

    (3.36) 

 
   (3.37) 

 
   (3.38) 

where  is the bond energy due to bond stretching,  is the bond energy due to 

angle bending, r and θ are the current bond length and current angle of the adjacent 

bonds, respectively.  

Table 3.2. Modified Morse potential parameters [72]. 

r0 1.421 Ǻ θ0 2.094 rad 

β 2.625 Ǻ
-1

 kθ 0.9  10
-8

 NǺ/rad
2
 

De 6.03105  10
-9

 NǺ ksextic 0.754 Ǻ
4
 

Values of the parameters in the modified Morse potential functions are the same as 

those in [72] and listed in Table 3.2. Figure 3.10 shows the tensile energy –strain 

curve of the modified Morse potential.   

 

Figure 3.10: Tensile energy-strain curve of the modified Morse potential. 
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The multiple layers of CNTs are held together thorough Van der Waals forces. The 

Van der Waals force is a non-bonded interaction, and it can be an attraction force or 

a repulsion force. These interactions are often modeled using the general Lennard-

Jones (LJ) potential. The general LJ potential is commonly expressed as 

612

4)(
rr

rU

 
   (3.39) 

where, r is the distance between inreacting atoms, ε and σ are the LJ parameters. For 

carbon atoms, the LJ parameters are ε=0.0556 kcal/mole and σ=3.4 Ǻ [125]. The 

potential U(r) is usully truncated at an interatomic distance of 2.5 σ without a 

significant loss of accuracy. Based on the LJ potential, the Van der Waals force 

between interacting atoms can be written as follows    

713

224
)(

)(
rrdr

rdU
rF

 
   (3.40) 

The variations of the LJ potential and Van der Waals force with the distance between 

two interacting atoms are shown in Figure 3.11. 

 

Figure 3.11: Van der Waals force as the distance between two interacting atoms 

changes. 

Tersoff-Brenner many body interatomic potential for carbon [126-127], which is 

widely used in the study of carbon base nanostructures, is introduced as follows 



35 

)()()( ijAijijRij rVBrVrV

 
   (3.41) 

For atoms i and j, where rij is the distance between atoms i and j, VR and VA are the 

repulsive and attractive pair terms given by 
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the parameters D
(e)

 , S, β, and R
(e)

  are determined from the known physical 

properties of carbon, graphite and diamond. The function fc is merely a smooth cutoff 

function to limit the range of the potential and is given by 
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   (3.44) 

which is continuous and has a cutoff of R
(2)

 =0.2 nm and R
(1)

 =0.17 nm to include 

only the first-neighbor shell for carbon atoms. The parameter Bij in Equation (3.41) 

represents a multi-body coupling between the bond from atom i to atom j and the 

local environment of atom i, and is given by 

),(

)()(1
jik

ikcijkİJ rfGB

 
       (3.45) 

where rik is the distance between atoms i and k, fc is the cutoff function in Equation 

(3.44), θijk is the angle between bonds i–j and i–k, and the function G is given by 
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       (3.46) 

Values of the parameters are listed in Table 3.3. 
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Table 3.3: Tersoff- Brenner potential constants [127]. 

D
(e) 

6.000 eV δ 0.5 

R
(e)

 0.139 nm a0 0.00020813 

S 1.22 c0 330 

β 21 n/m d0 3.5 

 

Based on this set of parameters, the corresponding equilibrium bond length can be 

determined by 

0
ijr

V

 
       (3.47) 
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4.  CHARACTERIZATION, DYNAMIC AND FRACTURE ANALYSES OF 

GRAPHENE SHEETS (GSs) 

In this section, an equivalent dynamic and nonlinear fracture model of SLGSs is 

developed by using the MM based FE approach where bond interactions are 

represented by EB beams; then, two- and three-dimensional modal, transient and 

nonlinear fracture analyses of SLGSs are completed. In order to observe vibrational 

characteristics of SLGSs, lumped mass matrix is generally used in literature, which is 

sufficient to determine vibrational characteristics of GSs and CNTs. As mass 

lumping by neglecting rotational inertia of beam elements causes singularity 

problems in transient analysis, consistent mass matrices (e.g., Equations 3.2 and 3.4)  

are used in FE models in this thesis. An equivalent density parameter for the beam 

elements is derived by using the equivalency of natural frequencies of the MM model 

and continuum plane-stress FE model. The Newmark method is employed to 

integrate the associated equations of transient analyses [128].  

An atomistic based FE model for prediction of fracture behavior of SLGSs is 

developed by considering large deformation and nonlinear geometric effects. The 

non-linear characteristic of beam elements are obtained by using the modified Morse 

potential.  Formulation underlying the proposed approach is applied to defect-free, 

and Stone-Wales (SW) and one atom vacancy defected zigzag and armchair SLGSs 

[129]. 

4.1. Equivalent FE Models, Characterization and Vibration Analyses of 

SLGSs 

As mentioned above, equivalent E and  values of the CM model for SLGSs are 

calculated by simulating a test specimen under uni-axial tension. The MM model of 

zigzag type SLGSs has the dimension of 81.22 A° x 126.46 A° having 4020 atoms 

and 5937 bonds. The equivalent CM plane-stress model has the same dimension of 

the MM model and it has 486 nodes and 442 quadrilateral elements. Figure 4.1 

shows the MM model and equivalent continuum plane stress model of the SLGS. All 

of the static, vibrations and dynamic computations of the MM model are completed 
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by using a computer code developed in MATLAB environment and the results on 

vibration analyses are verified by using Ansys ® software where the analyses of 2-D 

and 3-D MM and CM models are performed by using Plane42, Shell63, Beam3, 

Beam4, Mass21 type elements. In the MATLAB code, the analyses by using the 2-D 

and 3-D CM models are completed by using plane-stress and shell elements, 

respectively.  

 

Figure 4.1: (a) Molecular and (b) equivalent plane stress FE models on which 

boundary conditions are shown. 

To calculate Young‟s modulus E and Poisson‟s ratio ν, symmetry boundary 

conditions are applied to all the nodes on one edge and the nodes on the opposite 

edge are uniformly loaded. All load vector calculations are based on consistent load 

formulations and equivalent Young‟s modulus and Poisson‟s ratio are found as 

follows  

 
         (4.1) 

 
         (4.2) 
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where F is the total applied force on the atoms at one end of the graphene sheet, A0  

is the cross-sectional area which is equal to bt (where b and t are the width and 

thickness of the sheet, respectively),  is the initial sheet length,  and  are 

respectively changes in the width and length of the SLGS. In all calculations, the 

nominal thickness of 0.34 nm is used for the SLGS. Table 4.1 lists values of tensile 

rigidity Y, Poisson‟s ratio ν and nominal thickness t of monolayer graphene in 

literature and found in our simulations. Note that there is a lack of experimental 

studies on the values of Poisson‟s ratio ν in literature and numerical results on 

Poisson‟s ratio are scattered in a wide range.  Sakhaee-Pour [38] calculated the 

shear modulus and Poisson‟s ratio of SLGSs by using the shear test (that is, a 

tangential force is applied to all the nodes on one edge and the opposite edge is 

constrained). It is observed that such a numerical test does not reflect the exact shear 

behavior of SLGSs since the conditions of pure shear test could not be created and 

additional bending load is applied to the specimen. Such a simulation may result in 

the Poisson‟s ratio which is much larger than 0.5.  

Table 4.1. Graphene data from literature and present work. 

Reported by Y (TPa nm) Poisson‟s ratio t (nm) Method 

Sakhaee-Pour [38] 0.337-0.354 1.129-1.441 0.34 Beam analogy 

Li and Chou [34] 0.338-0.351 - 0.34 Beam analogy 

Lee et al. [21] 0.335 - 0.335 Experimental 

Present work  0.352 0.063 0.34 Beam analogy 

 

Equivalent density parameter for the beam elements in the MM model is obtained by 

using the equivalency of natural frequencies of continuum plane stress FE model and 

those of the MM model. To this end, firstly natural frequencies of continuum plane 

stress model are obtained where density of continuum plane stress model is equal to 

density of graphite which is 2260 kg/m
3
; then, equivalent density parameter of the 

beam elements is calculated. After assembling the element stiffness and mass 

matrices, the natural frequencies and corresponding mode shapes are obtained by 

solving the following eigenproblem 

 
     (4.3) 

 

a Δa Δb

0dMK )ω( 2
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where K, M, d and ωi are the global stiffness matrix, global mass matrix, 

displacement vector and the natural frequencies, respectively. In addition, the natural 

frequency is equal to ω=2πƒ, where ƒ has the unit of Hertz.  In numerical solutions, 

free-fixed and free-free boundary conditions are taken into account. For free-fixed 

case, all the nodes on one edge are fully constrained and the nodes on the opposite 

edge are free (e.g., see Figure 4.1).  

Table 4.2. Values of equivalent beam density ρ of Euler-Bernoulli beam elements. 

Researcher 

Equivalent beam 

density ρ 

kg/m
3
 

Method 

Lee and Lee [43] 2300 Beam analogy  

Mir et al [61] 2300 Beam analogy 

Present work  5500 Beam analogy 

Following the above mentioned procedure, Table 4.2 lists the values of equivalent 

density parameter ρ of beam elements assumed in literature and found in our study. 

Table 4.3 and Table 4.4 show the numerical results obtained by using the MM and 

shell models for in-plane and 3-D cases, where the first six natural frequencies 

obtained for free-free and free-fixed boundary conditions are given. Figure 4.2 shows 

the first three free-fixed in-plane deformation mode shapes of the lumped mass MM 

model, plane stress CM model and consistent mass MM model. Note also that the 

other mode shapes are found to be similar. Figure 4.3 shows the first three free-fixed 

3-D deformation mode shapes of the lumped mass MM model, shell CM model and 

consistent mass MM model.  In addition, the natural frequencies of the 3-D MM 

model are in good agreement with the results presented in literature [39].  

Table 4.3: First six fundamental frequencies of 2-D SLGS (in GHz). 

Model 
Boundary 

conditions 
1 2 3 4 5 6 

Plane stress model free-free 623.0 845.9 903.4 1167.7 1188.8 1323.1 

Consistent mass 

matrix beam model 
free-free 617.6 846.6 903.4 1178.4 1205.0 1333.1 

Lumped mass matrix 

beam model 
free-free 605.8 836.8 891.5 1149.7 1174.5 1314.1 

Plane stress model free-fixed 142.2 423.3 492.4 1001.9 1176.8 1178.8 

Consistent mass 

matrix beam model 
free-fixed 142.0 424.8 492.4 1002.7 1179.7 1194.4 

Lumped mass matrix 

beam model 
free-fixed 140.3 421.0 486.1 990.2 1163.8 1165.0 
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Table 4.4: First six fundamental frequencies of 3-D SLGS (in GHz). 

Model 
Boundary 

conditions 
1 2 3 4 5 6 

Consistent mass matrix 

beam model  
free-free 13.8 14.5 31.9 37.0 39.4 48.2 

Lumped mass matrix beam 

model  
free-free 13.5 14.2 31.1 36.2 38.6 47.1 

Shell model divided by the 

thickness  
free-free 13.7 14.6 32.3 33.3 37.9 44.5 

Consistent mass matrix 

beam model  
free-fixed 2.37 8.03 14.6 27.0 38.5 43.1 

Lumped mass matrix beam 

model  
free-fixed 2.34 7.88 14.5 26.5 37.9 42.4 

Shell model divided by the 

thickness  
free-fixed 2.16 8.32 13.5 27.2 36.7 38.0 

Note that unlike the results on in-plane MM and CM plane-stress models, there is a 

discrepancy between the calculated natural frequencies of the 3-D MM model and 

those of the 3-D shell model. If the natural frequencies of the 3-D shell model are 

divided by the thickness value, they are in close agreement with those of the 3-D 

MM model, which are shown in Table 4.4 for the free-free and free-fixed boundary 

conditions. Nonetheless, while the transient and static displacement solutions of the 

in-plane MM model and those of the plane-stress CM model match well, the 

transient and static out-of-plane displacements for the 3-D MM and CM shell models 

do not agree. This is originating from the fact that the out-of-plane bending rigidity 

of the 3-D CM shell model is in error that is already reported by other researchers 

[33, 40]; hence, corrections for the thickness value of the 3-D CM shell model are 

suggested in literature. Studies on this issue have been continuing. It is concluded 

that the proposed approach can compute the natural frequencies of SLGSs in high 

accuracy and employment of consistent mass matrix in FE model improves accuracy. 
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Figure 4.2: The first three in-plane mode shapes of the lumped mass MM model (a)-

(c), plane stress CM model (d)-(f) and consistent mass MM model (g)-

(i) where the boundary conditions are free-fixed. 
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Figure 4.3: The first three 3-D mode shapes of the lumped mass MM model (a)-(c), 

shell  CM model (d)-(f) and consistent mass MM model (g)-(i) where 

the boundary conditions are free-fixed. 
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4.2. Dynamic Analyses of SLGSs 

2-D and 3-D transient behaviors of SLGSs are studied by employing the atomistic 

modeling approaches presented in Section 3. According to the theory of structural 

dynamics, the semidiscrete equation of motion for a damped structure is written as  

 

     (4.4) 

where M is the mass matrix, C is the viscous damping matrix,  K is the stiffness 

matrix, F is the vector of applied force, and ,  and are the displacement, 

velocity and acceleration vectors, respectively. The solution of the initial value 

problem for the system represented by Equation (4.4) is a displacement vector 

 satisfying the given initial conditions  and . In transient 

calculations, the Newmark method with a-form implementation [130] is used to 

integrate Equation (4.4). The Newmark family of algorithms consists of the 

following equations 

 
     (4.5) 

      (4.6) 

      (4.7) 

where , and are the approximations to , and , respectively. 

Equation (4.5) is the equation of motion, and equations (4.6) and (4.7) are finite 

difference approximations for the evolution of the approximate solution in time. The 

parameters β and γ determine the accuracy and stability of the algorithm. Average 

acceleration method with parameter values β=0.25 and γ=0.5 which is implicit and 

unconditionally stable is used in this study. Effects of different β and γ values on the 

behavior of solutions can be found in [130]. Figure 4.4 shows the spectral radii for 

Newmark methods for varying β. 
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Figure 4.4: Spectral radii for Newmark methods for varying β [130]. 

 

Table 4.5: Properties of well-known members of the Newmark family [130]. 

Method Type β γ 

Avarage acceleration (trapezoidal rule) Implicit 1/4 1/2 

Linear acceleration Implicit 1/6 1/2 

Fox- Goodwin (royal road) Implicit 1/12 1/2 

Central difference Explicit 0 1/2 

Properties of some classical methods are summarized in Table 4.5. The average 

acceleration method is one of the most widely used methods for structural dynamics 

applications. Fox- Goodwin and linear acceleration methods are also implicit 

methods. However, these methods are conditionally stable and they are not 

economical for large-scale systems when compared to average acceleration method. 

The central difference method is conditionally stable. However, M and C matrices 

need to be diagonal. When the time step restriction is not too severe, the central 

difference method is generally the most economical and widely used [130].  

Equations (4.5) to (4.7) are used to determine the three unknown vectors , 

and  while , and  are known vectors calculated in the previous step. 

Implementation of a-form is summarized the following lines. Firstly, predictors is 

defined as follows   

1na 1nd

1nv na nd nv
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Equations (4.6) and (4.7) may then the written as  

1
2

1n1n

~
nt add       (4.10) 

11n1n
~

nt avv       (4.11) 

Then, 0a  may be calculated as follows 

000 KdCvFMa       (4.12) 

The recursion relation determines 1na ; 

11n11
2 ~~

nnntt dKvCFaKM C       (4.13) 

Following, Equations (4.10) and (4.11) are used to calculate 1nd and 1nv ,  

respectively. In our numerical simulations, the viscous damping effect is neglected 

and the time step is chosen two orders of magnitude smaller than the periods of the 

first fundamental mode of the associated SLGS models. All the nodes on one edge 

are fully constrained, while the nodes on the opposite edge are subjected to initial 

displacements in dynamic simulations. Initial displacement is applied incrementally 

and then nodal coordinates, C-C bond lengths, angles between C-C-C bonds, 

stiffness and mass matrices of the original SLGS structure are updated at each 

displacement increment; then, the final configuration of the SLGSs is taken into 

account in all simulations. Thus, large deformation effects and uniform initial 

displacement conditions are considered in transient analyses. It is noteworthy that the 

Morse potential can easily be adapted to include nonlinear effects. Total initial 

displacement of 0.1 A° is applied incrementally in positive x- and y-directions in 

planar simulations (e.g., see Figures 4.5 (a) and 4.5 (b)), while total displacement of 

0.1 A° is applied incrementally in positive z-direction in 3-D simulations (e.g., see 

Figure 4.5 (c)). Figure 4.5 shows the boundary conditions and loadings of the SLGSs 
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in 2-D and 3-D transient analyses. The MM and CM shell models of the SLGS used 

in transient analyses have the same dimensions as the models used in the vibrational 

analyses of the MM and CM shell models presented in Section 4.1.  

 

Figure 4.5: Boundary conditions and loadings of the MM models of SLGSs in 

transient analyses (a) 2-D model loaded in y-direction, (b) 2-D model 

loaded in x-direction and (c) 3-D model loaded in z-direction. 

The time step is chosen as 100 ps for all transient analyses of 2-D SLGSs, which is 

sufficient to resolve transient behavior of the models. Figure 4.6 shows the 

displacement in y-direction for a node located in the middle of the SLGS subjected to 

in-plane initial displacement in y-direction as shown in Figure 4.5 (a). Figure 4.7 

shows the displacement in x-direction for a node located in the middle of the SLGS 

subjected to in-plane initial displacement in x-direction as shown in Figure 4.5 (b). 

Observe in Figure 4.6 that beating occurs in mid-span displacement in y-direction 

due to very close natural frequencies existing in the SLGS structure. The frequency 

content of the displacement component in Figure 4.7 is examined by using the power 

spectral density plot shown in Figure 4.8 obtained by using Burg PSD estimator in 

MATLAB, that does not apply any window to data and minimizes the forward and 

backward prediction errors in the least square sense.  The peak corresponding to the 

first natural frequency of 142 GHZ appears in the spectrum plot. As can be seen in 

Figure 4.8, our findings are in good agreement with the first vibrational mode of the 

2-D MM model subjected to free-fixed boundary conditions whose natural 

frequencies are listed in Table 4.3. 
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Figure 4.6: Variation of mid-span displacement in y-direction for 2-D MM model 

shown in figure 4.5 (a). 

 

Figure 4.7: Variation of mid-span displacement in x-direction for 2-D MM model 

shown in Figure 4.5 (b). 
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Figure 4.8: Power spectrum density plot of the 2-D MM model subjected to free-

fixed boundary conditions. 

For transient analyses of the 3-D SLGS models, the time step is chosen as 10 ns. 

Figure 4.9 shows the displacement in z-direction for a node located in the middle of 

the SLGS subjected to initial displacements shown in Figure 4.5 (c). Observe in 

Figure 4.9 that small amount of beating occurs in 3-D vibrations of the MM model of 

SLGSs as well. Figure 4.10 shows the frequency spectrum of the displacement 

component in Figure 4.9 obtained by using Burg PSD estimator in MATLAB. The 

peak corresponding to the first natural frequency of 2.37 GHZ appears in the 

spectrum plot. It can be seen that the findings of Figure 4.10 are in good agreement 

with the first natural frequency of the 3-D MM model of SLGSs subjected to free-

fixed boundary conditions whose solutions are listed in Table 4.4. Although 

rotational DOF are included in FE models due to employment of consistent mass 

matrices, total translational kinetic energy is approximately 99.9% of the total kinetic 

energy; hence, it can be concluded that rotational kinetic energy is very small and 

employement of consistent mass matrix including rotational effects is acceptable. 
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Figure 4.9: Variation of mid-span displacement in z-direction for the 3-D MM 

model shown in Figure 4.5 (c). 

 

Figure 4.10: Power spectrum density plot of the 3-D MM model. 
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4.3. Fracture Analyses of SLGSs 

In this section, an atomistic based FE model for prediction of fracture behavior of 

SLGSs is developed by considering large deformation and nonlinear geometric 

effects. EB beam elements are used to represent covalent bonds and non-linear 

characteristic of the beam elements are obtained by using the modified Morse 

potential.  Formulation underlying the proposed approach is applied to defect-free, 

Stone-Wales (SW) and non-reconstructed one atom vacancy defected zigzag and 

armchair SLGSs. 

4.3.1. FE formulation of the C-C bonds 

The proposed model is basically a combination of the structural mechanic approach 

of Li and Chou [34] and the atomistic-based progressive fracture model of Tserpes et 

al. [85]. We already investigated mechanical properties, modal and transient behavior 

of SLGSs in Sections 4.1 and 4.2. Harmonic expressions for potential energy term 

are used and geometric constants are given in Table 4.6.  

Table 4.6. Geometric properties of the EB beam element. 

Bond  thickness , d 1.47 Ǻ 

Cross-sectional area, A 1.687 Ǻ
2
 

Moment of inertia, I 0.22682 Ǻ
4
 

If small deformation assumption exists, these parameters are sufficient to determine 

the behavior of an atomic bond. However, this assumption is not adequate for failure 

analysis of SLGSs which should be analyzed as a large deformation problem and 

geometric nonlinear effects have to be considered. To this end, at each load step, the 

loading is applied incrementally, non-linear characteristic of the EB beam elements 

are obtained by using the modified Morse potential and nodal coordinates are 

updated in this study. Planar beam formulation is sufficient to determine in plane 

fracture behavior of SLGSs and the element stiffness matrix of a planar EB beam 

element is given by Equation (3.1)  

On the other hand, the EB beam element formulation does not consider shear 

deformation effects and exactly represent potential energy of interatomic bonds. 

Scarpa and Adhikari [49] proposed a beam model considering the shear deformation 

effects and they found new geometric and material properties of the beam element by 
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using the AMBER force model constants [34]. Both of the models in Li and Chou 

[34] and Scarpa and Adhikari [49] yield the same deformation results for small 

deformation problems. For large deformation problems, shear beam element (i.e., 

Timoshenko beam element) is not preferred since it is more difficult to be adapted 

for the modified Morse potential energy terms than the EB beam element. 

 

For in-plane deformation problems of SLGSs, the atomistic interaction is mainly 

governed by the bond stretching and bond angle bending terms. As a result, 

according to the modified Morse potential, the potential energy can be expressed as 

Equations (3.37) – (3.38). The following equations can be obtained by differentiation 

of Equations (3.37)- (3.38)  

      (4.14) 

      (4.15) 

Equations (4.14)- (4.15) represent the force/bond length and momentum/C-C-C angle 

variation. Belytschko et al. [72] reported that the bond angle-bending potential does 

not contribute to the stretching energy and it has little effect on fracture in CNTs. 

The bond angle-bending potential energy term can be added to stabilize the 

molecular structure which is considered by the rigidity of the EB beam element and 

extra moment effect originating from Eqeation (4.15) (i.e., the second term in 

Eqeations (3.38) and (4.15)) is neglected. Note that force-strain curve obtained by 

using Eqeation (4.14) is highly nonlinear at large strain values and force-strain curve 

shapes of Brenner and modified Morse potential functions are very similar prior to 

the inflection point [72] (i.e., see Figure 4.11).  
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Figure 4.11: The Brenner and modified Morse potentials and tensile force fields. (a) 

potential field for Brenner and modified Morse potential (b) force fields 

in segment [AB] in part (a) [73]. 

 

Belytschko et al. [72] studied the fracture of CNTs by using MM simulations and 

reported that the fracture is almost independent of the dissociation energy and 

depends primarily on the inflection point of the interatomic potential. After the 

inflection point, the shape of the potential function is not important since material 

damage occurs. A cut-off distance (rcf) based on bond-breaking criterion is very often 

used in atomistic simulations and different cut-off distances have been suggested in 

literature [75, 90]; in this thesis, the value of rcf = 0.169 nm is employed which 

corresponds to the inflection point at approximately 19 % strain (i.e., the maximum 

of the interatomic force curve).  

 

4.3.2. FE models of defect-free and defected SLGSs 

Equivalent FE models of the defect- free and defected SLGSs are illustrated in 

Figure 4.12. The overall dimensions of the SLGSs are its length in the armchair (Lx) 

and zigzag (Ly) directions that are shown in Figure 4.12. In our simulations, the 

defect-free model of SLGSs has 125.52 Ǻ 126.46 Ǻ dimensions, and contains 6180 

atoms (i.e., nodes) and 9159 bonds (i.e., elements).  
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Figure 4.12: Equivalent FE model of the defect-free and defected SLGS model; (a) 

one atom vacancy, (b) SW defects 

Production of mass-quantities of defect-free GSs or CNTs may prove challenging 

and different types of defects may exist in practice. It is reported in several QM and 

MD studies that these defects significantly affect the mechanical performance of 

these carbon based structures [71, 73, 75-79, 83]. In addition, a lot of MM based 

numerical studies exist about the effect of defects on fracture behavior of CNTs and 

GSs [72, 85, 86, 89, 91, 94]. The possible and mostly studied GS defects are 

incomplete bonding defects such as vacancies and topological defects such as the 

SW transformation. In addition, rehybridization and heterogeneous defects may exist 

in GS structures. These defects may be induced due to stress or emerge during the 

growth or synthesis processing [67]. Vacancy defects originate from missing atoms 

in the GSs and may occur due to an electron irradiation or oxidative purification. The 

SW defect involves the 90° rotation of a carbon bond about its center and is 

originally presented as the “SW transformation” [131]. Finally, four hexagons 

transform into two pentagons and two heptagons. 
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Figure 4.13: The SW defect generated by rotating the C–C bond (a) defect- free 

lattice and (b) SW- defected lattice. 

Figure. 4.13 shows the SW (5-7-7-5) defect formation in the undeformed hexagonal 

lattice schematically. In this study, we considered one atom vacancy and SW defects, 

and investigated the effects of these defects on fracture behavior of SLGSs. Both 

zigzag and armchair directions are taken into account (e.g., see Figure 4.12). In all 

calculations, we assumed that the SW and one atom vacancy defects are located in 

the middle of the SLGSs. Figure  4.12 shows the defect-free sheet and the middle 

areas of the sheet where defects are located in the simulations. Sammalkorpi et al. 

[71] investigated the effect of reconstructed and non-reconstructed vacancy defects 

on tensile behavior of CNTs and show that the strength reduction caused by 

reconstructed case is smaller than that caused by their non-reconstructed case. 

Sammalkorpi et al. [71] used an annealing step beginning the MD simulations at high 

temperature for reconstruction. However, reconstruction does not occur in our 

simulation since the distance between the potential reaction atoms exceeds the 

interaction cut-off. On the other hand, although metastable, the non-reconstructed 

SWLNT configurations can be present at low temperatures and low dose irradiation 

[132, 133], and non-reconstructed defected SWCNTs used in several works in 

literature [85, 131, 134]. We considered non-reconstructed one atom vacancy defect 

in computational models, and one carbon atom and corresponding three C-C bonds 

are removed in the defect-free SLGSs (i.e., Figure 4.12). Nardelli et al. [68, 70] 

showed that defect nucleation in armchair CNTs and GSs under transverse tension 
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occurs via SW transformation at critical tensile strain of 5% in CNTs and somewhat 

later in GSs due to the absence of the additional curvature effect of the tubular 

structure.  In addition, Zhang et al. [135] found that this transformation occurs at 

critical tensile strain of 6% for armchair CNTs and 12% for zigzag CNTs. In this 

study, strain barrier of 6 % for armchair SLGSs are considered for the formation of 

SW defects. It is noteworthy that 5% and 6% values of the strain barrier for the 

formation of SW defects did not affect our numerical results considerably. Tserpes et 

al. [86] used a combination of the stress-strain curve of defect-free and SW-defected 

CNTs to simulate fracture behavior of SWCNTs, and assumed that SWCNT 

dimensions remain unchanged after the formation of SW defects and neglected the 

deformation around the defect nucleation region. However, after the SW 

transformation, new configurations of the bonds affect the locations of neighboring 

atoms which change their locations into new lesser potential energy configurations. 

On the other hand, Xiao et al. [89, 91] proposed an interaction based mechanics 

approach to calculate the deformations caused by the formation of SW defects. In our 

study, to simulate the SW transformation, we started the simulations with defect-free 

GSs and the configurations of bonds are changed at the defect formation strain (e.g., 

Figure  4.13); then, initial pre-strain is applied to obtain minimized energy 

configurations of atoms and the simulation is continued until catastrophic failure of 

the SLGS.  

4.3.3 Computational results 

The procedure in our numerical studies is summarized in this section. Described by 

the modified Morse potential, the non-linear behavior of bonds is represented by EB 

beam elements and an incremental procedure is followed similar to [85] to apply the 

loading. Geometric parameters given in Table 4.6 are used for the EB beam 

elements. Note that the elasticity modulus is updated during load increments as the 

ratio of the stress to strain at a single point of the stress-strain curve, it is called the 

secant modulus in literature.  Initial secant modulus of beam elements (i.e., 6.93 TPa) 

is obtained through the stress-strain curve of the C-C bond according to the modified 

Morse potential. Force- displacement, force- strain, stress- strain and secant 

modulus-strain curves of the C-C bond are shown in Figures 4.14 -4.17, respectively. 
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Figure 4.14: Force - displacement curve. 

 

 Figure 4.15: Force - strain curve. 
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Figure 4.16: Stress - strain curve. 

 

 

Figure 4.17: Secant‟s modulus - strain curve. 

In simulations, all the nodes at one end of the zigzag (i.e., x- direction) or armchair 

(i.e., y- direction) SLGSs are fully constrained, while the nodes at the other end are 

subjected to an incremental displacement. The secant modulus and nodal coordinates 

of each element of the original SLGS structure is updated at each load step. At each 

load step, the secant modulus of each element is set to , where A is the cross )/(AF
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sectional area of the element, ε axial strain of the each element, and F the interatomic 

force is calculated by Equation (4.14). When the axial strain of a bond reaches the 

critical fracture strain, then its stiffness matrix is multiplied by a very small number 

to simulate the bond break. Following, very small additional displacement is applied 

to the SLGSs and this iterative procedure goes on until the complete failure of 

SLGSs takes place. The strain in SLGSs is calculated by  where 

Ls0 is the initial (equilibrium) length and Ls is the current length of the sheet material. 

The stress is calculated by  where Fg is the corresponding applied 

tensile force computed by summation of the longitudinal reaction forces of the 

constrained nodes, Lw is the width of SLGSs and t is the thickness of the SLGSs. In 

all calculations, the thickness of 0.34 nm is used for the SLGSs. Accuracy of the 

results depends on the number of load steps. Hence, an acceptable strain increment is 

determined on a trial and error base to guarantee the convergence of numerical 

results. All fracture computations of the MM model are completed by using a 

computer code developed in MATLAB environment.  
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Table 4.7: Predicted failure strain (εf)  and stress (σf) values of SLGSs . 

Study Method Type 

εf  / 

σf 

(GPa) 

Defect-

free 
SW  

One 

atom 

vacancy 

Present (with geometric 

nonlinearity effect) 
MM  zigzag 

εf 0.130 - 0.077 

σf 82.22 - 69.92 

Present (without geometric 

nonlinearity effect) 
MM  zigzag 

εf 0.142 - 0.085 

σf 95.68 - 78.61 

Present (with geometric 

nonlinearity effect) 
MM  armchair 

εf 0.174 0.088 0.108 

σf 102.15 77.38 86.34 

Present (without geometric 

nonlinearity effect) 
MM  armchair 

εf 0.190 0.093 0.120 

σf 122.37 87.4 102.74 

Yanovsky et al. [84] 

 
QM 

zigzag 
εf 0.123 - - 

σf 90.5 - - 

armchair 
εf 0.123 - - 

σf 138.6 - - 

Xu [80] MD 

zigzag 
εf 0.16 - - 

σf 83 - - 

armchair 
εf 0.24 - - 

σf 98 - - 

Liu et al. [81] QM 

zigzag 
εf 0.194 - - 

σf 110 - - 

armchair 
εf 0.266 - - 

σf 121 - - 

Zhao et al.[82] MD 

zigzag 
εf 0.130 - - 

σf 90 - - 

armchair 
εf 0.20 - - 

σf 107 - - 

Wang et al. [83] MD 

zigzag 
εf 0.13 - - 

σf 90 - - 

armchair 
εf 0.22 - - 

σf 105 ~ 92 ~82 

Ansari et al. [73] MD zigzag 
εf 0.20 - - 

σf 115.72 - - 

Xaio et al.[89] MM armchair 
εf - ~0.097 - 

σf - - - 

 

Table 4.7 shows the predicted failure strain (εf) and stress (σf) values of the SLGSs 

along with the experimental and numerical results in literature. It is observed in 

Table 4.7 that calculated failure strain and stress values lie in the same range with the 

results in literature. Moreover, our numerical results are very consistent with the 

numerical results on CNTs in literature [72, 78, 85, 86, 88, 89, 136]. It can be seen in 

Table 4.7 that by including large deformation and geometric nonlinearity effects, 

fracture stress and strain values reduced by about 11-17 % and 4-10 %, respectively. 

According to Table 4.7, the SLGS exhibits an orthotropic fracture behavior. Namely, 

it is stiffer in the armchair direction (i.e., x- direction) than in the zigzag direction 
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(i.e., y- direction). The fracture stress and strain values in the armchair direction are 

approximately 24 % and 34 % larger than those in the zigzag direction, respectively. 

This result agrees with the studies in literature. As expected, the fracture stress and 

strain values of defect-free SLGSs are the highest in Table 4.7 and these values 

reduce by the presence of defects in the structure. It is observed in Table 4.7 that 

fracture stresses of the zigzag and armchair SLGSs reduced by 14.9 % and 15.4 % if 

one atom vacancy defect exists in structures, respectively. It can be seen that SW 

defects resulted in reduction in fracture stress and strain values of the armchair SLGS 

structures (see Figure  4.12 b) as bond rearrangement causes stress concentration in 

vertical bonds and early bond fracture occurs. This result agrees with calculations on 

CNTs in literature [86, 89].  

 

Figure 4.18: Stress- strain curves for defect-free armchair and zigzag type SLGSs 

with and without geometric nonlinearity effects. 
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Figure 4.19: Stress- strain curves of armchair type SLGSs. 

 

 

Figure 4.20: Stress- strain curves of zigzag type SLGSs. 

 

Figure 4.18 shows the calculated stress–strain curves of defect-free armchair and 

zigzag type SLGSs with and without geometric nonlinearity effects. It can be seen in 

Figure 4.18 that consideration of geometric nonlinearity effects resulted in reduction 
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in fracture stress and strain values significantly. Figures 4.19 and 4.20 respectively 

show the stress- strain curves for defect-free and defected armchair and zigzag 

SLGSs by considering geometric nonlinearity effects. As can be seen in Figures 4.18 

– 4.20, the resulting stress exhibits a sudden drop to zero when the stress reaches to 

the fracture stress. Hence, it is concluded that the fracture of all types of SLGSs are 

brittle which are also reported in several studies in literature [72, 73, 83, 85, 86, 91, 

95]. 

 

Figure 4.21: (a) Fracture initiation and (b) propagation directions of the SW- 

defected armchair SLGS. 
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Our proposed approach is able to give the correct prediction of fracture initiation 

and post failure behavior of SLGSs. However, the accuracy of predicting crack 

propagation in nanoscale is limited as the modified Morse potential function does 

not consider many-body interactions and it is not capable of describing the 

behavior of SLGSs after the C-C bonds are broken where the reconfiguration of 

bonds and structural transformations may occur. Figures 4.21 and 4.22 respectively 

show the fracture initiation and crack propagation directions of the SW-defected 

armchair SLGSs and one atom vacancy defected zigzag SLGSs. 

 

 

Figure 4.22: (a)Fracture initiation and (b) propagation directions of one atom 

vacancy defected zigzag SLGS. 

 

As can be seen in Figure 4.21 that the fracture initiated from the vertical bond which 

connects the two pentagons and continued diagonal crack paths. Crack propagation 

direction is in maximum shear stress directions having an angle of ±45° with the 

horizontal direction. Similar fracture patterns are also observed in literature [72, 86, 

89] for the SW- defected CNTs and SLGSs. As can be seen in Figure  4.22, the 

fracture initiated from the vertical bond which is shown in dark colour in Figure  
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4.22a and propagated in the same row of bonds. The same crack propagation 

characteristic has been observed in studies on CNTs in literature [72, 85]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

5.  COUPLED MOLECULAR/CONTINUUM MECHANICAL MODELING 

OF SLGSs 

In this section, a coupling method for the MM and CM models is derived based on an 

augmented formulation of atomistic and continuum displacement fields in a moving 

least square sense, which originates from an unconstrained optimization problem to 

be solved. The augmented problem is solved by the Lagrange multiplier method and 

it allows multiscale analyses of multiple numbers of molecular mechanics (MM) 

domains in a single continuum mechanics (CM) domain. In contrast to alternative 

approaches in literature, there is no need for an overlapping domain in the proposed 

approach and the MM domain(s) can be placed arbitrarily in the CM domain; hence, 

one can focus on any desired CM subdomain where we need to obtain atomistic 

solution. Formulations underlying the proposed approach are presented and applied 

to defect-free and defected SLGSs. In the atomistic models, harmonic and modified 

Morse potentials are employed to simulate problems of defect-free small deformation 

and defected large deformation SLGSs. In the CM domain, it is assumed that 

deformations are elastic and plane stress conditions exist whose elasticity modulus 

and Poisson‟s ratio values are obtained by the use of MM models. In order to verify 

the proposed approach, deformation and damage of SLGSs are examined and 

comparisons are made with the results given in literature. It is shown that proposed 

approach can compute the deformations of SLGSs in high accuracy, enables to 

obtain MM solution in any part of the CM domain and can be easily applied to other 

materials such as carbon nanotubes [137]. 

5.1 Computational Framework  

This section presents a mathematically consistent coupled framework for linking the 

MM model used at very fine-scales and CM model used at coarse scales. The 

coupled approach consists of three components: the atomistic domain, continuum 
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domain and coupling method. We will present these components in the following 

subsections. 

5.1.1 Atomistic and continuum domain formulations  

For the atomistic scale simulation of SLGSs, an atomistic based FE model presented 

in Sections 3 and 4 is used. In the continuum domain, it is assumed that plane stress 

conditions exist, for which elasticity modulus and Poisson‟s ratio values of the CM 

domain are obtained by the use of full atomistic MM models. By updating the 

elasticity parameters of the CM domain based on the MM solutions, nonlinear effects 

are considered in iterative solutions of large deformation problems. In atomistic and 

continuum plane stress calculations, the nominal thickness of 0.34 nm is used for the 

graphene layer.  

Linear quadrilateral (rectangular) elements are used in plane stress models. The main 

reason is that the linear quadrilateral elements are usually more accurate than linear 

triangular elements as the strain vector of the linear quadrilateral elements is not 

constant. Hence, more realistic presentation of strain is obtained when linear 

quadrilateral (rectangular) elements are used. The element stiffness matrix  for 

linear quadrilateral (rectangular) elements is as follows  

ddahbdAh T

A

TC
e CBBCBBK

1

1

1

1        (5.1) 

where B is the strain matrix, C is the material constant matrix and the dimension of 

the element is defined hba 22 . A local natural coordinate system (ξ, η) with its 

origin located at the center of the quadrilateral element is defined. Figure 5.1 show 

the quadrilateral element and the corresponding coordinate systems.  
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Figure 5.1: Quadrilateral element and coordinate systems. (a) Quadrilateral element 

in physical system, (b) square element in natural coordinate system 

[138]. 

The relationship between the physical coordinate (x,y) and local coordinate system 

(ξ, η) is as follows 

b

y

a

x
,           (5.2) 

Equation 5.2 defines a very simple coordinate mapping between physical and natural 

coordinates systems for quadrilateral element as shown in Figure 5.1. The 

displacement vector U as follows 

C
eyxyx dNU ),(),(           (5.3) 

where the nodal displacement vector C
eu  is arranged in the form as follows 

TC
e vuvuvuvu 44332211d           (5.4) 

In global x and y coordinate system, the nodal displacements and rotations are 

defined for rectangular element as follows  

u1, v1     x and y displacements at node 1 

u2, v2     x and y displacements at node 2 

u3, v3     x and y displacements at node 3 

u4, v4     x and y displacements at node 4 
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and the interpolation functions are given by  

4321

4321

0000

0000

NNNN

NNNN
N           (5.5) 

where Ni (i=1,2,3,4) are the interpolation function corresponding to the four nodes of 

the rectangular element and defined as follows  

)1)(1(
4

1

)1)(1(
4

1

)1)(1(
4

1

)1)(1(
4

1

4

3

2

1

N

N

N

N

       (5.6) 

The strain matrix B has the form 

LNB           (5.7) 

where L is called a differential operation matrix and defined as follows 

xy

y

x

//

/0

0/

L           (5.8) 

By substituting Equations (5.8) and (6.5) into Equation (5.7), we have 

abababab

bbbb

aaaa

11111111

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

B           (5.9) 

Material constant matrix C for plane stress and isotropic materials is defined as 

follows  

2/)1(00

01

01

1 2

E
C         (5.10) 



71 

where  E is the elasticity modulus and ν is the Poisson‟s ratio of the element.  

5.1.2 Coupling strategy 

Consider a planar body which is decomposed into two domains: an atomistic domain 

Ω
A 

and a continuum domain Ω
C
. The superscripts „A‟ and „C‟ are used to denote 

atomistic and continuum identifiers, respectively. Γ
A
 represents the boundary of the 

atomistic domain Ω
A 

which surrounds outer elements of Ω
A
.
 
Possible compositions 

of Ω
A 

and Ω
C 

domains are shown in Figure 5.2, where it is noteworthy that 

location(s) and number of the MM domains can be arbitrary. For simplicity, we will 

consider the case that the MM domain is located in the center of an element in the 

CM domain (e.g., see Figure 5.2b). It is assumed that atomistic domain Ω
A 

is traction 

free, and the traction is only applied to the boundary Γ
C 

of the continuum domain Ω
C
. 

The displacement field is decomposed into a fine scale solution u
A
 and a coarse scale 

solution u
C
.  

 

Figure 5.2: Composition of Ω
A
 and Ω

C 
domains, (a) atomistic domain overlaps with 

several CM elements, (b) atomistic domain coincides with one CM 

element. 

In this paper, the CM domain is modeled as a plane-stress material, while the 

atomistic bonds are modeled by using Euler-Bernoulli beams. The variational 

formulations and Galerkin approximation to plane-stress material and Euler-
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Bernoulli beam are omitted for brevity (e.g., see [124]). In brief, the associated FE 

formulations can be written in the following matrix forms at element level 

CCC
eee fuK         (5.11) 

AAA
eee fuK         (5.12) 

where the subscript e denotes the element number, and C
eK and A

eK are element 

stiffness matrices for the plane-stress continuum element and Euler-Bernoulli beam 

element, respectively; C
eu and A

eu are unknown nodal displacement vectors for the 

plane-stress continuum element and beam element, respectively; C
ef and A

ef are 

element force vectors for the plane-stress continuum element and beam element, 

respectively. Following, by assembling the element equations given by Equations 

(5.11) and (5.12), the global equation systems for the plane-stress CM domain and 

atomistic fine-scale domain can be respectively written as follows 

CCC
fuK         (5.13) 

AAA
fuK         (5.14) 

The missing link between the continuum and atomistic domains is the coupling 

method. The relations between the displacement field of an atomistic domain and 

that of the surrounding continuum domain  can be expressed as follows  

)(()( δxxxu
AC uE         (5.15) 

)(()( δxxxf
AC fE         (5.16) 

where the E[.] is the operator taking the average of the argument, x is the location 

vector and δx  is the perturbation given to x. In addition, due to the FE formulation, 

we have 

P
i iie

CC

1
)()( uxNxu         (5.17) 
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where Ni(x) are the shape functions, and P equals to 3 for planar triangular elements 

and 4 for planar quadrilateral elements. Referring to Figure 5.2b, the following 

relation should hold for an atomistic domain having the boundary Γ
A
 whose 

surrounding continuum domain has the solution of )(xu
C
e  

)(xuu
C
e

A
AE         (5.18) 

For instance, if an atomistic domain lies in a planar quadrilateral continuum element 

(i.e., Figure  5.2b); then, we can write the following relations for a node on Γ
A 

CCCCCA
A e

uN
e

uN
e

uN
e

uN
e

uuE
4

)(
43

)(
32

)(
21

)(
1

)( xxxxx         (5.19) 

CCCCCA
A e

vN
e

vN
e

vN
e

vN
e

vvE
4

)(
43

)(
32

)(
21

)(
1

)( xxxxx
        (5.20) 

where C
eu and C

ev represent respectively the horizontal and vertical displacement 

components, and ),,,( 4321
C
e

C
e

C
e

C
e uuuu and ),,,( 4321

C
e

C
e

C
e

C
e vvvv respectively denote the 

nodal values of horizontal and vertical displacement components. The subscript Γ
A 

denotes that the associated variable is evaluated on Γ
A
.
 
Following, we can write two 

equations per an atomistic node on the boundary Γ
A 

for horizontal and vertical 

displacement components that can be arranged in matrix form as follows 
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where n is the number of atoms on the boundary Γ
A
.
 
Then, Equation (5.21) can be 

written as  

A

A

C

e
uAu         (5.22) 
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where the coefficient matrix mnRA  supplies projection of displacements of the 

CM and MM domains, m equals to 6 for a planar triangular and 8 for a quadrilateral 

element, and xi are the coordinates of the ith atom.  

Locations of atoms on Γ
A
 used for least squares projection may be located on CM 

element boundaries as shown  in Figure  5.2b or inside a CM element as shown in 

Figure  5.2a; nonetheless, by proper choice of projection matrix A, Equation (5.22) 

can be used for projection for all cases. Note that Equation (5.22) is an 

overdetermined equation system whose solution can be calculated by using the 

pseudo-inverse in a least-square sense as follows 

A
A

TTC
e uAAAu

1)(         (5.23) 

which is a least squares fit equation that links the atomistic displacements on the 

boundary Γ
A 

with nodal displacements of C
e . Locations and number of overlapping 

elements can be selected arbitrarily, and no bridging domain is used. Following, the 

coupling of CM and MM solutions is set up as an optimization problem to solve 

Equations (5.13), (5.14) and (5.23) concurrently. Common approach to the solution 

of constrained optimization is to introduce m Lagrange multipliers λi and define an 

equivalent unconstrained optimization problem as follows [124]: 

Find u
C
, u

A
 and λ such that 

)(
2

1

2

1
minimize ACTATCTCAATACCTC BL A

uuλfufuuKuuKu         (5.24) 

where L is the Lagrangian, superposed T denotes matrix transpose and 

TT
AAAB

1)(         (5.25) 

Solution of Equation (5.24) yields u
A
 and u

C 
 by the least squares fit of u

A
 and u

C  
on 

Γ
A
. By using Equations (5.22) and (5.25), we introduce two new projection matrices 

E1 and E2 to extract the DOF determined below 

AC A
e A uBEBuu 2         (5.26) 
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CC
e uEu 1

 
       (5.27) 

AC
uBEuE 21

 
       (5.28) 

where lkR1E  (k is equal to total DOF of elements in a single element C
e , which 

is 6 for a planar triangular element and 8 for a quadrilateral element, and l is equal to 

total DOF of elements in the entire Ω
C 

domain) and rpR2E (p is equal to total 

DOF of atoms on the boundary Γ
A 

and r is equal to total DOF of atoms in the entire 

Ω
A
 domain). Note that the projection matrices E1 and E2 provide us extraction of 

selected DOF out of displacement components of the CM and MM domains, 

respectively. Rows of E1 and E2 are formed of unit vectors 

0..010..0je whose jth component is equal to one and all other 

components are zero. 

Using the optimization steps given on p.76 of [124], the solution of the optimization 

problem Equation (5.24) is given by: 

C

AATA

uE

f

λ

u

0BE

BEK

12

2 )(

        (5.29) 

    and the augmented equation system can be expressed as 

0

f

f

λ

u

u

0BEE

BEK0

00K
A

C

A

C

TA

C

21

)2(
        (5.30) 

By solving the augmented equation system of (5.30), we get the solutions of 

Equations (5.13), (5.14) and (5.23) concurrently. 

In brief, this approach is flexible such that it allows placement of the MM domain in 

any region of the CM domain without introducing an overlapping region. If the 

global stiffness matrices for the MM and CM domains are given, fine scale solution 

of any subdomain of the CM domain can be obtained by proper choice of projection 

matrices E1 and E2. 
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5.2 Numerical Examples 

For the validation of molecular, continuum and coupled models, two static loading 

and three fracture mechanic problems are solved. All coupled and full atomistic 

model computations are completed by using a computer code developed in 

MATLAB environment. Note that the full atomistic model having 494,548 atoms is 

solved by using Ansys software that is used as the reference solution. 

5.2.1 Static loading 

In the first example on static loading, the Young‟s and shear moduli of the zigzag 

type SLGSs having different sizes are calculated by using the full atomistic MM 

models based on harmonic potentials and compared with the results reported in 

literature. The models are assumed to be homogeneous, elastic, plane-stress and 

meshed with quadrilateral elements. In simulations, one end of the sheet is 

constrained and the other end is subjected to uniform tensile loads. All load vector 

calculations are based on consistent load formulations. The Young‟s modulus of a 

material is defined to be the ratio of normal stress to normal strain, i.e., /E for a 

graphene layer. The Poisson‟s ratio is defined as the ratio of transverse contraction 

strain  to longitudinal extension strain  in the direction of stretching force, i.e., 

lt / . Once the Poisson‟s ratio is calculated, then the shear modulus can be 

found by )1(2/EG . Table 5.1 lists the values of tensile rigidity Y and shear 

modulus G calculated by our model and presented in literature. Observe that Y and G 

values reported in literature show dispersion. 

Table 5.1. Values of tensile rigidity Y, shear modulus G and thickness t of SLGSs. 

Reported by Y (TPa nm) G (TPa) t (nm) Method 

Li and Chou [34] 0.338-0.351 - 0.34 Numerical 

Scarpa et al. [49] 0.064-0.546 - 
0.074-

0.099 
Numerical 

Gupta and Batra [52] 0.340 1.4 0.1 Numerical 

Lee et al. [21] 0.335 - 0.335 Experimental 

Min and Aluru [139] - ~0.470 0.333 Numerical 

Tsai et al. [ 140] 0.310 0.358 0.34 Numerical 

Present work 0.350-0.355 0.482-0.493 0.34 Numerical 
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Due to end effects, the Young‟s and shear moduli of a graphene layer are affected by 

the model size. For instance, a graphene layer having the model size of 27.07 A° x 

41.20 A° has the Young‟s modulus of 1.032 TPa and shear modulus of 0.482 TPa. 

On the other hand, if the graphene layer has the model size of 962.4 A° x 1340.0 A°, 

then it has the Young‟s modulus of 1.047 TPa and shear modulus of 0.493 TPa. It is 

observed in Table 5.1 that calculated values of the tensile rigidity and shear moduli 

of SLGSs are in agreement with numerous experimental and numerical results in 

literature. The ux and uy displacement contours of the plane stress CM and MM 

models are shown in Fig 5.3 for the same tensile loading conditions. As can be seen 

in Fig 5.3, displacement contour plots are very similar and plane stress CM and MM 

models are almost equivalent. In addition, modal features of both models are found 

to be very similar. In sum, presented model can calculate the Young‟s modulus and 

Poisson‟s ratio accurately. 

 

Figure 5.3: The displacement contours of the plane stress CM and MM models; (a) 

ux component and (b) uy component. 

For the validation of the proposed CM/MM coupled formulation, further test 

problems are solved. To this end, the following error criteria εd is employed to 

determine the accuracy of the models in the atomistic domain 
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where m
d  and a

d  are the vectors of atomic displacements calculated by coupled 

models and full atomistic models, respectively.  

 

Following, in the second example on static loading, we considered that the MM 

domain overlaps with a CM element in the center of the CM domains. While the MM 

domain having the dimensions of 27.07 Ǻ × 41.20 Ǻ is unchanged, three coupled 

CM/MM models having different CM element sizes are considered as shown in 

Figure  5.4. One end of the sample sheets is constrained and the other end is 

subjected to total initial displacement of 0.1 A° in positive x- and/or y-directions 

(e.g., tensile and transverse directions). Both zigzag and armchair directional loading 

conditions are taken into account in analyses and total twelve validation tests are 

solved for the three coupled models shown in Figure  5.4.  

 

Figure 5.4: Coupled CM/MM models where the MM models are identical while 

the CM model changes as follows: (a) model #1, (b) model #2 and (c) 

model #3. 

Table 5.2 shows the maximum displacement errors of some of these validation tests. 

It can be seen in Table 5.2 that the accuracy of the proposed coupled model is 

directly related to the element size in the plane stress CM domain. The differences 

between the displacements of the coupled CM/MM model and full atomistic models 

(i.e., relative error) are reduced by refinement of elements in the CM domain, while 

the dimensions of the MM domain are kept constant. It is concluded that sufficient 
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number of plane stress elements should be used in the CM domain to increase the 

accuracy of the solutions obtained by the CM/MM coupled formulation.  

Table 5.2: Maximum displacement errors in the second numerical example on 

static loading. 

CM/MM coupled model 
# of 

atoms 

# of  

nodes 

# of atoms in 

full atomistic 

model  

Width 

(A°) 

 

Height 

(A°) 

 

εd 

 

Fig. a 460 16 8652 125.5 177.6 0.0229 

Fig. b 460 100 77,364 376.5 535.7 0.0070 

Fig. c 460 576 494,548 962.4 1340.0 0.0041 

Figures 5.5 to 5.7 show the uy displacement components at different atoms of the 

CM/MM coupled model shown in Figure  5.4b and full atomistic model. Both 

models are subjected to initial displacement of 0.1 A° in the positive y-direction 

(e.g., tensile direction). 

 

Figure 5.5: Displacement components uy of the full atomistic and CM/MM 

coupled models at boundary nodes in the MM domain. 
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Figure 5.6: Displacement components uy of the full atomistic and CM/MM coupled 

models in mid horizontal nodes in the MM domain. 

 

 

Figure 5.7: Displacement components uy of the full atomistic and CM/MM coupled 

models in mid vertical nodes in the MM domain. 

 

It is observed in Figures 5.5 to 5.7 that the largest displacement errors occur at 

boundary nodes and the displacement error goes to zero around the middle region of 

the atomistic domain that is expected due to least squares projections of atomistic 

and continuum displacement fields. Because the coupling strategy is based on least 

squares fit over the boundaries of the atomistic domain Γ
A
. As a result, it is suggested 

in studying the defected graphene layers that the topological defects should be 

located in the middle region of the atomistic domain for the best accuracy in our 

approach. The relative error of solutions is in the range of 0.41% to 2.29% in 

comparison with full atomistic solutions depending on the element size of the CM 

domain, that is acceptable. 

It is noteworthy that the plane stress CM element satisfies the FE patch test and can 

generate the constant strain displacement fields having any orientation. The CM/MM 

coupled formulation satisfies the patch test, since it depends on the least squares fit 

of the fine and course scale solutions. 

5.2.2 Fracture analyses of defected SLGSs 

In the first example on fracture mechanics, fracture analyses of defected SLGSs are 

completed by considering the CM/MM coupled model where the modified Morse 

potential and the CM model having the dimensions of 962.4 Ǻ ×1340. 0 Ǻ and 576 
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FE nodes are used. Mostly studied GS defects in literature are incomplete bonding 

defects such as vacancies and topological defects (i.e., the Stone-Wales (SW) 

transformation) [67]. Vacancy defects originate from missing atoms in the GSs and 

may occur due to an electron irradiation or oxidative purification. A non-

reconstructed defected zigzag SLGSs is used in our study, and corresponding C-C 

bonds and carbon atoms are removed in the defect-free SLGSs (e.g. see Figure 5.8).  

 

Figure 5.8:  (a) The CM/MM coupled SLGS model,  (b) one-atom vacancy defect, 

and (c) two-atoms vacancy defect. 

Although metastable, the non-reconstructed configurations can be present at low 

temperatures and low dose irradiation [132, 133] and non-reconstructed defected 

SWCNTs are used in some works in literature [72, 85, 132]. Described by the 

modified Morse potential, the non-linear behavior of bonds is represented by using 

EB beam elements and an incremental loading procedure is followed similar to [85]. 

Initial Young‟s modulus of beam elements is obtained through the stress-strain curve 

of the C-C bond according to the modified Morse potential and the stress-strain curve 

of the C-C bond is shown in Figure  5.9.  
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Figure 5.9: Stress-strain curve of the C-C bond. 

In the analyses, all the nodes at one end of the graphene sheet are constrained, while 

the nodes at the other end are subjected to an incremental displacement. The Young‟s 

modulus of each element in the original SLGS structure is updated at each load step 

and it is set to )/(AF , where A is the cross sectional area of the element, ε axial 

strain of the element, and F the interatomic force calculated by Equation (4.14). 

Hence, by updating the elasticity parameters of the CM domain by using the MM 

solutions, nonlinear effects are considered. When the axial strain of a bond reaches 

the critical fracture strain, then its stiffness matrix is multiplied by a very small 

number to simulate the bond break. Values of the parameters in the modified Morse 

potential functions used in our study are the same as those in [72] where it is reported 

that the bond angle-bending potential does not contribute to the stretching energy and 

it has little effect on fracture in CNTs. Belytschko et al. [72] studied the fracture of 

CNTs by using the MM simulations and reported that the fracture is almost 

independent of the dissociation energy and depends primarily on the inflection point 

of the interatomic potential. After the inflection point, the shape of the potential 

function is not important since material damage occurs. A cut-off distance (rcf) based 

on bond-breaking criterion is very often used in atomistic simulations, and the value 

of rcf = 0.169 nm is employed which corresponds to the inflection point at 

approximate strain value of 19 % (i.e., the maximum of the interatomic force curve).  

The strain in SLGSs is calculated by 00 /)( LLL  where L0 and L are the initial 

(equilibrium) and current lengths of the sheet material, respectively. The stress is 

calculated by btFg /
 

where Fg is the corresponding applied tensile force 
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computed by summation of the longitudinal reaction forces of the constrained nodes, 

and b and t are respectively the width and thickness of the sheet.   

Table 5.3 summarizes the results obtained by the full atomistic and CM/MM coupled 

models. The fracture strain and stress values of coupled models are slightly larger 

than those of the full atomistic models. It is observed in Table 5.3 that fracture 

stresses of the SLGSs are reduced by 17.8 % and 20.7 % if one-atom and two-atoms 

vacancy defects exist in structures, respectively. This result also agrees with the MM 

calculations on CNTs reported in [72, 85]. 

Table 5.3: Results of the analysis of defected SLGSs. 

Defect type 
CM/MM stress  

(GPa) 

CM/MM 

strain 

Full atomistic 

stress (GPa) 

Full 

atomistic  

strain 

One-vacancy  77.1 0.087 78.6 0.085 

Two-vacancies  76.1 0.086 75.8 0.084 

 

In sum, the proposed approach is able to give the accurate prediction of fracture 

initiation and post failure behavior of SLGSs. The relative errors in fracture stress are 

less than 2% although relatively small number of atoms is selected in the MM model. 

However, the accuracy of predicting crack propagation in nanoscale is limited as the 

modified Morse potential function is not capable of describing the behavior of 

SLGSs after the C-C bonds are broken where the reconfiguration of bonds and 

structural transformations may occur. Note also that the same fracture initiation and 

crack propagation patterns are observed in both coupled and full atomistic 

simulations. Fig 5.10 shows the fracture initiation and crack propagation directions 

of the one-atom vacancy defected sheet models. As can be observed in Figure  5.10, 

the fracture initiated from the vertical bonds which is shown in dark colour in Figure  

5.10a and propagated in the same row of bonds as expected. The same crack 

propagation characteristic is observed in studies on zigzag type CNTs in literature 

[72, 85] that justify the proposed CM/MM coupling approach.  
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Figure 5.10: (a) Fracture initiation and (b) propagation directions of one-atom 

vacancy defected full atomistic and coupled models. 

In the second example on fracture mechanics, a graphene layer with a central crack is 

considered; the MM/CM coupling scheme and elasticity formulas are used to 

determine the strain distribution along the crack direction in the layer. Figure  5.11 

shows the atomistic sheet containing a crack in the center. The dimensions of the 

continuum and atomistic domains are 2262.75 Ǻ ×1136.00 Ǻ and 310.11 Ǻ ×113.68 

Ǻ, respectively. The atomistic domain is located in the middle of the CM domain and 

consists of 13662 atoms.  

 

Figure 5.11: The atomistic sheet containing a crack in the center. 

The crack is located in the middle of the MM domain, is perpendicular to vertical   

C-C bonds and the loading direction. The center crack is modeled by removing the 

C-C bonds to eliminate the interaction between atom pairs across the crack surface. 

The crack length of a2 =14.76 Ǻ is considered in the simulations. The plane stress 
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loading is assumed for the CM domain. The atomistic displacement field is 

calculated from linear elastic fracture mechanics (LEFM) with initially specified 

stress intensity factor KI. In fracture mechanics, the relative displacements between 

corresponding pairs of atoms separate symmetrically normal to the plane of the crack 

in the opening mode or mode 1. The linear elastic solution of the displacement fields 

in the vicinity of the crack tip in opening mode is given by [141] 

2
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where ux and uy are the displacements in the x and y directions, respectively, KI is the 

stress intensity factor, μ is the shear modulus of the material, )1/()3(  for 

plane stress, r and θ are the cylindrical coordinates measured from crack tip and ν is 

the Poisson‟s ratio. The stress intensity parameter KI for a finite width plate is given 

by [141] 
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where ζ is the gross stress, a is the half-length of crack and w is the width of plate. 

The strain distribution in front of the crack is calculated at the prescribed gross strain 

of εyy =1%. Fig 5.12 shows the deformed and undeformed configurations of atoms 

around the crack tip, where the solid and dashed lines refer to the deformed and 

undeformed configurations, respectively. 

 

Figure 5.12: The deformed and undeformed configurations of atoms around the 

crack tip. 
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Figure 5.13 shows the strain results obtained by the elasticity solution and CM/MM 

coupled model. As can be seen in Figure 5.13, the CM/MM coupled model yields 

results that are consistent with linear elastic solution and also in agreement with the 

strain results of bridging domain method [106]. It is concluded that the proposed 

approach is able to predict the strain distribution near the crack tip accurately. 

 

Figure 5.13: The strain results obtained by the elasticity solution and CM/MM 

coupled model. 

In the third example on fracture mechanics, the effect of slit defects on the strength 

of SLGSs is examined. The MM/CM coupling scheme and Griffith‟s formula are 

used to determine fracture stresses of SLGSs with slit defects of various lengths. 

Cracks or slit defects are modeled by artificially removing a single row of bonds or 

elements in the MM model [77] (e.g., see Figure 5.11). To compare with the results 

of an infinite sheet, the model dimensions are selected as 962.4 Ǻ ×1340 Ǻ. The 

atomistic domain has the dimensions of 81.2 Ǻ ×126.4 Ǻ and located in the center of 

the SLGSs. The Griffith‟s theory [142] can be used for brittle and linear elastic 

materials to predict a rigorous lower bound for the fracture stress as a function of 

crack length. According to the Griffith‟s theory, the critical stress for the propagation 

of a central crack in a thin and infinitely large sheet is given by [141] 

a

E
f

2

        (5.36) 
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where ζf  is the Griffith‟s formula for critical stress, E is the Young‟s modulus of 

sheet, γ is the surface energy density, and a is the half length of the slit. The surface 

energy density γ is chosen to be 4.2 J m
-2

 due to [143].  

 

Figure 5.14: The fracture strength values obtained by the coupled MM/CM model 

and Griffith‟s formula for a graphene sheet having a slit defect. 

 

To calculate the fracture stresses of SLGSs containing slit-like defects, an 

incremental displacement is applied to the edges of the coupled model in the 

direction perpendicular to the zigzag edge until the fracture of the sheet. Figure 5.14 

shows the fracture strength of the coupled CM/MM model and results of the 

Griffith‟s formula for SLGSs containing slit-like defects. As can be seen in Figure  

5.14, the results of the coupled MM/CM model agree well with the prediction of the 

Griffith‟s formula. In brief, results of the coupled model are approximately 6% 

smaller than those of the Griffith‟s formula and both show similar trend for cracks 

having different sizes that reduce approximately as the inverse of the square root of 

the crack length. Note that Khare et al. [77] also obtained similar results by using a 

QM/MM/CM coupled method, where fracture stresses for defective SLGSs are found 

to be in good agreement with the Griffith formula for defects as small as 10 Ǻ. In 

addition, Mattoni et al. [144] found also good agreement between the MM 

calculations and Griffith‟s formula on SiC. Consequently, the good agreement 
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between the results of the proposed MM/CM coupled model and Griffith‟s formula 

imply that the Griffith‟s formula is applicable to nanoscale fracture problems.  
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6.  VIBRATION AND ELASTIC BUCKLING ANALYSES OF CARBON 

NANOCONES (CNCs) 

This section reports the result on elastic buckling and vibration behaviors of single-

walled carbon nanocones (SWCNCs) having the potential usage in atomic force 

microscope (AFM) and scanning tunneling microscope (STM) tips. The modeling 

work employs the MM based FE approach in which Euler-Bernoulli beam element 

formulations are used with consistent mass matrix which is mentioned in Section 3. 

Equivalent density parameter for the beam elements in the MM model is obtained by 

using the equivalency of natural frequencies of continuum plane stress FE model of 

SLGSs and those of the MM model which mentioned in Section 4.  Free-free, free-

clamped and clamped-clamped boundary conditions are considered in vibration 

analysis of SWCNCs; on the other hand, axial compression and bending loading 

conditions are taken into account in elastic buckling behavior of SWCNCs. The 

effects of cone height and disclination or apex angles on the buckling force and 

natural frequencies of SWCNCs are investigated. In all analyses, the disclination 

angles of 120°, 180° and 240° are used while the cone height is varying.  

6.1. Structures of SWCNCs 

Figure 6.1 shows the cone sheet with the dislocation angle of 120°, 180° and 240°, 

and Figure 6.2 shows the corresponding to the cone with apex angle of 83.6°, 60° 

and 38.9° SWCNC with cone height of 15 Ǻ. The larger the apex angle of a 

SWCNC, the larger the bottom radii and number of atoms. 
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Figure 6.1: Cone sheets with cone heights of 15 Ǻ with a) disclination angles of 

120°, b) disclination angles of 180°, c) disclination angles of 240°.     

 

Figure 6.2: SWCNCs with cone heights of 15 Ǻ with a) apex angle of 83.6°, b) apex 

angle of 60° c) apex angle of 38.9°. 

6.3. Vibrational and Elastic Buckling Analyses of SWCNCs 

In this thesis, SWCNCs with disclination angles of 120°, 180° and 240° are taken 

into account which satisfied the continuity condition at the folding of the cone sheet. 

The tip of the SWCNCs is not explicitly modeled in vibrational and buckling 

analysis due to geometric limitations (e.g., see Figure 6.2). The smallest model has 

180 atoms and 258 bonds, while the largest model has 3592 atoms and 5312 bonds.  

Figure 6.3 shows the boundary and loading conditions for vibrational and buckling 

analyses of the SWCNCs. All computations of the MM model are completed by 

using a computer code developed in MATLAB environment, no damping is 

considered in computational models and the results are verified by using Ansys ® 

software.  
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Figure 6.3: Free-clamped and clamped-clamped boundary conditions in vibrational 

analysis (upper) and axial compression and bending loading conditions 

in buckling analysis (below). 

After assembling the element stiffness and consistent mass matrices, the natural 

frequencies and corresponding mode-shapes are obtained by solving the following 

eigenproblem 

0dMK )ω( 2
i          (6.1) 

Similarly, critical buckling load and corresponding mode shapes are calculated by 

solving the following eigenproblem 

0)( 10 ψKK λ           (6.2) 

where K0 is the global stiffness matrix, 1K is the geometric stiffness matrix and ψ is 

the buckling-mode shape vector. The factor λ at which buckling occurs is designated 

as λcr, and Pcr= λcrP [130]. 
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Table 6.1: Properties of the beam elements. 

 Present work Lee and Lee [43] 

Mass matrix type Consistent Lumped  

Beam type Euler-Bernoulli Shear Beam 

Cross-sectional area, A 1.687 Ǻ
2 

1.687 Ǻ
2 

Density [22] 
5.5 x 10

-27
 kg/ 

Ǻ
3
 

2.3 x 10
-27

 kg/ Ǻ
3
 

Elastic modulus, E 
5.488 x 10

-8
 

N/Ǻ
2
 

5.488 x 10
-8

 N/Ǻ
2
 

Shear modulus, G 
8.711 x 10

-9
 

N/Ǻ
2
 

8.711 x 10
-9

 N/Ǻ
2
 

Poisson‟s ratio, ν Not needed 0.3 

Bond  thickness , d 1.47 Ǻ 1.47 Ǻ 

The effects of cone height and disclination angles on the natural frequencies of 

SWCNCs are examined in vibration analysis where natural frequencies and 

corresponding mode shapes are obtained. Figures 6.4, 6.5 and 6.6 show the variations 

of the first fundamental frequencies of SWCNCs versus cone height for free-free, 

free-clamped and clamped-clamped boundary conditions, respectively. As can be 

seen in these figures, the first natural frequency decreases with increasing cone 

height in all types of SWCNCs, whereas it increases as the disclination angle 

increases except for the SWCNCs having the disclination angle of 240° and height of 

20 Ǻ. In addition, the SWCNCs with disclination angles of 240° are more sensitive 

to variations in height and boundary conditions than the other SWCNCs in 

vibrational analysis due its small apex angle. When free-clamped and clamped-

clamped boundary conditions are considered, the first fundamental frequencies of 

SWCNCs, are found to be in the range of 0.36 –2.52 THz.  
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Figure 6.4: Variation of the first natural frequency of SWCNCs having the 

disclination angles of 120°, 180° and 240° as the cone height changes 

for the free-clamped boundary condition. 

 

 

Figure 6.5: Variation of the first natural frequency of SWCNCs having the 

disclination angles of 120°, 180° and 240° as the cone height changes 

for the free-clamped boundary condition. 
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Figure 6.6: Variation of the first natural frequency of SWCNCs having the 

disclination angles of 120°, 180° and 240° as the cone height changes 

for the clamped-clamped boundary condition 

Lee and Lee [43] used Timoshenko beam element formulations which include shear 

deformation effects but they employed Euler-Bernoulli beam element constants (i.e., 

see Table 6.1) [37]; this assumption affects the natural frequencies of SWCNCs that 

are found to be lower than those of Euler-Bernoulli beam elements. In addition, 

density of beam elements is selected to be the density of SWCNCs (i.e. 2300 kg/m
3
) 

in the MM model. Hence, natural frequencies of SWCNCs are found to be less than 

100GHz in all calculations for the same type of SWCNCs having the height of 20 Ǻ 

and with free-clamped and clamped-clamped boundary conditions. These frequency 

ranges are comparable with those of CNTs and SLGSs (i.e., 10 GHz –1.5 THz for 

SWCNTs and 2.4 GHz – 3.5 THz for SLGSs) which are reported in literature [36, 

39].  

Figures 6.7 and 6.8 show respectively the variations in the first ten natural 

frequencies for the free-free and clamped-clamped SWCNCs having the height of 50 

Ǻ and disclination angles of 120°, 180° and 240°. It is noteworthy that variations in 

the first ten natural frequencies for the free-clamped SWCNCs which are not 

presented here for limited space are very close to those of clamped-clamped 

boundary conditions since relatively small radius of the cone tips has little effect on 

the vibrational behavior of the SWCNCs for these two boundary conditions.  
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Figure 6.7: First ten natural frequencies of SWCNCs having the height of 50 Ǻ and 

disclination angles of 120°, 180° and 240° for free-free boundary 

condition. 

 

Figure 6.8: First ten natural frequencies of SWCNCs having the height of 50 Ǻ and 

disclination angles of 120°, 180° and 240° for clamped-clamped 

boundary condition. 
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Figures 6.9 and 6.10 show respectively the first five vibration modes of SWCNCs 

having the disclination angle of 120° and height of 30 Ǻ for the free-free and free-

clamped boundary conditions. The mode shapes of clamped-clamped SWCNCs are 

also similar to those of free-clamped SWCNCs, that are not presented here for 

limited space. In addition, the second mode shape is very similar to the first mode 

shape in both figures, that are not presented for limited space as well. 

 

 

Figure 6.9: Vibrational modes of SWCNC having the disclination angle of 120°, 

height of 30 Ǻ for free-free boundary condition. 

 

 

Figure 6.10: Vibrational modes of SWCNC SWCNC having the disclination angle 

of 120°, height of 30 Ǻ for free-clamped boundary condition. 

Similar to vibration analysis, effects of cone height and disclination angles on the 

critical buckling load and associated buckling modes of SWCNCs are studied by 

completing elastic buckling analysis. Figures 6.11 and 6.12 show respectively the 

variations of the first critical buckling load of SWCNCs as the cone height changes 

for the axial and bending loading conditions. Buckling analysis results indicate that 
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as the disclination angle increases, the critical buckling load increases in axial 

compression loading and decreases in bending loading. The buckling load in axial 

compression is larger than bending load for SWCNCs having the disclination angles 

of 180° and 240°, and it is smaller than that of bending load for SWCNCs having the 

disclination angle of 120°. Hence, it is concluded that bending loading is more 

critical than axial compression loading for buckling behavior of SWCNCs as the 

disclination angle increases. In addition, the cone height affects the bending buckling 

forces more than the axial compression buckling forces. The axial and bending 

buckling forces are found to be in the range of 42 – 79 nN and 27 – 64 nN, 

respectively. These ranges are comparable with those of CNTs (i.e., ~0.1– 39 nN) 

which are reported in literature [59].  

 

Figure 6.11: Variation of the first critical buckling load for the SWCNCs having 

the disclination angles of 120°, 180° and 240° as the cone height 

changes under axial compression loading condition. 
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Figure 6.12: Variation of the first critical buckling load for the SWCNCs having the 

disclination angles of 120°, 180° and 240° as the cone height changes 

under bending loading condition. 

Figures 6.13 and 6.14 show the first ten buckling loads for the SWCNCs having the 

height of 50 Ǻ. As can be seen the figures, the elastic buckling modes of the 

SWCNCs have similar pattern except for the SWCNC with the disclination angle of 

240° under axial compression loading.  

 

Figure 6.13: First ten buckling mode of SWCNCs having the disclination angles of 

120°, 180° and 240°, and height of 50 Ǻ for the axial loading . 
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Figure 6.14: First ten buckling mode of SWCNCs having the disclination angles of 

120°, 180° and 240, and height of 50 Ǻ for the bending loading. 

Figures 6.15 and 6.16 show respectively the first six buckling modes of the SWCNCs 

with the disclination angle of 240° and height of 50 Ǻ under the axial compression 

and bending loading conditions.  Since the second and fifth buckling modes are 

respectively very similar to the first and sixth buckling modes, they are not presented 

here for limited space. 

 

 

Figure 6.15: The first six buckling modes of the SWCNC having the disclination 

angle of 240° under the axial compression loading. 
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Figure 6.16: The first six buckling modes of the SWCNC having the disclination 

angle of 240° under the bending loading. 
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7.  CHARACTERIZATION AND FRACTURE ANALYSIS OF CARBON 

NANOTUBES (CNTs) 

This section reports the results on mechanical properties of SWCNTs such as axial 

Young‟s modulus, Poisson‟s ratio, shear modulus, elastic buckling loads and 

natural frequencies. The modeling work employs the MM based FE approach 

which is mentioned in Sections 3 and 4.  Table 6.1 summarizes the geometric and 

material properties of the beam element which are the inputs of the FE models in 

this section. Armchair and zigzag SWCNTs are considered in analyses. All 

computations of the MM model are completed by using a computer code 

developed in MATLAB environment.    

7.1. Axial Young’s Modulus of SWCNTs 

To calculate the Young‟s modulus E, symmetry boundary conditions are applied to 

all the nodes on one edge and the nodes on the opposite edge are uniformly loaded. 

Figure 7.1 shows the SWCNTs along with the applied boundary conditions.  

 

 

Figure 7.1: SWCNTs (8,8) along with the applied boundary conditions. 

 

All load vector calculations are based on consistent load formulations and equivalent 

nanotube Young‟s modulus is evaluated with the following equation  
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(7.1) 

 

where F is the total applied force on the atoms at one end of the graphene sheet, A0  

is the cross-sectional area which is equal to πDt (where D and t are the mean 

diameter and thickness of the nanotube, respectively), L0 is the initial nanotube 

length, ΔL is changes in the length of the SWCNTs. In Young‟s modulus 

calculations, the nominal thicknesses of 0.34 nm and 0.147 nm are considered for the 

SWCNTs. Figure 7.2 shows the variation of Young‟s modulus of armchair and 

zigzag SWCNTs with tube diameter. The calculated Young‟s modulus ranges from 

about 1.033 TPa to 1.038 TPa for the armchair type and ranges from about 1.004 TPa 

to 1.042 TPa for the zigzag type with the thickness of 3.4 Ǻ.  Tube lengths are equal 

to 41.2 Ǻ and nominal thicknesses of the both SWCNTs are considered as 3.4 Ǻ in 

Figure 7.2. As can be seen in Figure 7.2, the axial Young‟s modulus of both armchair 

and zigzag SLCANTs increase with an increasing in diameter and attain a stable 

value with increasing diameter for the SWCNTs.  

 

Figure 7.2: Variation of Young‟s modulus of armchair and zigzag SWCNTs with 

tube diameter. The nominal thicknesses of the both SWCNTs are 3.4Ǻ. 

Figure 7.3 shows the variation of Young‟s modulus of armchair and zigzag SWCNTs 

with tube diameter. Tube lengths are equal to 41.2 Ǻ and nominal thicknesses of the 

SWCNTs are considered as 1.47 Ǻ and 3.4Ǻ in Figure 8.3. As can be seen in Figure 

7.3, nominal or wall thickness of SWCNTs significantly affects the Young‟s 

modulus of SWCNTs. The smaller the thickness is, the larger the calculated Young‟s 

modulus is.  
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Figure 7.3: Variation of the Young‟s modulus of armchair and zigzag SWCNTs with 

tube diameter and nominal thickness. 

7.2. Shear Modulus of SWCNTs 

To calculate the shear modulus G, one end of the SWCNTs is subjected to a torsional 

moment and the nodes on the opposite edge are constrained. Figure 7.4 shows the 

SWCNTs along with the applied boundary conditions. Equivalent nanotube Young‟s 

modulus is evaluated with the following equation 

0

0

J

TL
G                                (7.2) 

where T is the torque acting at the end of SWCNTs (i.e., see Figure 7.4), L0 is the 

initial nanotube length, θ is the torsional angle and J0 is the cross-sectional polar 

inertia of SWCNTs. For calculating J0, SWCNTs are considered as a hollow tube 

with the diameter D and thickness t. In this case, cross-sectional polar inertia of 

SWCNTs can be calculated as follows 

 

44
0

32
tDtDJ

                                                                                     

(7.3) 
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Figure 7.4: SWCNTs (8,8) along with the applied boundary conditions. 

Figure 7.5 shows the variation of shear modulus of armchair and zigzag SWCNTs 

with tube diameter. Tube lengths are equal to 41.2 Ǻ and nominal thicknesses of the 

SWCNTs are considered as 1.47 Ǻ and 3.4Ǻ in Figure 7.5. As can be seen in Figure 

7.5, the nominal or wall thickness of SWCNTs significantly affects the shear 

modulus of SWCNTs. The smaller the thickness is, the larger the calculated shear 

modulus is. The calculated shear modulus ranges from about 0.267 TPa to 0.484 TPa 

for the armchair type and ranges from about 0.327 TPa to 0.481 TPa for the zigzag 

type with the thickness of 3.4 Ǻ. As can be seen in Figure 7.5, the shear modulus of 

both armchair and zigzag SLCANTs increase with an increasing diameter and attain 

a stable value with increasing diameter for the SWCNTs. 

 

 

Figure 7.5: Variation of shear modulus of armchair and zigzag SWCNTs with tube 

diameter and nominal thickness. 
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7.3. Vibration Analysis of SWCNTs 

For determining the natural frequencies of SWCNTs, we consider its equivalent 

space frame like structures under the free-free, clamped-free and clamped-clamped 

boundary conditions. The modeling work employs the MM based FE approach in 

which Euler-Bernoulli beam element formulations are used with consistent mass 

matrix which is mentioned in Section 3. Equivalent density parameter for the beam 

elements in the MM model is obtained by using the equivalency of natural 

frequencies of continuum plane stress FE model of SLGSs and those of the MM 

model which mentioned in Section 4. Figure 7.6 shows the boundary and loading 

conditions for vibrational analyses of the SWCNTs. All computations of the MM 

model are completed by using a computer code developed in MATLAB 

environment, no damping is considered in computational models and the results are 

verified by using Ansys ® software.  

 

 

Figure 7.6: Boundary conditions in vibrational analysis of SWCNTs a) Free-

clamped and b) clamped-clamped. 

After assembling the element stiffness and consistent mass matrices, the natural 

frequencies and corresponding mode-shapes are obtained by solving the following 

eigenproblem 

0dMK )ω( 2
i                                                                                                    (7.4) 
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The results are compared with analytical solutions based on the assumption that the 

SWCNTs are equivalent to cylindrical shells. According to theory of vibration, 

natural frequencies of the beam model can be calculated as follows  

)(

8

22

2

2
ion

t

ddE

L
f                                     (7.5) 

where E is the Young‟s modulus of nanotube, L is the length of the nanotube, d0 and 

di are respectively the outer and inner diameters of nanotube, ρ is the density of 

nanotube and βn is the specific constant of the nth mode. For free-free vibration of 

SWCNTs, β1 =4.73 and for free-clamped vibration of SWCNTs β1 =1.87 [42]. 

The natural frequencies of SWCNTs depend on the nanotube diameter and height as 

well as boundary conditions on the nanotube ends. Tables 7.1- 7.3 show the first six 

free-free, free-clamped and clamped-clamped natural frequency values of the 

SWCNTs (8, 8) with different heights. The first six free-free modes of the SWCNTs 

are the rigid body modes and equal to zero.  

Table 7.1:  The first six free-free natural frequency values of SWCNTs (8, 8) with 

different heights (in GHz). 

Mode 
L=29.53 Aº 

(400 atoms) 

L= 60.3 Aº 

(800 atoms) 

L=79.9 Aº 

(1056 atoms) 

L=159.98 Aº 

(2096 atoms) 

L=199.36 Aº 

(2608 atoms) 

1 995 683 414 112 72 

2 995 683 414 112 72 

3 1027 1000 907 293 194 

4 1027 1000 980 293 194 

5 1550 1005 980 455 363 

6 1550 1005 1001 538 363 
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Table 7.2:  The first six free-clamped natural frequency values of the SWCNTs (8, 

8) with different heights (in GHz) 

Mode 
L=29.53 Aº 

(400 atoms) 

L= 60.3 Aº 

(800 atoms) 

L=79.9 Aº 

(1056 atoms) 

L=159.98 Aº 

(2096 atoms) 

L=199.36 Aº 

(2608 atoms) 

1 446 121 70 18 11 

2 446 121 70 18 11 

3 1020 606 385 108 71 

4 1020 616 385 108 71 

5 1240 895 456 228 183 

6 1456 1002 675 287 191 

 

Table 7.3:  The first six clamped-clamped natural frequency values of the SWCNTs 

(8, 8) with different heights (in GHz) 

Mode 
L=29.53 Aº 

(400 atoms) 

L= 60.3 Aº 

(800 atoms) 

L=79.9 Aº 

(1056 atoms) 

L=159.98 Aº 

(2096 atoms) 

L=199.36 Aº 

(2608 atoms) 

1 1396 595 377 109 71 

2 1396 595 377 109 71 

3 1589 1062 874 281 188 

4 1589 1062 874 281 188 

5 2338 1223 919 458 350 

6 2338 1262 1033 511 350 

 

In the works [35, 36, 39-43, 55, 57] studying the vibrations of GSs and CNTs, the 

global mass matrix is derived based on the assumption that the carbon nuclei masses 

(e.g., 1.9926 × 10
-26

 kg) are concentrated at the joints of the frame structure. Due to 

the negligible radius of carbon atomic nucleus (e.g., rc= 2.75 × 10
-5

 Ǻ), torsional and 

flexural rotation coefficients of mass matrices are assumed to be zero and a lumped 

mass matrix for the beam elements is used. Figure 7.7 shows the equivalent lumped 

mass MM model of the SWCNT. Tables 7.4- 7.6 show the first six free-free, free-
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clamped and clamped-clamped natural frequency values of the lumped mass MM 

models with different heights. 

 

 

Figure 7.7. Lumped mass MM model of SWCNT. 

Table 7.4: The first six free-free natural frequency values of the lumped mass MM 

models with different heights (in GHz). 

Mode 
L=29.53 Aº 

(400 atoms) 

L= 60.3 Aº 

(800 atoms) 

L=79.9 Aº 

(1056 atoms) 

L=159.98 Aº 

(2096 atoms) 

L=199.36 Aº 

(2608 atoms) 

1 1124 668 407 111 72 

2 1124 668 407 111 72 

3 1170 1130 907 291 193 

4 1170 1130 964 291 193 

5 1665 1138 964 457 361 

6 1665 1138 1132 534 361 

 

Table 7.5:  The first six free-clamped natural frequency values of the lumped mass 

MM models with different heights (in GHz). 

Mode 
L=29.53 Aº 

(400 atoms) 

L= 60.3 Aº 

(800 atoms) 

L=79.9 Aº 

(1056 atoms) 

L=159.98 Aº 

(2096 atoms) 

L=199.36 Aº 

(2608 atoms) 

1 436 120 70 18 12 

2 436 120 70 18 12 

3 1153 608 382 108 71 

4 1153 608 382 108 71 

5 1235 610 459 230 184 

6 1575 888 671 286 191 
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Table 7.6:  The first six clamped-clamped natural frequency values of the lumped 

mass MM models with different heights (in GHz). 

Mode 
L=29.53 Aº 

(400 atoms) 

L= 60.3 Aº 

(800 atoms) 

L=79.9 Aº 

(1056 atoms) 

L=159.98 Aº 

(2096 atoms) 

L=199.36 Aº 

(2608 atoms) 

1 1511 595 378 109 72 

2 1511 595 378 109 72 

3 1592 1192 875 281 189 

4 1592 1192 875 281 189 

5 2458 1235 928 462 350 

6 2458 1305 1164 511 350 

 

As can be seen in Tables 7.1 – 7.6, the consistent mass and lumped mass MM models 

have very close natural frequencies. It is noteworthy that transient dynamics analyses 

can be performed by using Newmark method due to advantages of the consistent 

mass matrix which does not yield singularity in numerical integrations.  Lee and Lee 

[43] use Timoshenko beam element formulations which include shear deformation 

effects but they employed Euler-Bernoulli beam element constants (i.e., see Table 

7.1) [37]; this assumption affects the natural frequencies of SWCNT that are found to 

be lower than those of Euler-Bernoulli beam elements. As can be seen in Tables 7.1- 

7.6, SWCNTs have very high natural frequencies. As a result, ultrahigh frequency 

nanomechanical resonators can be achieved by using SWCNTs.  

  

Figures 7.8- 7.10 show the first six free-free, free-clamped and clamped-clamped 

mode shapes of consistent MM model of SWCNTs (8, 8) with height of 60.3 Aº. In 

addition, lumped mass MM model of the SWCNTs have similar mode shapes. 
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Figure 7.8: The first six free-free mode shapes of consistent MM model of SWCNTs 

(8, 8) with height of 60.3 Aº. 

 

 

Figure 7.9: The first six free-clamped mode shapes of consistent MM model of 

SWCNTs (8, 8) with height of 60.3 Aº. 
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Figure 7.10: The first six clamped-clamped mode shapes of consistent MM model of 

SWCNTs (8, 8) with height of 60.3 Aº. 

The numerical solutions of the fundamental mode frequencies of free-free, free-

clamped and clamped- clamped SWCNTs (8,8) as well as the analytical solutions of 

free-free, free-clamped equivalent cylindrical shells models versus aspect ratio L/D is 

plotted in Figure 7.11. There is a large gap between the present results and those 

obtained from the equivalent cylindrical shells models, where all the present results 

are larger than the theoretical values. This is originating from the fact that out-of-

plane bending rigidity of the 3-D CM shell model is in error that is already reported 

by other researchers [33, 40]; hence, corrections for the thickness value of the 3-D 

CM shell model are suggested in literature. Studies on this issue have been 

continuing. It is concluded that the proposed approach can compute the natural 

frequencies of SLGSs in high accuracy and employment of consistent mass matrix in 

FE model improves accuracy. 
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Figure 7.11: The numerical and analytical solutions of the fundamental mode 

frequencies of free-free, free-clamped and clamped- clamped SWCNTs 

(8,8) versus aspect ratio L/D. 

7.4. Elastic Buckling Analysis of SWCNTs 

Similar to vibration analysis, we investigate the critical buckling load and 

associated buckling modes of SWCNTs are studied by completing elastic buckling 

analysis. Figure 7.12 shows the boundary and loading conditions for elastic 

buckling analysis of the SWCNTs.  

 

 

Figure 7.12: SWCNTs (8,8) along with the applied boundary conditions. 
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The results are compared with analytical solutions based on the assumption that the 

SWCNTs are equivalent to cylindrical shells. According to theory of structural 

stability, the critical elastic buckling load Pcr for a general cantilevered column can 

be calculated as an Euler equation as follows  

2

2

4L

EI
Pcr                              (7.6) 

where E is the Young‟s modulus of nanotube, L is the length of the nanotube and I is 

the moment of inertia.  

Numerical solutions of the critical buckling load of SWCNTs (8,8) as well as 

analytical solutions of equivalent cylindrical shells models versus aspect ratio L/D 

are plotted in Figure 7.13. As can be seen in Figure 7.13, the critical axial buckling 

load for both armchair and zigzag types decreases as the tube height increases. The 

trend is comparable with that of the analytical results based on Euler formulation 

with thickness of 3.4 Ǻ. 

 

Figure 7.13: The numerical and analytical solutions of the critical buckling loads of 

SWCNTs (8,8) versus aspect ratio L/D. 

The critical buckling loads of both armchair and zigzag types of the SWCNTs with 

the height of 41.8 Ǻ as a function of nanotubes diameter are shown in Figure 4.14. 

As can be seen in Figure 7.14 the critical axial buckling load for both the armchair 

and zigzag types increases as the tube diameter increases. The trend is comparable 

with that of analytical results based on Euler formulation with thickness of 3.4 Ǻ. 
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Figure 7.14: Critical buckling loads of  SWCNTs as a function of nanotube 

diameter. 

Figure 7.15 shows the first six buckling mode shapes of SWCNTs (8,8) with the 

height of 60.3 Ǻ. In addition, several local buckling mode occurs at higher 

frequencies.  

 

Figure 7.15: The first six buckling mode shapes of SWCNTs (8,8) with the height of 

60.3 Ǻ 
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7.5. Prediction of Failure Behavior of CNTs 

 

In this thesis, an equivalent nonlinear fracture model for SWCNTs is developed by using an 

MM based FE approach where the C-C bonds between carbon atoms are represented by 

Euler-Bernoulli beam elements. In the analyses, the modified Morse potential along with an 

iterative solution procedure is utilized to update the stiffness of elements. Although 

progressive fracture of SLGSs and SWCNTs are studied earlier, they are obtained without 

consideration of geometric nonlinear effects and used non-reconstructed defected zigzag and 

armchair SWCNTs. In this paper, the proposed approach is applied to pristine and 

reconstructed one- and two-atom vacancy defected zigzag and armchair SWCNTs. The initial 

reconstructed nanotube models are obtained by using MD simulations whose results are 

compared with the results of non-reconstructed ones. Effects of large deformation and 

geometric nonlinearities on fracture behavior of defected nanotubes are also studied by 

updating the nodal coordinates of each element of the original nanotube structure at each load 

step. 

 

7.5.1 Fracture model of SWCNTs 

Four different types of SWCNTs are considered in the simulations, and the geometric 

properties and total number of atoms of pristine SWCNTs are listed in Table 7.7. 

Table 7.7: The geometric properties and total number of atoms SWCNTs. 

SWCNT  
Diameter, d 

(Ǻ)  

Total number of 

atoms 

(5,5) 6.785 350 

(12,12) 16.283 840 

(10,0) 7.834 400 

(20,0) 15.669 800 

As already mentioned, production of mass-quantities of defect-free GSs or CNTs 

may prove challenging and different types of defects may emerge in practice. The 

possible and mostly studied CNT defects are incomplete bonding defects such as 

vacancies [66, 145-147]. Vacancy defects originate from missing atoms in the CNTs 

and may occur due to an electron irradiation or oxidative purification. These defects 

cause a reduction in the strength of SWCNTs and significantly affect the mechanical 

performance of nanocomposite materials.  
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Sammalkorpi et al. [71] investigated the effect of reconstructed and non-

reconstructed vacancy defects on the tensile behavior of CNTs and found that the 

reduction in the strength of CNTs caused by reconstructed case is smaller than that 

caused by the non-reconstructed case. Note that Sammalkorpi et al. [71] used an 

annealing step beginning the MD simulations at a high temperature for 

reconstruction. However, reconstruction does not occur in our simulations since the 

distance between the potential reaction atoms exceeds the interaction cut-off 

distance. To this end, we used an extra annealing step at a high temperature (i.e., 

K) by using MD simulations to obtain reconstructed geometry of the defected 

SWCNTs. On the other hand, although metastable, the non-reconstructed SWCNT 

configurations can be present at low temperatures and low dose irradiation [132, 

133], non-reconstructed defected SWCNTs are used in several works in literature 

[85, 132, 134]. In brief, one carbon atom and corresponding three C-C bonds are 

removed in the defect-free non-reconstructed SWCNT models and reconstructed 

models are obtained by using MD simulations with annealing at a high temperature 

(i.e., see Figure  7.16 for the pristine, reconstructed one- and two-atom vacancy 

defected SWCNT models). 

 

Figure 7.16: Zigzag (10,0) nanotube models; (a) pristine, (b) non-reconstructed 

one-atom vacancy defect (c) non-reconstructed two-atom vacancy 

defect, (d) reconstructed one-atom vacancy defect (e) 

reconstructed two-atom vacancy defect.    



117 

The MD simulations utilized to find the global minimum configurations of non-

reconstructed vacancies are performed using the widely-used LAMMPS (Large-scale 

Atomistic/Molecular Massively Parallel Simulator) code [148]. As the inter-atomic 

potential, adaptive intermolecular reactive empirical bond order (AI-REBO) potential 

[149] is employed to model interactions between carbon atoms. Using Nosé-Hoover 

thermostat, CNT models with one/two vacancies are thermally equilibrated at a high 

temperature (i.e., K) in the canonical ensemble (NVT) and kept at the same 

temperature for 40 picoseconds (ps). Then, the temperature of the system is gradually 

decreased with the rate of  K/ps under the same thermostat. 

 

7.5.2. Computational results 

The strain in SWCNTs is calculated by 00 /)( sss LLLL  where Ls0 is the initial 

(equilibrium) length and Ls is the current length of the tube. The stress is calculated 

by )/(g dtF  where Fg is the corresponding applied tensile force computed by 

summation of the longitudinal reaction forces of the constrained nodes, d is the 

diameter of tube and t is the thickness of tube. In all calculations, the thickness of 

0.34 nm is used for the SWCNTs. Since the accuracy of the results depends on the 

number of load steps, an acceptable strain increment is determined on a trial and 

error base to guarantee the convergence of numerical results. All fracture 

computations of the MM model are completed by using a computer code developed 

in Matlab environment. Table 7.8 shows the calculated tensile strength and fracture 

strain values of the pristine SWCNTs along with the results reported in literature. 

 

 

 

 

 

 



118 

Table 7.8: Predicted values of critical strain (εcr) and stress (σcr) for pristine 

SWCNTs. (M)TB, PM3 and DFT represent  the (Modified) Tersoff-

Brenner potential,  semi-empirical quantum and density functional 

theory calculation, respectively.  

Study Method Chirality  εcr (%) 
σcr  

(GPa) 

Present work Modified Morse 5,5 21.1 122.8 

Present work Modified Morse 12,12 20.7 122.5 

Present work Modified Morse 10,0 16.0 94.8 

Present work Modified Morse 20,0 15.9 94.7 

Mielke et al. [78] 
MTB, PM3, DFT 

5,5 30,30,30 
105,135, 

110 

Mielke et al. [78] 
MTB, PM3, DFT 

10,0 18, 20, 20 
88, 124, 

105 

Sammalkorpi et al. [71] TB 5,5 26 240 

Jeng et al.  [150] TB 10,0 19 92.5 

Belytschko et al. [72] Modified Morse 12,12 18.7 112 

Belytschko et al. [72] Modified Morse 20,0 16.0 93.5 

Tserpes and Papanikos [86] Modified Morse 5,5 19.6 122.5 

Tserpes and Papanikos [86] Modified Morse 12,12 19.6 121.9 

Tserpes and Papanikos [86] Modified Morse 20,0 15.8 97.7 

Meo and Rossi [92, 94] Modified Morse 5,5 19.9 117.3 

Meo and Rossi [92, 94] Modified Morse 12,12 20.0 117.9 

Meo and Rossi [92, 94] Modified Morse 10,0 18.4 94.7 

Meo and Rossi [92, 94] Modified Morse 20,0 18.0 94.5 

Xiao et al. [90] Modified Morse 12,12 23.1 126.2 

Xiao et al. [90] Modified Morse 20,0 15.6 94.5 

Duan et al. [151] Modified Morse 10,0 33.3 105.4 

Duan et al. [151] REBO 10,0 27.3 99.9 

 

It is observed in Table 7.8 that calculated critical strain and stress values lie in the 

same range with the results reported in literature. By making comparisons among our 

results and those of [72, 78, 86, 90, 92, 94] employing the modified Morse potential 

function in Table 7.8, it is concluded that they are in good agreement although 

underlying formulations are different. In addition, the tensile strength and failure 

strain values in armchair tubes are higher than those in zigzag tubes, which also 

agrees with the studies in literature. Moreover, the results indicate that the diameters 

of nanotubes have a little effect on the critical stress and strain values. In the 

meantime, it should be noted that Yu et al. [29] experimentally measured the tensile 

strength and failure strain of MLCNTs and found 11–63 GPa for the strengths and 

10–13% for the failure strains. These strain and stress values are significantly smaller 
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than the results in Table 3; these differences can be explained by the presence of 

defects and some slippage at the attachments which may occur at high-strain cases 

[76].  Figures. 17 and 18 respectively show the comparison of the stress-strain curves 

for pristine armchair (12,12) and zigzag (20,0) SWCNTs. It is clear in fracture stress-

strain curves that our computational results are in good agreement with the results 

reported in literature as well. As can be seen in Figuress. 17 and 18, the resulting 

stress exhibits a sudden drop to zero when the stress reaches to the fracture stress. 

Therefore, it is concluded that the fracture of all types of SWCNTs are brittle which 

are also reported in several other studies in literature [72, 86, 90]. 

 

Figure 7.17: Stress-strain curves for pristine nanotube armchair (12,12) under 

uniaxial load. 
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Figure 7.18: Stress-strain curves for pristine nanotube zigzag (20,0) under uniaxial 

load. 

Table 7.9 compiles strain and stress ratios for reconstructed vacancy defected 

nanotubes versus pristine nanotubes. It can be seen that one- and two-atom vacancy 

defected nanotubes have similar fracture stress and strain values. In addition, it is 

observed in Table 7.9 that calculated relative critical strain and stress values lie in the 

same range with the results in literature.  

Figure  7.19 shows the stress-strain curves for one-atom vacancy defected armchair 

(5,5) and zigzag (10,0) nanotubes versus pristine nanotubes. Meanwhile, we also 

examined a one-atom non-reconstructed vacancy defected (5,5) nanotube. In sum, 

the one-atom non-reconstructed vacancy defected nanotube (5,5) has similar fracture 

stress and strain values (i.e., ε=10.2% and σ=89.0 GPa) with the reconstructed one 

(i.e., ε=10.3% and σ=89.1 GPa). In parallel, Sammalkorpi et al. [71] and Meo and 

Rossi [94] also observed that reconstructed and non-reconstructed one-atom vacancy 

defected nanotubes (5,5) have similar mechanical properties as well. Meo and Rossi 

[94] also reported fracture stress and strain of one-atom vacancy defected nanotubes 

as ε=12.3% and σ=89.8 GPa, respectively. In brief, it is observed that fracture stress 
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and strain values of pristine armchair CNTs are respectively 30% and 32% larger 

than those of pristine zigzag CNTs, and predicted failure stress and strain values of 

vacancy defected SWCNTs are respectively 27% and 52 % smaller than those of 

pristine ones.  

 

Table 7.9: Relative critical strain (ε/εcr) and stress (σ/σcr) ratios for defected 

SWCNTs where the defects are reconstructed (R) and symmetrically 

(sym) oriented. MTB stands for the modified Tersoff-Brenner potential 

and PM3 stands for semi-empirical quantum calculations. The defect 

key indicates the number of vacant atoms.   

Study Method 
Chiralit

y  
Defect ε (%) 

σ 

(GPa) 
ε /εcr σ /σcr 

Present work 
Modified 

Morse 
5,5 1R sym 10.3 89.1 0.49 0.73 

Present work 
Modified 

Morse 
10,0 1R sym 7.74 69.6 0.48 0.74 

Present work 
Modified 

Morse 
5,5 2R sym 10.4 90.2 0.49 0.73 

Present work 
Modified 

Morse 
10,0 2R sym 7.68 69.1 0.48 0.73 

Zhang et al. [76] MTB 10,0 1R sym 8.7 65 0.48 0.74 

Zhang et al. [76] MTB 5,5 2R sym 11.7 71.3 0.39 0.68 

Zhang et al. [76] MTB 10,0 2R sym 9.6 64.4 0.53 0.73 

Mielke et al. [78] PM3 5,5 1R  15.3 100 0.51 0.74 

Mielke et al. [78] PM3 5,5 2R sym 17.2 105 0.57 0.78 

Mielke et al. [78] PM3 10,0 2R sym 14.2 107 0.71 0.86 

Meo and Rossi [94] 
Modified 

Morse 
5,5 1R  12.3 89.8 0.62 0.77 
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Figure 7.19: Stress-strain curves of pristine nanotubes (10,0) and (5,5) and one-atom 

vacancy defected nanotubes (10,0) and (5,5) under uniaxial load. 

Another issue is that the fracture in nanotubes occurs at relatively large strain values; 

therefore, we also investigated the effects of large deformation and geometric 

nonlinearities on fracture behavior of defected nanotubes. In the analyses of defected 

SWCNTs, nodal coordinates of each element in the original SWCNT structure is 

updated at each load step and deformation of the original nanotube structure around 

the nucleation site is taken into account. Table 7.10 shows the effect of geometric 

nonlinearity on fracture behavior of reconstructed one-atom vacancy defected (5,5) 

and (10,0) nanotubes. It can be seen in Table 7.10 that by including large 

deformation and geometric nonlinearity effects, failure stress and strain values of 

zigzag nanotubes are reduced more than those of armchair ones. In this regard, 

Figure  7.20 shows the failure stress-strain curves of one-atom vacancy defected 

nanotubes with non-linear geometric effect. It is concluded that large deformation 

and nonlinear geometric effects are important on fracture behavior of nanotubes and 

cause a reduction in calculated fracture strain values of vacancy defected SWCNTs 

by approximately 10% and 7%, respectively.  
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Table 7.10: Effect of geometric nonlinearity on fracture behavior of reconstructed 

one-atom vacancy defected SWCNTs.  

Chiralit

y  
Defect εnlgeom (%) 

σnlgeom 

(GPa) 
εnlgeom/ε σnlgeom/σ 

5,5 1R sym 10.2 82.3 0.99 0.92 

10,0 1R sym 7.17 62.9 0.93 0.90 

5,5 2R sym 10.3 82.5 0.99 0.92 

10,0 2R sym 7.11 62.0 0.93 0.90 

 

 

Figure 7.20: Stress-strain curves of one-atom vacancy defected nanotubes with 

non-linear geometric effect. 
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8. CONCLUSION 

In this thesis, equivalent models of single-layer graphene sheets (SLGSs), single 

layer carbon nanotubes (SWCNTs) and single layer carbon nanocones (SWCNCs) 

are developed by using molecular mechanics (MM) based FE approach. Then, 

elastic, vibrational and buckling characteristics of SWCNTs; vibrational and elastic 

buckling characteristics of SWCNCs, and elastic and vibrational characteristics of  

SLGSs are investigated. In addition, an equivalent dynamic model is developed for 

SLGSs and 2-D and 3-D transient behavior of SLGSs are investigated; a nonlinear 

fracture model of SLGSs are developed and fracture behavior of defected and non-

defected SLGSs are studied, and multiscale models of SLGSs are developed for 

coupling of atomistic and continuum domains. 

 

Equivalent dynamic models for the SLGSs are developed by using atomistic FE 

approach. 2-D and 3-D transient and modal characteristics of the SLGSs are 

examined. Comparisons are made among the results of the MM based model, CM 

based model and relevant works in literature. An equivalent density parameter is 

derived which is obtained by the equivalency of natural frequencies of the MM and 

CM models.  The response to initial displacements are computed for the 2-D and 3-D 

FE models where initial displacements are applied incrementally on SLGSs and 

nodal coordinates of the original SLGS structure are updated at each displacement 

increment; hence, large deformation effects and uniform initial displacement 

conditions are considered in analyses. It is shown that the proposed MM model can 

compute 2-D and 3-D dynamic characteristics of the SLGS structures in high 

accuracy. It is observed that power spectral density properties of transient analyses 

are in good agreement with modal features of the SLGSs.  

 

The MM and plane-stress CM models have very close natural frequencies and static 

transient in-plane displacement in numerical experiments. Whereas, it is noteworthy 

that bending rigidity of the 3-D CM shell models is in error with that of the 
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corresponding MM model and associated transient out-of-plane displacement 

solutions and natural frequencies do not agree with those of the MM models, that is 

also reported by some researchers in literature. In the future, this discrepancy will be 

investigated to improve accuracy of shell models. In addition, the Morse potential 

can easily be adapted to include nonlinear effects in future studies. Moreover, 

multiscale formulations for wave propagation problems can be adapted to dynamic 

models along with model order reduction algorithms. 

 

In this thesis, an atomistic based FE model for the prediction of nonlinear fracture 

behavior of SLGSs is also developed. Euler-Bernoulli beam elements are used to 

represent covalent bonds and non-linear characteristic of the beam elements are 

obtained by using the modified Morse potential. The proposed approach includes 

large deformation and nonlinear geometric effects. Namely, elasticity modulus of 

each EB beam element and nodal coordinates of the original SLGS structures are 

updated at each load step. Formulation underlying the proposed approach is applied 

to zigzag and armchair SLGSs. It is shown that large deformation and nonlinear 

geometric effects are important in fracture behavior of SLGSs. It is observed that 

SLGS exhibits an orthotropic fracture behavior. Namely, it is stiffer in the armchair 

direction than in the zigzag direction. Effects of various defects on fracture behavior 

of SLGSs are also examined. The results show that these defects significantly affect 

the mechanical performance of the SLGSs. In addition, fracture initiation and crack 

propagation direction are studied. It is observed that the fractures of all types of 

SLGSs are brittle. The numerical results are compared with the results in literature 

and our results show good agreement with the results reported in literature.  

 

A coupling method for the MM and CM models is also derived based on an 

augmented formulation of atomistic and continuum displacement fields in a moving 

least square sense, which originates from an unconstrained optimization problem to 

be solved. In order to solve the augmented problem, the Lagrange multiplier method 

is used which allows multiscale analyses of multiple numbers of MM domains in a 

single CM domain. The CM domain covers the entire domain and the MM domain is 

patched on the element(s) of the CM domain.  In contrast to alternative approaches 

existing in literature, there is no need for an overlapping domain in the proposed 

approach and the MM domain(s) can be placed arbitrarily in the CM domain; hence, 
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one can focus on any desired subdomain where we need to obtain atomistic solution. 

In addition, there is no need for a constraint on the meshes of the MM and CM 

domains. Efficiency of the proposed approach is illustrated by using defect-free and 

defected monolayer graphene layers. In the atomistic models, harmonic potentials 

and modified Morse potentials are employed. In the CM domain, it is assumed that 

deformations are elastic and plane stress conditions exist, for which elasticity 

modulus and Poisson‟s ratio values of the CM domain are obtained by the use of full 

MM models, and compared with the results presented in literature. Equivalent 

continuum elasticity modulus, Poisson‟s ratio and shear modulus of monolayer 

graphene are obtained in the range of 1.032-1.047 TPa, 0.061-0.069 and   0.482-

0.0.493 TPa, respectively.  

 

It is shown that proposed formulation can compute the deformations of monolayer 

graphenes in high accuracy, enables to obtain the MM solution(s) in any part of the 

CM domain and can be applied to other nano structured materials. Main advantage of 

the proposed formulation is that it can be used to connect the MM domain(s) to any 

subdomain of the CM domain by proper choice of projection matrices without 

changing the mesh. Therefore, it enables fast reanalysis of any subdomain of the CM 

domain at fine scales. In addition, appropriate stiffness matrices of the MM and CM 

domains which are exported as superelements can be embedded into the formulations 

that enables linking by commercial softwares. By updating the elasticity parameters 

of the CM domain based on the MM solutions, nonlinear effects are easily 

considered in iterative solutions of large deformation problems that provide more 

accurate nonlinear solutions. 

 

The elastic buckling and vibration behaviors of SWCNCs are investigated. The MM 

based FE approach is used to achieve this goal. The axial compression and bending 

loading conditions are considered in elastic buckling behavior of SWCNCs while 

free-free, free-clamped and clamped-clamped boundary conditions are considered in 

vibration analysis of SWCNCs. The effects of cone height and apex angles on the 

buckling force and natural frequencies of SWCNCs are also studied. Vibration 

analysis results indicate that the natural frequency decreases with increasing cone 

height in all types of SWCNCs, whereas it increases as the disclination angle 

increases. Buckling analysis results indicate that as the disclination angle increases, 
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the critical buckling load increases in axial compression loading and decreases in 

bending loading. In addition, it is observed that bending loading is more critical than 

axial compression loading for buckling behavior of SWCNCs if the disclination 

angle increases. When free-clamped and clamped-clamped boundary conditions are 

considered, fundamental frequencies of the SWCNCs are found to be in the range of 

0.36 –2.52 THz. The axial and bending buckling forces are found to be in the range 

of 42 – 79 nN and 27 – 64 nN, respectively. These results are comparable with the 

results for CNTs and SLGSs in literature in most cases and it can be used in 

designing atomic force microscope (AFM) and scanning tunneling microscope 

(STM) tips. In the future, fracture and transient dynamics analyses can be performed 

in order to evaluate the damage and dynamic behavior of SWCNCs. Moreover, 

Morse potential can be employed in the MM model for large deformation problems.  

 

An MM based FE model of SWCNTs is developed for fracture analysis as well. In 

this regard, Euler-Bernoulli beam elements are used to represent the covalent bonds 

and non-linear characteristics of the beam elements are obtained by using the 

modified Morse potential. The proposed approach is applied to pristine and 

reconstructed one- and two-atom vacancy defected zigzag and armchair SWCNTs. 

The initial reconstructed nanotube models are obtained by using MD simulations 

whose results are compared with the results of non-reconstructed ones. As a result of 

analyses, it is concluded that fractures of all types of SWCNTs are brittle, armchair 

SWCNTs are stiffer than zigzag SWCNTs, there is no significant difference between 

fracture strengths of reconstructed and non-reconstructed SWCNTs and vacancy 

defects significantly affect the mechanical behavior of SWCNTs. In brief, fracture 

stress and strain values of pristine armchair CNTs are respectively 30% and 32% 

larger than those of pristine zigzag CNTs, and predicted failure stress and strain 

values of vacancy defected SWCNTs are respectively 27% and 51 % smaller than 

those of pristine ones. It is shown that large deformation and nonlinear geometric 

effects are important on fracture behavior of nanotubes and cause a reduction in 

calculated fracture strain values of vacancy defected SWCNTs by approximately 

10% and 7%, respectively. Comparisons are made with the failure stress and strain 

results reported in literature that show good agreement with our results. 
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APPENDIX A.1: Matlab algorithm for small and large deformation problems 

 

Step #1 Create atomic coordinates and bonds of carbon- based nanostructures; 

Step #2 Select the interatomic potentials (see Section 3.3); 

- Harmonic (Universal) potential for small deformation problems, 

- Modified Morse potential for large deformation problems, 

- Tersoff- Brenner potential for large deformation problems, 

- Lennard Jones potential for MLGSs, MWCNTs and MWCNCs, 

Step #3 Use Euler-Bernoulli beam elements to represent C-C bond (see Section 3.1);  

Step #4 Use consistent or lumped element mass matrices for dynamics analyses (see 

Section 3.1); 

Step #5 Enter Euler-Bernoulli beam elements and/or mass matrices constants (see 

Section 3.3); 

Step #6 Create 2D and 3D element stiffness and mass matrices by using atomic 

coordinates and element properties (see Section 3.1); 

Step #7 Create topology matrices for assembly process (see Section 3.1); 

Step #8 Calculate global stiffness and/or mass matrices (see Section 3.1); 

Step #9 Apply boundary and loading conditions (see Section 3.2); 

Step #10 Solve the equation systems (see Sections 3.2, 4.1, 4.2, 6.2, 7.1-7.4); 

- Obtain atomistic displacements, 

- Obtain natural frequencies and mode shapes, 

- Obtain elastic properties, 

Step #11 Update atomic coordinates and return Step #2 for large deformation 

problems (see Sections 4.3, 7.5); 

Step # 12 Solve final system for large deformation problems (see Sections 4.3, 7.5); 

- Obtain atomistic displacements, 

- Obtain fracture stresses and strains. 
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APPENDIX A.2 : Matlab algorithm for coupled MM/CM models 

Step #1 Create atomic coordinates and bonds of carbon- based nanostructures; 

Step #2 Select the interatomic potentials (see Section 3.3); 

- Harmonic (Universal) potential for small deformation problems, 

- Modified Morse potential for large deformation problems, 

Step #3 Use Euler-Bernoulli beam elements to represent C-C bond (see Section 3.1); 

Step #4 Enter Euler-Bernoulli beam elements constants (see Section 3.3); 

Step #5 Create 2D element stiffness matrices by using atomic coordinates and 

element properties (see Section 3.1); 

Step #6 Create topology matrices for assembly process (see Section 3.1); 

Step #7 Calculate global stiffness matrix (see Section 3.1); 

Step #8 The element and global stiffness matrices of plane stress CM models are 

obtained by using the mechanical properties of SLGSs (see Section 5.1); 

Step #9  Obtain  the augmented equation system (see Section 5.1); 

Step #10 Apply boundary and loading conditions to the coupled MM/CM model(see 

Section 5.2); 

Step #11 Solve the equation systems (see Section 5.2); 

- Obtain atomistic displacements, 

- Obtain continuum displacements, 

Step #12 Update atomic coordinates and return Step #2 for large deformation 

problems (see Section 5.2); 

Step # 13 Solve final system for large deformation problems (see Section 5.2); 

- Obtain atomistic displacements, 

- Obtain fracture stresses and strains. 
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