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PREDICTION OF MECHANICAL BEHAVIOR OF CARBON- BASED
NANO STRUCTURES

SUMMARY

In this thesis, mechanical behavior of carbon-based nanostructures such as graphene
sheets, carbon nanotubes and carbon nanocones are investigated by using a
molecular mechanic based finite element and coupled molecular/continuum
mechanic modeling approaches.

The proposed molecular mechanic based finite element approach links the molecular
mechanics and structural mechanics, and is based on simulating the covalent bonds
between carbon-carbon atoms with Euler-Bernoulli beam elements. The harmonic
and modified Morse molecular mechanic potential functions are used for small and
large deformation problems. Elastic, vibrational, buckling and nonlinear fracture
behavior of carbon nanotubes, vibrational and elastic buckling characteristics of
carbon nanocones and elastic, vibrational and nonlinear fracture behavior of
graphene sheets are investigated by using molecular mechanic based finite element
approach. In addition, an equivalent dynamic model is developed for carbon based
nanostructures and transient behavior of graphene sheets are investigated by using
proposed approach. It is shown that the proposed approach can reflect elastic,
vibrational, buckling, transient and fracture characteristics of carbon based
nanostructures.

In this thesis, a coupling method for molecular mechanic and continuum mechanic
models is also derived based on an augmented formulation of atomistic and
continuum displacement fields in a least square sense, which yields an optimization
problem solved by using the Lagrange multiplier method. It allows coupled analyses
of multiple numbers of molecular mechanic domains in a continuum mechanic
domain. For the proposed approach, there is no need for a constraint on the meshes
of the molecular mechanic and continuum mechanics domains and no overlapping
domain is employed. Efficiency of the proposed approach is illustrated by solving
fracture problems of graphene layers. Comparisons are made with the results given in
literature. In sum, the proposed approach can compute the deformations of graphene
layers in high accuracy, is very flexible to compute local solutions and can easily be
applied to other materials.
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KARBON ESASLI NANO YAPILARIN MEKANIK DAVRANISLARININ
BELIiRLENMESI

OZET

Temel olarak kovalent bag ile baglh karbon atomlarmin hegzagonal kafes yapisi
icinde degisik formlarda sikica paketlenmesi ile olusan grafen tabakalarinin, karbon
nanotiiplerin ve nanokonilerin miikkemmel mekanik, termal ve elektriksel 6zellikleri,
onlar1 nano elektro-mekanik, nano sensor ve nano kompozit sSistem uygulamalari i¢in
potansiyel adaylar yapmistir. Karbon esasli bu malzemelerin mekanik 6zelliklerinin
belirlenmesi, bu yapilarin tasarimi ve kontrolii i¢in olduk¢a 6nemli ve yararlidir. Bu
malzemelerin mekanik ozelliklerinin belirlenmesi igin deneysel Olgimler ve
hesaplamali yontemler kullanilmaktadir. Deneysel olarak bu yapilarin mekanik
ozelliklerinin elde edilmesi oldukca yliksek maliyetli ve zordur. Bundan dolayz,
giniimiizde hesaplamali  yontemler karbon esasli malzemelerin  mekanik
Ozelliklerinin tespitinde oldukc¢a sik kullanilmaktadir. Kuantum mekanik, molekiiler
dinamik, molekiiler mekanik yontemleri, nano malzemelerin mekanik 6zelliklerinin
tespiti igin sik¢a kullanilan hesaplamali yontemlerdir. Kuantum mekanik ve
molekiiler dinamik modelleme yontemlerini kullanilarak olduk¢a dogru sonuglar elde
edilebilmesine ragmen, bu ydntemlerin hesaplama yiikii ¢cok fazladir ve pratikte
sadece belirli sayida atom igeren sistemler i¢in kullanilabilirler. Atomsal diinyadan
alian bilgiler kullanilarak, molekiiler mekanik temelli, hesaplama yiikii ¢cok daha az
ve dolayisiyla ¢cok daha fazla atom igeren modelleme yaklasimlart kurulabilir. Bu
tezde grafen tabakalarinin, karbon nanotiiplerin, karbon nanokonilerin temel mekanik
ozellikleri, gelistirilen molekiiler mekanik temelli sonlu elemanlar yaklagimlar1 ve
cok 6lcekli bir molekiiler mekanik / siirekli ortamlar mekanigi yaklagimi kullanilarak
elde edilmistir.

Kabul edilen molekiiler mekanik temelli sonlu elemanlar modelleri, karbon esash
malzemelerin  dis kuvvetlerin etkisi altinda, uzay kafes yapisi gibi davrandigi
varsayimina dayanmaktadir. Karbon atomlari Sonlu elemanlar diigiim noktalar
karbon atomlar1 arasindaki kovalent baglar ise Euler-Bernoulli kiris elemanlart
kullanilarak modellenmistir.

Karbon esasli bu nanoyapilarin kiigiikk ve biiyiilk yerdegistirme problemleri
incelenirken sirasiyla harmonik ve gelistirilmis Morse molekiiler mekanik
potansiyelleri kullanilmigtir. Kiigiik sekil degistirme problemleri igin bilinmeyen
Euler-Bernoulli kiris eleman parametreleri molekiiler mekanik harmonik enerji
terimleriyle ve benzer yapisal mekanik enerji terimlerinin esitlenmesi yoluyla elde
edilmigtir. Elde edilen bu degerler kullanilarak tek katmanli karbon nano tiiplerin,
elastiklik modiilleri, kayma modiilleri, Poisson oranlari, burkulma ytiikleri ve dogal
frekans degerleri; grafen tabakalarinin benzer sekilde elastiklik modiilleri, kayma
modiilleri, Poisson oranlar1 ve dogal frekans degerleri ve karbon nanokonilerin yatay
ve dikey burkulma yiikleri ve dogal frekanslar degerleri elde edilmistir. Yapilan
analizlerin sonucunda, karbon nanotiiplerin ve grafen tabakalarinin 1 TPa civarinda
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elastiklik modiiliine, 0.5 TPa civarinda kayma modiiliine ve 1.5 THz varan dogal
frekans degerlerine sahip oldugu ve ayrica karbon nanokonilerin kritik burkulma
yiiklerinin ve dogal frekans degerlerinin, karbon nanotiiplerin ve grafen tabakalarinin
kritik burkulma yiikleri ve/veya dogal frekans degerlerinden bir¢ok analizde yiiksek
oldugu bulunmustur. Yapilan analizler sonucunda elde edilen bu sonuglarin mevcut
literatlirdeki deneysel ve sayisal calisma sonuglari ile uyumlu oldugu goriilmiistiir.

Bu tezde ayrica bir grafen tabakasinin dinamik davranisi gelistirilen molekiiler
mekanik temelli bir sonlu elemenlar yontemi kullanilarak incelenmistir. Literatiirde
bu yontem kullanilarak grafen karbon esasli nano yapilarin titresim O6zellikleri
incelenirken global kiitle matrisi genellikle karbon gekirdeklerinin kiitleleri kafes
yapilarin diigiim noktalarina yapisal kiitle olarak tatbik edilmesi ile elde edilir. Bu
yaklagim karbon esasli nano yapilarin titresim 0&zelliklerinin incelenmesi ig¢in
yeterlidir. Fakat dinamik 6zellikleri incelenirken yakinsamama problemi dogurur. Bu
yakinsama problemini ortadan kaldirmak i¢in elemanlarin uyumlu kiitle matrisleri
kullanilmigtir. Uyumlu kiitle matrislerini hesaplamak igin gerekli esdeger eleman
yogunluklari, olusturulan diizlem gerilme modeli dogal frekanslari ile molekiiler
mekanik modellerin dogal frekanslarinin esitlenmesi ile elde edilmistir. Sonucta
uyumlu kiitle matrisi kullanilarak elde edilen dogal frekanslar ile toplanmis kiitle
matrisi ve diizlem gerilme modelleri kullanilarak elde edilen dogal frekans
degerlerinin tutarli oldugu gorilmistiir. Grafen tabakalarmin dinamik analizlerinde
Newmark metodu kullanilmis ve grafen tabakalarmin iki ve ti¢ boyutlu dinamik
davraniglart incelenmistir. Analizler sonucunda zamana karsi elde edilen yer
degistirme degerlerinin spektral analizlerinden, dinamik modellerin yapinin
davranigini ¢ok iyi yansittigi goriilmiistiir.

Tez kapsaminda hatasiz ve degisik hatalar barindiran grafen tabakalarinin ve karbon
nanotiiplerin  dogrusal olmayan kirilma davraniglart incelenmistir. Grafen
tabakalarinin ve karbon nanotiiplerin dogrusal olmayan kirilma davranislari
incelenirken kiiglik sekil degistirme kabulii artik gegerli olmadigindan, gelistirilmis
Morse potansiyel fonksiyonu kullanilarak Euler-Bernoulli kiris elemanlarinin
dogrusal olmayan davranislar1 belirlenmistir. Gelistirilen yontem hem dogrusal
olmayan malzeme davranislarint hemde dogrusal olmayan geometrik etkileri dikkate
almaktadir. Analizlerde hatasiz, Stone-Wales ve tek atom bosluk hatasi igeren grafen
tabakalar1 ve hatasiz, yeniden yapilandirilmis tek ve iki atom bogluk hatasi igceren
karbon nanotiiplerin kirilma davranislart incelenmistir. Hesaplamalar sonucunda
hatasiz ve hatali grafen tabakalarina ve karbon nanotiiplere ait kirilma gerilmesi,
kirilma birim sekil degistirme degerleri ve hasarlarin nasil bir tarzda oldugu
belirlenmistir. Analizler sonucunda, dogrusal olmayan geometrik etkilerin grafen
tabakalarmin ve karbon nanotiiplerin kirilma davranislarinda etkili oldugu, Stone-
Wales ve atom bosluk hatalarinin bu malzemelerin kirilma degerlerini oldukca
diigiirdiigti, her iki malzemede de kirilmanin gevrek tarzlarda oldugu gorilmustiir.
Ayrica grafen tabakalarmin ve karbon nanotiiplerin kirilma davranislarinin yone
bagimli oldugu; belirli yonlerde bu malzemelerin kirilmaya karsi daha dayanikli
olduklar1 gorilmistiir. Elde edilen sonuglar incelendiginde, bulunan kirilma
gerilmesi ve birim sekil degistirme degerleri ile kirilma tarzinin literatiirdeki sonuglar
ile olduk¢a uyumlu oldugu goriilmiistiir.

Biiyiik boyutlarda veya fazla sayida atom igeren nano yapilarin tiimii atomsal
modeller kullanilarak yapilan analizlerin hesaplama yiikleri oldukga fazladir. Bu
hesaplama ytiklerini kabul edilebilir seviyelere diisiirmek, bunun yaninda hesaplama
hatalarin1  kabul edilebilir siirlar iginde tutmak ig¢in bu ¢alismada, grafen
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tabakalarimin statik ve kirilma davramiglarinin belirlenmesi i¢in ¢ok olgekli bir
modelleme yaklagimi gelistirilmistir. Molekiiler mekanik ve diizlem gerilme
modellerinin birlesik formiilasyonunu elde etmek i¢in gelistirilen bu ¢ok o6lgekli
baglama yaklasim; molekiiler mekanik ve diizlem gerilme yer degistirme alanlarinin
en kiiciik kareler yontemi mantigiyla birlestirilip, olusan kisitsiz optimizasyon
probleminin ¢oziilmesine dayanir. Birlesik molekiiler mekanik ve diizlem gerilme
modellerinin ¢oziimi i¢in Lagrange ¢arpanlar1 yontemi kullanilmistir. Kabul edilen
bu c¢ok Slgekli yaklasimin ana avantaji, molekiiler mekanik alan1 veya alanlar ile
herhangi bir diizlem gerilme elemani veya elemanlar1 arasindaki birlesimin, dogru
izdligim matrislerinin kullanilmasi1 ile ¢6ziim agim degistirmeden kolaylikla
saglanabilmesidir. Bu sayede, gelistirilen yaklasim diizlem gerilme alani {izerindeki
herhangi bir eleman veya elemanlarda atomsal oOl¢eklerde c¢ok hizli analizler
yapilabilmesine olanak saglar. Kabul edilen yaklasimin etkinligi, hatasiz ve hatali
grafen tabakalarinin statik ve/veya kirilma problemlerinde gosterilmistir. Atomsal
modellerde, harmonik ve gelistirilmis Morse potansiyel fonksiyonlar1 kullanilmistir.
Sonugta, kabul edilen ¢ok Olgekli formiilasyonun grafen tabakalarinin statik ve
kirllma davranislarini oldukca yiiksek dogrulukta hesapladigi goriilmiistiir. Bu
yaklasim diger bir¢cok nano yapidaki malzemelerde atomsal sonug istenen bolge veya
bolgelere kolaylikla uygulanabilir.
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1. INTRODUCTION

Since the experimental detection of carbon nanotubes (CNTSs) in 1991 [1], extensive
studies have been conducted on its extraordinary properties and researchers have
been interested in other carbon based nanostructures such as graphene sheets (GSs)
and carbon nanocones (CNCs). CNT can be viewed as a GS rolled into a tube and
exhibits exceptional mechanical, thermal and electrical properties such as
approximate Young's modulus of 1.0 TPa and thermal conductivity of 3000 W/mK
[2,3].

On the other hand, GSs possess most of the extraordinary properties of CNTs [3-5].
Graphene is the basic structural element of CNTs, CNCs and fullerenes; as a result, it
is the starting point of material models of these carbon structures. Recently, new
techniques were developed for mass production of GSs [5, 6], and subsequently the
potential of using these nanostructures for multiple usages such as nanosensors,
nanocomposites, nanooscillators and nano-electro-mechanical systems has been

increasing [7, 8].

Similar to CNTs and GSs, CNCs are conical graphitic structures and have very
promising mechanical, electrical and thermal properties [9-14]. Ge and Sattler [15]
first proposed that five apex angles such as 19.2°, 38.9°, 60°, 86.6° and 123.6° can be
used to distinguish CNCs . Krishnan et al. [16] verified the existence of the five types
of CNCs experimentally. CNCs are suited for high resolution and/or high intensity
applications due to its small size, high stiffness and conical geometry; thus, it can be
used as scanning probe tips (i.e., atomic force microscope (AFM) and scanning
tunneling microscope (STM) probes), electron field emitters and in nanoindentation

applications [16-20].

Prediction of mechanical properties of carbon base structures is important and very
useful in the design of materials made of these structures. Experimental
measurements [21-29] and computational simulations are commonly used to

characterize carbon base structures. Since experimental measurements of mechanical



properties of carbon based structres are very costly due to its nanoscale dimensions,
powerful computational simulation tools are widely employed to characterize these

nano structures.

Computational approaches can be classified as atomistic and continuum modeling
methods. Known as being very accurate, atomistic modeling methods are based on
principles of quantum-molecular mechanics including the classical molecular
dynamics (MD) and ab initio methods; on the other hand, they are computationally
much more expensive than using the continuum models and only suitable for small
systems having limited number of atoms and very short time scales [30-32].
Continuum modeling approaches are based on simulating carbon base structures with

well-known structural members such as beams, shells and plates.

Atomistic based finite element (FE) modeling approaches have been used to analyze
carbon based structures in many recent works in literature due to its computational
cost and CPU time advantages. In this thesis, equivalent models of single-layer
graphene sheets (SLGSs), single wall carbon nanotubes (SWCNTSs) and single wall
carbon nanocones (SWCNCs) are developed by using molecular mechanic (MM)
based FE approach. Then, elastic, fracture, vibrational and buckling characteristics of
SWCNTSs; vibrational and elastic buckling characteristics of SWCNCs, and elastic,
fracture and vibrational characteristics of SLGSs are investigated. In addition, an
equivalent dynamic model is developed for SLGSs, and then 2-D and 3-D transient
behavior of SLGSs are investigated. Moreover, multiscale models of SLGSs are

developed for coupling of atomistic and continuum methods.

Relevant works about elastic, vibrational and buckling behavior of GSs, CNTs and
CNC in literature are summarized as follows. Odegard et al. [33] developed a model
that links the molecular mechanics and solid mechanics, which is established by
equating the molecular potential energy terms with the mechanical strain energy of a
representative volume element of a continuum model. Li and Chou in the works [34-
36] developed a similar approach named “molecular structural mechanics” to model
CNTs and GSs similar to space-frame structures and investigated the elastic and
vibrational characteristics of CNTs and GSs. In their approach, Euler-Bernoulli beam
elements are used to represent covalent bonds between carbon atoms; then, unknown
beam parameters are obtained by using energy equivalence of the MM and

continuum mechanic (CM) models. Harmonic expressions for potential energy term



are used in molecular structural mechanics [34] and applied to small deformation of
CNTs and GSs. Tserpes and Papanikos [37] introduced an atomistic base FE method,
based on the approach of Li and Chou [34] to model CNTs by using commercial FE
codes. Elastic characteristics of SLGSs are studied by Sakhaee-Pour [38]. By using
the methods developed by Li and Chou [34] and Tserpes and Papanikos [37],
Sakhaee-Pour et al. [39] and Hashemnia et al. [40] studied natural frequencies and
mode shapes of SLGSs, and Fan et al. [41] and Cheng et al. [42] examined
mechanical properties of CNTs such as Young’s modulus, natural frequency and
buckling load. In addition, Lee and Lee [43] examined vibration properties of CNTs
and CNCs by using the approach presented in [34,37] and predicted fundamental
frequencies of SWCNCs below 20 GHz with a cone having the height of 20 A.
Sadeghi and Naghdabadi [44] introduced a hybrid atomistic-structural element to
model linear and nonlinear vibrations of GSs in which hybrid element formulation is
based on a nonlinear inter-atomic potential function that can model nonlinear
dynamic response of GSs. Wang et al. [45], Kitipornchai et al. [46] and He et al. [47]
presented the vibration analysis of multi-walled graphene sheets (MWGSSs) using
continuum-plate models. Atalaya et al. [48] derived a nonlinear finite elasticity
theory for graphene resonators for both elastostatics and elastodynamics problems.
Scarpa et al. [49] developed truss-type analytical models to describe linear elastic
properties of GSs. Then, Scarpa et al. [50] analyzed natural frequencies and acoustic
wave propagation characteristics of graphene nanoribbons where an equivalent
atomistic-continuum FE model is employed by using the formulation in [49].
Chowdhury et al. [51] studied transverse vibrations of GSs using the MM approach.
Gupta and Batra [52] analyzed elastic and vibrational properties of GSs by using
MM simulations. Mianroodi et al. [53] examined nonlinear vibration properties of
SLGSs using a membrane model. Ansari et al. [54] studied to investigate the
vibrations of single layer GSs using a nonlocal continuum plate model. Arash and
Wang [55] investigated free vibrations of SLGSs and MLGSs by employing nonlocal
continuum theory and molecular dynamics simulations. Chandra et al. [56] examined
the vibrations of bilayer GSs by using analytical and atomistic FE models. Avila et
al. [57] analyzed elastic and vibrational properties of graphene based nanostructures
by using MM based FE approach. Gibson et al [58] briefly reviewed some numerical
and experimental studies about the vibrations of CNTs and their composites. Li and

Chou in the works [59] investigated buckling characteristics of CNTs by using



molecular structural mechanic approach. Both axial compression and bending
loading conditions are considered in the elastic buckling behavior of the CNTs in
[59] where buckling forces are reported to be in the range of ~0.1- 39 nN. Li and
Chou [59] reported that the buckling load in axial compression is higher than
bending load for CNTs. Sakhaee-Pour [60] analyzed elastic buckling of SLGSs by
using atomistic based FE approach. Mir et al. [61] studied natural frequencies and
mode shapes of SWCNTs by using atomistic based FE approach. Computational
tools are widely used to characterize mechanical properties of CNCs [13, 14, 43, 62-
65]. Kumar et al. [13] investigated the Young’s and shear modulus of CNCs
employing second-generation reactive empirical bond-order potential. Wei et al. [14]
examined the elastic and plastic properties of SWCNCs by using MD simulations.
Tsai and Fang [62] and Liew et al. [63] analyzed the buckling behavior of CNCs by
using MD simulations. Liao et al. [64] investigated tensile and compressive
behaviors of open-tip CNCs employing MD simulations. Abadi et al. [65] studied

free vibrational properties of CNCs based on a nonlocal continuum shell model.

In the works [34-42, 57, 59-61], Euler-Bernoulli beam elements are used to represent
bond interactions between C-C atoms in GSs, CNTs and CNCs. On the other hand,
Scarpa and Adhikari [49] proposed a beam model considering the shear deformation
effects and they found the C-C bond thickness d, Poisson’s ratio v, Young’s modulus
E and shear modulus G by using the AMBER force model constants [34]. Both of the
models in Li and Chou [34] and Scarpa and Adhikari [49] vyield the same
deformation results as the structural mechanic stiffness constants in the AMBER
force model are equal if the corresponding element properties are used. Lee and Lee
[43] used Timoshenko beam element formulations which include shear deformation
effects but they employed Euler-Bernoulli beam element constants [37]; this
assumption affects the natural frequencies of SWCNC that are found to be lower than
those of Euler-Bernoulli beam elements. If shear deformation effects are considered,
parameters of shear beam formulations given in Scarpa and Adhikari [49] should be
used. Even though there are some studies on nanocones, a few studies exists on
buckling behavior of SWCNCs by using atomic based FE approach. In addition, Lee
and Lee [43] studied of vibrations of SWCNCs; however, they did not examine the
effects of cone height and used Timoshenko beam formulations with Euler-Bernoulli

beam parameters which may lead to lower modal frequencies than actual values.



Motivated by these facts, mechanical properties of SLGSs, SWCNTs and SWCNCs
are obtained by using the MM based FE approach [34, 37] where Euler-Bernoulli

beam elements with consistent mass matrix is used.

Although there are numerous studies on static and quasi-static problems of SLGSs
and CNTs in literature [34-43], no work exists on dynamic analyses of SLGSs and
CNTS by the use of beam analogy and FE formulations based on the MM model.
Development of accurate FE models based on the MM principles will enable fast
analysis of nanostructures. In this thesis, modal and dynamic analyses of SLGSs are
completed by using the beam analogy and consistent mass matrices. In the works
[35, 36, 39-43, 55, 57] studying the vibrations of GSs and CNTSs, the global mass
matrix is derived based on the assumption that the carbon nuclei masses (e.g., 1.9926
x 10 kg) are concentrated at the joints of the frame structure. Due to the negligible
radius of carbon atomic nucleus (e.g., re= 2.75 x 107 A), torsional and flexural
rotation coefficients of mass matrices are assumed to be zero and a lumped mass
matrix for the beam elements is used, which is sufficient to study the vibrations of
GSs and CNTs; nonetheless, it yields singularity problems in transient analyses
unless special measures are taken. On the other hand, to obtain natural frequencies
and corresponding modes of CNTSs, consistent mass matrices are considered in [61],
where the density of beam elements is selected to be the density of the CNT in the
associated MM models. However, due to this assumption, the total mass of the MM
model is different from the mass of the original structure which also affects the
associated natural frequencies. Hence, an equivalent model for SLGSs in transient
analyses is developed in this thesis by using an atomistic FE approach [34] that
employs a consistent mass matrix of Euler Bernoulli beam elements in which an
equivalent density parameter for the beam elements is derived by the equivalency of
natural frequencies of the MM model and continuum plane-stress FE model. In
addition, the Young’s modulus and Poisson’s ratio of plane stress model are obtained
by using the MM model. It is shown that the proposed approach can reflect 2-D and
3-D vibrational characteristics of SLGSs. Moreover, the response to initial
displacements are computed for two- and three-dimensional FE models where initial
displacements are applied incrementally on SLGSs and nodal coordinates of the
original SLGS structure are updated at each displacement increment; hence, large

deformation effects and uniform initial displacement conditions are considered in all



analyses. It is noteworthy that the Morse potential can easily be adapted to include
nonlinear effects in our analyses. The Newmark method is employed to integrate the
associated equations of transient analyses. It is also shown that power spectral
density (PSD) properties of transient analyses are in good agreement with modal
features of SLGSs, that verifies the numerical results. Comparisons are made among
the results of the MM based model, CM based model and relevant works in

literature.

Relevant works about fracture behavior of GSs and CNTs in literature are
summarized as follows. Experimental observations show that some defects such as
one atom vacancy and Stone-Wales (SW) defects commonly exist in CNTs and GSs.
These defects may be induced due to stress or may emerge during the growth or
processing [29, 66- 71] and negatively affect mechanical strength of these carbon
based structures. Hence, prediction of mechanical behavior of defected carbon based
structures is important and very useful in the design of materials having
nanographene structures. Lee et al. [21] studied experimentally the elastic properties
and intrinsic breaking strength of free-standing monolayer graphene membranes and
measured the Young's modulus of 1.0 TPa and tensile strength of 130 + 10 GPa. Yu
et al. [29] investigated the tensile strength of MWCNTSs experimentally and found it
in the range of 11 to 63 GPa. Atomistic modeling methods such as quantum
mechanic (QM) and MD simulations are commonly used to determine the effects of
defects on mechanical properties of GSs and CNTSs in literature [72-84]. However,
despite of their accuracy, atomistic modeling approaches are computationally very
expensive than continuum modeling approaches. Tserpes et al. [85] proposed an
atomistic-based progressive fracture model for simulating the fracture behavior of
SWCNTSs by using commercial FE codes, where non-linear characteristic of Euler-
Bernoulli (EB) beam elements (i.e., Beam4 element in ANSYS) is obtained by using
the modified Morse potential. Tserpes and Papanikos [86] studied the effect of the
SW defect on the fracture behavior of SWCNTs. By using commercial FE codes,
Mohammadpour and Awang [87] studied tensile properties of SWCNTSs by using an
approach similar to Tserpes et al. [85] and represented carbon-carbon (C-C) bonds by
using Timoshenko beam elements (i.e., Beam188 element in ANSYS). Wernik and
Meguid [88] analyzed the nonlinear mechanical properties of SWCNTSs by using an

atomistic-based continuum modeling technique, where beam and rotational spring



elements are used to represent stretching and angle-bending component of the
modified Morse interatomic potential. Xiao et al. [89] developed an atomistic based
finite bond element model for the prediction of fracture and progressive failure of
defect-free and defected SLGSs and SWCNTs, whose model is equivalent to the
analytical molecular structural mechanical model in the work [90] for defect-free
SWCNT. Xiao et al. [91] also studied effects of multiple SW defects on mechanical
properties of GSs and CNTs. Rossi and Meo [92] studied mechanical properties of
SWCNTSs by using FE models based on the MM models. The interactions between
the C-C bonds are modeled by using non-linear elastic and torsional spring elements
in [92]. Rossi and Meo [93, 94] also examined tensile properties (i.e., ultimate
strength and strain) of SWCNTSs. Georgantzinos et al. [95] analyzed stress-strain
behavior of SLGSs by using a spring-based FE model. Sun and Zhao [96]
investigated tensile stiffness and strength of SWCNTs by using the MM based FE
approach where the C-C bonds are simulated with two node elastic rod elements.

Although progressive fracture of SLGSs and SWCNTs are studied earlier, they are
obtained without consideration of geometric nonlinear effects. However, the fracture
in these nanostructures occur at relatively large strain values; hence, large
deformation effects and geometric nonlinearities have to considered which are the
main motivation behind this study and examined in this paper. In this study,
equivalent nonlinear SLGS and SWCNTSs fracture models are developed by using the
atomistic based FE approach in which the modified Morse potential along with an
iterative solution procedure is used. The proposed model is basically a combination
of the structural mechanic approach of Li and Chou [34] and the atomistic-based
progressive fracture model of Tserpes et al. [37]. To this end, we coded our own
SLGSs and SWCNTs FE models by using MATLAB®, and large deformation and
nonlinear geometric effects are taken into account. At each load step, initial
displacement is applied incrementally on SLGSs and SWCNTs, and atomistic
coordinates of the original SLGS and SWCNTSs structures are updated. Formulation
underlying the proposed approach is applied to pristine and defected (i.e., SW and
one atom vacancy defects) zigzag and armchair SLGSs and pristine, reconstructed
and non-reconstructed one- and two-atom vacancy defected zigzag and armchair

SWCNTs. The initial reconstructed nanotube models are obtained by using MD



simulations. The numerical results are compared with and found to be in good

agreement with the results reported in literature.

Recently developed multiscale modeling techniques yield promising results in
treating the bridging phenomena at atomistic and continuum scales. The aim of these
methods is to solve problems in different scales efficiently such as QM/MM/quasi-
continuum mechanics (QCM)/CM [77, 97-99]. Those methods have taken the
advantages of both atomistic and continuum models. For example, in studying
fracture, the MM models are used to obtain more accurate results in the small domain
around the crack where bond breaking is expected, while the CM models based on
the FE method are used to obtain more efficient solution away from the crack where
a homogeneous and smooth deformation field is expected. The bridging scale
method [100-101], Arlequin method [102-103], bridging domain method [76, 104-
107], handshake or coupled length scale methods [108-110] and generalized space-
time mathematical homogenization theory [111] are some of these methods used to
link atomistic and continuum models. The Arlequin, bridging domain and handshake
methods are overlapping domain decomposition methods, in which strain energies of
the atomistic and continuum models are scaled in the overlapping domain.
Compatibility of the models is enforced by using Lagrange multipliers in the
Arlequin and bridging domain methods. On the other hand, the bridging scale
method used for coupling of MD and CM models does not contain an overlapping
domain. This method consists of a two-scale decomposition such as a coarse scale to
represent the CM model and a fine scale to represent atomistic model, and these
scales evolve on separate time scales. A projection of the fine scale solution onto the
solution of the coarse scale model is used to link the models. The handshake methods
use continuum and atomistic models; atomistic and continuum models are
overlapped and contribution of each model to the Hamiltonian is taken to be average
of the two Hamiltonians. The homogenization theory constructs an equivalent
continuum description directly from MD equations. A brief review of available these

coupling methods can be found in [112-114].

In this thesis, a coupling method for the MM and CM models is derived based on an
augmented formulation of atomistic and continuum displacement fields in a moving
least square sense, which originates from an unconstrained optimization problem to

be solved. In order to solve the augmented problem, the Lagrange multiplier method



is used which allows multiscale analyses of multiple numbers of MM domains in a
single CM domain. The CM domain covers entire domain and the MM domain is
patched on the element(s) of the CM domain. In contrast to alternative approaches
existing in literature, there is no need for an overlapping domain in the proposed
approach and the MM domain(s) can be placed arbitrarily in the CM domain; hence,
one can focus on any desired subdomain where we need to obtain atomistic solution.
In addition, there is no need for a constraint on the meshes of the MM and CM
domains. Efficiency of the proposed approach is illustrated by using defect-free and
defected monolayer graphene layers. In the atomistic models, harmonic potentials
and modified Morse potentials are employed. In the CM domain, it is assumed that
deformations are elastic and plane stress conditions exist, for which elasticity
modulus and Poisson’s ratio values of the CM domain are obtained by the use of full
MM models, and compared with the results presented in literature. It is shown that
the proposed formulation can compute the deformations of monolayer graphenes in
high accuracy, enables to obtain the MM solution(s) in any part of the CM domain
and can be applied to other nano structured materials. Main advantage of the
proposed formulation is that it can be used to connect the MM domain(s) to any
subdomain of the CM domain by proper choice of projection matrices without
changing the mesh. Therefore, it enables fast reanalysis of any subdomain of the CM
domain at fine scales. In addition, appropriate stiffness matrices of the MM and CM
domains which exported as superelements can be embedded into the formulations
that enables linking by commercial softwares. By updating the elasticity parameters
of the CM domain based on the MM solutions, nonlinear effects are easily
considered in iterative solutions of large deformation problems that provide more

accurate nonlinear solutions.
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2. STRUCTURES OF CARBON- BASED NANOSTRUCTURES

Graphene is a term that refers to one atom thick planar sheet of covalently bonded
carbon atoms which are densely packed in a honeycomb crystal lattice. Graphite is a
basic material found in nature and when taken apart graphite sheets become
graphene. Rolled up layer of a GS forms CNT and folded up of a GS becomes
fullerene (i.e., see Figure 2.1).
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Figure 2.1: Graphite, graphene, CNT and fullerene [115].
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Figure 2.2: (a) Multi-layer carbon nanotube (MLCNTSs) [1,116], (b) graphene
membrane [117].

Figure 2.2 (a) shows the electron micrographs of microtubules of graphitic carbon
with outher diameter of 4-30 nm and length of up to 1 um. These tubes consisted of
two or more seamless graphene cylinders concentrically arranged [116]. Figure 2.2
(b) shows the TEM image of a few-layer graphene membrane near its edge where the
number of dark lines indicates the thickness of two to four layers [117]. Figure 2.3
shows the transmission electron micrographs (TEM) of the four distinctly different

types of nano cones.

Figure 2.3: TEM images of carbon nanocones, (a)-(d) shows cones with nominal
apex angle a = 19.2°, 38.9°, 60° and 83.6°, respectively [118].
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The CNTs, GSs and CNCS are composed of covalently bonded carbon atoms which
are densely packed in a hegzagonal carbon rings. The covalent bond is a very strong
bond and significantly contributes to the mechanical properties of carbon based
structures. The atomic structures of CNTs depend on the tube chirality, which is
defined by the chiral vector Cy, and the chiral angle 6 (see Figure 2.4). The chiral
vector Cy, can be defined in terms of the lattice translation indices (m,n) and the basic

vectors a;and a, of the hexagonal lattice as follows

Cy =may +na, 2.1)

Direction of CNT a)5ri5

(a)

Figure 2.4: Roll-up vector defining the structures of CNTs (a) GS and (b) SWCNTSs
[119].

The chiral angle 6 is defined as the angle between vectors Cy, and a; and calculated as

follows

J3m }
(2.2)

0 =sin*
2+/n? + mn+m?

The CNT diameter and chirality are completely specified by the two integers (m,n),
which are referred as the chiral indices of the CNTs. Table 2.1 shows the three major

categories of CNTs and Figure 2.5 shows these types of CNTSs.
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Table 2.1: Types of CNTs based on chiral indices.

Nanotube type Chiral indices (m,n) Chiral angle, 6

Armchair (m,m) 30°
Zig-zag (m,0) 0
Chiral (m,n); m=n=0 0<06<30°

Figure 2.5: CNTs (a) armchair (6,6), (b) zig-zag (8,0), (c) chiral (8,5) (d) MWCNT
(7,7) (10,10).

The length of chiral vector and the diameter of any CNT can be respectively

calculated as follows

L=|C,|=avn®+mn+m? (2.3)

d, =

= - (2.4)

L avn’+mn+m?
T

where a is the lattice constant of graphite and equal to a=|a,|=[a,|=+3ac_c and
ac_c Is the carbon-carbon (C-C) bond length and equal to 1.421 A.

The electronic properties of CNTs are dependent on the chirality. The condition for
achieving metallic CNTs can be expressed by m-n=3q, where q being an integer

[120]. Figure 2.6 shows that every possible CNTs configuration (m,n) can be mapped
by symmetry operations on the red and blue colored circles.
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Figure 2.6: A map showing which (m,n) gives semiconducting and metallic tubes
can be drawn. Only armchair CNTs (m=n) are strictly metallic [120].

CNCs having five possible closed cone structures can be constructed by using GSs
[121, 122]. By rotating a fragment of GSs in multiples of 60°, we obtain the original
structure due to the hexagonal symmetry of GSs that is the only way to generate
smoothly joined CNCs by folding over a GS and the overlaps are called the
disclinations. Folding over a GS in this manner creates five possible closed distinct

CNC structures and the apex angles of a cone can be calculated as follows [123]

. 2
o= 2arcsm(1—%) (2.5)

where 4 is the disclination angle in degrees. Taking € as 60°, 120°, 180°, 240° and
300°, the apex angles of CNCs are calculated 112.9°, 83.6°, 60°, 38,9° and 19.2°,
respectively (i.e., see Figure 2.3). The CNTs can be seen as a special case of the
CNCs with a zero apex angle. Figure 2.7 shows the cone sheet with the dislocation

angle of 240° corresponding to the cone with the apex angle of 38.9° SWCNC.
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Figure 2.7: The cone sheet with the dislocation angle of 240° corresponding to the
cone with the apex angle of 38.9° SWCNC.
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3. FINITE ELEMENT MODELS OF CARBON-BASED
NANOSTRUCTURES

3.1 FE Formulation

For the simulation of static and dynamic behaviors of SLGSs, SWCNTs and
SWCNCs, an atomistic modeling approach is used. When carbon based
nanostructures such as GSs, CNTs and CNCs are subjected to external forces, the
positions of the atomic nuclei are controlled by the covalent bonds between C-C
atoms. Hence, deformation pattern of these nanostructures is very similar to
deformation of frame structures. To this end, SLGSs, SWCNTs and SWCNCs are
modeled as 2- D and/or 3-D frame-like structures in simulations and a covalent bond
between two carbon atoms is represented by an Euler-Bernoulli beam element having
consistent mass matrices. Figures 3.1-3.3 show the molecular and equivalent FE
models of the SLGS, SWCNT and SWCNCs, respectively.
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Figure 3.1: Molecular and equivalent FE models of the graphene layer.
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Molecular model Equivalent model

Figure 3.3: Molecular and equivalent FE models of the SWCNC.

The element stiffness matrix and consistent mass matrix for a planar Euler-

Bernoulli beam element are given by equations (3.1) and (3.2), respectively.

EA 0 o _EA 0
L L
12EI 6EI 12EI 6EI
o =5 S 0 -— —
L3 L L L
6EI 4EI 6EI 2EI
° 7 T 7 L
K = L L
A, 0 Ao (3.1)
L L
o _12EI GEl 12EI_ 6El
L3 L2 L3 L2
0 6I52I 2EI 0 B 6EI 4EI
L L L L2 L]
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1 0 0 1 0 0
3 6
o B o, 9 L
35 210 70 420
S S R
— 210 105 420 140
M=pAL 1 (3.2)
— 0 0 = 0 0
6 3
o o B, 13
70 420 35 210
B O S
420 140 210 105 |

The element stiffness matrix and consistent mass matrix for a 3-D Euler-Bernoulli
beam element are given by equations (3.3) and (3.4).

| Kii Kjj [ Mii Mjj
K{Ku Kn‘]’ M{Mij Mn} (33)

where the sub-matrices, Kj;, Kj;, Kj;, Mii, Mj; and M;; are given by

% 0 0 0 0 0
o 12El 0 0 0 6El,
L3 L2
12EI 6EI
0 0 y ¥ 0
L3 L2
K:: =
1 GJ
0 0 o = 0 0
L
6EI 4EI
0 0 ——Zy —¥ 0
L L
o BEl 0 0 0 4El,
L L2 L
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where L denotes the initial length of a C-C bond and equals to 0.1421 nm. In
addition, for the computational model, numerical values of the following stiffness
parameters should be given a priori: A is the cross-sectional area, E and G are
respectively the Young’s and shear moduli, | and J are respectively the moment of
inertia and polar moment of inertia of the cross section and p is the beam element

density.

Note that the consistent mass matrix formulation does not neglect the effects of
rotational degrees-of-freedom (DOF). On the other hand, neglecting these rotational
DOF vyield singularity in time integration of associated dynamic equations unless
special measures are taken; thus, although the effects of rotational DOF are very

small, they are considered in all subsequent analyses.

2-D Euler-Bernoulli beam element having three nodal DOF such as two translational
DOF in the x- and y- directions and a rotational DOF about the z- axis. This element
is designed to resist axial and bending deformations.

Local element coordinates Global coordinates

/d4 Va

4 & (\h'u

Figure 3.4 Local and global DOF of the 2-D EB element [124].

X
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Figure 3.4 shows the local and global coordinate systems of a planar EB beam
element. The local s axis is along the element axis and t axis is aligned 90°
counterclockwise from the s axis. The nodal DOF in local coordinate system for a

planar EB beam element are defined as follows

di, d,  Displacements at node 1
ds Rotation at node 1
ds4, ds  Displacements at node 2

de Rotation at node 2

In global x and y coordinate system, the nodal displacements and rotations are

defined for a planar beam element as follows

u;, vi  xandy displacements at node 1
0, Rotation about z axis at node 1
Uz, V2 xandy displacements at node 2

0, Rotation about z- axis at node 2

The transformation between the global and local DOF can be written for a planar

EB beam element as follows

d, ik, mg 0 O 0 Ofu
d, -mg Iy 0 O 0 Ofwv
d; | | © 0 1 o0 0 0|64
d,| | o 0o 0o I, m Ofu (3.5)
dg 0 0 0 -mg Ig Ofv,
dg) | O 0 0 O 0 16,
where
_ _X2=X
Is —cosa—T (3.6)
—ciny Y2
mg =Sina = L (37)
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|-=\/(X2 —%)% +(y2 —y1)? (3.8)

where « is the angle between the local s axis and global x axis measured
counterclockwise, (X1, y1) and (X2, y2) are the coordinates of the two nodes at the EB
beam element ends, and L is the length of the EB element. Equation (3.5) can be

written as

d =T,pd (3.9
d=€ d, d3 dy ds dg’ (3.10)

Iy mg 0 0 O]

-mg I 0 0 0

T 0 0 1 0 0 O

70 0 0 Iy m O
0 0 0 -mg I, 0 (3.11)

0 0 0 0 0 1]
d=C, v, 6 U, v, 6, (3.12)

3-D Euler-Bernoulli beam element has six nodal DOF per node; translations in the
nodal x, y and z directions and rotations about the nodal x, y and z axes. This
element is an extension of the 2-D beam element to 3-D. This element is designed
to resist axial, bending and torsional deformations. Figure 3.5 shows the local
coordinate system of a 3-D EB beam element. The local t- axis runs along the
centroidal axis of the EB element. The local s- and r- axes are the principal

moment of inertia axes for the cross section.

Figure 3.5 Local DOF of the 3-D EB element [124].
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The nodal DOF in local coordinate system for a 3-D EB beam element are defined

as follows

di, dp, d3  Displacements at node 1
ds, ds, dg  Rotation at node 1
dz, dg, dg  Displacements at node 2

dyo, d11, di» Rotation at node 2

In global x,y and z coordinate system, the nodal displacements and rotations are

defined for a 3-D beam element as follows

U, Vi, Wp X, y and z displacements at node 1
Ox1, By1, z; Rotations about z axis at node 1
Uz, V2, W» X, y and z displacements at node 2

Ox,, By,, Oz, Rotations about z axis at node 2

The transformation between the global and local DOF can be written for a 3-D EB

beam element as follows

d, Uy
d, vy
dj Wy
d4 ‘9xl
ds H 0 0 0]6,
dg 0 H 0 0|8,
d; | [0 0 H 0]u, (3.13)
dg 0 0 0 Hiw
dg Wa
le 9x2
diq ‘9y2
d12 022
Equation (3.13) can be written as
dy =Tspd (3.14)
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d=€ d, d; d, ds dg d; dg dg dyy dyy dpp " (3.15)

H 0 0 O
Top = 0 H 0 0
0 0 H 0 (3.16)
0O 0 0 H
d=@ v w 04 Op On Uy Vo Wo Oy, 0Oy ezzj (3.17)

where H is the 3 x 3 rotation matrix and 0 is a 3 x 3 zero matrix. Thus, the complete
transformation matrix Tsp is a 12 X 12 matrix. The rotation matrix H transforms a
vector quantity from the local coordinate system to the global one. The components
of a vector along the local s, t and r coordinates simply the sum of projections of its
X, y and z components along the local axes. In matrix form, the transformation can be

written as follows

t L my n X
S|= IS rn5 ns = y (318)
r I, m, n, z
e me n
H= IS mg Ng (319)
I, m, n,

where I, is the cosine of the angle between the t and x axes; m; is the cosine of the
angle between the t and y axes; n; is the cosine of the angle between the t and z
axes; ls is the cosine of the angle between the s and x axes; ms is the cosine of the
angle between the s and y axes; ns is the cosine of the angle between the s and z
axes; I is the cosine of the angle between the r and x axes; m, is the cosine of the
angle between the r and y axes; n, is the cosine of the angle between the r and z

axes.

The stiffness matrix in the local coordinate system can be related to those in the

global coordinate system for 2-D or 3-D beam elements as follows
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K=TTKT (3.20)

where K is the global element stiffness matrix of the EB beam element; K; is the
local element stiffness matrix of the EB beam element (i.e., Equations 3.1 and 3.4).
In addition, by using the transformation matrix T, the mass matrix in the global
coordinate system is obtained as follows

M=TTMT (3.21)

where M is the global element mass matrix of the EB beam element; M; is the local
element mass matrix of the EB beam element (i.e., Equations 3.2 and 3.4).

3.2 Solution Procedure For Small Deformation Static Problems

After the assembly procedure, the global system of equations consists of n

equations in n unknowns for small deformation static analyses
Kgiopd =F (3.22)

where Kgiop is the global stiffness matrix, F is the vector of applied force and d is
the displacement vector. After the application of boundary conditions, solutions for
global nodal unknowns follow the standard FE procedure. For computing the
element solution, the global DOF for each element are first transformed into the local
DOF by multiplying them by the transformation matrix T for the element.

For the computational models, numerical values of the following parameters should
be given a priori: E, G, A, I, J and p. To obtain these parameters energy equivalence

concept is employed. This concept is summarized in the following sections.

3.3 Application of Atomistic Modeling Approach

To obtain geometric and material properties of the beam elements, energy
equivalence concept is employed. In this analogy, stretching, bending and twisting
potential energy terms based on the MM and structural mechanic models are

assumed to be independent of each other and then corresponding terms are set equal
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to each other in these two models. In graphite structures, bonded such as the covalent
bond and non-bonded such as van der Waals and electrostatic forces interactions are
generally taken into account. Comparing the bonded interaction, non-bonded
interactions have less contribution on the mechanical characteristics of carbon based
structures. As a result, the general expression of the total potential energy of the
force field in the MM model can be expressed as the sum of energies of bonded
interactions [33, 34]

Uial =XU;+3Up+3U4+3U,, (3.23)

where U, is the potential energy for bond stretching, U, for bond angle bending, U,
for a dihedral angle torsion and U,, for out-of-plane torsion. Nonetheless, U, and U,,

terms can be merged into a single term. Figure 3.6 shows the different types of MM

potential energies.
o AP .‘

Bond stretching Angle bending

' i

Out-of-planc torsional Dihedral torsional

Figure 3.6: Potential energies in MMs [38].

Under the small deformation assumption, the following simple harmonic
expressions of potential energy components are adequate for describing the total

potential energy [34]

Ur = gk (an? (3.24)
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Ug = kg(46)° (3.25)

1

U, =U¢+ Up =Ekr(ﬁ¢)2 (326)
where k., ky and k, respectively denote the bond stretching, angle bending and
torsional force constant and the symbols 4r, A6 and A¢g represent the bond

stretching increment, bond angle change and twisting angle change, respectively.
In this study, the AMBER force model is chosen [33, 34]. The AMBER force

model  constantsk,,kgand  k, are  taken as  652x10'Nnm}

8.76x10 10N nmrad 2 and 2.78x10"1ON nmrad—2respectively.
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Figure 3.7: Bond stretching energy in MMs.
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Figure 3.8: Angle bending energy in MMs.

There are two approaches to model interatomic behavior by the use of beam elements
such as the model proposed by Li and Chou [34] that neglects the shear deformation
effect and the model proposed by Scarpa and Adhikari [49] that considers the shear
deformation effect.

Following the approach of Li and Chou [34], the strain energy of a uniform beam

due to pure tension, bending and torsion can be written as

1 EA

U=’ (327)
1EI 2

Us =5 @ (3.28)

Ur =35 ) (3.29)

where U, , Ug and U, are respectively axial, bending and torsion strain energies,

L is the length of the beam element, A is the cross-sectional area, E and G are
respectively Young’s and shear moduli, | and J are respectively the moment of
inertia and polar moment of inertia of the cross section, AL is the axial stretching

deformation, « is the rotational angle at the ends of the beam element, and Az is

the relative rotation between the two ends of the beam element. According to

structural mechanics, Figure 3.9 shows the potential energies of a beam.
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Figure 3.9: Potential energies in structural mechanics [38].

Using the equivalency of the corresponding terms in potential energy components
of the MM and CM maodels, the following relations are obtained [34]

EA El GJ
Tk (3.30)

Assuming that the cross section of beam elements is uniform and circular, then the

Young’s modulus E, the shear modulus G and diameter of the cross section d are
obtained by plugging in the cross sectional area A=7d?/4, moment of inertia

| =2d*/64and polar moment of inertia J = zd* /32 as follows [37]

k2L ke 2k L kg
E=-'— G="r"= d=4 |2
akg O g i (331)

Table 3.1 summarizes the geometric and material properties of the beam element

which are the inputs to the FE models.
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Table 3.1: Geometric and material properties of beam elements.

Present work Scarpa and Adhikari [49]
Thickness, d 1.47 A 0.84 A
Elastic modulus, E  5.488 x 10 N/A? 16.71 x 10° N/A?
Shear modulus, G~ 8.711 x 10°° N/A? 80.8 x 10° N/A?

On the other hand, Scarpa and Adhikari [49] proposed a beam model considering the
shear deformation effects where, instead of Equation (3.25), the following bending
strain energy expression is suggested

_12(4“15)( )2
2L (o) (3.32)

where @ is the shear deformation constant defined by

12EI

- GA L (3.33)

where A =A/Fs, and Fis the shear correction factor given by

Fo_ 6(1+v)
ST Tv6y (3.34)

where v is the Poisson’s ratio of the beam element. By equating the Equations (3.24)
and (3.26) to Equations (3.27) and (3.29) respectively, expressions for E and G are
obtained. Then, by plugging-in the expressions of E and G together with the
Equation (3.34) into the Equation (3.33), the shear deformation constant is found as

follows

_ 9%kt (1+v)
161272, (7 + 6v) (3.39)

After substituting the Equation (3.35) into the Equation (3.32) which is then equated
with the Equation (3.25), the resulting equation is minimized to obtain v and d that
are used to calculate E and G. In sum, the thickness, Young’s modulus and shear
modulus of the beam element representing the interatomic bond are listed in Table
3.1[49].
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Both of the beam models proposed by Li and Chou [34] and Scarpa and Adhikari
[49] employ identical axial and torsion strain energy expressions, but they
approximate the bending strain energy term by using different approaches. The strain
energy term of Li and Chou [34] (i.e., given by the Equations (3.33) to (3.35)) and
the strain energy term of Scarpa and Adhikari [49] (i.e., given by Equations (3.33),
(3.35) and (3.38)) give the same AMBER force model constants (

ke =6.52x10° ' Nnmi L, kg =8.76x10"1ON nmrad 2 and k, =2.78x10"19N nmrad —2)

when the data set given in Table 3.1 are employed. On the other hand, the
deformation in graphene and graphitic layers are due to hinging-stretching
mechanism [49] and hinging creates shear stresses. Nonetheless, our aim is to
represent the potential energy of interatomic bonds and the beam model proposed by
Li and Chou [34] can exactly represent this potential energy of interatomic bonds.
Consequently, even though the beam model proposed by Li and Chou [34] neglects
the shear deformation effect which is valid for slender beams. As long as its spring
constant is equal to the corresponding AMBER force model constants, it will yield
correct deformation results. Subsequently, the analyses are carried out by using the
beam model of Li and Chou [34] due to its simplicity. In addition, the Poisson’s ratio
is not needed to construct equivalent FE formulation [34], and E, G, d and L values
are sufficient to set up the FE model.

If small deformation assumption exists, both of the models in Li and Chou [34] and
Scarpa and Adhikari [49] are sufficient to determine the behavior of an atomic bond.
However, this assumption is not adequate for failure analysis which should be
analyzed as a large deformation problem and geometric nonlinear effects have to
considered. For large deformation problems, shear beam element (i.e., Timoshenko
beam element) is not preferred since it is more difficult to be adapted for the
modified Morse potential energy terms than the EB beam element. To this end, the
modified Morse potential along with an iterative solution procedure is used for large
deformation problems in this thesis. Implementation of this pairwise potential
function is very easy in comparison with some other multibody potentials such as
Brenner potential function whose some applications can be found in literature [72,
85-95].

Under the uniaxial loading and small strain hypothesis [33, 90, 92-94], the atomistic

interaction is mainly governed by the bond stretching and bond angle bending terms.
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As a result, according to the modified Morse potential, the potential energy can be
expressed as

Utotal=2Yr +2Ug

(3.36)
B (r-19) ]

Uy =Dg [1—e 0 } -1 (3.37)

Ug =%k9(9—90)2 + l*ksextic(e_go)ﬂr_ (3.38)

where U, is the bond energy due to bond stretching, U, is the bond energy due to

angle bending, r and @ are the current bond length and current angle of the adjacent
bonds, respectively.

Table 3.2. Modified Morse potential parameters [72].

) 1.421 A 0o 2.094 rad )
B 2.625A" ke 0.9 x 10° NA/rad®
De 6.03105 x 10°NA  Keexiic  0.754 A*

Values of the parameters in the modified Morse potential functions are the same as

those in [72] and listed in Table 3.2. Figure 3.10 shows the tensile energy —strain
curve of the modified Morse potential.
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Figure 3.10: Tensile energy-strain curve of the modified Morse potential.
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The multiple layers of CNTs are held together thorough Van der Waals forces. The
Van der Waals force is a non-bonded interaction, and it can be an attraction force or
a repulsion force. These interactions are often modeled using the general Lennard-

Jones (LJ) potential. The general LJ potential is commonly expressed as

u(r)= 45[(%12 : (%ﬂ (3.39)

where, r is the distance between inreacting atoms, € and ¢ are the LJ parameters. For
carbon atoms, the LJ parameters are £€=0.0556 kcal/mole and 6=3.4 A [125]. The
potential U(r) is usully truncated at an interatomic distance of 2.5 o without a
significant loss of accuracy. Based on the LJ potential, the Van der Waals force

between interacting atoms can be written as follows

_odu(r) L, ¢ ANNCAY
F(r)_—T—24;[2(?) —(?)} (3.40)

The variations of the LJ potential and Van der Waals force with the distance between

two interacting atoms are shown in Figure 3.11.
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Figure 3.11: Van der Waals force as the distance between two interacting atoms
changes.

Tersoff-Brenner many body interatomic potential for carbon [126-127], which is

widely used in the study of carbon base nanostructures, is introduced as follows
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V(1) =Vr (1) — B;;V a(rj) (3.41)

For atoms i and j, where rj; is the distance between atoms i and j, Vg and V, are the

repulsive and attractive pair terms given by

(e) - Eﬁ( —R(®))

Vu(r)= SSD—1 e \E r fo(r) (3.42)
D® —J253(r-R®))

V(1) :S_—le fe(r) (3.43)

the parameters D® | S, B and R® are determined from the known physical
properties of carbon, graphite and diamond. The function f; is merely a smooth cutoff

function to limit the range of the potential and is given by

1 r<R®,
1 z(r—RY) M @)
fc(r) = 5{14‘ COS{W R <r<R , (344)
0 r<R®

which is continuous and has a cutoff of R® =0.2 nm and R®Y) =0.17 nm to include
only the first-neighbor shell for carbon atoms. The parameter Bj; in Equation (3.41)
represents a multi-body coupling between the bond from atom i to atom j and the

local environment of atom i, and is given by

=

By :{1+ ZG(eijk)fc(rik):l (3.45)
k(=i,])

where ri is the distance between atoms i and k, f; is the cutoff function in Equation

(3.44), i« is the angle between bonds i—j and i—k, and the function G is given by

2

2
Co Co
G(O) = ag|1+-50 _
@ 0{ d2 d§+(1+cos€)2} (3.46)

Values of the parameters are listed in Table 3.3.
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Table 3.3: Tersoff- Brenner potential constants [127].

D® 6.000 eV P 0.5
R® 0.139 nm ao 0.00020813
S 1.22 Co 330
S 21 n/m do 35

Based on this set of parameters, the corresponding equilibrium bond length can be

determined by

36
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4. CHARACTERIZATION, DYNAMIC AND FRACTURE ANALYSES OF
GRAPHENE SHEETS (GSs)

In this section, an equivalent dynamic and nonlinear fracture model of SLGSs is
developed by using the MM based FE approach where bond interactions are
represented by EB beams; then, two- and three-dimensional modal, transient and
nonlinear fracture analyses of SLGSs are completed. In order to observe vibrational
characteristics of SLGSs, lumped mass matrix is generally used in literature, which is
sufficient to determine vibrational characteristics of GSs and CNTs. As mass
lumping by neglecting rotational inertia of beam elements causes singularity
problems in transient analysis, consistent mass matrices (e.g., Equations 3.2 and 3.4)
are used in FE models in this thesis. An equivalent density parameter for the beam
elements is derived by using the equivalency of natural frequencies of the MM model
and continuum plane-stress FE model. The Newmark method is employed to
integrate the associated equations of transient analyses [128].

An atomistic based FE model for prediction of fracture behavior of SLGSs is
developed by considering large deformation and nonlinear geometric effects. The
non-linear characteristic of beam elements are obtained by using the modified Morse
potential. Formulation underlying the proposed approach is applied to defect-free,
and Stone-Wales (SW) and one atom vacancy defected zigzag and armchair SLGSs
[129].

4.1. Equivalent FE Models, Characterization and Vibration Analyses of
SLGSs

As mentioned above, equivalent E and  values of the CM model for SLGSs are
calculated by simulating a test specimen under uni-axial tension. The MM model of
zigzag type SLGSs has the dimension of 81.22 A° x 126.46 A° having 4020 atoms
and 5937 bonds. The equivalent CM plane-stress model has the same dimension of
the MM model and it has 486 nodes and 442 quadrilateral elements. Figure 4.1
shows the MM model and equivalent continuum plane stress model of the SLGS. All

of the static, vibrations and dynamic computations of the MM model are completed
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by using a computer code developed in MATLAB environment and the results on
vibration analyses are verified by using Ansys ® software where the analyses of 2-D
and 3-D MM and CM models are performed by using Plane42, Shell63, Beam3,
Beam4, Mass21 type elements. In the MATLAB code, the analyses by using the 2-D
and 3-D CM models are completed by using plane-stress and shell elements,

respectively.

s8888

Q'l'l.. AL

KA

(b)

Figure 4.1: (a) Molecular and (b) equivalent plane stress FE models on which

boundary conditions are shown.

To calculate Young’s modulus E and Poisson’s ratio v, symmetry boundary
conditions are applied to all the nodes on one edge and the nodes on the opposite
edge are uniformly loaded. All load vector calculations are based on consistent load

formulations and equivalent Young’s modulus and Poisson’s ratio are found as

follows
_z _ F/AO
¢ Aala (4.1)
_ Ab/b
Ve Aa/a (4'2)
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where F is the total applied force on the atoms at one end of the graphene sheet, Ay
is the cross-sectional area which is equal to bt (where b and t are the width and
thickness of the sheet, respectively), a is the initial sheet length, 4a and 4b are
respectively changes in the width and length of the SLGS. In all calculations, the
nominal thickness of 0.34 nm is used for the SLGS. Table 4.1 lists values of tensile
rigidity Y, Poisson’s ratio v and nominal thickness t of monolayer graphene in
literature and found in our simulations. Note that there is a lack of experimental
studies on the values of Poisson’s ratio v in literature and numerical results on
Poisson’s ratio are scattered in a wide range. Sakhaee-Pour [38] calculated the
shear modulus and Poisson’s ratio of SLGSs by using the shear test (that is, a
tangential force is applied to all the nodes on one edge and the opposite edge is
constrained). It is observed that such a numerical test does not reflect the exact shear
behavior of SLGSs since the conditions of pure shear test could not be created and
additional bending load is applied to the specimen. Such a simulation may result in

the Poisson’s ratio which is much larger than 0.5.

Table 4.1. Graphene data from literature and present work.

Reported by Y (TPanm) Poisson’s ratio t(nm) Method
Sakhaee-Pour [38] 0.337-0.354 1.129-1.441 0.34  Beam analogy
Liand Chou [34] 0.338-0.351 - 0.34  Beam analogy
Lee et al. [21] 0.335 - 0.335 Experimental
Present work 0.352 0.063 0.34  Beam analogy

Equivalent density parameter for the beam elements in the MM model is obtained by
using the equivalency of natural frequencies of continuum plane stress FE model and
those of the MM model. To this end, firstly natural frequencies of continuum plane
stress model are obtained where density of continuum plane stress model is equal to
density of graphite which is 2260 kg/m?; then, equivalent density parameter of the
beam elements is calculated. After assembling the element stiffness and mass
matrices, the natural frequencies and corresponding mode shapes are obtained by

solving the following eigenproblem

(K -w?M)d =0 (4.3)
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where K, M, d and w; are the global stiffness matrix, global mass matrix,
displacement vector and the natural frequencies, respectively. In addition, the natural
frequency is equal to ®=2nf, where f has the unit of Hertz. In numerical solutions,
free-fixed and free-free boundary conditions are taken into account. For free-fixed
case, all the nodes on one edge are fully constrained and the nodes on the opposite
edge are free (e.g., see Figure 4.1).

Table 4.2. Values of equivalent beam density p of Euler-Bernoulli beam elements.

Equivalent beam

Researcher density p Method

kg/m®
Lee and Lee [43] 2300 Beam analogy
Mir et al [61] 2300 Beam analogy
Present work 5500 Beam analogy

Following the above mentioned procedure, Table 4.2 lists the values of equivalent
density parameter p of beam elements assumed in literature and found in our study.
Table 4.3 and Table 4.4 show the numerical results obtained by using the MM and
shell models for in-plane and 3-D cases, where the first six natural frequencies
obtained for free-free and free-fixed boundary conditions are given. Figure 4.2 shows
the first three free-fixed in-plane deformation mode shapes of the lumped mass MM
model, plane stress CM model and consistent mass MM model. Note also that the
other mode shapes are found to be similar. Figure 4.3 shows the first three free-fixed
3-D deformation mode shapes of the lumped mass MM model, shell CM model and
consistent mass MM model. In addition, the natural frequencies of the 3-D MM

model are in good agreement with the results presented in literature [39].

Table 4.3: First six fundamental frequencies of 2-D SLGS (in GHz).

Boundary
conditions
Plane stress model free-free 623.0 845.9 9034 1167.7 1188.8 1323.1
Consistent mass free-free  617.6 846.6 903.4 1178.4 12050 1333.1
matrix beam model
Lumped mass matrix ¢ coo 6058 836.8 8915 11497 11745 1314.1
beam model
Plane stress model free-fixed 142.2 423.3 4924 10019 1176.8 1178.8
Consistent mass o cood 1420 4248 4924 10027 11797 1194.4
matrix beam model
Lumped mass matrix
beam model

Model 2 3 4 5 6

free-fixed 140.3 421.0 486.1 990.2 1163.8 1165.0
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Table 4.4: First six fundamental frequencies of 3-D SLGS (in GHz).

Boundary

conditions 2 3 4 S 6

Model

Consistent mass matrix free-free 138 145 319 37.0 394 482

beam model

Lumped mass MarIXDAM  freefree 135 142 311 362 386 471
shell model divided by the oo free 137 146 323 333 379 445
thickness

Consistent mass matrix free-fixed 237 803 146 270 385 431
beam model

Lumped mass MAUXDEAM  freefixed 234 788 145 265 379 424

fhﬁg::nrgsosde' dividedbythe oo fived 216 832 135 27.2 367 38.0

Note that unlike the results on in-plane MM and CM plane-stress models, there is a
discrepancy between the calculated natural frequencies of the 3-D MM model and
those of the 3-D shell model. If the natural frequencies of the 3-D shell model are
divided by the thickness value, they are in close agreement with those of the 3-D
MM model, which are shown in Table 4.4 for the free-free and free-fixed boundary
conditions. Nonetheless, while the transient and static displacement solutions of the
in-plane MM model and those of the plane-stress CM model match well, the
transient and static out-of-plane displacements for the 3-D MM and CM shell models
do not agree. This is originating from the fact that the out-of-plane bending rigidity
of the 3-D CM shell model is in error that is already reported by other researchers
[33, 40]; hence, corrections for the thickness value of the 3-D CM shell model are
suggested in literature. Studies on this issue have been continuing. It is concluded
that the proposed approach can compute the natural frequencies of SLGSs in high

accuracy and employment of consistent mass matrix in FE model improves accuracy.
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Figure 4.2: The first three in-plane mode shapes of the lumped mass MM model (a)-

(c), plane stress CM model (d)-(f) and consistent mass MM model (g)-
(i) where the boundary conditions are free-fixed.
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Figure 4.3: The first three 3-D mode shapes of the lumped mass MM model (a)-(c),
shell CM model (d)-(f) and consistent mass MM model (g)-(i) where

the boundary conditions are free-fixed.
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4.2. Dynamic Analyses of SLGSs

2-D and 3-D transient behaviors of SLGSs are studied by employing the atomistic
modeling approaches presented in Section 3. According to the theory of structural

dynamics, the semidiscrete equation of motion for a damped structure is written as
Md +Cd + Kd =F (4.4)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness
matrix, F is the vector of applied force, and d, d and dare the displacement,
velocity and acceleration vectors, respectively. The solution of the initial value
problem for the system represented by Equation (4.4) is a displacement vector
d =d(t) satisfying the given initial conditions d(0)=d, and d(0)=v,. In transient
calculations, the Newmark method with a-form implementation [130] is used to

integrate Equation (4.4). The Newmark family of algorithms consists of the

following equations

Man+1 + CVn+1 +Kd n+l — Fn+1 (45)

At?
dy,g =d, +4tv, +T[(1_ 2p)a, +2fan,1] (4.6)
Vi =Vy + 4L -y)a, +7@a54] (4.7)

where d,, v,and a, are the approximations to d(t, ), d(t, )and d(t, ), respectively.
Equation (4.5) is the equation of motion, and equations (4.6) and (4.7) are finite
difference approximations for the evolution of the approximate solution in time. The
parameters  and y determine the accuracy and stability of the algorithm. Average
acceleration method with parameter values $=0.25 and y=0.5 which is implicit and
unconditionally stable is used in this study. Effects of different g and y values on the
behavior of solutions can be found in [130]. Figure 4.4 shows the spectral radii for

Newmark methods for varying 4.
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Figure 4.4: Spectral radii for Newmark methods for varying 4 [130].

Table 4.5: Properties of well-known members of the Newmark family [130].

Method Type B Y

Avarage acceleration (trapezoidal rule) Implicit 1/4 172
Linear acceleration Implicit 1/6  1/2
Fox- Goodwin (royal road) Implicit 1/12 172
Central difference Explicit 0 1/2

Properties of some classical methods are summarized in Table 4.5. The average
acceleration method is one of the most widely used methods for structural dynamics
applications. Fox- Goodwin and linear acceleration methods are also implicit
methods. However, these methods are conditionally stable and they are not
economical for large-scale systems when compared to average acceleration method.
The central difference method is conditionally stable. However, M and C matrices
need to be diagonal. When the time step restriction is not too severe, the central

difference method is generally the most economical and widely used [130].

Equations (4.5) to (4.7) are used to determine the three unknown vectorsa d

n+l? n+1

andv,,, while a,, d,and v, are known vectors calculated in the previous step.

Implementation of a-form is summarized the following lines. Firstly, predictors is

defined as follows
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~ At
dp,a =dy +4tv, +T(1_ 2p)a, (4.8)
Vi =Vq + At -7)a, (4.9

Equations (4.6) and (4.7) may then the written as

dnyg = an+1 + Atzﬂaml (4.10)

Vit =Vpga +4Atyag (4.11)

Then, a, may be calculated as follows

The recursion relation determinesa,, ;
2 ™~ - ~
‘/I +At7C+At ﬂK§n+1:Fn+l_CVn+l_ Kdn+1 (4.13)

Following, Equations (4.10) and (4.11) are used to calculate d,,,and v,

respectively. In our numerical simulations, the viscous damping effect is neglected
and the time step is chosen two orders of magnitude smaller than the periods of the
first fundamental mode of the associated SLGS models. All the nodes on one edge
are fully constrained, while the nodes on the opposite edge are subjected to initial
displacements in dynamic simulations. Initial displacement is applied incrementally
and then nodal coordinates, C-C bond lengths, angles between C-C-C bonds,
stiffness and mass matrices of the original SLGS structure are updated at each
displacement increment; then, the final configuration of the SLGSs is taken into
account in all simulations. Thus, large deformation effects and uniform initial
displacement conditions are considered in transient analyses. It is noteworthy that the
Morse potential can easily be adapted to include nonlinear effects. Total initial
displacement of 0.1 A° is applied incrementally in positive x- and y-directions in
planar simulations (e.g., see Figures 4.5 (a) and 4.5 (b)), while total displacement of
0.1 A° is applied incrementally in positive z-direction in 3-D simulations (e.g., see

Figure 4.5 (c)). Figure 4.5 shows the boundary conditions and loadings of the SLGSs
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in 2-D and 3-D transient analyses. The MM and CM shell models of the SLGS used
in transient analyses have the same dimensions as the models used in the vibrational

analyses of the MM and CM shell models presented in Section 4.1.
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Figure 4.5: Boundary conditions and loadings of the MM models of SLGSs in
transient analyses (a) 2-D model loaded in y-direction, (b) 2-D model

loaded in x-direction and (c) 3-D model loaded in z-direction.

The time step is chosen as 100 ps for all transient analyses of 2-D SLGSs, which is
sufficient to resolve transient behavior of the models. Figure 4.6 shows the
displacement in y-direction for a node located in the middle of the SLGS subjected to
in-plane initial displacement in y-direction as shown in Figure 4.5 (a). Figure 4.7
shows the displacement in x-direction for a node located in the middle of the SLGS
subjected to in-plane initial displacement in x-direction as shown in Figure 4.5 (b).
Observe in Figure 4.6 that beating occurs in mid-span displacement in y-direction
due to very close natural frequencies existing in the SLGS structure. The frequency
content of the displacement component in Figure 4.7 is examined by using the power
spectral density plot shown in Figure 4.8 obtained by using Burg PSD estimator in
MATLAB, that does not apply any window to data and minimizes the forward and
backward prediction errors in the least square sense. The peak corresponding to the
first natural frequency of 142 GHZ appears in the spectrum plot. As can be seen in
Figure 4.8, our findings are in good agreement with the first vibrational mode of the
2-D MM model subjected to free-fixed boundary conditions whose natural

frequencies are listed in Table 4.3.
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Figure 4.6: Variation of mid-span displacement in y-direction for 2-D MM model

shown in figure 4.5 (a).
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shown in Figure 4.5 (b).
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Figure 4.8: Power spectrum density plot of the 2-D MM model subjected to free-

fixed boundary conditions.

For transient analyses of the 3-D SLGS models, the time step is chosen as 10 ns.
Figure 4.9 shows the displacement in z-direction for a node located in the middle of
the SLGS subjected to initial displacements shown in Figure 4.5 (c). Observe in
Figure 4.9 that small amount of beating occurs in 3-D vibrations of the MM model of
SLGSs as well. Figure 4.10 shows the frequency spectrum of the displacement
component in Figure 4.9 obtained by using Burg PSD estimator in MATLAB. The
peak corresponding to the first natural frequency of 2.37 GHZ appears in the
spectrum plot. It can be seen that the findings of Figure 4.10 are in good agreement
with the first natural frequency of the 3-D MM model of SLGSs subjected to free-
fixed boundary conditions whose solutions are listed in Table 4.4. Although
rotational DOF are included in FE models due to employment of consistent mass
matrices, total translational kinetic energy is approximately 99.9% of the total kinetic
energy; hence, it can be concluded that rotational kinetic energy is very small and

employement of consistent mass matrix including rotational effects is acceptable.
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4.3. Fracture Analyses of SLGSs

In this section, an atomistic based FE model for prediction of fracture behavior of
SLGSs is developed by considering large deformation and nonlinear geometric
effects. EB beam elements are used to represent covalent bonds and non-linear
characteristic of the beam elements are obtained by using the modified Morse
potential. Formulation underlying the proposed approach is applied to defect-free,
Stone-Wales (SW) and non-reconstructed one atom vacancy defected zigzag and
armchair SLGSs.

4.3.1. FE formulation of the C-C bonds

The proposed model is basically a combination of the structural mechanic approach
of Li and Chou [34] and the atomistic-based progressive fracture model of Tserpes et
al. [85]. We already investigated mechanical properties, modal and transient behavior
of SLGSs in Sections 4.1 and 4.2. Harmonic expressions for potential energy term
are used and geometric constants are given in Table 4.6.

Table 4.6. Geometric properties of the EB beam element.

Bond thickness , d 1.47 A,
Cross-sectional area, A 1.687 A? ,
Moment of inertia, | 0.22682 A*

If small deformation assumption exists, these parameters are sufficient to determine
the behavior of an atomic bond. However, this assumption is not adequate for failure
analysis of SLGSs which should be analyzed as a large deformation problem and
geometric nonlinear effects have to be considered. To this end, at each load step, the
loading is applied incrementally, non-linear characteristic of the EB beam elements
are obtained by using the modified Morse potential and nodal coordinates are
updated in this study. Planar beam formulation is sufficient to determine in plane
fracture behavior of SLGSs and the element stiffness matrix of a planar EB beam

element is given by Equation (3.1)

On the other hand, the EB beam element formulation does not consider shear
deformation effects and exactly represent potential energy of interatomic bonds.
Scarpa and Adhikari [49] proposed a beam model considering the shear deformation

effects and they found new geometric and material properties of the beam element by
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using the AMBER force model constants [34]. Both of the models in Li and Chou
[34] and Scarpa and Adhikari [49] yield the same deformation results for small
deformation problems. For large deformation problems, shear beam element (i.e.,
Timoshenko beam element) is not preferred since it is more difficult to be adapted

for the modified Morse potential energy terms than the EB beam element.

For in-plane deformation problems of SLGSs, the atomistic interaction is mainly
governed by the bond stretching and bond angle bending terms. As a result,
according to the modified Morse potential, the potential energy can be expressed as
Equations (3.37) — (3.38). The following equations can be obtained by differentiation
of Equations (3.37)- (3.38)

Pl AT

F-2pD.1-¢ (4.14)

M=kg (0 -6p) + I*3 ksextic(‘g_go)4 - (4.15)

Equations (4.14)- (4.15) represent the force/bond length and momentum/C-C-C angle
variation. Belytschko et al. [72] reported that the bond angle-bending potential does
not contribute to the stretching energy and it has little effect on fracture in CNTSs.
The bond angle-bending potential energy term can be added to stabilize the
molecular structure which is considered by the rigidity of the EB beam element and
extra moment effect originating from Eqeation (4.15) (i.e., the second term in
Egeations (3.38) and (4.15)) is neglected. Note that force-strain curve obtained by
using Eqgeation (4.14) is highly nonlinear at large strain values and force-strain curve
shapes of Brenner and modified Morse potential functions are very similar prior to
the inflection point [72] (i.e., see Figure 4.11).
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Figure 4.11: The Brenner and modified Morse potentials and tensile force fields. (a)
potential field for Brenner and modified Morse potential (b) force fields
in segment [AB] in part (a) [73].

Belytschko et al. [72] studied the fracture of CNTs by using MM simulations and
reported that the fracture is almost independent of the dissociation energy and
depends primarily on the inflection point of the interatomic potential. After the
inflection point, the shape of the potential function is not important since material
damage occurs. A cut-off distance (r) based on bond-breaking criterion is very often
used in atomistic simulations and different cut-off distances have been suggested in
literature [75, 90]; in this thesis, the value of r¢ = 0.169 nm is employed which
corresponds to the inflection point at approximately 19 % strain (i.e., the maximum

of the interatomic force curve).

4.3.2. FE models of defect-free and defected SLGSs

Equivalent FE models of the defect- free and defected SLGSs are illustrated in
Figure 4.12. The overall dimensions of the SLGSs are its length in the armchair (L)
and zigzag (Ly) directions that are shown in Figure 4.12. In our simulations, the
defect-free model of SLGSs has 125.52 A x 126.46 A dimensions, and contains 6180

atoms (i.e., nodes) and 9159 bonds (i.e., elements).
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Figure 4.12: Equivalent FE model of the defect-free and defected SLGS model; (a)

one atom vacancy, (b) SW defects

Production of mass-quantities of defect-free GSs or CNTs may prove challenging
and different types of defects may exist in practice. It is reported in several QM and
MD studies that these defects significantly affect the mechanical performance of
these carbon based structures [71, 73, 75-79, 83]. In addition, a lot of MM based
numerical studies exist about the effect of defects on fracture behavior of CNTs and
GSs [72, 85, 86, 89, 91, 94]. The possible and mostly studied GS defects are
incomplete bonding defects such as vacancies and topological defects such as the
SW transformation. In addition, rehybridization and heterogeneous defects may exist
in GS structures. These defects may be induced due to stress or emerge during the
growth or synthesis processing [67]. Vacancy defects originate from missing atoms
in the GSs and may occur due to an electron irradiation or oxidative purification. The
SW defect involves the 90° rotation of a carbon bond about its center and is
originally presented as the “SW transformation” [131]. Finally, four hexagons

transform into two pentagons and two heptagons.
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Figure 4.13: The SW defect generated by rotating the C—C bond (a) defect- free
lattice and (b) SW- defected lattice.

Figure. 4.13 shows the SW (5-7-7-5) defect formation in the undeformed hexagonal
lattice schematically. In this study, we considered one atom vacancy and SW defects,
and investigated the effects of these defects on fracture behavior of SLGSs. Both
zigzag and armchair directions are taken into account (e.g., see Figure 4.12). In all
calculations, we assumed that the SW and one atom vacancy defects are located in
the middle of the SLGSs. Figure 4.12 shows the defect-free sheet and the middle
areas of the sheet where defects are located in the simulations. Sammalkorpi et al.
[71] investigated the effect of reconstructed and non-reconstructed vacancy defects
on tensile behavior of CNTs and show that the strength reduction caused by
reconstructed case is smaller than that caused by their non-reconstructed case.
Sammalkorpi et al. [71] used an annealing step beginning the MD simulations at high
temperature for reconstruction. However, reconstruction does not occur in our
simulation since the distance between the potential reaction atoms exceeds the
interaction cut-off. On the other hand, although metastable, the non-reconstructed
SWLNT configurations can be present at low temperatures and low dose irradiation
[132, 133], and non-reconstructed defected SWCNTs used in several works in
literature [85, 131, 134]. We considered non-reconstructed one atom vacancy defect
in computational models, and one carbon atom and corresponding three C-C bonds
are removed in the defect-free SLGSs (i.e., Figure 4.12). Nardelli et al. [68, 70]

showed that defect nucleation in armchair CNTs and GSs under transverse tension
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occurs via SW transformation at critical tensile strain of 5% in CNTs and somewhat
later in GSs due to the absence of the additional curvature effect of the tubular
structure. In addition, Zhang et al. [135] found that this transformation occurs at
critical tensile strain of 6% for armchair CNTs and 12% for zigzag CNTSs. In this
study, strain barrier of 6 % for armchair SLGSs are considered for the formation of
SW defects. It is noteworthy that 5% and 6% values of the strain barrier for the
formation of SW defects did not affect our numerical results considerably. Tserpes et
al. [86] used a combination of the stress-strain curve of defect-free and SW-defected
CNTs to simulate fracture behavior of SWCNTs, and assumed that SWCNT
dimensions remain unchanged after the formation of SW defects and neglected the
deformation around the defect nucleation region. However, after the SW
transformation, new configurations of the bonds affect the locations of neighboring
atoms which change their locations into new lesser potential energy configurations.
On the other hand, Xiao et al. [89, 91] proposed an interaction based mechanics
approach to calculate the deformations caused by the formation of SW defects. In our
study, to simulate the SW transformation, we started the simulations with defect-free
GSs and the configurations of bonds are changed at the defect formation strain (e.g.,
Figure 4.13); then, initial pre-strain is applied to obtain minimized energy
configurations of atoms and the simulation is continued until catastrophic failure of
the SLGS.

4.3.3 Computational results

The procedure in our numerical studies is summarized in this section. Described by
the modified Morse potential, the non-linear behavior of bonds is represented by EB
beam elements and an incremental procedure is followed similar to [85] to apply the
loading. Geometric parameters given in Table 4.6 are used for the EB beam
elements. Note that the elasticity modulus is updated during load increments as the
ratio of the stress to strain at a single point of the stress-strain curve, it is called the
secant modulus in literature. Initial secant modulus of beam elements (i.e., 6.93 TPa)
is obtained through the stress-strain curve of the C-C bond according to the modified
Morse potential. Force- displacement, force- strain, stress- strain and secant

modulus-strain curves of the C-C bond are shown in Figures 4.14 -4.17, respectively.
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Figure 4.17: Secant’s modulus - strain curve.

In simulations, all the nodes at one end of the zigzag (i.e., x- direction) or armchair
(i.e., y- direction) SLGSs are fully constrained, while the nodes at the other end are
subjected to an incremental displacement. The secant modulus and nodal coordinates
of each element of the original SLGS structure is updated at each load step. At each

load step, the secant modulus of each element is set to F /(Ag), where A is the cross
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sectional area of the element, ¢ axial strain of the each element, and F the interatomic
force is calculated by Equation (4.14). When the axial strain of a bond reaches the
critical fracture strain, then its stiffness matrix is multiplied by a very small number
to simulate the bond break. Following, very small additional displacement is applied

to the SLGSs and this iterative procedure goes on until the complete failure of
SLGSs takes place. The strain in SLGSs is calculated by = (L - L)/ Ly, where

Lso is the initial (equilibrium) length and Ls is the current length of the sheet material.
The stress is calculated by o =F, G where Fg is the corresponding applied

tensile force computed by summation of the longitudinal reaction forces of the
constrained nodes, L, is the width of SLGSs and t is the thickness of the SLGSs. In
all calculations, the thickness of 0.34 nm is used for the SLGSs. Accuracy of the
results depends on the number of load steps. Hence, an acceptable strain increment is
determined on a trial and error base to guarantee the convergence of numerical
results. All fracture computations of the MM model are completed by using a

computer code developed in MATLAB environment.

59



Table 4.7: Predicted failure strain (gf) and stress (of) values of SLGSs .

e | Defect- One
Study Method Type of free SW atom
(GPa) vacancy
Present (with geometric MM zigza &f 0.130 ) 0.077
nonlinearity effect) gzag ot 82.22 - 69.92
Present (without geometric MM sigza &f 0.142 ) 0.085
nonlinearity effect) gzag ot 95.68 - 78.61
Present (with geometric MM armchair &f 01r4 0088  0.108
nonlinearity effect) ot 102.15 77.38  86.34
Present (without geometric MM armchair &t 0.190 0.093 0.120
nonlinearity effect) ot 122.37 874 102.74
sioza & 0123 - -
Yanovsky et al. [84] oM gzag of 90.5 - -
armchair &' 0123 - )
ot 138.6 - -
zigzag o 3'316
Xu [80] MD Sf 0.24
. . , - -
armchair o 08 ) )
igzag & 0.194 - -
Liu etal. [81] QM o (1)12066 ] i
. f . - -
armchair o 121 ) )
igzag & 0130 - -
Zhao et al.[82] MD of 8020
armchair '
Of 107 - -
zigzag o 8613
Wang et al. [83] MD o 0.22
. f . = -
armchair o 105 ~92 -82
] . & 0.20 - -
Ansari et al. [73] MD Z19zag o1 115.72 - -
Xaio et al.[89] MM armchair zf ) ~0.007 -
) . . -

Table 4.7 shows the predicted failure strain (gf) and stress (of) values of the SLGSs
along with the experimental and numerical results in literature. It is observed in
Table 4.7 that calculated failure strain and stress values lie in the same range with the
results in literature. Moreover, our numerical results are very consistent with the
numerical results on CNTs in literature [72, 78, 85, 86, 88, 89, 136]. It can be seen in
Table 4.7 that by including large deformation and geometric nonlinearity effects,
fracture stress and strain values reduced by about 11-17 % and 4-10 %, respectively.
According to Table 4.7, the SLGS exhibits an orthotropic fracture behavior. Namely,
it is stiffer in the armchair direction (i.e., Xx- direction) than in the zigzag direction
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(i.e., y- direction). The fracture stress and strain values in the armchair direction are
approximately 24 % and 34 % larger than those in the zigzag direction, respectively.
This result agrees with the studies in literature. As expected, the fracture stress and
strain values of defect-free SLGSs are the highest in Table 4.7 and these values
reduce by the presence of defects in the structure. It is observed in Table 4.7 that
fracture stresses of the zigzag and armchair SLGSs reduced by 14.9 % and 15.4 % if
one atom vacancy defect exists in structures, respectively. It can be seen that SW
defects resulted in reduction in fracture stress and strain values of the armchair SLGS
structures (see Figure 4.12 b) as bond rearrangement causes stress concentration in
vertical bonds and early bond fracture occurs. This result agrees with calculations on
CNTs in literature [86, 89].
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Figure 4.18: Stress- strain curves for defect-free armchair and zigzag type SLGSs

with and without geometric nonlinearity effects.
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Figure 4.20: Stress- strain curves of zigzag type SLGSs.

Figure 4.18 shows the calculated stress—strain curves of defect-free armchair and

zigzag type SLGSs with and without geometric nonlinearity effects. It can be seen in

Figure 4.18 that consideration of geometric nonlinearity effects resulted in reduction
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in fracture stress and strain values significantly. Figures 4.19 and 4.20 respectively
show the stress- strain curves for defect-free and defected armchair and zigzag
SLGSs by considering geometric nonlinearity effects. As can be seen in Figures 4.18
— 4.20, the resulting stress exhibits a sudden drop to zero when the stress reaches to
the fracture stress. Hence, it is concluded that the fracture of all types of SLGSs are
brittle which are also reported in several studies in literature [72, 73, 83, 85, 86, 91,
95].

Y Y Y Y

Y Y Y Y Y

Figure 4.21: (a) Fracture initiation and (b) propagation directions of the SW-
defected armchair SLGS.



Our proposed approach is able to give the correct prediction of fracture initiation
and post failure behavior of SLGSs. However, the accuracy of predicting crack
propagation in nanoscale is limited as the modified Morse potential function does
not consider many-body interactions and it is not capable of describing the
behavior of SLGSs after the C-C bonds are broken where the reconfiguration of
bonds and structural transformations may occur. Figures 4.21 and 4.22 respectively
show the fracture initiation and crack propagation directions of the SW-defected

armchair SLGSs and one atom vacancy defected zigzag SLGSs.

N N N G

Figure 4.22: (a)Fracture initiation and (b) propagation directions of one atom

vacancy defected zigzag SLGS.

As can be seen in Figure 4.21 that the fracture initiated from the vertical bond which
connects the two pentagons and continued diagonal crack paths. Crack propagation
direction is in maximum shear stress directions having an angle of +45° with the
horizontal direction. Similar fracture patterns are also observed in literature [72, 86,
89] for the SW- defected CNTs and SLGSs. As can be seen in Figure 4.22, the

fracture initiated from the vertical bond which is shown in dark colour in Figure
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4.22a and propagated in the same row of bonds. The same crack propagation
characteristic has been observed in studies on CNTs in literature [72, 85].
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5. COUPLED MOLECULAR/CONTINUUM MECHANICAL MODELING
OF SLGSs

In this section, a coupling method for the MM and CM models is derived based on an
augmented formulation of atomistic and continuum displacement fields in a moving
least square sense, which originates from an unconstrained optimization problem to
be solved. The augmented problem is solved by the Lagrange multiplier method and
it allows multiscale analyses of multiple numbers of molecular mechanics (MM)
domains in a single continuum mechanics (CM) domain. In contrast to alternative
approaches in literature, there is no need for an overlapping domain in the proposed
approach and the MM domain(s) can be placed arbitrarily in the CM domain; hence,
one can focus on any desired CM subdomain where we need to obtain atomistic
solution. Formulations underlying the proposed approach are presented and applied
to defect-free and defected SLGSs. In the atomistic models, harmonic and modified
Morse potentials are employed to simulate problems of defect-free small deformation
and defected large deformation SLGSs. In the CM domain, it is assumed that
deformations are elastic and plane stress conditions exist whose elasticity modulus
and Poisson’s ratio values are obtained by the use of MM models. In order to verify
the proposed approach, deformation and damage of SLGSs are examined and
comparisons are made with the results given in literature. It is shown that proposed
approach can compute the deformations of SLGSs in high accuracy, enables to
obtain MM solution in any part of the CM domain and can be easily applied to other

materials such as carbon nanotubes [137].

5.1 Computational Framework

This section presents a mathematically consistent coupled framework for linking the
MM model used at very fine-scales and CM model used at coarse scales. The

coupled approach consists of three components: the atomistic domain, continuum
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domain and coupling method. We will present these components in the following

subsections.
5.1.1 Atomistic and continuum domain formulations

For the atomistic scale simulation of SLGSs, an atomistic based FE model presented
in Sections 3 and 4 is used. In the continuum domain, it is assumed that plane stress
conditions exist, for which elasticity modulus and Poisson’s ratio values of the CM
domain are obtained by the use of full atomistic MM models. By updating the
elasticity parameters of the CM domain based on the MM solutions, nonlinear effects
are considered in iterative solutions of large deformation problems. In atomistic and
continuum plane stress calculations, the nominal thickness of 0.34 nm is used for the

graphene layer.

Linear quadrilateral (rectangular) elements are used in plane stress models. The main
reason is that the linear quadrilateral elements are usually more accurate than linear
triangular elements as the strain vector of the linear quadrilateral elements is not
constant. Hence, more realistic presentation of strain is obtained when linear
quadrilateral (rectangular) elements are used. The element stiffness matrix for

linear quadrilateral (rectangular) elements is as follows

KS=[hBTcBdA = [ f anbBTCBdsdy (5.1)
where B is the strain matrix, C is the material constant matrix and the dimension of
the element is defined 2ax2bxh. A local natural coordinate system (&, n) with its

origin located at the center of the quadrilateral element is defined. Figure 5.1 show
the quadrilateral element and the corresponding coordinate systems.
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Figure 5.1: Quadrilateral element and coordinate systems. (a) Quadrilateral element
in physical system, (b) square element in natural coordinate system
[138].

The relationship between the physical coordinate (x,y) and local coordinate system

(&, m) is as follows

_X _y
f—g, =y (5.2)

Equation 5.2 defines a very simple coordinate mapping between physical and natural
coordinates systems for quadrilateral element as shown in Figure 5.1. The

displacement vector U as follows
Ux,y)=N(xy)dg (5.3)
where the nodal displacement vector uS is arranged in the form as follows
de(z: =Q; v Uy V, Uz V3 Uy V4j (5.4)

In global x and y coordinate system, the nodal displacements and rotations are

defined for rectangular element as follows

u;, vi  xandy displacements at node 1
Uz, V2 xandy displacements at node 2
us, v3 xandy displacements at node 3

Ug, V4 X andy displacements at node 4

69



and the interpolation functions are given by

N__{Nl 0 N, 0 N3 O N, 0}

0N, O N, 0 N; 0 N, (5.5)

where N; (i=1,2,3,4) are the interpolation function corresponding to the four nodes of
the rectangular element and defined as follows

Ny =4 A-£)-1)

N, =2 L+ )1

1 (5.6)
stzﬂ+@ﬂ+m
1
N4:Zﬂ—@@+m
The strain matrix B has the form
B=LN (5.7)
where L is called a differential operation matrix and defined as follows
olox 0
aloy olox
By substituting Equations (5.8) and (6.5) into Equation (5.7), we have
It/ /A St/ A S ot/
¢ 1-¢ : 1+¢ : 1+¢ § 1-¢
— + —
=Y s Y e Y Y (5.9)
1-¢& 1-p 1+& 1-p 1+¢& l+p 1-&  1+g
b a b a b a b a |

Material constant matrix C for plane stress and isotropic materials is defined as

follows
1 v 0
C= E 1 0
1,2 v (5.10)
00 (1-v)/2
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where E is the elasticity modulus and v is the Poisson’s ratio of the element.
5.1.2 Coupling strategy

Consider a planar body which is decomposed into two domains: an atomistic domain
QO* and a continuum domain Q°. The superscripts ‘A’ and ‘C’ are used to denote
atomistic and continuum identifiers, respectively. I'* represents the boundary of the
atomistic domain Q" which surrounds outer elements of Q. Possible compositions
of O” and Q° domains are shown in Figure 5.2, where it is noteworthy that
location(s) and number of the MM domains can be arbitrary. For simplicity, we will
consider the case that the MM domain is located in the center of an element in the
CM domain (e.g., see Figure 5.2b). It is assumed that atomistic domain Q" is traction
free, and the traction is only applied to the boundary I'° of the continuum domain Q°.
The displacement field is decomposed into a fine scale solution u” and a coarse scale

solution u®.

QC

MM domain >

7™

MM domain ——> L/

CM domain

Figure 5.2: Composition of Q” and Q° domains, (a) atomistic domain overlaps with
several CM elements, (b) atomistic domain coincides with one CM

element.

In this paper, the CM domain is modeled as a plane-stress material, while the
atomistic bonds are modeled by using Euler-Bernoulli beams. The variational

formulations and Galerkin approximation to plane-stress material and Euler-
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Bernoulli beam are omitted for brevity (e.g., see [124]). In brief, the associated FE

formulations can be written in the following matrix forms at element level

C
Keu

@0

= fg (5.11)
Keug = fg' (5.12)

where the subscript e denotes the element number, and KSand kZ2are element
stiffness matrices for the plane-stress continuum element and Euler-Bernoulli beam
element, respectively; u$and ufare unknown nodal displacement vectors for the
plane-stress continuum element and beam element, respectively; fCand f/ are

element force vectors for the plane-stress continuum element and beam element,
respectively. Following, by assembling the element equations given by Equations
(5.11) and (5.12), the global equation systems for the plane-stress CM domain and

atomistic fine-scale domain can be respectively written as follows

C,,C_ ¢C
Krum =1 (5.13)

KAUA = £ A

(5.14)

The missing link between the continuum and atomistic domains is the coupling
method. The relations between the displacement field of an atomistic domain  and

that of the surrounding continuum domain  can be expressed as follows
uC () = E fA 0+ (6x) (5.15)
£°00 = E A+ (av) (5.16)

where the E[.] is the operator taking the average of the argument, x is the location
vector and ox is the perturbation given to x. In addition, due to the FE formulation,

we have

ug () =xP_  N; (uf (5.17)
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where N;(x) are the shape functions, and P equals to 3 for planar triangular elements
and 4 for planar quadrilateral elements. Referring to Figure 5.2b, the following

relation should hold for an atomistic domain having the boundary I’ A whose

surrounding continuum domain has the solution of u$ (x)

EfA =uSe0 (5.18)

For instance, if an atomistic domain lies in a planar quadrilateral continuum element

(i.e., Figure 5.2b); then, we can write the following relations for a node on I'*
E l/;A =ug () =Ny (Qug, + N, (X)u5, +Ng(x)ug, + N4 (ug, (5.19)

Ef2n =5 (0 =Ny OOV, + N (WS, + Ny (VS + Ny (v, (5.20)

where u$ and vS represent respectively the horizontal and vertical displacement
components, and (ug,us,,us,us)and (v, vs.,vs,ve.) respectively denote the
nodal values of horizontal and vertical displacement components. The subscript I'*
denotes that the associated variable is evaluated on I, Following, we can write two
equations per an atomistic node on the boundary I'* for horizontal and vertical

displacement components that can be arranged in matrix form as follows

Cel
Ule u]’-A‘
C
Ve le
NpGg) NpG) NaGq) o NaCq) o Na(q) N3Gq) NgGq) NaODTuS 1 A
2
v A
2e |_|v
=V2
C 5.21
. . . _ . . _ S (5.21)
Ni(Xq) Ni(xp) No(x,) No(x,) Ng(xp) Na(xg) Ny(xp) N4(xn)7 Vge A
u$ | [Un
& A
Vae] - n.

where n is the number of atoms on the boundary I'*. Then, Equation (5.21) can be

written as

cC_ A
Al =Ur, (5.22)

r
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where the coefficient matrix A< R™™ supplies projection of displacements of the
CM and MM domains, m equals to 6 for a planar triangular and 8 for a quadrilateral

element, and x; are the coordinates of the ith atom.

Locations of atoms on I used for least squares projection may be located on CM
element boundaries as shown in Figure 5.2b or inside a CM element as shown in
Figure 5.2a; nonetheless, by proper choice of projection matrix A, Equation (5.22)
can be used for projection for all cases. Note that Equation (5.22) is an
overdetermined equation system whose solution can be calculated by using the
pseudo-inverse in a least-square sense as follows

ug = (AT A)_lATuﬁA (5.23)
which is a least squares fit equation that links the atomistic displacements on the
boundary I with nodal displacements of «S. Locations and number of overlapping
elements can be selected arbitrarily, and no bridging domain is used. Following, the
coupling of CM and MM solutions is set up as an optimization problem to solve
Equations (5.13), (5.14) and (5.23) concurrently. Common approach to the solution

of constrained optimization is to introduce m Lagrange multipliers A; and define an

equivalent unconstrained optimization problem as follows [124]:

Find u®, u” and A such that
R 1 cT cc, 1l AT oaan cTec AT oA, .T,C A
INnIMize L== K — K - f~ - f A -B
minim 2u u +2u u u u +4 (u u™) (5_24)

where L is the Lagrangian, superposed T denotes matrix transpose and
B=(ATA) AT (5.25)

Solution of Equation (5.24) yields u” and u® by the least squares fit of u* and u® on
™. By using Equations (5.22) and (5.25), we introduce two new projection matrices

E; and E, to extract the DOF determined below

ug = BU?A = BEzuA (5.26)
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ug = Eluc (5.27)

EluC = BE2uA (5.28)

where E; e R¥! (k is equal to total DOF of elements in a single element ¢, which

is 6 for a planar triangular element and 8 for a quadrilateral element, and | is equal to
total DOF of elements in the entire Q° domain) and E, eRP(p is equal to total
DOF of atoms on the boundary 7* and r is equal to total DOF of atoms in the entire
Q" domain). Note that the projection matrices E; and E; provide us extraction of
selected DOF out of displacement components of the CM and MM domains,
respectively. Rows of E; and E, are formed of unit vectors

ej=p . . 010 .. owhose jth component is equal to one and all other

components are zero.

Using the optimization steps given on p.76 of [124], the solution of the optimization

problem Equation (5.24) is given by:
KA (BEy) Jur|_| f#
BE, 0 | 2] |[Eu® (5.29)

and the augmented equation system can be expressed as

kK¢ o o [uC]| |fC
0o KA BEyHT uf =] fA (5.30)
~E; BE, 0 2 0

By solving the augmented equation system of (5.30), we get the solutions of
Equations (5.13), (5.14) and (5.23) concurrently.

In brief, this approach is flexible such that it allows placement of the MM domain in
any region of the CM domain without introducing an overlapping region. If the
global stiffness matrices for the MM and CM domains are given, fine scale solution
of any subdomain of the CM domain can be obtained by proper choice of projection

matrices E; and E,.
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5.2 Numerical Examples

For the validation of molecular, continuum and coupled models, two static loading
and three fracture mechanic problems are solved. All coupled and full atomistic
model computations are completed by using a computer code developed in
MATLAB environment. Note that the full atomistic model having 494,548 atoms is
solved by using Ansys software that is used as the reference solution.

5.2.1 Static loading

In the first example on static loading, the Young’s and shear moduli of the zigzag
type SLGSs having different sizes are calculated by using the full atomistic MM
models based on harmonic potentials and compared with the results reported in
literature. The models are assumed to be homogeneous, elastic, plane-stress and
meshed with quadrilateral elements. In simulations, one end of the sheet is
constrained and the other end is subjected to uniform tensile loads. All load vector
calculations are based on consistent load formulations. The Young’s modulus of a
material is defined to be the ratio of normal stress to normal strain, i.e., E=c/¢ fora
graphene layer. The Poisson’s ratio is defined as the ratio of transverse contraction
strain

to longitudinal extension strain  in the direction of stretching force, i.e.,

v=—¢ /g . Once the Poisson’s ratio is calculated, then the shear modulus can be
found by G=E/2(1+v). Table 5.1 lists the values of tensile rigidity Y and shear

modulus G calculated by our model and presented in literature. Observe that Y and G

values reported in literature show dispersion.

Table 5.1. Values of tensile rigidity Y, shear modulus G and thickness t of SLGSs.

Reported by Y (TPa nm) G (TPa) t (nm) Method

Li and Chou [34] 0.338-0.351 - 0.34 Numerical
Scarpa et al. [49] 0.064-0.546 - 0.074- Numerical

0.099

Gupta and Batra [52] 0.340 1.4 0.1 Numerical
Lee et al. [21] 0.335 - 0.335 Experimental
Min and Aluru [139] - ~0.470 0.333 Numerical
Tsai et al. [ 140] 0.310 0.358 0.34 Numerical
Present work 0.350-0.355  0.482-0.493 0.34 Numerical
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Due to end effects, the Young’s and shear moduli of a graphene layer are affected by
the model size. For instance, a graphene layer having the model size of 27.07 A° x
41.20 A° has the Young’s modulus of 1.032 TPa and shear modulus of 0.482 TPa.
On the other hand, if the graphene layer has the model size of 962.4 A° x 1340.0 A°,
then it has the Young’s modulus of 1.047 TPa and shear modulus of 0.493 TPa. It is
observed in Table 5.1 that calculated values of the tensile rigidity and shear moduli
of SLGSs are in agreement with numerous experimental and numerical results in
literature. The uy and uy, displacement contours of the plane stress CM and MM
models are shown in Fig 5.3 for the same tensile loading conditions. As can be seen
in Fig 5.3, displacement contour plots are very similar and plane stress CM and MM
models are almost equivalent. In addition, modal features of both models are found
to be very similar. In sum, presented model can calculate the Young’s modulus and

Poisson’s ratio accurately.
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Figure 5.3: The displacement contours of the plane stress CM and MM models; (a)

ux component and (b) u, component.

For the validation of the proposed CM/MM coupled formulation, further test
problems are solved. To this end, the following error criteria g4 is employed to

determine the accuracy of the models in the atomistic domain

o -

Eq = ‘

2

4 (5.31)

2

lal, = 32 ;a5)"2 (5.32)
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where d™ and d2 are the vectors of atomic displacements calculated by coupled

models and full atomistic models, respectively.

Following, in the second example on static loading, we considered that the MM
domain overlaps with a CM element in the center of the CM domains. While the MM
domain having the dimensions of 27.07 A x 4120 A is unchanged, three coupled
CM/MM models having different CM element sizes are considered as shown in
Figure 5.4. One end of the sample sheets is constrained and the other end is
subjected to total initial displacement of 0.1 A° in positive x- and/or y-directions
(e.g., tensile and transverse directions). Both zigzag and armchair directional loading
conditions are taken into account in analyses and total twelve validation tests are

solved for the three coupled models shown in Figure 5.4.

CM domain CM domain CM domain

a b c
Figure 5.4: Coupled CM/MM models where the MM models are identical while
the CM model changes as follows: (a) model #1, (b) model #2 and (c)
model #3.

Table 5.2 shows the maximum displacement errors of some of these validation tests.
It can be seen in Table 5.2 that the accuracy of the proposed coupled model is
directly related to the element size in the plane stress CM domain. The differences
between the displacements of the coupled CM/MM model and full atomistic models
(i.e., relative error) are reduced by refinement of elements in the CM domain, while

the dimensions of the MM domain are kept constant. It is concluded that sufficient
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number of plane stress elements should be used in the CM domain to increase the
accuracy of the solutions obtained by the CM/MM coupled formulation.

Table 5.2: Maximum displacement errors in the second numerical example on

static loading.

# of atoms in Width Height

#of  #of o €4
CM/MM coupled model full atomistic (A°) (A°)
atoms nodes
model
Fig. a 460 16 8652 125.5 177.6  0.0229
Fig. b 460 100 77,364 376.5 535.7 0.0070
Fig.c 460 576 494 548 962.4 1340.0 0.0041

Figures 5.5 to 5.7 show the uy displacement components at different atoms of the
CM/MM coupled model shown in Figure 5.4b and full atomistic model. Both
models are subjected to initial displacement of 0.1 A° in the positive y-direction

(e.g., tensile direction).
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Figure 5.5: Displacement components uy of the full atomistic and CM/MM
coupled models at boundary nodes in the MM domain.
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Figure 5.6: Displacement components uy of the full atomistic and CM/MM coupled
models in mid horizontal nodes in the MM domain.
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Figure 5.7: Displacement components uy of the full atomistic and CM/MM coupled
models in mid vertical nodes in the MM domain.

It is observed in Figures 5.5 to 5.7 that the largest displacement errors occur at
boundary nodes and the displacement error goes to zero around the middle region of
the atomistic domain that is expected due to least squares projections of atomistic
and continuum displacement fields. Because the coupling strategy is based on least
squares fit over the boundaries of the atomistic domain ™. As a result, it is suggested
in studying the defected graphene layers that the topological defects should be
located in the middle region of the atomistic domain for the best accuracy in our
approach. The relative error of solutions is in the range of 0.41% to 2.29% in
comparison with full atomistic solutions depending on the element size of the CM

domain, that is acceptable.

It is noteworthy that the plane stress CM element satisfies the FE patch test and can
generate the constant strain displacement fields having any orientation. The CM/MM
coupled formulation satisfies the patch test, since it depends on the least squares fit

of the fine and course scale solutions.
5.2.2 Fracture analyses of defected SLGSs

In the first example on fracture mechanics, fracture analyses of defected SLGSs are
completed by considering the CM/MM coupled model where the modified Morse
potential and the CM model having the dimensions of 962.4 A x1340. 0 A and 576
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FE nodes are used. Mostly studied GS defects in literature are incomplete bonding
defects such as vacancies and topological defects (i.e., the Stone-Wales (SW)
transformation) [67]. Vacancy defects originate from missing atoms in the GSs and
may occur due to an electron irradiation or oxidative purification. A non-
reconstructed defected zigzag SLGSs is used in our study, and corresponding C-C
bonds and carbon atoms are removed in the defect-free SLGSs (e.g. see Figure 5.8).

Bescice
b | @

Figure 5.8: (a) The CM/MM coupled SLGS model, (b) one-atom vacancy defect,

and (c) two-atoms vacancy defect.

AL
(]
AL

Although metastable, the non-reconstructed configurations can be present at low
temperatures and low dose irradiation [132, 133] and non-reconstructed defected
SWCNTSs are used in some works in literature [72, 85, 132]. Described by the
modified Morse potential, the non-linear behavior of bonds is represented by using
EB beam elements and an incremental loading procedure is followed similar to [85].
Initial Young’s modulus of beam elements is obtained through the stress-strain curve
of the C-C bond according to the modified Morse potential and the stress-strain curve

of the C-C bond is shown in Figure 5.9.
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Figure 5.9: Stress-strain curve of the C-C bond.

In the analyses, all the nodes at one end of the graphene sheet are constrained, while
the nodes at the other end are subjected to an incremental displacement. The Young’s
modulus of each element in the original SLGS structure is updated at each load step

and it is set toF/(Ag), where A is the cross sectional area of the element, ¢ axial

strain of the element, and F the interatomic force calculated by Equation (4.14).
Hence, by updating the elasticity parameters of the CM domain by using the MM
solutions, nonlinear effects are considered. When the axial strain of a bond reaches
the critical fracture strain, then its stiffness matrix is multiplied by a very small
number to simulate the bond break. Values of the parameters in the modified Morse
potential functions used in our study are the same as those in [72] where it is reported
that the bond angle-bending potential does not contribute to the stretching energy and
it has little effect on fracture in CNTSs. Belytschko et al. [72] studied the fracture of
CNTs by using the MM simulations and reported that the fracture is almost
independent of the dissociation energy and depends primarily on the inflection point
of the interatomic potential. After the inflection point, the shape of the potential
function is not important since material damage occurs. A cut-off distance (rc) based
on bond-breaking criterion is very often used in atomistic simulations, and the value
of ree = 0.169 nm is employed which corresponds to the inflection point at
approximate strain value of 19 % (i.e., the maximum of the interatomic force curve).

The strain in SLGSs is calculated by £=(L-Ly)/L, where Ly and L are the initial

(equilibrium) and current lengths of the sheet material, respectively. The stress is

calculated by o=F, /bt where Fq is the corresponding applied tensile force
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computed by summation of the longitudinal reaction forces of the constrained nodes,

and b and t are respectively the width and thickness of the sheet.

Table 5.3 summarizes the results obtained by the full atomistic and CM/MM coupled
models. The fracture strain and stress values of coupled models are slightly larger
than those of the full atomistic models. It is observed in Table 5.3 that fracture
stresses of the SLGSs are reduced by 17.8 % and 20.7 % if one-atom and two-atoms
vacancy defects exist in structures, respectively. This result also agrees with the MM

calculations on CNTSs reported in [72, 85].

Table 5.3: Results of the analysis of defected SLGSs.

Full
CM/MM stress  CM/MM Full atomistic o
Defect type ) atomistic
(GPa) strain stress (GPa) )
strain
One-vacancy 77.1 0.087 78.6 0.085
Two-vacancies 76.1 0.086 75.8 0.084

In sum, the proposed approach is able to give the accurate prediction of fracture
initiation and post failure behavior of SLGSs. The relative errors in fracture stress are
less than 2% although relatively small number of atoms is selected in the MM model.
However, the accuracy of predicting crack propagation in nanoscale is limited as the
modified Morse potential function is not capable of describing the behavior of
SLGSs after the C-C bonds are broken where the reconfiguration of bonds and
structural transformations may occur. Note also that the same fracture initiation and
crack propagation patterns are observed in both coupled and full atomistic
simulations. Fig 5.10 shows the fracture initiation and crack propagation directions
of the one-atom vacancy defected sheet models. As can be observed in Figure 5.10,
the fracture initiated from the vertical bonds which is shown in dark colour in Figure
5.10a and propagated in the same row of bonds as expected. The same crack
propagation characteristic is observed in studies on zigzag type CNTs in literature
[72, 85] that justify the proposed CM/MM coupling approach.
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Figure 5.10: (a) Fracture initiation and (b) propagation directions of one-atom

vacancy defected full atomistic and coupled models.

In the second example on fracture mechanics, a graphene layer with a central crack is
considered; the MM/CM coupling scheme and elasticity formulas are used to
determine the strain distribution along the crack direction in the layer. Figure 5.11
shows the atomistic sheet containing a crack in the center. The dimensions of the
continuum and atomistic domains are 2262.75 A x1136.00 A and 310.11 A x113.68
A, respectively. The atomistic domain is located in the middle of the CM domain and
consists of 13662 atoms.
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Figure 5.11: The atomistic sheet containing a crack in the center.

The crack is located in the middle of the MM domain, is perpendicular to vertical
C-C bonds and the loading direction. The center crack is modeled by removing the
C-C bonds to eliminate the interaction between atom pairs across the crack surface.

The crack length of 2a=14.76 A is considered in the simulations. The plane stress
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loading is assumed for the CM domain. The atomistic displacement field is
calculated from linear elastic fracture mechanics (LEFM) with initially specified
stress intensity factor K,. In fracture mechanics, the relative displacements between
corresponding pairs of atoms separate symmetrically normal to the plane of the crack
in the opening mode or mode 1. The linear elastic solution of the displacement fields
in the vicinity of the crack tip in opening mode is given by [141]

K 2 0]

Uy = 2;; . cosz{(/c 1) + 2sin? 2] (5.33)
K 6 5 6]

uy = 2; o S|n2[(zc+1)—2cos 3] (5.34)

where uy and uy are the displacements in the x and y directions, respectively, K; is the
stress intensity factor, p is the shear modulus of the material, x = (3—v)/(1+v) for
plane stress, r and @ are the cylindrical coordinates measured from crack tip and v is
the Poisson’s ratio. The stress intensity parameter K, for a finite width plate is given
by [141]

K, =oJm [sec—T2 (5.35)

where o is the gross stress, a is the half-length of crack and w is the width of plate.
The strain distribution in front of the crack is calculated at the prescribed gross strain
of &y =1%. Fig 5.12 shows the deformed and undeformed configurations of atoms

around the crack tip, where the solid and dashed lines refer to the deformed and

undeformed configurations, respectively.

AAAALOIAA A Ay

Figure 5.12: The deformed and undeformed configurations of atoms around the

crack tip.
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Figure 5.13 shows the strain results obtained by the elasticity solution and CM/MM
coupled model. As can be seen in Figure 5.13, the CM/MM coupled model yields
results that are consistent with linear elastic solution and also in agreement with the
strain results of bridging domain method [106]. It is concluded that the proposed
approach is able to predict the strain distribution near the crack tip accurately.
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Figure 5.13: The strain results obtained by the elasticity solution and CM/MM
coupled model.

In the third example on fracture mechanics, the effect of slit defects on the strength
of SLGSs is examined. The MM/CM coupling scheme and Griffith’s formula are
used to determine fracture stresses of SLGSs with slit defects of various lengths.
Cracks or slit defects are modeled by artificially removing a single row of bonds or
elements in the MM model [77] (e.g., see Figure 5.11). To compare with the results
of an infinite sheet, the model dimensions are selected as 962.4 A x1340 A. The
atomistic domain has the dimensions of 81.2 A x126.4 A and located in the center of
the SLGSs. The Griffith’s theory [142] can be used for brittle and linear elastic
materials to predict a rigorous lower bound for the fracture stress as a function of
crack length. According to the Griffith’s theory, the critical stress for the propagation
of a central crack in a thin and infinitely large sheet is given by [141]

2Ey
ot N A (5.36)
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where o¢ is the Griffith’s formula for critical stress, E is the Young’s modulus of
sheet, y is the surface energy density, and a is the half length of the slit. The surface

energy density v is chosen to be 4.2 J m™ due to [143].
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Figure 5.14: The fracture strength values obtained by the coupled MM/CM model
and Griffith’s formula for a graphene sheet having a slit defect.

To calculate the fracture stresses of SLGSs containing slit-like defects, an
incremental displacement is applied to the edges of the coupled model in the
direction perpendicular to the zigzag edge until the fracture of the sheet. Figure 5.14
shows the fracture strength of the coupled CM/MM model and results of the
Griffith’s formula for SLGSs containing slit-like defects. As can be seen in Figure
5.14, the results of the coupled MM/CM model agree well with the prediction of the
Griffith’s formula. In brief, results of the coupled model are approximately 6%
smaller than those of the Griffith’s formula and both show similar trend for cracks
having different sizes that reduce approximately as the inverse of the square root of
the crack length. Note that Khare et al. [77] also obtained similar results by using a
QM/MM/CM coupled method, where fracture stresses for defective SLGSs are found
to be in good agreement with the Griffith formula for defects as small as 10 A.In
addition, Mattoni et al. [144] found also good agreement between the MM

calculations and Griffith’s formula on SiC. Consequently, the good agreement
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between the results of the proposed MM/CM coupled model and Griffith’s formula

imply that the Griffith’s formula is applicable to nanoscale fracture problems.
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6. VIBRATION AND ELASTIC BUCKLING ANALYSES OF CARBON
NANOCONES (CNCs)

This section reports the result on elastic buckling and vibration behaviors of single-
walled carbon nanocones (SWCNCSs) having the potential usage in atomic force
microscope (AFM) and scanning tunneling microscope (STM) tips. The modeling
work employs the MM based FE approach in which Euler-Bernoulli beam element
formulations are used with consistent mass matrix which is mentioned in Section 3.
Equivalent density parameter for the beam elements in the MM model is obtained by
using the equivalency of natural frequencies of continuum plane stress FE model of
SLGSs and those of the MM model which mentioned in Section 4. Free-free, free-
clamped and clamped-clamped boundary conditions are considered in vibration
analysis of SWCNCs; on the other hand, axial compression and bending loading
conditions are taken into account in elastic buckling behavior of SWCNCs. The
effects of cone height and disclination or apex angles on the buckling force and
natural frequencies of SWCNCs are investigated. In all analyses, the disclination

angles of 120°, 180° and 240° are used while the cone height is varying.

6.1. Structures of SWCNCs

Figure 6.1 shows the cone sheet with the dislocation angle of 120°, 180° and 240°,
and Figure 6.2 shows the corresponding to the cone with apex angle of 83.6°, 60°
and 38.9° SWCNC with cone height of 15 A. The larger the apex angle of a
SWCNC, the larger the bottom radii and number of atoms.
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C

Figure 6.1: Cone sheets with cone heights of 15 A with a) disclination angles of
120°, b) disclination angles of 180°, ¢) disclination angles of 240°.

Figure 6.2: SWCNCs with cone heights of 15 A with a) apex angle of 83.6°, b) apex
angle of 60° c¢) apex angle of 38.9°.

6.3. Vibrational and Elastic Buckling Analyses of SWCNCs

In this thesis, SWCNCs with disclination angles of 120°, 180° and 240° are taken
into account which satisfied the continuity condition at the folding of the cone sheet.
The tip of the SWCNCs is not explicitly modeled in vibrational and buckling
analysis due to geometric limitations (e.g., see Figure 6.2). The smallest model has
180 atoms and 258 bonds, while the largest model has 3592 atoms and 5312 bonds.

Figure 6.3 shows the boundary and loading conditions for vibrational and buckling
analyses of the SWCNCs. All computations of the MM model are completed by
using a computer code developed in MATLAB environment, no damping is
considered in computational models and the results are verified by using Ansys ®

software.
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Figure 6.3: Free-clamped and clamped-clamped boundary conditions in vibrational
analysis (upper) and axial compression and bending loading conditions

in buckling analysis (below).

After assembling the element stiffness and consistent mass matrices, the natural
frequencies and corresponding mode-shapes are obtained by solving the following

eigenproblem
(K-ofM)d =0 (6.1)

Similarly, critical buckling load and corresponding mode shapes are calculated by

solving the following eigenproblem

(Ko —Ky)w =0 (6.2)

where Ky is the global stiffness matrix, K;is the geometric stiffness matrix and  is

the buckling-mode shape vector. The factor A at which buckling occurs is designated
as Aer, and Pe= AP [130].
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Table 6.1: Properties of the beam elements.

Present work Lee and Lee [43]
Mass matrix type Consistent Lumped
Beam type Euler-Bernoulli ~ Shear Beam
Cross-sectional area, A 1.687 A? 1.687 A?
-27 i
Density [22] 2? X107kl 5 3y 1077 Koy A3
-8 i
Elastic modulus, E 15\1712? x10 5.488 x 10°® N/A?
-9 ,
Shear modulus, G Iiz&l% x10 8.711 x 10°° N/A?
Poisson’s ratio, v Not ngeded 03
Bond thickness, d 1.47 A 147 A

The effects of cone height and disclination angles on the natural frequencies of
SWCNCs are examined in vibration analysis where natural frequencies and
corresponding mode shapes are obtained. Figures 6.4, 6.5 and 6.6 show the variations
of the first fundamental frequencies of SWCNCs versus cone height for free-free,
free-clamped and clamped-clamped boundary conditions, respectively. As can be
seen in these figures, the first natural frequency decreases with increasing cone
height in all types of SWCNCs, whereas it increases as the disclination angle
increases except for the SWCNCs having the disclination angle of 240° and height of
20 A. In addition, the SWCNCs with disclination angles of 240° are more sensitive
to variations in height and boundary conditions than the other SWCNCs in
vibrational analysis due its small apex angle. When free-clamped and clamped-
clamped boundary conditions are considered, the first fundamental frequencies of
SWCNC:s, are found to be in the range of 0.36 —2.52 THz.
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Figure 6.4: Variation of the first natural frequency of SWCNCs having the
disclination angles of 120°, 180° and 240° as the cone height changes
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Figure 6.5: Variation of the first natural frequency of SWCNCs having the
disclination angles of 120°, 180° and 240° as the cone height changes

for the free-clamped boundary condition.
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Figure 6.6: Variation of the first natural frequency of SWCNCs having the
disclination angles of 120°, 180° and 240° as the cone height changes

for the clamped-clamped boundary condition

Lee and Lee [43] used Timoshenko beam element formulations which include shear
deformation effects but they employed Euler-Bernoulli beam element constants (i.e.,
see Table 6.1) [37]; this assumption affects the natural frequencies of SWCNCs that
are found to be lower than those of Euler-Bernoulli beam elements. In addition,
density of beam elements is selected to be the density of SWCNCs (i.e. 2300 kg/m®)
in the MM model. Hence, natural frequencies of SWCNCs are found to be less than
100GHgz in all calculations for the same type of SWCNCs having the height of 20 A
and with free-clamped and clamped-clamped boundary conditions. These frequency
ranges are comparable with those of CNTs and SLGSs (i.e., 10 GHz -1.5 THz for
SWCNTSs and 2.4 GHz — 3.5 THz for SLGSs) which are reported in literature [36,
39].

Figures 6.7 and 6.8 show respectively the variations in the first ten natural
frequencies for the free-free and clamped-clamped SWCNCs having the height of 50
A and disclination angles of 120°, 180° and 240°. It is noteworthy that variations in
the first ten natural frequencies for the free-clamped SWCNCs which are not
presented here for limited space are very close to those of clamped-clamped
boundary conditions since relatively small radius of the cone tips has little effect on

the vibrational behavior of the SWCNCs for these two boundary conditions.
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Figure 6.7: First ten natural frequencies of SWCNCs having the height of 50 A and
disclination angles of 120°, 180° and 240° for free-free boundary
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Figure 6.8: First ten natural frequencies of SWCNCs having the height of 50 A and

disclination angles of 120°, 180° and 240° for clamped-clamped

boundary condition.
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Figures 6.9 and 6.10 show respectively the first five vibration modes of SWCNCs
having the disclination angle of 120° and height of 30 A for the free-free and free-
clamped boundary conditions. The mode shapes of clamped-clamped SWCNCs are
also similar to those of free-clamped SWCNCs, that are not presented here for
limited space. In addition, the second mode shape is very similar to the first mode

shape in both figures, that are not presented for limited space as well.

Mode 1 Mode 3 Mode 4 Mode 5

Figure 6.9: Vibrational modes of SWCNC having the disclination angle of 120°,
height of 30 A for free-free boundary condition.

Mode 1 Mode 3 Mode 4 Mode 5

Figure 6.10: Vibrational modes of SWCNC SWCNC having the disclination angle
of 120°, height of 30 A for free-clamped boundary condition.

Similar to vibration analysis, effects of cone height and disclination angles on the
critical buckling load and associated buckling modes of SWCNCs are studied by
completing elastic buckling analysis. Figures 6.11 and 6.12 show respectively the
variations of the first critical buckling load of SWCNCs as the cone height changes

for the axial and bending loading conditions. Buckling analysis results indicate that
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as the disclination angle increases, the critical buckling load increases in axial
compression loading and decreases in bending loading. The buckling load in axial
compression is larger than bending load for SWCNCs having the disclination angles
of 180° and 240°, and it is smaller than that of bending load for SWCNCs having the
disclination angle of 120°. Hence, it is concluded that bending loading is more
critical than axial compression loading for buckling behavior of SWCNCs as the
disclination angle increases. In addition, the cone height affects the bending buckling
forces more than the axial compression buckling forces. The axial and bending
buckling forces are found to be in the range of 42 — 79 nN and 27 — 64 nN,
respectively. These ranges are comparable with those of CNTs (i.e., ~0.1- 39 nN)

which are reported in literature [59].

110

100
90
80

=== Nanocone 120
=== Nanocone 180

Nanocone 240

70 -
60
50 -
a0 - — ¢ ¢ ¢ ¢ ¢
30 -
20 -
10 |
0 | | 1 | | 1 1

15 20 25 30 35 40 45 50

Nanocone height (A)

Pcr (nN)

Figure 6.11: Variation of the first critical buckling load for the SWCNCs having
the disclination angles of 120°, 180° and 240° as the cone height

changes under axial compression loading condition.
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Figure 6.12: Variation of the first critical buckling load for the SWCNCs having the
disclination angles of 120°, 180° and 240° as the cone height changes
under bending loading condition.

Figures 6.13 and 6.14 show the first ten buckling loads for the SWCNCs having the
height of 50 A. As can be seen the figures, the elastic buckling modes of the
SWCNCs have similar pattern except for the SWCNC with the disclination angle of

240° under axial compression loading.
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Figure 6.13: First ten buckling mode of SWCNCs having the disclination angles of

120°, 180° and 240°, and height of 50 A for the axial loading .
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Figure 6.14: First ten buckling mode of SWCNCs having the disclination angles of
120°, 180° and 240, and height of 50 A for the bending loading.

Figures 6.15 and 6.16 show respectively the first six buckling modes of the SWCNCs
with the disclination angle of 240° and height of 50 A under the axial compression
and bending loading conditions. Since the second and fifth buckling modes are
respectively very similar to the first and sixth buckling modes, they are not presented

here for limited space.

Mode 6

Figure 6.15: The first six buckling modes of the SWCNC having the disclination

angle of 240° under the axial compression loading.
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Mode 6

Figure 6.16: The first six buckling modes of the SWCNC having the disclination
angle of 240° under the bending loading.
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7. CHARACTERIZATION AND FRACTURE ANALYSIS OF CARBON
NANOTUBES (CNTs)

This section reports the results on mechanical properties of SWCNTSs such as axial
Young’s modulus, Poisson’s ratio, shear modulus, elastic buckling loads and
natural frequencies. The modeling work employs the MM based FE approach
which is mentioned in Sections 3 and 4. Table 6.1 summarizes the geometric and
material properties of the beam element which are the inputs of the FE models in
this section. Armchair and zigzag SWCNTs are considered in analyses. All
computations of the MM model are completed by using a computer code

developed in MATLAB environment.

7.1. Axial Young’s Modulus of SWCNTSs

To calculate the Young’s modulus E, symmetry boundary conditions are applied to
all the nodes on one edge and the nodes on the opposite edge are uniformly loaded.

Figure 7.1 shows the SWCNTSs along with the applied boundary conditions.

N N O W

Figure 7.1: SWCNTs (8,8) along with the applied boundary conditions.

All load vector calculations are based on consistent load formulations and equivalent

nanotube Young’s modulus is evaluated with the following equation
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e Flo (7.1)
g Aa

where F is the total applied force on the atoms at one end of the graphene sheet, Ag
is the cross-sectional area which is equal to zDt (where D and t are the mean
diameter and thickness of the nanotube, respectively), Lo is the initial nanotube
length, AL is changes in the length of the SWCNTs. In Young’s modulus
calculations, the nominal thicknesses of 0.34 nm and 0.147 nm are considered for the
SWCNTSs. Figure 7.2 shows the variation of Young’s modulus of armchair and
zigzag SWCNTs with tube diameter. The calculated Young’s modulus ranges from
about 1.033 TPa to 1.038 TPa for the armchair type and ranges from about 1.004 TPa
to 1.042 TPa for the zigzag type with the thickness of 3.4 A. Tube lengths are equal
to 41.2 A and nominal thicknesses of the both SWCNTSs are considered as 3.4 A in
Figure 7.2. As can be seen in Figure 7.2, the axial Young’s modulus of both armchair
and zigzag SLCANTSs increase with an increasing in diameter and attain a stable

value with increasing diameter for the SWCNTS.
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o 1.03 4
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L —&— Zigzag
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1,01 A

1 T T T T T
0 5 10 15 20 25 30

D (A)
Figure 7.2: Variation of Young’s modulus of armchair and zigzag SWCNTs with
tube diameter. The nominal thicknesses of the both SWCNTSs are 3.4A.
Figure 7.3 shows the variation of Young’s modulus of armchair and zigzag SWCNTS
with tube diameter. Tube lengths are equal to 41.2 A and nominal thicknesses of the
SWCNTs are considered as 1.47 A and 3.4A in Figure 8.3. As can be seen in Figure
7.3, nominal or wall thickness of SWCNTs significantly affects the Young’s
modulus of SWCNTSs. The smaller the thickness is, the larger the calculated Young’s

modulus is.

102



25
= e & T T i i E
2 ] —— Armchair (t=3.4 A® )
——7Zig-zag ( t=3.4 A?)
e Armchair (t=1.47 A?)
1,5 ] Zig-zag (=147 A%)
o
n
< 1 e tg———— & ¢ 8——8— +—u
L
0,5
0 T T ‘ T T
0 5 10 15 20 25 30

D (A)
Figure 7.3: Variation of the Young’s modulus of armchair and zigzag SWCNTSs with

tube diameter and nominal thickness.

7.2. Shear Modulus of SWCNTs

To calculate the shear modulus G, one end of the SWCNTSs is subjected to a torsional
moment and the nodes on the opposite edge are constrained. Figure 7.4 shows the
SWCNTs along with the applied boundary conditions. Equivalent nanotube Young’s

modulus is evaluated with the following equation

_TL

G=
6,

(7.2)

where T is the torque acting at the end of SWCNTSs (i.e., see Figure 7.4), Lo is the
initial nanotube length, @ is the torsional angle and Jo is the cross-sectional polar
inertia of SWCNTSs. For calculating Jo, SWCNTs are considered as a hollow tube
with the diameter D and thickness t. In this case, cross-sectional polar inertia of

SWCNTSs can be calculated as follows

1=(5 ) bpe-0-2, (73)
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Figure 7.4: SWCNTs (8,8) along with the applied boundary conditions.

Figure 7.5 shows the variation of shear modulus of armchair and zigzag SWCNTSs
with tube diameter. Tube lengths are equal to 41.2 A and nominal thicknesses of the
SWCNTSs are considered as 1.47 A and 3.4A in Figure 7.5. As can be seen in Figure
7.5, the nominal or wall thickness of SWCNTs significantly affects the shear
modulus of SWCNTSs. The smaller the thickness is, the larger the calculated shear
modulus is. The calculated shear modulus ranges from about 0.267 TPa to 0.484 TPa
for the armchair type and ranges from about 0.327 TPa to 0.481 TPa for the zigzag
type with the thickness of 3.4 A. As can be seen in Figure 7.5, the shear modulus of
both armchair and zigzag SLCANTS increase with an increasing diameter and attain

a stable value with increasing diameter for the SWCNTS.
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Figure 7.5: Variation of shear modulus of armchair and zigzag SWCNTSs with tube
diameter and nominal thickness.
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7.3. Vibration Analysis of SWCNTs

For determining the natural frequencies of SWCNTSs, we consider its equivalent
space frame like structures under the free-free, clamped-free and clamped-clamped
boundary conditions. The modeling work employs the MM based FE approach in
which Euler-Bernoulli beam element formulations are used with consistent mass
matrix which is mentioned in Section 3. Equivalent density parameter for the beam
elements in the MM model is obtained by using the equivalency of natural
frequencies of continuum plane stress FE model of SLGSs and those of the MM
model which mentioned in Section 4. Figure 7.6 shows the boundary and loading
conditions for vibrational analyses of the SWCNTSs. All computations of the MM
model are completed by using a computer code developed in MATLAB
environment, no damping is considered in computational models and the results are

verified by using Ansys ® software.

Clamped

Clamped Clamped

Figure 7.6: Boundary conditions in vibrational analysis of SWCNTs a) Free-
clamped and b) clamped-clamped.

After assembling the element stiffness and consistent mass matrices, the natural
frequencies and corresponding mode-shapes are obtained by solving the following

eigenproblem

(K —0?M)d =0 (7.4)
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The results are compared with analytical solutions based on the assumption that the
SWCNTSs are equivalent to cylindrical shells. According to theory of vibration,

natural frequencies of the beam model can be calculated as follows

% /E(doz_diz)
f. = 7.5
t 8 |2 0 ( )

where E is the Young’s modulus of nanotube, L is the length of the nanotube, d, and

d; are respectively the outer and inner diameters of nanotube, p is the density of
nanotube and £, is the specific constant of the nth mode. For free-free vibration of
SWCNTs, 41 =4.73 and for free-clamped vibration of SWCNTSs 5, =1.87 [42].

The natural frequencies of SWCNTSs depend on the nanotube diameter and height as
well as boundary conditions on the nanotube ends. Tables 7.1- 7.3 show the first six
free-free, free-clamped and clamped-clamped natural frequency values of the
SWCNTs (8, 8) with different heights. The first six free-free modes of the SWCNTs

are the rigid body modes and equal to zero.

Table 7.1: The first six free-free natural frequency values of SWCNTSs (8, 8) with
different heights (in GHz).

L=29.53 A° L=60.3 A° L=799 A° L=159.98 A° L[=199.36 A°

Mode  Jooatoms) (800 atoms) (1056 atoms) (2096 atoms) (2608 atoms)
1 995 683 414 112 72
2 995 683 414 112 72
3 1027 1000 907 293 194
4 1027 1000 980 293 194
5 1550 1005 980 455 363
6 1550 1005 1001 538 363
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Table 7.2: The first six free-clamped natural frequency values of the SWCNTs (8,
8) with different heights (in GHz)

L=29.53 A° L=60.3 A° L=79.9 A° L=159.98 A° L=199.36 A°

Mode (400 atoms) (800 atoms) (1056 atoms) (2096 atoms) (2608 atoms)
1 446 121 70 18 11
2 446 121 70 18 11
3 1020 606 385 108 71
4 1020 616 385 108 71
5 1240 895 456 228 183
6 1456 1002 675 287 191

Table 7.3: The first six clamped-clamped natural frequency values of the SWCNTSs
(8, 8) with different heights (in GHz)

L=29.53 A° L=60.3 A° L=799 A° L=159.98 A° L[=199.36 A°

Mode (400 atoms) (800 atoms) (1056 atoms) (2096 atoms) (2608 atoms)
1 1396 595 377 109 71
2 1396 595 377 109 71
3 1589 1062 874 281 188
4 1589 1062 874 281 188
5 2338 1223 919 458 350
6 2338 1262 1033 511 350

In the works [35, 36, 39-43, 55, 57] studying the vibrations of GSs and CNTs, the
global mass matrix is derived based on the assumption that the carbon nuclei masses
(e.g., 1.9926 x 10 kg) are concentrated at the joints of the frame structure. Due to
the negligible radius of carbon atomic nucleus (e.g., re=2.75 x 107 f\), torsional and
flexural rotation coefficients of mass matrices are assumed to be zero and a lumped
mass matrix for the beam elements is used. Figure 7.7 shows the equivalent lumped
mass MM model of the SWCNT. Tables 7.4- 7.6 show the first six free-free, free-
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clamped and clamped-clamped natural frequency values of the lumped mass MM
models with different heights.

Figure 7.7. Lumped mass MM model of SWCNT.

Table 7.4: The first six free-free natural frequency values of the lumped mass MM
models with different heights (in GHz).

L=29.53 A° L=60.3 A° L=79.9 A° L=15998 A° L=199.36 A°

Mode (400 atoms) (800 atoms) (1056 atoms) (2096 atoms) (2608 atoms)
1 1124 668 407 111 72
2 1124 668 407 111 72
3 1170 1130 907 291 193
4 1170 1130 964 291 193
5 1665 1138 964 457 361
6 1665 1138 1132 534 361

Table 7.5: The first six free-clamped natural frequency values of the lumped mass
MM models with different heights (in GHz).

L=29.53 A° L=60.3 A° L=79.9 A° L=15998 A° L=199.36 A°

Mode (400 atoms) (800 atoms) (1056 atoms) (2096 atoms) (2608 atoms)
1 436 120 70 18 12
2 436 120 70 18 12
3 1153 608 382 108 71
4 1153 608 382 108 71
5 1235 610 459 230 184
6 1575 888 671 286 191
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Table 7.6: The first six clamped-clamped natural frequency values of the lumped
mass MM models with different heights (in GHz).

L=29.53 A° L=60.3 A° L=79.9 A° L=159.98 A° L=199.36 A°

Mode (400 atoms) (800 atoms) (1056 atoms) (2096 atoms) (2608 atoms)
1 1511 595 378 109 72
2 1511 595 378 109 72
3 1592 1192 875 281 189
4 1592 1192 875 281 189
5 2458 1235 928 462 350
6 2458 1305 1164 511 350

As can be seen in Tables 7.1 — 7.6, the consistent mass and lumped mass MM models
have very close natural frequencies. It is noteworthy that transient dynamics analyses
can be performed by using Newmark method due to advantages of the consistent
mass matrix which does not yield singularity in numerical integrations. Lee and Lee
[43] use Timoshenko beam element formulations which include shear deformation
effects but they employed Euler-Bernoulli beam element constants (i.e., see Table
7.1) [37]; this assumption affects the natural frequencies of SWCNT that are found to
be lower than those of Euler-Bernoulli beam elements. As can be seen in Tables 7.1-
7.6, SWCNTs have very high natural frequencies. As a result, ultrahigh frequency
nanomechanical resonators can be achieved by using SWCNTSs.

Figures 7.8- 7.10 show the first six free-free, free-clamped and clamped-clamped

mode shapes of consistent MM model of SWCNTSs (8, 8) with height of 60.3 A°. In
addition, lumped mass MM model of the SWCNTSs have similar mode shapes.
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Figure 7.8: The first six free-free mode shapes of consistent MM model of SWCNTSs
(8, 8) with height of 60.3 A°.

Figure 7.9: The first six free-clamped mode shapes of consistent MM model of
SWCNTSs (8, 8) with height of 60.3 A°.
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Figure 7.10: The first six clamped-clamped mode shapes of consistent MM model of
SWCNTs (8, 8) with height of 60.3 A°.
The numerical solutions of the fundamental mode frequencies of free-free, free-
clamped and clamped- clamped SWCNTSs (8,8) as well as the analytical solutions of
free-free, free-clamped equivalent cylindrical shells models versus aspect ratio L/D is
plotted in Figure 7.11. There is a large gap between the present results and those
obtained from the equivalent cylindrical shells models, where all the present results
are larger than the theoretical values. This is originating from the fact that out-of-
plane bending rigidity of the 3-D CM shell model is in error that is already reported
by other researchers [33, 40]; hence, corrections for the thickness value of the 3-D
CM shell model are suggested in literature. Studies on this issue have been
continuing. It is concluded that the proposed approach can compute the natural
frequencies of SLGSs in high accuracy and employment of consistent mass matrix in

FE model improves accuracy.
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Figure 7.11: The numerical and analytical solutions of the fundamental mode

(8,8) versus aspect ratio L/D.

7.4. Elastic Buckling Analysis of SWCNTSs
Similar to vibration analysis, we investigate the critical buckling load and

frequencies of free-free, free-clamped and clamped- clamped SWCNTs

associated buckling modes of SWCNTSs are studied by completing elastic buckling

analysis. Figure 7.12 shows the boundary and loading conditions for elastic
buckling analysis of the SWCNTSs.

Figure 7.12: SWCNTSs (8,8) along with the applied boundary conditions.
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The results are compared with analytical solutions based on the assumption that the

SWCNTSs are equivalent to cylindrical shells. According to theory of structural

stability, the critical elastic buckling load P, for a general cantilevered column can

be calculated as an Euler equation as follows
7El

E

(7.6)

cr

where E is the Young’s modulus of nanotube, L is the length of the nanotube and I is
the moment of inertia.

Numerical solutions of the critical buckling load of SWCNTs (8,8) as well as
analytical solutions of equivalent cylindrical shells models versus aspect ratio L/D
are plotted in Figure 7.13. As can be seen in Figure 7.13, the critical axial buckling
load for both armchair and zigzag types decreases as the tube height increases. The
trend is comparable with that of the analytical results based on Euler formulation
with thickness of 3.4 A.
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Figure 7.13: The numerical and analytical solutions of the critical buckling loads of
SWCNTs (8,8) versus aspect ratio L/D.

The critical buckling loads of both armchair and zigzag types of the SWCNTSs with
the height of 41.8 A as a function of nanotubes diameter are shown in Figure 4.14.
As can be seen in Figure 7.14 the critical axial buckling load for both the armchair
and zigzag types increases as the tube diameter increases. The trend is comparable

with that of analytical results based on Euler formulation with thickness of 3.4 A,
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Figure 7.14: Critical buckling loads of SWCNTSs as a function of nanotube

diameter.

Figure 7.15 shows the first six buckling mode shapes of SWCNTSs (8,8) with the
height of 60.3 A. In addition, several local buckling mode occurs at higher

frequencies.
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Figure 7.15: The first six buckling mode shapes of SWCNTs (8,8) with the height of
60.3 A
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7.5. Prediction of Failure Behavior of CNTs

In this thesis, an equivalent nonlinear fracture model for SWCNTSs is developed by using an
MM based FE approach where the C-C bonds between carbon atoms are represented by
Euler-Bernoulli beam elements. In the analyses, the modified Morse potential along with an
iterative solution procedure is utilized to update the stiffness of elements. Although
progressive fracture of SLGSs and SWCNTSs are studied earlier, they are obtained without
consideration of geometric nonlinear effects and used non-reconstructed defected zigzag and
armchair SWCNTSs. In this paper, the proposed approach is applied to pristine and
reconstructed one- and two-atom vacancy defected zigzag and armchair SWCNTSs. The initial
reconstructed nanotube models are obtained by using MD simulations whose results are
compared with the results of non-reconstructed ones. Effects of large deformation and
geometric nonlinearities on fracture behavior of defected nanotubes are also studied by
updating the nodal coordinates of each element of the original nanotube structure at each load

step.

7.5.1 Fracture model of SWCNTSs
Four different types of SWCNTSs are considered in the simulations, and the geometric

properties and total number of atoms of pristine SWCNTSs are listed in Table 7.7.

Table 7.7: The geometric properties and total number of atoms SWCNTSs.

Diameter, d Total number of

SWCNT (A) atoms
(5,5) 6.785 350
(12,12) 16.283 840
(10,0) 7.834 400
(20,0) 15.669 800

As already mentioned, production of mass-quantities of defect-free GSs or CNTs
may prove challenging and different types of defects may emerge in practice. The
possible and mostly studied CNT defects are incomplete bonding defects such as
vacancies [66, 145-147]. Vacancy defects originate from missing atoms in the CNTs
and may occur due to an electron irradiation or oxidative purification. These defects
cause a reduction in the strength of SWCNTSs and significantly affect the mechanical

performance of nanocomposite materials.
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Sammalkorpi et al. [71] investigated the effect of reconstructed and non-
reconstructed vacancy defects on the tensile behavior of CNTs and found that the
reduction in the strength of CNTs caused by reconstructed case is smaller than that
caused by the non-reconstructed case. Note that Sammalkorpi et al. [71] used an
annealing step beginning the MD simulations at a high temperature for
reconstruction. However, reconstruction does not occur in our simulations since the
distance between the potential reaction atoms exceeds the interaction cut-off
distance. To this end, we used an extra annealing step at a high temperature (i.e.,

K) by using MD simulations to obtain reconstructed geometry of the defected
SWCNTSs. On the other hand, although metastable, the non-reconstructed SWCNT
configurations can be present at low temperatures and low dose irradiation [132,
133], non-reconstructed defected SWCNTSs are used in several works in literature
[85, 132, 134]. In brief, one carbon atom and corresponding three C-C bonds are
removed in the defect-free non-reconstructed SWCNT models and reconstructed
models are obtained by using MD simulations with annealing at a high temperature
(i.e., see Figure 7.16 for the pristine, reconstructed one- and two-atom vacancy
defected SWCNT models).
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Figure 7.16: Zigzag (10,0) nanotube models; (a) pristine, (b) non-reconstructed
one-atom vacancy defect (c) non-reconstructed two-atom vacancy
defect, (d) reconstructed one-atom vacancy defect (e)

reconstructed two-atom vacancy defect.
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The MD simulations utilized to find the global minimum configurations of non-
reconstructed vacancies are performed using the widely-used LAMMPS (Large-scale
Atomistic/Molecular Massively Parallel Simulator) code [148]. As the inter-atomic
potential, adaptive intermolecular reactive empirical bond order (Al-REBO) potential
[149] is employed to model interactions between carbon atoms. Using Nosé-Hoover
thermostat, CNT models with one/two vacancies are thermally equilibrated at a high
temperature (i.e., K) in the canonical ensemble (NVT) and kept at the same
temperature for 40 picoseconds (ps). Then, the temperature of the system is gradually

decreased with the rate of ~ K/ps under the same thermostat.

7.5.2. Computational results

The strain in SWCNTSs is calculated bys| = (L —Ly)/Ly, where Ly is the initial

(equilibrium) length and Ls is the current length of the tube. The stress is calculated

by o=F, /(zdt) Where Fq is the corresponding applied tensile force computed by

summation of the longitudinal reaction forces of the constrained nodes, d is the
diameter of tube and t is the thickness of tube. In all calculations, the thickness of
0.34 nm is used for the SWCNTSs. Since the accuracy of the results depends on the
number of load steps, an acceptable strain increment is determined on a trial and
error base to guarantee the convergence of numerical results. All fracture
computations of the MM model are completed by using a computer code developed
in Matlab environment. Table 7.8 shows the calculated tensile strength and fracture
strain values of the pristine SWCNTSs along with the results reported in literature.
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Table 7.8: Predicted values of critical strain (&) and stress (og) for pristine
SWCNTs. (M)TB, PM3 and DFT represent the (Modified) Tersoff-
Brenner potential, semi-empirical quantum and density functional

theory calculation, respectively.

- 0 Ocr

Study Method Chirality & (%) (GPa)
Present work Modified Morse 55 21.1 122.8
Present work Modified Morse 12,12 20.7 122.5
Present work Modified Morse 10,0 16.0 94.8
Present work Modified Morse 20,0 15.9 94.7
Mielke et al. [78] MTB, PM3, DFT ¢ ¢ 303030 ot
Mielke et al. [78] MTB, PM3, DFT 159 18, 20, 20 fg’sm’
Sammalkorpi et al. [71] B 55 26 240
Jeng et al. [150] TB 10,0 19 92,5
Belytschko et al. [72] Modified Morse 12,12 18.7 112
Belytschko et al. [72] Modified Morse 20,0 16.0 93.5
Tserpes and Papanikos [86] Modified Morse 5,5 19.6 122.5
Tserpes and Papanikos [86] Modified Morse 12,12 19.6 121.9
Tserpes and Papanikos [86] Modified Morse 20,0 15.8 97.7
Meo and Rossi [92, 94] Modified Morse 55 19.9 117.3
Meo and Rossi [92, 94] Modified Morse 12,12 20.0 117.9
Meo and Rossi [92, 94] Modified Morse 10,0 18.4 04.7
Meo and Rossi [92, 94] Modified Morse 20,0 18.0 94.5
Xiao et al. [90] Modified Morse 12,12 23.1 126.2
Xiao et al. [90] Modified Morse 20,0 15.6 945
Duan et al. [151] Modified Morse 10,0 33.3 105.4
Duan et al. [151] REBO 10,0 27.3 99.9

It is observed in Table 7.8 that calculated critical strain and stress values lie in the
same range with the results reported in literature. By making comparisons among our
results and those of [72, 78, 86, 90, 92, 94] employing the modified Morse potential
function in Table 7.8, it is concluded that they are in good agreement although
underlying formulations are different. In addition, the tensile strength and failure
strain values in armchair tubes are higher than those in zigzag tubes, which also
agrees with the studies in literature. Moreover, the results indicate that the diameters
of nanotubes have a little effect on the critical stress and strain values. In the
meantime, it should be noted that Yu et al. [29] experimentally measured the tensile
strength and failure strain of MLCNTSs and found 11-63 GPa for the strengths and

10-13% for the failure strains. These strain and stress values are significantly smaller
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than the results in Table 3; these differences can be explained by the presence of
defects and some slippage at the attachments which may occur at high-strain cases
[76]. Figures. 17 and 18 respectively show the comparison of the stress-strain curves
for pristine armchair (12,12) and zigzag (20,0) SWCNTSs. It is clear in fracture stress-
strain curves that our computational results are in good agreement with the results
reported in literature as well. As can be seen in Figuress. 17 and 18, the resulting
stress exhibits a sudden drop to zero when the stress reaches to the fracture stress.
Therefore, it is concluded that the fracture of all types of SWCNTSs are brittle which

are also reported in several other studies in literature [72, 86, 90].
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Figure 7.17: Stress-strain curves for pristine nanotube armchair (12,12) under

uniaxial load.
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Figure 7.18: Stress-strain curves for pristine nanotube zigzag (20,0) under uniaxial
load.
Table 7.9 compiles strain and stress ratios for reconstructed vacancy defected
nanotubes versus pristine nanotubes. It can be seen that one- and two-atom vacancy
defected nanotubes have similar fracture stress and strain values. In addition, it is
observed in Table 7.9 that calculated relative critical strain and stress values lie in the

same range with the results in literature.

Figure 7.19 shows the stress-strain curves for one-atom vacancy defected armchair
(5,5) and zigzag (10,0) nanotubes versus pristine nanotubes. Meanwhile, we also
examined a one-atom non-reconstructed vacancy defected (5,5) nanotube. In sum,
the one-atom non-reconstructed vacancy defected nanotube (5,5) has similar fracture
stress and strain values (i.e., €=10.2% and 6=89.0 GPa) with the reconstructed one
(i.e., €10.3% and 0=89.1 GPa). In parallel, Sammalkorpi et al. [71] and Meo and
Rossi [94] also observed that reconstructed and non-reconstructed one-atom vacancy
defected nanotubes (5,5) have similar mechanical properties as well. Meo and Rossi
[94] also reported fracture stress and strain of one-atom vacancy defected nanotubes

as €=12.3% and 6=89.8 GPa, respectively. In brief, it is observed that fracture stress
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and strain values of pristine armchair CNTs are respectively 30% and 32% larger
than those of pristine zigzag CNTSs, and predicted failure stress and strain values of
vacancy defected SWCNTSs are respectively 27% and 52 % smaller than those of

pristine ones.

Table 7.9: Relative critical strain (g/e) and stress (o/og) ratios for defected
SWCNTs where the defects are reconstructed (R) and symmetrically
(sym) oriented. MTB stands for the modified Tersoff-Brenner potential
and PM3 stands for semi-empirical quantum calculations. The defect
key indicates the number of vacant atoms.

Chiralit oy O
Study Method y Defect € (%) (GPa) €/eqx O /oy
Present work Modified 1Rsym 103 891 049 073
Morse
Present work Modified , 1Rsym 774 69.6 048 0.74
Morse
Present work Modified g 2Rsym 104 902 049 073
Morse
Present work mgzgued 10,0 JRsym 7.68 691 048 073
Zhangetal. [76]  MTB 10,0 1IRsym 87 65 048 0.74
Zhangetal. [76]  MTB 5,5 2Rsym 117 713 039 068
Zhangetal. [76]  MTB 10,0 2Rsym 96 644 053 073
Mielke etal. [78]  PM3 5,5 1R 153 100 051 074
Mielke etal. [78]  PM3 5,5 2Rsym 172 105 057 078
Mielke etal. [78]  PM3 10,0 2Rsym 142 107 071 086
Meo and Rossi [94] mOd'f'Ed 5,5 1R 123 898 062 077
orse
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Figure 7.19: Stress-strain curves of pristine nanotubes (10,0) and (5,5) and one-atom

vacancy defected nanotubes (10,0) and (5,5) under uniaxial load.

Another issue is that the fracture in nanotubes occurs at relatively large strain values;
therefore, we also investigated the effects of large deformation and geometric
nonlinearities on fracture behavior of defected nanotubes. In the analyses of defected
SWCNTSs, nodal coordinates of each element in the original SWCNT structure is
updated at each load step and deformation of the original nanotube structure around
the nucleation site is taken into account. Table 7.10 shows the effect of geometric
nonlinearity on fracture behavior of reconstructed one-atom vacancy defected (5,5)
and (10,0) nanotubes. It can be seen in Table 7.10 that by including large
deformation and geometric nonlinearity effects, failure stress and strain values of
zigzag nanotubes are reduced more than those of armchair ones. In this regard,
Figure 7.20 shows the failure stress-strain curves of one-atom vacancy defected
nanotubes with non-linear geometric effect. It is concluded that large deformation
and nonlinear geometric effects are important on fracture behavior of nanotubes and
cause a reduction in calculated fracture strain values of vacancy defected SWCNTs

by approximately 10% and 7%, respectively.
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Table 7.10: Effect of geometric nonlinearity on fracture behavior of reconstructed
one-atom vacancy defected SWCNTS.

Chiralit Ghigeom

y Defect €nlgeom (%) (GPa) 8n|geom/8 Gnlgeom/c
55 1R sym 10.2 82.3 0.99 0.92
10,0 1R sym 7.17 62.9 0.93 0.90
55 2R sym 10.3 82.5 0.99 0.92
10,0 2R sym 7.11 62.0 0.93 0.90
120 . . T T T
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Figure 7.20: Stress-strain curves of one-atom vacancy defected nanotubes with

non-linear geometric effect.
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8. CONCLUSION

In this thesis, equivalent models of single-layer graphene sheets (SLGSs), single
layer carbon nanotubes (SWCNTSs) and single layer carbon nanocones (SWCNCs)
are developed by using molecular mechanics (MM) based FE approach. Then,
elastic, vibrational and buckling characteristics of SWCNTSs; vibrational and elastic
buckling characteristics of SWCNCs, and elastic and vibrational characteristics of
SLGSs are investigated. In addition, an equivalent dynamic model is developed for
SLGSs and 2-D and 3-D transient behavior of SLGSs are investigated; a nonlinear
fracture model of SLGSs are developed and fracture behavior of defected and non-
defected SLGSs are studied, and multiscale models of SLGSs are developed for

coupling of atomistic and continuum domains.

Equivalent dynamic models for the SLGSs are developed by using atomistic FE
approach. 2-D and 3-D transient and modal characteristics of the SLGSs are
examined. Comparisons are made among the results of the MM based model, CM
based model and relevant works in literature. An equivalent density parameter is
derived which is obtained by the equivalency of natural frequencies of the MM and
CM models. The response to initial displacements are computed for the 2-D and 3-D
FE models where initial displacements are applied incrementally on SLGSs and
nodal coordinates of the original SLGS structure are updated at each displacement
increment; hence, large deformation effects and uniform initial displacement
conditions are considered in analyses. It is shown that the proposed MM model can
compute 2-D and 3-D dynamic characteristics of the SLGS structures in high
accuracy. It is observed that power spectral density properties of transient analyses

are in good agreement with modal features of the SLGSs.
The MM and plane-stress CM models have very close natural frequencies and static

transient in-plane displacement in numerical experiments. Whereas, it is noteworthy
that bending rigidity of the 3-D CM shell models is in error with that of the
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corresponding MM model and associated transient out-of-plane displacement
solutions and natural frequencies do not agree with those of the MM models, that is
also reported by some researchers in literature. In the future, this discrepancy will be
investigated to improve accuracy of shell models. In addition, the Morse potential
can easily be adapted to include nonlinear effects in future studies. Moreover,
multiscale formulations for wave propagation problems can be adapted to dynamic

models along with model order reduction algorithms.

In this thesis, an atomistic based FE model for the prediction of nonlinear fracture
behavior of SLGSs is also developed. Euler-Bernoulli beam elements are used to
represent covalent bonds and non-linear characteristic of the beam elements are
obtained by using the modified Morse potential. The proposed approach includes
large deformation and nonlinear geometric effects. Namely, elasticity modulus of
each EB beam element and nodal coordinates of the original SLGS structures are
updated at each load step. Formulation underlying the proposed approach is applied
to zigzag and armchair SLGSs. It is shown that large deformation and nonlinear
geometric effects are important in fracture behavior of SLGSs. It is observed that
SLGS exhibits an orthotropic fracture behavior. Namely, it is stiffer in the armchair
direction than in the zigzag direction. Effects of various defects on fracture behavior
of SLGSs are also examined. The results show that these defects significantly affect
the mechanical performance of the SLGSs. In addition, fracture initiation and crack
propagation direction are studied. It is observed that the fractures of all types of
SLGSs are brittle. The numerical results are compared with the results in literature

and our results show good agreement with the results reported in literature.

A coupling method for the MM and CM models is also derived based on an
augmented formulation of atomistic and continuum displacement fields in a moving
least square sense, which originates from an unconstrained optimization problem to
be solved. In order to solve the augmented problem, the Lagrange multiplier method
is used which allows multiscale analyses of multiple numbers of MM domains in a
single CM domain. The CM domain covers the entire domain and the MM domain is
patched on the element(s) of the CM domain. In contrast to alternative approaches
existing in literature, there is no need for an overlapping domain in the proposed

approach and the MM domain(s) can be placed arbitrarily in the CM domain; hence,
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one can focus on any desired subdomain where we need to obtain atomistic solution.
In addition, there is no need for a constraint on the meshes of the MM and CM
domains. Efficiency of the proposed approach is illustrated by using defect-free and
defected monolayer graphene layers. In the atomistic models, harmonic potentials
and modified Morse potentials are employed. In the CM domain, it is assumed that
deformations are elastic and plane stress conditions exist, for which elasticity
modulus and Poisson’s ratio values of the CM domain are obtained by the use of full
MM models, and compared with the results presented in literature. Equivalent
continuum elasticity modulus, Poisson’s ratio and shear modulus of monolayer
graphene are obtained in the range of 1.032-1.047 TPa, 0.061-0.069 and 0.482-
0.0.493 TPa, respectively.

It is shown that proposed formulation can compute the deformations of monolayer
graphenes in high accuracy, enables to obtain the MM solution(s) in any part of the
CM domain and can be applied to other nano structured materials. Main advantage of
the proposed formulation is that it can be used to connect the MM domain(s) to any
subdomain of the CM domain by proper choice of projection matrices without
changing the mesh. Therefore, it enables fast reanalysis of any subdomain of the CM
domain at fine scales. In addition, appropriate stiffness matrices of the MM and CM
domains which are exported as superelements can be embedded into the formulations
that enables linking by commercial softwares. By updating the elasticity parameters
of the CM domain based on the MM solutions, nonlinear effects are easily
considered in iterative solutions of large deformation problems that provide more

accurate nonlinear solutions.

The elastic buckling and vibration behaviors of SWCNCs are investigated. The MM
based FE approach is used to achieve this goal. The axial compression and bending
loading conditions are considered in elastic buckling behavior of SWCNCs while
free-free, free-clamped and clamped-clamped boundary conditions are considered in
vibration analysis of SWCNCs. The effects of cone height and apex angles on the
buckling force and natural frequencies of SWCNCs are also studied. Vibration
analysis results indicate that the natural frequency decreases with increasing cone
height in all types of SWCNCs, whereas it increases as the disclination angle

increases. Buckling analysis results indicate that as the disclination angle increases,
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the critical buckling load increases in axial compression loading and decreases in
bending loading. In addition, it is observed that bending loading is more critical than
axial compression loading for buckling behavior of SWCNCs if the disclination
angle increases. When free-clamped and clamped-clamped boundary conditions are
considered, fundamental frequencies of the SWCNCs are found to be in the range of
0.36 —2.52 THz. The axial and bending buckling forces are found to be in the range
of 42 — 79 nN and 27 — 64 nN, respectively. These results are comparable with the
results for CNTs and SLGSs in literature in most cases and it can be used in
designing atomic force microscope (AFM) and scanning tunneling microscope
(STM) tips. In the future, fracture and transient dynamics analyses can be performed
in order to evaluate the damage and dynamic behavior of SWCNCs. Moreover,

Morse potential can be employed in the MM model for large deformation problems.

An MM based FE model of SWCNTSs is developed for fracture analysis as well. In
this regard, Euler-Bernoulli beam elements are used to represent the covalent bonds
and non-linear characteristics of the beam elements are obtained by using the
modified Morse potential. The proposed approach is applied to pristine and
reconstructed one- and two-atom vacancy defected zigzag and armchair SWCNTSs.
The initial reconstructed nanotube models are obtained by using MD simulations
whose results are compared with the results of non-reconstructed ones. As a result of
analyses, it is concluded that fractures of all types of SWCNTSs are brittle, armchair
SWCNTs are stiffer than zigzag SWCNTS, there is no significant difference between
fracture strengths of reconstructed and non-reconstructed SWCNTs and vacancy
defects significantly affect the mechanical behavior of SWCNTSs. In brief, fracture
stress and strain values of pristine armchair CNTs are respectively 30% and 32%
larger than those of pristine zigzag CNTs, and predicted failure stress and strain
values of vacancy defected SWCNTSs are respectively 27% and 51 % smaller than
those of pristine ones. It is shown that large deformation and nonlinear geometric
effects are important on fracture behavior of nanotubes and cause a reduction in
calculated fracture strain values of vacancy defected SWCNTs by approximately
10% and 7%, respectively. Comparisons are made with the failure stress and strain

results reported in literature that show good agreement with our results.
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APPENDIX A.1: Matlab algorithm for small and large deformation problems

Step #1 Create atomic coordinates and bonds of carbon- based nanostructures;

Step #2 Select the interatomic potentials (see Section 3.3);

- Harmonic (Universal) potential for small deformation problems,
- Modified Morse potential for large deformation problems,
- Tersoff- Brenner potential for large deformation problems,
- Lennard Jones potential for MLGSs, MWCNTs and MWCNC:s,

Step #3 Use Euler-Bernoulli beam elements to represent C-C bond (see Section 3.1);

Step #4 Use consistent or lumped element mass matrices for dynamics analyses (see
Section 3.1);

Step #5 Enter Euler-Bernoulli beam elements and/or mass matrices constants (see
Section 3.3);

Step #6 Create 2D and 3D element stiffness and mass matrices by using atomic
coordinates and element properties (see Section 3.1);

Step #7 Create topology matrices for assembly process (see Section 3.1);
Step #8 Calculate global stiffness and/or mass matrices (see Section 3.1);
Step #9 Apply boundary and loading conditions (see Section 3.2);

Step #10 Solve the equation systems (see Sections 3.2, 4.1, 4.2, 6.2, 7.1-7.4);

- Obtain atomistic displacements,
- Obtain natural frequencies and mode shapes,

- Obtain elastic properties,

Step #11 Update atomic coordinates and return Step #2 for large deformation

problems (see Sections 4.3, 7.5);

Step # 12 Solve final system for large deformation problems (see Sections 4.3, 7.5);

- Obtain atomistic displacements,

- Obtain fracture stresses and strains.
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APPENDIX A.2 : Matlab algorithm for coupled MM/CM models
Step #1 Create atomic coordinates and bonds of carbon- based nanostructures;

Step #2 Select the interatomic potentials (see Section 3.3);

- Harmonic (Universal) potential for small deformation problems,
- Modified Morse potential for large deformation problems,

Step #3 Use Euler-Bernoulli beam elements to represent C-C bond (see Section 3.1);
Step #4 Enter Euler-Bernoulli beam elements constants (see Section 3.3);

Step #5 Create 2D element stiffness matrices by using atomic coordinates and

element properties (see Section 3.1);
Step #6 Create topology matrices for assembly process (see Section 3.1);
Step #7 Calculate global stiffness matrix (see Section 3.1);

Step #8 The element and global stiffness matrices of plane stress CM models are

obtained by using the mechanical properties of SLGSs (see Section 5.1);
Step #9 Obtain the augmented equation system (see Section 5.1);

Step #10 Apply boundary and loading conditions to the coupled MM/CM model(see
Section 5.2);
Step #11 Solve the equation systems (see Section 5.2);

- Obtain atomistic displacements,

- Obtain continuum displacements,

Step #12 Update atomic coordinates and return Step #2 for large deformation

problems (see Section 5.2);

Step # 13 Solve final system for large deformation problems (see Section 5.2);

- Obtain atomistic displacements,

- Obtain fracture stresses and strains.
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