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SUMMARY

Image coding is a process which produces an image identical to the original one
in the sense of quality and intelligibility, but occupies less space. The goal of this
dissertation is to produce an algorithm, which we call image compression based on
“centipede” model, for lossy-coding of an image in the way that edges, contrast and
scale through edges are utilized to produce a powerful and sparse representation of
the image. Edges detected by using generalized edge detector (GED) constitute very
sparse information. It has been shown that edge brightness and contrast calculated
through edge segments are not adequate to produce a reliable and precise
representation. The proposed algorithm produces a contour code which consists of
position, brightness, contrast and an estimate of the scale in the form of width for
each edge element in the image. The segments obtained by tracing connected edge
elements are sorted with respect to weighted sum of their length, mean contrast,
deviation and curvature. The edges are then thresholded to eliminate some of which
has less priority in this order. Coding of all these parameters is a bit-consuming
operation. Since they change smoothly in a small neighborhood, they can be
approximated by polynomials, then the coefficients of the polynomials are coded.
Edge locations are coded by constructing differential chain code followed by
Huffman coding and starting points are coded in the form of difference between
lexicographically ordered points. A reliable approximation to the original image from
the sparse information is obtained via solving the hybrid energy functional which
spans At-space, where A represents the smoothness of the image and t represents the

continuity of the image.

The proposed model and the algorithm has been tested on both real and
synthetic images. Compression ratio is up to 180:1 for synthetic images and 10:1-
100:1 for real images. Reconstructed images are evaluated both quantitatively with
NMSE (normalized mean square error), SNR (signal-to-noise ratio) and PSNR (peak-
to-peak SNR) and qualitatively with visual appearance of artifacts. We have
experimentally shown that the proposed model preserves perceptually important

features even at the high compression ratios.
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OZET

KIRKAYAK MODELINE DAYALI GORUNTU SIKISTIRMA

Gorinti boyutlannin giin gegtikge artmasi onlann sikigtinlmasimi daha ¢ok gerekli
kilmaktadir. Goriintii stkistrmada amaglanan, bir goriintiiniin aym diizeyde kalite ve
anlagilabirlik seviyesine sahip ancak daha az yer kaplayan bir yaklagigini elde etmeye
caligmaktir. Bazi uygulamalarda (6rnegin, tibbi uygulamalar) sikigtinlmig goriintii ile
gergek gorintiiniin birbirinin ayn1 olmasi istenir. Bu durumda sikigtirma yénteminin
kayipsiz sikigtirma  yontemi olmasi gerekir. Bazi uygulamalarda ise sikigtirilmig
gorintide belirli oranlarda bozulmalara izin verilebilir. Bu tiir sikigtirma yontemleri ise
kayiph sikigtirma yontemi adim alir.

Bu g¢aligmada, yeni bir aynt-tabanh goriinti sikigtrma yoéntemi sunulmaktadir.
Geligtirilen yontem, bir kirkayak modeli yardimiyla ayntlarin yerlerini, kontrast
bilgisini ve ayrit olgegi gibi bilgileri etkin bir bigimde kullanmakta ve bu geligmis
model yardimiyla daha oénceki aynt temelli yaklagimlara kiyasla, 6zgiin goriintiiye
daha yakin goriintii kurabilme olanaf saglamaktadir. Bu yaklagimda, 6nce goriintii
aynitlan, Canny aynt saptayiciya kiyasla daha genel bir aynit saptayici olan ve degisik
Ozelliklerde amaca uygun aynt uretebilen Genellestirilmis Aynit Saptayic1 (GAS) ile
elde edilmiy ve daha sonra kirkayak modelini bu aynt pargalan tizerine yerlestirerek,
gortintiideki hizh degisim bolgeleri kontrastlan ve Olgekleri de géz 6niine alinarak
modellenmigtir. Bu model sayesinde, yalniz ayrit yerleri ve yiikseklikleri
kullanildiginda ortaya gtkan bozulmalarin yok edildigi gosterilmigtir. Calismada, GAS
ile elde edilen ayntlar, uzunluk, gevrit boyunca ortalama benek degeri, ortalama
kontrast ve ortalama egrilik gibi 6zellikler goz Oniine alinarak siralanmis ve bunlardan
belirli bir ylizdesinin segilerek sikignhrma oraninin kontrol edilmesi saglanmigtir. Ayt
gevritleri tizerindeki benek degerleri, kontrast ve genisliklere sabit blok boyu ve
degisken dereceli polinomlar uydurularak polinom katsayilar saklanmgtir,

Bir goriintiide, nesne sinirlarina karsihk gelen ve goriintiideki boliitleri birbirinden
ayran ayntlar, o goriintiiyi tammlayan en 6nemli 6zelliklerden biridir. Bu aynitlarin
hem sayica az olmalan hem de gorintiinin igerifi hakkinda O6nemli bilgileri
saglamalan aynt temelli stkighrma algoritmalarimin hareket noktasini olugturmaktadir.
Goriintiideki seyrek aynt noktalarinda benek degerleri hizli degigmesine kargin, aynit
dist noktalarinda de@isim yavas olmakta ve bdylece aymt bilgilerinden goriintiiniin
tiimiinii olugturabilmek olas: olmaktadir. Ikinci kusak sikighrma yontemlerinin temel
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ozelliklerinden biri olan aynt temelli kodlamanin yararlarindan biri, yiiksek sikigtirma
oranlarinda dahi goriintiiye iligkin dnemli 6zelliklerin kaybolmamasi, gériintiiniin hizla
bulaniklagmamasidir. Ne var ki, bu yaklagimda yalmzca ayntlann konumu (aynt
haritast) ve aynt boyunca kontrast bilgisi kullamldifinda, kurulan goériintilerde
yapayliklar olugmaktadir. Bu galiymada bu bilgilere ek olarak, ayntlarin 6lgeklerinin de
kullanilmasina olanak saglayan bir model gelistirilmig ve daha bagarih sonuglann elde
edildigi gosterilmigtir.

Geligtirilen yaklasimda, once ayntlar GAS ile elde edilmekte ve aymnt pargalar,
uzunluklan, ortalama benek degerleri, ortalama kontrast ve egfrilik degerleri g6z
Oniine alinarak 6nem sirasina goére siralanirlar. Daha sonra segilen aynt pargalan
cevresindeki degisimler, kirkayak modeli yardimiyla modellenmektedir. Bu modele
iligkin bilgilerin kodlanmas: farksal zincir kodu, Huffman kodlama ve polinomla egri
uydurma yontemleri kullamlarak gergeklestirilmigti. Daha sonra modelden
gorintiilerin kurulmas: karma enerji fonksiyoneli yardimiyla gergeklestirilmigtir.

Algoritmanin ilk agamasinda aynitlar GAS ile elde edilir. GAS, gorintiyia 6lgek ve
siireklilik 6zelliklerine bagli olarak At-uzayinda ifade etmeye olanak saglayarak
degisik amaglar igin istenen ozellikte ayntlar iretir. Burada A olgek eksenini ve 1 ise
siireklilik eksenine kars1 dilgmektedir.

Elde edilen ayntlardan, izleme algoritmas: ile bagh gevrit boliitleri elde edilir. Izleme
algoritmast sonlanma noktalarindan itibaren aym yonde izlemeye devam etmeye
zorlanir. Cevritlerin izlenmesi ile elde edilen farksal zincir kodu, Huffman y6ntemi ile
kodlandigindan bu gekil bir izleme, ayntlarin etkin bir gekilde kodlanmasim saglar. Bu
yaklagimda ayntlar ortalama 1.8 bit ile kodlanmaktadir. Segmanlann baglangi¢
noktalan ise sozdisimsel bigimde siralanan baslangi¢ noktalan _aralanndaki fark
seklinde kodlanmaktadir. Baslangi¢ noktalan yaklastk homogen bir bigimde
dagildiklarindan bu gekil bir kodlama (x,y) koordinalan geklindeki kodlamaya gore
sikigtrma kazancini arttirmaktadir.

Sekil 1°de bir aynt kesiti verilmigtir. Ayrnitin genisligi (Wgr,WL), ayntin o noktadaki
normali dogrultusundaki kesiti i¢in benek degerlerindeki degisimin kiigiik olmaya
bagladif1 noktalara olan uzaklik olarak tanimlanmaktadir. Kontrast degeri (Cg,Cy) ise
ayrit izerindeki benek degeri (IL) ile ayntin genigliginin belirlendigi noktadaki benek
degeri arasindaki farkuir. Kirkayak modeli ile her aynt noktas: igin (I ,\Wr ,WL, Cg,
Cy) bilgileri belirlenir ve kodlanir. Her aynit noktasinda model parametrelerinin, (Wx
,WL, Cr, Cp), saklanmas:i yerine bir blok pencere igindeki degerlerine degisken
derecede polinomlar uydurulmustur. Bu polinomlann katsayilan egiklendirilerek
kodlanr. - '

Uzunluk, ¢evrit boyunca benek degerlerinin standart sapmasi, ortalama kontrast,
ortalama egrilik gibi 6zelliklerine gore siralamaya sokulan ayrtlann esiklenmest ile
6nemli nitelikler korunarak sikigtirma oran arttirilabilir, Bu 6zelliklere verilen
agirhiklara gore siralanan ayritlarin %50-85¢inin kullamlmas: durumunda dahi yiiksek
kalitede goriintiiler ve 10:1-80:1’lik sikigtirma oranlan elde edilmigtir.
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Seyrek ayrt modeli parametrelerinden gergek goriintiiniin bir yaklasifi karma enerji
fonksiyonelinin en aza indirgenmesi ile elde edilmigtir. Karma enerji fonksiyoneli iig
bilesenden olugsmaktadir :

E=D+Z+L

D= ZZBU ij _dij)z

2= X IA A=)y~ fia)) +Uig=fisa)']

L= ZZXT'[OMJ t S —Z'fi.i)z"'(fuﬂ +fij —z'fi,;')z]

Burada D kurulan yiizey ile seyrek veri arasindaki farkin enerjisini, Z seyrek veri
iizerinden gegirilen zarin enerjisini, L levhanin enerjisini, f kurulmak istenen yiizeyi, d
seyrek veriyi gostermektedir. Bu fonksiyonel SOR (Successive Over-Relaxation)

algoritmasi kullanilarak en aza indirilmistir :

) _ w _ W 9E()
v YT 9df g

AE()
o,

=(B,, +4M1+4D)? - A+ TOLLE + 50 + £9, + £9]

1 1)
+2MLLS2 + LG50+ i + ]

1
+MLAGY + 105+ fa +

- &Jdi.i

Bu iterasyonlar sirasinda model parametreleri ile olugturulan seyrek veri
giincellenmemektedir. Iterasyonlann sonlanma kosulu birbirini izleyen iki iterasyon
¢0Oziimii arasindaki farkin 6nceden belirlenen bir degerden kiigiik olmasidur.

Ikinci boliimde sikigirma yontemlerine iligkin basit bir siniflandinlma verilmekte ve
mevcut sikigtirma yéntemleri kisaca tanitilmaktadir. Bu arada modle tabanh sikigtirma

yontemleri detayh olarak incelenmektedir. Bu boliimiin sonunda kirkayak modeli
tamitilmaktadir,
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Ugtinde béliimde, ayrit-tabanh goriintii kodlama yontemlerinin 6nemli bir pargasim
olusturan aynt saptama, gevrit izleme, g¢evrit eleme ve kodlama yontemleri igin
¢Ozlimler sunulmaktadir.

Dordiincti  bélimde kirkayak model parametrelerinin nasil ¢ikarildign ve bu
parametrelere nasil polinom uyduruldugu tamtilmaktadir. Ayrica polinom derecesi ve
blok boyu ile kurulan goriintiilerin kalitesinin nasil etkilendigi incelenmistir.
Béliimiin sonunda kirkayak modeline dayali goriintli sikigtirma yontemi ile elde
sonuglar sunulmaktadir.
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CHAPTER 1

INTRODUCTION

As images are getting larger in size, storage and fransmission of them take much
more storage space and transmission time on communication mediums, necessitating
compression of images in many applications of computer vision ranging from
medical to video phone. Image coding aims to reduce as much as possible the
number of bits necessary to represent the image while preserving the quality and
intelligibility required for the given application. The level quality and intelligibility
required vary widely, depending on the application. In some applications like
medical imaging, it is important that reconstructed image is the exact duplicate of the
original. Such image-coding technique that preserves all information in the image
and allows exact reconstruction of the original one is said to be information-
preserving. Some applications such as video phone, where the exact reconstruction is
not the primal goal, do not require information-preserving methods. They allow
small amount of degradation on the reconstructed image. Such techniques are called
information-lossy. For information-lossy techniques, it is important to describe the
amount and the type of degradation at the reconstructed image [1]. Unfortunately,
there is no subjective way of measuring the degradation introduced by the method.
When the visual system is human, then it seems that best test measure is human
brain. In other case, when the visual system is another visual machine system, the
amount of degradation, deteriorating the task performed by machine vision system, is
measured by reduction in performance and requires extensive examination on the

system.



A typical image coding environment is shown in Figure 1.1. Coding has two parts as
depicted in the figure. Purpose of the first part, called source coder, is to encode the
digital data such that encoded data occupies less space. Second part, called channel
coder, transforms the bit streams encoded by source coder into a form more suitable
for transmission over a communication channel through appending some error
detection/correction bits. At the receiver, transmitted image is reconstructed by

image coder. In this study, we are interested in only source coding and decoding.

Image coding techniques can be classified into three groups according to what they
actually code. In waveform image-coding techniques an image itself or some simple
variation of that such as difference in intensity at consecutive pixels is coded. In
transform-based image-coding techniques, an image is transformed into another
domain such as frequency domain and transform coefficients are coded. In model-
based image-coding techniques, an image is modeled and model parameters are
coded. Waveform image coding techniques has used information theory end its

results.

Transmitter Source Channel
Coder Encoder
Channel Noise
Source Channel
' Decoder Decoder
Receiver

Figure 1.1 Typical environment for Image Coding



The entropy has been thought to be the upper bound of the compression ratio of any
entropy coding methods such as Huffman coding and Arithmetic coding can succeed.

N
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It is clear that images are not random and locally homogeneous. That means gray

levels are similar over a small neighbor. First-order entropy is defined as

H(u,|u,_)= ZNjZNj Pu=u,u = u;)-log,(

1
i=1 j=1 Plu=uu =u,)

)

where P(u=uju=u ;) is the conditional probability. This is considered as the

average information content of %, in the case that #,-, is known. Second and higher
order entropy can be defined similarly. It can be shown that Huffman coding for

higher order entropy approaches to the first-order entropy irregularly.

Waveform coding methods based on the decorrelation of images followed by
quantization and entropy coding (Huffman Coding). Decorrelation is obtained by
prediction (i.e. Differential PCM). Compression ratio is about 4:1 for waveform

coding techniques.

In transform coding methods, an image is transformed into such a domain which is
much more appropriate for coding.. The transforms have the common property called
energy compaction which states that transformation coefficients are distributed in a
small fraction of the supporting domain. Compression ratio is about 20:1 for

transform-based coding.



Actually, entropy of the image is unknown and depends mostly on the model used
for the source. Third class of image-coding techniques are model-based approaches
to the image coding problem. Model parameters are extracted and coded, at the
receiver side reconstruction is obtained by using these model parameters. There are
two groups of approaches in the class. One group of method makes use of local
operators, convolving the image with impulse response of 2-D filters or filter banks.
These filters or filter banks are designed so as to extract local feature. Then these
local features are combined to obtain the messages to be coded. Nonstationary
predictive coding is an example of this group of methods. Second approach uses
completely different method. They utilize edges and textures to model the image.
First step in this method is to detect the edges or segment the image into regions.
Contour or region boundary locations, brightness at edges or regions and contrast are
coded. Reconstruction of the original image is obtained by solving a diffusion (heat)
equation. Compression ratio for model-based coding is dependent heavily on the

model and model precision.

In this study, a model-based image coding method called “centipede model” is
developed for compression of images using primitives based on edge location,
intensity, contrast and scale. Edges, correspond to object boundaries where sharp
changes occur due to some physical aspect of an image such as surface reflectance or
illumination, are detected by using Generalized Edge Detector (GED). GED [2]
introduces a At—space representation of images ;md consequently edges. On the At—
plane, a point associate to two filters denoted by R(A,t) and its first-order derivative
G()\,t) whose shapes are determined by t and scales are determined by A. One can
obtain well-known edge filters by setting these parameters appropriately. Then edges
are traced by following adjacent edge elements to produce distinct contours.
Intensities on edges and contrasts are modeled by polynomials. We have shown that
using these parameters and minimizing hybrid energy functional do not yield a
powerful representation of the original image. It results in a blurry reconstructed

image with many artifacts. We utilize edge scales in the form of widths to overcome



the problem. Width is defined as the distance at which the difference in intensity

along the normal direction is lower than a given threshold.

Coding of all these parameters is a bit-consuming operation. Since they change
smoothly in a small neighborhood, they can be approximated well by polynomials,
instead of model parameters, the coefficients of the polynomials are coded. Edge
locations are coded by constructing differential chain code followed by Huffman
coding and end points are coded in the form of difference between lexicographically
ordered points. A reliable approximation to the original image from the sparse
information is obtained by solving the hybrid energy functional which constructs At-
space, where A represents smoothness of the image and t represents the continuity of

the image.

The thesis is organized as the following. In chapter two, a classification for image
coding methods is presented based on what they' code and particularly, existing
model-based approaches are investigated. “Centipede Model” is explained at the end
of this chapter. Chapter three develops edge detection, contour tracing, filtering and
coding methods. Chapter four goes on the extraction of the centipede model (width
and contrast). Since the parameters are modeled by polynomials, curve fitting with
polynomials is introduced by minimizing MSE. Quantization and coding of
polynomial coefficients are given at the end of the chapter. Experimental results are

discussed and conclusions are drawn in chapter five.



CHAPTER 2

IMAGE CODING TECHNIQUES

A digital image could be viewed as a matrix of dimension N x M,which has NxM -
byte representation. Typical value for N is 256 or it may have higher spatial
resolution up to 1024 for medical images. When color images are considered, the
required storage is tripled. Well-known statement, “A picture is worth a thousand
words” by Descartes, appears in many books on image processing and computer
vision to express the observation that human being percept the images in a highly
intelligent way, unfortunately images require much more storage space than it
sounds. Image coding has focused on this problem. Though many image-coding
methods for image compression have been proposed since late fifties, the main
objective of all is to provide the best possible quality image for the minimum data
rate. This chapter is devoted to review these efforts in image compression.

Particularly, model-based image coding techniques will be investigated.

2.1 Introduction

Image coding techniques can be classified into three groups according to what they
actually code. In waveform image-coding techniques an image itself or some simple
variation of that such as difference in intensity at consecutive pixels is coded, In
transform-based image-coding techniques, an image is transformed into another
domain such as frequency domain and transform coefficients are coded. In model-

based image-coding techniques, an image is modeled and model parameters are



based image-coding techniques, an image is modeled and model parameters are
coded. Waveform image coding techniques has used information theory end its

results.

2.2  Waveform Image Coding

Waveform image-coding systems consist of three elements. The first and most
important element is the transformation of the image to the most suitable domain for
quantization and code-word assignment. In waveform coding, we code the image
intensity itself or some simple variation of image brightness such as the difference
between consecutive pixel brightness. One major advantage of waveform coding is
its simplicity. Since the waveform itself is coded, the coders are very simple both
conceptually and computationally. Waveform coders do not generally perform as

well as transform coders.

2.2.1  Pulse-Code Modulation (PCM)

The simplest waveform coding method is the basic pulse code modulation system, in
which the image intensity is quantized by a uniform or a non-uniform quantizer.
PCM systems introduce a noise to the image which can be modeled as additive
random noise. A way of improving the performance of a PCM system is to remove
the signal dependence of the quantization noise, which appears as false contours at
low bit rates. Roberts's psedonoise technique, also known as dithering, is a method
that removes the signal dependence of the quantization noise. In this method, a
known random noise is added to the original image before the quantization at the
transmitter and then the same random noise is subtracted at the receiver. Since
random noise is known at both the receiver and the transmitter prior to image

transmission, it does not have to be transmitted. The compression ratio is about 3:1.



2.2.2  Delta Modulation (DM)

In the PCM system, the image intensity is coded bit scalar quantization, and the
correlation among pixel intensities is not exploited. One way of exploiting some of
the correlation is delta modulation. In the DM system, the difference between two
consecutive pixel intensities is coded by a one-bit quantizer. Although the dynamic
range of the difference signal is doubled as a result of differentiation, the variance of
the difference signal is significantly reduced due to the strong correlation typically

present in the intensities of two pixels that are spatially close.

An important design parameter in DM is the step size. In the region where the signal
varies slowly, the reconstructed signal varies rapidly around the original signal. This
is called granular noise. A large step size results in a correspondingly large amount
of granular noise. When the signal increases or decreases rapidly, it may take many
pixels to catch up original signal using small step size. The reconstructed signal will
appear blurred in such regions. This is called slope overload distortion. The

compression ratio is about 4:1.

2.2.3  Differential Pulse Code Modulation (DPCM)

Differential pulse code modulation (DPCM) can be viewed as a generalization of
DM. In DM, the difference signal is quantized by a one-bit quantizer. In DPCM,
more than one bit can be used in coding the error. Since a PCM is a component of a
DPCM system, it is possible to use Robert's pseudonoise technique in a DPCM
system. Since we reduce the number of bits available to encode each pixel, the
quantization noise will be less if we use DPCM rather than PCM at the same rate.

The compression ratio is between 2:1 and 3.5:1 depending on the image statistics.

This approach can easily be extended to the two dimensions. Two dimensional

DPCM performs better than PCM and one dimensional DPCM by about 3.75:1.



2.2.4  Predictive Coding Techniques

There exists a statistical dependence between gray values at consecutive pixels.
Previous transmitted signals convey some sort of information about oncoming
signals. Prediction techniques are used to exploit the dependency and prediction
sequence is defined as the error between estimated and actual signals. Now,
prediction error signal is quantized instead of transmitted signal. Image compression
ability depends on the prediction technique used and correlation exists among
neighboring pixels. If all individual signals are mutually independent, then there is no
advantage over PCM or DPCM. Prediction image coding assumes some amount of

dependency and small variance of prediction error sequence.

2.3  Transform Coding

In transform image coding, an image is transformed to a domain significantly
different from the image intensity domain, and the transform coefficients are then
coded. In low bit rate applications, transform coding techniques with scalar
quantization typically perform significantly better than waveform coding techniques

with scalar quantization. However they are more expensive computationally.

Transform coding is significantly different from DPCM and achieves compression in
transform domain. Transform coding techniques attempt to reduce the correlation
that exists among image pixel intensities more fully than do waveform coding
techniques. Transform coding techniques also exploits the observation that for
typical images a large amount of energy is concentrated in a small fraction of the
transform coefficients. This is called the energy compaction property. Because of this
property, it is possible to code only a fraction of the transform coefficients without
seriously affecting the image quality.

The statistically optimal linear block transform, in the sense that it minimizes the

mean squared reconstruction error, for coding images is well known to be the
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Karhunen-Loeve transformation (KLT) [1]. The KLT is related to principal
component analysis, since the basis vectors are also the principal components of data.
Because the KLT is an orthonormal transformation, its inverse is simply its

transpose.

A number of practical difficulties exist when trying to implement the KLT. The
calculation of the covariance estimate, X, and its eigendecomposition is not practical
even with today’s computing resources. The algorithms used to do these
computations are complex and therefore not suitable for hardware implementation.
The calculation of the covariance estimate requires O(N?) calculations. Due to these
difficulties, fixed basis transforms such as discrete cosine transform (DCT) [2],

which can be computed in order O(N log N), are typically used.

2.3.1 Hybrid Coding

The term refers to techniques that combine transform coding which performs very
well in low bit rate applications and waveform coding which is very simple to
implement. In hybrid coding, a two-dimensional image or its row or column is
transformed to obtain statistically independent sequence of transform coefficients
accumulating in a narrow energy band known as energy compaction property and
then this sequence is coded by waveform coders such as DPCM. Hybrid coding can

achieve the compression ratio up to 8.0:1.

Hybrid coding of a single image is not practical since it does not decorrelate the
image as much as 2D transform coding and implementation complexity of transform

coding is not much more than hybrid coders. Hybrid coding is useful in interframe
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image coding. Exploiting the temporal correlation as well as spatial correlation to
code a sequence is called interframe coding. In intraframe hybrid coding; every
frame is computed by 2D transform and then waveform coding is applied to 2D

transform coefficients along temporal direction.

2.3.2 Adaptive Coding and Vector Quantization (VQ)

Transform coding can be made adaptive to the local characteristics within a block of
particular size. For example, transform block size can be chosen small in regions
containing edges. Adaptive coding significantly improves the performance of

transform coding while adding little to its complexity.

Transform coefficients are generally coded with scalar quantizers. It is also possible
to use vector quantizers in which designing goal is to obtain a quantizer consisting of

N reproduction vectors, such that it minimizes the expected distortion rate.

Vector quantization is the joint quantization of the components of a vector. Unlike
scalar quantization, it is often used to requantize signals that are already digital, for
the purpose of compression. When vector: quantization is used for image
compression, the image is partitioned into blocks of N =nxn pixels, which form an

N-dimensional vector. This vector is encoded by searching a codebook of

. . T .
representative quantization vectors. Let x = [x1 yeeesX N] denote a vector that is formed

of a block of size N of the image. In VQ, x is mapped into another N-dimensional

vector g = [q, yees N]T . The vector qgis chosen from L possible quantization
codewords in q way that minimizes an Euclidean distance measure. The quantization
codewords are chosen so as to be optimal for a given distribution. The techniques for
choosing the quantization symbols and the different search algorithms for the
encoding stage have been reviewed and detailed in [4]. One of the most popular VQ
algorithms makes use of the K-means algorithm and is known as the LBG algorithm

[5]. Given the number of clusters to be formed, it iteratively refines the cluster
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centers and boundaries. The iteration is stopped when the mean square error falls

below a threshold or remains constant between iterations.

2.3.3  Two-Channel Coders

In a two-channel coder [6], an image, f(n,,n,), is divided into two components: low
and high frequency components. The lows component f,(n,,n,) consists of low-
frequency components and represents the local luminance mean of f{n,,n,). The high
component f,(n,,n,) consists of high-frequency components and represents the local
contrast of f{n,,n,). Since low component is a low-pass filtered version of f{n,,n,), it
can be downsampled and interpolated by low-order polynomials or splines. High
components can be coarsely quantized by a PCM system which may use Robert’s

pseudorandom noise technique.

Two-channel coding system is shown in Figure 2.1. The original image f{(n,n,) is
low-pass filtered by a FIR filter. Since lows component is smooth enough to be
represented by a polynomial at coarser levels, the lows component f,(n,n,) is
subsampled and estimated by a polynomial. The high component is obtained by
subtracting the f,(n,n,) from f{(n,,n,) and quantized by a PCM.

A two-channel coding system can be viewed as a special case of a subband
image coder. A coding method in which a signal is divided into many channels and

each channel is then coded with own coder is called subband image coding [7].

2.3.4 Fractal Image Compression

A fractal is considered as a‘ function, F, having the following properties:
1. F has detail at every scale,
2. F is self-similar,
3. The fractél dimen,sion of F is greater than its topological dimension.

4. There is a simple algorithmic definition of F.
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Fractal image coding [8] is based on the assumption that images are exactly or at
least statistically self-similar. By using self-similarity, some regions called domains

are transformed into such regions called range that means square error between
ranges and transformed domain is minimum. Then the transformation coefficients are
coded. Reconstruction is done by iteratively applying the transform onto itself. This
is called iterated function system. Due to the property (1), iterations result in an
image called attractor and final image, attractor, is not affected by initial image.
Different transformations lead to different attractors. The only limitation on the
selection of transformation is that the transformation must be contractive.In practice,

the transformation is of the form
= +
y ¢, d;lly /i

called affine transformation. Each affine transformation is defined by six numbers

a;,b,,c;,d,e.,f.

Performance of fractal image compression is restricted with the self similarity of the
image. Real images are not exactly self-similar which makes the compression ratio

lowered.

2.3.5 Pyramid Coding

A pyramid is a pyramid-like grid structure where bottom of the pyramid
corresponds to finest scale and top of the pyramid corresponds to coarsest grid. An
image is described in the scale space on the pyramid from finer scales to coarser by
- convolving a scale-space filter like gaussian function or solving diffusion equation in
time. The difference image between two consecutive levels is called residual. Since
residuals are smooth signals, they can be represented finely at one coarser level by

subsampling and interpolating. This process is iterated at every level of the pyramid.
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The image at the coarsest level is the blurry version the original. Each residual is
coded by DPCM and transmitted. At the receiver, residuals from coarsest level to
finest level are interpolated and added to the previous received residual. As the
process is repeated for each level on the receiver, the reconstructed image will
become higher spatial resolution image. One major advantage of the pyramid is its

ability to progressive image transmission.

2.3.6 Wavelet Image Coding

A wavelet transform is the decomposition of a signal into a set of basis functions
consisting of contractions, expansions and translations of a mother function y/(¢)
called the wavelet [11,12]. It is equivalent to the analysis of a signal into several
frequency bands having the same bandwidth on a logarithmic scale, each one

representing a tradeoff between time and frequency resolution :

1
Time - Bandwidth Product = At x Af > .

This is referred to as the uncertainty principle, or Heisenberg inequality. It means that
one can only trade time resolution, or vice versa. The wavelet transform represents a
different interpretation of subband coding. In this interpretation, other features of the
filter banks than frequency selectivity, such as tegularity and number of vanishing

moments, are considered [13,14].
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2.4  Model-based Image Coding Techniques

Common feature of all coding methods is to exploit the redundancies exist in images
by decorrelating the image. Since techniques in first and second class explained
above make use of information theory and its results, decorrelation is based on the
entropy and entropy coding. Information theory suggests that upper level of coding
gain is bounded by the entropy for a given signal and its distribution. Fortunately, the
entropy of an image is unknown and depends mostly on the model used. Model-
based image coding techniques [15,16] , contrast to previous class methods, make
use of some features of images such as edges, segments, textures. This is based on
the fact that an image can be described by its discontinuities where sharp changes
occur in brightness and by regions where brightness is equally distributed. In fact,
most of the computer vision high level processes are partially based on the edges,
regions and texture information. Human brain also processes the visual information

in the form of edges and regions.

The first study which inspired such methods classified as model-based techniques is
Graham's paper [17] on edge-based compression and actually goes back to late
sixties. There are two reasons why edge-based techniques did not take so much
interest of researchers as it deserves. First, from sixties to late seventies information
theory was on the way to develop and, information theory tools were considered as
the optimal way of coding. Second, there were no study on coding of arbitrary curves
effectively. In fact, in middle of seventies Freeman [18] put forward a method called
chain code for curve representation. Later, Kaneko and Okudaira [19] developed
chain code representation by utilizing edge link concept. Schreiber [6] considered an
image as being composed of low and high frequency parts, which are encoded
separately. The high frequency part corresponds to contour and low frequency part
corresponds to regions. Kunt et al. [15] use region growing to segment the image into
regions and gray level intensity is modeled and encoded by polynomials. Region-
based methods suffer from the artifacts that the transitions at the region borders are

step edges. Kunt offered a solution that tries to model the edge profile by wavelets.
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Carlson [20] presented a sketch-based coding scheme for gray level images. Carlson
proposed to code the intensity on either side of each edge, and interpolate image
intensity between contours by diffusing intensity estimates from these edges. The
results were not good in perceptual quality. There are many reasons for the
distortions on the reconstructed image. Distortion is mostly caused by the incomplete
information on data. Recently, Elder and Zucker [21] have proposed an algorithm for
reliable edge detection and blur estimation. Scale is estimated only on edges and
approximated elsewhere by diffusing them. The reconstructed image is obtained by
solving anisotropic heat equation with space-varying scale parameter. The results are
perceptually very close to the original images. But they did not mention how to code

the scale estimates at edges, intensities and contrast information.

Acar and Gengata [22,23] used a model called weak membrane. They formulated the
edge detection and surface reconstruction problems as a regularization problem with
a non-convex energy functional. They proposed to code the intensity on either side of
each edge in the image modeled by weak membrane. Since the image is modeled by

weak membrane, the resultant image is far from being perfect.

Gokmen and Ersoy [24] has recently developed a model-based coding method for
fingerprint images. They use the regular structure of the fingerprint images and
hybrid model. They proposed to detect ridges and valleys by adaptive thresholding
and to code the intensities on ridges and valleys. Reconstruction was done by
minimizing the hybrid energy functional. One advantage of the model is its ability of
preserving the fingerprint structure in high compression ratios. Because, what they
code is fingerprint structure itself. Another advantage is that one can process even on
the compressed data without reconstruction for the recognition or classification
purpose. The method suffers from two problems. First, coding and decoding
processes require heavy computation load. Second, the reconstructed image is mostly

blurry version of the original fingerprint.
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J. Rabinson [26] presented a different model which uses ridges and valleys as
perceptual image primitives instead of edges and regions. The primitive curves
(ridges and valleys) are called “threads”. Transmitted data are the thread locations,
shapes and profiles. Reconstruction is done by interpolating the transmitted data. The
image is first filtered with a valley/ridge detection operator such as a Gaussian-
smoothed second derivative. He reported that LOG with Gaussian variance of 1.4
pixels had been used. The threads were obtained by a valley/ridge follower. Location
of valley/ridge was coded by standard chain code. Intensities and profiles on
valleys/ridges were compressed by fractal coding. The unknown pixels are
interpolated by C° Natural Neighbor Interpolation [27]. Since the method is based on
ridge/valley primitives, the approach preserves texture rather than edges. The model
has a drawback that since the valleys/ridges are mostly discontinues, the interpolation

causes the reconstructed image to blur at the discontinues.

U. Y. Desai et al. [28] has recently proposed an edge and mean-based compression
method for color images. They used Sobel operator to detect edges. Contour intensity
was coded by line-fitting in one dimension for both vertical and horizontal directions.
In order to enhance the reconstructed image quality while keeping the bit rate down,
mean of the image in a block of size 10x10 was also coded. In decoding stage, the
mean in a block is used to modify the mean of th interpolated image. They reported

acceptable quality images at 0.1 to 0.3 bpp for (256x256) color images.

Dijk and Martens [29] presented a method combining the transform coding and
model-based coding. They introduced steered Hermite Transform described as a
weighted sum of orthogonal polynomials. The term “steerable” is used to describe a
class of filters in which a filter of arbitrary orientation is synthesized as a linear
combination of a set of basis filters. Hermite filters of order n form a steerable basis
for every individual filter of order n. It had been shown that Hermite transform has
the advantage that high energy compaction can be achieved by adaptively steering

the transform. They used Gaussian edge model and expressed explicitly the local
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edge parameters as a function of the Hermite Transform coefficients. Unfortunately,

they did not deal with the problem of compressing these parameters.

Salembier et al. [30] has presented morphologic tools to compress images. They
defined four morphologic operators rather than complete coding scheme. These
operators are as the following :
° Connected Operators [31] : The operator solves the problem of image
simplification while preserving the contour information.
o Region-growing version of the watershed [32] : The watershed
transformation is the classical morphological tool for segmentation
o Geodesic skeleton [33] : In region-based image coding, there is a
problem of assigning a contour to a region while the contour belongs to
at least two different region.
o Morphological interpolation : Morphological interpolation can be used
very efficiently to interpolate on irregular grids.

There are many studies on region-based image coding [34]. In [35], an image is
partitioned into distinct regions by using a segmentation algorithm, the contents of
the regions are then coded using polynomials. The effect of polynomial order was
studied by comparing the segmentation and rate-distortion performance produced by
different order approximations. In contrast to the previous studies on region-based

coding, texture on each region was modeled.
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2.5 Centipede Model

We have seen the following problems with the previous edge-based coding
techniques
‘1) Edges are generally modeled by symmetric Gaussian (or similar)
functions, causes that reconstructed image looking like artificial.
2) Since they do not attempt to control the selection of contours or the
selection is done randomly, some contextually important features may
disappear.
3) None of the techniques develops a unified approach for edge detection,

contour selection and coding, edge representation, and reconstruction.

We have developed a model which we call “Centipede Model”. Centipede model
[25] consists of five parameters : Intensity on edge (I.), Left and Right Contrast (C,,
Cp) and Left and Right Width (W, Wg). The model parameters are drawn on an
edge profile given in Figure 2.2 (a). The model parameters are extracted on each edge
element on the contour shown in Figure 2.2 (c). Two-dimensional edge profile is
given in Figure 2.2 (b). Width is defined as the distance at which difference in
consecutive pixel is lower than a given threshold. Threshold is determined from the
SNR (dB)ratio for an image. Width is a rough estimate of edge scale. In chapter 4, it
has been shown that the tuple (I;,C;, Cg, Wy, W) with the edge map constructs a
powerful representation of the image (solve the problem (1)). How the parameters are
extracted and coded are explained in chapter 4. We present an approximation scheme
for the model parameters by polynomials with varying order and constant block
length. We also investigate how the selection of polynomial order and block length

effect the quality of the reconstructed image.

We propose a contour selection method based on the ordering of edge segments
regarding to normalized feature set containing length, contrast and curvature in
chapter 3. The method is experimentally tested and verified that for high compression

ratios all perceptually most important features are still kept (solve the problem (2)).
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Figure 2.2 _
(a) Centipede Model Parameters for the edge on the contour shown in (c),
(b) 2D Edge Profile,
(c) Contour.



CHAPTER 3

CONTOUR CODING

This chapter develops contour extraction, selection and coding methods used in
contour-based image coding system that we have developed in this study. First, how
edge information is extracted from an image via generalized edge detector is
explained. Then, we proceed with the edge following algorithm which produces long
and smooth segments as much as possible. In order to increase the compression ratio
while preserving the quality of the image in terms of visual appearance to human
viewers and allowing small amount of degradation, some of edge segments which
have less significance on surface reconstruction process are elimiﬁated for a given
threshold. Edge segments are ordered according to normalized weighted sum of their
length, mean contrast and mean curvature. We have coded these contours by using
differential chain code followed by Huffman coding. End points are coded in the

form of distance between lexographicly ordered end points.

3.1 Introduction

Contours correspond to object boundaries where sharp changes occur due to some
physical aspect of an image such as surface reflectance or illumination. It is well
known that an image which consists of only its edge is highly intelligible and

structural. Studies on human brain and low-level retinal processes have showed that
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brain also receives information in the form of edges and brightness. In fact, in
computer vision, intermediate and high-level processes such as shape from shading,
structure from motion are partly based on edge information and so extracting the
edges highly accurately has primal importance for any algorithm in machine vision.
On the other hand, for compression purpose, contours have another important

property that they are very sparse.

An edge detector extracting and locating object boundaries in an image from
intensity data is a crucial step of contour-based coding system. The goal of edge
detection is to obtain powerful and complete description from an image by
characterizing these intensity changes. By using this representation, it would be
possible to reconstruct a good replica of the original. Since accuracy of model
parameters (contrast, intensity and wid’th)1 are determined by the accuracy of
detected edges, edge detection is the most important part of the algorithm. An edge
detector is expected to have a good detection, good localization, one response to one

edge, robustness, efficiency, applicability to sparse data properties.

We have used generalized edge detector which allows the description of images on a
plane called At—space where T controls the shape of the filter and A controls the scale
of the filter. One can obtain most of the well-known edge detectors by setting these

two parameters appropriately.

3.2 Generalized Edge Detector (GED)

Generalized edge detector [2] is based on the regularization theory and convolution
with filters. In regularization theory, the smoothness constraint is imposed to the
solution in by means of energy functional containing derivatives of the solution.

GED uses hybrid energy functional :

' Definition of these parameters and how they are extracted from an image will be explained in

Chapter 4
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In the functional, first term on the right hand side is a measure of the closeness of the
solution f{x,y) to the data d(x,y), and the second and the third terms are stabilizers on
the solution as the first and second order derivatives. The Euler-Lagrange equation

associated with this hybrid functional is

AT U ¥+ 2f e + ] M=) S + [, 1+ f =d (3-2)

This is a forth-order partial differential equation. Solution of (1-2) is explained in
details by using Green function in [2]. The solution gives five different form of filters
denoted by G(x;A,t) and R(x;A,t) according to A=B>-44, B and A where
B=A(1-7) and A=A 7. These filters, G(x,A,7) and R(x;A,t), are drawn in Figure-
3.1. Images are convolved with the filter G(x,A,t) and then edges are obtained from
convolved signals by applying histerezis thresholding along tangent direction
followed by thinning process. Images and edges detected for different At values are
shown in Figure-3.2. G(x,A,7) and R(x;A,t) functions for five different cases are
given in Table 3-1.



26

Table 3.1 G(x,A,1) and R(x;A,7) filters

Case G(x;A,1) R(x;A,1)
1 . A >0 G(x;,‘l T )= .l.g,;(_x)_z(e—blxl _e-alxl) e—alxl e—bl.r|
24(°-a") R(x;A ,7)= 240 -a) @ b
. ‘/ B+VB 44
where 24
be ’B-—\/Bz ~44
B 24
2. A<0 ] s T ., € | cos(alx)) = sin(alx]) J
G(x;A,7) adab € sin(ax) | R(x;A,7)= YN yi —
1 1 44
a = — cos(z arctan,[——1)
a2 VB
where
b= —1—,—sin(l arctan #—1)
o 2 VB
3.4=0 | . ~d ~ad
(i ,7)= 7 pxe RGxA,v)=—7 —+|xl
B
h = ,/——
where a=/>= ,‘
4. B=0 -1 . i
G(x;A ,7)= Wk sinalx] | R(x;A,7)= 2l a (cosalx|+sinalx|)
-1
where a = ;
J24°
5.A=0 -8 =lal i
GxA )= —g;;(—"le“ R )= o
7 JB
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(b)

(a) Edges detected on At-space
(b) Images on At-space
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3.3 Edge Tracing Algorithm

The output of the edge detection algorithm is a binary image. Binary images are
coded effectively by differential chain code followed by Huffman coding. Chain code
represents an arbitrary curve by assigning a codeword to each direction starting from
the one end point of the curve. The purpose of edge tracing algorithm is to obtain the
curves to code and to select with respect to their priority and eliminate some of which

are less significant.

3 2
q1 AL
v v
(2) (b)

Figure 3.3 (a) 4-connected directions,
(b) 8-connected directions

An 8-connected directions are given in Figure 3.3-(b). Our studies have shown that if
4-connected directions given Figure 3.3-(a) are converted to 8-con;1ected directions,
then the extraction of model parameters becomes less sensitive to the noise and some
false edges may be corrected. An example of 4-to-8 direction conversion is given in

Figure 3.4 where the corners of a square is smoothed.

(2) (®

Figure 3.4 (a) Original edge map,
(b) Edge map after conversion
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A block diagram of the tracing algorithm is shown in Figure-3.5. End points are
obtained by scanning the binary image from left to right and top to bottom in the
conventional manner. At the beginning of tracing, all edges are unmarked. When an
edge is visited, then the visited edge point is marked as nonedge. If visited edge is on
a cross- road point, edge is not marked. Since cross-road points correspond to such
points where two or more edge segments intersect, marking a visited cross-road point
results in breaking a continuous edge segment into two or more segments which
increases the end points. At junction points, edge tracing algorithm is forced to
follow the previous direction as much as possible so as to have high compression
gain with the differential chain coding. If the visited point is not on a junction, then
the next edge is the only edge that is in the neighborhood of the point. Otherwise the

next edge is selected as a point which has the closest direction to the previous one.

3.4 Contour Filtering

Edge segments, § = {s,.| i=1..,N }, are obtained by the edge tracing algorithm
explained above. These contours have to be filtered because of

* Edge detector gives some false contours,

* Since edge segments have different amount of contribution on reconstruction

performance, some contextﬁally unimportant features can be eliminated.

We have observed that edge segments can be classified and ordered with respect to
their length, mean contrast calculated through normal direction of the segment and
mean curvature directly derived from differential chain code. Because contextually
unimportant information may consume much of the channel capacity, we offer a
method controlling the selection of edge segments in a top-down manner. Through
the ordering of edge segments, one can state that if leading edge segments in the

order are used and others are omitted, since remaining edge segments are still enough
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End points are detected by scanning the image
(An end point array is constructed)

Choose an end point

v

End point array [(X,,45Y 4 )]

Previou{Direction

Find the direction which has
minimum rotation from
previous direction

(xend sy end)
Edge i
divided at \|_Yes
a junction %
No
(xnext ’y next )

Is the edge

Mark the visited edge point

on a Cross

No Is end of

point ?

Yes

the segment
reached ?

No

Edge Segments In a data
structure

Figure 3.5 Edge Tracing Algorithm
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to represent the image perceptually, the reconstructed image is still a good
approximation of the original. In order to prove the validity of the selection
algorithm, we have assigned a priority to each segments and eliminated some of them
which has less priority for a given threshold. All segment features (length, contrast
and curvature) are normalized.

Priority(s;)= Wi X LENgth(s; )+ Weopny X Contrast(s;)+w,

carvanre X CUrvature(s;) (3.3)

The selection method is tested on three type of images having completely
different characteristics. One type is a medical image (BRAIN.HIPS). In medical
images, actually all features are perceptually important in some degree. Another type
of image is a highly detailed one containing face (LENNA.HIPS). Other type of image
contains broad regions and naturally very sparse and smooth edge data (HOUSE.HIPS).
In Table 3.2-5, how SNR, NMSE, PSNR vary with the selection of edges is given.
As contours are eliminated, NMSE increases, SNR énd PSNR decreases expectedly,
but reconstructed images (Figures 3.6-3.8, respectively) still contain most perceptual

features.
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Table 3.2 Selection and reconstruction results for BRAIN.HIPS

(wlength = _1'0’ wcontmst = _1‘0)

Contour | Edge | %Threshold | NMSE | SNR(dB) | PSNR
339 4472 100 30.83 23.52 | 67.77
236 3998 75 31.36 23.19 | 67.43
164 3506 50 31.72 2296 | 67.20

84 2855 25 33.01 22.16 | 66.40
36 1982 10 34.56 21.24 | 65.48

Table 3.3 Selection and reconstruction results for LENNA.HIPS

(wlength =-10, Weontrast = —I'O’wcurvature =05 )

Contour | Edge | Threshold% | NMSE | SNR(dB) | PSNR
232 2754 100 20.73 31.46 | 63.47
165 2494 75 27.40 25.88 | 57.89
110 2199 50 28.98 2476 | 56.88

56 1872 20 35.40 35.40 | 52.77

Table 3.4 Selection and reconstruction results for HOUSE.HIPS

(wlength = _1‘0’ Weontrast = —1‘0)

Contour Edge Threshold% NMSE SNR(dB) PSNR
635 6626 100 12.46 41.60 72.08
475 6094 75 12.64 41.35 71.83
317 5336 50 13.37 40.23 70.70
160 4150 25 14.21 39.02 69.49

97 3466 20 15.39 37.41 67.89
64 3102 10 16.10 36.52 66.99
32 2663 5 18.66 33.56 64.04
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Number of Contours 339
- Number of Edges 4472

Number of Contours 236 (d)
Number of Edges 3998

(e
Number of Contours 164 ®
Number of Edges 3506 ‘ SNR =22.96 dB
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Number of Contours 84 (h)
Number of Edges 2855 SNR =22.16 dB

Number of Contours 36, () SNR =21.24 dB
Number of Edges 1982

Figure 3.6 Reconstructed BRAIN Images
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(b) SNR =63.47 dB

(d) SNR =57.89 dB

(f) SNR = 56.88 dB

(h) SNR = 35.40 dB

Figure 3.7 Reconstructed LENNA Images
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(a) Original House Image
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Figure 3.8 Reconstructed House Images
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3.5 Differential Chain Coding

Chain code proposed by Freeman [18] in 1974, is an effective representation for
arbitrary curves. Typically, this representation is based on the four or eight-
directional encoding where the direction of each segment is coded using a

numbering scheme given in Figure 3.9.

1 2
' 3 ™ 1
2 < > 4 < > 0
v
5 v 7
3 6

Figure 3.9 4 and 8-connected directions

The chain code is obtained by following a boundary in a direction explained in
Section 3.3 -Edge Following, and assigning a direction to each segment.

A chain code is defined by

C={¢|i=1,.,N} (3.4)

where ¢, represents a direction according to the eight-directional chain code given in
Figure 3.9 and N is the number of edge segments. Let ¢, = ¢, —c,_,, for i=2,...,N be the

difference in direction. Then the chain difference is defined by



e +8 €;,<-3
d,=1e-8 e >4 3.5
e. else

A differential chain code is defined by D = {di li=23,...,N } . Smoothness property
of curves suggests that the difference between two consecutive direction is small.
The Huffman coding technique utilizes the statistics of the messages to make the
most frequent symbols correspond to the shorter encoding and the rare symbols
correspond to the longer encoding. Chain code does not only include the contours but
also the starting point of them. Since the starting points in an edge map are
distributed almost equally, they can be coded effectively in the form of distance
between lexicographically ordered starting points. Another practical issue with the
chain code is the need of a codeword for termination of contours. This problem is
simply solved by defining the termination as a new direction. General view of edge

map with contour code is given in Figure 3.10.

Contour ; Contour
Starting | Huffman coded | Termination Termination
Point |differential chain] Code Code
code

Figure 3.10 Huffman coded differential chain code format

Huffman coding makes two passes on the data stream. In the fist pass, frequency
distribution of the data stream is obtained. Huffman coding scheme constructs a
binary code book tree which is known to be uniquely decodable and optimal. In the
second pass, each code is assigned to an appropriaté codeword using the code book
such that less probable messages are assigned to longer codewords and more

probable messages are assigned to shorter codewords. Since the difference in



45

direction accommodate in the interval (-1..1), there is no need to send the codebook.
It is implicitly assumed to be as in Figure 3.11. Experimental results given in Table

(3.4,5,6) also prove the assumption.

111111 1111111

Figure 3.11 Code Book for Differential Chain
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CR stands for Compression Ratio, ACL stands for Average Code Length, and ECL
stands for End point Code Length in Table 3.5, Table 3.6, Table 3.7.

Table 3.5 Contour coding results for BRAIN.HIPS
(Wlength = _1'0’ wcontrast = _1'0)

Contour | Edge | %Threshold | CR ACL | ECL
339 4472 100 18.22:1( 2.06 12
236 3998 75 21.7:1 | 2.00 13
164 3506 50 26.4:1 1.95 14

84 2855 25 36.5:1 1.88 15
36 1982 10 58.25:1( 1.83 15

Table 3.6 Contour coding results for LENNA.HIPS
(wlength =-10, Weontrast = -1.0,w, =0.5)

curvature

Contour | Edge | %Threshold | CR ACL | ECL
232 2754 100 17.1:1 | 1.973 9
165 2494 75 20.0:1 | 1.926 10
110 2199 50 24.6:1 | 1.88 10

56 1872 20 35.5:1 | 1.81 11

Table 3.7 Contour coding results for HOUSE.HIPS

(Wlength = _1’0’ Weontrast = —10)

Contour Edge %Threshold CR ACL ECL
635 6626 100 23.6:1 2.01 13
475 6094 75 28.1:1 1.96 13
317 5336 50 35.1:1 1.89 14
160 4150 25 52.5:1 1.77 15
97 3466 20 71.5:1 1.49 13
64 3102 10 86.1:1 1.65 13
32 2663 5 109:1 1.61 14




CHAPTER 4

EXTRACTION OF MODEL PARAMETERS AND CODING

This chapter introduces the centipede model. Extraction and coding of the model

parameters are investigated. Compression results are also shown at the end of the

chapter.

4.1 Introduction to the Centipede Model

There are many ways to describe the intensity variations of pixels in an image.
In edge-based image coding, previous studies has modeled the intensity variations

along edge normal (edge profile) with Gaussian edge model such as

AV -d
Edge(xV,,AV 0,,d)=V,+ Terf (xa J 4.1)

b

where , is the mean, AV is the contrast, and , is the blur parameter of the
Gaussian. Such an edge profile model suffers from the following problems :

1) (4.1) does not work well for a non symmetric edge,

2) Edge profiles can not be modeled by a Gaussian-like function due to the

interactions of near edges in scale space ([21,33,38]).
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When deciding on a description, it must be proved at least experimentally that the
model represents the original image enough to reproduce within a small error
distance. We present a model which gives a powerful description of the image. The
centipede model is given by a tuple (I,Cp,Cg, W, Wg) with the edge map where I,
represents the intensity on the edge, C; (Cy) represents left (right) contrast along the
normal direction of the contour, and W; (Wy) represents left (right) width. Width is
defined as the distance at which difference in consecutive pixel is lower than a given
threshold. Threshold is determined from the SNR,g ratio for an image. Width is

proportional to edge scale.

The image wih the edge profile is obtained by minimizing the hybrid energy model.
For 1D case, the model covers a vast range of edge profiles. Hybrid energy functional

in 1D is given in (4.2).

E(fid.t)= I[ﬂ () ()-d(x))* + Uzf, +(1-7) f)ldx (4.2)

Minimization of the energy functional is obtained by first discretization

E(f;A7)= gﬂi (fi=d) + A7 (f;= [ +A (=) oy + fir =2 (4.3)

followed by applying Successive Over Relaxation (SOR) [35] yields an iteration

wiy _ po W IE(S)
f;( 1)_fi()__T af‘ (44)
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3B A 22N

- A4-30) (O + £D) - (4.5)
+A0-7)(FG + £)

The curve denoted by C,,, in Figure 4.1 represents a nonsymmetric edge profile. The
curve Ceentipede is obtained by the centipede model
(I.=0,C;=100,Cr=150,W=75,W;=82). The reconstructed edge profile is denoted by
C.ons and obtained by solving the iteration (4.5) with parameters (w=1.0, A=0.8,
1=0.5, iteration number 2000). Shape of the reconstructed curve is controlled by the
pair (A,T). A controls the smoothness of the profile and 1 controls the continuity of the

profile. This is called At—space representation of functions.

We have also tested the model on different type of edge proﬁles (e.g. step-edge,

linear edge), the centipede model performs well for all of them.

150 T

Corg
100} :

Ccentipede Ccons
50

WL

-100 = . : '
-100 -50 0 50 100

Figure 4.1 A non symmetric edge proﬁle (Corg) and the reconstructed edge
profile (C,,p,) with the Centipede model (Ceniipedc)-
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4.2 Extraction of Model Parameters

In the previous section, the centipede model and its properties are explained.
Performance of the model is dependent on how the parameters are extracted from
given image and edge map obtained by GED. The problem is to extract numerical
data for the Centipede Model. The extraction is done through the edge segments and

along the normal direction to the contour for each edge element.

Let P, (c,) be the edge profile along the direction perpendicular to the edge direction
and P(c) be the edge profile along the edge direction for the edge element
¢, =(x{i,y{"). Since contours are obtained by following connected edge elements,
P.(c;) and consequently (I}) is easily obtained. (Cp,Cg,W,Wp) is derived from the
edge profile P, (c;) captured by intensity along the normal direction at (x{,y{")

(Figure 4.2).

, -
’
X
7
4
’
e
4 /
s~ i T
p; B
’
’ 4 /)
4 ’
’ /’ ,,
’ P e
WL X (x.(:i : ci) s
i ’yl 4

- 4

Figure 4.2 Edge profile extpaction
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Mathematical definitions for model parameters (Cp,Cr, W, WR) are given in (4.6) and
4.7).

Wo(s) = V() —inf (v -V} aléx’; N <1
& V=V,
(4.6)
W, ()= V() -inf (v -V, 81;): N er)
L =7
Cr =1V () - I1(V(s)) (4.7)

C. =1V, (N-IV(s)

where T and Tr represents the thresholds.  Since difference operators are very
sensitive to the noise, the definition of (Wr,Wp) is an ill-conditioned problem. The
thresholds are used to make the extraction process robust to the noise. They are
determined from the SNRyp ratio for an image. As SNRyp increases, T, and Ty are

lowered to zero.

Original house image and edge map obtained by GED with parameters (A=2.0, 1=0.5)

are given in Figure 4.3 (a)-(b). Extracted centipede model images are given in Figure
4.3 (c)~(d) for T. =8 and Tr =12. These parameters are experimentally chosen. In
Figure 4.3 (e), some of the lines whose length is left and wright widths (W ,Wg)
normal to the edge direction are drawn. The centipede model being overlaid on the
original image is shown in Figure 4.3 (e). Also, Figure 4.3 (¢) explains why the
model is called “centipede”. Results for two different types of images (brain and
Lenna) are given in Figure (4.4) and (4.5).



52

Figure 4.3 Extracted Centipede Model For House Image
(a) Original House Image
(b) Edges detected by GED for (A=2.0,1=0.5,Case II)
(c) Intensities at (d)
(d) Edge and Width Map
(e) The centipede model overlied on the original House image
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Figure 4.4 Extracted Centipede Model For Brain Image
(a) Original Brain Image
(b) Edges detected by GED for (A=0.5,1=0.5,Case II)
(c) Intensities at (d)
(d) Edge and Width Map
(e) The centipede model overlied on the original Brain image
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Figure 4.5 Extracted Centipede Model For lenna Image
(a) Original Lenna Image
(b) Edges detected by GED for (A=0.5,7=0.5,Case II)
(c) Intensities at (d)
(d) Edge and Width Map
(e) The centipede model overlied on the original Lenna image
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4.3 Coding Of The Model Parameters

In the previous section, a method is introduced to extract the model parameters
(I,Cp,Cr, W, Wy) by capturing the edge profiles P,(c;) and P,(c,). The parameters
are modeled by polynomials and polynomial coefficients are coded. There are many
advantages of coding with polynomials :

* Since parameters extracted from neighboring edge points are very similar and
exhibit high correlation, it is therefore reasonable to use polynomials for exploiting
the redundancy. Also, coding of all model parameters is a bit-consuming operation.

* Fitting polynomials to the parameters by minimizing least mean square error
results in smoothing of the parameters. This may also smooth the error due to the
parameter extraction process.

* It gives the ability of changing the compression ratio while allowing small
amount of degradation. Lower the order of the polynomials, higher the compression
ratio is.

* It is computationally easy to fit a polynomial to a curve.

In this section, curve fitting with polynomials is explained, then we proceed with the

image reconstruction from model parameters by hybrid energy functional.

4.3.1 Curve Fitting with Polynomials

In curve fitting, we are given n points with pairs (X,,y}), ... , (Xpy,) and we want to
determine a function f(x) such that f(x;)= y,, j=1,...,n. The type of function may be
suggested by the nature of the problem. We offer polynomials of order n due to the
reasons explained above. 'A widely used procedure of curve fitting is the method of

least squares.
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Let P(x) be the n™ order polynomial with the coefficients (c,,c,,...,c,) as given in

(4.7)
P(x)=c, +c,x' +c,x* +..4c,x" 4.7

M data pair is given in the form (y,.y,,....,y,,). We want such a polynomial with the
coefficients (c,,c;,...,c,) that it minimizes the quantity MSE denoted by Q :

M
Q= [Px)-»T (4.8)
i=1
A necessary condition for MSE to be minimum is

99 _¢,i=0,..n (4.9)
Oa,

n
where P(x,)= chxi" . We define x; as x; =i for simplicity. In order to have a matrix
k=0

form, we will define the following matrices

M M

S, =Z%“=Zi“ (4.10)

i=1 i=1

M M
M, =inkyi=zikyi (4.11)

i=l Co i=1
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Solution of equation (4.9) becomes the solution of the following linear matrix

equation

[S][4]=[M] (4.12)

where

Co M,

¢ M,
A= . and M=| .

c M

n-1

Note that this system is symmetrix. To solve (4.12) for unknowns (c,,c,,...,c,), first
the matrix S is transformed into a tridiagonal form by Householder’s method [36].

An algorithm for the curve fitting by polynomials is given in Table 4.1.

4.3.2 Image Reconstruction By Using The Hybrid Model

The following processes are applied to the image in given order at the transmitter

I. Edge map is obtained by generalized edge detector,

II. The edge map with the image is used to extract the model parameters,

III.The extracted parameters are modeled by polynomials,

IV.Polynomial coefficients are quantized and sent with the edge map coded by
differential chain code followed by Huffman coding,.
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Receiver contructs two images which are

1. Edge map which is a binary image,

2. Intensity image is obtained from model parameters (I,,C,,Cg,W,Wg) which are
constructed easily by evaluating the polnomial value at each edge point.

Since both images are sparse, we use hybrid energy functional to span a surface

through these points. Hybrid energy functional tries to find such a function f(x,y)

which minimizes

E(f)= ‘{ [y —dGey)? + ALA=7)F2 + £2) 4 22 +212 + £2)] ddy
(4.13)

where A controls the smoothness of the surface and T controls the continuity of the
surface. In the functional, first term on the right hand side is a measure of the
closeness of the solution f{x,y) to the data d(x,y), and the second and the third terms
are stabilizers on the solution as the first and second order derivatives. The Euler-

Lagrange equation associated with this hybrid functional is

AT [fowe 72 ey + Syl =M1=7) [fe + [, 1 f =d (4.14)

Properties of the hybrid model and At—space can be found in [2]. The minimization
problem can be solved by discretizing the partial differential equation (4.14) or
directly discretizing the hybrid energy functional by using finite difference

approximation of derivatives.
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E(u;A,7)= ZZJ) Bii(u;—d,) +
Zi)zj:zr((ui,j —u )P+ Q=) P) +
Zi];m- T) (i + 5y = 20,5) +
(o + 155, — 2ui,j)2 + 2( Uy oy Uy — Ui — Ui o )?)

An iterative solution to (4.15) is obtained by the Successive-Over Relaxation

iterations as

ey _ 0 _ W OE()

uf™ =, (4.16)
J W) T d"i,j
GE(u) .
= Buxdi 1B +4M1+4n)]x ul?
L]
— AL+ T)uf +ul D +ul +ul] 4.17)

(n+1) (n+1) (n) (n)
+2A7[wyin Fwle U U

(n+1) (n+1) (n) (n)
+Ar[ulyy v, tug i,

where B;; handles the sparseness of data and it is equal to 1 if data is available at the
point (i,j), and O otherwise. In Figure 4.3,4.4,4.5 (c) and (d) represents f;; and

Ul —u®| < ¢ is satisfied for a

L]

d;;.The iterations terminate when the condition

prespecified . The iteration given by (4.16) is an interpolation by iterative
overrelaxation governed by the heat diffusion equation. Such iteraive solutions
require long convergence time. Theoretically, the number of iterations for
convergence is N’ . One way to accelarate the convergence is to use multigrid
technique [41]. Recently, Salembier et al. [30] has presented a new interpolant based
on morphological operations such as dilation and erosions which do not require any
multiplication. They have reported 13 iterations equivalent to 376 iterations of

multigrid diffusion and 2980 iterations of linear diffusion.

We examine how the quality of reconstructed image by using the hybrid model

is effected by the order of the polynomial and the block length in terms of nmse. It is
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Table 4.1 Curve fitting by polynomials

* Construction of S and M matrices

fork==1toM
foriz=Oton
forji:=0Oton
begin
S[ll] = SIilli] + power(k,iti) ;
MIi] =power(ki) *yli] ;
end

* Solution of linear matrix equation [S] [A] = [M]

Symmetric linear system [S] [A] = [M] is transformed into tridiagonal form by

Householder’s method. Then unknows can easily found as follows

Jfor i:==0ton-2
Jor j:=i+1 to n-1
begin
pivot :=- S[i][j)/ S[i][i 3
Sl = 0 :

for k==j+1 ton-1
S[il[k] = S[j](k] + pivot x S[i][k] ;

M[j] =pivot x MJi] ;
end
A[n-1] ;== M[n-1]/ S[n-1][n-1] ;
fork=mn-210
begin
A[K] := M[K] ;
for i=n-1 to k+1 '
A[K] := A[K] - S[i] x A[i] ;

end
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evident that the nmse increases as the order decreases and block length increases.
Beside that, we have also observed that there exist an order and a block length such
that nmse of the reconstructed image starts to remain almost constant. Quality of the
reconstructed image is effected by the order of the polynomial for intensity and

contrast much more than the one for width.

Reconstructed images by the centipede model with varying polynomial order is given
in Figure 4.6. For Lenna image and its edge map given in Figure 4.6 (a) and (b) when
the block length is equal to 10. Since nmse remains the same for higher order
approximations at about 37, the polynomial order is (Order. g

Order;pensity, Order,ign)=(3,4,1) enough to represent the model parameters.

Quality of the reconstructed images by the centipede model with varying block
length is given in Table 4.2 for Lenna image. Tt has been observed that nmse for

block length of 12 is still close to the nmse’s for shorter block lengths.
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Figure 4.6 (a) Original Lenna Image

(b) Edges detected by GED for (A=0.5,7=0.5)

(c) Reconstructed Lenna Image for (1,1,1)
nmse=36.00, snr=20.42, psnr=52.11

(d) Reconstructed Lenna Image for (2,2,1)
nmse=34.11, snr=21.50, psnr=53.19

(e) Reconstructed Lenna Image for (3,4,1)
nmse=33.60, snr=21.80, psnr=53.49

(f) Reconstructed Lenna Image for (4,5,2)
nmse=33.38, snr=21.94, psnr=53.62

where (Ordercontrasts OrdeTingensity, Orderwian) stands for polynomial orders



Table 4.2 Quality of Image Recostructed by Centipede Model with respect
to Block Length

Block Length NMSE SNR (dB) PSNR
1 29.53 24.39 56.08

2 33.67 21.70 53.45

4 36.43 20.19 51.88

6 37.96 19.36 50.05

8 39.03 18.81 50.50

10 39.36 18.64 50.33

12 40.41 18.12 49.80
Contour Length 48.04 14.66 ) 46.35

4.4 Experimental Results

We have used two methods to increase the quality of the reconstructed image
while decreasing the compression ratio little:
e Adaptively varying the order of polynomial in a block with a
constant length,

e Mean coding.

Different contours need different order of approximation for the same error measure.
By adaptively changing the order of the polynomial, it is possible that the
reconstructed image will have higher quality for the same compression ratio. The

results from the previous section also suggests this conclusion.
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Since the surface reconstruction does not guarantee that the mean of the image will
be preserved. In mean coding, the mean of the image in a block of size W is coded
and sent to the receiver. Receiver side uses the mean information in the
reconstruction level in such a way that the mean of the reconstructed image is closer
to the received mean in that block. Sending the mean of the image in a block does not
only increase the quality of the reconstructed image but also speed the reconstruction

process up.

Compression results are given in Figure 4.7 with the improvements stated above. We
have applied the centipede model on various type of images from artificial images to
real images having completely different features. The results are summarized in

Table 4.3.

Table 4.3 Compression Results for various type of images
(CR stands for Compression Ratio)

Image Size CR CR CR || NMSE | SNR

(bytes) | Differential | Polynomial (dB)

Chain Code | Coefficients

che.hips 16465 210:1 230:1 157:1) 14.56 | 63.26
bars.hips 16465 160:1 606:1 127:1|| 10.28 | 65.73
mouse.hips | 250149 186:1 251:1 107:1{| 16.25 | 36.33
house.hips | 65106 86:1 107:1 48:1 || 38.56 | 19.05
camera.hips | 262225 70:1 140:1 43:1 || 36.29 | 20.26
lena.hips 86561 48:1 123:1 35:1 || 3595 | 2045
brain.hips 30706 23:1 30:1 13:1 || 46.27 | 15.41
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Compression Ratio=127:1

Compression Ratio=157:1

Compression Ratio=13:1

Figure 4.7 Compression Results For Different Types of Images
Original Image, Edges detected by GED, Reconstructed image by the
centipede model are given from left to right
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©

(D)

Figure 4.8 Compression Results For Cameraman
Original Image, Edges detected by GED, Reconstructed images by the
centipede model are given,
(C) Compression Ratio=28:1
(D) Compression Ratio=43:1
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Figure 4.9 Compression Result For Lena Image
Original Image, Edges detected by GED, Reconstructed image by the
centipede model are given from left to right
Compression Ratio = 35:1 and SNR=20.45 dB
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(D)

Figure 4.10 Compression Result For House Image
Original Image, Edges detected by GED, Reconstructed image by the
centipede model are given,
(C) Compression Ratio = 48:1 x
(D) Compression Ratio = 74:1



73

CONCLUSIONS AND SUGGESTIONS

CONCLUSIONS

We have presented a model-based image compression method for loosy-coding of
images. The model is based on the edge features detected by using GED,
representing the image in a domain called At-space where A represents the
smoothness of the intensity and t represents the continuity of the intensity
information. The centipede model contains edge location, intensity on the edge,
contrast of the edge and the widths. It has been shown that the model yields a
powerful representation of the image such that the reconstructed image is
perceptually closer to the original image than the existing edge-based methods can

achieve for reasonable edge information.

We have also presented a contour selection algorithm in which edge segments are
sorted with respect to their length, mean contrast through the segment along the
normal direction, and mean curvature directly derived from differential chain code
representation of the contour. One can select the most perceptual contours just by
taking the leading contours in this order. We have experimentally shown that such a
selection is meaningful and performs good selection in terms of NMSE and visual

appearance of the reconstructed image.

The algorithm has two parts. In the first part, the edges are detected and processed by
edge tracing algorithm to obtain distinct contours and contour selection algorithm to
eliminate some of the contours which convey perceptually less information. In the

second part, the parameters of the centipede are extracted by one dimensional profile
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of the edge along the normal direction. The output of the first part is a binary image
and coded by differential chain code followed by Huffman coding. Model parameters
are fit to polynomials of some order. An approximation to the original image from

the model parameters is obtained by minimizing the hybrid energy functional.

The performance of the centipede model is evaluated by both quantitatively and
qualitatively. Compression ratio is up to 180:1 for synthetic images and 10:1-100:1
for real images. Reconstructed images are evaluated both quantitatively with NMSE
(normalized mean square error), SNR (signal-to-noise ratio) and PSNR (peak-to-peak
SNR) and qualitatively with visual appearance of artifacts. We have experimentally
shown that the proposed model preserves perceptually important features even at the

high compression ratios.

SUGGESTIONS

The width in the centipede model is a rough estimate of the edge scale. This causes
some edge contours to being blurred. Since surface reconstruction is done on At-
space, a good estimation can be obtained by determining appropriate (A,t) pair for
each edge element. It is sure that this will enhance the reconstructed image requiring

extra computation.

The proposed contour selection algorithm can be improved by utilizing the region
segmentation information in such a way that a contour which does not belong to at

least two distinct region boundaries can be eliminated.

Since the improvement in coding of binary images will also improve the compression
performance, the block coding of the edge segment is required to go down the

average bit rate per pixel below 1 bpp.
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One of the most important advantages of edge-based coding techniques is the ability
of processing even on the compressed image directly. Since the compressed image
contains information on some aspect of the image such as edges and scales, the

features can be used for further processing without decompressing.

We have currently been applying the principal component analysis directly on the
edge information to face images for detection purpose. We try to prove that
eigenedge decomposition of the face edges are less sensitive to the lighting

conditions.
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