

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF INFORMATICS

M.Sc. Thesis by
Reydan ÇANKUR

Department : Computational Science and Engineering

Program : Computational Science and Engineering

MAY 2010

AN EMPIRICAL STUDY:
PARALLEL EXPERIMENTS ON POSTGRESQL

Thesis Supervisor: Prof. Dr. H. Nüzhet DALFES

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF INFORMATICS

M.Sc. Thesis by
Reydan ÇANKUR

(702071014)

Date of submission : 07 May 2010

Date of defence examination: 10 June 2010

Supervisor (Chairman) : Prof. Dr. H. Nüzhet DALFES (ITU)
Members of the Examining Committee : Prof. Dr. M. Serdar ÇELEBĐ (ITU)

 Prof. Dr. Hasan DAĞ (ITU)

MAY 2010

AN EMPIRICAL STUDY:
PARALLEL EXPERIMENTS ON POSTGRESQL

MAYIS 2010

ĐSTANBUL TEKNĐK ÜNĐVERSĐTESĐ ���� BĐLĐŞĐM ENSTĐTÜSÜ

YÜKSEK LĐSANS TEZĐ
Reydan ÇANKUR

(702071014)

Tezin Enstitüye Verildiği Tarih : 07 Mayıs 2010

Tezin Savunulduğu Tarih : 10 Haziran 2010

Tez Danışmanı : Prof. Dr. H. Nüzhet DALFES (ĐTÜ)
Diğer Jüri Üyeleri : Prof. Dr. M. Serdar ÇELEBĐ (ĐTÜ)

 Prof. Dr. Hasan DAĞ (ĐTÜ)

POSTGRESQL VERĐTABANI ÜZERĐNDE
PARALEL DENEMELER

v

FOREWORD

The present thesis was prepared in the Computational Science and Engineering program at
the Informatics Institute of Đstanbul Technical University (ITU), Turkey from June 2009 to
May 2010.

I would like to express my deep appreciation and thanks for my advisor, Prof. Dr. H. Nüzhet
DALFES for giving me the chance to do the present work, and for his advices and
suggestions.

I would like to thank TUBĐTAK, BĐDEB for supporting the present thesis.

Computational part of the study was carried out at National Center for High Performance
Computing (NCHPC), I would like to thank all people in NCHPC.

Finally, I would like to thank my family and Ufuk YAŞAR.

May 2010

Reydan Çankur

Computational Science and
Engineering

vi

vii

TABLE OF CONTENTS

 Page

TABLE OF CONTENTS ... vii
ABBREVIATIONS ... ix

LIST OF TABLES .. xi
LIST OF FIGURES .. xiii
SUMMARY .. xv

1. INTRODUCTION .. 1

1.1 Purpose of the Thesis ... 3

2. ANALYZING POSTGRESQL DATABASE ENGINE 5

2.1 Objectives ... 5

2.2 Profiling PostgreSQL ... 5

2.3 Profiling Tools .. 5

2.3.1 GNU gprof .. 7

2.3.2 OProfile ... 7

2.3.3 Explain Analyze .. 8

2.4 Query Sets .. 8

2.4.1 Selection Task ... 9

2.4.2 Sorting Task .. 10

2.4.3 Duplicate Removal Task ... 10

2.4.4 Queries with Aggregate Functions .. 10

2.4.5 Group By Task .. 11

2.4.6 Join Task ... 12

2.5 Profiling Results ... 12

2.5.1 ICC Optimization Results with EXPLAIN ANALYZE 12

2.5.2 Gprof Results .. 13

2.5.3 OProfile Results .. 17

2.6 Performance Analyses .. 20

2.6.1 Reasons for Database Benchmarking ... 20

2.7 Compute Resources vs Database Engine Performance 24

2.7.1 Standard Version Details and Results ... 24

2.7.2 Memory-Upgraded Version results ... 25

2.7.3 Results for Different Core Numbers ... 26

3. PARALELLIZING POSTGRESQL DATABASE ENGINE 31

3.1 Objectives ... 31

3.2 Methodology .. 31

3.2.1 Summary of OpenMP Pragma Directives ... 31

3.2.2 How PostgreSQL Processes a Query .. 32

3.3 Parallelization ... 34

3.4 Parallel Results ... 39

4. CONCLUSION AND RECOMMENDATIONS ... 45

4.1 Application of The Work ... 45

4.2 Limitations ... 45

4.3 Conclusions .. 45

REFERENCES ... 47

CURRICULUM VITAE .. 49

viii

ix

ABBREVIATIONS

TPS : Transaction per Second
App : Appendix
MPP : Massively Parallel Processors
GPL : General Public License
TPC : Transaction Processing Performance Council
TPC-B : Transaction Processing Performance Council - Transactions per Second

Benchmark
OpenMP : Open Multi-Processing
API : Application Programming Interface

x

xi

LIST OF TABLES

 Page

Table 2.1: Query execution duration for different optimization levels. 13
Table 2.2: gprof results for search without filter query. ... 13
Table 2.3: gprof results for exact-match search query. ... 14
Table 2.4: gprof results for insert query. ... 15
Table 2.5: OProfile results for search without filter query. 17
Table 2.6: OProfile results for exact-match search query. .. 18
Table 2.7: OProfile results for insert query... 19
Table 3.1: Results in terms of CPU Time –Standard Version. 39
Table 3.2: Results in terms of CPU Time –OpenMP Version 2. 39
Table 3.3: Results in terms of CPU Time –OpenMP Version 3. 39
Table 3.4: Comparison of Standard Version and OpenMP Version 2. 40
Table 3.5: Comparison of OpenMP Version 2 and OpenMP Version 3. 40
Table 3.6: Results in terms of TPS – Standard Version. ... 41
Table 3.7: Results in terms of TPS – OpenMP Version 2. 41
Table 3.8: Results in terms of TPS – OpenMP Version 3. 41
Table 3.9: Comparison of Standard Version and OpenMP Version 2. 41
Table 3.10: Comparison of OpenMP Version 2 and OpenMP Version 3. 42
Table 3.11: Results in terms of CPU Time –Standard Version – Scale 640. 42
Table 3.12: Results in terms of CPU Time –OpenMP Version 2 – Scale 640. 42
Table 3.13: Results in terms of CPU Time –OpenMP Version 3 – Scale 640. 42
Table 3.14: Results in terms of TPS –Standard Version – Scale 640. 42
Table 3.15: Results in terms of TPS Time –OpenMP Version 2 – Scale 640. 43
Table 3.16: Results in terms of TPS Time –OpenMP Version 3 – Scale 640. 43

xii

xiii

LIST OF FIGURES

 Page

Figure 2.1 : Flow Chart of Overall Process .. 6
Figure 2.2 : Select with Filter ... 9
Figure 2.3 : Call Graph of Function ExecScan. .. 16
Figure 2.4 : Call Graph of Function ExecMakeFunctionResultNoSets. 16
Figure 2.5 : Call Graph of Function ExecStoreTuple. .. 16
Figure 2.6 : Benchmarking Parameter List. .. 23
Figure 2.7 : Default Memory Parameters on 64-CORE. .. 24
Figure 2.8 : Memory Upgrade Values. ... 25
Figure 2.9 : Extended Memory Results on 64-CORE. ... 26
Figure 2.10 : Extended Memory Results on 2-CORE. ... 26
Figure 2.11 : Extended Memory Results on 4-CORE. ... 27
Figure 2.12 : Extended Memory Results on 8-CORE. ... 27
Figure 2.13 : Extended Memory Results on 16-CORE. ... 28
Figure 2.14 : Extended Memory Results on 32-CORE. ... 28
Figure 2.15 : Extended Memory Results on 64-CORE. ... 29
Figure 3.1 : An illustration of Multithreading... 31
Figure 3.2 : PostgreSQL Query Processing. ... 33
Figure 3.3 : Parallelized version of function ExecStoreTuple. 35
Figure 3.4 : Parallelized version of function ExecScan. ... 36
Figure 3.5 : Parallelized version of function ExecMakeFunctionResultNoSets. 37
Figure 3.6 : Parallelized version of function ExecEvalConvertRowtype. 37
Figure 3.7 : Parallelized version of function ExecEvalArray. 38
Figure 3.8 : Parallelized version of function ExecSelect. ... 38
Figure 3.9 : Parallelized version of function ExecRelCheck. 39
Figure 3.10 : Comparison of standard version and OMP version 2. 41
Figure 3.11 : Bar Chart of CPU Time Comparison for scale 640. 43
Figure 3.12 : Bar Chart of TPS Comparison for scale 640. 44

xv

PARALLEL EXPERIMENTS ON POSTGRESQL

SUMMARY

Database management systems are increasingly used for developing solutions in data-
intensive applications. Furthermore, as databases are growing in size and queries increasing
in complexity, performance is becoming an issue. Parallel databases can provide speedup
and scale up during query processing which is the key solution for handling complex and
large databases effectively [1].

In this study our aim is to assess the state of art in parallel relational databases and related
performance issues. To achieve our goal, we have concentrated on PostgreSQL [2]
performance measurement and query optimization by using OpenMP [3]. We first explore
the performance issues of PostgreSQL by profiling the database with Gprof [4] and OProfile
[5]. A query set, which consists of Select, Sort, Group, Inner Join Operations and Aggregate
functions, is used to measure the performance on the stated profilers. In addition to that,
pgbench [6], which is a PostgreSQL benchmarking tool, is used to evaluate the database
performance on different CPU-core numbers, in terms of transaction per second (TPS) and
CPU time. By obtaining data on which functions the most time during query processing is
spent, we try to find out where to implement multi-processing. The results show that
implementation of OpenMP to the source code increases the performance for some aspects.

xvi

xvii

POSTGRESQL VERĐTABANI ÜZERĐNDE PARALEL DENEMELER

ÖZET

Veritabanı yönetim sistemleri, veri yoğun uygulamalarda çözümler geliştirmek için
kullanılır. Günümüzde hem akademide hem de endüstride kullanılan veritabanlarının boyutu
ve sorguların karmaşıklığı artmaktadır. Boyutları artan veritabanları için performans bir
sorun haline gelmektedir. Bu noktada paralel veritabanları hız sağlayarak veritabanlarının
etkin kullanım için anahtar çözüm olmaktadır.

Bu çalışmada amacımız paralel ilişkisel veritabanları ve ilgili performans sorunlarını
değerlendirmektir. Hedefimizi gerçekleştirmek için, PostgreSQL veritabanının performans
ölçümü ve sorgu iyileştirmesine yöneldik. Sorgu iyileştirmeleri için OpenMP dili kullanıldı.
Đlk olarak çeşitli yollarla varolan kaynak kodun performans ölçümleri alındı. Bunu yapmak
için çeşitli görevler içeren bir sorgu seti veritabanı üzerinde çalıştırıldı. Daha sonra en çok
zaman harcayan fonksiyonlar belirlenerek, OpenMP dili ile tekrar yazıldı.

Sonuçlar bize bu yöntemle performansın arttırılabileceğini gösteriyor.

xviii

1

1. INTRODUCTION

Database management systems are increasingly used for developing solutions in data-

intensive applications. Data storage and retrieval is essential for all kinds of applications. A

database management system is the key factor to manage the organized collection of data,

also with database management system’s data can be stored, queried and reports can be

produced. Information management gains more importance in this era therefore it is not

surprising for databases to grow to huge sizes and be accessed by multiple users.

Furthermore, queries and reports to be retrieved from databases increase in complexity.

Many applications today require more computing power than a sequential computer can

offer. Parallel processing provides solution to this problem by increasing the number of

computing elements such as cores, in a computer.

Parallel computing is a computer science discipline that deals with the concurrent execution

of applications. It has been decades that parallel computing is a research area but now it is

emerging due to computer industry’s shift to multi-core processors.

The development of parallel processing is influenced by many factors.

Computational requirements are increasing both in the area of scientific and business

applications. Data mining, telecommunications, climate modelling, and, car crash simulation

are the significant areas that are in need of more computational power and speed.

The physical limitation of serial computers and the current trend in multi-core computers are

also the essential motivations for parallel computing.

The interest in parallel computing dates back to the late 1950’s. In 60’s and 70’s there were

shared memory multiprocessors, with multiple processors working side-by-side on shared

data. In the mid 1980’s, massively parallel processors (MPPs) came to dominate the top end

of computing. Starting in the late 80’s, clusters came to compete and displace MPPs for

many applications. Moreover, today, parallel computing is becoming mainstream based on

multi-core processors. The aim is to increase overall processing performance by adding

additional cores to CPU [7].

Nowadays, the daily volumes of data being added to some databases are measured in

terabytes. Furthermore, as databases are growing in size and queries increasing in

complexity, performance is becoming an issue.

2

At that point parallel database processing becomes an alternative solution. Parallel databases

can provide speedup and scale up during query processing which is the key solution for

handling complex and large databases effectively [1]. The driving force behind parallel

database processing includes; querying large databases, increasing availability of the system,

and processing large number of transactions per second [8].

There are many database management softwares both commercial and open source. Some

popular examples can be found below.

Microsoft SQL Server designed to create web, enterprise, and desktop database systems. It is

used with various goals and at different levels. MS SQL Server allows you to store large

amount of data, which handles components like video, photographs, numbers, text, and much

more. Microsoft SQL Server is developed to manage terra bytes of data in comparison with

Microsoft Access that can handle only one gigabyte of data.

Oracle is one of the leading commercial SQL relational database management systems. It is

available in a variety of configurations from small personal versions to fail-safe, enterprise-

class versions. Oracle offers lots of features and functionality for solving complicated

problems of medium and large enterprise business applications and warehouses. This

powerful system requires deep knowledge and skill to handle large environments.

MySQL runs as a service providing multiple user access to several databases. MySQL is

popular for web applications and operates with the database elements for the platforms

(Linux/BSD/Mac/Windows). MySQL popularity for use with web applications is closely

associated to the popularity of PHP programming language which is often used along with

MySQL. Many high-traffic web sites use MySQL as the backend for its data warehouse.

MySQL is very popular with start up companies, small or medium businesses and projects

because it is easy to use at a low cost. In case when high speed reads are applied for web,

gaming and medium or small data storages MySQL surpasses all the other database

management systems [9].

PostgreSQL is a relational DBMS that many web application developers prefer as the back-

end data management component. It's principally used by many distinguished organizations

applying it for mission critical or wide-ranging applications. The .info and .org domain name

registries its use as their primary data store, so do many financial institutions and large

companies. Key advantages, such as open source community support, very low deployment

cost, and easy administration, make it the great choice for those who use it for database

driven website development [9].

3

We have chosen PostgreSQL database to apply parallelism. PostgreSQL is one of the most

powerful open source databases. It is a premium public domain database, which is object-

oriented and supports spatial features. PostgreSQL database is written in pure C and the

uniformity simplified to implement parallelism. PostgreSQL 8.3.9 version is used on all

steps of the study.

1.1 Purpose of the Thesis

In this study, our aim is to assess the state of art in parallel relational databases and related

performance issues. The two main objectives of this study are analyzing the PostgreSQL

database performance by using parallel sources and make a research on parallelizing time-

consuming functions in order to increase overall performance.

5

2. ANALYZING POSTGRESQL DATABASE ENGINE

2.1 Objectives

In this section, we have analyzed the performance of PostgreSQL database. The objective of

performance analysis is to understand the database engine, time-consuming functions and to

use the information gained during parallelization. We have created a set of queries that

perform select, aggregate and join tasks. After query preparation, we run these queries with

different optimization levels of ICC compiler. We have also profiled the database engine

with two different profilers; GNU gprof and OProfile.

We have run all tests and benchmarks on a HP Integrity Superdome server with 32 Intel

Itanium2 processors running at 1.6 GHz (dual-core). The memory of this server is 128 GB.

Figure 2.1 explains the overall process of the work done. Below are the results and details.

2.2 Profiling PostgreSQL

Profiling provides information about where the program spent its time, and which functions

call the other functions while executing. This information can show which pieces of the

program are slower than expected, and might be candidates for rewriting to make the

program execute faster. It can also tell which functions are being called how many times.

Since the profiler uses information collected data during the actual execution of programs, it

can be used on programs that are too large or too complex to analyze by reading the source.

Profiling has several steps:

• Compilation with profiling option enabled.

• Execution of the program to generate a profile data file.

• Analysis of the profile data.

2.3 Profiling Tools

We have profiled PostgreSQL database engine with two different profilers and we have

made some performance tests with PostgreSQL’s internal tool EXPLAIN ANALYZE. The

profilers are GNU gprof and OProfile.

6

Figure 2.1 : Flow Chart of Overall Process.

7

2.3.1 GNU gprof

The gprof utility produces an execution profile of C, Pascal, or Fortran77 programs. The

effect of called routines is incorporated in the profile of each caller. The profile data is taken

from the call graph profile file which is created by programs that are compiled with the -pg

option. The given object file establishes the relation between its symbol table and the call

graph profile. The default graph profile file name is the name of the executable with the

suffix .gmon appended. If more than one profile file is specified, the gprof output shows the

sum of the profile information in the given profile files. The gprof utility calculates the

amount of time spent in each routine. Next, these times are propagated along the edges of the

call graph. The functions are displayed sorted according to the time they represent including

the time of their call graph descendants. And each function entry is shown its (direct) call

graph children, and how their times are propagated to this function.

A similar display of function shows how this function's time and the time of its descendants

are propagated to its (direct) call graph parents. Second, a flat profile is given. This listing

gives the total execution times, the call counts, the time in msec or usec the call spent in the

routine itself, and the time in msec or usec the call spent in the routine itself including its

descendants [4].

2.3.2 OProfile

OProfile is a system-wide profiler for Linux systems, capable of profiling all running code at

low overhead. OProfile is released under the GNU GPL. It consists of a kernel driver and a

daemon for collecting sample data, and several post-profiling tools for turning data into

information. OProfile leverages the hardware performance counters of the CPU to enable

profiling of a wide variety of interesting statistics, which can also be used for basic time-

spent profiling. All code is profiled: hardware and software interrupt handlers, kernel

modules, the kernel, shared libraries, and applications.

The early versions of OProfile were developed as part credit for a M.Sc. in Computer

Science. Compaq’s DCPI profiler inspired the basic principles of the design [5].

8

2.3.3 Explain Analyze

EXPLAIN command displays the execution plan that the PostgreSQL planner generates for

the supplied statement. The execution plan shows how the table(s) referenced by the

statement will be scanned—by plain sequential scan, index scan, etc.—and if multiple tables

are referenced, what join algorithms will be used to bring together the required rows from

each input table. The most critical part of the display is the estimated statement execution

cost, which is the planner’s guess at how long it will take to run the statement (measured in

units of disk page fetches). Actually two numbers are shown: the start-up time before the

first row can be returned, and the total time to return all the rows.

The ANALYZE option causes the statement to be actually executed, not only planned. The

total elapsed time expended within each plan node (in milliseconds) and total number of

rows it actually returned is added to the display. This is useful for seeing whether the

planner’s estimates are close to reality [2].

We have run EXPLAIN ANALYZE command with a version that is compiled by using ICC

with different optimization levels and query performance is evaluated with all six

optimization levels.

2.4 Query Sets

We have prepared a query set which consists of select, insert, aggregate and join tasks.

Profiling tasks are completed during query set execution. There are 17 different queries

within the set. We have run these queries on a five million record table, which is created with

below queries. We have created two tables with same CREATE script in order to perform

join tasks.

Query 1:

CREATE TABLE strint1 AS
SELECT sid,
 md5((sid*10)::text),

 ((SUBSTRING(RANDOM()::text FROM 3 for 5))::int+10000) AS
string

FROM generate_series(1,1000000) sid;

Query 2:

INSERT INTO strint1
SELECT sid,
 md5((sid*99)::text),
 ((SUBSTRING(RANDOM()::text FROM 3 for 5))::int+10000) AS
string
FROM generate_series(1000001,5000000) sid;

9

We have evaluated below benchmark tasks;

2.4.1 Selection Task

Search operation in databases is accomplished by selection operations. Selection is a process

that selects a set of records based on a filter from a given table. Figure 2.2 gives a graphical

representation of selection operation. In SQL, selection operation is implemented by using

WHERE clause where the filter is applied. Below you can find selection queries that we

have prepared for benchmarking [8].

2.4.1.1 Search without Filter

Select operation is completed without any filter. Query retrieves all the records from the

given table. An example query that we have run can be seen below.

Query 3:

SELECT md5
FROM strint1;

2.4.1.2 Exact-Match Search

An exact match search query is a query that selection process tries to find an exact match

between the filter criteria and the input table. Below is the query that we have performed for

exact match search.

Query 4:

SELECT sid,
 md5
FROM strint1
WHERE sid = 3008;

Figure 2.2 : Select with Filter.

2.4.1.3 Range Query Search

A range query search is a query that retrieves a continuous range from the given table.

Greater than (>) or less than (<) operators can be used to retrieve the range.

10

Query 5:

SELECT string,
 md5
FROM strint1
WHERE string > 60000;

2.4.2 Sorting Task

Sorting is an operation that arranges the records in a particular order depending on one or

more attributes. Sorting queries can order the records ascending and descending. We have

performed both types of sorting queries. The result table is ordered as ascending by default.

 Query 6:

SELECT *
FROM strint1
ORDER BY
 string;

Query 7:

SELECT *
FROM strint1
ORDER BY
 md5 DESC;

2.4.3 Duplicate Removal Task

Duplicate removal is closely associated with sorting. In SQL, Distinct operator in Select

clause carries out the duplicate removal operation. Distinct removes all duplicates from the

result table.

 Query 8:

SELECT DISTINCT
 string
FROM strint1;

2.4.4 Queries with Aggregate Functions

Aggregate functions perform a calculation on a set of values and return a single value.

Except for COUNT, aggregate functions ignore null values.

All aggregate functions are deterministic which means aggregate functions return the same

value any time that they are called by using a specific set of input values.

Useful aggregate functions:

• AVG() - Returns the average value

• COUNT() - Returns the number of rows

11

• FIRST() - Returns the first value

• LAST() - Returns the last value

• MAX() - Returns the largest value

• MIN() - Returns the smallest value

• SUM() - Returns the sum

Query 9:

SELECT AVG(string)
FROM strint1;

Query 10:

SELECT MIN(string)
FROM strint1;

Query 11:

SELECT MAX(string)
FROM strint1;

Query 12:

SELECT SUM(string)
FROM strint1;

Query 13:

SELECT COUNT(*)
FROM strint1;

2.4.5 Group By Task

The SQL GROUP BY statement is used together with the SQL aggregate functions like

SUM or COUNT to group the retrieved data by one or more columns.

Query 14:

SELECT string,
 COUNT(*)
FROM strint1
GROUP BY
 string;

12

2.4.6 Join Task

Information is divided into multiple tables in relational databases as a result of

normalization. Consequently, if the information needs to be combined in order to be

displayed as a report, data shall be retrieved from multiple tables through join operation. Join

operation is one of the most complex operations in a database. GROUP BY clause can be

used to group data from multiple tables and HAVING can be used to implement a filter to

the result table.

Query 15:

SELECT s1.sid,
 s2.sid,
 s1.string,
 s2.string
FROM strint1 s1
 INNER JOIN strint2 s2 ON s1.sid=s2.sid
WHERE s1.md5 = s2.md5;

Query 16:

SELECT s1.string,
 COUNT(*)
FROM strint1 s1
 INNER JOIN strint2 s2 ON s1.md5=s2.md5
GROUP BY
 s1.string;

Query 17:

SELECT s1.string,
 COUNT(*)
FROM strint1 s1
 INNER JOIN strint2 s2 ON s1.md5=s2.md5
GROUP BY
 s1.string
HAVING s1.string > 58000;

2.5 Profiling Results

2.5.1 ICC Optimization Results with EXPLAIN ANALYZE

First, we have compiled PostgreSQL source code with different optimization levels of ICC

in order to see the effects. Below you can find chart of the results represented with

milliseconds for every optimization level.

13

Table 2.1: Query execution duration for different optimization levels.

Query Set

Optimization Levels

O0 O1 O2 O3 O4 O5

3-Search without Filter 10939.491 3670.350 3871.032 3921.139 3840.643 3827.296

4-Exact-Match Search 7392.407 2097.358 2366.327 2163.935 2241.868 2274.762

5-Range Query Search 12562.777 3791.762 3946.048 3869.790 4007.645 3997.288

6-Sorting Ascending 136071.030 35881.136 42921.548 45068.325 44082.452 43374.132

7-Sorting Descending 241653.153 110879.043 114574.546 116340.130 113646.134 114055.311

8-Duplicate Removal 125669.221 26636.845 26649.313 26675.155 26704.750 27629.638

9-Aggregate Func.-Avg 12293.752 3789.910 4359.607 4197.788 4398.691 4363.671

10-Aggregate Func.-Min 11940.819 3878.251 4066.790 3865.553 3946.364 3968.833

11-Aggregate Func.-Max 11905.979 3886.842 4023.895 3965.621 3922.074 3969.906

12-Aggregate Func.-Sum 11559.718 3712.478 4217.570 3835.926 3887.419 3922.566

13-Aggregate Func.-Count 7799.731 2980.971 3173.311 3216.890 3118.850 3126.296

14-Group By 127672.987 27102.379 27625.140 27520.285 27689.036 27401.387

15-Join with Filter 92910.226 34629.468 39594.079 36838.298 33492.973 40856.356

16-Join with Group By 109303.839 40732.481 43009.285 40198.491 38064.650 40892.929

17-Join with Having 77250.985 29980.541 27354.002 27367.625 29286.631 27444.773

As seen on table 2.1 the best performance has been seen when the source code is compiled

with –O3 option. Therefore, we made all profiling and benchmarking on a database that is

compiled with –O3 option.

2.5.2 Gprof Results

Table 2.2: gprof results for search without filter query.

order each
time

cumulative
seconds

self
seconds

Calls s/call s/call name

1 6.81 0.14 0.14 15000516 0 0 AllocSetFree

2 6.71 0.29 0.14 15001947 0 0 AllocSetAlloc

3 5.34 0.4 0.11 5000000 0 0 ExecProject

4 4.82 0.5 0.1 5000001 0 0 heapgettup_pagemode

5 4.78 0.6 0.1 1 0.1 2.08 standard_ExecutorRun

6 4.59 0.7 0.1 5000000 0 0 printtup

7 3.97 0.78 0.08 5000000 0 0 slot_deform_tuple

8 3.36 0.85 0.07 15000048 0 0 internal_putbytes

9 3.36 0.93 0.07 5000001 0 0 ExecScan
10 3.22 0.99 0.07 5000001 0 0 ExecProcNode

… … … … … … … …

24 1.51 1.65 0.03 5000008 0 0 ExecClearTuple

… … … … … … … …

40 0.66 2 0.01 5000000 0 0 ExecStoreTuple

14

Table 2.3: gprof results for exact-match search query.

order each
time

cumulative
seconds

self
seconds

calls s/call s/call name

1 13.41 0.09 0.09 4999999 0 0 ExecMakeFunctionResultNoSets
2 8.94 0.15 0.06 5000001 0 0 slot_deform_tuple

3 7 0.2 0.05 5000001 0 0 heapgettup_pagemode

4 6.71 0.24 0.04 5000000 0 0 slot_getattr

5 5.96 0.28 0.04 5000000 0 0 ExecQual

6 4.92 0.32 0.03 5000001 0 0 heap_getnext

7 4.92 0.35 0.03 4999999 0 0 ExecEvalScalarVar

8 4.62 0.38 0.03 5000001 0 0 SeqNext

9 4.32 0.41 0.03 5000003 0 0 AllocSetReset

10 4.32 0.44 0.03 5000000 0 0 HeapTupleSatisfiesMVCC

11 3.87 0.46 0.03 5000000 0 0 ExecStoreTuple
12 2.83 0.48 0.02 5000060 0 0 check_stack_depth

13 2.83 0.5 0.02 46729 0 0 heapgetpage

14 2.68 0.52 0.02 5000000 0 0 ExecEvalConst

15 2.53 0.54 0.02 5000000 0 0 int4eq

16 2.38 0.55 0.02 2 8 318.45 ExecScan
17 2.24 0.57 0.01 5000001 0 0 MemoryContextReset

18 1.94 0.58 0.01 5000000 0 0 pgstat_init_function_usage

19 1.79 0.59 0.01 272400 0 0 transtime

20 1.64 0.6 0.01 5000006 0 0 TransactionIdPrecedes

15

Table 2.4: gprof results for insert query.

order each
time

cumulative
seconds

self
seconds

Calls s/call s/call name

1 11.42 1.18 1.18 4000000 0 0 pg_md5_hash

2 8.28 2.03 0.85 4000001 0 0 XLogInsert

3 5.92 2.65 0.61 19999995 0 0 ExecMakeFunctionResultNoSets

4 4.78 3.14 0.49 40040211 0 0 AllocSetAlloc

5 3.42 3.49 0.35 95999234 0 0 pg_utf_mblen

6 3.41 3.84 0.35 95999068 0 0 pg_mblen

7 2.66 4.12 0.28 4000000 0 0 ExecProject

… … … … … … … …

15 1.3 5.66 0.13 16000002 0 0 ExecEvalConst

16 1.27 5.79 0.13 12000000 0 0 ExecEvalCoerceViaIO

… … … … … … … …

21 1.04 6.38 0.11 4000001 0 0 ExecProcNode

22 1.01 6.49 0.1 8000011 0 0 heap_compute_data_size

23 0.98 6.59 0.1 4000000 0 0 RelationGetBufferForTuple

24 0.92 6.68 0.1 4000011 0 0 heap_form_tuple

25 0.92 6.78 0.1 4000001 0 0 ExecScan
… … … … … … … …

46 0.53 8.28 0.06 4000000 0 0 slot_deform_tuple

… … … … … … … …

64 0.35 9.08 0.04 4000009 0 0 ExecClearTuple

… … … … … … … …

67 0.35 9.19 0.04 3999999 0 0 ExecEvalScalarVar

Profiling results of gprof are evaluated for all queries within the query set but only SELECT

and INSERT query results are displayed here. The benchmarking query that we have run

comprises Select, Insert and Update operations therefore we have determined time

consuming functions regarding these queries’ profiling results. Lines that are highlighted

with bold represents the functions that we have successfully parallelized, italic functions

symbolizes the ones that are tried to be parallelized but failed.

16

2.5.2.1 Call Graphs

Figure 2.3 : Call Graph of Function ExecScan.

Figure 2.4 : Call Graph of Function ExecMakeFunctionResultNoSets.

Figure 2.5 : Call Graph of Function ExecStoreTuple.

17

2.5.3 OProfile Results

Table 2.5: OProfile results for search without filter query.

Order Samples % Symbol Name

1 2489 9.7923 AllocSetFreeIndex

2 1798 7.0737 slot_deform_tuple

3 1327 5.2207 .plt

4 1135 4.4653 internal_putbytes

5 1080 4.2490 ExecProject

6 1067 4.1978 AllocSetAlloc

7 892 3.5093 AllocSetFree

8 882 3.4700 appendBinaryStringInfo

9 875 3.4424 printtup

10 834 3.2811 heapgettup_pagemode

11 647 2.5454 ExecProcNode

12 626 2.4628 enlargeStringInfo

13 607 2.3881 ExecScan
14 598 2.3527 pq_sendint

15 595 2.3409 heap_getnext

16 579 2.2779 text_to_cstring

17 566 2.2268 ExecutePlan

18 521 2.0497 slot_getsomeattrs

19 467 1.8373 pfree

20 439 1.7271 heapgetpage

21 399 1.5698 SeqNext

22 374 1.4714 MemoryContextAlloc

23 340 1.3376 ExecSelect
24 337 1.3258 HeapTupleSatisfiesMVCC

25 336 1.3219 heap_tuple_untoast_attr

26 312 1.2275 FunctionCall1

27 289 1.1370 TransactionIdPrecedes

28 288 1.1331 pq_putmessage

29 277 1.0898 ExecStoreTuple
30 275 1.0819 ExecClearTuple

18

Table 2.6: OProfile results for exact-match search query.

Order Samples % Symbol Name

1 1082 12.3799 ExecMakeFunctionResultNoSets

2 1037 11.865 slot_deform_tuple

3 720 8.238 heapgettup_pagemode

4 545 6.2357 slot_getattr

5 428 4.897 heapgetpage

6 407 4.6568 SeqNext

7 396 4.5309 heap_getnext

8 377 4.3135 .plt

9 364 4.1648 ExecEvalScalarVar

10 322 3.6842 list_head

11 314 3.5927 ExecQual

12 248 2.8375 ExecStoreTuple

13 242 2.7689 HeapTupleSatisfiesMVCC

14 237 2.7117 MemoryContextSwitchTo

15 220 2.5172 ExecScan

16 216 2.4714 TransactionIdPrecedes

17 211 2.4142 ExecEvalConst

18 206 2.357 int4eq

19 186 2.1281 MemoryContextReset

20 181 2.0709 check_stack_depth

19

Table 2.7: OProfile results for insert query.

Order Samples % Symbol Name

1 16401 10.9567 XLogInsert

2 8793 5.8742 calculateDigestFromBuffer

3 8572 5.7265 doTheRounds

4 6513 4.351 ExecMakeFunctionResultNoSets
… … … …

9 3792 2.5333 AllocSetFreeIndex

… … … …

17 1835 1.2259 ExecTargetList

… … … …

22 1586 1.0595 ExecEvalCoerceViaIO

… … … …

26 1284 0.8578 ExecProject

… … … …

30 1162 0.7763 slot_deform_tuple

31 1098 0.7335 pgstat_init_function_usage

32 1066 0.7121 ExecEvalConst

… … … …

43 798 0.5331 ExecScan
44 760 0.5077 pgstat_end_function_usage

45 754 0.5037 ExecutePlan

46 694 0.4636 ExecProcNode

47 647 0.4322 ExecInsert

… … … …

65 475 0.3173 ExecEvalScalarVar

… … … …

85 369 0.2465 ExecClearTuple

… … … …

142 60 0.0401 ExecSelect

Profiling results for OProfile are evaluated for all queries within the query set but only

SELECT and INSERT query results are displayed here. The benchmarking query that we

have run comprises Select, Insert and Update operations therefore we have determined time

consuming functions regarding these queries’ profiling results. Lines that are highlighted

with bold represents the functions that we have successfully parallelized, italic functions

symbolizes the ones that are tried to be parallelized but failed.

20

2.6 Performance Analyses

Benchmarking is the process of comparing one’s business processes and performance

metrics to industry bests and/or best practices from other industries. The term benchmarking

was first used by cobblers to measure people's feet for shoes. They would place someone's

foot on a "bench" and mark it out to make the pattern for the shoes. Benchmarking is most

used to measure performance using a specific indicator (cost per unit of measure,

productivity per unit of measure, cycle time of x per unit of measure or defects per unit of

measure) resulting in a metric of performance that is then compared to others [10].

In computing, benchmark is the work of running a computer program or a set of operations

in order to evaluate the relative performance of an object. This evaluation can be achieved by

running standard tests and trials. Benchmarking is usually associated with assessing

performance characteristics of computer hardware, for example, the floating point operation

performance of a CPU, but there are circumstances when the technique is also applicable to

software. Software benchmarks are, for example, run against compilers or database

management systems [11].

2.6.1 Reasons for Database Benchmarking

Benchmarks are performed for various reasons. However, benchmarks are primarily used:

• To compare different hardware configurations

Benchmarks can be used to compare the relative performance of different hardware

running the same application. This is generally used to directly compare hardware

configurations between two hardware vendors.

• To compare different database vendor software

By running the same benchmark using different database software on the same

machine, one can easily compare between different database vendors. This is

generally used to make a price/performance decision between vendors such as

Oracle, Microsoft, IBM, etc.

• To compare different database software releases

Similar to the above, one can use different versions of the same vendor's database

software to compare the one they want to use or check for performance regressions

due to upgrades (i.e. 10g vs. 11g) [12].

In our case, we have used database benchmarking in order to compare the standard version

of PostgreSQL and the version parallelized with OpenMP.

21

Industry standard benchmarks are generally used by businesses to compare different

hardware and software system performance for purchase-related reasons. One of the major

industry standard benchmark is Transaction Processing Benchmark (TPC) Benchmark. The

TPC is a non-profit corporation which supports a consortium of hardware and database

software vendors devoted to defining transaction processing and database-related

benchmarks. The primary goal behind TPC benchmarks is the definition of functional

requirements, which can be run on any database, regardless of the hardware or operating

system. The term transaction, looked at as a computer function, could refer to a set of

operations including disk read/writes, operating system calls, or some form of data transfer

from one subsystem to another [13].

There are variety of TPC benchmarks focusing on different area like TPC-C, TPC-E, TPC-H

and TPC-B.

TPC-C is an on-line transaction processing (OLTP) benchmark. TPC-C simulates a complete

computing environment where a population of users executes transactions against an order-

entry database.

TPC-E is a new on-line transaction processing (OLTP) workload, which is simulating the

transactions of a brokerage firm.

TPC-H is an old ad-hoc, decision support benchmark. The benchmark illustrates decision

support systems that examine large volumes of data, execute complex queries and give

answers to critical business questions.

Another benchmark from TPC that is TPC-B measures throughput in terms of how many

transactions per second a system can perform. TPC-B is not an OLTP benchmark; it can be

looked at as a database stress test characterized by;

• Significant disk input/output

• Moderate system and application execution time

• Transaction integrity

TPC Benchmark B is targeted at database management systems (DBMS) batch applications

and the back-end database server market segment, either stand-alone or client-server. It can

be used to measure how many total simultaneous transactions a system can handle [13]. We

have used TPC-B like benchmark to evaluate the performance of PostgreSQL. We have

utilized pgbench tool in order to run TPC-B like benchmarks on PostgreSQL. pgbench is a

simple program for running benchmark tests on PostgreSQL. It runs the same sequence of

SQL commands repeatedly, possibly in multiple concurrent database sessions, and then

calculates the average transaction rate (transactions per second). By default, pgbench tests a

22

scenario that is based on TPC-B, involving five SELECT, UPDATE, and INSERT

commands per transaction [13]. Below the sql commands that are run for benchmarking can

be found:

\set nbranches :scale
\set ntellers 10 * :scale
\set naccounts 100000 * :scale
\setrandom aid 1 :naccounts
\setrandom bid 1 :nbranches
\setrandom tid 1 :ntellers
\setrandom delta -5000 5000
BEGIN;
UPDATE accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM accounts WHERE aid = :aid;
UPDATE tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO history (tid, bid, aid, delta, mtime) VALUES (:tid,
:bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

pgbench output reports, the TPS rate figured with and without counting the time to start

database sessions. The TPC-B like transaction test requires specific tables to be set up

beforehand., to populate these tables pgbench shall be invoked with –I option;

pgbench –i dbname

pgbench -i creates four tables accounts, branches, history, and tellers,

destroying any existing tables of these names. A scale factor to determine the records of

tables can be given.

At the default "scale factor" of 1, the tables initially contain this many rows:

table # of rows

branches 1
tellers 10
accounts 100000
history 0

We have given 64 as the “scale factor”, and table details are as follows:

table # of rows

branches 64
tellers 640
accounts 6400000
history 0

Scale factor “64” creates a benchmark database with size 968 MB. Figure 2.6 displays the

list of parameters that is utilized during benchmark test runs.

23

Benchmarking Parameters

Scale : 64

Benchmark Type : tpc-b

Total Transactions : 64000

Repeat Count : 7

Number of Clients : 1,2,4,8,16,32,64

Figure 2.6 : Benchmarking Parameter List.

We have set client parameter to “1 2 4 8 16 32 64” in order to evaluate the behaviour of

database against different numbers of clients. Scaling factor is determined regarding the

largest client number. The number of rows in the “branches” table will equal the scaling

factor, and every transaction updates one randomly chosen "branches" row. If the client

number is larger than scaling factor, there will be no actual concurrency and all transactions

stack up on the single “branches” row. We have set the scaling factor to 64 in order to

prevent above case.

 We have assigned 64000 to total transaction number in order to run at least a thousand

transactions per client. Small number of transaction per client makes start up/shutdown

transients overwhelm the steady state of data.

Set times is the number that states how many times to repeat the same test. We have stated

this repeat rate as seven in order to get consistent TPS rates.

We have installed pgbench tool after the database installation completed and we have

checked the TPS calculation from the source code. Standard pgbench code calculates the

TPS rate by using wall clock time. We have introduced three variables which are clock_t

type in order to calculate CPU Time and TPS rate calculated by using CPU Time. We have

utilized clock() function which determines the amount of processor time used. We have

crosschecked the calculated CPU Time with the one displayed with Linux top command and

assured that the function calculates the CPU time. We have placed clock() function to

starting and ending points of TPS calculation code block. Resulting time is divided by

CLOCKS_PER_SEC in order to gather CPU Time in seconds.

Number of cores is another variable that we have evaluated during benchmarking. Taskset

command is utilized to set the processor affinity for postgres processes.

Taskset is used to set or retrieve the CPU affinity of a running process given its PID or to

launch a new COMMAND with a given CPU affinity. CPU affinity is a scheduler property

that "bonds" a process to a given set of CPUs on the system. The Linux scheduler will

honour the given CPU affinity and the process will not run on any other CPUs.

The CPU affinity is represented as a bit mask, with the lowest order bit corresponding to the

first logical CPU and the highest order bit corresponding to the last logical CPU. When

24

taskset returns, it is guaranteed that the given program has been scheduled to a legal CPU

[14].

2.7 Compute Resources vs Database Engine Performance

In this section benchmarking test results will be introduced.

PostgreSQL performance is first evaluated with the default settings as it is installed, after

that memory parameters are upgraded and benchmarking tests are repeated. Finally,

performance tests are evaluated by changing the number of cores assigned to postgres

processes on memory-upgraded version.

2.7.1 Standard Version Details and Results

Standard version is the PostgreSQL-8.3.9 version that comes with default memory

parameters. Three memory parameters affect the performance of PostgreSQL database.

These are shared_buffers, work_mem and effective_cache_size. The standard version test

has run on 64-core with default memory settings.

Figure 2.7 : Default Memory Parameters on 64-CORE.

2.7.1.1 shared_buffers (integer)

Sets the amount of memory the database server uses for shared memory buffers. The default

is typically 32 megabytes (32MB), but might be less if your kernel settings will not support it

(as determined during initdb). This setting must be at least 128 kilobytes. However, settings

significantly higher than the minimum are usually needed for good performance. Several

25

tens of megabytes are recommended for production installations. This parameter can only be

set at server start [2].

2.7.1.2 work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before

switching to temporary disk files. The value defaults to one megabyte (1MB). Note that for a

complex query, several sorts or hash operations might be running in parallel; each one will

be allowed to use as much memory as this value specifies before it starts to put data into

temporary files. Also, several running sessions could be doing such operations concurrently.

So the total memory used could be many times the value of work_mem; it is necessary to

keep this fact in mind when choosing the value. Sort operations are used for ORDER BY,

DISTINCT, and merge joins. Hash tables are used in hash joins, hash-based aggregation, and

hash-based processing of IN sub queries [2].

2.7.1.3 effective_cache_size (integer)

Sets the planner's assumption about the effective size of the disk cache that is available to a

single query. This is factored into estimates of the cost of using an index; a higher value

makes it more likely index scans will be used, a lower value makes it more likely sequential

scans will be used. When setting this parameter you should consider both PostgreSQL's

shared buffers and the portion of the kernel's disk cache that will be used for PostgreSQL

data files. Also, take into account the expected number of concurrent queries on different

tables, since they will have to share the available space. This parameter has no effect on the

size of shared memory allocated by PostgreSQL, nor does it reserve kernel disk cache; it is

used only for estimation purposes. The default is 128 megabytes (128MB) [2].

2.7.2 Memory-Upgraded Version results

In memory-upgraded version memory settings are upgraded to below parameters and same

benchmarking on 64-core has run. Results can be found below.

Memory-Upgrade Values

shared_buffers : 8192MB

work_mem : 1024MB

effective_cache_size : 32768MB

Figure 2.8 : Memory Upgrade Values.

26

Figure 2.9 : Extended Memory Results on 64-CORE.

2.7.3 Results for Different Core Numbers

Benchmarking tests are run on the memory-upgraded version for different core numbers.

Figure 2.10 : Extended Memory Results on 2-CORE.

27

Figure 2.11 : Extended Memory Results on 4-CORE.

Figure 2.12 : Extended Memory Results on 8-CORE.

28

Figure 2.13 : Extended Memory Results on 16-CORE.

Figure 2.14 : Extended Memory Results on 32-CORE.

29

Figure 2.15 : Extended Memory Results on 64-CORE.

31

3. PARALELLIZING POSTGRESQL DATABASE ENGINE

3.1 Objectives

The focus of this chapter is to present the parallelization work and results accordingly.

3.2 Methodology

We have used OpenMP to rewrite PostgreSQL’s time-consuming functions. It is found that

there is a difference between writing a code from scratch for parallelism and retrofitting it

into an existing code [15]. The challenging part of the work done is to maintain the structure

of a serial program when introducing parallelism. At that point, OpenMP excels, when

compared to writing a hand-threaded program such as Pthreads.

3.2.1 Summary of OpenMP Pragma Directives

OpenMP (Open Multi-Processing) is an application-programming interface (API) that

supports multi-platform shared memory multiprocessing programming in C, C++ and

FORTRAN on many architectures, including Unix and Microsoft Windows platforms. It

consists of a set of compiler directives, library routines, and environment variables that

influence run-time behaviour. OpenMP is an implementation of multithreading, a method of

parallelization whereby the master "thread" (a series of instructions executed consecutively)

"forks" a specified number of slave "threads" and a task is divided among them. The threads

then run concurrently, with the runtime environment allocating threads to different

processors. In Figure 3.1 an illustration of multithreading can be can be found where the

master thread forks off a number of threads [16].

Figure 3.1 : An illustration of Multithreading.

32

The OpenMP specification defines a set of pragmas. A pragma is compiler directives on how

to process the block of code that follows the pragma. The most basic pragma is the #pragma

omp parallel to denote a parallel region. OpenMP supports two basic kinds of work-sharing

constructs to specify that work in a parallel region is to be divided among the threads in the

team. These work-sharing constructs are loops and sections. The #pragma omp for is used

for loops, and #pragma omp sections is used for sections -- blocks of code that can be

executed in parallel.

The #pragma omp barrier instructs all threads in the team to wait for each other before they

continue execution beyond the barrier. There is an implicit barrier at the end of a parallel

region. The #pragma omp master instructs the compiler that the following block of code is to

be executed by the master thread only. The #pragma omp single indicates that only one

thread in the team should execute the following block of code; this thread may not

necessarily be the master thread. You can use the #pragma omp critical pragma to protect a

block of code that should be executed by a single thread at a time [17].

3.2.2 How PostgreSQL Processes a Query

In this section, we will analyze the query execution of PostgreSQL. Below is the query

processing diagram of PostgreSQL.

A query comes to the backend via data packets arriving through TCP/IP or Unix Domain

sockets. It is loaded into a string, and passed to the parser, where the lexical scanner, scan.l,

breaks the query up into tokens (words). The parser uses gram.y and the tokens to identify

the query type, and load the proper query-specific structure, like CreateStmt or SelectStmt.

The statement is then identified as complex (SELECT / INSERT / UPDATE / DELETE) or a

simple, e.g. CREATE USER, ANALYZE, etc. Simple utility commands are processed by

statement-specific functions in backend/commands. Complex statements require more

handling.

The parser takes a complex query, and creates a Query structure that contains all the

elements used by complex queries. Query.qual holds the WHERE clause qualification,

which is filled in by transformWhereClause(). Each table referenced in the query is

represented by a RangeTableEntry, and they are linked together to form the range table of

the query, which is generated by transformFromClause(). Query.rtable holds the query's

range table.

33

Figure 3.2 : PostgreSQL Query Processing.

Certain queries, like SELECT, return columns of data. Other queries, like INSERT and

UPDATE, specify the columns modified by the query. These column references are

converted to TargetEntry entries, which are linked together to make up the target list of the

query. The target list is stored in Query.targetList, which is generated by

transformTargetList().

34

Other query elements, like aggregates SUM(), GROUP BY, and ORDER BY are also stored

in their own Query fields.

The next step is for the Query to be modified by any VIEWS or RULES that may apply to

the query. This is performed by the rewrite system.

The optimizer takes the Query structure and generates an optimal Plan, which contains the

operations to be performed to execute the query. The path module determines the best table

join order and join type of each table in the RangeTable, using Query.qual (WHERE clause)

to consider optimal index usage.

The Plan is then passed to the executor for execution, and the result returned to the client.

The Plan is actually as set of nodes, arranged in a tree structure with a top-level node, and

various sub-nodes as children [2].

3.3 Parallelization

We have started parallelization with time-consuming functions of Select and Insert

operations. First we have tried to parallelize slot_deform_tuple function’s for loop. It loops

over the tuple and processing for each field depends completely on the previous one.

Chained dependency in slot_deform_tuple has prevented the parallelization. In order to

succeed in parallelizing PostgreSQL source code, we need loops where each iteration of the

loop can be processed independently. Such loops can be found in executor code block.

Executor is responsible of executing the query plan and producing any resulting tuples. In

our study we have parallelized three for loops in executor. ExecMain.c and ExecQual.c

source code files comprise the parallelized functions. We have verified the query results

every time we parallelize a loop. A control query set consisting of create, insert and select

functions has been constructed to check the accuracy of database operations.

As an addition to three for loops, we have also parallelized another four functions within

executor code block. These are ExecMakeFunctionResultNoSets, ExecSelect, ExecScan and

ExecStoreTuple. ExecMakeFunctionResultNoSets function is the most time-consuming

function for Select operation and also it is the fourth time consuming one for Insert

operation. Therefore we have decided to focus on that function and defined a parallel

sections region for two independent code lines within the stated function. We have also

analyzed ExecStoreTuple and ExecScan functions which are listed in the profiling results as

time-consuming. These two functions are also parallelized with omp sections work-sharing

construct.

In means of parallelization, we have three different versions. First, we have parallelized for

loops with shared and private options and parallel sections are created without nowait option.

35

We have observed some performance problems with that version, tests were taking too much

time to be completed. This is the first version that we have constructed.

Then we have created a second version in which we have improved OpenMP code blocks in

terms of performance.

First, we have used nowait construct with parallel sections which eliminates redundant and

unnecessary barriers.

Secondly, we have used firstprivate variable instead of shared in for loops. We have

analyzed shared variables that are defined within for loops. If a shared variable in a parallel

region is read by the threads executing the region, but not written to by any of the threads,

then we have specified that variable to be firstprivate instead of shared. This avoids

accessing the variable by dereferencing a pointer, and avoids cache conflicts. And lastly we

have minimized the use of critical construct which slows down the parallel execution of

source code.

We have run our control queries after these improvements and crosscheck the accuracy of

transactions.

And in last version, we have just included the parallelized for loops. We have constructed

third version by excluding parallel sections. Below details of parallel and serial codes can be

found.

Source File : execTuples.c
Function Name : ExecStoreTuple

Serial Code Parallelized Code
if (slot->tts_shouldFreeMin)

heap_free_minimal_tuple(slot-
>tts_mintuple);

/*
 * Store the new tuple into the
specified slot.
 */

slot->tts_isempty = false;

slot->tts_shouldFree = shouldFree;

slot->tts_shouldFreeMin = false;

slot->tts_tuple = tuple;

slot->tts_mintuple = NULL;

/* Mark extracted state invalid */

slot->tts_nvalid = 0;

/*
 * Store the new tuple into the
specified slot.
 */
#pragma omp parallel
{
 #pragma omp sections nowait
 {
 #pragma omp section
 slot->tts_isempty = false;

 #pragma omp section
 slot->tts_shouldFree =
shouldFree;

 #pragma omp section
 slot->tts_shouldFreeMin = false;

 #pragma omp section
 slot->tts_tuple = tuple;

 #pragma omp section
 slot->tts_mintuple = NULL;

 #pragma omp section
 slot->tts_nvalid = 0;
 }}

Figure 3.3 : Parallelized version of function ExecStoreTuple.

36

Source File : execScan.c
Function Name : ExecScan

Serial Code Parallelized Code
qual = node->ps.qual;
projInfo = node->ps.ps_ProjInfo;

/*
 * If we have neither a qual to check
nor a projection to do, just skip
 * all the overhead and return the raw
scan tuple.
 */

if (!qual && !projInfo)
 return (*accessMtd) (node);
/*
 * Check to see if we're still
projecting out tuples from a previous
scan
 * tuple (because there is a function-
returning-set in the projection
 * expressions). If so, try to project
another one.
 */

if (node->ps.ps_TupFromTlist)
{
 Assert(projInfo);
 /*
 * can't get here if not projecting
 */

 resultSlot = ExecProject(projInfo,
&isDone);

 if (isDone == ExprMultipleResult)
 return resultSlot;
 /*
 * Done with that source tuple...
 */
 node->ps.ps_TupFromTlist = false;
}

/*
 * Fetch data from node
 */
#pragma omp parallel
{
 #pragma omp sections nowait
 {
 #pragma omp section
 qual = node->ps.qual;

 #pragma omp section
 rojInfo = node->ps.ps_ProjInfo;
 }
}

Figure 3.4 : Parallelized version of function ExecScan.

37

Source File : execQual.c
Function Name : ExecMakeFunctionResultNoSets

Serial Code Parallelized Code
InitFunctionCallInfoData(fcinfo,
&(fcache->func), i, NULL, NULL);
/*
 * If function is strict, and there are
any NULL arguments, skip calling
 * the function and return NULL.
 */
if (fcache->func.fn_strict)
{
 while (--i >= 0)
 {
 if (fcinfo.argnull[i])
 {
 *isNull = true;
 return (Datum) 0;
 }
 }
}

/* fcinfo.isnull = false;
 * handled by InitFunctionCallInfoData
 */

result = FunctionCallInvoke(&fcinfo);

*isNull = fcinfo.isnull;

/* fcinfo.isnull = false;
 * handled by InitFunctionCallInfoData
 */
#pragma omp parallel
{
 #pragma omp sections nowait
 {
 #pragma omp section
 result =
FunctionCallInvoke(&fcinfo);

 #pragma omp section
 *isNull = fcinfo.isnull;
 }
}

Figure 3.5 : Parallelized version of function
ExecMakeFunctionResultNoSets.

Source File : execQual.c
Function Name : ExecEvalConvertRowtype

Serial Code Parallelized Code
heap_deform_tuple(&tmptup,
 cstate->indesc,
 invalues + 1,
 inisnull + 1);

invalues[0] = (Datum) 0;

inisnull[0] = true;

/*
 * Transpose into proper fields of the
new tuple.
 */
for (i = 0; i < outnatts; i++)
{
 Int j = attrMap[i];

 outvalues[i] = invalues[j];

 outisnull[i] = inisnull[j];
}

/*
 * Transpose into proper fields of the
new tuple.
 */
#pragma omp parallel
firstprivate(outnatts) private(i,
attrMap, outvalues, invalues,
outisnull, inisnull)
{
 int j;

 #pragma omp for
 for (i = 0; i < outnatts; i++)
 {
 j = attrMap[i];
 outvalues[i] = invalues[j];
 outisnull[i] = inisnull[j];
 }
}

Figure 3.6 : Parallelized version of function
ExecEvalConvertRowtype.

38

Source File : execQual.c
Function Name : ExecEvalArray

Serial Code Parallelized Code
for (i = 0; i < outer_nelems; i++)
{
 memcpy(dat, subdata[i],
subbytes[i]);

 dat += subbytes[i];

 if (havenulls)
 array_bitmap_copy(
 ARR_NULLBITMAP(result),
 iitem,
 subbitmaps[i],
 0,
 subnitems[i]);

 iitem += subnitems[i];
}

#pragma omp parallel
firstprivate(outer_nelems, havenulls)
private(i, dat, subdata, subbytes,
iitem, subbitmaps, subnitems)
{
 #pragma omp for
 for (i = 0; i < outer_nelems; i++)
 {
 memcpy(dat,
 subdata[i],
 subbytes[i]);

 dat += subbytes[i];

 if (havenulls)
 array_bitmap_copy(
 ARR_NULLBITMAP(result),
 iitem,
 subbitmaps[i],
 0,
 subnitems[i]);

 iitem += subnitems[i];
 }
}

Figure 3.7 : Parallelized version of function ExecEvalArray.

Source File : execMain.c
Function Name : ExecSelect

Serial Code Parallelized Code
ExecSelect(TupleTableSlot *slot,
 DestReceiver *dest,
 EState *estate)
{
 (*dest->receiveSlot) (slot, dest);

 IncrRetrieved();

 (estate->es_processed)++;
}

#pragma omp parallel
{
 #pragma omp sections nowait
 {
 #pragma omp section
 (*dest->receiveSlot) (slot,
dest);

 #pragma omp section
 IncrRetrieved();

 #pragma omp section
 (estate->es_processed)++;
 }
}

Figure 3.8 : Parallelized version of function ExecSelect.

39

Source File : execMain.c
Function Name : ExecRelCheck

Serial Code Parallelized Code
/* And evaluate the constraints */
for (i = 0; i < ncheck; i++)
{
 qual = resultRelInfo ->
ri_ConstraintExprs[i];

 /*
 * NOTE: SQL92 specifies that a
NULL result from a constraint
 * expression is not to be treated
as a
failure. Therefore, tell
 * ExecQual to return TRUE for
NULL.
 */

 if (!ExecQual(qual, econtext,
true))
 return check[i].ccname;
}

#pragma omp parallel
firstprivate(ncheck) private(i, qual,
check, estate)
{
 #pragma omp for
 for (i = 0; i < ncheck; i++)
 {
 /*
 * ExecQual wants implicit-AND
form
 */
 qual = make_ands_implicit
(stringToNode(check[i].ccbin));

 resultRelInfo-
>ri_ConstraintExprs[i] = (List *)

 ExecPrepareExpr((Expr *) qual,
estate);
 }
}

Figure 3.9 : Parallelized version of function ExecRelCheck.

3.4 Parallel Results

In results section, we have only included second and third versions’ of results. OpenMP

Version 2 is the optimized state of Version 1 therefore; we have just included the Version 2.

Core Client

1 2 4 8 16 32 64
8 9.8594 12.8649 13.6357 15.2171 15.3043 18.7523 24.3334

16 9.5404 14.3530 16.1013 18.6907 18.8713 21.4709 25.5969
32 14.8027 19.3657 17.5230 19.7350 18.4813 22.0077 26.9266
64 10.5253 14.6989 15.5334 17.3784 18.4739 20.8593 25.0291

Core Client

1 2 4 8 16 32 64
8 15.9260 21.2040 25.1670 23.4710 25.6700 29.5280 37.1550

16 10.0120 18.8620 21.3930 22.4660 24.7400 28.5590 34.7500
32 10.1850 20.9840 23.9310 24.7680 26.4780 29.1730 35.2100
64 8.8892 13.0169 12.4890 15.0310 19.3300 25.1826 38.4984

Core Client

1 2 4 8 16 32 64
8 15.4499 23.2130 19.4130 22.8359 22.5350 27.7979 33.2400

16 23.0629 23.6980 23.7729 22.9089 23.1389 27.1460 33.5240
32 8.5890 15.8889 23.2920 22.6110 22.7180 21.2669 27.2500
64 16.1370 16.6810 20.4059 20.5820 19.9579 22.1280 25.9909

Table 3.1: Results in terms of CPU Time –Standard Version.

Table 3.2: Results in terms of CPU Time –OpenMP Version 2.

Table 3.3: Results in terms of CPU Time –OpenMP Version 3.

40

Core Client

1 2 4 8 16 32 64
8 61.53% 64.82% 84.57% 54.24% 67.73% 57.46% 52.69%

16 4.94% 31.42% 32.87% 20.20% 31.10% 33.01% 35.76%
32 -31.20% 8.36% 36.57% 25.50% 43.27% 32.56% 30.76%
64 -15.54% -11.44% -19.60% -13.51% 4.63% 20.73% 53.81%

Core Client

1 2 4 8 16 32 64
8 -2.99% 9.47% -22.86% -2.71% -12.21% -5.86% -10.54%

16 130.35% 25.64% 11.12% 1.97% -6.47% -4.95% -3.53%
32 -15.67% -24.28% -2.67% -8.71% -14.20% -27.10% -22.61%
64 81.53% 28.15% 63.39% 36.93% 3.25% -12.13% -32.49%

Comparison tables indicate that OpenMP Version 3 increases the performance for more

points compared to Version 2. For Version 2 on 64-Core, percentage changes show that on

average there is a 14% decrease in CPU time up to 16 clients. In Version 3, we have

excluded ‘omp parallel sections’ which can add overhead to the overall performance.

Calling a task within a section just creates extra overhead and cannot control and

synchronize the tasks since each parallel section is independent of each other. With

parallel sections, there is no way to coordinate the task in each section, so it is

not possible to determine whether one section will be executed before another,

regardless of which section comes first in the program source. Tasking has much

better performance and scalability for nested parallel and recursive algorithms,

compared to parallel sections, but it is available at OpenMP 3.0. However, Standard

Version is still performing better for most points when compared to Parallel

Versions. Below TPS results are also calculated from the CPU Time generated

therefore they are parallel to the above results. The consistency of the OpenMP

Version 2 up to 16 clients can be observed by comparing the boxplot representation

of Standard and OMP Version 2.

Table 3.4: Comparison of Standard Version and OpenMP Version 2.

Table 3.5: Comparison of OpenMP Version 2 and OpenMP Version 3.

41

Figure 3.10 : Comparison of standard version and OMP version 2.

Core Client

1 2 4 8 16 32 64
8 6549 5240 4698 4299 4182 3452 2654

16 6741 4484 3997 3468 3413 3014 2524
32 4544 3397 3732 3304 3493 2919 2388
64 6236 4380 4137 3696 3465 3069 2557

Core Client

1 2 4 8 16 32 64
8 4018 3018 2542 2726 2493 2167 1722

16 5122 2889 2729 2733 2498 2216 1771
32 6283 3049 2674 2583 2417 2193 1817
64 7205 4925 5165 4283 3317 2541 1662

Core Client

1 2 4 8 16 32 64
8 4142 2757 3296 2802 2840 2302 1925

16 2775 2700 2692 2793 2765 2357 1909
32 7451 4027 2747 2830 2817 3009 2348
64 3966 3836 3136 3109 3206 2892 2462

Core Client

1 2 4 8 16 32 64
8 -38.65% -42.40% -45.89% -36.59% -40.39% -37.22% -35.11%

16 -24.02% -35.57% -31.73% -21.20% -26.82% -26.48% -29.84%
32 38.26% -10.24% -28.35% -21.83% -30.81% -24.87% -23.90%
64 15.54% 12.45% 24.86% 15.89% -4.26% -17.18% -35.01%

Table 3.6: Results in terms of TPS – Standard Version.

Table 3.7: Results in terms of TPS – OpenMP Version 2.

Table 3.8: Results in terms of TPS – OpenMP Version 3.

Table 3.9: Comparison of Standard Version and OpenMP Version 2.

42

Core Client

1 2 4 8 16 32 64
8 3.09% -8.65% 29.66% 2.79% 13.92% 6.23% 11.79%

16 -45.82% -6.54% -1.36% 2.20% 10.69% 6.36% 7.79%
32 18.59% 32.08% 2.73% 9.56% 16.55% 37.21% 29.22%
64 -44.95% -22.11% -39.28% -27.41% -3.35% 13.81% 48.13%

We have decided to increase the database size and total transaction number in order

to see the effect clearer for fewer sources like number of Cores 4 and 8. In order to

increase the database size we have taken the scale as 640, which creates a database

including 64.000.000 records and total transaction number is increased to 640.000.

As you can see on Figure 3.11 and Figure 3.12 OpenMP Version 3 is the best

performer.

This results show that PostgreSQL can get over the parallelization overhead when

the table size and total transaction size are increased.

Core Client

1 2 4 8 16 32 64
4 191.2119 239.4550 228.3930 226.4439 242.9950 302.5620 360.7819
8 162.9130 226.5629 217.7050 222.3549 235.1220 274.0070 327.2130

Core Client

1 2 4 8 16 32 64
8 232.6409 229.8199 235.8729 241.7690 250.9000 289.3079 352.2880

Core Client

1 2 4 8 16 32 64
4 199.2959 235.3820 226.7429 221.8470 245.6990 293.4130 363.3249
8 187.2520 209.3720 211.9579 213.0149 227.5200 261.9139 323.9610

Core Client

1 2 4 8 16 32 64
4 3347 2672 2802 2826 2633 2115 1773
8 3928 2824 2939 2878 2721 2335 1955

Table 3.10: Comparison of OpenMP Version 2 and OpenMP Version 3.

Table 3.11: Results in terms of CPU Time –Standard Version – Scale 640.

Table 3.12: Results in terms of CPU Time –OpenMP Version 2 – Scale 640.

Table 3.13: Results in terms of CPU Time –OpenMP Version 3 – Scale 640.

Table 3.14: Results in terms of TPS –Standard Version – Scale 640.

43

Core Client

1 2 4 8 16 32 64
8 2751 2784 2713 2647 2550 2212 1816

Core Client

1 2 4 8 16 32 64
4 3211 2718 2822 2884 2604 2181 1761
8 3417 3056 3019 3004 2812 2443 1975

0

50

100

150

200

250

300

350

400

CPU Time in

Seconds

#1 #2 #4 #8 #16 #32 #64

Number of Clients

CPU Time Comparison CORE-8

STD

OMPv2

OMPv3

Figure 3.11 : Bar Chart of CPU Time Comparison for scale 640.

Table 3.15: Results in terms of TPS Time –OpenMP Version 2 – Scale 640.

Table 3.16: Results in terms of TPS Time –OpenMP Version 3 – Scale 640.

44

0

500

1000

1500

2000

2500

3000

3500

4000

TPS

#1 #2 #4 #8 #16 #32 #64

Number of Clients

TPS Comparison CORE-8

STD

OMPv2

OMPv3

Figure 3.12 : Bar Chart of TPS Comparison for scale 640.

45

4. CONCLUSION AND RECOMMENDATIONS

4.1 Application of The Work

In this thesis, the necessary steps for parallelizing time-consuming functions of PostgreSQL

database were discussed. We analyzed database performance with different tools like

profilers and benchmarking tests. In doing so, our method consisted of the following steps:

• Preparing query sets in order to measure performance.

• Profiling PostgreSQL with Gprof

• Profiling PostgreSQL with OProfile

• Comparing profiling results and determining time consuming functions of source

code

• Running benchmark tests with pgbench

• Recoding time consuming PostgreSQL functions

• Measuring performance in terms of TPS and CPU Time and comparing results.

4.2 Limitations

The source code that we have worked on has not been designed for parallelization.

Therefore, this inherits problems, which make parallelization hard to implement.

Loops that are going to be parallelized should have independent iterations. Because of data

dependency, some time-consuming functions are untouchable in terms of parallelization.

4.3 Conclusions

We have used various tools and methods to measure and improve the database performance.

We have profiled the serial database performance and obtain the knowledge of time-

consuming functions. We have applied a way of parallelization for suitable functions and

when we see some performance issues on parallelized version, we optimized the OpenMP

code blocks. A cost is associated with the creation of OpenMP parallel regions. The sources

of overheads include the cost of starting up threads and creating the execution environment,

the potential additional expense incurred by the encapsulation of a parallel region in a

46

separate function, the cost of computing the schedule, the time taken to block and unblock

threads, and time for them to fetch work and signal that they are ready. We have observed

that PostgreSQL get over that parallelization costs when the tuple number is increased. In

addition, we have seen the positive effect of OpenMP optimization by using less critical

regions, processing firstprivate instead of shared and adding nowait to parallel sections.

In summary, we have presented evidence of a positive effect of OpenMP implementation on

PostgreSQL.

Results show that it is possible to implement multi-processing and obtain improved results in

terms of CPU Time and TPS. However, it is hard to implement parallelization to databases in

the current way that they have been built. In the future, databases need to be designed in a

way to take advantage of multi-core architectures.

47

REFERENCES

[1] Dikenelli, O., Ünalır, M.O., Özerdim, A., Özkarahan, E. A., 1995: Load Balancing
Approach for Parallel Database Machines, IEEE.

[2] PostgreSQL, <http://www.PostgreSQL.org>, accessed at 07.05.2010.

[3] OpenMP, <http://www.OpenMP.org/>, accessed at 07.05.2010.

[4] Gprof, <http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html>, accessed at 07.05.2010.

[5] OProfile, <http://OProfile.sourceforge.net/>, accessed at 07.05.2010.

[6] Pgbench,<http://developer.PostgreSQL.org/pgdocs/postgres/pgbench.html>, accessed at
07.05.2010.

[7] Parallel Computing: Background,
<http://www.intel.com/pressroom/kits/upcrc/parallelcomputing_background

er.pdf>, accessed at 07.05.2010.

[8] Taniar, D., Leung, C.H.C., Rahayu, W., Goel, S., 2008: High-Performance Parallel
Database Processing and Grid Databases. New Jersey: Wiley.

[9] Popular Database Management Systems Overview,
<http://dbconvert.com/overview.php>, accessed at 07.05.2010.

[10] Benchmarking, <http://en.wikipedia.org/wiki/Benchmarking>, accessed at
07.05.2010.

[11] Benchmarking Computing, <http://en.wikipedia.org/wiki/Benchmark_(computing)>,
accessed at 07.05.2010.

[12] Database Benchmarking, <http://wiki.Oracle.com/page/Database+Benchmarking>,
accessed at 07.05.2010.

[13] TPC, <http://www.tpc.org/>, accessed at 07.05.2010.

[14] Taskset, <www.linuxcommand.org>, accessed at 07.05.2010.

[15] Bob Kuhn, Paul Petersen, Eamonn O'Toole, 2000:: OpenMP versus threading in
C/C++. Concurrency - Practice and Experience 12(12): 1165-1176 ()

[16] <http://en.wikipedia.org/wiki/OpenMP>, accessed at 07.05.2010.

[17] <www.developers.sun.com>, accessed at 07.05.2010.

48

49

CURRICULUM VITAE

Candidate’s full name: Reydan Çankur

Place and date of birth: Đstanbul / 15.08.1982

Permanent Address: Çınar Mah. Yeşiltepe Sk. No: 23 D: 6 Küçükyalı-MALTEPE/IST

Universities and
Colleges attended: Boğaziçi University – Management Information Systems (MIS)

Publication: Cankur, R., Dalfes, H.N. "Parallel Experiments on PostgreSQL." Poster
presented as part of the PARA 2010: State of Art in Scientific and Parallel Computing,
Reykjavik, Iceland, 6-9 June 2010.

