

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JANUARY 2015

A 16-b 32 MSPS CMOS VOLTAGE OUTPUT DAC

in 0.18 um WITH 80+ dB SIMULATED SFDR

at 1 MHz OUTPUT FREQUENCY

Çağlar ÖZDAĞ

Department of Electronics and Communications Engineering

Electronics Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

JANUARY 2015

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

A 16-b 32 MSPS CMOS VOLTAGE OUTPUT DAC

in 0.18 um WITH 80+ dB SIMULATED SFDR

at 1 MHz OUTPUT FREQUENCY

M.Sc. THESIS

Çağlar ÖZDAĞ

504111202

Department of Electronics and Communications Engineering

Electronics Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Assoc. Prof. Dr. Türker KÜYEL

OCAK 2015

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ  FEN BĠLĠMLERĠ ENSTĠTÜSÜ

1 MHz ÇIKIġ FREKANSINDA 80+ dB SFDR BAġARIMI ELDE EDEN

0.18 um 16-b 32 MSPS CMOS GERĠLĠM ÇIKIġLI

SAYISAL-ANALOG ÇEVĠRĠCĠ TASARIMI

YÜKSEK LĠSANS TEZĠ

Çağlar Özdağ

504111202

Elektronik ve HaberleĢme Mühendisliği Anabilim Dalı

Elektronik Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez DanıĢmanı: Doç. Dr. Dr. Türker KÜYEL

v

Thesis Advisor : Assoc. Prof. Dr. Türker KÜYEL

 Ġstanbul Technical University

Jury Members : Prof. Dr. Ece Olcay GÜNEġ

Ġstanbul Technical University

Prof. Dr. Günhan DÜNDAR

Bogazici University

Çağlar Özdağ, a M.Sc. student of ITU Graduate School of Science Engineering

and Technology student ID 504111202, successfully defended the thesis entitled “A

16-b 32 MSPS CMOS VOLTAGE OUTPUT DAC in 0.18 um WITH 80+ dB

SIMULATED SFDR at 1 MHz OUTPUT FREQUENCY”, which he prepared

after fulfilling the requirements specified in the associated legislations, before the

jury whose signatures are below.

Date of Submission : 15 December 2014

Date of Defense : 6 January 2015

vi

vii

For science,

viii

ix

FOREWORD

I would like to express my deepest gratitude to my thesis advisor and mentor Dr.

Türker KÜYEL for being a rich source of knowledge and motivation throughout my

graduate eduction. Many thanks to my dear friends and teachers at ITU VLSI Labs

for creating an environment where research can flourish. And finally, with my

warmest affection, I dedicate this work to my parents Ufuk and Osman for their

constant support, love and patience.

January 2015

Çağlar ÖZDAĞ

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi

ABBREVIATIONS ... xiii
LIST OF TABLES ... xv
LIST OF FIGURES ... xvii

SUMMARY ... xix
ÖZET .. xxi
1. INTRODUCTION .. 1

1.1 DAC Architectures ... 1
1.2 Resistor String Type VODAC Architectures ... 2

1.3 Design Summary .. 9

1.4 Design Environment ... 10

1.5 Thesis Organization .. 14

2. ERROR MECHANISMS .. 15
2.1 Static Error Mechanisms and DC Error Correction ... 15
2.2 Dynamic Error Mechanisms ... 17

2.2.1 RC model of DACs and method ... 18

2.2.2 Code dependent equivalent resistance .. 20
2.2.3 Code dependent equivalent capacitance.. 21

2.2.4 Code dependent charge injection .. 21
2.2.5 Code dependent data feedthrough ... 22
2.2.6 Glitches ... 23
2.2.7 Interpolator non-linearity .. 23

2.2.8 Signal-to-noise ratio (SNR) .. 23

3. DESIGN DECISIONS AND SCHEMATIC .. 25
3.1 Architecture Overview ... 25

3.2 String .. 26
3.3 Switches and Resistive Calibration .. 32

3.4 Interpolating OPAMP, Velocity Saturation and Capacitive Calibration 37
3.5 Pre-charge Stage and LSB Sensitivity ... 42

3.6 Instrumentation Amplifier .. 45
3.7 Voltage References .. 46
3.8 Routine Simulations ... 48

3.8.1 Temperature sweep ... 48
3.8.2 Input frequency sweep .. 49

3.8.3 Output range sweep ... 50
3.8.4 INL/DNL ... 51

3.8.5 Mismatch ... 53
3.8.6 Schematic corners ... 54

xii

4. LAYOUT ... 55
4.1 Floorplan... 55
4.2 String and 1

st
 Switch Bank ... 55

4.3 2
nd

Switch Bank .. 59

4.4 3
rd

Switch Bank ... 61
4.5 Interpolating OPAMP ... 63
4.6 Complete DAC Core Layout .. 65
4.7 Instrumentation Amplifier Configuration ... 66
4.8 Bandgap Reference ... 67

4.9 Decoder... 68
4.10 Extracted Results .. 69

5. CONCLUSION ... 71

REFERENCES ... 73
APPENDICES .. 74

APPENDIX A: Decoder Verilog Code .. 77

APPENDIX B: Ideal ADC-DAC Testbench VerilogAMS Code........................... 89

APPENDIX C: Calibration Resistor Generating Script ... 93

CURRICULUM VITAE .. 97

xiii

ABBREVIATIONS

ADC : Analog-to-Digital Converter

BBM : Break Before Make

Cgd : Gate-Drain Capacitance

Cgdovlp : Gate-Drain Overlap Capacitance

Cgs : Gate-Source Capacitance

Cgsovlp : Gate-Source Overlap Capacitance

CMOS : Complementary Metal Oxide Semiconductor

DAC : Digital-to-Analog Converter

DRC : Design Rule Check

DFT : Discrete Fourier Transform

DNL : Differential Non-linearity

IC : Integrated Circuit

INL : Integral Non-linearity

LSB : Least Significant Bit

LUT : Look-up Table

LVDS : Low-voltage Differential Signaling

LVS : Layout vs. Schematic

MBB : Make Before Break

MCU : Microcontroller

MSB : Most Significant Bit

MSPS : Mega Samples Per Second

OPAMP : Operational Amplifier

ppm : Parts per million

PVT : Process, Voltage, Temperature

RC : Resistor-Capacitor

Ron : On Resistance

SFDR : Spurrious-free Dynamic Range

SNR : Signal-to-noise Ratio

Vgs : Gate-source Voltage

Vbs : Bulk-source Voltage

VODAC : Voltage Output Digital-to-analog Converter

xiv

xv

LIST OF TABLES

Page

Table 1.1 : SFDR of basic r-string DAC architectures .. 8

Table 3.1 : Fully differential vs. single ended string .. 26

Table 3.2 : String resistive compensation .. 29

Table 3.3 : Switching order and its effect on SFDR .. 31

Table 3.4 : Effect of compensation resistors on SFDR .. 35

Table 3.5 : DAC reference voltage ranges for constant VGS switching 36

Table 3.6 : Effect of constant VGS switching on SFDR 36

Table 3.7 : Effect of data feedthrough on SFDR.. 36

Table 3.8 : Short channel effects on SFDR .. 40

Table 3.9 : Effect of dummy output stages on SFDR .. 42

Table 3.10 : Effect of pre-charge on SFDR ... 45

Table 3.11 : Instrumentation amplifier configuration .. 46

Table 3.12 : Real references ... 47

Table 3.13 : Schematic corners .. 54

Table 4.1 : Single ended vs differential output (layout) 69

Table 4.2 : Layout corners.. 69

xvi

xvii

LIST OF FIGURES

Page

Figure 1.1 : Data converters .. 1

Figure 1.2 : Current-mode DACs .. 1

Figure 1.3 : Voltage-mode DACs ... 2

Figure 1.4 : 10-bit resistor string DAC ... 3

Figure 1.5 : Interpolating amplifier ... 4

Figure 1.6 : Interpolating amplifier DAC ... 4

Figure 1.7 : Dual output resistor string DAC architecture 5

Figure 1.8 : 16-bit low bandwidth DAC ... 6

Figure 1.9 : Coarse-fine intermeshed 10-bit string ... 7

Figure 1.10 : 16-bit DAC .. 8

Figure 1.11 : Fully differential 16-bit DAC .. 9

Figure 1.12 : SFDR vs. output frequency ... 10

Figure 1.13 : Simulation environment (schematic editor) 11

Figure 1.14 : Simulation environment (hierarchy editor) 12

Figure 1.15 : Transient output waveform of the layout extracted design 13

Figure 1.16 : DFT of layout extracted design (84 dB SFDR) 13

Figure 2.1 : Transfer function of an ideal 3-bit DAC ... 15

Figure 2.2 : DC (static) errors of DACs .. 16

Figure 2.3 : DC calibration setup .. 16

Figure 2.4 : DC calibration algorithm ... 16

Figure 2.5 : Ideal DAC model ... 17

Figure 2.6 : Basic RC model of our DAC ... 18

Figure 2.7 : Basic RC model of our DAC (with approximate values) 19

Figure 2.8 : Settling characteristic at the input of the interpolating OPAMP 19

Figure 2.9 : Detailed RC model .. 20

Figure 2.10 : Charge injection... 22

Figure 3.1 : Top level block diagram .. 25

Figure 3.2 : XY decoded cells ... 26

Figure 3.3 : Input range for low current 16 bit DAC .. 27

Figure 3.4 : String node equivalent resistance model ... 28

Figure 3.5 : String equivalent resistance per code .. 28

Figure 3.6 : String compensation resistors per code ... 29

Figure 3.7 : a) No special switching, b) Make before break, c) output glitch 30

Figure 3.8 : a) No special switching, b) Break before break, c) output glitch 30

Figure 3.9 : SFDR vs. string resistance (1) ... 31

Figure 3.10 : SW3 on-resistance variation .. 32

Figure 3.11 : SW1 and SW2 on-resistance variation .. 33

Figure 3.12 : Compensation resistors for SW1 and SW2 34

Figure 3.13 : Compensation resistors for string, SW1 and SW2 34

Figure 3.14 : Constant VGS switch cell basic architecture 35

xviii

Figure 3.15 : SFDR vs. string resistance (2) ... 37

Figure 3.16 : Interpolating OPAMP .. 38

Figure 3.17 : Interpolating OPAMP currents .. 38

Figure 3.18 : Interpolating OPAMP frequency response 39

Figure 3.19 : Velocity saturation in short channel devices (ID vs. VDS) 40

Figure 3.20 : Velocity saturation in short channel devices (ID vs. VGS) 40

Figure 3.21 : Switch bank 3 .. 41

Figure 3.22 : Dummy interpolating OPAMPs and SW3 41

Figure 3.23 : Input to the second switch bank (no pre-charge) 43

Figure 3.24 : Input to the second switch bank (no pre-charge) zoomed in 43

Figure 3.25 : Pre-charge switch placement ... 44

Figure 3.26 : Input to the second switch bank (with pre-charge) 44

Figure 3.27 : Input to the second switch bank (with pre-charge) zoomed in 45

Figure 3.28 : Intrumentation amplifier configuration ... 46

Figure 3.29 : Brokaw band-gap reference ... 47

Figure 3.30 : SFDR vs. temperature .. 48

Figure 3.31 : SFDR vs. input frequency ... 49

Figure 3.32 : SFDR vs. output magnitude (nom: 2 Vpp) 50

Figure 3.33 : SFDR vs. input common mode (nom: 0.825 V) 50

Figure 3.34 : 16-bit INL .. 51

Figure 3.35 : 16-bit DNL .. 52

Figure 3.36 : Element mismatch SFDR histogram ... 53

Figure 4.1 : Symbolic floorplan .. 55

Figure 4.2 : Resistor string w/ compensation resistors and SW1 56

Figure 4.3 : Resistor string w/ compensation resistors and SW1 zoom 1 57

Figure 4.4 : Resistor string w/ compensation resistors and SW1 zoom 2 57

Figure 4.5 : Resistor string w/ compensation resistors and SW1 zoom 3 58

Figure 4.6 : SW1 ... 59

Figure 4.7 : SW2 (one cell) ... 59

Figure 4.8 : SW2 a) whole block b) zoom 1 c) zoom 2 60

Figure 4.9 : SW3 whole block zoomed ... 61

Figure 4.10 : SW2 and SW3 whole block zoomed ... 62

Figure 4.11 : Interpolating OPAMP .. 63

Figure 4.12 : Differential pair, SW3 (middle) and SW2 (left most) 63

Figure 4.13 : Interpolating OPAMPs (rightmost), diff pair, SW3 and SW2 64

Figure 4.14 : Interpolating OPAMPs, diff pair, SW3 and SW2, string and SW1 . 65

Figure 4.15 : Instrumentation amplifier configuration DAC core 66

Figure 4.16 : Brokaw bandgap reference .. 67

Figure 4.17 : Digitally programmable resistor string .. 67

Figure 4.18 : Decoder .. 68

Figure 4.19 : Final layout SFDR vs. output frequency ... 70

Figure 5.1 : SFDR vs. input frequency summary.. 71

xix

A 16-b 32 MSPS CMOS VOLTAGE OUTPUT DAC IN 0.18 um WITH 80+ dB

SIMULATED SFDR AT 1 MHz OUTPUT FREQUENCY

SUMMARY

Interfacing digital domain signals to an analog control or transfer system requires an

integrated circuit (IC) element referred to as a digital-to-analog converter (DAC).

Achieving high precision and high dynamic linearity at high sampling speeds and

high output frequencies is an ever on-going research challenge due to the complexity

of interconnected tradeoffs involved in the performance of such architectures. Due to

the nature of these performance tradeoffs, certain architectures are used for certain

applications which prioritize 6 main parameters: physical size, power consumption,

resolution, bandwidth, precision/sensitivity and cost. Most DAC architectures used in

all kinds of communications, data acquisition, signal processing, and control systems

can be categorized into one of two families (i) Current-mode type architectures that

offer high speed at the cost of monotonicity, drift sensitivity and precision settling;

(ii) Voltage-mode type architectures that address the precision settling problem but

have its shortcomings in speed and resolution. This work addresses the unmet need

for a precision settling, high speed and high bitrate DAC architecture by taking the

standard resistor-string type buffered voltage output architecture and greatly

improving its dynamic linearity for driving time-varying loads at high output

frequencies.

Typical operation of a resistor string-type DAC involves selecting nodes on a resistor

string with a certain switching architecture dictated by the input decoder, and driving

the output load through a voltage buffer. The resistor string sits between two voltage

references and divides the full scale input into equal steps. DC performance of such

converters is determined by the precision of the voltage references and more

importantly the matching of the elements on the resistor string. These so-called static

nonlinearities can be digitally calibrated to give 16-bit accuracy at low bandwidth;

but error mechanisms that affect the dynamic linearity at high output frequencies

remain mostly unsolved.

The most fundamental dynamic performance metric of DACs is the spurious-free

dynamic range (SFDR) of the output waveform. SFDR is the ratio of the root-mean-

squre signal amplitude to the highest spurious component in the first Nyquist zone

and is closely related to total harmonic distortion (THD) and intermodulation

distortion (IMD), thus a good measure of dynamic linearity. In this work, most

simulation results are presented in reference to the SFDR of the full-scale output

waveform. What is considered to be the current state-of-the-art 16-bit voltage output

DAC (TI-DAC8580) gives 63 dB SFDR for a 200 kHz, which is the highest

frequency listed on specification. The architecture presented in this work surpasses

this performance by a great amount, giving a layout extracted 83 dB SFDR for a 1

MHz signal.

xx

Six main dynamic error mechanisms were identified and compensated to achieve this

performance. Code-dependent interpolating amplifier input capacitance is

compensated by the inclusion of a dummy interpolating amplifier and dummy

differential pair switch structure. Code-dependent resistor string equivalent resistance

and code dependent Vgs and Vbs varying switch bank on-resistance are compensated

with the inclusion of tap point calibration resistors. Charge injection and related

glitches on the output bus are reduced by a unique fully differential resistor string

and differential interpolating instrumentation amplifier architecture. Interpolating

amplifier output stage nonlinearity is reduced by driving the class AB output stage

transistors at their velocity saturation region. LSB sensitivity to floating resistor

string loops are reduced by implementing a loop pre-charge stage on the fully

differential resistor string. Aside from the development of such novel architectures,

other specifics of all stages on schematic, as well as on layout, are optimized to

reduce distortion by keeping the output bus settling characteristic fast and code

independent.

Simulation environment is chosen to be Spectre+AMS running on Cadence 6.02

evaluating BSIM4 models of the TSMC 018 um process. The unmodified standard

architecture which was the starting point of this work has a 60 dB schematic level

SFDR for a 1 MHz (f0), 32 MHz (fs), 2 Vpp output signal. The final design has a 88

dB schematic level SFDR, 83 dB layout level SFDR under the same conditions,

tested under process corner, temperature range and supply drift variations.

Tape out is expected to be April 2015.

xxi

1 MHz ÇIKIġ FREKANSINDA 80+ dB SFDR BAġARIMI ELDE EDEN

0.18um 16-b 32 MSPS CMOS GERĠLĠM ÇIKIġLI SAYISAL-ANALOG

ÇEVĠRĠCĠ TASARIMI

ÖZET

Sayısal iĢaretlerin, analog kontrol ve transfer sistemlerine arabağlanması, sayısal-

analog-çevirici (DAC) olarak isimlendirilmiĢ entegre devreler (IC) ile

gerçekleĢtirilir. Bu elektronik mimariler ile, yüksek örnekleme frekanslarında,

yüksek hassasiyet ve yüksek dinamik doğrusallık elde edebilmek, tüm ilgili baĢarım

ödünleĢimlerinin karmaĢık bir Ģekilde bağlantılı olması nedeniyle, her zaman

süregiden bir araĢtırma alanıdır.

BaĢarım ödünleĢimlerinin doğası gereği, belli DAC mimarileri belli uygulamalar için

kullanılır ve bu uygulamalar altı ana parametreyi önceliklendirir: fiziksel boyut, güç

tüketimi, çözünürlük, bant geniĢliği, duyarlık ve maliyet. Her türlü iletiĢim, veri

toplama, iĢaret iĢleme ve kontrol sistemlerinde kullanılan DAC mimarileri, iki aile

Ģeklinde sınıflandırılabilir: (i) monotonluk, sürüklenme duyarlığı ve yerleĢme

duyarlığı pahasına yüksek hız sağlayan akım-mod tip mimariler ve (ii) yüksek hız ve

çözünürlük pahasına yerleĢme duyarlığı sağlayan gerilim-mod tip mimariler.

Zamanla değiĢen yükleri doğrusal bir yerleĢme karakteristiği ile sürebilmek için

DAC'ların çıkıĢlarında bir tampon katı olmalıdır. Akım-mod tip mimarilerde bu

tampon katı, akımdan gerilime dönüĢtürücü olarak iĢlev görür. DönüĢümü yapmak

için kullanılan geri-besleme direncinin gerilim ve sıcaklık ile sürüklenmesi, bu tip

mimarilerin hassas yerleĢme niteliğini kısıtlar. Akım-mod DAC çıkıĢ katı direncinin

silikon özerinde imal edildiği ve bu sorunun kısmi olarak giderildiği tasarımlar

mevcut olsa da, bu mimarilerin de gliç (zamanlama hatalası) problemleri vardır. Bu

nedenle yerleĢme karakteristiğinin doğrusal olması gerektiği hassas dalga üretimi

uygulamalarında, tercih edilmezler.

Bu çalıĢma, daha karĢılanmamıĢ bir gereksinim olan, hassas yerleĢme, yüksek hız ve

yüksek çözünürlük sağlayan bir DAC mimarisi önerisidir. Tasarım, standart direnç-

dizesi tip tamponlu gerilim çıkıĢlı DAC mimarisini baz almakta ve zamanla değiĢen

yükleri yüksek çıkıĢ frekansları için sürebilmek adına dinamik doğrusallık baĢarımını

geniĢ ölçüde geliĢtirmektedir.

Direnç-dizesi tip DAC mimarilerinin çalıĢma prensibi, bir direnç dizesi üzerindeki

düğümlerin, giriĢ kod çözücüsü tarafından kontrol edilen bir anahtarlama Ģeması ile

seçilmesi, ve bu düğüm üzerindeki gerilimin çıkıĢ tamponu tarafından sürülmesi

üzerine kurulmuĢtur. Bu direnç-dizesi, anahtarlar ve çıkıĢ tamponunun çalıĢma

aralığı tarafından belirlenen iki gerilim referansı arasında, tam ölçek çıkıĢ aralığını

eĢit parçalara böler. Bu tür veri dönüĢtürücülerinin DC baĢarımını, gerilim

referanslarının hassasiyeti, ve daha önemlisi, direnç-dizesi elemanlarının uyuĢması

xxii

belirler. Statik doğrusalsızlıklar olarak adlandırılan bu sorunlar, düĢük bant

geniĢliklerinde tipik olarak 10 bitlik, yüksek maliyetli proseslerde lazer kırpma gibi

özel teknikler kullanılarsa 12 bitlik doğruluk verebilecek derecede sayısal olarak

kalibre edilebilir. Bu tekniklerden, off-chip taramalı-tablo (look-up-table) DC

kalibrasyonu olarak adlandırılan yöntem, düĢük maliyetli DC kalibrasyonlar arasında

standart uygulama haline gelmiĢtir ve bu tasarım için tape-out sonrası kullanılacağı

varsayılmıĢtır. Bu yöntemle alınabilecek çözünürlük sınırlı olduğundan, 16 bit

seviyesinde doğruluk alabilmek için, ikinci bir DAC katı olarak ara-değer-bulan

OPAMP (interpolating OPAMP) gibi mimariler kullanılabilir.

Devreyi hızlandırmak adına, çıkıĢ katı zaman sabitini asgariye indirmek için düĢük

eĢdeğer dirençli direnç-dizesi mimarilerinin de kullanımıyla, piyasadaki mevcut en

iyi performans veren DAC tasarımlarına yakın benzetim sonuçları alınabilmektedir.

Fakat, yüksek bant geniĢliklerinde dinamik doğrusallığı etkileyen hata

mekanizmaları çoğunlukla çözülememiĢ durumdadır. Bu eksiklik, gerilim çıkıĢlı

DAC mimarilerinin yüksek hızlı hassas dalga üretimi uygulamalarında

kullanılmasını kısıtlamaktadır.

DAC mimarilerinin en temel dinamik baĢarım ölçüsü, çıkıĢ dalgasının spüriyözsüz

dinamik aralığıdır (SFDR). SFDR, iĢaret genliğinin kare ortalamalarının kökünün

(rms), ilk Nyquist bölgesindeki en yüksek spüriyöz bileĢenine oranıdır, ve toplam

harmonik bozulma (THD) ve intermodulasyon distorsiyon (IMD) ile olan yakın

iliĢkisinden dolayı iyi bir dinamik doğrusallık göstergesidir. Bu çalıĢmada sunulan

benzetim sonuçlarının çoğu, tam ölçek çıkıĢ dalgasının SFDR'ı üzerinden

incelenmiĢtir.

ġu an piyasada state-of-the-art kabul edilen 16-bitlik gerilim çıkıĢlı DAC (TI-

DAC8580), spesifikasyonunda listelenen en yüksek çıkıĢ frekansında (200 kHz) 63

dB SFDR vermektedir. Bu çalıĢmada önerilen DAC mimarisi bu çıtayı büyük bir

fark ile aĢarak, 1 MHz'lik bir iĢaret için serim-sonrası (post-layout) 83 dB SFDR

vermektedir. Bu baĢarımı elde etmek için, altı ana dinamik hata mekanizması

belirlenmiĢ ve kompanse edilmiĢtir.

Mimarinin çıkıĢ katı, son altı biti (6 LSBs) sayısaldan analoga çevirme iĢlemini

gerçekleĢtirmektedir. Bu iĢlem sırasında, mimarinin doğası gereği ara-değer-bulan

OPAMP giriĢ kapasitesi koda-bağımlı olduğundan, çıkıĢ hattı üzerinde görülen

zaman sabiti her kod için değiĢmektedir. Bu idealsizlik, (i) dummy ara-değer-bulan

OPAMP giriĢ katları ve dummy diferansiyel ikilisi anahtarları ile kompanse

edilmiĢtir.

ÇıkıĢ hattı üzerinde görülen zaman sabitinin kapasite bileĢeni böylece zamandan

bağamsız hale getirilmiĢtir. GiriĢ iĢaretinin ilk 10 bitini (10 MSBs) sayısaldan

analoga çeviren blok, bir kaç kattan oluĢan bir direnç-dizisi ve anahtarlama ağı

olarak düĢünülebilir. ÇıkıĢ hattı üzerinde görülen zaman sabitini her kod için değiĢik

kılan bileĢen bu katlar için dirençseldir. Direnç-dizisinin koda-bağımlı eĢdeğer

direnci ve koda-bağımlı kapalı anahtar direnci her boğum noktası için hesaplanmıĢ

ve benzetim ortamında ölçülmüĢtür. Ortaya çıkan direnç profili kullanılarak, (ii)

koda-bağımlı direnç dizisi eĢdeğer direnci ve (iii) koda-bağımlı VGS ve VBS ile

değiĢen kapalı anahtar direnci, direnç dizisinin her boğumuna yerleĢtirilen seri

kalibrasyon dirençleri ile kompanse edilmiĢtir.

xxiii

Mimarinin çalıĢma prensibi, her kod için bir kaç kat boyunca belli anahtarların

açılması ve kapanması ile istenen direnç-dizisi boğumunun çıkıĢ hattıyla iletime

girmesi üzerine kuruludur. Bu esnada, zamanlama idealsizlikleri ve tranzistörlerin

tipik davranıĢları gereği, bir takım doğrusal olmayan yük boĢalımları

gerçekleĢmeltedir. (iv) ÇıkıĢ hattı üzerindeki yük enjeksyonu ve diğer ilgili

zamanlama hataları, özgün bir diferansiyel direnç-dizesi ve diferansiyel ara-değer-

bulan OPAMP mimarisi ile büyük ölçüde azaltılmıĢtır.

ÇıkıĢ katı tamponunun doğrusallığı, DAC'ın SFDR baĢarımında kilit rol oynayan

unsurlardan biridir. Küçük belirgin özellikli (small feature size) proseslerde, kısa-

kanal etkisi (short-channel effect) olarak adlandırılan bir MOS transistör özelliği

görülmektedir. Bu etki, uzun-kanallı (1um'den fazla) transiztorlerde tam anlamıyla

lineer olmayan ID/VDS özeğrisini, kısa-kanallı transistorlerde daha doğrusal kılan

bir etkidir. (v) ÇıkıĢ tamponu doğrusalsızlığı, kısa-kanal etkilerinden yararlanılarak

class-AB çıkıĢ katı transizstörlerinin hız-doygunluk bölgesinde sürülmesiyle büyük

ölçüde azaltılmıĢtır.

Direnç-dizisi mimarisinin eĢdeğer direncini düĢürmek için, diziyi düĢük dirençli

döngülerden oluĢturmak, 2 kattan oluĢan anahtarlama Ģemasında tipik operasyon

sırasında yüzen düğümler oluĢturur. (vi) Direnç dizesi yüzen düğümlerinin LSB

hassasiyeti oluĢturması, döngü ön-yükleme anahtarlarıyla giderilmiĢtir.

Bu özgün mimari geliĢtirmelerinin yanında, tüm katların Ģematik seviyede detayları

(anahtar boyutları, anahtarlama mimarisi, referans gerilimleri, kod çözücü Ģeması,

direnç-dizesi döngü uzunluğu, direnç-dizesi akımı, anahtar katı sayısı, vb.), serimden

sonra çıkıĢ hattı oturma karakteristiğini hıza ve kod-bağımsızlığa optimize edecek

Ģekilde belirlenmiĢtir.

Benzetim ortamı Cadence 6.02 üzerinde Spectre+AMS ile TSMC 018 prosesinin

BSIM4 modellerini kullanmaktadır. Bu çalıĢma yalnızca teorik mimarilerin

geliĢtirilmesi üzerine değildir. Tasarım her yönüyle üretime hazır olacak incelikle

geliĢtirilmiĢtir ve bu amaca yönelik olarak, proses modelleri tarafından sağlanan

eleman uyuĢmazlığı istatistiki dağılımları, proses varyasyonu istatistiki dağılımları,

sıcaklık ve referans gerilimi kaymaları, serim sonrası parasitik direnç ve kapasiteleri

eklenmesi gibi testlerle doğrulanmıĢtır.

Bu çalıĢmanın baĢlangıç noktası olarak aldığımız değiĢtirilmemiĢ standart mimari, 1

MHz (fo), 32 MHz (fs), 2 Vpp çıkıĢ iĢareti için 60 dB Ģematik seviyesi SFDR

vermektedir. Bu performans, çıkıĢ hattı zaman sabiti kapasitif bileĢeninin kalibre

edilmesiyle 9 dB, çıkıĢ hattı zaman sabiti dirençsel bileĢeninin kalibre edilmesiyle 4

dB, diferansiyel direnç-dizesi ve diferansiyel ara-değer-bulan OPAMP mimarisinin

geliĢtirilmesiyle 14 dB, tampon çıkıĢ katı transizstörlerinin hız-doygunluk bölgesinde

sürülmesiyle 10 dB SFDR artıĢı ile ortak etkilerden bağamsız olarak iyileĢtirilmiĢtir.

Mimari önerilerinin bir araya getirilmesiyle, çalıĢmanın sonunda önerilen tasarım,

tipik proses köĢesi, sıcaklık ve referans kayması Ģartları altında 88 dB Ģematik seviye

SFDR, 83 dB layout seviye SFDR vermektedir.

Tape-out Nisan 2015'te beklenmektedir. Tape-out sonrası ölçüme hazırlık olarak

piyasadaki en iyi performans veren DAC (TI DAC8580) spesifikasyonuyla tam

örtüĢecek Ģekilde ölçülmüĢtür.

xxiv

1

1. INTRODUCTION

Data converters are a family of integrated circuits that interface the two domains of

signal transmission and processing: digital and analog. Basic operation of digital-to-

analog converters and analog-to-digital converters are demonstrated in Figure 1.1.

Figure 1.1 : Data converters.

This work is the design of a novel digital-to-analog converter. To give context to the

motivation behind this research, basic DAC architectures that led to the design of this

work and their shortcomings are presented in the subsections below.

1.1 DAC Architectures

All DAC architectures require an output buffer stage to drive time-varying loads with

a linear settling characteristic. In architectures such as current-mode binary-weighted

DACs, current-mode R-2R ladder network DACs and other current-steering type

DACs, the output buffer acts as a current-to-voltage (I-V) converter as shown in

Figure 1.2.

Figure 1.2 : Current-mode DACs.

2

Settling characteristic of these DACs are determined by the feedback resistors (Rf)

sensitivity to temperature and voltage drifts and therefore limits static and dynamic

linearity at high output frequencies [1]. Achieving precision settling is also a

challenge with current mode DACs due to their inherent non-monotonicity and

temperature drift [6]. Voltage-mode DACs shown in Figure 1.3 offer precision

settling and monotonicity but have their shortcomings in speed and resolution.

Figure 1.3 : Voltage-mode DACs.

1.2 Resistor String Type VODAC Architectures

Voltage-mode DAC architectures are based on selecting intermediate node voltages

within a resistor network that sit between two voltage references. These node

voltages are tapped by a decoding/switching architecture and output through a

voltage buffer. A basic 10-bit resistor-string type DAC is shown in Figure 1.4.

Speed and dynamic linearity of these basic resistor string architectures are limited by

the high and varying equivalent resistance seen for every code, and the resolution is

limited by the element matching capabilities of the fabrication processes. Resistor

string element matching for 10-bits of resolution is considered to be the limit of

current process technologies [2]. With the employment of costly techniques like SiCr

resistors, on wafer laser trimming or digital calibration unique per device, these

architectures can achieve 12-bits of accuracy at most [3], [4].

3

Figure 1.4 : 10-bit resistor string DAC.

The problem of resolution can be addressed with an interpolating OPAMP

architecture as the output buffer [5]. This architecture has multiple positive inputs

which are averaged and fed back to the negative input, essentially rendering the

OPAMP differential pair a voltage interpolator as shown in Figure 1.5.

These multiple positive inputs can be weighted or thermometer coded for binary or

unary operation. Figure above demonstrates a 6-bit thermometer coded operation,

with 64 same sized positive inputs, and 1 negative input 64 times the size of the

multiple positive inputs. A switching structure shown in Figure 1.6 decodes a pair of

voltages as the binary input to the interpolator, so that this architecture can serve as a

DAC.

4

Figure 1.5 : Interpolating amplifier.

Figure 1.6 : Interpolating amplifier DAC.

Such an architecture can be used as the output stage of a voltage output DAC to

increase resolution, if stages that precede the interpolation amplifier outputs a pair of

voltages that can serve as VHIGH and VLOW. The basic resistor string architecture

5

given in Figure 1.4 can be modified to give a pair of voltages separated by 1 least

significant bit (LSB) as shown below in Figure 1.7.

Figure 1.7 : Dual output resistor string DAC architecture.

Cascading the two architectures in stages, the following 16-bit, low bandwidth DAC

architecture is realized in Figure 1.8.

6

Figure 1.8 : 16-bit low bandwidth DAC.

The problem of speed is addressed by lowering the equivalent string resistance of the

first stage. The following architecture in Figure 1.9, called the course-fine

intermeshed string, proposed in [2] achieves this by creating low impedance nodes

on the 10-bit fine string every 32 resistors by tapping loops of resistors from a coarse

string. Tap voltages are selected in two levels of switches; first one to choose the tap

voltage, second one to choose the loop the tap voltage is located in. The selected

node is output through a voltage buffer as usual. Another improvement this

architecture brings is reduction in parasitic capacitance otherwise coming from 1024

switches connected to one output node.

7

Figure 1.9 : Coarse-fine intermeshed 10-bit r-string.

This architecture can be cascaded with the interpolating amplifier architecture to

result in a relatively fast 16-bit DAC design, shown in Figure 1.10 [5], [7].

8

Figure 1.10 : 16-bit DAC.

SFDR of the architectures presented this in this subsection are given below in Table

1.1.

Table 1.1 : SFDR of basic r-string DAC architectures.

Architecture
SFDR at 200 kHz

(dB)

SFDR at 1 MHz

(dB)

Figure 1.2.1 (10 bit) 51 37

Figure 1.2.5 (16 bit) 64 48

Figure 1.2.6 (low resistance 10 bit) 68 51

Figure 1.2.7 (low resistance 16 bit) 74 60

Current state-of-the-art [8] 62 N/A

It can be seen from the table that the best design available on the market can‟t offer

much more than 60 dB SFDR at 200 kHz output frequency. Even though speed and

resolution problems are partly addressed in the architecture presented in Figure 1.10,

dynamic linearity at a MHz order bandwidth is nowhere near what is acceptable for

voltage output DACs to be used in precision waveform generation applications.

9

1.3 Design Summary

Figure 1.11 shows a symbolic block diagram of the final design, the specifics of

which will be explained in detail in the following chapters.

This work takes the architecture given in Figure 1.10 as a starting point and

eliminates all major dynamic error mechanisms, taking schematic level SFDR at

1MHz to 88 dB and layout extracted SFDR to 83 dB. The final design is a

continuation of a work referenced in [7], where several error mechanisms were

investigated, and a schematic/ideal-behavioral level SFDR of 72 dB at 1 MHz output

frequency were presented.

Figure 1.11 : Fully differential 16-bit DAC.

The first stage implements a novel fully differential operation on a coarse-fine

intermeshed resistor string, which outputs two pairs of differential voltages to the

second stage which is a novel fully differential interpolation amplifier. Output bus

capacitances are balanced for every code with the implementation of dummy

interpolation amplifier inputs. Output bus resistance is calibrated for each code with

the implementation of unique compensation resistors that take into account varying

switch bank and resistor string equivalent resistances. A precharge stage (not

included in the figure) is implemented to hold loop voltages at appropriate levels to

reduce glitches on the output bus. A digitally programmable 60ppm bandgap voltage

10

reference (not included in the figure) provides the internal references. A decoder (not

included in the figure) controls all switch banks with a break-before-make switching

scheme to minimize glitches on the output bus.

SFDR performance of the final design in schematic and layout is given in Figure

1.12 below along with the performance of E. Topcu‟s design [7] and the basic

architecture given in 1.10 under the same conditions.

Figure 1.12 : SFDR vs. output frequency.

1.4 Design Environment

Cadence 6.02 Virtuoso Schematic, Virtuoso XL Layout and Spectre+AMS

Verification tools referencing BSIM 4 models of the 018um TSMC process were

used in the development of the design. A screenshot of one of the testbenches most

frequently used in the development of the DAC is given in Figure 1.13. The

testbench evaluates DFT for a 1 MHz fo 32 MHz fs signal and calculates SFDR,

which is used as the primary performance metric in this study.

11

Voltage references that operate the resistor string, input decoder and the DAC core

can be seen in their top cellview. Modifications on blocks lower down the hierarchy

can be toggled on and off as dictated by the experiment as shown in Figure 1.14.

Input to the design is generated by an ideal 16-bit ADC programmed in

VerilogAMS, given in Appendix A. Output of the DAC is loaded with a 10 kΩ

resistor and 100 pF capacitor in parallel.

Figure 1.13 : Simulation environment (schematic editor).

12

Figure 1.14 : Simulation environment (hierarchy editor).

Unless stated otherwise, DFT is taken for 1 cycle of a 1MHz fundamental signal

between 1us and 2us for 65536 samples for all experiments reported in this work.

Then, SFDR is calculated as:

 (

) (1.1)

Figure 1.15 and 1.16 shows the transient and DFT outputs of the layout extracted

final design under typical conditions for an arbitrary LSB pattern within 95% of the

full scale.

13

Figure 1.15 : Transient output waveform of the layout extracted design.

Figure 1.16 : DFT of layout extracted design (84 dB SFDR).

14

1.5 Thesis Organisation

In chapter 1, basic DAC architectures that led to the development of the final design

are introduced, motivations for the research are justified and the final design is

briefly overviewed, along with a brief description of the simulation environment in

which the architecture was designed, laid out, and verified.

In chapter 2, major error mechanisms that were identified as affecting the dynamic

linearity of the architecture are introduced, and their tradeoffs are briefly discussed to

give context to the design decisions made.

In chapter 3, design decisions are justified and all stages are described in detail on a

schematic level, along with detailed verification of the final design.

In chapter 4, layout of the DAC is presented along with layout extracted results.

15

2. ERROR MECHANISMS

2.1 Static Error Mechanisms and DC Error Correction

The ideal transfer function of a 3-bit DAC is shown below in Figure 2.1.

Figure 2.1 : Transfer function of an ideal 3-bit DAC.

Non-idealities such as imperfect voltage references, element mismatch at various

stages of the architecture and layout related asymmetries are unavoidable especially

with high performance converters. These issues can be local to a section of the DAC,

local to periodic sections or can accumulate with a random pattern over all codes and

cause the transfer function to be incorrect to various degrees [11]. These matters are

often referred to as offset, gain, and INL/DNL errors, or DC (static) errors, and are

shown in the representative 3-bit non-ideal transfer functions below in Figure 2.2.

16

Figure 2.2 : DC (static) errors of DACs.

Developing a novel method for the compensation of such static errors is not the

subject of this work, simply due to the fact that current solutions available for a wide

range of tradeoffs have already become standard practice [9]. Considering die area,

cost and complexity, for this work, we chose to employ a basic, all-digital software

calibration shown below in Figure 2.3.

Figure 2.3 : DC calibration setup.

The algorithm carried out by this off-chip setup is very simple and is shown below in

Figure 2.4.

Figure 2.4 : DC calibration algorithm.

17

This method is a simplification on a scheme outlined in detail in [9]. As pointed out

in the same paper, for a 16-bit DAC, the lookup table requires 65536 words of

storage, which is a burden on cost. A suggested solution to cut down on the size of

the LUT is to divide the DAC into segments and apply a piece-wise linear algorithm

to approximate towards the calibrated code. There are many other on-chip and off-

chip solutions available to the DC calibration problems which are out of the scope of

this work [9], [10].

2.2 Dynamic Error Mechanisms

Identification and elimination of dynamic error mechanisms are the main focus of

this work. Dominant dynamic error mechanisms are briefly explained below, with

the help of simple models. An ideal DAC programmed in VerilogAMS (Appendix C)

with an ideal RC load can be a simple but accurate representation of a voltage output

DAC as shown below in Figure 2.5.

Figure 2.5 : Ideal DAC model.

Simulations show that magnitude of this RC time constant does not affect dynamic

linearity (up to some maximum settling time requirement calculated in the next sub-

section), giving ~106 dB SFDR for a 1 MHz fo, 32 MHz fs, 2 Vpp output signal. This

premise is the starting point of our research. To ensure code independent time

constant equalization, several techniques were used on an architecture level, as well

as on layout. Details of such techniques are described in detail in section 3 and

section 4. This chapter is only intended to introduce some of the tradeoffs that were

faced during the design of our final architecture.

18

2.2.1 RC model of DACs and method

Most basic RC model of our DAC is given below in Figure 2.6. 10-bit resistor string

DAC and its 2 stage switch banks are labeled as „STRING‟, „SW1‟ and „SW2‟. 6-bit

thermometer decoded LSB switches and the interpolating OPAMP inputs are labeled

as “SW3” and “OPAMP”.

At each stage, code dependent and code independent effects are to be compensated

using techniques and architectures to be explained in the following chapters.

Figure 2.6 : Basic RC model of our DAC.

Balancing of the output bus impedance, and thus the time constant for every code at

the input of the interpolating OPAMP comes with a maximum settling time

depending on the sampling frequency. The term time constant defines the time it

takes for a step response to reach within ⁄ of its final value. The RC

requirement is 2.85 ns as shown below.

 ⁄ (2.1)

For 16 bit settling and 32 MHz sampling frequency,

 ⁄ (2.2)

 (2.3)

 (2.4)

Various capacitive and resistive compensations to equalize large-signal settling for

every code on the output bus cannot exceed this requirement. Approximate

equivalent resistances and capacitances of the model shown in Figure 2.6 are shown

below in Figure 2.7.

19

Figure 2.7 : Basic RC model of our DAC (with approximate values).

The specifics of these stages and the values indicated above will be explained in

detail in the coming sections. According to this simplified model,

 (2.5)

This approximation at the input of the interpolating OPAMP easily meets the

requirement calculated above. A bit of headroom is a good practice for a starting

point in design, since many error mechanisms will be present to interfere with this

simplistic theoretical calculation.

Figure 2.8 below shows settling at the input of the OPAMP of the final DAC design.

An arbitrary step response reaches of its final value in approximately 0.9ns,

verifying the model approximate calculations.

Figure 2.8 : Settling characteristic at the input of the interpolating OPAMP.

20

More detailed RC models of the simpler model given in Figure 2.6 is given below in

Figure 2.9 for representative resistances and capacitances.

Figure 2.9 : Detailed RC model.

2.2.2 Code dependent equivalent resistance

Code dependent equivalent resistance variation is dominated by the first 3 stages: i)

string, ii) switch bank 1, and iii) switch bank 2. For the unmodified architecture,

string resistance Rstring (for the chosen string current, justified in later sections)

varies between 0 and 50 Ω depending on the tap point. On resistances of the switches

Ronsw1 and Ronsw2 (for the chosen sizes, justified in later sections) vary between

350 Ω and 600 Ω. The code dependent varying Vgs and Vbs of the NMOS switches

cause this effect. Switch 3 bank consists of 64 switches connected in parallel (when

dummy switches are in use, justified in later sections) which makes little impact on

the added resistance Ronsw3 along the path since the resistances. For code k,

effective output bus resistance is:

21

 [] [] [] [] (2.6)

Two different methods were explored in depth to counter this effect, constant Vgs

switches and external resistive compensation. External resistive compensation seems

to offer the best tradeoff in performance by simply equalizing the effective output

bus resistance as:

 [] [] [] [] [] (2.7)

 Details of these analyses for each of the stages will be given in section 3.

2.2.3 Code dependent equivalent capacitance

Experiments of manually editing out MOS terminal capacitances from the netlists

show that, code dependent equivalent capacitance variation is dominated by the last 2

stages: i) switch bank 3, ii) interpolating OPAMPs. For the unmodified architecture,

output bus capacitance varies between 0 and 640 fF depending on how many

switches on the output bus are connected to the OPAMP differential pairs. For code

k, effective output bus capacitance is:

 [] [] [] (2.8)

A dummy switch 3 bank and interpolating OPAMP connected to the same output bus

with an inverted switching pattern equalizes this capacitance to a code-independent

640 fF.

 [] [] [] (2.9)

Switch banks 1 and 2 always connect 1 on switch and 31 off switches to the output

bus for every code, and the small variation in gate and overlap capacitances that

come with code dependent Vgs and Vbs of the NMOS makes insignificant difference

in performance. Details of these analyses for each of the stages will be given in

section 3.

2.2.4 Code dependent charge injection

Charge injection is the distribution of charge towards the source and drain terminals

of a MOS switch when a channel is created or cut off as shown in Figure 2.10

22

Figure 2.10 : Charge injection.

It is nonlinear due to a combination of effects related to the varying source terminal

voltage along the string as the charge is collected and canceled out at varying times

at different points of the string. Minimizing switch sizes reduces this effect, but as

with all analog design decisions, there is a tradeoff – increased on resistance of the

switch, which in turn increases the variance of the RC time constant per code. A

constant Vgs switch architecture improves the performance when everything else in

the design is taken to be ideal – but such an increase in complexity of all the switch

cells and the consequent addition of auxiliary strings to operate these switches cause

major layout-related problems and in the end does more harm than good. Main string

references also has to be cut to almost half the range to ensure constant Vgs for both

on and off states. With experimentation it is seen that, after layout, not using a

constant Vgs architecture in all three switch banks results in the best performance.

Charge injection is a common mode disturbance, and so the implementation of the

fully differential architecture removes 2
nd

 order distortions related to it. Details of

these analyses will be given in section 3 and 4.

2.2.5 Code dependent data feedthrough

Data feedthrough is a similar phenomenon as depicted in Figure 2.2.4.1 but instead it

is related to the source and drain overlap capacitances and is an effect seen when a

switch is turned on or off as the output follows through the switches with varying

overlap capacitances due to varying tap voltages along the string. Like code

dependent charge injection, this effect can be reduced by minimizing switch sizes,

23

but it comes with the same tradeoff. When overlap capacitances are edited out

manually out of the netlist, a 2 dB improvement in performance is seen, when

everything else in the design is taken to be ideal. A constant Vgs switch architecture

significantly increases this effect with an additional increase in complexity due to

additional switches and the addition of auxiliary strings which require separate

reference voltages. Details of these analyses will be given in section 3 and 4.

2.2.6 Glitches

When switches are turned off, a part of the charge injection is coupled over the

resistor string. A pre-charge stage that holds each of the second switch bank drain

terminal voltages at appropriate levels is placed between the middle point of the

string loop and second switch bank in order to minimize this effect. Fully differential

string architecture is a major improvement to reduce glitches on the output bus. But

since the magnitude of a glitch is related to where on the string the switching is

taking place, it can never be completely eliminated even with a fully differential

structure. Controlling the switches with a make-before-break timing reduces the

momentary charge dumps on the string to some degree, but the only solution that

offers significant performance improvement is to simply decrease the resistance of

the string. The higher the current, the smaller the glitches will be, and thus higher the

dynamic linearity. The tradeoff is higher power consumption which is limited to 10

mA over the string as a design specification decision. Details of these analyses will

be given in section 3.

2.2.7 Interpolator non-linearity

Interpolator OPAMP stage linearity is a most important design feature of this DAC.

Initial architecture comprised of a PMOS folded-cascode, gain-boosted, Monticelli

Class-AB output. High dynamic linearity is achieved by driving the output stage

transistors at their velocity saturation region. The tradeoff is again high power

consumption, which is limited to 15mA at the output stage as a design specification

decision. Details of these analyses will be given in section 3.

2.2.8 Signal-to-noise ratio (SNR)

Transient noise is mostly related to the voltage range of the architecture. Higher the

range, lower the transient noise, so designing the device to have a high range is

24

critical. The linear operating points of the several stages of the architecture determine

this range. Another reason why true constant Vgs switching architecture is not being

used throughout the design is, it is a bottleneck that limits the resistor sring reference

range. This is due to the limited nature of proper on and off voltages required to

operate NMOS switches with fast and linear characteristic. Details of these analyses

will be given in section 3.

25

3. DESIGN DECISIONS AND SCHEMATIC

3.1 Architecture Overview

The design comprises of 3 main blocks: 1) DAC, 2) Voltage references, and 3)

Decoder as shown below in Figure 3.1.

Figure 3.1 : Top level block diagram.

Inputs to the top level are 16-bit parallel LVDS DIN and LVDS double data rate

(DDR) DCLK clocked at 32MHz. All references come from an internal band-gap

reference, powered by 3.3 V VDD. The architecture outputs a single ended LPF pin

to a 50-ohm end-terminated transmission line. DAC comprises of a fully differential

10-bit resistor string with first level switches (Stage 1), second level switches (Stage

2), third level switches (Stage 3) and 6-bit interpolating OPAMPs (Stage 4) as shown

below in Figure 3.1.2. 10 MSBs are converted to two pairs of differential outputs

within 1 of 32 loops in the first stage. Second stage switches select the loop on the

resistor string which contain the selected first level switches and connect the tap

voltage to the four MSB busses. These two pairs of 10-bit resolved outputs are the

inputs to the third switch stage where the remaining thermometer-decoded 6 LSBs

are input to 6-bit interpolating OPAMPs in instrumentation amplifier configuration.

26

3.2 String

First major performance improvement on the standard coarse-fine intermeshed string

architecture given in Figure 1.10 is the implementation of a novel fully differential

operation as shown in Figure 1.3.1. An SFDR comparison for a 1 MHz (f0), 32 MHz

(fs) full-scale signal is given in Table 3.1.

Table 3.1 : Fully differential vs. single ended string.

Node switches are XY decoded with 16 column, 64 row signals as shown in Figure

3.2 to massively reduce number of wires and therefore, reduce potential timing

problems as well as layout related complexity problems. Long and unequal wires can

lead to unsynchronized switching and momentary disconnects, which can lead to

glitches and momentary floating nodes.

Figure 3.2 : XY decoded cells.

Pairs of 16 series connected resistors forms 32 loops that tap a 64 resistor coarse

string to obtain the 10-bit string. Every other coarse resistor is the center tap of the

fine string deflection points. All taps on a loop connect to 2 of the 4 primary output

busses. There are 32 of these quadruple busses for each loop.

16-bit architecture with SFDR (dB)

Single ended string 60.12

Fully differential string 74.43

27

An even/odd node selection is decoded so that either output bus can be output the

high voltage which the third switch bank resolves into 6 additional LSBs. This kind

of switching architecture reduces the amount of switches in the first stage by half.

For every code, the differential code is also selected by a separate switch to allow for

fully differential operation.

Not using any constant Vgs switching schemes which will be justified in section 3

enables us to have a wide input voltage range which minimizes transient noise. The

input range, which is the voltage reference range of the string, is limited by the

interpolating OPAMP PMOS differential pair. Figure 3.3 below shows the results of

the experiment conducted to optimize the input range of the fully differential

architecture.

Figure 3.3 : Input range for low current 16 bit DAC.

Input PMOS pair is out of the saturation region for a 0.525 - 1.525 V signal. The

optimum 1 V range of the device, and therefore the string voltage references are

determined to be 0.325V - 1.325V. String equivalent resistance at each code is

calculated using the MATLAB script given in the Appendix B. The script is based on

the Delta-Y transformation of the following model of string taps in Figure 3.4.

28

Figure 3.4 : String node equivalent resistance model.

String equivalent resistance calculated for each code is given in the following Figure

3.5.

Figure 3.5 : String equivalent resistance per code.

Accuracy of this figure has been cross-checked and confirmed with a DC operating

point analysis on the string schematic. Inverse of this equivalent resistance profile is

29

series added before the first switch bank to raise, but balance the resistance seen for

every code in the first stage, as shown in the Figure 3.6 below.

Figure 3.6 : String compensation resistors per code.

An SFDR comparison for a 1 MHz (f0), 32 MHz (fs) full-scale signal is given in

Table 3.2.

Table 3.2 : String resistive compensation.

The improvement above is admittedly very insignificant but the error mechanism as

a whole is quite dominant. A more meaningful SFDR comparison with and without

compensation resistors will be given in the next subsection where we address the

compensation of switch resistances as well, which are the main resistance variation

sources in the architecture.

Non-linear glitches on the string that cannot be completely eliminated by a fully

differential architecture are a major source dynamic linearity errors. When a switch is

turned off, a part of the charge injection is dumped over the resistor string. A

common solution is to modify the switching orders of the switch banks in order to

disconnect the DAC from the output bus until all node voltages settle. Waveforms

16-bit fully differential string architecture SFDR (dB)

Without string compensation resistors 74.43

With string compensation resistors 75.08

30

from 2 examples of switching order experiments are given below in Figure 3.7 (make

before break) and 3.8 (break before make) along with the glitch magnitude of the

output bus.

Figure 3.7 : a) no special switching, b) Make Before Break, c) output glitch.

Figure 3.8 : a) no special switching, b) Break Before Make, c) output glitch.

Results of this experiment is given in Table 3.3.

31

Table 3.3 : Switching order and its effect on SFDR.

Architecture SFDR (dB)

No special switching architecture 75.08

Make before break 75.13

Break before make 75.02

Glitch magnitude is at a level not affected by the switching order. Although

simulations showed no significant effect, switching order is kept to be a make-

before-break scheme for good practice.

Increasing the current on the string to reduce glitches proved to work very well as

shown in Figure 3.9.

Figure 3.9 : SFDR vs. string resistance (1).

As it can be seen, for the proposed final architecture SFDR is 87.87 dB SFDR when

the string is constructed with 1.5 Ω resistors giving a string current of 10 mA. Note

that this figure reflects the performance of the final design, many aspects of the

design are yet to be described in the following chapters.

32

3.3 Switches and Resistance Calibration

Switch sizes are primarily chosen to accommodate the simplified DAC model

settling time requirement presented section 2.2.1.Third switch bank operates with 64

switches in parallel so it is reasonable to choose these switches to have minimum

size (420n/350n) to reduce parasitic and terminal capacitances that will couple to the

output bus. For the same reason, the high on resistance per switch will not affect the

output bus resistance significantly. The said variation across the input range of the

DAC for the minimum sized third switch bank is given below in Figure 3.10.

Figure 3.10 : SW3 on-resistance variation.

64 of these switches in parallel result in a 15 ohm variation across the string.

Compensation resistors cannot eliminate this effect due to the fact that, for every

MSB pattern, the third switch bank will be operating at a different node voltage.

Efforts to reduce this effect by using a constant Vgs switching architecture results in

insignificant performance improvement on a schematic level, with a reduced input

range and a major increase in layout complexity. Plus, the OPAMP input capacitance

seen by each switch is only 10 fF.

33

1
st
 and 2

nd
 level switches are connected in series and are therefore chosen to be much

bigger (4u/350n) to reduce the baseline on resistance. A 5-bit model of our string-

sw1-sw2 block of the DAC was constructed, and the on resistance of the switches ere

measured for all codes. This profile was extrapolated to fit a 10-bit string, 1024

unique resistors to compensate for the variable string equivalent resistance was

generated, and these resistors were placed as series resistors at each node of the

string along with the string compensation resistors given in Figure 3.6. The on

resistance profile and the resulting compensation resistors are given in Figure 3.11

and Figure 3.12 respectively.

Figure 3.11 : SW1 and SW2 on-resistance variation.

Note that the compensation resistor profile for switch bank 1 and switch bank 2 are

the same.

34

Figure 3.12 : Compensation resistors for SW1 and SW2.

Below in Figure 3.13 is the final compensation resistor profile, accounting for the

string and the first two switch banks.

Figure 3.13 : Compensation resistors for string, SW1 and SW2.

35

Table 3.4 below shows comparison in SFDR when this set of compensation resistors

is included in the design. Note that the following results are much lower than the

ultimately achieved 87.5 dB SFDR - since many other design improvements are

missing from this test-bench to only show the effect of resistive calibration.

Table 3.4 : Effect of compensation resistors on SFDR.

16-bit architecture with SFDR (dB)

No compensation resistors 75.12

With compensation resistors 78.78

Second, and perhaps a more elegant way to compensate for switch bank

nonlinearities (on resistance, charge injection, data feedthrough) is to use a constant

Vgs switch architecture throughout the design as shown below in Figure 3.14 (figure

shows the first switch bank, but the architecture is the same).

Figure 3.14 : Constant VGS switch cell basic architecture.

Here, the switches at this bank are selected in an XY-decoded fashion with a NAND

gate as explained in section 3.2. The NAND gate switches the true constant Vgs

architecture that selects the main NMOS. Constant Vgs switches are transmission

gates to accommodate for the range of the ON and OFF gate voltages. These voltages

are selected from auxiliary strings that take their reference from the digitally

programmable bandgap reference, just as the main string. For all switch banks to

operate with constant Vgs voltages, 16 auxiliary string are required, all of which

consists of 32 resistors. In addition to these auxiliary strings, such an architecture

requires 2 separate switch banks (one PMOS, one NMOS) to feed the varying on and

off voltages to the third switch bank. This solution‟s main drawback is its voltage

range limitations. Voltage ranges for the main string and constant Vgs auxiliary

36

strings are determined experimentally to ensure all ON switches are in triode and all

OFF switches are in cutoff in all possible code transitions as shown below in Table

3.5.kjhjkgkjhkjhkjhhkjh

Table 3.5 : DAC reference voltage ranges for constant VGS switching.

String Range (V) 0.4 – 1

Vgs off Range (V) 0 – 0.6

Vgs on Range (V) 2.7 – 3.3

Allowing for true constant Vgs operation almost halves the range of the string (used

to be 1 V), which worsens transient noise. Using 5 transistors instead of 1 for a single

switch cell and 16 auxiliary strings is another problem, which becomes more

apparent in the layout phase. Schematic level increase in performance given in Table

3.6 is practically the same as using compensation resistors, and it is an indicator that

nonlinear charge injection and data feed-through are not dominant dynamic error

mechanisms. In the experiment below, there are compensation resistors in place for

the string but not for the switches.

Table 3.6 : Effect of constant VGS switching on SFDR.

Ultimately, this architecture is not used and is replaced by unique compensation

resistors for the switch banks as explained in the previous subsection.

An experiment was conducted to get a better understanding of this tradeoff by editing

out the overlap capacitances of all switches from the netlist in an effort to manually

eliminate data-feedthrough. The results are below in Table 3.7. As it can be seen,

code dependent data feedthrough seems to cause no performance problems.

Table 3.7 : Effects of data feedthrough on SFDR.

Figure 3.15 is a continuation of Figure 3.9, shows a comparison of using constant Vgs

versus using compensation resistors to balance varying switch on resistances within

the final design.

16-bit architecture with SFDR (dB)

No special switching 75.12

Constant Vgs switching 78.11

16-bit architecture with SFDR (dB)

Unmodified netlist 75.12

Overlap capacitances manually removed 75.05

37

Figure 3.15 : SFDR vs. string resistance (2).

As it can be seen, the proposed resistive compensation architecture performs much

better as a part of the whole design.

3.4 Interpolating OPAMP, Velocity Saturation, Capacitive Calibration

The OPAMP architecture used for this design is a PMOS folded-cascode, gain-

boosted, Monticilli Class-AB output as shown below in Figure 3.16.

38

Figure 3.16 : Interpolating OPAMP.

The positive input PMOS is separated into 64 gates to interpolate the thermometer

decoded 6 LSBs supplied from the third switch bank. Class-AB output transistors are

operated at velocity saturation to allow for high linearity. To achieve this, these two

transistors alone sink/source ~15mA. Other branch currents are given below in

Figure 3.17. In order to preserve high gain, gain boosting of 1
st
 stage cascade

transistors are used.

Figure 3.17 : Interpolating OPAMP currents.

Sweeping the input for the full scale and evaluating the operating regions for all the

transistors determines the range of the OPAMP. This range is then optimized

39

considering the design as a whole. Analysis of this range is given above in Figure

3.3. OPAMP operating range is determined to be 0.325 V - 1.325 V.

Frequency response of the 6-bit I-OPAMP for a 1 MHz (f0), 32 MHz (fs) full-scale

signal is given below in Figure 3.18.

Figure 3.18 : Interpolating OPAMP frequency response (90 dB SFDR).

Driving the output transistors in their velocity saturation region (shown in Figures

3.19 and 3.20) by taking advantage of short channel effects is key to the performance

of the OPAMP, and therefore the DAC.

Equation below shows that for short channel devices, ID increases linearly with VGS –

VT rather than quadratically in the saturation region.

*

+ (3.1)

40

Figure 3.19 : Velocity saturation in short channel devices (ID vs. VDS).

Figure 3.20 : Velocity saturation in short channel devices (ID vs. VGS).

As it can be seen, saturation region of short channel devices are more linear than for

long-channel devices. Comparison of driving the output transistors in saturation

versus velocity saturation is given in Table 3.8 for the same W/L ratio.

Table 3.8 : Short channel effects on SFDR.

OPAMP output stage transistor region SFDR (dB)

Saturation (long-channel) 80.14

Velocity saturation (short-channel) 90.25

41

The last switch bank takes the 4 differential dual-outputs coming from the second

switch bank, and creates 4 groups of 64 high or low node voltages to be resolved as 6

additional LSBs by the interpolating OPAMPs as shown below in Figure 3.21 and

3.22.

4 groups refer to the main output (VOUT), differential output (VOUT_D), and their

inverses to be used by the dummy interpolating OPAMPs to balance load

capacitance on the output busses for every code. At any time, somewhere between 0

and 64 switches connect the output busses to the interpolating OPAMP differential

pairs for the unmodified architecture.

Figure 3.21 : Switch bank 3.

Figure 3.22 : Dummy interpolating OPAMPs and SW3.

42

With a dummy architecture employed, the capacitive load on the output bus is

always from 64 switches and diff pair inputs which comes to about 640 fF. SFDR

comparison of using dummy switches and OPAMPs are given below in Table 3.9.

Table 3.9 : Effect of dummy output stages on SFDR.

With the techniques outlined in the previous subchapters, SFDR for a 1 MHz (f0), 32

MHz (fs) full-scale signal is up to ~88 dB.

3.5 Pre-charge Stage and LSB Sensitivity

The following simulations concern a pre-charge block between first and second

switch banks. At any point in time, 1 loop from the first stage is connected to the

output bus via the second switch bank and the remaining 31 loops will float. The

following Figure 3.23 shows this operation with just a few wires instead of all 32 for

easy viewing. The top segment is the analog representation of the digital input.

Middle segment show a few wires from VHLA (one of the output busses). As it can

be seen, when the loop is connected, the signal follows the corresponding segment on

the sine wave, and when it is disconnected it drops to some arbitrary voltage. The

bottom segment on the plot are the corresponding looptaps of a few wires (same

colors belong to same loops), which are not connected to any nodes.

Zooming into this plot in Figure 3.24 reveals that these nodes not only float at

arbitrary voltages, but also drift due to charge leakage. Also there is quite a bit of

glitches on these floating nodes due to switching activity on the string side.

Final architecture SFDR (dB)

Without capacitive compensation 78.78

With capacitive compensation 87.87

43

Figure 3.23 : Input to the second switch bank (no pre-charge).

Figure 3.24 : Input to the second switch bank (no pre-charge) zoomed in.

Implementing a pre-charge stage as shown in Figure 3.25 connects the 31 floating

loops to the tap voltages on the loops, therefore keeping the node ready at an

appropriate voltage for an eventual connection. The following Figure 3.26 shows the

same segment of the bus with a pre-charge stage in between stages.

44

Figure 3.25 : Pre-charge switch placement.

Figure 3.26 : Input to the second switch bank (with pre-charge).

Zooming into the same section in Figure 3.27 shows that disconnected loops remain

at an appropriate and constant voltage until they are connected again. Glitches on

disconnected nodes are largely reduced.

45

Figure 3.27 : Input to the second switch bank (with pre-charge) zoomed in.

The results from these two experiments tested for 8 LSB patterns in Table 3.10.

Table 3.10 : Effect of pre-charge on SFDR.

No Precharge SFDR (dB) With Precharge SFDR (dB)

MEAN 87.87 MEAN 87.67

STD. DEV 2.53 STD. DEV 1.75

As it can be seen, a pre-charge stage doesn‟t necessarily increase SFDR but majorly

improves the LSB dependence. This can easily be explained by the fact that

nonlinear glitches that are unique to different LSB not addressed by the pre-charge

stage cause a larger deviation in SFDR results.

3.6 Instrumentation Amplifier

The final design at this point has a differential output which is the common mode of

operation for DACs that are used as a part of a bigger mixed signal system. But for

use as a discrete component, a single ended output is preferred. Therefore the final

architecture is designed to offer both single ended and differential outputs. Figure

3.28 shows the 6-bit instrumentation amplifier used within the basic instrumentation

amplifier configuration which is a common differential to single-ended converter

architecture.

Compensation network of the OPAMPs in the first stage is optimized for the

instrumentation amplifier configuration. This architecture by itself has practically the

same SFDR as the differential output configuration, but within the design causes an

added distortion as shown in Table 3.11. This is acceptable considering the single

ended output is optional and the fact that any external differential-to-single-ended

conversion would result in a similar performance drop anyway.

46

Figure 3.28 : Instrumentation amplifier configuration.

Table 3.11 : Instrumentation amplifier configuration.

3.7 Voltage References

Voltage references are supplied from a 8-bit digitally programmable internal band-

gap reference with the Brokaw structure as the band-gap core as shown in Figure

3.29. OPAMP bias currents are generated with a 0tc architecture to ensure a 60ppm

1.24 V nominal output. All required voltages can be selected from the resistor string

simultaneously. Voltage reference outputs are: STRING_REF_TOP (1.325 V),

STRING_REF_BOTTOM (0.325 V) and AVDD (3.3 V). Please note that this block

is a part of our design lab‟s standard cell library.

All results up to this point were simulated with ideal voltage references. Table 3.12

below shows the final design SFDR for a 1 MHz (f0), 32 MHz (fs) full-scale signal,

with references driven with real buffers.

Final architecture SFDR (dB)

Differential output (previous sections) 87.87

Single-ended output (instrumentation) 84.37

47

Figure 3.29 : Brokaw band-gap reference.

Table 3.12 : Real references.

A less than 1 dB drop with non-ideal voltage reference sources is perfectly

acceptable.

Final architecture SFDR (dB)

With ideal references 87.87

With real OPAMP driven references 87.04

48

3.8 Routine Simulations

In this section, results of a few routine simulations that operate the device at various

conditions are presented.

3.8.1 Temperature sweep

The completed architecture SFDR vs. temperature is given below in Figure 3.30

Figure 3.30 : SFDR vs. temperature.

49

3.8.2 Input frequency sweep

The completed architecture SFDR vs. input frequency is given below in Figure 3.31

Figure 3.31 : SFDR vs. input frequency.

50

3.8.3 Output magnitude range sweep

The completed architecture SFDR vs. output magnitude and input common mode is

given below in Figure 3.32 and Figure 3.33 respectively.

Figure 3.32: SFDR vs. output magnitude (nom: 2 Vpp).

Figure 3.33 : SFDR vs. input common mode (nom: 0.825 V).

51

3.8.4 INL/DNL

Input for the integral non-linearity test is provided by an ideal 16-bit ADC written in

VerilogAMS. Code transition happen every 1us which is ample time for 16-bit

settling. Expression to generate the plots is given below.

 (3.2)

VOUTIDEAL is generated by a 16-bit DAC written in VerilogAMS. The completed

architecture INL is given below in Figure 3.34.

Figure 3.34 : 16-bit INL.

Note that, what seems like 1 LSB jumps are in fact integrated over hundreds of

codes.

52

The completed architecture DNL is given below in Figure 3.35

Figure 3.35 : 16-bit DNL.

53

3.8.5 Mismatch

Mismatch analysis for all switch bank, current source and differential pair transistors

are given in this section. Unfortunately, resistor mismatch models for the resistors

used in the design (N+ polys resistors with silicide) are not included in TSMC

process models, but minimum resistor area criteria for true 10-bit performance is

met. That is acceptable anyways, since DC trimming is assumed in this work.

The completed architecture mismatch histogram for 20 runs is given below in Figure

3.36.

Figure 3.36 : Element mismatch SFDR histogram.

54

3.8.6 Corner analysis (schematic)

PVT corners analysis for SS, FF, TT process variation, -40-25-85 temperature

variation and 3.2-3.3-3.4 supply voltage variation is given below in Table 3.13.

Table 3.13 : Schematic corners.

Corner Supply (V) Process Temperature (°C) SFDR (dB)

1 (N) 3.3 TT 27 88.74

2 3.3 FF 27 87.00

3 3.3 SS 27 80.25

4 3.3 TT -40 90.00

5 3.3 FF -40 85.87

6 3.3 SS -40 86.82

7 3.3 TT 85 83.79

8 3.3 FF 85 85.72

9 3.3 SS 85 77.26

10 3.2 TT 27 83.93

11 3.2 FF 27 87.97

12 3.2 SS 27 76.49

13 3.2 TT -40 91.26

14 3.2 FF -40 88.25

15 3.2 SS -40 81.13

16 3.2 TT 85 80.08

17 3.2 FF 85 86.68

18 3.2 SS 85 74.12

19 3.4 TT 27 87.34

20 3.4 FF 27 86.21

21 3.4 SS 27 84.17

22 3.4 TT -40 89.02

23 3.4 FF -40 84.43

24 3.4 SS -40 90.59

25 3.4 TT 85 86.07

26 3.4 FF 85 84.96

27 3.4 SS 85 80.37

Most corners are satisfied for over 80 dB SFDR, except SS process corners at high

temperature and low supply voltage (just below the 80 dB mark), which is

acceptable. The design is optimized for the TT corner, which is statistically much

more likely to occur than a SS corner. We did not want to maximize SS corner

performance at the expense of TT corner performance. SFDR is maintained at over

80 dB at 85°C.

55

4. LAYOUT

4.1 Floorplan

Symbolic floor plan for the design is shown below in Figure 4.1. Approximate size

of the blocks is in scale relative to each other. Size of the device as it is shown below

is expected to be 1.75mm x1.75mm. Multiple incremental versions were made for

every stage of this design over the past year. Layout screenshots in this report are the

final iterations.

Figure 4.1 : Symbolic floorplan.

4.2 String and Switch Bank 1

Various views of the DRC and LVS clean finalized main string is shown below in

Figures 4.2, 4.3, 4.4 and 4.5.

56

Figure 4.2 : Resistor string w/ compensation resistors and SW1.

57

Figure 4.3 : Resistor string w/ compensation resistors and SW1 (zoom 1).

Figure 4.4 : Resistor string w/ compensation resistors and SW1 (zoom 2).

58

Figure 4.5 : Resistor string w/ compensation resistors and SW1 (zoom 3).

DRC and LVS clean finalized SW1 separate from the string is shown below in

Figure 4.6. Four of these cells arranged symmetrically can be roughly seen in Figure

4.5 (center).

59

Figure 4.6 : SW1.

4.3 Switch Bank 1

DRC and LVS clean finalized the second switch bank is shown below in Figure 4.7.

This structure connects to the 4 output busses (VHLA_OUT, VHLB_OUT,

VHLA_D_OUT, VHLB_D_OUT), then repeated 32 times for the 32 main string

loops shown below in Figure 4.8.

Figure 4.7 : SW2 (one cell).

60

Figure 4.8 : SW2 a) whole block b) zoom 1 c) zoom 2.

61

4.4 Switch Bank 3

DRC and LVS clean finalized third switch bank is shown below in Figure 4.9. Just

like SW2, the whole block is a thin strip.This structure is repeated 2 times for

differential output, then repeated 64 times for the 6 LSBs.

Figure 4.9 : SW3 whole block zoomed.

62

This block attaches to the 2
nd

 switch bank as shown below in Figure 4.10.

Figure 4.10 : SW2 and SW3 whole block zoomed.

63

4.5 Interpolating OPAMP

DRC and LVS clean finalized interpolating OPAMP is shown below in Figure 4.11.

Figure 4.11 : Interpolating OPAMP.

Connecting the compact differential pair (bottom left corner of Figure 4.11) of the

interpolating OPAMP to the long switch 3 bank caused performance issues due to

unequal connection lengths. So the differential pair has been redesigned as part of

switch bank 2 and 3 as shown in Figure 4.12.

Figure 4.12 : Differential pair (rightmost), SW3 (middle) and SW2 (left most).

Interpolating OPAMPs are attached to this layout as shown in Figure 4.13, forming

the second main layout piece (switch bank 2, switch bank3, differential pair,

interpolating OPAMPs), first main layout piece being (string, compensation resistors,

switch 1 bank).

64

Figure 4.13 : Interpolating OPAMPs (rightmost), differential pair, SW3 and SW2

(left most).

65

4.6 Complete DAC Core Layout

DRC and LVS clean finalized differential output layout is given below in Figure

4.14.

Figure 4.14 : Interpolating OPAMPs (rightmost), differential pair, switch bank 3 and

switch bank 2, string and switch bank 1 (left most).

66

4.7 Instrumentation Amplifier Configuration

DRC and LVS clean finalized single-ended output layout is given below in Figure

4.15.

Figure 4.15 : Instrumentation amplifier configuration DAC core.

67

4.8 Bandgap Reference

DRC and LVS clean finalized bandgap reference core and its digitally programmable

resistor string is shown below in Figures 4.16 and 4.17. Please note that this block is

a part of our design lab‟s standard cell library.

Figure 4.16 : Brokaw bandgap reference core.

Figure 4.17 : Digitally programmable resistor string.

68

4.9 Decoder

Place-and-routed DAC decoder is shown below in Figure 4.18.

Figure 4.18 : Decoder.

69

4.10 Extracted Results

Table 4.1 compares the schematic and layout-extracted SFDR results of the

differential output and single ended full DAC simulations. PVT corners analysis for

SS, FF, TT process variation, -40-25-85 temperature variation and 3.2-3.3-3.4 supply

voltage variation is given below in Table 4.2 for the single ended DAC.

Table 4.1 : Single ended vs. differential output (layout).

Schematic SFDR (dB) Layout Extracted SFDR (dB)

Differential output 87.87 Differential output 84.39

Single-ended output 84.37 Single-ended output 83.82

Table 4.2 : Layout corners.

Corner Supply (V) Process Temperature (°C) SFDR (dB)

1 (N) 3.3 TT 27 86.31

2 3.3 FF 27 84.4

3 3.3 SS 27 82.34

4 3.3 TT -40 88.17

5 3.3 FF -40 86.11

6 3.3 SS -40 84.24

7 3.3 TT 85 84.82

8 3.3 FF 85 85.01

9 3.3 SS 85 77.13

10 3.2 TT 27 86.27

11 3.2 FF 27 86.48

12 3.2 SS 27 75.64

13 3.2 TT -40 88.11

14 3.2 FF -40 88.34

15 3.2 SS -40 77.37

16 3.2 TT 85 81.39

17 3.2 FF 85 85.06

18 3.2 SS 85 72.38

19 3.4 TT 27 86.25

20 3.4 FF 27 81.58

21 3.4 SS 27 86.14

22 3.4 TT -40 88.12

23 3.4 FF -40 83.43

24 3.4 SS -40 88.00

25 3.4 TT 85 84.79

26 3.4 FF 85 82.43

27 3.4 SS 85 83.11

70

Most corners are satisfied for over 80 dB SFDR, except SS process corners at high

temperature and low supply voltage (just below the 80 dB mark), which is

acceptable. SFDR with input frequency for the single-ended output design and the

differential output design is givenbelow in Figure 4.19.

Figure 4.19 : Final layout SFDR vs. output frequency.

The design is is completed to success. Tape-out is expected to be April 2015. Post

tape-out testing preparations have been made by measuring the TI DAC8580, which

is a high performance 16-bit voltage output DAC with similar applications to the

design proposed in this work.

71

5. CONCLUSION

SFDR performance of the final design in schematic and layout is given again in

Figure 5.1 below along with the performance of the design referenced in [7] and the

basic resitor string architecture given in Figure 1.10 under the same conditions.

Figure 5.1 : SFDR vs. output frequency summary.

This work, realised what E. Topcu modelled in [7] in schematic and layout,

prioritized the error mechanisms proposed in [7] along with new error mechanisms

found during my research, investigated architectures that can reduce these effects and

their trade-offs with other error mechanisms, and proposed a layout-complete DAC-

core design that surpasses all previous theoretical work and current state-of-the-art

by a significant amount in dynamic linearity performance.

72

Tape-out is expected to be April 2015 at TSMC. Post-tape-out testing preparations

have been made by measuring the TI DAC8580 to specifications – a state-of-the-art

high performance 16-bit voltage output DAC with similar applications to the design

proposed in this work.

73

REFERENCES

[1] Maloberti, F. (2007). Data Converters, Springer, Dordreicht, Netherlands.

[2] Andrew G. F. Dingwall, Victor Zazzu. (1985). A 16-bit Resistor String DAC

with Full Calibration at Final Test, IEEE International Test

Conference Proceeding, 75-85.

[3] Url-1 < http://www.analog.com/static/imported-files/data_sheets/AD5516.pdf>,

date retrieved 15.12.2014.

[4] Url-2 <http://www.analog.com/static/imported-files/data_sheets/DAC8420.pdf

>, date retrieved 15.12.2014.

[5] Yilmaz, A. (2001). LSB Interpolation Circuit and Method for Segmented digital

to Analog Converter, US Patent, US6246351 dated 12.06.2001.

[6] Kuyel, T. (2007). High Speed, High Resolution Voltage Output Digital to

Analog Converter and Method, US Patent, US7283082, 2007.

[7] Topcu, E. (2012). Yüksek Çözünürlüklü Direnç Dizesi Tipli Sayısaldan Analoga

DönüĢtürücülerde Dinamik Hata Mekanizmalarının Ġncelenmesi, MSc

Thesis, ITU, Istanbul, Turkey.

[8] Url-3 <http://www.ti.com/lit/ds/symlink/dac8580.pdf>, date retrieved

15.12.2014.

[9] Kuyel, T. (2006). All Digital Calibration of String DAC Linearity Using Area

Efficient PWL Approximation: Eliminating Digital Division and

Hardware Search, US Patent, US7002496 dated 21.02.2006.

[10] Kuyel, T., Yilmaz, A. (2006). All Analog Calibration of String DAC Linearity

Application to High Voltage Process, US Patent, US6897794 dated

2004.

[11] Zumbahlen, H. (2008). Linear Circuit Design Handbook, Newnes.

74

75

APPENDICES

APPENDIX A: Decoder Verilog Code

APPENDIX B: Ideal ADC-DAC Testbench VerilogAMS Code

APPENDIX C: Calibration Resistor Generating Script

76

77

APPENDIX A: Decoder Verilog Code

//Verilog HDL for "CO_THESIS2", "decoder_16b2_1" "verilog"

//

//This code is used to synthesize a decoder for switching Resistor string outputs,

// Second switch bank

// Interpolator amplifier's inputs

//Code includes:

// Precharge output

// Clock input (operates at posedge clk)

`timescale 10ps/1ps

module decoder_16b2_2 (DIN, DIN6, CLK, ROW, ROW_D, COL, COL_D,

SW2_A, SW2_AD, SW2_B, SW2_BD, ENDBIT, ENDBIT_D, SWPC_A,

SWPC_B, SWPC_AD, SWPC_BD, DOUT_64, DOUT_64D, DOUTDUMMY_64,

DOUTDUMMY_64D);

//digital 16 bit input

input [9:0] DIN; //10 bit part

input [5:0] DIN6; //6 bit part

//Clock input

input CLK;

//******DECODER OUTPUTS*****************************

//First switch bank

output [63:0] ROW; //row output

output [63:0] ROW_D; //row output's inverse

output [15:0] COL; //column output

output [15:0] COL_D; //column output's inverse

output ENDBIT; //one bit output for 1024th code

output ENDBIT_D; //inverse of ENDBIT

reg [63:0] ROWreg; //row output

reg [63:0] ROW_Dreg; //row output's inverse

reg [15:0] COLreg; //column output

reg [15:0] COL_Dreg; //column output's inverse

reg ENDBITreg; //one bit output for 1024th code

reg ENDBIT_Dreg; //inverse of ENDBIT

//Second switch bank

output [31:0] SW2_A; //output for 2nd switch bank, A

output [31:0] SW2_AD; //inverse of SW2_A

output [31:0] SW2_B; //output for 2nd switch bank, B

output [31:0] SW2_BD; //inverse of SW2_B

output [31:0] SWPC_A; //precharge switch for output A

output [31:0] SWPC_AD; //inverse of SWPC_A

78

output [31:0] SWPC_B; //precharge switch for output B

output [31:0] SWPC_BD; //inverse of SWPC_B

reg [31:0] SW2_Areg ; //output for 2nd switch bank, A

reg [31:0] SW2_ADreg ; //inverse of SW2_A

reg [31:0] SW2_Breg ; //output for 2nd switch bank, B

reg [31:0] SW2_BDreg ; //inverse of SW2_B

reg [31:0] SWPC_Areg ; //precharge switch for output A

reg [31:0] SWPC_ADreg ; //inverse of SWPC_A

reg [31:0] SWPC_Breg ; //precharge switch for output B

reg [31:0] SWPC_BDreg ; //inverse of SWPC_B

//Third switch bank

output [63:0] DOUT_64; //6 to 64 bit decoder output

output [63:0] DOUT_64D; //inverse of DOUT_64

output [63:0] DOUTDUMMY_64; //dummy output

output [63:0] DOUTDUMMY_64D; //inverse of dummy output

reg [63:0] DOUT_64reg ; //6 to 64 bit decoder output

reg [63:0] DOUT_64Dreg ; //inverse of DOUT_64

reg [63:0] DOUTDUMMY_64reg ; //dummy output

reg [63:0] DOUTDUMMY_64Dreg ; //inverse of dummy output

//wires used for assignments and connections

wire [9:0] din_msb;

wire [5:0] din_6b;

wire [15:0] din_all;

wire [63:0] ROW;

wire [63:0] ROW_D;

wire [15:0] COL;

wire [15:0] COL_D;

wire ENDBIT;

wire ENDBIT_D;

wire [31:0] SW2_A;

wire [31:0] SW2_AD;

wire [31:0] SW2_B;

wire [31:0] SW2_BD;

wire [31:0] SWPC_A;

wire [31:0] SWPC_AD;

wire [31:0] SWPC_B;

wire [31:0] SWPC_BD;

wire [63:0] DOUT_64;

wire [63:0] DOUT_64D;

wire [63:0] DOUTDUMMY_64;

wire [63:0] DOUTDUMMY_64D;

// registers to store values for decoding

reg whatsup;

reg [4:0] a;

79

reg [5:0] b;

reg [6:0] c;

reg [63:0] row_bin;

reg [63:0] row_bin2;

reg [63:0] row_temp;

reg [63:0] row_i;

reg [63:0] row_i2;

reg [63:0] row_shiftone;

reg [63:0] row_shiftone2;

reg [63:0] row_final;

reg [63:0] row_final2;

reg [63:0] row_end;

reg [15:0] col_bin;

reg [15:0] col_bin2;

reg [15:0] col_temp;

reg [15:0] col_i;

reg [15:0] col_i2;

reg [15:0] col_shiftone;

reg [15:0] col_shiftone2;

reg [15:0] col_final;

reg [15:0] col_final2;

reg [15:0] col_end;

reg [9:0] din_msb2;

reg end_bit;

reg [31:0] sw2_bin_A;

reg [31:0] sw2_temp;

reg [31:0] sw2_i_A;

reg [31:0] sw2_final_A;

reg [31:0] sw2_final_two_A;

reg [31:0] sw2_bin_B;

reg [31:0] sw2_i_B;

reg [31:0] sw2_final_B;

reg [31:0] sw2_final_two_B;

reg [63:0] dout_64;

reg [63:0] dout_64d;

reg [63:0] dout_temp;

reg [63:0] dout_final;

reg [63:0] dout_final_z;

reg [9:0] d;

reg [9:0] din_msb_d;

reg [9:0] din_msb_d2;

reg [63:0] row_bin_d;

reg [63:0] row_bin_d2;

reg [63:0] row_i_d;

reg [63:0] row_i_d2;

reg [63:0] row_shiftone_d;

reg [63:0] row_shiftone_d2;

reg [63:0] row_final_d;

reg [63:0] row_final_d2;

80

reg [63:0] row_end_d;

reg [15:0] col_bin_d;

reg [15:0] col_bin_d2;

reg [15:0] col_i_d;

reg [15:0] col_i_d2;

reg [15:0] col_shiftone_d;

reg [15:0] col_shiftone_d2;

reg [15:0] col_final_d;

reg [15:0] col_final_d2;

reg [15:0] col_end_d;

reg end_bit_d;

reg [31:0] sw2_bin_A_d;

reg [31:0] sw2_i_A_d;

reg [31:0] sw2_final_A_d;

reg [31:0] sw2_final_two_A_d;

reg [31:0] sw2_bin_B_d;

reg [31:0] sw2_i_B_d;

reg [31:0] sw2_final_B_d;

reg [31:0] sw2_final_two_B_d;

assign din_msb = DIN[9:0];

assign din_6b = DIN6[5:0];

assign din_all = {DIN, DIN6};

always @ (din_msb, din_6b, din_all)

begin

//initial assignments for division

a = 5'b10000; //16

b = 6'b100000; //32

c = 7'b1000000; //64

d = 10'b1111111111;

//initial assignment for decoding

row_temp = 64'hFFFFFFFFFFFFFFFF;

col_temp = 16'hFFFF;

sw2_temp = 32'hFFFFFFFF;

dout_temp = 64'hFFFFFFFFFFFFFFFF;

din_msb_d = d-din_msb;

//starting decoding code

 if(din_msb == 10'b0000000000) begin //when input is zero

// normal

 end_bit = 1'b1; //make endbit 1

 end_bit_d = 1'b0;

 row_bin = din_msb / a; //row = input/16

 if(row_bin%2==0) begin //if (row is even)

 col_bin = din_msb % a; //column = input%16

81

 end else begin //else

 col_bin = 4'hF - (din_msb%a);//column = 15 - (input%16)

 end

 sw2_bin_A = din_msb / b; //swich A number = input/32

//this operation creates decoder output for rows and columns. Decoding operation is

the same for other outputs

 row_i = (row_temp << (row_bin)); //shift row_temp by row

number Example: 11111111111111->11111111000000

 row_shiftone = row_i << 1; //shift row_i by 1

 11111111000000->11111110000000

 row_final = (row_i ^ row_shiftone); //xOR these two

 00000001000000

 col_i = (col_temp << (col_bin)); //shift column by column number

 col_shiftone = col_i << 1; //shift col_i by 1

 col_final = (col_i ^ col_shiftone); //xOR these two

 row_end = row_final;

 col_end = col_final;

//decoding of switch bank A

 sw2_i_A = (sw2_temp << (sw2_bin_A));

 sw2_final_A = sw2_i_A << 1;

 sw2_final_two_A = (sw2_i_A ^ sw2_final_A);

//assign switch A to switch B

 sw2_i_B = sw2_i_A;

 sw2_final_B = sw2_final_A;

 sw2_final_two_B = sw2_final_two_A;

//normal end

//Decoding operation for differential output

//in differential operation we decode the previous code from the input and OR these

two decoded outputs

//Example: 00000001000000|00000000100000 -> 00000001100000

//diff

 din_msb_d2 = din_msb_d-1'b1; //for defining previous code

 row_bin_d = din_msb_d / a;

 if(row_bin_d%2==0) begin

 col_bin_d = din_msb_d % a;

 end else begin

 col_bin_d = 4'hF - (din_msb_d%a);

82

 end

 row_bin_d2 = din_msb_d2 / a;

 if(row_bin_d2%2==0) begin

 col_bin_d2 = din_msb_d2 % a;

 end else begin

 col_bin_d2 = 4'hF - (din_msb_d2%a);

 end

//decode row

 row_i_d = (row_temp << (row_bin_d));

 row_shiftone_d = row_i_d << 1;

 row_final_d = (row_i_d ^ row_shiftone_d);

//decode column

 col_i_d = (col_temp << (col_bin_d));

 col_shiftone_d = col_i_d << 1;

 col_final_d = (col_i_d ^ col_shiftone_d);

//decode to open previous switch row and coulumn

 row_i_d2 = (row_temp << (row_bin_d2));

 row_shiftone_d2 = row_i_d2 << 1;

 row_final_d2 = (row_i_d2 ^ row_shiftone_d2);

 col_i_d2 = (col_temp << (col_bin_d2));

 col_shiftone_d2 = col_i_d2 << 1;

 col_final_d2 = (col_i_d2 ^ col_shiftone_d2);

 row_end_d = row_final_d|row_final_d2; // OR operation for differential

row output

 col_end_d = col_final_d|col_final_d2; // OR operation for differential column

output

//decode process for other switch banks

 sw2_bin_A_d = din_msb_d / b;

 sw2_bin_B_d = din_msb_d2 / b;

 sw2_i_A_d = (sw2_temp << (sw2_bin_A_d));

 sw2_final_A_d = sw2_i_A_d << 1;

 sw2_final_two_A_d = (sw2_i_A_d ^ sw2_final_A_d);

 sw2_i_B_d = (sw2_temp << (sw2_bin_B_d));

 sw2_final_B_d = sw2_i_B_d << 1;

 sw2_final_two_B_d = (sw2_i_B_d ^ sw2_final_B_d);

// diff end

 end else if (din_msb == 10'b1111111111) begin // FOR CODE 1023

//normal

 end_bit = 1'b0;

 end_bit_d = 1'b1;

83

 din_msb2 = din_msb-1'b1;

 row_bin = din_msb / a;

 if(row_bin%2==0) begin

 col_bin = din_msb % a;

 end else begin

 col_bin = 4'hF - (din_msb%a);

 end

 row_bin2 = din_msb2 / a;

 if(row_bin2%2==0) begin

 col_bin2 = din_msb2 % a;

 end else begin

 col_bin2 = 4'hF - (din_msb2%a);

 end

 sw2_bin_A = din_msb / b;

 sw2_bin_B = din_msb2 / b;

 row_i = (row_temp << (row_bin));

 row_shiftone = row_i << 1;

 row_final = (row_i ^ row_shiftone);

 col_i = (col_temp << (col_bin));

 col_shiftone = col_i << 1;

 col_final = (col_i ^ col_shiftone);

 row_i2 = (row_temp << (row_bin2));

 row_shiftone2 = row_i2 << 1;

 row_final2 = (row_i2 ^ row_shiftone2);

 col_i2 = (col_temp << (col_bin2));

 col_shiftone2 = col_i2 << 1;

 col_final2 = (col_i2 ^ col_shiftone2);

 row_end = row_final|row_final2;

 col_end = col_final|col_final2;

 sw2_i_A = (sw2_temp << (sw2_bin_A));

 sw2_final_A = sw2_i_A << 1;

 sw2_final_two_A = (sw2_i_A ^ sw2_final_A);

 sw2_i_B = (sw2_temp << (sw2_bin_B));

 sw2_final_B = sw2_i_B << 1;

 sw2_final_two_B = (sw2_i_B ^ sw2_final_B);

// normal end

// diff

 row_bin_d = din_msb_d / a;

84

 if(row_bin_d%2==0) begin

 col_bin_d = din_msb_d % a;

 end else begin

 col_bin_d = 4'hF - (din_msb_d%a);

 end

 row_i_d = (row_temp << (row_bin_d));

 row_shiftone_d = row_i_d << 1;

 row_final_d = (row_i_d ^ row_shiftone_d);

 col_i_d = (col_temp << (col_bin_d));

 col_shiftone_d = col_i_d << 1;

 col_final_d = (col_i_d ^ col_shiftone_d);

 row_end_d = row_final_d;

 col_end_d = col_final_d;

 sw2_bin_A_d = din_msb_d / b;

 sw2_i_A_d = (sw2_temp << (sw2_bin_A_d));

 sw2_final_A_d = sw2_i_A_d << 1;

 sw2_final_two_A_d = (sw2_i_A_d ^ sw2_final_A_d);

 sw2_i_B_d = sw2_i_A_d;

 sw2_final_B_d = sw2_final_A_d;

 sw2_final_two_B_d = sw2_final_two_A_d;

// diff end

 end else begin // FOR REST

//normal

 end_bit = 1'b0;

 end_bit_d = 1'b0;

 din_msb2 = din_msb-1'b1;

 row_bin = din_msb / a;

 if(row_bin%2==0) begin

 col_bin = din_msb % a;

 end else begin

 col_bin = 4'hF - (din_msb%a);

 end

 row_bin2 = din_msb2 / a;

 if(row_bin2%2==0) begin

 col_bin2 = din_msb2 % a;

 end else begin

 col_bin2 = 4'hF - (din_msb2%a);

85

 end

 sw2_bin_A = din_msb2 / b;

 sw2_bin_B = din_msb / b;

 row_i = (row_temp << (row_bin));

 row_shiftone = row_i << 1;

 row_final = (row_i ^ row_shiftone);

 col_i = (col_temp << (col_bin));

 col_shiftone = col_i << 1;

 col_final = (col_i ^ col_shiftone);

 row_i2 = (row_temp << (row_bin2));

 row_shiftone2 = row_i2 << 1;

 row_final2 = (row_i2 ^ row_shiftone2);

 col_i2 = (col_temp << (col_bin2));

 col_shiftone2 = col_i2 << 1;

 col_final2 = (col_i2 ^ col_shiftone2);

 row_end = row_final|row_final2;

 col_end = col_final|col_final2;

 sw2_i_A = (sw2_temp << (sw2_bin_A));

 sw2_final_A = sw2_i_A << 1;

 sw2_final_two_A = (sw2_i_A ^ sw2_final_A);

 sw2_i_B = (sw2_temp << (sw2_bin_B));

 sw2_final_B = sw2_i_B << 1;

 sw2_final_two_B = (sw2_i_B ^ sw2_final_B);

// normal end

// diff

 din_msb_d2 = din_msb_d-1'b1;

 row_bin_d = din_msb_d / a;

 if(row_bin_d%2==0) begin

 col_bin_d = din_msb_d % a;

 end else begin

 col_bin_d = 4'hF - (din_msb_d%a);

 end

 row_bin_d2 = din_msb_d2 / a;

 if(row_bin_d2%2==0) begin

 col_bin_d2 = din_msb_d2 % a;

 end else begin

 col_bin_d2 = 4'hF - (din_msb_d2%a);

 end

86

 row_i_d = (row_temp << (row_bin_d));

 row_shiftone_d = row_i_d << 1;

 row_final_d = (row_i_d ^ row_shiftone_d);

 col_i_d = (col_temp << (col_bin_d));

 col_shiftone_d = col_i_d << 1;

 col_final_d = (col_i_d ^ col_shiftone_d);

 row_i_d2 = (row_temp << (row_bin_d2));

 row_shiftone_d2 = row_i_d2 << 1;

 row_final_d2 = (row_i_d2 ^ row_shiftone_d2);

 col_i_d2 = (col_temp << (col_bin_d2));

 col_shiftone_d2 = col_i_d2 << 1;

 col_final_d2 = (col_i_d2 ^ col_shiftone_d2);

 row_end_d = row_final_d|row_final_d2;

 col_end_d = col_final_d|col_final_d2;

 sw2_bin_A_d = din_msb_d2 / b;

 sw2_bin_B_d = din_msb_d / b;

 sw2_i_A_d = (sw2_temp << (sw2_bin_A_d));

 sw2_final_A_d = sw2_i_A_d << 1;

 sw2_final_two_A_d = (sw2_i_A_d ^ sw2_final_A_d);

 sw2_i_B_d = (sw2_temp << (sw2_bin_B_d));

 sw2_final_B_d = sw2_i_B_d << 1;

 sw2_final_two_B_d = (sw2_i_B_d ^ sw2_final_B_d);

// diff end

 end

//thermometer decoder for third switches

 dout_64 = dout_temp << (din_6b);

 dout_64d = ~(dout_64);

 if(row_bin2%2==0) begin

 dout_final = dout_64d;

 end else begin

 dout_final = ~(dout_64);

 end

 whatsup = (din_all/c)%2;

 if(whatsup==0) begin

 dout_final_z = ~(dout_final);

 end else begin

87

 dout_final_z = dout_final;

 end

end

always@ (posedge CLK)

begin

ROWreg <= row_end;

ROW_Dreg <= row_end_d;

COLreg <= col_end;

COL_Dreg <= col_end_d;

ENDBITreg <= end_bit;

ENDBIT_Dreg <= end_bit_d;

SW2_Areg <= sw2_final_two_A;

SW2_ADreg <= sw2_final_two_A_d;

SW2_Breg <= sw2_final_two_B;

SW2_BDreg <= sw2_final_two_B_d;

SWPC_Areg <= ~(sw2_final_two_A);

SWPC_ADreg <= ~(sw2_final_two_A_d);

SWPC_Breg <= ~(sw2_final_two_B);

SWPC_BDreg <= ~(sw2_final_two_B_d);

DOUT_64reg <= dout_final_z;

DOUT_64Dreg <= ~(dout_final_z);

DOUTDUMMY_64reg <= dout_final_z;

DOUTDUMMY_64Dreg <= ~(dout_final_z);

end

//assigns register values to outputs

assign ROW = ROWreg;

assign ROW_D = ROW_Dreg;

assign COL = COLreg;

assign COL_D = COL_Dreg;

assign ENDBIT = ENDBITreg;

assign ENDBIT_D = ENDBIT_Dreg;

assign SW2_A = SW2_Areg;

assign SW2_AD = SW2_ADreg;

assign SW2_B = SW2_Breg;

assign SW2_BD = SW2_BDreg;

assign SWPC_A = SWPC_Areg;

assign SWPC_AD = SWPC_ADreg;

assign SWPC_B = SWPC_Breg ;

88

assign SWPC_BD = SWPC_BDreg;

assign DOUT_64 = DOUT_64reg;

assign DOUT_64D = DOUT_64Dreg;

assign DOUTDUMMY_64 = DOUTDUMMY_64reg;

assign DOUTDUMMY_64D = DOUTDUMMY_64Dreg;

endmodule

89

APPENDIX B: Ideal ADC-DAC Testbench VerilogAMS Code

`include "discipline.h"

`include "constants.h"

module adc_16b (vin, vclk, dout);

input vin;

input vclk;

output [15:0] dout;

electrical vin, vclk;

electrical [15:0] dout;

parameter real trise = 20p;

parameter real tfall = 20p;

parameter real tdel = 0;

parameter real vlogic_high = 3.0;

parameter real vlogic_low = 0;

parameter real vtrans_clk = 1.5;

parameter real vref = 2.0;

`define NUM_ADC_BITS 16

 real unconverted;

 real halfref;

 real vd[0:`NUM_ADC_BITS-1];

 integer i;

 analog begin

 @ (initial_step) begin

 halfref = vref / 2;

 end

 @ (cross(V(vclk) - vtrans_clk, 1)) begin

 unconverted = V(vin);

 for (i = (`NUM_ADC_BITS-1); i >= 0 ; i = i - 1) begin

 vd[i] = 0;

 if (unconverted > halfref) begin

 vd[i] = vlogic_high;

 unconverted = unconverted - halfref;

 end else begin

 vd[i] = vlogic_low;

 end

 unconverted = unconverted * 2;

 end

 end

 V(dout[0]) <+ transition(vd[0], tdel, trise, tfall);

90

 V(dout[1]) <+ transition(vd[1], tdel, trise, tfall);

 V(dout[2]) <+ transition(vd[2], tdel, trise, tfall);

 V(dout[3]) <+ transition(vd[3], tdel, trise, tfall);

 V(dout[4]) <+ transition(vd[4], tdel, trise, tfall);

 V(dout[5]) <+ transition(vd[5], tdel, trise, tfall);

 V(dout[6]) <+ transition(vd[6], tdel, trise, tfall);

 V(dout[7]) <+ transition(vd[7], tdel, trise, tfall);

 V(dout[8]) <+ transition(vd[8], tdel, trise, tfall);

 V(dout[9]) <+ transition(vd[9], tdel, trise, tfall);

 V(dout[10]) <+ transition(vd[10], tdel, trise, tfall);

 V(dout[11]) <+ transition(vd[11], tdel, trise, tfall);

 V(dout[12]) <+ transition(vd[12], tdel, trise, tfall);

 V(dout[13]) <+ transition(vd[13], tdel, trise, tfall);

 V(dout[14]) <+ transition(vd[14], tdel, trise, tfall);

 V(dout[15]) <+ transition(vd[15], tdel, trise, tfall);

`undef NUM_ADC_BITS

 end

endmodule

module dac_16b (vd, vout);

input [15:0] vd;

output vout;

electrical [15:0] vd;

electrical vout;

parameter real vref = 2;

parameter real trise = 20p;

parameter real tfall = 20p;

parameter real tdel = 0;

parameter real vtrans = 1.5;

 real out_scaled; // output scaled as fraction of 256

 real out_scaled_last; // output scaled as fraction of 256

 analog begin

 out_scaled = 0;

 out_scaled_last = 0;

 out_scaled = out_scaled + ((V(vd[15]) > vtrans) ? 32768 : 0);

 out_scaled = out_scaled + ((V(vd[14]) > vtrans) ? 16384 : 0);

 out_scaled = out_scaled + ((V(vd[13]) > vtrans) ? 8192 : 0);

 out_scaled = out_scaled + ((V(vd[12]) > vtrans) ? 4096 : 0);

 out_scaled = out_scaled + ((V(vd[11]) > vtrans) ? 2048 : 0);

 out_scaled = out_scaled + ((V(vd[10]) > vtrans) ? 1024 : 0);

 out_scaled = out_scaled + ((V(vd[9]) > vtrans) ? 512 : 0);

 out_scaled = out_scaled + ((V(vd[8]) > vtrans) ? 256 : 0);

 out_scaled = out_scaled + ((V(vd[7]) > vtrans) ? 128 : 0);

 out_scaled = out_scaled + ((V(vd[6]) > vtrans) ? 64 : 0);

 out_scaled = out_scaled + ((V(vd[5]) > vtrans) ? 32 : 0);

 out_scaled = out_scaled + ((V(vd[4]) > vtrans) ? 16 : 0);

 out_scaled = out_scaled + ((V(vd[3]) > vtrans) ? 8 : 0);

91

 out_scaled = out_scaled + ((V(vd[2]) > vtrans) ? 4 : 0);

 out_scaled = out_scaled + ((V(vd[1]) > vtrans) ? 2 : 0);

 out_scaled = out_scaled + ((V(vd[0]) > vtrans) ? 1 : 0);

 out_scaled_last = vref*out_scaled/65535;

 V(vout) <+ transition(out_scaled_last, tdel, trise, tfall);

 // V(vout) <+ vref*out_scaled/65535;

 end

endmodule

92

93

APPENDIX C: Calibration Resistor Generating Script

clear

clc

% etting some variables up

x32 = zeros(1,32);

x1025 = zeros(1,1025);

for i=1:1:33

 x33(i) = (i-1)*32;

end

for i=1:1:1025

 x1025(i) = i;

end

R = 1.56021;

TOTALCODE=1024;

TOTALCOARSE=64;

TOTALFINE=16;

% calculate switch calibration

ron = [580.85 561.11 543.25 527.01 512.14 498.55 486.05 474.51 463.87 453.96

444.74 436.14 428.07 420.54 413.46 406.81 400.56 394.65 389.05 383.76 378.72

373.95 369.41 365.09 360.98 357.05 353.29 349.69 346.24 342.94 339.76 336.72

333.79];

ron = fliplr(ron);

p = polyfit(x33, ron, 3);

R_EQ = polyval(p, x1025);

R_STRING_COMPENSATION = (max(R_EQ)+5)-R_EQ;

% calculate string calibration

% Initialize arrays

R_TOP = zeros(1,TOTALCODE);

R_FINEBOT = zeros(1,TOTALCODE);

R_COARSE = zeros(1,TOTALCODE);

R_FINETOP = zeros(1,TOTALCODE);

R_BOT = zeros(1,TOTALCODE);

R_A = zeros(1,TOTALCODE);

R_B = zeros(1,TOTALCODE);

R_C = zeros(1,TOTALCODE);

R_D = zeros(1,TOTALCODE);

R_E = zeros(1,TOTALCODE);

R_1 = zeros(1,TOTALCODE);

R_2 = zeros(1,TOTALCODE);

R_3 = zeros(1,TOTALCODE);

R_4 = zeros(1,TOTALCODE);

R_5 = zeros(1,TOTALCODE);

R_EQ = zeros(1,TOTALCODE);

for code=1:1:TOTALCODE

94

% Initial model

R_TOP(code) = (TOTALCOARSE - ceil((code)/TOTALFINE)) *

((R*(TOTALFINE*R))/(R+(TOTALFINE*R)));

R_FINETOP(code) = ((mod((TOTALFINE-mod((code), TOTALFINE)),

TOTALFINE)))*R;

R_COARSE(code) = R;

R_FINEBOT(code) = ((TOTALFINE-mod((TOTALFINE-mod((code),

TOTALFINE)), TOTALFINE)))*R;

R_BOT(code) = floor((code-1)/TOTALFINE) *

((R*(TOTALFINE*R))/(R+(TOTALFINE*R)));

% Change naming for clarity

R_D(code) = R_TOP(code);

R_A(code) = R_FINEBOT(code);

R_C(code) = R_COARSE(code);

R_B(code) = R_FINETOP(code);

R_E(code) = R_BOT(code);

% Delta-star transformation

R_1(code) = (R_B(code)*R_C(code))/(R_A(code)+R_B(code)+R_C(code));

R_2(code) = (R_A(code)*R_C(code))/(R_A(code)+R_B(code)+R_C(code));

R_3(code) = (R_A(code)*R_B(code))/(R_A(code)+R_B(code)+R_C(code));

R_4(code) = R_D(code);

R_5(code) = R_E(code);

% Equivalent string resistance

R_EQS(code) = R_3(code) +

((R_4(code)+R_1(code))*(R_5(code)+R_2(code)))/(R_1(code)+R_2(code)+R_4(cod

e)+R_5(code));

end

R_STRING_COMPENSATION_S2 = (max(R_EQS)+5)-R_EQS;

R_STRING_COMPENSATION_S = [R_STRING_COMPENSATION_S2(1024)

R_STRING_COMPENSATION_S2];

ALLCOMP_2 = R_STRING_COMPENSATION + R_STRING_COMPENSATION

+ R_STRING_COMPENSATION_S;

ALLCOMP = ALLCOMP_2 - (min(ALLCOMP_2)-50);

%resistor values

for i=1:1:6000

 x600(i) = 0.1*i;

end

R_entered = [11.578 20.014 29.93 40.028 49.953 60.043 69.967 80.057 89.982

100.072 119.921 139.936 159.95 179.643 199.979 224.956 249.933 275.075 300.052

333.299 366.711 399.958 450.077 500.031 599.938];

R_measured = [11.89888114 20.56805221 30.76722265 41.13615569 51.33526126

61.70427199 71.90325744 82.27231138 92.47142493 102.8405815 123.2723198

143.8065149 164.3745548 184.9423316 205.5114433 231.1782384 256.8453169

95

282.6843016 308.3506975 342.5190721 376.8585981 411.0254462 462.5735913

513.8666127 616.5343298];

L_generated = [700 1210 1810 2420 3020 3630 4230 4840 5440 6050 7250 8460

9670 10860 12090 13600 15110 16630 18140 20150 22170 24175 27210 30230

36270];

p_E = polyfit(R_measured, R_entered, 3);

p_L = polyfit(R_entered, L_generated, 3);

R_E_func = polyval(p_E, x600);

R_L_func = polyval(p_L, x600);

% total resistance an length generation

res_index = round(ALLCOMP*5);

W = zeros(1,1025);

for i=1:1:1025

W(i) = round((R_L_func(round(R_E_func(res_index(i))*10))/10000)*1000)/100;

end

fid = fopen('compensation_resistors_real3', 'w');

fprintf(fid, '.SUBCKT compensation_resistors_real3 ');

for i = 0:1:(TOTALCOARSE-1)

for j = 0:1:(TOTALFINE-1)

fprintf(fid, 'res_in<%d> ', i*TOTALFINE+j);

end

fprintf(fid, '\n');

end

fprintf(fid, 'res_in<%d> ', TOTALCODE);

for i=0:1:(TOTALCOARSE-1)

for j=0:1:(TOTALFINE-1)

fprintf(fid, 'res_out<%d> ', i*TOTALFINE+j);

end

fprintf(fid, '\n');

end

fprintf(fid, 'res_out<%d> \n\n', TOTALCODE);

fprintf(fid, ' R0 (res_in<0> res_out<0>) rnpo1w l=%.2fu w=420n mf=(1) m=1

mismatchflag=1\n', max(W));

for i=1:1:1024

fprintf(fid, ' R%d (res_in<%d> res_out<%d>) rnpo1w l=%.2fu w=420n mf=(1) m=1

mismatchflag=1\n',i,i,i,W(i));

end

fprintf(fid, '\n');

fprintf(fid, '.END');

fclose(fid)

96

97

CURRICULUM VITAE

Name Surname: Çağlar Özdağ

Place and Date of Birth: 22
nd

 December 1988, Ankara

Address: ġair Latifi Sok. 27/1, Moda, Kadıköy, Istanbul, TURKEY

E-Mail: caglarozdag@gmail.com

B.Sc.: University of British Columbia, Vancouver, CANADA

List of Publications and Patents:

Çağlar Özdağ, Türker Küyel, GüneĢ Karabulut Kurt, Alphan Salarvan "Digital-to-

analog Converter Effects on Orthogonal Frequency Division Multiplexing

Performance", IEEE SIU 2013, pp 1-28

