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A 16-b 32 MSPS CMOS VOLTAGE OUTPUT DAC IN 0.18 um WITH 80+ dB 

SIMULATED SFDR AT 1 MHz OUTPUT FREQUENCY 

SUMMARY 

Interfacing digital domain signals to an analog control or transfer system requires an 

integrated circuit (IC) element referred to as a digital-to-analog converter (DAC). 

Achieving high precision and high dynamic linearity at high sampling speeds and 

high output frequencies is an ever on-going research challenge due to the complexity 

of interconnected tradeoffs involved in the performance of such architectures. Due to 

the nature of these performance tradeoffs, certain architectures are used for certain 

applications which prioritize 6 main parameters: physical size, power consumption, 

resolution, bandwidth, precision/sensitivity and cost. Most DAC architectures used in 

all kinds of communications, data acquisition, signal processing, and control systems 

can be categorized into one of two families (i) Current-mode type architectures that 

offer high speed at the cost of monotonicity, drift sensitivity and precision settling; 

(ii) Voltage-mode type architectures that address the precision settling problem but 

have its shortcomings in speed and resolution. This work addresses the unmet need 

for a precision settling, high speed and high bitrate DAC architecture by taking the 

standard resistor-string type buffered voltage output architecture and greatly 

improving its dynamic linearity for driving time-varying loads at high output 

frequencies. 

 

Typical operation of a resistor string-type DAC involves selecting nodes on a resistor 

string with a certain switching architecture dictated by the input decoder, and driving 

the output load through a voltage buffer. The resistor string sits between two voltage 

references and divides the full scale input into equal steps. DC performance of such 

converters is determined by the precision of the voltage references and more 

importantly the matching of the elements on the resistor string. These so-called static 

nonlinearities can be digitally calibrated to give 16-bit accuracy at low bandwidth; 

but error mechanisms that affect the dynamic linearity at high output frequencies 

remain mostly unsolved. 

 

The most fundamental dynamic performance metric of DACs is the spurious-free 

dynamic range (SFDR) of the output waveform. SFDR is the ratio of the root-mean-

squre signal amplitude to the highest spurious component in the first Nyquist zone 

and is closely related to total harmonic distortion (THD) and intermodulation 

distortion (IMD), thus a good measure of dynamic linearity. In this work, most 

simulation results are presented in reference to the SFDR of the full-scale output 

waveform. What is considered to be the current state-of-the-art 16-bit voltage output 

DAC (TI-DAC8580) gives 63 dB SFDR for a 200 kHz, which is the highest 

frequency listed on specification. The architecture presented in this work surpasses 

this performance by a great amount, giving a layout extracted 83 dB SFDR for a 1 

MHz signal. 
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Six main dynamic error mechanisms were identified and compensated to achieve this 

performance. Code-dependent interpolating amplifier input capacitance is 

compensated by the inclusion of a dummy interpolating amplifier and dummy 

differential pair switch structure. Code-dependent resistor string equivalent resistance 

and code dependent Vgs and Vbs varying switch bank on-resistance are compensated 

with the inclusion of tap point calibration resistors. Charge injection and related 

glitches on the output bus are reduced by a unique fully differential resistor string 

and differential interpolating instrumentation amplifier architecture. Interpolating 

amplifier output stage nonlinearity is reduced by driving the class AB output stage 

transistors at their velocity saturation region. LSB sensitivity to floating resistor 

string loops are reduced by implementing a loop pre-charge stage on the fully 

differential resistor string. Aside from the development of such novel architectures, 

other specifics of all stages on schematic, as well as on layout, are optimized to 

reduce distortion by keeping the output bus settling characteristic fast and code 

independent. 

 

Simulation environment is chosen to be Spectre+AMS running on Cadence 6.02 

evaluating BSIM4 models of the TSMC 018 um process. The unmodified standard 

architecture which was the starting point of this work has a 60 dB schematic level 

SFDR for a 1 MHz (f0), 32 MHz (fs), 2 Vpp output signal. The final design has a 88 

dB schematic level SFDR, 83 dB layout level SFDR under the same conditions, 

tested under process corner, temperature range and supply drift variations. 

 

Tape out is expected to be April 2015. 
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1 MHz ÇIKIġ FREKANSINDA 80+ dB SFDR BAġARIMI ELDE EDEN 

0.18um 16-b 32 MSPS CMOS GERĠLĠM ÇIKIġLI SAYISAL-ANALOG 

ÇEVĠRĠCĠ TASARIMI 

ÖZET 

Sayısal iĢaretlerin, analog kontrol ve transfer sistemlerine arabağlanması, sayısal-

analog-çevirici (DAC) olarak isimlendirilmiĢ entegre devreler (IC) ile 

gerçekleĢtirilir. Bu elektronik mimariler ile, yüksek örnekleme frekanslarında, 

yüksek hassasiyet ve yüksek dinamik doğrusallık elde edebilmek, tüm ilgili baĢarım 

ödünleĢimlerinin karmaĢık bir Ģekilde bağlantılı olması nedeniyle, her zaman 

süregiden bir araĢtırma alanıdır. 

 

BaĢarım ödünleĢimlerinin doğası gereği, belli DAC mimarileri belli uygulamalar için 

kullanılır ve bu uygulamalar altı ana parametreyi önceliklendirir: fiziksel boyut, güç 

tüketimi, çözünürlük, bant geniĢliği, duyarlık ve maliyet. Her türlü iletiĢim, veri 

toplama, iĢaret iĢleme ve kontrol sistemlerinde kullanılan DAC mimarileri, iki aile 

Ģeklinde sınıflandırılabilir: (i) monotonluk, sürüklenme duyarlığı ve yerleĢme 

duyarlığı pahasına yüksek hız sağlayan akım-mod tip mimariler ve (ii) yüksek hız ve 

çözünürlük pahasına yerleĢme duyarlığı sağlayan gerilim-mod tip mimariler.  

 

Zamanla değiĢen yükleri doğrusal bir yerleĢme karakteristiği ile sürebilmek için 

DAC'ların çıkıĢlarında bir tampon katı olmalıdır. Akım-mod tip mimarilerde bu 

tampon katı, akımdan gerilime dönüĢtürücü olarak iĢlev görür. DönüĢümü yapmak 

için kullanılan geri-besleme direncinin gerilim ve sıcaklık ile sürüklenmesi, bu tip 

mimarilerin hassas yerleĢme niteliğini kısıtlar. Akım-mod DAC çıkıĢ katı direncinin 

silikon özerinde imal edildiği ve bu sorunun kısmi olarak giderildiği tasarımlar 

mevcut olsa da, bu mimarilerin de gliç (zamanlama hatalası) problemleri vardır. Bu 

nedenle yerleĢme karakteristiğinin doğrusal olması gerektiği hassas dalga üretimi 

uygulamalarında, tercih edilmezler. 

 

Bu çalıĢma, daha karĢılanmamıĢ bir gereksinim olan, hassas yerleĢme, yüksek hız ve 

yüksek çözünürlük sağlayan bir DAC mimarisi önerisidir. Tasarım, standart direnç-

dizesi tip tamponlu gerilim çıkıĢlı DAC mimarisini baz almakta ve zamanla değiĢen 

yükleri yüksek çıkıĢ frekansları için sürebilmek adına dinamik doğrusallık baĢarımını 

geniĢ ölçüde geliĢtirmektedir. 

 

Direnç-dizesi tip DAC mimarilerinin çalıĢma prensibi, bir direnç dizesi üzerindeki 

düğümlerin, giriĢ kod çözücüsü tarafından kontrol edilen bir anahtarlama Ģeması ile 

seçilmesi, ve bu düğüm üzerindeki gerilimin çıkıĢ tamponu tarafından sürülmesi 

üzerine kurulmuĢtur. Bu direnç-dizesi, anahtarlar ve çıkıĢ tamponunun çalıĢma 

aralığı tarafından belirlenen iki gerilim referansı arasında, tam ölçek çıkıĢ aralığını 

eĢit parçalara böler. Bu tür veri dönüĢtürücülerinin DC baĢarımını, gerilim 

referanslarının hassasiyeti, ve daha önemlisi, direnç-dizesi elemanlarının uyuĢması 
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belirler. Statik doğrusalsızlıklar olarak adlandırılan bu sorunlar, düĢük bant 

geniĢliklerinde tipik olarak 10 bitlik, yüksek maliyetli proseslerde lazer kırpma gibi 

özel teknikler kullanılarsa 12 bitlik doğruluk verebilecek derecede sayısal olarak 

kalibre edilebilir. Bu tekniklerden, off-chip taramalı-tablo (look-up-table) DC 

kalibrasyonu olarak adlandırılan yöntem, düĢük maliyetli DC kalibrasyonlar arasında 

standart uygulama haline gelmiĢtir ve bu tasarım için tape-out sonrası kullanılacağı 

varsayılmıĢtır. Bu yöntemle alınabilecek çözünürlük sınırlı olduğundan, 16 bit 

seviyesinde doğruluk alabilmek için, ikinci bir DAC katı olarak ara-değer-bulan 

OPAMP (interpolating OPAMP) gibi mimariler kullanılabilir. 

 

Devreyi hızlandırmak adına, çıkıĢ katı zaman sabitini asgariye indirmek için düĢük 

eĢdeğer dirençli direnç-dizesi mimarilerinin de kullanımıyla, piyasadaki mevcut en 

iyi performans veren DAC tasarımlarına yakın benzetim sonuçları alınabilmektedir. 

Fakat, yüksek bant geniĢliklerinde dinamik doğrusallığı etkileyen hata 

mekanizmaları çoğunlukla çözülememiĢ durumdadır. Bu eksiklik, gerilim çıkıĢlı 

DAC mimarilerinin yüksek hızlı hassas dalga üretimi uygulamalarında 

kullanılmasını kısıtlamaktadır.  

 

DAC mimarilerinin en temel dinamik baĢarım ölçüsü, çıkıĢ dalgasının spüriyözsüz 

dinamik aralığıdır (SFDR). SFDR, iĢaret genliğinin kare ortalamalarının kökünün 

(rms), ilk Nyquist bölgesindeki en yüksek spüriyöz bileĢenine oranıdır, ve toplam 

harmonik bozulma (THD) ve intermodulasyon distorsiyon (IMD) ile olan yakın 

iliĢkisinden dolayı iyi bir dinamik doğrusallık göstergesidir. Bu çalıĢmada sunulan 

benzetim sonuçlarının çoğu, tam ölçek çıkıĢ dalgasının SFDR'ı üzerinden 

incelenmiĢtir. 

 

ġu an piyasada state-of-the-art kabul edilen 16-bitlik gerilim çıkıĢlı DAC (TI-

DAC8580), spesifikasyonunda listelenen en yüksek çıkıĢ frekansında (200 kHz) 63 

dB SFDR vermektedir. Bu çalıĢmada önerilen DAC mimarisi bu çıtayı büyük bir 

fark ile aĢarak, 1 MHz'lik bir iĢaret için serim-sonrası (post-layout) 83 dB SFDR 

vermektedir. Bu baĢarımı elde etmek için, altı ana dinamik hata mekanizması 

belirlenmiĢ ve kompanse edilmiĢtir. 

 

Mimarinin çıkıĢ katı, son altı biti (6 LSBs) sayısaldan analoga çevirme iĢlemini 

gerçekleĢtirmektedir. Bu iĢlem sırasında, mimarinin doğası gereği ara-değer-bulan 

OPAMP giriĢ kapasitesi koda-bağımlı olduğundan, çıkıĢ hattı üzerinde görülen 

zaman sabiti her kod için değiĢmektedir. Bu idealsizlik, (i) dummy ara-değer-bulan 

OPAMP giriĢ katları ve dummy diferansiyel ikilisi anahtarları ile kompanse 

edilmiĢtir. 

 

ÇıkıĢ hattı üzerinde görülen zaman sabitinin kapasite bileĢeni böylece zamandan 

bağamsız hale getirilmiĢtir. GiriĢ iĢaretinin ilk 10 bitini (10 MSBs) sayısaldan 

analoga çeviren blok, bir kaç kattan oluĢan bir direnç-dizisi ve anahtarlama ağı 

olarak düĢünülebilir. ÇıkıĢ hattı üzerinde görülen zaman sabitini her kod için değiĢik 

kılan bileĢen bu katlar için dirençseldir. Direnç-dizisinin koda-bağımlı eĢdeğer 

direnci ve koda-bağımlı kapalı anahtar direnci her boğum noktası için hesaplanmıĢ 

ve benzetim ortamında ölçülmüĢtür. Ortaya çıkan direnç profili kullanılarak, (ii) 

koda-bağımlı direnç dizisi eĢdeğer direnci ve (iii) koda-bağımlı VGS ve VBS ile 

değiĢen kapalı anahtar direnci, direnç dizisinin her boğumuna yerleĢtirilen seri 

kalibrasyon dirençleri ile kompanse edilmiĢtir. 
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Mimarinin çalıĢma prensibi, her kod için bir kaç kat boyunca belli anahtarların 

açılması ve kapanması ile istenen direnç-dizisi boğumunun çıkıĢ hattıyla iletime 

girmesi üzerine kuruludur. Bu esnada, zamanlama idealsizlikleri ve tranzistörlerin 

tipik davranıĢları gereği, bir takım doğrusal olmayan yük boĢalımları 

gerçekleĢmeltedir. (iv) ÇıkıĢ hattı üzerindeki yük enjeksyonu ve diğer ilgili 

zamanlama hataları, özgün bir diferansiyel direnç-dizesi ve diferansiyel ara-değer-

bulan OPAMP mimarisi ile büyük ölçüde azaltılmıĢtır. 

 

ÇıkıĢ katı tamponunun doğrusallığı, DAC'ın SFDR baĢarımında kilit rol oynayan 

unsurlardan biridir. Küçük belirgin özellikli (small feature size) proseslerde, kısa-

kanal etkisi (short-channel effect) olarak adlandırılan bir MOS transistör özelliği 

görülmektedir. Bu etki, uzun-kanallı (1um'den fazla) transiztorlerde tam anlamıyla 

lineer olmayan ID/VDS özeğrisini, kısa-kanallı transistorlerde daha doğrusal kılan 

bir etkidir. (v) ÇıkıĢ tamponu doğrusalsızlığı, kısa-kanal etkilerinden yararlanılarak 

class-AB çıkıĢ katı transizstörlerinin hız-doygunluk bölgesinde sürülmesiyle büyük 

ölçüde azaltılmıĢtır. 

 

Direnç-dizisi mimarisinin eĢdeğer direncini düĢürmek için, diziyi düĢük dirençli 

döngülerden oluĢturmak, 2 kattan oluĢan anahtarlama Ģemasında tipik operasyon 

sırasında yüzen düğümler oluĢturur. (vi) Direnç dizesi yüzen düğümlerinin LSB 

hassasiyeti oluĢturması, döngü ön-yükleme anahtarlarıyla giderilmiĢtir. 

 

Bu özgün mimari geliĢtirmelerinin yanında, tüm katların Ģematik seviyede detayları 

(anahtar boyutları, anahtarlama mimarisi, referans gerilimleri, kod çözücü Ģeması, 

direnç-dizesi döngü uzunluğu, direnç-dizesi akımı, anahtar katı sayısı, vb.), serimden 

sonra çıkıĢ hattı oturma karakteristiğini hıza ve kod-bağımsızlığa optimize edecek 

Ģekilde belirlenmiĢtir. 

 

Benzetim ortamı Cadence 6.02 üzerinde Spectre+AMS ile TSMC 018 prosesinin 

BSIM4 modellerini kullanmaktadır. Bu çalıĢma yalnızca teorik mimarilerin 

geliĢtirilmesi üzerine değildir. Tasarım her yönüyle üretime hazır olacak incelikle 

geliĢtirilmiĢtir ve bu amaca yönelik olarak, proses modelleri tarafından sağlanan 

eleman uyuĢmazlığı istatistiki dağılımları, proses varyasyonu istatistiki dağılımları, 

sıcaklık ve referans gerilimi kaymaları, serim sonrası parasitik direnç ve kapasiteleri 

eklenmesi gibi testlerle doğrulanmıĢtır. 

 

Bu çalıĢmanın baĢlangıç noktası olarak aldığımız değiĢtirilmemiĢ standart mimari, 1 

MHz (fo), 32 MHz (fs), 2 Vpp çıkıĢ iĢareti için 60 dB Ģematik seviyesi SFDR 

vermektedir. Bu performans, çıkıĢ hattı zaman sabiti kapasitif bileĢeninin kalibre 

edilmesiyle 9 dB, çıkıĢ hattı zaman sabiti dirençsel bileĢeninin kalibre edilmesiyle 4 

dB, diferansiyel direnç-dizesi ve diferansiyel ara-değer-bulan OPAMP mimarisinin 

geliĢtirilmesiyle 14 dB, tampon çıkıĢ katı transizstörlerinin hız-doygunluk bölgesinde 

sürülmesiyle 10 dB SFDR artıĢı ile ortak etkilerden bağamsız olarak iyileĢtirilmiĢtir. 

Mimari önerilerinin bir araya getirilmesiyle, çalıĢmanın sonunda önerilen tasarım, 

tipik proses köĢesi, sıcaklık ve referans kayması Ģartları altında 88 dB Ģematik seviye 

SFDR, 83 dB layout seviye SFDR vermektedir. 

 

Tape-out Nisan 2015'te beklenmektedir. Tape-out sonrası ölçüme hazırlık olarak 

piyasadaki en iyi performans veren DAC (TI DAC8580) spesifikasyonuyla tam 

örtüĢecek Ģekilde ölçülmüĢtür. 
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1.  INTRODUCTION 

Data converters are a family of integrated circuits that interface the two domains of 

signal transmission and processing: digital and analog. Basic operation of digital-to-

analog converters and analog-to-digital converters are demonstrated in Figure 1.1. 

 

Figure 1.1 : Data converters. 

This work is the design of a novel digital-to-analog converter. To give context to the 

motivation behind this research, basic DAC architectures that led to the design of this 

work and their shortcomings are presented in the subsections below.  

1.1 DAC Architectures 

All DAC architectures require an output buffer stage to drive time-varying loads with 

a linear settling characteristic. In architectures such as current-mode binary-weighted 

DACs, current-mode R-2R ladder network DACs and other current-steering type 

DACs, the output buffer acts as a current-to-voltage (I-V) converter as shown in 

Figure 1.2. 

 
 

Figure 1.2 : Current-mode DACs. 
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Settling characteristic of these DACs are determined by the feedback resistors (Rf) 

sensitivity to temperature and voltage drifts and therefore limits static and dynamic 

linearity at high output frequencies [1]. Achieving precision settling is also a 

challenge with current mode DACs due to their inherent non-monotonicity and 

temperature drift [6]. Voltage-mode DACs shown in Figure 1.3 offer precision 

settling and monotonicity but have their shortcomings in speed and resolution. 

 

Figure 1.3 : Voltage-mode DACs. 

1.2 Resistor String Type VODAC Architectures 

Voltage-mode DAC architectures are based on selecting intermediate node voltages 

within a resistor network that sit between two voltage references. These node 

voltages are tapped by a decoding/switching architecture and output through a 

voltage buffer. A basic 10-bit resistor-string type DAC is shown in Figure 1.4.  

Speed and dynamic linearity of these basic resistor string architectures are limited by 

the high and varying equivalent resistance seen for every code, and the resolution is 

limited by the element matching capabilities of the fabrication processes. Resistor 

string element matching for 10-bits of resolution is considered to be the limit of 

current process technologies [2]. With the employment of costly techniques like SiCr 

resistors, on wafer laser trimming or digital calibration unique per device, these 

architectures can achieve 12-bits of accuracy at most [3], [4].  

 



3 

 

Figure 1.4 : 10-bit resistor string DAC. 

The problem of resolution can be addressed with an interpolating OPAMP 

architecture as the output buffer [5]. This architecture has multiple positive inputs 

which are averaged and fed back to the negative input, essentially rendering the 

OPAMP differential pair a voltage interpolator as shown in Figure 1.5. 

These multiple positive inputs can be weighted or thermometer coded for binary or 

unary operation. Figure above demonstrates a 6-bit thermometer coded operation, 

with 64 same sized positive inputs, and 1 negative input 64 times the size of the 

multiple positive inputs. A switching structure shown in Figure 1.6 decodes a pair of 

voltages as the binary input to the interpolator, so that this architecture can serve as a 

DAC. 
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Figure 1.5 : Interpolating amplifier. 

 

Figure 1.6 : Interpolating amplifier DAC. 

Such an architecture can be used as the output stage of a voltage output DAC to 

increase resolution, if stages that precede the interpolation amplifier outputs a pair of 

voltages that can serve as VHIGH and VLOW. The basic resistor string architecture 
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given in Figure 1.4 can be modified to give a pair of voltages separated by 1 least 

significant bit (LSB) as shown below in Figure 1.7. 

 

Figure 1.7 : Dual output resistor string DAC architecture. 

Cascading the two architectures in stages, the following 16-bit, low bandwidth DAC 

architecture is realized in Figure 1.8. 
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Figure 1.8 : 16-bit low bandwidth DAC. 

The problem of speed is addressed by lowering the equivalent string resistance of the 

first stage. The following architecture in Figure 1.9, called the course-fine 

intermeshed string, proposed in [2] achieves this by creating low impedance nodes 

on the 10-bit fine string every 32 resistors by tapping loops of resistors from a coarse 

string. Tap voltages are selected in two levels of switches; first one to choose the tap 

voltage, second one to choose the loop the tap voltage is located in. The selected 

node is output through a voltage buffer as usual. Another improvement this 

architecture brings is reduction in parasitic capacitance otherwise coming from 1024 

switches connected to one output node. 
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Figure 1.9 : Coarse-fine intermeshed 10-bit r-string. 

This architecture can be cascaded with the interpolating amplifier architecture to 

result in a relatively fast 16-bit DAC design, shown in Figure 1.10 [5], [7]. 
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Figure 1.10 : 16-bit DAC. 

SFDR of the architectures presented this in this subsection are given below in Table 

1.1. 

Table 1.1 : SFDR of basic r-string DAC architectures. 

Architecture 
SFDR at 200 kHz 

(dB) 

SFDR at 1 MHz 

(dB) 

Figure 1.2.1 (10 bit) 51 37 

Figure 1.2.5 (16 bit) 64 48 

Figure 1.2.6 (low resistance 10 bit) 68 51 

Figure 1.2.7 (low resistance 16 bit) 74 60 

Current state-of-the-art [8] 62 N/A 

It can be seen from the table that the best design available on the market can‟t offer 

much more than 60 dB SFDR at 200 kHz output frequency. Even though speed and 

resolution problems are partly addressed in the architecture presented in Figure 1.10, 

dynamic linearity at a MHz order bandwidth is nowhere near what is acceptable for 

voltage output DACs to be used in precision waveform generation applications. 
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1.3 Design Summary 

Figure 1.11 shows a symbolic block diagram of the final design, the specifics of 

which will be explained in detail in the following chapters. 

This work takes the architecture given in Figure 1.10 as a starting point and 

eliminates all major dynamic error mechanisms, taking schematic level SFDR at 

1MHz to 88 dB and layout extracted SFDR to 83 dB. The final design is a 

continuation of a work referenced in [7], where several error mechanisms were 

investigated, and a schematic/ideal-behavioral level SFDR of 72 dB at 1 MHz output 

frequency were presented. 

 

Figure 1.11 : Fully differential 16-bit DAC. 

The first stage implements a novel fully differential operation on a coarse-fine 

intermeshed resistor string, which outputs two pairs of differential voltages to the 

second stage which is a novel fully differential interpolation amplifier. Output bus 

capacitances are balanced for every code with the implementation of dummy 

interpolation amplifier inputs. Output bus resistance is calibrated for each code with 

the implementation of unique compensation resistors that take into account varying 

switch bank and resistor string equivalent resistances. A precharge stage (not 

included in the figure) is implemented to hold loop voltages at appropriate levels to 

reduce glitches on the output bus. A digitally programmable 60ppm bandgap voltage 
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reference (not included in the figure) provides the internal references. A decoder (not 

included in the figure) controls all switch banks with a break-before-make switching 

scheme to minimize glitches on the output bus. 

SFDR performance of the final design in schematic and layout is given in Figure 

1.12 below along with the performance of E. Topcu‟s design [7] and the basic 

architecture given in 1.10 under the same conditions. 

 

Figure 1.12 : SFDR vs. output frequency. 

1.4 Design Environment 

Cadence 6.02 Virtuoso Schematic, Virtuoso XL Layout and Spectre+AMS 

Verification tools referencing BSIM 4 models of the 018um TSMC process were 

used in the development of the design. A screenshot of one of the testbenches most 

frequently used in the development of the DAC is given in Figure 1.13. The 

testbench evaluates DFT for a 1 MHz fo 32 MHz fs signal and calculates SFDR, 

which is used as the primary performance metric in this study. 



11 

Voltage references that operate the resistor string, input decoder and the DAC core 

can be seen in their top cellview. Modifications on blocks lower down the hierarchy 

can be toggled on and off as dictated by the experiment as shown in Figure 1.14. 

Input to the design is generated by an ideal 16-bit ADC programmed in 

VerilogAMS, given in Appendix A. Output of the DAC is loaded with a 10 kΩ 

resistor and 100 pF capacitor in parallel. 

 

Figure 1.13 : Simulation environment (schematic editor). 
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Figure 1.14 : Simulation environment (hierarchy editor). 

Unless stated otherwise, DFT is taken for 1 cycle of a 1MHz fundamental signal 

between 1us and 2us for 65536 samples for all experiments reported in this work. 

Then, SFDR is calculated as: 

              (
  

                         
)    (1.1) 

Figure 1.15 and 1.16 shows the transient and DFT outputs of the layout extracted 

final design under typical conditions for an arbitrary LSB pattern within 95% of the 

full scale. 
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Figure 1.15 : Transient output waveform of the layout extracted design. 

 

Figure 1.16 : DFT of layout extracted design (84 dB SFDR). 
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1.5 Thesis Organisation 

In chapter 1, basic DAC architectures that led to the development of the final design 

are introduced, motivations for the research are justified and the final design is 

briefly overviewed, along with a brief description of the simulation environment in 

which the architecture was designed, laid out, and verified. 

In chapter 2, major error mechanisms that were identified as affecting the dynamic 

linearity of the architecture are introduced, and their tradeoffs are briefly discussed to 

give context to the design decisions made. 

In chapter 3, design decisions are justified and all stages are described in detail on a 

schematic level, along with detailed verification of the final design. 

In chapter 4, layout of the DAC is presented along with layout extracted results. 
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2.  ERROR MECHANISMS 

2.1 Static Error Mechanisms and DC Error Correction 

The ideal transfer function of a 3-bit DAC is shown below in Figure 2.1. 

 

Figure 2.1 : Transfer function of an ideal 3-bit DAC. 

Non-idealities such as imperfect voltage references, element mismatch at various 

stages of the architecture and layout related asymmetries are unavoidable especially 

with high performance converters. These issues can be local to a section of the DAC, 

local to periodic sections or can accumulate with a random pattern over all codes and 

cause the transfer function to be incorrect to various degrees [11]. These matters are 

often referred to as offset, gain, and INL/DNL errors, or DC (static) errors, and are 

shown in the representative 3-bit non-ideal transfer functions below in Figure 2.2. 
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Figure 2.2 : DC (static) errors of DACs. 

Developing a novel method for the compensation of such static errors is not the 

subject of this work, simply due to the fact that current solutions available for a wide 

range of tradeoffs have already become standard practice [9]. Considering die area, 

cost and complexity, for this work, we chose to employ a basic, all-digital software 

calibration shown below in Figure 2.3. 

 

Figure 2.3 : DC calibration setup. 

The algorithm carried out by this off-chip setup is very simple and is shown below in 

Figure 2.4. 

 

Figure 2.4 : DC calibration algorithm. 
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This method is a simplification on a scheme outlined in detail in [9]. As pointed out 

in the same paper, for a 16-bit DAC, the lookup table requires 65536 words of 

storage, which is a burden on cost. A suggested solution to cut down on the size of 

the LUT is to divide the DAC into segments and apply a piece-wise linear algorithm 

to approximate towards the calibrated code. There are many other on-chip and off-

chip solutions available to the DC calibration problems which are out of the scope of 

this work [9], [10]. 

2.2 Dynamic Error Mechanisms 

Identification and elimination of dynamic error mechanisms are the main focus of 

this work. Dominant dynamic error mechanisms are briefly explained below, with 

the help of simple models. An ideal DAC programmed in VerilogAMS (Appendix C) 

with an ideal RC load can be a simple but accurate representation of a voltage output 

DAC as shown below in Figure 2.5.  

 

Figure 2.5 : Ideal DAC model. 

Simulations show that magnitude of this RC time constant does not affect dynamic 

linearity (up to some maximum settling time requirement calculated in the next sub-

section), giving ~106 dB SFDR for a 1 MHz fo, 32 MHz fs, 2 Vpp output signal. This 

premise is the starting point of our research. To ensure code independent time 

constant equalization, several techniques were used on an architecture level, as well 

as on layout. Details of such techniques are described in detail in section 3 and 

section 4. This chapter is only intended to introduce some of the tradeoffs that were 

faced during the design of our final architecture. 
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2.2.1 RC model of DACs and method 

Most basic RC model of our DAC is given below in Figure 2.6.  10-bit resistor string 

DAC and its 2 stage switch banks are labeled as „STRING‟, „SW1‟ and „SW2‟. 6-bit 

thermometer decoded LSB switches and the interpolating OPAMP inputs are labeled 

as “SW3” and “OPAMP”. 

At each stage, code dependent and code independent effects are to be compensated 

using techniques and architectures to be explained in the following chapters. 

 

Figure 2.6 : Basic RC model of our DAC. 

Balancing of the output bus impedance, and thus the time constant for every code at 

the input of the interpolating OPAMP comes with a maximum settling time 

depending on the sampling frequency. The term time constant defines the time it 

takes for a step response to reach within   ⁄       of its final value. The RC 

requirement is 2.85 ns as shown below.  

     
  

 ⁄          (2.1) 

For 16 bit settling and 32 MHz sampling frequency, 

 
  ⁄             (2.2) 

   
 

      
                (2.3) 

                  (2.4) 

Various capacitive and resistive compensations to equalize large-signal settling for 

every code on the output bus cannot exceed this requirement. Approximate 

equivalent resistances and capacitances of the model shown in Figure 2.6 are shown 

below in Figure 2.7. 
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Figure 2.7 : Basic RC model of our DAC (with approximate values). 

The specifics of these stages and the values indicated above will be explained in 

detail in the coming sections. According to this simplified model, 

                                (2.5) 

This approximation at the input of the interpolating OPAMP easily meets the 

requirement calculated above. A bit of headroom is a good practice for a starting 

point in design, since many error mechanisms will be present to interfere with this 

simplistic theoretical calculation. 

Figure 2.8 below shows settling at the input of the OPAMP of the final DAC design. 

An arbitrary step response reaches    of its final value in approximately 0.9ns, 

verifying the model approximate calculations.  

 

Figure 2.8 : Settling characteristic at the input of the interpolating OPAMP. 
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More detailed RC models of the simpler model given in Figure 2.6 is given below in 

Figure 2.9 for representative resistances and capacitances. 

 

Figure 2.9 : Detailed RC model. 

2.2.2 Code dependent equivalent resistance 

Code dependent equivalent resistance variation is dominated by the first 3 stages: i) 

string, ii) switch bank 1, and iii) switch bank 2. For the unmodified architecture, 

string resistance Rstring (for the chosen string current, justified in later sections) 

varies between 0 and 50 Ω depending on the tap point. On resistances of the switches 

Ronsw1 and Ronsw2 (for the chosen sizes, justified in later sections) vary between 

350 Ω and 600 Ω. The code dependent varying Vgs and Vbs of the NMOS switches 

cause this effect. Switch 3 bank consists of 64 switches connected in parallel (when 

dummy switches are in use, justified in later sections) which makes little impact on 

the added resistance Ronsw3 along the path since the resistances. For code k, 

effective output bus resistance is: 
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    [ ]          [ ]         [ ]        [ ]    (2.6) 

Two different methods were explored in depth to counter this effect, constant Vgs 

switches and external resistive compensation. External resistive compensation seems 

to offer the best tradeoff in performance by simply equalizing the effective output 

bus resistance as: 

    [ ]          [ ]         [ ]        [ ]               [ ] (2.7) 

 Details of these analyses for each of the stages will be given in section 3. 

2.2.3 Code dependent equivalent capacitance 

Experiments of manually editing out MOS terminal capacitances from the netlists 

show that, code dependent equivalent capacitance variation is dominated by the last 2 

stages: i) switch bank 3, ii) interpolating OPAMPs. For the unmodified architecture, 

output bus capacitance varies between 0 and 640 fF depending on how many 

switches on the output bus are connected to the OPAMP differential pairs. For code 

k, effective output bus capacitance is: 

    [ ]           [ ]       [ ]     (2.8) 

A dummy switch 3 bank and interpolating OPAMP connected to the same output bus 

with an inverted switching pattern equalizes this capacitance to a code-independent 

640 fF.  

    [ ]            [ ]        [ ]     (2.9) 

Switch banks 1 and 2 always connect 1 on switch and 31 off switches to the output 

bus for every code, and the small variation in gate and overlap capacitances that 

come with code dependent Vgs and Vbs of the NMOS makes insignificant difference 

in performance. Details of these analyses for each of the stages will be given in 

section 3. 

2.2.4 Code dependent charge injection 

Charge injection is the distribution of charge towards the source and drain terminals 

of a MOS switch when a channel is created or cut off as shown in Figure 2.10 
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Figure 2.10 : Charge injection. 

It is nonlinear due to a combination of effects related to the varying source terminal 

voltage along the string as the charge is collected and canceled out at varying times 

at different points of the string. Minimizing switch sizes reduces this effect, but as 

with all analog design decisions, there is a tradeoff – increased on resistance of the 

switch, which in turn increases the variance of the RC time constant per code. A 

constant Vgs switch architecture improves the performance when everything else in 

the design is taken to be ideal – but such an increase in complexity of all the switch 

cells and the consequent addition of auxiliary strings to operate these switches cause 

major layout-related problems and in the end does more harm than good. Main string 

references also has to be cut to almost half the range to ensure constant Vgs for both 

on and off states. With experimentation it is seen that, after layout, not using a 

constant Vgs architecture in all three switch banks results in the best performance. 

Charge injection is a common mode disturbance, and so the implementation of the 

fully differential architecture removes 2
nd

 order distortions related to it. Details of 

these analyses will be given in section 3 and 4. 

2.2.5 Code dependent data feedthrough 

Data feedthrough is a similar phenomenon as depicted in Figure 2.2.4.1 but instead it 

is related to the source and drain overlap capacitances and is an effect seen when a 

switch is turned on or off as the output follows through the switches with varying 

overlap capacitances due to varying tap voltages along the string. Like code 

dependent charge injection, this effect can be reduced by minimizing switch sizes, 
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but it comes with the same tradeoff. When overlap capacitances are edited out 

manually out of the netlist, a 2 dB improvement in performance is seen, when 

everything else in the design is taken to be ideal. A constant Vgs switch architecture 

significantly increases this effect with an additional increase in complexity due to 

additional switches and the addition of auxiliary strings which require separate 

reference voltages. Details of these analyses will be given in section 3 and 4. 

2.2.6 Glitches 

When switches are turned off, a part of the charge injection is coupled over the 

resistor string. A pre-charge stage that holds each of the second switch bank drain 

terminal voltages at appropriate levels is placed between the middle point of the 

string loop and second switch bank in order to minimize this effect. Fully differential 

string architecture is a major improvement to reduce glitches on the output bus. But 

since the magnitude of a glitch is related to where on the string the switching is 

taking place, it can never be completely eliminated even with a fully differential 

structure. Controlling the switches with a make-before-break timing reduces the 

momentary charge dumps on the string to some degree, but the only solution that 

offers significant performance improvement is to simply decrease the resistance of 

the string. The higher the current, the smaller the glitches will be, and thus higher the 

dynamic linearity. The tradeoff is higher power consumption which is limited to 10 

mA over the string as a design specification decision. Details of these analyses will 

be given in section 3. 

2.2.7 Interpolator non-linearity 

Interpolator OPAMP stage linearity is a most important design feature of this DAC. 

Initial architecture comprised of a PMOS folded-cascode, gain-boosted, Monticelli 

Class-AB output. High dynamic linearity is achieved by driving the output stage 

transistors at their velocity saturation region. The tradeoff is again high power 

consumption, which is limited to 15mA at the output stage as a design specification 

decision. Details of these analyses will be given in section 3. 

2.2.8 Signal-to-noise ratio (SNR) 

Transient noise is mostly related to the voltage range of the architecture. Higher the 

range, lower the transient noise, so designing the device to have a high range is 
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critical. The linear operating points of the several stages of the architecture determine 

this range. Another reason why true constant Vgs switching architecture is not being 

used throughout the design is, it is a bottleneck that limits the resistor sring reference 

range. This is due to the limited nature of proper on and off voltages required to 

operate NMOS switches with fast and linear characteristic. Details of these analyses 

will be given in section 3. 
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3.  DESIGN DECISIONS AND SCHEMATIC 

3.1 Architecture Overview 

The design comprises of 3 main blocks: 1) DAC, 2) Voltage references, and 3) 

Decoder as shown below in Figure 3.1. 

 

Figure 3.1 : Top level block diagram. 

Inputs to the top level are 16-bit parallel LVDS DIN and LVDS double data rate 

(DDR) DCLK clocked at 32MHz. All references come from an internal band-gap 

reference, powered by 3.3 V VDD. The architecture outputs a single ended LPF pin 

to a 50-ohm end-terminated transmission line. DAC comprises of a fully differential 

10-bit resistor string with first level switches (Stage 1), second level switches (Stage 

2), third level switches (Stage 3) and 6-bit interpolating OPAMPs (Stage 4) as shown 

below in Figure 3.1.2. 10 MSBs are converted to two pairs of differential outputs 

within 1 of 32 loops in the first stage. Second stage switches select the loop on the 

resistor string which contain the selected first level switches and connect the tap 

voltage to the four MSB busses. These two pairs of 10-bit resolved outputs are the 

inputs to the third switch stage where the remaining thermometer-decoded 6 LSBs 

are input to 6-bit interpolating OPAMPs in instrumentation amplifier configuration. 
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3.2 String 

First major performance improvement on the standard coarse-fine intermeshed string 

architecture given in Figure 1.10 is the implementation of a novel fully differential 

operation as shown in Figure 1.3.1. An SFDR comparison for a 1 MHz (f0), 32 MHz 

(fs) full-scale signal is given in Table 3.1. 

Table 3.1 : Fully differential vs. single ended string. 

 

 

Node switches are XY decoded with 16 column, 64 row signals as shown in Figure 

3.2 to massively reduce number of wires and therefore, reduce potential timing 

problems as well as layout related complexity problems. Long and unequal wires can 

lead to unsynchronized switching and momentary disconnects, which can lead to 

glitches and momentary floating nodes. 

 

Figure 3.2 : XY decoded cells. 

Pairs of 16 series connected resistors forms 32 loops that tap a 64 resistor coarse 

string to obtain the 10-bit string. Every other coarse resistor is the center tap of the 

fine string deflection points. All taps on a loop connect to 2 of the 4 primary output 

busses. There are 32 of these quadruple busses for each loop. 

16-bit architecture with SFDR (dB) 

Single ended string 60.12 

Fully differential string 74.43 
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An even/odd node selection is decoded so that either output bus can be output the 

high voltage which the third switch bank resolves into 6 additional LSBs. This kind 

of switching architecture reduces the amount of switches in the first stage by half. 

For every code, the differential code is also selected by a separate switch to allow for 

fully differential operation. 

Not using any constant Vgs switching schemes which will be justified in section 3 

enables us to have a wide input voltage range which minimizes transient noise. The 

input range, which is the voltage reference range of the string, is limited by the 

interpolating OPAMP PMOS differential pair. Figure 3.3 below shows the results of 

the experiment conducted to optimize the input range of the fully differential 

architecture.  

 

Figure 3.3 : Input range for low current 16 bit DAC. 

Input PMOS pair is out of the saturation region for a 0.525 - 1.525 V signal. The 

optimum 1 V range of the device, and therefore the string voltage references are 

determined to be 0.325V - 1.325V. String equivalent resistance at each code is 

calculated using the MATLAB script given in the Appendix B. The script is based on 

the Delta-Y transformation of the following model of string taps in Figure 3.4. 
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Figure 3.4 : String node equivalent resistance model. 

String equivalent resistance calculated for each code is given in the following Figure 

3.5. 

 

Figure 3.5 : String equivalent resistance per code. 

Accuracy of this figure has been cross-checked and confirmed with a DC operating 

point analysis on the string schematic. Inverse of this equivalent resistance profile is 
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series added before the first switch bank to raise, but balance the resistance seen for 

every code in the first stage, as shown in the Figure 3.6 below. 

 

Figure 3.6 : String compensation resistors per code. 

An SFDR comparison for a 1 MHz (f0), 32 MHz (fs) full-scale signal is given in 

Table 3.2. 

Table 3.2 : String resistive compensation. 

 

 

The improvement above is admittedly very insignificant but the error mechanism as 

a whole is quite dominant. A more meaningful SFDR comparison with and without 

compensation resistors will be given in the next subsection where we address the 

compensation of switch resistances as well, which are the main resistance variation 

sources in the architecture. 

Non-linear glitches on the string that cannot be completely eliminated by a fully 

differential architecture are a major source dynamic linearity errors. When a switch is 

turned off, a part of the charge injection is dumped over the resistor string. A 

common solution is to modify the switching orders of the switch banks in order to 

disconnect the DAC from the output bus until all node voltages settle. Waveforms 

16-bit fully differential string architecture SFDR (dB) 

Without string compensation resistors 74.43 

With string compensation resistors 75.08 
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from 2 examples of switching order experiments are given below in Figure 3.7 (make 

before break) and 3.8 (break before make) along with the glitch magnitude of the 

output bus. 

 

Figure 3.7 : a) no special switching, b) Make Before Break, c) output glitch. 

 

Figure 3.8 : a) no special switching, b) Break Before Make, c) output glitch. 

Results of this experiment is given in Table 3.3. 
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Table 3.3 : Switching order and its effect on SFDR. 

Architecture SFDR (dB) 

No special switching architecture 75.08 

Make before break 75.13 

Break before make 75.02 

Glitch magnitude is at a level not affected by the switching order. Although 

simulations showed no significant effect, switching order is kept to be a make-

before-break scheme for good practice. 

Increasing the current on the string to reduce glitches proved to work very well as 

shown in Figure 3.9.  

 

Figure 3.9 : SFDR vs. string resistance (1). 

As it can be seen, for the proposed final architecture SFDR is 87.87 dB SFDR when 

the string is constructed with 1.5 Ω resistors giving a string current of 10 mA. Note 

that this figure reflects the performance of the final design, many aspects of the 

design are yet to be described in the following chapters. 
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3.3 Switches and Resistance Calibration 

Switch sizes are primarily chosen to accommodate the simplified DAC model 

settling time requirement presented section 2.2.1.Third switch bank operates with 64 

switches in parallel so it is reasonable to choose these switches to have minimum 

size (420n/350n) to reduce parasitic and terminal capacitances that will couple to the 

output bus. For the same reason, the high on resistance per switch will not affect the 

output bus resistance significantly. The said variation across the input range of the 

DAC for the minimum sized third switch bank is given below in Figure 3.10. 

 

Figure 3.10 : SW3 on-resistance variation. 

64 of these switches in parallel result in a 15 ohm variation across the string. 

Compensation resistors cannot eliminate this effect due to the fact that, for every 

MSB pattern, the third switch bank will be operating at a different node voltage. 

Efforts to reduce this effect by using a constant Vgs switching architecture results in 

insignificant performance improvement on a schematic level, with a reduced input 

range and a major increase in layout complexity. Plus, the OPAMP input capacitance 

seen by each switch is only 10 fF. 
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1
st
 and 2

nd
 level switches are connected in series and are therefore chosen to be much 

bigger (4u/350n) to reduce the baseline on resistance. A 5-bit model of our string-

sw1-sw2 block of the DAC was constructed, and the on resistance of the switches ere 

measured for all codes. This profile was extrapolated to fit a 10-bit string, 1024 

unique resistors to compensate for the variable string equivalent resistance was 

generated, and these resistors were placed as series resistors at each node of the 

string along with the string compensation resistors given in Figure 3.6. The on 

resistance profile and the resulting compensation resistors are given in Figure 3.11 

and Figure 3.12 respectively.  

 

Figure 3.11 : SW1 and SW2 on-resistance variation. 

Note that the compensation resistor profile for switch bank 1 and switch bank 2 are 

the same. 
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Figure 3.12 : Compensation resistors for SW1 and SW2. 

Below in Figure 3.13 is the final compensation resistor profile, accounting for the 

string and the first two switch banks. 

 

Figure 3.13 : Compensation resistors for string, SW1 and SW2. 
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Table 3.4 below shows comparison in SFDR when this set of compensation resistors 

is included in the design. Note that the following results are much lower than the 

ultimately achieved 87.5 dB SFDR - since many other design improvements are 

missing from this test-bench to only show the effect of resistive calibration. 

Table 3.4 : Effect of compensation resistors on SFDR. 

16-bit architecture with SFDR (dB) 

No compensation resistors 75.12 

With compensation resistors 78.78 

Second, and perhaps a more elegant way to compensate for switch bank 

nonlinearities (on resistance, charge injection, data feedthrough) is to use a constant 

Vgs switch architecture throughout the design as shown below in Figure 3.14 (figure 

shows the first switch bank, but the architecture is the same). 

 

Figure 3.14 : Constant VGS switch cell basic architecture. 

Here, the switches at this bank are selected in an XY-decoded fashion with a NAND 

gate as explained in section 3.2. The NAND gate switches the true constant Vgs 

architecture that selects the main NMOS. Constant Vgs switches are transmission 

gates to accommodate for the range of the ON and OFF gate voltages. These voltages 

are selected from auxiliary strings that take their reference from the digitally 

programmable bandgap reference, just as the main string. For all switch banks to 

operate with constant Vgs voltages, 16 auxiliary string are required, all of which 

consists of 32 resistors. In addition to these auxiliary strings, such an architecture 

requires 2 separate switch banks (one PMOS, one NMOS) to feed the varying on and 

off voltages to the third switch bank. This solution‟s main drawback is its voltage 

range limitations. Voltage ranges for the main string and constant Vgs auxiliary 
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strings are determined experimentally to ensure all ON switches are in triode and all 

OFF switches are in cutoff in all possible code transitions as shown below in Table 

3.5.kjhjkgkjhkjhkjhhkjh 

Table 3.5 : DAC reference voltage ranges for constant VGS switching. 

String Range (V) 0.4 – 1 

Vgs off Range (V) 0 – 0.6 

Vgs on Range (V) 2.7 – 3.3 

Allowing for true constant Vgs operation almost halves the range of the string (used 

to be 1 V), which worsens transient noise. Using 5 transistors instead of 1 for a single 

switch cell and 16 auxiliary strings is another problem, which becomes more 

apparent in the layout phase. Schematic level increase in performance given in Table 

3.6 is practically the same as using compensation resistors, and it is an indicator that 

nonlinear charge injection and data feed-through are not dominant dynamic error 

mechanisms. In the experiment below, there are compensation resistors in place for 

the string but not for the switches. 

Table 3.6 : Effect of constant VGS switching on SFDR. 

 

 

 

Ultimately, this architecture is not used and is replaced by unique compensation 

resistors for the switch banks as explained in the previous subsection. 

An experiment was conducted to get a better understanding of this tradeoff by editing 

out the overlap capacitances of all switches from the netlist in an effort to manually 

eliminate data-feedthrough. The results are below in Table 3.7. As it can be seen, 

code dependent data feedthrough seems to cause no performance problems. 

Table 3.7 : Effects of data feedthrough on SFDR. 

 

 

 

Figure 3.15 is a continuation of Figure 3.9, shows a comparison of using constant Vgs 

versus using compensation resistors to balance varying switch on resistances within 

the final design. 

16-bit architecture with SFDR (dB) 

No special switching 75.12 

Constant  Vgs switching 78.11 

16-bit architecture with SFDR (dB) 

Unmodified netlist 75.12 

Overlap capacitances manually removed 75.05 
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Figure 3.15 : SFDR vs. string resistance (2). 

As it can be seen, the proposed resistive compensation architecture performs much 

better as a part of the whole design. 

3.4 Interpolating OPAMP, Velocity Saturation, Capacitive Calibration 

The OPAMP architecture used for this design is a PMOS folded-cascode, gain-

boosted, Monticilli Class-AB output as shown below in Figure 3.16. 
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Figure 3.16 : Interpolating OPAMP. 

The positive input PMOS is separated into 64 gates to interpolate the thermometer 

decoded 6 LSBs supplied from the third switch bank. Class-AB output transistors are 

operated at velocity saturation to allow for high linearity. To achieve this, these two 

transistors alone sink/source ~15mA. Other branch currents are given below in 

Figure 3.17. In order to preserve high gain, gain boosting of 1
st
 stage cascade 

transistors are used. 

 

Figure 3.17 : Interpolating OPAMP currents. 

Sweeping the input for the full scale and evaluating the operating regions for all the 

transistors determines the range of the OPAMP. This range is then optimized 
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considering the design as a whole. Analysis of this range is given above in Figure 

3.3. OPAMP operating range is determined to be 0.325 V - 1.325 V. 

Frequency response of the 6-bit I-OPAMP for a 1 MHz (f0), 32 MHz (fs) full-scale 

signal is given below in Figure 3.18. 

 

Figure 3.18 : Interpolating OPAMP frequency response (90 dB SFDR). 

Driving the output transistors in their velocity saturation region (shown in Figures 

3.19 and 3.20) by taking advantage of short channel effects is key to the performance 

of the OPAMP, and therefore the DAC. 

Equation below shows that for short channel devices, ID increases linearly with VGS – 

VT rather than quadratically in the saturation region.  

        
 

 
*            

   
 

 
+     (3.1) 
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Figure 3.19 : Velocity saturation in short channel devices (ID vs. VDS). 

 

Figure 3.20 : Velocity saturation in short channel devices (ID vs. VGS). 

As it can be seen, saturation region of short channel devices are more linear than for 

long-channel devices. Comparison of driving the output transistors in saturation 

versus velocity saturation is given in Table 3.8 for the same W/L ratio. 

Table 3.8 : Short channel effects on SFDR. 
 

 

 

 

 

OPAMP output stage transistor region SFDR (dB) 

Saturation (long-channel) 80.14 

Velocity saturation (short-channel) 90.25 
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The last switch bank takes the 4 differential dual-outputs coming from the second 

switch bank, and creates 4 groups of 64 high or low node voltages to be resolved as 6 

additional LSBs by the interpolating OPAMPs as shown below in Figure 3.21 and 

3.22. 

4 groups refer to the main output (VOUT), differential output (VOUT_D), and their 

inverses to be used by the dummy interpolating OPAMPs to balance load 

capacitance on the output busses for every code. At any time, somewhere between 0 

and 64 switches connect the output busses to the interpolating OPAMP differential 

pairs for the unmodified architecture. 

 

Figure 3.21 : Switch bank 3. 

 

Figure 3.22 : Dummy interpolating OPAMPs and SW3. 
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With a dummy architecture employed, the capacitive load on the output bus is 

always from 64 switches and diff pair inputs which comes to about 640 fF. SFDR 

comparison of using dummy switches and OPAMPs are given below in Table 3.9. 

Table 3.9 : Effect of dummy output stages on SFDR. 

 

 

 

With the techniques outlined in the previous subchapters, SFDR for a 1 MHz (f0), 32 

MHz (fs) full-scale signal is up to ~88 dB. 

3.5 Pre-charge Stage and LSB Sensitivity 

The following simulations concern a pre-charge block between first and second 

switch banks. At any point in time, 1 loop from the first stage is connected to the 

output bus via the second switch bank and the remaining 31 loops will float. The 

following Figure 3.23 shows this operation with just a few wires instead of all 32 for 

easy viewing. The top segment is the analog representation of the digital input. 

Middle segment show a few wires from VHLA (one of the output busses). As it can 

be seen, when the loop is connected, the signal follows the corresponding segment on 

the sine wave, and when it is disconnected it drops to some arbitrary voltage. The 

bottom segment on the plot are the corresponding looptaps of a few wires (same 

colors belong to same loops), which are not connected to any nodes. 

Zooming into this plot in Figure 3.24 reveals that these nodes not only float at 

arbitrary voltages, but also drift due to charge leakage. Also there is quite a bit of 

glitches on these floating nodes due to switching activity on the string side. 

Final architecture SFDR (dB) 

Without capacitive compensation 78.78 

With capacitive compensation 87.87 
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Figure 3.23 : Input to the second switch bank (no pre-charge). 

 

Figure 3.24 : Input to the second switch bank (no pre-charge) zoomed in. 

Implementing a pre-charge stage as shown in Figure 3.25 connects the 31 floating 

loops to the tap voltages on the loops, therefore keeping the node ready at an 

appropriate voltage for an eventual connection. The following Figure 3.26 shows the 

same segment of the bus with a pre-charge stage in between stages. 
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Figure 3.25 : Pre-charge switch placement. 

 

Figure 3.26 : Input to the second switch bank (with pre-charge). 

Zooming into the same section in Figure 3.27 shows that disconnected loops remain 

at an appropriate and constant voltage until they are connected again. Glitches on 

disconnected nodes are largely reduced. 
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Figure 3.27 : Input to the second switch bank (with pre-charge) zoomed in. 

The results from these two experiments tested for 8 LSB patterns in Table 3.10. 

Table 3.10 : Effect of pre-charge on SFDR. 

No Precharge SFDR (dB) With Precharge SFDR (dB) 

MEAN 87.87 MEAN 87.67 

STD. DEV 2.53 STD. DEV 1.75 

As it can be seen, a pre-charge stage doesn‟t necessarily increase SFDR but majorly 

improves the LSB dependence. This can easily be explained by the fact that 

nonlinear glitches that are unique to different LSB not addressed by the pre-charge 

stage cause a larger deviation in SFDR results. 

3.6 Instrumentation Amplifier 

The final design at this point has a differential output which is the common mode of 

operation for DACs that are used as a part of a bigger mixed signal system. But for 

use as a discrete component, a single ended output is preferred. Therefore the final 

architecture is designed to offer both single ended and differential outputs. Figure 

3.28 shows the 6-bit instrumentation amplifier used within the basic instrumentation 

amplifier configuration which is a common differential to single-ended converter 

architecture. 

Compensation network of the OPAMPs in the first stage is optimized for the 

instrumentation amplifier configuration. This architecture by itself has practically the 

same SFDR as the differential output configuration, but within the design causes an 

added distortion as shown in Table 3.11. This is acceptable considering the single 

ended output is optional and the fact that any external differential-to-single-ended 

conversion would result in a similar performance drop anyway. 
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Figure 3.28 : Instrumentation amplifier configuration. 

Table 3.11 : Instrumentation amplifier configuration. 

 

 

 

 

3.7 Voltage References 

Voltage references are supplied from a 8-bit digitally programmable internal band-

gap reference with the Brokaw structure as the band-gap core as shown in Figure 

3.29. OPAMP bias currents are generated with a 0tc architecture to ensure a 60ppm 

1.24 V nominal output. All required voltages can be selected from the resistor string 

simultaneously. Voltage reference outputs are: STRING_REF_TOP (1.325 V), 

STRING_REF_BOTTOM (0.325 V) and AVDD (3.3 V). Please note that this block 

is a part of our design lab‟s standard cell library. 

All results up to this point were simulated with ideal voltage references. Table 3.12 

below shows the final design SFDR for a 1 MHz (f0), 32 MHz (fs) full-scale signal, 

with references driven with real buffers. 

Final architecture SFDR (dB) 

Differential output (previous sections) 87.87 

Single-ended output (instrumentation) 84.37 
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Figure 3.29 : Brokaw band-gap reference. 

Table 3.12 : Real references. 

 

 

 

 

A less than 1 dB drop with non-ideal voltage reference sources is perfectly 

acceptable. 

 

 

 

 

 

Final architecture SFDR (dB) 

With ideal references 87.87 

With real OPAMP driven references 87.04 
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3.8 Routine Simulations 

In this section, results of a few routine simulations that operate the device at various 

conditions are presented. 

3.8.1 Temperature sweep 

The completed architecture SFDR vs. temperature is given below in Figure 3.30 

 

Figure 3.30 : SFDR vs. temperature. 
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3.8.2 Input frequency sweep 

The completed architecture SFDR vs. input frequency is given below in Figure 3.31 

 

Figure 3.31 : SFDR vs. input frequency. 
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3.8.3 Output magnitude range sweep 

The completed architecture SFDR vs. output magnitude and input common mode is 

given below in Figure 3.32 and Figure 3.33 respectively. 

 

Figure 3.32: SFDR vs. output magnitude (nom: 2 Vpp). 

 

Figure 3.33 : SFDR vs. input common mode (nom: 0.825 V). 



51 

3.8.4 INL/DNL 

Input for the integral non-linearity test is provided by an ideal 16-bit ADC written in 

VerilogAMS. Code transition happen every 1us which is ample time for 16-bit 

settling. Expression to generate the plots is given below. 

                                  (3.2) 

VOUTIDEAL is generated by a 16-bit DAC written in VerilogAMS. The completed 

architecture INL is given below in Figure 3.34. 

 

Figure 3.34 : 16-bit INL. 

Note that, what seems like 1 LSB jumps are in fact integrated over hundreds of 

codes. 
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The completed architecture DNL is given below in Figure 3.35 

 

Figure 3.35 : 16-bit DNL. 
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3.8.5 Mismatch 

Mismatch analysis for all switch bank, current source and differential pair transistors 

are given in this section. Unfortunately, resistor mismatch models for the resistors 

used in the design (N+ polys resistors with silicide) are not included in TSMC 

process models, but minimum resistor area criteria for true 10-bit performance is 

met. That is acceptable anyways, since DC trimming is assumed in this work. 

The completed architecture mismatch histogram for 20 runs is given below in Figure 

3.36. 

 

Figure 3.36 : Element mismatch SFDR histogram. 
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3.8.6 Corner analysis (schematic) 

PVT corners analysis for SS, FF, TT process variation, -40-25-85 temperature 

variation and 3.2-3.3-3.4 supply voltage variation is given below in Table 3.13. 

Table 3.13 : Schematic corners. 

Corner Supply (V) Process Temperature (°C) SFDR (dB) 

1 (N) 3.3 TT 27 88.74 

2 3.3 FF 27 87.00 

3 3.3 SS 27 80.25 

4 3.3 TT -40 90.00 

5 3.3 FF -40 85.87 

6 3.3 SS -40 86.82 

7 3.3 TT 85 83.79 

8 3.3 FF 85 85.72 

9 3.3 SS 85 77.26 

10 3.2 TT 27 83.93 

11 3.2 FF 27 87.97 

12 3.2 SS 27 76.49 

13 3.2 TT -40 91.26 

14 3.2 FF -40 88.25 

15 3.2 SS -40 81.13 

16 3.2 TT 85 80.08 

17 3.2 FF 85 86.68 

18 3.2 SS 85 74.12 

19 3.4 TT 27 87.34 

20 3.4 FF 27 86.21 

21 3.4 SS 27 84.17 

22 3.4 TT -40 89.02 

23 3.4 FF -40 84.43 

24 3.4 SS -40 90.59 

25 3.4 TT 85 86.07 

26 3.4 FF 85 84.96 

27 3.4 SS 85 80.37 

Most corners are satisfied for over 80 dB SFDR, except SS process corners at high 

temperature and low supply voltage (just below the 80 dB mark), which is 

acceptable. The design is optimized for the TT corner, which is statistically much 

more likely to occur than a SS corner. We did not want to maximize SS corner 

performance at the expense of TT corner performance. SFDR is maintained at over 

80 dB at 85°C. 
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4.  LAYOUT 

4.1 Floorplan 

Symbolic floor plan for the design is shown below in Figure 4.1. Approximate size 

of the blocks is in scale relative to each other. Size of the device as it is shown below 

is expected to be 1.75mm x1.75mm. Multiple incremental versions were made for 

every stage of this design over the past year. Layout screenshots in this report are the 

final iterations. 

 

Figure 4.1 : Symbolic floorplan. 

4.2 String and Switch Bank 1 

Various views of the DRC and LVS clean finalized main string is shown below in 

Figures 4.2, 4.3, 4.4  and 4.5. 
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Figure 4.2 : Resistor string w/ compensation resistors and SW1. 
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Figure 4.3 : Resistor string w/ compensation resistors and SW1 (zoom 1). 

 

Figure 4.4 : Resistor string w/ compensation resistors and SW1 (zoom 2). 



58 

 

Figure 4.5 : Resistor string w/ compensation resistors and SW1 (zoom 3). 

DRC and LVS clean finalized SW1 separate from the string is shown below in 

Figure 4.6. Four of these cells arranged symmetrically can be roughly seen in Figure 

4.5 (center). 
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Figure 4.6 : SW1. 

4.3 Switch Bank 1 

DRC and LVS clean finalized the second switch bank is shown below in Figure 4.7. 

This structure connects to the 4 output busses (VHLA_OUT, VHLB_OUT, 

VHLA_D_OUT, VHLB_D_OUT), then repeated 32 times for the 32 main string 

loops shown below in Figure 4.8. 

 

 

Figure 4.7 : SW2 (one cell). 
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Figure 4.8 : SW2 a) whole block b) zoom 1 c) zoom 2. 

 



61 

4.4 Switch Bank 3 

DRC and LVS clean finalized third switch bank is shown below in Figure 4.9. Just 

like SW2, the whole block is a thin strip.This structure is repeated 2 times for 

differential output, then repeated 64 times for the 6 LSBs. 

 

Figure 4.9 : SW3 whole block zoomed. 
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This block attaches to the 2
nd

 switch bank as shown below in Figure 4.10. 

 

 

Figure 4.10 : SW2 and SW3 whole block zoomed. 
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4.5 Interpolating OPAMP 

DRC and LVS clean finalized interpolating OPAMP is shown below in Figure 4.11. 

 

 

Figure 4.11 : Interpolating OPAMP. 

Connecting the compact differential pair (bottom left corner of Figure 4.11) of the 

interpolating OPAMP to the long switch 3 bank caused performance issues due to 

unequal connection lengths. So the differential pair has been redesigned as part of 

switch bank 2 and 3 as shown in Figure 4.12. 

 

Figure 4.12 : Differential pair (rightmost), SW3 (middle) and SW2 (left most). 

Interpolating OPAMPs are attached to this layout as shown in Figure 4.13, forming 

the second main layout piece (switch bank 2, switch bank3, differential pair, 

interpolating OPAMPs), first main layout piece being (string, compensation resistors, 

switch 1 bank). 



64 

 

Figure 4.13 : Interpolating OPAMPs (rightmost), differential pair, SW3 and SW2 

(left most). 
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4.6 Complete DAC Core Layout 

DRC and LVS clean finalized differential output layout is given below in Figure 

4.14. 

 

Figure 4.14 : Interpolating OPAMPs (rightmost), differential pair, switch bank 3 and 

switch bank 2, string and switch bank 1 (left most). 
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4.7 Instrumentation Amplifier Configuration 

DRC and LVS clean finalized single-ended output layout is given below in Figure 

4.15. 

 

Figure 4.15 : Instrumentation amplifier configuration DAC core. 
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4.8 Bandgap Reference 

DRC and LVS clean finalized bandgap reference core and its digitally programmable 

resistor string is shown below in Figures 4.16 and 4.17. Please note that this block is 

a part of our design lab‟s standard cell library. 

 

Figure 4.16 : Brokaw bandgap reference core. 

 

Figure 4.17 : Digitally programmable resistor string. 
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4.9 Decoder 

Place-and-routed DAC decoder is shown below in Figure 4.18. 

 

Figure 4.18 : Decoder. 
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4.10 Extracted Results 

Table 4.1 compares the schematic and layout-extracted SFDR results of the 

differential output and single ended full DAC simulations. PVT corners analysis for 

SS, FF, TT process variation, -40-25-85 temperature variation and 3.2-3.3-3.4 supply 

voltage variation is given below in Table 4.2 for the single ended DAC. 

Table 4.1 : Single ended vs. differential output (layout). 

Schematic SFDR (dB) Layout Extracted SFDR (dB) 

Differential output 87.87 Differential output 84.39 

Single-ended output 84.37 Single-ended output 83.82 

Table 4.2 : Layout corners. 

Corner Supply (V) Process Temperature (°C) SFDR (dB) 

1 (N) 3.3 TT 27 86.31 

2 3.3 FF 27 84.4 

3 3.3 SS 27 82.34 

4 3.3 TT -40 88.17 

5 3.3 FF -40 86.11 

6 3.3 SS -40 84.24 

7 3.3 TT 85 84.82 

8 3.3 FF 85 85.01 

9 3.3 SS 85 77.13 

10 3.2 TT 27 86.27 

11 3.2 FF 27 86.48 

12 3.2 SS 27 75.64 

13 3.2 TT -40 88.11 

14 3.2 FF -40 88.34 

15 3.2 SS -40 77.37 

16 3.2 TT 85 81.39 

17 3.2 FF 85 85.06 

18 3.2 SS 85 72.38 

19 3.4 TT 27 86.25 

20 3.4 FF 27 81.58 

21 3.4 SS 27 86.14 

22 3.4 TT -40 88.12 

23 3.4 FF -40 83.43 

24 3.4 SS -40 88.00 

25 3.4 TT 85 84.79 

26 3.4 FF 85 82.43 

27 3.4 SS 85 83.11 
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Most corners are satisfied for over 80 dB SFDR, except SS process corners at high 

temperature and low supply voltage (just below the 80 dB mark), which is 

acceptable. SFDR with input frequency for the single-ended output design and the 

differential output design is givenbelow in Figure 4.19. 

 

Figure 4.19 : Final layout SFDR vs. output frequency. 

The design is is completed to success. Tape-out is expected to be April 2015. Post 

tape-out testing preparations have been  made by measuring the TI DAC8580, which 

is a high performance 16-bit voltage output DAC with similar applications to the 

design proposed in this work. 
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5.  CONCLUSION 

SFDR performance of the final design in schematic and layout is given again in 

Figure 5.1 below along with the performance of the design referenced in [7] and the 

basic resitor string architecture given in Figure 1.10 under the same conditions. 

 

 

 

Figure 5.1 : SFDR vs. output frequency summary. 

This work, realised what E. Topcu modelled in [7] in schematic and layout, 

prioritized the error mechanisms proposed in [7] along with new error mechanisms 

found during my research, investigated architectures that can reduce these effects and 

their trade-offs with other error mechanisms, and proposed a layout-complete DAC-

core design that surpasses all previous theoretical work and current state-of-the-art 

by a significant amount in dynamic linearity performance. 
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Tape-out is expected to be April 2015 at TSMC. Post-tape-out testing preparations 

have been made by measuring the TI DAC8580 to specifications – a state-of-the-art 

high performance 16-bit voltage output DAC with similar applications to the design 

proposed in this work. 
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APPENDICES 

APPENDIX A: Decoder Verilog Code 

APPENDIX B: Ideal ADC-DAC Testbench VerilogAMS Code 

APPENDIX C: Calibration Resistor Generating Script 
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APPENDIX A: Decoder Verilog Code 

 

//Verilog HDL for "CO_THESIS2", "decoder_16b2_1" "verilog" 

// 

//This code is used to synthesize a decoder for switching Resistor string outputs, 

//         Second switch bank  

//         Interpolator amplifier's inputs 

//Code includes: 

//  Precharge output 

//  Clock input (operates at posedge clk) 

 

`timescale 10ps/1ps 

 

module decoder_16b2_2 (DIN, DIN6, CLK, ROW, ROW_D, COL, COL_D,  

SW2_A, SW2_AD, SW2_B, SW2_BD, ENDBIT, ENDBIT_D, SWPC_A, 

SWPC_B, SWPC_AD, SWPC_BD, DOUT_64, DOUT_64D, DOUTDUMMY_64, 

DOUTDUMMY_64D); 

 

//digital 16 bit input 

input  [9:0]    DIN;     //10 bit part  

input  [5:0] DIN6;  //6 bit part 

 

//Clock input 

input CLK; 

 

//******DECODER OUTPUTS***************************** 

 

//First switch bank 

output [63:0]   ROW;  //row output 

output [63:0]   ROW_D;  //row output's inverse 

output [15:0]   COL;  //column output 

output [15:0]   COL_D;  //column output's inverse 

output          ENDBIT;  //one bit output for 1024th code 

output          ENDBIT_D; //inverse of ENDBIT 

 

reg [63:0]   ROWreg;  //row output 

reg [63:0]   ROW_Dreg;  //row output's inverse 

reg [15:0]   COLreg;  //column output 

reg [15:0]   COL_Dreg;  //column output's inverse 

reg         ENDBITreg;  //one bit output for 1024th code 

reg         ENDBIT_Dreg; //inverse of ENDBIT 

 

 

//Second switch bank 

output [31:0]   SW2_A;  //output for 2nd switch bank, A 

output [31:0]   SW2_AD;  //inverse of SW2_A 

output [31:0]   SW2_B;  //output for 2nd switch bank, B  

output [31:0]   SW2_BD;  //inverse of SW2_B 

output [31:0]   SWPC_A;  //precharge switch for output A 

output [31:0]   SWPC_AD; //inverse of SWPC_A 
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output [31:0]   SWPC_B;  //precharge switch for output B 

output [31:0]   SWPC_BD; //inverse of SWPC_B 

 

reg [31:0]   SW2_Areg ;  //output for 2nd switch bank, A 

reg [31:0]   SW2_ADreg ;  //inverse of SW2_A 

reg [31:0]   SW2_Breg ;  //output for 2nd switch bank, B  

reg  [31:0]   SW2_BDreg ;  //inverse of SW2_B 

reg  [31:0]   SWPC_Areg ;  //precharge switch for output A 

reg  [31:0]   SWPC_ADreg ; //inverse of SWPC_A 

reg [31:0]   SWPC_Breg ;  //precharge switch for output B 

reg  [31:0]   SWPC_BDreg ; //inverse of SWPC_B 

 

//Third switch bank 

output [63:0]   DOUT_64; //6 to 64 bit decoder output 

output [63:0]   DOUT_64D; //inverse of DOUT_64 

output [63:0]   DOUTDUMMY_64; //dummy output 

output [63:0]   DOUTDUMMY_64D; //inverse of dummy output 

 

reg  [63:0]   DOUT_64reg ; //6 to 64 bit decoder output 

reg  [63:0]   DOUT_64Dreg ; //inverse of DOUT_64 

reg  [63:0]   DOUTDUMMY_64reg ; //dummy output 

reg  [63:0]   DOUTDUMMY_64Dreg ; //inverse of dummy output 

 

//wires used for assignments and connections 

wire [9:0]    din_msb; 

wire [5:0]    din_6b; 

wire [15:0]   din_all; 

wire [63:0]   ROW; 

wire [63:0]   ROW_D; 

wire [15:0]   COL; 

wire [15:0]   COL_D; 

wire          ENDBIT; 

wire          ENDBIT_D; 

wire [31:0]   SW2_A; 

wire [31:0]   SW2_AD; 

wire [31:0]   SW2_B; 

wire [31:0]   SW2_BD; 

wire [31:0]   SWPC_A; 

wire [31:0]   SWPC_AD; 

wire [31:0]   SWPC_B; 

wire [31:0]   SWPC_BD; 

wire [63:0]   DOUT_64; 

wire [63:0]   DOUT_64D; 

wire [63:0]   DOUTDUMMY_64; 

wire [63:0]   DOUTDUMMY_64D; 

 

 

// registers to store values for decoding 

reg     whatsup; 

reg [4:0]    a; 
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reg [5:0]    b; 

reg [6:0]    c; 

reg [63:0]   row_bin; 

reg [63:0]   row_bin2; 

reg [63:0]   row_temp; 

reg [63:0]   row_i; 

reg [63:0]   row_i2; 

reg [63:0]   row_shiftone; 

reg [63:0]   row_shiftone2; 

reg [63:0]   row_final; 

reg [63:0]   row_final2; 

reg [63:0]   row_end; 

reg [15:0]   col_bin; 

reg [15:0]   col_bin2; 

reg [15:0]   col_temp; 

reg [15:0]   col_i; 

reg [15:0]   col_i2; 

reg [15:0]   col_shiftone; 

reg [15:0]   col_shiftone2; 

reg [15:0]   col_final; 

reg [15:0]   col_final2; 

reg [15:0]   col_end; 

reg [9:0]    din_msb2; 

reg          end_bit; 

reg [31:0]   sw2_bin_A; 

reg [31:0]   sw2_temp; 

reg [31:0]   sw2_i_A; 

reg [31:0]   sw2_final_A; 

reg [31:0]   sw2_final_two_A; 

reg [31:0]   sw2_bin_B; 

reg [31:0]   sw2_i_B; 

reg [31:0]   sw2_final_B; 

reg [31:0]   sw2_final_two_B; 

reg [63:0]   dout_64; 

reg [63:0]   dout_64d; 

reg [63:0]   dout_temp; 

reg [63:0]   dout_final; 

reg [63:0]   dout_final_z; 

 

reg [9:0]    d; 

reg [9:0]    din_msb_d; 

reg [9:0]    din_msb_d2; 

reg [63:0]   row_bin_d; 

reg [63:0]   row_bin_d2; 

reg [63:0]   row_i_d; 

reg [63:0]   row_i_d2; 

reg [63:0]   row_shiftone_d; 

reg [63:0]   row_shiftone_d2; 

reg [63:0]   row_final_d; 

reg [63:0]   row_final_d2; 
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reg [63:0]   row_end_d; 

reg [15:0]   col_bin_d; 

reg [15:0]   col_bin_d2; 

reg [15:0]   col_i_d; 

reg [15:0]   col_i_d2; 

reg [15:0]   col_shiftone_d; 

reg [15:0]   col_shiftone_d2; 

reg [15:0]   col_final_d; 

reg [15:0]   col_final_d2; 

reg [15:0]   col_end_d; 

reg          end_bit_d; 

reg [31:0]   sw2_bin_A_d; 

reg [31:0]   sw2_i_A_d; 

reg [31:0]   sw2_final_A_d; 

reg [31:0]   sw2_final_two_A_d; 

reg [31:0]   sw2_bin_B_d; 

reg [31:0]   sw2_i_B_d; 

reg [31:0]   sw2_final_B_d; 

reg [31:0]   sw2_final_two_B_d; 

 

assign din_msb = DIN[9:0]; 

assign din_6b = DIN6[5:0]; 

assign din_all = {DIN, DIN6}; 

 

always @ (din_msb, din_6b, din_all) 

begin 

 

//initial assignments for division 

a = 5'b10000;  //16 

b = 6'b100000;  //32 

c = 7'b1000000;  //64 

 

d = 10'b1111111111;  

//initial assignment for decoding  

row_temp = 64'hFFFFFFFFFFFFFFFF; 

col_temp = 16'hFFFF; 

sw2_temp = 32'hFFFFFFFF; 

dout_temp = 64'hFFFFFFFFFFFFFFFF; 

 

din_msb_d = d-din_msb; 

 

//starting decoding code 

   if(din_msb == 10'b0000000000) begin  //when input is zero 

 

// normal  

      end_bit = 1'b1;          //make endbit 1 

      end_bit_d = 1'b0; 

      row_bin = din_msb / a;  //row = input/16 

           if(row_bin%2==0) begin //if (row is even) 

           col_bin = din_msb % a; //column = input%16 
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           end else begin  //else 

           col_bin = 4'hF - (din_msb%a);//column = 15 - (input%16) 

           end 

 

      sw2_bin_A = din_msb / b;  //swich A number = input/32 

 

//this operation creates decoder output for rows and columns. Decoding operation is 

the same for other outputs 

 

 

      row_i = (row_temp << (row_bin));   //shift row_temp by row 

number Example: 11111111111111->11111111000000 

      row_shiftone = row_i << 1;   //shift  row_i by 1  

 11111111000000->11111110000000 

      row_final = (row_i ^ row_shiftone);  //xOR these two  

  00000001000000 

 

      col_i = (col_temp << (col_bin));   //shift column by column number 

      col_shiftone = col_i << 1;   //shift col_i by 1 

      col_final = (col_i ^ col_shiftone);  //xOR these two 

 

      row_end = row_final; 

      col_end = col_final; 

 

//decoding of switch bank A 

      sw2_i_A = (sw2_temp << (sw2_bin_A)); 

      sw2_final_A = sw2_i_A << 1; 

      sw2_final_two_A = (sw2_i_A ^ sw2_final_A); 

 

//assign switch A to switch B 

      sw2_i_B = sw2_i_A; 

      sw2_final_B = sw2_final_A; 

      sw2_final_two_B = sw2_final_two_A; 

 

 

//normal end 

 

//Decoding operation for differential output 

//in differential operation we decode the previous code from the input and OR these 

two decoded outputs 

//Example: 00000001000000|00000000100000 -> 00000001100000  

 

//diff 

      din_msb_d2 = din_msb_d-1'b1;   //for defining previous code 

 

      row_bin_d = din_msb_d / a;    

      if(row_bin_d%2==0) begin 

           col_bin_d = din_msb_d % a; 

           end else begin 

           col_bin_d = 4'hF - (din_msb_d%a); 
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      end 

 

      row_bin_d2 = din_msb_d2 / a; 

      if(row_bin_d2%2==0) begin 

           col_bin_d2 = din_msb_d2 % a; 

           end else begin 

           col_bin_d2 = 4'hF - (din_msb_d2%a); 

      end 

 

//decode row 

      row_i_d = (row_temp << (row_bin_d)); 

      row_shiftone_d = row_i_d << 1; 

      row_final_d = (row_i_d ^ row_shiftone_d); 

//decode column 

      col_i_d = (col_temp << (col_bin_d)); 

      col_shiftone_d = col_i_d << 1; 

      col_final_d = (col_i_d ^ col_shiftone_d); 

 

//decode to open previous switch row and coulumn 

      row_i_d2 = (row_temp << (row_bin_d2)); 

      row_shiftone_d2 = row_i_d2 << 1; 

      row_final_d2 = (row_i_d2 ^ row_shiftone_d2); 

 

      col_i_d2 = (col_temp << (col_bin_d2)); 

      col_shiftone_d2 = col_i_d2 << 1; 

      col_final_d2 = (col_i_d2 ^ col_shiftone_d2); 

 

      row_end_d = row_final_d|row_final_d2; // OR operation for differential 

row output  

      col_end_d = col_final_d|col_final_d2; // OR operation for differential column 

output 

 

//decode process for other switch banks 

      sw2_bin_A_d = din_msb_d / b;      

      sw2_bin_B_d = din_msb_d2 / b; 

      sw2_i_A_d = (sw2_temp << (sw2_bin_A_d)); 

      sw2_final_A_d = sw2_i_A_d << 1; 

      sw2_final_two_A_d = (sw2_i_A_d ^ sw2_final_A_d); 

      sw2_i_B_d = (sw2_temp << (sw2_bin_B_d)); 

      sw2_final_B_d = sw2_i_B_d << 1; 

      sw2_final_two_B_d = (sw2_i_B_d ^ sw2_final_B_d); 

 

// diff end 

 

   end else if (din_msb == 10'b1111111111) begin // FOR CODE 1023 

 

//normal 

 

      end_bit = 1'b0; 

      end_bit_d = 1'b1; 



83 

      din_msb2 = din_msb-1'b1; 

 

      row_bin = din_msb / a; 

      if(row_bin%2==0) begin 

           col_bin = din_msb % a; 

           end else begin 

           col_bin = 4'hF - (din_msb%a); 

      end 

 

      row_bin2 = din_msb2 / a; 

      if(row_bin2%2==0) begin 

           col_bin2 = din_msb2 % a; 

           end else begin 

           col_bin2 = 4'hF - (din_msb2%a); 

      end 

 

      sw2_bin_A = din_msb / b; 

      sw2_bin_B = din_msb2 / b; 

 

      row_i = (row_temp << (row_bin)); 

      row_shiftone = row_i << 1; 

      row_final = (row_i ^ row_shiftone); 

 

      col_i = (col_temp << (col_bin)); 

      col_shiftone = col_i << 1; 

      col_final = (col_i ^ col_shiftone); 

 

      row_i2 = (row_temp << (row_bin2)); 

      row_shiftone2 = row_i2 << 1; 

      row_final2 = (row_i2 ^ row_shiftone2); 

 

      col_i2 = (col_temp << (col_bin2)); 

      col_shiftone2 = col_i2 << 1; 

      col_final2 = (col_i2 ^ col_shiftone2); 

 

      row_end = row_final|row_final2; 

      col_end = col_final|col_final2; 

 

      sw2_i_A = (sw2_temp << (sw2_bin_A)); 

      sw2_final_A = sw2_i_A << 1; 

      sw2_final_two_A = (sw2_i_A ^ sw2_final_A); 

      sw2_i_B = (sw2_temp << (sw2_bin_B)); 

      sw2_final_B = sw2_i_B << 1; 

      sw2_final_two_B = (sw2_i_B ^ sw2_final_B); 

 

// normal end 

 

// diff 

 

      row_bin_d = din_msb_d / a; 
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           if(row_bin_d%2==0) begin 

           col_bin_d = din_msb_d % a; 

           end else begin 

           col_bin_d = 4'hF - (din_msb_d%a); 

           end 

 

 

 

      row_i_d = (row_temp << (row_bin_d)); 

      row_shiftone_d = row_i_d << 1; 

      row_final_d = (row_i_d ^ row_shiftone_d); 

 

      col_i_d = (col_temp << (col_bin_d)); 

      col_shiftone_d = col_i_d << 1; 

      col_final_d = (col_i_d ^ col_shiftone_d); 

 

      row_end_d = row_final_d; 

      col_end_d = col_final_d; 

 

      sw2_bin_A_d = din_msb_d / b; 

      sw2_i_A_d = (sw2_temp << (sw2_bin_A_d)); 

      sw2_final_A_d = sw2_i_A_d << 1; 

      sw2_final_two_A_d = (sw2_i_A_d ^ sw2_final_A_d); 

      sw2_i_B_d = sw2_i_A_d; 

      sw2_final_B_d = sw2_final_A_d; 

      sw2_final_two_B_d = sw2_final_two_A_d; 

 

 

// diff end 

 

   end else begin // FOR REST 

 

//normal 

 

      end_bit = 1'b0; 

      end_bit_d = 1'b0; 

      din_msb2 = din_msb-1'b1; 

 

      row_bin = din_msb / a; 

      if(row_bin%2==0) begin 

           col_bin = din_msb % a; 

           end else begin 

           col_bin = 4'hF - (din_msb%a); 

      end 

 

      row_bin2 = din_msb2 / a; 

      if(row_bin2%2==0) begin 

           col_bin2 = din_msb2 % a; 

           end else begin 

           col_bin2 = 4'hF - (din_msb2%a); 
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      end 

 

      sw2_bin_A = din_msb2 / b; 

      sw2_bin_B = din_msb / b; 

 

      row_i = (row_temp << (row_bin)); 

      row_shiftone = row_i << 1; 

      row_final = (row_i ^ row_shiftone); 

 

      col_i = (col_temp << (col_bin)); 

      col_shiftone = col_i << 1; 

      col_final = (col_i ^ col_shiftone); 

 

      row_i2 = (row_temp << (row_bin2)); 

      row_shiftone2 = row_i2 << 1; 

      row_final2 = (row_i2 ^ row_shiftone2); 

 

      col_i2 = (col_temp << (col_bin2)); 

      col_shiftone2 = col_i2 << 1; 

      col_final2 = (col_i2 ^ col_shiftone2); 

 

      row_end = row_final|row_final2; 

      col_end = col_final|col_final2; 

 

      sw2_i_A = (sw2_temp << (sw2_bin_A)); 

      sw2_final_A = sw2_i_A << 1; 

      sw2_final_two_A = (sw2_i_A ^ sw2_final_A); 

      sw2_i_B = (sw2_temp << (sw2_bin_B)); 

      sw2_final_B = sw2_i_B << 1; 

      sw2_final_two_B = (sw2_i_B ^ sw2_final_B); 

 

// normal end 

 

// diff 

      din_msb_d2 = din_msb_d-1'b1; 

 

      row_bin_d = din_msb_d / a; 

      if(row_bin_d%2==0) begin 

           col_bin_d = din_msb_d % a; 

           end else begin 

           col_bin_d = 4'hF - (din_msb_d%a); 

      end 

 

      row_bin_d2 = din_msb_d2 / a; 

      if(row_bin_d2%2==0) begin 

           col_bin_d2 = din_msb_d2 % a; 

           end else begin 

           col_bin_d2 = 4'hF - (din_msb_d2%a); 

      end 
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      row_i_d = (row_temp << (row_bin_d)); 

      row_shiftone_d = row_i_d << 1; 

      row_final_d = (row_i_d ^ row_shiftone_d); 

 

      col_i_d = (col_temp << (col_bin_d)); 

      col_shiftone_d = col_i_d << 1; 

      col_final_d = (col_i_d ^ col_shiftone_d); 

 

      row_i_d2 = (row_temp << (row_bin_d2)); 

      row_shiftone_d2 = row_i_d2 << 1; 

      row_final_d2 = (row_i_d2 ^ row_shiftone_d2); 

 

      col_i_d2 = (col_temp << (col_bin_d2)); 

      col_shiftone_d2 = col_i_d2 << 1; 

      col_final_d2 = (col_i_d2 ^ col_shiftone_d2); 

 

      row_end_d = row_final_d|row_final_d2; 

      col_end_d = col_final_d|col_final_d2; 

 

      sw2_bin_A_d = din_msb_d2 / b; 

      sw2_bin_B_d = din_msb_d / b; 

 

      sw2_i_A_d = (sw2_temp << (sw2_bin_A_d)); 

 

      sw2_final_A_d = sw2_i_A_d << 1; 

      sw2_final_two_A_d = (sw2_i_A_d ^ sw2_final_A_d); 

      sw2_i_B_d = (sw2_temp << (sw2_bin_B_d)); 

      sw2_final_B_d = sw2_i_B_d << 1; 

      sw2_final_two_B_d = (sw2_i_B_d ^ sw2_final_B_d); 

 

// diff end 

 

   end 

 

//thermometer decoder for third switches 

   dout_64 = dout_temp << (din_6b); 

   dout_64d = ~(dout_64); 

 

 

   if(row_bin2%2==0) begin 

   dout_final = dout_64d; 

   end else begin 

   dout_final = ~(dout_64); 

   end 

 

   whatsup = (din_all/c)%2; 

 

   if(whatsup==0) begin 

   dout_final_z = ~(dout_final); 

   end else begin 
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   dout_final_z = dout_final; 

   end 

 

end 

 

 

always@ (posedge CLK) 

begin  

 

ROWreg <= row_end; 

ROW_Dreg <= row_end_d; 

COLreg <= col_end; 

COL_Dreg <= col_end_d; 

ENDBITreg <= end_bit; 

ENDBIT_Dreg <= end_bit_d; 

 

SW2_Areg <= sw2_final_two_A; 

SW2_ADreg <= sw2_final_two_A_d; 

SW2_Breg <= sw2_final_two_B; 

SW2_BDreg <= sw2_final_two_B_d; 

 

SWPC_Areg <= ~(sw2_final_two_A); 

SWPC_ADreg <= ~(sw2_final_two_A_d); 

SWPC_Breg <= ~(sw2_final_two_B); 

SWPC_BDreg <= ~(sw2_final_two_B_d); 

 

DOUT_64reg <= dout_final_z; 

DOUT_64Dreg <= ~(dout_final_z); 

DOUTDUMMY_64reg <= dout_final_z; 

DOUTDUMMY_64Dreg <= ~(dout_final_z); 

 

end 

 

 

//assigns register values to outputs 

assign ROW = ROWreg; 

assign ROW_D = ROW_Dreg; 

assign COL = COLreg; 

assign COL_D = COL_Dreg; 

assign ENDBIT = ENDBITreg; 

assign ENDBIT_D = ENDBIT_Dreg; 

 

assign SW2_A = SW2_Areg; 

assign SW2_AD = SW2_ADreg; 

assign SW2_B = SW2_Breg; 

assign SW2_BD = SW2_BDreg; 

 

assign SWPC_A = SWPC_Areg; 

assign SWPC_AD = SWPC_ADreg; 

assign SWPC_B = SWPC_Breg ; 
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assign SWPC_BD = SWPC_BDreg; 

 

assign DOUT_64 = DOUT_64reg; 

assign DOUT_64D = DOUT_64Dreg; 

assign DOUTDUMMY_64 = DOUTDUMMY_64reg; 

assign DOUTDUMMY_64D = DOUTDUMMY_64Dreg; 

 

endmodule 
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APPENDIX B: Ideal ADC-DAC Testbench VerilogAMS Code 

 

 

`include "discipline.h" 

`include "constants.h" 

 

module adc_16b (vin, vclk, dout); 

input vin; 

input vclk; 

output [15:0] dout; 

 

electrical vin, vclk; 

electrical [15:0] dout; 

 

parameter real trise = 20p; 

parameter real tfall = 20p;  

parameter real tdel = 0;  

parameter real vlogic_high = 3.0; 

parameter real vlogic_low  = 0; 

parameter real vtrans_clk     = 1.5; 

parameter real vref        = 2.0; 

 

`define NUM_ADC_BITS    16 

   real unconverted; 

   real halfref; 

 

   real vd[0:`NUM_ADC_BITS-1]; 

   integer i; 

 

   analog begin 

 

      @ ( initial_step ) begin 

          halfref = vref / 2; 

      end 

 

      @ (cross(V(vclk) - vtrans_clk, 1)) begin 

         unconverted = V(vin); 

         for (i = (`NUM_ADC_BITS-1); i >= 0 ; i = i - 1) begin 

            vd[i] = 0; 

            if (unconverted > halfref) begin 

               vd[i] = vlogic_high;  

               unconverted = unconverted - halfref; 

        end else begin 

               vd[i] = vlogic_low; 

        end 

            unconverted = unconverted * 2; 

         end 

      end 

       

      V(dout[0])  <+ transition( vd[0],  tdel, trise, tfall ); 
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      V(dout[1])  <+ transition( vd[1],  tdel, trise, tfall ); 

      V(dout[2])  <+ transition( vd[2],  tdel, trise, tfall ); 

      V(dout[3])  <+ transition( vd[3],  tdel, trise, tfall ); 

      V(dout[4])  <+ transition( vd[4],  tdel, trise, tfall ); 

      V(dout[5])  <+ transition( vd[5],  tdel, trise, tfall ); 

      V(dout[6])  <+ transition( vd[6],  tdel, trise, tfall ); 

      V(dout[7])  <+ transition( vd[7],  tdel, trise, tfall );          

      V(dout[8])  <+ transition( vd[8],  tdel, trise, tfall ); 

      V(dout[9])  <+ transition( vd[9],  tdel, trise, tfall ); 

      V(dout[10]) <+ transition( vd[10], tdel, trise, tfall ); 

      V(dout[11]) <+ transition( vd[11], tdel, trise, tfall ); 

      V(dout[12]) <+ transition( vd[12], tdel, trise, tfall ); 

      V(dout[13]) <+ transition( vd[13], tdel, trise, tfall ); 

      V(dout[14]) <+ transition( vd[14], tdel, trise, tfall ); 

      V(dout[15]) <+ transition( vd[15], tdel, trise, tfall ); 

 

`undef NUM_ADC_BITS 

   end 

endmodule 

 

module dac_16b (vd, vout); 

input [15:0] vd; 

output vout; 

electrical [15:0] vd; 

electrical vout; 

parameter real vref  = 2; 

parameter real trise = 20p; 

parameter real tfall = 20p; 

parameter real tdel  = 0; 

parameter real vtrans  = 1.5; 

 

    real out_scaled; // output scaled as fraction of 256 

    real out_scaled_last; // output scaled as fraction of 256 

 

    analog begin 

        out_scaled = 0; 

        out_scaled_last = 0; 

        out_scaled = out_scaled + ((V(vd[15]) > vtrans) ? 32768 : 0); 

        out_scaled = out_scaled + ((V(vd[14]) > vtrans) ? 16384 : 0); 

        out_scaled = out_scaled + ((V(vd[13]) > vtrans) ? 8192 : 0); 

        out_scaled = out_scaled + ((V(vd[12]) > vtrans) ? 4096 : 0); 

        out_scaled = out_scaled + ((V(vd[11]) > vtrans) ? 2048 : 0); 

        out_scaled = out_scaled + ((V(vd[10]) > vtrans) ? 1024 : 0); 

        out_scaled = out_scaled + ((V(vd[9]) > vtrans) ? 512 : 0); 

        out_scaled = out_scaled + ((V(vd[8]) > vtrans) ? 256 : 0); 

        out_scaled = out_scaled + ((V(vd[7]) > vtrans) ? 128 : 0); 

        out_scaled = out_scaled + ((V(vd[6]) > vtrans) ? 64 : 0); 

        out_scaled = out_scaled + ((V(vd[5]) > vtrans) ? 32 : 0); 

        out_scaled = out_scaled + ((V(vd[4]) > vtrans) ? 16 : 0); 

        out_scaled = out_scaled + ((V(vd[3]) > vtrans) ? 8 : 0); 
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        out_scaled = out_scaled + ((V(vd[2]) > vtrans) ? 4 : 0); 

        out_scaled = out_scaled + ((V(vd[1]) > vtrans) ? 2 : 0); 

        out_scaled = out_scaled + ((V(vd[0]) > vtrans) ? 1 : 0); 

                out_scaled_last = vref*out_scaled/65535; 

        V(vout) <+ transition( out_scaled_last, tdel, trise, tfall ); 

        // V(vout) <+ vref*out_scaled/65535; 

    end 

endmodule 
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APPENDIX C: Calibration Resistor Generating Script 

 

clear 

clc 

 

% etting some variables up 

x32 = zeros(1,32); 

x1025 = zeros(1,1025); 

 

for i=1:1:33 

    x33(i) = (i-1)*32; 

end 

 

for i=1:1:1025 

    x1025(i) = i; 

end 

R = 1.56021; 

TOTALCODE=1024; 

TOTALCOARSE=64; 

TOTALFINE=16; 

 

% calculate switch calibration 

ron = [580.85 561.11 543.25 527.01 512.14 498.55 486.05 474.51 463.87 453.96 

444.74 436.14 428.07 420.54 413.46 406.81 400.56 394.65 389.05 383.76 378.72 

373.95 369.41 365.09 360.98 357.05 353.29 349.69 346.24 342.94 339.76 336.72 

333.79]; 

ron = fliplr(ron); 

p = polyfit(x33, ron, 3); 

R_EQ = polyval(p, x1025); 

R_STRING_COMPENSATION = (max(R_EQ)+5)-R_EQ; 

 

% calculate string calibration 

% Initialize arrays 

R_TOP = zeros(1,TOTALCODE); 

R_FINEBOT = zeros(1,TOTALCODE); 

R_COARSE = zeros(1,TOTALCODE); 

R_FINETOP = zeros(1,TOTALCODE); 

R_BOT = zeros(1,TOTALCODE); 

R_A = zeros(1,TOTALCODE); 

R_B = zeros(1,TOTALCODE); 

R_C = zeros(1,TOTALCODE); 

R_D = zeros(1,TOTALCODE); 

R_E = zeros(1,TOTALCODE); 

R_1 = zeros(1,TOTALCODE); 

R_2 = zeros(1,TOTALCODE); 

R_3 = zeros(1,TOTALCODE); 

R_4 = zeros(1,TOTALCODE); 

R_5 = zeros(1,TOTALCODE); 

R_EQ = zeros(1,TOTALCODE); 

for code=1:1:TOTALCODE 
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% Initial model 

R_TOP(code) = (TOTALCOARSE - ceil((code)/TOTALFINE)) * 

((R*(TOTALFINE*R))/(R+(TOTALFINE*R))); 

R_FINETOP(code) = ((mod((TOTALFINE-mod((code), TOTALFINE)), 

TOTALFINE)))*R; 

R_COARSE(code) = R; 

R_FINEBOT(code) = ((TOTALFINE-mod((TOTALFINE-mod((code), 

TOTALFINE)), TOTALFINE)))*R; 

R_BOT(code) = floor((code-1)/TOTALFINE) * 

((R*(TOTALFINE*R))/(R+(TOTALFINE*R))); 

 

% Change naming for clarity 

R_D(code) = R_TOP(code); 

R_A(code) = R_FINEBOT(code); 

R_C(code) = R_COARSE(code); 

R_B(code) = R_FINETOP(code); 

R_E(code) = R_BOT(code); 

 

% Delta-star transformation 

R_1(code) = (R_B(code)*R_C(code))/(R_A(code)+R_B(code)+R_C(code)); 

R_2(code) = (R_A(code)*R_C(code))/(R_A(code)+R_B(code)+R_C(code)); 

R_3(code) = (R_A(code)*R_B(code))/(R_A(code)+R_B(code)+R_C(code)); 

R_4(code) = R_D(code); 

R_5(code) = R_E(code); 

 

% Equivalent string resistance 

R_EQS(code) = R_3(code) + 

((R_4(code)+R_1(code))*(R_5(code)+R_2(code)))/(R_1(code)+R_2(code)+R_4(cod

e)+R_5(code)); 

end 

R_STRING_COMPENSATION_S2 = (max(R_EQS)+5)-R_EQS; 

 

R_STRING_COMPENSATION_S = [R_STRING_COMPENSATION_S2(1024) 

R_STRING_COMPENSATION_S2]; 

ALLCOMP_2 = R_STRING_COMPENSATION + R_STRING_COMPENSATION 

+ R_STRING_COMPENSATION_S; 

 

ALLCOMP = ALLCOMP_2 - (min(ALLCOMP_2)-50); 

 

%resistor values 

for i=1:1:6000 

    x600(i) = 0.1*i; 

end 

 

R_entered = [11.578 20.014 29.93 40.028 49.953 60.043 69.967 80.057 89.982 

100.072 119.921 139.936 159.95 179.643 199.979 224.956 249.933 275.075 300.052 

333.299 366.711 399.958 450.077 500.031 599.938]; 

R_measured = [11.89888114  20.56805221 30.76722265 41.13615569 51.33526126 

61.70427199 71.90325744 82.27231138 92.47142493 102.8405815 123.2723198 

143.8065149 164.3745548 184.9423316 205.5114433 231.1782384 256.8453169 
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282.6843016 308.3506975 342.5190721 376.8585981 411.0254462 462.5735913 

513.8666127 616.5343298]; 

L_generated = [700 1210 1810 2420 3020 3630 4230 4840 5440 6050 7250 8460 

9670 10860 12090 13600 15110 16630 18140 20150 22170 24175 27210 30230 

36270]; 

 

p_E = polyfit(R_measured, R_entered, 3); 

p_L = polyfit(R_entered, L_generated, 3); 

 

R_E_func = polyval(p_E, x600); 

R_L_func = polyval(p_L, x600); 

  

% total resistance an length generation 

res_index = round(ALLCOMP*5); 

W = zeros(1,1025); 

 

for i=1:1:1025 

W(i) = round((R_L_func(round(R_E_func(res_index(i))*10))/10000)*1000)/100; 

end 

 

fid = fopen('compensation_resistors_real3', 'w'); 

fprintf(fid, '.SUBCKT compensation_resistors_real3 '); 

for i = 0:1:(TOTALCOARSE-1) 

for j = 0:1:(TOTALFINE-1) 

fprintf(fid, 'res_in<%d> ', i*TOTALFINE+j); 

end 

fprintf(fid, '\n'); 

end 

fprintf(fid, 'res_in<%d> ', TOTALCODE); 

for i=0:1:(TOTALCOARSE-1) 

for j=0:1:(TOTALFINE-1) 

fprintf(fid, 'res_out<%d> ', i*TOTALFINE+j); 

end 

fprintf(fid, '\n'); 

end 

fprintf(fid, 'res_out<%d> \n\n', TOTALCODE); 

fprintf(fid, ' R0 (res_in<0> res_out<0>) rnpo1w l=%.2fu w=420n mf=(1) m=1 

mismatchflag=1\n', max(W)); 

for i=1:1:1024 

fprintf(fid, ' R%d (res_in<%d> res_out<%d>) rnpo1w l=%.2fu w=420n mf=(1) m=1 

mismatchflag=1\n',i,i,i,W(i)); 

end 

fprintf(fid, '\n'); 

fprintf(fid, '.END'); 

fclose(fid) 
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