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EFFICIENT TECHNIQUES FOR THE SINGLE-FRAME
SUPER-RESOLUTION RECONSTRUCTION OF INTENSITY IMAGES

SUMMARY

In many cases, the imaging sensors have outputs in poor resolution, which is not
sufficient for accurate machine/human perception. At that point, hardware solutions
remain incapable of enhancing the resolution at desired levels, and Super-Resolution
Reconstruction (SRR) techniques are referred.

SRR is an ill-posed inverse problem and requires the estimation of large-scale
unknowns. The exact solution is approximated by regularizing the solution space
through additional constraints. A typical SRR method consists of three main
components: the constraints to be imposed, the optimization technique used to
maximize the objective function under these constraints and the trusted data source
to be used for extrapolation. Constraints and the data source are mainly related with
the accuracy of the resulting estimator, while the optimization technique determines
the computational complexity of the method. It is known that the natural image space
has a heterogeneous nature and requires adaptive treatment of local image regions.
However, growing adaptation means not only an increase in complexity and number
of the constraints but also folding in the difficulty of the optimization. Despite this
conflicting relation, almost all applications desire an SRR method, which is both
computationally simple and highly accurate. In addition to quality and complexity,
the needs and the available resources (adequate data for learning, time constraints and
the generality of the imaging space) affect the practicality of a solution.

This thesis provides efficient single-frame SRR techniques that are computationally
simple and provide reconstructions of high-quality for varying scenarios. First,
we consider the scenario where the imposed constraints are adjusted manually;
hence, no learning is needed. An iterative reconstruction scheme that benefits
from robust statistics is proposed. The Welsch norm, having strict edge-stopping
utility and computational conveniences, is used for the imposed constraints to exhibit
heterogeneous behavior. Later, we consider the case where the constraints are
learned from data rather than being set manually. We propose using an enhanced
image prior model based on the Gaussian Conditional Random Field (GCRF). The
selected GCRF modeling scheme provides significant computational advantages, and
the reconstruction can be obtained analytically. In another case we address SRR for
the constrained image domains, where the training and test data are strictly correlated.
An efficient method is built in subspaces by employing generative models and utilizing
shape and texture components together. The main idea here is that the image details
can be synthesized by global modeling of accurately aligned local image regions.
In order to achieve sufficient accuracy in alignment, shape reconstruction has been
considered as an individual problem and solved together with texture reconstruction
in a coordinated manner. Meanwhile, the statistical dependency between shape
and texture components is also considered. Moreover, different from traditional
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model-based SRR methods, we employ a corrected form of the degradation operator
with the aligned images. It is shown that when the degradation operator is used
with the aligned texture components as is, the least-squares solution results in biased
reconstructions. To overcome this problem, we reflect the same processing, performed
in alignment, onto the degradation operator, and use this corrected version in texture
reconstruction.

Throughout the thesis, globally consistent structures are utilized as the data source for
extrapolation. Thus, the difficulties with the use of local image models and insufficient
dictionary schemes are avoided.
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TEK İMGEDEN SÜPER-ÇÖZÜNÜRLÜKLÜ GERİ-ÇATMA AMACIYLA
GELİŞTİRİLMİŞ ETKİN YÖNTEMLER

ÖZET

Kamera duyarga yapılarının oluşturdukları imgeler, pek çok durumda hem imge
analizine gerek duyan uygulamalar için hem de insan algılaması için yeterli
çözünürlükte deg̃ildir. Bu noktada, çc̈zünürlüg̃ün artırılması için donanım ile
üretilecek çözümler de yetersiz kalır ve Süper-Çözünürlüklü Geri-Çatma (SÇG)
tekniklerinden faydalanılır.

SÇG eksik koşullandırılmış ters bir problemdir ve büyük belirsizlik oranlarının
kestirimini gerektirir. Bu amaçla, imge modelleri ile ek kısıtlamalar yaratılıp
çözüm uzayının mümkün oldug̃unca düzenlileştirilmesi yoluna gidilir. Tipik bir
SÇG çözümünün 3 temel bileşenden oluştug̃u söylenebilir: uygulanacak kısıtlar, bu
kıstılar ile beraber oluşacak hedef fonksiyonun eniyilenmesinde kullanılacak teknik,
ve dışdeg̃erleme için faydalanılacak veri kaynag̃ı. Kıstılar ve veri kaynag̃ı oluşacak
kestiricinin dog̃rulug̃u ile daha çok ilgili iken, eniyilemede kullanılacak teknikler de
hesaplamadaki basitlik ile büyük oranda ilgilidir. Dog̃al imge uzayı çoktürel bir
yapıya sahiptir ve bu nedenle yerel imge alanları için ayrı ayrı uyarlanabilen işlemlerin
kullanımına gereksinim duyar. Ancak, uyarlanmadaki artış hem uygulanacak kısıtların
karmaşıklıklarının artması hem de eniyilemenin kat ve kat zorlaşması anlamına gelir.
Aradaki bu çelişik ilişkiye rag̃men, hemen hemen tüm uygulamalar geri-çatma kalitesi
yüksek ve hesaplama maliyeti düşük SÇG yöntemlerini arzular. Kalite ve hesaplama
maliyetine ek olarak, ihtiyaçlar ve eldeki olanaklar da (eg̃itim için yeterince verinin
olması, zaman kısıtları ve üzerinde çalışılan imge uzayının büyüklüg̃ü gibi) çözümün
pratiklig̃ini etkilerler.

Bu tez kapsamında, farklı durumlarda düşük maliyetle yüksek kalitede geri-çatma
sag̃layabilecek verimli SÇG teknikleri oluşturulmuştur. Önce, kullanılacak kısıtların
baştan ayarlanabildig̃i ve böylece eg̃itime gerek kalmayan durumlar için, gürbüz
istatistik fonksiyonları kullanılarak yinelemeli bir çözüm oluşturulmuştur. Uygulanan
kısıtların çoktürel bir davranış sergilemesi amacıyla, etkin bir ayırıcılıg̃a ve hesaplama
kolaylıklarına sahip olan Welsch tipi fonksiyonun kullanılması önerilmiştir. Daha
sonra, kullanılacak kısıtların baştan ayarlanması yerine, eldeki veriden ög̃renilmesi
şeklinde bir çözüm oluşturulmuştur. Önerilen bu çözümde, adaptasyonun artırılması
amacıyla, geliştirilmiş Koşullu Gauss Tipli Markov Rastgele Alanı temelli bir imge
modeli oluşturulmuştur. Seçilen imge modelinin hesaplama avantajları sayesinde,
analitik bir geri-çatma ifadesi ile çözüme gidilebilmiştir. Ele alınan dig̃er bir durumda
da, kısıtların ög̃renilmesinde kullanılan veriler ile test verisi arasında daha sıkı bir
ilişki mevcuttur. Örneg̃in, kısıtlanmış imge uzaylarında (sadece yüz imgelerinden
oluşan uzay gibi) geri-çatma ihtiyacı bu yapıda bir durumdur. İşte bu türden
kısıtlanmış imge uzayları için, alt-uzayda tanımlanmış üretken modellere dayanan
ve hem şekil hem de doku bileşenlerini kullanan verimli bir yöntem sunulmuştur.
Buradaki temel fikir, imge detaylarının dog̃ru hizalanmış yerel imge alanlarının
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bütünsel modellenmesi ile sentezlenebileceg̃idir. Hizalamada yeterince dog̃rululug̃a
erişebilmek amacıyla, şekil bilgisindeki geri-çatma ayrı bir problem olarak ele alınmış
ve doku bileşeninin geri-çatma problemi ile beraber koordineli çözülmüştür. Bu arada,
şekil ve doku bileşenleri arasındaki ilinti de çözüme katılmıştır. Ayrıca, geleneksel
model-tabanlı yaklaşımlardan farklı olarak, deformasyon operatörünün hizalanmış
imgeler için özel olarak ayarlanmış hali çözümde kullanılmıştır. Deformasyon
operetörünün hiç düzeltme yapılmadan hizalanmış imgeler ile kullanımı söz konusu
oldug̃unda, en-küçük kareler çözümü ile elde edilen geri-çatmanın yanlı oldug̃u
deneylerle gösterilmiştir. İşte, bu problemin üstesinden gelmek amacıyla, hizalama
sırasında yapılan işlemler deformasyon operatörüne de uygulanmış ve doku bileşenin
geri-çatılmasında bu yeni sürüm kullanılmıştır.

Tez boyunca, dışdeg̃erleme için kullanılacak veri kaynag̃ı seçiminde, bütünsel
süreklilig̃e sahip daha gerçekçi yapıların kullanılması önerilmiş, böylece yerel
modellerin ve örnek-sözlüklerinin kullanımlarındaki zorluklardan kaçınılmıştır.



1. INTRODUCTION

1.1 Motivation

Both the human and machine perception are based on image analysis where the

meaningful information is extracted from images to characterize them quantitatively

or qualitatively. There are many different techniques used in automatic analysis of

images such as: object recognition, segmentation, tracking, detection, pose estimation.

These techniques have continuously expanding applications throughout all areas of

science and industry, including:

• Security and defense: target detection and missile guidance, unmanned vehicles,

intruder detection and border observation, biometric security, face recognition,

license plate recognition, etc.

• Medicine: diagnostics (e.g. detecting cancer in an MRI scan), microscopy (such as

counting the germs on a swab), etc.

• Industrial machine vision and robotics: industrial automation (e.g. counting items

on a factory conveyor belt), inspection (e.g. determining cracks if a metal weld

has), material analysis (e.g. determining the mineral content of a rock sample),

topographical modeling, identification of outliers, sensing, cybernetics, etc.

• Entertainment, Internet, and media: 2D/3D games, human-computer interaction,

data coding, data compression, data conversion, photography, etc.

• Astronomy: observation, event detection (e.g. detection of solar features and

sunspots), recognition (e.g. calculating the size of a planet and characterization

of galaxies), etc.

One of the key factors for success in image analysis is the amount of available

informative data, which is determined by the resolution concept in imaging. As the
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resolution increases, the quality of the analysis gets higher. Moreover, the demand

for further quality would never end as the applications gets more sophisticated and

talented.

Opposed to the need for an excessive amount of visual information, it is known that the

optics of an imaging system limits the amount of information received by the imaging

device [7]. These imaging systems yield aliased and under-sampled images since their

detector arrays are not sufficiently dense. At that point, increasing the number of

pixels per unit area or increasing the chip size could be thought as viable solutions,

but unfortunately both have limits [8]. For instance, as the pixel size decreases, the

amount of light available decreases and it causes shot-noise severely degrading the

image quality. Similarly, increasing the chip size would not only be expensive but also

lead to an increase in capacitance, which results in slowing down the charge transfer

rate.

Today’s excessive demand for higher resolution images and saturation in imaging

device technology require better and faster Super-Resolution Reconstruction (SRR)

techniques, which are defined as intelligent techniques transcending the limitations of

imaging systems, much more than anytime. Although there has been strong research

on the problem during the past three decades, we are still far from the solution valid

for any real-world scenario. As explained in Chapter 2, the main difficulty in the

problem is caused by mainly two factors: the ill-posedness of the reconstruction and

the large-scale unknowns.

The exact solution for the ill-posed problems can only be approximated via

regularization, either deterministically or statistically. However, the natural image

space does not show any particular regularity to be modeled, except being piece-wise

smooth. This dispersed nature of the image space requires individual treatment of

local image regions, and this means more complex models are needed. In general

model complexity involves a trade-off between simplicity and accuracy of the model.

While added complexity usually improves the realism of a model, it can make the

model difficult to analyze and pose computational problems. Occam’s razor [9],

which is a principle particularly relevant to modeling, states that among models with

roughly equal predictive power, the simplest one is the most desirable. So, we
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should tend toward simpler models until we can trade some simplicity for increased

representational power.

In this thesis, we focus on efficient methods which maximize the accurate extrapolation

for image quality, while keeping the computational cost at acceptable levels for

real-world practical applications. Considering these two conflicting goals, we design

solutions based on the following principles:

• In mathematical programing literature, the most efficient solutions can be obtained

via quadratic programing. So, to keep the computational complexity low enough,

we should always tend to use quadratic objective functions.

• As will be explained in Chapter 2, the general tendency in image modeling is to

find out regularities for local image regions since the variety soars as the size of

the images increases. However, these local models generally suffer from global

discontinuity artifacts in addition to the computational burden. So, we should

employ data sources, providing globally continuous and realistic textural data

(e.g. a repository image having structurally and semantically similar content) to

extrapolate.

1.2 Problem Definition

In a generic sense, image super-resolution is considered as a reconstruction problem

under the assumption of a linear relation, called observation model (known also as

forward model or formation model), between the LR and HR images. The assumptions

made initially on this model and the other components of the problem setup highly

affect the solution strategies to be followed. Due to this variety, it is hard to give a

single definition for the generic SRR problem. So, the problem is described together

with the assumptions made initially. We give our assumed observation model in

Section 1.2.1 and the corresponding inverse reconstruction model in Section 1.2.2.

Also, in Section 1.2.3 we provide the list of decision points characterizing an SRR

problem setup and define ours based on the selections from this list.
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Figure 1.1: Image formation model.

1.2.1 Image formation model

In this section, the generic linear relationship between the discrete Low Resolution

(LR) image IL, and the original discrete High Resolution (HR) image IH is defined.

Here, IL and IH denote the lexicographical ordering of the images and have the sizes

of [l2x1] and [h2x1], respectively. Within the scope of this dissertation, we restrict

ourself to only intensity images and neglect the advantages and disadvantages of other

imaging spaces such as X-ray, SAR, PET, ultrasound.

The modeling starts with giving the relationship in continuous domain. The continuous

image formation can be visualized as in Fig. 1.1, where the LR image IL is formed by

the convolution of the irradiance Ω(x) with the camera Point Spread Function (PSF)

ξ(x), and the additive environmental noise function η(x).

The PSF is modeled as the convolution of the optical effects o (caused by the lens and

the finite aperture) and the spatial integration performed on the sensor area a (assumed

square and uniformly sensitive to light) as ξ(x) = (o ∗ a)(x) [10]. Although PSF is a

very complex function which depends upon a large number of parameters, in practice

a simple parametric form is assumed for ξ(x), more often than not, it is Gaussian,

N(0,σ2
ξ) [11]. Moreover in Super-Resolution we want to estimate Ω on a denser

grid to enhance the resolution by the linear magnification factor M = h
l . Considering

that ζ(z) = z
M

is used for the correspondence between the LR image plane and the

super-resolved image plane, the continuous form of the observation model can be
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formulated as

IL[q] =
∫
Ω (ζ(z)) .ξ (ζ(z)−q) |δζ

δz
|dz+η(q), (1.1)

where z = (zx,zy) ∈ R2 refers to the points in continuous image domain, q = (qx,qy) ∈

Z2 refers to the points in the discrete observation IL, and η(q) represents the total

additive noise at point q[10]. Note also that the integral is defined on the super-resolved

image plane and |δζδz | is the determinant of the Jacobian. Here, Ω(ζ(z)) corresponds

to the irradiance, that would have reached the image plane of the camera under the

pinhole model and transformed onto the super-resolution image plane. Since the source

scene does not change, Ω (ζ(z)) can be considered as Ω(z). Including this update the

continuous formation model can be rewritten as follows

IL[q] =
1
M2 .

∫
Ω(z)ξ (ζ(z)−q)dz+η(q). (1.2)

To proceed for the formal SRR definition, we need to specify the continuous function

Ω(x) with a discrete image IH. In the simplest case IH represents the piecewise constant

function; ξ(z) = IH[p] for all z ∈ (px − 0.5, px + 0.5]x(py − 0.5, py + 0.5], where p =

(px, py) ∈ Z2 refers to discrete points in the HR image, IH . Now we can re-organize the

image formation model (1.2) by using the discrete representation of irradience function

as

IL[q] =
∑

p
IH[p].

1
M2 .

∫
ξ (ζ(z)−q)dz+η(q). (1.3)

Images are always intensity discretized (typically to 8-bit values in the range of 0-255

gray levels). Therefore, there will always be some perturbations in the observation,

even when the additive environmental noise η(x) does not exist [10]. Supposing that

int[] denotes the quantization operator, then the noiseless measurement would actually

be

IL[q] = int

∑
p

IH[p].
1
M2 .

∫
ξ (ζ(z)−q)dz

 . (1.4)

However, it is common to denote this error as part of the additive Gaussian noise

η(x) as in (1.3). In fact, while other distributions for noise are possible, the Gaussian

distribution is still usually a good model due to the Central Limit Theorem. There are

5



multiple sources of noise (e.g. read-out in CCD, atmospheric turbulence, transmission,

quantization as mentioned above, sensor heat) and their sum can be approached well

with a Gaussian distribution.

In practice, to make the problem more tractable, both the observation model (1.3) and

the reconstruction model are often represented in discrete space. The operators in (1.3)

can be approximated in discrete domain as matrices

Decimation : ζ(x) −→ D,
PSF Blurring : ξ(x) −→ B,
Noise Function : η(x) −→ n,

(1.5)

and when they are substituted on the continuous image formation model (1.3), we

obtain the completely discretized forward model as

IL = DBIH +n. (1.6)

Assuming that the observation IL is of size [l2x1] and the HR super-resolved image

IH is of size [h2x1] = [M2l2x1], then the other terms of equation (1.6) would be; D ∈

R
l2xM2l2 , B ∈ RM2l2xM2l2 and n ∈ Rl2x1. Note also that it is common to denote the

blurring and decimation operators together within a single deformation operator H =

DB as

IL = HIH +n, (1.7)

where H ∈Rl2xM2l2 .

1.2.2 Super-resolution as an inverse problem

Given the observation and the forward model, the goal of SRR is to estimate the IH ,

which is in higher resolution than the observation. Theoretically, this corresponds to

the inverse of the image formation model and can be represented as

ÎH � argmin
IH

||IL−HIH ||22, (1.8)

where the operator || ||22 refers to the square of the L2-norm. However, since lots of

ambiguities are included and the image degradation operator is singular, the inverse of

the forward model can not be found analytically. It is easy to see from (1.3) and (1.6)

that the main sources of these ambiguities are
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• PSF blurring: PSF is assumed to be as a smoothing operator which realizes a

uniform Low Pass (LP) filter,

• Decimation: The observation model, either in continuous or discrete form, reveals

that number of unknowns is much more than the number of measurements (e.g. for

2x2 decimation 75% and for 4x4 decimation 93.75% of the data to be synthesized),

• Noise: Even the simplest form of the noise term is enough to make the problem

badly conditioned,

• Quantization: The standard rounding operator, int[], replaces a real number with

the nearest integer. It was shown [10] that the volume of the set of solutions of (1.3)

grows asymptotically with the number of pixels on the HR grid.

In order to have a mathematical answer, a typical inverse problem should satisfy the

solution existence, uniqueness and stability. However, none of these conditions is

satisfied in the SRR case. Though there are thorough studies on the conditioning

analysis of the SRR problem, such as [10] and [12], it is apparent from the above

list of ambiguities that the inverse problem is not tractable.

However, it is possible to regularize the inversion process and approximate the

true solution by imposing additional constraints. In deterministic and statistical

perspectives, the generic regularization framework can be given as in (1.9) and (1.10),

respectively

ÎH � argmin
IH

||IL−HIH ||22+λ||ΓIH ||22, (1.9)

ÎH � argmax
IH

p(IL|IH)p(IH), (1.10)

where λ||ΓIH ||22 and p(IH) refer to the regularization terms. More details on these

expressions are provided in Section 2.2.1 and Section 2.2.2.

1.2.3 Consideration of the problem

The regularization term (corresponds to a priori information in statistical perspective)

is designed based on the assumed problem setup. The following list of characteristics

shape a problem setup.
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• Number of observations: There are two considerations; some researchers do not

accept such a diversification and define the SRR for only the case having multiple

observations [13, 14, 15, 16, 17, 18], while some others believe that the single frame

SRR is the main problem and the multi-frame SRR is a special case of it.

Having multiple observations means having more information about the solution,

and this additional information can be exploited to regularize the solution more. To

be informative an observation should be shifted with sub-pixel precision. Though

it is not always easy, when the shutter speed and the camera calibrations are

adjusted appropriately (either by capturing the same scene with the same camera at

different times or capturing the scene with different cameras having similar camera

parameters), this kind of observations can be obtained. In addition to the difficulties

in image capturing, the use of multiple frames requires an additional pre-processing,

called registration. But, registration is as intractable as the reconstruction, so the

difficulty of the problem is doubled.

Some researchers prefer working on single-frame SRR problem by renouncing the

aliasing information. However, this renunciation would compel them to look for

additional data sources to extrapolate. A detailed investigation of the methods

proposing alternative designs for the reference data source is provided in Chapter

2.

• The imaging space under consideration: The generality of the imaging space

significantly affects the solution strategy. For instance, when the natural image

space is considered, the estimation of the unknown pixels in HR turns to almost

random guessing since natural images show no particular regularity. On the

other hand, when the image space constrained to a specific domain, common

characteristics of the domain images can be incorporated into the solution.

• Knowledge about the imaging environment: Most SRR methods assume that the

degradation parameters are already known. Even if we do not know, we can

reach acceptable estimations by using generic models or may approximate the true

parameters empirically by using simple measurements [10].
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In literature, there are also blind-reconstruction methods [15, 19, 10], which

consider the degradation parameters as unknowns and jointly estimate them

together with the unknown HR image.

• Prior knowledge: In addition to the observation data and the forward model, we may

have prior knowledge about the solution and can enforce the intermediate estimates

to conform with it. As will be explained in more detail in Chapter 2, regularization

techniques exactly define this intent. This prior information can be either: “a

set of rules expected to be satisfied [20, 21]”, “a parametric model [22, 23]”, “a

distribution function conditioned on the observation or some data source [24, 25]”,

“a non-parametric model based on some dictionary [26, 27]”or “any data having

clues about the solution (e.g. segmentation map of the solution, class membership

information, scene label) [28, 29, 30]”.

During our research we have mainly considered the problem setup having the following

features:

• Gray-scale intensity images are considered,

• Single observation exists,

• Image formation model (deformation operator, noise, and the decimation rate) is

known,

• Natural image space is considered,

• No pre-set conditions exist.

Though we have mostly used this problem setup, in some chapters we have also

employed the slightly deviating versions of it. For instance, in Chapter 5, we consider

the image space that is restricted to only frontal face images.

1.3 Contribution of the Dissertation

The main focus of this thesis is the task of super-resolving intensity images given

a single observation. As with many other image processing and computer vision

problems, the SRR is an ill-posed inverse problem and approached with approximate
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models under some artificial constraints. Approximate solutions are shaped with the

assumed models and resources available. The reality of the models and the constraints

determine the quality of the reconstruction, while the accuracy in their implementation

with the available resources identifies the practicality of the method. In Chapter 2, we

have given a survey of the past techniques accompanying the similar image formation

model, given in (1.7), and identified the basic principles related with reaching the best

quality in reconstruction with the cheapest solution. In light of these principles, we

have proposed efficient SRR methods needed by different real-world scenarios.

First, we have considered the scenario where a separate learning stage is not possible

(due to either generality or limited resources), but some delay can be accepted during

online processing. For that purpose, we have proposed an iterative reconstruction

scheme where the constraints are set manually and imposed heterogeneously via

robust statistics. In fact, the idea is not new and simpler and suboptimal variants

of it [15, 31, 32] had been proposed before. But, different from these non-convex

structures, we have used the Welsch-type robust error norm which is partially convex

and has a more strict edge-stopping utility. Moreover, to reduce the blocking artifacts

we have suggested using a wide set of image features consisting of multi-order and

multi-oriented derivatives.

Later, we have considered the scenario, where the fastest online reconstruction is

required and training is possible. In this offline training, the constraints are learned

from similar images rather than set manually. Thus, more realistic constraints could

be obtained to regularize the solution better. Different from the past non-linear

and non-convex image models [22, 21, 5, 25], we have proposed using a strictly

convex quadratic Gaussian distribution function (the Gaussian Conditional Random

Field - GCRF) for image modeling. To overcome the drawbacks of the Gaussian

type Markov Random Field (MRF), we have employed an enhanced version of it

(introduced by Tappen et al. [3]) by first conditioning with the observation via response

estimators, and then adding evaluation mechanism through parametric weighting.

Thus, without sacrificing the computational advantages we could gain adaptation. Due

to the computational advantages of the quadratic structures, the reconstruction scheme

could be defined analytically. We have compared our results with other types of fast
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analytical approaches, such as kernel interpolation techniques, and seen that our results

significantly outperform.

We have also addressed a more specific case where the training data and the online

test data are strongly related. This case defines the SRR problem in constrained

image domains, such as face, plate, text, cell. The common characteristics of this

new image domain is a valuable information and should be definitely utilized in

reconstruction. For that purpose, we have developed a quite efficient reconstruction

method, based on global image priors. In fact, global topologies are not common in

image modeling due to their limited representational power; the general tendency is to

use local image models in the form of MRF. However, these generic local models

[33, 1, 22] either mostly constitute non-convex structures, which are adaptive but

difficult to optimize, or suffer from serious discontinuity artifacts. Different from these

locality-based approaches, we have insisted on using global models by increasing their

representational power. For that purpose, we have utilized the shape information in

addition to the textural data. Shape reconstruction has been considered as an individual

problem and solved in a coordinated manner with the texture reconstruction. By

modeling all the variables in the reconstruction expression with quadratic Gaussian

functions, we have reached a fast analytical reconstruction expression. Moreover, to

further decrease the computational cost and to increase the scalability, we have fully

transformed this expression onto subspaces via Principal Component Analysis. Hence,

the reconstruction has been turned into simple algebraic operations of the small-size

matrices.

Another contribution of this thesis is to show how to benefit from globally consistent

data sources for extrapolation. For realistic reconstructions some trusted data source,

from which reliable image details can be incorporated, should be employed. The

general tendency in data source design is to use statistical models either as a collection

of codewords (analytical or learning-based) or as a single distribution function.

Unfortunately, none of these models is capable enough to synthesize reliable and

realistic data since natural image space, even small local regions, is too wide and

dispersed to be modeled. Because of insufficiency in representation, results suffer

from excessive blurring and discontinuity artifacts. As a remedy to the problems

with statistical modeling, we have suggested using a reference HR image which is
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structurally and semantically similar to the observation. We have shown that this

memory-based technique can successfully incorporate realistic and consistent image

details into the result.

1.4 Thesis Outline

The remaining chapters of the thesis are organized as follows:

In Chapter 2, a review of the SRR literature is provided. This investigation is built

over the methods assuming a similar image formation model with the one given in

(1.7). The review concludes with an evaluation where the expected behaviors of an

ideal solution (maximizes the quality and minimizes the computational cost) are listed.

Targeting such efficient solutions, throughout the next three chapters the proposed SRR

methods are described.

Firstly in Chapter 3, an adaptive reconstruction scheme is presented by utilizing robust

statistics. Specifically, the Welsch type re-descending M-estimator is employed for

both smoothness and data cloning constraints. Thus an iterative reconstruction scheme

has been constructed for the cases where no resources are available for training and

some amount of delay is acceptable during online processing. Later in Chapter 4,

an approximation to the adaptive treatment of the robust error norms is described by

using quadratic expressions. The resulting estimator is defined by employing enhanced

GCRF modeling of the image space. In Chapter 5, the problem is considered from

a different perspective by taking into account the constrained image spaces. An

efficient solution for rigid-object images is described by utilizing both texture and

shape components. Meanwhile, some major drawbacks of the traditional applications

are revealed.

Chapter 6 is the concluding section. First, the thesis is summarized, and then the

contributions are highlighted. Moreover, a discussion is presented to show future

directions of the problem.
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2. LITERATURE REVIEW

In this chapter, a comprehensive review of the techniques for the SRR problem is

presented. Although the initial attempts start with the application of the interpolation

techniques [34, 35] to image processing, intense interest began after the seminal work

of Tsai and Huang [11], in which they used multiple observations to extrapolate. Many

techniques have been proposed over the past three decades for both single-frame and

multi-frame cases. Our assumed problem setup considers having a single-observation,

and in this review chapter we mainly focus on single-frame SRR approaches.

The techniques are discussed in three broad categories: interpolation methods,

regularization methods and heuristic approaches. Among these categories, we devote

heavy interest to the regularization techniques as parallel to their popularity in

literature. There are a couple of reasons making it advantageous against the other

options, such as flexibility for modeling a wide range of image formation models,

having consistent theoretical foundation and ability to incorporate almost any type of a

priori information. In addition to the review in this chapter, constrained domain SRR

techniques are also investigated separately in Chapter 5.

2.1 Interpolation Techniques

Maybe the earliest and most common way of achieving SRR is to use an interpolation

kernel. First the observation, IL, is located on the dense grid and sparse approximation

of the HR image, IS
H, is obtained. After that the HR image, IH , is approximated by

combining instances of the kernel function, φ, at the known discrete samples, (x,y), of

the dense grid. This linear operation can be shown as

IH[x,y] =
k∑

i=−k

k∑
j=−k

φ[i, j]IS
H[x− i,y− j], (2.1)

where k is the one size of square kernel function. Typical choices of the base functions

include; linear, cubic, Spline and Lanczos [34, 35]. One common feature of these
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functions is separability, and by means of this feature the reconstruction process can

be split in two consecutive steps (horizontal and vertical processing) for reducing the

computations.

The implementation of this approach is very efficient because the uniform interpolation

kernel can be applied on the input image by using standard matrix operations from

linear algebra. This computational convenience makes it popular especially for

commercial products. Despite this simplicity in implementation, the results are

not always as good as one envisions [36]. Some shortcomings of the kernel-based

approaches can be listed as in below.

• Blurring of sharp edges: Kernel filters typically perform very well in smooth areas,

but not in edge regions. The reason is apparent; pixels are treated uniformly. To

overcome this problem and to capture different characteristics of the image space,

adaptive schemes should be employed.

• Blocking artifacts: Blocking artifacts in diagonal edges or lines are caused by

the horizontal and vertical orientation of the re-sampling kernels. This limited

treatment is unable to recognize diagonal lines, as exemplified in Fig. 2.1. So,

to relieve the distortion one should process multiple intermediate orientations at

multiple scales.

• Insufficient high-frequency content: High-frequency content corresponds to the

image details, and kernel-based methods are not sufficiently powerful to incorporate

the necessary details. This extrapolation problem is the most challenging one and

requires prior knowledge about the solution. Furthermore, for most cases, the

explicit use of some data sources is highly required.

These problems have driven the following and ongoing research for improved

super-resolution methods.

In order to overcome the problem of blurring edges, adaptive treatment of the pixels has

been proposed rather than filtering uniformly. Explicit functions have been employed

to the standard kernel interpolation techniques. The main idea behind this is to

use a decision function as a piecewise linear approximation to the conditional mean

estimator of the HR image. It is assumed that there are different classes of pixels,
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Figure 2.1: Blocking artifacts along diagonal edges in kernel super-resolution.
The original image is decimated by 2x2 and then upscaled by linear
interpolation.

such as the pixels on object edges with different orientations or the pixels in flat areas.

Each class requires specific treatment when enlarged and can benefit from a dedicated

super-resolution scheme to better preserve edges.

The main flow of these techniques consists of first performing one of many

classification schemes from pattern recognition literature and then taking specific

actions for each class as shown in Fig. 2.2.

For instance in [37], a decision-tree based classification scheme has been employed.

The parameters for the regression tree are found by training on sample images. The

pixels are classified into edge and non-edge pixels with different orientations (the

consideration of additional orientations relieves also the problem of blocking artifacts).

In [38], Atkins et al. has assigned each pixel to multiple classes with different degrees

as in mixture of experts strategy. A pixel can for example be classified to be 60%

horizontal edge and 40% smooth. For each pixel and class the chance of membership

is estimated using a Gaussian distribution. The degree of membership to a class acts as

the weight for the result of this linear filter. Similarly, in [39], Self-Organizing-Maps

(SOM) has been utilized; first, classification is done by using the SOM method and

second, the training of local associative memories, namely the interpolators, takes
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Figure 2.2: Structure of the techniques performing interpolation by using explicit
classifiers.

place for the pixels falling into the corresponding class. In addition, other types of

classifiers, such as Support Vector classifiers [40], have been employed as well.

In [41], Artificial Neural Network (ANN) based regressors have been used instead

of explicit functions. This non-linear black-box regressor uses a single generalized

feed-forward neural network to interpolate. The input of the ANN consists of the

pixels in the local window around the source pixel, and the output consists of the pixels

constituting the super-resolved image. A multi-layer ANN can achieve recognition of

non-linear relations between input and output. Therefore, it is able to preserve edges

better and enhance detail more than linear interpolators.

In these classification-based methods, the increased adaptation comes with an increase

in the computational load. During the scanning of the HR grid, every pixel/local-region

is evaluated by a decision function before the interpolation. Depending on the

complexity in the decision process, this evaluation could be quite costly. Moreover,

accuracy will always be demanding more classes, and this would make the decision

more difficult, as well as the learning. Another drawback with these techniques is

related with disregarding the observation model during online processing, and this

makes these approaches prone to noise.
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2.2 Regularization Techniques

The rank-deficient deformation operator H and the noise, n, in the observation model,

(1.7), make the inverse problem ill-conditioned. In such situations, the set of solutions

that adequately fits the data is large and contains many physically unreasonable models.

The minimum-norm solution, that is the least-squares (1.8), is unstable, and small

changes in the data may lead to large changes in the solution. The answer to these

difficulties is found through what is known as regularization. The purpose is to allow

inclusion of additional constraints to stabilize the space of possible solutions. A

regularization method is often formally defined as an inversion method depending on

a single real-valued parameter, which controls the trade-off between solution stability

and data fidelity.

There is a wide variety of regularization methods, but an exhaustive treatment is

beyond the scope of this chapter, and we provide only a summary of the main ideas.

We investigate the regularization methods from two points of view: cost-function

perspective and statistical perspective. In the cost function perspective (the algebraic

approach), the unknown image is considered to have a deterministic characteristic.

While in statistical perspective, both the unknown image and the noise (or any other

solution variable if existing), are stationary random variables, and assumed that they

have some particular characteristics which can be modeled. For most cases these two

perspectives end up with similar optimization problems. For instance, the algebraic

least-squares can be interpreted with Maximum Likelihood Estimation (MLE), given

the linear measurements corrupted by Gaussian measurement errors.

2.2.1 Cost function perspective

These methods are also called generalized least-squares methods. A Least-Squares

(LS) problem is an unconstrained optimization problem of such an objective

ÎH = argmin
IH

||IL−HIH ||22. (2.2)

The solution of an LS problem can be reduced to solve a set of linear equations, ÎH =

(HT H)−1HT IL. There are quite efficient and reliable algorithms for calculating this
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analytically. However, in SRR, HT H is singular and this means the LS solution is one

of the many possible solutions. More information is needed to tune the reconstruction

toward a unique solution. Considering the pure LS (2.2) as the simplest unconstrained

norm approximation problem, the regularization is a common scalarization method

used to solve the bi-criterion problem of

ÎH = argmin
IH

ρ(ΓIH) sub ject to ||IL−HIH ||22 ≤ ϵ, (2.3)

where ρ(x) is an evaluation function, ϵ is the accepted error threshold (ideally 0).

Also, Γi is the image feature operator referring to the uniform convolution of the

image IH with the image feature kernel Γi (e.g. derivative kernel) at all pixels;

ΓiIH ∼ {∀(x,y) ∈ IH , (Γi ∗ IH)(x,y)}. The most common form of the regularization

(2.3) is based on Euclidean norm, which results in quadratic programming as in

ÎH = argmin
IH

||IL−HIH ||22+λ||ΓIH ||22. (2.4)

This is specifically known as the Tikhonov regularization. The use of such quadratic

criteria for the regularizer maintains the computational efficiency and leads to an

analytical solution

ÎH = [(HT H)+λ(ΓTΓ)]−1[HT IL]. (2.5)

When appropriate PDEs are selected for Γ, the matrix inversion in (2.5) can be easily

performed in the frequency domain; since, HT H +ΓTΓ is block-circulant. Thus, the

efficiency of the solution is increased more. Common choices for such kind of Γ are

Laplacian [21] and first-order derivatives.

While such linear processing is desirable, it has some disadvantages as well. A

common criticism is that the results tend to be overly smooth because the smoothness

is imposed uniformly for all pixels. However, it is known that the image space has

a non-uniform nature and this homogeneity assumption ignores it. For this reason,

the generalization of the Tikhonov approach has been proposed through weights.

Despite the gain in adaptation, fast solutions in the frequency domain are no longer

possible with these new type of approaches. Another alternative has been proposed

through using robust measures instead of quadratic penalty functions. For instance

L1-norm [14], the Huber function [42], Cauchy function [22], or Andrew’s sine
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function [43] have been used as robust evaluation functions. A thorough analysis

on their performance is given in Chapter 3. Clearly, with this choice of robust

prior, the overall reconstruction algorithm becomes nonlinear and iterative restoration

techniques are employed [44]. Another nonlinear reconstruction scheme has been

obtained by exploiting the Maximum Entropy in image prior [45] as

ÎH = argmin
IH

||IL−HIH ||22+λ(IH log(IH)). (2.6)

Although the reconstruction with (2.6) results in sharper results than the Tikhonov

result, the difficulty again is related with the computational burden of non-linear

processing.

Recently a significant amount of interest has been devoted to sparse coding approaches,

such as [26, 46, 47]. They are quite similar to the generalized least-squares methods,

but this time the optimization is not unconstrained and includes additional sparsity

constraints. More particularly, sparse coding methods are based on the statistics of

small image patches. An image patch is represented in terms of a linear combination

of basis patches selected from an over-complete dictionary D. Considering all patches

included by the super-resolved image IH, this representation refers to IH =D1. In terms

of 1, the reconstruction leads to

1̂ = argmin
1

||1||p sub ject to ||IL−HD1||22 ≤ ϵ, (2.7)

where 0 ≤ p < 2 is the degree of the norm and mostly selected as the L1 norm.

Equivalently, (2.7) can be replaced with the Lagrangian form

1̂ = argmin
1

||IL−HD1||22+λ||1||p, (2.8)

that replaces the constraint by a penalty. Hence, the regression coefficients 1 are

forced to be sparse as much as possible. Moreover, some of these methods employ

ideas from the compressive sensing theory. Under some strict conditions [48], these

methods ensure that linear relationships among high-resolution signals can be precisely

recovered from their low-dimensional projections [26, 48].

Compared to other dictionary-based methods, such as Neighbor Embedding methods

[49, 27] with a fixed number of neighbors, sparse coding methods adaptively choose
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the fewest necessary supports for reconstruction. Thus, over-fitting is avoided and

robustness is increased through L1 minimization.

A fundamental consideration in employing sparse coding approaches is the choice of

the dictionary D. One type of method employs analytic techniques. A mathematical

model of the data is formulated, and an analytic construction is developed to efficiently

represent the model. This generally leads to dictionaries that are highly structured

and have a fast numerical implementation, such as wavelets, curvelets, contourlets,

shearlets, complex wavelets and bandelets [46]. Some other approaches employ

machine learning techniques to infer the dictionary from a set of examples. In this case,

the dictionary is typically represented as an explicit matrix, and a training algorithm

is employed to adapt the matrix coefficients to the examples. Algorithms of this

type include Generalized PCA [50], the Method of Optimal Directions [51] and the

K-SVD [47]. The advantage of this approach is the much finer-tuned dictionary they

produce compared to the analytic dictionaries. However, this comes at the expense of

generating an unstructured dictionary, which is more costly to apply and to learn.

Except for some of the sparsity-based methods, the methods discussed in this section

assume predefined analytical expressions to grasp the complexity of the general image

content. One better alternative is to learn these models directly from the data. The

following section focuses on this type of method where the regularization is formed

based on image examples.

2.2.2 Statistical perspective

In the statistical view of the regularization, it is assumed that the noise and the HR

image are random variables 1. Then, the problem is cast as the inference from a

posterior distribution. Given the distribution parameters and the observation, the

estimate of the HR image will be

ÎH = argmax
IH

p(IH |IL), (2.9)

which is known as Maximum-A-posteriori (MAP) estimation. There are two main

types of approach; one is directly infer from the posterior distribution as in (2.9), and

1In fact, the HR image refers to a random field since each pixel is considered individually as a
random variable
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the other interprets the posterior from the Bayesian perspective and express it as in the

form of

ÎH = argmax
IH

p(IL|IH)p(IH), (2.10)

where the posterior is dependent on the likelihood model, p(IL|IH), and the prior

model, p(IH). Note that the denominator p(IL) has been neglected since it is considered

constant while working on relative probabilities.

As in the cost-function view, the likelihood term captures the fidelity of the estimate

to the observation and represented with the noise model. Traditionally, the noise is

assumed in the form of additive white Gaussian, n v N(0,σ2
n), but we consider the

more generic case with N(0,Σn), and the likelihood is defined in the matrix form as

p(IL|IH) �
1

√
2π|Σn|

exp(−1
2

(IL−HIH)Σ−1
n (IL−HIH)T ). (2.11)

On the other hand, p(IH) captures our prior knowledge about the unknown HR image

in the absence of data. This information is used to regularize the solution through a

set of constraints. A plethora of image prior models have been proposed, and in the

remaining two subsections we investigate some pioneering ones while investigating

the statistical SRR methods.

2.2.2.1 Bayesian approaches

Bayesian methods allow to naturally incorporate prior information which is based on

either some data source or experience based intuition. This information is expressed

as a distribution and generally the parametric image models are used. However, it is

hard to model whole natural image space with a single distribution due to the huge

dimensionality and variety. As a remedy, patch-based image models are referred.

First, the local image models are learned, and then the joint image model is derived

depending on the assumed topology of these local models. Markov Random Field

(MRF) models are the most common tools used for that purpose. As shown by the

famous Hammersley-Clifford theorem [9], an MRF model is denoted in the form of

Gibbs distribution as

p(IH) =
1
Z

exp(−U(IH,Θ)) , (2.12)
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where Z is the normalization constant and U is a non-negative energy function having

the parameter set Θ. More details on this relation and the properties of MRFs are

given in Chapter 4. These approaches exploit examples to tune the parameters, Θ, that

control the local priors. In a pioneering work by Zhu and Mumford [52], an MRF has

been proposed by considering the following energy function

U(IH ,Θ) =
N∑

i=1

λiρ(ΓT
i IH;κi), (2.13)

which learns on a weighted average of robust measures of smoothness by using

different evaluation functions ρ(x, κi), analyzing filters Γi, and weights λi. In other

words Θ = θ1, ..., θN , where θi = κi,Γi,λi.

Generally, these MRFs have non-linear and non-convex structures for increased

adaptation. Therefore, sophisticated sampling-based algorithms are required for both

learning and inference. For instance in [22], Roth and Black have modeled the

local potentials with Student-t distribution and performed learning by minimizing

the Kulback-Leibler distance between the empirical distribution of the training set

and the prior trained. In [52], the parameters have been learned such that the

marginals of the prior fit empirical observations, while maximizing the entropy of the

distribution function. Moreover, to avoid this computational burden, it is common to

use approximate inference by employing gradient ascent methods [53].

On the other hand, the computationally efficient Gaussian MRFs (GMRF) have

significant advantages, and inference can be performed analytically guaranteeing the

global optimum. However, the basic GMRF [4] suffers from blurring due to excessive

smoothing. The conditional random fields have been employed, as in [3], to avoid

these difficulties. We provide a detailed introduction for these quadratic Gaussian

Conditional Random Field (GCRF) priors in Chapter 4.

Common to all of the above methods is the fact that a parametric energy function is

used, and its parameters are tuned by the examples. Also, all these methods call for an

involved optimization procedure. Once the regularization expression is ready, it can be

deployed for use in the backward model. If the resulting reconstruction expression is

non-convex, approximate methods are used without guaranteeing the global optimum.

Otherwise, the iterative gradient techniques are employed.
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2.2.2.2 Example-based methods

A recently emerging methodology is to use the examples directly within the

reconstruction process. Different from the previous parametric approaches, the prior is

developed by sampling (samples from the posterior p(IH |IL)) from other images, and

as such a direct way of reconstruction is offered. That is, in these non-parametric (or

semi-parametric as in [10]) approaches, the examples are gathered to a database and

used explicitly in the on-line reconstruction algorithm.

Though they show slight differences, the main process flow in these approaches starts

with pattern matching. Given the LR patch, a database is sought for similar LR

examples, and later their corresponding HR pairs are used for the reconstruction. Due

to the computational and modeling difficulties (e.g. searching large scale images in big

databases), such a process cannot be operated on full size images. Therefore, typically

image patches of sizes between 5x5 and 25x25 are used as in [27]. However, there

are methods (like [10]), where the above process is operated on a pixel-by-pixel basis.

Thus, given the image pairs described above, the LR observation is swept through, and

all HR image patches (possibly with overlaps) are extracted [54, 55].

Maybe the most common way of using this idea is Neighbor Embedding (NE), as

in [33, 49]. In these works, the LR observation is split into patches without allowing

overlaps, and the closest samples are found from the training set via a nearest-neighbor

search. Later, the corresponding HR patches of the found LR database patches are

aligned sequentially. Since no overlapping in both LR and HR images are considered,

the solution is straightforward. However, in [27, 1], Freeman et al. has shown that the

performance with non-overlapping local selections is limited. Different from the NE

methods, they consider the overlapping case by a two-layer MRF topology as shown in

Fig. 2.3. Here, the proximity between the LR observations and the database patches are

taken into account (refers to the likelihood term) in addition to the agreement between

neighboring HR patches (refers to the regularization term) by

ÎH = argmax
IH

∏i

Φ(Ii
H, I

i
L)

∏
j,k

ψ(I j
H , I

k
H)

 , (2.14)

where Φ and ψ are compatibility functions, and i, j,k are patch indexes. Hence,

rather than concentrating on the true unknown image (as in NE methods), the focus
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Figure 2.3: Graphical model for the MRF model used in [1] to define the posterior
distribution of the solution space. Φ and ψ are referred to compatibility
functions and used to model local correlations.

is on the network interpretation of the data. More clearly, this interpretation refers to

discovering the nearest-neighbors that survive a Bayesian Belief Propagation (BBP)

algorithm and using those in the formation of the solution.

In [21], Tappen et al. has developed the MRF structure, given in (2.14), by using a

computationally efficient representation. This compact representation allows a small

number of discrete states to represent the local image patches. Each node in the graph

denotes the index of the best regression function, chosen from a set of candidates.

The best regressors at each patch are determined by using Belief Propagation. After

determination of the regressor assignments for each HR patch, the missing points are

synthesized by using these regressors. Note also that this new representation requires

the transformation of the compatibility functions, Φ and ψ, onto the new subspace.

A close idea to this transform domain representation is using the epitomes, which

were first introduced in [25]. The epitome of an image is its condensed version

containing the essence of the textural and shape properties. As in Tappen’s method

in subspaces [21], the size of the epitome is considerably smaller than the size of the

image it represents, but the epitome still contains most constitutive elements needed

to reconstruct the image. Epitomic representation provides two apparent advantages

against [21]; first, it enables to use varying size image patches (this allows for model

continuities better), and second, it learns from observation. Thereby, the estimation

becomes more correlated with the observation. On the other hand, these advantages
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come with considerable increase in computational load and lack of control. A close

variant of this epitomic analysis with BBP has also been described in [56].

Baker and Kanade [10] have practiced a semi-parametric model called

”reconscognition” by using an explicit regularization expression that requires

proximity between the spatial derivatives of the unknown image to those of the found

examples. For each pixel an example is identified by a pyramidal derivative set of

features, and all these forces are merged into one global posterior distribution.

Example-based regularization is an effective technique for the single-frame SRR

problem. However, there are still a number of issues needed to be considered. For

instance, the proposed algorithms remain local, as they do not consider the unknown

image as a whole. Moreover, the choice of patch size is not trivial. Choosing a

very small patch size may cause the co-occurrence prior to be too weak to regularize

the solution space sufficiently. Oppositely, too large of a patch size may lead to no

adequate examples in the database. Moreover, how to choose the database is another

question needed to be answered. Different images have different statistics and thereby

need different databases. Also, the heavy computations required both in training and

testing could be a difficulty for practical applications.

2.3 Heuristic Techniques

These approaches provide solutions based on some observations, and so their

theoretical foundation is a little bit less than the other approaches. However, they

can produce satisfactory results for practical cases.

The Locally-Adaptive Zooming Algorithm (LAZA) has been introduced in [30]

and uses a set of simple rules to extract information about discontinuities or sharp

luminance variations. The algorithm is performed in four steps, and in the final step

four surrounding pixels of the undefined pixel are combined to form the value of this

pixel. To preserve more detail, the four pixel values are not simply averaged to form

the new value; instead a histogram-like method, where the median of the bin is usually

taken, is employed..

New Edge-Directed Interpolation (NEDI) [57] uses the duality between the

covariances in LR and HR. The covariance between neighboring pixels in a local
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window around the LR source is used to estimate the covariance between neighboring

pixels in the HR target. Thus, the covariance value is used as the optimal way of

blending the four diagonals into the center pixel.

In another approach (as in [29, 28, 58]), averaging pixels across boundaries is avoided

by storing additional data in the form of discontinuity graphs. The effectiveness of

this method can be seen best on images having a strict piece-wise planar nature, such

as linear profiles separated by strong intensity jumps. In [29], the map is obtained

by performing a segmentation algorithm in a pre-processing stage. A similar idea has

been reported in [28] where rather than using predefined maps, a segmentation map

is simultaneously learned. An improved idea is discussed in [58] by incorporating

Hidden Markov Models (HMM) to extract the segmentation map. Note that this

kind of goal-oriented approach is especially useful when the SRR is considered as

a predecessor step of another application in a wider system (as in [59, 18]).

Smart Interpolation by Anisotropic Diffusion (SIAD) [60] uses other anisotropic

diffusion algorithms as part of its three-step structure. The first step consists

of enlarging the image beyond the required resolution using simple analytical

interpolation. Next, an anisotropic diffusion is performed, and finally the image is

reduced back to the desired size by averaging.

The main idea in Edge-Frame Continuity Modeling (EFCM) [20] is that given some

local edge-related parameters (such as closeness, magnitude and scattering) extracted

from the LR image for each pixel, it is possible to estimate the expected local intensity

continuity observed at HR. For each pixel, these features are matched with the gradient

value of the corresponding HR image at that pixel. Later, for each combination of the

features a Gaussian model is built and stored in the EFCM-table. Though EFCM

is good at preserving global continuity, the results suffer from the faint details and

looks machinery. Moreover, finding the features for each pixel makes the solution too

expensive.

These heuristic techniques may produce visually appealing images in some practical

cases, but their theoretical weakness undermines their efficiency. Most of these

techniques require some individual processing for each pixel, as in some interpolation

methods using explicit classifiers. In real-world applications, even for mid-scale
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images, this processing may cause serious difficulties. Also, as in EFCM [20],

non-linear and non-convex global optimizations may be encountered (then the solution

is approximated by mid-paths, such as smaller local convex optimizations).

2.4 Multi-Frame Super-Resolution Techniques

Having more than one observation means basically having more data about the

solution, which can be utilized to restrict the solution more.

The main idea in multi-frame SRR solutions is fusing the content that is slightly

different. This requires that the observations should be sub-sampled as well as shifted

with sub-pixel precision. Thus, an observation cannot be obtained from the others, and

each such distinct information can be exploited to construct an image in higher quality.

The mathematical representation of the problem can be easily derived from the single

frame case as

ÎH = argmax
IH

K∏
k

p(Ik
L|IH)p(IH), (2.15)

where K is the number of observations. It is possible to investigate the multi-frame

SRR techniques in two main groups (frequency-domain and spatial-domain methods)

depending in which domain they represent the images.

2.4.1 Frequency domain methods

Frequency-domain (FD) SRR methods typically rely on familiar Fourier-transform

(FT) properties, especially the shifting and sampling theorems. This strict relationship

to FT properties precludes the use of general observation and motion models with this

type of representation. Basically, there are two approaches; one assumes noiseless

environments for its observation model and derives an analytical solution [11], the

other considers the ambiguity stemming from noise and uses numerical techniques by

enforcing constraints to relieve this ambiguity [35, 61]. Common to both approaches

is that they are based on the relation between the DFT coefficients of the observations

and sampled Continuous Fourier Transform (CFT) coefficients of the HR image as

Yk = ΛX, (2.16)
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where X is a column vector consisting of the samples of the unknown CFT of the

continuous HR image, and Λ is a matrix, which relates the DFT of the kth LR image

Yk to the samples of the continuous HR image. Therefore, the reconstruction of a

desired HR image requires us to determine Λ and solve this inverse problem. For a

noiseless case the solution is simply the multiplication of the inverse Yk and Λ. On

the other hand, when noise or blurring is considered, the least-squares like numerical

solutions are referred.

Theoretical simplicity is a major advantage of the frequency domain approach. That

is, the relationship between LR images and the HR image is clearly demonstrated in

the frequency domain. However, the observation model is restricted to only global

translational motion and Linear-Shift-Invariant (LSI) blur. Due to the lack of data

correlation in the frequency domain, it is also difficult to apply the a priori knowledge,

given in spatial domain, for regularization.

Note also that although theoretically it is not different, as in [62], Discrete Cosine

Transform (DCT) can also be used instead of DFT. Thus, the memory requirements

and the computational load can be reduced.

2.4.2 Spatial domain methods

Different from the frequency-domain methods, the known registration assumption is

relaxed in spatial domain. Due to the rich modeling capability, a wide variety of

observation models can be considered. Though registration can be incorporated into

the solution, generally it is quite hard to estimate the exact registration parameters since

real word images have spatially varying complex geometric deformations. Ideally,

these model parameters should be found for each pixel, but it is not realistic, and

piecewise-homogeneity assumption is made.

Since the registration is an ill-posed inverse problem, the parameters are approximately

found and this additional ambiguity makes the SRR problem harder. The most

common trend in multi-frame SRR is to make registration separately [63] and utilize

one of the single-frame SRR techniques by using all registered observations [16, 64].

There are also blind techniques, such as [15, 19], handling both of these problems
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simultaneously. The registration parameters are combined with the HR data and are

estimated in a coordinated manner.

2.5 Discussion

This investigation on the literature reveals that as the adaptation increases, the quality

of the reconstruction gets higher. Natural images have dispersed settlement in the

space, therefore the methods are expected to be adaptive enough to capture different

characteristics of the imaging space. However, the increase in adaptation comes

with an additional cost in computational effort. That means the relation between the

quality and the complexity of the SRR methods is conflicting. For instance, the basic

interpolation methods are relatively simpler than the regularization-based methods; on

the other hand, the quality of their reconstruction is not as good as the regularization

results. Despite this trade-off between quality and computational efficiency, it is

expected that an ideal SRR method should maximize both. The ongoing research looks

for such efficient techniques.

We have identified three main factors determining the efficiency of an SRR method.

These are; the complexity of the reconstruction expression, the analysis power of the

imposed feature set and the contribution of the data source used to extrapolate.

• Complexity: Computational complexity of the solution maybe the most important

factor for practicality. This is because the simple kernel interpolation techniques

are still the most common methods used in industry. While evaluating

the complexity of a solution, several factors should be considered, such as

theoretical foundation, learning (offline processing) complexity and inference

(online processing) complexity. Among these factors the worst-case performance

of the inference is the main determinant in most cases. When we looked at the

past techniques, except for some frequency domain methods, the reconstructions

mostly end up with an optimization problem. Some of these problems are

convex, so tractable, while others are not. For instance, heuristic approaches and

non-convex sampling-based algorithms (such as [22]), are not tractable and they

are treated as if convex under some conditions. Among the convex structures, the

methods having quadratic structures, such as Tikhonov Regularization, are the most
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advantageous ones. It is possible to achieve the reconstruction analytically in these

systems. Moreover, though they are not as convenient as the quadratic ones, the

non-quadratic generalized least-squares type approaches [32, 15, 14, 65] have also

mature techniques. Among these non-quadratic solutions, the unconstrained linear

cost functions are especially advantageous against the constrained ones (like sparse

coding).

• Features: As mentioned before, the blocking artifact problem is caused by separate

vertical and horizontal treatment of the images. The limited number of features is

not sufficient to analyze the whole content of an image. A wealthier set of features,

consisting of intermediate orientations and multiple scales, should be incorporated

to overcome this problem. Though using more features is desired, it also requires

special attention on the computational load created and the artifacts caused by

exceptions. A typical decision of a filter-set would include the determination of

the following 4 parameters.

– Orientation: The horizontal and vertical orientation of the re-sampling kernels

are unable to recognize or follow diagonal lines and this inevitably causes

blocking. As a remedy, researchers provide steerable filters [66, 67] to

increase the number of orientations treated.

Let us write the nth derivative of a Gaussian at an angle θ as Gθ
n. Then, the

first-order derivative in the x direction will be represented as δG
δx = G0

1, and

similarly in the y direction will be δG
δy =Gπ/2

1 . As shown in [66], the derivatives

at intermediate orientations can be written as

Gθ
1 = cos(θ)G0

1+ sin(θ)Gπ/2
1 . (2.17)

Since G0
1 and Gπ/2

1 span the set of Gθ
1 filters, they are called basis filters

for Gθ
1. The cos(θ) and sin(θ) terms are the corresponding interpolation

functions for those basis filters. Because convolution is a linear operation, we

can synthesize an image, filtered at an arbitrary orientation, by taking linear

combinations of the images filtered with R0
1 =G0

1 ∗ I and Rπ/21 =Gπ/2
1 ∗ I as

Rθ1 = cos(θ)R0
1+ sin(θ)Rπ/21 . (2.18)

Although the illustration of the steerability is given on Gaussian filters, it is

possible to generalize it to other filters, such as wedge filters as in [67]. Due
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to their computational simplicity, in our experiments, we have also preferred

Gaussian steerable filters when needed.

Note also that in [14] Farsiu et al. has employed another way of

having steerable filters by using hand-crafted shift operators, called Bilateral

Total-Variation. But, the computational load of this technique would be

greater since an excessive number of online convolutions are required.

– Size: Because we develop generic solutions without having any information

about the scale of the input image, we should provide a multi-scale

environment where details on any scale can easily be detected. The common

approach used for achieving multi-scale filters is pyramids, in which the filter

size equally decreased at each level to the top [68, 10].

– Type: In SRR, our main consideration is the reconstruction of the image

details, consisting of the high-frequency (HF) content, because it is assumed

that the low-frequency (LF) content is incorporated with the fidelity constraint.

So, while designing image priors, generally the missing HF components are

considered and high-pass (HP) filters are used. Derivatives are the most

popular HP filters and are designed as various order Gaussian derivatives up to

the 4th order. Although the higher order derivatives provide more HF content,

for noisy images they may cause artifacts. In addition to Gaussian derivatives,

other edge filters and bar filters are also commonly used [27, 21, 22, 23].

Furthermore, depending on the characteristics of the problem, using specific

feature detectors can also be quite helpful. For instance in [69], Torralba et al.

introduces the object specific filters through the Bag-Of-Words framework.

– Number: This decision is very much related with the computational power

available because each filter requires an image size convolution operation.

However, there are some exceptions as in Freeman’s steerable filter design

[66], where the remaining filters are obtained by interpolating basis results

without doing more convolution.

One popular choice is to have up to 2nd order derivatives in at least 6 orientations

(spanning 0−π/2 interval), and on 3 different scales.
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• Reference Data Source: Extrapolation of the right image content is quite difficult.

Due to heterogeneous behavior of the natural images, the observation-based

constraints are not enough to reach realistic reconstructions. So, trusted data

sources are required to be able to incorporate missing image details. Based on

the above literature review, it is possible to categorize the design attempts for the

data source as:

– Learned Patch Dictionaries: A set of codewords are learned either for a

specific image domain or for the whole image space. The reconstruction

is built directly by incorporating appropriate selections from this dictionary

[26, 24, 21, 27, 22, 25, 10]. This idea makes a questionable assumption that

the whole image space can be completely represented by a finite number

of samples. Another critical problem with the idea is that the expected

discontinuity comes with the incorporation of statistically independent

components. Some of these studies [49, 33] assume complete independence

among the dictionary elements, and others [1, 10, 21, 22] incorporate

statistical dependencies among the dictionary elements during the selection

process.

– Analytic Dictionaries: Rather than directly using the learned dictionaries,

some researchers project the image domain onto narrower subspaces and build

the dictionary with less variety. Dictionaries of this type are based on some

mathematical models and characterized by analytical transformations, such as

wavelets, curvelets, contourlets, shearlets and bandelets [70, 71, 46]. The

idea seems more efficient than working in higher-order pixel dictionaries,

especially when their fast implicit implementations are considered. However,

the results generally suffer from an increase in representational ambiguity

since the transformations are not completely lossless.

– Statistical Image Models: There are attempts to build image priors by defining

density functions for the imaging space, though no regularity in natural image

space has been discovered yet. However, the idea could work well especially

in constrained image spaces. In [52, 22, 3, 72] researchers have introduced

density functions with high representational power in various constrained

image domains.
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All these data source designs are far from providing the expected contribution.

The huge dimensionality of the imaging space and the limited amount of resources

available make the problem of building a representative data source quite hard. In

this thesis, we have followed a different way to capture the missing image details

and suggested using some reference or template images in HR instead of modeling.

The main premise of this idea is; "gathering global continuity and realistic HF

content" could only be possible by having a strong idea/experience about the

content. At that point, using a structurally and semantically close reference

image can represent this prior experience. Note that, since lots of mismatches

are expected, only the relevant details should be considered by using intelligent

techniques.

After the investigation of the past works and the observations given above, the

following three motivations have been guiding our research to have efficient SRR

methods:

• Having quadratic objective functions in optimization.

• Using data sources which can provide globally consistent and realistic details.

• Utilizing a wealthier set of features (at least more than horizontal and vertical

derivatives) to extract different characteristics of the images.
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3. ROBUST SUPER-RESOLUTION

As discussed in the previous chapter, modeling the natural image space is difficult

because the heterogeneous nature of the images requires individual treatment of the

local regions. Difficulties in representing images with complex stochastic models can

be overcome by converging with the simpler deterministic structures as in anisotropic

diffusion 1.

In order to achieve adaptive treatment of local image regions, the simplest approach

is anisotropic diffusion, where a selective treatment is employed by adjusting the

weight of the imposed model on local regions. In [73] Perona and Malik provide

the pioneering use of anisotropic diffusion in image processing literature by removing

noise from the noisy image. The image is modified iteratively by

I[s]t+1 = I[s]t +
λ

|ns|
∑
p∈ns

g(▽s,p)▽s,p, (3.1)

where g(x) refers to the diffusion function (also called the evaluation or adaptation

function), I is the discretely sampled image, ns represents the spatial neighborhood of

a pixel s(x,y), ▽s,p is the spatial derivative, and |ns| is the number of neighbors around

s. Qualitatively, the effect of anisotropic diffusion is to smooth the original image

while preserving brightness discontinuities.

In addition to this pioneering interpretation (with partial differential equations) of

anisotropic diffusion in image processing, later it was also interpreted from different

perspectives, such as bilateral filtering [74], local mode filtering [75] and robust

statistics [32]. Among these interpretations, we employ the robust statistics within

this chapter.

1In [13], Elad et al. shows that adaptive filtering and anisotropic diffusion converges for various
image processing tasks, so in the rest of this chapter they are used interchangeably.

35



The specific use of anisotropic diffusion in SRR is mostly in the form of generalized

least squares, which is given as

ÎH = argmin
IH

{||IL−HIH ||22+λρ(ΓIH)}, (3.2)

where the regularizer is imposed after the evaluation with the ρ(x) function, which

works as the g(x) function in (3.1). The choice of ρ(x) can greatly affect the extent

to which discontinuities are preserved. In [32], Black et al. provides a statistical

interpretation of anisotropic diffusion, specifically from the point of view of robust

statistics. Robust error norms can be used as g(x) to maximize the preservation of the

edge regions while imposing a smooth image. These functions are able to minimize

the effect of the gross outliers. In imaging, the outlier does not only mean the additive

observation noise, instead it is used for all sorts of discordant observations caused

by: observation noise (like the mixing of two signals), measurement errors (such as

quantization) or limitations in data models.

In this chapter, we have investigated the application of robust error norms for the SRR

problem in the form of anisotropic diffusion. We have proposed an efficient SRR

solution for the cases where training is not possible due to either lacking enough

data or making the solution generic. Specifically we have used a special robust

function, called the Welsch norm, to adjust the diffusion rate. The Welsch norm has

better edge-stopping utility than other robust estimators. Also, its partially-quadratic

structure guarantees the unique solution with gradient descent methods. In addition

to these, we have employed a data source to better regularize the solution. By

these additional constraints we could clone globally consistent image details, which

cannot be retrieved with model based or observation dependent constraints. To show

the effectiveness of the proposed reconstruction scheme, we have provided a set of

experiments with different features and reference images.

3.1 Robust Statistics

In a broad informal sense, Hampel et al. [2] defines Robust Statistics as a collection

of related theories, concerning with the fact that many assumptions commonly made

in statistics (such as normality, linearity, independence) are at most approximations

to reality. In addition to outliers, another important reason for that is the deviations
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Figure 3.1: The space of all probability distribution on a sample space (denoted with
the ellipsoid). (a) Non-parametric statistics: allow almost all possible
distributions (restriction is quite limited and this ignorance is represented
with an interval) (b) Parametric statistics: define strictly determined
distributions (represented with a straight line). (c) Robust Statistics: define
a neighborhood of strict parametric statistics by allowing slight fuzziness
[2].

between the empirical character of the models and the approximate character of the

theoretical models (e.g. non-uniform natural image space is approximated with a

uniform image model in Tikhonov regularization). Given this situation, the problem

with the theories of classical parametric statistics is that they derive the optimal

procedures under the exact parametric models, but say nothing about their behavior

when the models are only approximately valid. Even, the nonparametric statistics do

not specifically address this situation.

At that point, robust statistics allow a full neighborhood of a parametric model; thus,

being more realistic and yet, apart from some slight fuzziness, providing the same

advantages as a strict parametric model (see Fig. 3.1).

In literature several approaches to robust estimation have been proposed, including

M-estimators, R-estimators 2 and L-estimators 3 [76]. However, M-estimators now

appear to dominate the field as a result of their generality, high breakdown point,

and their computational efficiency. M-estimators are a generalization of Maximum

Likelihood Estimators (MLE) where we try to maximize the total probability∏n
i=1 f (xi) over all data points or equivalently minimize

∑n
i=1−log f (xi) [9]. In [76],

Huber has proposed to generalize this to the minimization of
∑n

i=1 ρ(xi), where ρ(x)

2An r-estimator is an estimator based on rank test.
3An L-estimator is an estimator which equals a linear combination of order statistics of the

measurements.
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is some function, not necessarily a distribution as in f (x). Minimizing
∑n

i=1 ρ(xi) can

often be done by differentiating ρ(x) and solving
∑n

i=1ψ(xi) = 0, where ψ(x) = δρ(x)
δx is

called the influence function.

Huber provides a list of standard properties that a reasonable objective function ρ(x)

of an M-estimator must satisfy:

• ρ(x) ≥ 0,

• ρ(0) = 0,

• ρ(x) = ρ(−x),

• ρ(x) ≥ ρ(y) f or |x| ≥ |y|,

• ρ(x) is differentiable.

In Table 3.1 some popular ρ(x) functions, satisfying these conditions, are listed.

Table 3.1: Some popular M-Estimators.

Estimator ρ(x) ψ(x)
L2 x2/2 x
L1 |x| sign(x)

Huber’s MinMax [76]
x2/2 |x| ≤ c

c(|x| − c
2 ) |x| > c

x
c(sign(x))

Redescending Estimators
(as an example Welsch Norm)

c2

2 [1− e−(x/c)2
] xe−(x/c)2

The ρ(x) and ψ(x) functions for these estimators can be shown in Fig. 3.2. The

non-robust least-squares (LS) estimate (namely the L2-norm) is very sensitive to

outliers, because the influence function increases linearly and without bound. That

means, when the values have different characteristics (that is coming from different

populations, e.g. pixels across a boundary) the mean is not representative of either

population, and the image is blurred. However the other norms in Fig. 3.2 are robust

and limit the effect of the outliers on the solution. When the value of a sample is

beyond a limit, the influence of that sample is fixed, even reduced.

Although the L1 norm is robust, it is criticized for producing estimates with a higher

variance than quadratic norm functions. It is worth noting that Lp estimators (1 ≤
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Figure 3.2: ρ(x) and ψ(x) functions of some popular M-estimators.

p ≤ 2) do not require a scale, c, estimate and hence have an advantage of one degree of

freedom (possibly will be useful when the available resources are limited for learning).

The common feature of the remaining two functions of Table 3.1 is their quadratic

treatment of error up to a threshold and then getting into a saturation stage to treat the

remaining values almost uniformly. This kind of behavior perfectly matches the nature

of the imaging space. Among these robust estimators, within this section we are going

to be specifically interested in re-descending M-Estimators since they completely reject

the outliers exceeding a certain limit.

3.1.1 Re-descending M-estimators

Re-descending M-estimators are those M-estimators that are able to reject extreme

outliers completely. In addition to the standard properties of M-Estimators, a

re-descending M-estimator should also satisfy the following condition

• lim
r→∞

ψ(r) = 0, where ψ(r) = δρ
δr .
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Several choices of ρ(x) functions, having a re-descending ψ(x) function, have been

proposed in literature. Some popular re-descending M-estimators are listed in Table

3.2, and graphically shown in Fig. 3.3.

Table 3.2: Some popular Re-descending M-Estimators.

Estimator ρ(x) ψ(x)

Hampel’s Norm [2]

x2/2 |x| ≤ a
a(|x| −a/2) a < |x| ≤ b

a(b−a/2)+a(|x|
−b)(1− 2(|x|−b)

c−b )
b < |x| ≤ c

a(b−a+ c)/2 |x| > c

x
asign(x)

asign(x)(c−|x|
c−b )

0

Andrew’s Norm [43]
c(1− cos(x/c)) |x| ≤ cπ

2c |x| > cπ
csin(x/c)

0
Geman-McClure Norm [77] x2

2(c2+x2)
xc2

(c2+x2)2

Lorentzian Norm [76] c2

2 log(1+ ( x
c )2) x

1+(x/c)2

Tukey’s Biweight [78]
c2

6 (1− (1− ( x
c )2)3) |x| ≤ c

c2

6 |x| > c
x(1− ( x

c )2)2

0

Welsch’s Norm [79, 80] c2

2 [1− e−(x/c)2
] xe−(x/c)2

Though all these re-descending M-estimators work well in detecting outliers and

eliminating their influence on the estimates, their implementations are not always easy.

For instance, Hampel’s three part function requires the user to choose three tuning

parameters, which is undesirable. Moreover, the lack of differentiability of its ψ(x)

function is not ideal. The Lorentzian error norm and the Geman-McClure norm are

criticized for their slow rejection rate, and because of that the outliers continue to

affect the solution more than the others.

On the other hand, the remaining re-descending estimators; Andrew’s sine function,

Tukey’s biweight and Welsch norm; are relatively more convenient to work with. They

have faster decreasing rate, and immediately after a certain threshold their influences

reach negligible proportions. Thus, very extreme observations are removed from the

estimate. In terms of image processing, this feature is quite useful since it preserves

edges while imposing generic image models. Among these three useful estimators, the

Welsch4 norm is much more convenient, since we can write the Welsch norm in closed
4Though it is mostly known as Welsch norm [79], a more generic class of estimators, including the

Welsch norm, has been introduced as Ea-type estimators by Ramsay [80]. Note also that this robust
function has been interpreted with functions having similar forms. For instance in [81] Leclerc employs
1−N(0,σ2), which has almost the same structure with the Welsch norm.
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Figure 3.3: ρ(x) and ψ(x) functions of some popular re-descending M-estimators.

form without using an indicator function. This saves several steps in programming and

provides conveniences in theoretical derivations.

In SRR literature, the re-descending M-estimators have been investigated for only

the Lorentzian norm, as in [31, 65]. But the other more efficient error norms,

especially Tukey’s biwegiht and Welsch norm, have not yet been investigated. Only

the Tukey’s biweight function has been proposed for the denoising problem by Black

et al. [32]. In that work Tukey’s biweight function has been compared with the

Lorentzian error norm, and it has been reported that the Tukey’s biweight eliminates

the noise more accurately. Despite this observation, the popularity of the Lorentzian

error norm is mainly explained with its computationally efficient structure. Since it has

a differentiable closed form, theoretical derivations and mathematical programming

become easier. At that point, the Welsch norm not only includes these advantages but
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Figure 3.4: Comparison of the Lorentzian and Welsch norms. Left belongs to the
comparison of ρ(x) functions and right is for the comparison of ψ(x)
functions.

also provides a much better adaptive treatment than the Lorentzian function. In Fig.

3.4, we compare the ρ(x) and ψ(x) functions of Lorentzian and Welsch norms. A direct

comparison requires that we dilate and scale the functions to make them as similar as

possible. We dilate the free scale parameter, c, of the norm functions so that they begin

rejecting outliers at almost the same value.

It is clearly seen from Fig. 3.4 that the choice of the evaluation function ρ(x) highly

affects the stopping behavior of the diffusion. Given a piecewise constant image

where all discontinues are above a threshold, the Welsch norm will leave the image

unchanged, whereas the Lorentzian function will not.

3.2 SRR With Welsch Type Robust Error Norms

Traditionally, the SRR methods are interpreted as either a multiple constraint

optimization, or a statistical regularization problem. However, as in [82, 13], there

are works revealing the relation between these two interpretations. When appropriate

functions have been used, it is possible to find the right transformations between these

two interpretations. Based on this observation, we do not show special attention to

this difference in view of the problem, and explain our solution in the easiest way,

that is the cost function perspective. When needed, the corresponding relations can be

derived by using the expressions provided in [82, 13].
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The basic Tikhonov method is based on the addition of a quadratic penalty to the

standard data fidelity criterion (which is also quadratic)

ÎH = argmin
IH

{||IL−HIH ||22+λ||ΓIH ||22}, (3.3)

where Γ is some image feature operator; e.g. functioning as some derivative filter.

The use of such quadratic, L2-based criteria for the data and the regularizer leads

to the linear solution. While such linear processing is desirable, it is also limiting.

In particular, when used for suppressing the effect of high-frequency noise, such

linear filters also reduce the HF energy in the true image; hence, blur the details

in reconstruction. Oppositely, far more powerful results are possible if non-linear

methods are allowed. To allow using various types of functions in (3.3), it can be

generalized as

ÎH = argmin
IH

{J1(r1(IH))+λJ2(r2(IH))}, (3.4)

where Ji(x) represent the evaluation functions for the corresponding response functions

ri(x). In literature various combinations of J1(x) and J2(x) have been investigated. For

instance in [14], Farsiu et al. has experimented with the combination of L2 and L1

norms as J1(x) and J2(x), respectively. Similarly in [31, 65], the use of the Lorentzian

norm has been investigated as J2(x) by experimenting together with L2 as J1(x). In

[15], the Huber function has been used as J2(x). Though not directly related to the SRR

problem, Black et al. [32] has employed L2 norm as J1(x) and the Tukey’s biweight

function as J2(x) in the denoising problem.

Based on the discussion of the previous section, we have proposed using Welsch’s

re-descending norm when needed. In the following subsections we build our proposed

reconstruction scheme by investigating alternative designs for the solution components

(that is the response and diffusion functions).

3.2.1 Response functions

Both machine and human perception are performed based on the High-Frequency (HF)

content of the images. This discriminative content may be disturbed by filtering,

decimation and noise, as in our assumed forward model (1.7). So, heavy interest in

SRR is devoted to adding these missing HF components.
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However, the existing Low-Frequency (LF) content should also be preserved. It

is assumed that the LR observation represents the LF content of the image to be

estimated. So, the whole content of the observation should be incorporated into the

solution while designing the response function r1(x) for data fidelity. To realize this

intent, we prefer working on pixel domain by measuring the distance between the LR

observation IL and the HR intermediate estimate IH as

r1(IH |IL) = IL−HIH. (3.5)

In literature various alternative functions have been proposed such as sparse coding

[26, 47] and dictionary-based representations [71, 1, 49]. However, all these attempts

are based on lossy transformations in generic image spaces, and they are particularly

more useful in constrained image domains.

As to the regularization term; the most widely used a priori information about

the natural image space is the smoothness assumption [23]. Smoothness constraint

provides the elimination of the unreliable HF components, and these components can

be extracted via first order derivative filters in vertical and horizontal orientations, Γi.

By using these features, the smoothness constraints can be designed in the form of

r2(IH(x,y)) =
Ns∑
i

(Γi ∗ IH)(x,y), (3.6)

where Ns = 2, and Γ1 and Γ2 are the horizontal and vertical derivative kernels,

respectively. As mentioned in Chapter 2, such kind of bilinear treatment cannot extract

the content along diagonal edges and lines. In order to overcome this problem, we

suggest using a wider set of filters consisting of 1st and 2nd order derivatives at 4

orientations, as shown in Fig. 3.5.

3.2.2 Quadratic norms vs robust norms

Though not enough, the measurement data are the main source of information. So, the

solution should primarily conform with the observation. To strictly enforce these data

fidelity constraints, we have employed the quadratic L2 norm as

J1(r1(IH |IL)) = ||IL−HIH ||22. (3.7)

Hence, we maximize the number of constraints for the reconstruction. In fact, this

quadratic selection is very much dependent on our assumed noise model, used in
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Figure 3.5: Derivative features used to impose smoothness in the solution. The
feature set consists of 8 filters representing the first 2 order derivatives
and intermediate orientations to involve also the diagonal components.

the image formation (1.7). We assume that the observation noise is additive white

Gaussian, and so L2 norm provides us a safe means to do this.

As aimed for, making all the cost terms in (3.4) convex and quadratic structures

simplify the optimization greatly. However, images tend to have smooth regions

interrupted by sharp discontinuities and with quadratic error norms, the influence of

outliers may suddenly be dominant. To avoid over-smoothing, robust error norms

would be good choices (because of their natural edge-stopping functionality and

computational simplicity) to estimate the piecewise-homogeneity

J2(r2(IH)) =
∑

(x,y)∈IH

Ns∑
i

c2

2

1− exp

−(
(Γi ∗ IH)(x,y)

c

)2 . (3.8)

Generally, the robust functions do not admit closed form solutions, and often result

in an objective function that is non-convex, see Figures 3.2 and 3.3. Though

stochastic minimization techniques such as simulated annealing can be used with

these non-convex structures, they would not be efficient enough for practical use.

However if we choose a suitable robust ρ(x) function that is twice differentiable, then

a local minimum can be found using deterministic continuation methods (such as the

descent methods). Robust functions have scale parameters which allow the shape of

the functions to be changed. By adjusting the scale c (either automatically by using

the tools from robust statistics [83] as, c = 1.4826(MAD(▽I)) 5, or empirically to fit

the test data more), we can make the problem convex within the accepted solution

space. At that point the Welsch norm satisfies all these conditions (having closed

5MAD denotes the Median Absolute Deviation.
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form, continuously differentiable, and single scale parameter) and provides superior

adaptation compared to other re-descending M-estimators as shown in Fig. 3.4.

3.2.3 Data synthesis

When we decimate the data, as in SRR, we completely lose some portion of it. This

missing data should be re-generated during reconstruction. However, as shown in

the conditioning analysis of the problem [10, 12], as the magnification increases, the

required number of conditions for the unique solution increases quadratically as well.

So, in addition to the smoothness constraint, a trusted data source, from which reliable

image details can be incorporated, should be employed to more restrict the solution

space.

Some popular data source design attempts were reviewed in Chapter 2. The common

feature of all these source definitions is to model local relations. However, due

to the weak representational power the results mostly suffer from discontinuity and

blurring artifacts. To remedy over-generality and discontinuity, we have followed

a memory-based technique. Assuming that existing band-pass components of the

observation are enough for discrimination and semantically close images have similar

HF components, in a generic image database we have searched for a close match. The

best matching image, called as reference, has roughly warped to the observation to

alleviate the effects of geometric differences. This found reference image S has been

employed as the data source to extrapolate.

During cloning we should consider these two conflicting goals simultaneously: allow

copying missing HF components in an extent, and avoid copying irrelevant details. To

do this, we have followed a similar approach as in smoothing constraint, and under

the same robust form we have measured the distance between the HF components

extracted by using oriented pyramids and multi-order derivative filters as

r3(IH(x,y)|S ) =
Nd∑
j

((Γ j ∗ IH)(x,y)− (Γ j ∗S )(x,y)), (3.9)

J3(r3(IH |S )) =
∑

(x,y)∈IH

Nd∑
j

c2
d

2

1− exp

−(
(Γi ∗ IH)(x,y)− (Γi ∗S )(x,y)

cd

)2 . (3.10)

Thus, faint borders have been considered as outliers and they have been eliminated

during reconstruction. The selected features for the cloning are shown in Fig. 3.6.
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Figure 3.6: Edge and bar features used to extract the HF content while cloning the
image details.

By the addition of the data cloning, the total solution would be a reasonable

combination of these partial solutions. A total cost/energy function has been defined

over the space of all possible high-resolution images by substituting (3.7), (3.8) and

(3.10) into (3.4),

E(IH) = α||IL−HIH ||22+β
∑

(x,y)∈IH

Ns∑
i

c2
s

2

(
1− exp

(
−((Γi ∗ IH)(x,y)/cs)2

))
+

γ
∑

(x,y)∈IH

Nd∑
j

c2
d

2

(
1− exp

(
−(((Γ j ∗ IH)(x,y)− (Γ j ∗S )(x,y))/cd)2

))
, (3.11)

where α,β,γ are used to adjust the contribution of each cost term and satisfy α+β+γ =

1. Since we have assumed that all local regions share the same set of parameters, the

weighing parameters and the scale parameters of the norm functions (cs and cd) have

been designed empirically to generate the desired results. For the minimization of

this cost function we prefer using the gradient descent optimization via the following

gradient expression,

▽E(IH) = −2αHT (IL−HIH)+β
Ns∑
i

ΓT
i

(
(ΓiIH)÷

(
exp

(
(ΓiIH)⊙ (ΓiIH)

c2
s

)))
+

γ

Nd∑
j

ΓT
j

(Γ jIH −Γ jS )÷
exp

 (Γ jIH −Γ jS )⊙ (Γ jIH −Γ jS )

c2
d

 , (3.12)

where ⊙ represents element-by-element matrix multiplication, and ÷ is the

element-by-element division operator. Also, Γi is the convolution operator

corresponding to the feature Γi, and basically it refers to the convolution of the image

I with the feature Γi at all pixels; ΓiI ∼ {∀(x,y) ∈ I, (Γi ∗ I)(x,y)}.
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3.3 Experiments

As mentioned before, some re-descending M-estimators have already been proposed

for the SRR problem in literature. Almost all of these works employ the same type

of estimator, that is the Lorentzian norm, as in [31, 65]. Thus, we have investigated

the performance of our prosed reconstruction scheme with the Welsch norm, through

a comparison with the results of the popular Lorentzian norm. For the comparisons we

have considered the simpler form of the reconstruction scheme as

E(IH) = α||IL−HIH ||22+β
∑

(x,y)∈IH

Ns∑
i

c2
s

2

1− exp

−(
(Γi ∗ IH)(x,y)

cs

)2 (3.13)

where the data cloning constraints are neglected. Moreover, to make the evaluations

fair enough, we have scaled each function as it gets into saturation at the same rate.

We have used 4 different images as shown in Figures 3.7-3.10 and the corresponding

observations have been obtained by: 2x2 decimation, PSF blurring with a 5x5 Gaussian

filter having the parameters N(0,1), and corrupting with additive white Gaussian noise

having the variance σn = 10. Also the mixing weights, α and β, have been adjusted to

0.5 for equal contribution.

As seen from the Figures 3.7-3.10, the Welsch norm produces perceptually and

quantitatively 6 superior reconstructions (only in Fig. 3.10 the interpolation result

is competitive and this is mainly caused by the less amount of detail in the image).

The results obviously show that the Lorentzian error norm has a slower transition from

rejecting outliers; thus, the results get much smoother.

In order to observe the behavior of the proposed reconstruction scheme at different

scales, we have performed another experiment by changing the parameter c of the

Welsch function. In this experiment we have used again the simplified reconstruction

expression, given in (3.13).

The results in Fig. 3.11 show that as the scale increases the saturation level of the

model increases, and the behavior of the evaluation function converges to the behavior

of the L2 norm. Smoothness assumption is employed almost homogeneously and the
6For quantitative comparisons Root Mean Squared Error (RMSE) were used. RMSE is found as:

RMS E(X1,X2) =
√∑n

i=1(x1,i−x2,i)2

n .
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Figure 3.7: Performance comparison of the Lorentzian and Welsch type M-esitmators
in the SRR scheme given in 3.13. (a) Original HR image
(Fireman). (b) LR observation (RMSE=20.58). (c) Bicubic interpolation
(RMSE=17.79). (d) Reconstruction by using Lorentzian norm in 3.13
(RMSE=16.54). (e) Reconstruction with the proposed Welsch type error
norm (RMSE=16.13).

image details are lost. As a result, excessively blurred images are obtained. Oppositely,

at small scales, the saturation starts quite early and rewards the unwanted noisy pixels.

These undesired behaviors at two extremes reveal that the scale parameter should be

selected so that the evaluation function has a balanced behavior.

Up to now we have neglected the data cloning term of the proposed reconstruction

(3.11). When only the smoothness constraints have been imposed, the results suffer
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Figure 3.8: Performance comparison of the Lorentzian and Welsch type M-esitmators
in the SRR scheme given in 3.13. (a) Original HR image (Castle). (b) LR
observation (RMSE=18.65). (c) Bicubic interpolation (RMSE=16.56).
(d) Reconstruction by using Lorentzian norm in 3.13 (RMSE=14.68). (e)
Reconstruction with the proposed Welsch type error norm (RMSE=14.55).

from image details as in Figures 3.7-3.11. To overcome this problem relevant details

are cloned from an outside data source, which is structurally close to the observation.

In this experiment we show the contribution of this additional data cloning term.

The reference image should be aligned with the observation to maximize the

contribution of these additional constraints. However, in some real world applications

it could be hard to determine the exact alignment parameters, even if the images have

a similar texture. Based on this fact, we present two types of experiments considering
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Figure 3.9: Performance comparison of the Lorentzian and Welsch type M-esitmators
in the SRR scheme given in 3.13. (a) Original HR image (Goat). (b) LR
observation (RMSE=19.16). (c) Bicubic interpolation (RMSE=16.74).
(d) Reconstruction by using Lorentzian norm in 3.13 (RMSE=15.85). (e)
Reconstruction with the proposed Welsch type error norm (RMSE=15.37).

the level of detail in alignment. Note also that the mixing weights have been set to

α = 0.5,β = 0.25,γ = 0.25 for both experiments.

In the first one, it has been assumed that accurate alignment is possible via enough

numbers of landmarks. This case is especially valid in constrained image domains.

Specifically, we have worked on face images in this experiment. Alignment of the

reference image requires the identification of the landmarks. The general tendency

is manually determining these features, or assuming that they are given. However,
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Figure 3.10: Performance comparison of the Lorentzian and Welsch type
M-esitmators in the SRR scheme given in 3.13. (a) Original HR
image (Airplane). (b) LR observation (RMSE=11.27). (c) Bicubic
interpolation (RMSE=9.23). (d) Reconstruction by using Lorentzian
norm in 3.13 (RMSE=5.18). (e) Reconstruction with the proposed
Welsch type error norm (RMSE=5.24).
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Figure 3.11: Behavior of the Welsch type evaluation function at different scales. (a)
Original HR image. (b) LR observation obtained by 2x2 decimation, PSF
blurring with a 5x5 Gaussian kernel N(0,1) and additive white Gaussian
noise with σn = 15. (c-h) Reconstruction results with (3.13) having
different scale parameters c between 5 and 25.

these approaches are not practical for real-world applications, so we have considered

a more practical approach by employing Active Appearance Models (AAM). Though
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Figure 3.12: The mean-face used as the reference image while cloning the image
details.

an introduction is given in Chapter 5, basically AAM is a modeling technique which

also allows automatic extraction of the landmarks.

In order to increase the practicality, we have used the enhanced version of the

mean-face, shown in Fig. 3.12, as the reference. Thus, we could skip the search

process by using a common template for all test images. But, it should be noted that

an individually selected reference image would provide better results than the common

template.

The results of this experiment are shown in Fig. 3.13. The reconstructions have much

higher quality than the results of the traditional analytical methods. Especially, the

image details, identifying the subject, could be reconstructed successfully.

After from this well-aligned case, we have experimented on the images which are not

restricted to a specific domain; hence, they could only be aligned roughly. By using

a limited number of landmarks, the reference image is warped to the LR observation.

Though we have experimented with a wider set of images, each including different

types of subjects, here we present the results on a car image shown in Fig. 3.14. This

car image is interesting, since it is possible to observe the behavior of the proposed

reconstruction scheme at different scene regions such as: the overlapping main region

(car), the partially matching background, and the totally conflicting background (the

tree in the reference).

As shown in Fig. 3.14, the proposed method has been able to clone the relevant details

successfully while dismissing the unmatching ones.
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Figure 3.13: Face reconstruction results using the proposed reconstruction scheme
given in 3.11. (a) shows the original HR face images, (b) includes the
LR observations obtained by 2x2 decimation, psf blurring with N(0,1)
of size 5x5 and additive white noise with σn = 10, (c) denotes the results
of bicubic interpolation, and (d) consists of the reconstructions obtained
by the proposed method.
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Figure 3.14: Reconstruction of the car image by using the proposed method (3.11)
and the reference image found from the repository search. (a) Original
HR image. (b) The found reference. (c) LR observation obtained by
2x2 decimation, psf blurring with N(0,1) of size 5x5 and additive white
noise with σn

2 = 10 (RMSE=19.16). (d) Reconstruction by bicubic
interpolation (RMSE=16.28). (e) Reconstruction by the proposed
method (RMSE=13.82).

3.4 Conclusion

We have introduced an SRR mechanism which does not require any prior training

and works for the whole natural image space. Basically, we have utilized the

anisotropic diffusion technique by using re-descending M-estimators. Specifically, the

Welsch-type error norm has been employed both for smoothness and extrapolation.

Compared to the other re-descending M-estimators, such as the popular Lorentzian

norm, the Welsch norm shows better adaptation (better edge-stopping behavior)

and provides significant computational conveniences. It has a closed form

and can be differentiable everywhere. Especially in theoretical derivations and
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mathematical programming, these computational advantages provide significant

savings by eliminating the use of indicator functions of piecewise continuous

functions. In addition, we have used a wealthier set of smoothing features rather than

using only the first-order derivatives in x and y directions. Thus, we have relieved

the blocking artifacts caused by the missing treatment of intermediate orientations and

scales. Another significant contribution is utilizing a reference image for cloning the

globally consistent realistic image details. A structurally and semantically close image

have been searched from a repository (no need to be restricted to a particular domain)

and used as the reference image while cloning the relevant image details. Structural

similarity provides continuity in the result and semantic similarity helps incorporate

realistic and reliable details. Since we cannot guarantee an exact alignment with the

reference image, we have utilized the proposed robust form while incorporating the

HF content. Thus, we could incorporate a significant amount of image details.
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4. LEARNING-BASED SUPER-RESOLUTION

In the previous chapter, we investigated the SRR problem with the cost function using

robust error norms. As seen from this investigation, robust norms provide an adaptive

modeling scheme, and this selective treatment fits well with the behaviors of the

natural images. However, these functions mostly have non-convex or partially-convex

structures, and numerical techniques are required in their optimization. Iterative

solutions generally cause difficulties in online processing and are substituted by less

adaptive but faster alternatives by sacrificing quality. As a remedy for such cases,

in this section we have proposed an SRR solution, which is based on exploiting

the enhanced Gaussian Conditional Random Field (GCRF). The selected modeling

scheme provides the necessary adaptation for reconstruction quality without causing

the aforementioned computational difficulties.

Traditional Gaussian Markov Random Field (GMRF) models are convenient to

work with because they can be easily implemented using linear algebra routines.

The inference can be especially accomplished quite efficiently through analytical

expressions. However, this type of homogeneous models tend to over-smooth images

and cause blurring. To overcome this problem, in his pioneering work [24] Tappen et

al. has proposed a quite efficient alternative, called GCRF, by enhancing the traditional

GMRF models in the form of conditional models. Moreover, in this enhanced GCRF

model, the adaptation is increased more by employing custom weighting functions for

local image regions. Hence, the required adaptation is obtained without sacrificing the

computational conveniences of Gaussian models.

GCRF modeling has been used mostly for the decomposition of signals into their

intrinsic components. For instance in [3], it has been employed for the denoising

problem. The noisy input image is split into a clean image and a noise image.

Moreover, in [24], a more generalized model has been used to obtain the albedo

component of images. Considering the promising results on these analysis-type
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problems, we have decided to investigate this theory for the solution of the SRR

problem. But, SRR has a nature different from these analysis problems and requires

also the reconstruction of the missing data. Therefore, we propose a mixed solution of

analysis and synthesis schemes by using GCRF models.

The organization of this chapter is as follows: In Section 4.1 a brief introduction for

the theoretical aspects of the GCRF model is given. Meanwhile the improvements

proposed by Tappen et al. [24] are also described. Later in Section 4.2 we consider

this GCRF model for the solution of the SRR problem. In Section 4.3, experimental

results with the new approach are provided. The chapter is concluded with a discussion

in Section 4.4.

4.1 Definition

The role of the prior in regularization is the key for success in reconstruction. Since it is

hard to model the whole natural image space analytically, building stochastic models,

especially by exploiting local models, is more realistic. At that point, Markov Random

Fields (MRF) provide us a powerful tool for doing this and are used as a common

means for learning and inference on image models [9].

In MRF models, the relationships between neighboring nodes (also called cliques),

Ic, are modeled by parametric local potential energies E(Ic;θ) in the form of Gibbs

function f (Ic;θ) = exp(−E(Ic;θ)); where Ic refers to the spatial neighborhood of

pixels, and θ is the set of parameters. Assuming that these local image regions are

independent, the joint model for the image I is given as:

p(I) =
1
Z

C∏
c=1

fc(Ic;θc) (4.1)

where C is set of all cliques. In computer vision and image processing literature,

there has been an intense interest in the representational power of the MRF modeling

scheme, and a plethora of work has been published. One part of these studies is

mainly interested in finding effective learning and inference algorithms on MRFs,

such as [3, 84]. Although there are efficient algorithms (such as Graph-Cuts [85] and

Loopy Belief Propagation [27]) for certain types of discrete valued graphs, learning

and inference in MRFs are generally nontrivial problems. Another part of the research

60



focuses on defining better functions to denote the local potentials, such as [24, 22]. In

this work, we mainly deal with defining an alternative potential energy function which

also simplifies the learning and inference stages.

The general tendency in defining clique potentials is to use nonlinear and non-convex

potential functions. As stated in the previous chapter, especially non-convex functions

provide more adaptive models. For instance in the Field-of-Experts (FOE) model [22]

Roth et al. has used Student-t distribution while defining the clique potentials as

E(Ic) = ρ(Ic;θc) where ρ(x;γ) =
(
1+

1
2

(x)2
)−γ

. (4.2)

Although these non-convex functions conform better with the non-uniform nature

of the imaging space, both the parameter learning and inference in generic MRF

models are quite difficult. Especially for learning, sophisticated sampling methods

are required, and sampling algorithms are slow to converge.

On the other hand, Gaussian MRFs, where all the variables are jointly Gaussian, are

particularly convenient to work with

E(Ic) = ρ(Ic) where ρ(x) = (x)2. (4.3)

Inference in Gaussian models can be easily accomplished using linear algebra.

However, Gaussian MRFs can result in over-constrained images since the clique

potentials are isotropic. But, it is possible to relieve this shortcoming by increasing

the adaptation. One key attempt to increase the adaptation with Gaussian MRFs is to

have the potential functions dependent on the measurement data O as

p(I|O) =
1
Z

exp{−
C∑

c=1

E(Ic|O)}. (4.4)

These anisotropic models can overcome the weakness of the homogeneous ones

by reconstructing piecewise constrained results with desirable properties. Since the

potentials depend on the signal, these MRFs are no longer generative structures, but

are instead conditional models. Therefore they are called Gaussian conditional random

fields. Moreover, in [24] Tappen et al. generalizes this model to make it applicable for

any purpose as

E(Ic|O) =
∑

(x,y)∈Ic

N f∑
i=1

((Ic ∗Γi)(x,y)− ri(x,y|O))2 , (4.5)
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Figure 4.1: Factor graph representation of the image model given in (4.6). Squares
refer to factors, diamonds show the observation variables, and circles are
the unknown variables representing the image.

where cliques are assumed as the square neighborhoods of each pixel (x,y), and

Γ1...ΓN f are the features designed as the convolution kernels characterizing the

problem. The function ri(x,y|O) is called the response estimator and refers to the

expected or desired value of the convolution at that pixel, (I ∗Γi)(x,y). For each feature

Γi, the function ri uses the observation O to estimate the value of the filter response.

Considering all the cliques having potentials in the form of (4.5), the joint image model

is defined as

p(I|O) =
1
Z

exp

−∑
x,y

N f∑
i=1

((I ∗Γi)(x,y)− ri(x,y|O))2

 . (4.6)

For more clarity the graphical representation of the model is given in Fig. 4.1.

Though, through this update the adaptation is increased for some cases, this GCRF

model (4.6) still behaves uniformly in SRR case. To impose smoothness the features

are selected as derivatives and their corresponding response estimators are set to 0

identically. As mentioned before, one way to avoid this over-smoothing is to use

non-convex robust potential functions, such as the ones listed in Figures 3.2 and 3.3.

Unfortunately, the convenience of the quadratic model is lost when these functions

are used. Alternatively, the quadratic model can be improved by assigning weights to

adjust the contribution of each potential. Incorporation of the weights can be expressed

formally as

p(I|O) =
1
Z

exp

−∑
x,y

N f∑
i=1

wi(x,y|O;θi) ((I ∗Γi)(x,y)− ri(x,y|O))2

 , (4.7)
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where wi(x,y|O;θi) are the positive weighting functions and θi are their parameters. In

[3], this model has been proposed for the denoising problem by imposing smoothness.

For that purpose, the features Γi are selected as derivatives, and the response estimators

ri are set to 0 identically for all the features.

The weighting function wi(x,y|O;θi) can be designed in various forms. Except for

being differentiable, there is no restriction. For instance in [3], Tappen et al. has

suggested using the linear combination of a set of multi-scale oriented edge and bar

filters

wi(x,y|O;θi) = exp

 Nw∑
j=1

θi j((O∗ ν j)(x,y))

 , (4.8)

where ν j denote the filters and θi = θi1, .., θiNw are the regression coefficients. The

exponential here ensures that the weight is always positive. Tappen et al. [3] uses this

function in his denoising solution to guess where the edges occur in the image and

to reduce the smoothness constraints appropriately. Sensitivity to extended edges has

been increased by using weight function filters ν operating at multiple scales (having

the sizes of 11 pixels, 21 pixels and 31 pixels). Moreover, a third set of responses has

been additionally created by adding the squared responses of corresponding edge (the

first three rows in Fig. 4.2) and bar filters(the remaining 24 in Fig. 4.2).

The parameter set of a GCRF model of this kind consists of the regression coefficients

used in the weight functions. That means the total number of parameters to be

estimated is N f xNw, and even in a moderate setup this number can be large enough

(e.g. when 6 derivative features Γi and 72 weight function filters νk, as in the above

example, are used, then the number of parameters will be 432). Using a small number

of features generalizes the model too much, whereas using lots of features would fit

the training data, especially when the training data is limited. Hence, the total number

of features is critical and a good balance should be kept.

As stated in [3], the GCRF model, given in (4.7), can be motivated in two ways;

probabilistically as a CRF model or as an estimator based on the minimization of

a cost function. Though we consider the probabilistic interpretation of the model

while describing our solution in Section 4.2, we also give the relation with the cost

function perspective. As seen later, with the appropriate selection of the solution

components (w,r, and f ), the learning can be greatly simplified. Therefore, in the next

63



Figure 4.2: Weighting function features used in [3] for denoising images. The first
three rows show the edge filters and the remaining are bar filters.

two subsections, we introduce both the inference and learning issues of the enhanced

GCRF model (4.7) from both interpretations by mostly following the notations used in

[3].

4.1.1 Inference

The clique potentials, the exponent in (4.7), can be written in matrix form by creating

a set of matrices F =
{
Γ1...ΓN f

}
. Each matrix Γi performs the same set of linear

operations by convolving an image with a filter Γi. In other words, if I(x,y) is the

two dimensional image representation and I is the vectorial lexicographical ordering,

then ΓiI is identical to the convolution (I ∗ Γi)(x,y) at all pixels, ∀(x,y) ∈ I. These

matrices can then be stacked and the exponent can be rewritten as

∑
x,y

N f∑
i

wi(x,y|O;θi)((I ∗Γi)(x,y)− ri(x,y|O))2 ≈ (FI −R)T W(O;θ)(FI −R), (4.9)
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where

F =


Γ1
Γ2
...
ΓN f

 , R =


r1
r2
...

rN f

 ,

W(O;θ) =


W1(O;θ1) . . . . .

. W2(O;θ2) . . . .

. . . . . .

. . . . . WN f (O;θN f )

 .
(4.10)

The block-diagonal matrix W(O;θ) is a function of the observation O and the

parameters θ. Each element along the diagonal of Wi(O;θi) matrices is equal to the

weight of a term at a particular locality, wi(x,y|O;θi).

The similarity of (4.9) with the exponent of a multivariate normal distribution, (I −

µ)TΣ−1(I −µ), allows us to re-write (4.9) in the form of a normal distribution having

the parameters

µ = (FT W(O, θ)F)−1FT W(O, θ)R Σ−1 = FT W(O, θ)F. (4.11)

Notice that the difference between (4.9) and the exponent of N(I;µ,Σ) is constant

and equal to RT R− µTµ. However, since it is the same for all I, it only affects the

normalization constant, Z. The relative probabilities do not change.

As stated before, the GCRF model can also be motivated from a cost function point of

view. Let h(O;θ) be an estimator using the observation O to estimate an image. The

estimate Î is the image that minimizes the quadratic cost function

C(I|O;θ) =
∑
x,y

N f∑
i

wi(x,y|O;θi)((I ∗Γi)(x,y)− ri(x,y|O))2. (4.12)

The minimum of this quadratic structure can be computed via pseudo-inverse. Using

the matrix notation of (4.12), the inverse can be expressed as

h(O;θ) = (FT W(O;θ)F)−1FT W(O, θ)R. (4.13)

As seen from (4.11) and (4.13), the mode of the joint distribution (namely the mean

of the MAP estimator given in (4.9)) is equal to the minimum of the quadratic cost

expression of (4.12). Then, it can be stated that the solution is the result of the
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following analytical expression

Î � argmax
I

p(I|O) � (FT W(O;θ)F)−1FT W(O, θ)R. (4.14)

4.1.2 Learning

Assuming that we already have the features Γi and response estimators ri, the

remaining unknowns in (4.14) are the parameters of the weighting functions, θi.

Traditionally the parameters of the Conditional Random Fields (CRF) are found by

maximizing the likelihood of the training data, which is known as the Maximum

Likelihood Estimation (MLE) [9].

Considering the GCRF model given in (4.9), the log-likelihood of a training sample T

under the condition of an associated observation OT is denoted as

LL(T |OT ) = −
∑
x,y

N f∑
i=1

wi(x,y|OT ;θi) ((T ∗Γi)(x,y)− ri(x,y|OT ))2 (4.15)

−log
∫

exp

−∑
x,y

N f∑
i=1

wi(x,y|OT ;θi) ((I ∗Γi)(x,y)− ri(x,y|OT ))2

dI.

Then the partial derivative with respect to the parameter θi will be

∂LL(T |OT )
∂θi j

= −
∑
x,y

N f∑
i=1

∂wi(x,y|OT ;θi)
θi j

((T ∗Γi)(x,y)− ri(x,y|OT ))2 (4.16)

+
1
Z

∫ ∑
x,y

N f∑
i=1

∂wi(x,y|OT ;θi)
∂θi j

((I ∗Γi)(x,y)− ri(x,y|OT ))2

exp

−∑
x,y

N f∑
i=1

wi(x,y|OT ;θi)((I ∗Γi)(x,y)− ri(x,y|OT ))2

dI.

Notice that the integration term of (4.16) can be rewritten as the expected value

(ExpVal[]) of the total energy function

ExpVal[E(I|OT )] =
1
Z

∫ ∑
x,y

N f∑
i=1

wi(x,y|OT ;θi)((I ∗Γi)(x,y)− ri(x,y|OT ))2 (4.17)

exp

−∑
x,y

N f∑
i=1

wi(x,y|OT ;θi)((I ∗Γi)(x,y)− ri(x,y|OT ))2

dI.

Though it is not clearly stated in [3], the integral in (4.16) differs from that of (4.17)

with the form of the weighting term. In (4.16), the derivative of the weighting function
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is used differently. However, we can easily keep the equivalence by multiplying the

integral term in the gradient of the likelihood function (4.16) with a block-diagonal

matrix α consisting of constant wi(OT ,θi)
∂wi(OT ,θi)/∂θi j

values. Recall also that in (4.7) the

potential functions have a Gaussian form. This means that the expectation in (4.17)

is equal to the mean µ defined in (4.11). Replacing the integral with the mean and

using the matrix forms of the operators, (4.16) can be re-written as

∂LL(T |OT )
∂θi j

= −(FT −R)T ∂W(OT ;θ)
∂θi

(FT −R)+α(FT W(OT ;θ)F)−1FT W(OT ;θ)R

(4.18)

As stated in [3], it is also possible to learn these parameters by following a

discriminative learning strategy. The penalty is expressed using a loss function L(Î,T )

that assigns a loss for the intermediate estimate Î based on its distance from the

ground-truth image T . It is assumed that L is designed as the squared difference:

L(Î,T ) = (Î−T )T (Î−T ). In the GCRF model, the mode of the conditional distribution

is the conditional mean, and thus the cost C(T |OT ;θ) associated with a particular set of

parameters θ is

C(T |OT ;θ) = L
(
(FT W(OT ;θ)F)−1FT W(OT ;θ)R,T

)
. (4.19)

The parameters θ can be found by minimizing C(T |OT ;θ). The optimization is

performed through a gradient descent technique, where the gradient is found via

∂C(T |OT ;θ)
∂θi j

= 2
(
(FT W(OT ;θ)F)−1FT W(OT ;θ)R−T

)
. (4.20)(

(FT W(OT ;θ)F)−1FT ∂W(OT ;θ)
∂θi j

)
. (4.21)(

−F(FT W(OT ;θ)F)−1FT W(OT ;θ)R+R
)
.

Although the system (4.9) is presumably quadratic and linear systems occur, as seen

above, both of the learning strategies do not result in estimators having explicit forms.

Therefore, numerical optimization techniques are required to find the MLE of the

parameters.

Despite this similarity, we have provided both alternatives for learning. For the

appropriate selections of weighting wi functions, the estimators are greatly simplified

and allow analytical expressions. Thus, the learning can also be possible for large-scale
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images. As seen from (4.18) and (4.21), the most expensive step in learning is

computing the inverse of the weighting functions as part of the covariance. The

complexity of computing the gradient is O(n3), and these heavy computational

implications may cause serious limitations with large-scale images.

4.2 GCRF Devoted To SRR

A typical GCRF model (4.9) requires the design of three main components; weights

(wi), features (Γi), and response estimators (ri); so as to maximize the adaptation to the

needs. Each of the components can be designed independently corresponding to the

different characteristics of the problem.

In literature, traditional applications of the GCRF model have always been related with

the decomposition of mixed signals, because its flexible form fits well with analysis

purposes. For instance in [24], it has been used for the identification of the albedo

component of the input image. Moreover, in [3], the GCRF model has been suggested

for the denoising problem by using the following posterior probability

p(I|O) =
1
Z

exp

−||HI−O||22−
∑
x,y

N f∑
i=2

wi(x,y|O;θi)((I ∗Γi)(x,y))2

 , (4.22)

where I is the denoised image and O is the noisy observation. Also, the solution

components, Γi,wi,ri, are selected as in the basic setup (it was described before as: Γi

consisting of derivatives given in Fig. 4.2, ri are all set to 0, and wi are determined

with the regression expression (4.8) utilizing the weighting filters shown in Fig. 4.3).

In (4.22), to keep the system invertible, the first feature Γ1 is selected as the filter

corresponding to the PSF with r1 = O and w1 = 1. In other words, the first feature

constraints the solution to be somewhat close to the observation under the assumed

deformation model. This selection can be interpreted as the Bayesian interpretation of

the GCRF model, where these initial components correspond to the likelihood term.

However, SRR is different from this type of analysis problem and require the synthesis

of the missing image details completely lost during image formation. We have

suggested using a reference data source to clone the relevant image details. By the

addition of this cloning term, the complete reconstruction scheme of the HR image

IH given the LR observation IL can be expressed through the following posterior
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Figure 4.3: Derivative features used to impose smoothness in the solution.

distribution

p(IH |IL) =
1
Z

exp


−∑

x,y
∑N f

i=1 wi(x,y|IL;θi)((IH ∗Γi)(x,y)− ri(x,y|IL))2

−∑
x,y

∑Ns
j=1 ws

j(x,y|S , IL;θ j)((IH ∗Γs
j)(x,y)− rs

j(x,y|S ))2

 , (4.23)

where S refers to the outside data, Γs
j are the features extracting the relevant details

(mostly corresponding to high-frequency components), rs
j are the response estimators

providing desired content, and the ws
j are the evaluation terms which obstruct copying

irrelevant details. Thus, the new reconstruction scheme consists of three more

components (ws, f s and rs) in addition to w, f and r of (4.9). In the rest of this

section we provide the design details for these 6 components.

• Image features: The most generic regularity known for the natural image space is

being piece-wise smooth [23]. So as to impose smoothness, we suppress excessive

gradients by using derivative features in various orders. As explained in Chapter 2,

there are some basic principles to be followed while designing these feature sets.

Though the variety and number of features are critical for better analysis, we should

also consider the computational burden which grows with every additional feature.

For smoothness and cloning parts we use different feature sets. In Fig. 4.3, the

derivative features used to impose smoothness are shown. Similarly, for the cloning

term we again use derivatives, as shown in Fig. 4.4, but this time the number of

features is increased to capture more details.

• Weighting Functions: The single restriction on the weight functions is that they be

differentiable. For the smoothing term we employ a slightly different form of the

regression expression suggested by Tappen [3]:

wi(x,y|IL;θi) = exp

 Nw∑
k=1

θik((↑ IL ∗ νk)(x,y))

 (4.24)
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Figure 4.4: Derivative features used to clone image details through a reference image.

Figure 4.5: Elongated edge and bar filters used to build the weighting function in the
form of a regression.

where ↑ is the up-sampling operator. On the other hand, to clone the relevant image

details and penalize the mismatching ones, we propose the following weighting

function:

ws
j(x,y|S , IL;θ j) = exp

 Nw∑
k=1

θ jk|(↑ IL ∗ νk)(x,y)− (S ∗ νk)(x,y)|
 . (4.25)

For both weight functions we use a similar set of band-pass features consisting of

elongated edge and bar filters, as shown in Fig. 4.5. Different from the previous

approaches [24, 3], we try to keep the number of features limited so as to avoid

computational difficulties, such as data fitting and complexity. Also, we adjust the

scales of these filters larger since we need to convolve with the interpolated images

as different than the previous analysis applications.
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• Response Estimators: Traditionally, the response estimators are conditioned on the

observation and interpreted as the expected behavior at that location or clique. For

instance, to impose smoothness each response estimate is set to zero. We also use

similar type response estimators for the smoothness term

ri(x,y|IL) = 0, f or ∀i, and ∀(x,y) ∈ IH, (4.26)

However considering only the expectations will not be enough for SRR. So, to

synthesize the missing data, the response estimators should also provide the desired

information. In other words, it is expected that the response estimator is capable of

cloning the relevant image details from a trusted data source. Stated in the previous

chapters, we have used semantically close images as the data source, S . An HR

match of the observation is found from a repository, and by using this reference

image S we design the response estimator for the data cloning term as

r j(x,y|S ) = (Γs
j ∗S )(x,y), (4.27)

where the Γs
j are the custom feature extractors used to identify edges, lines, and any

useful object features in the scene.

It is also possible to find alternative data source designs in literature. A review

has been provided in Chapter 2, where the dictionary based approaches (e.g. [24])

are the most popular ones. However, these approaches are mostly based on local

models and suffer from discontinuity artifacts and heavy computations.

By using the posterior probability distribution (4.23), the reconstruction is defined as

the inference

ÎH = argmax
IH

p(IH |IL). (4.28)

The parameters of (4.23) are learned through the discriminative learning described

in Section 4.1.2 and the inference can be obtained analytically as shown in Section

(4.1.1).
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4.3 Experiments

In Sections 4.1 and 4.2, we provided the necessary learning and inference expressions

for the proposed reconstruction scheme. It was shown that the reconstruction can

be obtained quite efficiently through an analytical expression. In addition to such

computational advantages, in this section we investigate the performance of the

proposed solution in reconstruction quality through a set of experiments.

First, we have considered the simplified reconstruction scheme where no reference

data sources are used. Thus, we have aimed for observing the adaptation power of the

proposed GCRF modeling scheme. At that point, the posterior distribution, given in

(4.23), turns to

p(IH |IL) =
1
Z

exp

−∑
x,y

N f∑
i=1

wi(x,y|IL;θi)((IH ∗Γi)(x,y)− ri(x,y|IL))2

 . (4.29)

In this expression the components have been selected as follows; the smoothness

features Γi are the derivatives of the first 2 order at 4 orientations, the weighting

function is designed as in (4.24), the regression features νk are edge and bar filters

shown in Fig. 4.5, and the response estimators ri are all 0 for smoothness. The

observations have been obtained by 2x2 decimation, blurring with a 5x5 symmetric

smoothing kernel having the parameters N(0,1), and corrupting with additive white

noise with σ = 10. Three test images have been deformed according to this formation

model, and their reconstructions have been compared with the bicubic interpolation as

shown in Figures 4.6-4.8.

The results in Figures 4.6-4.8 clearly show that the weighting function (4.24) used in

the GCRF prior can successfully identify the edge regions and ignores the smoothness

constraints at those parts. Thus, piece-wise smooth reconstructions can be obtained,

while the uniform kernel interpolation [34, 35] makes the images excessively blurry.

Later, we have experimented with our proposed reconstruction scheme (4.23) by using

reference data. As we also did in the previous chapter, structurally and semantically

close images, found from some repository by using the observation, have been

employed as the data source. To maximize the structural similarity, the found reference

has been initially aligned with the observation. Depending on the available resources
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Figure 4.6: Reconstruction performance of the GCRF image prior where only the
piece-wise smoothness is imposed. (a) Original HR image (Fireman).
(b) LR observation (RMSE=20.58). (c) Reconstruction by bicubic
interpolation (RMSE=17.79). (d) Reconstruction by inferring from the
posterior given in (4.29) (RMSE=15.98).

and the problem setup, the detail level of the alignment may change. In the experiments

this variety has been included through the cases having high and low accuracies in

alignment.

Especially in constrained image domains, such as face, registration is easier and the

alignment accuracy is higher. The general tendency in applications working on such

constrained image domains is to determine the registration parameters automatically

by inferring from learned models. In this experiment, we have used samples which are
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Figure 4.7: Reconstruction performance of the GCRF image prior where only the
piece-wise smoothness is imposed. (a) Original HR image (Castle).
(b) LR observation (RMSE=18.65). (c) Reconstruction by bicubic
interpolation (RMSE=16.56). (d) Reconstruction by inferring from the
posterior given in (4.29) (RMSE=13.25).

automatically aligned onto the mean shape by using AAM (more detail of this process

is given in Chapter 5). In Fig. 4.9 we compare the reconstruction results with the

bicubic interpolation.

As seen in Fig. 4.9, the reconstruction is much better than the classical kernel

interpolation. A significant amount of image details could be added while successfully

rejecting the irrelevant ones. To show the contribution of the cloning more clearly, the
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Figure 4.8: Reconstruction performance of the GCRF image prior where only the
piece-wise smoothness is imposed. (a) Original HR image (Airplane).
(b) LR observation (RMSE=11.27). (c) Reconstruction by bicubic
interpolation (RMSE=9.23). (d) Reconstruction by inferring from the
posterior given in (4.29) (RMSE=4.41).

same experiment in Fig. 4.9 has been repeated without using additional data and the

results shown in in Fig. 4.10.

In the results of Fig. 4.10, the smoothness constraints have become prominent in

the reconstruction. The piece-wise smooth result includes less image details than the

reconstruction shown in Fig. 4.9. Despite this decline in the perception, the RMSE

value of the reconstruction in Fig. 4.10 with the proposed method is slightly lower

than the one in Fig. 4.9. This is mainly caused by the mismatching faint details cloned.

The adaptation is gained through learning and some little gap in this adaptation should

have been accepted initially as in this case.

Then, we have considered the other case where the images can be aligned just roughly.

In this scenario, the imaging space is not restricted as in the previous case and

may consist of complex textures. The single restriction is that the scene consists of
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Figure 4.9: Reconstruction performance of the GCRF image prior where not only
the piece-wise smoothness is considered but also the data cloning
constraints are incorporated. (a) Original HR face. (b) Reference
HR image which is correctly aligned with the observation. (c) LR
observation (RMSE=14.61). (d) Reconstruction by bicubic interpolation
(RMSE=12.46). (e) Reconstruction by inferring from the posterior given
in (4.23) (RMSE=10.77).

object/objects having enough discrimination to be used in a reference search. We have

considered the following car images for this experiment. As shown in Fig. 4.11, the

objects are big enough for identification, though the background scenes are different.

Before the reconstruction we have again aligned the found reference image with the

observation roughly by using the main car parts (two wheels, one headlight and one

stop-light), which are easily detectable in both the observation and the reference. The

LR input has been obtained by using the same parameters of the observation model

described above. The results are compared with the cubic interpolation in Fig. 4.11.

Although the reference has been aligned roughly, as shown in Fig. 4.11, a significant

amount of details could be added. The contribution is more realizable when compared

with the results in Fig. 4.12 where the same experiment has been repeated without

using the cloning constraints.

Due to the selective treatment and the additional data cloning constraints, the method

shows robustness against noise. In Fig. 4.13, we provide the reconstruction results
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Figure 4.10: Reconstruction quality degrades when the data cloning constraints are
neglected. (a) Original HR face. (b) LR observation (RMSE=14.62).
(c) Reconstruction by bicubic interpolation (RMSE=12.46). (d)
Reconstruction by inferring from the posterior given in (4.29)
(RMSE=10.71).

under noises in varying severity and compare the results again with the linear

interpolation results.

4.4 Conclusion

In this section, we have considered the SRR in cases where the fastest online

reconstruction is strongly desired and enough data resource is available for any offline

learning process. We have approached the problem from the statistical perspective

and proposed a solution based on MAP estimation. The solution space has been

represented by defining the posterior distribution in the form of an enhanced GCRF,

which is in fact parametrically weighted GCRF and initially proposed by Tappen et

al. in [3]. In addition to the better representational power, the used GCRF modeling

scheme provides significant computational conveniences, such as:

• Computational cost: GCRF models do not rely on machinery from convex

optimization. In learning stage, the gradient can be calculated analytically. Even,

when the images are used in appropriate sizes, the inference can also be performed

analytically. Compared to the non-convex MRF schemes, which need complex
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Figure 4.11: Reconstruction performance of the GCRF image prior where not only
the piece-wise smoothness is considered but also the data cloning
constraints are incorporated. (a) Original HR image. (b) Reference
HR image which could be aligned with the observation roughly. (c) LR
observation (RMSE=19.22). (d) Reconstruction by bicubic interpolation
(RMSE=16.31). (e) Reconstruction by inferring from the posterior given
in (4.23) (RMSE=13.39).

sampling algorithms and numerical optimization techniques, having such analytical

structures both in learning and inference make this method advantageous.

• Flexibility: The proposed GCRF model allows excessive customization (namely

adaptation) through various components (weights, features and the response

estimators). Thus wide-variety of a priori information can be incorporated into

the solution. However this increased adaptation comes with a cost in training since

many parameters are to be learned.
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Figure 4.12: Reconstruction quality degrades when the data cloning constraints are
neglected. (a) Original HR image. (b) LR observation (RMSE=19.20).
(c) Reconstruction by bicubic interpolation (RMSE=16.27). (d)
Reconstruction by inferring from the posterior given in (4.29)
(RMSE=13.32).

In addition to these, we have suggested using data cloning constraints. These additional

constraints have been incorporated into the posterior through custom weighting

functions and response estimators. The comparative experiments prove that the

proposed solution is quite successful in cloning the relevant image details while

dismissing the unmatched ones.
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Figure 4.13: Reconstruction performance under different noise levels.
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5. FACE HALLUCINATION

In this chapter we particularly consider a restricted case of the SRR where again the

fastest online reconstruction is highly desired and sufficient resources are available

for offline learning. Different from the previous cases, specifically the problem setup

assumes that the images used in learning are highly correlated with the HR image to be

estimated. That means the imaging space is constrained to some specific scenes such

as face, plate, bone, cell.

Although the proposed solution is valid for any type of rigid object scenes, due to

its wide-variety of applications, here we are only interested in face images. The

exact problem can be defined as: given a single LR face image, infer the much

higher resolution of it under the known deformation model. This constrained version

of the generic super-resolution problem is specifically known as Face Hallucination

[10] in literature. The solution corresponds to the inverse of the image formation,

but the backward model has an ill-posed nature as mentioned before. Therefore,

the reconstruction is defined as an estimation in the form of Maximum A-Posteriori

(MAP).

In literature, the Maximum Likelihood (ML) solution is defined almost the same as

the data fidelity constraint [13]. The ML estimate mainly contributes to the global

characteristics of the image space, because the low-frequency content of the original

HR image is encoded in the LR observation [5]. However higher frequencies are

critically important in successive applications, such as face recognition and tracking,

where the resolution is normally quite low but important for identification. These

applications require the reconstruction of these missing image details. At that point, a

priori information plays an important role in adding relevant details, which correspond

to the lost mid/high frequency content.

In opposition to the ML solution, various prior designs [8] have been proposed, as

reviewed in Chapter 2. These priors vary from spatially invariant (homogeneous)
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Figure 5.1: Comparison of image prior models in terms of representational power
and computational complexity. Continuous lines show the corresponding
behavior for different topologies, and the dash line is the target behavior
of this work. The topmost row shows roughly the topologies used. The
symbol ρ refers to the distribution models for local image regions, and ψ
is the transition model between these local regions.

models of local regions [4, 86, 87, 42] to spatially variant (heterogeneous) local models

[21, 5, 17, 26], depending on the assumed topology, see Fig. 5.1.

As the representational power of the model increases, it gets more complicated. At this

point, global models [6, 59, 88, 89] constitute a middle ground between homogeneous

local models and heterogeneous ones in terms of both computational complexity and

representational power. Global priors are good at representing global features of the

image space, but not at representing local features identifying the subject. As seen

from Fig. 5.2-e, the results suffer from image details.

However, in constrained image domains, it is possible to approximating the

performance of heterogeneous models (in representing local details) with global priors.

As discussed before in Chapter 2, heterogeneous priors perform complex inference

to find a good configuration of local models. In restricted domains, such as face,

this flexibility is too much, because the space of possible configurations is limited.

Furthermore, this constrained configuration space can be approximated with a single

configuration when the sample space is arranged sufficiently compact. In other words,

global models could represent image details, as long as enough local regions are

used and aligned correctly. Based on this observation, we propose a global image
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prior of which representational power is boosted without sacrificing its computational

advantages, as shown with dashes in Fig. 5.1.

The organization of this chapter is as follows: In Section 5.1, an introduction for global

models is provided through current literature. This brief review not only helps us

give the basics, which constitute the main building block of our approach, but also

allows discussion of the problematic assumptions that are widely used in literature.

Later in Section 5.2, the details of the proposed approach are provided. Meanwhile,

the remedies for the current stability problems and unrealistic assumptions are also

described. In Section 5.3, the results of the experiments are evaluated in terms of

representational accuracy and computational advantages. Finally concluding remarks

are given in Section 5.4.

5.1 Background

Face Hallucination techniques attempt to reconstruct the original HR image IH from

the LR observation IL under the assumed formation model IL = HIH +n, as also given

in (1.7). The ML estimate of the super-resolved image is obtained by maximizing the

likelihood ÎH � argmaxIH
p(IL|IH), where it is modeled as the data constraint p(IL|IH)=

p(IL−HIH) [13]. The term IL−HIH refers to the observation noise, n in (1.7), and the

ML solution is approximated with its statistical behavior:

p(IL|IH) =
1

√
2π|Σn|

exp(−1
2

(IL−HIH −µn)Σ−1
n (IL−HIH −µn)T ). (5.1)

Here the noise is assumed to be Gaussian n ∼ N(µn,Σn), though mostly it is modeled

as white Gaussian n ∼ N(0,σ2
n). This highly ill-conditioned solution is regularized

in the form of MAP estimation by employing a Bayesian prior model as ÎH �

argmaxIH
p(IL|IH)p(IH).

In literature, many alternative prior designs have been proposed to describe the

probability distribution function of images. For instance, homogeneous local models,

such as [4, 86, 87, 42], define a first order stationary Markov Random Field (MRF)

including a neighborhood prior p(ρ(ΓIci))), which models the spatial correlation

of pixels in an image region ci. Here Γ is a spatial activity function, typically

chosen as a derivative filter to encourage a smooth solution, and ρ is the penalty

designed to be convex (such as Gaussian [4] or Huber [42]). Inference and parameter
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Figure 5.2: Reconstruction results with different image prior models. a) HR
ground-truth, b) LR observation, c) Result with spatially invariant
(homogeneous) local model [4], d) Result with spatially variant
(heterogeneous) local model [5], e) Result with global model [6]. Note that
only the region of interest (ROI) is reconstructed and the rest is re-sampled
from the noise-free LR observation.

learning are relatively simple in this modeling scheme. However the representational

power is limited, because homogeneity assumption provides excessive generalization.

Therefore the results suffer from over-smoothing and consist of mostly low/mid

frequencies as in Fig. 5.2-c.

On the other hand, heterogeneous topologies [21, 5, 17, 26] provide more adaptive

models bearing heavy computations. For each local image region, a different model

is selected from a pool of candidates, learned from the training set, and the joint

behavior is defined by the best model configuration. Inference of the joint model

requires computationally heavy techniques, such as Belief Propagation [90], where the

complexity polynomially increases as the model pool grows. Because of difficulties

in modeling and inference, in real world applications only a limited number of local

models can be used. Though some high-frequency content can be captured locally, this

limitation causes severe global discontinuity artifacts as seen in Fig. 5.2-d.
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In terms of both computational complexity and representational power, global image

prior [6, 59, 88, 89] can be seen as a balanced alternative. Global priors represent

the image space with a single distribution as exemplified in Fig. 5.1. This modeling

scheme can be interpreted as a fixed special configuration of spatially varying local

models. Based on this interpretation, it can be stated that global modeling is better

than the homogeneous topologies due to employing spatially varying local models,

and has less representational power than heterogeneous topologies since it allows only

one configuration of local models. Rather than working on huge configuration spaces,

as stated in the previous section, we think that enhancing only a single one would be

more productive; especially when the computational advantages are considered.

5.1.1 Global image priors

Assuming that the samples constitute a Gaussian form, the global prior can be defined

as: IH ∼ N(µρ,Σρ). In this modeling scheme, the number of parameters to be learned is

reduced to the parameters of a single model, and inference can be accomplished using

linear algebra.

Global modeling is also convenient to be represented in reduced dimensions [6, 59].

Working in subspaces provides several advantages, such as minimized redundancy in

representation, ease of parameter learning, and increase in robustness against noise

and alignment. When linear transformations are considered, image I is represented in

subspace M with a based on the following relation:

I = Ma+ Ī+na (5.2)

where na refers to the gap in representation, and Ī is the mean. A popular

dimensionality reduction technique, Principal Component Analysis (PCA), has been

especially central to the development of face recognition algorithms [91], and to

common automatic image decomposition techniques, such as the Active Appearance

Model (AAM) [92]. Mathematically, a face image is represented as a linear

combination of orthonormal vectors, called eigenfaces. These eigenfaces are obtained

by finding the eigenvectors of the covariance matrix of the training set. When the HR

image in (1.10) is transformed to a subspace by (5.2), the reconstruction turns to the
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estimation of the subspace representation a:

â = argmax
a

p(IL−HMa)p(a). (5.3)

Similar to (1.10), the ML solution p(IL−HMa) is modeled by the statistical behavior

of the total observation gap v as: p(IL−HMa) = N(v;µv,Σv). Here v is more than noise

n, and includes also the representational gap: v = Hna+n.

In (5.3), p(a) refers to the transformation of the spatial image prior p(IH), and enforces

the solution to lie on the subspace. It is simply defined as: a ∼ N(0,Σa), where the

parameter Σa is designed to be the diagonal form of the component variances obtained

from the PCA.

5.1.2 Learning model parameters

In training, the model parameters of the total residual model, p(v), are learned from a

set of HR samples, {IH1 , IH2 , . . . , IHK }. Learning starts with a preprocessing, where the

training images are aligned onto a reference ground. The purpose of this preprocess

is related with having a more compact sample space. The detail of alignment may

change from global superimposition, such as Procrustes analysis [93], to complex

shape registration [63]. As more detailed shape information is used, the accuracy in

alignment increases. Therefore, the complex registration is usually selected, and the

training samples are warped to a reference shape.

Image alignment consists of two consecutive processes. First, the spatial mapping is

found between the shape data of the sample, X, and the reference shape, X̄. Ideally,

the mapping is expressed via a vector field as; X̄(x̄, ȳ) = X(x,y)+d(x,y), where d(x,y)

refers to the constant displacement at that location, (x,y). But, it is not feasible to find

the individual displacement of each pixel. Therefore, finite element discretization is

applied by locally grouping the pixels as in Delaunay triangles [94]. For each triangle,

t, of the reference mesh, X̄, a separate mapping function, Tt, is defined through its

barycentric coordinates as

X̄t(x̄, ȳ) = Tt(Xt(x,y)) =
3∑

i=1

bti(Xt(x,y))ti(x̄, ȳ), (5.4)

where ti refers to the ith node of the triangle t, and bti(Xt(x,y)) is the corresponding

barycentric coordinate found on the input image [95]. Note also that Xt(x,y) and
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Figure 5.3: Two step processing during in image warping.

X̄t(x̄, ȳ) denote the points located within the triangle t of the input image and the

reference ground, respectively. Considering all the triangles in X, the mapping between

these two shapes can be shown as X̄ = T (X).

After the spatial mapping, a re-sampling operation, W, is performed based on the

spatial mapping, T , as; G =W(I,T ), where the result, G, is the alignment of I. Since

all the images are aligned with the same reference shape, X̄, G is also called as the

texture component of the image, I. Mostly, the bilinear interpolation is employed for

the re-sampling operation, W. Assuming that a pixel in the texture, G(x̄, ȳ), maps to

I(x,y) in the original image by inverse mapping T−1
t , then the corresponding pixel in

the texture component, G(x̄, ȳ), is found by

G(x̄, ȳ) = w1I(u,v)+w2I(u+1,v)+w3I(u,v+1)+w4I(u+1,v+1), (5.5)

where wi is the weight for each neighbor, and they are found as the distances to the

pixel, at (x,y), in a quadratic way [68].

The model parameters of the residual, v, are found from the sample statistics of

the aligned face images in the training set. Assuming that {GH1 ,GH2 , . . . ,GHK }

denotes the texture components for the HR training samples, {IH1 , IH2 , . . . , IHK }, and

{GL1 ,GL2 , . . . ,GLK } is their deformed version, obtained by the decomposition of the

LR counterparts of the training images {IL1 , IL2 , . . . , ILK }, then the model parameters
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Figure 5.4: Illustration of the biased estimate, occurring when the degradation, H,
is not adapted to the alignment. In (a) HR and LR images are aligned
individually as GH and GL (the spatial mappings, TH and TL, were
designed as simple global translations; +2 pixels horizontal and +3 pixels
vertical). GL is the ground-truth in comparisons with (b) and (c). In
(b) the degradation, H, is used in order to obtain the LR form of GH by
G′L = HGH. Observe that the resulting G′L is different from the expected
GL of (a). In (c) the same operation is repeated with the corrected version
of the degradation, HG, by; G′′L = HGGH. Now, the result, G′′L , is the same
as GL. Note that the error in G′L will be greater when complex spatial
mappings are in question.

will be

µv �
1
K

K∑
i=1

(GLi −HMMTGHi), (5.6)

Σv �
1
K

K∑
i=1

(GLi −HMMTGHi)(GLi −HMMTGHi)
T . (5.7)

It can be observed from (5.4) and (5.5) that both the locations and intensity values of

pixels are changed during alignment. Nevertheless, almost all model-based methods

(except [89]) assume that the degradation operator, H, is prone to this change. They

use H with the texture components, GL and GH, as is. However, as shown in Fig. 5.4,

this would result in biased estimates because the mapping H (defined on the spatial

domain between IL and IH) is no more valid for the aligned images, GL and GH . In

order to relax this dubious assumption, a correction is suggested in Section 5.2.3.
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5.1.3 Inference and reconstruction

The reconstruction step requires the alignment of the observation so as to make it close

to the sample space. Hallucination methods are divided into two main groups as to

the scheme they follow for alignment. Texture-centric approaches (such as [6, 59])

make the alignment on the LR observation. They assume that the shape is preserved in

resolution differences and use the LR shape information also for the HR image. With

these methods, the reconstruction in (1.10) can be reached efficiently [6] by using the

aforementioned quadratic models as:[
MT HTΣ−1

v HM+Σ−1
a

]
â =

[
MT HTΣ−1

v (GL−µv)
]
. (5.8)

Though the estimation can be found analytically, the dubious shape preservation

assumption undermines the efficiency of these methods.

Appearance-based methods have been proposed, as in [88, 89], to relax this

assumption. The strategy here is based on the joint estimation of shape and texture.

Thus, not only the shape preservation assumption is relaxed, but also the solution is

more constrained due to the increased prior knowledge. AAM [92] may be the most

popular appearance-based approach where, in addition to shape and texture models,

the dependency between these components is employed by a higher PCA. In these

methods, the analytical solution is sacrificed and a fitting criterion on spatial domain

HR image is minimized iteratively (see Procedure 1 in Section 5.2.1).

5.2 Combined Model Fitting In Subspaces

The review in the preceding section reveals that utilization of shape is not easy. To

overcome this problem, traditional methods either follow computationally expensive

iterative processes in HR (as in [88, 89]) or make unrealistic assumptions [6, 59] to

reduce the cost by sacrificing accuracy. We suggest a computationally more efficient

appearance-based approach 1, where the shape reconstruction is treated as a separate

problem and solved in a joint framework together with texture. Moreover the stability

problems and the needs of successive applications are also taken into consideration.
1The class name ”appearance-based” is used to refer to the methods, which employ both the shape

and texture components in image reconstruction.

89



For the realization of this idea, the images are first decomposed and represented as a

combination of shape and texture components. After that, the forward and backward

relations, which were previously defined in (1.7) and (1.10) for the images in the spatial

domain, are re-defined individually for each component, and then transformed onto

subspaces. Lastly, the resulting quadratic reconstruction expressions are optimized in

a coupled way to greatly restrict the solution of each component. In the rest of this

section, these steps are described in detail.

5.2.1 Representation of images

The highest decomposition of images results in shape X and texture G components.

For LR and HR images the decompositions can be expressed with: IL = {GL,XL} and

IH = {GH ,XH}, respectively. Given the corresponding shape information X, the texture

component G is extracted by image warping.

As stated in Section 5.1, global models are convenient to be represented in subspaces.

Since the new global models are built over shape and texture components, they are

transformed onto subspaces. Assuming that MH ,ML and NH ,NL denote the principal

components for texture and shape, the subspace transform expressions will be:

GH = MHtH + ḠH + eH, GL = MLtL+ ḠL+ eL (5.9)

XH = NH sH + X̄H +εH , XL = NLsL+ X̄L+εL (5.10)

where s’s and t’s are the new representations, and e’s and ε’s refer to the gaps. Note that

for each component we use individual projections at each resolution. In this way, the

components can be interpreted at their own resolutions, and this avoids the asymmetry

problem. In [96] it is shown that model fitting is an asymmetric problem and in

the presence of relative scaling, the warp direction ought to be chosen such that the

HR image gets blurred and warped onto the LR one. Otherwise, when the input is

interpreted with a model, which is not trained for input-like images, the model fitting

will perform poorly.

As in our case, practical applications require making image decomposition

automatically on the LR observation. We employ a gradient descent scheme,

which is similar to Procedure 1, so as to automatically decompose the LR observation.
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Procedure 1. Iterative Model Fitting proposed by Cootes et al. [92] for AAM:

1. Project the texture sample into the texture model frame using Gsyn =W(I,T (Ns)),

2. Evaluate the error vector, res =Gsyn−Gmodel, where Gmodel = Mt,

3. Evaluate the current error, E = |res2|,
4. Compute the predicted displacements, δc = −Υres(c),

5. Update the model parameters c→ c+ kδc where initially k = 1,

6. Calculate the new shape X′ and model frame texture G′model,

7. Sample the image at the new points to obtain G′syn =W(I,T (X′)),

8. Calculate a new error vector, res′ =G′syn−G′model,

9. If |res′|2 < E then accept the new estimate; otherwise, try at k = 0.5, k = 0.25, etc.

In this scheme, a constant linear relationship Υ is assumed between the residual image,

res, and the additive updates. This mapping is learned offline through regression. Note

also that c is the subspace representation, which is obtained by a higher PCA on s and

t.

5.2.2 Reconstruction of shape data

Traditional model-based approaches can use only a limited number of landmarks in

HR, because they obtain the shape information from the LR observation and use it for

the HR image as well. However, the amount of data in LR is not enough to define

a complex shape, and an accurate alignment always quests for more detailed shape

information. In order to augment the shape information, the existing shape data are

uniformly interpolated as in [97]. In other words, additional pseudo landmarks are

arranged to be equally spaced between well defined landmark points. Though the

strategy is simple, the equal spacing does not conform with the non-uniform structure

of face shapes. Therefore mispositioned landmarks are produced.

In order to relax this dubious assumption and avoid inaccurate artificial landmarks, we

treat the reconstruction of shape individually. The image formation and reconstruction

models, given in (1.7) and (1.10), are re-defined specifically for the shape component

as:

XL = HXXH +nX (5.11)

X̂H = argmax
XH

p(XL|XH)p(XH) (5.12)
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Figure 5.5: Illustration of the number of landmarks in the detail level of the modeling.
More landmarks create more local regions which could be treated
individually. In (a) the lip part can be represented with only two local
models while in (b) many more models can be employed for the same
region.

where the rectangular linear mapping HX enables using shape structures in different

complexities at each resolution. Note also that this individual treatment allows

modeling of the deviations in shape (occurring during image deformation), and

incorporating a priori information about the shape data in HR.

HX is simply designed as a regression operator which decimates the landmarks in HR

by

XL(i) =
∑

j∈ZH(k)

τ jXH( j), i ∈ ZL(k) and
∑

j∈ZH(k)

τ j = 1, (5.13)

where ZL(k) and ZH(k) refer to the landmarks related with the same image region,

k, in LR and HR, respectively. For instance, let’s say the lip region of a HR face is

denoted by 17 landmarks, and 4 landmarks are used for the same region in LR, see

Fig. 5.5. Then, the corresponding part of HX will be a sub-matrix, which has 4 rows

each consisting of 17 regression coefficients, τ’s. The view of this part within HX will

be

HX =



. . . . . . . . . . . . . . . . . . . . .

. . . 0 τ1,1 . . . τ1,17 0 . . .

. . . 0 τ2,1 . . . τ2,17 0 . . .

. . . 0 τ3,1 . . . τ3,17 0 . . .

. . . 0 τ4,1 . . . τ4,17 0 . . .

. . . . . . . . . . . . . . . . . . . . .


. (5.14)

For each landmark in LR shape, the regression expression will be different, depending

on its characteristic and the amount of available data. Especially when an excessive
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amount of decimation and/or blur exists, a special HX is required. Otherwise, when the

input resolution allows for the identification of all landmarks, no rectangular operator

will be required and HX is designed traditionally as the identity matrix. Note also that

HX is valid for the whole image space, and once it is built, used by all the subjects

either in training or testing.

Now these component relations, given in (5.11) and (5.12), are transformed onto a

subspace. The projection of the forward model can be obtained by substituting the

projections of (5.10) in (5.11) as:

sL = NT
L HXNH sH +NT

L vS (5.15)

where vS = (HXεH+nX) denotes the total error in shape formation. After the backward

model, in (5.12), is re-defined in terms of subspace representations as:

ŝH = argmax
sH

p(sL|sH)p(sH). (5.16)

Here, the ML solution p(sL|sH) is approximated by the probability distribution of the

projected form of the total error, p(NT
L vS ). In (5.15), NT

L vS denotes the back projection

error as shown below:

NT
L vS = sL−NT

L HXNH sH . (5.17)

Assuming that the noise has Gaussian form, p(vS )∼ N(µvS ,ΣvS ), the model parameters

are learned from the statistics of K samples as follows:

µvS �
1
K

K∑
i=1

(XLi−HXNHNT
HXHi), (5.18)

ΣvS �
1
K

K∑
i=1

(XLi−HXNHNT
HXHi)(XLi−HXNHNT

HXHi)T . (5.19)

Recalling (5.15), we need the projected noise NT
L vS to model p(sL|sH). Based on the

analysis of functions of multivariate random variables [98], the projected form of the

noise model is also Gaussian with the following parameters:

p(sL|sH) ∼ N(NT
L µvS ,N

T
LΣvS NL) (5.20)

because the eigenmatrix NL is nonsingular, so is NT
L NL.
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In (5.16) the regularization term, p(sH) where sH ∼ N(0,ΣS ), constrains the solution to

lie on the subspace defined by the principal components (PC) of shape NH .

With these quadratic models, the reconstruction, in (5.16), can be obtained analytically

by:

[
HT

S NT
LΣ
−1
vS

NLHS +Σ
−1
S

]
ŝH =

[
HT

S NT
LΣ
−1
vS

NL(sL−NT
L µvS )

]
(5.21)

where HS = NT
L HXNH is the projected form of the deformation.

5.2.3 Reconstruction of texture component

Derivations for the texture reconstruction are obtained by following a similar way to

the shape reconstruction. First the image formation and reconstruction models are

re-defined for texture as:

GL = HGGH +nG (5.22)

ĜH = argmax
GH

p(GL|GH)p(GH) (5.23)

where GL and GH refer to the mean aligned textures corresponding to the spatial

mappings X̄L = TL(XL) and X̄H = TH(XH), respectively. In (5.22), a specific

deformation operator HG is used instead of the image deformation operator H. As

explained in Section 5.1.3, warping causes change in both intensity values and

locations of pixels. When H is used with the aligned textures, the least-squares solution

results in biased reconstructions (see Fig. 5.4). In order to overcome this problem a

correction is suggested on H by defining HG as:

HG �W(W(H,TH(XH)),TL(XL)) (5.24)

where the same processing, performed in alignment, is reflected on H. Since the

re-sampling in W is not linear, HG is defined approximately. The realization of (5.24)

can be made by first processing rows of H with the HR spatial mapping TH, and

then processing the columns of this intermediate result with the LR mapping TL as

summarized below.

94



Procedure 2. Correction for the deformation operator H:

1. Given the deformation operator H and the HR shape XH ,

2. Find the corresponding XL by using (5.11),

3. Find spatial mappings TL and TH for each resolution,

4. Set [rows cols] = size(H), and HG = 0,

5. For i = 1 to rows

(i) Warp i’th row of H: HG(i, :) =W(H(i, :),TH),

6. For j = 1 to cols

(i) Warp j’th column of HG: HG(:, j) =W(HG(:, j),TL),

7. Find subspace representation of XH via (5.10),

8. Store the sparse form of HG together with its label sH in a joint data structure.

The image deformation H is a highly sparse matrix consisting of the smoothing kernel

parameters, which are spatially invariant. That means, H is independent from the

input image and identical for the whole image space. Though HG is also sparse, as

seen in (5.24), HG is dependent on XH , namely sH . A separate HG has to be found

for each intermediate solution in reconstruction. The correction in (5.24) is a costly

operation, O(n2), since it is performed on spatial domain HR images. However, it is

possible to avoid this computational burden by finding all possible HG’s offline. We can

previously calculate HG’s for each allowed variation in sH , and store them to use during

reconstruction. Due to the limited variation in sH , neither the number of possible HG’s

to be stored, nor the search among them would be disturbing. Furthermore, the number

of HG’s can be decreased by clustering close sH’s and calculating only one HG for

each cluster. Fig. 5.6 reveals the need for a specific deformation operator for the

reconstruction of the texture component.

After giving the models for image formation and reconstruction in the spatial domain,

they are now transformed onto subspaces. The projection of the texture formation is

obtained by substituting the projections of (5.9) in (5.22) as:

tL = MT
L HG MHtH +MT

L vT (5.25)

where vT = (HGeH+nG) denotes the total error. Similarly, the backward model, (5.23),

is re-defined in subspace with:

t̂H = argmax
tH

p(tL|tH)p(tH) (5.26)
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Figure 5.6: Image warping causes changes in both intensity values and locations of
pixels. Therefore, the image deformation H, providing a linear mapping
between the pixels at different resolutions, should be adapted to this
change. Otherwise, when H is used with the aligned textures GL and GH in
(5.22), the reconstruction in (5.23) results in biased estimates. In column
(b) the LR textures G′L have been obtained by using the image deformation
operator H as: G′L =HGH . These textures are different from the references
in column (a). In column (c), the corrected version of the deformation HG
is used to build the LR texture G′′L by: G′′L = HGGH. The resulting textures
are almost the same with the textures in column (a).

where the ML solution, p(tL|tH), is approximated with the probability distribution of

the projected error MT
L vT as: p(tL|tH) ∼ N(MT

LµvT ,M
T
LΣvT ML). The model parameters
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are learned from the statistics of K samples as follows:

µvT �
1
K

K∑
i=1

(GLi−HG MH MT
HGHi) (5.27)

ΣvT �
1
K

K∑
i=1

(GLi−HG MH MT
HGHi)(GLi−HG MH MT

HGHi)T (5.28)

Similar to the shape prior model, the texture regularization, p(tH) in (5.26), constrains

the solution to lie on the subspace defined by the PCA model as: p(tH) ∼ N(0,ΣT ).

This quadratic modeling of the reconstruction, given in (5.26), provides analytical

solution by:[
HT

T MT
LΣ
−1
vT

MLHT +Σ
−1
T

]
ˆtH =

[
HT

T MT
LΣ
−1
vT

ML(tL−MT
LµvT )

]
(5.29)

where HT = MT
L HG MH.

5.2.4 Combined reconstruction

The individual reconstructions, given in (5.16) and (5.26), can be solved independently,

which is common in the literature. Then it will be possible to reach the

solution analytically as shown in (5.21) and (5.29). Even though this independent

treatment of reconstructions provides superior reconstructions (compared to other

appearance-based approaches, as shown in the experimental results in Fig. 5.10 and

5.14) [99], it is still possible to further increase the accuracy without sacrificing the

linearity [72]. Since shape and texture components are statistically correlated [92],

this dependency relation can be employed to better regularize the solution. The joint

behavior of the image components, p(tH, sH), is incorporated into the reconstruction

as:

(t̂H , ŝH) = argmax
tH ,sH

p(tL|tH)p(sL|sH)p(tH)p(sH)p(tH , sH). (5.30)

The models for the ML solutions (p(tL|tH) and p(sL|sH)) and the individual priors

(p(tH) and p(sH)) were given previously in Sections 5.2.2 and 5.2.3. The remaining

prior information p(tH , sH) is obtained by a higher PCA on the image components.

Following the same notation with AAM [92], the correlation model is defined as:[
ωsH
tH

]
=

[
P
R

]
c+ Q̄+η (5.31)
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where the joint principal components Q are shown in the decomposed form as: Q =

[P R]T . Also, in (5.31) c is the subspace representation, ω is the scaling, Q̄ is the

mean (which is zero by definition since sH’s and tH’s are already mean normalized),

and η is the representational gap. To express the joint behavior in terms of subspace

components (tH and sH), (5.31) is rearranged as: c = PTωsH +RT tH + η. Based on

this modeling, the additional prior p(tH , sH) is designed similarly as the constraint,

enforcing the solution to lie on this joint subspace Q as: p(tH, sH) = p(c) where c ∼

N(0,Σc).

Estimation in (5.30) is performed by the coupled solution of component

reconstructions, given below as:

t̂H = argmax
tH

p(tL|tH)p(tH)p(tH , sH) (5.32)

ŝH = argmax
sH

p(sL|sH)p(sH)p(tH , sH) (5.33)

in a gradient descent scheme. With this sense, first the corresponding cost functions

are defined by using the models given above, as:

E(t) = λ1(tL−HT tH −MT
LµvT )T (MT

LΣvT ML)−1(tL−HT tH −MT
LµvT )

+λ2tTHΣ
−1
t tH +λ3(PTωsH +RT tH)TΣ−1

c (PTωsH +RT tH)

(5.34)

E(s) = γ1(sL−HS sH −NT
L µvS )T (NT

LΣvS NL)−1(sL−HS sH −NT
L µvS )

+γ2sT
HΣ
−1
s sH +γ3(PTωsH +RT tH)TΣ−1

c (PTωsH +RT tH)

where λ and γ refer to the weights adjusting the contribution of each term. The

gradients of these functions will be:

▽E(t) = −λ1(HT
T MT

LΣ
−1
vT

ML)(tL−HT tH −MT
LµvT )

+λ2Σ
−1
t tH +λ3(RΣ−1

c )(PTωsH +RT tH)

(5.35)

▽E(s) = −γ1(HT
S NT

LΣ
−1
vS

NL)(sL−HS sH −NT
L µvS )

+γ2Σ
−1
s sH +γ3(ωPΣ−1

c )(PTωsH +RT sH).
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Figure 5.7: Summary of the processing followed by the proposed SR approach.

During the optimization, the image components are updated by:

t(n)
H = t(n−1)

H −α(n)▽E(t(n−1)
H ) (5.36)

s(n)
H = s(n−1)

H −β(n)▽E(s(n−1)
H ) (5.37)

in the nth iteration with the step sizes α(n) and β(n). Including this coupled gradient

descent optimization, the complete reconstruction process can be summarized

graphically by Fig. 5.7 and procedurally as follows.

Procedure 3. Proposed SR reconstruction:

1. Decompose the LR observation by interpreting with the LR AAM and obtain sL and tL,

2. Set tH = 0 and tL = 0,

3. For iter = 1 to MaxIter

(i) Fix tH and estimate the new sH via (5.37),
(ii) Find HG from the repository by searching with its label sH ,

(iii) Fix sH and estimate the new tH via (5.36),

4. Synthesize IH from sH and tH by using (5.10) and (5.9), respectively.

5.3 Experimental Results

As shown in Fig. 5.1, defining a global image prior, which is not only powerful in

representing local details but also computationally efficient, has been our intention.

We performed a set of experiments to show how much the proposed solution meets this

aim. The increase in the representational power has been evaluated both qualitatively

and quantitatively. By using the estimations of the image components, image syntheses
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have been obtained for qualitative evaluation. For quantitative comparison, the RMSE

rates in subspace representations have been used. The computational advantages have

been investigated by making an analysis on the running-time costs.

Results have been compared with other popular appearance-based approaches; the

HR-AAM [88] and the Resolution Aware Fitting (RAF) method [89]. We refer

to HR-AAM in order to describe the method, where the upscaled LR observation

is interpreted with the AAM learned for HR images. In HR-AAM, the upscaled

observation, IU , is interpreted by optimizing a criterion quantifying a good match

(see Procedure 1 in Section 5.3.1). In [88], the fitting criterion is given as the sum

of the squared intensity differences between the intermediate synthesis and the warped

observation W(IU ,TL), as[
W(IU ,T (NH sH))−MHtH

]2
. (5.38)

Observe that the error is defined over the texture component, GH, of the HR image, IH ,

to be estimated. The results of HR-AAM get dramatically worse as the degradation

increases due to the asymmetry. To overcome this problem, in the RAF algorithm

[89], Dedeoglu et al. suggests a revision on the fitting criterion. In this correction, the

image formation model is incorporated into the fitting criterion by[
IL−H(W(MHtH,T−1(NH sH)))

]2
(5.39)

where the outcome is compared against the LR observation. Especially in severe

deformations, the results of RAF would be superior to the HR-AAM results. However,

the RAF algorithm is especially criticized for not utilizing statistical dependence of

image components and for heavy computations [100]. At each iteration of Procedure

1, the intermediate HR synthesis is first warped back to the observation shape, and then

degraded by means of H.

In our approach, computationally heavy model fitting is performed in subspaces.

To allow comparison with (5.38) and (5.39), the least-squares part of the proposed

solution can be given as; [tL −MT
L HG MHtH]2, where the prior terms and the shape

reconstruction have been neglected.

A set of images from the FERET database [101] has been used. The data set consists

of a total of 110 different subject faces in the resolution of [360x360]. The shape
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information of the images has been built by manually annotating the images with

110 landmarks. In order to create the lower resolution counterpart of the dataset,

with a size of [45x45], an 8 factor decimation and blurring with a kernel (having the

parameters N(0,3) and the size of [5x5]) has been applied by adding random noise

with 0.005 variance for texture and 0.0001 variance for shape (noises were applied on

0-1 normalized values). The data set has been divided into two: 85 for training and 25

for testing. In order to have ”shape”,”texture”,and ”joint” principal components at each

resolution, two AAMs have been trained individually for LR and HR images. Models

represent 95% of the dataset and have been adjusted to search around +/−3σ.

Qualitative results allow making evaluations in terms of human perception. In Fig.

5.8 we present the shape-free texture reconstructions, synthesized from the subspace

estimations by using (5.9). Compared to other appearance-based methods, more

realistic image details could be gained with the proposed method. The improved

texture model represents the image space better, and as a result the accuracy in HR

synthesis is boosted. Increased accuracy in alignment plays an important role in

this improvement. To show the performance of the proposed method also in shape

estimation, we present the image reconstruction results in Fig.5.9, where the shape-free

texture results in Fig. 5.8 have been warped back to the shapes estimated.

As seen from the resulting images in Fig. 5.9, the proposed method outperforms the

others also in shape estimation. Reconstructions with the proposed method are realistic

and close to the ground-truth. Especially the identity information of the subjects has

been reconstructed more accurately. On the other hand, some reconstructions with

other techniques are machinery and not like face images, though their shape-free

counterparts in Fig. 5.8 are not so disturbing. This is mainly related with the

inconsistency between the found shape and texture components. Recall that in the

RAF algorithm, the correlation of the image components is not considered, therefore

inconsistent image components could occur. This observation shows the importance

of the utilization of the dependency between shape and texture.

For the successive applications, such as face recognition, the accuracy in subspace

representations of the image components is more important than having a visually

more appealing reconstruction in spatial domain. In Fig. 5.10 and 5.11, the estimation
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Figure 5.8: Shape-free texture syntheses.

errors in subspace representations of texture and shape components are compared,

respectively.

These quantitative comparisons, in Fig. 5.10 and 5.11, show that the proposed

reconstruction scheme not only produces better images in spatial domain, but also

significantly improves the accuracy in subspace representations. It has also been
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Figure 5.9: Qualitative results for the reconstructions from the input LR images shown
in the left-most column. Note that for all columns the background has been
obtained from the linear interpolation of the noise-free LR image to make
the ROI more detectable.

observed that the RAF algorithm performs better than the HR-AAM due to the

elimination of the asymmetry problem.
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Figure 5.10: Root Mean Square (RMS) errors in texture subspace representations
(it is also statistical summarized on the left through the box-plot
representation). Note that 100 test samples have been obtained by
following a leave-one-out strategy.

Figure 5.11: RMS errors in shape subspace representations (it is also statistical
summarized on the left through the box-plot representation). Note
that 100 test samples have been obtained by following a leave-one-out
strategy.

Both the HR-AAM [88] and RAF [89] methods employ a fitting strategy similar to the

one given in Procedure 1. This procedure has two bottlenecks with dense data. First,

the re-sampling operation in Step 7 has a complexity in the order of O(n2), where

n refers to the number of pixels in the HR image (e.g: n = 160x160 = 25600 in our

experiments). Second, the matrix-vector multiplication, in Step 4, again has quadratic

complexity, O(n2). Moreover the RAF algorithm includes also an additional step for

image deformation.

On the other hand, the main computational load of the proposed method is caused

by: interpretation of the LR input with the AAM (which is trained for LR images), and

search for the right deformation HG. They correspond to Step 1 and Step 3 in Procedure
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3, respectively. As stated before, the cost of AAM interpretation with Procedure 1 is

O(n2). Different from HR-AAM and RAF, here the model fitting is performed on the

LR observation, having much fewer numbers of pixels (e.g: n = 20x20 = 400 in our

experiments). As to Step 3, searching among K codewords can be achieved efficiently

by the K-D tree algorithm [102], having a complexity in O(logK). Note also that

the size of the codebook, K, is limited with the appearance space, Q. Based on this

analysis, on run-time costs, it can be claimed that the quadratic complexity of the

appearance-based methods is decreased to the logarithmic complexity. Especially in

severe decimations this difference is quite significant.

5.3.1 Further investigation on algorithmic details

In Fig. 5.12, we have investigated the effect of the correction, performed on the image

deformation operator. The same texture reconstructions have been repeated by using

the original deformation operator H, and the results have been compared with the

reconstructions, obtained using the corrected version HG.

The comparison in Fig. 5.12 shows that the textures with HG are closer to the real

texture, and include more accurate image details. Recall that a similar comparison was

presented in Fig. 5.6 in Section 5.2.3. The results, in Fig. 5.6, were shown on the

deterministic least-squares estimates. Therefore, the difference is more obvious in Fig.

5.6. Whereas, here in Fig. 5.12, the reconstruction results have been obtained from the

MAP estimates, and some portion of the error has been absorbed by the models used

for both the ML solution and prior information. In addition to these qualitative results,

in Fig. 5.13 the same comparison is presented on quantitative results.

Another investigation has been performed to explore the contribution of the shape

estimation in this combined strategy. The individual texture reconstruction, given

in (5.29), has been performed for the same test set without caring about the shape

reconstruction. In Fig. 5.14, the error rates in this experiment are compared with

the results obtained by employing the combined reconstruction. As seen from this

comparison, the additional constraints, coming with shape reconstruction, restrict the

solution more and better reconstructions are obtained.

Up to here we have performed experiments on the synthetically deformed LR images.

Different from these experiments, in Fig. 5.15, the proposed method has been
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Figure 5.12: Effect of using the corrected form of the deformation operator on texture
synthesis performance. (a) The real HR texture (b) Synthesized HR
texture by using HG in texture reconstruction (c) HR texture synthesis
by using the image H in texture reconstruction.
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Figure 5.13: RMSEs for the texture subspace representations, found by using the
corrected deformation HG in Procedure 3, compared with the error rates
of the texture estimations, obtained by using the image deformation H in
Procedure 3.

Figure 5.14: Effect of incorporation of shape into the reconstruction. Dash-line shows
the error rates of the subspace representations of the texture component,
which is found by employing (5.29) and neglecting shape information.
Continuous line show the error rates of the texture reconstructions
obtained from the combined solution proposed in Procedure 3.

tested with naturally-deformed images. For that purpose we have used the VPA

Super-Resolution Face Database [103]. This new database consists of frontal face

images and videos of 32 people, and it is particularly designed to test SRR techniques.

The LR talking face videos were shot by a commercial SONY-DVR camera from a

distance in ambient light and uncontrolled environment. The HR face images were

taken by SONY-DCS F707 Digital Still Camera with closer distance again in ambient

light so as to acquire face images having higher (double) resolution than those faces in

the video frames. Since we perform single-frame super-resolution, we have identified

the closest frames in the LR videos as the LR counterpart of the HR stills. Due to
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the limited number of subjects, we have followed the leave-one-out strategy for this

experiment.

Despite the compelling difficulties in real world scenarios (such as non-uniform noise,

non-uniform and unknown PSF blur, the gap between the LR image and its HR

counterpart, etc.) and the limited size of the training set, the proposed method can

reconstruct much more identity information than the other techniques as seen in Fig.

5.15. Using additional image priors and modeling the residuals more accurately

provide robustness to the proposed method against these difficulties.

The proposed solution framework, based on the reconstructions given in (5.32) and

(5.33) as part of Procedure 3, has been fully defined in subspaces. As shown in [59, 91],

subspace models are robust against noise, since they constrain the solution to lie in the

face space. Moreover, to increase the robustness, obtained by subspace modeling,

the noise model is learned specifically for the image space under consideration, as

described in Section 5.1.1.

5.4 Conclusion

Super-resolution of face images has been achieved by a new fast method, based on

generative models and utilization of shape and texture components together. The major

advantage of the proposed appearance-based solution is to attain the representational

power of spatially varying local models while using a global model.

The representational power of the global image prior has been boosted by increasing

the accuracy in the alignment and using a texture specific degradation operator. To have

more accurate alignments, the shape reconstruction has been considered as a separate

problem and solved in a joint framework together with texture reconstruction. This

separate treatment of shape reconstruction enables both incorporating shape specific

priors and using more number of landmarks with HR images. Moreover, in texture

reconstruction, a specific degradation operator has been employed instead of the image

degradation operator, which is originally used in image formation. Hence, the biased

reconstructions, caused by using the image degradation operator with textural data,

have been avoided.
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Figure 5.15: Reconstruction results of naturally degraded LR observations. es and
et are the RMSEs in the subspace representations of the shape and
texture components, respectively. Note also that for last 3 columns
the background has been obtained from the linear interpolation of the
noise-free LR image to make the ROI more detectable.
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The successful results in the experiments prove that the reconstructions with the

proposed method have more local features constituting the identity. Moreover, the

run-time cost analysis shows that the reconstruction can be obtained faster. In addition

to the selected quadratic structures for modeling, the subspace transformation of the

complete reconstruction expression plays a crucial role in this computational saving.

In appearance-based approaches, the complexity is reduced from quadratic time to

logarithmic time.
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6. CONCLUSION & DISCUSSION

6.1 Summary And Contributions

This thesis presented efficient single-frame SRR methods addressing common

real-world problem setups. Especially, the trade-off between the reconstruction quality

and the computational complexity was focused on. It was aimed to establish the

balance (stated in the Occam’s principle for mathematical modeling) at the levels

having high reconstruction quality and low computational cost.

Starting with the generic SRR problem definition, the exact consideration was

described through the assumed forward and backward models. Meanwhile, the main

characteristics of the problem were also revealed, such as: ”the backward model

is ill-posed”, ”the natural image space show heterogeneous behavior and requires

adaptive treatment”, ”significant amount of the data is lost because of decimation”

and ”the applications desire the solutions to be fast, scalable and realizable with

the available resources”. Apparently, these characteristics define conflicting needs.

For instance, as the adaptation (identifies the reconstruction quality) increases, the

constraints become more complicated, and the optimization gets harder. We reviewed

the related literature and identified the below list of basic principles, that should be

satisfied to answer all of these needs.

• In order to maximize the information, extracted from both the observation and the

reference data source, a wide set of analysis features should be employed.

• Extrapolation is difficult via learned models and limited codebooks of local image

regions. Even, when smoothness is imposed, it gets much harder. So, the reference

data source should be designed to have maximum textural similarity and global

continuity.
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• When the objective function has quadratic structure, solving mathematical

programming is fastest.

In light of these principles, we developed efficient methods for different scenarios

encountered frequently. The suggestions to realize these intentions are summarized

below in the same ordering:

• Rather than using only the horizontal and vertical derivatives, it was suggested

using a wealthier set of image features to capture more characteristics of the image

space. Considering the various factors in feature set design (listed in Section 2.3)

we built our proposed feature set including 1st and 2nd order derivatives at 4

intermediate orientations, and multi-scale steerable edge and bar filters. In addition

to their analysis power, these features also fit well with the proposed reconstruction

schemes for increased computational convenience.

• The disappointment with previous data source design attempts reveals that globally

continuous realistic HF content could only be obtained by having a strong

idea/experience about that content. At that point, we utilized semantically and

structurally close reference/template images to represent this prior experience.

Since lots of mismatches are expected, we employed robust functions while cloning

the relevant details from these reference images.

• First, we proposed an iterative reconstruction scheme which does not

require training and can be generalized to the natural image space. The

adaptation was incorporated into the solution via the Welsch type re-descending

M-estimator. Contrary to the other non-convex and discontinuous evaluation

functions/estimators, the Welsch norm is convex (actually it is partially-convex;

however, within the scope of this problem the initialization is generally made close

to the solution. Therefore, based on this initialization assumption, it can be treated

as if convex.) and has a closed form which can be differentiable up to the 2nd

order. The qualitative and quantitative comparisons of the Welsch norm with the

popular re-descending M-estimator, the Lorentzian norm, proved that the quality is

increased significantly in addition to the computational advantages gained. Though

the solution is numerical, quite satisfactory results could be reached within 30
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iterations. This makes the solution promising for the real world applications

needing generality.

Later, we considered the problem from the statistical learning perspective. An

enhanced form of the GCRF model was utilized as the image prior. The

computational conveniences of the GCRF modeling scheme made the analytical

reconstruction possible. Also, through the weighting function, the adaptation of

the model was increased. Thus, without sacrificing the computational advantages,

we could obtain the necessary adaptive treatment for edges. Comparisons with

other analytical approaches showed that a serious amount of image details could be

captured.

Lastly, we addressed a more specific case where the imaging space is constrained

to scenes containing only similar object/s. This restriction refers to a strong

correlation between the images used in learning and the HR image to be estimated.

We proposed a quite efficient method which fully utilizes this strong correlation

as the image prior. Contrary to the general tendency of using local image

models, global models of the shape and texture components were employed. The

representational power of the global texture model was enriched with the help of

shape information. For computational conveniences, convex quadratic functions

were used in modeling and the variables were transformed onto subspaces. Hence,

the resulting reconstruction scheme has led to quite fast algebraic operations on

small-size matrices.

6.2 Future Directions

There are several possible directions for future research following the present state of

this study.

In our algorithms we have employed the analysis filters, which are mostly in the form

of derivatives and valid for the whole natural image space. However, in the literature

there are successful works, such as [104, 105, 106, 69], proposing scene-specific

powerful filters. Though they are mostly used in detection applications, they can

be also utilized for the SRR in addition to the generic high-pass filters. Especially

for constrained domain images, they would provide better analysis performances. For
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instance in [69], Torralba et al. has introduced part-based features for computer screens

and cars.

Although there are works utilizing techniques from the Compressive Sensing (CS)

theory, the image formation model, used in SRR, is structurally different from the

formation model, which is assumed by the CS methods. In SRR the observation is

not coded and directly represents the measurement data, while in CS the observation is

coded by a random measurement matrix. However, the CS idea can still be employed as

an artificial constraint in order to better regularize the solution. That is, this additional

constraint would enforce the closeness between the coded versions of the observation

and the intermediate estimate with the same measurement matrix. The randomness of

the coding would probably contribute for extrapolation.

As Chapter 4 shows, the learning stage of the GCRF modeling scheme requires

heavy computations, and this may cause difficulties with large-scale images. However

part-based or hierarchal approaches can be adapted in order to reduce the number

of unknowns. Though it would obviously require some additional processing, the

efficiency of the learned models would improve. Moreover the flexible nature of

the modeling scheme makes the proposed reconstruction (given in Chapter 4) quite

convenient for goal-oriented purposes. The desired or expected behavior can be easily

incorporated into the solution by adjusting the response estimators.
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