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NOMENCLATURE

0/0n  : differentiation in the direction of outward normal to the surface S
at point p.

] : scalar potential function.

®;; : potential that is induced at the control point of the ith element by a

unit source density on the jth element.

p : constant fluid density.

a(q)  : local intensity of source distribution.

@ : potential function.

@i : perturbation potential due to the body surface.

A;;  : the normal velocity induced at the control point of the ¢th element by

a unit source density of the jth element.

B; : constant coefficients.

Cp : pressure coefficient.

E  : Young’s modulus.

F : known function of position and time on S.

[F]  : blending function matrix.

[G]  : matrix of geometric conditions.

I : moment of inertia.

1,7,k : unit vectors along the axes of the reference co-ordinate system in



which the body surface is put.
M(z)  : bending moment.

n  : unit outward normal vector at a point of S.

n; : unit normal vector to the zth element.

P : fluid pressure.

Poo : pressure at infinity.

P(t) : position vector of any point on the cubic spline segment.
P'(t)  : tangent vectors at the ends of the spline segment.
r(P,q) : distance between P and q.

R(z) : radius of curvature of the beam. .

q : a general point on the surface S.

S : boundary of region R’.
t1,t2 : parameter values at the beginning and end of the segment.

v : disturbance velocity field due to the boundaries.

A% : fluid velocity.
V; : potential velocity including the effects of the onset flow.
Vij : velocity that is induced at the control point of the ith element by a

unit source density on the jth element.
Vo : velocity of the onset flow.
.Y,z : co-ordinates of point P.

Xij Y55, 2:5 :components of V,]
Tq,Yq,2¢ ¢ co-ordinates of point g.

y  : deflection of the beam.
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SUMMARY
MESH GENERATION FOR THE SHIP WAVE PROBLEM

The improvement of a ship hull form is an important development in the field of
ship hydrodynamics. The ship hull form affects the wave-making characteristics
of the ship. These effects have been explored by using different theories. One
of these theories is the thin-ship theory. In the method of the thin-ship theory,
equivalent sources representing ship form are distributed on the centerplane
of the ship on the assumption that the breadth of the ship is very small in
comparison with its length. However most of the ships built are not so thin
and they have complicated forms that they are not suitable for the thin-ship
assumption.

Although research in wave resistance has been a major interest among theo-
retical ship hydrodynamicists for almost a century it is not until recently that
predictions, useful for arbitrary hulls, have become possible. A major break-
through was the paper presented by Dawson (1977). As had been suggested
by Gadd (1975) the free surface boundary condition could be approximately
satisfied by covering part of the undisturbed free surface close to the hull by
sources. In Dawson’s method the boundary condition is linear and the lineariza-
tion is made about the so called double model solution, obtained assuming a
flat free surface.

In this study the method which estimates a source distribution over the hull
surface is used. The problem of steady flow about a ship is solved with the
method which is based on simple Rankine singularities. The aim of the present
work is to reduce the manual work required in preparing the input data for the
programme which computes the wave-resistance.

Two pre-processor computer programimes are developed to automate data prepa-
ration for the main programme, namely for DAWSON.FOR. developed previ-
ously at L.T.U. by Dr. Omer Goren. By using these pre-processor pro-
grammes different panel arrangements are tried both on the ship hull surface
and on the free surface for Wigley’s parabolic hull and Series-60 hull, respec-
tively. By the two AutoCAD routines appended to these pre-processors it be-
came possible to visualize the panel arrangements. The computed results are
compared with the experimental results available.
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OZET
DALGA DIRENCI HESABI ICIN GEMI YUZEYININ

OTOMATIK OLARAK PANELLENMESI

Gemi Hidrodinamigi alaninda tekne formunun iyilegtirilmesi énemli bir konudur.
Tekne formu, geminin dalga yapic: 6zelliklerini etkiler. Bu etkiler, yazinda farklh
birkag yontemle incelenmigtir. Dalga direnci problemlerinde kullamilan ¢6ziim
yontemleri birkag gekilde simiflandirlabilir:

1) Timlev (integral) denklem y6ntemini kullanarak veya bilinen kaynak giddeti-
ne sahip integrallerin dogrudan hesaplanmasi ile Green fonksiyonu yaklagim
yapmak,

2) Sonlu farklar veya sonlu elemanlar yontemlerinden birini kullanarak alan
denklemlerinin dogrudan sayisal ¢bzliimlerini bulmak.

Green fonksiyonu yaklasimi da, kullanilan Green fonksiyonuna gore iki sinifa
ayrilabilir:

a) Havelock (veya Kelvin) kaynaklarim kullanan yaklagim,
b) Rankine kaynaklarimi kullanan yaklagim.

Havelock kaynaklari daha ¢ok narin gemi teorisinde (Thin Ship Theory) ve
Neumann-Kelvin problemlerinde kullamilirken, Rankine kaynaklar1 disiik hiz
teorisinde (Low Speed Theory) kullamlir.

Narin gemi teorisi bir¢ok dalga problemine uygulanmgtir. Narin gemi yontemin-
de gemi formunu temsil eden egdeger kaynaklar gemi simetri ekseni iizerinde
dagitilir. Burada gemi genisliginin gemi boyuna oram cok kii¢lik kabul edilir.
Ancak ingaa edilen gemiler karmagik forma sahip olduklari ve narin gemi kabuli-
ne uygun olmadiklan i¢in bu galigmada gemi tekne formunun sadece gemi
simetri ekseni lizerine dagitilan kaynaklarla temsil edilmesinin uygun olma-
yacag diginilmigtiir. Tekne ylizeyi izerinde kaynak dagilimini 6ngéren yontem
benimsenmig, Rankine kaynaklarim kullanan yaklagim kullamilmigtir.

Rankine kaynaklarinda akim radyal dogrultuda diga dogru bir akim olup, akim
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hiz1 1/r? ile orantihdir. Burada r kaynaktan olan uzakhiktir. Kaynagin kendisi
diginda bu akim siireklilik (continuity) ve gevrisizlik (irrotationality) denklem-
lerini saglar. Bu kaynaklar tekne ylizeyine dagitilirsa, teknenin disinda viskoz
olmayan bir akim olugturulur. Kaynak dagilimi uygun olarak segilirse, tekne
yizeyindeki simir kogulu saglanabilir. Pratikte bu simir kogulu tekneyi N sayida
panele bolmekle bagarilabilir.

Her bir panel izerinde kaynak yogunlugunun, o, gibi sabit bir degerde oldugu
kabul edilir. Ancak o, panelden panele degigir. Teknenin ayna gorintiisi
z = 0 serbest su yizeyi diizlemi lizerine eklenir ve 4z noktalarindaki kaynak
yogunluklar: birbirine egit alimirsa, z = 0’daki diisey hiz her yerde sifir olur.

Uniform akim V ve N adet kaynaktan gelen etkinin birlestirilmesiyle olugan
bilegke hizin her bir panelin merkezine teget olacag: kabul edilir. Bu kabul
yardimiyla baglangicta bilinmeyen N adet o, kaynak yogunluklar: bulunur.

Boyle bir akim, tekne siir kosulunu saglasa da serbest su ylizeyi kogulunu
saglamaz. Serbest su ylizeyi kogulunu saglamak i¢in z = 0 diizleminde ek
paneller olugturulur ve bu panellerin lizerine de Rankine kaynaklar1 dagitilir.

Serbest su yiizeyi kati (rijit) bir duvar kabul edilir. Elde edilen tiimlev
(integral) denklem tekne ylizeyi {izerine dagitilmig kaynak yogunluklarnin fonk-
siyonu cinsinden sayisal olarak ¢6ziilf. Boylece tekne ylizeyindeki simir kogu-
lundan gemiyi temsil eden kaynak dagilimi tamimlanir.

Yapilan ¢alismada kullanilan yéntemde gemi yiizeyi ve serbest su yiizeyi panel-
lere ayrilir. Her bir panel tizerine tekillikler dagitilir ve daha sonra bu dagihm
timlev denklemin ¢6ziimi olarak hesaplamir. Tiimlev denklem olarak ikinci
tip Fredholm tiimlev denklemi kullamilmig ve kaynak yogunluk dagilimu bu ozel
timlev denklemin ¢6zlimu olarak elde edilmigtir.

Caligmaya baglarken elimizde Hess ve Smith (1966) yontemiyle hesaplama
yapan bir bilgisayar programi bulunuyordu. DAWSON.FOR adh bu ana pro-
gram L.T.U.'nde bf Dr. Omer Goren tarafindan geligtirilmig bir programdur.
Bu programa gerekli veriler (data) girildikten sonra gemi etrafindaki potan-
siyel akim ve dalga direnci, dalga bozulmalari (deformasyonlar) gibi dalga
ozellikleri hesaplanmaktadir. Ancak programin veri dosyasim olugturmak icin
gemi yiizeyinin ve serbest su yiizeyi-nin ve serbest su ylizeyinin elle panellen-
mesi, herbir panele ait koge koordi-natlarinin belli bir dlgekle ¢izilmig gemi en-
dazesi tizerinden 6l¢iilmesi ve her bir kdseye bir numara atanmas: gerekmektedir.
Veri dosyasim elle hazirlamak olduk¢a zaman alici ve Slglimlerin elle yapilmas:
nedeniyle hatalara agik bir uygulamadir.

Elle bir kez panelleme yapmanin ve veri dosyas: olugturmanin alacag zaman
ve hata yapma olasithgimn yiiksekligi gozoniinde bulundurulursa parametrik
caligma yapmamn gicligl ortaya gikar. Veri dosyasi hazirlamak kendi igler
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(otomatik) hale getirilirse hata yapma olasilig1 en aza inecegi gibi parametrik
calisma yapma olanagi da elde edilecektir.

Ana programa veri hazirlayan iki 6niglemci (pre-processor) program geligtirilmistir.
Programlardan biri gemi yiizeyindeki panellere ait verileri hazirlarken digeri
serbest su ylizeyindeki panellere ait verileri hazirlamaktadir.

Ilk veri dosyas1 gemi yiizeyi iizerindeki panellerin kége konumlan (koordinat-
lar1), kdge numaralan (indisleri ) ve gemi boyu, gemi genisligi, su ¢ekimi, boyuna
yizme merkezi gibi gemiye ait geometrik 6zelliklerden olugmaktadir. Ikinci veri
dosyas: ise serbest su ytizeyi {izerindeki panellerin kégse konumlar ve koge nu-
maralarindan olugmaktadir.

Amacg elle yapilan veri dosyas: hazirlama iglemini kendi igler (otomatik) duruma
getirmek, boylece zamandan kazang saglamak ve dlglimler sirasinda yapilabilecek
hatalar1 en aza indirmektir.

Ik dosyay1 olugturan programa APGOSH.FOR adi verilmigtir. Bu program veri
dosyasi olarak geminin ofset tablosunu kullanmaktadir. Program calisirken kul-
lanici istedigi yere yeni su hatlari, yeni postalar ekleyebilir ve istedigi su hatlarim
ve postalar: gikarabilir. Istenilen su hatlar: ve postalarin kesigimi ile gemi ytizeyi
uzerinde paneller elde edilir. Bunu yapabilmek igin gemi ylizeyinin geometrik
olarak tamimlanmas gerekmektedir. Bu amacla tiriz fonksiyonlar: (spline func-
tions) kullamlmig, gemi su hatlari ve postalarimn konumlari (koordinatlar:)
bu fonksiyonlar yardimyla geminin her yerinde tamimlanmistir. Elde edilen

panellerin kége konumlar: birinci ¢ikigs dosyasina yazdirlmigtir. Olusturulan

panellerin koge numaralar1 da ana programin hesaplamasina uygun diigecek
sirada, yani saat akrebinin doniig yéniinde, aym gikis dosyasma yazdirilmigtar.

Ikinci dosyay: olusturan program, APGOFS.FOR, serbest su ylizeyini belli
bir bolgede simirlandirir. Programin veri dosyas: simirlandinlmis bolgedeki ilk
akim hattinin konumundan olugmaktadir. Program simirlandinlmig serbest su
yuzeyindeki ilk akim hattindan yola gikarak hayali akim hatlan olugturur. Ti-
riz fonksiyonlar1 kullanilarak her bir akim hattimin fi¢iincii dereceden (kiibik)
fonksiyonu elde edilmigtir.

Bu akim hatlann gercek akim hatlarn olmayip, mithendislik yaklasim sonucu
olugturulmuslardir. Akim hatlarimn veri dosyasinda tamimlanan ilk akim hattina
gemi ortasinda paralel oldugu kabul edilmigtir. Bag ve ki¢ bolgeye gidildikge iki
akim hatt: arasindaki uzakhn artmasim saglayacak geometrik bir yaklagim
yapilmgtir.

Akim hatlan ile gemi simetri eksenine dik dogrular kesigtirilerek serbest su
yizeyinde de paneller olugturulmugtur. Bu panellerin koge noktalarinin konum-
lar1 da yine tiriz fonksiyonlan yardimiyla hesaplanmigtir. Serbest su yiizeyindeki
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panellerin kégse konumlar: ikinci gikig dosyasina yazdimlmigtir. Serbest su
yuzeyindeki panellerin kége numaralari da ana programin hesaplamasina uygun
diigecek gekilde, yani saat akrebinin doniisline aksi yonde ikinci veri dosyasina
yazdirilmigtar.

APGOSH.FOR ve APGOFS.FOR oniglemcileri (preprocessors) ile olusturulan
iki ayr1 ¢ikig dosyasinin ana program tarafindan okunabilmesi igin ana program
DAWSON.FOR icindeki girig formatlarinda baz degisiklikler yapilmgtr.

Geligtirilen oniglemciler yardimiyla DAWSON.FOR adli ana programin ¢alis-
tirilmas: igin Wigley parabolik ve Seri-60 tekne formlarina ait veri dosyalar:
olugturulmugtur.

Wigley tekne formuna ait dért ayr veri dosyas: olugturulmusgtur. Bu dért ayn
veri dosyas: sirasiyla 194, 304, 388 ve 508 panelden olugmaktadir. Olugturulan
veri dosyalar1 yardimuiyla yapilan hesap sonuglar deneysel sonuglarla kargilagti-
nlmugtir. Kargilagtirma sonunda panel sayisi arttikca deneysel dalga direnci
zarfinin icinde kalan sonuglar elde edildigi gérilmiigtiir. '

Ayrica Fn = 0.266, Fn = 0.348 ve Fn = 0.452 Froude sayilanndaki dalga
formlan incelendiginde panel sayisi arttirildikca deneysel verilere daha yakin
sonuglar elde edildigi gériilmustiir.

Seri-60 formu i¢in de farkli veri dosyalan olusturulmustur. Bu dosyalar kulla-
narak hesap yapildiginda dalga direng katsayilarinda ve cesitli Froude sayilarina
kars1 gelen dalga formlarinda deneysel verilerle bir benzerlik kaydedilmemigtir.
Panel sayilan arttirilarak elde edilen sonuglarda beklenen yakinsama goriilmemis-
tir. :

Hesaplamalar modelin sabit oldugu kabul edilerek yapilmigtir. Oysa deney-
sel veriler trim ve paralel batmaya serbest modeller igin gecerlidir. Bu ne-
denle deneysel verilerle hesap sonuclarimin kargilagtirilmas: mertebe agisindan
¢ok gergekei degildir.

Her iki tekne igin de sabit model deney verilerine ihtiyag vardir. Wigley tekne
formunda Froude sayisi arttikca paralel batmanin dirence etkisi dnem kazan-
maktadir. Seri-60 tekne formu icin de trim ve paralel batmamn dirence etkisi
onemlidir. Seri-60 tekne formu icin arabaya sabitlenmig model deney verilerine
ihtiya¢ vardir.

Wigley formunda elde edilen sonuglarin deneysel sonuglarla uyumlu olmasina
ragmen Seri-60 tekne formu icin elde edilen hesap sonuclarmin deneysel veri-
lerden ¢ok uzaklagmas: yapilan panellemede bir yaklagim hatas: olabilecegini
diigiindiirmektedir. Bu hatammn iki nedenden kaynaklanabilecegi diiglintilmektedir.
Bu nedenler goyle siralanabilir:
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i) Tekne ylizeyi tizerindeki paneller su hatlar1 ve postalarin kesigtirilmesiyle
olugturulmustur. Bu paneller ylizey egriliginin arttig1 bolgelerde gekil olarak
dikdortgenden ¢ok uzaklagmaktadir. Eger gemi ytizeyi tizerindeki paneller posta-
lar ve postalara dik (ortogonal) egriler kesigtirilerek olugturulursa daha iyi
sonuglar elde edilecegi diiginiilmektedir. Ancak bu hatanin varhg ylirtitiilen
caligmamn belli bir agamasindan sonra ortaya giktigindan ayrilan siire iginde
bu tiir bir panellemenin otomatiklestirilmesi mimkin olmamugtir.

ii) Serbest su ylizeyindeki paneller gercek akim hatlar: ve bunlara dik dogrularin
kesigtirilmesiyle degil, geometrik bir yaklagim yapilarak olugturulan hayali akim
hatlar1 ve bunlara dik dogrularin kesistirilmesiyle olugturulmugtur. Bu ise
serbest su ylzeyi lizerindeki sinir kogulunun tam olarak saglanmasim engelle-
mektedir. Gergek akim hatlan kullamildiginda yapilan hatanin ortadan kalktig:
gorilmigtir.

Yapilan ¢alismanin gikig noktas: elle veri hazirlamanin ortaya gikardig giigliikler-
di. Bu igin kendi igler duruma getirilmesi gerceklegtirilmigtir. Doért ginlik
bir ig 20 dakikalik bir hesaplama siiresine indirilmigtir. Bunun, gemi dalga di-
renci problemleri alaninda, sayisal hesaplama yontemleriyle uygulamaya yonelik
aragtirma arasindaki boglugu kapatmaya y6nelik 6nemli bir adim oldugu diigiiniil-
mektedir.



CHAPTER 1. INTRODUCTION

The improvement of a ship hull form is a recent development in the field of ship
hydrodynamics. The ship hull form affects the wave-making characteristics of
the ship. These effects have been explored by using different theories. One
of these theories is the thin ship theory. The thin ship theory has been ap-
plied for almost all wave-making problems. However, almost all real ships
are not so thin and they have complicated forms that they are not suitable
for the thin ship assumption. In the method of the thin ship theory the

equivalent sources representing ship form is distributed on the centerplane of a
ship on the assumption that the breadth of the ship is very small in comparison
with its length. Therefore we found that it is not suitable to represent the ship
hull form only by the source distribution on the centerplane of the ship. Hence,
the method which estimates the source distribution over the hull will become

remarkable.

From the boundary condition at the hull surface we can determine the surface
source distribution representing the ship by assuming the free surface to be a
rigid wall and by solving numerically the integral equation for the function of
source density distributed over the hull surface as Hess and Smith (1966)
did.

The method described in this work utilizes a distribution of singularity over
the body surface and computes this distribution as the solution of an integral
equation. Specifically, a source density distribution is obtained as the solution
of a Fredholm integral equation of the second kind. The method is numerically

exact in sense that any degree of accuracy may be obtained.
1.1. Background and Previous Work

A number of numerical methods for computing free-surface flows about ship
forms are presented as robust and accurate on the basis of favourable comparisons

between numerical predictions and experimental measurements.
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In particular, a number of numerical methods are known to yield predictions
that can be quite sensitive to the panelization of the ship hull. Mainly two
classes of numerical methods are used for predicting steady flow about a ship,
namely: methods based on simple Rankine singularities, which were initiated by
Gadd (1976), Dawson (1977) and Daube (1980) and have since been quite
popular, and methods based on Kelvin-Havelock singularities, which satisfy the
linearized free-surface boundary condition. The latter group of methods offer
several important advantages, notably; panels are required only on the hull
surface not on the free-surface, the radiation condition is satisfied automatically

and exactly.

Kelvin singularity predictions were generally found superior to Rankine
singularity predictions in Lindenmuth et al.(1991). However, the popularity
of Rankine singularity methods relative to Kelvin singularity methods can be
largely attributed to the complexities of the latter one. v

In wave resistance problems, solution of the double-model by the panel method
had become possible only after Dawson (1977) had developed a differenti-
ation scheme satisfying the free-surface condition and introduced the related

numerical algorithm.

Baba and Hara (1977) searched for a solution by distributing singularities
on the ship surface. Gadd (1976) and Calisal et al.(1991) used iterative
methods for the solution. Nakatake et al.(1991) based on Dawson’s formula,
distributed doublets on the body surface. Cheng (1989) made an additional
improvement to the wave making problem of dry tranéom ships by utilizing new

kinematic conditions at the transom in Dawson’s method.
1.2. Present Work

A lot of manual work is required to prepare input data for the programme
DAWSON.FOR developed previously at I.T.0. by Dr. Omer Gdren which
computes wave-making characteristics of ships, namely, the wave resistance,
heave force and trim moment. To reduce this manual work which 80% of the
time is spent on, two computer programmes are developed. These programmes
can be accepted as preprocessors for the main programme DAWSON.FOR. The

preprocessors are used to prepare the input data for two hull forms: Wigley’s
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Parabolic Hull and Series-60 Hull forms, respectively. By using automatically
generated input data, programme DAWSON.FOR is run for different number
of panels and panel arrangements. The effects of the increment in the number
of panels on the accuracy of the computed results are examined by comparing

these results with experimental data.

By increasing the number of panels more accurate results are obtained while
much computing time is required. An optimum number of panels is searched
that will both give compatible results with experimental data and take minimum

computing time.

Fundamental equations of Dawson’s Method and the method of solution of the
integral equations are given in Chapter 2. A brief history of mesh generation
scheme is given in Chapter 3. Also computer defined surface elements and
Spline Functions which form the basis of the pre-processor programmes’ algo-
rithm are thoroughly defined in Chapter 3. Description of the pre-processor
programmes used in this study is given briefly in Chapter 4. Comparison of
computed and experimental results for both the Wigley’s Parabolic and the
Series-60 hull forms are shown graphically in Chapter 4. Concluding remarks
and suggestions for future work are given in Chapter 5. Offset data and draw-
ings of the two hull forms are given in Appendix A and Appendix B.



CHAPTER 2. THE FUNDAMENTAL PROBLEM

2.1. Definition of Potential Flow

Let V denote the fluid velocity at any point, p the fluid pressure, and p the
constant fluid density. If the viscosity is set equal to zero and the density is
taken as constant, the general Navier-Stokes equations reduce to the well-known

Eulerian equation of motion
ov

= +(V-grad)V = —%grad P (2.1)

and the equation of continuity becomes
div(V) =10 (2.2)

Equations (2.1) and (2.2) hold in the field of flow, the region exterior to the
boundary surfaces. This region will be denoted R’ as can be seen from Figure
2-1.

Figure 2-1. Flow about a three dimensional body surface

Certain boundary conditions must be added to these equations. The location
of all boundary surfaces are assumed known, possibly as functions of time, and
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the normal component of fluid velocity is prescribed on these boundaries. The
entire boundary will be denoted by S (S is the boundary of the region R'), and

the boundary condition will be written as
V-nl,=F (2.3)

where n is the unit outward normal vector at a point of S, and F' is a known
function of position on S and possibly also a known function of time. For the
exterior problem a radiation condition at infinity must also be imposed. In
deriving the equations of potential flow it is assumed that the velocity field V
is irrotational and that it can therefore be expressed as the negative gradient
of a scalar potential function ®. It includes all flows that can be generated
from rest by the action of conservative body forces or by the motion of the
boundaries. A slightly more general class of flows will be considered in this

work. The velocity field V is expressed as the sum of two velocities:
V=Ve+v (2.4)

The vector V, is the velocity of the onset flow, which is defined as the velocity
field that would exist in the fluid if all boundaries ceased to exist or if all
boundaries became simply transparent with regard to fluid motion. The vector
v is the disturbance velocity field due to the boundaries. The velocity v is
assumed to be irrotational, but Vo, is not so restricted. Accordingly, v may be

expressed as the negative gradient of a potential function ¢, that is,
- v = —grad ¢ (2.5)

Since Vo, and v are the velocities of an incompressible flow, they satisfy
Eq.(2.2); that is,

div(v) =0 (2.6)
Using v from Eq.(2.5) in Eq.(2.6) then gives the potential ¢ that satisfies
Laplace’s equation,

Vi =0 (2.7)

in the region R'. The boundary conditions on ¢ arise from equations (2.3),(2.4),
and (2.5) in the form

grad ¢ -n|, = g—z|3=Voo-n|8—F (2.8)

In the usual exterior problem the radiation condition is

lgrad | — 0 (2.9)



6

at infinity. Equations (2.7), (2.8), and (2.9) comprise a well-set problem for the
potential ¢, and it is this problem that the method of this work is designed to

solve.

The onset flow Vo, must be such that the disturbance velocity v is a potential
flow. In the usual case, when V, is also a potential flow, this condition is

obviously satisfied.

The essential simplicity of potential flow derives from the fact that the velocity
field is determined by the equation of continuity, Eq.(2.6), and the condition of
irrotationality, Eq.(2.5). Thus the equation of motion, Eq.(2.1) is not used, and
the velocity may be determined independently of the pressure. Also the time,
t, enters only as a parameter in Eq.(2.8); therefore the instantaneous velocity
is obtained from the instantaneous boundary condition; that is, all problems
are essentially steady with respect to determination of the velocity. Once the
velocity field is known, the pressure is calculated from Eq.(2.1). The only cases
of interest are those for which Eq.(2.1) can be integrated to give one of the forms
of the Bernoulli equation. When V , is a potential flow, so that the combined
velocity field is V = —grad®, then Eq.(2.1) integrates to

P 1 2 3<I>

= =P@t)-=|V —_ 2.10

E P - 5IVI + 5 (2.10)
Where P(t) is independent of position in the field. In most applications the
flow is steady, and the onset flow is a uniform stream, that is, V, is a constant
vector. Under these circumstances Eq.(2.10) can be written in terms of the

pressure coefficient C), as

 P—Poo \4&
=———=1- 3
iplvool IVOOI

3 (2.11)

where po, is the pressure at infinity.

The problem defined by the equations (2.7), (2.8), and (2.9) is seen to be a
classic Neumann problem of potential theory. But the fluid-dynamics problem
has certain special features that distinguish it from the fully general Neumann
problem. In particular, the usual problem is the exterior one, so that the domain
of the unknown ¢ is infinite in extent; but often the solution is of interest only
on the boundaries.
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The above formulation is quite general, including as it does cases of unsteady
nonuniform onset flows, ensembles of bodies with nonrigid surfaces moving with
respect to each other, internal flows, and area suction on the boundaries. The
method can be generalized to solve other simple, linear, homogeneous, elliptic
partial differential equations. But the method fails in solving certain classes of

potential-flow problems such for which the location of part of the boundary is
unknown.

The neglect of viscosity is justified except at points in or very near regions
of catastrophic separation, for example, wakes. Local regions of separation
and reattachment do not normally invalidate the calculations. The neglect of
compressibility is justified for all flows where the local Mach number does
not exceed a value of approximately one-half. By suitably adjusting the

calculations, the validity can be extended up to a local Mach number of unity.
That is, the adjusted calculated flow agrees with real flow as long as there are

no supersonic regions.

2.2. Evaluation of the Integral Equation for A Source-Density

Distribution On The Body Surface

The exact solution of the direct problem of potential flow for arbitrary bodies
can be approached in a variety of ways, all of which must finally become

numerical and make use of a computing machine. The method of this work is
based on an integral equation for a source-density distribution on the surface

of the body or bodies about which the flow is being computed.

The problem considered is that defined by equations (2.7), (2.8), and (2.9). A
sketch illustrating the situation for a single three-dimensional body is shown
in Figure 2-1. A unit point source is located at a point ¢ whose Cartesian
co-ordinates are x4, ¥4, 2,. At a point P whose co-ordinates are z, y, z the

potential due to this source is

o= 1
r(P,q)

(2.12)

where r(P, ¢) is the distance between P and ¢, namely,

r(P,q) = 1/[(z — 20)? + (¥ — 9)? + (= — 2)?] (2.13)
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The potential (2.12) gives rise to a velocity radially outward in all directions
from the point ¢, and thus the point ¢ may be thought of as the location of a
source of fluid. The solution is built up of elementary potentials of the form
Eq.(2.12). The potential in Eq(2.12) satisfies Eq.(2.9) and Eq.(2.7) at all points
except the point ¢g. Because of the linearity of the problem, the potential due
to any assembles of such sources or any continuous distribution of them that
lies entirely interior to or upon the boundary surface S satisfies Eq.(2.9) and
Eq.(2.7) in the region R' exterior to S. If the local intensity of the distribution
is denoted by o(q), where the source point ¢ now denotes a general point of the
surface S as seen from Figure 2-1, then the potential of the distribution is

o= / / %ds (2.14)
S

Regardless of the nature of the function o(g), the disturbance potential as given
by Eq.(2.14) satisfies two of the three equations of the direct problem of

‘potential flow. This function is determined from the requirement that the
potential also must satisfy the other equation, Eq.(2.8), which expresses the
normal velocity boundary condition on the surface S. Applying the boundary
condition, Eq.(2.8), as well as subsequently evaluating fluid velocity on the

surface, requires evaluating the limits of the spatial derivatives of Eq.(2.14) as
the point P approaches a point p on the surface S. Care is required because
the derivatives of 1/r(P, ¢) become singular as the surface is approached.

In accordance with the procedure presented by Kellogg (1929), the disturbance
potential as given by Eq.(2.14) is differentiated, and the boundary condition,
Eq.(2.8), applied to it by allowing the point P to approach a point p on the
surface S. The result is the following integral equation for the source-density
distribution o(p):

270 (p) — // %(r(pl, q))a(q)dS' =-n(p)- Voo + F (2.15)
S

where 0/0n denotes differentiation in the direction of the outward normal to
the surface S at the point p, and the unit outward normal vector n(p) depends
on location. The solution of Eq.(2.15) is the central problem of the present
method.

Equation (2.15) is a Fredholm integral equation of the second kind over the
boundary surface S. The term 2mo(p) arises from the delta function that is
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brought in by the limiting process of approaching the boundary surface. The
kernel of the integral equation, —3/9n[1/r(p, q)], is the outward normal velocity
at the point p due to a unit point source at the point ¢. This kernel depends
only on the geometry of the surface S. The theory of the solution of Eq.(2.15)
is discussed by Kellogg (1929) and fundamental existance and uniqueness
theorems are presented. The conditions under which a solution can be obtained
are very general. The surface S need not be slender or analytic. In fact, for
the flow exterior to a given surface, S may consist of several disjoint surfaces.
Internal flows as well as external may be considered. There is one restriction
on Eq.(2.15). The existance proof of Kellogg requires that the right side of
Eq.(2.15), be a continuous function of position on the surface. This means that
in general the surface § must have a continuous normal vector. Thus boundaries
with corners are excluded from the existance proof. In practice, however, it
has been found that the present method does give correct results near convex
corners, where the surface velocity is in general infinite. For concave corners
the method has difficulty, especially if the corner is a stagnation point of the
flow. For some onset flows or for corners of small turning angle, the calculated
results are sufficiently accurate for most purposes. Other situations require the

concave corner to be rounded in order to obtain an accurate solution.

For a known boundary surface S, the kernel of Eq.(2.15) can be calculated
in a straightforward manner, and the equation is a linear one for the unknown
function o. The only possibility of using the present method for problems having
boundaries with unknown locations is to assume the locations of all boundaries,
solve the resulting direct problem, and then repeat the process after adjusting

the boundaries by cut and try until all conditions are satisfied.

Equation (2.15) is an integral equation of the second kind, for which the un-
known function appears outside the integral as well as inside. Equations of the
second kind have many advantages, both theoretical and practical. Numerically,
integral equations of the second kind are considerably more tractable. If the
integral equation is approximated by a set of linear algebraic equations, as it is
in the present method, the presence of the term outside the integral insures that
in general the diagonal entries of the resulting coefficient matrix will be much
larger than any off-diagonal entries. This property can be crucial numerically

if iterative matrix-solution methods are used.

The term 270(p) on the left side of Eq.(2.15) is the contribution to the out-
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ward normal velocity at a point p on the boundary of the source-density in
the neighbourhood of P. The integral term represents the contribution of the
source-density on the remainder of the boundary surface to the outward normal
velocity at p. To illustrate the magnitude of these terms the source-density will
be assumed to have a constant value of unity over the boundary surface S. The
normal velocity in the direction exterior to S at a point p due to this source
distribution is given by the left side of Eq.(2.15) as

[V (p)]oms = 27 — / S/ %(r(pl, q))dS (2.16)

If this expression 'is integrated over the entire closed surface S, the result is
the total velocity flux outward from S due to the source distribution. From
the definition in Eq.(2.14) it is seen that the total velocity flux due to a unit
point source is 4w. Thus the total flux due to a unit source distribution on §
is 47 times the total surface area S. If Eq.(2.16) is integrated over S, the local
contribution given by the first term on the right is 27 times the total surface
area of S. Thus the integral over S of the second term on the right side of
Eq.(2.16) is exactly equal to that of the first term.

There is a certain difference between the exterior flow problem and the interior
flow problem. If the same closed surface is considered, the only difference be-
tween the two problems is the reversal of the outward normal direction n and
thus the reversal of the sign of the integral term of Eq.(2.15). If the boundary
surface is convex, the kernel of Eq.(2.15) is positive for the exterior problem and
negative for the interior one. For the exterior problem, the integral equation is
determinative in that if the right side of Eq.(2.15) is zero, the only solution is
o = 0; that is, no nonzero source distribution gives rise to zero normal velocity
everywhere on the boundary. Thus the solution of the exterior problem exists
and is unique, and no difficulties are encountered in solving the equation. For
the interior problem the integral equation (2.15) is indeterminative; that is,
there is a source distribution, not identically zero, that gives zero normal veloc-
ity everywhere on the boundary. Clearly such a source distribution gives zero
fluid velocity everywhere within the boundary. Thus a source-density distribu-
tion for the interior problem exists only if the right side of Eq.(2.15) satisfies a
certain condition, and if it does exist, it is not unique. The condition required
of the right side is that its integral over the boundary must vanish. This simply
means that the total flux across the boundary must be due to the onset flow, for

example, due to interior sources. The surface source-density distribution does
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not contribute to the flux. This is certainly a physical requirement for flow of

an incompressible fluid.

If the integral equation is approximated by a set of linear algebraic equations,
the coefficient matrix for the interior problem is either singular or nearly sin-
gular, depending on the details of approximation. In the present method the
madtrix is nearly singular, and nothing unusual seems to occur in the calcula-

tions.
2.3. The Method of Solution

The method chosen for the numerical solution of the integral equation,Eq.(2.15)
was dictated, to a considerable extent, by the fact that the boundary surface
S, which is the domain of integration, is completely arbitrary. This means that
the integration must be performed numerically rather than analytically, as the
methods that approximate the kernel of the unknown function by a series of
suitably chosen functions that are not very attractive. Two approaches present
themselves. The equation may be attacked directly as an integral equation
by using an iterative procedure appropriate for Fredholm Integral equations.
Alternatively, the integral equation may be approximated by a set of linear
algebraic equations, which are solved by any of the usual techniques. In the
former, the integral is evaluated by some form of approximate quadrature, and
the process is iterated. In the latter, an approximate quadrature, is used to
obtain a set of linear equations, which may then be solved by iteration. For
either approach an approximate integration procedure must be selected from
among the large number of available quadrature formulas. Here, the fact that
the boundary is arbitrary affects the situation. This surface must be approxi-
mated in some manner for the computer, and the manner of approximating the
surface is bound up with the approximate integration procedure, as it is with

the entire method of solution.
2.4. Present Approach

The approach adopted consists of approximating Eq.(2.15) by a set of linear
algebraic equations. The boundary or body surface S about which the flow is
to be computed is approximated by a large number of surface elements, whose
characteristic dimensions are small compared to those of the body. Over each
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surface element the value of the surface source-density is assumed constant. This
reduces the problem of determining the continuous source-density function o to
that of determining a finite number of values of o, one for each of the surface
elements. The contribution of each element to the integral in Eq.(2.15), can
be obtained by taking the constant but unknown value of o on that element
out of the integral and then performing the indicated integration of known
geometric quantities over the element. Requiring the normal velocity to take
on its prescribed value at one point, gives a linear relation between the values of
o on the elements. On each element a control point is selected where Eq.(2.15)
is required to hold. This gives a number of linear equations equal to the number
of unknown values of . The coefficient matrix consists of the normal velocities
induced by the elements at each other’s control points for unit values of source-
density. Once the linear equations have been solved, flow velocities and potential
may be calculated at any point by summing the contributions of the surface
elements and that of the onset flow. Usually, velocities and pressures on the
body surface are of greatest interest. Because of the manner in which the
solution has been effected, these must be evaluated at the control points, that is,

at the same points where the normal velocity was made to assume its prescribed

value.

2.5. Approximation of the Body by Surface Elements

The basic input to the computer program consists of the specification of

(i) the body surface about which the flow is to be computed,

(ii) the onset flow if this is not a uniform stream,

(iii) the prescribed normal velocity on the surface if this is not zero.

Of several possible ways of specifying the body surface, the only one seriously
considered consists in defining the body by means of the co-ordinates of a
set of points distributed over the surface. The numerical significance of the
co-ordinates of the input points must be sufficient to guarantee the accurate
computation of surface slopes. Because the input points are used to form the
approximating surface elements, their distribution and total number determine
the accuracy of the resulting calculations,



13

Figure 2-2. shows the surface elements used to approximate three-dimensional
bodies. For two dimensional and axisymmetric body shapes, only a single profile
curve need to be defined by input points. This curve is assumed to lie in the
zy-plane, and the z-axis is always taken as the symmetry axis for axisymmetric
bodies. For closed two-dimensional bodies, a complete closed curve is specified
by input points, and an axisymmetric closed body is specified by input points
lying on the half of the contour in the half-plane y > 0. These points are
connected by straight-line segments, and the profile curve is approximated by
an inscribed polygon. The surface elements for two dimensional bodies are thus
thin, infinite plane strips, and those for axisymmetric bodies are frustums of
cones having small slant height. For truly three-dimensional bodies, the input
points must be distributed over the entire surface. These points are associated in
groups of four and used to form plane quadrilateral surface elements as shown in
Figure 2-2. The plane of the element is equidistant from the four input points
used to form it, and its normal vector n is the normalized cross-product of two
tangential vectors each of which is obtained by subtracting the co-ordinates of
two of the four input points. The corners of the quadrilateral are projections of
the four input points into the plane of the element. In forming these elements,
most input points are used in the formation of four elements, so that the number
of input points required is only slightly larger than the number of resulting

elements.

Figure 2-2. Approximation of the body surface by elements

For all body geometries, the order in which the points defining the surface are
input determines which direction is considered the outer normal direction and
thus determines on which side of the surface the flow is computed. In the case
of exterior flow about a single closed contour, the defining points are input in
clockwise order about the contour. If an interior flow is desired, the points are
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input in counter-clockwise order.

On each element a control point is selected at which the normal velocity bound-
ary condition is to be satisfied. For two-dimensional and axisymmetric bodies,
the control points are the midpoints of the line segment joining the input points
that define profile curve. On each quadrilateral element there is one point at
which a constant source-density on that element gives rise to no velocity in the
plane of the element; that is, there is a point at which the effect of the element is
entirely normal. It was decided to use this point as the control point, although
subsequent results indicated that the centroid of the area of the quadrilateral
is an equally good choice. These two points are not necessarily near each other

if the element is not approximately rectangular.

It should be emphasized that for all body geometries the surface elements are
simply devices for effecting the numerical solution of the integral equatioﬁ
(2.15). They essentially define integration increments and normal directions
at points of the surface. At the edges of the elements the velocity approaches
infinity because of the discontinuity of the source-density and/or the disconti-
nuity in slope, but the approach to infinity is not that associated with corner
flows. The computed flow has significance only at the control points themselves
and at points off the body surface.

From the manner in which quadrilateral elements are formed in three-dimensional
cases, it is evident that in general the edges of adjacent elements are not coinci-
dent; that is, there are small openings between the elements. Any errors due to
this source are of higher order than, and are negligible compared to, those due
to the basic approximation of the body surface by plane elements over each of

which the source-density is constant.
2.6. The Effects of the Elements at Each Other’s Control Points

Once the body surface has been approximated by elements of the appropriate
type, the elements are ordered sequentially and numbered from 1 to N, where N
is the total number of elements. The exact order of the sequence is immaterial.
Reference will accordingly be made to the ith element and the jth element,

where the integers 7 and j denote the positions of the elements in the sequence.
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Assume for the moment that the surface source-density on the jth element has
the constant value of unity. Denote by ®;; and V;; the potential and velocity,
respectively, that are induced at the control point of the ¢th element by a unit
source-density on the jth element. The formulas for the induced potential
and velocity form the basis of the present method of flow calculation. They
are obtained by integrating over the element in question the formulas for the
potential and velocity induced by a unit point source and thus depend on the
location of the point at which the potential and velocity are being evaluated
and also on the geometry of the element. Since there is no restriction on the
location of the control point of the ith element with respect to the jth element,
the formulas for ®;; and V;; are those for the potential and velocity induced by
an element at an arbitrary point in space. The dependence of the formulas on
the geometry of the element means that there are three distinct sets of formulas
for ®;; and V;;, corresponding to the three different types of elements that are
appropriate for use with two-dimensional bodies, and fully three-dimensional

bodies, respectively.

2.7. Three Dimensional Flow

For the plane quadrilateral elements used to approximate three-dimensional
bodies, the unit-point-source formulas for potential and velocity can be inte-
grated analytically over an element. This is most conveniently done by using a
co-ordinate system in which the element itself lies in a co-ordinate plane, and
thus co-ordinates of points and components of vectors must be transformed be-
tween the reference co-ordinate system in which the body surface is input and
an element co-ordinate system based on the element in question. The analytic
integration over the element produces rather lengthy formulas, whose evalua-
tion is time consuming. To conserve computing time, the effect of an element
at points sufficiently far from the element is calculated approximately. This is
accomplished by means of multipole expansion. In fact, if the point in ques-
tion is farther from the centroid of the element than four times the maximum
dimension of the element, the quadrilateral source element may be replaced by
a point source of the same total strength located at its centroid. With the
accuracy criteria adopted, errors due to the use of the multipole expansion or
point-source formulas are apparently small compared with those arising from
the basic approximation of the body surface by plane elements having constant

values of source-density.
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When this phase of the calculation has been completed, the result consists of
the N x N matrices ®;; and V;; that give the potentials and velocities induced
by the elements at each other’s control points for a unit source-density. The
details for the calculation of V;; and ®;; can be found in Hess and Smith
(1966). The vector matrix V;; is

Vi = Xy + Yi) + Zijk, (2.17)

where i, j, k are the unit vectors along the axes of the reference co-ordinate
system in which the body surface is input, and the scalar matrices Xj;, Yi;, Z;;
are simply the components of V;;. The normal velocity induced at the control

point of the ith element by a unit source-density of the jth element is
Aij =n; -V, (2.18)

where n; is the unit normal vector to the :th element. The five matrices ®;,
Xij, Yij, Zij, and A;; do not necessarily have any zero entries. The number of
elements used in three-dimensional cases is large enough for the handling of the
amount of numerical data represented by these matrices to be a considerable

problem.

The : = j case does not require special handling. The velocity induced by an
element at its own control point has a magnitude of 27 and is directed along the
element’s normal vector.Once the potential and velocity induced at the control
point of the sth element by the jth element has been computed, the jth element
is reflected in each symmetry plane and the calculation repeated. The effects of
the reflected elments at the control point of the ith element are either added or
subtracted from the effect of the jth element itself, depending on whether the
pertinent plane is one of symmetry or antisymmetry. Thus although potentials
and velocities induced by elements all over the body surface must be computed,
they are computed only at control points on the nonredundant portion and are
added, so that the matrices ®;; and V;; have an order equal to the number of

elements describing the nonredundant portion of the body surface.

2.8. Approximation of the Integral Equation

By A Set of Linear Algebraic Equations

A result of the calculation discussed in the previous section is the matrix 4;j,
whose entries are the normal velocities induced by the elements at each other’s
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control points for unit values of source-density. To obtain actual normal veloc-
ities, the entries of A;; must be multiplied by the proper values of the source-
density o. In particular, the quantity

N .
Z Aijo; (2.19)
J=1

is the normal velocity at the control point of the ith element due to complete
set of surface elements. Clearly Eq.(2.19) is the approximation of the normal
velocity associated with the disturbance potential of the body surface. To obtain
the prescribed normal velocities at the control points of all elements Eq.(2.19)
must be set equal to the proper value as given by Eq.(2.8) for every value of i.
The result is

N
> Aijoj=-ni-Vei +F, i=12,.,N. (2.20)
j=1

Equation (2.20) is a set of linear algebraic equations for the values of source-
density on the surface elements. This set of linear algebraic equations is the

desired approximation of the integral equation, Eq.(2.15).

Both direct and iterative methods are used for solving Eq.(2.20) for the set of
source-densities o;. Normally, an iterative solution is used for three dimensional
flows. In the usual case, the onset flow velocity V is simply a constant vector
of unit magnitude, and the prescribed normal velocity F is zero. In such a case,

the points on the body surface are the only input to the method.

For a given type of flow the matrix A;; (and all other computed matrices)
depends only on the geometry of the body surface and is independent of the
onset flow or prescribed normal velocity. A two-dimensional body has only one
A;; for all flows. The same is true for a three-dimensional body if symmetry
is not utilized or if all onset flows have the same symmetry. An axisymmetric

body has one A;; for all symmetric flows and another one for all cross flows.
2.9. Computation of the Flow Quantities of Interest

Once the values of the source-density o; have been obtained as the solution
of Eq.(2.20) all other flow quantities of interest can be obtained by relatively

a rapid direct calculation. Flow quantities on the body surface are computed
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only at the control points of the elements by use of the matrices described in
Section 2.7.

In three-dimensional cases, the potential and velocity at a control point on the
body surface are calculated from

N
i = ®ijo;
= i=1,2,..,N. (2.21)

N
V= Z Vijoj + Veoi
i=1

The velocity V; at each control point is given in terms of its components along
the axes of the reference co-ordinate system in which the body is input. In
actual computation, the scalar matrices X;;, Y;i;, and Z;; are multiplied by o
and summed. Notice that ¢; is the perturbation potential due to the body
surface, and V; is the total velocity, including the effects of the onset flow. The
components of V; are used to compute velocity magnitude and then pressure
coefficient from Eq.(2.11). The latter quantity has meaning only for a uniform

onset flow.

Flow quantities may be computed at points off the body surface for all flow
geometries. The co-ordinates of an off-body point are input and used to obtain
quantities ®;; and V;; for j = 1,2,...,N. These are calculated by the same
formulae as those used for calculating induced potential and velocity at a control
point of a surface element. It is simply a matter of using the co-ordinates of
the off-body point in place of the co-ordinates of the ith control point. The
potential and velocity at such a point are calculated in the form

N
=) &ijoj
=1

N
V=) V-0

=1

(2.22)

(the use of the subscript 7 on ®;; and V;; is perhaps misleading in this context,
since the computation is at an off-body point, not at the control point of the ith
surface element. The subscript has been retained to avoid introducing another
symbol for a quantity that is calculated in exactly the same way as it is for
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points on the body surface. Perhaps ¢ can be thought of here as denoting the
ith off-body point.) At off-body points both the potential and velocity are
perturbation quantities due only to the effect of the body surface, unless the
onset flow is a uniform stream, in which case its effect can be added to the
velocity. For all flow geometries, the velocity at off-body points is given by its

component along the axes of the reference co-ordinate system.



CHAPTER 3. MESH GENERATION AND SPLINES

The area of numerical grid generation is relatively young in practice, although
its roots in mathematics are old. This somewhat eclectic area involves the
engineer’s feel for physical behaviour, the mathematician’s understanding of

functional behaviour, and a lot of imagination.

Numerical grid generation can be thought of as a procedure for the orderly
distribution of observers, or sampling stations, over a physical field in such a
way that efficient communication among the observers is possible and that all
physical phenomena on the entire continuous field may be represented with
sufficient accuracy by this finite collection of observations. The structure of an
intersecting net of families of co-ordinate lines allows the observers to be readily
identified in relation to each other, and results in much more simple coding than

would the use of a triangular structure or a random distribution of points.

Computer-oriented mesh generators, which serve as pre-processors to finite el-
ement programs, have recently been developed by several investigators to alle-
viate the frustration and to reduce the amount of time involved in the tedious

manual subdividing of a complex structure into finite elements (or meshes).

The conventional finite element method (FEM) involves the partitioning of a
polygonal domain into rectangular, and/or triangular elements. Quite often,
however, a structural engineer is faced with a boundary value problem over a

nonpolygonal domain, which in fact is the case in the potential flow problem
around a ship hull.

In order to better conform to curved boundaries and material interfaces, curved
finite elements have been widely applied in recent years by practicing engineer-
ing analysts. The most well known of such elements are the isoparametric
elements. As Zienkiewicz (1971) points out there has been a certain parallel
between the development of element types as used in finite element analysis and
the independent development of methods for the mathematical description of
general free-form surfaces.
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Whether rectangular,triangular, isoparametric, transfinite or whatever other el-
ements are to be used, the basic problem of where to place the nodes or mesh
points must first be solved. If done manually, this involves a considerable ex-
penditure of time and almost invariably results in a mesh for which a natural
ordering of the nodes may not be apparent. In this work an approach to auto-
matic mesh generation based upon a systematic and unified class of schemes for
treating the geometric aspects of the finite element method is used. We refrain
from calling the technique automatic mesh generators since the actual problem
of mesh definition must ultimately be resolved by the analyst who is cognizant
of his specific application; that is , mesh generation involves both geometry and
physics and in this work we consider only the geometric aspects.

3.1. Previous Work

In recent years irregular computational grids have become increasingly popular
for a wide variety of numerical modelling applications. This trend demonstrates
widespread appreciation of the two computational advantages that irregular
grids can provide: they allow points to be situated on curved boundaries of
irregularly shaped domains. On the other hand, anyone who wants to use an
irregular grid must take on the task of grid construction, which can demand as
much attention and effort as the computation for which the grid is intended.

" There is an alternative to computing with irregular grids. A co-ordinate trans-
formation can be used to map a geometrically irregular computational domain
into a more regular one for which a uniform grid is appropriate. After solving
transformed equations on a regular grid in the transformed domain, the inverse
transformation can be used to map the solutions back into the original, irregular
domain. The disadvantage of this alternative approach is that an appropriate
co-ordinate transformation must be prescribed before computations begin. The
task of specifying this transformation is quite similar to that of constructing an
irregular grid. In fact, the inverse transformation maps the regular grid into a
curvilinear grid, a technique that is common to many grid generation schemes.
Examples of this approach are given by Caughey (1978), Haussling (1979),
and Pope (1978).

The finite difference methods are more advantageous than the finite element
methods which must be used on irregular grids. The fact is that finite differ-



22

ence methods can be used on irregular grids, as is evident from the works of
Frey (1977), Fritts and Boris (1979), Pavlin and Perrone (1979). Fur-
thermore, the co-ordinate transformation can be thought of as defining finite
difference formulae for the corresponding curvilinear grid. The distinction be-
tween the two approaches is that an irregular grid need not be topologically
regular, whereas the curvilinear grid corresponding to a co-ordinate transfor-
mation is always topologically regular (except at singular points of the trans-
formation). Because it is not necessary that all interior points have the same
number of neighbours, a fully irregular grid has greater flexibility for achieving

variable resolution.

Too much irregularity can affect the accuracy of the computations for which
the grid is intended. Counsider the case of computations on a regular grid that
involve variable coefficients. A co-ordinate transformation introduces variable
coefficients into the transformed equations, so the variations of these coefficients
must be well resolved by the regular grid in the transformed domain. In other
words the transformation must be sufficiently smooth if computational difficul-
ties are to be avoided. This constraint on the transformation is equivalent to
a constraint on the corresponding curvilinear grid: the grid spacing must vary
smoothly. And if spacing should vary smoothly for curvilinear grids, the same
should be true for fully irregular grids.

Several techniques have been used to obtain smooth grids. These can be clas-

sified as the following:

(1) The simplest of these is to require that each interior grid point be at the
position determined by the mean of the co-ordinates of its neighbours. The co-
ordinates of all the points must be found simultaneously by solving a system of
linear equations. It is necessary to know which points are neighbours before the
equations can be formulated. This technique has been incorporated in the grid
construction schemes of Cavendish (1974), and Yanenko et al. (1976).

(ii) If the grid is constructed so that all interior points have the same number
of neighbours, then this grid smoothing technique defines a co-ordinate trans-
formation. Amsden and Hirt (1973) and Barfield (1970) have followed
this approach to obtain smooth curvilinear grids. Again, the co-ordinates of all
the points must be obtained simultaneously by solving a system of equations.
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(iii) Another type of co-ordinate transformation that has been used to obtain
smooth grids is prescribed by an interpolating function. This technique requires
the construction of a regular grid which is transformed into an irregular grid
within the computational domain. The positions of these special grid points are
fixed by the user at the beginning of the construction process. Each element
within the regular grid is subdivided into regularly shaped grid points which are
then mapped into the computational domain. The interpolation function that
maps these points is determined by the positions that have been specified for
the fixed control points. Hall et al. (1976) use a bivariate blending function
interpolation scheme developed by Gordon and Hall (1973). Zienkiewicz
and Phillips (1971) use the isoparametric interpolation schemes that are
popularly used for finite element computations. Cook (1974) uses the linearly
blended interpolation formulae of Coons (1967) in constructing grids for two-

dimensional curved surfaces and for three-dimensional volumes.

(iv) A somewhat different approach to the problem of optimizing the grid is
taken by McNeice and Marcal (1971). Their grid is to be used to solve
finite element equations based upon conditions of minimum energy. The value
of the minimum energy depends on the grid configuration, so they vary the
positions of the grid points to obtain a grid for which the minimum energy is
least. Similarly Babuska et al. (1975) discuss grid optimization by local
refinement during the course of the computations. Cavendish (1975) and
Cavendish et al. (1977) point out that blending function interpolation is

Weil suited for such local refinement.

Most of the work toward automating grid generation has dealt with two-dimen
sional grids, either planar or curved. However, the more difficult three-dimensional
problem has been discussed by Cavendish et al. (1977), Cook (1974), Lau
(1979), and Zienkiewicz and Phillips (1971).

3.2. Computer Defined Surface Elements

A detailed mesh generation scheme is found unnecessary and time consuming
for the present work. The hull surface about which the flow is to be computed
is approximated by a large number of surface elements, whose characteristic
dimensions are small compared to those of the main body. In fact this approach

can be accepted as a rough mesh generation scheme. The surface elements are
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simply obtained by the intersection between the hull surface and parallel planes.
In general in order to represent a ship hull three mutually orthogonal views are
constructed which are called sectional plans. The lines of each section do not
completely specify a surface since if three dimensional data points are required,
that lie between the lines, these must be obtained from some approximation

procedure.

Polinomials have long been the functions most widely used to approximate
other functions, mainly because they have the simplest mathematical proper-
ties. However, it is a common observation that a polynomial of moderately
high degree fitted to a fairly large number of given data points tends to exhibit
more numerous, and more severe undulations than a curve drawn with a spline.
There is now considerable evidence that in many circumstances a spline func-
tion is a more adaptable approximating function than a polynomial involving a
comparable number of parameters. This conclusion is based in part on actual
numerical experience, and in part on mathematical demonstrations that the
solutions of a variety of problems of best approximation actually turn out to
be spline functions. In this work in order to create computer defined surface

elements mathematical splines are used.

3.3. Spline Functions

In many industries, e.g., shipbuilding, automotive and aircraft, the final full or
nearly full size shape is determined by a process called lofting. Early in the
development of mathematical tools for computer aided geometric design there
was considerable interest in developing a mathematical model of this process.
As a result, the form of the mathematical spline is derived from its physical
counterpart — the loftman’s spline as shown in (Figure 3-1). A physical spline
is a long, narrow strip of wood or plastic used to fit curves through specified
data points. The splines are shaped by lead weights called ducks. By varying
the number and position of the lead weights the spline is made to pass through
the specified data such that the resulting curve appears smooth, or fair, and

pleasing to the eye.



Figure 3-1. Physical spline and ducks.

Consider the physical spline as a thin elastic beam, the shape of the spline,
corresponding to the deflection of the beam y, is obtained from Euler’s equation
for the bending moment M(z) along the length of the beam. Specifically,

M(z) = %

where E is Young’s modulus (determined by the material property of the beam),
I is the moment of inertia (determined by the cross-sectional shape of the beam)
and R(z) is the radius of curvature of the beam.

For small deflections (y' << 1) the radius of curvature is approximated by

"

1 — Y ~ ol
R((E) (1+y12)

32 =

where the prime denotes differentiation with respect to z, the distance along
the beam, and y represents the deflection of the beam. Euler’s equation then

y" = M(z)
EI
Assuming that the ducks act as simple supports, the bending moment M(z)

becomes

is known to vary linearly between supports. Substituting M(z) = A(z) + B,

Euler’s equation becomes
n Az + B

- T EI

Integrating twice yields
y = A1z° + Biz? + C1z + Dy

for the deflection of the beam. This result shows that the shape of the physical
spline between ducks is mathematically described by cubic polynomials.
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In general, the mathematical spline is a piecewise polynomial of degree K with
continuity of derivatives of order K —1 at the common joints between segments.
Thus, the cubic spline has second-order or C? continuity at the joints. Piece-
wise splines of low-degree polynomials are most useful for curve fitting because
low-degree polynomials both reduce the computational requirements and also
reduce numerical instabilities that arise with higher degree curves. These insta-
bilities cause undesirable oscillations when several points are joint in a common
curve. However, since low-degree polynomials can not span an arbitrary series
of points, adjacent polynomial segments are used. Based on these considerations
and the analogy with the physical spline, a common technique is to use a series
of cubic spline segments with each segment spanning only two points. Further,
the cubic spline is advantageous since it is the lowest degree curve which allows
a point of inflection and which has the ability to twist through space.

The equation for a single parametric cubic spline segment is given by

4
P(t)=) Bit'™' t;<t<t (3.1)

=1

where t; and ¢ are the parameter values at the beginning and end of the
segment. P(t) is the position vector of any point on the cubic spline segment.
P(t) = [x(t) y(t) =z(t)]is a vector valued function. The three components of
P(t) are the Cartesian co-ordinates of the position vector. Each component has

a similar formulation to P(t), i.e.,
4
z(t) =) Byt 4 <t<t
i=1
4
y(t) = Z Bz’,,ti—l 11 <t <t
i=1

4
2(t) = z Bit'7! 41 <t<t,

=1

The constant coeficients B; are determined by specifying four boundary condi-
tions for the spline segment. Writing out Eq.(3.1) yields

P(t) =By + Bat + Bat* + Bat® t; <t<t, (3.2)

Let P; and P, be the position vectors at the ends of the spline segment as
shown in Figure 3-2. Also let P,’ and P,’, the derivatives with respect to ¢, be
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the tangent vectors at the ends of the spline segment. Differentiating Eq.(3.1)

yields

Pty=['(t) y'(t) Z®=) Bii—1t""? # <t<ty (3.3)

i=1

Writing this result out gives
P'(t) = By +2B3t +3Bst?  t; <t <ty (3.4)

Assuming, without loss of generality, that ¢; = 0, and applying the four bound-

ary conditions,

P(0) = P, (3.5a)
P(t)) = P, (3.5b)
P(0)y=PF' ' (3.5¢)
P'(ty) = P’ (3.5d)

yields four equations for the unknown B;’s. Specifically,

P(0)= B, =P, (3.6a)
4 .

P'(0)=> (i — 1)t *Bilt=o = B, = P} (3.6b)

i=1

4 .
P(ty) =Y  Bit' '|i=t, = By + Bats + Byty? + Baty® (3.6c)
i=1

4 '3

P'(ty) = Y (i — 1)t*"*Bili=e, = Ba + 2Bst + 3Bjts” (3.6d)
i=1
P

Figure 3-2. Single cubic spline segment

Solving for B; and B, yields

3(P,—P) 2P, P

Be =
3 ta? 123 t2

(3.7a)
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and
2(P, — Py) + P! i’

it 2
t53 to? + o2

These values of B;,B3,B; and By determine the cubic spline segment. Note

By= (3.7b)

that the shape of the segment depends on the position and tangent vectors at
the ends of the segment. Further, notice that the value of the parameter ¢t = ¢,
at the end of the segment occurs in the results. Since each of the end position
-and tangent vectors has three components, the parametric equation for a cubic
space curve depends on twelve vector components and the parameter value %,

at the end of the segment.

Substituting Eqs.(3.6) and (3.7) into Eq.(3.1) yields the equation for a single

cubic spline segment:

P, - P, ! P
P(t)=P, +P{t+[3( s V5 —2}t2

tg? t2 t2

3.8)

NECE NP (38
t23 t22 t22

Equation (5.8) is for a single cubic spline segment. However, to represent a
complete curve, multiple segments are joined together. Two adjacent segments
are shown in Figure 3-3. Provided that the position vectors P;, P,, Ps, the
tangent vectors P{, Pj, P; and the parameter values ¢, t3 are known, then
Eq.(5.8), applied to each of the two segments, yields their shapes. However, it is
uniikely that tangent vector Pj at the internal joint between the two segmants
is known. Fortunately, the internal tangent vector P; can be determined by

imposing a continuity condition at the internal joint.

Recall that a piecewise spline of degree K has continuity of order K — 1 at the
internal joints. Thus, a cubic spline has second-order continuity at the internal
joints. This means that the second derivative P,'(t) is continuous across the
joint; i.e., the curvature is continuous across the joint. Differentiating Eq.(3.1)
twice yields
4
P't)y=>Y (i—1)(i-2)Bt"™® t; <t<ty (3.9)
=1

Noting that for the first cubic spline segment the parameter range is 0 < ¢t < iz,
evaluating Eq.(3.9) at the end of the segment where t = ¢, gives

P" = 6B4ty + 2B3



Pty

Figure 3-3. Two piecewise cubic spline segments.

For the second cubic spline segment the parameter range is 0 < ¢ < t3. Evalu-

ating Eq.(3.9) at the beginning of this second segment where ¢ = 0 yields

P" =2B,

Equating these two results and using Eqs.(3-6a,b) and (3-7a) yields

oP,-P) P P 3(P,—P)) 2P P

o ek LTIV AT ST 1) T - -2
6tz S Ttz T t5? ts  to
_,[3m-P) 2P B

t32 t3 ts

Here the left hand side of the equation represents the curvature at the end of
the first segment and the right hand side the curvature at the beginning of the
second segment. Multiplying by ¢2¢3 and collecting the terms gives

3
tsP +2(t3 +t2)Py + 12 P = tata [t22(P3 ~P)+t3 (P, - Py )} (3.10)

which can be solved for P;, the unknown tangent vector at the internal joint.

These results can be generalized for n data points to give n — 1 piecewise cubic
spline segments with position, slope, and curvature. Using the notation shown
in Figure 3-4 the generalized equations for any two adjacent cubic spline seg-
ment Pi(t) and Pi41(t) are:
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1 — P A 4
Py(t) = Py + Pt + [3(P"“ Po) 28 _ ‘“]t"’

tht1’ t t
. k+1 k+,1 k-};l (3.11)
+[3(Pk—Pk+1) Pe | Pk+l]t3
thgr® tht1?  thgr’
for the first segment, and
3 Pk 2 - Pk 2P,. Pl.
Pk+1(t) =Pk+1 +P£+1t+ [ ( +2 - +1) _ E+1 7 k42 t2
trv2 tet2 tk+2
. ' (3.12)
L [Z(Pk+1 = Piyo) | Bip + Pryo ]t3
teso® tkta?  trga’

for the second segment.Recalling that the parameter range begins at zero for

each segment, for the first segment 0 < ¢ < ¢x+1 and for the second 0 < ¢ < tr42.

Figure 3-4. Notation for multiple piecewise cubic spline segments.

For any two adjacent spline segments, equating the second derivatives at the
common internal joint, i.e., letting P/(tx) = P{,,(0), yields the generalized
result, equivalent to Eq.(3.10), i.e.,

tepa Py + 2(tes1 + the)Prgy + e Py
3 1<k<n-2
= ———{t11 2 (Prs2 = Prgr) + treg2’ (Prg1 — Py)
terile+2
(3.13)
for determining the tangent vector at the internal joint between any two spline

segments P and Pry;.

Applying Eq.(3.13) recursively over all the spline segments yields n—2 equations
for the tangent vectors P}, 2 < k < n — 1. In matrix form the result is
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ts  2(t2 +t3) 0 P/
0 t4 2(t3+t4) i3 o ... Pé
0 0 ts 2(t4 + t5) t4 0 ees cen % Pé
0 tn 2(tn + tn—l) tn—1 P,’-,,
Tats'{hz(P:z — Py) +t3%(P; — P1)}
o {t32(Py — P3) + t*(Ps — P2)}
= fats ' (3.14)

3 {tn-—lz(Pn - Pn—l) + tnz(Pn—l - Pn-Z)}

tn-titn

or

[M*][P'] = [B]

Since there are only n—2 equations for the n tangent vectors, [M*] is not square
and thus cannot be inverted to obtain the solution for [P']; i.e., the problem is
indeterminate. But assuming that the tangent vectors P and P} are known,

the problem becomes determinate. The matrix formulation is now

10 pr
ts  2(ty +13) 0 \ /Pz\
0 te 2ts4td) i 0 ... o

0 0 ts 2(t4 + ts) ts 0 o o o X 3
0 tn 2(tn+ta—1) tn— :
\. T T 1 \7:)

P| \
( {2 (P — P2) + t5* (P — P1)}

- {ts%(Ps — P3) + t4%(Ps — Py)}
. (3.15)

\ = {tn—1%(Pn — Pa—1) + ta*(Pa—1 = Pn—s )})
P,

or

[M][P'] = [R]

where [M] is now square and invertible. Notice also that [M] is tridiagonalf,

which reduces the computational work required to invert it. Further, [M] is

- A tridiagonal matrix is one in which coefficients appear only on the main, first
upper and first lower diagonals.
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diagonally dominant {. Hence it is nonsingular, and inversion yields a unique

solution. The solution for [P'] is thus
[P'] = [M]7'[R] (3.16)

Once the P[’s are known, the B; coefficients for each spline segment can be
determined. Generalizing Eqs.(3.6)-(3.11) yields

By = Py
Bar = P
B 3(Pry1—Pr) 2P ot 1
3k = 2 - -
tk+1 k1 trt1
g 2Be=Pen) | Pl Phu
tk+13 tk+12 tk+12

Recalling that the Pi’s and P]’s are vector valued confirms that the B;’s are
also vector valued; i.e., if the Pi’s and P}’s have z, y, 2 components then theB;’s

also have z, y, z components.

In matrix form these equations for any spline segment k are

B
By
Bl =
[B] Buy
By
o 1 0 o B
!
=1 .=3 =2 3 e I (3.17)
Teg1?  Th4r Te41 Tega Pria
2 1 -2 1 PI
tet1®  tegr? te41® tegr? k+1

To generate a piecewise cubic spline through n given position vectors Py, 1 <
k < n, with end tangent vectors P and P}, Eq.(3.16) is used to determine
the integral tangent vectors P;, 2 < k < n — 1. Then for each piecewise cubic
spline segment the end position and tangent vectors for that segment are used
to determine the Biz’s, 1 <7 < 4 for that segment using Eq.(3.17). Finally the
generalization of Eq.(3.1)

4
Pi(t)=) Bt 0<t<tgy, 1<k<n-—1 (3.18)

i=1

In a tridiagonally dominant matrix the magnitude of the terms on the main
diagonal exceed that of the off-diagonal terms on the same row.
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is used to determine points on the spline segment.

In matrix form Eq.(3.18) becomes

Bk
Pt)=[1 t # ]x g:z 0<t<tm (3.19)
By
Substituting Eq.(3.17) and rearranging yields
Py
B =R F RO RO a0 | ({2150, 620
Pl
where
T = (t/tk+1)
Fiu(r) =23 -3r* +1 (3.21a)
For(r) = —2r3 4+ 372 (3.21b)
Fa(1) = 7(7% = 27 + L)tk (3.21c)
Fuu(r) = (7% — Ttesa (3.21d)

are called blending or weighting functions.

Using the definition of the blending functions Eq.(3.20) is written in matrix

form as

Py(r) = [F|[G] (3.22)

where [F] is a blending function matrix given by
[F] =[Fi(r) Fa(r) Fs(r) Fao(7)] (3.23)

and
6" =[P Pit1 PL Piyl (3.24)

contains the geometric information. Equations of the form of Egs.(3.22), i.e., a
matrix of blending functions times a matrix of geometric conditions, frequently

appear in curve and surface descriptions.

In general the end position vectors have relatively more influence than the end .

tangent vectors. Recall that a piecewise cubic spline curve is determined by the
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position vectors, tangent vectors and the parameter values, i.e., the t;’s at the
end of each segment. The choice of the #;’s affects the curve smoothness.

Continuity of the second derivatives at the internal joints does not in itself pro-
duce a fair or smooth cubic spline curve in the sense of minimum curvature along
the curve. To obtain minimum curvature and hence maximium smoothness, the
coefficients B3 and B4 must be minimized for each segment by choosing appro-
priate values for the ¢;’s for each segment. This additional computational effort

is normally not required.

One approach used to determine the #;’s is to normalize the variation by choos-
ing tx = 1.0 for each cubic segment. This choice simplifies the computational
requirements (see Section 3.4). As can be seen from the previous equations,
each choice of ¢; produces different coefficient values and, hence, different curves

through the given data points.
3.4. Normalized Cubic Splines

An alternate approximation for the #; spline segment parameter values is to
normalize them to unity. Thus, 0 < ¢ < 1 for all segments.

The blending functionst, now become

Fi(t) =2t -3t* +1 (3.25a)
Fy(t) = —2t° + 3#? (3.25b)
F(t) =t -2t 4+ ¢ (3.25¢)

Fy(t)=t* —¢* (3.25d)

For the normalized cubic spline the blending function matrix is now written as

2 =2 1 1
-3 3 -2 -1
0 O 1 0
1 0 0 0

[Fl=[T|[N]=[t* ¢ t 1]x (3.26)

t These blending functions are the cubic Hermite polynomial blending functions
on the interval 0 < ¢ < 1.
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The matrix equation for a cubic spline segment, Eq.(3.22), can now be written

as

P(t) = [F][G] = [T][N][G] (3.27)

Notice that [T] and [N] are constant for all cubic spline segments. Only the
geometry matrix [G] changes from segment to segment.

Equation (3.15), used to determine the interval tangent vectors required in [G],

now becomes

Pl'\

1 0 ... ... ... ...
1 4 1 0 ... .. z 3{(Ps — P) + (P, — P)}
0 1 4 1 0 .. Py 3{(Py — P3) + (Ps — P)}
X . = .
0 1 4 1 : 3{(Pn - P, —1)+(Pn-1 —Pn—Z)}

D \P.'IJ (3.28)

The solution is again given by Eq.(3.16). However, here [M] is constant and
need only be inverted once. When the number of position vectors is large, this

represents a considerable savings in computational expense.

One final point is of interest. If, for the normalized spline, the matrix [B]T =
[Bi Bz B; By]is known, then the geometry matrix for the spline segment,
i.e., [G], is given by

~ (G =[NV (B]"

where [N]™", the inverse of [N], is

[N]-l - (3.29)

wWoHo
N RO
o—nn—-\n—'o'
O H =

Points along the spline segment are again obtained using Eq.(3.27).



CHAPTER 4. NUMERICAL RESULTS

Preparation of input data for the programme DAWSON.FOR needs a large
amount of manual work. A large portion of the time devoted to this work is
spent, mostly on distributing panels on the hull surface as well as on a portion
of the free surface. Input data consists of two sets of data: the first one gives the
co-ordinates of the vertices of the quadrilateral elements which we call panels
and the second one contains integer values asigned to these vertices which we
call indices.

4.1. Description of the Programmes

To reduce the manual work, two computer programmes are developed: one
generating hull surface data and the other generating free surface data. The user
of these programmes is free to dense the panel distributions. Two AutoCAD
plotting routines are appended to these programmes. These routines enable
the user to visualize and check if the panels are distributed properly. In case of
peculiar panel distribution the user is free to go back and change the positions
of waterlines and transverse sections which intersect to give out quadrilateral

pa,flels.
4.1.a. Programme APGOSH.FOR

This programme generates panels over a given ship hull. Using the offsets as
input data it defines the hull surface by spline functions. Hence, gives the loca-
tion of vertices of quadrilateral panels which were generated by the intersection
of waterlines and transverse sections. The co-ordinates of vertices are given
according to the global co-ordinate axis which are fixed on the ship hull as can
be seen from Figure 4-1. Vertices are automatically numbered. The numbers,
each of which resembles a vertex of a quadrilateral are given in the order which
designates the normal vector pointed to the water. Hence, the numbers for the
hull surface panels are given in clock-wise order when viewed from outside as

shown in Figure 4-2a.
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Figure 4-1. Global co-ordinate axis.

4.1.b. Programme APGOFS.FOR

This programme generates streamlines around a given ship hull. Then gives
the location of vertices of quadrilateral panels placed between the streamlines
amrd the the vertical lines which were determined by the user as an input. The
co-ordinates of the vertices are given according to the global co-ordinate axis
which are fixed on the ship hull. The vertices are automatically numbered by the
programme and they follow one after another along every streamline beginning
from upstream towards downstream. The numbers each of which resembles a
vertex of a quadrilateral are given in the order which designates the normal
vector pointed to the water. Hence, the numbers for the free surface panels are
given in counter-clock-wise order when viewed from above the free surface as
shown in Figure 4-2b. The panels on the free surface follow one after another
along every streamline as the vertices do. But the first column of panels on the
upstream edge of each streamline are given at the end of the related data in the

order: closest panel to ship first, farthest panel last.

The field points distributed all over the region considered as if they were located
at the middle of the probable streamlines. First row of the field points are chosen
to be placed at the middle of each panel generated between the first streamline
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and the hull contour.

2 I 3% 38
/

/

S
[O) e

23 22 1 2
a) b)

Figure 4-2. Order of panel numbers given a)on the ship hull surface,

b)on the free surface.
4.2. Panel Arrangements

In this section the effect of the increase in the number of panels both on the
ship hull surface and on the free surface is examined. Dawson (1979) reported
that numerical experiments have convinced him that it is necessary to extend
the local region of the free surface about 3/8 of a ship length to the side and
represent the local region at least with eight rows of panels and it is necessary
to take smaller panels near the bow and stern and also near the hull-free surface

intersection than elsewhere.

Previous experience gives us the hint that as the number of panels is increased

more accurate results are obtained.

As the number of panels is increased both the free surface and the ship hull sur-
face are defined better, but more computing time is required. Once the panels
are generated and the input data is prepared by the pre-processor programmes,
using an Apollo HP with 16MB REM shortens the computing time. Two-sepa-
rate AutoCAD routines are appended to each of the preprocessor programmes
which enable the user to visualize the panel arrangements and check if the pan-
els are distributed properly. It was impossible to use an Apollo HP with these
AutoCAD routines. Hence a PC with 8MB REM is used to generate input
data. It was advantageous to work with the PC upto a total number of 515
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panels. With the PC one can visualize the panel arrangements but one can not
use more than 515 panels. After a total of 515 panels is reached the memory of
the PC exhausts.

It was more important for the author to visualize the panels than to use
more than 515 panels at the stage of developing the pre-processor programmes.
Hence, it was decided to use the PC and care is taken in preparing the input
data with restricted number of panels for the programme DAWSON.FOR.

The panel arrangements on the ship hull surface and on the free surface are

made with the above suggestions and constraints in mind.

4.2.a. Wigley’s Parabolic Hull

Four different panel arrangements are made for the Wigley’s parabolic hull.
These different panel arrangements both on the free surface and on the ship
hull surface are shown in Figures 4-3a through 4-3d and in Figures 4-4a
through 4-4d, respectively.

i) In the first panel arrangement 10 equally distributed panels along the ship
hull surface are used. 16 panels are taken along the longitudinal direction on
the free surface. A total of 144 panels on the free surface and 50 panels on the
ship hull surface are used.

ii) In the second panel arrangement, near the bow and stern regions smaller
" panels are used. 14 panels are used along the ship hull surface and 25 panels are
distributed along the longitudinal direction on the free surface. A total of 234

panels on the free surface and 70 panels on the ship hull surface are considered.

iii) In the third panel arrangement, equally distributed panels along the ship
hull surface are considered again as in the first panel arrangement, but 20 panels
instead of 10 are used. 32 panels are taken along the longitudinal direction on
the free surface. A total of 288 panels on the free surface and 100 panels on the
ship hull surface are used.

iv) In the fourth panel arrangement, near the bow and stern regions smaller
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panels are taken. 26 panels are distributed along the ship hull surface and 42
panels are distributed along the longitudinal direction on the free surface. A
total of 378 panels on the free surface and 130 panels on the ship hull surface

are used.

At a total number of 508 panels (378 panels on the free surface, 130 panels on
the hull surface) fairly good results are obtained.

4.2.b. Series-60 Hull

Some panel arrangements like the ones used for Wigley’s parabolic hull are
tried. One panel arrangement with sufficient number of panels for the Series-60

hull is given in Figures 4-5a and 4-5b.

Along the ship hull surface 20 panels are used. These panels are not equally
distributed. Near the bow and stern regions smaller panels are taken. 33 panels
are distributed along the longitudinal direction on the free surface. A total of
297 panels on the free surface and 200 panels on the ship hull surface are used.
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Figure 4-3a. Wigley hull first panel arrangement on the free surface.
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Figure 4-3b. Wigley hull second panel arrangement on the free surface.
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Figure 4-3c. Wigley hull third panel arrangement on the free surface.
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Figure 4-3d. Wigley hull fourth panel arrangement on the free surface.









-4c. Wigley hull third panel arrangement on the ship hull surface.
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Figure 4-4d. Wigley hull fourth panel arrangement on the ship hull surface.
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Figure 4-5a. Series-60 hull panel arrangement on the free surface.
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4.3. Comparison of Numerical Results with Experimental Data

The present singularity method distributes sources on the ship hull to form
a stream surface for the wetted ship surface. The distribution of sources on
the ship hull and the velocity potential on the wetted surface are calculated
by satisfying the linearized free surface condition and the exact hull boundary
condition. From the resulting velocity potential, calculations are made to find

the pressure distribution, wave profile, velocity field and sinkage and trim.

There is a large increase in the resistance due to sinkage and trim. Dawson
(1979) handled the sinkage and trim by first computing the flow with the
ship fixed and then determining the vertical hydrodynamic forces from this
calculations. The resulting amount of sinkage and trim needed to balance the
vertical forces was then used in positioning the ship for a new computation of

the flow field.

Within the constraints of the linear theory, the effects of the sinkage and trim
of a ship on the flow field are considered to be of higher order. Hence, the nu-
merical results presented in this study are calculated from the velocity potential
generated by only the hull surfaces below the design waterline, in the absence
of trim and sinkage.

If one can not predict wave resistance for the fixed model condition, a good
prediction for most realistic free-to-trim-and-sink condition is unlikely since
one has to use the fixed-model condition as the initial condition of an iterative

procedure.

The experimental results contain form resistance and present data for a ship free
to trim whereas the calculations were made for a fixed ship. In the experimental

data there is a large increase in the resistance due to sinkage and trim.
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4.3.a. Wigley’s Parabolic Hull

For the Wigley’s parabolic hull there are several experimental data. However,
experimental measurements do not exist for this model fixed at zero trim and
sinkage. It is unfortunate not to have the experimental data for a fixed model,

because computations were made for the fixed model condition.

The computed wave resistance curves for the four different panel arrangements

are shown in Figure 4-6.

The first panel arrangement gives too low values. The second panel arrange-
ment, with smaller panels near the bow and stern regions, gives higher values
when compared with the first panel arrangement, but these values are still
lower than the minimum experimental data. Third panel arrangement, with
more panels equally distributed along the ship hull surface, gives higher val-
ues than the second panel arrangement, but these values are still out of the
envelope of the experimental data. Fourth panel arrangement, with more and
smaller panels near bow and stern regions, gives results that compare well with
the experimental data. The calculated values of wave resistance are in good
agreement with the measured values at moderate values of Froude number, i.e.,
below F'n = 0.35. At higher values of Froude number the calculated values of

wave resistance are lower than those obtained experimentally.

The computed wave profiles along Wigley’s parabolic hull for Fn = 0.266,
Fn = 0.348 and F'n = 0.452 are shown in Figures 4-7a through 4-7c.

It is shown in Figure 4-7Ta that as the number of panels is increased closer
wave elevations to experimental data are obtained. In the middle body region
especially the region between 2z/L = —0.3 and 2z/L = 0.2 the fourth panel ar-
rangement gives almost exact values for the wave elevation. In the bow region,
namely the region between 2z/L = —1.0 and 2z /L = —0.4 the computed values
underpredict the experimental data. In the stern region the computations un-
derpredict the experimental data between 2z/L = 0.2 and 2z/L = 0.8 whereas
they overpredict the experimental data between 2z/L = 0.8 and 2z/L = 1.0.

As it is shown in Figure 4-7b for Fn = 0.348 the fourth panel arrangement
gives considerably closer values to experimental data between 2z/L = —0.8 and
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2z /L = —0.4. The computations overpredict the experimental data at the very
stern region, namely in the region between 2z/L = 0.8 and 2z/L = 1.0. In

other regions the computations underpredict the experimental data.

For Fn = 0.452 as shown in Figure 4-7c the fourth panel arrangement, which
seems to be more closer to the experimental data, gives almost exact values
in the region between 2z/L = —0.2 and 2z/L = 0.2. In the region between
2z/L = —0.4 and 2z/L = —0.2 the computations overpredict the experimental
data whereas they underpredict the experimental data in all other regions.
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Figure 4-6. Wigley hull computed wave resistance curves.
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Figure 4-Ta. Wigley hull computed wave profiles at F'n = 0.266.
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Figure 4-7b. Wigley hull computed wave profiles at F'n = 0.348.
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Figure 4-Tc. Wigley hull computed wave profiles at Fn = 0.452.



4.3.b. Series-60 Hull

For series-60 hull experimental data only for the fixed model is available. Al-
though different panel arrangements are tried, at lower Froude numbers, Fn <
0.2, negative wave resistance values are obtained as shown in Figure 4-8. As
the number of panels As the number of panels is increased expected convergence
in results is not reached. The wave resistance predictions are not unrealistic

though they are underestimated.

For Froude numbers Fn = 0.22, F'n = 0.28, and F'n = 0.35 the computed wave
profiles are different from the experimental data as can be seen from Figures
4-9a through 4-9c. These differences are thought to be due to the approach

which generates panels on the free surface by using imaginary streamlines.

Then on the free surface, panels are prepared manually by using the real stream-
lines.t This panel arrangement on the free surface is used together with pre-
viously prepared panel distribution on the ship hull surface. By using these
data files underestimated but realistic wave profiles are obtained for F'n = 0.22,
Fn = 0.28 and F'n = 0.35, respectively. The wave resistance curve is shown in
Figue 4-10. The wave profiles for Fn = 0.22, Fn = 0.28 and F'n = 0.35 are
shown in Figures 4-11a. 4-11b and 4-11c, respectively.

t graphics obtained from manually prepared data are shown with a (*) at the

end.
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Figure 4-8. Series-60 hull wave resistance curves.
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Figure 4-9c. Series-60 hull wave profiles at F'n = 0.350.
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Figure 4-11a. Series-60 hull wave profiles at F'n = 0.220.*
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CHAPTER 5. CONCLUDING REMARKS AND RECOMMENDATIONS

With the method of automatic panel generation developed in this study accurate
results are obtained for the wave resistance and for the wave profile values. As
the number of panels both on the free surface and on the ship hull surface is
increased, results that compare well with the experimental data are obtained.

Two preprocessor programmes are developed to prepare input data for the
main programme DAWSON.FOR. AutoCAD routines are appended to these
programmes to visualize the automatically generated panel arrangement. While
developing these programmes, the constraints were the computing time required
and the need for visualizing the generated panels. As the number of panels
is increased more computing time is required but more accurate results are
obtained. On the other hand the need for more panels directed us to use an
Apollo HP which has more memory capacity than a PC. But with an Apollo
HP it is impossible to use AutoCAD routines and visualize the panels. Hence,
we used maximum panels that can be computed by a PC which is a total of 508

panels.

The panels on the ship hull surface are obtained by the intersection of trans-
verse sections and waterlines. For this purpose the transverse sections and the
waterlines are defined by spline functions. This intersection gives panels that
‘are almost quadrilateral in shape. But these panels do not represent the hull
surface exactly near the regions where the radius of surface curvature suddenly

changes, namely near the stern and bow regions.

If the ship hull surface could be paneled by intersecting the transverse sections
with waterlines that intersect them orthogonally, the ship hull surface could be
defined almost exactly.

With Wigley’s parabolic hull results that compare well with the experimental
data are obtained. For Series-60 hull unrealistic results are obtained which
brings the author to the conclusion that the ship hull surface could not defined
exactly by the intersection of transverse sections and waterlines.
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Experimental data for the fixed-model condition is needed for both of the mod-
els. The effect of sinkage on wave resistance becomes important for the Wigley
hull as the Froude number increases. The effect of trim and sinkage is also very

important for the Series-60 model.

There is a need for experimental data with Series-60 model fixed to the car-
riage. Not only residuary resistance curves but also wave resistance coefficients

obtained from longitudinal-cut measurements should be given.

Future comparisons of calculation and measurement should be made with a
full set of appropriate model observations, including in addition to residuary
resistance: wave profiles on and near the hull, trim and wave-probe record.
Lacking these, final conclusions regarding the accuracy of calculations will be
difficult to make.

Dawson (1979) stated that: ”For many problems, the time and labor cost
for preparation of the input will be greater than the cost of computer time for

running the problems.”

The starting point of this work was the above sentence. The aim was to au-
tomate this labour. Theoretically, this labour is automated. Four days’ time
of labour is reduced to 20 minutes of computing time. We believe that this is
an important step taken towards filling the gap between numerical calculation
schemes and applied research in the field of ship wave-resistance problems.

The achievements and plans for future work are as follows:

i) The aim was to generate panels automatically both on the ship hull surface
and on the free surface with a basic input data, which namely is the offsets.

This aim is achieved.

ii) This automatization reduced the manual work approximately 80%.

iii) Past computations that were done with manually prepared data showed us
that, on the free surface, panels that are generated by using real streamlines
gives better resolutions. The approach used in generating the free surface panels
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is found to be insufficient for the bluff bodies. Dawson’s differentiation scheme,
satisfying the free-surface condition, should be used for the solution of the
double-model by the panel method.

iv) The preprocessor programmes will be enlarged to generate panels by inter-
secting transverse sections with waterlines that are orthogonal to them. This
will completely terminate the manual work needed in applied research in the
ship hull optimization field.

v) A longitudinal cut experiment is done with a Series-60 model at I.T.U.
Ata Nutku Towing Tank. After analyzing the obtained data the results will be
compared with the computed results obtained by using automatically generated
data by the preprocessor programmes. These preprocessor programmes are
planned to be used for the verification of the experimental results obtained
from the Ata Nutku Towing Tank at LT.0. .
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APPENDIX A

WIGLEY’s PARABOLIC HULL

Hull Geometry

B/L =0.1000
H/L = 0.0625
Cp = 0.4440
Cpr = 0.6670
Cx = 0.6670
Cs = 0.6610

L/Lpp =1.0000
NOTE: The hull surface is shown in Figure A.1 and is defined by:

-

y=2 -G -5

Figure A.1. Wigley hull form.



APPENDIX B

0.60 (PARENT FORM-MODEL 4210W)

SERIES 60, Cp

Hull Geometry

B/Lpp = 0.1333

H/Lpp'

0.0533
0.6000
0.6140
0.9770

Cs = 0.7100

L/Lpp
NOTE: Lpp is used in defining all of the hull characteristics. Table B-1 gives

offsets.

Cp =

Cpr=

Cx =

1.0167

Table B-1. Series-60 hull offsets.
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