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PID PARAMETRELERININ BULANIK MANTIK ILE AYARLANMASI VE 
DOĞRUSAL OLMAYAN PID DENETLEYICILER İLE 
KARŞILAŞTIRILMASI 

ÖZET 

PID denetleyiciler, basit yapıları ve tasarım kolaylıkları nedeniyle en çok kullanılan 

kontrol algoritmalarıdır. Proses kontrol uygulamalarının %95 inden fazlası PID ve 

özellikle PI denetleyiciler ile yapılmaktadır. Zaman içinde çok sayıda  denetleyici 

algoritmaları geliştirilse de , endüstride özellikle yüksek performans gerektirmeyen  

sistemler için yaygın kullanımı devam etmektedir. Gerçek sistemlerdeki doğrusal 

olmayan yapı ve oluşan parametre değişiklikleri nedeniyle, teoride uygulanan 

yöntemlerin uygulanmasında güçlükler yaşanmaktadır. Bu nedenle çeşitli 

metodolojiler geliştirilmiştir. Bu metodolojilerden biri bulanık mantık kuramıdır. 

Bulanık mantık, birçok mühendislik bilimlerinde, tasarım yapılarında kullanılmaya 

başlanmıştır. Bu artan ilginin hayata yansıması olarak günlük hayatta kullandığımız 

bazı ürünleri gösterebiliriz. 

Bu çalışmada, bulanık mantık kontrol sistemlerindeki denetleyicilerin 

ayarlanmasında kullanılmıştır. Bu amaçla uygulanan birçok bulanık kontrol metodu 

vardır. Öncelikle PID parametrelerinin ayarlama metodlarından Ziegler-Nichols, 

Cohen –Coon and IMC metodlarını, daha sonra bu metodlar ile ayarlanmış 

denetleyicilerin performansını arttırmaya yönelik kullanılan bulanık ayarlama 

metodlarından ;arttırımlı bulanık uzman PID denetleyicisi, ayarlama noktasının 

bulanık ayarlanması, bulanık kazanç ayarlama ve tek parametrenin bulanık 

ayarlanması metodları açıklanacaktır. Ayrıca doğrusal olmayan PID denetleyiciler 

ele alınmıştır. Doğrusal olmayan PID denetleyicilerinin araştırılmasının nedeni, 

bulanık sistemlerin doğrusal olmayan bir yapıya sahip olmasıdır. Farklı sistemler için 

araştırılan metodların MATLAB/SIMULINK ortamında simülasyonları yapılmış ve 

karşılaştırılmalı olarak incelenmiştir. 



 xi

SELF TUNING PID PARAMETERS USING FUZZY LOGIC VS 

NONLINEAR CONTROLLERS 

SUMMARY 

PID controllers are the most common control algorithm due to their simple structure 

and ease of design. In process control, more than 95% of the control loops are PID 

control, most of them are actually PI controller. Although many control algorithms 

are developed over several decades, PID controllers are still the majority of the 

regulators used in industrial control systems especially when the performance 

requirements are not too high. Due to the existence of nonlinearity and parameter 

changes during the operations, it is usually difficult to conduct theoretical analysis. 

Therefore some useful techniques are developed. One of these techniques is fuzzy 

logic method. 

Fuzzy logic have become a widely used design structure in many engineering 

sciences. Growing interest to the design of fuzzy systems can be seen in our daily life 

with the products being used. 

In this study, fuzzy systems are used to control the process, especially, auto tuning 

the current PID controller. There are a lot of methods for this purpose. Some of these 

methods are introduced. Fuzzy tuning PID methods which are incremental fuzzy 

expert control, fuzzy gain scheduling, set-point weighting, fuzzy self tuning of a 

single parameter and two types of nonlinear PID controllers are introduced.  The 

reason why nonlinear PID methods investigation is fuzzy controller is a kind of 

nonlinear controllers. Therefore it is needed to include nonlinear PID controllers and 

compare. Simulation results are obtained using SIMULINK and evaluated for 

different types of systems. 
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1. PID CONTROL 

 
The PID controller is the most common form of feedback. It became the standard 

tool. PID controllers are today found in all areas where control is used. The 

controllers come in many different forms. PID control is often combined with logic, 

sequential functions, selectors, and simple function blocks to build the complicated 

automation systems used for energy production, transportation, and manufacturing. 

PID controllers have survived many changes in technology, from mechanics and 

pneumatics to microprocessors via electronic tubes, transistors, integrated circuits. 

The microprocessor has had a significant influence on the PID controller. Practically 

all PID controllers made today are based on microprocessors. This has given 

opportunities to provide additional features like automatic tuning, gain scheduling, 

and continuous adaptation.[1] 

Although many control algorithms are developed over several decades, PID 

controllers are still the majority of the regulators used in industrial control systems 

especially when the performance requirements are not too high. 

The design and analysis of such a controller require to know the three parameters, 

proportional gain (Kp), integral time constant (Ti), and derivative time constant (Td). 

 

Figure 1.1 Block Diagram of PID Controller 

Control law can be stated as 1.1 
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1
( ) ( ) ( )

de
u t Kp e t Td e d

dt Ti
τ τ

 
= + +  

∫
     (1.1) 

( ) ( ) ( )
sp

e t y t y t= −
      

u(t) is control input, e(t) is error which is difference between actual output and 

desired input . 

( ) . ( ) ( ).
de

u t Kp e t Kd Ki e d
dt

τ τ= + + ∫
      (1.2) 

The control signal (1.2) is a combination of three terms; the P term (which is 

proportional to the error), the I term (which is proportional to the integral of the 

error), and the D term (which is proportional to the derivative of the error). The 

controller parameters are proportional gain K, integral time Ti, and derivative time 

Td. The integral, proportional and derivative part can be interpreted as control 

actions based on the past, the present and the future. The derivative part can also be 

interpreted as prediction by linear extrapolation.  

1.1. Tuning of PID Parameters 

Although PID controllers are widely used in industry, the tuning of these parameters 

can be very challenging. There are several methods in the literature. In this study, 

they are divided into two groups which are fixed parameter tuning and online tuning 

methods using fuzzy logic. In this chapter fixed parameter tuning methods are 

introduced. These are Ziegler-Nichols and set-point weighting method, Cohen-Coon 

method, internal model controller tuning methods. Among these methods, ZN and 

set-point weighting methods are emphasized. Cohen- Coon and IMC method is 

mentioned briefly. 

1.1.1.Ziegler-Nichols Method 

If a mathematical model of the plant can be obtained, then it is possible to apply 

different design techniques to define the controller parameters. On the other hand if 

the system is complicated and getting the mathematical model is difficult, then 

experimental approaches must be used to tune the PID parameter. 

Ziegler –Nichols proposed rules for tuning PID controllers ( , ,
p i d

K T T ) base on 

control engineering experience (1.1). In other words, the ZN method is the result of 

experimental step responses. Ziegler and Nichols developed the rules based on the 
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transient response characteristics of the systems and determined the values of PID 

parameters. The suggested idea is based on the value of 
p

K that causes in marginal 

stability when only proportional controller is employed. Ziegler Nichols method 

(ZN) is useful for plants of which mathematical models are unknown or difficult to 

obtain. This method guarantees the stability of the system. [3] 

There are two ways of implementing Ziegler-Nichols tuning rules. In the first 

method, registration of the open loop step response of the system. The parameters are 

determined from a unit step response of the process. The point where the slope of the 

step response is determined and the tangent at this point are drawn in Figure 1.2. The 

intersections of tangent line and coordinate axes give the parameters α and L. ZN 

method gives PID parameters directly as functions of α and L; stated in Table 1.1. 

[4] 

 

(a) 

 

 

(b) 

Figure 1.2 (a) Step input response of a typical control system (b) Characterization of 
a Step Response in ZN First Method [3] 

 

Table 1.1 PID Controller Parameter Obtained From ZN First Method 
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Ziegler-Nichols second method is based on simple properties of the process 

dynamics. Rules are developed on the values of ultimate gain (
u

K ) and ultimate 

period (
u

T ). These parameters are determined in the following steps. Starting point is 

assuming that there is only P controller in the systems and change the gain until 

system oscillates continuously (Figure 1.3).  

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

Figure 1.3 Oscillatory Response of P Controlled System which has Ultimate Gain 

At this point the gain is 
u

K  and the oscillation period is
u

T . ZN has given simple 

formulas for tuning PID controllers in terms of ultimate gain and ultimate period. 

These are given in Table 1.2  

Table 1.2 PID Controller Parameters Obtained From ZN Second Method 

 

 

Ziegler Nichols tuning rules have been widely used to tune PID controllers in process 

control systems where the plant dynamics are not precisely known. Other important 

property of ZN method is that these values are determined experimentally. After 

calculating these parameters, the unit step response of PID controlled system can be 

obtained as seen in  Figure 1.4. 
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Figure 1.4 Unit Step Response of a PID Controlled System Designed by ZN Tuning 

Rules 

1.1.2.Set-point Weighting Method 

It is well known that feedback systems with PID controllers tuned according to the 

Ziegler–Nichols step response method has good disturbance rejection. However, the 

compensated system response to a step input has, in general, high overshoot, and the 

control signal is usually high, which may lead the actuator to saturation. To avoid 

these situations, set point for the proportional action can be weighted by means of a 

constant parameter b<1. 

( ) . ( ) ( )
sp

e t b y t y t= −         (1.3) 

The set-point weight b was originally introduced to reduce overshoots in the closed 

loop set-point step response. With this modification following expression can be 

applied to Equation1.4 

( )
( ) ( . ( ) ( )) ( )

sp d i

de t
u t Kp b y t y t K K e d

dt
τ τ= − + + ∫     (1.4) 

In this way, a simple two degrees of freedom scheme is implemented Figure 1.5, one 

is assigned to the attenuation of load disturbances, the other is to the set-point 

following. 
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1
( )

1
(1 )

Gff Kp b sTd
sTi

Gc Kp sTd
sTi

= + +

= + +

       (1.5) 

 

Figure 1.5 Two Degrees-Of-Freedom Schema Of PID Controller With Set-Point 

Weighting 

 

It is not an easy to choose its value b. Sometimes the closed loop response is very 

sensitive to the weights: a little change in their values can result in a completely 

different response of the control system [4].  

Set-point weighting is very useful in order to shape the response to set-point changes; 

but it is needed to follow a procedure to determine parameter b. Äström and 

Hägglund mentioned a method in [4]. By the dominant pole design method, it is easy 

to find. With this method, the closed loop system will have two complex poles and 

one pole 0p−  on the real axis. This pole may be slower than the other poles. With the 

set-point weighting, the closed loop system has a zero at 

0

1

i

s z
bT

= − =          (1.6) 

By choosing b so that 0 0z p= , we make sure that the set-point does not excite the 

mode corresponding to the pole in 0p− . This works well and gives good transient 

responses for the systems where the dominant poles are well damped (i.e. 0.7ξ = ). 

For the systems where the poles are not so well damped, the choice 0 02z p=  gives 

systems with less overshoot. 
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A suitable choice of parameter b is consequently; 

0

0

0

0.5
0.5

0.5 2.5( 0.5)
0.5 0.7

0.5
0.7

i

i

i

if
p T

b if
p T

p T

ξ

ξ
ξ

ξ

 
< 

 
 + −

= ≤ ≤ 
 
 

> 
 

     (1.7) 

1.1.3.Cohen-Coon Method 

Cohen Coon Method is based on the first order plus time delay process model 

.
1

sLKp
Gp e

sT

−=
+

         (1.8)  

The main design criterion is rejection of load disturbances. It tries to place dominant 

poles that give a quarter amplitude decay ratio. For P and PD controllers the poles 

are adjusted to give maximum gain, subject to the constraint on the decay ratio. For 

PI and PID control the integral gain is maximized. This corresponds to minimization 

of integrated error, the integral error due to a unit step load disturbance. For PID 

controllers three closed-loop poles are assigned; two poles are complex and the third 

pole is located at the same distance form the origin as the other poles. 

Table 1.3 Controller Parameters from Cohen-Coon Method 

 

 

The parameters 
.Kp L

T
α =  and 

L

L T
τ =

+
 are used in Table 1.3. If the process model 

is defined by these three parameters
p

K , L  andT , then it is possible to give tuning 
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formulas with the help of Table 1.3. It may be difficult to choose desired closed-loop 

poles for higher order systems.  

If τ  is small, controller parameters are close to others which are obtained by ZN 

tuning rules. 

1.1.4.Internal Model Control Method 

Internal model principle is a general method for design of control systems that can be 

applied to PID control. A block diagram of such a system is shown in Figure 1.6 

 

Figure 1.6 Block Diagram of a Closed-Loop System with a Controller Based on the 

Internal Model Principle 

 

The internal model control methodology may be used to obtain PID or fractional PID 

controllers. It makes use of the control scheme of Figure 1.6. In that control loop, G 

is the plant to control, G* is an inverse of G (or at least a plant as close as possible to 

the inverse of G), G′ is a model of G and GF is some carefully chosen filter. If G′ 

were exact, the error e would be equal to disturbance d. If, additionally, G* were the 

exact inverse of G and GF were unity, control would be perfect. Since no models are 

perfect, e will not be exactly the disturbance. That is also exactly why GF exists and 

is usually a low-pass filter: to reduce the influence of high-frequency modelling 

errors. It also helps ensuring that product  GFG* is realisable. 

Plant model G; 

.
1

sLKp
G e

sT

−=
+

        (1.9) 

Controller Transfer function;Gc ; 

. *

1 * '

Gf G
Gc

GfG G
=

−
        (1.10) 

The inverse of the plant model G*; 
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1
*

sT
G

Kp

+
=          (1.11) 

The filter
f

G ; 

1

1
f

f

G
sT

=
+

         (1.12) 

If the time delay is approximated by second order Padè approximation 

1 / 2

1 / 2
sL sL

e
sL

− −
≈

+
        (1.13) 

As a result of arrangements transfer function of the controller is achieved 

(1 / 2)(1 ) (1 / 2)(1 )
( )

. ( / 2) . ( )
c

p f f p f

sL sT sL sT
G s

K s L T sT L K s L T

+ + + +
= ≈

+ + +
    (1.14) 

An interesting future of the internal model control, robustness can be adjusted by 

selecting the filter 
f

G  accordingly. [6] 
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2. FUZZY CONTROL 

Conventional control techniques are generally requires mathematical models of 

systems to design a controller. On the other hand, most of real–life systems’ 

mathematical models are not very easy to obtain. Therefore all the information; 

numerical and linguistic information should be investigated throughout the modelling 

stage.  

Even if a relatively accurate model of a dynamic system can be developed, it is 

generally too complex to use in controller development, especially for many 

conventional control design procedures that require some assumptions. 

In such cases, fuzzy control provides an efficient structure to include linguistic 

information from human experts into numerical information. This is not possible in 

conventional control techniques. In this type of case, fuzzy controllers can be 

preferred.  

The concept of Fuzzy Logic was proposed by Lotfi Zadeh, a professor at the 

University of California at Berkley, and presented not as a control methodology, but 

as a way of processing data by allowing partial set membership rather than crisp set 

membership. This approach to set theory was not applied to control systems until the 

70's due to insufficient small-computer capability prior to that time. Professor Zadeh 

taught that people do not require precise, numerical information input, and yet they 

are capable of highly adaptive control. If feedback controllers could be programmed 

to accept noisy, imprecise input, they would be much more effective and perhaps 

easier to implement. 

As the complexity of a system increases, it becomes more difficult and sometimes 

impossible to make a precise model. 

Fuzzy Logic is also considered as a problem-solving control system methodology. It 

can be implemented in hardware, software, or a combination of both.  

Fuzzy Logic was conceived as a better method for sorting and handling data but has 

verified to be a best choice for many control system applications since it mimics 

human control logic. It can be built into anything from small, hand-held products to 
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large automated process control systems. It uses an imprecise but very helpful 

language to deal with input data more like a human operator. The approach to control 

problems is generally to mimic how an operator would make decisions, only much 

faster.  

Fuzzy controllers are used to control consumer products, such as washing machines, 

video cameras, and, as well as industrial processes.  

2.1.  Internal Structure of Fuzzy Controllers 

The fuzzy controller has four main components: First part is the “rule-base” where 

the knowledge is held in the form of a set of rules. Second part is the “inference 

mechanism” where evaluations are made, which control rules are related at that time 

and then decides what the input to the plant should be given. Third part is the 

“fuzzification” simply modifies the inputs so that they can be interpreted and 

compared to the rules in the rule-base. Last part of a fuzzy controller is the 

“defuzzification” that converts the fuzzy outputs decided by the inference 

mechanism into the crisp inputs to the plant.  

 

Figure 2.1 Internal Structure of a Fuzzy Controller 

 

2.1.1.Fuzzification 

Fuzzification is the first step in the fuzzy inference process. This involves a 

transformation of crisp inputs into fuzzy inputs. Crisp inputs are exact inputs 

measured by sensors and passed into the control system for processing, such as 

temperature, pressure, rpm's, etc. Each crisp input that is to be processed by the 
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Fuzzy Inference Unit has its own group of membership functions or sets to which 

they are transformed. This group of membership functions exists within a universe of 

discourse that holds all relevant values that the crisp input can possess. Three fuzzy 

sets are defined to fuzzify the crisp values of weather temperature. These sets cover 

the other sets partially. Therefore some crisp inputs can be member of different fuzzy 

sets. However each input has different degrees of membership. These membership 

degrees are evaluated in controller processes. 

 

Figure 2.2 Membership Functions of Weather Temperature 

2.1.2.Rule Base 

The rules may use several variables both in the condition and the conclusion of the 

rules. The controllers can therefore be applied to both multi-input-multi-output 

(MIMO) problems and single-input-single-output (SISO) problems. The typical 

SISO problem is to regulate a control signal based on an error signal. The controller 

may actually need both the error, the change in error, and the integrated error as 

inputs, because in principle all three are formed from the error measurement. To 

simplify, the control objective is to regulate some process output around a prescribed 

set-point or reference. 

Basically a linguistic controller contains rules in the IF-THEN format,  

1. If error is Negative and change in error is Negative then output is Negative Big 

2. If error is Negative and change in error is Zero then output is Negative Medium 

3. If error is Negative and change in error is Positive then output is Zero 

4. If error is Zero and change in error is Negative then output is Negative Medium 

…. 

The rules can be presented as rule table format as Table 2.1. 
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Table 2.1 Rule Table Representation 

 

2.1.3.Inference Mechanism 

The inference mechanism has two basic tasks: One is to determining the degree, to 

which each rule is relevant to the current situation. Inputs that passed through the 

fuzzification stage are evaluated for each rule in the rule base. Depending on the 

inputs, one or more than one rules may be satisfied.  

Other task is deciding the control action using the current inputs and the information 

in the rule-base. The output of the inference mechanism becomes the input of the 

defuzzification stage. 

 

2.1.4.Defuzzification 

The output of the inference mechanism is the input the defuzzification stage. The 

decided control action which has fuzzy values is converted into the crisp values with 

the help of defuzzification methods.  There are many methods to defuzzify the fuzzy 

values. The "centroid" method is very popular, in which the “centre of mass" of the 

result provides the crisp value. Another approach is the “height” method, which takes 

the value of the biggest contributor.  
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3. PID TUNING METHODS USING FUZZY LOGIC 

Fuzzy controllers of various types have been developed. The application of fuzzy 

logic to PID controller design can be classified into two major categories in terms of 

their construction. 

The gains of the conventional PID controller are tuned on-line by the knowledge 

base and fuzzy inference, and then the conventional PID controller generates the 

control signal. 

A typical fuzzy logic controller is constructed as a set of heuristic control rules, and 

the control signal is directly deduced from the knowledge base and the fuzzy 

inference.[7] 

In this study, fuzzy logic controllers are use to tune the parameters of conventional 

PID controllers as seen in Figure 3.1. Our main concern is to improve the 

performance of PID controllers. 

 

 

Figure 3.1 Block Diagram of Fuzzy Tuning PID Controlled System 
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3.1. Incremental Fuzzy Expert PID Control 

Incremental fuzzy expert PID control is based on the tuning of existing values of PID 

controller parameters by fuzzy logic mechanism. The parameters are adjusted during 

the operation to improve the characteristics of the output. The tuning mechanism is 

developed according to the error and the rate of change of error of the closed loop 

system. The control rules are built up concerning the effects of the PID gains. 

• Integral term is responsible for the overshoot, by slightly decreasing it at the 

moment when the system response exceeds the value 1, one can reduce the 

overshoot. On the other hand, a small increase of the integral term during the 

rise in the response leads to a 10-20% improvement in the rise time. 

• Derivative term is responsible for the smoothness of the step response, a 

small increase in it during rise and in steady state eliminates the small 

oscillations. 

• Increasing the proportional term leads to decrease in rise time and increase 

the oscillations. This term should be decreased to avoid oscillatory behaviour. 

Fuzzy control is constructed by inspiration of the human control behaviours. These 

are generally based on following rules; 

If the output has the desired value and the error derivative is zero, we then keep 

constant the output of the controller. If the output diverges from the desired value, 

our action then depends on the signum and the value of the error and its derivative.  

If the conditions are such that the error can be corrected quickly by itself, we then 

keep the controller output constant or almost constant. Otherwise, we change the 

controller output to achieve satisfactory results [8] 

Macvicar- Whealean matrix is built up by the help of these principles. Most of the 

human controllers act through these principles. 

Tzafestas and Papanikkolopoulos [8] proposed an algorithm to adjust the controller 

parameters which are already tuned by Z-N formula (Figure 3.1). The current values 

of proportional, integral and derivative gains are increased or decreased by a fuzzy 

inference system, with respect to following relation (3.1); 
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1

2

3

{ ( ), ( )}

{ ( ), ( )}

{ ( ), ( )}

P P CV e t e t k

I I CV e t e t k

D D CV e t e t k

= + ×

= + ×

= + ×

�

�

�

      (3.1) 

{ ( ), ( )}CV e t e t�  is output of fuzzy inference system based on Macvicar- Whealean rule 

matrix. 

Table 3.1 Macvicar –Whelean Rule Matrix 

 

k1, k2, k3 are constant parameters that determines the range of variation of each term. 

For example, if a tuning method ensures very small rise time and large overshoot, the 

integral term should have a large range of variation. The values of k1, k2, k3 can be 

determined by both stability analysis and the particular characteristics of closed-loop 

response. Block diagram of IFE scheme is represented in Figure 3.2. 

 

Figure 3.2 Block Diagram of Incremental Fuzzy Expert PID Method 
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3.2. Fuzzy Set-point Weight Tuning 

The Method proposed by Visioli [9] states the fuzzifying the set point weight (i.e. 

mentioned section 1.1.2). The idea of multiplying the set-point value for the 

proportional action by a constant parameter less than one is effective in reducing the 

overshoot but has the disadvantage of increasing the rise time. To achieve both the 

aims of reducing the overshoot and decreasing the rise time, a fuzzy module can be 

used to modify the weight depending on the current output error and its time 

derivative. The three parameters of the PID are tuned according to the Ziegler-

Nichols method, so that good load disturbance attenuation is assured. The parameters 

of the fuzzy module can be easily tuned by hand. The typical tuning problem consists 

of selecting the values of these three parameters (Kp, Kd, Ki), and many different 

methods have been proposed in the literature in order to meet different control 

specifications such as set-point following, load disturbance attenuation, robustness 

with respect to model uncertainties and rejection of measurement noise. Using the 

Ziegler–Nichols formula generally results in good load disturbance attenuation but 

also in a large overshoot and settling time for a step response that might not be 

acceptable for a number of processes. Increasing the gain generally results these two 

aspects. An effective way to cope with this problem is to weight the set-point for the 

proportional action by means of a constant b so that we get the following expression 

3.2 

( ) . ( ) ( )
sp

e t b y t y t= −         (3.2) 

With this modification following expression (3.2) can be obtained. The control law 

can be written as  

( )
( ) ( . ( ) ( )) ( )

sp d i

de t
u t Kp b y t y t K K e d

dt
τ τ= − + + ∫      (3.3) 

                      

( )b w f t= +  

w  is a positive constant (w≤ 1) 

( )f t  is the output of fuzzy inference system. 
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Membership functions for the two inputs e and e�  and the output of the fuzzy 

inference system f . 

 

Figure 3.3 ANFIS Structure 

 
Five triangular membership functions are defined for each input. Nine triangular 

membership functions are defined for the output.( Figure 3.4 and 3.5) 

 

Figure 3.4 Membership Functions For Two Inputs for e And e�  of The Fuzzy 

Inference System 

 

Figure 3.5 Membership Functions for the Output f of the Fuzzy Inference System 

 

 
 
       ANFIS 

( )e t  

( )e t�  

f  

e , e�  



 19 

Table 3.2 Basic Rule Table of Fuzzy Inference System 

 

 

The parameters of the fuzzy module can be easily tuned. To achieve both the aims of 

reducing the overshoot, and decreasing the rise time, a fuzzy module can be used to 

modify the weight depending on the current error and its rate of change.  

 

Figure 3.6 FSW Method Block Diagram 

 
The value of three parameters Kp, Ti, Td is determined by help of Ziegler-Nichols 

method, but the value of w is can be found by iteratively with decreasing values of w 

until no better results are achieved. On the other hand, some automatic tuning 

methods can be implemented. In practical case, the functionality is important. 

Genetic algorithms have been used to define the parameters. We can search for the 

value of w using genetic algorithm in order to minimize the values of integrated 

absolute error (3.4). 

 

0

( ) ( ) .
sp

IAE y t y t dt

∞

= −∫        (3.4) 
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3.3. Fuzzy Gain Scheduling  

Fuzzy Gain scheduling is a rule based scheme for gain scheduling issues. This type 

of fuzzy PID controller is composed of the conventional PID control system in 

combination with a set of fuzzy rules and inference mechanism. The PID gains are 

tuned on-line in terms of rule base and inference mechanism. Fuzzy gain scheduling 

is implemented expecting that operating regions are associated with overlapping 

membership functions of the fuzzy sets defined in the scheduling variable space and 

that a fuzzy inference mechanism is used to dynamically interpolate the controller 

parameters around region boundaries based on known local controller parameters. 

[10]. Zhao [11] states a rule based scheme for gain scheduling of PID controllers for 

process control. This scheme utilizes fuzzy rules and reasoning to determine the 

controllers’ parameters. Based on fuzzy rules, human expertise is utilizes for PID 

gain scheduling. As a result, better performance is expected than of the PID 

controllers with fixed parameters. Controller parameters can be obtained as follows; 

,max ,min ,min

,max ,min ,min

2

( ). '

( ). '

p p p p p

d d d d d

p

i

d

K K K K K

K K K K K

K
K

Kα

= − +

= − +

=

      (3.5) 

Where ', 'Kp Kd  and a  is determined by fuzzy mechanism and 

,max ,min ,max ,min, , ,
p p d d

K K K K  are used to normalize into the range between zero and 

one. Based on the extensive simulations, a rule of thumb for determining the range of  

Kp  and Kd  has been given as stated in 3.6. 

,min ,min

,max ,max

0.32 0.08 .

0.6 0.15 .
p u d u u

p u d u u

K K K K t

K K K K t

= =

= =      (3.6) 

Kp’, Kd’ and α are outputs of a fuzzy mechanism based on ( )e t  and ( )e t� . The 

membership functions for ( )e t  and ( )e t� is shown Figure 3.7. N presents negative, P 

positive, Z approximately zero, S small, M medium, B big. Consequently NM is 

negative-medium, PB is positive big and so on. 
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Figure 3.7 Membership Functions for Inputs ( )e t and ( )e t�  

Membership Functions for Kp’ and Kd’ are shown in Figure 3.8 and Figure 3.9. Four 

singletons is used to define the output of α  as Figure 3.9 

 

Figure 3.8 Membership Functions for Kp’ and Kd’ 

 

 

Figure 3.9 Membership Functions for α 

2 3 4 5 
α
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Rule tables may be determined heuristically based on the step time response of the 

process. For example, at the beginning the proportional gain Kp’ should be Big and 

Kd’ is small in order to get big control signal. Rule tables for the Kp’, Kd’ and α are 

given in Table 3.3, Table 3.4 and Table 3.5 respectively. 

Table 3.3 Rule base for Kp’ 

 

 

Table 3.4 Rule base for Kd’ 

 

 

Table 3.5 Rule base for a  
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Figure 3.10 Fuzzy Gain Scheduling Scheme 

 

3.4. Fuzzy Self Tuning of a Single Parameter 

In the last decade, several studied are published in this category of fuzzy PID 

controller. The method devised by He [1] consists of parameterising the Ziegler-

Nichols formula by means of a single parameter α, then using an online fuzzy 

inference system to tune the parameter α. In this way, the three PID parameters can 

be expressed as 3.7 

1.2 ( )

1
0.75

1 ( )

0.25

( ) ( )(1 ( )) ___ ___ ( ) 0.5
( 1)

( ) ( ) ( ) _______ ___ ( ) 0.5

Kp t ku

Ti tu
t

Td Ti

t h t t for t
t

t h t t for t

α

α

α γ α α
α

α γ α α

=

=
+

=

+ − > 
+ =  

+ < 

   (3.7) 

Where γ is a positive constant and it has to be chosen in the range [0.2, 0.6].  
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h(t) is the output of the fuzzy inference system and defined by seven triangular 

membership functions for two inputs ( )e t  and ( )e t� .  Initial value of α(t) is set to 

equal to 0.5. It has to be noted that the initial values of α(t) is set equal to 0.5, which 

corresponds to the Ziegler- Nichols formula. The point is , for this method, the tuning 

of the scaling coefficient of the fuzzy module and of the parameter γ is left to the 

user and no rules of thumb are given for this task.  

 

Figure 3.11 Block Diagram of Self-Tuned PID Controlled System  

h(t) 
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4. NONLINEAR PID CONTROLLERS 

PID control algorithm has been widely used due to the simple structure and 

effectiveness. For some cases, additional lead and lag compensators may help to get 

better performance. 

PID controller algorithm is based on the linear combination of the current (P), past 

(I) and future (D) of the error. This linearity may cause restrictions in performance. 

In addition differential part of the control signal is sensitive to noise and integral part 

is used to eliminate the steady state error but at the same time it leads the unstability 

of the system. In order to overcome the limitations, PID controllers with nonlinear 

characteristics can be implemented. 

In recent years, fuzzy logic controllers, especially PID type fuzzy controllers have 

been widely used in industrial processes owing to their heuristic nature associated 

with simplicity and effectiveness for both linear and nonlinear systems. In fact, for 

single-input single output systems, most of fuzzy logic controllers are essentially of 

PD type, PI type or PID type with nonlinear gains. Because of the nonlinearity of the 

control gains, fuzzy PID controllers possess the potential to achieve better system 

performance over conventional PID controllers provide the nonlinearity can be 

suitably utilized. On the other hand, due to the existence of nonlinearity, it is usually 

difficult to conduct theoretical analyses to explain why fuzzy PID controllers can 

achieve better performance.  

Fuzzy controllers are mentioned in the previous sections, it is obviously seen that the 

great performance improvement is achieved by using fuzzy tuning mechanism. This 

is basically because of the nonlinear property of the fuzzy controllers. For that reason 

searching other nonlinear PID controllers would be meaningful. Since the fuzzy PID 

controller is a nonlinear controller, it is necessary to compare it with some generic 

nonlinear controllers. By analyzing the fuzzy PID controller, it is found that its gains 

are variable with respect to the system states (e and ∆e).  
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4.1. Shinskey’s Nonlinear PID Controller 

There is a kind of nonlinear PID controllers described by Shinskey [12] which 

exhibit similar characteristics like the fuzzy PID controllers. It is an error-squared 

controllers. They are created with a continuous nonlinear function whose gain 

increases with the error, which could be mathematically expressed as (4.1) 

( )
( ) ( (1 ). ( ) ). ( ) . ( ).

de t
u t Kp L L e t e t Kd Ki e d

dt
τ τ= + − + + ∫    (4.1) 

Where L is adjustable parameter between 0 and 1 ,and represents the degree of 

nonlinearity of the controller. If L=1 we have a linear PID controller on the other 

hand, if L=0 the controller is highly nonlinear. It is not desirable for L to equal to 

zero, as this would make the controller insensitive to small errors. In this control 

method, there are four parameters to tune, the PID gains and L constant. After 

seriously evaluating the performance of nonlinear PID controllers, fuzzy mechanism 

can be implemented to tune the nonlinearity constant L. In simulation chapter, a 

fuzzy mechanism is implemented to tune the parameter L.   

4.2. Nonlinear PID Controller Based on Nonlinear Norm Transformation  

As an extension of conventional PID control , Nonlinear controllers has two classes 

of applications: One is nonlinear systems, where NPID control is used to contain the 

nonlinearity of systems; the other is linear systems, where NPID control is used to 

achieve performance which is not achievable by linear compensation. 

As a typical realization of NPID, the NPID controller based on nonlinear norm 

transformation (NNTPID for short in the following) can be provided to reduce rising 

time for step response and to improve tracking accuracy. 

An exponential transform is applied to the system error before it is sent to the control 

system. The exponent value α indicates the nonlinear degree of the transformation 

which is called nonlinear norm α transformation. The control structure of NPID 

based on nonlinear transformation is shown in the figure below.[13] 
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Figure 4.1 System Block Diagram 

The process of nonlinear norm transformation can be expressed as follows; 

' ( , ) ( )e f e sign e e
α

α= =        (4.2) 

 where 0 < α < 1 

The value of α is between 0 and 1. The response analysis shows that nonlinear PID 

controllers improve the performance of the output and provide better robustness. 

Based on the [13] , α = 0.6 is applied to the system to form a NNTPID controller. 

4.3. Improved Nonlinear Norm Transform PID 

Another type of nonlinear PID structure is proposed by Chen Z. et al, applied in [13]. 

Method is called Nonlinear Norm Transformation PID (NNTPID).  The modification 

is based on the different characteristics of the P, I, and D controller. Adjustment is 

achieved by using three different nonlinear norm transformations  f(e,αp), f(e,αi), 

f(e,αd) for the P, I and D structure.  

 

Figure 4.2 Improved NNTPID Scheme 

 

 

 

NNTPID 

f(e,α) 

PID Proses e e’ u y(t) 
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The control structure can be described as follows; 

( , )
( ) ( , ) ( , ) . D

p I

df e
u t Kpf e ki f e d Kd

dt

α
α α τ= + +∫     (4.3) 

' ( , ) ( )e f e sign e e
α

α= =  

The key concept is adjusting αi>1 as the system converges quicker. Chen Z. states 

that integral control is thinking like a human and summarizes the operating 

experience to decide the final output of the whole controller [13]. 

In this study, an additional improvement is applied on the nonlinear norm 

transformation scheme. The idea is basically developed to the unit step response 

characteristics. Since the error signal is between 0 and 1, effects of the norm value is 

evaluated. The benefits of the nonlinear proportional term (αp) is to make the 

proportional control more sensitive to small errors than linear form, consequently 

reducing the function of the integral control. Moreover, it can be reduces the integral 

action by choosing 0 1
i

α< < .  For the differential term, αD can be chosen less than 1, 

in view of the fact the derivative action helps to prevent overshooting. Therefore 

after several simulations, better performance is achieved by adjusting norm 

as 1
P

α = , 0.6
i

α =  and 0.2
D

α = . 
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5. SIMULATIONS and DISCUSSIONS 

The performances of the different controllers have been evaluated on different types 

of systems. The unit step responses are simulated with Matlab/ Simulink for all 

processes. 

5.1. Conventional PID Tuning Methods 

For the systems 1( )G s , the PID controller parameters are tuned by Ziegler-Nichols 

method. Then all fuzzy tuning methods that are mentioned in the previous sections 

and nonlinear PID control transformations are applied. The response signals are 

evaluated.  

 1 3

1
( )

( 1)
G s

s
=

+
        (5.1) 

To implement Ziegler –Nichols, starting point is assuming that there is only P 

controller in the systems and change the gain until system oscillates continuously. 

Ultimate gain and ultimate period must be calculated. Ultimate gain is proportional 

gain that leads the system oscillate. To calculate these parameters, these steps should 

be followed. 

Characteristic equation ; 

3( 1) 0
u

s K+ + =         (5.2) 

Using Routh’s array; critical gain Ku that cause oscillation can be found. At ultimate 

gain of Ku=8 the following output is obtained. 

Then we can compute period of oscillation (Pu) at ultimate gain by replacing s with 

jω. 

2
Pu

π

ω
=          (5.3) 

where 3ω =  

Pu=3.625 
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When ultimate and ultimate period values are computed, the values of Kp, Ti, Td can 

be easily set with the help of Ziegler-Nichols Table 1.2. 

Kp=0.6* Ku

Ti=0.5*Pu

Td=0.125*Pu          

        (5.4) 
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Figure 5.1 Block Diagram of P Controlled System  
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Figure 5.2 Oscillatory Output 

  

The controller parameters are set as (5.4) 
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Figure 5.3 Block Diagram 
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System output controlled by PID –ZN is presented in Figure 5.4 
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Figure 5.4 Output of PID Controlled System 
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Figure 5.5 Control Signal of PID Controller 

Ziegler-Nichols tuning methods are simple to calculate and implement. It is required 

little process information. These are the reasons why this method is widely used. 

Controllers designed by the Ziegler-Nichols rules, consequently, give closed loop 

systems with high overshoot and poor robustness.  The method results that it is not 

enough to describe process dynamics by only two parameters. Some improved tuning 

methods can be applied to decrease the disadvantageous of the Ziegler-Nichols 

method.  

In order to decrease the disadvantages of ZN method, set-point weighting can be 

useful. The set-point for the proportional action can be weighted by means of a 

constant b. 
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( ) . ( ) ( )
sp

e t b y t y t= −         (5.5) 

With this modification following expression can be applied to equation 1.4 

( )
( ) ( . ( ) ( )) ( )

sp d i

de t
u t Kp b y t y t K K e d

dt
τ τ= − + + ∫     (5.6) 

In this way, a simple two degrees of freedom scheme is used; one is assigned to the 

attenuation of load disturbances, the other is to the set-point following. 

1
( )

1
(1 )

Gff Kp b sTd
sTi

Gc Kp sTd
sTi

= + +

= + +

       (5.7) 

                   

Figure 5.6 Block Diagram of Two degree of Freedom Controller  

By changing parameter b, we can decrease percent overshoot (%). In this case, a 

procedure is needed to determine the parameter b. The method is stated in chapter 

1.1.2.  
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 Figure 5.7 Output Results with Respect to Different b Parameters 
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Following figure is derived when b is equal to 0.3. When b =1, the same output is 

obtained as ZN-PID. The set-point weighting can be a solution for the problem of 

high overshoot. On the other hand, the main drawback of set-point weighting method 

is that it leads to an increasing of rise time as the effect of proportional constant is 

reduced. Another difficulty of this method is tuning four parameters; PID parameters 

and the weighting constant b. 
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Figure 5.8 Comparison of Output Signals of Two Models Ziegler Nichols Method 

and Set-Point Weighting Method 

 
While criticising the performances of conventional tuning method, it should be 

evaluated the sensitivity to the system parameter changes. Assume the system 

parameter; in this case one pole of the system G1 is changed due to the effect of the 

working conditions. The output responses are compared.  

1 2

1

(1 ) ( 0.5)
G

s s
=

+ +
        (5.8) 
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Figure 5.9 Comparison of Output Signals of Controllers Tuned by Ziegler-Nichols, 

Cohen-Coon and IMC Methods 
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Figure 5.10 Comparison of Responses Under Condition of Parameter Change 

5.2. Fuzzy Self-Tuning PID Methods 

5.2.1.Third Order System 

In literature, there are several fuzzy methods used to tune the PID parameters. 

Methods mentioned in chapter 3 are applied to the system 1( )G s . First method 

(chapter 3.1 ) is incremental fuzzy expert PID control.  
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The parameters which are before hand tuned by Ziegler-Nichols method are 

increased or decreased on-line during operation. The fuzzy mechanism does this 

adjustment based on the error and the change of error. Therefore, there are two 

inputs ( ), ( )e t e t�  and one output f . Five membership functions for each input (Figure 

5.11) and nine membership functions for the output (Figure 5.12) are assigned. 

Consequently, 25 rules are used to define tuning mechanism Table 5.1 

 

Figure 5.11 Membership Functions for Inputs 

 

 

Figure 5.12 Membership Functions for Output f 
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Table 5.1 Rule Base for FSW 

 

 

After defining the membership functions and rules , ANFIS tool is used to form the 

tuning mechanism. ANFIS tool is also used in all following fuzzy tuning methods. 

 

 

Figure 5.13 Anfis Structure of Fuzzy Tuning Mechanism 

Difficulty of this method is adjusting k1, k2, k3 parameters. These parameters (as 

pointed out chapter 3.1) define the range of variation. Hence, these can be identified 

depending on the desired system characterisation, stability analysis or genetic 

algorithm methods. For system 1( )G s , these parameters are chosen as 5, 0.1 and 0.1.  
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2.2 Incremental Fuzzy PID Control
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Figure 5.14 Simulink Presentation of IFE Method for System G1 
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Figure 5.15 Output Signal of Incremental Fuzzy Expert Controlled System 

Concerning rise time, settling time and performance criterions, incremental fuzzy 

expert PID control has better performance than of ZN –PID. Tuning of three k1, k2, 

k3 parameters that multiply the two inputs e(t) and ( )e t�  is difficult task as it is not 

clear how these parameters influence the performance of the overall controller. 
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Fixed set-point weighting method has already discussed in chapter 1.1.2. The 

drawbacks of this method can be removed by tuning the weighting constant b with a 

fuzzy mechanism. The method is called fuzzy set-point weighting. Same numbers of 

membership functions are defined as previous method. 

b
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Figure 5.16 Block Diagram of FSW method 
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Figure 5.17 Output signal of Fuzzy Set-point Weighting 
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Figure 5.18 Control signal of FSW Controller 

The choice of w is also problematic. As previously expressed in (Chapter 3.2), w is 

can be found iteratively by increasing until no better results are achieved. On the 

other hand, genetic algorithms may have been used to define the parameter in order 

to minimize the values of integrated absolute error. Here it is chosen as 0.7. From  

Figure 5.17, we can derive that both overshoot & rise time can be decreased from ZN 

response with FSW method. FSW in general gives better performance.  

In fuzzy gain scheduling method, three fuzzy mechanisms are used to tune the PID 

parameters. Each one uses the system error and change of error as input and with 

different rule bases decides the control action (i.e. Kp’, Kd’ and α). These three rule 

bases and membership functions had been already defined in chapter 3.3.  

y1

To Workspace2

t

To Workspace1

Step Scope

error

kp.e

Out2

Kp

error

In2

In3

Out1

Ki

error

kd.de

Out2

Kd

0

Clock

1

(s+1)(s+1)(s+1)

.

 

Figure 5.19 Block Diagram of Fuzzy Gain Scheduling Method 
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Figure 5.20 Block diagram of Kp 
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Figure 5.21 Block diagram of Kd 
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Figure 5.22 Block diagram of Ki 

Table 5.2 Performance Criteria of System 1( )G s   
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Figure 5.23 Comparisons of Output Signals  

 

Concerning the rise time, settling time and other performance measures, the methods 

that fuzzy tuning mechanism used can improve the performances. Specifically, IFE 

(incremental fuzzy expert PID) and FSW (fuzzy set-point weighting) are able to 

improve the performances achieved by fixed parameter settings. Besides the fuzzy 

tuning mechanisms, genetic algorithms may be used to tune other parameters. In 

FSW and IFE methods, it is needed to use genetic algorithm to tune parameters other 

than controller parameters.( k1, k2, k3 and for FSW ; w). With the method; Self tuning 

of a single parameter, the response signal is not comparable with other fuzzy tuning 

methods. 

In contrast, a conventional controller depends on system parameters. If the 

parameters change, then we need to re-design our controller. With fuzzy control this 

is not necessary because a fuzzy system provides robustness of the system. While 

criticising the performances of the fuzzy tuning method, it should be evaluated the 

sensitivity to the system parameter changes. Assume the systems parameter; in this 

case one pole of the system G1 is changed due to the effect of the working conditions 

(5.8). The output responses are compared.  
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Figure 5.24 Output Responses for the System G1 with Parameter Changes 

 
The simulation results show that systems with fuzzy tuning mechanism have less 

sensitivity to parameter changes during the operating time. Settling time, rise time 

and IAE values are better than of the fixed parameter tuning methods. Fuzzy tuning 

mechanism does not only improve the performance of the output signal, but also 

provides robustness to the systems. 

5.2.2.Second Order Plus Time Delay System 

For system G2, a fuzzy tuned system and conventional PID controlled system is 

compared. The simulation results are shown in Figure 5.25. 
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Figure 5.25 Output Signal of SOPTD System Controlled By PID- Fixed Set-Point 

Weighting and Fuzzy Tuning Mechanism 

 

For system G2, PID controller tuned by Ziegler-Nichols tuning method, fixed and 

fuzzy set-point weighting methods are simulated.  As a result output signal of system 

that is tuned by fuzzy mechanism perform better result Table 5.3.  

Table 5.3 Performance Criterions for system G2 

 

5.2.3.Nonlinear plant 

These fuzzy tuning mechanisms are applied to a nonlinear system [15]. It is 

investigated that the advantages of adding a fuzzy logic supervisor to the standard 

PID controller to improve performance. Assigning PID parameter tuning is generally 
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difficult to nonlinear systems. By the help of fuzzy mechanism, better performance is 

obtained.  

2
2
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4

d y dy
y u t L

dt dt
+ + = −        (5.12) 

PID parameters are tune by trial and error method or resembling a linear system.  
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Figure 5.26 Comparison of Output Signals of Nonlinear System With Fuzzy Tuning 

Mechanism 

Fuzzy systems are independent form the plant parameters. Therefore, exact PID 

parameter values are not needed to get acceptable output result. With the help of 

property of fuzzy mechanism, even nonlinear plants can be controlled successfully. 

5.3. Nonlinear PID controllers 

After evaluating the performances of self-tuning fuzzy methods, nonlinear PID 

controllers’ performances can be examined. First method is Shinskey’s nonlinear 

controller. The control law is already stated in chapter 4.1.  In simulations are done 

by changing the nonlinearity constant L. As L approaches to 0, the controller 
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becomes highly nonlinear. When L is equal to 1, controller becomes the linear 

classical PID.  

5.3.1.Third Order System 

Comparison of the outputs of G1 (s) (5.1) is illustrated in Figure 5.27. 
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Figure 5.27 Output Values for the system G1 for Incremental Values of 
Nonlinearity Constant L (0, 0.2, 0.5, 0.7, 0.8, 1) 

Table 5.4 Performance Criterions for the system G1 

 

When controller highly nonlinear (i.e. L=0), system acts oscillatory output. 

Nonlinear PID controller did not generate better result for systems G1. 

Other nonlinear PID method; nonlinear PID based on the nonlinear norm transform 

is declared in chapters 4.2 and 4.3. An exponential transform of the system error is 

given to the system as error. In the following simulations, α =0.6 is applied to the 

system to form a NNTPID controller. NNTPID controller has same α values for P, I 

and D controllers. Difference of the improved version is α value of integral controller 

is different than P and D controllers. αi has been taken bigger than 1; specifically 

1/0.6   [13]. The output signals are demonstrated in Figure 5.28  
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Figure 5.28 Output Signals of NNTPID Controllers and Linear PID Controller 

By increasing αi, the output signal is faster to converge to reference value, but steady 

state output error become larger. There is no obvious improvement on the performance 

with NNTPID. On the other hand, improved NNTPID can reduce the rise time and 

overshoot.  

Another modification is made to NNTPID controller. After evaluating the effects of the 

norm value α, apply different α values to different controllers. Therefore after several 

simulations, better performance is achieved by adjusting norm as 1
P

α = , 0.6
i

α =  

and 0.2
D

α = . 

Table 5.5 Performance Criterions for NNTPID methods   

 

This modification provides better performance than other two methods with respect 

to rise time, settling time and percent overshoot and other performance criterions. 
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Namely, overshoot is decreased by %10 and settling time is also significantly 

decreased.  In order to achieve better output responses, norm values may be changed 

during operation. 
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Figure 5.29 Comparison of Output Signals Derived from NNTPID Methods 
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Figure 5.30 Comparison of Output Error Derived From NNTPID Methods 
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Figure 5.31 Control Signal of NNTPID Controller 
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Figure 5.32  Control Signal of Improved NNTPID Controller 
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Figure 5.33 Control Signal of Proposed NNTPID Controller 
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5.3.2.Second Order Plus Time Delay (SOPTD) 

Nonlinear PID controllers are also implemented to the second order plus time delay 

system G2(s). 
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Figure 5.34 Shinskey’s Nonlinear PID Controlled System Outputs 
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Figure 5.35 Output Response for an Step Input >1 
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Highly nonlinear PID controller can cause the system small oscillations, increase rise 

time and settling time. Linear PID controller gives better results. But for step input 

higher than 1 , when the system error is bigger than, because of the property of the 

error squared controller, the effect of the error become higher in control law. The 

controller becomes more sensitive to error. As a result, the rise time turns out to be 

shorter whereas the settling time becomes longer. When the nonlinearity degree is 

near 0.7, optimum result can be obtained. The nonlinearity degree can be 

manipulated over the control action, so better control signal may be achieved. 

5.3.3.Nonlinear Plant 

System 3 is a nonlinear system. Nonlinear PID controller is applied to the system 

(5.13) 
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Figure 5.36 Output Values Obtained by Using Shinskey’s Nonlinear PID Method 
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Control Rules are defined with respect to the effect of nonlinearity constant L. For 

example, for small values of L , rise time is small on the other hand, settling time is 

longer. big values of L (i.e. near 1) settling time is shorter, percent overshoot is   

smaller. 

1. If the error Positive and the change of error is Negative , then  L is Small  

2. If the error Positive and the change of error is Positive , then  L is Big 

3. If the error Negative and the change of error is Positive, then  L is Small  

4. If the error Negative and the change of error is Negative , then  L is Big 

5. o/w L is B 

Table 5.6 Rule Base defined for Nonlinear Controller  
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Figure 5.37 Output Values Obtained by Using Shinskey’s Nonlinear PID Method 

with L Values is Tuned by Fuzzy Controller. 
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The advantageous of the different L values at different stages of the output is 

evaluated and control rules are assigned. An optimum output signal is achieved 

concerning the rise time, settling time and overshoot. 
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6. CONCLUSION 

 

The purpose of this thesis is to improve the performance of conventional PID 

controllers, research on . First approach is to make a combination of conventional 

PID control and fuzzy control. Fuzzy controller is used to tune PID controllers that 

are already specified by classical tuning procedures. Second approach is 

implementing nonlinear PID controllers. Because fuzzy controllers have nonlinear 

properties, the performance of other nonlinear PID controllers is investigated. 

This study is mainly composed of three parts; first part is introducing the classical 

tuning methods and fuzzy tuning PID methods, second part is introducing nonlinear 

PID controllers and comparing with the conventional PID controller and third part is 

comparing the performance of fuzzy tuning methods and nonlinear PID controllers 

with classical parameter tuning methods. In addition, robustness of these methods is 

evaluated. 

In first part, conventional tuning methods which are Ziegler-Nichols, Cohen-Coon, 

and IMC control and fuzzy tuning methods which are incremental fuzzy expert PID , 

fuzzy tuning of set-point weighting and fuzzy gain scheduling are introduced. Fuzzy 

tuning algorithm is applied to the systems of which the PID controller parameters are 

tuned by one of the conventional methods. Generally, Ziegler-Nichols method is 

used. 

It is observed that Ziegler –Nichols method is resulted larger maximum overshoot 

and longer settling time. On the contrary, the output signals produced by the method 

of self-tuning PID controller with fuzzy control mechanism indicate that the systems 

have the performances of the smaller maximum overshoot, very small oscillation, 

shorter rise time, and the acceptable settling time. Particularly, incremental fuzzy 

expert PID (IFE) and fuzzy tuning of set-point weighting methods (FSW) have better 

performance in all cases.  
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In second part, two types of nonlinear PID controllers are introduced. First method is 

proposed by Shinskey. This nonlinear PID controller is basically error-squared 

controller. Performance of this controller gets better by adjusting the nonlinearity 

degree (L). Highly nonlinear PID controller is not desirable. Generally, linear PID 

controller gives better result for linear systems. For nonlinear system G3, when L is 

near 0.7, as L decreases, overshoot decreases on the other hand settling time and rise 

time increases. Therefore a fuzzy controller is implemented to tune the nonlinearity 

constant L according to the system error and change of error. Considerably good 

output result has been achieved.  Second method is nonlinear PID control based on 

norm transformation. Exponential transform is applied to the error to make the 

controller more sensitive to small errors. In addition, modified version of this 

controller is introduced. The difference is changing the effect of the integral 

controller to add more intelligence. This method could not give significant 

improvement. Additional modification is done by examining the output 

characteristics; increase the effect of I and D control. By this modification, better 

output results are achieved in point of rise time, settling time and other performance 

criterions.  

We also examined the robustness of these methods; the responses to the parameter 

changes are simulated. Fuzzy tuned systems have higher robustness characteristics. 

Namely, robustness, stability, and IAE values are best in fuzzy set-point weighting 

tuning method (FSW). 

As a conclusion, nonlinear PID controllers’ performances are restricted by the types 

of the systems. Fuzzy controller can be applied to linear and nonlinear systems. 

Although some improvements are achieved with nonlinear PID controller, fuzzy 

controllers satisfy many aspects of control performances.  

Fuzzy control schemes have performed better actions in all conditions. Nonlinearity 

property and independency from system parameters make fuzzy controllers essential 

in industrial applications. The another advantage of the fuzzy control methods is that 

it can be implemented quite easily by adding to current hardware PID controllers a 

microprocessor component that carries out the extra computation. 
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