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ON SYMMETRY PROPERTIES OF DAVEY-STEWARTSON
AND GENERALIZED DAVEY-STEWARTSON EQUATIONS

SUMMARY

In this thesis work, some symmetry properties of DS and GDS equations are
investigated with the help of Lie group analysis of differential equations.

Analysis of differential equations through their symmetry groups is an effective
tool especially for the investigation of solutions of nonlinear ODEs and PDEs.
As the first step of analysis, the group of transformations leaving the equation
studied invariant are found. Making use of this symmetry group, reducing the
order of ODEs, lowering the number of independent variables of PDEs or even
reducing PDEs to ODEs is possible.

Detailed studies are made for a work in literature related to symmetry group of
DS equations. Lie symmetry algebra, point transformations and 1-dimensional
subalgebras of DS system are found. These subalgebras are used to reduce DS
equations to various equations involving two independent variables. Additionally,
the Lie symmetry algebra of GDS equations is computed and it is shown that it
is isomorphic to Lie algebra of DS equations with some conditions on parameters.
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DAVEY-STEWARTSON VE GENELLEŞTİRİLMİŞ
DAVEY-STEWARTSON DENKLEMLERİNİN

SİMETRİ ÖZELLİKLERİ ÜZERİNE

ÖZET

Bu tez çalışmasında diferansiyel denklemlerin Lie grubu analizi yardımıyla DS ve
GDS denklemlerinin bazı simetri özellikleri araştırılmıştır.

Diferansiyel denklemlerin simetri grupları yardımıyla incelenmesi, özellikle
doğrusal olmayan adi diferansiyel denklemler ve kısmi türevli diferansiyel
denklemlerin çözümlerinin araştırılması için etkin bir araçtır. Bu yöntemde
önce, ele alınan denklemi değişmez bırakan grup dönüşümleri bulunmaktadır.
Ardından bu dönüşümler kullanılarak adi diferansiyel denklemlerin mertebesinin
düşürülmesi, kısmi türevli diferansiyel denklemlerin ise değişken sayısının
azaltılması hatta adi diferansiyel denklemlere indirgenmesi mümkün olmaktadır.

DS denklemlerinin simetri grubuyla ilgili literatürdeki bir çalışma için kapsamlı
çalışmalar yapılmıştır. DS sisteminin Lie simetri cebri, nokta dönüşümleri ve
bir boyutlu alt cebirleri bulunmuştur. Bu alt cebirler DS denklemlerini iki
değişken içeren çeşitli denkelemlere indirgemede kullanılmıştır. Ayrıca, GDS
denklemlerinin Lie simetri cebri hesaplanmış ve parametrelerin bazı koşulları
sağladığı takdirde bulunan cebrin DS denklemlerinin Lie cebrine izomorf olduğu
gösterilmiştir.

vi



1. INTRODUCTION

This thesis is devoted to the study of group-theoretical properties of

Davey-Stewartson (DS) and generalized Davey-Stewartson (GDS) equations.

These equations play an important role in modelling nonlinear waves. When

we deal with waves propagating in a nonlinear media, one of the fundamental

equations we encounter is the (1 + 1) dimensional nonlinear Schrödinger (NLS)

equation:

iAt + pAxx + q|A|2A = 0, (1.1)

where t is time, x is spatial coordinate and A denotes the complex amplitude. NLS

equation describes unidirectional wave modulation. (2+1) evolution equations are

used if modulations transverse to the wave propagation direction are also allowed.

When we replace the one dimensional dispersive term with a two dimensional

dispersive term, we obtain

iAt + pAxx + sAxy + rAyy + q|A|2A = 0 (1.2)

The (2 + 1) dimensional form of the NLS equation (1.2) correctly describes

(2 + 1) dimensional wave motion when there is no resonance between the main

quasi-harmonic wave and zero harmonics induce by nonlinear effects. The system

that involves both short and long wave modes is called DS equations. DS was

introduced in [1-3]

iψt + ψxx + ε1ψyy = ε2|ψ|2ψ + wψ,

wxx + δ1wyy = δ2(|ψ|2)yy,
(1.3)

where ψ is the complex amplitude of the short wave, w is the long wave amplitude

and δ1, δ2, ε1, ε2 are real constants with with ε1 = ±1, ε2 = ±1. DS equations

describe the propagation of two-dimensional water waves moving under the force

of gravity in water of finite depth. The DS equations belong to class of equations

in more than (1 + 1) dimensions that are exactly integrable by inverse scattering

techniques and their generalizations [4]. A system of nonlinear partial differential

equations in 2+1 dimensions as a model of wave propagation in a bulk medium

1



composed of an elastic material with couple stresses has recently been derived in

[5], namely

iψt + δψxx + ψyy = χ|ψ|2ψ + γ(wx + φy)ψ

wxx + nφxy + m2wyy = (|ψ|2)x

nwxy + λφxx + m1φyy = (|ψ|2)y, (1.4)

with the condition (λ− 1)(m1 −m2) = n2. Here ψ(t, x, y) is a complex function,

w(t, x, y) and φ(t, x, y) are real functions and δ, n,m1,m2, λ, χ, γ are real constants.

The authors of [5] showed that if the parameters are related by

n = 1− λ = m1 −m2, (1.5)

then (1.4) can be reduced to the standard DS equations (in general not integrable)

by a non-invertible point transformation of dependent variables. Therefore,

they called (1.4) the GDS equations. Below, we justify this naming from a

group-theoretical point of view. Also, in [5] some travelling type solutions of

(1.4) in terms of elementary and elliptic functions are obtained. Based on some

physically obvious Noetherian symmetries (time-space translations and constant

change of phase), global existence and nonexistence results are given in [6]. In

another recent work [7], under some constraints on the physical parameters, the

so-called hyperbolic-elliptic-elliptic case of the system (1.4) (In [7] the system is

classified into different types according to the signs of parameters (δ,m1,m2, λ))

was shown to admit singular solutions that blow up in a finite time. To do this,

inspired by the (pseudo) conformal invariance of DS system, they used the fact

that time-dependent SL(2,R) invariant solutions can be generated from stationary

radial solutions for an appropriate choice of coefficients.

In this thesis work, we show the detailed results for the DS symmetry algebra,

the group transformations of DS and symmetry reductions for the DS equations

in [8]. We compute the Lie symmetry algebra of the GDS and use this symmetry

algebra to find new solutions for GDS system.

In second section, definitions and theorems about symmetry group of differential

equations are given [9-12].

In third section, Lie symmetry algebra and group of point transformations of DS

equations and symmetry reductions for the DS equations are given[5].

In fourth section, we compute Lie symmetry algebra of GDS equations and show

that it is isomorphic to DS equations with some conditions on parameters.
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2. GROUP-THEORETICAL APPROACH TO DIFFERENTIAL

EQUATIONS

In this section we present a brief discussion for group-theoretical investigation of

differential equations. In this approach there exist two main steps: First is to

find the group of symmetry transformations, i.e. the transformations depending

on some parameter(s) which leave the equation in study invariant. It is possible

to classify differential equations through symmetry groups. What we are going

to make use of is the second step we introduce: Once we have an equation with

a symmetry algebra, it is possible reduce its order in case of an ODE, or it is

possible to reduce the number of independent variables in case of a PDE.

2.1 Symmetry Groups of Differential Equations

We start with some basic definitions.

Definition 2.1. An r-parameter Lie group is a group G which also carries

the structure of an r-dimensional smooth manifold in such a what that both the

group operation,

m : G×G −→ G, m(g, h) = g · h, g, h ∈ G

and the inversion

i : G −→ G, i(g) = g−1, g ∈ G

are smooth maps between manifolds.

Often we are not interested in the full Lie group, but only in group elements close

to the identity element. In this case we can dispense with the abstract manifold

theory and define a local Lie group solely in terms of local coordinate expressions

for the group operations.

Definition 2.2. An r-parameter local Lie group consists of connected open

subsets V0 ⊂ V ⊂ Rr containing the origin 0, and smooth maps

m : V × V −→ Rr
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defining the group operation, and

i : V0 −→ V

defining the group inversion, with the following properties.

(a)Associativity. x, y, z,m(x, y),m(y, z) ∈ V ⇒ m(x,m(y, z)) = m(m(x, y), z).

(b)Identity Element. ∀x ∈ V, m(0, x) = x = m(x, 0).

(c)Inverses. ∀x ∈ V0, ∃i(x) : m(x, i(x)) = 0 = m(i(x), x).

Definition 2.3. Let M be a smooth manifold. A local group of

transformations acting on M is given by a (local) Lie group G, an open subset

U , with

{e} ×M ⊂ U ⊂ G×M

which is the domain of definition of the group action, and a smooth map

Ψ : U −→ M with the following properties:

(a) g · (h · x) = (g · h) · x, g, h ∈ G, x ∈ M ,

(b) e · x = x ∀x ∈ M,

(c) g−1 · (g · x) = x, g ∈ G, x ∈ M.

Definition 2.4. Symmetry Group of a Differential Equation. Let ∆

be a system of differential equations. A symmetry group of the system ∆ is

a local group of transformations G acting on an open subset M of the space

of independent and dependent variables for the system with the property that

whenever u = f(x) is a solution of ∆, and whenever g · f is defined for g ∈ G,

then ũ = g · f(x) is also a solution of the system.

Let us consider a system of differential equations

Ei(x, u, u(1), . . . , u(n)) = 0

x ∈ Rp, u ∈ Rq, i = 1, . . . , m, p, q, m, n ∈ N
(2.1)

where u(n), denotes all partial derivatives of order k of all components uα of u.

We now wish to find all local point transformations of the form

x̃ = Λg(x, u), ũ = Ωg(x, u) (2.2)
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such that a solution u = f(x) of the system (2.2) is transformed into a solution

ũ = f̃(x̃). The transformations are called ”point” ones because the new variables

(x̃, ũ) depend only on the old ones (x, u), i.e., on a point in the space

M ⊂ X × U, X ∼ Rp, U ∼ Rq

of independent and dependent variables. More general transformations, in which

depend also on derivatives like ux, uxx or integral D−1u will not be considered.

The subscript g in equation (2.2) denotes a finite, or infinite number of group

parameters and the transformations form a local Lie group. The word ”local” in

this context means that the transformations need only be defined and invertible

for g close to the identity element of the group and for (x, u) close to the origin

in X × U space.

In principle, one could use equation (2.2) directly to calculate derivatives like ũx̃.

Substituting back into equation (2.1), one would get differential equations for the

functions Λ and Ω. This approach is not fruitful; the equations determining Λ

and Ω are at least as difficult to solve as the original system. Lie’s outstanding

contribution was that he showed that nearly all the relevant information can be

obtained using an infinitesimal approach. Instead of equation (2.2) we consider

transformation

x̃i = xi + εξi(x, u), ũα = uα + εφα(x, u) (2.3)

and obtain equations for ξi and φα, after putting (2.3) in (2.1) and ignoring all

terms of order εp, p ≥ 2. This provides us with a system of linear equations.

Solving these determining equations we obtain the Lie algebra L of the symmetry

group G, realized by vector fields

X̂ =

p∑
i=1

ξi(x, u)∂xi
+

q∑
α=1

φα(x, u)∂uα (2.4)

Vector field X̂ contains arbitrary constants. Hence X̂ can be written as a linear

combination of vector fields Ŷ . Where

Ŷ =

p∑
i=1

Ξi(x, u)∂xi
+

q∑
α=1

Φα(x, u)∂uα (2.5)

Vector fields Ŷ constitute a basis for the Lie algebra L.

Definition 2.5. A Lie algebra is a vector space L together with a bilinear

operation

[·, ·] : L× L → L
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called the ”Lie bracket” for L, satisfying the axioms

(a)Bilinearity. [cv + c′v′,w] = c[v,w] + c′[v′,w], [v, cw + c′w′] = c[v,w] +

c′[v,w′],

(b)Skew-Symmetry. [v,w] = −[w,v],

(c)Jacobi Identity. [u, [v,w]] + [w, [u,v]] + [v, [w,u]] = 0,

for every u,v,v′,w,w′ ∈ L and ∀c, c′ ∈ R.

Each vector field Ŷ generates a one-parameter subgroup of the symmetry group,

obtained by integrating the vector field

dx̃i

dε
= Ξi(x̃, ũ), x̃i |ε=0= xi,

dũα

dε
= Φα(x̃, ũ), ũα |ε=0= uα. (2.6)

The general group transformation is obtained by composing the individual

one-parameter transformations.

We shall present an algorithm for calculating the symmetry algebra, i.e., the vector

fields Ŷ of equation (2.4) that generate the symmetry group G. The basic tool is

”prolongation theory”.

The symmetry group G acts on the manifold M

G : {x, u} ∈ M −→ {x̃, ũ} ∈ M. (2.7)

Thus, it takes functions to function

u = f(x) −→ ũ = f̃(x̃) = g · f(x). (2.8)

The n.th prolongation of G also takes derivatives of orders up to n into derivatives:

pr(n)G : {x, f(x), f (1)(x), . . . , f (n)(x)} −→ {x̃, f̃(x̃), f̃ (1)(x̃), . . . , f̃ (n)(x̃)}. (2.9)

The vector field X̂ acts on functions of the variables x and u. Its n.th prolongation

will act on functions of x, u, ux, . . . , unx. If we integrate pr(n)X̂ we obtain the

prolongation of the group action pr(n)G. The form of the prolongation of the

vector field X̂ is

pr(n) X̂ = X̂ +

q∑
α=1

n∑

k=1

∑
J

φJ
α

∂

∂uα
J

. (2.10)
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Here J is a set of indices:

J ≡ J(k) = (j1, . . . , jk), 1 ≤ jk ≤ p, k = j1 + · · ·+ jk

The coefficients φJ
α are expressed in terms of ξ, φ and their derivatives up to k.

The formulas for these can be found in [10]. We find the recursion relations more

useful and we shall reproduce those.

For the first prolongation we have

pr(1) X̂ = X̂ +

q∑
α=1

p∑
i=1

φi
α(x, u, ux)

∂

∂uα
xi

, (2.11a)

φi
α = Dxi

φα −
p∑

j=1

(
Dxi

ξj
)
uα,xj

, (2.11b)

where Dxi
is the total derivative operator:

Dxi
=

∂

∂xi

+

q∑
α=1

∂uα

∂xi

∂

∂uα

+

q∑
α=1

p∑
j=1

∂uα,xj

∂xi

∂

∂uα,xj

+ · · · . (2.12)

If the n.th prolongation is known, the (n + 1).th is given by

pr(n+1) X̂ = pr(n) X̂ +

q∑
α=1

p∑
i1,...,in+1=1

φi1...in+1
α

∂

∂uα,xi1
,...,xin+1

, (2.13a)

φi1...in+1
α = Dxin+1

φx1,...,in
α −

p∑
j=1

(
Dxin+1

ξj
)

uα,xi1
...xinxj

. (2.13b)

Theorem 2.1. Invariance of Differential Equations . Suppose

Ei(x, u, u(1), . . . , u(n)) = 0, i = 1, . . . ,m

is a system of differential equations defined over M ⊂ X×U . If G is a local group

of transformations acting on M , and

pr(n) X
(
Ei

) |Ek=0= 0 , i, k = 1, . . . ,m

for every infinitesimal generator X of G, then G is a symmetry group of the

system. The algorithm for determining the symmetry algebra of the system (2.1)

can now be stated quite simply. The n. prolongation of the vector field must

annihilate the equations on their solution set:

pr(n) X̂
(
Ei

) |Ek=0= 0 i, k = 1, . . . , m (2.14)
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The functions to be determined from equation (2.14) are the coefficients ξi and

φα. They depend only x and u. Equation (2.14) will also involve the derivatives

x, u, ux, uxx, . . . , unx explicitly. Hence, the coefficients multiplying each linearly

independent expression in the derivatives must vanish identically. This provides

us with a system of linear differential equations of order n. (or less), the so-called

”determining equations” for the functions ξi and φα. These equations are linear,

even if the system is nonlinear. If the algorithm is summed up:

(i) Calculate the n.th prolongation (2.10) of the vector field (2.4). This does

not depend on differential equation that is investigated, only on the number of

independent and dependent variables of equation.

(ii) Solve system (2.1) for m of the highest derivatives in the system.

(iii) Implement equation (2.14) and substitute for all expressions calculated in

(ii).

(iv) Identify all linearly independent expressions in the remaining derivatives and

set the coefficients of these expressions equal to zero. This gives us determining

equations.

(v) Solve the determining equations and obtain ξi(x, u) and φα(x, u).

The system of determining equations is nearly overdetermined. When the system

is solved the following possibilities occur:

(a) The only solution is the trivial one: ξi = φα = 0. Here, no nontrivial symmetry

group of (2.1) exists and the method is not applicable.

(b) The general solution of the determining equations depends on N < ∞
significant integration constants. The dimension of the symmetry algebra is equal

to N < ∞.

(c) The general solution depends on arbitrary functions of some variables. The

symmetry group is then infinite dimensional. That occurs for all linear PDEs but

also for integrable nonlinear equations in 3 dimensions.

2.2 Symmetry Reduction

The most important application of the symmetry group G of Lie point

transformations, leaving a system of PDEs invariant, is to perform symmetry
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reduction. In the case of PDEs that means a reduction of the number of

independent variables in the equation. In particular, it may be possible and

desirable to an ODE or even to an algebraic equation. The basic idea of symmetry

reduction is to take some subgroup G0 of the symmetry group G and look for

solutions that are invariant under G0. Requiring invariance is equivalent to

imposing additional first-order linear equations on solutions. These can be solved

and the result can be put into the original equations. This provides the reduced

system to be solved.

The procedure for performing symmetry reduction can be outlined as an

algorithm, consisting of the following steps.

(i) Find The symmetry group G, leaving the considered system (2.1) invariant,

and obtain the corresponding Lie algebra L of vector fields (2.4).

(ii) Classify the subalgebras of L into conjugacy classes under the action of the

Lie group G. Each subgroup G0 ⊂ G, corresponding to a different conjugacy class

of subalgebras L0, will give a different type of invariant solution.

(iii) Consider a subalgebra L0 ⊂ L, representing a class of subalgebras. The

group G0 acts on the space M ∼ X ×U of dependent and independent variables.

Find the invariants of this action, i.e., the functionally independent solutions

ϕj = ϕj(x, u), j = 1, . . . , N (2.15)

of the set of first-order linear PDEs

XiF (x, u) = 0, i = 1, . . . , n0 (2.16)

where Xi form a basis of the Lie algebra L0. The number of invariants N is equal

to the codimension of the generic orbits of G0 in M :

N = p + q − d

where d is the dimension of these orbits.

After solving the system (2.15), the following cases can arise.

(A) Among the invariants ϕj(x, u) it is possible to choose q functions ϕj(x, u)

that provide an invertible mapping to the dependent variables. The Jacobian

determinant then satisfies

J ≡
(

∂(ϕ̂1, . . . , ϕ̂q)

∂(u1, . . . , uq)

)
, det J 6= 0. (2.17)
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The remaining k = N − q invariants can be chosen to depend only on the

independent variables and we denote them

ζ1(x), . . . , ζk(x), k < p (2.18)

Now let us restrict to the solution set of equation (2.1). We consider uj as functions

of x and this can be imposed by setting

ϕ̂j = Fj(ζ1, . . . , ζk), (2.19)

Using condition (2.17) we solve (2.19) for the dependent variables and obtain

uj(x) = Uj(x, Fj(ζ)). (2.20)

Upon substitution into equation (2.1) we obtain a set of equations involving only

the functions Fj (j = 1, . . . , q) and the variables ζa (a = 1, . . . , k). Since the

original equation (2.1) is G-invariant and equation (2.16) provides a complete set

of G0-invariants, the noninvariant quantities x in (2.20) must drop out. Since we

have k < p, we have reduced the number of independent variables. If the reduced

equations are solved for Fj(ζ), substitution into (2.20) provides solutions of the

original system.

(B) Equation (2.17) is satisfied, but the complementary variables depend upon u.

We proceed as above, however substitution of (2.20) into (2.1) is done as below

uj(x) = Uj(x, Fj(ζ)), ζ = ζ(x, u) (2.21)

(2.21) yields implicit solutions. In some cases this can be solved and we obtain

further explicit solutions.

(iv) Solve the reduced equations. The reduced equation may be integrable, even

if the original one was not. Thus, it may be transformable into a linear equation,

or solvable by inverse spectral transform techniques. If necessary, group theory

can be applied once more to the reduced equation. Painlevé analysis, an analysis

of the singularity structure of the solutions of the reduced PDE, or ODE is a

fruitful approach.
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3. THE SYMMETRY GROUP OF THE DS EQUATIONS AND

STRUCTURE OF ITS LIE ALGEBRA

3.1 The Davey-Stewartson Symmetry Algebra

Firstly we will compute symmetry algebra of DS equations. We rewrite the

corresponding system (1.3) in a real form by separating ψ = u + iv into real

and imaginary parts,

∆1 = ut + vxx + ε1vyy − ε2v(u2 + v2)− vw = 0,

∆2 = −vt + uxx + ε1uyy − ε2u(u2 + v2)− uw = 0,

∆3 = wxx + δ1wyy − 2δ2(u
2
y + uuyy + v2

y + vvyy) = 0.

(3.1)

(3.1) is a system of three real partial differential equations. We apply the standard

infinitesimal procedure [9] to find the symmetry algebra L and hence the symmetry

group G of (3.1). We write the DS equations as a system ∆i(t, x, y, u, v, w, φ) = 0,

i = 1, 2, 3. A general element of the algebra is represented by a vector field

V = τ∂t + ξ∂x + η∂y + ϕ1∂u + ϕ2∂v + ϕ3∂w, (3.2)

where the coefficients τ, ξ, η, ϕi, i = 1, 2, 3 are functions of t, x, y, u, v, w.

According to the general theory for symmetries of differential equations, to find

these functions we prolong the vector field (3.2) to second order derivatives and

require that the second prolonged vector field annihilates ∆i on the solution

manifold of the system, namely

pr(2)V(∆i(t, x, y, u, v, w, φ))
∣∣∣
∆i=0

= 0, i = 1, 2, 3, (3.3)

where pr(2)V is the second prolongation of the vector field V. This condition

provides us with a quite complicated system of determining equations (a system

of linear partial differential equations) for the coefficients. This step is entirely

algorithmic and is implemented on several computer algebra packages like

REDUCE, MATHEMATICA, MAPLE (See [13] for a survey of symbolic softwares
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for symmetry). We find the determining equations by using MATHEMATICA

ηx = 0, τx = 0, ξy = 0, τy = 0,

ξu = 0, ηu = 0, τu = 0, (ϕ3)u = 0,

ξv = 0, ηv = 0, τv = 0, (ϕ3)v = 0,

ξw = 0, ηw = 0, τw = 0, (ϕ1)w = 0, (ϕ2)w = 0 (3.4a)

(ϕ1)uu = 0, (ϕ1)uv = 0, (ϕ1)vv = 0,

(ϕ2)uu = 0, (ϕ2)uv = 0, (ϕ2)vv = 0, (ϕ3)ww = 0,

−ξxx + 2(ϕ1)xu = 0, −ξxx + 2(ϕ2)xv = 0, −ξxx + 2(ϕ3)xw = 0, (3.4b)

−2uδ2(ϕ1)yy − 2vδ2(ϕ2)yy + (ϕ3)xx + δ(ϕ3)yy = 0, (3.4c)

2uvε2ϕ1 + wϕ2 + u2ε2ϕ2 + 3v2ε2ϕ2 + vϕ3 + vwτt + u2vε2τt + v3ε2τt

−(ϕ1)t − vw(ϕ1)u − u2vε2(ϕ1)u − v3ε2(ϕ1)u (3.4d)

+uw(ϕ1)v + u3ε2(ϕ1)v + uv2(ϕ1)v − (ϕ2)xx − ε1(ϕ2)yy = 0,

−wϕ1 − 3u2ε2ϕ1 − v2ε2ϕ1 − 2uvε2ϕ2 − uϕ3 − uwτt − u3ε2τt − uv2ε2τt

−(ϕ2)t − vw(ϕ1)u − u2vε2(ϕ1)u − v3ε2(ϕ1)u (3.4e)

+uw(ϕ1)v + u3ε2(ϕ1)v + uv2(ϕ1)v + (ϕ1)xx − ε1(ϕ1)yy = 0,

ξt − 2(ϕ2)xu = 0, ξt + 2(ϕ1)xv = 0, ξt − 2(ϕ2)xu = 0, (3.4f)

−ξx + ηy = 0 (3.4g)

2ξx − τt − (ϕ1)u + (ϕ2)v = 0,

−2ξx + τt − (ϕ1)u + (ϕ2)v = 0, (3.4h)

2(ϕ2)y − vηyy + 2u(ϕ1)yv + 2v(ϕ2)yv = 0,

2(ϕ1)y − uηyy + 2u(ϕ1)yu + 2v(ϕ2)yu = 0, (3.4i)

−ηyy + 2(ϕ1)yu = 0, −ηyy + 2(ϕ2)yv = 0, −ηyy + 2(ϕ3)yw = 0, (3.4j)

ηt − 2ε1(ϕ2)yu = 0, ηt + 2ε1(ϕ1)yv = 0, (3.4k)

2ηy − τt − (ϕ1)u + (ϕ2)v = 0, −2ηy + τt − (ϕ1)u + (ϕ2)v = 0, (3.4l)

ϕ1 + u(ϕ1)u + v(ϕ2)u − u(ϕ3)w = 0,

ϕ2 + u(ϕ1)v + v(ϕ2)v − v(ϕ3)w = 0, (3.4m)

(ϕ1)v + (ϕ2)u = 0, (ϕ3)w − 2(ϕ1)u = 0, (ϕ3)w − 2(ϕ2)v = 0. (3.4n)

When we solve the determining equations in (3.4), we will find the general element

(3.2). Using (3.4a), we obtain

ξ(x, y, t) = ξ(x, t), η(x, y, t) = η(x, t), τ(x, y, t) = f(t),

ϕ1 = C1(x, y, t)v + C2(x, y, t)u + C3(x, y, t),

ϕ2 = C4(x, y, t)v + C5(x, y, t)u + C6(x, y, t),

ϕ3 = C7(x, y, t)w + C8(x, y, t).

(3.5)
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Using (3.4n), we obtain

C1 + C5 = 0 ⇒ C5 = −C1,

C7 − 2C2 = 0 ⇒ C7 = 2C2,

C7 − 2C4 = 0 ⇒ C7 = 2C4,

(3.6)

From (3.4m) and (3.6) , we get

vC1 + 2uC2 + C3 + vC5 − uC7 = 0 ⇒ C3 = 0,

2vC4 + uC5 + C6 + uC1 − vC7 = 0 ⇒ C6 = 0.
(3.7)

It is obtained from (3.4b) and (3.4j)

(ϕ1)xu = (ϕ2)xv = (ϕ3)xw ⇒ (C2)x = (C4)x = (C7)x,

(ϕ1)yu = (ϕ2)yv = (ϕ3)yw ⇒ (C2)y = (C4)y = (C7)y,
(3.8)

Then from (3.7) and (3.8) it is easily seen that

C2(x, y, t) = C2(t). (3.9)

Substituting (3.6) and (3.9) into (3.5), we obtain

ξ(x, y, t) = ξ(x, t), η(x, y, t) = η(x, t), τ(x, y, t) = f(t),

ϕ1 = C1(x, y, t)v + C2(t)u,

ϕ2 = C2(t)v − C1(x, y, t)u,

ϕ3 = 2C2(t)w + C8(x, y, t).

(3.10)

From (3.4h) and (3.4l), it is obtained that

2ξx − τt − (ϕ1)u + (ϕ2)v = 2ξx − f ′(t)− C2 + C2 = 0 ⇒ ξ =
f ′(t)

2
x + g(t),

2ηy − τt − (ϕ1)u + (ϕ2)v = 2ηy − f ′(t)− C2 + C2 = 0 ⇒ η =
f ′(t)

2
y + h(t),

(3.11)

where g(t) and h(t) are arbitrary functions. Solving (3.4f), we get

ξt − 2(ϕ2)xu = 0 ⇒ (C1)x = −f ′′(t)
4

x− g′(t)
2

. (3.12)

When we differentiate C1 with respect to x in (3.12), it is found that

C1(x, y, t) = −f ′′(t)
8

x2 − g′(t)
2

x + C9(y, t). (3.13)

It is obtained by solving (3.4k) {remember that (ε1)
2 = 1}

(ϕ2)yu = (C1)y = (C9)y =
1

2ε1

ηt = −ε1f
′′(t)
4

y − ε1h
′(t)
2

. (3.14)
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When we differentiate C9 with respect to y in (3.14), it is found that

C9(y, t) = −ε1f
′′(t)
8

y2 − ε1h
′(t)
2

y + m(t), (3.15)

where m(t) is an arbitrary function. If we solve (3.4d) by using

C1(x, y, t) = −f ′′(t)
8

(x2 + ε1y
2)− g′(t)

2
x− h′(t)

2
y + m(t),

we obtain

[ε2f
′(t)− 2ε2C2(t)]v

3 + [ε2f
′(t)− 2ε2C2(t)]u

2v + [C8 + (C1)t]v

+ [C ′
2(t)− f ′′(t)/2)]u + [f ′(t)− 2C2(t)]vw = 0.

(3.16)

The all coefficients in (3.16) must be equal to zero. So we find that

C2(t) =
f ′(t)

2
, C8 = −f ′′′(t)

8
(x2 + ε1y

2)− g′′(t)
2

x− h′′(t)
2

y + m′(t). (3.17)

Then the coefficients of the general element (3.2) are

ξ =
f ′(t)

2
x + g(t),

η =
f ′(t)

2
y + h(t),

τ = f(t),

ϕ1 = [−f ′′(t)
8

(x2 + ε1y
2)− g′(t)

2
x− h′(t)

2
y + m(t)]v + (

f ′(t)
2

)u,

ϕ2 = (
f ′(t)

2
)v − [−f ′′(t)

8
(x2 + ε1y

2)− g′(t)
2

x− h′(t)
2

y + m(t)]u,

ϕ3 = f ′(t)w − f ′′′(t)
8

(x2 + ε1y
2)− g′′(t)

2
x− h′′(t)

2
y + m′(t).

(3.18)

Substituting (3.18) in (3.4c), we obtain

[
uvδ2ε1

2
− uvδ2ε1

2
]f ′′(t)− 1

4
[δ1ε1 + 1]f ′′′(t) = 0 (3.19)

Using (3.19) it is seen that f(t) is arbitrary if

δ1 = −ε1 = ±1, (3.20)

otherwise f(t) = c2t
2 + c1t + c0.

The functions g(t), h(t), and m(t) are arbitrary functions of class C∞(I), I ⊆ R.

The general element can be written as

V = T (f) + X(g) + Y (h) + W (m), (3.21)
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where

X(f) = f(t)∂t +
1

2
f ′(t)(x∂x + y∂y − u∂u − v∂v − 2w∂w)

− (x2 + ε1y
2)

8
[f ′′(t)(v∂u − u∂v) + f ′′′(t)∂w],

Y (g) = g(t)∂x − x

2
[g′(t)(v∂u − u∂v) + g′′(t)∂w],

Z(h) = h(t)∂y − ε1y

2
[h′(t)(v∂u − u∂v) + h′′(t)∂w)],

W (m) = m(t)(v∂u − u∂v) + m′(t)∂w.

(3.22)

The DS equations have been shown to be integrable precisely in the case when

f(t) is allowed to be arbitrary. We shall mainly concentrate on this case. The

commutation relations for the DS algebra (3.21), (3.22) are easy to obtain, namely

[X(f1), X(f2)] = X(f1f
′
2 − f ′1f2)

[X(f), Y (g)] = Y (fg′ − 1

2
f ′g)

[X(f), Z(h)] = Z(fh′ − 1

2
f ′h)

[X(f),W (m)] = W (fm′)

[Y (g1), Y (g2)] = −1

2
W (g1g

′
2 − g′1g2)

[Z(h1), Z(h2)] = −ε1

2
W (h1h

′
2 − h′1h2)

[Y (g), Z(h)] = [Y (g),W (m)] = [Z(h), W (m)] = [W (m1),W (m2)] = 0.

(3.23)

We see that the DS Lie algebra L allows a Levi decomposition

L = S ⊂+N, (3.24)

where S = {T (f)} is a simple infinite dimensional Lie algebra and N =

{X(g), Y (h),W (m)} is a nilpotent ideal (nilradical). Here, ⊂+ denotes the

semi-direct sum. The DS equations are also invariant under a group of discrete

transformations generated by

t → t, x → −x, y → y, ψ → ψ, w → w,

t → t, x → x, y → −y, ψ → ψ, w → w,

t → t, x → x, y → y, ψ → −ψ, w → w,

t → −t, x → x, y → y, ψ → ψ∗, w → w.

(3.25)

The obvious physical symmetries Lp of the DS equations are obtained by

restricting all the functions f , g, h and m to be first order polynomials. Indeed,
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we have

P0 = X(1) = ∂t, P1 = Y (1) = ∂x, P2 = Z(1) = ∂y,

R0 = W (1) = v∂u − u∂v,

D = X(t) = t∂t +
1

2
(x∂x + y∂y − u∂u − v∂v − 2w∂w),

B1 = Y (t) = t∂x − x

2
(v∂u − u∂v), B2 = Z(t) = t∂y − ε1y

2
(v∂u − u∂v),

R1 = W (t) = t(v∂u − u∂v) + R0.

(3.26)

We see that P0, P1, P2 generate translations, D dilations, B1 and B2 Galilei boosts

in the x and y directions, respectively. Finally, R0 corresponds to a rotation in

the (u, v) plane, i.e., a constant change of phase of ψ and R1 to a change of phase

of ψ, linear in t, accompanied by constant shift in w.

3.2 The Group Transformations for the Davey-Stewartson Equations

The elements of the connected part of the symmetry group of the DS equations

are obtained by integrating the general element of the DS Lie algebra (3.3). We

consider separately the cases f(t) = 0 and f(t) 6= 0. Note that sometimes it is

more convenient to use the polar decomposition u + iv = Reiσ so that in (3.22)

we can write

u∂u + v∂v = R∂R, −(v∂u − u∂v) = ∂σ.

Now we will integrate the equations

dx̃

dλ
=

f(t̃)

2
x̃ + g(t̃), (3.27a)

dỹ

dλ
=

f(t̃)

2
ỹ + h(t̃), (3.27b)

dt̃

dλ
= f(t̃), (3.27c)

dR̃

dλ
= −f ′(t̃)

2
R̃, (3.27d)

dσ̃

dλ
=

(x̃2 + ε1ỹ
2)

8
f ′′(t̃) +

x̃

2
g′(t̃) +

ε1ỹ

2
h′(t̃)−m(t̃), (3.27e)

dw̃

dλ
= −f ′(t̃)w̃ − (x̃2 + ε1ỹ

2)

8
f ′′′(t̃)− x̃

2
g′′(t̃)− ε1ỹ

2
h′′(t̃) + m′(t̃) (3.27f)

with boundary conditions x̃(0) = x, ỹ(0) = y, t̃(0) = t, R̃(0) = R, σ̃(0) = σ and

w̃(0) = w.
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(i) Case f(t) = 0,

It is easily seen that

t̃(λ) = t, x̃(λ) = λg(t) + x, ỹ(λ) = λh(t) + y. (3.28)

We will find Ψ̃ = R̃ exp[iσ̃] by integrating (3.27d) and (3.27e). It is obvious that

R̃ = R from (3.27d).

Integrating (3.27e)and by using (3.28) we get

σ̃ =
λ

2
g′(t̃)(x̃− λ

2
g(t̃)) +

ε1λ

2
h′(t̃)(ỹ − λ

2
h(t̃))− λm(t̃) + c. (3.29)

Using initial condition σ̃ = σ when λ = 0 is, we obtain

c = σ − λ

2
g′(t)(x− λ

2
g(t))− ε1λ

2
h′(t)(y − λ

2
h(t)) + λm(t). (3.30)

Substituting (3.30) into (3.29), it is obtained

Ψ̃(x̃, ỹ, t̃) = Ψ(x, y, t) exp i

{
λ

2
g′(t̃)(x̃− λ

2
g(t̃)) +

ε1λ

2
h′(t̃)(ỹ − λ

2
h(t̃))− λm(t̃)

}
.

(3.31)

When we integrate (3.27e) and by using (3.28), we get

w̃(x̃, ỹ, t̃) = w(x, y, t)− λ

2
g′′(t̃)

(
x̃− λ

2
g(t̃)

)
− ε1λ

2
h′′(t̃)

(
ỹ − λ

2
h(t̃)

)
+ λm(t̃).

(3.32)

(ii) Case f(t) 6= 0,

If we integrate (3.27d) with boundary condition, we obtain dt̃
f(t̃)

= λ+
∫

dt
f(t)

. If we

assume that ∫
dt

f(t)
= φ(t),

we obtain φ(t̃) = λ + φ(t) and so it is seen that t̃ = φ−1(λ + φ(t)). When we

integrate φ(t̃) with respect to λ, we get dλ = dt̃
f(t̃)

.

(3.27a) is a first order linear differential equation. We solve it to find

x̃ = f 1/2(t̃)

(∫
f−3/2(t̃)g(t̃)dt̃ + c

)
.

With the initial conditions, we have

x̃ =
f 1/2(t̃)

f 1/2(t)
[x + G(t, t̃)], (3.33)
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where

G(t, t̃) = f 1/2(t)

∫ t̃

t

f−3/2(s)g(s)ds.

(3.27b) is solved like (3.27a) and it is found that

ỹ =
f 1/2(t̃)

f 1/2(t)
[y + H(t, t̃)], (3.34)

where

H(t, t̃) = f 1/2(t)

∫ t̃

t

f−3/2(s)h(s)ds.

If we solve (3.27d), we see that

R̃ = R[
f(t)

f(t̃)
]1/2. (3.35)

When we integrate (3.27e), we obtain

σ̃ =

∫ (
(x̃2 + ε1ỹ

2)

8f(t̃)
f ′′(t̃) +

x̃

2f(t̃)
g′(t̃) +

ε1ỹ

2f(t̃)
h′(t̃)− m(t̃)

f(t̃)

)
dt̃ + c. (3.36)

For the first three integrals of (3.36), we let

(x̃2 + ε1ỹ
2)

f(t̃)
= u, f ′′(t̃)dt̃ = dv,

x̃

f(t̃)
= u, g′(t̃)dt̃ = dv,

ỹ

f(t̃)
= u, h′(t̃)dt̃ = dv,

(3.37)

respectively. The derivatives of x̃ and ỹ according to t̃ can easily be computed as

x̃′ =
dx̃

dt̃
=

(
f ′(t̃)
2f(t̃)

x̃ +
g(t̃)

f(t̃)

)
, ỹ′ =

dỹ

dt̃
=

(
f ′(t̃)
2f(t̃)

ỹ +
h(t̃)

f(t̃)

)
. (3.38)

By using integration by parts for the integrals in (3.36), we obtain

σ̃ =
1

8

f ′(t̃)
f(t̃)

(x̃2 + ε1ỹ
2) +

1

2

g(t̃)

f(t̃)
x̃ +

ε1

2

h(t̃)

f(t̃)
ỹ − 1

2

∫
g2(t̃) + h2(t̃) + 2m(t̃)f(t̃)

f(t̃)
dt̃ + c.

(3.39)

Using σ̃ = σ when λ = 0 is, we find

σ̃ =
1

8

f ′(t̃)
f(t̃)

(x̃2 + ε1ỹ
2) +

1

2

g(t̃)

f(t̃)
x̃ +

ε1

2

h(t̃)

f(t̃)
ỹ − 1

2

∫
g2(t̃) + h2(t̃) + 2m(t̃)f(t̃)

f(t̃)
dt̃

−1

8

f ′(t)
f(t)

(x2 + ε1y
2) +

1

2

g(t)

f(t)
x +

ε1

2

h(t)

f(t)
y − 1

2

∫
g2(t) + h2(t) + 2m(t)f(t)

f(t)
dt + σ.

(3.40)
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It is easily calculated that

G(t̃, t) = −f 1/2(t̃)

f 1/2(t)
G(t, t̃), H(t̃, t) = −f 1/2(t̃)

f 1/2(t)
H(t, t̃),

G2(t̃, t) =
f(t̃)

f(t)
G2(t, t̃), H2(t̃, t) =

f(t̃)

f(t)
H2(t, t̃).

(3.41)

From (3.33) and (3.34), we see that

x =
f 1/2(t)

f 1/2(̃t)
(x̃ + G(t̃, t)) =

f 1/2(t)

f 1/2(̃t)

(
x̃− f 1/2(t̃)

f 1/2(t)
G(t, t̃)

)
,

y =
f 1/2(t)

f 1/2(̃t)
(ỹ + H(t̃, t)) =

f 1/2(t)

f 1/2(̃t)

(
ỹ − f 1/2(t̃)

f 1/2(t)
H(t, t̃)

)
.

(3.42)

Substituting (3.42) in (3.40), we get

ψ̃(x̃, ỹ, t̃) =[
f(t

f(t̃)
]1/2ψ(x, y, t) exp i(x̃2 + ε1ỹ

2)(
f ′(t̃)− f ′(t)

8f(t̃)
)

+ x̃
1

2f 1/2(t̃)f 1/2(t)

[
g(t̃)

[
f(t)

f(t̃)

]1/2

− g(t) +
1

2
f ′(t)G(t, t̃)

]

+ ỹ
ε1

2f 1/2(t̃)f 1/2(t)

[
h(t̃)

[
f(t)

f(t̃)

]1/2

− h(t) +
1

2
f ′(t)H(t, t̃)

]

+
1

2f(t)
[g(t)G(t, t̃) + h(t)H(t, t̃)]− f ′(t)

8f(t)
[G2(t, t̃) + H2(t, t̃)]

−
∫ t̃

t

g2(s) + h2(s) + 2m(s)f(s)

2f(s)
ds.

(3.43)

(3.27f) is again a linear first order differential equation, then we find that

integrating factor is

µ = exp(

∫
f ′(t̃)dλ) = exp(

∫
f ′(t̃)

dt̃

f(t̃)
) = f(t̃). (3.44)

By using (3.44), we obtain

w̃ =− 1

f(t̃)

∫
(x̃2 + ε1ỹ

2)

8
f ′′′(t̃)dt̃− 1

f(t̃)

∫
x̃

2
g′′(t̃)dt̃− 1

f(t̃)

∫
ε1ỹ

2
h′′(t̃)dt̃

+
m(t̃)

f(t̃)
+

c

f(t̃)
.

(3.45)

For the first three integral of (3.45), we let

x̃2 + ε1ỹ
2 = u, f ′′′(t̃)dt̃ = dv,

x̃ = u, g′′(t̃)dt̃ = dv,

ỹ = u, h′′(t̃)dt̃ = dv,

(3.46)
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respectively. By using integration by parts in (3.45), we get

w̃ = −f ′′(t̃)
8f(t̃)

(x̃2 + ε1ỹ
2)− 1

4f(t̃)

∫
g(t̃)f ′′(t̃)

f(t̃)
x̃dt̃− 1

4f(t̃)

∫
ε1h(t̃)f ′′(t̃)

f(t̃)
ỹdt̃

+
1

8f(t̃)

∫
x̃2 + ε1ỹ

2

f(t̃)
f ′(t̃)f ′′(t̃)dt̃− g′(t̃)

2f(t̃)
x̃− ε1h

′(t̃)
2f(t̃)

ỹ

+
1

4f(t̃)

∫
g′(t̃)f ′(t̃)

f(t̃)
x̃dt̃ +

1

2f(t̃)

∫
g′(t̃)g(t̃)

f(t̃)
dt̃ +

ε1

4f(t̃)

∫
h′(t̃)f ′(t̃)

f(t̃)
ỹdt̃

+
ε1

2f(t̃)

∫
h′(t̃)h(t̃)

f(t̃)
dt̃ +

m(t̃)

f(t̃)
+

c

f(t̃)
.

(3.47)

∫
x̃2 + ε1ỹ

2

f(t̃)
f ′(t̃)f ′′(t̃)dt̃ ⇒ x̃2 + ε1ỹ

2

f(t̃)
= u(t̃), f ′′(t̃)f ′(t̃)dt̃ = dv.

∫
g′(t̃)g(t̃)

f(t̃)
dt̃ ⇒ 1

f(t̃)
= u, g′(t̃)g(t̃)dt̃ = dv.

∫
h′(t̃)h(t̃)

f(t̃)
dt̃ ⇒ we let

1

f(t̃)
= u, h′(t̃)h(t̃)dt̃ = dv.

(3.48)

Applying the above substitution, we obtain

w̃ = −f ′′(t̃)
8f(t̃)

(x̃2 + ε1ỹ
2) +

1

4f(t̃)

∫
g(t̃)f ′′(t̃)

f(t̃)
x̃dt̃ +

1

4f(t̃)

∫
ε1h(t̃)f ′′(t̃)

f(t̃)
ỹdt̃

[f ′(t̃)]2

16f 2(t̃)
(x̃2 + ε1ỹ

2)− 1

8f(t̃)

∫
g(t̃)f ′(t̃)2

f 2(t̃)
x̃dt̃− 1

8f(t̃)

∫
h(t̃)f ′(t̃)2

f 2(t̃)
ỹdt̃

−g′(t̃)
2f(t̃)

x̃− ε1h
′(t̃)

2f(t̃)
ỹ +

1

4f(t̃)

∫
g′(t̃)f ′(t̃)

f(t̃)
x̃dt̃ +

ε1

4f(t̃)

∫
h′(t̃)f ′(t̃)

f(t̃)
ỹdt̃

g2(t̃)

4f 2(t̃)
+

1

4f(t̃)

∫
g2(t̃)f ′(t̃)

f 2(t̃)
dt̃ +

ε1h
2(t̃)

4f 2(t̃)
+

ε1

4f(t̃)

∫
h2(t̃)f ′(t̃)

f 2(t̃)
dt̃

+
m(t̃)

f(t̃)
+

c

f(t̃)
.

(3.49)

We rearrange (3.49) and we get

w̃ = (x̃2 + ε1ỹ
2)(

[f ′(t̃)]2

16f 2(t̃)
− f ′′(t̃)

8f(t̃)
)− g′(t̃)

2f(t̃)
x̃− ε1h

′(t̃)
2f(t̃)

ỹ +
g2(t̃)

4f 2(t̃)
+

ε1h
2(t̃)

4f 2(t̃)

+
1

4f(t̃)

∫
[
g(t̃)f ′′(t̃)

f(t̃)
x̃− g(t̃)f ′(t̃)2

2f 2(t̃)
x̃ +

g′(t̃)f ′(t̃)
f(t̃)

x̃ +
g2(t̃)f ′(t̃)

f 2(t̃)
]dt̃

+
ε1

4f(t̃)

∫
[
h(t̃)f ′′(t̃)

f(t̃)
ỹ − h(t̃)f ′(t̃)2

2f 2(t̃)
ỹ +

h′(t̃)f ′(t̃)
f(t̃)

ỹ +
h2(t̃)f ′(t̃)

f 2(t̃)
]dt̃

+
m(t̃)

f(t̃)
+

c

f(t̃)
.

(3.50)

It can be computed that

f ′(t̃)g(t̃)

f(t̃)
x̃ =

∫
[
g(t̃)f ′′(t̃)

f(t̃)
x̃− g(t̃)f ′(t̃)2

2f 2(t̃)
x̃ +

g′(t̃)f ′(t̃)
f(t̃)

x̃ +
g2(t̃)f ′(t̃)

f 2(t̃)
]dt̃,

f ′(t̃)h(t̃)

f(t̃)
ỹ =

∫
[
h(t̃)f ′′(t̃)

f(t̃)
ỹ − h(t̃)f ′(t̃)2

2f 2(t̃)
ỹ +

h′(t̃)f ′(t̃)
f(t̃)

ỹ +
h2(t̃)f ′(t̃)

f 2(t̃)
]dt̃.

(3.51)
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If we substitute (3.51) in (3.50), we obtain

w̃ =
(x̃2 + ε1ỹ

2)

8f 2(t̃)

(
[f ′(t̃)]2

2
− f ′′(t̃)f(t̃)

)
+

x̃

4f 2(t̃)
[f ′(t̃)g(t̃)− 2g′(t̃)f(t̃)]

+
ε1ỹ

4f 2(t̃)
[f ′(t̃)h(t̃)− 2h′(t̃)f(t̃)] +

g2(t̃)

4f 2(t̃)
+

ε1h
2(t̃)

4f 2(t̃)
+

m(t̃)

f(t̃)
+

c

f(t̃)
.

(3.52)

Using the initial conditions of (3.27f) we find that

c =wf(t) +
(x2 + ε1y

2)

8f(t)
[f ′′(t)− [f ′(t)]2

2
] +

x

4f 2(t)
[f ′(t)]g(t)− 2g′(t)f(t)]

+
ε1y

4f 2(t)
[f ′(t)]h(t)− 2h′(t)f(t)]− g2(t)

4f 2(t)
− ε1h

2(t)

4f 2(t)
−m′(t).

(3.53)

Substituting (3.42) and (3.53) in (3.52), we obtain

w̃(x̃, ỹ, t̃) =[f(t)/f(t̃)]w(x, y, t)

− 1

8f 2(t̃)
(x̃2 + ε1ỹ

2)

[
f ′′(t̃)f(t̃)− [f ′(t̃)]2

2
− f ′′(t)f(t) +

[f ′(t)]2

2

]

− 1

4f 1/2(t)f 3/2(t̃)
x̃([2g′(t̃)f(t̃)− f ′(t̃)g(t̃)]

[
f(t)

f(t̃)

]1/2

− [2g′(t)f(t)− f ′(t)g(t)] + [f ′′(t)f(t)− [f ′(t)]2

2
]G(t, t̃))

− ε1

4f 1/2(t)f 3/2(t̃)
ỹ([2h′(t̃)f(t̃)− f ′(t̃)h(t̃)]

[
f(t)

f(t̃)

]1/2

− [2h′(t)f(t)− f ′(t)h(t)] + [f ′′(t)f(t)− [f ′(t)]2

2
]H(t, t̃))

− 1

4f(t)f(t̃)
{[2g′(t)f(t)− f ′(t)g(t)]G(t, t̃)

+ ε1[2h
′(t)f(t)− f ′(t)h(t)]H(t, t̃)}

+
1

4f(t)f(t̃)
[f ′′(t)f(t)− [f ′(t)]2

2
][G2(t, t̃) + H2(t, t̃)]

+
g2(t̃) + ε1h

2(t̃) + 4m(t̃)f(t̃)

4f 2(t̃)
− g2(t) + ε1h

2(t) + 4m(t)f(t)

4f(t̃)f(t)
.

(3.54)

3.3 Symmetry Reduction for the Davey-Stewartson Equations

We shall now use the results of the previous sections to reduce the DS equations

to a system of equations involving two independent variables only. To do this we

make use of the one dimensional subalgebras of the DS algebra. Depending on

which of the functions g(t), h(t) and m(t) are nonzero, precisely six conjugacy

classes of one-dimensional subalgebras exist:

L1,1 = {X(1)}, La
1,2 = {Y (1) + aZ(1)}, L1,3(h) = {Y (1) + Z(h)},

L1,4 = {Z(1)}, L1,5 = {W (t)}, L1,6 = {W (1)}
(3.55)
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with a ≥ 0. The method is standard and quite simple. We consider an auxiliary

function F (x, y, t, u, v, w) and request that it be annihilated by the elements of

the one-dimensional subalgebra X:

XF = 0. (3.56)

(3.56) implies that F is a function of five variables only, namely the invariants of

the Lie group generated by X. Two invariants ξ and η can be chosen to depend on

x, y and t only, these are the new symmetry variables. The remaining invariants

yield the dependence of u, v and w on the symmetry variables.

We used one-dimensional subalgebras L1,1, La
1,2, L1,3(h) and L1,4 which

generate actions on the coordinate space (t, x, y) to reduce the DS equations to

integrable one in two variables. We shall perform the reduction using the standard

basis elements of (3.55).

The Algebra L1,1

The equation X(1)F (x, y, t, u, v, w) = ∂tF (x, y, t, u, v, w) = 0 tells us that the

invariants of exp X(1) are x,y,u,v and w. The reduction is hence obtained by

setting

Ψ(x, y, t) = φ(ξ, η), w(x, y, t) = Q(ξ, η), ξ = x, η = y. (3.57)

Substituting (3.57) into the DS equations (1.3), we obtain the reduced system

φξξ + ε1φηη = ε2|φ|2φ + φQ, (3.58a)

Qξξ + δ1Qηη = δ2(|φ|2)ηη. (3.58b)

Applying a general DS group transformation to a solution of (3.58a) and (3.58b)

we obtain a class of solutions of the DS equations, depending on four arbitrary

functions f(t), g(t), h(t) and m(t). Thus assuming f(t) 6= 0, we obtain

ξ = xf−1/2 −
∫ t

0

g(s)[f(s)]−3/2ds,

η = yf−1/2 −
∫ t

0

h(s)[f(s)]−3/2ds,

Ψ = φ(ξ, η)f−1/2 exp i

[
f ′

8f
(x2 + ε1y

2) +
1

2f
(xg + ε1yh)− 1

2

∫
ε1h

2 + g2 + 2mf

f 2
dt

]
,

w =
1

f
Q(ξ, η)− 1

8f 2
(ff ′′ − [f ′]2

2
)(x2 + ε1y

2)− x

4f 2
(2g′f − gf ′)− ε1y

4f 2
(2h′f − hf ′)

+
g2 + ε1h

2 + 4mf

4f 2
.

(3.59)
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Substituting (3.59) into the DS equations (1.3) we find that φ(ξ, η) and Q(ξ, η)

must satisfy (3.58a) and

8[Qξξ + δ1Qηη − δ2(|φ|2)ηη] = (δ1ε1 + 1)[2fftt − (ft)
2], (3.60)

which reduces to (3.58b) if δ1 = −ε1 or if f(t) = (a + bt)2.

The Algebra La
1,2

We have

[Y (1) + aZ(1)]F = [∂x + a∂y]F = 0. (3.61)

The characteristic system for (3.61) is

dx

1
=

dy

a
=

dt

0
=

du

0
=

dv

0
=

dw

0
. (3.62)

By solving (3.62) and remembering ψ = u + iv we obtain

ψ(x, y, t) = Ω(ξ, ζ), w(x, y, t) = Θ(ξ, ζ) , ξ = t, ζ = y − ax. (3.63)

By substituting into the DS equations we obtain the reduced system

iΩξ + (a2 + ε1)Ωζζ = ε2|Ω|2Ω + ΘΩ,

(a2 + ε1)Θζζ = δ2(|Ω|2)ζζ .
(3.64)

We solve the second equation choosing a2 6= −δ1:

Θ(ξ, ζ) =
δ2

(a2 + δ1)
|Ω|2 + α(ξ)ζ + β(ξ). (3.65)

where α(ξ) and β(ξ) are arbitrary functions. Expression (3.65) can be substituted

back into (3.64) and we obtain an equation for Ω(ξ, ζ) alone

iΩξ + (a2 + ε1)Ωζζ = (ε2 +
δ2

(a2 + δ1)
)|Ω|2Ω + [α(ξ)ζ + β(ξ)]Ω. (3.66)

(3.66) can be reduced to a NLS equation with variable coefficients. Substituting

Ω(ξ, ζ) = Kφ(ξ, η) exp i(ζF (ξ) + G(ξ)), ζ = y − ax, η = c1ζ + H(ξ),

in (3.65), we get

K exp i[ζF (ξ) + G(ξ)]{[−F ′(ξ)− α(ξ)]ζφ− [G′(ξ) + F 2(ξ)− β(ξ)]φ

+ iφξ + [iH ′(ξ) + 2ic1F (ξ)]φη + (a2 + δ1)c
2
1φηη}

= K exp i[ζF (ξ) + G(ξ)](ε2 +
δ2

a2 + δ1

)K2|φ|2φ.

(3.67)

23



If we normalize the coefficients of φηη, |φ|2φ in (3.67), we find

(a2 + δ1)c
2
1 = 1 ⇒ c1 = [ε3(a

2 + δ1)]
−1/2, ε3 = sgn(a2 + δ1),

(ε2 +
δ2

a2 + δ1

)K2 = 1 ⇒ K =
a2 + δ1

ε2(a2 + δ1) + δ2

ε4, ε4 = sgn(
a2 + δ1

ε2(a2 + δ1) + δ2

).

(3.68)

In (3.67), we choose the coefficients of φ and φη so as to be zero. Hence we get

−F ′(ξ)− α(ξ) = 0 ⇒ F (t) = −
∫

α(t)dt,

G′(ξ) + F 2(ξ)− β(ξ) = 0 ⇒ G(t) = −
∫

(a2 + δ1)F
2(t) + β(t)dt,

iH ′(ξ) + 2ic1F (ξ) = 0 ⇒ H(t) = −2[ε3(a
2 + δ1)]

−1/2

∫
F (t)dt. (3.69)

Then (3.66) is

ε3iφξ + φηη = ε3ε4|φ|2φ. (3.70)

By a rescaling of ξ, we see that (3.70) satisfies the NLS equation

iφξ + φηη = ε3ε4|φ|2φ.

The Algebra L1,3(h)

We have

[Y (1) + Z(h)F ] = {∂x + h∂y − (ε1/2)y[h′(v∂u − u∂v) + h′′∂w]}F = 0. (3.71)

The characteristic system for (3.71) is

dx

1
=

dy

h
=

dt

0
= − 2du

ε1yh′u
=

2dv

ε1yh′u
=
−2dw

ε1yh′′
. (3.72)

By solving (3.72)we obtain

Ψ = φ(ξ, η) exp i(
ε1h

′

4h
y2), ξ = t,

w = Θ(ξ, η)− ε1h
′′

4h
y2, η = y − h(t)x.

(3.73)

Substituting (3.73) in DS equations, we get

iφξ + (ε1 + h2)φηη +
ih′

h
ηφη +

ih′

2h
φ = ε2|φ|2φ + φΘ, (3.74a)

(h2 + δ1)Θηη − ε1δ1h
′′

2h
= δ2(|φ|2)ηη. (3.74b)

Solving (3.74b) and substituting into (3.74a), we find

iφξ + (ε1 + h2)φηη +
ih′

h
ηφη + {ih′

2h
− ε1δ1h

′′

4h(h2 + δ1)
η2 − α(t)η − β(t))}φ

= (ε2 +
δ2

h2 + δ1

)|φ|2φ.

(3.75)
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(3.75) can be reduced to a NLS equation with variable coefficients. To see this,

set

φ(ξ, η) = A(t)Ω(ξ, ζ) exp[i(η2H(t) + ηF (t) + G(t))],

ζ(ξ, η) = γ(t)η + K(t).
(3.76)

Then (3.75) becomes

iφξ = exp[i(η2H(t) + ηF (t) + G(t))]{iA′Ω + A[iΩξ + iγ′ηΩζ + iK ′Ωζ

− (η2H ′ + ηF ′ + G′)Ω]},
(ε1 + h2)φηη = exp[i(η2H(t) + ηF (t) + G(t))]A(ε1 + h2){2i(2ηH + F )γΩζ

− (2ηH + F )2Ω + γ2Ωζζ + 2iHΩ},
ih′

h
ηφη = exp[i(η2H(t) + ηF (t) + G(t))]A{ih′

h
ηγΩζ − h′

h
η(2ηH + F )Ω}

(3.77)

Substituting (3.77) in (3.75), we get

A{H ′ +
2h′

h
H + 4(ε1 + h2)H2 +

ε1δ1h
′′

4h(h2 + δ1)
}η2Ω

− A{F ′ +
h′

h
F + 4(ε1 + h2)HF + α}ηΩ

− A{G′ + (ε1 + h2)F 2 + β}Ω + {A′ + [
h′

2h
+ 2(ε1 + h2)H]A}iΩ

+ {γ′ + [
h′

h
+ 4(ε1 + h2)H]γ}ηΩζ + {K ′ + 2(ε1 + h2)F}Ωζ + (ε1 + h2)γ2Ωζζ

= A3(ε2 +
δ2

h2 + δ1

)|Ω|2Ω.

(3.78)

In (3.77) we choose the coefficients of Ω and Ωζ so as to be zero. Hence we get

H ′ + 4(ε1 + h2)H2 +
ε1δ1h

′′

4h(h2 + δ1)
+

2h′

h
H = 0,

F ′ + 4(ε1 + h2)HF +
h′

h
F + α = 0,

G′ + (ε1 + h2)F 2 + β = 0,

A′ + [
h′

2h
+ 2(ε1 + h2)H]A = 0,

γ′ + [
h′

h
+ 4(ε1 + h2)H]γ = 0,

K ′ + 2(ε1 + h2)F = 0.

(3.79)

From (3.79), we find that

K = −2

∫
(ε1 + h2)γFdt,

A = h−1/2 exp[−2

∫
(ε1 + h2)Hdt],

γ = h−1 exp[−4

∫
(ε1 + h2)Hdt] = A2

(3.80)
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and the function Ω in (3.76) then satisfies 1-dimensional NLS equation

iΩξ + (ε1 + h2)A4Ωζζ = (ε2 +
δ2

h2 + δ1

)A2|Ω|2Ω. (3.81)

For δ1 = −ε1 a particular solution of the Riccati equation in the first equation of

(3.79) is

H =
h′

4h(h2 − ε1)
.

The Algebra L1,4

The algebra generated by Z(1) = ∂y leads in a simple manner to NLS equation.

Indeed straightforward reduction with Ψ = Ω(x, t), w = Q(x, t) yields

iΩt + Ωxx = ε2|Ω|2Ω + QΩ, Qxx = 0. (3.82)

Then Q = α(t)x + β(t). Substituting this into (3.82), it is obtained that

iΩt + Ωxx = ε2|Ω|2Ω + Ω[α(t)x + β(t)]. (3.83)

(3.83) can be reduced to a NLS with variable coefficients. Substituting

Ω = φ(t, ξ) exp i[F (t)x + G(t)], ξ = x + H(t) (3.84)

into (3.83), we get

exp i[F (t)x + G(t)]{[−F ′(t)x− α(t)x−G′(t)− F 2(t)− β(t)]φ + iφt

+ [iH ′(t) + 2iF (t)]φξ + φξξ} = exp i[F (t)x + G(t)]ε2|φ|2φ. (3.85)

The coefficients of xφ, φ, φξ in (3.85) must be equal to zero

−F ′(t)x− α(t)x = 0 ⇒ F (t) = −
∫

α(t)dt,

−G′(t)− F 2(t)− β(t) = 0 ⇒ G(t) = −
∫

(F 2(t) + β(t))dt,

iH ′(t) + 2iF (t) = 0 ⇒ H(t) = −2

∫
F (t)dt. (3.86)

and φ(t, ξ) satisfies the 1-dimensional NLS equation.

iφξ + φηη = |φ|2φ.
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4. THE SYMMETRY GROUP OF THE GDS EQUATIONS AND

STRUCTURE OF ITS LIE ALGEBRA

For our purposes, we find it more convenient to consider the differentiated form of

(1.4). Thus, differentiating the last two equations of (1.4) with respect to x and

y, respectively and then making the substitution wx → w, φy → φ and rewriting

the corresponding system in a real form by separating ψ = u + iv into real and

imaginary parts, we obtain a system of four real partial differential equations

∆1 = ut + δvxx + vyy − χv(u2 + v2)− γv(w + φ) = 0,

∆2 = −vt + δuxx + uyy − χu(u2 + v2)− γu(w + φ) = 0,

∆3 = wxx + nφxx + m2wyy − 2(u2
x + uuxx + v2

x + vvxx) = 0,

∆4 = nwyy + λφxx + m1φyy − 2(u2
y + uuyy + v2

y + vvyy) = 0.

(4.1)

In the sequel, we shall call (4.1) the GDS equations.

If we apply the same procedure to find symmetry algebra which we applied for

finding symmetry algebra of DS above, we find that the general element can be

written as

ξy = 0, ξu = 0, ξv = 0, ξw = 0, ξφ = 0,

ηx = 0, ηu = 0, ηv = 0, ηw = 0, ηφ = 0,

τx = 0, τy = 0, τu = 0, τv = 0, τw = 0, τφ = 0,

(ϕ1)w = 0, (ϕ1)φ = 0, (ϕ1)uu = 0, (ϕ1)uv = 0, (ϕ1)vv = 0,

(ϕ2)w = 0, (ϕ2)φ = 0, (ϕ2)uu = 0, (ϕ2)uv = 0, (ϕ2)vv = 0,

(ϕ3)u = 0, (ϕ3)v = 0, (ϕ3)φ = 0, (ϕ3)ww = 0,

(ϕ4)u = 0, (ϕ4)v = 0, (ϕ4)w = 0, (ϕ4)φφ = 0.

(4.2)

From (4.2) , we get

ξ(x, y, t) = ξ(x, t), η(x, y, t) = η(x, t), τ(x, y, t) = f(t),

ϕ1 = P1(x, y, t)u− P2(x, y, t)v + S1(x, y, t),

ϕ2 = P2(x, y, t)u + P1(x, y, t)v + S2(x, y, t),

ϕ3 = 2P1(x, y, t)w + S3(x, y, t),

ϕ4 = 2P1(x, y, t)φ + S4(x, y, t).

(4.3)
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If we substitute (4.3) in prolongation formulas, we get

pr(2)V(∆1) = −u2vχP1 + v3χP1 + γvwP1 + γvφP1 − u3χP2 − 3uv2χP2

− γuwP2 − γuwP2 − γuφP2 − γvwP3 − γvφP4 − u3χR1 − 3uv2χR1 − γuwR1

− γuφR1 − u2vχR2 − 3v3χR2 − γvwR2 − γvφR2 − 2uvχS1 − u2χS2

− 3v2χS2 − γwS2 − bφS2 − γvS3 − γvS4 + v(R2)yy + (S2)yy + δu(P2)xx

+ δv(R2)xx + δ(S2)xx − u2vχf ′(t)− v3χf ′(t)− γvwf ′(t)− γvφf ′(t)

+ u(P1)t + v(R1)t + (S1)t + [2δ(P2)x − ξt]ux + [2δ(R2)x − δξxx]vx

+ [2(P2)y − ηt]uy + [2(R2)y − ηyy]vy + [P2 + R1]uyy + [R2 − P1 + f ′(t)− 2ηy]vyy

+ [δP2 + δR1]uxx + [−δP1 + δR2 + δf ′(t)− 2δξx]vxx = 0

(4.4)

pr(2)V(∆2) = −3u3χP1 − uv2χP1 − γuwP1 − γuφP1 − 3u2vχP2 − v3χP2

− γwφP2 − γuwP3 − γuφP4 − 3u2vχR1 − v3χR1 − bvwR1 − γvφR1 + u3χR2

− v2uχR2 + γuwR2 + γuφR2 − 3u2χS1 − v2χS1 − γvS1 − γφS1 − 2uvχS2

− γuS3 − γuS4u(P1)yy + v(R2)yy + (S2)yy + δu(P1)xx + δv(R1)xx + δ(S1)xx

− γvwP2 − u3χf ′(t)− uv2χf ′(t)− γuwf ′(t)− γuφf ′(t)− u(P2)t − v(R2)t

− (S2)t + [2(P1)y − ηyy]uy + [2(R1)y + ηt]vy + [2δ(R1)x + ξt]vx

+ [2δ(P1)x − δξxx]ux + [P1 −R2 + f ′(t)− 2ηy]uyy + [P2 + R1]vyy

+ [δP2 + δR1]vxx + [−δR2 + δP1 + δf ′(t)− 2δξx}vyy = 0.

(4.5)

pr(2)V(∆3) = wm2(P3)yy + m2(S3)yy − 2u2(P1)xx − 2uv(P2)xx + w(P3)xx

+ nφ(P4)xx − 2uv(R1)xx − 2v2(R2)xx − 2u(S1)xx − 2v(S2)xx + (S3)xx

+ n(S4)xx + [2uξxx − 8u(P1)x − 4v(P2)x − 4v(R1)x − 4(S1)x]ux

+ [2(P3)x − ξxx]wx + [2vξxx − 8v(R2)x − 4u(P2)x − 4u(R1)x − 4(S2)x]vx

+ [2m2(P3)y −m2ηyy]wy + [−4uP1 − 2vP2 + 2uP3 − 2vR1 − 2S1]uxx

+ [−2uP2 + 2vP3 − 2uR1 − 4vR2 − 2S2]vxx + [2n(P4)x − nξxx]φx

− [4P2 + 4R1]uxvx + [2P3 − 4R2](vx)
2 + [2P3 − 4P1](ux)

2

+ [2m2ξx − 2m2ηy]wyy + [nP4 − nP3]φxx = 0

(4.6)
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pr(2)V(∆4) = nw(P3)yy + n(S3)yy − 2u2(P1)yy − 2uv(P2)yy + m1φ(P4)yy

− 2uv(R1)yy − 2v2(R2)yy − 2u(S1)yy − 2v(S2)yy + m1(S4)yy + λ(S4)xx

+ λφ(P4)xx + [2uηyy − 8u(P1)y − 4v(P2)y − 4v(R1)y − 4(S1)y]uy

+ [2vηyy − 8v(R2)y − 4u(P2)y − 4u(R1)y − 4(S2)y]vy + [2n(P3)y − nηyy]wy

+ [−4uP1 − 2vP2 + 2uP4 − 2vR1 − 2S1]uyy + [2P4 − 4P1](uy)
2

+ [−2uP2 + 2vP4 − 2uR1 − 4vR2 − 2S2]vyy + [2P4 − 4R2](vy)
2

+ [2λ(P4)x − λξxx]φx + [−4P2 − 4R1]uyvy + [2m1(P4)y −m1ηyy]φy

+ [nP3 − nP4]wyy + [2ληy − 2λξx]φxx = 0

(4.7)

The coefficients of vyy in (4.5), (vx)
2 in (4.6), φxx in (4.6), (uy)

2 in (4.7) and wyy

in (4.6) must be equal to zero. So find that

P2 + R1 = 0, ⇒ P2 = −R1,

2P3 − 4R2 = 0, ⇒ P3 = 2R2,

nP4 − nP3 = 0, ⇒ P4 = P3,

2P4 − 4P1 = 0, ⇒ P4 = 2P1,

2m2ξx − 2m2ηy = 0, ⇒ ηy = ξx,

(4.8)

Using (4.8), it is easily seen that

P2 = −R1, P4 = P3 = 2R2 = 2P1 and ξxx = ηyy = 0. (4.9)

When we substitute (4.9) in the coefficients of uxx in (4.6), vxx in (4.6), uy in

(4.5), ux in (4.5) and vyy in (4.4), we get

−4uP1 − 2vP2 + 2uP3 − 2vR1 − 2S1 = 0 ⇒ S1 = 0,

−2uP2 + 2vP3 − 2uR1 − 4vR2 − 2S2 = 0 ⇒ S2 = 0,

2(P1)y − ηyy = 0 ⇒ (P1)y = 0,

2δ(P1)x − δξxx = 0 ⇒ (P1)x = 0,

R2 − P1 + f ′(t)− 2ηy = 0 ⇒ ηy = f ′(t)/2.

(4.10)

Then we find

P1(x, y, t) = P1(t), (4.11a)

η(y, t) =
f ′(t)

2
y + h(t). (4.11b)

By using ηy = ξx, it is easily seen

ξ(x, t) =
f ′(t)

2
x + g(t), (4.12)
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where g(t) and h(t) are arbitrary functions. When we substitute (4.11b)

and (4.12) in the coefficients of uy in (4.4) and ux in (4.4), we get

2(P2)y − ηt = 0 ⇒ (P2)y =
1

2
ηt =

y

4
f ′′(t) +

1

2
h′(t),

2δ(P2)x − ξt = 0 ⇒ (P2)x =
1

2δ
ξt =

x

4δ
f ′′(t) +

1

2δ
g′(t),

(4.13)

From (4.13), it is easily found that

P2 =
f ′′(t)
8δ

(x2 + δy2) +
g′(t)
2δ

x +
h′(t)

2
y −m(t), (4.14)

where m(t) is an arbitrary function. By using all of these equations, we get

pr(2)V(∆1) = −2u2vχP1 − 2v3χP1 − 2γvwP1 − 2γφP1 − γvS3

− γvS4 + uC ′
1 − u2vχf ′(t)− v3χf ′(t)− γvwf ′(t)− γvφf ′(t) +

1

2
uf ′′(t)

− v[
f ′′′(t)

8δ
(x2 + δy2) +

g′′(t)
2δ

x +
h′′(t)

2
y −m′(t)] = 0.

(4.15)

(4.15) is a polynomial. So the coefficient of v3 must be equal to zero. Then we

find

−2χP1 − χf ′(t) = 0 ⇒ P1 = −f ′(t)
2

(4.16)

The coefficients of general element is

ξ =
f ′(t)

2
x + g(t),

η =
f ′(t)

2
y + h(t),

τ = f(t),

ϕ1 = [−f ′′(t)
8δ

(x2 + δε1y
2)− g′(t)

2δ
x− h′(t)

2
y + m(t)]v − (

f ′(t)
2

)u,

ϕ2 = −(
f ′(t)

2
)v + [

f ′′(t)
8δ

(x2 + δε1y
2) +

g′(t)
2δ

x +
h′(t)

2
y −m(t)]u,

ϕ3 = −f ′(t)w + S3(x, y, t),

ϕ4 = −f ′(t)φ + S4(x, y, t).

(4.17)

When we calculate all of the prolongations, we get

pr(2)V(∆1) = −v[γS3 + γS4 +
f ′′′(t)

8δ
(x2 + δy2) +

g′′(t)
2δ

x +
h′′(t)

2
y −m′(t)] = 0,

pr(2)V(∆2) = −u[γS3 + γS4 +
f ′′′(t)

8δ
(x2 + δy2) +

g′′(t)
2δ

x +
h′′(t)

2
y −m′(t)] = 0,

pr(2)V(∆3) = m2(S3)yy + (S3)xx + n(S4)xx = 0,

pr(2)V(∆4) = n(S3)yy + m1(S4)yy + λ(S4)xx = 0. (4.18)
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A compatibility of (4.18) gives

S3 = S4 = −f ′′′(t)
16δγ

(x2 + δy2)− g′′(t)
4δγ

x− h′′(t)
4γ

y +
m′(t)
2γ

, (4.19a)

−f ′′′(t)
8δγ

(δm2 + n + 1) = 0, (4.19b)

−f ′′′(t)
8δγ

(m1δ + nδ + λ) = 0. (4.19c)

Thus, we obtain

ξ =
f ′(t)

2
x + g(t),

η =
f ′(t)

2
y + h(t),

τ = f(t),

ϕ1 = [−f ′′(t)
8δ

(x2 + δy2)− g′(t)
2δ

x− h′(t)
2

y + m(t)]v + (−f ′(t)
2

)u,

ϕ2 = (−f ′(t)
2

)v + [
f ′′(t)
8δ

(x2 + δy2) +
g′(t)
2δ

x +
h′(t)

2
y −m(t)]u,

ϕ3 = −f ′(t)w − f ′′′(t)
16δγ

(x2 + δy2)− g′′(t)
4δγ

x− h′′(t)
4γ

y +
m′(t)
2γ

,

ϕ4 = −f ′(t)φ− f ′′′(t)
16δγ

(x2 + δy2)− g′′(t)
4δγ

x− h′′(t)
4γ

y +
m′(t)
2γ

.

(4.20)

The general element can be written as

V = T (f) + X(g) + Y (h) + W (m), (4.21)

where

T (f) = f(t)∂t +
1

2
f ′(t)(x∂x + y∂y − u∂u − v∂v − 2w∂w − 2φ∂φ)

− (x2 + δy2)

8δ
[f ′′(t)(v∂u − u∂v) +

f ′′′(t)
2γ

(∂w + ∂φ)],

X(g) = g(t)∂x − x

2δ
[g′(t)(v∂u − u∂v) +

g′′(t)
2γ

(∂w + ∂φ)],

Y (h) = h(t)∂y − y

2
[h′(t)(v∂u − u∂v) +

h′′(t)
2γ

(∂w + ∂φ)],

W (m) = m(t)(v∂u − u∂v) +
m′(t)
2γ

(∂w + ∂φ).

(4.22)

The functions g(t), h(t), and m(t) are arbitrary functions of class C∞(I), I ⊆ R.

The function f(t) is arbitrary if

m2δ + n + 1 = 0, m1δ + nδ + λ = 0, (4.23)

otherwise f(t) = c2t
2 + c1t + c0. We mention that these conditions come from the

fact that two of the determining equations are

(m2δ + n + 1)f ′′′(t) = 0, (m1δ + nδ + λ)f ′′′(t) = 0,
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whereas the remaining ones are solved without any constraints on g, h and m.

We mainly focus on the case when f(t) is allowed to be arbitrary. The symmetry

algebra realized by the vector fields (4.21) and (4.22) is then infinite-dimensional

and more important has the structure of a Kac-Moody-Virasoro (KMV) algebra

as we shall see below. More interestingly, it is generic among the symmetry

algebras of a few 2+1-dimensional integrable partial differential equations (the

Kadomtsev-Petviashvilli (KP) equation, the modified KP equation, the potential

KP equation, the integrable three-wave resonant equations and the integrable DS

equations).

The commutation relations for the GDS algebra are easily obtained as follows:

[T (f1), T (f2)] = T (f1f
′
2 − f ′1f2)

[T (f), X(g)] = X(fg′ − 1

2
f ′g)

[T (f), Y (h)] = Y (fh′ − 1

2
f ′h)

[T (f),W (m)] = W (fm′)

[X(g1), X(g2)] = − 1

2δ
W (g1g

′
2 − g′1g2)

[Y (h1), X(h2)] = −1

2
W (h1h

′
2 − h′1h2)

[X(g), Y (h)] = [X(g),W (m)] = [Y (h),W (m)] = [W (m1),W (m2)] = 0.

(4.24)

From (4.24) we see that the GDS system has a Lie symmetry algebra L isomorphic

to that of the DS symmetry algebra [8]. Indeed, it allows a Levi decomposition

L = S ⊂+N, (4.25)

where S = {T (f)} is a simple infinite dimensional Lie algebra and

N = {X(g), Y (h),W (m)}

is a nilpotent ideal (nilradical). Here, ⊂+ denotes the semi-direct sum. The

algebra {T (f)} is isomorphic to the Lie algebra corresponding to the Lie group

of diffeomorphisms of a real line.

Expanding the arbitrary functions f , g, h and m into Laurent polynomials and

considering each monomial tn (n not necessarily positive integer) separately, we

obtain a realization of a KMV algebra without central extension. Here the factor

subalgebra S is the Virasoro part, the nilpotent subalgebra N is the Kac-Moody

part of the GDS algebra [14]. Furthermore, just as the DS algebra [8] it can be
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shown that the GDS algebra with (4.23) can be imbedded into a Kac-Moody-type

loop algebra.

Theorem 4.1. The system (4.1) is invariant under an infinite-dimensional Lie

point symmetry group, the Lie algebra of which has a Kac-Moody-Virasoro

structure isomorphic to the DS algebra if and only if the conditions (4.23) hold.

The GDS equations are also invariant under a group of discrete transformations

generated by

t → t, x → −x, y → y, ψ → ψ, w → w, φ → φ

t → t, x → x, y → −y, ψ → ψ, w → w, φ → φ

t → t, x → x, y → y, ψ → −ψ, w → w, φ → φ

t → −t, x → x, y → y, ψ → ψ∗, w → w, φ → φ.

(4.26)

The obvious physical symmetries Lp of the GDS equations are obtained by

restricting all the functions f , g, h and m to be first order polynomials. Indeed,

we have

T = T (1) = ∂t, P1 = X(1) = ∂x, P2 = Y (1) = ∂y

W0 = W (1) = v∂u − u∂v,

D = T (t) = t∂t +
1

2
(x∂x + y∂y − u∂u − v∂v − 2w∂w − 2φ∂φ)

B1 = X(t) = t∂x − x

2δ
(v∂u − u∂v), B2 = Y (t) = t∂y − y

2
(v∂u − u∂v)

W1 = W (t) = t(v∂u − u∂v) +
1

2γ
(∂w + ∂φ).

(4.27)

We see that T, P1, P2 generate translations, D dilations, B1 and B2 Galilei boosts

in the x and y directions, respectively. Finally, W0 and W1 generate a constant

change of phase of ψ and a change of phase of ψ, linear in t, plus constant shifts

in w and φ, respectively.

The generators (4.27) form a basis of a eight-dimensional solvable Lie algebra

Lp = {D, T, P1, P2, B1, B2,W0,W1}. It has a seven-dimensional nilpotent ideal

(the nilradical) N = {T, P1, P2, B1, B2,W0,W1}.

Another finite-dimensional algebra, not contained in Lp is obtained by restricting

f(t) to quadratic polynomials. We obtain T = T (1), D = T (t) as in (4.27), and

in addition

C = T (t2) = t2∂t + tD − (x2 + δy2)

4δ
(v∂u − u∂v). (4.28)
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The commutation relations are

[T, D] = T, [T, C] = 2D, [D,C] = C,

so that we have obtained the algebra sl(2,R) with C generating conformal type

of transformations

t̃ =
t

1− pt
, x̃ =

x

1− pt
, ỹ =

y

1− pt
,

R̃ = (1− pt)R, σ̃ =
p(x2 + δy2)

4δ(1− pt)
+ σ,

w̃ = (1− pt)2w, φ̃ = (1− pt)2φ,

(4.29)

where p is the group parameter. Further, composing (4.29) with time translations

generated by T and dilations generated by D we obtain the SL(2,R) group

generated by actions on the space of independent and depend variables. It should

be mentioned that any finite dimensional subalgebra of the Virasoro algebra of 2+1

dimensional integrable equations is isomorphic to sl(2,R) or one of its subalgebras.

The transformed variables and the new solution in terms of the original ones are

given by the formulas

t̃ =
c + dt

a + bt
, x̃ =

x

a + bt
, ỹ =

y

a + bt
, ad− bc = 1

ψ̃ = (a + bt)−1 exp{ib(x2 + δy2)

4δ(a + bt)
}ψ(t̃, x̃, ỹ)

w̃ = (a + bt)−2w(t̃, x̃, ỹ)

φ̃ = (a + bt)−2φ(t̃, x̃, ỹ).

(4.30)

Here a, b, c are the group parameters of SL(2,R). These are exactly the formulas

which played an essential role in the construction of analytic blow-up profiles [7] in

which the authors made use of stationary radial solutions (ψ, w, φ) to generate new

solutions (time dependent) (ψ̃, w̃, φ̃) of the GDS equations. More generally, the

elements of the connected part of the full symmetry group of the GDS equations

can be obtained by integrating the vector fields (3.21), (3.22).

Let us now return to the isomorphic GDS and DS symmetry algebras, and

transform the GDS vector fields (3.2) by the point transformation q = w+φ−|ψ|2.
It is easy to see that the component 1

2
(∂w + ∂φ) transforms to ∂q, and D →

x∂x + y∂y − u∂u − v∂v − 2q∂q, and the rest remains unaltered, namely the DS

symmetry algebra is obtained. This means that the functions (ψ, q) satisfy the

DS equations whenever (ψ,w, φ) satisfy the GDS equations, but not vice versa.

At this time, it remains open whether it is possible to construct an invertible point

transformation relating these two systems.
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CONCLUSIONS

In this thesis we worked out the group-theoretical properties of DS and GDS

equations. Symmetry group analysis is an effective tool for studying nonlinear

ordinary and partial differential equations because no techniques exist for finding

explicit solutions. When we consider nonlinear ODEs or PDEs, the determining

system of equations for the symmetry transformations always becomes a linear

system of PDEs, and hence is easier to cope with, compared to the equation in

question.

Our study found its motivation from a work done by Champagne and Winternitz.

They treated a complete analysis of symmetry properties of the DS equations.

In the third section of the thesis, based on this work we showed that DS

equations has an infinite-dimensional symmetry algebra. We calculated the group

transformations for the cases f(t) = 0 and f(t) 6= 0. Champagne and Winternitz

[8] found the one-dimensional subalgebras

L1,1 = {X(1)}, La
1,2 = {Y (1) + aZ(1)}, L1,3(h) = {Y (1) + Z(h)}, a ≥ 0,

L1,4 = {Z(1)}, L1,5 = {W (t)}, L1,6 = {W (1)}.

We used one-dimensional subalgebras L1,1, L
a
1,2, L1,3(h) and L1,4 which

generate actions on the coordinate space (t, x, y) to reduce the DS equations to

integrable ones in two variables. This section includes computational details of

this paper.

In the fourth section, we showed that GDS equations have an infinite-dimensional

symmetry algebra with a Virasoro structure. The GDS algebra will have the same

conjugacy classes of subalgebras as the DS algebra.

As an open problem, we can introduce the use of subalgebras to reduce the

integrable GDS system to integrable one in two variables and thus to obtain

subgroup invariant solutions.
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