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ABSTRACT

Modern fighter aircraft operation at high angle of attack, during
take-off, landing and unsteady maneuvering, is dominated by the interaction
of vortical type flows and lifting surfaces. In such flight conditions,
unsteadyness and flow separation can produce nonlinear aerodynamic effects
which significantly influence the instantaneous load distribution on the
lifting surfaces and controllability of the aircraft. Numerically simulation
of unsteady aerodynagpics and the wake dynamics is therefore much needed
in flight dynamics and for structural load analysis.

The application range of the present code comnsists of the steady wing
theory and also unsteady wing theory solutions. It includes non-iterative
technique for wake development and prediction of the time dependent
aerodynamic characteristics in both incompressible and compressible flow.
Also results consist of comparison between steady and unsteady solutions
with arbitrary wing planforms. The output of the present code is the
aerodynamic flow characteristics around the geometry such as the velocity
and pressure distributions, mach contours, forces and moments.

I would like to thank to Assoc.Prof.Dr.C.Ruhi Kaykayoglu for his
guidance, TUBITAK Marmara Research Center personnel especially Izlen
Ozturk for their contribution and orientation in my thesis. And I also
thank very much to "Rumelikavak Team" for their moral support during
my study. '
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NOMENCLATURE

ap
aw

awe

[Abw]
[Alw]
[Aw]

bw

c

Cb

CL

G

Cm

Cp
€x,Cy,Cz
F

Panel chord length

Influence coefficient of wing doublet distribution

Influence coefficient of edge vortices along the edges of the wing
panel '

Influence coefficient of vorticity distribution on the wing panel
Chord length of the wing at the collocation-point

Matrix of velocity influence coefficients representing influence of
wing doublet distribution relative to the wing panel

Matrix of velocity influence coefficients representing influence of
leading-edge doublet distribution relative to the wing panel
Matrix of velocity influence coefficients representing influence of
trailing-edge doublet distribution relative to the wing panel
Matrix of velocity influence coefficients representing influence of
wing doublet distribution relative to the wake panel

Matrix of velocity influence coefficients representing influence of
other leading-edge doublet distribution relative to the wake panel
Matrix of velocity influence coefficients representing influence of
other trailing-edge doublet distribution relative to the wake panel
Influence coefficient of wing source distribution

Wing chord length

Drag coefficient

Lift coefficient

Rolling moment coefficient

Pitching moment coefficient

Pressure coefficient

Unit vector components

(Fx,Fy,Fz) Farce divided by free stream dynamic pressure on the
configuration in (x,y,z) coordinate system

F1,G1,G2,G3  Elementary functions in incompressible flow
F1c,G1c,G2¢,G3c  Elementary functions in compressible flow

h
K

Panel vertical distance from x axis
Switch factor in compressible flow
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p.q,r
ql, gt

Sx”‘,SZ*

U(t)
u,v,w
Usc
Usl
Ust
Udle

Udte
Udip
Udtp

X,y,Z
w o

X ,y A
Xle,Xte

D -5 ™

S

k

e

Free stream Mach number

Static pressure

Static pressure in free stream

Angular velocity about x,y,z axes, respectively

Source distribution on the panel’s leading-edge and trailing-edge,
respectively

Distance vector

Wing area

Path components in a inertial co-ordinate system

Time

Time dependent wing forward velocity

Induced velocity in the x,y and z directions, respectively
Velocity induced by constant source distribution on a wing panel
Velocity induced by leading-edge source distribution

Velocity induced by trailing-edge source distribution

Velocity induced by edge vortices of leading-edge doublet
distribution on a wing and/or wake panel

Velocity induced by edge vortices of trailing-edge doublet
distribution on a wing and/or wake panel

Velocity induced by leading-edge doublet distribution on a wing
and/or wake panel

Velocity induced by trailing-edge doublet distribution on a wing
and/or wake panel

Wing coordinates in a non-inertial co-ordinate system

Wing coordinates in a inertial co-ordinate system

Equation of panel leading-edge and trailing-edge

Angle of attack

Tangent of sweep of Mach lines

Strength of the doublet circulation

Inclination angle of wing panel

Tangent of the sweep angle of leading and trailing edge of wing
panel

Density

Velocity potential

Time dependent angular velocity vector
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Denotes the gradient with respect to x

Denotes a matrix

Denotes a vector with three components in x,y,z

Denotes contributions from four corner points of panel as a

subscript or superscript

Denotes the contributions from each panel

Denotes the number of unknown leading-edge doublet parameters
Denotes the number of unknown trailing-edge doublet parameters
Denotes the number of unknown wing doublet parameters
Denotes the quantity at t=0
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SUMMARY

The present method is a method for converting steady-state, potential
flow based panel methods into a time dependent mode. Also this method
permits both leading-edge and trailing-edge separation. Furthermore, the
present method can provide transient aerodynamic loads and wake
geometries during the time-dependent motion and improves the
understanding of some vortex interaction problems. The free stream flow
must be at small angle of attack and sideslip. The free stream Mach
number must be sufficiently far from unity.

The flow around the configuration at a time step is simulated by a
source distribution on the wing reference plane and doublet distribution
on the wing and wake components. By the zero normal velocity condition
at collocation points, a systemn of linear equations is obtained and solved
by a direct method. As above calculations are completed the wake
deformation 1s simulated by calculating the downwash at each wake element
edge location. And then wake element moves with this downwash to new
location. To conclude the calculation procedure for a given time step, the
forces and moments are indicated by nonsteady Bernoulli equation. The
above calculational scheme is then repeated for the additional time intervals.
This scheme is numerically stable since iterative calculations are not
required.



OZET
KANATLARIN DAIMI VE DAIMI OLMAYAN AERODINAMIGI

Birgok miihendislik probleminin ¢6ziimiinde kullamlmaya baslanan
bilgisayarlar, tasarimcilara biiyiik kolayliklar saglamaktadir. Bilgisayar
teknolojisinin gelisimine paralel olarak ilerleyen sayisal ¢Oziim yOntemleri
de deneysel imkanlari daha kisith ve kiilfetli olan alanlarda ¢zellikle hava
tagitlarmin aerodinamik tasarimlarinda biiylik asamalar kaydettirmektedir.

Son birkag yilda, akiskanlar mekaniginde girdaph akiglarin sthhi analizleri
ve gercekgl tahminleri, helikopter, roket ve savag ugaklanmn modern
dizaynlann ile ufragmakta olan acrodinamikgiler i¢in ¢ok Onemli olmaya
baglamistir. Modern savas ucaklar inig, kalkig, savunma ve hiicum
manevralarinda, yiiksek hiicum acilarinda zamana baghh  yoriingeler
gizmektedir. Bu hiicum agilannda, girdap yapih akislar, ucak etrafinda
aerodinamik karakteristikleri ve kontrol kabiliyetini ciddi bir sekilde
etkileyebilmektedir.

Kompleks ugak manevralarimin analizleri igin gelistiriimekte olan
hesaplamali metodlarda, Ozellikle daimi olmayan aerodinamigin simiilasyonu
ve ard iz bolgesi dinamiginin olusturulmasi hala popiileritesini korumaktadir.
Bu zamana ba8l akigkanlar dinamifi modellemesi; zamana bagli yapisal
yik analizi, ucus simiilasyonu ve ucus dinamifi gibi havacihk disiplinleri
icin gok gereklidir. Daimi olmayan aerodinamik {izerindeki cahismalar gerek
yogun hesaplama ihtiyaglan1 gerekse zamana baglliktan gelen yan faktorleri
ile daimi akiglarm yamnda hala gizemini ve Onemini koruyan bir alan
olarak durmaktadir. Daimi olmayan aerodinamik igin sikistinlamaz ve
siibsonik (ses-alti) rejimlerde uygulanan degisik metodlar, transonik ve
slipersonik (ses-iistli) rejimlere gecildiginde azalmakta ve hassasiyetini
korumaktadir.

Akisin fiziksel alamm tammlamak ve bu bdlge iizerinde karakteristik
degerler elde etmek icin kullamilan akigkanlar mekanifi denklemleri en
kompleksinden en basitine dogru su sekilde siralanabilir:

- Navier-Stokes denklemleri
- Euler denklemleri .
- Potansiyel denklemler

Navier-Stokes denklemleri, herhangi bir hiicum agis1 ve hizda herhangi
bir konfigiirasyonun {izerinde tammlanabilen her tiirli akig 6zelliklerini
icerebilmektedir. Sok dalgalarimin konumu, girdap tabakalarmin ve genis
Olgekli ayrilmalarin  goriintiilenmesi miimkiindiir. Karmagikhfi nedeniyle



kompleks konfigiirasyonlar iizerinde hala tam olarak ¢6ziim igeren bir kod
gelistiriimemigtir. Bu nedenle Navier-Stokes denklemlerini kapsayan kodlar
daha ¢ok bolgesel yaklasimlar kullanmaktadir. Euler denklemleri, tagimm
terimleri ve viskoz terimlerin ihmal edilmesi ile olusturulur. Sok dalgasinin
konumu igin bir ilk yaklagim verebilmekte fakat viskoz terimlerin ihmal
edilmesi nedeniyle aynlma bdlgelerinin goriintiilenmesinde zorlanmaktadir.
Eger akig, daimi ve irrotasyonel kabul edilirse hiz potansiyeli kavrami
ortaya g¢ikar ve Euler denklemleri tekil Potansiyel denklemine
doniistiirilebilir. Potansiyel denklem, gii¢lii gok dalgalannin ve akim
ayrilmasimin genig Olgekli gerceklesmedifi akis alanlarinda rahathkla
kullamlabilen ve konfigiirasyon karakteristikleri igin ilk yaklagim degerleri
verebilen bir denklemdir. Bu denkleminin lineerlestirilmig hali {izerine inga
edilen "Panel Metodlan" ciddi bir ragbet gc")rmektedir.

Bu tezde, aerodinamigin iki- kolu olan daxmi ve- daxmx olmayan yapxlar,
Potansiyel denklem temel almara]c mcelenmxg ve daimi aerodinamik igin
olusturulan bir panel kodu ile zamana bagmlihfa gegilmeye cahgimugtir.

Daimi aerodinamik icin kullamilan panel metodu, lineerlestiriimig
potansiyel denkleminin (Prandtl-Glauert) coéziilmesi esasina dayamr. Yerel
hizin serbest akim hizindan ¢ok az saptifi akiglar igin potansiyel denklemi,
bir bozuntu hz tammlanarak daha basit ikinci dereceden bir lineer
denkleme, Prandtl-Galuert denkiemine doniigiir. Prandtl-Galuert denkleminin
¢bziimiinde kullanian —ana metot, yizey tekillikleri teknikleridir. Cisim
etrafindaki potansxyel akim Green ‘teoremine goére kaynak ve duble g1b1
yiizey tekillikleri’ ile . tanimlanabilir. Bu yiizey tekilliklerinin birbiri iizerine
indiikledigi hizlan belirleyen aerodinamik etki katsayilanmin hesaplanmas
metodun esasmi olusturmaktadir. Aerodinamik etki katsayllarim belirleyen
integraller yiizey tekilliklerine yapilan yaklasimlar ile ¢Oziilmektedir. Her
panel icin panel yiizeyinde normal yondeki hizin sifir olma kosulu saglanarak,
matris katsayllanm aerodinamik etki katsayillanmn olusturdugu bir denklem
sistemi ortaya gikmaktadir. Bu denklem sistemi ¢Oziildiikten sonra yiizey
tekilliklerinin giddetleri bulunmaktadir. Ayrica her kanat panelinin firar
kenarinda Kutta sarti saglanmakta ve kanat elemammn arkasinda sonsuza
uzanan diizlemsel bir ard iz paneli tanmmlanmaktadir. Bu ard iz paneli
iizerinde sabit biyiikliikte bir duble tekillifi oldufu kabul edilmektedir.

Daimi olmayan aerodinamik igin kullanilan metod aym Panel Metodu
tizerine insa edilmistir. Dolayisiyla smur sartlan pek degismemekle birlikte
denklemlere zamana bafmhhk terimleri eklenmektedir. Cisim iizerinde
aerodinamik etki katsayilar matrisi olugturulduktan sonra aym sekilde yiizey
tekilliklerinin giddetleri bulunmakta daha sonra da bu tekillik siddetlerine
bagh olarak firar ve/veya hiicum kenarindan kenar iizerindeki panel tekillik
siddetine esit siddette ard iz paneli olusturularak atimaktadwa. Bu ardiz
paneli ilizerindeki hiz da etki katsaylanndan olusan ikinci bir denklem
sistemi ile ¢dziilmektedir. En 6nemli fark daimi akim metodunda kullanilan
sabit ardiz bolgesi geometrisinin degigken tabiatta olmasidir.



Her iki halde de bir kanat paneli iizerindeki duble tekillifi, panel
izerindeki bir girdaphhk dagiim ile panel i¢ ve dig kenar girdaplarmn
toplamindan ibarettir. Her panel tiim tekilliklerden indiiklenen degerlerin
etkidigi bir kontrol noktas: bulunmaktadir ve bu kontrol noktas: panellerin
orta noktasi olarak alinmaktadir.

Her iki hal icin de metodun igeri§i ve Onemli noktalan hakkinda bilgi
verdikten sonra genel denklem ve smr sartlarmm vererek, aerodinamik etki
katsayillarinin belirlenmesi sonucunda ilerlenecek adimlar birer birer
gostermeye gahsalim.

Lineerlestirilmis potansiyel denklem, bilindigi gibi
2
Vg=0

seklinde ifade edilebilmektedir. Yiizey {izerinde hizin sifir olmasi ve
bozuntunun kanat yilizeyinden ¢ok uzakta oldugu sarti gz Oniine alnacak
olursa transforme edilmis smur sartlan,

28| _ [vw. 28720 L o0 P wx = W..
2z~ [ )+bx ] 2x 2t 2z 4
2=0

V¢9—-— 0 as 'xla ‘Y"Iz"""‘”

yukanidaki gibi ifade edilebilmektedir. Burada potansiyel fonksiyonunun z
dogrultusunda tiirevini alirsak,

Wié = - [(U({-,)-r.y). ('a%‘ ~5ine, )-q.X & F.y-t"’h/a't]

seklinde elde ederiz. Bu denklem {izerinde (p,q,r), (x,y,z) eksenleri etrafinda
kanat geometrisinin agisal hareketi, U(t) kanat geometrisinin zamana bagh
serbest akim hizi, h(t) ise panellerin zaman igerisinde x ekseni ile yaptif
dik uzakhk olarak tamimlanmaktadir. Goriildiigli gibi kanat geometrisinin
zamana bafimh hareketini bu denklem sistemi ile verebilmek oldukca
kolaylasmaktadir. Aym: sekilde kanat panelleri ile firar ve hiicum kenarmdan
ayrilan panellere ait yiizey tekilliklerinin z dogrultusunda tiirevleri ahmrsa
olugsacak olan matris sistemi,
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yukanidaki gibidir. Bu denklem sisteminde,

[Ab] matrisi; kanat yiizey tekilliklerinin kanat panellerine etkisi

[A1] matrisi; hiicum kenar ayrilmig panel yiizey tekilliklerinin kanat
panellerine etkisi

[At] matrisi; firar kenar1 ayrilmis panel yiizey tekilliklerinin kanat
panellerine etkisi

olarak tanimlanabilir. Topiam z dofrultusunda hizin sifir olmasi sarty,
denklem sistemini agagidaki sekle dOniigtiiriir.

(U-Cy)(%%-sin D(i)-q,x.;. P;V‘*‘ %_%

= [a)| by + 1A |+ 1A T,

Yukarnidaki denklem sisteminde sol taraf kanat geometrisinin hareketi
tamimlandif taktirde bilinmektedir. t=0 am icin firar ve hiicum kenan
matrisleri de dogrudan sifir olacagina goére, [Ap] matrisi kolaylikla
¢Oziilebilmektedir. Elde edilen kanat yiizey tekilliklerinden, firar ve hiicum
kenar! ilizerinde bulunan paneller iizerindeki yiizey tekillik giddetleri firar
ve hiicum kenarindan aynilmak iizere olan panel siddetlerine esittir.
Dolayisiyla atilacak olan her bir panel lizerindeki yiizey tekillik siddeti bir
Onceki adim siddetinden bilinmektedir. Buna bagh olarak firar ve hiicum
kenarlann panelleri 1/2UDt oraninda Otelenirler. Paneller tizerindeki kose
noktalarimin hiz bilesenleri ise,

i

(u,vllD){:'- [Abw]’ ri’i +I:Al,w]' r("i +[A£N}. rt’;

denklem sisteminin ¢6ziimii ile bulunmaktadir. Bu denklem sisteminde,

xiv



[Abw] matrisi; kanat panellerinin ardiz panellerine etkisi
[Aw] matrisi; Diger hiicum kenan panellerinin ardiz panellerine etkisi
[Aw] matrisi; Diger firar kenarn panellerinin ardiz panellerine etkisi

olarak belirlenmektedir. Her iki denklem sisteminde dikkat edilmesi gereken
nokta, kanat panelleri etki katsayilar matrisinin biitin zaman adimian
icerisinde N boyutunda kalirken, firar ve hiicum kenarindan atiimakta olan
panellerin aerodinamik etki katsayllarmi igeren matrisler sirasiyla M ve L
boyutunda bagliyarak her bir hesaplama adimimnda M ve L adet artmaktadir.
Dolayisiyla [Ab] matrisi efer kanat geometrisinin sekli zaman igerisinde
degismiyorsa bir defaya mahsus hesaplanmakta ondan sonra her zaman
adiminda daima aym matris kullamlmaktadir. Yukardaki son denklem ile
M+L adet panelin kdse noktalarinda hiz degerleri hesaplandiktin sonra
paneller yeni konumlarina,

(Ax,ay,A2), = (wyw), - At

ilerletme denklemi ile ulastinhrlar. Bu yeni konum altinda daimi olmayan
terimlerinde icerildigi Bernoulli denklemi c¢oziilerek basing alamni,

ﬁy_-:(v-ry)w s +_2_[(3¢_) (ay) (a¢ }

buna bagh olarak kuvvet alam,

ve tek tek kuvvet ve moment deferleri bulunmaktadir.

}E AF,. 6050(/{ PUZ
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Yukanidaki hesaplamalar bir defa yapildiktan sonra firar ve hiicum
kenarlarindan atilan panellerin yeni konumlan ile bastaki denkleme tekrar
dOniilerek aym yol tekrar izlenir. Bu tlir bir yontem iteratif bir teknik
olmadif: i¢in hem daha hizh ve matris biiylikligi daha az hem de daha
kararhdir.

Yukanda kisaca 6zetlenmeye calhsilan metot, daimi olmayan aerodinamik
problemlerine daimi bir yaklagim getirdigl i¢in Onem tasimaktadir. Bu tez
cercevesinde, herhangi bir kanat geometrisi etrafinda ii¢ boyutlu akim daimi
akig olarak incelenmis ve tiim akis karakteristikleri ¢ikanimstir. Daha sonra
ayn1 geometri ile daimi olmayan bir akig altinda karakteristikler iizerindeki
degisimler incelenmistir. Tezin sonug¢ bolimiinde ciktilar detayh bir sekilde
ortaya konulmug ve {i¢ boyutlu cizimler ile ardiz bolgesinin geligimi
gosterilmeye caligiimustir.



CHAPTER 1. INTRODUCTION

1.1 An overview of the computational methods

In computational aerodynamics, the most important methods which are
used to govern the aerodynamic flow regimes around complex configurations
are semi-empirical and numerical methods [1].

The semi-empirical methods developed a variety of practical tools, not
expensive in computer time, routinely used by the project engineering, but
restricted to conventional configurations and global aerodynamics, (For a
detailed description of semi-empirical methods see Ref.[1])

The numerical methods are essential methods to treat complicated
configurations, to determine load distributions, local flow field properties,
temperature distributions and to provide important insights into
understanding complex flow mechanisms.

The numerical methods can be distinguished to four levels of equation
from the most complex to less complex:

1]

Navier Stokes equation

]

Euler equation

Potential equation

Linearized potential equation

In aerodynamics, the Reynolds-averaged Navier-Stokes eguations model
essentially all flow details. However, turbulence and transition needs to
be modeled in a manner appropriate for the flow considered. The computer
resources required for numérically solving the equations on a mesh that
sufficiently resolves the boundary layers, free shear layers(wakes), vortex
cores, etc. are still quite excessive.

For most high-Reynolds number flows of interest in aircraft
aerodynamics viscous effects are confined to thin boundary layers, thin



wakes and centers of vortex cores, i.e. the global flow features depend
only weakly on Reynolds number. This implies that a model based on
Euler’s equations, which allow the occurence of shock waves and convection
of rotational flow, provides an appealing alternative. On a local scale,
specifically at points where the flow leaves the surface (separates) and
vorticity is shed into the flow field, some kind of model for viscous-flow
dominated features will be required. Although the computer requirements
of Euler codes can be met by the current generation of supercomputers,
routine practical application of these codes (to simple configurations) is
only just emerging.

If there are no strong shocks and if the rotational flow is confined
to compact regions, the flow may be modeled as potential flow with
embedded free vortex sheets and vortex cores. Now the rotational flow
regions are "fitted" explicitly into the solution, rather than "captured"
implicitly as part of the solution as is the case for above flow models.
Although one has to decide a priori on the presence of vortex sheets
and cores and generally the topology of the vortex system must be
well-defined, "fitting" still requires that both the position and strength of
the vortex sheets and cores have to be determined as a part of the
potential-flow solution. The treatment of vortex sheets and vortex cores,
freely floating in a fixed spatial grid, still poses considerable problems for
finite difference/volume methods solving the nonlinear full potential codes
are relatively modest, but application to general aircraft configurations is
hampered by the grid-generation problem.

In case shockwaves are absent altogether and the perturbation on the
free-stream due to the presence of the configuration is small, the
potential-flow model is further simplified to the linear potential flow
model, governed by the Prandtl-Glauert equation. (In incompressible flow
the small perturbation assumption is not required and Laplace’s equation
applies.) Now the flow and the position of the vortex sheets and cores
can be solved for by employing a boundary-integral type of approach
utilizing singularity distributions exclusively on the surface of the
configuration and the vortex sheets, not requiring a spatial grid. This linear
potential flow model is the model underlying the classical panel method.
It is emphasized at this point that though the governing equation is linear,
the problem is still nonlinear because the position of the vortex sheets



appears nonlinearly in the boundary condition on the solid surface as well
as in the boundary conditions on the vortex sheet itself. It can be argued
that for most configurations in cruise condition the wakes remain fairly
simple, i.e. do not roll up within one wing span downstream of the wing
trailing edge. This leads to the conventional attached flow model in which
the vortex sheets is chosen as some appropriate, user-specified rigid surface,
rendering the resulting problem fully linear [2].

1.2 An overview of the computational methods on unsteady aerodynamics

In the course of developing computational methods to analyze complex
aircraft maneuvers, the simulation of unsteady aerodynamics and the
resulting wake dynamics is still an intriguing challenge. This time-dependent
fluid dynamic modeling capability is much needed in aeronautical disciplines
such as flight dynamics and flight simulation, and for time-dependent
structural load analysis. Computation of a vehicle’s stability derivatives, for
example, at the first stages of shape development will then allow early
flight simulation and evaluation of flying qualities. This capability will also
result in benefits at the more advanced phases of prototype testing where
experimental derivation of these stability derivatives is still limited and
costly. Models of vortex wake motion can contribute too, to the investigation
of leading-edge flow separation from swept wings, as would occur during
high angle-of-attack landings or maneuvering of high speed vehicles.
Similarly, estimation of rotorcraft vortex wake position can shed light on
some of the more complex problems associated with a helicopter’s flight

[3].

Detailed solution of the complete nonlinear fluid dynamic equations
along time-dependent flight paths is still in its initial phases [4]. The
expansion of the computational grid to encompass large wake histories
along curved, arbitrary path coordinates will only complicate the computation
and make it more costly. An alternative approach postulates the use of
simplified fluid dynamic equations while retaining the three-dimensional
nature of both an aircraft geometry and its flight path. Such simplified
fluid dynamic solutions were developed during the past years for inviscid
steady flows[5], and were successful in simulating high Reynolds number,
lifting, nonseparated, subsonic or supersonic flows.



1.3 Introduction to the wake analysis

In recent years, accurate analysis and reliable prediction of vortex
flows become extremely important to aerodynamicists dealing with modern
designs of fighter aircrafts, missiles and helicopters[6,7,8,9]. Modern fighter
aircrafts fly at high angles of attack during take-off, offensive and defensive
maneuvering, approach and landing. In this range of angle of attack, vortex
flows develop around the aircraft with dominant effects on its aerodynamic
characteristics and controllability. Modern designs of missiles require high
launch angles of attack and high maneuverability within which a very
complex vortex flow develops. For helicopters, the interaction of a blade
with the vortex wake of another blade affects its operating performance,
vibration and noise characteristics. In forward speeds, blade slap, a
predominant source of external noise, occurs due to the rapid time rates
of change of the blade pressure developing from its passage through a
tip vortex of a preceding blade[10].

For all these applications, one has to deal with strong nonlinear
aerodynamics. Compressibilty and separation of the flow are the main
sources of the strong nonlinear effects. As the flow Mach number changes
from low subsonic to transonic and supersonic, the flow undergoes several
qualitative changes and shock waves (detached or attached) appear in the
flow. As the angle of attack increases from low to moderate and high
values, the lift-"and pitching-moment coefficients become nonlinear functions
of the angle of attack. This nonlinear behavior of the total loads is
attributed to flow separations, from the wing edges (side and leading
edges) and the body leeward side, in the form of vortex sheets that roll
up into strong vortex cores[11].

Prediction of the coupled effects of nonlinearities; compressible and
separated flow nonlinearities, is currently receiving considerable efforts
from researchers working in the computational fluid dynamics (CFD) area,
but it is far from being complete. In the supersonic flow regime, a few
successful attempts based on the finite difference solution of Euler’s
equations exists. In the transonic flow regime, nothing is available yet and
several efforts have just started[12,13].



1.4 Introduction to the present code

The lifting characteristics and wake structure of highly swept back and
delta wings with sharp leading edges have lately attracted increased interest.
This is partially due to the the desirable performance characteristics of
those wings both at high supersonic cruise and at low subsonic short
takeoff and landing conditions. The low-speed, high-lift condition is obtained
with the aid of two strong vortices which emanate from the sharp leading
edges of the wing. During certain low-speed maneuvers these leading-edge
vortices might move and interact with the aircraft control surfaces, causing
nonlinear stability derivatives. Analytical studies based on nonsteady
aerodynamics of these conditions are still very limited, but this approach
can significantly increase the understanding of some critical flight conditions
(e.g., departure or stall spins).

Lifting surface methods based on steady aerodynamics for the calculation
of leading-edge separated flows are now fairly well developed and are
capable of solving the flow about complex geometries such as wing canard
combinations. Johnson and Tinoco’s[14] study is based on the experience
of the Boeing Company that developed its own code. Also Lamar and
Luckring[15] provides both experimental and theoretical data on
configurations utilizing vortex flows. The major disadvantage of these style
codes is the large amount of computer time required for complex wake
geometries, since the final bound vorticity and wake rollup is obtained by
an iterative technique. Moreover, the first assumed vortex wake shape
which starts the iterative procedure should be close to the final solution
to eliminate a possible convergence to an undesirable solution. Most of
the current iterative methods report that the first guess for the vortex
wake does not effect the final solution, but may increase substantially the
computation time.

A time-dependent wing-following, wake-shedding procedure can provide
both transient and asymptotic wake shapes and wing loadings without
utilizing the iterative method. A similar method was developed by
Djojodihardjo and Widnall [16] and was used later by Summa to solve
complex wake shapes behind impulsively started helicopter rotors and
wings[17]. These codes allow vortex rollup from side edges and wing tips
but not leading-edge separation.



A study of the unsteady aerodynamic loads with allowance for
leading-edge separation was reported by Atta et al.[18] and Kandil et
al.[19). They performed calculations for several nonsteady motions such as
constant rolling and pitching oscillation and developed a special triangular
leading-edge panel to allow leading-edge separation. An important feature
of their model is the calculation of the pressure distribution about the
wing with the local velocity distribution; that is, both forces and downwash
for the boundary condition were calculated at the collocation points while
other methods utilize the quarter panel vortex location for force calculation
and the three-quarter panel collocation point for the boundary condition.
However, the nonsteady vortex rollup was calculated by a complex iterative
method, and the inclusion of the velocity potential derivatives in the
Bernoulli equation is not reported clearly.

And finally, Katz formulated the nonsymettric motion of a slender
delta wingvia Vortex Lattice method including tip and leading edge
separations[20,21]. He performed calculations of the aerodynamic forces
and- time dependent wake rollup with non-iterative technique. However,
he assumed that flow is incompressible and irrotational.

In the present thesis, a new doublet-lattice technique was developed
for calculating the steady and unsteady flow about a three dimensional
thin wing, with or without leading edge separation. Both leading-edge and
trailing-edge wake rollup are determined numerically by a time-dependent
vortex shedding procedure that does not require an iterative technique as
do most present steady-state solutions. This considerably reduces the
computational effort since the final number of wake elements is obtained
only at the latest time step. Furthermore, the present method can provide
transient aerodynamic loads and wake geometries during the time-dependent
motion and improves the understanding of some vortex interaction problems.



CHAPTER 2. FUNDAMENTAL THEORY

2.1 Governing equation and boundary conditions

Methods such as doublet lattice or vortex lattice are widely used for
calculating the pressure distribution about lifting surfaces in steady and
oscillatory potential flows along a straight flight path. These methods can
be modified further to solve the time-dependent lift variations on the
wings of a maneuvering aircraft. While extending the steady-state lifting
surface model for the calculation of nonsteady flight along a curved path,
the following corrections have to be made:

1) Correction of downwash distribution on wing surface via a

transformation which enables the statement and linearization of the
~ nonsteady boundary condition of zero flow assumption across the wing
surface.

2) A modification in the pressure distribution term must be made, since the
Bernoulli equation includes additional nonsteady effects.

3) A nonsteady wake model must be constructed, which releases vortex ring
elements from the trailing edge as the planform circulation varies. The
strength of each element must satisfy Kelvin’s theorem of no net
circulation generation. An additional improvement that is strongly
recommended is the calculation of wake distortion in the wing-wake
-induced velocity field. This calculation can provide valuable information
about vortex wake shape and location behind the aircraft.

Modifications 1 and 2 are carried out by solving the problem in a
non-inertial frame of reference that follows the wing in such a way that
its x direction is always tangent to the flight path. The orthogonal
displacement in this system is limited to small displacements. However,
the path curvature should be such that the flow disturbances caused by
the wing should remain small.

Lattice methods as well as the present method assume that viscous



effects can be accounted for by proper modeling of the flow. That implies
that information such as the location of separation lines and strength of
the shed vorticity is to be supplied by an experiment, flow visualization,
or viscous flow calculations. When such information is provided to the
potential flow model, the wake rollup and pressure distribution about the
wing can be calculated. Air considered to be an ideal gas. Viscosity and
heat conduction are negligible. The basic assumption of such a model is
that flow is isentropic, irrotational, and homogeneous over the whole fluid
region excluding the wing and its wake. The difference of this method
from the other lattice methods is the compressibility effect. The flow is
compressible and includes only subsonic region.

With the above definition the continuity equation in a stationary inertial
co-ordinate system (x*, z*) (see Fig. 1) is

v2%* =0 (2.1)
where ¢* is the time-dependent velocity potential due to the wing motion
and- its wake. This potential can be separated into the plate disturbance

potential ¢o* and the wake potential ¢w*, assumed to consist of distributed
vortices situated on a deforming sheet (see Fig. 2):

@ (x*,2*1*) = ¢0* + pw* = ¢* (2.2)

The boundary conditions for Eq. (2.1) are as follows.
(a) There is no flow through the wing surface z*=h(x*t*):
0¢*/0z* | on wing = 3¢*/dx*. Ah(x*t*)/ax* + Oh(x*,t*)/dt* (2.3.2)
(b) The disturbance decays far from the wing surface:
Vg* > 0as [x*],[y*],]z*| - . (2.3.b)
Furthermore, for the nonsteady flow, some kind of angular momentum

conservation is required, i.e., the overall circulation I' generated in the
fluid must be zero (Kelvin’s condition)



drydt = 0 (forallt) (2.4)

To obtain a unique solution of the wing circulation [ through Egs.
(2.1-24)] a smooth tangential flow at the trailing edge is also assumed.
This condition is known as the Kutta condition, which requires finite
velocities at the trailing edge. In terms of the velocity potential ¢ this
condition can be imposed via the formulation

V¢ < « (atthe trailing edge ) (2.5)

The instantaneous pressure P at each point on the wing is calculated
from Bernoulli’s equation:

(Poo-P)/p = - 1/2[ (3¢*/3x*)% + (3¢*/32%)2 ] + ogp*/ot* (2.6)

The solution of the boundary-value problem (2.1)-(2.4) is very
complicated owing to the wing surface condition (2.3). This difficulty is
overcome by transforming the problem, which has been stated in the
inertial frame of reference (x*,z*), into a system (x,z), where the boundary
condition on the wing surface is more easily stated. This transformation
is

x = cos[O(t)].[x* - Sx*(t)] + sin[O(V)].[z* - Sz* ()] ,
z =-sin[O(t)].[x* - Sx*(t)] + cos[O(D)].[z* - Sz*(1)] , 2.7

t=t*

where 0 is the inclination of the (x,z) co-ordinate system relative to
the (x*z*) frame and (Sx*Sz*) are the path components (Fig. 2). The
transformed continuity equation is

vZ=0,

$xz,) = @0 + pw=¢ (2.8)
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The potential ¢ is defined only in the inertial (x*,z*) system because
definition of a non-rotational velocity potential in the rotating frame (x,z)
is impossible. Therefore the derivatives d¢/ox and d¢/dz are the velocities
parallel to the x and z directions as measured in the (x*z*) system.

The transformed boundary conditions are

390/0z|z=0 =
[ U(t) + 8¢/0x].0h(x,t)/0x + dh(x,t)/dt - dpw/oz+wx = Wij  (2.9)

where @ is the time-dependent angular velocity vector of the (x,z) frame,
also

Vo - 0as [x],|yl,|z| » =,

(Poo - P)/ 1 = {[z.0 + U(1)]5/x - x.00.8/3z + 8/3t }p-1/2[(3/3x)* + (8¢/8z)°]
(2.10)

According to Katz [22] the crossed-out terms can be neglected, since
the velocity perturbations are small compared to the freestream velocity
[U@t)> > aglox, opldy, d¢/az]. Furthermore, in Eq. (2.10) the terms containing
the angular velocities also can be neglected, as their contribution to the
pressure difference across the wing is symmetrical. The general solution
of Eq. (2.1) is a sum of doublet and source distributions on the wing
geometry and doublet distributions on the wake region.

In order to solve the potential ¢ , its derivative with respect to z
(while z-»0) is compared to the downwash in boundary condition, Eq.
(2.9):

Wij = -[(U(t) - ry )(dh/ox - sin ai) - qx + p.y + dh/dt ] (2.11)

where U=U(t) and z=h(x, y, t) are the momentary flight velocity and
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orthogonal wing displacement, respectively, while (p, q, r) are the angular
velocity components. Also ej is the attack angle of each panel.

2.2 Method of solution

Before describing the method it will be beneficial to lay some
groundwork on the basic building blocks used in this method. The method
is based on the classic subsonic source shown in Fig. 3 (m=1). More
actually speaking this method uses velocity and pressure doublets (double
sources) which can be derived from the classic subsonic source.

Fig. 4 shows graphically how two sources (source and a sink) are
combined into a double-source and how, in the limit, the result is a
doublet. Lines with arrows indicate streamlines. Lines without arrows
indicate lines of constant potential. There is a jump in potential across
the doublet point. The double-source or doublet strength, A¢, is equal to
the limit of 0AN as AN goes to zero and o goes to infinity. Source flow
is radial, outward (source) or, inward (sink). The velocity doublet acts
like- a pump sucking fluid in one side and pushing it out the other. The
implications of placing a distribution of such doublets on a surface is
shown in the next figure.

Fig. 5 illustrates the equivalence between doublet distributions and
vortex lines for two simple but practical examples. A derivation of this
eqivalence for the general case of variable doublet strength placed on an
arbitrary surface is given in Ref. [23]. The horseshoe vortex shown in this
figure is a very practical aerodynamic device which is used in both the
Vortex and Doublet Lattice Methods. It also is equivalent to the pressure
doublet, shown in Fig. 6, for the steady case (as the width of the horseshoe
vortex becomes small, i.e, a doublet line extending from the doublet
origin to downstream infinity).

The basic concepts associated with the pressure doublet are illustrated
in Fig. 4. The pressure doublet comes from a linear combination the
space (x) and time derivative of the potential. Since these derivatives
satisfy the basic differential equation so does a linear combination of such
variables. If a linear form of the pressure equation is used, then Cp itself
satisfies the basic differential equation. An expression for a pressure doublet
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can then be written analogous to the potential doublet where Cp replaces
¢ and ACp replaces A¢. Fig. 4 presents an outline of this process.

In Fig. 4 the lines of constant ¢ are shown for a potential doublet.
Fig. 6 shows the same pattern for lines of constant Cp. The pressure
doublet is considered to be a very convenient aerodynamic device to use
in solving lifting surface problems since it is caused by a pressure differential,
ACp, across the lifting surface. Since there is no pressure discontinuity in
the wake of a lifting surface, ACp = 0, only the lifting surface must be
considered when using the pressure doublet. It has been said that it is
more convenient to use than methods that treat the wake separately and
explicitly.

The general solution of Egs. (2.1-2.4), according to Green’s theorem[24],
consists of a doublet and source distribution over the wing surface. However,
for the lifting problem solution, the vortex distribution, which is derived
from the doublets, is sufficient. It has been shown in Ref. [25] that the
velocity induced by a doublet distribution can be expressed as the velocity
induced by a vorticity distribution plus the velocity induced by a concentrated
vortex along the boundary of the distribution. Furthermore it has been
shown in the same reference that the components of the velocity induced
by a vorticity distribution can be expressed in terms of the components
of the velocity induced by a source distribution. It is therefore sufficient
to evaluate the integrals associated with the velocity induced by a source
distribution on a wing panel and by the concentrated vortices along the
edges of a wing panel and by the concentrated vortices along the edges
of a wake panel.

To obtain the velocity induced by the source distribution on the
configuration in subsonic and supersonic flow the same procedure is
followed as in Ref. [26]. In this procedure the components of the velocity
induced in subsonic and supersonic flow are obtained from those induced
in incompressible flow by applying the Gothert transformation and a
generalized Gothert transformation respectively. Thus as far as the evaluation
of the integrals in the velocity induced by source distributions is concerned
it suffices to consider the velocity induced by these distributions in
incompressible flow.
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Therefore, the wing planform of Fig. 7 was divided into panels as
shown in Fig. 8, and at each panel a vortex ring and a source was placed.
Also a collocation point [where boundary condition (2.3) is fulfilled] is
placed at the panel center. By selecting the vortex ring representation,
which is a partial solution of Egs. (2.1-2.3) the Kelvin condition is also
fulfilled [Eq. (24)]. In addition, the separated vortex strength It is

. adjustable to simulate various leading-edge radii. In this study, however,

sharp leading edges were assumed; consequently, the leading edge separated
vortex strength was set equal to the corresponding triangular panel strength
T'n.

The extension of this model, in order to construct a three-dimensional
vortex-panel element, was found to be sufficient to satisfy Eq. (2.5). Then
for the complete solution of the problem, in terms of the unknown bound
vortices I'bi , only boundary condition (2.3) is left to be solved; i.e., the
induced velocity (9¢/dz)ij due to the wing vortices and its trailing edge
wake elements I'ti and leading edge wake elements I is given at each
collocation point by,

(8¢/3z)ij= [Abij1| Tbi | + [Atg]| T | + [Aj]]| Tn (2.12)
in =l tam

the first term on the right, [Ab] stands for all the influence coefficients
resulting from the Biot Savart bound vortex influence calculations. The
second and third terms [At] and [Al] represents the influence coefficients
of the trailing-edge wake I'ti and leading-edge separated elements I, and
their strength is known from previous time steps.

In order to fulfill Eq.(2.3) the sum of the velocities relative to the
panel must be zero,

wij + (0¢/9z)ij = 0 (2.13)

and by substituting Eqgs.(2.11) and (2.12) into Eq.(2.13),



14
(u"r')'i)(%% -sinxt)-q.xi-x- p-y;+ oh

=[A]- | % [ +[Ad-[ R +[A]. T

izh i=m i:(,

(2.14)

2.3 Determination of aerodynamic influence coefficients

Three types of aerodynamic influence coefficients can be distinguished,
namely:

i) the coefficients associated with the influence of source distributions on a
wing panel

ii) the coefficients associated with the influence of doublet distributions on
a wing panel

iii) the coefficients associated with the influence of doublet distributions on
a wake panel.

The velocity components induced by the wing source distribution, which
have two contributions one from "leading edge" and the other from "trailing
edge" source distributions, are

B bwl ::: U‘5|'H+ USJ‘L (2.15.a)
with AT "{e“l’
U5L =L J J (S J] - .-,d§ (2.15b)
o 4 >3-« xn@z) =
zt, ‘"’Zf d'Z J qt (-% 'Z) T 5 (2.15.c)

41 le(‘l)
The velocity components induced by the wing or wake doublet
distribution are the sum of vorticity distribution of the panel and edge
vortices along the inboard and outboard edges of the panel.

The first component is obtained from the correspondence relation
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between source and vorticity distributions. The velocity components induced
by a constant wing source dlstnbutlon are given by,

Yi+e f.e('z)
sc =am j Trtfs ds (2.16)
i xg)

Now, the wing vorticity distribution can be written as the sum of "leading
edge" and "trailing edge" contributions as

E’ U + U (2.17.a)
wp, = Tdlp, T Tdte,
with —_— — — — —
Ule. = USl.i (62 :"%—1 e‘z. :Vl-( c)' - x) (2.17.b)
1
U‘ﬁP =- U dip + U (ez.» % Q.z ) vte)'" eX) (2.17.¢)

I+}

where ex, ey, ez are the unit vectors in x, y and z, respectively.

The second component can be written in similar terms as done in
the first contribution,

a'we,. = Ud[e... + Ud’cel ™.
with °
U, = €. XR.
e, =55 (5 )f ) o

n' (ex X RJ‘I'])X{ (:‘Ut‘. (g) “Z ‘3 (2.18b)

(exxR_,) f (g)d |3
e X e ‘g (2.18.)

I i ) j 5t 5 Toym?

where Rk = (x0 - & yo - yk ZO)

2.4 Evaluation of the integrals of aerodynamic influence coefficients

In section (2.3), the aerodynamic influence coefficients are written in
integral form. The solution of these integrals are shown in Ref. [26]. In
this section, solution of these integrals are given for incompressible flow
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and for subsonic flow according to Ref. [25]. Essentially, the integrals are
solved for incompressible flow and the resulting expressions for subsonic
flow are computed through the application of Gothert transformation.

2.4.1 Incompressible flow
2.4.1.1. Source distribution on a wing panel
The velocity components of the source distribution on a wing panel

which have two different contributions are given in the wing panel coordinate
system, Fig. 9. The contributions from the “leading edge" distributions are

k 4 k v, -Y, k V-2 -k
Dgl. =— ..ZF..b-Vb ' "G G
Slt 4TrAi { 1 ( 17k k ) 17 J
k o1 b l>”""= el hay ik gk
Vsl = A, [VZF+( 1"::) T2 2 3
Wk - [ bE Sz ()6, zek] kel234 (219)
L ATA;
The contributions from the “trailing edge" distribution are
k k VoV o %% Gk
A zF by b G "‘()"‘yk 5t 3
U$ i=4ﬂ'A,,[ ( Kk 1-&\"‘ ) ) 1'}\72 d
AN
K VoV 64-196 2’k .6
Yot = 41TA1{%ZF (b 1+vz) vz 2

k4 k
‘Uﬁ't-: ) [‘l‘ l?z'F(k"z@ Dk) 6 -]-VZ 62] k”‘:2c314 (2.20)

The velocity induced by a constant wing source distribution is

4 k
U§t=-( /411)'6

Vi (Yar) (&% S)

k 4 k
w:,ci.= - ( /4‘")° F:' ’ k=4I21344 (2.21)

where the elemantary functions Flk, Gt X G> 2 G3k and bk are
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2.4.1.2. Doublet distributions on a (wing and/or wake) panel

The velocity components induced by the doublet distributions, see Fig.
10, are divided into two distributions one from vorticity distribution, and
the other from concentrated edge vortices. Each of them has two
contributions from leading and trailing edges on a panel.

‘The velocity components induced by the panel vorticity distribution
are given in Equation (2.18). The "leading edge" contributions of the panel
concentrated edge vortices are

k
Ud(e-t = 0
k k - k
Vi, =-2. 6 + X=Xk .63]
' BIA;

(YY) K
Z * Vd’.ﬁ i

k
Wdlei == (2.23)

The "trailing edge" contributions of the panel concentrated edge vortices
are '

U:*‘cl = O
k k { k
v = - V N E‘ S ——————————— g 6
de; = = Ydley *4rr[ty~yh>=+z= 3]
k (y-y k
Wd\‘.e.-l = .__;_“)_.. ; thei

(2.24)
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2.4.2. Subsonic Flow

The components of the velocity derived in section (2.4.1.) are in local
coordinate system of each panel. To calculate the velocity components in
subsonic flow, the Gothert transformation should be applied.

2.4.2.1. Source distribution on a wing panel

The "leading edge" contributions from wing source distribution are

k K k Yie~-Wt k Y-y k]
US : =m[zﬁc"(b k K_pzyz) .'(y‘yl‘-)e I:z ;;z 636
]

kK [y onsfb )6k b 6k B gk
Vslt=4n'Ai[ wFerlicf o I

k K Fk z(-2y, )6 -2.2.6 kei,2,3 4
=% ——— -~ ey Ldend N 4 1 2% { et 4 2-25
wil.L “rl[11c (/3 1 K) c 26] 4 (2.25)

The "trailing edge" contributions from wing source distribution are

k -
U5 ”—24’-.&—; [ -zh, +(bz bkvk zvz)ek"<y yk.) k Qk &Gk}
L

Ty

Y, X R
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k

ue=- (55 .

Vk K/u) ( 1& )

we = (%) F-;'Z s k=1,2,3,4

(2.27)

where the elemantary functions F1ck, Gick, Gzck, G3ck and bk are defined
as



19

EX o ot Z0C (242
yk' (Yz-:-Zz)-X.Y

- 2

6:2 _ _ . sink 1 Y4y X
(9% B(BR +(F492).2%) Yo

Gzl:,‘ = 6inh—4 X

(o (v2+22)le
k 2, p2/Vv2, o2 1/2
63(:: (x 'i'/.): (Y*+z ))
with

b oo Xo3}.Y
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2.4.2.2. Doublet distributions on a (wing and/or wake) panel

The "leading edge" contributions of the vorticity distribution on the
panel are

Sli

k k
ulei = W

k k
Milp, = =% W,

k k 2 k Ie=
Wle{= )?‘o vsl" —-ﬁ USL{ 2 k—4,2,3,4‘ (2.29)

The "trailing edge" contributions of the vorticity distribution on the panel

are k ) k k

Ve -l ked23,4
P ¢ i (2.30)
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The "leading edge" contributions of the concentrated edge vortices on the
each panel are

k
Ud[ei-'-‘.'o
k. zK | 42 X-Xk 3
Vilo, = G+ G
dle; BITA; {(5 e (y-y, )+2* sc.]
koo %) vl ka 231
Wit ==~ 2L Vg, kedi23,4 (231)

The "trailing edge" contributions of the concentrated edge vortices on the
each panel are

174
Udte. = 0

zK { k
the = Vd(e [ &

A [ly-yhrez> >¢
k (y-y) i

Wite; =~ % Vdte, 1 k=1,234 (2.32)

2.5 Calculational procedure of the system of equations

In order to deal with the arbitrary nonsteady motion of a wing, and
to enable the study of wake distortion, a detailed wake model was
constructed[27]. The wake and wing circulations must fulfill Kelvin’s law
(Eq. 24) for each time step; i.e, the overall circulation generated in the
flow must be zero, otherwise, the model will consist of closed vortex
rings. At each time step, when the solution of the wing circulation (or
potential) is solved, the wake elements are allowed to deform in the
wing-wake-induced velocity field.

The application of steady wing theory solutions to the nonsteady flight
problems in curved flight involves three major modifications. The first two
are the wing surface downwash correction and a more detailed wake
model, while third change results from additional d@/ét term in Eq. (2.6).

As previously stated, in Eq.(2.14), (p,qr) is the rotational motion
around the (xy,z) axes correspondingly, U(t) is the momentary far-field
velocity, and a; is the panel angle of attack. The heaving motion of the
panel relative to the (x,y,z) axes is hi(t), and its effect on the downwash
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is the Ghi/Gt term. The first term on the right, [ Ab ], stands for all
the influence coefficients resulting from the Biot Savart bound vortex
influence calculations. The second and third terms [ At ] and [ A1 ]
represents the influence coefficients of the trailing-edge wake I'i and
leading-edge separated elements I'li, and their strength is known from
previous time steps.

Eq. (2.14) is derived for all n panels on their collocation points
resulting in n equations with n unknown TIbi at each time interval. If
wing shape is not varying during flight (flap motion ailerons, etc.) the
coefficients Abij are constant and their calculation is performed only once.
The calculational effort of Anj and Adj increases with time as the number
of wake elements grows. This must be performed at each time interval
since wake rollup changes the geometry involved in its induced velocity
calculations.

To demonstrate the calculation procedure it is assumed that at t=0
the wing was set suddenly into motion. The first calculation takes place
at t=to as it is shown in Fig. 10, and the spanwise wake vortex is placed
in the midinterval traveled (1/2UAt). For the linear (not separated) transient
calculation there is no direct coupling between the panel length ap and
the time step, but for more precise accuracy the nondimensional time
step should be smaller than 0.2 (AtU/c<0.2). For separated flow, however
it is recommended that the time steps and panel lengths should be of
the same order of magnitude (AtU/ap=1) to prevent the separated wake
elements from being too close to the wing collocation points [20].

After the first time step the momentary position and angular motion
of the wing are known and the geometrical boundary condition for the
downwash [left side of Eq. (2.14)] is determined. Then the influence
coefficients [Abij] are calculated while [Atij]=[Alij]=0 for the first time
step, since there is no free wake elements shed as yet.

(U..ry‘)( smex) qx+py+%% ""[Ab] f[,

% (2.33)
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Solution of the above equation is required the evaluation of the
aerodynamic influence coefficients which are described in Section 24.
Gauss elimination method is used by partial pivoting of coefficients for
solving the unknown strengths of panel singularities. At this point the
bound vorticity strength I'bi is solved and the wake rollup step is performed
by moving the wake points shed at t=tp.

2.6 Modelling of the vortex wake

The modelling of the vortex wake, which is shed at the wing leading
and trailing edges, is performed by releasing vortex segments at each time
interval At, see Fig. 11. As above calculations are completed the wake
deformation is simulated by calculating the downwash at each vortex edge
location (u,v,w)i in Eq. (2.34)

(u,v,w)i=[/\bw]. rf,\, +[Afw]- TL. +[Al,w]‘ rl'i

{=n l=m {=l

(2.34)

which is similar to the right hand side of Eq. (2.14), but here Abwij,
Aswwij, and Alwij are the influence coefficients relative to those vortex edges.

The solution algoritm of above equation same with Eq. (2.33) but
here the wing and wake elements induced velocity to the wake elements
edges. Here the separated leading edge wake, trailing edge wake, and
wing vortex elements is I, m, and n, respectively.

The motion of the wake element points (Ax,Ay,Az); is then calculated
by the use of Eq. (2.35),

(8x,4y,82); = (Uv,w);. At

(2.35)
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2.6 Calculation of aerodynamic coefficients

To conclude the calculation procedure for a given time step, the forces
acting on the foil are determined by applying the nonsteady Bernoulli’s
equation as derived before. That is,

Pu;)- (U ry) 9¢ at 2 [( )+(§$)Z+ (%ﬁ_)z

(2.36)

By integrating the pressure along a given panel with length of Axj=xi+1-%i
and by neglecting smaller terms [U(t)> > (3¢/dx),(3¢/dy),(d¢/dz)] and
assuming r=0 for the present calculation, the following expression for the
pressure difference AP; across each panel can be derived:

2 X 2
AH:-.ZSB; [(x 2 gx) Ay, + ( vj 29 dy

i1 Vi~
+J ( f 23 dx) A 237)
1-4

also Eq. (2.37) can be rewritten for the normal force per unit width on
the panel, Xt

AR, = AP As; = 2p( uf 3¢ dx+fbt {a“‘ dxdx)

X
5 i l+1 Ax
3?{“‘5*5‘{[(1§amk e ) ]

Here the summation

(2.38)

is performed along the chordline only, starting at the leading edge panel
ahead of the panel that its normal force AF; is to be calculated. The
momentary lift, drag, pitching moment, and rolling moment coefficients
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(assuming no leading-edge suction for the separated flow) are obtained
by integrating each panel normal force AF; along the wing surface,

n
C = I; AF; cosoqﬁz_. 9 u2s (2.39)
Cp = % AF;. sinoc/;_‘S;U?s (2.40)
Con= é AF;. x/% guz.s.c’ 2:41)
Cp= g; OF; ¥, é_—guz.s.c (2.42)

where S is the wing area, ¢ is the chord and b is the span of the wing.

Once the above described calculation is completed, a time increment
Dt is added and the wing is advanced to its new location. Then a vortex
ring is shed both at the trailing-edge and leading-edge panels. The strength
of the latest shed vortex ring is set equal to the shedding vortex strength
at the previous time step. As the wake shedding process is completed,
the -bound vorticity is calculated by Eq. (2.14), the wake rollup performed
with Eq. (2.35) and the forces and moments acting are indicated by Egs.
(2.39), (2.40), (2.41), and (2.42). The above calculational scheme is then
repeated for the additional time intervals. This scheme is numerically
stable since iterative calculations are not required and, even with a
reasonably high number of wing panels and wake elements, the vortex
core distance from collocation points is far from being critical.



CHAPTER 3. RESULTS OF APPLICATIONS

3.1 Definition of the configurations

The program can handle any configuaritons of a wing. The number
of inputs depends on the number of components of the configuration and
on the detail used to describe each component. Three sets of inputs can
be distinguished:

(a) Configuration geometry input information, which defines the geometry

(b) Parameters concerning the solution procedure, output desired and

computation of aerodynamic influence coefficients

(c) Free stream data. This defines the Mach number, angle of attack and

angle of yaw

In the following each set of input cards is described in detail.

(a) Eirst input card

TITLE - It may contain any desired information identifying the
configuration to be input.

REFWA - Reference area to be used to non-dimensionalize computed
forces and moments on components of the configuration. If not specified
its value is set equal to the default value 1.0

REFWS - Wing semi-span. If not specified a value of 1.0 is used as
default value ]

REFWC - Wing reference chord, used to non-dimensionalize computed
moments on components of the configuration. If not specified a default
value of 1.0 is used

REFX - x-coordinate of the moment center. If not specified a default
value of 0.0 is used

REFY - y-coordinate of the moment center. If not specified a default
value of 0.0 is used

REFZ - z-coordinate of the moment center. If not specified a default
value of 0.0 is used
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NWS - Number of airfoil sections used to define the wing segment

KWX - Number of ordinates used to define each airfoil section of
the segment

XWREF - This wing data records contain the KWX locations, in per
cent chord from the airfoil leading edge, at which the coordinates of the
NWS airfoils describing the segment are to be specified. The locations
are given in increasing per cent chord order. Note that the ordinates of
all NWS airfoils describing the segment are to be specified at the same
set of per cent chord locations.

WFORG - The next NWS data records each contain 5 numbers, which
define the origin x, y, and z values, chord length and the leading edge
radius of the airfoil sections describing the wing segment. For each wing
segment the airfoil section at the smallest yref-value is input first, followed
by the airfoil section at second smallest yref-value, etc.

ZWREF - This set of records specifies the KWX values of the
half-thickness at the corresponding KWX per-cent-chord locations of the
NWS airfoil sections defining the segment and ordered in the same way.
The half-thickness is expressed in per cent airfoil chord, and is defined
here as being perpendicular to the plane parallel to the xref-axis and
passing through the leading edge of the segment.

KWY - Number of airfoil sections used to panel the wing segment.
If KWY =0 the panel’s streamwise edges are defined by the NWS airfoil
sections, otherwise the program interpolated linearly between the airfoil
section defined in (a) to obtain xref and zref-coordinates at the
yref-coordinates to be specified below.

YWREF - This record contains KWY values of the yref-coordinate of
the airfoil sections used to define the side edges of the panels. These
values are arranged in the order starting at the airfoil at the lowest yref
continuing with the airfoil at the second lowest yref, etc.

(b) Second input card

ITER - Wake iteration number. Iteration number is non-zero for
unsteady wing solutions

LTS - 0 Permits both leading- and trailing-edge separation
1 Permits only trailing-edge separation
-1 Permits only leading-edge separation
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(c) Third input card

MACH - The Mach number, subsonic or incompressible, at which the
aerodynamic data are to be computed.

ALPHA - The angle of attack, expressed in degrees, at which the free
stream is inclined to the zref = 0 plane

YAW - The angle of sideslip, expressed in degrees, at which the free
stream is inclined to the yref = 0 plane. Sideslip is zero for this version.

The wing segments first must be divided into a number of strips
spanwise parallel to x-axis. This is a restriction for wing components. The
wing components are divided into KYW strips times KXW streamwise
panels on each strip.

In steady state solutions, the "lift-carry-over" segments must be handled
separately, Fig. 12. It is noted before that the "lift-carry-over" segments
do not have collocation points on them and have the singularity distributions
equal to the first adjacent strip of the wing components. The wing
components have panel type (A) on the wing and panel type (B) on the
wake shown in Fig. 13.

In unsteady state solutions, wake segments have own collocation points
like wing segments but they do not have source distributions. Also their
panel type is similiar to wing components, panel type (A).

The configuration is geometrically and aerodinamically symmetric
according to the yref=0 plane. This symmetry reduces the number of
unknowns by half because applying the boundary conditions on the
collocation points of the starboard side of the configuration will be enough.
The influence of the port side of the configuration to the starboard side
should be included in the influence coefficients matrix. The singularity
strengths will be identical for the symmetry panels. Also in steady case,
the flow around the configuration may be computed for different angles
of attack without solving the system of equations again.
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3.2 Structure of the computer code "WAEROQO"

In this section, a short description is given of the capabilities of the
computer code developed. This code consists of seven main subroutines
in the three part as follows;

(a) Geometry

WINPAN - This subroutine reads necessary data from input files. The
geometry of each segment is defined by its planform and any number
(>1) of airfoil sections. The airfoil sections are described at the same
array of percentage-chord positions. From the input data on the geometry
and additional data on the desired panel scheme for the configuration the
program computes coordinates of panel corner points and panel collocation
points, panel inclination and incidence, panel area, etc. All these data,
which are needed in the computation of the aerodynamic influence
coefficients, are stored on auxilliary files.

(b) Aerodynamics and Solutions

INFWIN - This subroutine calculates aerodynamic influence coefficients
matrix for wing panels [Ab] which are effected by the other wing panels.
The geometric knowledge which are in the auxilliary files are used in this
calculation procedure. For the unsteady case after the first time step, for
wing ‘panels [Al] and [A:] matrices which are effected by leading- and
trailing-edge wake panels are computed in this subroutine.

SOLWIN - This subroutine solves the aerodynamic influence coefficients
matrices based on wing panels according to the Gauss elimination method
by partial pivoting of coefficients.

INFWAK - This subroutine calculates aerodynamic influence coefficients
matrix for wake panels [Abw] which are effected by the wing panels. Also,
[Aw] and [Aw] matrices which are effected by the other wake panels are
computed in this subroutine.

SOLWAK - This subroutine solves the aerodynamic influence coefficients
-matrices based on wake panels according to the Gauss elimination method
by partial pivoting of coefficients.

MOVE - This subroutine translates the wake elements with downwash
velocity components to the new locations.
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(c) Results

WCALC - In steady case, the pressure distribution on the wing is
computed using the first-order formula of the Bernoulli equation. In the
same fashion in unsteady case, nonsteady term is added to the Bernoulli
equation for pressure calculations. The output of this subroutine consists
of pressure distribution, forces and moments.

MCALC - This subroutine is computed velocity distribution on the
wing for given time step and found the Mach distribution around the
wing.

3.3 Results

The computational method dealt with two different kinds of wing
geometry. First geometry is rectangular planform wing geometry. Aspect
ratio is 2.0, profile of the wing is supersonic, symmetric profile which
described in Fig. 14. All wing geometries divided to 200 panels and all
anaiysis are in subsonic region with small angle of attack.

The output data of the present code are shown on the 3-D images
of the geometries as pressure coefficients (Cp) and mach contour
distributions which includes both upper and lower surface of the wing
geometry. The results of the rectangular wing geometry with respect to
angle of attack at two different Mach numbers are shown in Fig. 15 to
20, respectively. Fig. 21 illustrates 3-D images of the pressure coefficients
and topological behaviour of the pressure contours at zero degree angle
of attack. In this figure, Elliptic pressure distribution over the wing is
easily seen. Figures 22, 23 also illustrate same thing at ten degrees angle
of attack. Fig. 24 shows pressure differences between upper and lower
surface of the wing at ten degrees angle of attack.

Second geometry is 70 degrees swept angle delta wing. Figure 25 gives
some information about this wing geometry, profile of the wing is same
with first geometry. Figure 26 to 31 illustrate the results of pressure
coefficients around the delta wing. Figure 32 shows the pressure distribution
evaluation with the angle of attack at some different location on the wing,
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It can easily seen that pressure will grew up with the angle of attack,
directly.

Figure 33 and 34 shows that classical wake development differences
from unsteady wake development. Both of this figures are in 0.6 Mach
number, 0 degree angle of attack. In unsteady wake development At=0.1
and time is t=0.2 . Fig. 35 includes lift, drag and rolling moment
coefficients behaviour with angle of attack at classical wake solutions.



CHAPTER 4. CONCLUSIONS

The present thesis is based on the potential theory. The aim of the
thesis was to comparison the unsteady wake development with classical
wake approximation "panel" methods at incompressible and subsonic flows
around different wing geometries. The results and outputs of applications
show that, the subsonic flow is well modeled with classical wake
approximation. In the unsteady case, the non-iterative technique was
developed and this technique must be improved and used in a lot of
configuration and flow regimes.

Also there exist possibilities for improving the computational efficiency
of both methods through:

- vectorization and/or parallelization on supercomputers
.- reduction of operational count for the evaluation of influence integrals
- new formulations and improve numeric techniques.



FIGURES
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Figure 1. Schematic description of the foil motion and the co-ordinate
systems used.
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Figure 2. Schematic description of the wake model.
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Figure 4. Schematic description of the potential doublet, Ref. [11].
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Figure 5. Relation of doublet distributions to vortex lines, Ref. [11].
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Figure 7. Overview of the wing planform and co-ordinate system.
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Figure 8. The panel scheme on the configuration.
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Figure 10. The doublet distribution on a strip of the wing.
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Figure 12. 'Wake surface at steady panel method algorithm.

Figure 13. Panel types used at steady panel method algoritm.
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PRESSURE CONTOURS ON RECTANGULAR WING
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Figure 21. 3-D graphical representation and topology contours of the
pressure coefficient distribution over the wing at 0 angle of
attack



49

PRESSURE CONTOURS ON RECTANGULAR WING

T.E. oces
= 0.18 0.18 0.16 —_ 10608 .
— 0.24 0.24 0.24 :
N ——
——0.32 0.32 0.52 0.24
072 - 82— T
F— 0.4 04 ————— 54 0.32
048 048 —0 D 0.4
L O.48
0.50 - o~56 i
+ 0.5 \
r 0.5 O4¢,
064 —————— 564 6 T 8
- * x\v—.
087 = —072 —— oy 044 \‘\Qsi
088 —— m’g’%\\b\\m
=t ——— 0% w
L.E'0.05 i S et S £ s e e e WS I S R 8 G e e e P M

C.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 180

Cp

<

Jo sl

o
V_l_lll/llll/)Jlllllll/lllllllIIJ_LIIII

v d

Figure 22. 3-D graphical representation and topology contours of the
pressure coefficient distribution on the upper surface of the wing
at 10’ angle of attackatM=04



50

PRESSURE CONTOURS ON RECTANGULAR WING

T.E. oses

—

—— —1.39E-017 —1.39E-017 —1.39E-017
C 8 o8 0.08

——o0.08 0.0

0.72
—

o008 ————
0.08 0.08

€.50 - 0.08
t————————?.sge—ow\ \
~1.395-017 0
——-o0e oo U "0
—-0.16 -~ - — 79R-017
CR7T B oo Y —— S —- 1 Y
E -0.32 -0 S S —————— 01 { G
=0.3 >h4 e —— S 0 R
0.487+ 0% i =
-0.84 0.64 = I —————— {5+
LE c.05 T T T T 1 I T T T T I I T T T .
b c.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.0

Figure 23. 3-D graphical representation and topology contours of the
pressure coefficient distribution on the lower surface of the wing
at 10’ angle of attackat M=04



51

PRESSURE CONTOURS ON RECTANGULAR WING

T.E 0.95 e s—
.43 0,13
— 4§ o2 032 PP ——
57 27 027 0.7
032 034 0:34 KV —
.22 0.42 Xy N ———
0.72 = 0.49 0.49 0.49 —«—N‘o‘;gz
—0.56 0.56 0.55 ﬁ
0.50 t 056
N Y 0456
- __________,_’_-049
0.27 — 0.49 ’__’___.—-——-——049 042
: \ /027
L.E.O.OE,hlllLl!LIllJILIIIII IIJIIJ_LIK L1
0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.70 1.0

Figure 24. Pressure differences between upper and lower surface of the
wing at 10 angle of attack at M=0.4



52

/

2y/b=1.03

2y/b=1.44

=
[ L L

N
N\

o\
AN
7

A

7
A A

IARN
Wz

L.E.

1 T.E.

Figure 25. Geometric definition of delta wing with 70 swept angle.



53

M

0.4 M=0.6

0.40 0.40
0.30 3 0.30
0.20 3 0.20

0.10 //\ . //—\

o.oo: A \ o.oo; V4 \

._Cp

~0.10 ~0.16 3
-0.20 ~6.20 ]
~0.30 et e T v -0.30 = S — rerr
0.00  0.20  0.40 060 080  1.00 000  D0z20 040 0.0 080 1.
Wing chord dis.(x/c) Wing chord dis.(x/c)
0.40 0.40
0.30 3 0.30 4
0.20 : 0.20 3
1 : i E
] ] :
9 4 : b L
0.10 0.10
(=5 3 H [N 4
& s \\ s (b) & N\
0.06 Frerrenes : 0.00 3 } ;

-0.10
Ei : : ]
~0.20 4 ~0.20 4--
—0.30 Frrrrrrrrr e T T ~0.30 Frrrrrrrr S S— SN T
0.00 020 0.4 060 080  1.00 000 020 040 060 080 1.00
Wing chord dis.(x/c) Wing chord dis.(x/c)
0.40 0.40
]
0.30 3 0.30 3
0.20 4 0.20 3
] ]
0.10 0.16 4
2 4 T 0, a
gi © 5
: : \\\ c : ] '\\
0.00 7 0.00 3
] AN ] AN
-0.10 ~0.10 ¢
~0.20 3 -0.20 3
=0.30 e T ~0.30 T rrrrrrrTHeTErTTT
800 D2 1.00 0.00 0.2 .80 1.080

20 040 0.0 080 0 Q.40 060 O
Wing cherd dis.(x/c) Wing chord dis.(x/c)
-]
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(a) 2y/b=048  (b)2y/b=1.03 (c)2y/b=144
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PRESSURE DISTRIBUTION AROUND DELTA WING
(Mach = 0.6, y = 0.0873)
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Figure 33, Classical wake development at sieady state solution with
WABRQ around the rectangnlar wing (Mach number is 6.6 and
angle of attack is 0 1.

Figure 34. Wake development & unsteady state solution with WAERO
aroud the rectangular wing (Mach mumber is 0.6 and angle of
attack is Gﬁ},
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Fisu re 35 - (0), Wake development after three time steps at unsteady state solution

around the rectangular wing ( Mach number is 0.6, angle of attack is

0 and Dt=0.05)

ake development after three time steps at unsteady state solution

W,

.

around the rectangular wing ( Mach number is 0.6, angle of attack is

4 and Dt=0.05)

®)
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according to the Lift Coefficient at the rectangular wing (Mach number
is 0.6 and angle of attack is 4, unsteady state solution includes six time
steps, the straight line is Steady State Lift Coefficient)
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Figure 38. Mach contours on the upper surface of the delta wing at M=0.6



65

Figure 39. Mach contours on the lower surface of the delta wing at M =0.6
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