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SUMMARY

Shape recovery is a classic problem in computer vision. The goal in shape
recovery is to extract surface orientation and surface depth from one or more
images. Shape-from-shading (SFS) deals with the recovery of 3-Dimensional
shape from a single shaded image. Shape-from-photometric-stereo is another
method for shape recovery used in computer vision. In this technique, shape
is recovered by using multiple input images of the same scene generated fixed
viewing direction and different light source directions.

The shape-from-shading problem is addressed in this study. All the con-
straints used in SF'S are combined in an iterative scheme and the effects of these
constraints on the solution are explored. Then, a shape-from-shading algorithm
based on the regularization theory is developed, in which the smoothness is con-
trolled spatially over the image space. The spatial control of the smoothness
is achieved by employing additional knowledge about the difference between
the image which is obtained from the regularized solution and the input image.
The adaptive nature of the algorithm eliminates the selection of the optimum
value of the smoothness parameter. Using calculus of variations and a linear
approximation of the reflectance map, the new adaptive iterative scheme is
developed. The new algorithm is robust, data driven and updates both the
gradient field and height maps simultaneously. A hierarchical implementation
of our adaptive SF'S algorithm is also presented. In order to improve the quality
of the reconstruction obtained by the SFS algorithm, we integrated our adap-
tive SFS approach and photometric stereo technique to recover shape by using
more than one input image.

xii



OZET

UYARLANIR DUZLEME YONTEMIYLE
GORUNTU TONLARINDAN
SEKIL ELDE ETME

Bilgisayar goriintin (Computer Vision) temel amaglarindan biri, objelerin
iki boyutlu goriintiilerinden, onlarin ii¢ boyutlu yizey ozelliklerinin elde edil-
mesidir. Goriintlt alma sirasinda ti¢ boyutlu objelerin iki boyutlu izdigumleri
elde edilmekte ve bu izdiigiim sirasinda objeye iliskin ozelliklerden bir gogu
yitirilmektedir. Uglincti boyuta iligkin bilgileri elde etmek amaciyla, genellikle
gorintiiyl olugturan benek (pizel) degerleri ile obje ylizeyi arasindaki iligki kul-
lanilir ve bulunabilecek bir ¢ok olas1 ¢oziimi teke indirmek igin, ¢oziim uzay:
tizerinde bir takim simirlamalar (constraints) konur. Goérintiideki tonlamalarin
obje sekilleri hakkinda tagidig: bilgiler kullanilarak, obje seklini bulmak i¢in
geligtirilen ve genellikle Tondan Sekil Bulma-TSB (Shape from Shading-SFS)
problemi olarak bilinen bu yaklagimda, 6nce gorintii ile obje yiizeyleri ve 1gik
kaynaklar: arasindaki iligki elde edilmekte ve daha sonra girig resmine olabildi-
gince yakin bir gériinti verecek obje ytizeyi, yani objenin gekli, belirlenmektedir
[1, 2].

Tondan-gekil-bulma problemlerinde, obje ytizeyi ve 1s1k kaynag: ile goriin-
tliyl olugturan benek degerleri arasindaki iligki Yansitma Haritas: ( Reflectance
Map) R(p, q) ile belirlenir. Burada, p ve ¢ ylizey parametreleridir ve kurulacak
z ylzeyinin kismi tiirevlerini gostermek tizere

0z 0z
p—gz}/_‘ q—a—y (1)

seklinde ifade edilmektedir.

Isik kaynagindan gelen 1ginlarin yiizey tarafindan nasil yansitilacagi, o yi-
zeyin yansitma Ozelliklerine baghdir. Degisik yizeylerdeki 1:1k yansimalarini
ifade etmek amaciyla cesitli modeller geligtirilmistir. Bu modellerin, teorik
olarak en basiti ve pratikte olarak en ¢ok kullanilan1 Lambertian yansitma mo-
delidir. Lambertian bir ylzeyin 6zelligi, lizerine gelen tim 1s181 yansitmasi ve
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yuzey parlakhiginin bakig dogrultularindan bagimsiz olmasidir. Lambertian bir
yuzey icin yansitma haritas:

COSO — psino cosT — gsinosin T ()
/1 +p2+q2

seklinde verilir. Burada, n (albedo) aydinlanma katsayisin1 gosteren bir sabit,
o (slant) ve T (tilt) ise {i¢ boyutlu resim uzayinda 11k kaynaginin konumunu
belirleyen agcilardur.

R(p,q) =1

Girig resmindeki bir (z,y) noktasinda 6l¢iilen aydinlanma degeri I(z, y) ol-
mak tizere, ayn1 noktadaki yiizey parametreleri ile aydinlanma arasindaki iligki,
goriintli yansitma denklemi (éimage irradiance equation)

I(z,y) = R(p,q) (3)

ile belirlenir. Bir yiizeyin parametreleri ve 11k kaynaginin yeri verildigi taktir-
de, bu yiizeye iligkin aydinlatilmig resim (3) bagintisindan elde edilebilir. Ancak
tondan-gekil-bulma probleminde bunun tam tersi sézkonusudur, yani aydinlatil-
mig resim verilmekte, ylizey parametrelerinin bulunmasi ve yiizeyin kurulmas:
istenmektedir. Bu durumda sadece R(p, q) ifadesi ve girig resmi, ylizeyin be-
lirlenmesinde yeterli olmamaktadir. Ciinkii, goriintli yansitma denkleminde iki
bagimsiz degisken, p ve ¢, vardir. Bu nedenle, yiizeyin elde edilmesinde yalniz
bagina (3) bagintis1 yeterli olmamaktadir ve sonsuz sayida ¢oziim elde etmek
mumkindir. Bilgisayarla goriide karsilagilan bu tiir problemlere koti konum-
lu (éll-posed) problemler denir. Diizgiinlestirme kurami (regularization theory),
bu tiir kotii konumlu problemleri iyi konumlu (well-posed) problemler gekline
dontigtiirip ¢6zmeye yarayan yontemdir ve bilgisayarla gértide yaygin olarak
kullanilir. Dizgiinlestirme ayrica ¢6ziim tzerinde diizlik gibi baz1 sinirlamalar
koymaya olanak saglar.

T3B problemlerinde kullanilan sinirlamalar agagida kisaca ozetlenmistir:

Aydinlanma simirlamasi (brightness constraint), gorlintii yansitma denkle-
minin bir simirlama geklinde ifade edilmesi sonucu elde edilmigtir ve dzgiin go-
runti ile T3B’den bulunan gériinti arasinda

[t - rp.0p2dsdy | @

olarak tanimlanan hatanmn enaza indirgenmesi geklinde ifade edilir. Ilave ko-
sullar olmaksizin, sadece aydinlanma sinirlamas: kullanilarak, problemin tek
¢6zimiinin bulunmas: olas1 degildir. Bu nedenle ek sinirlamalara gereksinim
vardir.

Diizliik sinirlamasi (smoothness constraint), ardisilt TSB yonteminde, prob-
lemin tek ¢6zimli olmasim saglamak amaciyla, kurulacak yiizeyin diiz olmasi
sartin1 saglamak icin
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min //(pi +p,+ ¢+ q)dedy (5)

P

ifadesi kullanilir. Burada p,, py, ¢, ve ¢, ylizey parametrelerinin kismi tiirev-
lerini géstermektedir.

Integralin alinabilmesi sinirlamasi (integrability constraint)

min [ [(Ge =) + (20— o) ety (6)

P9

bagintisi ile tanimlanir. Burada z, ve z,, ylizeyin kismi tiirevlerini gostermek-
tedir. Bu simirlama, TBS yoéntemiyle elde edilen ylizey parametreleri (p, ¢)’nun
fiziksel olarak anlamli bir yilizeye kargi gelmesini saglamak amaciyla kullanil-
maktadar.

Tiirev farklar1 ssmirlamasi (intensity gradient constraint), T$B’den elde edi-
len resmin kismi tiirevlerinin, girig resminin kismi tiirevlerine yakin olmasi ko-
sulunu saglamak amaciyla kullamilir. I, ve I, girig resminin kismi tiirevleri ve
R ve R, ise algoritmadan elde edilen resmin kismi tiirevlerini gostermek iizere,
bu sinirlama

min //((Rw — L)+ (R, — L)) dzdy (7

pg

seklinde tamimlanir.

Cesitli kisitlamalar en iyi saglayan z ylizeyinin bulunmasi amaciyla kulla-
nilabilecek bir sayisal yontemde agagidaki adimlar izlenir:

1. Aranan ¢oziim z ile ideal ¢6zlim arasindaki hatay: ifade etmek icin bir F'
fonksiyonu segilir ve bu fonksiyonun 2 goriintli uzayindaki integralini,

I(z,y) = /LF(x,y,z,...)d:vdy

enaza indirgeyen z bulunmaya galigilir.
2. F fonksiyonuna, z'nin (2 {izerinde saglamas: istenen sinirlamalar konulur.

3. Problemin tek ¢6zlimii yoksa, Z ifadesine uygun bir diizeltme terimi ilave
edilir.

4. z yuzeyinin sagladigi ve I fonksiyonelini enaza indiren Euler esitlikleri
belirlenir.

5. Tek ¢oziim elde edebilmek igin simir kogullarinin neler olmas: gerektigi
belirlenir.
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6. Simirh degigimler (finite difference) yontemi kullamlarak Euler esitlikleri
i¢in ayrik domende bir yaklagiklik bulunur.

7. Euler egitliklerinin ayrik ¢éziimiine yakinsayan bir sayisal yontem bulu-
nur.

Tezin ilk bolimiinde, bilgisayar gori problemleri genel olarak tanitilmigtir.
Bu problemlerden birisi olan ve girig resmindeki tonlamalardan yararlanarak re-
simdeki objenin yiizey 6zelliklerinin bulunmasimi saglayan tondan-sekil-bulma
probleminden genel olarak bahsedilmigtir. Literatiirdeki temel TSB yontemleri
incelenmis ve bu yontemler kisaca kargilagtirilmistir.

Ikinci boliimde, yuzeyin fiziksel Gzellikleri tarafindan belirlenen yansitma
modelleri ve Tondan Kaynak Yerini Bulma (Source from Shading) teknigi in-
celenmistir. Isik kaynaginin yerinin belirlenmesi probleminde, girig resminde-
ki aydinlanma bilgisi kullanilarak, 11k kaynaginin konumunu 3-Boyutlu resim
uzayinda belirleyen agilarin, (o, 7), bulunmasina ¢aligilmaktadir. Bu amagla,
Pentland (3], Lee ve Rosenfeld [4] ve Zheng ve Chellappa [5] tarafindan ge-
ligtirilen li¢ yontem incelenmistir. Bu ti¢ yontem igin, 191k kaynaginin yerinin
belirlenmesinde kullanilan sonu¢ bagntilar, b6liim sonunda tablo halinde ve-
rilmigtir.

Uciincii boliimde, tondan-gekil-bulma problemi tim ayrintilar ile incelen-
migtir. Burada, 6nce bilgisayar gorii problemlerinde kullanilan ve kétii durumlu
problemleri iyi konumlu problemler haline dontigtiirerek ¢oziilmesini saglayan
diizgiinlik kurami ele alinmigtir. Yiizey parametrelerinin ifade edilmesi, yan-
sitma haritas1 ve goriintii yansitma egitligi ile ilgili agiklamalardan sonra, degi-
simlerin hesaplanmasi (calculus of variations) yaklagimi kullanilarak TSB yon-
teminin ardigil olarak ¢oziilmesi problemi incelenmistir. Tondan-gekil-bulma
problemlerinde kullamilan sinirlamalarin agiklanmasindan sonra, literatiirdeki
temel T3B metodlar: 6zetlenmigtir. Ayrica bu bdliimde, tondan-gekil-bulma
problemi ile iligkili olarak, Fotometrik Stereo’dan Sekil bulma (FSSB) teknigi
de incelenmigtir. T3B ile FSSB arasindaki fark, TSB’de bir tane giris resmi kul-
lamilmasina kargin, FS§B’de birden fazla girig resmi kullanilabilmektedir. Bu
girig resimleri, bakig dogrultular: aym kalmak tizere, 151k kaynaginin konumu
degigtirilerek elde edilmektedir. FS$B yonteminde birden fazla girig resminin
kullanmilmas: sayesinde, resimdeki obje hakkinda daha fazla bilgiye sahip olun-
maktadir.

Dérdiincii bolimde, TSB problemlerinde kullanilan simirlamalarin ¢ozim
uzerindeki etkileri incelenmektedir. Bu amagla, sinirlamalarin tiimini iceren

F(p,q,2) = Fi(p,q) + A Fa(p,q) + p F5(p, q, 2) + B Fa(p, q) (8)

enerji fonksiyoneli tanimlanmigtir. Buradaki A, p ve B parametreleri sabit
sayilar olup kendileri ile iligkili simirlamalarin enerji fonsiyoneli icindeki agir-
liklarimi belirlemektedirler. Yukarida tamimlanan enerji fonksiyonelini enaza
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indirme problemi ¢ézilerek, ardigil bir TSB yontemi elde edilmig ve kullanil-
mugtir. Her bir sinirlamanin ¢6ziim tzerindeki etkilerini gérebilmek amaciyla,
algoritma parametreleri A, 4 ve f’nin degisik kombinasyonlar: kullanilarak TSB
goziimleri elde edilmistir. Her durumda, toplam enerji (F'), ardisil adimlarin
fonksiyonu olmak tizere grafik olarak ¢izdirilmigtir. Gergek yiizey parametreleri
(p*,¢*) ve gergek yiizey z* ile, TSB’den bulunan ylizey parametreleri (p, q) ve
yizey z kargilagtirlmig, ortalama yilizey parametre hatalar1 (p-g hatalari) ve
yuzey hatalar1 (z hatalari) cizdirilerek sonuglarin kolaylikla degerlendirilmesi
saglanmigtir. Bununla birlikte, TSB’den elde edilen ylizey parametreleri kul-
lanilarak, bu ¢6zimlere iligkin aydinlatilmig resimler elde edilmis ve simirlama-
larin bu resimler lizerindeki etkileri incelenmigtir. Diger yandan, elde edilen z
yuzeylerinin 1-Boyutlu kesitleri ¢izdirilerek, sinirlamalarin z tizerindeki etkileri
gortilmeye caligilmagtir.

Deneysel sonuclardan, sinirlamalarin ¢ézim tizerindeki etkileri konusunda
elde edilen sonuglar su sekilde dzetlenebilir:

Diizginlik sinirlamasi, TSB probleminin tek ¢éziimlii olmasini saglamak
amaciyla kullanilmasina ragmen, sayisal ¢éziim yonteminin yakinsamas: aci-
sindan kritik oneme sahiptir. Bu terimin garpani olan A parametresinin ¢ok
kiiciik degerleri igin algoritmanin iraksamasi olasidir. Diger taraftan, A’nin bii-
yik degerleri, elde edilen yiizeylerin agir1 diizlenmesine neden olmaktadir. Bu
diizleme etkisi, T3B’den bulunan yiizeylerin aydinlatilmasi ile elde edilen re-
simlerin bulanik olmasina neden olmaktadir ve bu bulanikligin miktar1 A’nin
sayisal degerine bagh olarak degismektedir.

Integralin alinabilmesi sinirlamasi, diizgiinlik simirlamasi gibi, TSB proble-
minde ¢ozimin bulunmasinda 6nemli etkilere sahiptir. Bu sinirlamanin enerji
fonksiyoneli i¢indeki agirhigini belirleyen parametre p’dir ve p’niin ¢ok kiigiik
degerleri, sayisal T3B yontemiyle bulunacak ¢béziimlerin hatali olmasina sebep
olabilir. Diger yandan, g’ntlin biiyiik degerleri i¢in agir1 diizlenmis ¢éziimler elde
edilmektedir. Bu sonuglardan anlagilacag gibi, dogru ¢éziimlere ulagilabilmesi
i¢in p parametresinin degerinin iyi belirlenmesi gerekmektedir.

Tiirev farklar sinirlamasinin etkisi, girig resminin tiirevleri (1,,7,) ile TSB
yontemiyle elde edilen aydinlatilmig resmin tiirevlerinin (R,,R,) karsilagtiril-
mas1 sonucu belirgin olarak ortaya cikmaktadir. Bu sinirlamanin katsayisi olan
B’nin sifir oldugu durumda bulunan kismi tiirevler, R, ve R,, sirasiyla I, ve I,
ile kargilagtirildiginda, bunlarin birbirlerine benzemedikleri goriilmektedir. Oy-
sa, #'nin sifirdan farkli oldugu durumda bulunan R, ve R,’nin girig resminin
tiirevlerine oldukga benzedigi deneysel sonuglardan kolaylikla gorilmektedir.
Diger taraftan ardigil ¢6ziim yonteminde, 8’nin biiyik degerleri icin bulunan
¢oziimlerdeki p-q hatasi ve z hatasi, baglangi¢ta diigiik olmasina ragmen, ite-
rasyonlarin devam etmesi durumunda artmaktadir.

Bu sonuglardan da anlagilacagi gibi, TSB probleminde kullanilan sinirla-
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malarin ¢ozim tizerinde kritik etkileri vardir. Bu sinirlamalarin agirliklarim
belirleyen algoritma parametreleri A, g ve f’nin ancak uygun degerleri icin
T9B yonteminden basgarili sonuglar alinmasi olasidir.

Besinci bolimde, uyarlanir diizleme (adaptive smoothing) [6] yonteminin
TSB problemine uygulanmasi konusunda caligilmigtir. Dordiincii boliimde,
diizleme sinirlamasinin, T9B’den bulunan ytlizeylerin oldukga fazla diizlenmesi-
ne sebep oldugu sonucu belirlenmigti. Bu istenmeyen etkiyi ortadan kaldirmak
i¢in, uyarlanir dizleme yontemi TSB problemine uygulanmigtir. Bu amagla,
enerji fonksiyoneli olarak

F(p,q,2) = Fi(p,q) + F5(p,q) + u Fs(p, ¢, 2) + B Fa(p, q) (9)

ifadesi tanimlanmigtir. Burada Fy, F5 ve Fy terimleri daha once tanimlandi-
g1 gibi, sirasiyla aydinlanma sinirlamasi, integralin alinabilmesi sinirlamasi ve
turev farklar simirlamasidir. Duzlik sinirlamasi ise

Fy(p,q) = // Mz,y) (P2 + P2+ ¢+ ¢)) du dy (10)

seklinde degigtirilmigtir. Dikkat edilirse, burada A(z,y), uzamsal koordinat-
larin bir fonksiyonudur ve ardigil TB algoritmasinda, bu fonksiyonun (z,y)
noktasindaki degeri

f(:c,y, )\old) if c(x,y) > (0 and /\old > )\mm
Motd(2,y) otherwise

Anew(T,y) = { (11)
ile hasaplanir. Burada kullanilan F(z,y, Ao4) fonksiyonu agagidaki gibi tanim-
lanmagtir:

_daw) o)
F@, 9, hoid) = (1= €V ) Amin + (77 ) Ata(2,9). (12)

Bu fonksiyondaki ¢(z,y), kontrol igaretidir ve abs() mutlak degeri gostermek
lizere, c(z,y) = abs(I(z,y) — R(p,q))’den hesaplamir. V7, lstel fonksiyonun
diisme hizin1 kontrol eden bir zaman sabitidir. A,;, ise, 6nceden belirlenen ve
A’'nin alabilecegi en kiiciik degeri gosteren bir sabittir. A’nin yeni degerlerinin
hesaplanmas: i¢in kullanilan F(z,y, A,q) fonksiyonu, istel olarak azalan bir
fonksiyondur ve

lim f(w’ Y, Aold) = /\old(xay) ve lim T(waya )‘old) = )‘min (13)

c(z,y)—0 c(z,y)—o0

ozelliklerine sahiptir. (9)’daki enerji fonksiyonelini enaza indirme problemi ¢6-
zilerek, uyarlanir TSB yontemi i¢in ardigil ¢oziim yontemi elde edilmis ve de-
neysel sonuglarin bulunmasinda kullamilmagtar.

Bu bolimde ayrica, uyarlanir diizleme yonteminin FS§B problemine uyar-
lanmasi konusunda da ¢aligilmigtir. Bu amacla
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F(p,q,2) = Fy(p,q) + F5(p,q) + p F5(p, ¢, 2) + B Fs(p, q) (14)

enerji fonksiyoneli kullanilmigtir. Burada F3 ve Fy terimleri surasiyla integralin
alabilmesi sinirlamasi ve tiirev farklari sinirlamasidir. F, fonksiyonu (10)’da
verildigi gibidir ve F} ise

Fl(p,q) = / / (U(e,9) - R(p, @) + (H(ey) — R, )} dedy  (15)

olarak tanimlanmigtir. Buradaki I(z,y) ve i (z,y), bakig dogrultular: ayni fakat
aydinlanma dogrultular: farkl iki goriintiiyi gostermekte, R(p, ¢) ve ]A%(p, q) ise
bu iki goriintiiye kars: gelen yansitma haritalarini ifade etmektedir. (14)’deki
enerji fonksiyonelini enaza indirme problemi ¢oziilerek, uyarlanir T§B ve FSSB
yontemlerinin birlegiminden olugan ardigil sayisal ¢6ziim yontemi geligtirilmig
ve bu yontem kullanilarak deneysel sonuclar elde edilmigtir.

Besinci boliimdeki deneysel sonuglardan gortlmiigtir ki, uyarlanir diizle-
me yonteminin kullanilmasi, uyarlanir olmayan TSB yonteminden elde edilen
yuzeylerdeki istenmeyen diizlenme etkisini ortadan kaldirmig ve daha basaril
sonuclar bulunmasim saglamigtir. Uyarlamir TSB yontemi ile fotometrik stereo
tekniginin birlegtirilmesi ve elde edilen sayisal TSB ¢oziim yonteminin kulla-
mlmasinin, sonuglarin kalitesini artirmak ve hatalar1 azalmak agisindan etkili
oldugu deneysel olarak gosterilmigtir.
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CHAPTER 1.

INTRODUCTION

The first processing stage in computer vision, also called early vision, is
to recover 3-Dimensional properties of surfaces from the 2-Dimensional images.
Typical 3-D properties are the distance between the surface and the viewer,
surface orientation, structure, texture, reflectance and motion parameters ob-
tained from a temporal sequence of images. With the development of computer
vision, early vision problems have been formulated rigorously and given them
familiar names, such as shape from shading, structure from stereo, structure
from texture, edge detection, visual interpolation, computation of optical flow.
The computational modules that solve them constitute together the core of
early vision, and provide spatial and geometrical information about the visible
part of 3-D world. The results of this first stage of processing are then used
for higher level tasks such as navigation in the environment, manipulation of
objects, object recognition and also reasoning about objects. Unlike high level
vision, early vision is mostly considered as a bottom-up set of processes that do
not rely upon specific high-level information about the scene to be analysed.
These different modules of early vision can be analysed independently at least
to a first approximation. Their most natural implementation is in terms of

distinct pieces of hardware, whose outputs will be integrated at a later stage.

Although an object in the world is 3-D, its image projected onto the retina
is essentially 2-D. The reduction in the image dimension which is a result of
projecting of the 3-D world into a 2-D space causes the main lack of information
for the recovery problems in early vision. Then, the problem of reconstructing
the shapes of 3-D objects from their images which is an inverse problem are

regarded as ill-posed; that is, the solution may not exist or it is not unique or



does not continuously depend on data. In order to solve ill-posed problems,
a priori information about generic properties of the solution must be used.
Regularization theory is a set of techniques that have been developed for this

reasomn.

In early vision, the techniques to recover shape are called shape-from-X
techniques. Shape-from-shading (SFS) [1, 7] we consider in this thesis is one of
the classic research problems in computer vision. SFS deals with the recovery
of surface orientation and surface shape (height) from the gradual variation of
shading in the image. It is most often used in conjunction with other com-
puter vision algorithm such as shape from stereo or shape from contour, since
it provides information that is complementary to these techniques. Shape-
from-shading has also been used widely in the field of photoclinometry, where

astrogeologists use it for planetary terrain mapping from satellite photographs.

Since a single measurement of image brightness provides only limited in-
formation about surface orientation, additional constraints such as that the
gradient vary smoothly must be used in order to find a unique solution. On
the other hand, using multiple images which are taken with different lighting
supplies additional information for robust surface reconstruction. Additional
images can also allow us to recover further unknown parameters, such as the

albedo of the surface.

Shape-from-photometric-stereo [8] is another method for shape recovery in
computer vision. The difference between shape-from-photometric-stereo and
SFS is in the number of input images. Shape-from-photometric-stereo recovers
shape from multiple intensity images of the same scene generated using fixed
viewing direction and different light source directions; while SFS provides the

shape estimate from a single image.

The next section briefly describes the shape-from-shading problem and re-
views the recently reported studies on this subject. In the last section of this

chapter, we give an outline of our objectives.

Chapter 2 introduces background knowledge related to reflectance models

and source from shading which deals with recovery of the light source location



1s presented. We explain Pentland’s original approach for light source computa-
tion, its refinements by Lee and Rosenfeld, and improvements of both methods

by Zheng and Chellappa.

In chapter 3, the shape-from-shading problem is discussed in detail. Regu-
larization theory and its application to the SFS problem are considered. After
a review of SFS formulation, the constraints used in this problem are pre-
sented. A total of eight SFS methods are summarized. Another shape recovery

technique, photometric stereo, is introduced.

In chapter 4, effects of the SFS constraints on solution are explored. All
constraints used in the shape-from-shading problem are combined into an en-
ergy functional. Solving this minimization problem, a general purpose iterative
SFS algorithm is derived. Changing the relative weight of each constraint in
the energy functional by setting proper values to these parameters, we explore
the effects of the SF'S constraints on the solution. The experimental results are

reported.

Chapter 5 presents the adaptive shape-from-shading approach in which
standard regularization is modified to be able to obtain an iterative scheme
that improves the results of the present methods. In this adaptive SFS method,
smoothness is controlled spatially over the image space to reduce the over-
smoothing effect of the smoothness constraint on the solution. In order to
improve the quality of the reconstruction, our adaptive SFS method and pho-
tometric stereo technique are integrated. A hierarchical implementation of the
adaptive SFS scheme is also presented. Typical results obtained for synthetic

and real images are given to illustrate the advantages of our adaptive approach.

In chapter 6, the major issues that have been raised and the conclusions of
our study are summarized. The major contributions to the literature and the

future research are also covered.



1.1 Review of Shape from Shading

The variation in brightness due to changes in surface orientation across
a surface, or shading, is an important visual cue for interpreting 3-D scenes.
Shading in an image is due to the interaction of four factors: The shape of the
surface, the illumination, the reflecting characteristics of the surface material
and the image projection. The shading information is used by shape-from-
shading techniques to recover 3-D surface properties. In SFS, the basic idea is
to model the image brightness as a function of surface shape and then solve
the inverse problem-reconstructing the surface from the given intensity image.
One of the common features of inverse problems in early vision is that they are
often ill-conditioned or ill-posed (An ill-posed problem is the one that does not
have any solution, does not have a unique solution, or has a solution that is
very sensitive to the given data). So, it is necessary to impose some constraints

to get a unique solution.

In computer vision, the recovered shape obtained from shape recovery tech-
niques can be expressed in several ways. One way to do this is to specify a
unit vector, N , perpendicular to the local tangent plane. Another way is to
specify the components p and ¢ of the surface gradient. These are the partial
derivatives of surface height z above some reference plane perpendicular to the
optical axis, that is, p = (dz/dz) and ¢ = (dz/dy). The two notations are

associated by the equality

1
(L+p2+¢%)

N = (—pa _Q71)T' (1‘1)

A third way of specifying surface orientation is to use of surface slant (o) and

tilt (1) angles. The relationship of slant and tilt to the unit normal is given by

N = (sino cos 7,sin o sin 7, cos )" . (1.2)

Each notation for surface orientation has its own advantages and the above

three as well as some others have been used in the literature.

Under the assumption that the viewer and the light sources are far away

from the objects being imaged, we can introduce the reflectance map to specify



the relation between surface orientation and brightness. It basically encodes
information about surface reflectance properties and light-source distributions.
A graphic representation of the reflectance map, in the so-called gradient space
is also possible if we plot contours of constant brightness in the pg-plane. The
reflectance map can be determined experimentally or derived from the bidirec-
tional reflectance distribution function (BRDF) which specifies the reflectance
properties of a surface. If we use surface gradient, (p, q), as a way of specifying

surface orientation, we can use the form (p, g) of reflectance map.

If (z,y) is a particular point in the image, we measure the image irradiance
as I(z,y) at that point. It is proportional to the radiance at the corresponding
point on the image surface. If the surface gradient is (p, q) at the observation
point, then the radiance there is R(p,¢). Then, we obtain the so-called image

irradiance equation as

I(z,y) = R(p,9), (1.3)

where I(z,y) is the image irradiance at the point (z,y), while R(p, ¢), the re-
flectance map, is the scene radiance of a surface patch with orientation specified
by the partial derivatives p = dz/dx and ¢ = dz/dy of surface height z(z,y)
above some reference plane. Actually, image irradiance is not equal to scene
radiance, only proportional to it, but the proportionality factor is usually ig-
nored, because it is assumed that some calibration process normalizes one of
these quantities so that it is commensurate with the other. The image irradi-
ance equation is fundamental to the methods for solving shape-from-shading

problems. The task is to find z(z,y) given the image and the reflectance map
R(p, q).

The image irradiance equation is a nonlinear first-order partial differential
equation. Then, the shape-from-shading problem is regarded to be mathe-
matically equivalent to a non-linear first-order partial differential equation in
surface elevation. The shaded image provides only a single constraint on the
surface gradient (p, ¢) at each point in the image. Additional constraints, such
as boundary conditions and singular points, are needed to ensure that there
is a unique solution. Hence we can reformulate the problem as one of finding

a surface orientation field that minimizes the integral of the brightness error!.

!Brightness error = I(z,y) — R(p, q).



The calculus of variations is then employed to derive the appropriate Euler
equations on which iterative schemes can be based. A number of iterative
schemes have been proposed to solve shape-from-shading problem based upon
the calculus of variations [9, 10, 11, 12].

There are two approaches for finding a solution to the shape-from-shading
problem as global and local. Global approaches further can be divided into
global minimization and global propagation approaches. Global minimization
approaches obtain the solution by minimizing an energy function. However
global propagation methods propagate the shape information from known sur-
face points (e.g., singular points ?) to the whole image. On the other hand,
only a small patch of an image is used to determine the shape of a surface on

local approaches.

The shape-from-shading problem was formulated and solved by Horn [7, 13]
using the first global propagation technique called characteristic strip. A char-
acteristic strip is a line in the image along which the surface depth and orienta-
tion can be computed if these quantities are known at the starting point of the
line. Horn’s method constructs initial surface curves around the neighborhoods
of singular points using a spherical approximation. The shape information is
propagated simultaneously along the characteristic strips outwards, assuming
no crossover of adjacent strips. In order to get a dense shape map, new strips
have to be interpolated when neighboring strips separate too much. In char-
acteristic strip method, the partial differential equation in surface elevation
fundamental to the problem was converted to an equivalent set of five ordi-
nary differential equations called the characteristic strip equations. Algorithms
based on numerical solution of the discrete approximations of these equations
are inherently sequential in nature and have difficulty with unavoidable noise

in the image data.

One of the earlier global minimization approaches was suggested by Ikeuchi
and Horn [11]. Since each surface point has two unknowns for the surface nor-
mal, and each pixel in the image provides one gray value, therefore image gray
levels alone are not enough to recover the shape. To overcome this, Ikeuchi and

Horn introduced two constraints: The brightness constraint and the smoothness

?Singular points are the points with maximum intensity in the image.



constraint. The brightness constraint requires that the reconstructed shape will
produce the same brightness as the input image at each surface point, while
smoothness constraint forces the gradient of the surface to change smoothly.
The shape was computed by minimizing an energy functional which consists of
the above two constraints. Also using these two constraints, Brooks and Horn
[14] minimized the same energy function, in terms of surface normal instead
of surface gradient. Frankot and Chellappa [9] enforced the integrability in
Brooks and Horn’s algorithm in order to recover integrable surfaces (surfaces
for which z;, = 2z,,). Surface slope estimates from the iterative scheme were
expressed in terms of a linear combination of a finite set of orthogonal Fourier
basis functions. The enforcement of integrability was done by projecting the
nonintegrable surface slope estimates onto the nearest (in terms of distance)
integrable surface slopes. This projection was fulfilled by finding the closest
set of coeflicients which satisfy integrability in the linear combination. Their
results showed improvements in both accuracy and efficiency. Later, Horn [12]
also replaced the smoothness constraint in his approach with an integrability
constraint. The major problem with Horn’s method is its slow convergence.
Szeliski [15] speed it up using a hierarchical basis pre-conditioned conjugate
gradient descent algorithm. Based on the geometrical interpolation of Brooks
and Horn’s algorithm, Vega and Yang [16] applied heuristics to the variational

approach so that the stability of Brooks and Horn’s algorithm was improved.

Instead of smoothness constraint, Zheng and Chellappa [5] introduced an
intensity gradient constraint, which specifies that the intensity gradients of the
reconstructed image and the input image are close to each other in both z and
y directions. Leclerc and Bobick [17] solved directly for depth by using discrete
formulation and employing a conjugate gradient technique. The brightness
constraint and smoothness constraint were applied to ensure convergence, and
a stereo depth map was used an initial estimate. Recently, Lee and Kuo [18] also
proposed an approach to recover depth using the brightness and the smoothness
constraints. They approximated surfaces by a union of triangular patches.
Unlike Leclerc and Bobick’s method, this approach did not require the depth

from stereo as an initial value.

All of the above approaches deal with a single smooth surface. Malik and

Maydan [19] developed the first solution for piecewise smooth surface. They



combined the line drawing and shading constraints in an energy functional, and
recovered both surface normal and line labeling through the minimization of

the energy function.

Oliensis [20] observed that the smoothness constraint is only needed at the
boundaries if we have initial values at the singular points. Based on this idea,
Dupuis and Oliensis [21, 22] formulated SFS as an optimal control problem,
and solve it using numerical methods. Bichsel and Pentland [23] simplified
Dupuis and Oliensis’s approach and proposed a minimum downhill approach

for SFS which converged in less than ten iterations.

Among the local approaches, two are by Pentland, one by Lee and Rosen-
feld, and one bye Tsai and Shah. Pentland [3] recovered shape information
from the intensity, and its first and second order derivatives. He used the as-
sumption that the surface is locally spherical at each point. Under the same
spherical assumption, Lee and Rosenfeld [4] computed the slant and tilt of the
surface in the light source coordinate system through the first derivative of
the intensity. A later approach by Pentland [24] used the linear approxima-
tion of the reflectance function in terms of the surface gradient, and applied
a Fourier transform to the linear approximation to get a closed form solution
for the depth at each point. Similar to Pentland’s method, Tsai and Shah
[25] applied the discrete approximation of the gradient first, then employed the
linear approximation of the reflectance function in terms of the depth directly.
Their algorithm iteratively recovered the depth at each point without using

any global information.

Pentland’s linear shape from shading has problems with images of quadratic
surface reflectance. Therefore, Pentland [26] proposed photometric motion to
solve for shape and reflectance. The images needed in his approach were taken
at different time frames while the object was rotated. The quadratic component
of the surface reflectance function was factored out by subtracting two of the
images. The ratio of one of the images and the difference image was used to
cancel out the albedo and obtain the surface shape. Therefore, at least two
images were required for the shape recovery. This approach was also extended
to three-image photometric motion by considering second derivatives in the

discrete form.



None of the above methods deal with interreflection - the mutual illumi-
nation between surface facets. Nayar, Ikeuchi and Kanade [27] addressed the
shape-from-interreflection problem using photometric stereo. They observed
that the erroneous shape extracted by shape-from-photometric-stereo algo-
rithms in the presence of interreflections, was shallower than the real shape.
Therefore, they proposed a method to iteratively refine the shape. Their for-

mulation of interreflection was based on Forsyth and Zisserman’s result [28].

Some different approaches, recently applied to the shape-from-shading, are

explained below.

A global shape-from-shading algorithm which develops a technique to merge
local shape from shading results obtained around singular points into the com-
plete shape using the mountaineers theorem was presented by Kimmel [29] and
Bruckstein [30]. In their approach, a local shape-from-shading algorithm is
used to recover the shape around each singular point. The algorithm inspects
the behaviour of iso-height contours around each singular point. The contours
are monitored from the singular point “outwards” until another singular point
is encountered. An underlying assumption is that the shape to be recovered is
a Morse Function. For such functions, according to the mountaineers theorem
[31], the number of extrema located within a closed equal height contour of a
smooth surface exceeds by one the number of saddle points within that con-
tour. Therefore, when tracking iso-height contours that start as a small circle
around an extremum, the first singular point that the extending contours meet
must be a saddle point. This saddle point is the singular point whose height
is closest to the height of the extremum. When the illumination is in the di-
rection of the camera, the local shape recovered assuming the extremum is a
minimum is the reflection of the shape recovered assuming the the extremum is
a maximum, therefore the same saddle point will be found. This is not the case
when the illumination comes from other directions and the closest saddle point
may be different. In both cases the algorithm is run on all possible assignments
of extrema as minima or maxima. The global algorithm merges the results of
the local algorithm by merging two local surfaces which have the same closest
saddle point. After two surfaces have been merged, the local algorithm extends
the merged surface until another saddle point is met. This process continues

until all local surfaces have been merged together and the global shape has
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been recovered.

Shimshoni, Kimmel and Bruckstein [32] enhanced the results given in [29,
30] by providing the completeness and uniqueness obtained by the global shape-
from-shading algorithm. Their approach is as follows: The results of the global
algorithm can be described as a binary tree where the leaves are the extrema
in the image and the inner nodes are the saddle points closest to the sub-
surfaces represented by their children. There is a unique such tree for each
image. Although the algorithm can merge the subsurfaces in different orders,
the resulting tree and the shape recovered, will always be the same because the
closest saddle point to an extremum or subsurface is unique by construction.
They showed that the algorithm can recover a single surface when the singular

points are correctly classified.

A wavelet-based approach to solving shape-from-shading is presented in
[33]. The proposed method takes advantage of the nature of wavelet theory,
which can be applied to efficiently and accurately represent “things,” to develop
a faster algorithm for reconstructing better surfaces. To derive the algorithm,
the formulation of Horn [12], which combines several constraints into an objec-
tive function, is adopted. In order to improve the robustness of the algorithm,
two new constraints are introduced into the objective function to strengthen
the relation between an estimated surface and its counterpart in the original
image. Thus, solving the SFS problem becomes a constrained optimization
process. Instead of solving the problem directly by using Euler equation or
numerical techniques, the objective function is first converted into the wavelet
format. Due to this format, the set of differential operators of different orders
which is involved in the whole process can be approximated with connection
coefficients of Daubechies bases. In each iteration of the optimization process,
an appropriate step size which will result in maximum decrease of the objective

function is determined. After finding correct iterative schemes, the solution of

the SFS problem will finally be decided.

It is generally agreed that individual visual cues are fallible and often am-
biguous. This has generated a lot of interest in design of integrated vision
systems which are expected to give a reliable performance in practical situ-

ations. The design of such systems is challenging since each vision module
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works under a different and possibly conflicting set of assumptions. Therefore,
Pankanti and Jain [34] have proposed and implemented a multiresolution sys-
tem which integrates perceptual organization (grouping), segmentation, stereo,
shape from shading and line labeling modules. The output of the integrated
system is shown to be insensitive to the constraints imposed by the individual
modules. The numerical accuracy of the recovered depth is assessed in case of
synthetically generated data. They have qualitatively evaluated their approach
by reconstructing geons from the depth data obtained from the integrated sys-

tem.

Generalized Cylinders are a flexible, loosely-defined class of parametric
shapes capable of modeling many real-world objects. Straight Homogeneous
Generalized Cylinders (SHGCs) are an important subclass of Generalized Cylin-
ders, whose cross-sections are scaled versions of a reference curve. Although
there has been considerable research into recovering the shape of SHGCs from
their contour, this work has almost exclusively involved methods that couple
contour and heuristic constraints. A rigorous approach to the problem of re-
covering solid parametric shape from a single intensity view should involve at
least two stages: 1) deriving the contour constraints and 2) determining if ad-
ditional image constraints, e.g., intensity, can be used to uniquely determine
the 3-D object shape. This methodology is also important for the recovery of
object classes like tubes, where contour and heuristic constraints are shown to
be insufficient for shape recovery. Gross and Boult [35] follow the approach just
described. First, they prove that SHGC contours generated under orthogra-
phy have exactly two degrees of freedom. Next, they show that the remaining
free parameters can be resolved by using reflectance-based constraints, with-
out knowledge of the number of light sources, their positions, intensities, the
amount of ambient light or the surface albedo. Finally, the reflectance-based

recovery algorithm is demonstrated on both synthetic and real SHGC images.

1.2 Statement of Objectives

Recovering the surface of an object from its shaded image, known as the

shape-from-shading problem, is one of the fundamental problems in computer
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vision. There are two main classes of algorithms for computing shape from a

shaded image: Global methods and local methods.

In this thesis, we are mainly interested in global shape-from-shading meth-
ods. In the global methods, the shape is recovered by minimizing some cost
functional involving constraints like smoothness. In these approaches, the vari-
ational calculus technique is used to iteratively compute the shape which is
globally consistent. The global methods are complex but provide very close

solutions to the accurate shape.

A difficulty in shape-from-shading is determining the boundary conditions
of these constrained minimization problems. In general, boundary conditions
are not known. Qur objective here is to derive an iterative algorithm which

does not need boundary conditions.

One of the important issue related to robustness is the selection of parame-
ter values. These parameters determine the relative weights of the correspond-
ing constraints in the algorithm. One of our objectives is to explore the effects

of these parameter values on shape-from-shading solutions.

A drawback of using the regularization term which is needed to obtained
a unique solution, is the smoothing effect on solutions. Our objective is to use
adaptive smoothing to reduce oversmoothing along the reconstructed image

and to improve the reconstruction.

In the global shape-from-shading problem, many iterations may be needed
to recover the true surface shape. Because of that, these methods converge
slowly. Our aim is to speed up the convergence of the global SFS algorithm

using one of multigrid methods.

Another important issue related to the quality of reconstruction is us-
ing more than one input image. Since two or more measurement of the im-
age brightness supply more information about the surface parameters (p,q)
and surface height z, this helps to improve the performance of the iterative
scheme. Our another objective is to integrate our adaptive shape-from-shading
method and photometric stereo technique to improve the quality of recon-

structed shapes.



CHAPTER 2.

SOURCE FROM SHADING

2.1 Introduction

Any analysis of image shading must be based on a mathematical model
of the process of image formation. Points in a scene, when illuminated, reflect
incident light in various directions. Light rays that are reflected to the direction
of the sensor cause an image of the scene to be formed. Most machine vision
problems involve the analysis of images formed in this manner. The intensity at
any given point in the image is closely related to the reflectance properties of the
corresponding point in the scene. Therefore, the prediction or the interpretation
of image intensities requires modeling the surface reflection. Then, we can
recognize an object or measure some of its properties by recovering information
about its shape and reflectance from an image. The reflectance models have

been used in computer vision is presented in the next section.

2.2 Reflectance Models in Vision

Depending on their physical properties, surfaces can be categorized as
Lambertian, specular, hybrid, or more sophisticated surfaces. In this section,
we will describe the reflectance models and discuss their properties related to

shape from shading.
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An ideal Lambertian surface is one that appears equally bright from all
viewing directions and reflects all incident light, absorbing none. The bright-
ness of a Lambertian surface is proportional to the energy of the incident light.
The amount of light energy falling on a surface element is proportional to the
area of the surface element as seen from the light source position (the foreshort-
ened area). The foreshortened area is a cosine function of the angle between
the surface normal and the light source direction. Therefore, Lambertian sur-
face can be modeled as the product of the strength of the light source B, the
reflectance factor (albedo) of the surface 5, and the foreshortened area cos 6;

as follows
I =By cosb; =By (N-9), (2.1)

where Iy, is the scene radiance and §;, the incident angle, is the angle between

— —
the surface normal N = (ny,n,,n,) and the source direction S = (s, 3y, 3, ).

Specularity only occurs when the incident angle of the light source is equal
to the reflected angle. It is formed by two components: The specular spike
and the specular lobe. The specular spike is zero in all directions except for
a very narrow range around the direction of specular reflection. The specular

lobe spreads around the direction of specular reflection.

The simplest method for specular reflection is described by the following

delta function
Is=Bé(6; —26,), (2.2)

where Ig is the specular brightness, B is strength of the specular component, 6,
is the angle between the light source direction and the viewing direction, and
0, is the angle between surface normal and the viewing direction. This model
assumes that the lighting caused by specular reflection is only a single point
which is not true in real life. Another model was developed by Phong [36]. It
represents the specular component of reflection as powers of the cosine of the
angle between the perfect specular direction and the viewing direction. This
model is capable of predicting specularities which extend beyond a single point;
however, the parameters have no physical meaning. A more refined model,
the Torrance-Sparrow model [37], assumes that a surface is composed of small,

randomly oriented, mirror-like facets. It describes the specular brightness as the
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product of four components: Energy of incident light, Frensel coefficient, facet
orientation distribution function and geometrical attenuation factor adjusted
for foreshortening. On the basis of the Torrance-Sparrow model, Healey and
Binford [38] derived a simplified model by using the Gaussian distribution as the
facet orientation function and considering the other components as constant.

It can be described as
Is=Ke G, (2.3)

where K is a constant, « is the angle between the surface normal N and the
bisector of the viewing direction and source direction, and m indicates the

surface roughness.

Most surfaces in the real world are neither purely Lambertian, nor purely
specular, they are a combination of both. That is, they are hybrid surfaces.

One straightforward equation for a hybrid surface is

I'=(1-w)+wls, (2.4)

where [ is the total brightness for the hybrid surface, I, and Is are the Lam-
bertian brightness and specular brightness respectively and w is the weighting

factor.

Nayar, Ikeuchi and Kanade [39] proposed a reflectance model which consists
of three components: Diffuse lobe, specular lobe and specular spike. The Lam-
bertian model was used to represent the diffuse lobe, and the spike component
of the Torrance-Sparrow model was used to describe the specular lobe, and the
spike components of the Beckmann-Spizzichino model was used to describe the

specular spike. The resulting hybrid model is given as

I =Ky cosb; + Ky e 37 + Ky, 8(6; — 0,)6(¢,), (2.5)

where Ky, Ky and K, are the strengths of the three components, 8 is the
angle between the surface normal of a micro-facet on a patch and the mean
normal of this surface patch, and o is its standard derivation. If we consider
the surface normal being in the z direction, then (6;,¢;) is the direction of
incidence light in terms of the slant and tilt in 3-D, (6,, ¢,) is the direction of
reflected light.
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Although the Lambertian model is widely used because of its simplicity,
it is a poor approximation to the diffuse component of rough surfaces. For
a rough surface, the radiance increases as the viewer approaches the source
direction. Oren and Nayar [40] derived a reflectance model for rough diffuse
surfaces, taking into account complex geometrical effects of masking, shadow-
ing and interreflection. Modeling rough surfaces, they developed a functional
approximation of rough surfaces for both isotropic and non-isotropic surfaces,
including uni-directional single-slope distribution, isotropic single-slope distri-
bution and Gaussian distribution. A simplified qualitative model was derived
by considering the relative significance of the various terms in the functional

approximation

I = cos 6;(A+ B Maz|0,cos(¢, — ¢;)] sin @ tan 3), (2.6)

where A ~ (— - 0. 09m2+04) B =~ 75 (0. 05m2+0 5)> (0i,¢:) and (0,,¢,) are
the same as in the previous section, a = Maz[6;,0,], 8 = Min[0;,0,], 1 is
the albedo value and m is the surface roughness. This model reduces to the

Lambertian model when m = 0.

Clark [41] used perspective rather than orthographic projection in modeling
reflectance. In his model, there is no requirement for the light source to be at
infinity. Therefore, the reflectance function is

R($)

I(#) =K ~ , (2.7)
| Zx+ 1)) 2% |2

where ¥ = (z,y) is the image coordinate vector, K is constant, R is the re-
flectance map, S = I—f—m, which indicates the direction from the surface point
to the light source, f is the location of the light source with respect to the
coordinate system centered on the focal point of the camera, ¥ = (?, % —l)T,
f is the focal length of the camera, and z is the depth. Since the distances
from surface to camera and from light source to surface are both considered in

this model, it yields a more realistic description of reflectance.

Hougen and Ahuja [42] have observed that the assumption of a single point
source overly simplifies the model of the light source distribution. They approx-

imated the light source distribution by a set of m distinct light source vectors,
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51, 5,..., Sy, where 5y is the average value of S over a neighborhood angle
of Si. By writing Sy as a product of its magnitude A; and unit direction ,5;;;,

the brightness equation can be expressed by

I=7100Ro+ " N ROV, 50)), 2.9

k=1
where nAg Ry is due to the contribution of ambient light, and R is the reflectance

map which is independent of the magnitude of the light source.

Unlike the classical Lambertian reflectance model, Langer and Zucker [43]
introduced the concept of Shape from Shading in a Cloudy Day. They claimed
that under diffuse lighting, the radiance depends primarily on the amount of
the diffuse source visible from each surface element, with the surface normal
of secondary importance. Assuming the effect of mutual illumination can be
ignored, the brightness at image point ¥ = (z,y) is described as

@=nlo_ [ (¥@-5)an, (29)
where 7 is the albedo, Ip is the illuminance from a uniform hemispheric light
source, v(Z) is the set of unit directions in which the sky is visible from Z# and

d) denotes an infinitesimal solid angle.

The above reflectance models attempt to remove one or more of the follow-

ing constraints used in the simplification of the classical Lambertian model:

e The brightness is independent of the viewing direction,
e The illumination is from an infinite point source,

e The projection of the object onto the image plane is perspective.

Oren and Nayar’s and Langer and Zucker’s models emphasized the im-
portant effect of the viewing direction in the reflectance model. Hougen and
Ahuja considered background illumination and more realistic lighting as com-
pared to a single point source illumination widely used. Clark used the per-
spective projection in the shape recovery and his model does not even depend
on any specific reflectance model. In short, all of those models overcome the
over-simplification of the traditional Lambertian model which results in the

elimination of the modeling error.
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2.3 Estimation of Illuminant Direction and
Albedo

Most current methods for obtaining shape from shading require known
light source direction. Since the light source is assumed to be an infinite dis-
tance away from the image being viewed, the light source orientation is constant
for all the surface points in the image. Then, one shaded image can provide

enough information to estimate the light source direction.

One way of describing a light source direction is to use a three-dimensional
vector § = (84, y,$;). The other way is to use two angles called the slant (o)
and the tilt (7), where the slant is defined as the angle between the surface
normal and the direction toward the viewer and the tilt is defined as the angle

between the projection of the surface normal on the image plane and the z-axis,

In shape-from-shading problem, with using the image irradiance equation,

the imaging model is specified through a reflectance map [2, 44]

I(z,y) = R(p, 9), (2.10)

where I(z,y) is the scene radiance at the point (z,y) in the image and R(p, q)
is the reflectance map function with p = dz/dz and ¢ = dz/dy being the
partial derivatives of height z(z,y) with respect to the image coordinates. If

we consider the Lambertian model, the reflectance map is

R(p,q) =n(N-8), (2.11)

where 7 is the albedo, N = (—p,—¢,1)/+/1 + p? + ¢? is the surface normal at
(z,y,2(z,y)) and S = (8z, 8y, $z) is the direction toward the light source. S is
constant if we assume the illuminant to be from a point light source far away

from the scene.

Under the Lambertian surface, point light source and uniform albedo as-
sumptions, the reflectance map is determined by the parameters S and n, i.e.,
the illuminant direction and surface albedo. The problem of estimating these

parameters, and hence estimating the reflectance map, was first attempted by
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Pentland [3]. Pentland estimates the illuminant direction from the distribution
of image derivatives. By assuming an umbilical surface and isotropic surface
normal, a maximum-likelihood analysis was performed to estimate the tilt and
the slant angles of the light source. This approach was later extended to the
Fourier domain [3, 24, 45]. The basic idea underlying Pentland’s method is
that, since surface orientation is a random variable over the whole image for
most scenes, so both surface normal N and the change of the surface normal dN
are isotropically distributed. Therefore, if we consider any direction (dzy, dyr)
on the image plane, the z component of the expected value of dN , dn, is zero.

Thus the derivative of the brightness equation

E{dI} = dI = n(szdn, + s,dn,), (2.12)

where F indicates the expected value.

For a sphere, for example, z(z,y) = \/m, ze = =%, 2y = =L,
hence N = —%(:c, Yy, z). Consequently, it can be shown that the z and y compo-
nents of the derivative of normal in any direction 6 are given by dn, = —% cos 6
and dn, = —1sinf. Let (cosd,sind) = (dzr,dyr), then kdz; = dn, and
kdy; = dn,,, where k= % is the mean projected surface curvature, which is the
same in all directions using the locally spherical assumption. Repeating the
above process in M different directions (dz;,dy;)(¢ = 1,..., M), the regression

model can be describe as

dI, dry  dn

dha | _ | de doe (S””> , (2.13)
: : : Sy

dIy drpy  dym

where dI; is the average of the intensity change along the image direction

(dz;,dy;) and 8, §, are the unnormalized z and y components of the 7 estimate.

Solving the above we get

(%x):(BTB)‘lBT O, (2.14)
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where B is the matrix of directions (dz;,dy;) as shown in (2.13). A typical
choice for the (dw;, dy;) are the eight directions in the image plane: Two in the
horizontal, two in the vertical direction and four along the diagonals. Then,

M = 8 and the direction matrix will be

1 ¥ o ¥ 1 _¥2 o £\T
p=(y & | 4 2 ) (2.15)
0 1 0 - -1 —¥2
2 2 2 2
The tilt of the illuminant, 7, can be computed by
gy
T = arctan (=), (2.16)
Sz

and the slant, o, of the light source direction is computed as

o = arccos 4/1 — s2 — s2. (2.17)

Taking the expected value of the square of intensity derivative E{dI?}, and
cancelling out of the common terms between E{dI*} and E{dI}? by subtract-
ing one from the other, we have the relation E{dI?} — E{dI}* = n?k?. Since
8, = nksg, 3, = nksy, by introducing k = Bk = /E{dI*} — E{dI}?, the

equation for the slant of the light source can be simplified as

R
o = arccos {/1 — .
k2

(2.18)

Instead of taking intensity derivatives along a number of directions, Lee
and Rosenfeld [4] considered only the derivatives along the = and y directions.
They approximated the surface geometry by a spherical patch in a local region,
so their method was also based on an isotropic distribution of the surface
orientation. Since the image of a sphere is symmetric about the projection of
the light source vector in the image plane, the average direction of the intensity

gradient must be parallel to this projection. This gives

E{Iy} _ Sy

CITATRES (2.19)

So the tilt 7 of the illuminant direction can be estimated by
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E{Iy}), (2.20)

E{I:}

T = arctan (

where I, I, are the first order partial derivatives of image intensity with respect

to the image coordinates and the expectations are taken over the whole image.

Considering the sampling distribution for the slant and expected values of

intensity and intensity squared, the slant o of the illuminant direction satisfies

B{I} = ilﬁ(w—a)cosa-{—sina (2.21)

37 14+ coso
2

E{I%} = %(1 +cos o), (2.22)

where the expectations are taken over the whole image.
To compute 7 and o from (2.21) and (2.22), we first solve for o from

E{I} 8 (r—o)coso +sino

VE{I?} 3« (14 coso)2
After the slant angle o is estimated, the albedo of the surface can be determined
by

(2.23)

— (aE{I}+\/bE{I2}), (2.24)

a? + b?
where
4 (mr—o)coso+sino 1+ coso
- b= ———, 2
“T 3 14 coso and 4 (2:25)

Zheng and Chellappa [5] modified Lee and Rosenfeld’s method by consid-
ering not only the area of the illuminated portion in the integral, but also
the area of the portion in shadow. Although the shadow does not contribute
to the total intensity, it does contribute to the area computation in order to
correctly calculate the mean intensity value over the whole image. After the

modification, the formulas are

E{I} = ;—Z_ [(m — o) cos o +sin o] (2.26)
E{I*} = %2(1 + cos )2, (2.27)



22

Thus
E{I} _ 44/2 (w—a)cosa-l—sma. (2.98)

v E{I?} 3T 1+ coso

Under the assumption that the orientations of the surfaces are uniformly

distributed in 3-D space, they also proposed two methods to estimate the tilt of
the light source. One of them was the local voting method which assumes that
each surface point and its neighbors can be locally approximated by a spherical
patch. Zheng and Chellappa considered that, for a small increment along the
direction d = (éz,6y), the increment in intensity along that direction will be

614. Then, if we consider different directions for J, (32, 8y) can be solved using

61,
Sp 61
(7)=wmmsm| |, (2.29)
3y :
61y
where
0y oy
) )
B=| "7 (2.30)
bz Sym

and M is the number of measured directions of d. The local estimate of 71s

@ 2.31
COS T(z,y) R (2.31)
. Sy
z 2.32
S0 7(5y) s (2.32)
and the global estimate of the tilt of the illuminant is
cosT = FE{cos Ty} (2.33)
sinT = E{sinT(y)} (2.34)
T = arctan(::;: ). (2.35)
Then, tilt of the source is
B{ 2=}

£/ 52452
T = arctan (ﬁ- . (2.36)
Ve
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The other was contour-based method which uses shading information along
image contours. Under the assumption that the slant of the surface normals
along the boundary are constant, the tilt angle a of a boundary pixel, is just
the tilt angle of the boundary contour in the image plane, and the summations
of cos o and sin « over the closed boundary are zero. Then, the tilt angle 7 can

be computed from

T = arctan (%), (2.37)
T
where
5L
1 Tn-17 | 12
=(C*C)"'C . (2.38)
i) .
In
and

cosa; sinaog

cos g  Sin Qg

0P A B (2.39)

cos ap  Sin Qg

For the computation of the slant o and the albedo 5, Zheng and Chellappa
defined three functions, fi(0), f2(o) and fs(o) = fi(o)/+/ f2(o), and used them

as

B{I} = nfi(o) (2.40)
B{I?} = n*fo). (2.41)

Here, fi(0), fo(o) and f3(0) are computed by a numerical method and the
results are approximated by seventh-order polynomials of cos . Thus, o can

be uniquely solved from

E{I}

= Jslo 2.42
JET fs(o) (2.42)

and 7 can be computed by
B A + VETT R (249)

"= T o) + falo)
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All of the above three methods are similar. For example, for the estimation
of the tilt, if we take the derivatives only in z and y directions in Pentland’s

regression model, it reduces to Lee and Rosenfeld’s method.

In [5], Zheng and Chellappa tested the above methods on a set of three dif-
ferent images. The results showed that for the estimating of the tilt angle, all
algorithms work almost perfectly for a sphere without background. However,
background and noise will degrade the performance of both Lee and Rosen-
feld’s and Pentland’s methods. Consequently, Zheng and Chellappa’s method
is more robust to background and noise in most of the cases. For the estima-
tion of the slant angle, Pentland’s method is very sensitive to noise but Lee
and Rosenfeld’s and Zheng and Chellappa’s methods are robust to Gaussian
noise. If a uniform background is included, results for all three methods are
degraded. In terms of the computation time, since M is usually greater than
two, Lee and Rosenfeld’s method is the most efficient, Pentland’s is the second
and Zheng and Chellappa’s is a bit slower than Pentland’s as it needs to solve

seventh-order polynomials.

The summary of formulas for estimating illuminant direction and albedo

are presented in Table 2.1.
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Table 2.1. Summary of Formulas for Illuminant Direction and Albedo.

dI
. 5. djz
Pentland’s | 7 7 = arctan($%); (fx) = (BTB)~'BT .
v Sy
dIy
Method
o o = arccos(1 — 5’,;5”)%; k = (E{dI*} — E{dI}?)%
B{I,
T T= arctan(m{z—})
.. . E{I} — 8 (r-¢ cos o+sin o
Lee and Original form: VEUT - 3% (ieose)}
o
) d . _E{n} _ 4/2 (n—o)cosotsing
Rosenfeld’s Modified form: NI ar itcoso
Method
n= ﬁ(aE{I} +bE{I?})
n Original form: @ = ﬁ K_L.___W—Uli‘;i: : Sirlo; b= lice=o e
Modified form: a = 2 [(r — o) coso +sino]; b= (teose)
61
o BTN (50 _ o pveipr | 02
Local: 7= arctan(E{sy/\/m}), 5, =(B"B)"'B :
§Im
Zheng and | 7
I cosqy  sina
- I, cosao  sin oy
Chellappa’s Contour: 7 = arctan(22); X = croy-tet| T |; =
In cosaps sinapy
Method
- E{I}

AL = 0.5577+0.6240 cos o + 0.1882 cos? o — 0.6514 cos” 0
—0.5350 cos* o + 0.9282 cos? o cos® +0.3476 cos® o — 0.4984 cos’ &

n n = [E{I} f1(0) + (E{I} /2(0))3] / (f}(0) + fa(0))




CHAPTER 3.

SHAPE FROM SHADING PROBLEM

3.1 Introduction

Extracting surface orientation and surface depth from a shaded image,
known as the shape-from-shading problem, is one of the fundamental problems
in computer vision. Different parts of the surface are oriented differently and
thus will appear with different brightness. This spatial variation of brightness,
or shading, is used to estimate the orientation of surface patches. Measure-
ment of brightness at a single point in the image, however, only provides one
constraint, while surface orientation has two degree of freedom. Without addi-
tional information, we cannot recover the orientation of a surface patch from

the image irradiance equation

I(z,y) = R(zw(x’y)’zy(mvy))' (3.1)

Here, I(z,y) is an image formed by projection of the light onto a plane paral-
lel to the zy-plane, R(z;,z,) is the reflectance map relating image brightness
to surface orientation, z, and z, denote the first partial derivatives of z with
respect to x and y respectively. The solution of (3.1) may be expressed math-
ematically in terms of a first-order partial differential equation. Specifically, a
function z(z,y), representing surface depth in the direction of the z-axis, sat-
isfies the image irradiance equation over the image plane. In this formulation,
it is implicitly assumed that the light sources are infinitely far away and inter-
nal surface reflections are disallowed. On the other hand, the assumption of

smoothness of a surface provides a strong constraint. Neighboring patches of
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the surface cannot assume arbitrary orientations. They have to fit together to

make a continuous smooth surface.

In shape—from-éhading algorithms, it is assumed that the reflectance map is
given or its form is known. However, it is very important to know whether a so-
lution to the SFS problems exists and whether there is more than one solution.
Unfortunately, the existence and uniqueness questions are difficult to decide
without additional assumptions. More can be said when specific reflectance
maps are chosen such as ones that are linear or those are rotationally symmet-
ric [46]. Since images of most surfaces in the real world can be approximated
by Lambertian reflectance, the majority of SFS methods use the Lambertian
reflectance model. The important parameters in Lambertian reflectance are
albedo and illuminant direction. Commonly, the albedo is assumed to be con-

stant and there are several methods for computing the light source direction.

It has been recently shown that there exist impossible shaded images, that
is, images that do not correspond to any surface illuminated in the specific
way. It may turn out that almost all images with multiple singular points
are impossible in this sense [47]. This is an important issue, because it may
help explain how our visual system sometimes determines that the surface
being viewed cannot possibly be uniform in its reflecting properties. One can
easily come up with smoothly shaded images, for example, that do not yield an
impression of shape, instead appearing as flat surfaces with spatially varying

reflectance or surface albedo.

3.2 Ill-Posed Problems and Regularization

3.2.1 Introduction

The well-known rendering problem in the field of computer graphics in-
volves the synthesis of images from explicit representations of 3-D forms. Con-
versely, early computational vision aims at understanding how explicit geomet-
ric representations of the 3-D world may be reconstructed from 2-D images.

During the imaging process that maps the 3-D scene to a 2-D image, most
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of the information about scene is lost. Then, different scenes may result in
the same image. Thus only the pixel gray values in the image do not provide
enough information to extract 3-D properties of surfaces due to this ambiguity.
Addition to this, the unavoidable noise which is added during the imaging and

the sampling process is another factor that makes the inverse problems more

difficult.

A theoretical approach which unifies these problems is to consider early
vision problems as ill-posed problems [48, 49, 50]. Hadamard [48, 51] defined
the conditions which well-posed problems have to satisfy. A problem is said to

be well-posed if the following conditions are satisfied:

1. For each data d in a given class of functions Y, there exists a solution u

in a prescribed class X (existence);
2. The solution u is unique in X (uniqueness);

3. The solution v continuously depends on data d; when the error on the
data d tends to zero, the included error on the solution u tend also to

zero (continuity).

Thus a problem is ill-posed in the sense of Hadamard when it fails to satisfy

any of the three conditions given above.

3.2.2 Regularization

The general theory and methods for solving ill-posed problems have been
developed by Tikhonov [52], Arsenin [52], Ivanov [53] and Morozov [54, 55]. The
main idea for solving ill-posed problems is to restrict the class of admissible
solutions by introducing a priory knowledge. Thus one of the important issue is
to find valid and general constraints which allow us to solve ill-posed problems.
In this regard, constraints such as smoothness have been useful expressions of
generic, a priori information about possible solutions. The physical justification
of the smoothness is that the coherence of the matter tends to give rise to

smoothly varying intrinsic scene characteristics relative to the viewing distance.
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A priori knowledge can be formulated either in terms of the variational prin-
ciples that impose constraints on the possible solutions or as statistical prop-
erties of the solution space. The general term “regularization” is used for any
method which transform an ill-posed problem to a well-posed problem. Varia-
tional regularization indicates the regularization methods that reformulate an
ill-posed problem in terms of variational principle. The standard regularization

methods developed mostly by Tikhonov fall into this class.

Through regularization, a wide range of ill-posed visual reconstruction
problems may be reformulated as variational principles. Tikhonov regular-
ization employs a specific class of so-called stabilizing functionals to restrict
admissible solutions to spaces of smooth surfaces. Under nonrestrictive condi-
tions, the resulting variational principles can be made well-posed within these
spaces; hence, their solutions are effectively computable. Regularization there-
fore appears to offer a theoretical basis for the smoothness constraints that

have been applied to the reconstruction problems of early vision.

Let us consider the regularization of the ill-posed problem of finding z from
the data y such that

Az=1y. (3.2)

The regularization process requires the choice of suitable norms ||.|| and of a
stabilizing functional ||Pz||. In this choice, the analysis of the physical con-
straints as well as the mathematical considerations play a very important role.
In the standard regularization theory, A is a linear operator, the norms are

quadratic and P is linear.

There are three methods of standard regularization [50]:

1. Among z that satisfy ||[Pz|| < Cy, where C; is a constant, find z that

minimizes ||Az — y||,
2. Among z that satisfy || Az — y|| < Cq, find 2 that minimizes || Pz||,

3. Find z that minimizes ||Az — y||*+ A || Pz]|?, where A is the regularization

parameter.
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The first method searches for a function z that satisfies the constraint
|Pz|| £ Cy and also best approximates the data. The second one consists of
finding the function z which is sufficiently close to the data and is most regular.
In the third method, the regularization parameter A controls the compromise
between the degree of regularization of the solution and its closeness to the

data.

Thus in the standard regularization method, the constraints on the solution
are imposed as a variational principle such as a cost functional. The solution
minimizing this functional is a good solution since it has to be close to the
data and be regular by making the quantity ||Pz|| small. In this formulation,
the physical constraints on the solution are formulated as stabilizer P. As
mentioned earlier, the smoothness constraint is used widely as an physical
constraint on the solution. It can be also justified as the following; the noiseless
image has to be smooth in the sense that all its derivatives must exist and be
bounded since the image is band limited by the optics. This constraint allows
us to eliminate the noise and recover the continuity of the solution on data
making the problem well-posed. The smoothness constraint can be imposed
in the simplest form by selecting the stabilizer as P = 58%2 and the norm as

Ls[a, b] norm:

b
1l = / f(2)da. (3.3)

This stabilizer can be used to compute the derivative of noisy data, which is
unstable without regularization. With this choice of P and norm, the regular-
ization for the numerical differentiation is to find the approximating function

z which minimizes the functional

N

B() = Y () =u +3 | 1 (g_i) dr, (3.0

=1
where the first term is the measure of the closeness of the solution to data and

the second term, stabilizer, is the measure of the smoothness. The compromise

between two terms is controlled by the regularization parameter A.

A more general univariate stabilizer contains a large range of the derivatives
as proposed by Tikhonov. In this case, the stabilizer becomes the p-th order

weighted Sobolev norm
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llv||2 = Z / ( dx,(:))2da:, (3.5)

m=o
where w,, is a nonnegative, prespecified and continuous weighting function.
Thus the previous stabilizer is a special case of this stabilizer with p = 2,
wo = wy = 0 and wy = 1. In follows from the fact that the Tikhonov regular-
ization imposes the smoothness constraints on the solution by restricting the
solution space to the Sobolev space of the smooth functions. There exists also
a close relation between the Tikhonov regularization and the approximating
by splines. Minimizing the functional F(v) is the variation formulation of the
smoothing cubic spline problem and Tikhonov regularization in (3.4) is there-
fore equivalent to fitting a cubic spline to the data [49]. This close relation
between splines and the regularization helps to obtain a stabilizer for the mul-

tivariate regularization. The generalized splines for two-dimensional case are

e [0 () e on

which can be used for surface fitting to scattered data and for visible surface

given by

reconstruction in computer vision.

The spline functionals given above have interesting physical interpretations
involving equilibria of the elastic bodies with C™~! intrinsic continuity. For

m = 1, the spline functional reduces to

vl = [ [ w24ty dsay G.)

which is proportional to the small deflection energy of a membrane. The asso-

ciated Euler-Lagrange equation of this functional is the Laplacian equation as

— V= —(Ugz + Uyy) = 0. (3.8)
For m = 2, the functional becomes

ol = [ [ 02+ 2+ 02 dedy (3:9)

and it is proportional to the deflection bending energy of a thin plate. The

Euler-Lagrange equation of this functional is the biharmonic equation
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V2= (Uzzze + 2Uszyy + Uyyyy) = 0. (3.10)

Physically the membrane spline represents a surface of C° continuity, a
continuous surface which need not have continuous first and higher order partial
derivatives. The thin plate spline characterizes a C! surface, a continuous
surface with first partial derivatives which need not have continuous derivatives

of degree greater than one.

The regularization parameter A in the functional

1Az — ylI* + A || Pz|? (3.11)

controls the compromise between closeness to the data and the degree of the
regularization. One of the important problems in this formulation is the optimal
choice of this parameter. Several techniques have been proposed to determine
the optimum regularization parameter A [56, 57, 58, 59, 60]. The so-called min-
max principle [60] may be applied to avoid the problems of extremely low and
high parameter values. The basic idea is that if lambda is either too high or
too low, one of the terms in (3.11) will be inadequately presented in the total
cost, and the total cost will be too low. This suggests that we might select a
A which maximizes the minimum energy value. Since each minimum energy
level has been already minimized over z, this will avoid problems of A being

excessively low or high.

Another important method proposed for the optimal choice of X is the
generalized cross-validation method [56]. The main idea behind this method
is to allow data points themselves to choose the value of the regularization
parameter by requiring that a good value of the parameter should predict the
missing data points. This method does not require a priori knowledge about

the solution or noise. Different approaches on this subject can also be found in
references [50, 57, 58, 59].

Visual reconstruction problems tend to be ill-posed in that existence, unique-
ness and stability of solutions cannot be guaranteed in the absence of additional

constraints.

Regularization techniques are widely used for inverse problems solving in
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computer vision such as shape from shading, surface reconstruction, edge detec-
tion or optical flow estimation. Formally, regularization transforms an ill-posed
problem into a well-posed minimization problem by constraining the solution

to belong to a set of smooth functions.

3.3 Review of Problem Formulation

3.3.1 Specifying Surface Orientation

There are several commonly used ways of specifying the orientation of a

planar surface patch, including:

Unit surface normal N [10];

Surface gradient (p, q) [61];

Slant and tilt angles (¢ and 7);

Stereographic coordinates (f,g) [11].

One way to specify surface orientation is to use a unit vector, N = (ng,ny,Nz),
perpendicular to the local tangent plane. Another way is to specify the compo-
nents p and ¢ of the surface gradient. These are the partial derivatives of the
surface height z above some reference plane perpendicular to the optical axis,
that is

0z 0z

P=5 and q= Em (3.12)

The two notations are connected by the equality

1
Vi+p+¢

A third way of specifying surface orientation is to use slant (o) and tilt(7) an-

N= (=p, =g, 1)". (3.13)

gles. Slant is defined as the angle between the surface normal and the direction
toward the viewer and tilt is defined as the angle between the projection of the
surface normal on the image plane and the z-axis. The relationship of slant

and tilt to the unit vector is given by

—

N = (sino cos 7,sinosin 7, cos o)L (3.14)
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We can also identify surface orientation with points on a unit sphere, named
Gaussian sphere [62]. Using the stereographic projection, the whole sphere is
mapped into a plane called the stereographic plane. Only the south pole ends
up at infinity, while the equator is mapped onto a circle of radius two. The
coordinates in stereographic space are f and g, and the mapping pg-space to

fg-space is specified by the equations

2q

2p
f= and g= . 3.15
14+ /14p*+¢? 1++/14p24+¢? (3.15)
Conversely,
4f 4g
- =—— 1
P g and q yp (3.16)

It is known that the occluding boundary provides important constraints
on the solution of the SF'S problem [63]. The difficulty with using gradient to
specify surface orientation is that at least one of p and ¢ is unbounded on the
occluding boundary. This problem can be overcome by specifying surface orien-
tation in stereographic space. Then, the orientation of a point on the occluding
boundary corresponds to a point on the circle of radius two in fg-space. Thus
the use of the stereographic plane makes it possible to incorporate occluding
boundary information. However, one disadvantage of the stereographic param-
eterization is that it is hard to express the condition of integrability compare

with the gradient space parameterization.

The (p,q) components of the surface gradient is the most directly useful
for specifying surface orientation. However we can convert between different
representations easily. We can use the (p, ¢) notation to specify the direction
to a light source or a small portion of an extended source. We simply give the
orientation of a surface element that lies perpendicular to the incident rays. So
we can write
1

T
m(—ps, —¢s,1)

S = (3.17)

for some p, and g;.
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3.3.2 Reflectance Map

With the development of computer vision, the reflectance map is intro-
duced to describe the scene radiance as a function of surface orientation. It is a
representational tool used in developing methods for recovering surface shape
from images. When the light sources and the viewer are far away from the
scene being viewed, the use of reflectance map makes the analysis of shape-
from-shading algorithms much easier [61, 64]. Several iterative techniques,
mostly based on minimization of some functional containing integrals of some
error terms, arose later [5, 9, 10, 11, 14, 65, 66]. If we use the unit surface
normal N as a way of specifying surface orientation, then we can write the
brightness as a function of orientation in the form R(N). If we use p and ¢

instead, we can use the form R(p, ¢q).

The reflectance map may be determined experimentally by mounting a
sample of the surface and measuring its brightness under the given illuminating
conditions for various orientations. Another way of finding a reflectance map
is to use the image of a calibration object such as a sphere for which surface
orientation is easily calculated at every point. On the other hand, a reflectance
map may be derived in term of the bidirectional reflectance distribution function
(BRDF) and the given distribution of source radiance [64]. The BRDF was
introduced by Nicodemus et al. [67] as a unified notation for the specification

of reflectance in terms of both incident- and reflected-beam geometry.

An ideal Lambertian surface which reflects all incident light and appears
equally bright from all directions, illuminated by a single point source provides
a convenient example of a reflectance map. If we let N be the unit surface
normal and S be the unit vector pointing in the direction of the light source,

then the cosine of the incident angle is just the dot product of these two vectors,

-

cosb;=N-5 (3.18)
and the scene radiance is given by

I ,
R(p,q) = —scos 6;, (3.19)

where Ij is the irradiance from the source on a surface oriented perpendicular
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to the incident rays. Note that the radiance cannot be negative, so the above
formula only applies when 0 < 6; < 7 /2. The scene radiance is zero for values
outside this range. Taking dot products of the corresponding unit vectors,

cosf; = N - S", we obtain

R(p,q) = = o, 4 4d,
T 1P+ T+ ¢

(3.20)

as long as the numerator is positive, otherwise R(p,¢) = 0.

The reflectance map is usually normalized so that its maximum is one for
the convenience of computational aspects. For the Lambertian surface which

is illuminated by a single distant light source, we can use

_ 1+ pps + qq,
V9I+p?+\/1+p2+ ¢

Thus, aside from a fixed scale factor, the reflectance map gives the depen-

R(p,q) (3.21)

dence of scene radiance on a surface orientation. Using the coordinates of the

stereographic plane instead, we can write the reflectance map as

16(ffs +99:) + (4 — f* = > )4 — f7 — g7)
4+ 2+ )4+ f2+92)

R(f,9) =

: (3.22)

The reflectance map can also be expressed in terms of slant and tilt angles.

Using the relations between (ps, ¢s) and (o, 7) given below

cosTsino sinT sin o
ps = ————— and s = ——————, (3.23)
Ccos o cos o

we have

COSO — PSINTCOST — ¢gsinosinT

VitP+¢

R(p,q) = (3.24)

3.3.3 Image Irradiance Equation

At a particular point (z,y) in the image, we can measure the image irra-
diance I(z,y). It is proportional to the radiance at the corresponding point on

the surface imaged, as determined by the projection equation. If the surface



37

gradient at that point is (p(z,y),¢(z,y)), then the radiance there is R(p,q).
Hence, the basic equation describing the image forming process can be written

as

I(z,y) = B R(p,q). (3.25)

This equation is referred to as the image irradiance equation and it is funda-
mental for recovering surface shape. It is customary to rescale image irradiance
so that the proportionality factor, B, may be dropped. Then we can write the

image irradiance equation in the simple form

I(z,y) = R(p, 9). (3.26)

This is a first-order partial differential equation that is typically nonlinear,

because of the nonlinear dependence of the reflectance map on the gradient.

As an illustration of the shading effect, consider a sphere with a Lambertian
surface illuminated by a point source at essentially the same plane as the viewer.

In this case (ps,qs) = (0,0) and the reflectance map can be written as

1

R(p,q) = ———.
:0) = s

If the sphere is on the optical axis, then for its surface we can write

z =20+ 1% — (2% +y?) for 4y <r?

where r is the radius and —z is the distance of its center from the lens. For

the partial derivatives of the surface height z(z,y)

and qg=

so that

As a result, we have

$2_|_y2
2

I(z,y) = R(p,q) =1/1 -

T
as the image irradiance equation. The brightness falls off smoothly from its

maximum at the center of the image of the sphere to zero at the edges.
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3.3.4 Variational Formulation

The image irradiance equation (3.26), which is used in image analysis to
determine object shape from image irradiance, is a nonlinear first-order partial
differential equation. Early solutions to the shape-from-shading problem were
based on direct inversion of the image irradiance equation. Unfortunately, an
exact solution to the imaging equation (3.26) does not always exist or there
may be an infinite number of solutions. In practice, modeling errors such as
reflectance map mismatch, imperfect knowledge of the light source, spatial and
quantization error, observation noise and albedo variations are inevitable. Fur-
ther, boundary conditions are generally not completely known and sometimes
may not be available at all. These factors all influence the existence and unique-
ness of a solution to equation (3.26) and the estimation of a good solution in the
case that a unique one does not exist. For these reasons shape-from-shading is

a very difficult problem in practice.

In any case, it is desirable to have a shape-from-shading method that nei-
ther moves away from correct solutions, nor converges to surfaces that are not
solutions. It is more practical to pose shape-from-shading as a constrained
minimization problem rather than purely an inversion problem. To derive
such a method, we need to impose some constraints which are satisfied by the
solution. In order to calculate object shape or equivalently surface orienta-
tion, additional assumptions and constraints must be imposed to the iterative
scheme used. Suppose, we seek a smooth surface satisfying various constraints
over some image domain. It is useful to obtain from the given constraints a
non-negative expression that measures the departure of a particular surface
from a satisfactory solution. We may then search for a surface that minimizes

the expression.

The search for a function that minimizes an integral expression is the major
concern of the calculus of variations [68]. In the calculus of variations, we look
for extrema of expressions that depend on functions rather than parameters.
Such expressions are called functionals. Using calculus of variations gives us
the valuable result that the extrema of functionals must satisfy an associated

Euler equation. Then, we can transform the source-recovery problem from one
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of minimizing a functional, to one of solving one or more partial differential

equations.

The variational approach, first introduced by Ikeuchi and Horn [11], was
later used to developed SFS schemes as well as analyze existing ones [10].
This approach to early vision problems soon spread to other areas, such as
motion vision and surface interpolation from sparse depth data obtained using
binocular stereo [49, 69, 70, 71, 72, 73, 74]. A least-squares variational approach
can be used to recover the best-fit surface [2, 10]. Methods based on expansion

in terms of basis functions also implicitly provide a best-fit surface [9, 75].

Let us suppose that we obtain from a Euler equation a surface that gen-
erates a global minimum of the appropriate functional. The surface that best
matches the constraints will generate a global minimum of the functional. This
is a very important property of the variational approach. Since vision prob-
lems typically involve images that are noisy, this property is very important in
computer vision. Exact solutions may not exist in this situation. For example,
in the presence of noise, there may not be a smooth surface that satisfies the
image irradiance equation I(z,y) = R(p,q) exactly. However, there will be

a surface that minimizes the integral of the square of the difference between
I(z,y) and R(p,q).

3.3.5 A Procedure for Deriving Iterative Scheme

A procedure for deriving iterative shape-from-shading schemes for recov-
ering surface shape is given in Table 3.1. Here, we seek a surface, z(z,y), that

best satisfying various requirements over some image domain ).

The approach follows the same pattern if the surface is parameterized in
a different way. Also, similar results can be obtained by applying the finite-
element method directly to the functional Z. Note that it is better to work
with a functional that evaluates to zero for perfect solutions. In this way, we
may use them to check how close an iterative scheme is to a solution. This
is difficult with other functionals, as the minimum value is usually unknown.

An additional advantage of functionals evaluating to zero is that there are no
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Table 3.1. A procedure for deriving iterative scheme.

il.

1ii.

v.

vi.

vii.

. Select a functional, F', non-negative over €2, such that

I=[[,F(z,y,z,..)dcdy

constitutes a measure of the departure of z from an ideal solution.

Absorb into F' any constraint that z should satisfy over 2, using

Lagrangian multipliers if appropriate.

If the problem is not well-posed as it stands, add a suitable regu-

larization term.

Find the Euler equation that must be satisfied by the surface z

minimizing the functional Z.

Determine what boundary conditions are needed to ensure a unique
solution. If there are no constraints on the function around the
boundary df2, determine the appropriate natural boundary condi-

tions.

Develop a discrete approximation of the associated Euler equation,

using finite-difference methods.

Design an iterative scheme that converges to the solution of the

discrete approximation of the Euler equation.
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unwanted surfaces that cause the functional to have a smaller value than that

generated by a satisfactory solution.

3.4 Constraints for SF'S Problem

The problem of minimizing the integral of the brightness error term is ili-
posed, since it has an infinite number of solutions in terms of surface orientation.
Then, regularization theory used to overcome this difficulty. Some extra terms,
constraints, can be added to the integral to obtain an approximation to a

solution. The constraints used in SFS problem are summarized as follows:

e The brightness constraint indicates the total brightness error of the

reconstructed image compared with the input image and is given by

[[a@n- &w.0r s, (3.27)

where I(z,y) is the measured intensity and R(p, q) is the reflectance map.
In any case, it is desirable to have a SFS method that converges to a
unique solution. To derive such a method, we need to impose the smooth-

ness constraint.

e The smoothness constraint ensures a smooth surface in order to sta-

bilize the convergence to a unique solution and is given by

/ (P2 + P2+ ¢2 + &) de dy, (3.28)

where p and ¢ are the surface gradients along the z and y directions,
respectively. Another version of the smoothness term is less restrictive

by requiring constant change of depth only in = and y directions as

/ / (P} + qj) dz dy. (3.29)

The smoothness constraint can also be described in terms of the surface

normal

//(uz\?g + N?|) de dy. (3.30)
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Although constraints (3.29) and (3.30) look alike, in reality, constraints
(3.28) and (3.30) are similar if we consider the relationship between sur-
face normal, N, and the surface gradient, (p,¢). Both (3.28) and (3.30)
are most restrictive than (3.29) in terms of the smoothing directions.
They are more frequently used, since (3.29) tends to lead to excessively
flattened surfaces.

Let us suppose that shape-from-shading method recovers smooth func-
tions p(z,y) and q(x,yj defined over the image. In general, there will
be no smooth surface that corresponds to this gradient. This is because
the functions p and ¢ must be related in a special way if they are to
correspond to a smooth surface [76]. This relation is specified by the

constraint of integrability.

e The integrability constraint ensures a valid surface, that is, p, = ¢,

OF Zgy = Zyz. 1t can be described either

//(py — ¢z)* dz dy (3.31)

[[(@=p7+ G- 07 doay. (3.32)

or

e The intensity gradient constraint, finally, requires that the intensity
gradient of the reconstructed image be close to the intensity gradient of

the input image in both z and y directions and is described as

/ / (Ry — I.)* + (R, — 1)*) dz dy. (3.33)

3.5 Review of SF'S Schemes

In this section, we discuss global minimization, global propagation and

local approaches to the shape-from-shading problem.
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3.5.1 Global Minimization Approaches

Global minimization approaches compute the solution which minimizes
an energy function over the entire image. The function can involve some con-
straints, such as the brightness constraint, the smoothness constraint, the inte-
grability constraint and the intensity gradient constraint, in order to obtain a
unique solution. In this subsection, we discuss three global SFS methods given

by Ikeuchi and Horn, Horn, and Zheng and Chellappa.

3.5.1.1 Ikeuchi and Horn

Ikeuchi and Horn [11] were the first to apply the calculus of variations
to the shape-from-shading problem and also specified the surface orientation
in stereographic space to incorporate occluding boundary information. Ikeuchi
and Horn’s objective was to find two functions, f(z,y) and g(z,y) with ensur-
ing that the image irradiance equation I(z,y) = R(f,g) was satisfied. Here
R(f,qg), is the reflectance map expressed in stereographic coordinates. Without
additional constraint the problem is ill-posed. In another words, the minimiza-
tion of the total brightness error alone does not constitute a well-posed problem.

Then Ikeuchi and Horn decided to add the measure of lack of smoothness given
by

[[zs 2+ g+ gy dedy. (3:34)
Adding this term to the brightness error, Ikeuchi and Horn obtained the func-

tional

/ {I(@,9) — R(f,9)? + A2 + 12 + & + ¢} da dy, (3.35)

that is to be minimized by choosing f and g. In the above formula, f., f,, g.
and g, are the first partial derivatives of f and g with respect to z and y, and
A is a scalar that assigns a relative weighting to the terms. The corresponding

Euler equations of this minimization problem

a 0
0 0
Fy— o Fy, = @ng = 0, (3.37)



44

where F) is the partial derivative of F' with respect to f. Applying these

formulas we obtain

(I-R)R;+AV*f = 0 (3.38)
(I-R)R, + V% = 0, (3.39)

where Ry and R, are the partial derivatives of R(f,g) with respect to f and g,
and

0? o?
2—._ -
V= 52 T dy?

is the Laplacian operator. These Euler equations do not have a unique solution

(3.40)

without additional constraint. Thus, Ikeuchi and Horn used f and g values on
the occluding boundary. Finding the solution of the Euler equations with this

particular set of boundary conditions usually constitutes a well-posed problem.
Using the five-point approximation of the Laplacian, we get

{V2f}i é(ﬁj = fii) (3.41)

_ 1
fiz = Z(fz',m + firrg + fij=1 + fim1,5)

%

where ¢ denotes the spacing between picture cells and f;; is the local average of
f. The same computation can be done for g. Ikeuchi and Horn used the finite
difference approximations in the Euler equations derived above, they obtained

the iterative scheme

= k 62
1-’;-"'1 = fii + 75) [L;; — R(f!;'agfj)] Ry ( i’;,,gfj) (3.42)
2

k k€ ko k ko k
gij+1 = g + ]“—/\[Iij _R( ij’gij)] Ry( z’j’gij)7 (3.43)
where the superscript denotes the iteration number.
After determining surface orientation in stereographic plane, the next task
is to map the solution from fg-space to pg-space and find the surface height.

For this, we can find a best-fit surface z to the components of the gradient, p

and ¢, by minimizing the functional

[ (=97 + - 0 dody (3.44)
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whose Euler equation is

V32 = p, + q,. (3.45)

Using the discrete approximation to the Laplacian employed earlier, we obtain

the iterative scheme

_ €
ij-"l = ZZ — Z(hij + vij) (3.46)
Zij = q(Eeg + 2oy + e+ zigo)
1
hij = §(Pi+1,j - pij)
1

vi; = -2—(q,~,j+1—q,~,~).

Ikeuchi and Horn’s method works reasonably well having good stability and
convergence properties. However, the solution for surface orientation may not
correspond to an underlying smooth surface and that solutions may be distorted
by the presence of the regularization term. The degree of distortion depends
on the parameter A. On the other hand, Ikeuchi and Horn’s approach requires
occluding boundary information in terms of the stereographic coordinated f
and g. In order to construct the surface of an object, a mapping step from fg-
space to pg-space and then, an integration of the surface orientation is required.

Moreover, a well-known problem of this method is the slow convergence rate.

3.5.1.2 Horn

Horn [12] combined the brightness constraint, the smoothness constraint

and the integrability constraint, and minimized the following energy function

[ 1= R 002+ Bt @4 @)+l = 9 + 5y~ )} didy, (347

where the first term corresponds to the requirement that the image synthesized
from the reconstructed shape be close to the input image. The second term
is the regularization constraint used to ensure the convergence of the iterative
scheme. The third term comes from the requirement of integrability [9, 10],

1.e., the shape-from-shading result should correspond to a physical surface.
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The Euler equations lead to the following coupled system of second-order

partial differential equations

AAp = —(I— R)R, - (z — p) (3.48)
Mg = —(I-R)R;— p(zy — q) (3.49)
Az = py+q,. (3.50)

A discrete approximation of these equations can be obtained by using the dis-
crete approximation of the Laplacian operator introduced in equation (3.41)
and by approximating the reflectance map R(p, ¢) locally by a linear function
of p and q as

R(p, q) = R(po, 90) + (p — po) Bp(po, q0) + (¢ — o) Ry (Po, 90), (3.51)

where (po, go) is the reference gradient, R, and R, are the partial derivatives
of the reflectance map with respect to p and ¢. Then, the iterative scheme can

be written as follows:

o= Pt
¢t = ¢F+4q (3.52)

~ €
A 2= —(p=+ a),

where p, ¢ and Z are the local averages, and

4

bp = = (\'+R)A-R,R,B
4

6g = 5 (N'+R)B - RyRyA

A = kNép+ péz, + (I — R)R,
B = gXNé6G+ pbz,+ (I — R)R,
D = MN(\"+R:+R)

Moo= kN 4p
No= )/é

6p = p—pf
67 = ¢ —¢*
§zp = 8z,Ft — ph

6z, = 6z, — 4~
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Here, x = 4 when the local averages are computed using four edge-adjacent

neighbors.

In the previous method, Tkeuchi and Horn, first compute surface orientation
and do not ensure that the resulting gradient field is integrable. As a second
step, they find a surface whose gradient comes closest to the estimated gradient
field in a least-squares sense. These two steps are combined in Horn’s method
that recovers gradient and height at the same time. Linearization of the re-
flectance map about the local average surface orientation greatly improves the

performance of the method.

The functional (3.47) Horn used contains a penalty term for departure from
smoothness, so it may appear that it cannot converge to the exact solution.
However, Horn used the regularization term to stabilize the iterative scheme
when it is far from the correct solution, and he turned off it as the solution
is approached. Thus, he found an exact solutions of given shape-from-shading

problem even though a regularization term was included.

3.5.1.3 Zheng and Chellappa

Zheng and Chellappa [5] applied the intensity gradient constraint, instead

of the smoothness constraint, and minimized the energy function
/ / (T = R + (L= Ry Y+ (I, — By + 1 (20— ) + (24— 0)%)} dady. (3.53)

The Euler equations are simplified by taking the Taylor series of the re-
flectance map and representing the depth, gradient and their derivatives in
discrete form. Then, the iterative scheme, which updates depth and gradients

simultaneously, is derived as

o= P4
¢t = ¢F+6q (3.54)

= 46z,

where



48

4 1 ) 1 1

bp = (Cr = 7nCa)(5R; + 71) = (Co = 71Ca) (3R, Ry + 711)]
4 1 ) 1 1

bg = A [(Cy~ ZHC3)(5R3 + ZM) —(C1 - ZMC3)(5Rqu + Z#)]
1

bz = Z(Cg+5p+5q)

- Iyy)Rp - l‘(p - Zm)
- Iyy)Rq - /L(q - Zy)

C1 = (=R+1+ Rppos + Ryow — oo + Rypyy + Ryqyy
Cy = (—B+1+ Rppuz + Ryoz — Loz + Ryppyy + Ryqyy
Cs = —pot2ee—qy+ 2y

A = 4{5u[R:+ R+ %(Rp — R+ 1.5u% }.

Zheng and Chellappa implemented their algorithm using the hierarchical
structure in order to speed up the computation. Their scheme updates the
surface slope and height maps simultaneously. There is no special requirement
for the initialization of the boundary and the initial values for both depth and

gradient can be zero.

A good comparison of Tkeuchi and Horn’s method and Zheng and Chel-

lappa’s method can be found in our previous work [77].

3.5.2 Global Propagation Approaches

Global propagation approaches start from the surface points where the
shape either is known or can be uniquely determined, such as singular points,
and propagate the shape information across the whole image. We present three

algorithms in this section.

3.5.2.1 Characteristic Strips

The original solution of the general shape from shading problem by Horn
uses the method of characteristic strip expansion [7, 13]. The basic idea is
quite easy to explain using reflectance map [2, 61]. Suppose that we are at a

point on the surface and we wish to extend the solution a small distance in
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some direction by taking a step dz in z and éy in y. We need to compute the
change in height §z. This we can do if we know the components of the gradient,

because
8z = péz + q by. (3.55)

So, as we explore the surface, we need to keep track of p and ¢ in addition to
z, y and z. This means that we also need to be able to compute the changes

in p and ¢ when we take the step. This can be done using

dp=rbx+sby and 8q = sbx +t by, (3.56)

where r = 255, 8§ = 25y = %y, and t = z,, are the second partial derivatives of
the height. It seems that we need to now keep track of the second derivatives,

and so on.

To avoid this infinite recurrence, we take another tack. To find the bright-
ness gradient we differentiate the image irradiance equation I(z,y) = R(p, q)

with respect to # and y, and so obtain

I, =rR,+ sR, and I,=sR,+tR,. (3.57)

At this point we exploit the fact that we are free to choose the direction of the

step (éz, 6y). Suppose that we pick

b = R, 6¢ and oy = R, 6¢ (3.58)

then, from equations (3.56) and (3.57) we have

ép =1, 6¢ and bq = I, 6¢. (3.59)
We can summarize the above in the set of ordinary differential equations
p=1IL, ¢=1,
t=R,, y=Ry z=pRy+qR,, (360)

where the dot denotes differentiation with respect to £, a parameter that varies

along a particular solution curve. Note that we actually have more than a
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mere characteristic curve, since we also know the orientation of the surface at
all points in this curve. This is why particular solution is called characteristic
strip. The projection of a characteristic curve into the image plane is called a

base characteristic.

The base characteristics are predetermined straight lines in the image only
when the ratio ¢ : y = R, : R, is fixed, that is when the reflectance map is
linear in p and ¢. In general, we cannot integrate along arbitrary curves in the
image. Also, an initial curve is needed from which to sprout the characteristic

strips.

In turns out that direct numerical implementation of the above equations
does not yield particularly good results, since the paths of the characteristics
are affected by noise in the image brightness measurements and errors tend to
accumulate along their length. In particularly bad cases, the base characteris-
tics may even cross, which does not make any sense in terms of surface shape.
It is possible, however, to grow characteristic strips in parallel and use a so-
called sharpening process to keep neighboring characteristics consistent [7, 13].
This greatly improves the accuracy of the solution, since the computation of
surface orientation is tied more closely to image brightness itself rather than
to the brightness gradient. This also makes it possible to interpolate new char-
acteristic strips when existing ones spread too far apart, and to remove some

when they approach each other too closely.

3.5.2.2 Dupuis and Oliensis

Most of the shape-from-shading approaches make use of the smoothness
constraint. Although this term helps to stabilize the minimization process it
pushes the reconstruction toward a smooth surface. Oliensis [20] discovered
that the smoothness constraint is often unnecessary since shading determines
shape with little ambiguity for a typical image. He also observed that while the
occluding boundary does not strongly constrain the surface solution, a singular
point does. Therefore the surface should be reconstructed from the interior of
the image outward, instead of from the boundary inward. Since both singular

points and characteristic strips are independent of the viewing direction and
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characteristic strips correspond to steepest ascent curves on the object, the
shape of a surface can be constructed strip by strip given the information at

the singular points.

Considering the importance of singular points, Dupuis and Oliensis [21, 78]
developed an iterative algorithm to recover depth using discretized optimal
control and dynamic programming. The proof of equivalence between optimal
control representation and shape-from-shading was illustrated. At first, they
required a vertical light source and only one singular point, then they removed
these restrictions and allow for a general light source and multiple singular
points. However their initial algorithm [21] requires priori depth information
for all the singular points. A later version [78] can determine this information
automatically by assuming twice differentiable depth, isolated singular points

and nonzero curvature at singular points.

3.5.2.3 Bichsel and Pentland

Following the main idea of Dupuis and Oliensis’s, Bichsel and Pentland
[23] developed an efficient minimum downhill approach which directly recovers
depth and guarantees a continuous surface. Given initial values at the singular
points, the algorithm looks in eight directions in the image and propagates the
depth information away from the light source to ensure the proper termination
of the process. Since slopes at the surface points in low brightness regions
are close to zero for most directions (except the directions which form a very
narrow angle with the illumination direction), the image was initially rotated
to align the light source direction with one of the eight directions. The inverse
rotation was performed on the resulting depth map in order to get the original

orientation back.

Bichsel and Pentland used the following form as the reflectance map

R(p,q) = —2 %I 17 e

where ($;,8y,8,) is the unit light source vector. Assuming the constraint of

(3.61)

parallel slope, the surface gradient , (p, ¢), was computed by taking the deriva-
tive of the equation (3.61) with respect to ¢ ;in}»vtghe,rotated coordinate system,

g
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setting it to zero and then solving p and ¢. The solution for p and ¢ were given

by

— 5,8, £ \/(1 — R?)(R? — s2)
p = (3.62)
R? —s2 — 312/
pSyS_,,; —_ SySZ
R? — 32

(3.63)

A drawback to this approach is the requirement for singular points.

3.5.3 Local Approaches

Local approaches use only local intensity information around the current

pixel to derive shape. Here, we describe two approaches.

3.5.3.1 Pentland

Pentland’s first approach [3] solved for the surface slant and tilt, the radius
of curvature, and the light source direction through six equations obtained from
the intensity, as well as the first and the second derivatives of the intensity. His
approach can classify a surface type as planar, cylindrical, convex, concave or
saddle surface. However, the use of the second derivatives makes the algorithm

very sensitive to noise.

Pentland’s second approach [24] used the linear approximation of the re-
flectance map in p and ¢. By taking the Taylor series expansion of the re-
flectance function (3.61) about p = pg, ¢ = ¢o and ignoring the high order

terms, we have

OR

I(z,y) ~ R(po, q0) + (p — PO)—a;(PO, q0) + (g — (Io)%g(Po, 9)- (3.64)

For Lambertian reflectance, the above equation at py = go = 0, reduces to

I(z,y) = coso + pcos Tsino + ¢gsin 7 sin o. (3.65)
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Next, Pentland takes the Fourier transform of both sides of the equation (3.65).
Since the first term on the right is a DC term, it can be dropped. Using the

identities below

%z(w,y) —  F,(wy,w2)(—twy) (3.66)
0 .
%—z(x,y) —  F,(wy,wz)(—tws), (3.67)

where F), is the Fourier transform of z(z,y) and we get

Fr = F,(wy,wy)(—twy) cos Tsino + F,(wy,ws)(—twy)sinTsino,  (3.68)

where Fy is the Fourier transform of I(z,y). The depth map z(z,y) can be
computed by rearranging the terms in the above equation and then taking the

inverse Fourier transform.

This algorithm gives a non-iterative, closed-form solution using Fourier
transform. The problem lies in the linear approximation of the reflectance

map, which causes trouble when the non-linear terms are large.

' 3.5.3.2 Tsai and Shah

Tsai and Shah [25] employed the discrete approximations of p and ¢ using
finite differences in order to linearize the reflectance map in terms of z. The
reflectance function for Lambertian surfaces is the same as equation (3.61).

Using the discrete approximations of p and ¢

9z

= o) - oo 1) (3.69)
0 = go= ) - sey 1), (3.70)

Then the image irradiance equation I(z,y) = R(p,q) can be written as

f(2(z,y)) = I(z,y) — R(2(z,y) — 2(z — 1,y), 2(z,y) — 2(z,y — 1)). (3.71)

By taking the Taylor series expansion of this function about z(z,y) = 2" (z, y),

where n — 1 denotes the iteration number, we have
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0 = f(a(z,y)) (3.72)

S ) + o) = 7 o) s (2 ),

Then for z(z,y) = 2"(z,y), the depth map at n-th iteration can be solved

directly from

U [ o (227
(z,9) (z,y) + dz(f:,y)(zn—l(x’y)).

If we assume that the initial estimate 2°(z,y) is set to zero for all image pix-

(3.73)

els, the depth map can be iteratively refined using equation (3.73). Gaussian

smoothing is applied to the final depth map 2"(z,y) to get a smoother result.

3.6 Photometric Stereo

Photometric stereo is another shape recovery technique used in computer
vision. Here, there are two or more registered images obtained under differ-
ent lighting conditions to remove the ambiguity inherent in a single image
brightness measurement (8, 79, 80, 81]. If more than two images are avail-
able, additional unknown parameters of illuminant or surface reflectance can
be recovered [82]. In photometric stereo, since recovery of surface orientation
is completely local and very simple, involving little more than table lookup,
it does lead to a great practical importance. Calibration of different surface
materials and different lighting conditions is straightforward, requiring only
observation of an object of known shape, such as a sphere, and construction of
the lookup table.

Traditional binocular stereo techniques determine range by relating images
of an object viewed from two different directions. If the correspondence be-
tween picture elements is known, then distance to the object can be calculated
by triangulation. The idea of photometric stereo is to instead vary the direc-
tion of the incident illumination between successive images, while holding the
viewing direction constant. Since the imaging geometry is not changed, the
correspondence between image points is known a priori. The technique is pho-
tometric because it uses the radiance values recorded at a single image location

in successive views, rather than the relative positions of displaced features.
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Suppose two images I1(z,y) and I;(z,y) are obtained by varying the direc-
tion of incident illumination. Since there has been no change in the imaging
geometry, each picture element (z,y) in the two images corresponds to the
same object point and hence to the same gradient (p,¢). The effect of varying
the direction of incident illumination is to change the reflectance map R(p, q)
that characterizes the imaging situation. Then, let the reflectance maps corre-
sponding to I1(z,y) and I(z,y) be Ri(p, q) and Rz(p, g) respectively. The two

views are characterized by two independent equations as

Li(z,y) = Ri(p,q) (3.74)
Iz(.T,y) = R?(Z’:Q) (375)

If these equations are linear and independent, there will be a unique solution
for p and ¢. In general, however, equations (3.74) and (3.75) are nonlinear and
we can have either no solutions or several solutions. Often it is better to use a

third image as

Is(z,y) = Rs(p, ) (3.76)

rather than two different illuminating conditions. In some cases this makes the
equations linear. More important, it can improve accuracy and increase the
range of surface orientations over which a solutions can be obtained. The third

image can also allow us to recover the surface albedo.

If there are n images, we can formulate the photometric stereo problem in

terms of the minimization of brightness error as

i / / (Ii(z,y) — Ri(p, q))* dz dy, (3.77)

=1
where I; is the brightness measured in the ¢-th image and R; is the correspond-

ing reflectance map. Note that other shape-from-shading constraints should be

added to the functional (3.77) in order to obtain a well-posed problem.

Multiple images required for photometric stereo can be obtained by explic-
itly moving a single light source, by using multiple light sources calibrated with
respect to each other, or by rotating the object surface and imagining hardware

together to simulate the effect of moving a single light source. The equivalent
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of photometric stereo can also be achieved in a single view, by using multiple

illumination sources that can be separated by color.

3.7 Conclusions

Shape-from-shading techniques recover 3-D description of an object from
a single view of the object. In section 3.5, we analyzed a total eight exist-
ing SFS algorithms and grouped them into three different categories: Global
minimization techniques, global propagation techniques and local techniques.

These groupings are based on the conceptual differences among the algorithms.

Unlike local approaches which provided a close form solution, most global
approaches use iterative schemes. A few schemes, such as Ikeuchi and Horns’s,
Horn’s and Zheng and Chellappa’s approaches which are explained in section
3.5, use variational calculus to derive a nonlinear iterative scheme. There is
no guarantee of correct convergence because of the nonlinear dependence of
the reflectance map R(p, q), the discrete formulation in these approaches, the
unavailability of the suitable boundary conditions and the noise in real images.
In some cases, an algorithm can give the correct solution by converging the
global minimum; in others, it can get stuck at a local minimum. Sometimes,
an algorithm can diverge and walk away from the correct solution, therefore,
the initial value will greatly affect the speed of convergence and the solution
to which an algorithm converges. In order to enforce proper convergence, the
shape information at occluding boundaries are used as initial values in Ikeuchi

and Horn’s method.

Oliensis [20] proved that even the complete shape information at an occlud-
ing boundary does not well-determine the surface reconstruction. However, the
surface orientation is uniquely determined at singular points. On the basis of
Oliensis’s idea, Bichsel and Pentland’s algorithm starts at singular points and
propagates the depth through a minimum downhill technique. The proper ter-
mination of the algorithm is guaranteed by propagating the depth away from
the light source. The correctness of the solution depends on the initialization

at the singular points.
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The uniqueness of SFS can be proven under the condition that the light
source direction is equal to, or symmetric around, the viewing direction [20].
With an initial known curve, the method of characteristic strips yields a unique
solution, if the first derivative of surface depth is continuous. For other cases,

the uniqueness is unknown.

If we consider local uniqueness instead of global uniqueness over the entire
image, the uniqueness of a solution can be easily determined at singular points
and occluding boundaries. These are the points at which we can determine the
surface orientation directly from the image brightness. The brightness pattern
in any arbitrary region could arise from an infinite number of different surfaces.
However, the information at singular points and at occluding boundaries, can

be used to constrain the possible solutions.

In the cases where there is a unique solution, existence is clear. However,
there are cases where no solution exists. Horn, Szeliski and Yullie [83] presented
some impossibly shaded images that could not have originated from a smooth
continuous surface with uniform albedo and illumination. These cases can be
detected through the examination of conditions for impossibly shaded images
or by checking for the existence of singularities in the solution to shape from

shading.

Implementations, comparsions and performance analysis of various shape-
from-shading techniques are presented in “Analysis of Shape from Shading
Techniques” [84].



CHAPTER 4.

INTEGRATING SFS CONSTRAINTS

4.1 Introduction

In general, image irradiance depends on surface geometry, scene illumi-
nance, surface reflectance and imaging geometry. The shape-from-shading
problem is to recover shape of surfaces from image irradiance. By assuming
that illuminance, reflectance and imaging geometry are constant and known,
image irradiance can be related directly to surface orientation. If z(z,y) is a
surface patch with constant albedo defined over a bounded planar image re-
gion, the relationship between the surface orientation at an image point (z,y)
and the image irradiance there I(z,y) is denoted by R(p, ¢), where p = z, and
g = zy are the first partial derivatives of the surface function at (z,y). Then,
the shape-from-shading problem can be posed as a nonlinear, first-order par-
tial differential equation in two unknowns, called the image irradiance equation
I(z,y) — R(p,q) = 0. Surface orientation cannot be computed strictly locally
because image irradiance provides a single measurement, while surface orien-
tation has two independent components. Thus, some additional constraints
should be imposed to the iterative scheme. Using the calculus of variations
technique, the shape is iteratively recovered by minimizing a cost functional
involving some constraints. The shape-from-shading problem, then, can be re-
garded as a constrained minimization problem mathematically. The SFS con-
straints used in the iterative scheme were presented in section 3.4 and exploring

the effects of these constraints on the solution is addressed in this chapter.
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4.2 Integration of Constraints

The shape-from-shading constraints presented in section 3.4 have been
used in various combinations in several algorithms. Here, to explore the effects
of these constraints, we combined all four SFS constraints in a single energy
functional in order to obtain a general purpose algorithm. Thus, we construct

the following energy functional:

F(p,q,2) = Fi(p,q) + A Fa(p,q) + 1 F3(p, ¢, z) + B Fu(p, q), (4.1)

where
Fi(p,q) = //(I(w,y) — R(p,q))* dz dy (4.2)
Fa(p,q) = //(pi +p2+ ¢+ q5)dady (4.3)
[ (= + - 0y dedy (4.4)

(0 = [ [ L)+ (B~ L) dody (45)

Here, F; is the brightness constraint which is based on the image irradiance

F3(P, q, Z)

equation. F3 is the smoothness constraint and used to ensure the convergence of
the iterative scheme. The third term Fj, represents the integrability constraint
that enforces the resulting gradient be integrable. The last term, Fy is called
the intensity gradient constraint which comes from the requirement that the
gradients of the reconstructed image to be close to the gradients of the input
image. The parameters A, g and 3 are the scalars and each one determines the

relative weight of the corresponding term in the energy functional.

In the next section, we will consider the problem of minimizing (4.1) and

derive an iterative scheme by solving this constrained minimization problem.

4.3 Formulation

Under Lambertian surface, point light source and uniform albedo assump-

tions, the reflectance map can be written as
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COSO — psino CosST — gsinosin T
R(p,q) =1 — ;
V31+p®+gq

where 7 is the albedo, o and 7 are the slant and tilt angles of the illuminant

(4.6)

respectively.

Using the calculus of variations, minimizing (4.1) is equivalent to solving the

following Euler equations:

0 3}

Fp—%pr—@Fpg =0
0 0

Fq—a_xqu—équy = 0 (4.7)
0 0

Fz_a_;chz———a_szy = 0,

where subscripts denote the partial derivatives.

Let variables with primes (') represent the values after updating and the
variables without primes stand for the values before updating. Then, the iter-

ative scheme can be written simply as

p' = p+ 6p, d=qg+8¢ and 2 =z+62. (4.8)

By introducing a linear approximation of the reflectance map with respect to

(p,q), we have

R(p',q') = R(p,q) + (1" — p)Rp(p,q) + (¢’ — ¢)Ry(p, q). (4.9)

Then, using (4.8) and (4.9), F}, in (4.7) can be written as

1
-2-Fp = (u+ R)6p+ RyR,6q + pbz + (R — )R, + p(p — z.). (4.10)
The other terms in (4.7) can be derived similarly and the results are listed as
follows:
10 )

+Apsz + BRp(Poz Ry + quaRy — Ipz) (4.11)
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10
+Apyy + ﬂRp(Pnyp + qyy Ry — Iyy) (4'12)
1 2
§Fq = R,R0p+ (p+ R;)0q+ péz
+(R - I)Rq + /‘(q - Zy) (4-13)
10 9
+Aqze + BRy(Pow Ry + qoe Ry — Liz) (4.14)
10 2
553;17'% = —28R,R,6p—2(A + ﬁRq)éq
+Aqyy + ﬂRq(Pnyp + gy Ry — Iyy) (4-15)
F, =0 (4.16)
10
§%Fz$ = p(bp — 26z + 240 — ps) (4.17)
10
5-8_szy = u(6q =26z + 2y — qy). (4.18)

After substituting (4.10)-(4.18) into (4.7) and writing it in a matrix form, i.e.,

Ax = B, we obtain

AN+BR) 4 p RR(1+48) w\ [8p\ (B
RyR,(1+48) 4 +BR)+p p || 6| =|B: |, (419
1 1 —4 bz B3

where

By = Mpzo +Pyy) +1(2e —p) + Rpy{I - R
+B[(Pzw + Pyy) Bp + (oz + Guy) Ry — Low — Iy ]}
By = Moo+ ) +#(zy — @)+ R{I - R
+B((Poe + Puy) Bp + (Goz + quy) Ry — Loz — Iy ]}
By = prtqy— zux — 2y
and (6p,dq,6z) are the increments in (p, q,2). Solving (4.19) for (6p,dq,8z2) ,

we obtain the updating scheme
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bp = %[Azz(Bl + %MBs) — Ap(B: + iﬂBs)]
5q = %[Au(Bz + i-,u%,) — An(Bi + iuBg,)] (4.20)
§7 = i(ép +6q— By),
where
An = 4+ Zu + RA(144P)
Al = Ay = %,u + R, Ry(1 +4p5)

)
A = 40+ Z,LL-I-Rg(l +40)
A - A11A22 — A§2

Then, the updating scheme is written as

o= PPt
¢t = ¢F+6q (4.21)
= ks

4.4 Effects of Constraints on Solution

To evaluate the effects of the constraints, we need choose some error mea-
sures. Horn [12] discusses a number of possible quality measures and methods
for displaying the algorithm’s progress. Here, we chose to study three different

measures:

e The energy (or cost) F(*) associated with the current estimate and defined

as

F® = F® L FP 4 uFP + gE®),

where superscripts indicate the iteration index. This measure actually is

the quantity we are trying to minimize in SFS problem.

e The norm of the gradient error

| p® —p* |+ 1 ¢® —q¢" |,
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where (p*, ¢*) is the gradient of the true solution.

e The norm of the height error

| z(k) -2 |7

where z* is the height of the true solution.

To see the effects of the constraints on the SFS solution, the iterative scheme
we derived in the previous section is used. The synthetically generated Mozart
image with size 128x128 shown in Figure 4.1 is used as the input image to the
algorithm. Figure 4.1(a) shows a 3-D plot of the true height map whose size
is reduced to 64x64. Figure 4.1(b) is the true height map obtained by a laser
range finder used to generate the synthetic input image. Figure 4.1(c) shows
the input image which is synthesized from the true height map with parameter
T = 45°, 0 = 45° and n = 250. Figure 4.1(d) shows a profile of the true height
map. In this plot, the horizontal axis corresponds to the 64-th line in the true
height map. That is, it forms a line parallel to the z-axis running from left to

right through the center of the image.

The first term in the energy functional (4.1)

/ / (I(z,y) — R(p,9))* dz dy (4.22)

measures the error in brightness, that is the difference between the observed
image brightness and that predicted from the computed shape. This mean-
squared error term allows for modeling errors and noise, and used as a part
of an energy functional which is minimized with respect to (p,¢) to find the
solution of the SFS problem. Each parameter A, g or 8 in the energy functional
(4.1), establishes a tradeoff between the brightness error and the corresponding
constraint term. In the following subsections, we use various combinations of
these three parameters and observe the effects of each constraint by changing

its parameter value.
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Figure 4.1. Mozart test image: (a) A 3-D plot of the true height map, (b) the
true height map used to generate the synthetic image, (c) the input image which is
synthesized from (a) with parameters 5 = 250, 7 = 45° and ¢ = 45°, (d) a profile of
the true height map.
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4.4.1 Effects of the Smoothness Constraint

The smoothness constraint is defined as

A //(pi +p2 4+ ¢+ q2) dz dy, (4.23)

Pzs Py, ¢z and ¢, are the partial derivatives of the surface gradient and X is
a scalar which determines the weight of the smoothness term in the energy
functional (4.1). This constraint which is also called regularization term is
used to stabilize the iterative shape-from-shading scheme and to ensure that it

has a unique minimum.

The synthetically generated Mozart image shown in Figure 4.1(c) is used
as an input image to the iterative algorithm. For the algorithm parameters, we
set 4 =1 and B = 0, and three different values to the regularization parameter
A as 5, 1 and 0.01 respectively. The obtained results are shown in Figure 4.2.
The plots shown here are the three error measures in the first 100 iterations.
The first plot shows the energy F' as a function of iteration number. From
this plot, we see that decreasing the value of the regularization parameter also
decreases the total energy in the minimization process. The second plot shows
the average gradient error. It can be seen from Figure 4.2(b) that for A = 5,
this error is small and decreasing A causes more error. We also note that, for
A =1 and A = 0.01, the p-¢ error is increasing after an initial improvement.
The third plot in Figure 4.2 shows the average height error obtained from the
iterative algorithm. In this plot, we have continuously decreasing height error
values for A = 5 while the iterations are proceeded. For A = 1, although the
height error is small for the first 80 iterations, this error is started to increase
for the further iterations. But the worst case is obtained for A = 0.01 and
the height error decreases for the first 25 iterations and then starts to going
up. These results shows that the optimum choice of the smoothness constraint
parameter value is critical and too small values may cause instabilities in the

iterative algorithm even they caused smaller error.

In Figure 4.3, the shaded images synthesized from the (p, ¢) maps obtained
by the iterative SFS algorithm using the parameters 7 = 45°, ¢ = 45° and

n = 250 for three different A values are shown. Looking at these shaded images,
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we see that the solution being computed is too smooth for A = 5. On the other
hand, decreasing the regularization parameter value improves the results as
shown in Figure 4.3(b) and Figure 4.3(c).

The one dimensional slices compared in Figure 4.4 better illustrate how
the reconstructed surface changes according to the regularization parameter
value. In these plots, the horizontal axis corresponds to the 64-th line in the
reconstructed height maps. The smoothing effect of a large value of A can also
be seen from these representative 1-D cuts through the surfaces obtained by

the algorithm.

As a result, using of the regularization term in the iterative SFS algorithm
produces solutions that are too smooth, with the amount of distortion depend-

ing on the choice of the parameter \.
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Figure 4.2. Error terms: (a) Energy, (b) p-¢ error and (c) z error for A = 5 (solid),
A =1 (dashed) and A = 0.01 (dash-dotted) when p =1 and 8 = 0.



68

(c) X =0.01

Figure 4.3. SF'S results for different A values when y =1 and 8 = 0.

. .
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Figure 4.4. One-dimensional slices showing the effects of the smoothness constraint
for A = 5 (solid), A = 1 (dashed) and A = 0.01 (dash-dotted) when x = 1 and 3 = 0.
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4.4.2 Effects of the Integrability Constraint

The integrability constraint is

i [ [ =97+ - 0 dody, (4.24)

where z, and z, are the partial derivatives of the height field 2z, and p is
a weighting factor. This constraint is used to ensure that the gradient field
(p, q) computed by the shape-from-shading algorithm corresponds to a physical

surface.

To explore the effects of the integrability constraint, we used our iterative
algorithm by setting A = 1 and # = 0. For the integrability constraint param-
eter u, we set three values as 5, 1 and 0.01 respectively and obtained the error
measures shown in Figure 4.5. As we are expecting, small values of u cause
small energy values as shown in Figure 4.5(a). However, by looking at the av-
erage gradient error in Figure 4.5(b), we can say that, this error increases while
p is decreasing. The largest error values are obtained for ¢ = 0.01. Reasonable
solutions are found for ¢ = 5 and p = 1. If we look at the plots in Figure 4.5(c),
one can observe that the height error is small for g = 0.01 up to the first 30
iterations but increases rapidly while the further iterations are proceeded. The
reasonable results, on the other hand, are obtained for ¢ = 5 and u¢ = 1. The
results in Figure 4.5 show that, although a big value of g, i.e., g = 5, produces
small p-¢ error, it causes more distortion in depth map. Conversely, we have
rather small z error for g = 0.01 up to the first 30 iterations while p-q error is

high. However, a reasonable solution for this example is obtained for y = 1.

The shaded images synthesized from the obtained gradient maps by the
SFS algorithm for A = 1, 8 = 0 and three different values of y are shown in
Figure 4.6. By looking at these images, we see that the two solutions obtained
for p = 5 and p = 0.01 as shown in Figure 4.6(a) and Figure 4.6(c) are smoother
than the one obtained for g = 1 as shown in Figure 4.6(Db).

The one-dimensional slices comparing three different values of ¢ are shown
in Figure 4.7. The smoothing effect of large y values can be clearly seen from

these plots.
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Figure 4.5. Error terms: (a) Energy, (b) p-¢ error and (c) z error for p = 5 (solid),
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Figure 4.6. SFS results for different yx values when A =1 and 8 = 0.
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Figure 4.7. One-dimensional slices showing the effects of the integrability constraint

for u = 5 (solid), u = 1 (dashed) and p = 0.01 (dash-dotted) when A =1 and 8 = 0.
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4.4.3 Effects of the Intensity Gradient Constraint

The intensity gradient constraint is described as

8 / / (Re — L) + (R, — L,)?) dz dy, (4.25)

where I, and I, are the partial derivatives of the input image, while R, and
R, are the partial derivatives of the reflectance map and § is a scalar. This
constraint is used to require that the gradients of the reconstructed image to

be close to the gradients of the input image in both z and y directions.

Here, we used the iterative SFS algorithm by setting A = 1, y = 1 and
three different values to 5. The plots in Figure 4.8 show the convergence of
the iterative algorithm for values 5, 1 and 0.01 of 8. The total energy is low
for small values of § in Figure 4.8(a) because of the less contribution of the
intensity gradient constraint in the energy functional. It can be seen from
Figure 4.8(b) and Figure 4.8(c) that both the p-¢ error and the z error are high
for a large value of the intensity gradient coeflicient, i.e., # = 5. Moreover, the
algorithm converges to a reasonable solution for both the surface slopes and
the height map by using small values of 5. Note that, for 3 =1 and § = 0.01,
there are no significant changes in the corresponding gradient error and the

height error and reasonable solutions are found using these parameter values.

The shaded images synthesized from the (p, ¢) maps obtained by the SFS
algorithm using the parameters 7 = 45°, ¢ = 45° and n = 250 are shown in
Figure 4.9. The image shown in Figure 4.9(a) is quite similar to the input
image shown in Figure 4.1(c) but while § is decreasing, the shaded images
become more smoother as shown in Figure 4.9(b) and Figure 4.9(c) for f =1

and S = 0.01 respectively.

If we compare the one-dimensional slices obtained by the SFS algorithm for
three different B values shown in Figure 4.10, one can easily see that changing
the intensity gradient parameter value does not cause significant changes in the

height map. Only the peaks are suppressed while § is decreasing.

To see how the intensity gradient constraint effects the solution, we can

look at the partial derivatives of the input image, I, and I,, and the partial
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B =1 (dashed) and 3 = 0.01 (dash-dotted) when A =1 and p = 1.
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Figure 4.9. SFS results for different 3 values when A =1 and u = 1.
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Figure 4.10. One-dimensional slices showing the effects of the intensity gradient
constraint for § = 5 (solid), 8 = 1 (dashed) and B = 0.01 (dash-dotted) when A = 1
and p = 1.
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derivatives of the reflectance map, R, and R,. The derivatives of the input
image are shown in Figure 4.11. The derivative images obtained by the algo-
rithm for A =1, p =1 and § = 0 are shown in Figure 4.12. If we compare the
images in Figure 4.11 and Figure 4.12, we see that the partial derivatives of the
input image and the partial derivatives of the reconstructed image do not look
similar when the intensity gradient constraint is not in the energy functional,
i.e., § = 0. In order to see the effect of the intensity gradient term on the
derivative images, we run the iterative algorithm with parameters A = 1, u =1
and B =5, and the resulting derivative images are shown in Figure 4.13. If we
compare I, and I, in Figure 4.11 to R, and R, in Figure 4.13, the similarities
between the partial derivative images can be seen easily. These results show

how this constraint effects the solution.

Now, we want to see the effects of the intensity gradient constraint when
the smoothness constraint is dropped. This time, the algorithm parameters are
A =0, p=1. For B, we set three different values and run the SFS algorithm
to see how the absence of the smoothness constraint effects the results while
B is changing. The error measures obtained in this situation are shown in
Figure 4.14. If we compare these results to those shown in Figure 4.8 which
are obtained when A = 1, we can see that, the iterative algorithm may become
unstable for the large values of § when the smoothness constraint is not present
in the iterative process. However, there are no significant changes on p-q error

and z error while 3 is small even if A = 0.

The shaded images synthesized from the reconstructed (p, ¢) maps obtained
by the algorithm are shown in Figure 4.15. These images are less smoother than
the images obtained when A = 1 which are shown in Figure 4.9. This is because
of the absence of the smoothness constraint. However, the smoothing effect of
the intensity gradient constraint, while 8 is decreasing, can also be seen from

the shaded images.

The one-dimensional slices comparing three different values of 3 when A = 0
are shown in Figure 4.16. These plots look quite similar to ones obtained when

A = 1 which are shown in Figure 4.9.
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(a) I (b) Iy

Figure 4.11. Partial derivatives of the input image.

(a) Rz (b) Ry

Figure 4.12. Partial derivatives of the reconstructed image for A = 1, 4 = 1 and

8 =0.

(a) Ro (b) Ry

Figure 4.13. Partial derivatives of the reconstructed image for A = 1, 4 = 1 and

B=5.
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Figure 4.15. SFS results for different 8 values when A = 0 and p = 1.
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Figure 4.16. One-dimensional slices showing the effects of the intensity gradient

constraint with 8 = 5 (solid), § = 1 (dashed) and § = 0.01 (dash-dotted) when
A=0and p=1.
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The experimental results presented in this chapter are obtained by using
various combinations of the three algorithm parameter values. When we are
observing individual effects of each constraint, the corresponding parameter
value of this constraint is changing, while other two parameters are fixed to
constant values. For evaluating the effects of the smoothness constraint, for
example, we set three different values to the regularization parameter A as 5,
1 and 0.01, while we set constant values for other two parameters as u = 1
and 8 = 0. Additionally, we also use various constant values for the fixed
parameters in order to see if they affect the solution or not. The experimental
results we obtained show that changing the values of the fixed parameters does
not effect the solution significantly. Therefore, results obtained by changing

the fixed parameter values are not presented here.

On the other hand, we also obtained the same error measures, shaded
images and one-dimensional profiles by using four more synthetic input images.
When we compare the results obtained from different input images, we see that
the algorithm parameters affect the SFS solutions in the same way. For this
reason, we here only presented the results which are found by using the Mozart

image.

Based on these experiments, although algorithm parameters y and 3 affect
SFS solution, the regularization parameter A is the most effective one for the
iterative scheme. The SFS results will closely depend on the value of A used.
The choice of A is critical, as it should be large enough to avoid instability and
small enough to obtain a meaningful solution. From the experimental results,
the edges in the reconstructed images become sharper when the smoothness
constraint is weakened (small X’s) but too small A values may cause instability
in the iterative SFS algorithm. On the other hand, the solution being com-
puted is too smooth for large values of A. In order to overcome the difficulty
in determining the regularization parameter value, an automatic method for

adjusting the value of A needs to be developed.

In the next chapter, an adaptive shape-from-shading method will be devel-
oped and implemented by controlling the smoothness spatially over the image

space.



CHAPTER 5.

ADAPTIVE SHAPE FROM SHADING

5.1 Introduction

In the previous chapter, we experimentally observed that, although the
regularization term helps to stabilize the minimization process, it flattens the
SFS reconstruction and causes distortions along image discontinuities. The
regularization parameter, A, determines the tradeoff between the smoothness
constraint and the other constraints in an energy functional and the choice of
its optimum value is critical. It should be large enough to avoid instability
and small enough to produce a meaningful solution. On the other hand, the
smoothness term which is used in the energy functional to enforce the condi-
tion that the reconstructed surface should be smoothly connected is quadratic
and suppresses changes in intensities. In areas where image intensity changes
rapidly, the corresponding surface patch may not be smooth. The solution of
these problems is to use an adaptive smoothing function to reduce the over-

smoothing along the reconstructed image.

In this chapter, we introduce a new adaptive shape-from-shading approach
in which the smoothness is controlled spatially over the image space [6, 85, 86].
The adaptive nature of the algorithm eliminates the selection of the optimum
value of the smoothness parameter and protects the iterative scheme “to walk
away” from the correct solution. The spatial control of smoothness is achieved
by employing additional knowledge about the difference between the image

which is obtained from the regularized solution and the input image. Using
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calculus of variations and a linear approximation of the reflectance map, a new
iterative scheme which updates the slope and the height maps simultaneously

is developed.

5.2 Formulation

In our implementation, we combine all four SFS constraints which are pre-
sented in section 3.4 in a single energy functional and use a spatially controlled
regularization parameter instead of a fixed regularization parameter in order
to adaptively control the smoothness over the image space. To achieve this, we

construct the following energy functional

F(pa q, Z) = Fl(p7 Q) + F2/(p7 Q) i ,LLF3(p, q, Z) + ﬂF4(p7 (.Z)a (51)

where

o) = [ [0 -ReoPdd (52)
Fy(p,q) = //A(:v,y) (P} + P2+ 45+ ¢3) de dy (5.3)
Bz = [ [0+ -0 dedy (5.4
() = [ [(Re= 1+ (B~ L)) dody, (5.5)

Here, Fy is the brightness constraint, F} is the spatially controlled constraint,

where

/ / (P2 +0+ 45+ ) dady (5.6)

represents the smoothness constraint, Fj is the integrability constraint and fi-
nally, Fy is the intensity gradient constraint. Note that, in the energy functional
(5.1), the regularization parameter A(z,y) is a function of spatial coordinates

while p and § are scalars.

In our adaptive SFS approach, the smoothness of the solution is spatially
determined by the value A(z,y) at each image point. That is, a large A(z, y)
pushes the reconstruction toward a smooth surface, while a small \(z,y) forces

the solution to be close to the input image data I(z,y) by weakening the
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connection between successive pixels. An important task in our approach is to
determine what to use in controlling the regularization parameter and how to
use it. As indicated before, we would like to use a somewhat small A(z,y) in
the vicinity of a discontinuity for the accurate shape recovery. For this reason,
our choice for the control of A(z,y) should provide some information about
discontinuities. The error or residual between the input image intensity values
and the regularized solution, i.e., I(z,y) — R(p, ¢), exhibits some useful features

for this purpose. Thus, the error signal is defined as

e=1I(z,y) — R(p,q) (5.7)

and indicates the existence of discontinuity at the corresponding image point.

In the proposed algorithm, the control signal is extracted from the error
signal defined above in order to control the smoothness of the solution by
adjusting the regularization parameter A(z,y). Let ¢ be the control signal,
then

¢ = abs(e), (5.8)

where abs(e) is the absolute value of the error signal e = I — R. Taking the
absolute value of the error signal obtains a signal which has positive values on
both sides of the discontinuity. The positive values in this signal are then used
to control the parameter A(z,y). Since the control signal has large positive
values in the vicinity of discontinuities, this signal can be used to reduce the
amount of smoothing in these regions by decreasing the value of A(z,y) at these
points. To determine the new value of the regularization parameter at location

(z,y), we use the following decreasing function:

F(z,y,Aoa) if e(z,y) > 0 and Aoy > Amin
Aotd(z, ) otherwise
where
_d=zy) —d=y)
f(:c, Y, /\old) = (1 —e 'r ))\mm + (6 Vr ))\old(w, y), (510)

¢(z,y) is the control signal as described in (5.8), Vr is a time-constant that
controls the rate of exponential decrease and A, is a preselected minimum
value that A(z,y) may have. This is an exponentially decreasing function with

the following properties:
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Figure 5.1. A profile of the F function which is used to calculate the regularization

parameter values.

lim ]:(x,y,)\o}d) = Auda(z,y) and lim F(z,y, Aotd) = Amin. (5.11)

c(z,y)—0 c(z,y)—o0

Thus the regularization parameter is gradually decreased by this control scheme.
A profile of the function F(z,y, A.4) obtained by setting A, = 0.01, Vi = 50,
Aotd(2) = Aota =1, 1 < 2 <255 and 0 < ¢(z) < 255 is shown in Figure 5.1.

Figure 5.2 shows the experimental results obtained by the SFS algorithm
developed in chapter 4. The Mozart image in Figure 4.1 is used as the input
image and initial settings of the algorithm parameters are A = 5, u = 1 and
B = 1. The input image and the obtained regularized solution profiles are shown
in Figure 5.2(a). In these plots, the regularized solution is too smooth because
of using the constant A value. The error signal and extracted control signal for
this example are shown in Figure 5.2(b) and Figure 5.2(c) respectively. Figure

5.2(d) shows the calculated regularization parameter values.

Figure 5.3 demonstrates the iterative refinement process on the Mozart test
image. Figure 5.3(a) shows the regularized solution obtained with a large regu-
larization parameter A(z,y) = 5, by which the discontinuity and the continuous
regions as well as smoothed out. Figure 5.3(b) shows the refined solution after 3
iterations, where the gap between the input image and the regularized solution

is reduced around discontinuities. Figure 5.3(c) shows the iterative refinement
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()

Figure 5.3. Evolution of the Mozart test image: The input image (solid) and the

regularized solution (dotted) profiles, (a) standard regularization, (b) iterative re-

finement after 3 iterations, (c) iterative refinement after 5 iterations.
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after 5 iterations. More iterations can be done to improve the reconstruction.

Under Lambertian surface, point light source and uniform albedo assump-

tions, the reflectance map can be written as

COST — PSIN O COST — gsinosin T
R(p,q) = — :
v1+pi+g

where 7 is the albedo, o and 7 are the slant and tilt angles of the illuminant

(5.12)

respectively. Using the calculus of variations, minimizing (5.1) is equivalent to

solving the following Euler equations:

0 0

Iy = =T — a—y‘pr =0
0 0

Fy= 5o =gk = 0 (5.13)
0 3}

F, — %Fzz — %Fzy = 0,

where subscripts denote the partial derivatives.

If the variables with primes (') represent the values after updating and
the variables without primes stand for the values before updating, then, the

iterative scheme simply can be written as

p/ = p+ 6p, q' =q + (Sq and 2 = 2z+4 6z2. (514)

The corresponding increments in the partial derivatives of (p, ¢, z) after updat-

ing are
Po=p:—6p ¢ =49z — 6q 2y =2, — bz
P, =py,—bp ¢, =q,—bq 2y =2y — 0z
p,:m: = Pzz — 25[) q,:z:w = Gex — 26q Z,ww = Zrx — 26z (515)
p’yy = pyy — 26p q’yy = gyy — 204 2y = zyy — 26z.

Further, by introducing a linear approximation of the reflectance map with

respect to (p, q), we have

R(p',q') = R(p,q) + (¢ — p)Ro(p,q) + (¢' — ¢)Ry(p, q)- (5.16)
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Then using (5.14), (5.15) and (5.16), F}, in (5.13) can be written as

1
in = (p+ R2)ép+ R,R,6q + péz + (R— )R, + p(p — ). (5.17)
The other terms in (5.13) can be derived similarly and the results are listed as
follows:
19 9
58_$sz = —2A+ A+ 2ﬂRp)6p — 28R, R,4q
10 9
58_pry = —(2 4+, + QﬂRp)ép — 28R,R,bq
+Apyy + Aypy + BRy(pyy By + Qyy Ry — Lyy) (5.19)
1 2
5fe = RpRebp+(p+ R;)oq + péz
+(B —I)Ry + plg — z) (5.20)
10 2
§B_qu’ = —2BR,R,6p— (2A\ + A\, + QﬂRq)Eq
+)\Qm: + /\a:Qx + ﬂRq(pxxRp + qxqu - I:m) (521)
10 2
55;;17% = —2B8R,R,0p— (2A+ A, + ZﬂRq)éq
+Aqyy + Ayqy + BRy(pyy Ry + Qyy Ry — L) (5.22)
F, =0 (5.23)
L0 b u(6p— 262+ zae — p2) (5.24)
29z = = u\op Z T 2z — Pz .
10
§a_yF"'y = p(bq— 262+ 24y — qy)- (5.25)

After substituting (5.17)-(5.25) into (5.13) and writing it in a matrix form, we
obtain
An Ay 0 op By + %,MB3
Ay Ay O bg | =1 B2+ i—,uBg , (5.26)
1 1 -4 6z B3
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where

5
A = 4A+Ax+Ay+Zu+R§(1 +4B)
1
Az = An= yia R,Ry(1 +4P)

Az = 4)\+/\$+)\y+§ﬂ+RZ(1+4ﬁ)
Bi = Apoz + Pyy) + AePo + Aypy + (2 — p)

+Ro{I — R+ Bl(prz + Pyy) Ry + (dow + ayy) Ry — Tow — Iy)}
By = Moo + Qyy) + Aoo + Ay + 11(2y — q)

+RAI — R+ Bl(poc + Pyy) By + (o + qyy) By — Loo — 1]}
Bs = pr+qy— 2op — 2y

and (ép,8q, 6z) are the increments in (p, ¢, z) after an iteration. Solving (5.26)
for (6p, 6q,6z), we obtain the updating scheme

6p = xlAw(Bi+ pBs) — Aw(B; + juBs)]
6¢ = x[An(By+ tuBs) — A1a(Bi + 3uBs)] (5.27)
6z = j(ép+6q~ By),

where

A = A11A22 - A§2 (528)

5.3 Hierarchical Structure

The solution to the shape-from-shading problem requires long-range error
to be reduced through strictly local interactions. This situation arises mainly
from the local nature of the representation used for gradient and height fields,
and causes very large number of iterations in the iterative scheme. Multigrid
methods are often used in computer vision to speed up computationally in-
tensive tasks such as shape-from-shading. In these methods, an approximate
solution computed for a reduced image is used to guide the algorithm toward

the complete solution on a larger image.

Multigrid implementation can be simplified by having a 2 : 1 decrease in

grid nodes during a transition from a finer grid to an adjacent coarser grid.
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Thus, the image resolution is reduced by a factor of 2 between adjacent res-
olution layers. We use the simplest pyramid method for image sampling and
interpolation. The grid size for the lowest layer is 32x32. The input images for
various resolution layers are derived from the given highest resolution image
by averaging the pixels that belong to the same cell in the low-resolution layer.
Let the variables with a tilde (*) stand for the shape descriptors of the higher
resolution layer while the variables without tilde denote those of the lower reso-
lution layer. Then, the communication of the results from one layer to another

are specified by the following rules:
Rule 1: The illuminant direction and albedo are the same

(6-7 %7 ﬁ) = (07 T? 77)'

This assumption is made based on experiments reported in [87] that the esti-
mated illuminant direction and surface albedo almost insensitive to changes in
resolution. However, the illuminant direction and albedo can also be estimated

for each layer independently.

Rule 2: The surface descriptions of a higher resolution layer are interpolated
from the descriptions of the adjacent lower resolution layer. Let N be the image
size of the higher resolution layer. For 7,5 € {2,... N }, the shape descriptions

for the higher resolution layer are

( ,q,22)%’21, if ¢ and j are evens
%[(p,q,2z)_12-_ i + ( ,q,2z)_2_1 %_] if 7 is odd and j is even
(,4,2);; = %[(p,q,?z)%’i# + (p,q,22)i Li_l'] if 7 is even and j is odd
il(P 4, 22) i1 21 + (p,q,QZ)_;_ izt
{ +(p q,2z),_§1,;% + (p,q,2z)Tl i=1] if ¢ and j are odds.

Rule 8: The natural boundary condition is used for the interpolation of

boundary pixels. For example, for the boundaries of : =1 and 5 =1,

(P, )1 1= 2(p, ) —(P,4)iz  Zia=Zig — din, for:>2
Py @11 = 2(P, )22 — (P, Q)33 211 = Z22 — P11 + 1
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5.4 Iterative Scheme

Combining the hierarchical implementation and our new adaptive ap-

proach, we obtain the following shape-from-shading scheme:

1. Estimate the reflectance map parameters (o, 7, 7).

2. Normalize the input image:

I(z,y) = I(z,y) / n-
3. Reduce the input image size to that of the lowest resolution layer.

4. a) Input the initial status p°, ¢° and 2°.
b) Initially set the regularization parameters at each pixel to the max-
imum value, i.e., A(z,y) = Apqasr and set Apn.

c) Set the values for g and S.

5. Update the current shape reconstruction. For each pixel, the partial

derivatives are approximated by

Pz = Pécw+1,y) - péc:l:,y) by = pécx,y+1) . pz«‘,y)
4z = Qfxﬂ,y) - qz“x,y) Iy = qécw,y+1) - qfw,y)
% = fo+1,y) - Z?w,y) = Z?’”vy‘“) B zé“x’y)
Az = Aot1y) — Mow) Ay = Aayt1) = Ay
I = Iz41) — Lzy) Iy = Iewsn) = Iz

— .k k k I - k k
Poz = Plog1y) T Pla—1) = 2Pey) Pww = Plogyr) T Ploy-1) ~ 2P(ow)
R - k k — .k k k
Qo = Qot1y) T Uom10) = 29Ge) v = Uogr1) T Yoy—1) ~ 24(a)
_ Jk k k
y) v = ’i(x,y+1) + Z(zy-1) 22(90,11)

jxa: = j(:z:+1,y) + -T(x—l,y) - 2j(ar;,y) I_yy = I(a:,y+1) + I_(x,y—l) - 2I(ar:,y)

_ k
Zzg = zfx+1,y) + zéga:—l,y) - 22(.1:

where for values outside the image frame, we use natural boundary con-
ditions similar to Rule 3 given in section 5.3. The reconstructed shape is
updated by

P o= P4 op

¢t = ¢ +6q

1 = sy
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and
§p = —[Aga(Br+ ~puBs) — Any(By + ~uB
P—-A 22 1+4,u3 12( 2+4#3)]
1 1 1
0q = Z[Au(Bz + Z,UBs) — A2(B; + Z'MB?’)]
1
0z = Z(5p+6q—B3)
where

3
1
A = Z# + Ry Ry (1 +48)

Ay = 4,\+Az+Ay+Zu+R§(1+4ﬂ)
By = Mpea +Pyy) + AaPo + Aypy + (22 — p)
+Rp{I — R+ B(psz + Pyy) By + (oo + @yy) By — Low — Iy ]}
By = Mgoo + qyy) + Aotz + Aygy + p(2y — q)
+R{1 — R+ Bl(pox + Pyy) By + (¢o0 + quy) By — Loz — Iy}
By = prt+qy— 2o — 2y
R, = [R(p?:n,y) + 6, qé‘::z:,y)) - R(Pfx,y)a ‘chx,y))] /6
R, = [R(wa,y), sz,y) +6) - R(Pfag,y)a Qfx,y))] /6
A = Apdy— AL,

. Go to the next step if solution is stable or iterations has reached N,,q; of

current layer; otherwise repeat Step 5.
. Compute the control signal ¢(z,y) = abs(I(z,y) — R(pfw’y), qu‘y))).
. Update A(z,y) according to the following rule:

.7:(:v,y, /\old) if c(w,y) > 0 and Aig > Amin

Anew (T, Y) = { (5.29)

Aotd(Z,y) otherwise

where
_dzy) _d=zy)
‘7:(56’ Y, )‘Old) = (1 —e T ))‘mm + (e VTy ))‘old(wa y)'

. If no change in A(z,y) values continue to Step 10; otherwise go back to

Step 5 and repeat the process with new A(z,y) values.
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10. If current image is in the highest resolution stop; otherwise

a) Increase the image size and expand the shape reconstruction to the
adjacent higher resolution layer,

b) Expand A(z,y) using the rules given in Section 5.3,

¢) Reduce the normalized input image to the current resolution,

d) Go to Step 5.

5.5 Relationship to Existing Techniques

In our adaptive shape-from-shading implementation, we combined all SFS
constraints in a single energy functional. Thus, we have a general purpose al-
gorithm which encompasses most of the existing methods. These methods are
special instances of our generalized method and can be obtained by appropri-

ately selecting parameter values.

e In our method, we made )\ as a function of spatial coordinates, i.e., A(z, y),
in order to control the degree of smoothness of the reconstructed surface.
If we set a constant value to A and drop the intensity gradient constraint

in the integrand (3 = 0), we obtain the scheme developed by Horn [12].

o If we make X constant and drop both the integrability and the intensity
gradient constraints (x = 0 and § = 0), we derive the algorithm pre-
sented by Ikeuchi and Horn [11].

o If we instead, remove both the departure from smoothness and the inten-
sity gradient terms (A = 0 and # = 0), we obtained something reminiscent
of the iterative scheme of Strat [1], although Strat dealt with the integra-
bility in a different way.

o If we drop the brightness error term and the intensity gradient constraint
(8 = 0), we obtain the scheme of Harris [88, 89] for interpolating from
depth and slope. This method solves the biharmonic equation for z, by

solving a coupled set of second-order partial differential equations.
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e We find Zheng and Chellappa’s scheme [5] if we drop the departure from

smoothness term (A = 0) in our method.

5.6 Integrating Adaptive SFS and Photomet-

ric Stereo

The reflectance map is used in computer graphics where an image is created
from description of the shape of an object. Conversely, given an image, we
would like to be able to recover the shape. There is a unique mapping from
surface orientation, specified by p and ¢, to radiance, given by the reflectance
map R(p, ¢). However, the inverse mapping is not unique. An infinite number
of surface orientations give rise to the same brightness. In general, the mapping
from brightness to surface orientation cannot be unique, since brightness has

one degree of freedom, while orientation has two.

To recover surface orientation locally, we must introduce additional infor-
mation. To determine two unknowns, p and ¢, we need two equations. Two
images, taken with different lighting, will yield two equations for each image
point as

A A

I'=R(p,q) and  I=K(pyq). (5.30)

We also applied our adaptive regularization approach to the photometric
stereo technique in order to improve the quality of the reconstructed surface ob-
tained by the iterative scheme. Suppose we have two input images, I(z,y) and
i (z,y), illuminated by two light sources placed different locations in the image
space as (o,7) and (&, 7) respectively. Let the reflectance maps corresponding

to these illuminant directions be

COSO — psSINO COST — gsinosinT

R(p,q) U] N ET Y

~ . COSO0 — psing cosT — gsingsin 7
R(p,q) = 14 , (5.32)
V1+p?+¢?

Then, for the photometric stereo application, we construct

(5.31)
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F(p,q,2) = Fi(p,q) + Fy(p,q) + p F5(p, ¢, 2) + B Fa(p, q), (5.33)

where

F = / /{(I<w,y>—R(p,q>>2+(f<w,y>—R(p,q>>2}dwdy (5.34)

o= [[Mew@en++ddndy (5.35)
Bo= [ [+ -0 dsdy (5.36)
Fy o= / /((Rz—lx)2—|—(Ry—Iy)z)d:cdy. (5.37)

Using calculus of variations, minimizing F(p,q,z) in (5.33) is equivalent to
solving the Euler equations given in (5.13). Approximating the reflectance map
in (5.33) around (p, ¢) by Taylor series expansion of up to first-order terms and

replacing in (5.13), we obtain

A A 0 op B, + i,uBs
Azl A22 0 5q = B2 + %MB;), ) (538)
1 1 -4 bz Bs

5 A
An = A4+ X+ o+ (R>+ R2)(1+48)
. 1 AoA
A12 = A21 = Z,U, + (Rqu + Rqu)(l -|- 4ﬂ)

An = AAE At A+ gk (B R0+ 48)
By = APz + Pyy) + AePo + Aypy + (20 — p)
+Ry{(I = B) + Bl(Pso + Pyy) By + (qze + qo) By — Loz — Iy ]}
+ R, {(I = R) + Bl(pec + Puy) Ry + (¢z + 0y0) Ry — oo — 1]}
By = Moo+ Q) + Ao + Aygy + p1(zy — )
+Ro{(I = R) + Bl(Poz + Pyy) Ry + (oo + qyy) Ry — Lo — Iy]}
+RA(I = R) + Bl(pee + Pyw) By + (4o + @yy) Ry — oo — 1]}

By = po+qy— 2or — 24y
Solving (5.38) for ép, 8¢ and 62, we obtain the updating scheme

» 1 1 1
op = 'A—[A22(B1 + Z'UBS) — Ap(B; + ZﬂBs)]
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1 1 1
5q = Z[AII(B2 + Z'LLB?)) - Alg(Bl + Z[,LB:J,)] (539)

1
bz = Z(5p + 8q — Bs),
where

A - A11A22 —_ A%2 (540)

5.7 Experimental Results and Discussions

We tested our adaptive SFS algorithm on synthetic and real images. In
all experiments, we set A =1, p =1, 8 = 1, Apin = 0.01 and N,,,, for the
highest resolution layer be 500. The iterations start from the zero gradient
field and the zero height map, i.e., (p, ¢, z) = (0,0,0). All the images presented
in our examples are 128x128. The 3-D plots of the height maps are given in
three resolution layers as 32x32, 64x64 and 128x128. The Mozart test image is
generated from a laser range finder while the Midilli image is simulated using
a digital terrain model (DTM) of the Midilli Island in Aegaen Sea.

Figure 5.4(a) shows the true height map of the Mozart image obtained by a
laser range finder used to generate the synthetic input image to the algorithm
and Figure 5.4(b) is a 3-D plot of the true height map.

Figure 5.5 shows the synthesized Mozart images with three resolution layers
applied to the multigrid adaptive SFS algorithm. These images are generated
from the true height map shown in Figure 5.4(a) using the Lambertian re-

flectance map with parameters 7 = 45°, ¢ = 45° and 7 = 250.

If we convert our adaptive SFS algorithm to the non-adaptive algorithm
by setting a constant value to the regularization parameter, i.e., A(z,y) =
A =1, we obtain the images with three resolution layers shown in Figure 5.6.
These images are synthesized from the (p, ¢) maps using the reflectance map

parameters 7 = 45°, 0 = 45° and 5 = 250.

Figure 5.7 shows the images with different resolutions synthesized from the

(p, ¢) maps obtained by the adaptive SFS Aalgorithm using parameters 7 = 45°,
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(a) (b)

Figure 5.4. Mozart test image: (a) The true height map. (b) A 3-D plot of the true

height map.

o = 45° and n = 250. The similarity between the input images in Figure
5.5 and the reconstructed images in Figure 5.7 illustrates that the irradiance

requirement in the energy functional is satisfied by the SFS solution.

If we compare the results in Figure 5.6 obtained from the non-adaptive SFS
algorithm and Figure 5.7 obtained from the adaptive SFS algorithm, we can
see that non-adaptive SFS algorithm gives smoother surfaces because of setting
a constant value to A which flattens the reconstructed height maps. On the
other hand, the adaptive SFS scheme can automatically determine the value of

A at every image point.

The 3-D plots of the reconstructed surfaces obtained by the non-adaptive
and the adaptive algorithms are shown in Figure 5.8 and Figure 5.9 respectively.
The smoothing effect of using a constant A can be easily seen if we compare
these plots. It can also be seen that the adaptive control of the regularization

parameter spatially improves the solution around discontinuities.

Figure 5.10(a) and (b) show the p and ¢ maps of the ground truth, and (c)
and (d) show the p and ¢ maps obtained by the adaptive SFS algorithm.

A comparison of the reconstructed (p,q, z) with the ground truth for the

Mozart image shows that there are errors in the background region which is
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Figure 5.5. The input images synthesized from the true height map with parameters
T = 45°, 0 = 45° and n = 250 with sizes 32x32, 64x64 and 128x128 from left to right.

Figure 5.6. The images synthesized from the (p,¢) maps obtained by the non-
adaptive SFS algorithm using the parameters 7 = 45°, ¢ = 45° and 5 = 250 with
sizes 32x32, 64x64 and 128x128 from left to right.

Figure 5.7. The images synthesized from the (p,q) maps obtained by the adaptive
SFS algorithm using the parameters 7 = 45°, o = 45° and 7 = 250 with sizes 32x32,
64x64 and 128x128 from left to right.
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(a)
(b

It

Figure 5.8. 3-D plots of the reconstructed height maps for the Mozart image obtained
by the non-adaptive SFS algorithm with sizes (a) 32x32, (b) 64x64 and (c) 128x128.
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Figure 5.9. 3-D plots of the reconstructed height maps for the Mozart image obtained
by the adaptive SFS algorithm with sizes (a) 32x32, (b) 64x64 and (c) 128x128.



100

() (d)

Figure 5.10. Partial derivatives: (a) The true z, map. (b) The true z, map. (c)

The p map reconstructed by the adaptive SFS. (d) The ¢ map reconstructed by the
adaptive SF'S.

probably due to a lack of proper boundary conditions. Apart from this, the
reconstruction is successful and the shapes of hair, forehead, eyebrows, nose,
cheeks, etc. are correct. This conclusion is supported by the similarities be-
tween the images generated from the ground truth and the SFS results using

different illuminant directions.

Figure 5.11(a) and (d) compare the images synthesized from the ground
truth and the adaptive SFS result, both using the parameters 7 = 135°, ¢ =
45° and n = 250. In this case, the illuminant direction is orthogonal to the
illuminant in the input image. Figure 5.11(b) and (e) give an image pair, the
images synthesized from the ground truth and the SFS result using parameters
T = 225°, 0 = 45° and = 250. In this case, the illuminant direction is opposite
to the illuminant in the input image. Figure 5.11(c) and (f) give another image

pair, the images synthesized from the ground truth and the SFS result, both
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using the parameters 7 = 315°, ¢ = 45° and 5 = 250.

Figure 5.12 shows two input images generated with the parameters (a)
T = 45°, 0 = 45°, 7 = 250 and (b) 7 = 135°, ¢ = 45°, n = 250, and used in
the integrated adaptive photometric stereo algorithm as input images. Figure
5.13 shows the images synthesized from the (p, ¢) maps obtained by integrating
the photometric stereo and adaptive SFS algorithm. In Figure 5.14, a 3-D plot
of the reconstructed height map from this integrated approach is shown. By
comparing the results in Figure 5.9 and Figure 5.14, one can observe that this
integration improves the reconstructed surface by providing more symmetrical

results with the help of information gathered from two images.

Figure 5.15 shows the Midilli image which is simulated using a digital ter-
rain model (DTM) of the Midilli island. Figure 5.15(a) shows a 3-D plot of
the true DTM and Figure 5.15(b) is the true height map used to generate the
input image. Figure 5.15(c) shows the input image to the adaptive SFS algo-
rithm which is synthesized from Figure 5.15(b) with using the reflectance map
parameters 7 = 45°, 0 = 45° and 5 = 250.

In Figure 5.16(a), the height map recovered by the adaptive SFS algorithm
is shown. Figure 5.16(b) shows the Midilli image synthesized from the (p, q)
maps obtained by the SFS algorithm using the parameters 7 = 45°, o = 45°
and g = 250. Figure 5.17 shows the 3-D plots of the reconstructed images
with three resolution layers. Comparison of the 3-D plot in Figure 5.15(a) with
those in 5.16 show that the general shape of the surface has been reconstructed

successfully.

Figure 5.18(a) and (b) show the p and ¢ maps of the true DTM, and (c)
and (d) show the p and ¢ maps obtained by the SFS algorithm. Figure 5.19(a)-
(f) compare images synthesized from the true DTM and the SFS results both
using the parameters o = 45° and n = 250. In these figures, three different tilt
angles are used as 135°, 225° and 315°. It can be seen from these images that,

using different illuminant directions are consistent.

Figure 5.20 shows the SFS results for the Lenna image. Figure 5.20(a)

shows the input Lenna image. The reflectance map parameters are estimated
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(d) | (e) ()

Figure 5.11. The images synthesized from the true height with parameters o = 45°,
n = 250, and (a) 7 = 135°, (b) 7 = 225° and (c) 7 = 315°. The images synthesized
from the (p, q) maps obtained by the adaptive SFS algorithm using parameters o =
45°, n = 250, and (d) 7 = 135°, (e) 7 = 225° and (f) 7 = 315°.
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Figure 5.12. The input images for the adaptive photometric stereo algorithm, which
are synthesized from the true height map using the parameters (a) 7 = 45°, o = 45°,
n = 250 and (b) 7 = 135°, 0 = 45°, = 250.

Figure 5.13. The images synthesized from the (p, ¢) maps obtained by the adaptive
photometric stereo algorithm using the parameters (a) 7 = 45°, 0 = 45°, n = 250
and (b) 7 =135°, 0 = 45°, 1 = 250 .

by using Zheng and Chellappa’s source from shading method as 7 = 9.9°,
o = 57.8° and n = 191.7. Figure 5.20(b) is the height map obtained by the
adaptive SFS algorithm. Figure 5.20(c) and (d) are the (p, ¢) maps of the SFS
results. Figure 5.20(e) shows the image synthesized from the reconstructed
(p, ¢) maps using the estimated reflectance map parameters. Figure 5.20(f)-(h)
show images synthesized from the reconstructed (p, ¢) maps using parameters
o = 57.8° and n = 191.7, and 7 equals to 99.9°, 189.9° and 279.9° respectively,
corresponding to whether illuminant from directions opposite or orthogonal
to the estimated direction for the input image. It can be seen that the im-
ages synthesized from the SF'S result using different illuminant directions are

consistent.

In Figure 5.21, the 3-D plots of the reconstructed surfaces are shown with



104

Figure 5.14. A 3-D plot of the reconstructed height map from the adaptive photo-

metric stereo algorithm.

three resolution layers. It can be seen from these plots that the shapes of the
face and shoulder are recovered correctly and that features such as the nose,

lips, cheeks, chin, etc. are easily identified.

Figure 5.22 shows the SFS results for the pepper image. Figure 5.22(a) is
the input image. The estimated reflectance map parameters by using Zheng
and Chellappa’s method are 7 = 33.9°, ¢ = 45.2° and n = 221.7. Figure 5.22(b)
is the z map obtained by our adaptive SFS algorithm. The p and ¢ maps of
the SFS result are shown in Figure 5.22(c) and 5.22(d) respectively. Figure
5.22(e) shows the image synthesized from the reconstructed (p,¢) maps using
the estimated reflectance map parameters. Figure 5.22(f)-(h) show images
synthesized from the reconstructed (p, ¢) maps using parameters o = 45.2° and
n = 250, and 7 equals to 123.9°, 213.9° and 303.9° respectively, corresponding
to whether illuminant from directions opposite or orthogonal to the estimated
direction for the input image. It can be seen that the images synthesized from
the SFS result usihg different illuminant directions are consistent. The 3-D
plots of the reconstructed surfaces are shown with three resolutions in Figure
5.23. It can be seen from these plots that the basic shape for the pepper are

recovered with enough details.
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Figure 5.15. Midilli DTM image: (a) A 3-D plot of the true height map. (b) The
true height map. (c) The input image which is synthesized from (b) with parameters
T = 45°, 0 = 45° and n = 250.

(a)

Figure 5.16. (a) The height map reconstructed by the adaptive SFS algorithm. (b)
The image generated from the SFS result using the parameters 7 = 45°, ¢ = 45° and
n = 250.
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Figure 5.17. 3-D plots of the reconstructed height maps for the Midilli image obtained
by the adaptive SFS algorithm with sizes (a) 32x32, (b) 64x64 and (c) 128x128.
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() (d)

Figure 5.18. Partial derivatives: (a) The true z; map. (b) The true z, map. (c) The

SFS reconstructed p map. (b) The SFS reconstructed ¢ map.
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(d) (f)

Figure 5.19. The images synthesized from the true height using parameters o = 45°,
n = 250, and (a) 7 = 135°, (b) 7 = 225° and (c) 7 = 315°. The images synthesized
from the (p, q) maps obtained by the adaptive SFS algorithm using parameters o =
45°, n = 250, and (d) T = 135°, (e) 7 = 225° and (f) 7 = 315°.
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(f) (8) (h)

Figure 5.20. SFS results for Lenna image: (a) The input image. (b) The height map

obtained by the adaptive SFS algorithm. (c) and (d) are the p and ¢ maps of the
SFS results. (e) The image synthesized from the reconstructed (p,q) maps using the
estimated reflectance map parameters. (f), (g) and (h) are images synthesized from
the reconstructed (p, ¢) maps using 7 equals to 99.9°, 189.9° and 279.9° respectively,
corresponding to illumination from directions opposite or orthogonal to the estimated

directions for the input image.
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(f) (8) (h)

Figure 5.22. SFS results for the pepper image: (a) The input image. (b) The height

map obtained by the adaptive SFS algorithm. (c) and (d) are the p and g maps of the
SFS results. (e) The image synthesized from the reconstructed (p, ¢) maps using the
estimated reflectance map parameters. (f), (g) and (h) are images synthesized from
the reconstructed (p, ¢) maps using T equals to 123.9°, 213.9° and 303.9° respectively,
corresponding to illumination from directions opposite or orthogonal to the estimated

directions for the input image.
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Figure 5.23. 3-D plots of the reconstructed height maps for the pepper image ob-
tained by the adaptive SFS algorithm with sizes (a) 32x32, (b) 64x64 and (c) 128x128.



CHAPTER 6.

CONCLUSIONS

In this final chapter, we summarize the results and contributions of this

thesis and suggest problems for future research.

6.1 Summary of Results

The shape-from-shading problem is studied in this thesis. The review of the
algorithms reveals that the major difficulties in this problem are determining
the boundary conditions of the minimization problem, selecting the algorithm
parameter values, slow convergence of the global iterative SFS algorithm and
having poor information about the scene by using a single measurement of the

image brightness.

Chapter 2 represents a background knowledge related to the reflectance
models and source from shading technique. Depending on their physical prop-
erties, surfaces can be categorized as Lambertian, specular, hybrid and more
sophisticated surfaces. In this chapter, we describe the reflectance models and
discuss their properties related to shape-from-shading. Source-from-shading
technique which deals with the recovery of the light source location and albedo
from a shaded image is presented. We considered three source-from-shading
methods. We explained Pentland’s original approach for light source compu-
tation, its refinements by Lee and Rosenfeld and improvements of the both
methods by Zheng and Chellappa. The resulting formulas of these methods for
illuminant direction and albedo estimation are summarized in the table given

at the end of this chapter.
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In chapter 3, the shape-from-shading problem is discussed in detail. At the
beginning of this chapter, we present the regularization theory which enables us
to transform the ill-posed problems in the early vision to the well-posed prob-
lems by imposing the physical constraints on the solution in the variational
form. After that, we review the shape-from-shading formulation. We present
a number of ways for specifying surface orientation. They are unit surface nor-
mal (N ), surface gradient (p, ¢), slant and tilt angles (o, 7) and stereographic
coordinates (f,g). Then, the reflectance map is introduced and the image irra-
diance equation which is fundamental for recovering surface shape is described.
The variational solution of the image irradiance equation is discussed and a pro-
cedure for deriving a SFS iterative scheme is presented. After the introduction
of the constraints used in the shape-from-shading problem, a total of eight SFS
methods are summarized. At the end of this chapter, another shape recovery
technique used in computer vision, known as shape-from-photometric-stereo,
is introduced. Photometric stereo deals with the recovery of 3-D shape using
multiple input images of the same scene generated fixed viewing direction and

different light source directions.

Chapter 4 discusses the effects of the SFS constraints, which are the bright-
ness constraint, the smoothness constraint, the integrability constraint and
the intensity gradient constraint, on the solution. Here, an energy functional
which contains all the constraints are constructed and minimization of this
constrained minimization problem is considered. An iterative SFS scheme is
derived by using the calculus of variations and a linear approximation of the
reflectance map. Changing the relative weight of each constraint in the energy
functional by setting the proper values to the algorithm parameters A, p and
B, we explored the individual effects of the SF'S constraints on the solution and

observed the following results:

The brightness constraint measures the error in brightness , that is the
difference between the observed image brightness and the predicted from the
computed shape. This constraint which is related directly to the image irradi-
ance equation allows for modeling errors and noise, and used as a part of an

energy functional.

The regularization term also called smoothness constraint is used to sta-
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bilize the iterative SFS scheme and to ensure that it has a unique minimum.
Although the smoothness term is used to ensure the convergence of the iterative
process, it flattens the SFS reconstruction, causing distortions along the im-
age discontinuities. On the other hand, determining the optimum value of the
regularization term is critical as it should be large enough to avoid instability
and small enough to produce a meaningful solution. As a result, using of the
smoothness constraint in the shape-from-shading problem produces solutions
that are too smooth with the amount of distortion depending on the choice of

regularization parameter value.

The integrability constraint is used to ensure that the gradient field com-
puted by the SFS algorithm corresponds to a physical surface. Experimental
results show that the choice of the value of the integrability constraint parame-
ter u is also critical and too small values may cause instabilities in the iterative
scheme. However, big values for u cause smooth surfaces and this effect can be
seen on the shaded images which are synthesized from the (p, ¢) maps obtained
by the SFS algorithm.

The intensity gradient constraint is used to require that the gradients of the
reconstructed image to be close to the gradients of the input image in both x
and y directions. To see how this constraint effects the solution, we calculated
the partial derivatives of the input image (1, I,) and the partial derivatives of
the SFS generated images (R,, R,) and compared them. Although these partial
derivatives are not similar when the intensity gradient constraint is not present
in the iterative scheme, they look quite similar when we add this constraint to
the algorithm. Changing the value of the intensity gradient parameter 8 does
not cause significant changes on the recovered height map but too small values

of B causes smoother shaded images.

In chapter 5, a new adaptive shape-from-shading approach which uses adap-
tive smoothing function to reduce the oversmoothing along the reconstructed
image is introduced. In order to control the smoothness over the image space,
the fixed regularization parameter of the standard regularization is replaced
by a space varying regularization parameter. The space varying regularization
parameter is updated in an iterative process utilizing the knowledge about the

difference between the image which is obtained from the regularized solution
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and the input image. The adaptive SFS algorithm starts with an oversmoothed
regularization solution and iteratively refines this solution around discontinu-
ities. At each iteration, a control signal is obtained from the error signal which
has large positive values around discontinuities. The control signal is used
to update the space varying regularization parameter. In order to speed up
the iterative algorithm, one of the multigrid methods is applied to the iterative
scheme and a hierarchical implementation of our adaptive SFS approach is pre-
sented. Integration of the adaptive SFS approach and the photometric stereo
technique improves the reconstruction since we have two input images of the
same scene generated using fixed viewing direction and different light source
directions. The adaptive SFS algorithm were tested on various synthetic and
real images and encouraging results were obtained. It can be seen from these
results that the spatial control of the smoothness improves the reconstructed

gradient field and height map obtained by the adaptive algorithm.

6.2 Summary of Contributions

A number of research contributions were presented in this thesis. These

contributions can be summarized as follows:

o All the SFS constraints are combined in an energy functional and a gen-
eral purpose SFS algorithm is derived by solving this minimization prob-

lem.

e The effects of the SFS constraints on the solution were explored using

this general purpose SFS scheme.

e An adaptive SFS scheme was derived, which controls the smoothness
over the image space by spatially varying regularization parameters de-

termined from the error signal in an iterative process.

e The adaptive SFS algorithm has been shown by experiments to reduce

the smoothing effect of the regularization term.
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o The integration of the adaptive shape-from-shading approach and the
photometric stereo technique has been achieved in order to improve the

quality of the reconstruction.

e The multigrid method was applied to the adaptive SFS algorithm to speed

up the iterative process.

6.3 Suggestions for Future Research

There are several possible directions for future research. Reflectance mod-
els used in SFS methods are too simplistic; recently more sophisticated models
have been proposed (see Section 2.2). This is not only includes more accurate
models for Lambertian, specular and hybrid reflectance but also includes replac-
ing the assumption of the orthographic projection with perspective projection,
which is a more realistic model of cameras in the real world. The traditional
simplification of lighting conditions, assuming an infinite point light source,
can also be eliminated by either assuming a non-infinite light source or simu-
lating lighting conditions using a set of point sources. SFS methods employing
more sophisticated models should be developed to provide more accurate and

realistic results.

Another direction is the combination of the computational tasks used in
early vision. One can use the results of the other tasks in order to improve the

results of shape-from-shading.

In shape-from-shading problem, the‘sha,pe is recovered by minimizing an
energy functional involving some constraints. The relative weights of these
constraints are determined by the corresponding parameter value of each con-
straint. Experimental results show that, choosing these parameter values are
critical in order to obtain a reasonable solution. An iterative SFS scheme which

determines algorithm parameter values automatically should be investigated.

Multiple images can also be employed by moving the viewer in order to

successively refine the shape. The successive refinement can improve the quality
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of estimates by combining estimates between image frames and reduce the

computational time.

One problem with SFS is that the shape information in the shadow areas
is not recovered since these areas do not provide enough intensity information.
This can be solved if we make use of the information available from shape-from-
shadow (shape-from-darkness) and combine it with the results from SFS. The
depth values on the shadow boundaries from SFS can be used either as the ini-
tial values for shap‘e—from-shadow or as constraints for the shape-from-shadow
algorithm. In the case of multiple image frames, the information recovered

from shadow in the previous frame can also be used for SFS in the next frame.

The adaptive shape-from-shading technique developed in this thesis can
be adapted to synthetic aperture radar (SAR) imagery by incorporating radar
reflectance models and by solving for surface slopes in a rotated system of
coordinates which represents surface height relative to a plane parallel to the

line-of-sight.

Finally, the application of the adaptive shape-from-shading to other early
vision problems which have been solved using the regularization theory should

be considered.
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