ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL

APPROXIMATE ARTIFICIAL NEURAL NETWORK
HARDWARE AWARE
SYNTHESIS TOOL

Ph.D. THESIS

Mohammadreza ESMALI NOJEHDEH

Department of Electronic & Communication Engineering

Electronic Engineering Programme

JULY 2021

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL

APPROXIMATE ARTIFICIAL NEURAL NETWORK
HARDWARE AWARE
SYNTHESIS TOOL

Ph.D. THESIS

Mohammadreza ESMALI NOJEHDEH
(504162212)

Department of Electronic & Communication Engineering

Electronic Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Mustafa ALTUN

JULY 2021

ISTANBUL TEKNIK UNIVERSITESI * LISANSUSTU EGITIM ENSTITUSU

YAKLASIK YAPAY SINiR AGI iCIN
DONANIMA DUYARLI
SENTEZ ARACI

DOKTORA TEZI

Mohammadreza ESMALI NOJEHDEH
(504162212)

Elektronik ve Haberlesme Miihendisligi Anabilim Dah

Elektronik Miihendisligi Program

Tez Damismanmi: Assoc. Prof. Dr. Mustafa ALTUN

TEMMUZ 2021

Mohammadreza ESMALI NOJEHDEH, a Ph.D. student of ITU Graduate School stu-
dent ID 504162212, successfully defended the dissertation entitled “APPROXIMATE
ARTIFICIAL NEURAL NETWORK HARDWARE AWARE SYNTHESIS TOOL”,
which he prepared after fulfilling the requirements specified in the associated legisla-
tions, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Mustafa ALTUN .
Istanbul Technical University

Jury Members : Prof. Dr. Siddika Berna ORS YALCIN ...
Istanbul Technical University

Asst. Prof. Dr. Tuba AYHAN
MEF University

Assoc. Prof. Dr. Burcu ERKMEN
Yildiz Technical University

Asst. Prof. Dr. Ismail CEVIK ...
Istanbul Technical University

Date of Submission :26 May 2021
Date of Defense : 2 July 2021

To my family,

vii

FOREWORD

My most sincere and special gratitude goes to my supervisor Assoc. Prof. Dr. Mustafa
ALTUN. Thank you for the continuous support and extraordinary supervisory to my
PhD study. It was my fortune and honor to have the great supervision from you. I
would also like to thank Dr. Levent AKSOY, a friend and colleague who changed my
way of thinking, my attitudes to this world and my vision to the future. I also wish
to thank the members of the thesis committe; Prof. Dr. Siddika Berna ORS YALCIN
and Asst. Prof. Dr. Tuba AYHAN for their comments and valuable advice. Last but
by no means least, I would give my special gratitude to my families, especially my
parents. They have sacrificed so much to support my life and study. I cannot express
my thankful heart to them with bare language.

July 2021 Mohammadreza ESMALI NOJEHDEH

iX

TABLE OF CONTENTS

Page

FOREWORD . . . ceeesseesssisssnesssesasessnsssaenanes ix

TABLE OF CONTENTS.....cconiininiininnnicstisecssnssecssnssesssessssssessasssnssssssassassssssasssssssesss xi

ABBREVIATIONS eeee Xiii

LIST OF TABLEScoiiiiiiniinnicsnninninsisssnssssssssissssssssssssssssssssssssssssssssssesssssssssns XV

LIST OF FIGURES «ee XVii

SUMMARY . . cees XIX

OZET eee XXI

1. INTRODUCTION 1
2. APPROXIMATE COMPUTING .. .

2.1 Background and Preliminary WOrTKScooceiviiiiniiiiiiiieniieeceeee e 5

2.2 Ripple-Carry Adder DeSIZN........occveiiiiiiiiniiiieeiieicnecceeeceee e 9

2.2.1 1-bit full adder deSIZNcccceieriieeiiieeiee et e 9

2.2.2 n-bit ripple-carry adder desi@n..........coccueeriieiniieiiiieriee e 14

2.3 Approximate Multiplier DeSIZNcooueiriiiiiiiiiiiiieiiieeieeeceee e 21

2.3.1 Design of 1-bit approximate full adder (APFA) and half adder (APHA). 21

2.3.2 n-bit wallace-tree multiplier designccceeecvieiiinieniiinnieeereeeeeeee, 25

2.4 Experimental RESUILS........cccviiiiiieiiieiieeieeeiee e 26

2.4.1 Area, power, delay, and energy versus average €rror.........ceeveeeruveeruveennne 27

2.4.2 Image processing: peak signal to noise ratio (PSNR) versus area saving 32

2.4.3 Neural network: misclassification rate versus area saving 32

3. ANN HARDWARE REALIZATIONccoiineinsercsnensnnssnscsancssecssnssscsssesssssssscens 35

3.1 INErOAUCTION ...ttt ettt et e st e e 35

3.2 BaCKGIOUNG.coouiiiiiiiiiiieecee ettt et 37

3.2.1 ANN DASICS .ttt ettt ettt ettt e e 37

3.2.2 Multiplierless constant multipliCationsceeevveercieeerieeniieeereeerree e 37

3.2.3 Related WOTKcoouiiriiiiiiiiieeicceceeeee e 39

3.3 Design ATCRITECTUIESeiruiiiiiiiiiiieeieeetee et 40

3.3.1 Parallel deSi@N.......ceeuieeiiieeiieeieeeee et 41

3.3.2 Time-Multiplexed deSIZNccccveriiriiiiiiiinieriieieeee e 41

3.3.2.1 SMAC_NEURON ARCHITECTUREc.cccceoiiiuiiiiiiiiiiiiiiicnccicicee 42

3.3.2.2 SMAC_ANN ARCHITECTUREcccoeouiiiiiiiiiiiiiciccieiceiesie e 44

3.4 Finding the Minimum Quantization Value.............ccocceeeniiniiiiniiiinieeneeeen, 44

3.5 ANNs Under the Shift-Adds Architecturecccccevveriervernienienienieeeeee. 46

3.5.1 Multiplierless ANN design under the parallel architecture 46

3.5.2 Multiplierless ANN design under the time-multiplexed architectures 46

3.6 SIMURG: The CAD TOOL......ccciiiiiriiiiiiiienieeeeeeeeee et 47

3.7 Experimental ReSults.........cocoooiiiiiiiiiiiiiiiiieeceeeece e 49

X1

4. EFFICIENT HARDWARE REALIZATION OF ANNS BY APPROXI-

MATE BLOCKS

4.1 Introduction

4.2 Approximate Blocks for ANN.....cccccooiiiiiiiiiiie e
4.2.1 Approximate adderscccueeecuieeriieeiiieeriee et eiee et
4.2.2 Approximate MUItIPHIETSccocueerrieiriiieiiieeiteeeiee et e
4.2.3 Approximate LEVEL.........cccuiiiiiiiiiiiiiieeeee e

4.2.3.1 SMAC_NEURONcovoiimiiniiiiiiiieeeeeeeee et
4232 SMAC _ANN ..ottt

4.3 Experimental Results

4.3.1 Pen-digit problem........ccccovieiiiriiiiieiiieienieeeeeene e

4.3.2 MNIST problem

5. CONVOLUTION LAYER

5.1 Introduction

5.1.1 ConvolUtiON TAYETcccveiiiiieiieeeeiiee et

5.2 Experimental Results
6. CONCLUSIONS

REFERENCES..

CURRICULUM VITAE

Xii

55
55
56
56
57
59
59
61
62
63
69
75
75
76
81
85
87
95

ABBREVIATIONS

AAL : Adders Approximation Level

ANN : Artificial Neural Network

APAD : Approximate Adder

ASIC : Application-Specific Integrated Circuit
BNN : Binary Neural Networks

BHA : Behavioral Accuracy

CAD : Computer Aided Design

CAVM : Constant Array-Vector Multiplication

Cin : Carry In

CMVM : Constant Matrix-Vector Multiplication
CMOS : Complementary Metal-Oxide Semiconductor
CNN : Convolutional Neural Networks

Cout : Carry Out

CPU : Central Processing Unit

CSD : Canonical Signed Digit

DBR : Digit-Based Recoding

EAAED : Estimated Average Absolute Error Distance
EXAD : Exact Adder

FA : Full Adder

FPGA : Field Programmable Gate Array

GPU : Graphics processing Unit

HA : Half Adder

HAC : Hardware Accuracy

HMR : Hardware Misclassification Rate

10T : Internet of Things

LEBZAM : Least Significant Bit Zero Approximate Multiplier
LLS : Largest Left Shift value

MAC : Multiply Accumulate unit

MCM : Multiple Constant Multiplication

MLP : Multilayer Perceptrons

MR : Misclassification Rate

PBAM : Probabilistic Based Approximate Multiplier
PDP : Power-Delay Product

PSNR : Peak Signal-to Noise Ratio

RNN : Recurrent Neural Networks

SCM : Single Constant Multiplication

SLS : Smallest Left Shift value

SMAC : Single Multiply Accumulate unit

SRAM : Static Random-Access Memory

TAED : Total Absolute Error Distance

xiii

LIST OF TABLES

Page
Table 2.1 : Truth table of sample approximate adders.ccceceerienieniieaneennene. 7
Table 2.2 : Truth tables of exact and approximate 1-bit adders.ccecuveennenn. 13
Table 2.3 : Calculation of E; for example 1.cccccoooiriieiiiniiniiiieeeieeeeeene 17
Table 2.4 : Values of E;’s for different APAD combinations.ccccoeeeeveenn.. 17
Table 2.5 : Synthesis of 8-bit adders.ccocueiriiiiniiiiiiieieeee e, 20
Table 2.6 : Truth table of the proposed approximate full Adder APFA................. 23
Table 2.7 : Truth table of the proposed approximate half adder APHA. 24
Table 2.8 : 1-Bit adder results.cccceeriiiiiiiiiiiiieeee e 29
Table 2.9 : 8-Bit adder reSults.cccoiiiiiiiiiiiiiieeee e 30
Table 2.10 : 8-Bitx8-Bit multiplier results...........cccevviiiriiieniiiiiiiinieeee e 31
Table 2.11 : Neural network misclassification rates for different area savings. 34
Table 3.1 : Details of ANNs on training and hardware design.ccccecuveenuneenn. 49
Table 4.1 : SMAC_NEURON using approximate multipliers.c...cceceerveercuerneens 65
Table 4.2 : SMAC_NEURON using approximate multipliers and adders. 66
Table 4.3 : SMAC_ANN using approximate multipliers.ccoceeerveerieeenneens 67
Table 4.4 : SMAC_ANN using approximate multipliers and adders. 68
Table 4.5 : SMAC_ANN for 668-128-10 StIUCLULE.ueveeeeeeeeeieeiieeeeeeeeeeeeeeeeeennnnns 72
Table 4.6 : SMAC_NEURON for 668-128-10 Structure.couvveuveeeeereeeeeeeiennnnnnn. 73
Table 4.7 : SMAC_NEURON for 668-256-256-256-10 structure.cccocucueee 74
Table 5.1 : The axonal-based model data flow for convolutional computation..... 79
Table 5.2 : The proposed method data flow for convolutional computation.......... 80

XV

LIST OF FIGURES

Page
Figure 2.1 : Ripple carry adder StruCture.coceeriieiiienieniieieeieseeeiee e 7
Figure 2.2a : APADIL. ..ot 12
Figure 2.2D : APAD2. ..ottt 12
Figure 2.2¢ : APAD3. ..ottt e e 12
Figure 2.2d : APADA. ...t 12
Figure 2.2 : Karnough Maps of APADS.cociiiiiiiiiiieeeeeeeeeeee e 12
Figure 2.3 : Demonstration of steps for example 3.ccccceevvieiniieiniieeniieenieenns 18
Figure 2.4 : 4x4 bit exact wallace-tree multiplier............coceevereerieneenenienennenne. 23
Figure 2.5a 1 AMD3 [1]. oottt et e e st ree e e e e nanee e 33
Figure 2.5D 1 AXT [2]. oottt et e e e e ae e e e earaee e 33
Figure 2.5¢ : INAX [3]. ittt ettt te e et e st eesaeesaee e saeesnraeenaseeens 33
Figure 2.5d 2 TIUNCL. ...oooiiiiiiiiiee ettt 33
Figure 2.5€ 1 EXACL. ..ooiiiiiiiiiiiiieiie ettt 33
Figure 2.5 2 Proposed.c.ccooiiiiiiiiieiiieeiieeciee ettt ettt 33
Figure 2.5 : Mean filter results.ccoooiiiiiiiiiiieiiiie e 33
Figure 2.6a : MmN [4]. oottt sae e eree e saaeeens 33
Figure 2.6D : MMN2 [4]. oottt ettt s 33
Figure 2.6¢ : MINho [S]. .oooiiioiiieee ettt ee e 33
Figure 2.6d : TIUNCL. ...cc.ooiiiieiiiecieeceeee ettt e e ereeenaseeens 33
Figure 2.6€ : EXACL. ...ocoooiiiiiiiieeee ettt e e aae e e e eaae e 33
Figure 2.6f : Proposed.ccoocioiiiiiiiiiiieiee et 33
Figure 2.6 : Results for blending of tWo images.ccceeveveeerieeniieeniieeie e 33
Figure 3.1 : Artificial DEUION.ccueiiiiiiiiiiiiiiieeieeee et 36
Figure 3.2 : ANN with two hidden l1ayers.ccccoeeeeeriieniieeieeeee e 37
Figure 3.3 : Single constant multiplication (SCM).ccceevviiiviiiniiiiniienieeiene 38
Figure 3.4 : Multiple constant multiplication (MCM).c..cccevirviinieninicnennenne. 38
Figure 3.5 : Constant array vector multiplication (CAVM)........cccccvveviveriveennenne 39
Figure 3.6 : Consant matrix vector multiplication (CMVM).cccceoiiiviiiineens 39
Figure 3.7 : Implementation of a CMVM Operation.cccccueeevvveenveeesreeenneenns 40
Figure 3.8 : DBR mMethod [6].....cccueoeiiiiiiiiiiiieiiieiteeeeste e 41
Figure 3.9 : The algorithm of [7] optimizing the number of operations. 42
Figure 3.10 : Neuron computations at the k' layer of ANN..........coccocovvvvivruernennn.. 42
Figure 3.11 : Multiply-accumulate (MAC) block in the neuron computation. 43
Figure 3.12 : Neuron computations at the k" layer of ANN using MAC blocks.... 43
Figure 3.13 : ANN design using a single MAC block..........cccceovveiniiieniieniiieneens 45
Figure 3.14 : Neuron computations at the k' layer using a CMVM block............. 46
Figure 3.15 : Multiplierless realization of neuron computations.c.cceeeeuveenn. 47
Figure 3.16 : ANN designs under the parallel architecture.cc.ccccevcveeriiieenneenn. 52

Xvil

Figure 3.17 :
Figure 3.18 :

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

ANN designs under the SMAC_NEURON architecture..............c........ 52

ANN designs under the SMAC_ANN architecture..........ccccceevueennneen. 53
2 Ripple carry adder.oovvieriiieiiieiieeeeeee e 56
: Exact 4-bit unsigned multiplier.coceeveiiienieniicniieieneneceeee, 58
: Approximate 4-bit unsigned multiplier...........ccceeeeveervieenieencieeeniens 58
: Misclassification rate for SMAC_NEURONarchitecture...................... 61
: Misclassification rate for SMAC_ANNarchitecture.cccuueeeveeenn.... 62
: Energy save percentages.cocceeveerierieenieenienienieeniee e 70
: Area save percentages of ANN.cooiiiiiiiiiniiniinceeeeeen 71
: Multiply-accumulate (MAC) block in the neuron computation. 77
: Axonal-based model.c.ccoouiiiiiiiiiniiiien 78
: Dendritic-based model.coooiiiiiiiiiiiiniiiien 78
: The computation of convolutional layer.ccccecceeerviieeiiienieennnen. 78
: The computation of convolutional layer.ccoceeveevienccnieeneennee. 79
¢ Experimental 1eSUlLS.......coovoiiiiiiiiiie e 83

XViil

APPROXIMATE ARTIFICIAL NEURAL NETWORK
HARDWARE AWARE
SYNTHESIS TOOL

SUMMARY

In the previous decade, artificial neural networks (ANNS) have attracted considerable
attention from researchers in many areas and have become a favorite method; from
business to aerospace applications.

We live in the information age where this information feeds artificial intelligence (Al).
According to Forbes’ estimate, over the last two years alone 90 percent of the data in
the world was generated. At first glance, processing more information may seem like
a dissipation of more power in central processing units(CPUs) and graphic processing
units (GPUs) or spending more time to obtain the results, but for the portable systems
due to limitations in battery capacity, power, and hardware area limitations, different
concerns emerge. For example, less consumption of energy is vital to extend the
battery supporting time for mobile devices.

The problem starts to be bold when software engineers regardless of the hardware
sources (especially for portable devices) develop different ANNs architecture, where
they intend to achieve a network with the best performances. Similarly, hardware
engineers’ Al knowledge is limited and any change within hardware design in lack
of this knowledge may yield a catastrophic defect in the expected performance. As
a result, this uninformed state yields a gap between the hardware and software sides
of ANNs. The emerged gap provides a pitch to hardware and software researchers to
play their best performance, where more information about the rival side makes their
performance more eye-catching.

By obtaining this gap, the co-design method or hardware-aware training methods
become prevalent recently. The object of this dissertation is also to develop a
methodology to realize the ANNs with minimum hardware cost by regarding the
software performance.

Limitation in hardware cost, consumed energy, and dissipated power for devices leads
designers to find new architectures and approaches. Approximate computing is one
of them, where this method is an useful technique for error essence systems. By
leveraging the approximate level, a trade-off between the output accuracy and hardware
cost is attainable. For example, assume a 1-bit exact adder costs 18 transistors, and by
removing 3 transistors, a new approximate adder by 15 transistors is achievable, but the
new approximate adder generates inexact results when the input is (0,0), and suppose
that the results for the rest set of the inputs((0,1),(1,0),(1,1)) are correct. Therefore,
the approximate adder saves 3 transistors at the cost of 1 inexact result.

X1X

Generally, approximate computing is apple of designers’ eye in applications with
error tolerance capability, consequently, error tolerance inherence of ANNs nominates
approximate computing as a potential method to reduce the hardware complexity of
ANNSs. Since multipliers and adders are fundamental building blocks of ANNs, in
this thesis, by introducing novel approximate multipliers and adders we replace them
with exact adders and multipliers. As mentioned earlier, approximate computing is a
trade-off between accuracy and hardware cost, to adjust this trade-off, we synthesized
the proposed approximate blocks based on the desired error metric. Also, we proposed
an equation to calculate the mean absolute error of the introduced approximate
multiplier and adders. Based on our best knowledge, the proposed approximate blocks
are the only ones which are synthesized based on the mean error value.

In next step, we introduced a new error metric called the approximate level to
evaluate the performance of the proposed approximate blocks in ANNs. On the
other hand, ANNs are made up of a lot of multipliers and adders, where the search
space for the best combination of these blocks grows with the increase of bit-width
or neuron numbers. To tackle this problem and by exploiting the proposed error
metric, we introduce a new search algorithm to find the appropriate combination of
the approximate and exact versions of the arithmetic blocks by taking into account the
expected accuracy of ANNSs.

Also, in this thesis we realized ANNs under different synthesis techniques to obtain
the pros and cons of each approach. Since the parallel architecture requires a large
area we considered the time-multiplexed architecture as the main architecture method,
where computing resources are re-used in the multiply-accumulate (MAC) blocks.

As an application, the MNIST and Pen-digit database are considered. To examine
the efficiency of the proposed method, various architectures and structures of ANNs
are realized. Our experimental results show that exploiting the proposed approximate
multipliers yields smaller area and power consumption compared to those designed
using previously proposed prominent approximate multipliers. Also, according
to these results, concurrent use of approximate multipliers and adders provides
remarkable results in terms of hardware cost, where we obtain 60% and 40% reduction
in energy consumption and occupied area of the ANN design with the same or better
hardware accuracy compared to the exact adders and multipliers.

To demonstrate the proposed method’s scalability, we propose an efficient method to
realize a convolution layer of convolution neural networks (CNNs). Inspired by the
fully-connected neural network architecture, we introduce an efficient computation
approach to implement convolution operations.

XX

YAKLASIK YAPAY SiNiR AGI iCIN
DONANIMA DUYARLI
SENTEZ ARACI

OZET

Yapay Sinir Aglart (YSA) gectigimiz on yilda pek ¢ok alanda arastirmacilar ve
yatirimcilar tarafindan biiyiik ilgi goriiyor. Forbes’in tahminine gore "Yalnizca son
iki yilda diinyadaki verilerin yiizde 90’min iiretildigi" bilgi caginda yasiyoruz. Ilk
bakista, daha fazla bilginin islenmesi CPU’larda ve GPU’larda daha fazla giiciin
harcanmasi veya sonug elde etmek i¢in daha fazla zaman harcanmasi gibi goriiniiyor,
ancak tasinabilir sistemler icin kisitli pil kapasitesi, giic ve donanim alan1 sinirlamalar
nedeniyle farkli endiseler ortaya ¢ikiyor. Bu sinirlamalar g6z oniinde bulundurarak
tasarimcilar yeni mimarilere yonleniyorlar, mesela pil destek siiresini uzatmak i¢in
daha az enerji tiiketimi hayati 6nem tasir ve kullanilan mimari en az gii¢ tiikketecek

sekilde tasarlaniyor.

Geleneksel olarak, bir devre veya sistem blogunun tasariminda olasi uygulamalar
gozetilerek en kotii durum analizi yapilir ve sadece en yiiksek dogruluk istenen
uygulamaya gore tasarim yapilir. Uygulamalarin ayr1 ayrn gerektirdigi minimum
islem dogruluklari gozetilmez. Ornek vermek gerekirse, telefonlarimizda siklikla
kullandigimiz hesap makinesi ve fotograf iyilestirme/kiiciiltme uygulamalarinin ikisi
icin de ayni aritmetik mantik birimi (AMB) kullanilir. Oysaki hesap makinesi i¢in
AMB’nin hatasiz islem yapmasi elzemken, fotograf uygulamasi i¢in yiiksek dogruluk
sart degildir ve bu islem yaklasik hesaplama yapan bir AMB ile de yapilabilir. Boylece
gii¢ titkketimi 6nemli dl¢iide azaltilabilir.

Onerilen tezde yaklasik hesaplama yapabilen ve diisiik giic tiiketimli aritmetik
devre bloklar1 tasarlanacaktir ve bu bloklar yapay sinir aglarinda farkli dogrulukta
kullanilmak tizere degisik mimarilerde kullanim 6zelliklerine sahip olacaktir.

Bir iist seviyede, yani sistem seviyesinde, tasarlanacak devre bloklarinin secilen
mimaride nasil en verimli sekilde kullanilacaginin/yapilandirilacaginin belirlenmesi
gerekmektedir ve bu olduk¢a zor bir problemdir. Igerisinde n adet aritmetik islem
bloku bulunan ve her bir islem blokunun m adet yapilandirilabilir seviyesi olan
bir sistem i¢in, optimum c¢oOziim en kotii halde m" degisik durumu gozetilerek
bulunur. Co6ziim bulmak i¢in brute-force (kaba kuvvet) yaklasimi kullanmak pratik
limitlerin olduk¢a uzagindadir. Bu ¢alismada, optimum ¢6ziimlere yakin ¢oziimler
bulabilen hiyerarsik bir yaklasim gelistirilmektedir. Onerdigimiz yaklasim, sistemden
istenen dogruluk veya kalite seviyesine gore, her bir devre blokunun saglamasi
gereken dogruluk performansini belirlemektedir ve sonug olarak sistemin gii¢ tiiketimi
minimize edilmektedir.

XX1

Bu tezde hesaplama devreleri toplama ve carpma devreleri olarak iki ayri kolda
incelenip, ilk adimda farkli gii¢, alan ve hata profillerine sahip temel toplama
ve carpma devreleri lojik olarak sentezlenmektedir. Bu asamada temel toplama
devresinden kasit, 1 bitlik tam toplayici devresidir; temel carpici devresi ise garpici
mimarisine gore degisiklik gosterir. Aritmetik iglem devresinden beklenen hata
profilini saglayacak N bitlik toplayiciya/carpiciya ise farkli temel aritmetik islem
bloklar1 birlestirilerek ulagilmaktadir. Birlestirme asamasinda, yeni bir algoritma
onererek en diisiik giic tiikketimi ile istenen hatanin altinda kalmay1 bagaran aritmetik
islem devreleri sentezlenmektedir.

Bu tezde, bir 0grenme agi, yaklasik aritmetik islem devrelerinin hatalarini tolere
edebilecek sekilde kurulmasi hedeflenmektedir. Farkli a§ mimarilerinin yaklagik
hesaplamaya duyarlilifi analiz edilerek, yaklasik hesaplamaya uygun, degisen
paradigmalari takip edebilen, kismen veri giiriiltiisiine kars1 dayanikli bir 68renme
teknigi secilecektir.

Sistemin basarimi 68renme ag1 ve algoritmasinin parametrelerine (katman sayisi,
ogrenme adimu vs.) hassasiyetle baghdir. Bu 6grenme parametrelerinin, hata profilleri
belli diisiik giic tiiketimli aritmetik iglem devreleri ile birlikte optimize edilmesi
hedeflenmektedir.

Alan ve gii¢ verimliligini dikkate alarak farkl toplayici ve carpict mimarileri arasinda,
Ripple Carry toplayici ve Wallace-Tree carpici, devre sentezlerinde kullanilmaktadir.

Yaklasik Ripple Carry toplayict ile ilgili ¢calismalarin incelenmesinde, geleneksel
hatasiz tasarim metodolojisine bir egilim goriiyoruz. Bu tasarimlarda n-bitlik
toplayicinin toplam performansi belirlemek igin 1- bitlik toplayicinin Olctimleri
toplaniyor. Her ne kadar bu yontem, gii¢, alan ve gecikme metriklerine gegirilse,
toplam n-bitlik Ripple Carry toplayicinin ortalama veya en kotii hata durumu, toplam
hata toplamdan oldukca farkli olabilir.

Bununla motive olmus, ilk 6nce 1-bit tam toplayici “Sum” ve “Carry”, bitleri birbirinin
hatasin azaltarak tasarlanmig, lstelik Oyle toplayicilar tasarlamiyor ki, iki ardigik
yaklagik toplayici, biriktirme hatalari iiretemiyorlar. Ornegin, eger bir 1-bit toplayici
beklenen lojik O ¢iktisina yanlislikla 1 idirettigi durumunda, bir sonraki toplayicinin
cikisinin hatasiz veya hatayi diisiirerek sonu¢ verdigini garanti ediyoruz, yani ikinci
toplayici beklendigi 1 sayis1 yerine ya 0 yada hatasiz 1 ¢ikis diretiyor.

Sonug¢ olarak, Onerilen toplayicilar diger literatiirdeki caligmalara gore ayni hata
kisitti saglayarak daha kiiciik devre alam1 ve daha az gii¢ tiiketimi sunar. Bir
Ripple Carry toplayiciy1 uygulamak icin bagka bir yaklagim, yaklasik lojik sentezi
araclarim1 kullanmaktir. Bu araglar, alami belirli bir hata kisitlamasiyla optimize
etmek icin kullanilan genel amach araclardir. Neredeyse en uygun ¢oéziimleri bulmak,
geleneksel yaklagik olmayan sentez araglarina kiyasla ¢cok daha fazla zamana ihtiyag
duydugundan ve / veya genis alan elde ettikleri i¢in toplayici ve carpict i¢in uygun
bir yontem degildir. Ornegin, bu yontemler ile alan tasarruflu bir 32-bit toplayicisini
uygularken, basit kesme yontemi ayn1 hata degeri icin daha ¢ok alan tasarrufu saglarlar.

Genel olarak toplayici ve carpicinin hatasini hesaplamak i¢in biitiin giris ihtimalleri
denemek zorundayiz. Bit uzunlugunu artirarak hesaplama siiresinin iistel olarak
artirmasini goz 6niinde bulundurmaliyiz. Bu tez calismasinda hata hesab1 yapmak i¢in,
bir matematik denklemi gelistirilmektedir. Onerilen yontem bit uzunlugu ile dogrusal
olarak artiyor ve hata hesap yapmak suresin biiyiik bir 6lciide azaltiliyor. Ote yandan,

Xxii

bu denklemi kullanarak degisik hatalar i¢in yaklasik toplayici iireten bir sentez metodu
onerilmektedir. Sistematik sentez teknigimiz hata hesaplamalar1 acgisindan oldukca
hizl1 ve ayn1 zamanda dogrudur. Ayrica alan degerleri, lojik sentezi araglarinda elde
edilenlerden ¢ok daha kiiciiktiir.

Onerilen tezde, yaklasik toplayici ile birlikte, iic asamadan olusan Wallace-Tree
carpanlarini da inceliyoruz. Carpicilar icin hem kismi birikiminde hem de nihai sonug
toplanmasinda yaklasik tam ve yari-toplayicilar oneriyoruz.

Tasarim stratejimiz, 1-bit toplayicilarin girdi atamalarinin ortaya ¢ikma ihtimallerine
dayanmaktadir yan1 daha diisiik olasiliklar1 olan girig atamalari i¢in daha yiiksek hata
oranlar1 belirleriz. Ornek olarak, iki girisi olan bir devreyi diisiiniin ve iki farkli
senaryoyu diisiiniin. Ik 6nce, her iki giris de 1 ve 0 degerini, 1/2 esit olasilikla alir.
Ikinci senaryoda, girisler 1/4 ve 3/4 olasiliklarla sirastyla 1 ve O degerini alir. Bu iki
senaryoda, belirli bir hata sinirlamasi i¢in alan optimizasyon tekniklerinin farkli olmasi
gerektigini yorumluyoruz. Her girdi atamasina karsilik gelen bir hata, ilk senaryo
icin toplam hataya esit sekilde katkida bulunurken, ikinci senaryo i¢in farklhidir. Bu
nedenle, 6rnegimizde 1/4 olasilikli girdi atamasina karsilik 3/4 olasilik icin olanlardan
daha hatali ¢ciktilara sahip oluyor. Bu da, girdilerin olasiligina dayanarak, Wallace-Tree
carpaninin yapi taslari olarak tam ve yarim toplayici sentezlememize neden olur.

Bu calismada oOnerdigimiz sentez teknigini, aymi hata kisitlamasim saglayarak,
literatiirdekilere kiyasla en kiiciik alam1 ve buna baghh olarak giic tiiketimini
sunmaktadir. Ayrica, sistematik sentez teknigimiz hata hesaplamalar1 agisindan
oldukca hizli ve hata hesaplamasi kesin dogrudur.

Bu tezde, her teknigin artilarim1 ve eksilerini elde etmek icin farkli sentez teknikleri
altinda yapay smnir aglart gerceklestirilmektedir. Paralel bir mimaride genis alan
gereksinimi nedeniyle, YSA’lar bu calismada, tekrarlanan ¢ogaltma biriktirme (CB)
bloklar ile gergeklestirilmektedir. Uygulama olarak MNIST ve pendigit veri tabanlari
deneyimlenmektedir. Verimliligi incelemek igin Onerilen yontemle YSA nin cesitli
mimarileri ve yapilari gerceklestirilmistir. Deneysel sonuglar, Onerilen yaklagik
carpicilar kullanilarak tasarlanan YSA’larin diger yaklasik carpicilara gore daha kiigiik
bir alana sahip ve daha az enerj tiikettigini gostermektedir.

Hem yaklasik toplayicilar ve hem de yaklasik carpicilar kullanarak dogru calisan
devreye gore, alanda ve enerji tiikketiminde sirasiyla50% ve 60% ’a varan azalma
sagladig1 gosterilmektedir.

Bu ¢alismanin sonunda YSA’dan esinlenerek, Konvoliisyon islemi gerceklestirilmek-
tedir. Onerilen yontemde, clocklama yontemini degistirerek sonuclar daha kisa
zamanda elde edinmektedir. Onerilen yontemin etkinligini degerlendirmek icin,
filtreler 3 x 3, 5 x 5 ve 7 x 7 boyutlarla denenmektedirler. Filtrelerin girigleri 28 x 28
piksel olarak MNIST datasetinden alinmaktadir. Deneysel sonuglara gore, Onerilen
metodu kullanarak bekleme suresinde 50% azalma ve gii¢ tiiketiminde 97% tasarruf
goriinmektedir.

XX1il

1. INTRODUCTION

In recent years, artificial neural networks (ANNSs) have achieved significant fame in
different research areas, including medical image processing [8], face detection [9],
and semantic segmentation [10]. Complementary, progression in graphics processing
units (GPUs) and central processing units (CPUs), cause calculate on the immense
hardware resources like clouds or supercomputers to become prevalent. However, for
portable devices, due to their limited memory, the number of processing units, and the
battery capacity, the realization of ANNs in these devices is impractical. Here, the

main concern for this work arises.

An investigation of ANNs complexity reduction within the literature shows that studies
are categorized in software level and hardware level commonly. Some valuable
studies provide a survey of topic progressing [11, 12]. At the software level, apart
from hardware consideration, the determination of ANNs structure during the training
process is intended to obtain a network with minimum parameters. On the other
hand, at the hardware level, distinct from the software side, different techniques are
employed for reducing the hardware cost of bulky ANNs. Consequently, training based
on devoted hardware, and applicable hardware modeling through the software, provide

helpful results to diminish ANNs complexity.

At the software level, [13] provides a theoretical analysis of quantization error. In this
study, by focusing on the derivation of finite precession error analysis techniques, the
minimum bit number for forward retrieving and back-propagation is calculated. Binary
weight network and XNOR networks are proposed in [14]. These two approximations
are exploited to realize the standard convolution neural networks. Logarithmic
computation concept is presented in [15, 16]. This encoding method enables ANNs
to eliminate bulky digital multipliers. Determining logarithmic values for weights
during the training process, aides to replacing of digital multipliers by shift operations
with acknowledging that the multiplicands are constant in power-two numbers. By

considering that ANNs consist of multiplication of different matrices, optimizing

the loops i1s another approach to accelerating network [17], where optimum sharing
of these partial terms in the multiple constant multiplications, reduces hardware
complexity [18, 19]. Beyond synthesis methods, other approaches like stochastic
and approximate neural networks are common in literature. Applying stochastic
computational units in neural networks results in error maintains within 10 percent
of floating-point implementation [20]. The accuracy of stochastic computation may
not be comparable with the conventional method but, low circuit area and power

consumption make this method favorable for hardware implementation.

At the hardware level, different field-programmable gate array (FPGA) and
application-specific integrated circuit (ASIC) circuits are investigated for accelerating
network. To overcome the problem of memory access in large ANNSs, a custom
multi-chip machine-learning architecture is introduced in [21]. A specialized chip
consists of a microcontroller, accelerator, and on-chip SRAM is introduced for
always-on subsystems of mobile/Internet of Things (IoT) devices in [22]. Also, apart
from customized chips, different hardware architectures by focusing on arithmetic
operations are exploited to hinder the bulky area problem of ANNs. ANNs realization
under multiplier accumulated units (MAC) is an approach to reduce hardware occupied

area and power consumption by considering an increase in delay.

According to MAC-based implementation, ANN hardware structure can classify into
two models: axonal-based [23] and dendritic-based [24] models. For axonalbased
model, every single input of layers is multiplied by related weights of all neurons
of the layer, and all outputs calculate simultaneously, as a result, for axonal-based
model obtaining all inputs at the same time is unnecessary. However, for accumulating
different multiplication results, extra memory is essential. On the other hand, in
dendritic-based model, the value of the next neuron is calculated by multiplying all
inputs with related neuron weights and accumulating them. This method results in the
sequential generation of outputs, and every step of calculation needs to obtain all inputs
to start. In [25], by combining these two architecture, parallel computing is enabled
in two successive layers to achieve smaller latency in the computing time of the whole

network.

Since the multiplier is a core block of MAC, they dominate calculation time, so

designing the multipliers has become an important consideration. Conventional

multipliers consist of an array of Full Adders (FA) to adding partial products and final
adders. Exploiting Wallace tree structure with different compressor leads to delay

reduction in multipliers.

Based on the error-tolerant inherency of neural networks, approximate neural networks
or ANNs with approximate blocks are a favorable approach to realize ANNs, where
the trade-off between hardware complexity and accuracy is explored through the
approximate level. Approximation for both computation and memory access is
investigated in [26], also, the impact of neurons on the output quality is determined
to approximate the computation and memory accesses of certain less critical neurons
to obtain the maximum efficiency under a given quality constraint. The exact adders
and multipliers in the MAC blocks are replaced by the approximate ones in [27]. The
exploitation of approximate units yields respectively up to 64% and 43% reduction
in energy and area of the ANN design for PENDIGIT data set with a slight decrease
in the hardware accuracy. An evaluation of a large pool of approximate multipliers
consist of 100 deliberately design, and 500 cartesian genetic programmings (CGP)
based multipliers in ANNSs, is accomplished in [28]. Also, to determine the critical
features of multipliers in ANNs, different error parameters efficacy is investigated.
According to this study, the CGP based multipliers introduced in [29] are better suited

for use in the investigated ANN.

Beyond the hardware architecture, there are different methods which are related to
ANNs based on the application, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs) and multilayer perceptrons (MLPs) based networks.
Since our utmost concern is energy efficiency, we focus on MLPs which provide better
energy scaling for applications implemented by energy-stringent stand alone devices

such as always-on sensors and ASIC chips that detect anomaly [22,30].

Each layer that comprises MLP has computation workload, which is composed of
relatively basic operations, i.e., multiplication, addition, and activation. As the network
is layered, arithmetic operations run in a pipeline (feed-forward) by axonal based
model, where inputs of one layer wait for the outputs of the previous layer. In this
thesis, ANNs are implemented using MAC blocks in two separate architectures to

investigate the area and latency trade-off. A single MAC is used to realize each neuron

computation in each layer in the first one, called (SMAC_NEURON), and a single
MAC is used to implement the entire ANN in the second one, called (SMAC_ANN).

Furthermore, we present an effective hardware implementation of ANNs using
approximate adders and multipliers in time-multiplexed architectures, taking into
account the ANN hardware accuracy. The exact adders and multipliers in the MAC
blocks and parallel units are replaced with approximate adders and multipliers to
form approximate ANNSs. Furthermore, we present an algorithm for determining the
approximate level of multipliers and adders, using the approximation level of blocks
to investigate the trade-off between hardware complexity and accuracy. In contrast to
the methods of [31] [29], the generation of an approximate multiplier and adder with
different bit-widths of inputs under the specified approximation level in this thesis
can be done in linear time. As shown in [26], by using approximate multipliers of
different approximation levels for the neuron computations at different layers, the ANN
hardware complexity can be greatly reduced. Our experiments show that ANNs with
the proposed approximate multiplier occupy less area and consume less energy than
the exact versions with only a slight loss in accuracy. It is also demonstrated that, by
using the proposed approximate adders, the ANN hardware complexity can be further

reduced.

The rest of this thesis is organized as follows. The approximate computing and the
proposed blocks are discussed in Chapter 2. ANNSs architecture is investigated in
Chapter3. The exploiting of the proposed approximate blocks in the ANNs, and the
algorithm to replace the approximate blocks with their exact versions are given in
Chapter4. Also, a new implementation method of convolutional layers are described

in Chapter5. finally, Chapter 6 concludes the thesis.

2. APPROXIMATE COMPUTING

2.1 Background and Preliminary Works

As Moore’s Law starts to lose its validity, not only the number of transistors on
a chip but more severely the chip’s power dissipation have reached a critical point
at which new circuit design techniques enabling low-power and low-area designs
are highly desired [32]. Approximate computing is a class of methods that relaxes
the necessity of exact equivalence between a computing system’s specification and
implementation. This relaxation provides an opportunity to save in design area, delay,
or power dissipation at cost of inaccuracy for the calculations. allows you to trade
numerical performance precision for design area, delay, or power dissipation savings.
Approximate computing is used to increase area, power, and energy efficiency in

applications that do not need high precision, such as image processing and learning.

Since these applications are dominated by arithmetic blocks, designing approximate
adders and multipliers are extensively investigated in the literature, especially in the
last decade [1, 2,4, 5, 29, 33-37]. The implementation of approximate arithmetic
blocks in logic and circuit level is also the subject of this research. Ripple-carry
adders and Wallace-tree multipliers are chosen for synthesis based on their area and
power efficiency among different adder and multiplier architectures, with the object of

minimizing circuit area while satisfying a given error restriction.

We see a common tendency in related studies on approximate ripple-carry adders to
assume that the more erroneous outputs (Sum and Carry) mean less accurate designs
[1-3]. It must be considered, Offsetting errors, or errors in separate outputs that
entirely or partly cancel each other, are not taken into account in this assumption.
Motivated by this, we start by designing 1-bit full adders with offsetting errors in Sum
and Carry. We illustrate how applying an error to output will improve accuracy and
reduce the area of inexact adders. Similarly, we construct the ripple-carry adder at

a higher level such that two consecutive estimated 1-bit full adders cannot generate

build-up errors, 1.e., errors in separate outputs are canceling each other. For example,
if a 1-bit adder generates an erroneous logic 1 output, which is supposed to be logic
0, we can guarantee that the output of the neighbor adder will be error-free or will

generate an error with a logic 0 output, which is expected to be logic 1.

Consider the example of adding two 2-bit (01), and (10); binary numbers in Figure 2.1
to illustrate superposition, offsetting, and build-up terminology. In this example, two
different approximate adders (approxA, approxB) are exploited to execute addition
operation, the truth-table of these adders for evaluated binary numbers also is given
in TBL.2.1. Consider that, however Sum and Cout results are inexact for the first
approximate adder, still error distance is 1 for given inputs, where superposition
between Sum and Carry cause to error distance be 1 for given inputs (011), yet Sum
and Carry both are inexact. The reason is incremation in Sum reliefs by decreasing
in Cout, this superposition assists to minimizing Sum and Cout simultaneously.
Furthermore according to approxA truth table, two consecutive approxA will not
accumulate each other errors, as shown in Figure 2.1 approxA first bit result for (010),
inputs is (10), (decimal 2), while exact result is (01), (decimal 1), i.e. lesser than
approximate result, correspondingly second adder inexact result for (101), inputs is
(01), (decimal 1) lesser than exact result (10), (decimal 2). As a result increment in
first adder compensate with decrements by second adder. In essence it is not possible
two successive approxA accumulate each other error (build up error). Contrarily
for 2-bit approxB adders, inexact results is lesser than exact result, therefore two
consecutive approxB adder make build-up error. approxA case shows, superposition

can violate for adders with different error profile.

Approximate ripple-carry adders are built in two ways in the literature: 1)implement
1-bit full adders in transistor level and then creating a ripple-carry adder; 2) using
synthesis tools to specifically implement a ripple-carry adder in logic level. For the first
approach, approximate 1-bit adders are usually derived from standard mirror adders
and XOR/XNOR based adders by eliminating transistors and/or replacing certain
portions of the adders with smaller circuitries [1-3, 33]. Error dependencies in terms
of offsetting and build-up errors are not taken into account in these experiments. It
must be mention that, first implementation method is non-systematic, relying heavily

on the designer’s intuition and experiences. In the second approach, the introduced

0

Decimal Decimal

Figure 2.1 : Ripple carry adder structure.

Table 2.1 : Truth table of sample approximate adders.

Inputs ApproxA ApproxB
A B Cin Cout Sum Cout Sum
0 1 O 0 1 0 0
1
1

0 1 0 1 0 1
0 0 1 0 0 0

tools are general-purpose tools, not strictly for ripple-carry adders [31, 38—43].
Furthermore, since determining near-optimal solutions takes far longer than traditional
non-approximate synthesis methods, these tools generally suffer from long runtimes.
For example, the method in [41] realizes a 32-bit ripple-carry adder with a 10% area
savings, while truncation and the proposed methods in this thesis yield 25% and 32%
area savings for the same worst-case error value, respectively. The run-time effects

would be much worse if an average error value was used.

Motivated by the restrictions of transistor and logic level approximation methods,
we suggest a systematic synthesis methodology based on a novel error measurement
process. Our synthesis method is ideal for adders because it is fast, precise, and
scalable. Furthermore, taking into account n-bit synthesis and the relationship between
approximate adders, we can achieve a series of adders with no build-up errors. This
function also helps in the formation of an n-bit adder with a different error profile in

order to achieve the minimum cost for the desired error metric.

Our proposed systematic synthesis technique is both fast and reliable in terms of error
calculation. For example, the synthesis of a 64-bit ripple carry adder takes less than
a second. Also, the design area produced by the proposed logic synthesis tools is less
when compared to the other methods. For example, given a 0.5% average error for a
32-bit adder, we achieve a 50% smaller area than [40], which can be considered the

best area-efficient method in the literature.

Along with ripple-carry adders, we investigate Wallace-tree multipliers, which have
three stages: partial product generation, partial product aggregation, and final result

addition.

To implement the approximate multiplier, we initially investigated the different
approximate multipliers in the literature to obtain the efficiency of different
approaches. The approximate 2 x 2 multiplier is implemented in [44] to produce partial
products and exact adders for the accumulation tree. A new approximate adder is
recommended for product aggregation in [37], where exact adders are used to restore
errors in the final results. Compressors are employed to speed up product accumulation
and lessen the tree size in [37,45]. Two approximate 4-2 compressors with four
different approximate multiplier are proposed in [4]. Also, a new multiplier by error
recovery is obtained by updating this compressor in [5]. Additionally, truncation and
rounding techniques are used in the least significant columns of partial products in
certain studies [46,47]. Also, bit-wise multipliers are proposed in [48, 49], where
detecting the leading one block saves area and power for desired error values. In [50],
a reconfiguration-oriented adder is suggested. Despite the fact that reconfigurable
circuits can be adjusted for various error values, they require additional control blocks,
which increases their size and power consumption. These experiments are not included
in this work, since we concentrate on reaching minimal area and power rather than

reconfigurability.

Unlike the previous studies, we consider using an approximate full-adder and
half-adder for both partial product accumulation and final result summation. The
probability of input assignments is the basis for our architecture strategy, where for
input assignments with lower probabilities we allocate higher error rates. As an
example, consider a circuit with two inputs in two separate schemes. Inputs take the
value of logic 1 and 0 with equivalent probabilities of 1/2 for the first one. In the second
case, all inputs have odds of 1/4 and 3/4 for logic 1 and 0, respectively. We suggest that
hardware cost optimization strategies for a given error constraint should be dissimilar
for these two scenarios. Although each error associated with each input assignment
contributes to the cumulative error in the first example, this is not the case for the
second one. As aresult, we have more erroneous outputs in our example corresponding

to input assignments with 1/4 probabilities compared to the input assignments with 3/4

probabilities. This leads us to implement full and half adders based on the likelihood
of inputs as the building blocks of the Wallace-tree multiplier. According to our
experiments, introduced synthesis technique, as compared to those in the literature,
provides the smallest area while meeting the same error restriction. Furthermore, our

systematic synthesis method is both fast and reliable in terms of error calculation.

2.2 Ripple-Carry Adder Design

There are two stages to our synthesis strategies, which are described in the following
two subsections. We begin by building a library of approximate 1-bit full adders with
various error rates. In the second stage, we use the obtained library to systematically
synthesize an n-bit ripple-carry adder from the least to the most significant bits; the

adder satisfies the specified error restriction while taking up the least amount of area.

2.2.1 1-bit full adder design

The binary inputs to a 1-bit full adder are A, B, and C(Carry or Cin), as well as Cout

and Sum comprises the output.

The estimated and actual decimal values of the output are denoted by y and y,
respectively. It’s worth noting that they’re in the decimal range [0 — 3|. We use total

absolute error distance (TAED) as an error metric:

7
TAED = Y | yi— | 2.1)
i=0

where i denotes the truth table’s ith input assignment. For example, if both Cout and
Sum are zero for all input assignments, this is truncation with zero circuit area cost,
and TAED = 12. However, we will show that TAED = 4 can achieve zero cost. TAED
=1, TAED = 2, and TAED = 3 are also used to build adders in this thesis.

The offsetting errors in Sum and Cout play key role in our designs, and are exploited
in our synthesis technique. Let’s take a look at two examples to help clarify the
offset concept, consider three separate approximate adders, each of which has an
incorrect output for a specific input assignment. The first adder has a 0—1 error
in Sum, so TAED = 1; the second adder has a 1—0 error in Cout, so TAED = 2;

and the third adder, which is the proposed one, has both of the errors, so TAED

= 1, because simultaneous 0—1 and 1—0 errors in Sum and Cout for the same input
assignment results in a change of 1 in TAED. Simultaneous error in Sum and Cout
means permission has been issued to alleviate the hardware cost of both Sum and Cout.

Consequently, the third approximate adder has a much smaller area than the other two.

Note that, error in Cout and Sum yields 2 and 1 change in TAED, respectively. On
the other hand, simultaneous 0—1 and 1— O errors occurring in Sum and Cout for the
same input assignments results in a change of 1 in TAED; we name this error as the
offsetting error. As a second example, consider the summing operation of 3;¢) and

10(10) by an exact adder (EXAD) is as follows.

0 0 1 1
+ 1 0 1 O
1 1 0 1

Assume the Sum and Cout results are complemented for the adder allocated to the
least significant bit. The first bit is computed using the approximate adder ApproxA,
while the remaining bits are computed using exact adders (EXADs). As aresult TAED

changes by one, and the error distance is one. The following diagram depicts this.

0—1
EXAD ~ APAD

0
1

0 11
0 1]0
1

1041

1

The suggested design approach’s key concept is to apply offsetting errors 0—1 and

1—0 to the same input assignments which their results in output bits are non-identical.

According to the truth-table of one-bit exact adder in Table 2.2, 6 of 8 inputs
combination have different Sum and Cout values that we will use in our approximation
technique. By considering these assignments and choosing the solutions providing the
lowest literal costs in sum-of-products (SOP) expressions, we present four separate
approximate adders APAD1, APAD2, APAD3, and APPAD4 with TAED values of 1,

2, 3, and 4, respectively.

10

Table 2.2 contains the proposed approximate adders in the form of truth tables. We’ll

go into each adder form in detail in the sections below.

Logic synthesis of APAD1, TAED = 1: Offsetting errors in both Sum and Cout for
one input assignment. There are (?) candidates for synthesis, and 2 of them have the

minimum literal cost.

Figure 2.2a shows one of them and the outputs’ literal expression is as follow.

Cout = B + ACin

Sum = ABCin + AB Cin + ABCin

With this solution, one of the prime implicants of Sum is eliminated. Moreover a

prime implicant group of Cout is expanded. It must be mention changing in 000 and

111 results, yields minimum saving of the literals.

Logic synthesis of APAD2, TAED = 2: Offsetting errors in both Sum and Cout for
two input assignments. There are (g) candidates for synthesis, and 3 of them have the

minimum literal cost.
Figure 2.2b shows one of them with following expressions.

Cout =A
Sum = AB + ACin + BCin

Logic synthesis of APAD3, TAED = 3: Since we reached a literal cost of 1 for Cout
in APAD2, no further O-1 transitions are preferred for Cout. However, for Sum we
use one more error. As a result, offsetting errors in both Sum and Cout for two input
assignments, and an error in Sum for one input assignment return TAED = 3. There

are (g) (‘1‘) candidates for synthesis, and 9 of them have the minimum literal cost.
Figure 2.2c shows one of them with following expressions.

Cout =A
Sum = ACin + B

Logic synthesis of APAD4, TAED = 4: Similar to APAD3 synthesis, we use
offsetting errors in both Sum and Cout for two input assignment. Additionally, we
apply errors in Sum for two input assignments, so TAED = 4. There are (3)(5)

candidates for synthesis, and 9 of them have the minimum literal cost.

11

Figure 2.2d shows one of them with following expressions for outputs.

Cout=A
Sum =B

Cout Sum
AB AB
00 01 11 10 00 01 11 10
w o W] o]
c1>0 0 |(1)] 0
Figure 2.2a : APADI.
Cout Sum
AB AB
00 01 11/ _ 77\10 00 01 11 10
| 0| 0 /1 01, | 0 /1) 0 150
ci) 0 120 1 | 1| | e 1 lesd 1)) 0
Figure 2.2b : APAD?2.
Cout Sum
AB AB
00 01 1/1 10 00 01 11 10
o 0| 0 |/1]e>1| | | 0|/1 =1 |10
cz1| 0 |10 \\1 1 // c=1 (E 1 0
Figure 2.2¢ : APAD3.
Cout Sum
AB AB
00 01 1 10 00 01 11 10
0| 0| O /1 e»} co| 0 f a 0
cc1| 0 |10 \\\1\9%/}/3 c1| >0 1] 1 0

Figure 2.2d : APAD4.

Figure 2.2 : Karnough Maps of APADs.

¢l

€ 0 L1 £l € 0 L1 £l € 0 L1 £l € 0 L1 £l 13 I I T 11
3 I+ XI £l 3 I+ XI £l [4 0 0 £l C 0 0 £l 4 0O T O0TTI
(4 0 0 £l 4 0 0 £l 4 0 0 £l C 0 0 £l 4 0O T T 01
4 I+ X0 XI 4 I+ X0 X1 (4 I+ X0 XI I 0 A1 10 I I 0 0O0TI
I I- XI X0 ! I- X1 X0 I I- XI X0 [0 0 £l 4 0O I T 10
[0 AT £0 [0O A1 /0 [0 AT £0 [I+ X0 XI I I 0 010
0 I- X0 £0 I 0O A1 £0 I 0 /1 A0 I 0 L1 L0 I I 0 1T 00
0 0 0 40 0 0 0 0 0 0 0 40 0 0 0 0 0 0O 0 000

[eWID9(J JOLIF WNS N0 [BWIII(J JOIF WNS N0 [BWIIQ(J JOIIF WNS N0 [BWIII(J JOIIF WnS N0 [BWIN(WnS o) ur) g v
Yavdyv cdvdVv «avdv 1avdv vd syndug

odAJ, 10ppV

‘s1oppe 11q-1 ewrxoidde pue 10eX9 JO S9[qe) YINi], : T°T dqeL

2.2.2 n-bit ripple-carry adder design

We composed the ripple-carry adder such that no build-up errors can occur when two
approximate 1-bit full adders are used in a sequence. For example, if a 1-bit adder
generates an erroneous logic 1 output, which should be logic 0, we should guarantee
that the output of the neighbor adder will be error-free or will generate an offsetting
error with a logic 0 output, which should be logic 1. The following lemma specifies

the conditions that must be met in order to avoid build-up errors.

Lemma 1. Consider a ripple-carry adder with various 1-bit approximate adders. If
and only if all of the following conditions are fulfilled, build-up errors in successive

adders will be eliminated.:

1. For all input assignments causing error, Cout = Cin;

2. For all input assignments causing a positive error that increases the expected

output, all corresponding Couts should be the same ; and

3. For all input assignments causing a negative error, decreasing the expected output,

all corresponding Couts should be the same.

Proof. The proof comes in the form of a contradiction. If a 1-bit adder has an
assignment that causes an error with Cout = Cin, so repeatedly using this adder will
result in build-up errors. A build-up error occurs when the second or third condition is
violated even the first is met. Finally, meeting these three criteria is enough to avoid

build-up errors. [

To illustrate this lemma, consider a 2-bit adder in which the least significant bit adder
is APAD4 and the second adder may be any of the proposed APADs . Let’s look at all
of the potential inputs and their inexact outcomes. Start with 001 as an APAD4 input,
which yields Os for both Cout and Sum. According to Table 2.2, this outcome is less
than the actual result, so we call it a negative error. We examine inputs with Cin = 0

for the second adder since Cout of APAD4 is Cin of the second adder.

According to Table 2.2 when Cin is 0, the generated results are exact results or positive

errors. 1.e if APAD4 generates negative error, it is impossible to have a positive error

14

for the second adder. Next, consider the other input 011 causing negative error; same
considerations are applicable for this case too. For positive error cases, inputs are 100
and 110; for both cases Cout value is 1. According to Table 2.2, if there is a positive

error, Cin is always 0. Therefore two consecutive positive error is impossible too.

To satisfy Lemma 1, we shrink our 1-bit approximate adder library. Initially, it consists
of 2 APAD1, 3 APAD2, 9 APAD3, and 9 APAD4, and it becomes 2 APAD1, 2 APAD?2,
2 APAD3, and 2 APAD4, all satisfying Lemma 1 with Cin = 0 for positive errors,
Cin = 1 for negative errors, and Cout = Cin. Note that for each APAD type, we have
two options with identical area and error performances. For simplicity we use the
adders given in Table 2.2, where all of proposed adders, satisfying Lemma 1 for all

experiments.

In our synthesis technique, starting from the least to the most significant bit, we benefit
the ordering of APAD4-APAD3-APAD2-APADI1-EXAD, where this array is justified

with the following lemma.

Lemma 2. Consider two successive 1-bit adders in a ripple-carry adder. To achieve
minimum area with a given error constraint, the one closer to the least significant bit
should have a larger or an equal TAED value compared to the one closer to the most

significant bit.

Proof. By contradiction, assume that the statement is wrong. By interchanging the
two adders, we achieve a smaller error with the same area. However, the minimum
area should have a negative correlation with the given error constraint. There is a

contradiction. O

To understanding this lemma consider two scenarios for 2-bit adder. In the first
scenario the least significant bit adder is APAD4 and the second bit adder is APADI.
In the second scenario the least significant bit adder is APAD1 and the second bit adder

is APAD4. Both cases hold same area, but the first scenario results in smaller error.

In our synthesis technique, we use average absolute error distance (AAED) that is
obtained with dividing TAED by the number of input assignments. For example
AAED values of APAD4, APAD3, APAD2, and APADI1 are 4/8, 3/8, 2/8, and 1/8,

respectively. We model AAED value and named it estimated average absolute error

15

distance (EAAED). For an n-bit ripple-carry adder:

n—1
EAAED = Y E2"! (2.2)
i=0

where E; represents the error contribution of the ith 1-bit adder from the least

significant bit.

E = P(i—1:a,i:b)|0.5a+b| (2.3)

ac{-1,0,1} be{-1,1}

SN

where a and b represent the error values of the (i — 1)th and ith 1-bit adders,
respectively. Since, Equation 2.2.2 gives the error contribution of the ith adder,
b = 0 case, no error in the ith adder, is excluded. In the equation, P represents
a probability that the (i — 1)th and ith adders have errors of a and b, respectively.
The constant factor 2/3 is the ratio of the error contribution of the ith adder (X)
to the total error contribution of the ith and the (i — 1)th adders (0.5X +X). In
a similar fashion, | 0.5a + b | represents the total error distance caused by the the
(i — 1)th and the ith adders. In calculating P’s we use conditional probability such
that P(i—1:a,i:b) =P(i—1:a)P(i: b|i—1:a). The following example elucidates

our calculation steps of E; given in Equation 2.2.2.

Example 1. Calculate E; if the (i — 1)th and the ith adders are both APADA.

Table 2.3 gives the calculations by using the truth table of APAD4, previously given in
Table 2.2. There are six cases in Table 2.3 corresponding to six rows in the table for
different assignments of a and b. For the first and the sixth cases P’s are zero, since
two successive positive error or negative error is impossible. For the second case,
P(i—1:—1)=2/8 since APAD4 has 2 input assignments causing —1 error among 8
total assignments. Additionally, P(i: +1|i—1:—1)=2/4 since —1 error causes Cout
= 0 for the (i — 1)th adder, so the ith adder’s C is logic 0 and it has 2 input assignments
causing +1 error among 4 total assignments with C = 0. A similar justification can be
done for the fifth case. For the third and the fourth cases, P(i — 1 : 0) = 4/8 and since
a=0,P@i:b|i—1:0)=P(i:b)=2/8.

16

Table 2.3 : Calculation of E; for example 1.

a b P=Pl-1l:a)xP(i:bli—1:a) |05a+b| Ypef_11

Sy 2/8%0 3/2 0
1 +1 2/8x2/4 1/2 1/16
0 —1 4/8x2/8] 2/16
0 +1 4/8x2/8 1 2/16
1 -1 2/8x2/4 172 1/16
1 +1 2/8 %0 3/2 0

%Zae{,l’ol/l}zbg{,l’l}P(i— 1:a,i:b)|0.5a+b|=4/16

Table 2.4 : Values of E;’s for different APAD combinations.

; i=1 APADI APAD2 APAD3 APAD4
APADI 2.66/32 X X X
APAD2 233/32 4.66/32 X X

APAD3 233/32 433/32 6.66/32 X
APAD4 2/32 4/32 632 8/32

Table 2.4 gives E; values for all different combinations of APAD’s as the (i — 1)th and
the ith adders with satisfying Lemma 2. Since C = 0 for the ripple-carry first adder,
we can obtain E; as 2/4 for APAD4 and APAD3, and 1/4 for APAD2 and APADI1 by
using the truth tables in Table 2.2.

Example 2. Calculate EAAED of an 8-bit ripple-carry adder having
APAD4-APAD4-APAD4-APAD4-APAD2-APAD1-EXAD-EXAD 1-bit adders ordered

from the least to the most significant bit.

With E; = 2/4, and using Table 2.4: EAAED = 220+ & (2! 422 4-23) + 2% +
23355 _

%527 =8.33.

Constructed on Lemma 2 and the proposed error calculation method summarized in

Table 2.4, our synthesis technique consists of the following 5 steps.

1. Start with an exact ripple-carry adder consisting of EXAD’s.

2. From the least to the most significant bit, replace EXAD’s with APAD4’s until the

calculated error value is larger than the given target error value.

3. Repeat the second step for APAD3, APAD2, and APADI instead of APADA4,

respectively, replacing the unchanged EXAD’s. Save the solution.

17

Stepl: Stepd:
[Array [EAAED |

EXAD-EXAD-EXAD-EXA D-A%ES-APABAE-APADA}-APADél—

| EXAD-EXAD-EXAD-EXAD-EXAD-EXAD-EXAD-EXAD | 0 | EXAD ApaD3,2,1
x EXAD-EXAD-EXAD-APAD3
x EXAD-EXAD-EXAD-APAD2 |_ apap3]
‘ Step2: x EXAD-EXAD-EXAD-APAD1
| EXAD-EXAD-EXAD-EXAD-EXAD-APAD4-APAD4-APAD4

Array i EA;AE/D i v EXAD-EXAD-EXAD-EXAD

x EXAD-EXAD-EXAD-APAD1 = APAD3-APAD4-APAD4
v EXAD-EXAD-EXAD-EXAD

v - - -
\ Array EAAED | ¥ EXAD-EXAD-EXAD APAM} APAD1
[EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4 | 3.5 | % v EXAD-EXAD-EXAD-EXAD J

x EXAD-EXAD-EXAD-APAD2 |
APAD2

x EXAD-EXAD-EXAD-APAD2
APAD2

Step3:

v' v EXAD-EXAD-EXAD-APAD1

StepS: v EXAD-EXAD-EXAD-EXAD I APAD2-APAD4-APAD4
Array Cost x v EXAD-EXAD-EXAD-APAD1 } APADL
EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4 | 188 |v/ « v EXAD-EXAD-EXAD-EXAD]
EXAD-EXAD-EXAD-APAD1-APAD1-APAD3-APAD4-APAD4 | 208
EXAD-EXAD-EXAD-APAD1-APAD2-APAD2-APAD4-APAD4 | 204 ¥ ¥ EXAD-EXAD-EXAD-APAD1 } APADl]» APAD1-APAD4-APAD4
x v EXAD-EXAD-EXAD-EXAD

Figure 2.3 : Demonstration of steps for example 3.

4. Replace all APAD3’s, APAD2’s, and APAD1’s with EXAD’s in Step 3; replace the
last APAD4 (most significant one) respectively with APAD3, APAD2, and APADI;
apply the second step with APAD3, APAD2 and APADI instead of APAD4. Save

solutions.

5. Using area costs of APAD4, APAD3, APAD2, APADI1, and EXAD, select the best

solution with minimum area cost.

Note that due to the essence of the proposed method, without using any error detection
block that causes area overhead, build-up errors are fully eliminated. To elucidate our

synthesis technique, we present an example.

Example 3. With a given target AAED = 3.9, synthesize an approximate 8-bit
ripple-carry adder. Suppose that the 1-bit adders are implemented with a generic
library consisting of NAND?2 gates (4 transistors) and inverters (2 transistors); APAD4,
APAD3, APAD2, APADI, and EXAD has transistor costs of 0,12,20,32, and 44,

respectively.

Steps are shown in Figure 2.3. In Step 4 check-marks are for satisfying given error

and Lemma 2.

By examining our methodology, the importance of the second and third steps was
shown. The fourth stage involves going backward to check more candidates for the
minimum area. We have three solutions in the fifth stage, and the one with the smallest
area cost wins. Our tests show that the first answer is usually the best. Different area
costs of 1-bit adders, on the other hand, will alter this. For example, suppose the

area costs for EXAD, APADI1, APAD2, APAD3, and APAD4 are 70,45,20, 10, and 0,

18

respectively. Table 2.5 compares our synthesis technique with the exhaustive search

technique for different AAED’s.

Table 2.5 gives the order of approximate adders in the 8-bit ripple carry adder for
different AAED values. The desired error is an upper limit for the error value.
The exhaustive search is carried out by examining all approximate and exact adder
combinations that match Lemma 2. Also, for exhaustive search the exact AAED values
by evaluating all possible input combinations are calculated. On the other hand, the
proposed method calculates the AAED value by the introduced equation . The results
indicate the efficiency of the proposed method in terms of the run-time. Furthermore,
estimated AAED values are almost identical to exact AAED values. There are some
deviations, but this is to be expected because our calculation technique only considers
the target adder and the previous adder when applying conditional probability to adder
pairs. All of the previous adders should be considered in a fully precise calculation.

This type of calculation, however, would result in impractical run times.

It’s worth noting that different technologies may result in different APAD area sizes.
Our synthesis algorithm, on the other hand, is unaffected by technology and always

finds near-optimal area solutions.

In Table 2.5, run-times for the proposed and exhaustive search methods are listed.
It should be noted that, thanks to the proposed simple error calculation technique,
the proposed synthesis method is both fast and accurate enough when compared to
other logic synthesis tools, which are typically based on try and check and suffer from
run-time problems as bit length increases. In contrast, any bit number can be used in

the proposed synthesis method without restriction in run-time.

19

0¢

y0I < 79 vy v v v v v ¥ ¥ €0 ¥9 v v v v v v v ¥ 79
y0I < 14 v v v v v v ¥ T 9I0 87 v v v v v v v C 14
HOI< 65LT v v v ¥ v T I A LIOC 991 v v v ¥ ¥ T 1 Hd 81
HOI< SCI'L v v v ¥ € 4 4 9 0 L v v v v € d 9 d S'L
HOI< 9%y ¥ ¥ ¥ ¢ I 4 4 d 9100 91y ¥ ¥ ¥ ¢ I 4 d H Sy
HOI< G8C v ¥ ¢ ¢ 4 d d d ¢ €97 v ¥ ¢ ¢ 4 d d d 6C
H0I< ¢l v ¥ ¢ d 4 d d d 0 Sl v ¥ ¢ d d d d Hd ¢l
Q%WH advy Aired-orddry o%wr dqvv Aired-orddry 1OHd
hla)a | 18 paxso
[oIeaS QATISNBYXH POYISIN pasodoig

"JOIBas dANSNEYXa pue anbruyda) sisayiuAs pasodoid oy Yim sIappe 11q-§ JO SISQYIUAS : §°T dqeL

2.3 Approximate Multiplier Design

Wallace-tree multipliers are implemented in three stages using 1-bit full adders, 1-bit
half adders, and AND gates. For 4-bit inputs, this is shown in Figure 2.4 . The
multiplier inputs a0, al, a2, a3 and b0, b1, b2, b3 are ANDed in the first stage. The

AND gates’ outputs are then fed into 1-bit adders.

The multiplier inputs take logic 1 and O values with equal probabilities of 1/2, the
adder inputs take logic 1 and O values with 1/4 and 3/4 probabilities, respectively. As
a result of this, we prefer erroneous outputs with 1/4 probability corresponding to the
input assignments, and we develop full and half adders based on the inputs’ occurrence
probabilities. As a result, we never use the APADs, which were previously used for

the synthesis of ripple-carry adders.

Another motivation for designing 1-bit adders is to achieve Cout = 0, which either
converts the preceding full adder to a half adder or rules out the preceding half adder
without sacrificing accuracy, i.e., obtaining 0 at the Cour eliminates a input of next
stages. As a result, we are not using approximate full adders in the second and third

stages; instead, we use approximate half adders.

We have two steps for the synthesis of an approximate multiplier. We start by building
a library of approximate 1-bit full and half adders. In the second step, we use the library
to systematically synthesize an n-bit Wallace-tree multiplier from the least to the most
significant bits; the multiplier satisfies the given error constraint while taking up the
smallest amount of space. These two steps are explained in detail in the following two

subsections.

2.3.1 Design of 1-bit approximate full adder (APFA) and half adder (APHA)

Logic synthesis of APFA, TAED = 1.375:

We design a novel approximate full adder to implement in the first stage of the
Wallace tree multiplier and called it APFA. We have two considerations for our design

approach; obtain error by minimum probability and set the Cout value to 0.

21

Table 2.6 shows the truth table of the proposed approximate adder APFA. The
offsetting error is applied to inputs by minimum occurrence probability. Also to set
the Cout value to 0, an error in the last assignment is applied. The outputs’ expressions

are as follows.

Cout =0
Sum =A + B + Cin
Also the adder’s TAED value is given by:

TAED =

7
8| yi—yil|P (2.4)

i=0

where P; denotes the probability of the ith input assignment occurring. The TAED

value for APFA is calculated as follow.

TAED = 8(3/64 4 3/64 +3/64+2/64) = 1.375

Logic synthesis of APHA, TAED = 0.25, 1.34, 0.58:

The half adders are commonly exploited in the wallace-tree architecture. Table 2.7
shows our proposed approximate half adder’s truth table. The design strategies are
same as the full adder’s method. For the last input assignment, with a probability
of 1/16, we use offsetting errors in both Sum and Cout. The following expressions

demonstrate the output of proposed approximate half adder.

Cout =0
Sum=A + B

Also, the TAED value of an half adder is determined as follows:

TAED =

4
4|yi—yi| P (2.5)

i=1
where P, is the possibility that the ith input assignment will occur. APHAs are used
in all stages, unlike APFAs, which are only used in the first stage. As a result, as
shown in Table 2.7, different P, values exist for three distinct cases. Case 1 is exploited
in first stage. When APHA’s A and B inputs are connected to APFA’s Sum, Case 2

will employ. Also, when APHA’s input A is connected to an AND gate’s output and
APHA’s input B is connected to an APFA Sum, the Case 3 will employ.

22

agho | [a200| [ashg| aghy
a1 | |ahy| aiby| | aghy

aghy |ada| [auby| |aghy| W2
agbs ahy |aibs| - =
5-1 Stagel

a3b3 a3b2 S5-1 S4-1 S31 So1 aObO
abs| [Ca1| |aobs| | Coa
Cs1 = C3g

6-1 4-2 Stage2

agha| | Se1| | Ss2|| Ca2| Sz Se1 @b
Cs-2 Cs2| | Ca2 || S42
1 Cs3| | Cas| [43
6-2 5-3

Stage3
C71 Sia S6-2 S5-3 S43 S3-2 S21 agbg

Figure 2.4 : 4x4 bit exact wallace-tree multiplier.

Table 2.6 : Truth table of the proposed approximate full Adder APFA.

Adder Type Error

EXAD APFA
A B Cin Sum Cout Sum Cout

Inputs

Error Probabiility

000 0 0 O/ 0/ 0 3/4x3/4x3/4=27/64
00 1 I 0 I/ O/ 0 3/4x3/4x1/4=9/64
01 0 I 0 I/ O/ 0 3/4x1/4x3/4=9/64
01 1 0 1 1X 0X -1 3/4x1/4x1/4=3/64
100 I 0 1/ 0/ 0 1/4x3/4x3/4=9/64
101 0 1 1X 0X -1 1/4x3/4x1/4=3/64
110 0 1 1X 0X -1 1/4x1/4x3/4=3/64
11 1 1 1 1/ 0X 2 1/4x1/4x1/4=1/64

By considering Table 2.7, TAED values of 0.25, 1.34, and 0.58 have been determined
for Cases 1, 2, and 3.

The obtained full adders and half adders will be employed as the building blocks of the
approximate multipliers. The choices between different adders provide ease of mind
for designers to pick up among different adders based on the application and expected

€Irors.

23

vC

9GT/LE=¥9/LEX¥/T 960v/69€1 =+9/LEX¥9/LE 9I/1=%/1X¥/T 1- X0 XI 1 0 1 1
9ST/LT=¥9/LTX¥/T 960¥/666 =¥9/LE X ¥9/LT 9T/€=¥/€x¥/T O L0 A1 O T 0O 1
9ST/T1T =¥9/LE X ¥/€ 960¥/666 = 19/LEX¥9/LT 91/€=v/1x¥/€ 0 L0 A1 0 1 1 0
96T/18 =1¥9/LT X ¥/€ 960v/6TL=1¥9/LT*¥9/LT 91/6=¥/EX¥/€ O L0 L0 O O 0O O
(¢-798®18) gase) (€-798m18) zaseD (198e1S) 195D tourg o wng jmopwnS g Vv
Aipiqeqoig VHdV avxd
sindug
Ioxrg odAL, 19ppY

"VHJV Joppe Jrey aewrxoidde pasodoid ayy jo o[qe) yini, : £°7 dqeL

2.3.2 n-bit wallace-tree multiplier design

The multiplier synthesis technique is convenient to use than the ripple-carry adder,
also, the error calculation method is effectively accurate. Restricted exploitation of
APFA and APHA yields only negative errors and allowing us to calculate the exact
error value by summing the errors. Furthermore, using APFA or APHA reduces the
number of inputs of the proceeding adder by one, so only two consecutive approximate

adders can be employed.

We exploit the AAED as an error metric for the synthesis of approximate multipliers.
This value is obtained by dividing the TAED value by the number of input assignments.
For example, the AAED of APFA is 1.375/8.

Regarding input probability and negative error inherent of APFA and APHA, the n-bit

multiplier AAED value is formulated as below.

AAED =Y Y AAED;_ ;2" (2.6)
i
where AAED;_; represents the error contribution of the adder in the ith column and

the jth row of the Wallace-tree structure. Check that the multiplier in Figure 2.4 has 7

columns and 3 rows.

Our synthesis technique consists of the following 5 steps:

1. Start with an exact Wallace-tree multiplier.

2. Replace an exact adder having the smallest column and row numbers (column

numbers are more significant) with an approximate adder. Calculate AAED.

3. Update the multiplier structure without loss of accuracy by converting full adders

to half adders and/or ruling out half adders.

4. Repeat the second and the third steps until the calculated error value AAED is larger

than the given target error value and store result.

5. Obtain the area cost of the multiplier by using the area costs AND gates, exact

adders, and approximate adders.

25

To elucidate our synthesis technique, we present an example.

Example 4. With a given target AAED = 1, synthesize an approximate 4-bitx4-bit
Wallace-tree multiplier. Suppose that the circuits are implemented with a generic
library consisting of NAND?2 gates (4 transistors) and inverters (2 transistors); AND2
gate, APHA, APFA, exact half adder, and exact full adder has transistor costs of
6,8,16,14, and 44, respectively.

In the first step, we have an exact multiplier having 6 full adders, 6 half adders, and 16

AND?2 gates as shown in Figure 2.4.

In the second step, we start with the half adder in the place 2-1, to be replaced by
APHA (AAED,_| =0.25/4).

In the third step, we first rule out the half adder in 3-2 since cy_; = 0, the half adder
in 3-2 becomes s3_; that also makes c3_5 = 0. Similarly, the half adder in 4-3 is ruled

out.

In the fourth step since AAED is smaller than the target error rate, we repeat the second
and third steps. We replace the full adder in 3-1 with APFA (AAED3_ | = 1.375/8)
that converts the full adder in 4-2 to an half adder. The total error is given by AAED
= (0.25/4)2! +(1.375/8)2% = 0.8125. Since the next approximation in 4-1 would

make AAED exceed the target error of 1, we stop here.

In the last step, since the final multiplier structure has 4 exact full adders, 3 exact half
adders, 1 APFA, 1 APHA, and 16 AND2 gates, we achieve the total area cost of 338
(24% area saving).

2.4 Experimental Results

In the three subsections that follow, we evaluate the proposed adders and multipliers.
Initially, we compare the proposed adders and multipliers’ area, delay, power, and
energy performances with those of prominent studies in the literature for the same
AAED values. The image processing applications of mean filter and bit-wise
multiplication operations are performed with PSNR and area saving values are reported
in the second subsection. In the third subsection, an artificial neural network is used

to perform a learning application that demonstrates the trade-off between area saving

26

and misclassification rate. All of the circuits are implemented in the same environment

using the Cadence Genus tool with TSMC 0 18um CMOS technology.

2.4.1 Area, power, delay, and energy versus average error

The hardware costs of the proposed 1-bit adder and other well-known adders in
literature are given in Table 2.8. While XOR/XNOR based adders from [3] and
mirror-based adders from [1] are synthesized at the transistor level, the rest of
the adders including the introduced adders, are implemented under logic synthesis
algorithms using standard gate libraries. We consider the best adders in terms of

hardware cost among many different 1-bit adders in the literature for comparison.

Also, we considered the capability of running a consecutive blocks for investigated
adders. For example, due to stability problems, the INAXA1 is not considered in this
study. Only AMAZ3 is chosen for comparison among the adders in [1], because it
performs much better than the other AMAs. The proposed APAD4 is also the same
as AMAS, but the design methodology of AMAs and our method are completely
different. It’s worth noting that the occupied area and dissipated power for APAD4
and AMAS are zero.

All of the proposed APADs in Table 2.8 are derived from an exact adder using the
synthesis method described above. Because mirror and XOR/XNOR based exact
adders are built at the transistor level with low power consideration, their area
and power are inevitably smaller than those of a standard logic-level exact adder.
According to this table, the proposed APADs perform better in most cases for the
same TAED values.

To evaluate the efficiency of the proposed synthesis technique the proposed 8-bit
ripple-carry adders hardware specifications are compared with different methods in the
literature, and the results are given in Table 2.9. According to this table, for different
AAED values, results for design area, dissipated power, delay time, and power-delay

product (PDPg) are given.

Note that, to obtain the AAED value, we considered all combinations for the inputs
(256 x 256). AMA3 and INAXA3 represent the performance of the transistor-level

method; these adders were chosen based on the results for one-bit adders in Table 2.8.

27

Among the logic-synthesis approximation methods, the Evoapprox adders in [29]
were chosen because the library generated in this study covers all competitive adders.
Among the various adders introduced in [29], we chose adders that save the most
area for a given AAED value. The results in Table 2.9 show that the proposed and
Evoapprox adders come out on top, but the introduced adders in [29] are limited to
8-bit due to a long run-time problem. Our proposed adders are generally the best in
terms of area; the adders are comparable in terms of the other specifications. It should
be noted these findings imply that transistor-level synthesis methods are inefficient for

multi-bit adder.

A similar analysis was done in Table 2.10 for the proposed multipliers compared to
other Wallace-tree multipliers. Note that for the exact multipliers, compressor-based
multipliers [4, 5] generally occupies less area when compared to the adder-based

multipliers [29].

Based on our employed technology for synthesis of the exact version of these
multipliers, the design area for [4,5] and [29] are 7348 /.Lm2 and 8097 /.Lmz, respectively.
Due to the essence of the compressor-based multiplier, for the small values of error, the
approximation procedure is not applicable, and hardware costs of their exact version
are given instead in Table 2.10. According to Table 2.10, the proposed multipliers

almost always hold the smallest design area and delay time among investigated studies.

28

6¢

14 9801 8601 LIL LY6 79 [ec] SASVId
1% 0081 90°¢l £el 6201 SOI [S] Surare)
1% 0081 cel 6CC 0L6 S0l [16 ‘6€] #1307
4 09¢1 |4} 16¢ LS6 v8 [16 ‘6] To1307]
I 0ere 8981 Ly 0501 G¢el [16 ‘6€] 191307
€ 919 el 06¢ 00¢1 8S [1] EVINV
0 0891 LTY1 1€¢C 8IL 691 [1] 91BNV ANV
4 CLL % £s¢e 008¢ 14 [€] TVXNI
(4 619 85S¢ eel 0056 144 [€] EVXNI
0 08¢l <09 123! 0096 €S [€] 10BXgXV
€ 06 I'C 9¢¢C €81 cs edvdVv
(4 0901 €9°C 80¢ 0ccC VL <advdVv
I 0LY1 vyl 8§ §S6 871 1davdv
0 ce6C 8611 143 0801 871 19ppV 19Xy
mn smd mnl sd L
davl IoMOd 9SBI 1SIOM A319uH 98eIoAY IoMO(93eIoAY Kepoq BAIY odAL, 19ppVY
SINSY

"S)[NSaI IppPe -] : §'T IYBL

0¢

v'C SLCT L8T OLE 9T 8PIT 1¢C 6ty 8¥% €OVl Ive TLS 99 LSO9T 00F 6¥9 €0l CTI6l CTvS +e8 pasodoiq
6'S 691 o6bc 98S 88 6¥V6l €SP BIL 88 6v6l €Sy 8IL €CI $OCC 098 0S8 9°CT 6SvC Le9 (86 uoneounty
ST 99ST 191 T6E ¥'€ 9ELl ¥61 8S¥ + 8PIT LSE 809 19 #691 €9¢ 0£9 €6 LS9T 19S5 0S8 [67] xorddeoaq
LTI 08Y€ 99€ GCI9 TPWI 99I€ 8vy 669 671 €S8C €TS +8L 611 €S8T €IS ¥8L SI 6£ST +v6S 698 [€] EVXVNI
V'L TLYT €0€ 8SS L6 89¢C TI¥ TS9 €11 €92C 00S 9vL €11 €9TC 00S 9¥L ¥'€l L9IT TT9 ST6 [1] VIV
| s | an | oo sl | mn | oo | sl | oan |l oo | sl | s ot | oo | osle | s |
ddd | Ke1o |1omod [va1y | d(7d | Ae[o | 1omod |ealy | Jdd | Ae[o(| 19mod | a1y | Jdd | Ae[o | 1omod [Baly | J(d | Ae[o(| 1omo] [eary

odA], 1oppVv

L 99 €€ T SLO
dagvyv

"S)[NS3I IPPE 11G-§ ¢ 6°T IIYBL

Ie

91¢

9%%

096¢ T9LS TST 9CLS OIyy S8¥9 0LT

€LSS

858Y 6569 98¢

6CLS

¢66v 0STL C0¢

8C9¢

vLES TCLL posodoig

0¢¢

0LES

10€y TCC9 C8C LIY9 86EV CCOL OPe

09L9

6C0S 8EEL L6C

6CSS

£€9¢S 6V9L 9ve

6919

6CES 9008 uonesunlty,

6C¢

0ST8

0v0F T0LS LSY ¥ESOI CTrey 8619 St

6688

€S1S L6CL 0TS

(4443

CCSS LBLL 96¥

916

TS TT6L l67] xoxddeoay

LCE

0869

089% 169 6vc OSIL L38Y ¥60L £¥E

0689

9L6Y LYIL eve

0689

9L6Y LVIL ¥T¢

$9L9

L6LY 8vEL [S] Ooyuin

89¢

660L

OLLE €1€9 ST€ OCTIL Tebvy 68L9 vIE

1S0L

09v¥ 1889 e

060L

098y v¥CL viE

S9L9

L6LY 8¥EL [¥] T-TUSWON

86¢C

¢S0L

ey 6¥89 TEe vLEL YOS S90L vee

8VIL

899v 8VIL LvE

6¢IL

IL8Y STCTL vC¢

S9L9

L6LY SYEL [¥] 1-TUSWON

[v

ddd

sl
Kepoq

mn || oo | sl | mn | oun| oo
I9MO0d 81V | J(dd | Koo |[1omod [ea1y | ddd

sl
Keroq

mnl | unf| o
I0Mod |eary |ddd

sl

Aeroq

I0MO(

mnl || o
BV |ddd

sl
Kepoq

mn %:3.
I0MOJ|eary

0¢

0¢

01

S

0 odAL, rordnn

dadvyv

‘s)nsax sondnnw 1g-g x1Ng-8 : O1°7 A9EL

2.4.2 Image processing: peak signal to noise ratio (PSNR) versus area saving

In order to obtain adders and multipliers performance within an application, mean filter
and bitwise multiplication are employed in this section. For the identical area saving
value, images’ PSNR values are considered as a performance metric in Figure 2.5 and

Figure 2.6.

For the mean filter application, a gaussian noise with a mean zero of 0.008 is injected
into a reference image. Then, the mean filter via different approximate adders is

exploited to smooth the noisy image, and results are shown in Figure2.5.

All the employed approximate ripple carry adder are 8-bit, and save saves 75 % of
design area compared with the exact version. For some of the approximate adders, 75%
of the area is not achievable, so the maximum possible area save value is considered
for them. According to the results, the proposed method posses maximum PSNR value

among investigated adders.

Bit-wise multiplication is employed to evaluate the efficiency of investigated
approximate multipliers. The size of multipliers is 8-bitx8-bit. Also, the area save
value is 40%, if this value is not achievable, the maximum possible value is considered.
The results are shown in Figure 2.6, according to this result, the proposed multiplier

obtains maximum performance between investigated cases.

2.4.3 Neural network: misclassification rate versus area saving

As a second application, we realized ANNs by exploiting approximate blocks. The
pen-digit handwritten digit recognition problem [54] is considered to speculate the
input pattern by trained networks. Pen-digit has 16 values as inputs, and the output is

a number between 0 to 9, where generally models by 10 output neuron.

Our designed ANN structure is 16-100-10, the inputs are unnormalized, where the
adder and multiplier input’s bit-widths are 12 and 8, respectively. The area is calculated
as gates number in this section, and for different area save values, the misclassification
rate is given in Table2.11. The employed multipliers and adders are selected by

considering their performance in Table 2.9 and Table 2.10.

32

AX1 [2]. Figure 2.5¢ : INAX [3].

Figure 2.5d : Trunct. Figure 2.5e : Exact. Figure 2.5f : Proposed.

Figure 2.5 : Mean filter results with approximate 8-Bit adders. Area saves are a)73%
b)50% ¢)53% d)75% ¢)0% £)75%. PSNR values are a)14.22dB
b)6.05dB c)14.22dB d)19.12dB e)NA £)37.61dB.

Figure 2.6d : Trunct. Figure 2.6e : Exact. Figure 2.6f : Proposed.

Figure 2.6 : Results for blending of two images by approximate 8-Bitx 8-Bit
multipliers. Area saves are a)32% b)40% c)32% d)40% ¢)0%)40%.
PSNR values are a)13.86dB b)13.86dB ¢)16.51dB d)15.10dB e)NA
£)37.12dB.

33

Table 2.11 : Neural network misclassification rates for different area savings.

Multiplier Adder Area Saving
Type Type 5% 13% 25% 34% 41%
Truncation Truncation 3.03 3.0303 4.54 1845 58.119
Evoapprox [29] AMA3[1] 3.0017 3.259 3.259 3.5163 13.52
Proposed Proposed 2.9445 3.0017 3.0303 3.6 3.6021

34

3. ANN HARDWARE REALIZATION

3.1 Introduction

Recent years have seen a tremendous interest in artifical neural networks (ANNs), their
successful applications in a wide range of problems, including image recognition [8]
and face detection [9], their promising development on graphical processing units
(GPUs) [55], and their efficient hardware implementations on different design
platforms, such as analog, digital, hybrid very large scale integrated circuits (VLSI),

and field programmable gate-arrays (FPGAs) [56].

An ANN is a computing system built up by a number of simple and highly
interconnected processing elements [57]. As shown in Figure 3.1, its fundamental
unit, called neuron, sums the multiplication of weights by input variables, adds the bias
value to this summation, and propagates this result to the activation function. While the
bias value has the effect of increasing or decreasing the input of the activation function,
the activation function limits the amplitude of the neuron output [58]. Mathematically,

the neuron behavior can be defined as following.

y= Zn:Wixi 3.1
i=1
z=0(y+b) (3.2)

Where (n) denotes the number of input variables and weights. On the other hand,
Figure 3.2 presents an ANN design including hidden and output layers where each

circle denotes a neuron.

Observe from Figure 3.2 that the hardware complexity of an ANN depends heavily
on weight and bias values and is dominated by a large number of multiplications
of constant weights by input variables. Over the years, many algorithms and
design architectures have been introduced to reduce the hardware complexity of

ANNGs [15,19,25,59-63].

35

Bias

Weights Activa?ion
Inputs Function
w
11 D_W; y @) Output
| 2w i
Xy B——f
Whn

Figure 3.1 : Artificial neuron.

In this thesis, we explore the hardware complexity of ANNs under the parallel
and time-multiplexed architectures. Note that a time-multiplexed design, where
computations are realized at a time, re-using the computing resources, is preferred
to a parallel design in applications with a strict area requirement. However, since the
time-multiplexed design needs multiple clock cycles to obtain the final result, it has
a higher latency and energy consumption with respect to the parallel design [64]. To
further explore the area versus latency and energy consumption trade-off, in this study,
we consider two time-multiplexed architectures. Furthermore, since floating-point
multiplication and addition operations take up more area and energy than their integer
equivalent [65], the floating-point weight and bias values observed through the training

phase are transferred to integers.

Since the sizes of integer weight and bias values have a direct impact on the hardware
complexity, we introduce a technique that can find the minimum quantization value,

sacrificing a little loss in the hardware accuracy.

Also, for each design architecture, we propose an algorithm that can tune the weight
and bias values such that the hardware complexity is reduced avoiding a loss in the
hardware accuracy. Furthermore, since the ANN design includes a large number
of multiplications of constant weights by input variables and these weights are
determined beforehand, these constant multiplications are realized under the shift-adds
architecture using the fewest number of addition/subtraction operations found by

previously proposed optimization algorithms [7,66,67].

This chapter implies that, different design architectures present alternative ANN
realizations with different hardware complexity so that a designer can choose the one
that fits best in an application. Consequently, obtained trade-off provides feasibility to

realize the ANNSs based on the desired available hardware.

36

ANN Output
Layer

Hidden Layers

Figure 3.2 : ANN with two hidden layers.

3.2 Background

3.2.1 ANN basics

Although the design techniques presented in this article can be applied to different
ANN architectures, such as convolutional and recurrent, we consider the feedforward
ANNSs which do not include any feedback loop. Given the ANN structure including
the number of inputs, outputs, layers, and neurons in each layer and the activation
functions in each layer, the weight and bias values of ANN are determined in a training
phase where the error between the desired and actual values is reduced using an
iterative optimization algorithm. State-of-art training algorithms [19, 68, 69] consist
of efficient techniques on initialization, optimization, and stopping criteria and include

a number of activation functions.

The training process is generally carried out offline on processors and/or GPUs. In
the testing process, the ANN response on the applied inputs is computed using the
weight and bias values determined in the training phase. The ANN computation is
generally carried out online on a hardware design platform, such as application specific

integrated circuits (ASIC) and FPGAs.

3.2.2 Multiplierless constant multiplications

In many applications, such as digital signal processing, cryptography, and compilers,
multiplying constants by variable(s) is a common and essential operation [70].

Constant multiplications can be divided into four categories, as shown in

Figure. 3.3-3.6.

37

x— SCM — y=cx

Figure 3.3 : Single constant multiplication (SCM).

— Y1 = 01X
x— MeMm [3 27
Ra Ym = CmX

Figure 3.4 : Multiple constant multiplication (MCM).

1. The single constant multiplication (SCM) operation realizes the multiplication of a

single constant ¢ by a single variable x, i.e., y = cx.

2. The multiple constant multiplication (MCM) operation computes the multiplication

of a set of m constants C by a single variable x, i.e., y; = cjx with 1 < j <m.

3. The constant array-vector multiplication (CAVM) operation implements the
multiplication of a 1 X n constant array C by an n X 1 input vector X, i.e., y =} ; cxXk

with 1 <k <n.

4. The constant matrix-vector multiplication (CMVM) operation realizes the
multiplication of an m X n constant matrix C by an n X 1 input vector X, i.e.,

yi=Yxcjx with1 < j<mand1<k<n.

Observe that the CMVM operation is the most general case and corresponds to an SCM
operation when both m and » are 1, to an MCM operation when m > 1 and n is 1, and

to a CAVM operation when mis 1 and n > 1.

Since the constants are determined beforehand, these constant multiplications can
be realized using addition, subtraction, and shift operations under the shift-adds
architecture. Parallel shifts can be implemented in hardware using only wires without
paying any area cost. The digit-based recoding (DBR) [6] is a straightforward
shift-adds design technique that can achieve constant multiplications in two steps:

1) define the constants under a particular number representation, such as binary or

38

X1

X2 Y =C1Xq1 T CoXp + ...+ CnXn

Xn

Figure 3.5 : Constant array vector multiplication (CAVM).

X1— — Y1 = C11X1 + C12X2 ... T CinXn
— Vv, = + + .+

X2=5 CMVM [Y2 = Co1Xq + CooX2 T ... T ConXp
[] []
o o

Xn — — ¥Ym = Cm1X1 T Cm2X2 T ... + CrinXp

Figure 3.6 : Consant matrix vector multiplication (CMVM).

canonical signed digit (CSD)!; ii) for the nonzero digits in the representation of
constants, shift the input variables according to digit positions and add/subtract the
shifted variables with respect to digit values. As a simple example, consider the
CMVM operation in Figure 3.7. Its direct realization needs 4 multiplication and 2
addition operations. The DBR method finds a solution with a total number of 8 adders
and subtractors when constants are defined under the CSD representation as shown in

Figure 3.8.

The number of adders/subtractors can be further reduced by maximizing the sharing of
common partial products among constant multiplications [7,66,67,71-73]. Returning
to our example, the algorithm of [7] finds a solution with 4 operations sharing the
subexpression (x; +xp) as shown in Figure 3.9. Moreover, prominent algorithms,
that can find multiplierless designs of constant multiplications taking into account the
gate-level area, delay, power dissipation, and throughput of the design, are introduced
in [74-77]. Furthermore, efficient algorithms are proposed for the multiplierless

realization of time-multiplexed constant multiplications in [78-80].

3.2.3 Related work

For the multiplierless realization of neural networks, binary neural networks (BNNs),
where weights values and activation functions are constrained to be either 1 or -1, were

introduced in [60]. It is shown that BNNs drastically reduce the memory size and the

! An integer can be written in CSD using n digits as Z;.’;Ol d;2', where d; € {—1,0,1}. The nonzero digits
are not adjacent and a constant is represented with a minimum number of nonzero digits under CSD.

39

Y1 - 11 3 . X1 y1=11x1+3x2
Y2 5 13| [x2 y2 =5x7+13x2

11 X1 3 X2 5 X1 13 X2

+ +
Y1 Y2
Figure 3.7 : Implementation of a CMVM operation realizing y; = 11x; + 3x; and
v = 5x1+ 13x;.

number of accesses to the memory during training, and replace multipliers with XOR
operators in hardware. However, they lead to a worse accuracy when compared to
conventional neural networks [61]. Lesser nonzero numbers mean lesser adder and
subtractor; hence in [61,62], the weights are obtained with minimum nonzero values
during the training phase. In [15], floating-point weights in each layer are dynamically
quantized, fixed-point weights are defined in binary representation, and the ANN is

implemented in a hardware accelerator.

The multiplierless hardware realization of ANNs is considered in [63] where the
multiplication of weights by input variables is realized in a bit-serial fashion, defining

weights under the CSD representation.

In [19], for the time-multiplexed realization of ANN design, a post-training algorithm,
that tunes weights to reduce the hardware complexity, is introduced and the
multiplication of constant weights by input variables in each neuron at each layer is

realized under the shift-adds architecture.

The multiply-accumulate (MAC) block is a fundamental operation in the
time-multiplexed design architecture. In [81], delay-efficient MAC structure uses
accumulators and carry-save adders to reduce its high latency. n MAC-based
implementation efficient implementation of ANN designs on FPGAs using MAC
blocks is investigated in [82]. MAC blocks have recently been used to realize

neuromorphic cores using two versions, axonal-based and dendritic-based [29].

40

y1= X1<<4 - X1<<2 -X7 + X2<<2 - X2
y2 = X1<<2 + X1 + X2<<4 - X2<<2 + X2

X1 Xy X2 X X1 X4 X2 X2
|<<4 |<<2 |<<2 | |<<2| |<<4 |<<2
- - + -
X1 X2
I
= +

[1

+ +

I I
Y1 Y2
Figure 3.8 : DBR method [6].

3.3 Design Architectures

In this section, we present parallel and time-multiplexed design architectures used to

realize ANNs in hardware.

3.3.1 Parallel design

Figure 3.10 presents the realization of neuron computations at the k' layer where m

and n are the number of outputs (or neurons) and inputs at this layer, respectively.

Under the parallel architecture, after the ANN inputs are applied, neuron computations
at each layer are obtained concurrently, and the output values are obtained
simultaneously, i.e, unlike to the time-multiplexed design all the outputs are calculated

by one clock.

3.3.2 Time-Multiplexed design

The MAC block is a fundamental operation in an ANN design under the
time-multiplexed architecture. As shown in Figure 3.11, it can be used to realize
the neuron computation given in Figure 3.1, re-using the multiplication and addition
operations. Note that, the control block which is actually a counter, synchronizes
the multiplication of a weight by an input variable, and the result is added to the

accumulated value stored in the register R. For clarity, the clock and reset signals

41

X1
<<

<<2

_l <<4 Y1

Y2
Figure 3.9 : The algorithm of [7] optimizing the number of operations.

o
W11 Vi
XK1 2 WiiXki f —» Zk1
byo
Yk2
Xk2 Zsziin f —» Zk2
[] []
. [.
Ykm
Xkn 2 WkmiXki f —» Zkm
Wkmn

Figure 3.10 : Neuron computations at the k' layer of ANN.

are not shown in this diagram. Under this architecture, the neuron computation is
obtained after n+ 1 clock cycles. The size of the counter and multiplexers, which is
determined by the number of weights and input variables, the size of the multiplier,
which is determined by the maximum bitwidths of the input variables and weights,
and the size of the adder and register, which is determined by the bitwidth of the inner

product of inputs and weights, all contribute to the MAC block’s design complexity,
Le,y=Y: | wx.
In this subsection, we present two time-multiplexed architectures to design the whole

ANN using MAC blocks. Under the first architecture, called smac_neuron, each

neuron at each layer is realized using a single MAC block and under the second

42

WiWz Wy,

Control
Logic

MAC:

—» Z

Figure 3.11 : Multiply-accumulate (MAC) block in the neuron computation.

Xk1 Xk2 Xkn

Wga1—
W22 —
..

Wyan —

Zi1 Zko

Wim1 =
Wikm2 —

Wikmn

Figure 3.12 : Neuron computations at the k' layer of ANN using MAC blocks.

architecture, called smac_ann, the whole ANN is realized using a single MAC block.

In following, these architectures are described in detail.

3.3.2.1 SMAC_NEURON ARCHITECTURE

The neuron computations at the ¥ layer of an ANN using m MAC blocks and a control

block are shown in Figure. 3.12. The multiplication of associated weights by input

variables is synchronized by the control block. If each layer of an ANN has 7; neurons,

where 1 <i < A and A is the number of layers, the necessary number of MAC blocks

is Y ; M, 1.e., the total number of neurons.

43

The number of inputs and weights determines the complexity of the operation and
registers of MAC blocks.The number of inputs at each layer determines the control
block’s complexity. Since the neuron computations are obtained layer by layer, the
neuron computations in the subsequent layer begin after the neuron computations in
the previous layer are completed. This is accomplished simply by producing an output
signal at each layer, which flags that, all neuron computations have been completed,
thus preventing the hardware from performing excessive computations and lowering
power consumption. The computation of the whole ANN with A layers and 1; inputs

at each layer, where 1 <i < A, is obtained after };(1; 4+ 1) clock cycles.

3.3.2.2 SMAC_ANN ARCHITECTURE

The ANN design using a single MAC block is demonstrated in Figure 3.13, where
the clock and reset signals are omitted for clarity. The control block in this diagram
contains three counters that synchronize the multiplication of a weight by an input
variable, the addition of a bias value to each inner product, and the activation function.
The number of layers, the number of inputs at each layer, and the number of outputs

(or neurons) at each layer are all represented by these counters.

The variables X1,X>,...X, denote the ANN’s primary inputs, and these variables
are multiplied by the associated weights during the first layer computations. While
the maximum number of inputs at all layers determines the size of multiplexers for
input variables, the total number of weight and bias values determines the size of

multiplexers for weight and bias values.

The maximum bitwidth of all input variables and weights determines the size of the
multiplier in the MAC block, while the maximum bitwidth of the multiplication of
weights by input variables in the whole ANN determines the size of the adder and
register. Furthermore, the maximum number of outputs at each layer determines the
number of registers used to store the outputs. We note that the computation of the
whole ANN with A layers, 1; inputs at each layer, and 1); neurons at each layer, where
1 <i< A, is obtained after) ;(1; 4+ 2)n; clock cycles. By considering the number of the
clock cycles and neurons, we proposed an algorithm to find the minimum quantization

value.

44

Wi11 W112 Wikmn b11 D12 bym

R Z5
R Z12
[]
[]
[]
R Zym

Figure 3.13 : ANN design using a single MAC block.

3.4 Finding the Minimum Quantization Value

In this section, we present a technique proposed for finding the minimum quantization
value to convert the floating-point weight and bias values to integers and methods
introduced for tuning weight and bias values to reduce the ANN design complexity

under the parallel and time-multiplexed architectures.

As mentioned earlier MATLAB neural network tool is employed to train the desired
network. By default, MATLAB stores all numeric variables as double-precision
floating-point values. To decrease the design complexity, we convert the floating-points
to integers. By regarding the ANN accuracy, we find the minimum bit-width of weights
and biases. To do so, we first create a validation data set by randomly shifting 30% of
the training data set to this set, which is then used to compute the hardware accuracy.

Following is a summary of the suggested technique:

1. Set the quantization value, ¢, and the ANN accuracy in hardware, ha(q), to 0 in
both software and hardware.

2. Increase the value of g by 1.

3. Multiply each floating-point weight and bias value by 27 and find the smallest

integer greater than or equal to the result of this multiplication.

4. Using the integer weight and bias values, compute the ha(g) value for the validation

data set.

5. If ha(q) > 0 and ha(q) —ha(g— 1) is greater than 0.1%, go to Step 2.

45

Yk1
Wk11
XK1 CMVM jC —» Zk1
byo
Wk11 Wk12 « o « Wkin X1 Yk2
Xk2 Wi21 Wk22 *** Wion Xk2 jc —» Zik2
. . . = O
. . . L
° . . . O °
. Wim1 Wim2 * ¢ * Wkmn| [Xkn e bim .
Ykm
Xkn % > Zkm
Wkmn

Figure 3.14 : Neuron computations at the ¥’ layer using a CMVM block.

6. Otherwise, return g as the minimum quantization value.

It’s worth noting that, in order to use limited size weight and bias values, we lose
only 0.1% in ANN precision in hardware computed on the validation data collection.
Consider that all the preprocessing tasks must execute on the validation data set and

the test date use only in the final step.

3.5 ANNSs Under the Shift-Adds Architecture

This section presents the multiplierless realizations of ANN designs under the parallel

and time-multiplexed architectures.

3.5.1 Multiplierless ANN design under the parallel architecture

A straight-forward way for the multiplierless realization of ANN under the parallel
architecture is to describe each inner product at each layer, i.e., yi1, k2, - - - Ykn Shown in
Figure 3.10, as a CAVM operation and to implement each CAVM block independently
under the shift-adds architecture. We use the algorithm of [67] to optimize the number

of adders/subtractors in the multiplierless designs of these CAVM blocks.

As shown in Figure 3.14, all inner products at the k¥ layer can be described as a
CMVM operation and the number of adders/subtractors in the multiplierless realization
of the CMVM block can be reduced using the algorithm of [7]. Thus, the possible
sharing of subexpressions can be increased, reducing the number of adders and

subtractors in the multiplierless ANN design.

46

Xk1 Xk2 Xkn

Control °°°
Logic
X

MCM Block

Wik11X Wk12X®® ® Wic1nX Wk21X Wi22X® ®® WionX © 88 Wi 1X Wim2X® ® ® WimnX
| | 'YX |

Y1 Yk
) 4 Y
by 4’@ bk2‘>@ bim
v v
Zi1 Zio

Figure 3.15 : Multiplierless realization of neuron computations at the " layer under
the SMAC_NEURON architecture.

3.5.2 Multiplierless ANN design under the time-multiplexed architectures

Under the SMAC_NEURON architecture, multiplications of related weights by input
variables at the k" layer, which is shown in Figure. 3.12, can be computed in an
MCM block and redirected to the corresponding adders using multiplexers as shown

in Figure. 3.15.

To increase the sharing of partial products and thus minimize the necessary number
of adders/subtractors, instead of using an MCM block for each neuron, a single MCM
block is used, which realizes the multiplication of all weights in a layer by an input
variable. To find the shift-adds realization of the MCM block with the fewest number

of adders/subtractors, the exact algorithm of [66] is used.

Similarly, the multiplierless realization of ANN under the SMAC_ANN architecture
presented in Figure 3.13 can be obtained when the multiplication of all weight values
by the selected input variable is implemented using an MCM block. However, since
one multiplier is replaced by a large number of adders/subtractors, such a multiplierless

realization increases the hardware complexity significantly.

47

3.6 SIMURG: The CAD Tool

In this section, we present our CAD tool called SIMURG developed to generate
automatically the hardware description of an ANN under the design architectures given

in Section 3.3 and the multiplierless design techniques described in Section 3.5.

The weight and bias values of the ANN are specified using a state-of-the-art method,
given the ANN structure, which includes the number of inputs, outputs, hidden layers,
and neurons in the hidden layers, as well as the type of activation function of neurons
for each layer. In this study, we used MATLAB neural network toolbox [69] to train the
ANN, but for this chapter we investigated, two different training methods, ZAAL [83],
and pytorch [68] in addition to the MATLAB to demonstrate the effect of the training

method.

Generally, Training tools include the conventional and stochastic gradient descent
methods, and the Adam optimizer [84] as an iterative optimization algorithm. They
have different weight initialization techniques, such as Xavier [85], He [86], and a
fully random method. They also have a variety of stopping requirements, such as the

number of iterations, early stopping using validation data, and loss function saturation.

It can describe sigmoid, hard sigmoid (hsig), hyperbolic tangent, hard hyperbolic
tangent (htanh), linear (lin), rectified linear unit (ReLU), saturating linear (satlin), and

softmax [87] as a activation functions for neurons in each layer.

To realize ANNs in hardware level, initially floating-point weight and bias values
determined during the training phase and converted to integers with given quantization
technique. The ANN design is described in hardware automatically with SIMURG
tool. This realization is based on the ANN structure given to a training algorithm,
the integer weight and bias values, and the design architecture, i.e., parallel,
SMAC_NEURON, or SMAC_ANN. The activation functions used in SIMURG are hsig,
htanh, lin, ReLU, and satlin due to their simplicity in hardware. The tool can define
the multiplication of constant weights by input variables in a behavioral fashion. Also,
it can find the multiplierless realizations of these constant multiplications as described

in Section 3.5. The tool also generates a test-bench and necessary files to verify the

48

ANN design and the synthesis scripts automatically. The SIMURG tool with its limited

number of functions is available at https://github.com/leventaksoy/ANNs.

3.7 Experimental Results

In this chapter, we used the pen-based handwritten digit recognition problem [54] as an

application to evaluate different architecture, structure, and training method of ANNS.

In the convolutional neural network design of this application, we implemented 5
feedforward ANN structures with different number of layers and number of neurons
in layers, denoted as p;,—1;—12—...—N,, where p;, stands for the number of ANN
primary inputs, which is equal to 16, and 1, where 1 < k < A, indicates the number
of neurons in the k’ layer. Note that the activation function of each neuron in the
hidden and output layers in training (hardware) was respectively tanh (htanh) and
satlin (satlin). The activation functions were determined based on the software test

accuracy found in training.

The ANNs were trained using 7494 data and tested using 3498 data. Table 3.1
presents the training and hardware design details on different ANN design structures.
In this table, sta and hta denote the software test accuracy, and hardware test accuracy,
respectively. Floating-point weight and bias values were converted to integers using
the minimum quantization value determined as described in Section 3.4. In the ANN
hardware design, bitwidths of ANN inputs and outputs at each layer were determined

as 8.

Observe from Table 3.1 that different architectures lead to ANN designs with different
hardware accuracy. However, they yield software test accuracy values close to
hardware test accuracy values. Note that the difference between the software and
hardware test accuracy is due to the quantization value, bitwidths of ANN inputs and
outputs at each layer, and different activation functions used in training and hardware

design.

In this work, we present gate-level results of ANN designs implemented in
three different architectures, namely parallel, SMAC_NEURON, and SMAC_ANN, as
described in Section 3.3. To allow a reasonable analogy with time-multiplexed designs,

flip-flops were applied to the ANN design outputs in parallel designs. The Cadence

49

Table 3.1 : Details of ANNs on training and hardware design.

Structure ZAAL [83] | PYTORCH[68] [MATLAB [69]

sta hta tnzd sta hta tnzd sta hta tnzd
16-10 84.6 86.0 431 85.5 85.1 374 89.1 89.3 374
16-10-10 94.1 93.6 855 95.9 952 950 95.9 959 857
16-16-10 96.0 959 1245 956 956 1338 969 950 1291

16-10-10-10 947 940 1121 958 956 1190 964 947 1121
16-16-10-10 96.6 96.6 1432 96.7 96.7 1608 96.6 952 1560

Average 932 932 1017 939 936 1092 950 94.0 1041

RTL Compiler with the TSMC 40nm design library was used to synthesize ANN

designs that were defined in Verilog hardware description language.

Alongside the MATLAB ANN tool, we have trained the ANN using Pytorch and the
ZAAL tool, which was developed in our lab. Since the topic of this thesis is hardware
optimization of ANNs, we will only use the MATLAB tool to train networks in the

following chapter, which is more general.

It’s worth noting that different software strategies can help reduce ANN complexity
too. In order to explore the impact of a design architecture on the ANN hardware

complexity.

Figs. 3.16-3.18 present respectively area (in um?), latency (in ns), and energy
consumption (in pJ) results of ANN designs under the parallel, SMAC_NEURON, and
SMAC_ANN architectures where constant multiplications are described in a behavioral
fashion. It’s worth noting that the ANN output is obtained by multiplying the clock
time by the number of clock cycles. Iteratively, the clock time was shortened by
using the retiming technique in the synthesis tool. The test data in simulation was
used to produce the switching activity data required for the computation of power
dissipation. The ANN design was also checked using this test data set. Latency and

power dissipation are multiplied to calculate energy consumption.

Observe that weight and bias values found by different training algorithms lead
to ANN designs with different hardware complexity where their impact is clearly
observed on ANN designs under the parallel architecture since there exist a large
number of constant multiplications. On the other hand, while ANN designs under
the SMAC_ANN architecture have the smallest area, the ones under the parallel

architecture occupy the largest area. However, the latency of ANN designs under

50

the parallel architecture is significantly smaller than those of ANN designs under
the time-multiplexed architectures. Moreover, ANN designs under the SMAC_ANN
architecture consume the most energy. Note that area, latency, and energy consumption
values of ANN designs under the SMAC_NEURON architecture are in between those of

ANN designs under the parallel and SMAC_ANN architectures.

51

[43

"UOTYSEJ [BIOTARYQQ B UT PAQLIOSIP dIe SUONeoI[dn[nul JuLISuod uaym Ind)Iydore NOUNAN OVINS 9y} Jopun suSIsop NNV : LI'€ 9In31

aviLvIN HOYOIAd m TvWZm avILvIN HOYOIAdm TVWWZm aviLvIN HOYOIAd m TvWZm
21NPNNIS NNY 21nN1IS NNY 2INPNIS NNV
01-0T-9T-9T 0T-0T-0T-9T 0T-91-9T 0T-0T-9T 01-97 01-0T-9T-9T 0T-0T-0T-9T 0T-91-9T 0T1-0T-9T 01-97 01-0T-91-9T 0T-0T-0T-9T 0T-9T-9T 01-0T-9T 0T-91
mm ° 0 0
05 m 0e 000z
3 ov 0007
00T g3 09 0009
- N 0008
0st @ 08 2 >
3 2 0000T @
ooz & oot 3 oozt ©
3 o0zt
05z g 000%T
g ovt 00091
00€ 09T 0008T
0S€ 08T 00002

"UOIYSEJ [BIOIARYQQ B UI PAQLIOSAP e suonedrjdnnul Juejsuod uaym a1njoaiyore [o[fered ayy 1opun susisop NNV : 91°¢ 2In31

GYILVIN B HOYOLAdE TWWZm AVILVW = HOYOlAdm 1VWZm GYILVIN m HOYOLAdm TWZm
24nPNNIS NNY a1nPNIS NNY 1PN NNY
0T-0T-9T-9T 0T-0T-01-9T 0T-91-9T 0T-01-9T 01-9T 0T-0T-9T-9T 0T-0T-0T-9T 0T-9T-9T 0T-0T-9T 01-9T 0T-0T-9T-9T 0T-0T-0T-9T 0T-91-9T 0T-01-9T 01-9T
mpy O 0 0
T
- 05 m . - 0000T
001 ® ¢
z 00002
0sT Y v 5 .
o a >
007 3 s 8 0000€ &
2 2 o
0s7 3 o 0000t
T L
00 2 s
ose 3 . 00005

oov 0T 00009

€S

“UOIYSEJ [BIOIABYQQ B UI PAQLIDSIP Ik suonedI[dninul Juejsuod uaym 2Ind)IYdIe NNV~ DOVIAS oY) Jopun su3isop NNV : §1°€ 9In31g

VIV B HOYOLAdE TWWZm YILVIN B HOYOLAdE TWWZm GYILVW B HOYOLAdm TWZm
21nPNAIS NNY 2InPNIS NNV 21NN NNV
0T-0T-9T-9T 0T-0T-0T-9T 0T-91-9T 01-0T-9T 01-91 0T-01-9T-9T 0T-0T-01-9T 0T-9T-9T O0T-01-9T 01-91 0T-0T-9T-9T 0T-0T-01-9T OT-9T-9T O0T-0T-9T 01-91
- 0 0 0

001 - 00s
m 008 000T

007]

00ST

o0e § ooot & >
3 We 000C @

00t a o
g 00ST 2 0052
°

005 8 000€
5 0002

009 3 005€

00 00s2 000

4. EFFICIENT HARDWARE REALIZATION OF ANNS BY APPROXIMATE
BLOCKS

4.1 Introduction

The previous chapters served us essential acknowledge about the approximate
computing and ANNs hardware realization. We will exploit this knowledge to
implement the ANN by employing approximate blocks in this chapter. As discussed in
Chapter 3, ANNs building blocks are neuron that sums the multiplication of input
variables by weights as expressed in equation 3.1. Since Multipliers and adders
dominate ANNs hardware, the approximate versions of these arithmetic blocks are
replaced by their exact version in this chapter. Also, Chapter 3 reveals the efficiency of
the time-multiplexed architectures in terms of hardware complexity, consequently the

main focused architecture is MAC-based method in this chapter.

By investigate the literature we obtain many efficient algorithms for reducing ANN
hardware complexity, including [15, 26, 28, 60-62]. This chapter will deal with the
implementation of ANNs in hardware using approximate adders and multipliers in a
time-multiplexed architecture when accounting for the ANN hardware accuracy. In
order to do this, the exact adders and multipliers in the MAC blocks are replaced with
approximate adders and multipliers. We also present a novel approximate multiplier in
this chapter, which allows us to investigate the trade-off between hardware complexity
and error at the multiplier output by varying the approximation level. It is worth
noting that, contrary to the methods of [29,31], the generation of an approximate
multiplier with different bit-widths of inputs under the given approximation level can
be performed in linear time. Using approximate multipliers by various approximation
levels for the neuron computations at different layers, will greatly reduce the ANN

hardware complexity [26].

Experiments show that, ANNs with the proposed approximate multiplier take up fewer

area and use less energy than those with previously suggested approximate multipliers

55

ang by ar b io lio
A B A B A B
Sy «— Cout Cin [¢——eo 00 «—| Cout Cin [« Cout Cin [«— ()
Full Adder n Full Adder 2 Full Adder 1
Sum Sum Sum
Sp-1 S Sn

Figure 4.1 : Ripple carry adder.

in [29,88]. It is also shown that, by using approximate adders, the ANN hardware

complexity can be further reduced.

4.2 Approximate Blocks for ANN

4.2.1 Approximate adders

Generally a n-bit ripple carry adder made up of n 1-bit full adders ,which is
demonstrated in Figure. 4.1. FA’s input bits are represented by A, B, and carry-in (Cin),
while its output bits are represented by Sum and carry-out (Cout). Conventionally it
is presumed that simultaneous errors on both the Sum and Cout outputs of FA can
produce a greater erroneous result in literature [3,31]. We had showed this assertion,
though, ignores the fact that, while an error on one of an FA block’s outputs increases
the error at the adder output, an error on the other output can reduce the error at the
adder output. As we had discussed in Chapter 2, the simultaneous error in full adder
outputs, results in a considerable area save compared to the other full adders in the
literature. We had given the truth table of the proposed adder in Table 2.2. Also, we
had presented a synthesis method for obtaining a n-bit approximate ripple carry adder,

which replaces the exact FAs with APADs under the given error value.

To simplify the implementation of ANNs by approximate blocks, we introduce a new
error metric for the n-bit ripple carry adders in this chapter. According to Chapter 2
results, for different AAED values, APAD4 dominates the array of n-bit ripple carry
adder. As a result, we suggest the number of APAD4 as a new error metric which
we called it approximate level. Therefore, the approximate level for n-bit ripple-carry
adders is the number of APADA4. For example, if the ripple-carry adder is 8 bit and its
approximate level is 2, it means the 2 least significant one-bit adders are APAD4 and

the rest 6 one-bit adders are exact adders.

56

4.2.2 Approximate multipliers

We also introduce a new design methodology for implementation of approximate
multipliers, to suit better in ANNSs. The realization of an exact multiplier is divided into
two steps: partial product generation by AND gates, and partial product accumulation
by half adders (HAs) ! and FAs. An exact 4-bit unsigned multiplier structure is shown
in Figure 4.2. HAs and FAs are represented by rectangular blocks of two and three

entries, respectively.

Our proposed synthesis tool in Chapter 2, replaces exact HA and FA blocks in the
exact multiplier with their approximate versions, taking into account the error at the
multiplier output. The proposed method generates approximate multipliers called
PBAM, where these multipliers are probability-based approximate multipliers in the
design of an approximate multiplier, by considering the probability of occurring of
logic 0 and 1 at the outputs of all HA and FA. Also, we considered the CGP method
of [29], where approximate multipliers generated by this method are derived from the

exact multipliers.

In this chapter, we suggest a new approximate multiplier called LEBZAM, which is
applied by setting the least significant outputs of an exact multiplier to zero, where r is
the approximation level. The following is a description of the synthesis method: 1) Set
the exact multiplier’s r least significant outputs to 0; ii) Remove all FA and HA blocks
needed to realize the exact multiplier’s r least significant outputs. The realization of
a 4-bit approximate multiplier when r is 3 is seen in Figure 4.3. Consider that, the
proposed approximate multiplier is completely different than truncation multipliers ,
where the proposed multipliers set the least significant bits to zero, but the truncation

multipliers eliminates these bits.

In contrast to the approximate multipliers of [29, 31], an approximate multiplier
LEBZAM can be conveniently obtained by providing the approximation level and
bit-widths of the inputs. As a result, in this section, under different ANN architectures,
which were discussed in chapter 3, and by exploiting approximate blocks by different

approximate levels, we are attempting to reduce the cost of ANN hardware.

'Half adder is obtained when one of the inputs of FA is set to 0.

57

a3b3 a2b3

a3b3 I . I . Sl aObO
I I I . S6 Sl aObO

C13 S13 S12 S11 S10 S S| apbg

a3b0 . aObO
a3b2 I

Figure 4.2 : Exact 4-bit unsigned multiplier.

a3b0

azb,
azb; apbs
" I . .

Cg Sg S7 S6 S3 0 0 0

Figure 4.3 : Approximate 4-bit unsigned multiplier with the least significant 3 bits
are set to logic value 0.

58

4.2.3 Approximate level

4.2.3.1 SMAC_NEURON

To determine the approximate level of the multipliers and adders based on the
misclassification rate (MR) for SMAC_NEURON architecture following steps are

obtained.

1. Set the hidden layer number n to 1.

2. Set the approximate level AL, to 0.

3. Increase AL, value by 1.

4. Calculate Approximation Misclassification rate AMR.

5. If AMR — MR < tolerable_error go to Step 3, otherwise increase n value by 1.

6. If n < yay + 1 save AL, — 1 as the approximate level of n'" layer and and return to

step2.

7. save AL, — 1 as the approximate level of output.

These steps are taken separately for adders and multipliers. We must acknowledge that
starting with multipliers or adders will result in the same approximate level values for
the blocks, in this study, we apply the proposed method for approximate multipliers at
first. To shrink the search space of adders’ approximation level (AAL), the minimum
level value of AAL is set to the determined multipliers’ approximate level (MAL) value
increment by one. Additionally, the error distance values of LEBZAM are negative or
zero for all cases, based on this error pattern, the approximate level of multipliers and
adders for all neurons in each layer are chosen identical. Contrarily selecting a higher
approximate level for any neuron comparing to other neurons at the same layer, leads
to a negative bias of that neuron i.e. the neuron with the higher approximate level,
posses a scanty output regarding to other neurons, where this biasing results a disturb

in accuracy.

An arithmetic unit with m-bitwidth output, posses a number between 0 and m as

a approximate level((m + 1)options). By considering n-bit X n-bit multiplier for

59

MAC unit, the adder output bitwidth value will be (2n+ 1), and the total possible
combination number of approximate level for adder and multiplier for each neuron
will be (2n4 1) x (2n+2). Also by considering that there are 1) neurons in A layers,

the total possible combination for a ANN is formulated as follow.

A
(4n*+6n+2)Y n; (4.1)

i
By exploiting the proposed method, the approximate level values of the multipliers
are identical for all of the neurons, according to the method, we increment the MAL
value by 1 until the error deviation becomes greater than the given error limit value.
MAL value of n-bit multiplier is a number between 0 and 2n, hence by exploiting the
proposed method, the total investigated case is MAL for all neurons in each layer. In
line with the proposed method, the minimum number of AALvalue is equivalent to the
determined MAL value increment by one. Similarly, the same steps are obtained to
find the AAL value; consequently, the total investigated cases is 2n — MAL — AAL for
all neurons of each layer. The total number of examined cases for the whole network

is given by following formula.

A
Y (MAL+1)+ (AAL— MAL) (4.2)

As an example, consider a Pen-digit handwritten digit recognition problem [54], the
trained network architecture consists of 16 inputs, 50 neurons in the hidden layer, and
10 outputs. Assume the input and weights bit-width is 8, consequently the all possible
combination of MAL and AAL is:

(4(8%) + (6 x 8) +2) x (504 10) = 18360

whereas, by exploiting the proposed method, the significant reduction in the explored

cases occurs.

The MR deviation percentage for different MALs and AALs values are shown in
Figure.4.4. Based on the proposed method, after seven iterations, the MAL; value is
set to 6. To find this value all the other arithmetic units are set to their exact versions,
and their approximate level is 0. Note that setting MAL; value to 7 causes to MR value
becomes greater than the given value where the tolerable error value is considered 1%

of MR for this example. The same steps are employed to obtain the MAL, value.

60

40
éi 30
8 20
c
L 10
[
£ 1%M
)
@ -10
=

-20

-30

2 3 456 7 8 9 10 11 12 13 14 15 16 17 32 33 34 35 36 37 37

AML,; + AML,+ AAL;+ AAL,
Figure 4.4 : Misclassification rate for SMAC_NEURON architecture by the different
approximate levels of multipliers and adders.

According to the proposed algorithm, to investigate AAL; and AAL, values, the starting
points are set to their corresponding MAL value in each layer. As shown in Figure.4.4,
the AAL value for layerl and layer2 is set to 10. Note that the total examined case

number for this example is:
(74 (10—-7)) 4+ (10+ (10— 10)) = 20

which is negligible in comparison to the all possible 9180 cases.

4.2.3.2 SMAC_ANN

To determine the approximate level of multipliers and adders in SMAC_ANN

architecture following 7 steps are obtained.

1. Set the MAL and AAL to O.
2. Increase MAL value by 1.
3. Calculate Approximation Misclassification rate AMR.

4. If AMR — MR < tolerable_error go to Step 2, otherwise save MAL — 1 as the

approximate level of multiplier.
5. Increase AAL value by 1.
6. Calculate Approximation Misclassification rate AMR.

7. It AMR — MR < tolerable_error go to Step 4, otherwise save AAL — 1 as the

approximate level of adder.

61

30 T
g 25 .
Q 20 i
c 15 i
(5]
£ 10%MR -eeem
o
o 5 4
= 0

_5 1 1 1 1 1 1 1 1 1 1

AML + AAL
Figure 4.5 : Misclassification rate for SMAC_ANNarchitecture by the different

approximate levels of multipliers and adders.

The SMAC_ANN architecture comprises a singular MAC unit as the arithmetic unit;
consequently, determining the approximate level of multiplier and adder is more

straightforward compared to the SMAC_ANN architecture.

Distinct from the ANN structure, the total possible combination of MAL and AAL
values is correlated with the output bit-width of arithmetic units. By assuming that the
multipliers and adders output bit-widths are j and k, respectively, the number of all
possible combinations of MAL and AAL will be j X k. On the other hand, by exploiting
the proposed method, the number of investigated cases shrinks to MAL+ (AAL— MAL)

cases.

As an example, Pen-digit handwritten digit recognition problem is employed by the
same parameters but under SMAC_ANN architecture. The applied method results are
shown in Fig4.5. Starting by the multiplier, after 8 iterations the MAL value is set to
7, and the tolerable error value is considered as 1.1 of MR. According to the proposed
method, AAL initial value is set to MAL + 1, and after 4 iterations, the AAL value is
set to 10 correspondingly. Take consider the total examined cases is 12, whereas all
possible combination is (16 x 20) by considering that, the output bit-width is 16 and

20 for multipliers and adders, respectively.

4.3 Experimental Results

In this section, MNIST and Pen-digit data-set are exploited to train ANNs. The MNIST
handwritten digit classification problem is a well-known dataset in computer vision and

deep learning applications. The inputs for the MNIST are the real image pixels of the

62

handwritten numbers. On the other hand, the inputs for the Pen-digit are 16 attributes
of the images. Therefore, Pen-digit requires a less complex ANN structure to predict
the expected numbers. The ANN was trained using the MATLAB [69] deep learning
toolbox. The training and test inputs were normalized within -1 and 1, the weights were
randomly initialized and they were modified using a backpropagation-based learning
approach to minimize the error between the obtained and desired response. The
ANN designs hardware description language is Verilog and were synthesized using

the Cadence Genus tool with the TSMC 40nm design library.

The results for two different applications are provided in two different following

sections.

4.3.1 Pen-digit problem

We used the pen-digit handwritten digit recognition problem [54] as a first research
application. A Feedforward ANN was implemented, which includes 16 inputs, a
hidden layer by 16 neurons, and 10 neurons at the output layer. The hidden and output
layer activation functions were symmetric saturating linear, and softmax, respectively.
The ANN was trained by 7494 data and was tested by 3498 data. The misclassification
rate after training was calculated as 4.85%. Following the conversion into integers of
the floating-point weight and biasing values when the ¢ quantization value was set to
8, the behavioral ANN design using exact adders and multipliers was described and

the hardware misclassification rate was identified as 5%.

The designs of the ANN in this study will be implemented using approximate adders
and multipliers without exceeding the HMR limit of 5.5%. Also, ANNs will be
implemented under two different SMAC_NEURON and SMAC_ANN architectures and
using 3 different approximate multipliers, which are PBAM, LEBZAM, and the logic
level approximate multipliers [29]. We note that all the exploited approximate
adders are our proposed adders. The approximate [29], mull2s 2NM and mull2s
2KM multipliers have 12-bit inputs and are selected among other multipliers for
their minimum area and error. Notice that, the approximation levels of adders and
multipliers in the hidden and output layers have been systemically calculated taking

HMR values into account.

63

ANN designs’ gate-level performance presented in Tables 4.1-4.2, in which area, delay
and power respectively stand for total area in um?, the delay in the critical path which
is determined to be the clock period in ns, and total power dissipation in mW. The
time at ns that is needed to achieve ANN output after input, calculated as the clock
time multiplication with the number of clock cycles required to achieve the ANN
output, is latency. For our proposed ANNs the number of clock cycles required in
order to get an ANN output is calculated as 34 and 468 for SMAC_NEURON and
SMAC_ANN. Energy consumption (energy), in pJ calculated as a latency multiplied

by power dissipation.

We observe that the retiming procedure in the synthesis tool has increased the clocking
period. Use the test data in simulation to produce the switching activity data for
calculating of the power dissipation. Also, the test data was used to validate the ANN

design and calculate the hardware misclassification rate.

The results of gate-level ANN designs presented by the Table 4.1. The architecture for
ANN is SMAC NEURON, where just approximate multipliers in MAC blocks have been
replaced by the exact versions. Note that since approximate multipliers in [29] are
optimized for a fixed bit length, they may be worse in the area, latency, and energy
consumption values than ANN’s with exact multipliers. Also, consider that logic
synthesis tools optimize the exact multipliers separately, especially for widely-used

bit widths like 8 x 8 or 16 x 16.

According to these results, the use of approximate multipliers LEBZAM, by finding
the appropriate approximate multipliers in the hidden layers and in the output layers,
can reduce the ANN hardware complexity. In addition, the largest reduction in the
area, latency, and consumed energy is obtained by LEBZAM multipliers. Note that, by
simply changing the approximation level of multipliers the trade-off between hardware

complexity and accuracy is obtainable.

Table 4.2 presents the gate-level results of ANN designs under the SMAC_NEURON
architecture where both exact adders and multipliers in the MAC blocks are replaced
by the approximate ones. The experimental results indicate that concurrent use of

approximate multiplier and adders significantly reduces the complexity of the ANN.

64

¢9

PLE %HLE 60SC I¥60l ¥60 10911 Iv'e eCL6 4! L INVZdd1
%0¢ 333 08y 6S0<ccl vO'T OvLIT S¥e $Ti0l I L INVZdd1
%8¢C %TC €0'S ITSCI 00T <OSCl 89¢ 66611 6 9 INVZId'1
%L1 %L1 LS 1SSyl 9C1T 16 SIT I¥e 19LC1 I 8 [88] IWvVdd
%8 %S1 €0’Ss TCI91 0¢l Levll 99°¢ T66CI 4! L [88] INVdd
%l %6 v8Yv vI'6SI I¢ T SEICI LS€ 9LTEL I L [88] Wvdd
%~ BTI- 00S €€I81 v¥' 1T 08SCI OL¢ LTTLI VN VN 6] WT sTImu
P11 %6 CI'S vO'SST €TT T1€9C1 CL'E 6C6¢l VN VN [6T] WNT ST M
%0 %0 00 LLYLT vy'1T 89ICI 8S'€ LTESI 0 0 [eIOTARToY
ured A310u0 ueg vare YNH AS1ouo tomod Aouoje] Aejop evare mding uappiH odAL, sordnniy

[9A9T uonewrxoiddy

‘s1oridnnu oyewrxordde Sursn 21moIYdIR NOYNAN OVIAS JO SINSAY ¢ b dqeL

99

%19 Ve384 L6y 89¢9 S0 [I87TCI 19°¢ 6868 VI O 11 L NVZdd1
%19 V394 88Yv C¢L9 €SS0 88TCI 19°¢ [088 €I O TI L INVZdH1
%09 %TE 1€ TI'0L 850 <TLICTI 8¢ T6E0I €1 6 01 9 INVZdH1
%95 %6E LI'S STLL 790 LEYCl 99°¢ 7es6 €1 Tl L L [88] INVdd
WLS Pee 0CS 0OLSL 190 98¢l 19¢ 86L6 Tl (I L L [88] INVdd
WLS Pee €0’¢ ST9L 190 Levll 99¢ 9¢C0l I1 TI L L [88] INVdd
DLV WY1 eSS 876 690 0€vel c6c €€I€l SI VN 6 VN lecl wyT sgimu
PSS %TT LI'S 9L8L 6S0 ¥I'€El T6E +S8IT #I VN Ol VN [6T] WNT STl
%0 %0 00°S LLYLT vv1 C91CI 8¢'¢ LceST 0 O 0 0 [eIO1ARY2{
PPV INA PPV DA
ured A310u0 ureg vare YWH AS1ouo 1omod Aouoje] Ae[op BaIR dinQ uappIy odAL, rordnny

[9A9T uonewrxoiddy

‘s1oppe pue sxrdnnuw gewrxoidde Jursn a1no)yore NOINAN DVIAS JO SINSY : T'h dqeL

L9

WIT Pe 08Yv 686vr LCO 89%991 96°¢ 160¢ L NVZdd1
yad! Pl 06y 09687 8C0 S8SVYILI 89'¢ (4953 9 NVZdd1
%8 W Yo'y S6CLY LT0O 86'STLL 69¢ 681¢ S NVZdd1
YT % ¢S 09'1ey 8C0 61'QIST ¥T¢ SVI¢ 8 [88] INVdd
vxq! P1- €81 0966 8C0 SI'09LT 9L°¢ 761¢ L [88] INVdd
%6 Pe- 00 8E€BIS 6C0 6IVLLI 6L¢ L8TE 0 [88] INVdAd
Dl %e- 00 PLYOS 6C0 €8VILT LL'E 6LC¢ VYN l6T] WYT sg1mu
yxq! We- 00 08667 6C0 C98ELI TLE 8LTE VYN l6C] WNT ST1mu
%0 %0 00 €€69S SE€0 TProv9l IS¢ 081¢ 0 [elOTARYRY
ured A31ou0 ureS vare YNH AS1oud 1omod Aoudye] Ae[op eare [oAao uonewrxorddy odA[zordnmn

‘s1ordnnu oyewrxoxdde Sursn armoIYdIe NNV OVIAS JO SINSAY : € dqeL

89

PST WS OF'S €L9Ty 9C0 LI0S91 €S°¢ 120¢ el L INVZdd1
PeT Y4 99y CTOWy 9C0 6CT691 C9'¢ 1170¢ Cl L WVZdd1
DLI %Yy So6vy 6869y 8C0 [ISTSI9I €6°¢ 910¢ 14! 9 INVZdd1
WI1T %S 9O S8y SC0 TS8OGLI 18°¢ 6C0¢ 11 L [88] INVdd
%9C %9 €0'S 861k ST0O0 8I'6L91 6S°¢ 8L6C 6 8 [88] INVdd
PST %L €0'C 799y 970 €S6S91 €C°¢ CL6T 01 L [88] INVdd
PIT Pl 'S IS ISy 9C0 OCITLI 89°¢ orle el VYN l6c] WYT STl
PlE %6 90°S €916 STO0 9C06SI 0Ov¢g 8067 el VN (6] WNT STl
%0 %0 00°¢ €£69¢ S€0 o9l CS'¢ 081¢ 0 0 [BlOIARYRY
ured A310u0 ure3 eare YNH AS1ouo 1omod Aouadre] Ae[op BaIR PPV "N odAL, zoridnnn

[9A9T uonewrxoiddy

‘s1oppe pue s1rdnnuw aewrxoidde Jursn 1o yore NNV OVIANS JO SINSY : ' dqeL

According to Table 4.2, our approximate multipliers provide the maximum increase in

areas and energy consumption up to 43% and 64%, respectively.

As discussed in chapter 3, a single MAC unit processes the operations under the
SMAC_ANN architecture. By replacing the multiplier with approximate versions, new
ANNSs are obtained, and results are given in Table 4.3. According to the results, the
proposed LEBZAM multipliers save more energy and area when compared with the
other methods. In addition to the LEBZAM multipliers, changing the exact adders to

the approximate counterparts leads to further reduction according to Table 4.4.

Interestingly, the use of approximate adders and multipliers can also improve the

hardware accuracy as can be observed on Tables 4.2 and 4.4.

4.3.2 MNIST problem

As the second application, we considered the MNIST handwritten digit recognition
problem [89]. The dataset consists of gray-scale images from NIST, which is
normalized to fit into (28 x 28) pixel boxes. The ANN is employed to predict the

digits among 10 integers (0-9) based on the input pixels.

To examine the performance of the proposed method on a different structure, we
implemented the feedforward ANN with two different structures; 3 hidden layers by
256 neurons for the first case, and a hidden layer by 128 neurons for the second case.
The activation functions of the hidden and output layer were symmetric saturating

linear, and softmax, respectively.

The ANN was trained using 60000 data and was tested using 10000 data. Also, the
quantization factor g was set to 12 for employed ANN by exploiting the proposed steps

in Chapter 3.

By converting input data to 12 bits integer, 116 of 784 input pixels remained unchanged
for the train and test data. In a different expression, for 12-bit resolution, 116 of
the pixel values are identical for the whole of the train and test data. MATLAB
automatically pre-read the data and remove unchanged data because eliminating these
values will not affect the performance of ANN. By training ANN through MNIST
database at the software level, the computed MRs for test data were calculated as 2.60

and 2.24 for 668-256-256-256-10 and 668-128-10 structure, respectively.

69

To evaluate the efficiency of the proposed multipliers and the algorithm among the
other literature, proposed multipliers are compared with CGP based multipliers which
are introduced in [29]. According to [28] study, CGP based multipliers holds better

result among all the deliberately approximate multipliers.

The ANNs were implemented under the SMAC_NEURON and SMAC_ANN architec-
tures using the proposed approximate adders in this thesis, the approximate multipliers
of [29], and our proposed multipliers LEBZAM and PBAM. The signed approximate
multipliers of [29], have constant 12-bitx 12-bit and 16-bitx 16-bit inputs. Also,
according to SMAC synthesis method, inputs bit-widths of multipliers are non-identical
for this architecture. To adopt the [29] multipliers with the employed structure,
the multipliers from the library of [29] by maximum bit-width were selected, then
we removed the gates and in-outs of extra bits. Note, we have systematized the
approximation levels on the hidden layers and output layers of the PBAM and
LEBZAM multipliers in accordance with the HMR value. The ANN designs were
described in Verilog and synthesized using the Cadence Genus tool with the TSMC

40nm design library.

The energy and area save for trained ANN by ANN by 668-128-10 structure and under
SMAC_NEURON architecture are depicted in Figure. 4.6 and Figure. 4.7 respectively.
To evaluate the efficiency of the proposed method compared to the introduced method
in [29], 63 cases by different multipliers and adders are exploited. As shown in these
figures, exploiting simultaneously approximate multipliers and adders according to the
proposed method always hold more save in energy and area with the same HMR values

compared to the other methods.

60 Yx Proposed-LEBZAM ! ! ! * !
50 | %xProposed-PBAM * o x _
;\3 [LEBZAM * *YQ’@ :i@x X
< 20 O reampz 2 x> * . B 4
g % EVOAPP[18] b3 ¢ %H *% O
® 30 f - * o - 1
@ 20 } & T
g 10 o
i} B n b
BE . (@
0 F * -
_10 L L L L L L
2.4 2.5 2.6 2.7 2.8 2.9 3
HMR

Figure 4.6 : Energy save percentages of ANN for different approximate methods in
terms of hardware misclassification rate.

70

15 . i : l
;A;ProposediEBZAM
X Proposed-PBAM . R A |
< 10 [oieszam * . & 20 ﬁ x X
= PBAM[22] & .
o 5 [#cevonrpis] A0 * A # O " -]
® o B X :
s 0T * 3% . §
o
<-5 F |
*
-10 |
*
-15 1 1 ¥ 1 1 1 '
24 2.5 2.6 2.7 2.8 2.9 3 3.1
HMR

Figure 4.7 : Area save percentages of ANN for different approximate methods in
terms of hardware misclassification rate.

Tables 4.6-4.5 present the gate-level results, where area, delay, and power stand
respectively for total area in um?, the delay in the critical path which is determined
to be the clock period in ns, and total power dissipation in mW. Again, latency refers
to the time in ms needed to produce an ANN output when an input is added. This value
was calculated as the number of clock cycles needed multiply by the clock period. The
number of clock cycles required to obtain the ANN output under the SMAC_NEURON
and SMAC_ANN is respectively computed as 798 and 87060 for 668-128-10 structure
and, 1440 and 306196 for 668-256-256-256-10 structure. Again, energy consumption
in wJ is calculated as the latency and dissipated power multiplication. The clock period
improving technique again has been applied. Also, the test data employed to design

validation, and save switching activity by generating the “.saif" file.

The gate level results of the SMAC_NEURON architecture, in which the exact
multipliers and adders of the blocks of MAC are replaced by the approximate ones,
are shown in Table 4.6 and Table 4.7. Approximate multipliers of [29] may have
worse area values than those of ANN using exact multipliers for the reasons which
were discussed in section 4.3.1. On the other hand, the use of LEBZAM multipliers
can save in the ANN hardware complexity by obtaining the proper approximation
levels of multipliers at the different layers. In addition, the proposed approximate
LEBZAM multiplier leads to the most significant decrease in area, latency and power
consumption. Notice that a change in the approximation level of the multipliers and

adders will explore the compromise between hardware complexity and accuracy.

By exploiting the proposed algorithm, the deviation limit is set to 2.5% of HMR and
by regarding that the HMR value is 2.63, the maximum tolerable HMR is 2.69 for

71

668-128-10 structure. The MAL value of LEBZAM multipliers are obtained as 7
and 16 for the hidden and output layers. Also, AAL values are calculated as 8 and
17, respectively, for the hidden layer and output layer. Furthermore, to obtain the
performance of the proposed approximate level algorithm, different cases beyond this
algorithm are given in Table 4.6. It must be noted that, due to the large search space
of MAL and AAL values, the proposed algorithm only finds near-optimal values by

acceptable variance.

By investigation of Table 4.6 results, observe that the simultaneous use of approximate
multipliers with the introduced approximate adders in [88], reduces the ANN hardware
complexity significantly. The maximum gain on area and energy consumption reaches
up to 6% and 48% using the approximate multipliers and adders with improving in
the accuracy. Table 4.7 presents the gate-level results of ANN designs under the
SMAC_NEURON architecture for 668-256-256-256-10 architecture. According to the
table result, exploiting approximate multipliers and adders yields up to 39% and 5%

save in energy and area respectively with a small degradation in the accuracy.

The gate-level results of ANN designs under the SMAC_ANNarchitecture are given in
Table 4.5. The results indicate the efficiency of the proposed method and blocks.
According to the SMAC_ANNarchitecture, only one multiplier and adder are replaced
by the approximate versions. As a result, the cost saving of hardware for this
architecture is lesser than the SMAC_NEURON architecture. Note that the proposed

approximate units lead to the largest gains on energy consumption.

Table 4.5 : Results of SMAC_ANN architecture for 668-128-10 structure using
approximate multipliers and adders.

Multiplier Type Ap proMerlnatlonAI(‘llevel latency power energy HMR Egzirfy
Behavioral 0 0 688.04 933 6418.81 2.63 0%
LEBZAM 6 7 666.18 8.01 5333.17 2.63 17%

PBAM [88] 7 7 72094 773 5570.29 2.7 13%
EvoAPP [29] HDG 0 69578 830 5773.67 204 10%
EvoAPP [29] GAT 0 65957 859 5667.82 278 12%

72

eL

BES P9 OLT 6v9L T1E€vl SES 0L9 CTII88T vl 14! 8 8 INVZad1
%6t %S S9T €S00I 6I'€El C9L €66 99v061 91 91 L L INVZId1
DYy L €9C T9TC6 S8l ITL €06 96¢L81 LI 91 8 L INVZId1
%8y %9 19C 99¥8 TICI 669 OL'8 €pe681 I 3! 8 L INVZIA']
Bey %S 95T Tre6 88Tl STL 606 98CI6l LI 9! L L INVZId']
BOY %y YST €166 L8II S€8 Ly 0l Scoel6l 91 91 L L [88] INVdd
%6t %8 19T BI'00I L9El €€L 8I'6 00TS8T LI 3! 8 8 [88] INVdd
BSY PS ¥9T 806 €9CI LI'L 86'8 Ieviel SI 14! 8 L [88] Wvdd
%T- %0 ¥9°C 68991 LBIC €9°L 9¢6 6v£00C 0 ZAH/SA 0 0 [62] ddvord
%Y B1- ¥9C LOBST 89IT 6CL vI'6 Treedc 0 LVO/NCI 0 0 [6Z] ddVord
%t B1- 9T vS6SI 8ECC ¢Cl'L v6'8 S19¢0C O OM/DdH 0 0 [6Z] ddVord
BEC PYI- €9T €8°STI 8L8I 0L9 6€8 0006¢C O 0 0 INDIC [6T] ddVoAd
BIS BT 8LT 1908 BTLI 99V 686 SLTLST O INN/LIVD 0 AN/IVO [67] ddvord
%6C %L~ 99T T8I9IT ¥9°LT 799 0€8 LSLvICT O SA/Z4AH 0 SM/ZAH [6c] ddVord
BST WCI- ¥9T €LTCCT L9LT S69 L8 129vCC 0 OM/OdH 0 OM/DAH [6T] ddvoad
Bee %S S9T TSOIT 88'LT 819 SLL 96L681 0O 91 0 L INVZad1
%O1 e~ ¥ST T98El OLB8I IvL 6C6 90590C O 91 0 L [88] Wvdd
%0 %0 €97 OI'v9l TSIC €9°L 9¢6 1¢800C O 0 0 0 [eloTABY9Y
uesS umesS PPV [N PPV [N
%mﬁ.osm— mmﬁ« MINH AS1oua 1omod Aouore] Ae[op BAIR ndinQ UQppPIH odAL, sordnn

[9A9T uonewrxoiddy

‘s1oppe pue sirdnnuw aewrrxoidde Sursn a1njonns ()-8 1-899 I0J IMOIAIYDIL NOYNAN DVIAS JO SINSAY : 9°p dqeL,

VL

%CI BL- SO¥ So6¥Pl 1'SOI 8¢l LS'6 8L¥000I O SN/Zd 0 SN/Zd 0 S/Zd 0 SI/7zAd [6T] ddvord
%6 %TI- 66'€ €98¥I 6111 €€l TC6 ¥00ISOL 0 OM/Od 0 OM/HOd 0 OMN/HDd 0 OM/Hd [67] ddvoad
WL T STy TOCIL 88 4! LT'6 799616 VI 14! 9 9 9 9 9 9 NVZdd1
%9 PL STV LB6EL 6L01 6CI 006 0£€676 0 14! 0 9 0 9 0 9 INVZdH]
%6€ S TTY €700l T'LL 0°¢l €06 6L6768 VI 14! L L L L L L [88] INVdd
%91 Y- TCY 9¥8El S1el S0I1 [€L 8V61L6 0 14! 0 L 0 L 0 L [88] INVdd
%0 %0 96¢ 96L91 VvIvlE 911 €08 9L06€6 0 0 0 0 0 0 0 0 [eJoiAeyag
ues s PPY IMA PPV [NAN PPV [N PPV [NA
KSroug vory MINH A31ouo 1omod Aoudre] Aeop BOIR ndinQ CUAppIH CUSPPIH [USPPIH odAL, sordnnn

[9A9T uonewrxoiddy

‘s1oppe pue sxarpdnnw ayewrxordde Jurisn aInonns ()1-957-957-957-899 I0J IMOAIYDIR NOYNAN DVINS JO SINSAY : Ly dqelL

5. CONVOLUTION LAYER

5.1 Introduction

The main focus of this dissertation is the efficient hardware realization of the
approximate ANNs. In the previous chapters, we proposed a methodology to
implement the desired ANNs with minimum hardware complexity. All the investigated
techniques were based on the feed-forward ANNs. We discussed that there is a
common tendency to train and test the networks on CPUs and GPUs due to their
processing strength. However, their large power consumption makes this method
impractical for portable devices where the number of processing units, battery
capacity, and memory is limited. These considerations make application-specific
integrated circuits (ASICs) a favorable method for hardware implementation. To
reduce the hardware complexity by considering an increase in latency, ANNs based
on Multiply-accumulated (MAC) units and multiplierless designs are proposed in
Chapter3. Also by introducing novel approximate units for MAC blocks, a remarkable
reduction in power consumption and occupied area are obtained for fully-connected

ANNSs in Chapter4.

Beyond the discussed fully-connected ANNSs, convolutional neural networks (CNN)
provide remarkable results in achieving better performances by extracting features
from the training data. In this chapter, we will address how to realize CNN convolution

layers by exploiting our techniques.

The CNNs consist of convolutional layers followed by the fully-connected layers.
Practically, the fully-connected layers are used to classify the inputs’ features which
are provided by filters or convolution layers. Due to numerous memory access and a
large power consumption, ASIC implementation of a CNN with millions of parameters

is impractical in the parallel fashion.

75

CNNs’ hardware complexity is dominated by convolution layers where each
convolution is a sum of weighted neighboring pixels. On the other hand,
fully-connected ANN is a vector multiplication of inputs with related weights. Inspired
by the fully-connected ANNSs, a new computational method for convolution layers are
realized based on the MAC units to reduce the hardware complexity of convolution
layers [90]. Exploiting MAC units enables designers to reduce power consumption

and silicon area considerably by a hybrid operation (parallel-serial).

By considering the similarity of the fully-connected ANNs and the convolution
operation, we propose an efficient computational method to reduce both the number of
employed MAC units and the number of clock cycles. Experimental results shows that
our proposed computational method results in reduction in area, power dissipation and,
number of clock cycles in comparison to the generic computation method introduced

in [90] work.

5.1.1 Convolution layer

A convolution layer contains a set of filters whose parameters are specified during
the training phase. The convolution operation on an input image using kernel filters
extract fundamental features from the image. The inputs and filters are formed in 3

dimensions:height H, widthW and channel C.

The convolution operation is represented in Figure 5.4. The height and weight of the
filters are smaller than those of the input values. The filter plane slides over the entire
input image step by step and, the output is the result of multiple convolutions. As
an example, convolution operation in Figure 5.5, is considered as Cj, = 1, H;, = 4,
Win=4,Cous =1,Hf =2, Wy =2 and § = 1, where § stands for a stride value. In the
convolution operation process, stride is the number of pixel-shifting in each operation.

The number and the size of the filters varies for different applications.

Serial processing is an alternative approach for parallel fashion computing where
re-using a unit, results in a reduction in hardware complexity by an increase in latency.
As mentioned in Chapter5, ANNs’ hardware complexity are dominated by multipliers
and adders. ANNs can be designed under the time-multiplexed architecture using
the MAC blocks. The structure of the unit is represented in Figure 5.1, where each

neuron in a layer is replaced by a single MAC unit. Hardware realization of the

76

WiWz Wy,

Control| MAC:
Logic :

Figure 5.1 : Multiply-accumulate (MAC) block in the neuron computation.

ANNSs under MAC units can be classified into two models: axonal-based [23] and
dendritic-based [24] models.

For axonal-based model which is shown in Figure 5.2, every single input of a layer
is multiplied by the related weights of all neurons in a layer, where all the outputs are
calculated simultaneously. As a result, axonal-based model does not require obtaining
all the inputs at the same time. The process is realized step by step for all inputs
and, the control logic unit is a simple counter which counts from 1 to i, where i is the

number of inputs. To obtain all of the neuron’s output, i + 1 clock cycles is required.

For dendritic-based model which is shown in Figure 5.3, the value of a next neuron is
calculated by multiplying all inputs with the related neuron’s weights and accumulating
them. This method results in the sequential generation of outputs and every step of
the calculation needs to obtain all the input values to start the next layer calculation.
This model needs n + 1 clock cycles to determine all neurons’ output values where n
is the number of outputs. Also by combining these two models, parallel computing
is enabled in two successive layers to achieve smaller latency in the whole network

computing time [25].

77

Figure 5.2 : Axonal-based model.

Inputs Hidden Layers

Output

Figure 5.3 : Dendritic-based model.

Filters

Input Activation
Maps

H—
*

w

|

o
—wi> "¢

-
_F

“—wi—> i&f‘

<~

Output Activation
Maps

Figure 5.4 : The computation of convolutional layer.

78

Xy

X2

X3 | Xy

Xs

X6

X7 | X

X9

X713

X4

X1s| X1

Figure 5.5 :

wy| ws| wg

Wy | Ws| Wy

XpXw + xxw, + xpxwy+
X5XWy + XgXWs + X x W+

XgX W7+ X;0XWg + XX Wo

XoXW T Xi3XW, + Xxwit+
XgXWy T XX Ws + XgXwy+

XpgXW7 X XWg + XX Wy

XsXWp + XgXWy + XX w3 +
XgXWy+ XppxWs + X Xwg+

X3XW7 + X XWg X 5XWo

XeXW; T XXW, + xgxws+
XjgXWy T X XWs XX W+

X1XW7 T+ X sXWg + XX Wy

The computation of convolutional layer.

Table 5.1 : The axonal-based model data flow for convolutional computation.

Clock Cycles Neuron #1 Neuron #2 Neuron #3 Neuron #4
clk #1 X1 X Wy X; x0 X; x0 X; x0
clk #2 XzXWz XzXW] X2><0 X2X0
clk #3 X3><W3 X3><W2 X3><0 X3><O
clk #4 X4><0 X4><W3 X4><0 X4><0
clk #5 X5><W4 X5><() X5><W1 X5><O
clk #6 X X Ws X X Wy X X W, X X W,
clk #7 X7 X W6 X7 X W5 X7 X W3 X7 X W2
clk #8 XgXO X8><W6 XgXO XgXWg,
clk #9 X9><W7 X9><0 X9><W4 XgXO
clk #10 X]()XWS Xi0 ><W7 X10XW5 X0 ><W4
clk #11 X1 ><W9 X11 ><W8 X1 ><W6 X11 XW5
clk #12 Xip X 0 X2 X W9 Xip X 0 X2 X W6
clk #13 X13 x 0 X13 x 0 X13 X W7 X13 x 0
clk #14 X4 X 0 X4 X 0 X4 X Ws Xj4 X W7
clk #15 X5 x 0 Xi5 x 0 X5 XW9 Xis XWg
clk #16 X6 X 0 Xi6 X 0 X6 X 0 Xi6 X W9

79

08

oM X ©~N 84 X mam Ly x EN 0\5 X Nam .n\S X :vm AL X EN M X wvm N X hvm LM X cvm v# N[0
o x S 3y x YIxX Ly x m~N In x 1 SM X cﬁvm AL X 6X EM X LY M X evm TR E) ¢ CH IO
oM XX S XTI X0 IUXEX MXEX TMXOIX EMXPX U xXEX XX TP
MY x0T Imx6x IMXEX MXIX O TMXSX O MMXEX mMxIX mMxIX #3410
6# UOINQN {# UOINQN /# UOINQN O# UOINAN G# UOINAN f# UOINAN ¢# UOINAN 7# UOINAN [# UOINAN SO[OAD) Yo0[D

‘uonendwod [euorIN[OAU0D 10J MO} eiep poylow pasodoid oy, : 7°S dqeL

5.2 Experimental Results

To evaluate the performance of our proposed method, we considered convolutional
operation with 3 different filter sizes. The employed filter sizes are 3 x 3, 5 x 5 and,
7 x 7. Additionally, to compare the efficiency of our proposed method, we provided
the hardware cost of axonal-based computation method. As an input, we considered
the MNIST handwritten digit recognition data set for the convolution process, where

the size of the images are 28 x 28 pixels.

The operation designs were described in Verilog and synthesized using Cadence
Genus tool with the TSMC 40nm design library. Hardware implementation results
are represented in Figure 5.6. As discussed in Section 5.1.1, the convolution operation
is processed based on the fully-connected ANN model. According to the convolution

process essence, the output pixels size decreases by increasing the size of filters.

Experimental results show our proposed method requires %14, %26 and, %38 less
clock numbers for 3 x 3, 5 x 5 and, 7 x 7 filters, respectively, when compared to the

exploited axonal-based model in [90].

Latency (us) in this work denotes as a required time for the output to be obtained
after the input is applied. Latency is determined as the multiplication of clock period
by the number of clock cycles to obtain the ANN output. The clock period was
reduced by using the re-timing technique in the synthesis tool iteratively. Due to the
simplicity of our proposed method structure, the resulted clock period of our proposed
method by re-timing technique is lesser than the axonal-based model. As a result, the
latency reduction value is even greater for our proposed method, when compared to

the axonal-based model.

According to the experimental results in Figure 5.6, our proposed method obtains the
output 31%, 46% and, 49% faster for 3 x 3,5 x 5 and, 7 x 7 filters, respectively, when
compared to the other method. As discussed in Section 5.1.1, the filter size determines
the numbers of required MAC units, and this value is negligible for our proposed
method when compared to the axonal-based model. Contrarily to the axonal-based

model, all the exploited MAC units are active in our proposed method. The realization

81

of the convolution operation by small numbers of MAC units in our proposed method
yields a remarkable reduction in term of silicon area and total power dissipation.
According to the experimental results in Figure 5.6, our proposed approach saves

around 85% more area when compared to the axonal-based model.

In this study, the switching activity data required for the computation of power
dissipation were generated using the test data in the simulation where the test data
consists of 10000 image samples. The experimental results indicate the efficiency
of the power consumption for our proposed method. According to Figure 5.6, the
dissipated power of our proposed method is only 4%, 3% and, 9% of the conventional

axonal-based model for 3, 5 and, 7 filters, respectively.

Due to remarkable reduction in latency and power consumption for our proposed
method, the energy reduction reached to 98% of the axonal-based model as represented
in Figure 5.6. We note that, the energy consumption computed as the multiplication of

latency by power dissipation.

82

€8

‘[epowr pasvq-jpuoxv Y} sA poylowr pasodod oy Jo symsar (pyuowadxy : 9°S In3I

pasodoid = paseq-[euoxy m pasodoid = paseq-|euoxy m pesodoidm paseq-[euoxy m
2213 19114 9215 13114 az1S 43114
Lxl xS €4 Ll GaS €4 Lxl GxS €xE
| — I
8 € v o . 26 186'T g . . ,
2 TLL'T = S6T'6C 608'TE
g g 8/5'€S
= 0
Q =] >
2 z g
c m ~—
3 e 5
=3 o NG
o >
3 = .
= - = 2€8'152
T < 80'62 99162 S 2L0'082]
10T 15T G62'se 118'70¢8
pasodoidm paseq-|euoxy m pasodoidm paseq-leuoxy m pasodoidm paseq-|euoxy m
9zIS 19y 9715 1314 9ZIS 18114
IxL GxS £xg Ll xS €4 GxG £xg £xg
6 e 6 | | |
< Iy | | o
3 | g v . g
0 3 | | %
4 ‘ . z
£ 18T £06'C ' =< | |
3 seoe 5 98y 5
214 g ~ 8/G | g
= vor'y =
9.5 : 819
9.9 5eS'S SvEs 98L 98L 98

6. CONCLUSIONS

In this thesis, we initially perform area optimization techniques for approximate
ripple-carry adders and Wallace-tree multipliers to satisfy a given error constraint.
Our techniques are accurate and fast, in courtesy of the proposed error calculation
techniques that consider error dependencies of building blocks of adders and

multipliers as well as occurrence probabilities of input assignments.

In the next step, we investigated different synthesis techniques to realize feed-forward
ANN:Ss. To reduce the bulky area of the ANNSs, we discussed time-multiplexed method
and developed two different time-multiplexed realization method which we called
them SMAC_NEURON and SMAC_ANN. The experimental results showed that
however for small ANN, SMAC_ANN dissipates minor power and occupies a lesser
area when compared to the SMAC_NEURON but, this assumption is not valid for the
ANN, which posses many layers or neurons. The reason is, by increasing the size
of the ANN structure, controlling the MAC unit by clock cycle dominates the whole

design, and the area or power for processing is negligible compared to the control unit.

By using the proposed multipliers on ANNs, we discovered that the area and energy
usage in the design of ANN have decreased significantly relative to the approximate
multipliers already proposed in the literature. Also, we showed that exploiting proper
approximate adders based on the employed multipliers can reduce the complexity of
structure without changing in the accuracy. To exploit the proposed multipliers and
adders in ANNSs structure based on the desired accuracy, we offered the approximate
level as a novel error metric. The generation of the approximate arithmetic units based
on this error metric can be done in linear times for different bit-width inputs as opposed

to the other methods.

According to the experimental results, the introduced metric has a linear relationship
with ANN accuracy. Furthermore, we proposed an algorithm to determine the
approximate level of multipliers and adders by considering the desired accuracy.

Experimental results clearly show that the use of approximate adders and multipliers

85

in the ANN designs reduces the design complexity significantly with the same
hardware accuracy, compared to the ANN designs using exact adders and multipliers.
Finally, to prove the efficiency of the proposed method in the CNN applications,
we presented hardware efficient implementation of the convolution layers under the
time-multiplexed architecture where computing resources are re-used using MAC
blocks. The conventional MAC-based realization, which is known as the axonal-based
model, suffers from high latency. Also, a high number of idle MAC units in
the mentioned method yields in a leakage power dissipation. To overcome these
drawbacks, we introduced a novel computing approach to speed up the convolutional
computation by 2x while only use roughly 2% of the area, power and, energy of
the conventional MAC-based method. As future work, we plan to realize a CNN
completely under this proposed structure, and obtain the efficiency of our proposed

approach for the CNN in real-world applications.

86

REFERENCES

[1] Gupta, V., Mohapatra, D., Raghunathan, A. and Roy, K. (2013).
Low-Power Digital Signal Processing Using Approximate Adders, I[EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 32(1), 124—-137.

[2] Yang, Z., Jain, A., Liang, J., Han, J. and Lombardi, F. (2013). Approximate
XOR/XNOR-based adders for inexact computing, 2013 [3th IEEE
International Conference on Nanotechnology (IEEE-NANO 2013),
pp-690-693.

[3] Almurib, H.A.F., Kumar, T.N. and Lombardi, F. (2016). Inexact designs for
approximate low power addition by cell replacement, 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.660—665.

[4] Momeni, A., Han, J., Montuschi, P. and Lombardi, F. (2015). Design
and Analysis of Approximate Compressors for Multiplication, IEEE
Transactions on Computers, 64(4), 984-994.

[5] Ha, M. and Lee, S. (2017). Multipliers with Approximate 4-2 Compressors and
Error Recovery Modules, volume PP, pp.1-1.

[6] Ercegovac, M. and Lang, T. (2003). Digital Arithmetic, Morgan Kaufmann.

[7] Aksoy, L., Costa, E., Flores, P. and Monteiro, J. (2012). Multiplierless Design
of Linear DSP Transforms, VLSI-SoC: Advanced Research for Systems
on Chip, Springer Berlin Heidelberg, pp.73-93.

[8] Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D. and Chen, M. (2014). Medical
image classification with convolutional neural network, International
Conference on Control Automation Robotics Vision, pp.844—848.

[9] Li, H., Lin, Z., Shen, X., Brandt, J. and Hua, G. (2015). A Convolutional
Neural Network Cascade for Face Detection, IEEE Conference on
Computer Vision and Pattern Recognition, pp.5325-5334.

[10] Noh, H., Hong, S. and Han, B. (2015). Learning Deconvolution Network for
Semantic Segmentation, IEEE International Conference on Computer
Vision, pp.1520-1528.

[11] Cheng, J., Wang, Ps., Li, G., Hu, Q.h. and Lu, H.q. (2018). Recent advances
in efficient computation of deep convolutional neural networks, Frontiers
of Information Technology & Electronic Engineering, 19(1), 64-77.

[12] Misra, J. and Saha, 1. (2010). Artificial neural networks in hardware: A survey
of two decades of progress, Neurocomputing, 74(1), 239 — 255.

87

[13] Holi, J.L. and Hwang, J.. (1993). Finite precision error analysis of neural
network hardware implementations, /IEEE Transactions on Computers,
42(3), 281-290.

[14] Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A. (2016). XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,
Computer Vision — ECCV 2016, Springer International Publishing,
pp-525-542.

[15] Tann, H., Hashemi, S., Bahar, R.I. and Reda, S. (2017). Hardware-Software
Codesign of Accurate, Multiplier-free Deep Neural Networks, Design
Automation Conference (DAC), pp.28:1-28:6.

[16] Lee, E.H., Miyashita, D., Chai, E., Murmann, B. and Wong, S.S.
(2017). LogNet: Energy-efficient neural networks using logarithmic
computation, 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp.5900-5904.

[17] Li, G., Li, F., Zhao, T. and Cheng, J. (2018). Block convolution: Towards
memory-efficient inference of large-scale CNNs on FPGA, 2018

Design, Automation Test in Europe Conference Exhibition (DATE),
pp-1163-1166.

[18] Aksoy, L., da Costa, E., Flores, P. and Monteiro, J. (2008). Exact
and Approximate Algorithms for the Optimization of Area and
Delay in Multiple Constant Multiplications, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(06),

1013-1026.

[19] Aksoy, L., Parvin, S., Nojehdeh, M.E. and Altun, M. (2020). Efficient
Time-Multiplexed Realization of Feedforward Artificial Neural Net-
works, 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), pp.1-5.

[20] Brown, B.D. and Card, H.C. (2001). Stochastic neural computation. I.
Computational elements, IEEE Transactions on Computers, 50(9),
891-905.

[21] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu,
Z., Sun, N. and Temam, O. (2014). DaDianNao: A Machine-Learning
Supercomputer, 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp.609—622.

[22] Lee, S.K., Whatmough, P.N., Brooks, D. and Wei, G. (2019). A
16-nm Always-On DNN Processor With Adaptive Clocking and
Multi-Cycle Banked SRAMs, IEEE Journal of Solid-State Circuits,
54(7), 1982-1992.

[23] Arthur, J.V., Merolla, P.A., Akopyan, F., Alvarez, R., Cassidy, A., Chandra,
S., Esser, S.K. and Modha, D.S. (2012). Building block of a
programmable neuromorphic substrate: A digital neurosynaptic core,

International Joint Conference on Neural Networks (IJCNN), pp.1-8.

88

[24] Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,
P. and Modha, D.S. (2015). TrueNorth: Design and Tool Flow of a
65 mW 1 Million Neuron Programmable Neurosynaptic Chip, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10), 1537-1557.

[25] Park, H. and Kim, T. (2018). Structure optimizations of neuromorphic
computing architectures for deep neural network, 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.183—188.

[26] Zhang, Q., Wang, T., Tian, Y., Yuan, F. and Xu, Q. (2015). ApproxANN:
An Approximate Computing Framework for Artificial Neural Network,
DATE, pp.701-706.

[27] Esmali Nojehdeh, M., Aksoy, L. and Altun, M. (2020). Efficient Hardware
Implementation of Artificial Neural Networks Using Approximate
Multiply-Accumulate Blocks, 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp.96-101.

[28] Ansari, ML.S., Mrazek, V., Cockburn, B.F., Sekanina, L., Vasicek, Z. and Han,
J. (2020). Improving the Accuracy and Hardware Efficiency of Neural
Networks Using Approximate Multipliers, IEEE Transactions on Very
Large Scale Integration Systems, 28(2), 317-328.

[29] Mrazek, V., Hrbacek, R., Vasicek, Z. and Sekanina, L. (2017). EvoApproxSb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods, (DATE), pp.258-261.

[30] Yamada, Y., Sano, T., Tanabe, Y., Ishigaki, Y., Hosoda, S., Hyuga, F.
and Yoshikawa, T. (2020). A 20.5 TOPS Multicore SoC With DNN
Accelerator and Image Signal Processor for Automotive Applications,
IEEE Journal of Solid-State Circuits, 55(1), 120—-132.

[31] Bernasconi, A. and Ciriani, V. (2014). 2-SPP Approximate Synthesis for Error

Tolerant Applications, Euromicro Conference on Digital System Design,
pp-411-418.

[32] Kish, L.B. (2002). End of Moore’s law: thermal (noise) death of integration in
micro and nano electronics, Physics Letters A, 305(3), 144 — 149.

[33] Gupta, V., Mohapatra, D., Park, S.P., Raghunathan, A. and Roy, K. (2011).
IMPACT: IMPrecise adders for low-power approximate computing,
IEEE/ACM International Symposium on Low Power Electronics and
Design, pp.409-414.

[34] Han, J. and Orshansky, M. (2013). Approximate computing: An emerging
paradigm for energy-efficient design, 2013 18th IEEE European Test
Symposium (ETS), pp.1-6.

[35] Hanif, M.A., Hafiz, R., Hasan, O. and Shafique, M. (2017). QuAd: Design and
Analysis of Quality-Area Optimal Low-Latency Approximate Adders,
Proceedings of the 54th Annual Design Automation Conference 2017,
DAC *17, ACM, New York, NY, USA, pp.42:1-42:6.

89

[36] Jiang, H., Han, J., Qiao, F. and Lombardi, F. (2016). Approximate Radix-8
Booth Multipliers for Low-Power and High-Performance Operation,
IEEE Transactions on Computers, 65(8), 2638-2644.

[37] Liu, C., Han, J. and Lombardi, F. (2014). A Low-power, High-performance
Approximate Multiplier with Configurable Partial Error Recovery,
Proceedings of the Conference on Design, Automation & Test in Europe,
DATE ’ 14, European Design and Automation Association, 3001 Leuven,
Belgium, Belgium, pp.95:1-95:4.

[38] Miao, J., Gerstlauer, A. and Orshansky, M. (2013). Approximate logic
synthesis under general error magnitude and frequency constraints,
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp.779-786.

[39] Shin, D. and Gupta, S.K. (2010). Approximate Logic Synthesis for Error
Tolerant Applications, Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, European Design and
Automation Association, 3001 Leuven, Belgium, Belgium, pp.957-960.

[40] Venkataramani, S., Roy, K. and Raghunathan, A. (2013).
Substitute-and-simplify: A Unified Design Paradigm for Approximate
and Quality Configurable Circuits, Proceedings of the Conference on
Design, Automation and Test in Europe, DATE 13, EDA Consortium,
San Jose, CA, USA, pp.1367-1372.

[41] Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K. and Raghunathan,
A. (2012). SALSA: Systematic Logic Synthesis of Approximate Cir-

cuits, Proceedings of the 49th Annual Design Automation Conference,
DAC ’12, ACM, New York, NY, USA, pp.796-801.

[42] Wu, Y. and Qian, W. (2016). An Efficient Method for Multi-level Approximate
Logic Synthesis Under Error Rate Constraint, Proceedings of the 53rd
Annual Design Automation Conference, DAC 16, ACM, New York, NY,
USA, pp.128:1-128:6.

[43] Zou, C., Qian, W. and Han, J. (2015). DPALS: A dynamic programming-based
algorithm for two-level approximate logic synthesis, 2015 IEEE 11th
International Conference on ASIC (ASICON), pp.1-4.

[44] Kulkarni, P., Gupta, P. and Ercegovac, M. (2011). Trading Accuracy for Power
with an Underdesigned Multiplier Architecture, 2011 24th Internatioal
Conference on VLSI Design, pp.346-351.

[45] Wang, Z., Jullien, G.A. and Miller, W.C. (1995). A new design technique for
column compression multipliers, volume 44, pp.962-970.

[46] King, E.J. and Swartzlander, E.E. (1997). Data-dependent truncation scheme
for parallel multipliers, Conference Record of the Thirty-First Asilomar
Conference on Signals, Systems and Computers (Cat. No.97CB36136),
volume 2, pp.1178-1182 vol.2.

90

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

Schulte, M.J. and Swartzlander, E.E. (1993). Truncated multiplication with

correction constant [for DSP], Proceedings of IEEE Workshop on VLSI
Signal Processing, pp.388—396.

Hashemi, S., Bahar, R.I. and Reda, S. (2015). DRUM: A Dynamic Range

Unbiased Multiplier for Approximate Applications, Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’15, IEEE Press, Piscataway, NJ, USA, pp.418-425.

Saadat, H., Bokhari, H. and Parameswaran, S. (2018). Minimally Biased

Ye,

Multipliers for Approximate Integer and Floating-Point Multiplication,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11), 2623-2635.

R., Wang, T., Yuan, F, Kumar, R. and Xu, Q. (2013). On

reconfiguration-oriented approximate adder design and its application,
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp.48-54.

Ichihara, H., Inaoka, T., Iwagaki, T. and Inoue, T. (2015). Logic simplification

by minterm complement for error tolerant application, 2015 33rd IEEE
International Conference on Computer Design (ICCD), pp.94—100.

Scarabottolo, 1., Ansaloni, G. and Pozzi, L. (2018). Circuit carving: A

methodology for the design of approximate hardware, 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.545-550.

Hashemi, S., Tann, H. and Reda, S. (2018). BLASYS: Approximate Logic

Synthesis Using Boolean Matrix Factorization, Proceedings of the 55th
Annual Design Automation Conference, DAC ’18, ACM, New York, NY,
USA, pp.55:1-55:6.

Alimoglu, F. and Alpaydin, E. (1997). Combining Multiple Representations and

Classifiers for Pen-based Handwritten Digit Recognition, International
Conference on Document Analysis and Recognition, pp.637—640.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet Classification

with Deep Convolutional Neural Networks, International Conference on
Neural Information Processing Systems, pp.1106—1114.

Misra, J. and Saha, I. (2010). Artificial Neural Networks in Hardware: A Survey

of Two Decades of Progress, Neurocomputing, 74(1-3), 239-255.

Hecht-Nielsen, R. (1990). Neurocomputing, Addison-Wesley.

HayKin,

S. (1999). Neural Networks: A Comprehensive Foundation,
Prentice-Hall.

Courbariaux, M., Bengio, Y. and David, J.P. (2015). Binaryconnect: Training

Deep Neural Networks with Binary Weights During Propagations,
ICNIPS, pp.3123-3131.

91

[60] Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R. and Bengio, Y.
(2016). Binarized Neural Networks: Training Deep Neural Networks

with Weights and Activations Constrained to +1 or -1, arXiv e-prints,
arXiv:1602.02830.

[61] Ding, R., Liu, Z., Blanton, R.D. and Marculescu, D. (2018). Quantized Deep
Neural Networks for Energy Efficient Hardware-based Inference, Asia
and South Pacific Design Automation Conference, pp.1-8.

[62] Sarwar, S.S., Venkataramani, S., Raghunathan, A. and Roy, K. (2016).
Multiplier-less Artificial Neurons Exploiting Error Resiliency for

Energy-Efficient Neural Computing, Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp.145-150.

[63] Szabo, T., Antoni, L., Horvath, G. and Feher, B. (2000). A full-parallel digital
implementation for pre-trained NNs, IJJCNN, pp.49-54.

[64] Parhi, K. (1999). VLSI Digital Signal Processing Systems: Design and
Implementation, John Wiley & Sons.

[65] Horowitz, M. (2014). Computing’s Energy Problem (and what we can do about
it), IEEE International Solid-State Circuits Conference.

[66] Aksoy, L., Gunes, E.O. and Flores, P. (2010). Search algorithms for the
multiple constant multiplications problem: Exact and approximate,

Microprocessors and Microsystems, Embedded Hardware Design, 34(5),
151-162.

[67] Aksoy, L., Flores, P. and Monteiro, J. (2014). ECHO: A novel method
for the multiplierless design of constant array vector multiplication,
International Symposium on Circuits and Systems, pp.1456—1459.

[68] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A., Antiga, L. and Lerer, A. (2017).
Automatic differentiation in PyTorch, Conference on Neural Information
Processing Systems, Autodiff Workshop.

[69] The MathWorks Inc., (2020). Deep Learning Toolbox, Natick, Massachusetts,
United States, https://www.mathworks.com/help/
deeplearning/.

[70] Gustafsson, O. (2007). Lower Bounds for Constant Multiplication Problems,
IEEE Transactions on Circuits and Systems II: Express Briefs, 54(11),
974-978.

[71] Boullis, N. and Tisserand, A. (2005). Some Optimizations of Hardware
Multiplication by Constant Matrices, IEEE Transactions on Computers,
54(10), 1271-1282.

[72] Gustafsson, O. (2007). A Difference Based Adder Graph Heuristic for Multiple
Constant Multiplication Problems, International Symposium on Circuits
and Systems, pp.1097-1100.

92

https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/

[73] Y. Voronenko, ML.P. (2007). Multiplierless Multiple Constant Multiplication,
ACM Transactions on Algorithms, 3(2).

[74] Kang, H.J. and Park, I.C. (2001). FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders, IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 48(8),
770-7717.

[75] Demirsoy, S.S., Dempster, A.G. and Kale, I. (2002). Power analysis of
multiplier blocks, International Symposium on Circuits and Systems,
pp-297-300.

[76] Aksoy, L., Costa, E., Flores, P. and Monteiro, J. (2010). Optimization of
Area and Delay at Gate-Level in Multiple Constant Multiplications,

Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, pp.3—10.

[77] Kumm, M., Hardieck, M. and Zipf, P. (2017). Optimization of Constant
Matrix Multiplication with Low Power and High Throughput, /EEE
Transactions on Computers, 66(12), 2072-2080.

[78] Demirsoy, S., Kale, I. and Dempster, A. (2007). Reconfigurable Multiplier
Constant Blocks: Structures, Algorithm and Applications, Springer
Circuits, Systems and Signal Processing, 26(6), 793-827.

[79] Aksoy, L., Flores, P. and Monteiro, J. (2014). Multiplierless design of folded
DSP blocks, ACM Transactions on Design Automation of Electronic
Systems, 20(1), 14:1-14:24.

[80] Maller, K., Kumm, M., Kleinlein, M. and Zipf, P. (2016). Reconfigurable con-
stant multiplication for FPGAs, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(6), 927-937.

[81] Seo, Y. and Kim, D. (2010). A New VLSI Architecture of Parallel
Multiplier—Accumulator Based on Radix-2 Modified Booth Algorithm,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
18(2), 201-208.

[82] Nedjah, N., da Silva, R.M., Mourelle, L.M. and da Silva, M.V.C. (2009).
Dynamic MAC-based architecture of artificial neural networks suitable

for hardware implementation on FPGAs, Neurocomputing, 72(10), 2171
—-2179.

[83] ML.E. Nojehdeh, S.parvin, M. (2021). Efficient Hardware Realizations of
Feed-forward Artificial Neural Networks.

[84] Kingma, D.P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization,
arXiv e-prints, arXiv:1412.6980.

[85] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks, International Conference on Artificial
Intelligence and Statistics, pp.249-256.

93

[86] He, K., Zhang, X., Ren, S. and Sun, J. (2015). Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,
arXiv e-prints, arXiv:1502.01852.

[87] Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S. (2018). Activation
Functions: Comparison of Trends in Practice and Research for Deep
Learning, arXiv e-prints, arXiv:1811.03378.

[88] Nojehdeh, M.E. and Altun, M. (2020). Systematic synthesis of approximate
adders and multipliers with accurate error calculations, Integration, 70,
99 - 107.

[89] LeCun, Y., Cortes, C. and Burges, C., (2010), Mnist handwritten digit database.
AT&T Labs.

[90] Ardakani, A., Condo, C., Ahmadi, M. and Gross, W.J. (2017). An architecture
to accelerate convolution in deep neural networks, IEEE Transactions on
Circuits and Systems I: Regular Papers, 65(4), 1349-1362.

94

CURRICULUM VITAE

Name Surname : Mohammadreza Esmali Nojehdeh

Place and Date of Birth

E-Mail

EDUCATION

e B.Sc. : 2010, Ardabil University, Electrical Engineering

e M.Sc. : 2015, Istanbul Technical University, Faculty of
Electrical and Electronics, Department of Electrical
Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

e 2016-Now Istanbul Technical University at Emerging Circuits and Computation
(ECC) Group.

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

e M. E. Nojehdeh, M. Altun (2019). Systematic synthesis of approximate adders

and multipliers with accurate error calculations, Integration, ISSN 0167-9260,
https://doi.org/10.1016/j.v1s1.2019.10.001.

e M. E. Nojehdeh, L. Aksoy and, M.Altun, (2020). Efficient Hardware Imple-
mentation of Artificial Neural Networks Using Approximate Multiply-Accumulate
Blocks, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Limassol, Cyprus, 2020, pp. 96-101, doi: 10.1109/ISVLSI49217.2020.00027.

e L. Aksoy, S. Parvin, M. E. Nojehdeh and M. Altun, (2020). Efficient
Time-Multiplexed Realization of Feedforward Artificial Neural Networks, 2020
IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020,
pp- 1-5, doi: 10.1109/ISCAS45731.2020.9181002.

95

kufluoglu
Rectangle

kufluoglu
Rectangle

M. E. Nojehdeh, M. Altun, (2021). Energy Efficient Hardware Implementation of
Feed-Forward artificial Neural Networks Using Approximate Arithmetic Blocks,
ELSEVIER, Integration.(Under Review)

M. E. Nojehdeh, S. Parvin and, M. Altun, (2021). Efficient Hardware Realizations
of Feed-forward Artificial Neural Networks, ELSEVIER, Integration.(Under
Review)

M. E. Nojehdeh, S. Parvin and, M. Altun, (2021). Efficient Hardware
Implementation of Convolution Layers Using Multiply-Accumulate Blocks, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI).

96

	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	2. APPROXIMATE COMPUTING
	Background and Preliminary Works
	Ripple-Carry Adder Design
	1-bit full adder design
	n-bit ripple-carry adder design

	Approximate Multiplier Design
	Design of 1-bit approximate full adder (APFA) and half adder (APHA)
	n-bit wallace-tree multiplier design

	Experimental Results
	Area, power, delay, and energy versus average error
	Image processing: peak signal to noise ratio (PSNR) versus area saving
	Neural network: misclassification rate versus area saving

	3. ANN HARDWARE REALIZATION
	Introduction
	Background
	ANN basics
	Multiplierless constant multiplications
	Related work

	Design Architectures
	Parallel design
	Time-Multiplexed design
	 smac_neuron architecture
	smac_ann architecture

	Finding the Minimum Quantization Value
	ANNs Under the Shift-Adds Architecture
	Multiplierless ANN design under the parallel architecture
	Multiplierless ANN design under the time-multiplexed architectures

	SIMURG: The CAD Tool
	Experimental Results

	4. EFFICIENT HARDWARE REALIZATION OF ANNS BY APPROXIMATE BLOCKS
	Introduction
	Approximate Blocks for ANN
	Approximate adders
	Approximate multipliers
	Approximate level
	SMAC_NEURON
	SMAC_ANN

	Experimental Results
	Pen-digit problem
	MNIST problem

	5. CONVOLUTION LAYER
	Introduction
	Convolution layer

	Experimental Results

	6. CONCLUSIONS
	REFERENCES
	CURRICULUM VITAE

