
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

APPROXIMATE ARTIFICIAL NEURAL NETWORK
HARDWARE AWARE
SYNTHESIS TOOL

Ph.D. THESIS

Mohammadreza ESMALI NOJEHDEH

Department of Electronic & Communication Engineering

Electronic Engineering Programme

JULY 2021

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

APPROXIMATE ARTIFICIAL NEURAL NETWORK
HARDWARE AWARE
SYNTHESIS TOOL

Ph.D. THESIS

Mohammadreza ESMALI NOJEHDEH
(504162212)

Department of Electronic & Communication Engineering

Electronic Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Mustafa ALTUN

JULY 2021

İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

YAKLAŞIK YAPAY SİNİR AĞI İÇIN
DONANIMA DUYARLI

SENTEZ ARACI

DOKTORA TEZİ

Mohammadreza ESMALI NOJEHDEH
(504162212)

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Elektronik Mühendisliği Programı

Tez Danışmanı: Assoc. Prof. Dr. Mustafa ALTUN

TEMMUZ 2021

Mohammadreza ESMALI NOJEHDEH, a Ph.D. student of ITU Graduate School stu-
dent ID 504162212, successfully defended the dissertation entitled “APPROXIMATE
ARTIFICIAL NEURAL NETWORK HARDWARE AWARE SYNTHESIS TOOL”,
which he prepared after fulfilling the requirements specified in the associated legisla-
tions, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Mustafa ALTUN
Istanbul Technical University

Jury Members : Prof. Dr. Sıddıka Berna ÖRS YALÇIN
Istanbul Technical University

Asst. Prof. Dr. Tuba AYHAN
MEF University

Assoc. Prof. Dr. Burcu ERKMEN
Yıldız Technical University

Asst. Prof. Dr. İsmail ÇEVİK
Istanbul Technical University

Date of Submission : 26 May 2021
Date of Defense : 2 July 2021

v

vi

To my family,

vii

viii

FOREWORD

My most sincere and special gratitude goes to my supervisor Assoc. Prof. Dr. Mustafa
ALTUN. Thank you for the continuous support and extraordinary supervisory to my
PhD study. It was my fortune and honor to have the great supervision from you. I
would also like to thank Dr. Levent AKSOY, a friend and colleague who changed my
way of thinking, my attitudes to this world and my vision to the future. I also wish
to thank the members of the thesis committe; Prof. Dr. Sıddıka Berna ÖRS YALÇIN
and Asst. Prof. Dr. Tuba AYHAN for their comments and valuable advice. Last but
by no means least, I would give my special gratitude to my families, especially my
parents. They have sacrificed so much to support my life and study. I cannot express
my thankful heart to them with bare language.

July 2021 Mohammadreza ESMALI NOJEHDEH

ix

x

TABLE OF CONTENTS

Page

FOREWORD.. ix
TABLE OF CONTENTS... xi
ABBREVIATIONS .. xiii
LIST OF TABLES .. xv
LIST OF FIGURES .. xvii
SUMMARY .. xix
ÖZET .. xxi
1. INTRODUCTION .. 1
2. APPROXIMATE COMPUTING ... 5

2.1 Background and Preliminary Works .. 5
2.2 Ripple-Carry Adder Design.. 9

2.2.1 1-bit full adder design ... 9
2.2.2 n-bit ripple-carry adder design.. 14

2.3 Approximate Multiplier Design ... 21
2.3.1 Design of 1-bit approximate full adder (APFA) and half adder (APHA). 21
2.3.2 n-bit wallace-tree multiplier design .. 25

2.4 Experimental Results.. 26
2.4.1 Area, power, delay, and energy versus average error................................ 27
2.4.2 Image processing: peak signal to noise ratio (PSNR) versus area saving 32
2.4.3 Neural network: misclassification rate versus area saving 32

3. ANN HARDWARE REALIZATION.. 35
3.1 Introduction .. 35
3.2 Background... 37

3.2.1 ANN basics ... 37
3.2.2 Multiplierless constant multiplications ... 37
3.2.3 Related work ... 39

3.3 Design Architectures .. 40
3.3.1 Parallel design... 41
3.3.2 Time-Multiplexed design .. 41

3.3.2.1 SMAC_NEURON ARCHITECTURE .. 42
3.3.2.2 SMAC_ANN ARCHITECTURE .. 44

3.4 Finding the Minimum Quantization Value ... 44
3.5 ANNs Under the Shift-Adds Architecture ... 46

3.5.1 Multiplierless ANN design under the parallel architecture 46
3.5.2 Multiplierless ANN design under the time-multiplexed architectures 46

3.6 SIMURG: The CAD Tool... 47
3.7 Experimental Results.. 49

xi

4. EFFICIENT HARDWARE REALIZATION OF ANNS BY APPROXI-
MATE BLOCKS ... 55

4.1 Introduction .. 55
4.2 Approximate Blocks for ANN.. 56

4.2.1 Approximate adders .. 56
4.2.2 Approximate multipliers ... 57
4.2.3 Approximate level... 59

4.2.3.1 SMAC_NEURON .. 59
4.2.3.2 SMAC_ANN ... 61

4.3 Experimental Results.. 62
4.3.1 Pen-digit problem.. 63
4.3.2 MNIST problem.. 69

5. CONVOLUTION LAYER ... 75
5.1 Introduction .. 75

5.1.1 Convolution layer.. 76
5.2 Experimental Results.. 81

6. CONCLUSIONS... 85
REFERENCES.. 87
CURRICULUM VITAE... 95

xii

ABBREVIATIONS

AAL : Adders Approximation Level
ANN : Artificial Neural Network
APAD : Approximate Adder
ASIC : Application-Specific Integrated Circuit
BNN : Binary Neural Networks
BHA : Behavioral Accuracy
CAD : Computer Aided Design
CAVM : Constant Array-Vector Multiplication
Cin : Carry In
CMVM : Constant Matrix-Vector Multiplication
CMOS : Complementary Metal-Oxide Semiconductor
CNN : Convolutional Neural Networks
Cout : Carry Out
CPU : Central Processing Unit
CSD : Canonical Signed Digit
DBR : Digit-Based Recoding
EAAED : Estimated Average Absolute Error Distance
EXAD : Exact Adder
FA : Full Adder
FPGA : Field Programmable Gate Array
GPU : Graphics processing Unit
HA : Half Adder
HAC : Hardware Accuracy
HMR : Hardware Misclassification Rate
IOT : Internet of Things
LEBZAM : Least Significant Bit Zero Approximate Multiplier
LLS : Largest Left Shift value
MAC : Multiply Accumulate unit
MCM : Multiple Constant Multiplication
MLP : Multilayer Perceptrons
MR : Misclassification Rate
PBAM : Probabilistic Based Approximate Multiplier
PDP : Power-Delay Product
PSNR : Peak Signal-to Noise Ratio
RNN : Recurrent Neural Networks
SCM : Single Constant Multiplication
SLS : Smallest Left Shift value
SMAC : Single Multiply Accumulate unit
SRAM : Static Random-Access Memory
TAED : Total Absolute Error Distance

xiii

xiv

LIST OF TABLES

Page

Table 2.1 : Truth table of sample approximate adders. .. 7
Table 2.2 : Truth tables of exact and approximate 1-bit adders. 13
Table 2.3 : Calculation of Ei for example 1. .. 17
Table 2.4 : Values of Ei’s for different APAD combinations. 17
Table 2.5 : Synthesis of 8-bit adders.. 20
Table 2.6 : Truth table of the proposed approximate full Adder APFA................. 23
Table 2.7 : Truth table of the proposed approximate half adder APHA. 24
Table 2.8 : 1-Bit adder results. ... 29
Table 2.9 : 8-Bit adder results. ... 30
Table 2.10 : 8-Bit×8-Bit multiplier results.. 31
Table 2.11 : Neural network misclassification rates for different area savings. 34
Table 3.1 : Details of ANNs on training and hardware design. 49
Table 4.1 : SMAC_NEURON using approximate multipliers. 65
Table 4.2 : SMAC_NEURON using approximate multipliers and adders. 66
Table 4.3 : SMAC_ANN using approximate multipliers. 67
Table 4.4 : SMAC_ANN using approximate multipliers and adders. 68
Table 4.5 : SMAC_ANN for 668-128-10 structure. ... 72
Table 4.6 : SMAC_NEURON for 668-128-10 structure. .. 73
Table 4.7 : SMAC_NEURON for 668-256-256-256-10 structure. 74
Table 5.1 : The axonal-based model data flow for convolutional computation..... 79
Table 5.2 : The proposed method data flow for convolutional computation.......... 80

xv

xvi

LIST OF FIGURES

Page

Figure 2.1 : Ripple carry adder structure... 7
Figure 2.2a : APAD1. ... 12
Figure 2.2b : APAD2. ... 12
Figure 2.2c : APAD3. ... 12
Figure 2.2d : APAD4. ... 12
Figure 2.2 : Karnough Maps of APADs. ... 12
Figure 2.3 : Demonstration of steps for example 3. .. 18
Figure 2.4 : 4×4 bit exact wallace-tree multiplier... 23
Figure 2.5a : AM3 [1]. ... 33
Figure 2.5b : AX1 [2]. .. 33
Figure 2.5c : INAX [3]. .. 33
Figure 2.5d : Trunct. ... 33
Figure 2.5e : Exact. .. 33
Figure 2.5f : Proposed. .. 33
Figure 2.5 : Mean filter results. ... 33
Figure 2.6a : Mmn1 [4]. ... 33
Figure 2.6b : Mmn2 [4]. ... 33
Figure 2.6c : Minho [5]. ... 33
Figure 2.6d : Trunct. ... 33
Figure 2.6e : Exact. .. 33
Figure 2.6f : Proposed. .. 33
Figure 2.6 : Results for blending of two images. .. 33
Figure 3.1 : Artificial neuron. .. 36
Figure 3.2 : ANN with two hidden layers. .. 37
Figure 3.3 : Single constant multiplication (SCM). .. 38
Figure 3.4 : Multiple constant multiplication (MCM). ... 38
Figure 3.5 : Constant array vector multiplication (CAVM)................................... 39
Figure 3.6 : Consant matrix vector multiplication (CMVM). 39
Figure 3.7 : Implementation of a CMVM operation. .. 40
Figure 3.8 : DBR method [6]... 41
Figure 3.9 : The algorithm of [7] optimizing the number of operations. 42
Figure 3.10 : Neuron computations at the kth layer of ANN................................... 42
Figure 3.11 : Multiply-accumulate (MAC) block in the neuron computation. 43
Figure 3.12 : Neuron computations at the kth layer of ANN using MAC blocks.... 43
Figure 3.13 : ANN design using a single MAC block... 45
Figure 3.14 : Neuron computations at the kth layer using a CMVM block............. 46
Figure 3.15 : Multiplierless realization of neuron computations. 47
Figure 3.16 : ANN designs under the parallel architecture. 52

xvii

Figure 3.17 : ANN designs under the SMAC_NEURON architecture....................... 52
Figure 3.18 : ANN designs under the SMAC_ANN architecture.............................. 53
Figure 4.1 : Ripple carry adder. ... 56
Figure 4.2 : Exact 4-bit unsigned multiplier. ... 58
Figure 4.3 : Approximate 4-bit unsigned multiplier. ... 58
Figure 4.4 : Misclassification rate for SMAC_NEURONarchitecture...................... 61
Figure 4.5 : Misclassification rate for SMAC_ANNarchitecture. 62
Figure 4.6 : Energy save percentages. ... 70
Figure 4.7 : Area save percentages of ANN.. 71
Figure 5.1 : Multiply-accumulate (MAC) block in the neuron computation. 77
Figure 5.2 : Axonal-based model. ... 78
Figure 5.3 : Dendritic-based model. .. 78
Figure 5.4 : The computation of convolutional layer. ... 78
Figure 5.5 : The computation of convolutional layer. ... 79
Figure 5.6 : Experimental results... 83

xviii

APPROXIMATE ARTIFICIAL NEURAL NETWORK
HARDWARE AWARE
SYNTHESIS TOOL

SUMMARY

In the previous decade, artificial neural networks (ANNS) have attracted considerable
attention from researchers in many areas and have become a favorite method; from
business to aerospace applications.

We live in the information age where this information feeds artificial intelligence (AI).
According to Forbes’ estimate, over the last two years alone 90 percent of the data in
the world was generated. At first glance, processing more information may seem like
a dissipation of more power in central processing units(CPUs) and graphic processing
units (GPUs) or spending more time to obtain the results, but for the portable systems
due to limitations in battery capacity, power, and hardware area limitations, different
concerns emerge. For example, less consumption of energy is vital to extend the
battery supporting time for mobile devices.

The problem starts to be bold when software engineers regardless of the hardware
sources (especially for portable devices) develop different ANNs architecture, where
they intend to achieve a network with the best performances. Similarly, hardware
engineers’ AI knowledge is limited and any change within hardware design in lack
of this knowledge may yield a catastrophic defect in the expected performance. As
a result, this uninformed state yields a gap between the hardware and software sides
of ANNs. The emerged gap provides a pitch to hardware and software researchers to
play their best performance, where more information about the rival side makes their
performance more eye-catching.

By obtaining this gap, the co-design method or hardware-aware training methods
become prevalent recently. The object of this dissertation is also to develop a
methodology to realize the ANNs with minimum hardware cost by regarding the
software performance.

Limitation in hardware cost, consumed energy, and dissipated power for devices leads
designers to find new architectures and approaches. Approximate computing is one
of them, where this method is an useful technique for error essence systems. By
leveraging the approximate level, a trade-off between the output accuracy and hardware
cost is attainable. For example, assume a 1-bit exact adder costs 18 transistors, and by
removing 3 transistors, a new approximate adder by 15 transistors is achievable, but the
new approximate adder generates inexact results when the input is (0,0), and suppose
that the results for the rest set of the inputs((0,1),(1,0),(1,1)) are correct. Therefore,
the approximate adder saves 3 transistors at the cost of 1 inexact result.

xix

Generally, approximate computing is apple of designers’ eye in applications with
error tolerance capability, consequently, error tolerance inherence of ANNs nominates
approximate computing as a potential method to reduce the hardware complexity of
ANNs. Since multipliers and adders are fundamental building blocks of ANNs, in
this thesis, by introducing novel approximate multipliers and adders we replace them
with exact adders and multipliers. As mentioned earlier, approximate computing is a
trade-off between accuracy and hardware cost, to adjust this trade-off, we synthesized
the proposed approximate blocks based on the desired error metric. Also, we proposed
an equation to calculate the mean absolute error of the introduced approximate
multiplier and adders. Based on our best knowledge, the proposed approximate blocks
are the only ones which are synthesized based on the mean error value.

In next step, we introduced a new error metric called the approximate level to
evaluate the performance of the proposed approximate blocks in ANNs. On the
other hand, ANNs are made up of a lot of multipliers and adders, where the search
space for the best combination of these blocks grows with the increase of bit-width
or neuron numbers. To tackle this problem and by exploiting the proposed error
metric, we introduce a new search algorithm to find the appropriate combination of
the approximate and exact versions of the arithmetic blocks by taking into account the
expected accuracy of ANNs.

Also, in this thesis we realized ANNs under different synthesis techniques to obtain
the pros and cons of each approach. Since the parallel architecture requires a large
area we considered the time-multiplexed architecture as the main architecture method,
where computing resources are re-used in the multiply-accumulate (MAC) blocks.

As an application, the MNIST and Pen-digit database are considered. To examine
the efficiency of the proposed method, various architectures and structures of ANNs
are realized. Our experimental results show that exploiting the proposed approximate
multipliers yields smaller area and power consumption compared to those designed
using previously proposed prominent approximate multipliers. Also, according
to these results, concurrent use of approximate multipliers and adders provides
remarkable results in terms of hardware cost, where we obtain 60% and 40% reduction
in energy consumption and occupied area of the ANN design with the same or better
hardware accuracy compared to the exact adders and multipliers.

To demonstrate the proposed method’s scalability, we propose an efficient method to
realize a convolution layer of convolution neural networks (CNNs). Inspired by the
fully-connected neural network architecture, we introduce an efficient computation
approach to implement convolution operations.

xx

YAKLAŞIK YAPAY SİNİR AĞI İÇIN
DONANIMA DUYARLI

SENTEZ ARACI

ÖZET

Yapay Sinir Ağları (YSA) geçtiğimiz on yılda pek çok alanda araştırmacılar ve
yatırımcılar tarafından büyük ilgi görüyor. Forbes’in tahminine göre "Yalnızca son
iki yılda dünyadaki verilerin yüzde 90’ının üretildiği" bilgi çağında yaşıyoruz. İlk
bakışta, daha fazla bilginin işlenmesi CPU’larda ve GPU’larda daha fazla gücün
harcanması veya sonuç elde etmek için daha fazla zaman harcanması gibi görünüyor,
ancak taşınabilir sistemler için kısıtlı pil kapasitesi, güç ve donanım alanı sınırlamalar
nedeniyle farklı endişeler ortaya çıkıyor. Bu sınırlamaları göz önünde bulundurarak
tasarımcılar yeni mimarilere yönleniyorlar, mesela pil destek süresini uzatmak için
daha az enerji tüketimi hayati önem taşır ve kullanılan mimari en az güç tüketecek
şekilde tasarlanıyor.

Geleneksel olarak, bir devre veya sistem bloğunun tasarımında olası uygulamalar
gözetilerek en kötü durum analizi yapılır ve sadece en yüksek doğruluk istenen
uygulamaya göre tasarım yapılır. Uygulamaların ayrı ayrı gerektirdiği minimum
işlem doğrulukları gözetilmez. Örnek vermek gerekirse, telefonlarımızda sıklıkla
kullandığımız hesap makinesi ve fotoğraf iyileştirme/küçültme uygulamalarının ikisi
için de aynı aritmetik mantık birimi (AMB) kullanılır. Oysaki hesap makinesi için
AMB’nin hatasız işlem yapması elzemken, fotoğraf uygulaması için yüksek doğruluk
şart değildir ve bu işlem yaklaşık hesaplama yapan bir AMB ile de yapılabilir. Böylece
güç tüketimi önemli ölçüde azaltılabilir.

Önerilen tezde yaklaşık hesaplama yapabilen ve düşük güç tüketimli aritmetik
devre blokları tasarlanacaktır ve bu bloklar yapay sınır ağlarında farklı doğrulukta
kullanılmak üzere değişik mimarilerde kullanım özelliklerine sahip olacaktır.

Bir üst seviyede, yani sistem seviyesinde, tasarlanacak devre bloklarının seçilen
mimaride nasıl en verimli şekilde kullanılacağının/yapılandırılacağının belirlenmesi
gerekmektedir ve bu oldukça zor bir problemdir. İçerisinde n adet aritmetik işlem
bloku bulunan ve her bir işlem blokunun m adet yapılandırılabilir seviyesi olan
bir sistem için, optimum çözüm en kötü halde mn değişik durumu gözetilerek
bulunur. Çözüm bulmak için brute-force (kaba kuvvet) yaklaşımı kullanmak pratik
limitlerin oldukça uzağındadır. Bu çalışmada, optimum çözümlere yakın çözümler
bulabilen hiyerarşik bir yaklaşım geliştirilmektedir. Önerdiğimiz yaklaşım, sistemden
istenen doğruluk veya kalite seviyesine göre, her bir devre blokunun sağlaması
gereken doğruluk performansını belirlemektedir ve sonuç olarak sistemin güç tüketimi
minimize edilmektedir.

xxi

Bu tezde hesaplama devreleri toplama ve çarpma devreleri olarak iki ayrı kolda
incelenip, ilk adımda farklı güç, alan ve hata profillerine sahip temel toplama
ve çarpma devreleri lojik olarak sentezlenmektedir. Bu aşamada temel toplama
devresinden kasıt, 1 bitlik tam toplayıcı devresidir; temel çarpıcı devresi ise çarpıcı
mimarisine göre değişiklik gösterir. Aritmetik işlem devresinden beklenen hata
profilini sağlayacak N bitlik toplayıcıya/çarpıcıya ise farklı temel aritmetik işlem
blokları birleştirilerek ulaşılmaktadır. Birleştirme aşamasında, yeni bir algoritma
önererek en düşük güç tüketimi ile istenen hatanın altında kalmayı başaran aritmetik
işlem devreleri sentezlenmektedir.

Bu tezde, bir öğrenme ağı, yaklaşık aritmetik işlem devrelerinin hatalarını tolere
edebilecek şekilde kurulması hedeflenmektedir. Farklı ağ mimarilerinin yaklaşık
hesaplamaya duyarlılığı analiz edilerek, yaklaşık hesaplamaya uygun, değişen
paradigmaları takip edebilen, kısmen veri gürültüsüne karşı dayanıklı bir öğrenme
tekniği seçilecektir.

Sistemin başarımı öğrenme ağı ve algoritmasının parametrelerine (katman sayısı,
öğrenme adımı vs.) hassasiyetle bağlıdır. Bu öğrenme parametrelerinin, hata profilleri
belli düşük güç tüketimli aritmetik işlem devreleri ile birlikte optimize edilmesi
hedeflenmektedir.

Alan ve güç verimliliğini dikkate alarak farklı toplayıcı ve çarpıcı mimarileri arasında,
Ripple Carry toplayıcı ve Wallace-Tree çarpıcı, devre sentezlerinde kullanılmaktadır.

Yaklaşık Rıpple Carry toplayıcı ile ilgili çalışmaların incelenmesinde, geleneksel
hatasız tasarım metodolojisine bir eğilim görüyoruz. Bu tasarımlarda n-bitlik
toplayıcının toplam performansı belirlemek için 1- bitlik toplayıcının ölçümleri
toplanıyor. Her ne kadar bu yöntem, güç, alan ve gecikme metriklerine geçirilse,
toplam n-bitlik Ripple Carry toplayıcının ortalama veya en kötü hata durumu, toplam
hata toplamdan oldukça farklı olabilir.

Bununla motive olmuş, ilk önce 1-bit tam toplayıcı “Sum” ve “Carry”, bitleri birbirinin
hatasın azaltarak tasarlanmış, üstelik öyle toplayıcılar tasarlanıyor ki, iki ardışık
yaklaşık toplayıcı, biriktirme hataları üretemiyorlar. Örneğin, eğer bir 1-bit toplayıcı
beklenen lojik 0 çıktısına yanlışlıkla 1 ürettiği durumunda, bir sonraki toplayıcının
çıkışının hatasız veya hatayı düşürerek sonuç verdiğini garanti ediyoruz, yani ikinci
toplayıcı beklendiği 1 sayısı yerine ya 0 yâda hatasız 1 çıkışı üretiyor.

Sonuç olarak, önerilen toplayıcılar diğer literatürdeki çalışmalara göre ayni hata
kısıttı sağlayarak daha küçük devre alanı ve daha az güç tüketimi sunar. Bir
Rıpple Carry toplayıcıyı uygulamak için başka bir yaklaşım, yaklaşık lojik sentezi
araçlarını kullanmaktır. Bu araçlar, alanı belirli bir hata kısıtlamasıyla optimize
etmek için kullanılan genel amaçlı araçlardır. Neredeyse en uygun çözümleri bulmak,
geleneksel yaklaşık olmayan sentez araçlarına kıyasla çok daha fazla zamana ihtiyaç
duyduğundan ve / veya geniş alan elde ettikleri için toplayıcı ve çarpıcı için uygun
bir yöntem değildir. Örneğin, bu yöntemler ile alan tasarruflu bir 32-bit toplayıcısını
uygularken, basit kesme yöntemi aynı hata değeri için daha çok alan tasarrufu sağlarlar.

Genel olarak toplayıcı ve çarpıcının hatasını hesaplamak için bütün giriş ihtimalleri
denemek zorundayız. Bit uzunluğunu artırarak hesaplama süresinin üstel olarak
artırmasını göz önünde bulundurmalıyız. Bu tez çalışmasında hata hesabı yapmak için,
bir matematik denklemi geliştirilmektedir. Önerilen yöntem bit uzunluğu ile doğrusal
olarak artıyor ve hata hesap yapmak suresin büyük bir ölçüde azaltılıyor. Öte yandan,

xxii

bu denklemi kullanarak değişik hatalar için yaklaşık toplayıcı üreten bir sentez metodu
önerilmektedir. Sistematik sentez tekniğimiz hata hesaplamaları açısından oldukça
hızlı ve aynı zamanda doğrudur. Ayrıca alan değerleri, lojik sentezi araçlarında elde
edilenlerden çok daha küçüktür.

Önerilen tezde, yaklaşık toplayıcı ile birlikte, üç aşamadan oluşan Wallace-Tree
çarpanlarını da inceliyoruz. Çarpıcılar için hem kısmi birikiminde hem de nihai sonuç
toplanmasında yaklaşık tam ve yarı-toplayıcılar öneriyoruz.

Tasarım stratejimiz, 1-bit toplayıcıların girdi atamalarının ortaya çıkma ihtimallerine
dayanmaktadır yanı daha düşük olasılıkları olan giriş atamaları için daha yüksek hata
oranları belirleriz. Örnek olarak, iki girişi olan bir devreyi düşünün ve iki farklı
senaryoyu düşünün. İlk önce, her iki giriş de 1 ve 0 değerini, 1/2 eşit olasılıkla alır.
İkinci senaryoda, girişler 1/4 ve 3/4 olasılıklarla sırasıyla 1 ve 0 değerini alır. Bu iki
senaryoda, belirli bir hata sınırlaması için alan optimizasyon tekniklerinin farklı olması
gerektiğini yorumluyoruz. Her girdi atamasına karşılık gelen bir hata, ilk senaryo
için toplam hataya eşit şekilde katkıda bulunurken, ikinci senaryo için farklıdır. Bu
nedenle, örneğimizde 1/4 olasılıklı girdi atamasına karşılık 3/4 olasılık için olanlardan
daha hatalı çıktılara sahip oluyor. Bu da, girdilerin olasılığına dayanarak, Wallace-Tree
çarpanının yapı taşları olarak tam ve yarım toplayıcı sentezlememize neden olur.

Bu çalışmada önerdiğimiz sentez tekniğini, aynı hata kısıtlamasını sağlayarak,
literatürdekilere kıyasla en küçük alanı ve buna bağlı olarak güç tüketimini
sunmaktadır. Ayrıca, sistematik sentez tekniğimiz hata hesaplamaları açısından
oldukça hızlı ve hata hesaplaması kesin doğrudur.

Bu tezde, her tekniğin artılarını ve eksilerini elde etmek için farklı sentez teknikleri
altında yapay sınır ağları gerçekleştirilmektedir. Paralel bir mimaride geniş alan
gereksinimi nedeniyle, YSA’lar bu çalışmada, tekrarlanan çoğaltma biriktirme (ÇB)
blokları ile gerçekleştirilmektedir. Uygulama olarak MNIST ve pendigit veri tabanları
deneyimlenmektedir. Verimliliği incelemek için Önerilen yöntemle YSA’nın çeşitli
mimarileri ve yapıları gerçekleştirilmiştir. Deneysel sonuçlar, önerilen yaklaşık
çarpıcılar kullanılarak tasarlanan YSA’ların diğer yaklaşık çarpıcılara göre daha küçük
bir alana sahip ve daha az enerjı tükettiğini göstermektedir.

Hem yaklaşık toplayıcılar ve hem de yaklaşık çarpıcılar kullanarak doğru çalışan
devreye göre, alanda ve enerji tüketiminde sırasıyla50% ve 60% ’a varan azalma
sağladığı gösterilmektedir.

Bu çalışmanın sonunda YSA’dan esinlenerek, Konvolüsyon işlemi gerçekleştirilmek-
tedir. Önerilen yöntemde, clocklama yöntemini değiştirerek sonuçlar daha kısa
zamanda elde edinmektedir. Önerilen yöntemin etkinliğini değerlendirmek için,
filtreler 3×3, 5×5 ve 7×7 boyutlarla denenmektedirler. Filtrelerin girişleri 28×28
piksel olarak MNIST datasetinden alınmaktadır. Deneysel sonuçlara göre, önerilen
metodu kullanarak bekleme suresinde 50% azalma ve güç tüketiminde 97% tasarruf
görünmektedir.

xxiii

xxiv

1. INTRODUCTION

In recent years, artificial neural networks (ANNs) have achieved significant fame in

different research areas, including medical image processing [8], face detection [9],

and semantic segmentation [10]. Complementary, progression in graphics processing

units (GPUs) and central processing units (CPUs), cause calculate on the immense

hardware resources like clouds or supercomputers to become prevalent. However, for

portable devices, due to their limited memory, the number of processing units, and the

battery capacity, the realization of ANNs in these devices is impractical. Here, the

main concern for this work arises.

An investigation of ANNs complexity reduction within the literature shows that studies

are categorized in software level and hardware level commonly. Some valuable

studies provide a survey of topic progressing [11, 12]. At the software level, apart

from hardware consideration, the determination of ANNs structure during the training

process is intended to obtain a network with minimum parameters. On the other

hand, at the hardware level, distinct from the software side, different techniques are

employed for reducing the hardware cost of bulky ANNs. Consequently, training based

on devoted hardware, and applicable hardware modeling through the software, provide

helpful results to diminish ANNs complexity.

At the software level, [13] provides a theoretical analysis of quantization error. In this

study, by focusing on the derivation of finite precession error analysis techniques, the

minimum bit number for forward retrieving and back-propagation is calculated. Binary

weight network and XNOR networks are proposed in [14]. These two approximations

are exploited to realize the standard convolution neural networks. Logarithmic

computation concept is presented in [15, 16]. This encoding method enables ANNs

to eliminate bulky digital multipliers. Determining logarithmic values for weights

during the training process, aides to replacing of digital multipliers by shift operations

with acknowledging that the multiplicands are constant in power-two numbers. By

considering that ANNs consist of multiplication of different matrices, optimizing

1

the loops is another approach to accelerating network [17], where optimum sharing

of these partial terms in the multiple constant multiplications, reduces hardware

complexity [18, 19]. Beyond synthesis methods, other approaches like stochastic

and approximate neural networks are common in literature. Applying stochastic

computational units in neural networks results in error maintains within 10 percent

of floating-point implementation [20]. The accuracy of stochastic computation may

not be comparable with the conventional method but, low circuit area and power

consumption make this method favorable for hardware implementation.

At the hardware level, different field-programmable gate array (FPGA) and

application-specific integrated circuit (ASIC) circuits are investigated for accelerating

network. To overcome the problem of memory access in large ANNs, a custom

multi-chip machine-learning architecture is introduced in [21]. A specialized chip

consists of a microcontroller, accelerator, and on-chip SRAM is introduced for

always-on subsystems of mobile/Internet of Things (IoT) devices in [22]. Also, apart

from customized chips, different hardware architectures by focusing on arithmetic

operations are exploited to hinder the bulky area problem of ANNs. ANNs realization

under multiplier accumulated units (MAC) is an approach to reduce hardware occupied

area and power consumption by considering an increase in delay.

According to MAC-based implementation, ANN hardware structure can classify into

two models: axonal-based [23] and dendritic-based [24] models. For axonalbased

model, every single input of layers is multiplied by related weights of all neurons

of the layer, and all outputs calculate simultaneously, as a result, for axonal-based

model obtaining all inputs at the same time is unnecessary. However, for accumulating

different multiplication results, extra memory is essential. On the other hand, in

dendritic-based model, the value of the next neuron is calculated by multiplying all

inputs with related neuron weights and accumulating them. This method results in the

sequential generation of outputs, and every step of calculation needs to obtain all inputs

to start. In [25], by combining these two architecture, parallel computing is enabled

in two successive layers to achieve smaller latency in the computing time of the whole

network.

Since the multiplier is a core block of MAC, they dominate calculation time, so

designing the multipliers has become an important consideration. Conventional

2

multipliers consist of an array of Full Adders (FA) to adding partial products and final

adders. Exploiting Wallace tree structure with different compressor leads to delay

reduction in multipliers.

Based on the error-tolerant inherency of neural networks, approximate neural networks

or ANNs with approximate blocks are a favorable approach to realize ANNs, where

the trade-off between hardware complexity and accuracy is explored through the

approximate level. Approximation for both computation and memory access is

investigated in [26], also, the impact of neurons on the output quality is determined

to approximate the computation and memory accesses of certain less critical neurons

to obtain the maximum efficiency under a given quality constraint. The exact adders

and multipliers in the MAC blocks are replaced by the approximate ones in [27]. The

exploitation of approximate units yields respectively up to 64% and 43% reduction

in energy and area of the ANN design for PENDIGIT data set with a slight decrease

in the hardware accuracy. An evaluation of a large pool of approximate multipliers

consist of 100 deliberately design, and 500 cartesian genetic programmings (CGP)

based multipliers in ANNs, is accomplished in [28]. Also, to determine the critical

features of multipliers in ANNs, different error parameters efficacy is investigated.

According to this study, the CGP based multipliers introduced in [29] are better suited

for use in the investigated ANN.

Beyond the hardware architecture, there are different methods which are related to

ANNs based on the application, such as convolutional neural networks (CNNs),

recurrent neural networks (RNNs) and multilayer perceptrons (MLPs) based networks.

Since our utmost concern is energy efficiency, we focus on MLPs which provide better

energy scaling for applications implemented by energy-stringent stand alone devices

such as always-on sensors and ASIC chips that detect anomaly [22, 30].

Each layer that comprises MLP has computation workload, which is composed of

relatively basic operations, i.e., multiplication, addition, and activation. As the network

is layered, arithmetic operations run in a pipeline (feed-forward) by axonal based

model, where inputs of one layer wait for the outputs of the previous layer. In this

thesis, ANNs are implemented using MAC blocks in two separate architectures to

investigate the area and latency trade-off. A single MAC is used to realize each neuron

3

computation in each layer in the first one, called (SMAC_NEURON), and a single

MAC is used to implement the entire ANN in the second one, called (SMAC_ANN).

Furthermore, we present an effective hardware implementation of ANNs using

approximate adders and multipliers in time-multiplexed architectures, taking into

account the ANN hardware accuracy. The exact adders and multipliers in the MAC

blocks and parallel units are replaced with approximate adders and multipliers to

form approximate ANNs. Furthermore, we present an algorithm for determining the

approximate level of multipliers and adders, using the approximation level of blocks

to investigate the trade-off between hardware complexity and accuracy. In contrast to

the methods of [31] [29], the generation of an approximate multiplier and adder with

different bit-widths of inputs under the specified approximation level in this thesis

can be done in linear time. As shown in [26], by using approximate multipliers of

different approximation levels for the neuron computations at different layers, the ANN

hardware complexity can be greatly reduced. Our experiments show that ANNs with

the proposed approximate multiplier occupy less area and consume less energy than

the exact versions with only a slight loss in accuracy. It is also demonstrated that, by

using the proposed approximate adders, the ANN hardware complexity can be further

reduced.

The rest of this thesis is organized as follows. The approximate computing and the

proposed blocks are discussed in Chapter 2. ANNs architecture is investigated in

Chapter3. The exploiting of the proposed approximate blocks in the ANNs, and the

algorithm to replace the approximate blocks with their exact versions are given in

Chapter4. Also, a new implementation method of convolutional layers are described

in Chapter5. finally, Chapter 6 concludes the thesis.

4

2. APPROXIMATE COMPUTING

2.1 Background and Preliminary Works

As Moore’s Law starts to lose its validity, not only the number of transistors on

a chip but more severely the chip’s power dissipation have reached a critical point

at which new circuit design techniques enabling low-power and low-area designs

are highly desired [32]. Approximate computing is a class of methods that relaxes

the necessity of exact equivalence between a computing system’s specification and

implementation. This relaxation provides an opportunity to save in design area, delay,

or power dissipation at cost of inaccuracy for the calculations. allows you to trade

numerical performance precision for design area, delay, or power dissipation savings.

Approximate computing is used to increase area, power, and energy efficiency in

applications that do not need high precision, such as image processing and learning.

Since these applications are dominated by arithmetic blocks, designing approximate

adders and multipliers are extensively investigated in the literature, especially in the

last decade [1, 2, 4, 5, 29, 33–37]. The implementation of approximate arithmetic

blocks in logic and circuit level is also the subject of this research. Ripple-carry

adders and Wallace-tree multipliers are chosen for synthesis based on their area and

power efficiency among different adder and multiplier architectures, with the object of

minimizing circuit area while satisfying a given error restriction.

We see a common tendency in related studies on approximate ripple-carry adders to

assume that the more erroneous outputs (Sum and Carry) mean less accurate designs

[1–3]. It must be considered, Offsetting errors, or errors in separate outputs that

entirely or partly cancel each other, are not taken into account in this assumption.

Motivated by this, we start by designing 1-bit full adders with offsetting errors in Sum

and Carry. We illustrate how applying an error to output will improve accuracy and

reduce the area of inexact adders. Similarly, we construct the ripple-carry adder at

a higher level such that two consecutive estimated 1-bit full adders cannot generate

5

build-up errors, i.e., errors in separate outputs are canceling each other. For example,

if a 1-bit adder generates an erroneous logic 1 output, which is supposed to be logic

0, we can guarantee that the output of the neighbor adder will be error-free or will

generate an error with a logic 0 output, which is expected to be logic 1.

Consider the example of adding two 2-bit (01)2 and (10)2 binary numbers in Figure 2.1

to illustrate superposition, offsetting, and build-up terminology. In this example, two

different approximate adders (approxA, approxB) are exploited to execute addition

operation, the truth-table of these adders for evaluated binary numbers also is given

in TBL.2.1. Consider that, however Sum and Cout results are inexact for the first

approximate adder, still error distance is 1 for given inputs, where superposition

between Sum and Carry cause to error distance be 1 for given inputs (011)2 yet Sum

and Carry both are inexact. The reason is incremation in Sum reliefs by decreasing

in Cout, this superposition assists to minimizing Sum and Cout simultaneously.

Furthermore according to approxA truth table, two consecutive approxA will not

accumulate each other errors, as shown in Figure 2.1 approxA first bit result for (010)2

inputs is (10)2 (decimal 2), while exact result is (01)2 (decimal 1), i.e. lesser than

approximate result, correspondingly second adder inexact result for (101)2 inputs is

(01)2 (decimal 1) lesser than exact result (10)2 (decimal 2). As a result increment in

first adder compensate with decrements by second adder. In essence it is not possible

two successive approxA accumulate each other error (build up error). Contrarily

for 2-bit approxB adders, inexact results is lesser than exact result, therefore two

consecutive approxB adder make build-up error. approxA case shows, superposition

can violate for adders with different error profile.

Approximate ripple-carry adders are built in two ways in the literature: 1)implement

1-bit full adders in transistor level and then creating a ripple-carry adder; 2) using

synthesis tools to specifically implement a ripple-carry adder in logic level. For the first

approach, approximate 1-bit adders are usually derived from standard mirror adders

and XOR/XNOR based adders by eliminating transistors and/or replacing certain

portions of the adders with smaller circuitries [1–3, 33]. Error dependencies in terms

of offsetting and build-up errors are not taken into account in these experiments. It

must be mention that, first implementation method is non-systematic, relying heavily

on the designer’s intuition and experiences. In the second approach, the introduced

6

01

1a1b

Cout 1S

0a0b

0S

0

0 1

Decimal

C
in

C
in

C
o
u
t0

01

1a1b

C
in

Cout 1S

0a0b

C
in

C
o
u
t

0S

0

0 1

1

Decimal

0 210

ApproxAApproxAApproxBApproxB

0 00 0

Figure 2.1 : Ripple carry adder structure.

Table 2.1 : Truth table of sample approximate adders.

Inputs ApproxA ApproxB
A B Cin Cout Sum Cout Sum
0 1 0 0 1 0 0
1 0 1 0 1 0 1
1 0 0 1 0 0 0

tools are general-purpose tools, not strictly for ripple-carry adders [31, 38–43].

Furthermore, since determining near-optimal solutions takes far longer than traditional

non-approximate synthesis methods, these tools generally suffer from long runtimes.

For example, the method in [41] realizes a 32-bit ripple-carry adder with a 10% area

savings, while truncation and the proposed methods in this thesis yield 25% and 32%

area savings for the same worst-case error value, respectively. The run-time effects

would be much worse if an average error value was used.

Motivated by the restrictions of transistor and logic level approximation methods,

we suggest a systematic synthesis methodology based on a novel error measurement

process. Our synthesis method is ideal for adders because it is fast, precise, and

scalable. Furthermore, taking into account n-bit synthesis and the relationship between

approximate adders, we can achieve a series of adders with no build-up errors. This

function also helps in the formation of an n-bit adder with a different error profile in

order to achieve the minimum cost for the desired error metric.

Our proposed systematic synthesis technique is both fast and reliable in terms of error

calculation. For example, the synthesis of a 64-bit ripple carry adder takes less than

a second. Also, the design area produced by the proposed logic synthesis tools is less

when compared to the other methods. For example, given a 0.5% average error for a

32-bit adder, we achieve a 50% smaller area than [40], which can be considered the

best area-efficient method in the literature.

7

Along with ripple-carry adders, we investigate Wallace-tree multipliers, which have

three stages: partial product generation, partial product aggregation, and final result

addition.

To implement the approximate multiplier, we initially investigated the different

approximate multipliers in the literature to obtain the efficiency of different

approaches. The approximate 2×2 multiplier is implemented in [44] to produce partial

products and exact adders for the accumulation tree. A new approximate adder is

recommended for product aggregation in [37], where exact adders are used to restore

errors in the final results. Compressors are employed to speed up product accumulation

and lessen the tree size in [37, 45]. Two approximate 4-2 compressors with four

different approximate multiplier are proposed in [4]. Also, a new multiplier by error

recovery is obtained by updating this compressor in [5]. Additionally, truncation and

rounding techniques are used in the least significant columns of partial products in

certain studies [46, 47]. Also, bit-wise multipliers are proposed in [48, 49], where

detecting the leading one block saves area and power for desired error values. In [50],

a reconfiguration-oriented adder is suggested. Despite the fact that reconfigurable

circuits can be adjusted for various error values, they require additional control blocks,

which increases their size and power consumption. These experiments are not included

in this work, since we concentrate on reaching minimal area and power rather than

reconfigurability.

Unlike the previous studies, we consider using an approximate full-adder and

half-adder for both partial product accumulation and final result summation. The

probability of input assignments is the basis for our architecture strategy, where for

input assignments with lower probabilities we allocate higher error rates. As an

example, consider a circuit with two inputs in two separate schemes. Inputs take the

value of logic 1 and 0 with equivalent probabilities of 1/2 for the first one. In the second

case, all inputs have odds of 1/4 and 3/4 for logic 1 and 0, respectively. We suggest that

hardware cost optimization strategies for a given error constraint should be dissimilar

for these two scenarios. Although each error associated with each input assignment

contributes to the cumulative error in the first example, this is not the case for the

second one. As a result, we have more erroneous outputs in our example corresponding

to input assignments with 1/4 probabilities compared to the input assignments with 3/4

8

probabilities. This leads us to implement full and half adders based on the likelihood

of inputs as the building blocks of the Wallace-tree multiplier. According to our

experiments, introduced synthesis technique, as compared to those in the literature,

provides the smallest area while meeting the same error restriction. Furthermore, our

systematic synthesis method is both fast and reliable in terms of error calculation.

2.2 Ripple-Carry Adder Design

There are two stages to our synthesis strategies, which are described in the following

two subsections. We begin by building a library of approximate 1-bit full adders with

various error rates. In the second stage, we use the obtained library to systematically

synthesize an n-bit ripple-carry adder from the least to the most significant bits; the

adder satisfies the specified error restriction while taking up the least amount of area.

2.2.1 1-bit full adder design

The binary inputs to a 1-bit full adder are A, B, and C(Carry or Cin), as well as Cout

and Sum comprises the output.

The estimated and actual decimal values of the output are denoted by ŷ and y,

respectively. It’s worth noting that they’re in the decimal range [0−3]. We use total

absolute error distance (TAED) as an error metric:

TAED =
7

∑
i=0
| yi− ŷi | (2.1)

where i denotes the truth table’s ith input assignment. For example, if both Cout and

Sum are zero for all input assignments, this is truncation with zero circuit area cost,

and TAED = 12. However, we will show that TAED = 4 can achieve zero cost. TAED

= 1, TAED = 2, and TAED = 3 are also used to build adders in this thesis.

The offsetting errors in Sum and Cout play key role in our designs, and are exploited

in our synthesis technique. Let’s take a look at two examples to help clarify the

offset concept, consider three separate approximate adders, each of which has an

incorrect output for a specific input assignment. The first adder has a 0→1 error

in Sum, so TAED = 1; the second adder has a 1→0 error in Cout, so TAED = 2;

and the third adder, which is the proposed one, has both of the errors, so TAED

9

= 1, because simultaneous 0→1 and 1→0 errors in Sum and Cout for the same input

assignment results in a change of 1 in TAED. Simultaneous error in Sum and Cout

means permission has been issued to alleviate the hardware cost of both Sum and Cout.

Consequently, the third approximate adder has a much smaller area than the other two.

Note that, error in Cout and Sum yields 2 and 1 change in TAED, respectively. On

the other hand, simultaneous 0→1 and 1→ 0 errors occurring in Sum and Cout for the

same input assignments results in a change of 1 in TAED; we name this error as the

offsetting error. As a second example, consider the summing operation of 3(10) and

10(10) by an exact adder (EXAD) is as follows.

0 0 1 1
+ 1 0 1 0

1 1 0 1

Assume the Sum and Cout results are complemented for the adder allocated to the

least significant bit. The first bit is computed using the approximate adder ApproxA,

while the remaining bits are computed using exact adders (EXADs). As a result TAED

changes by one, and the error distance is one. The following diagram depicts this.

0→ 1

EXAD ↶ APAD

0 0 1 1
+ 1 0 1 0

1 1 1 0←1

The suggested design approach’s key concept is to apply offsetting errors 0→1 and

1→0 to the same input assignments which their results in output bits are non-identical.

According to the truth-table of one-bit exact adder in Table 2.2, 6 of 8 inputs

combination have different Sum and Cout values that we will use in our approximation

technique. By considering these assignments and choosing the solutions providing the

lowest literal costs in sum-of-products (SOP) expressions, we present four separate

approximate adders APAD1, APAD2, APAD3, and APPAD4 with TAED values of 1,

2, 3, and 4, respectively.

10

Table 2.2 contains the proposed approximate adders in the form of truth tables. We’ll

go into each adder form in detail in the sections below.

Logic synthesis of APAD1, TAED = 1: Offsetting errors in both Sum and Cout for

one input assignment. There are
(6

1

)
candidates for synthesis, and 2 of them have the

minimum literal cost.

Figure 2.2a shows one of them and the outputs’ literal expression is as follow.

Cout = B + ACin

Sum = ABCin + AB Cin + ABCin

With this solution, one of the prime implicants of Sum is eliminated. Moreover a

prime implicant group of Cout is expanded. It must be mention changing in 000 and

111 results, yields minimum saving of the literals.

Logic synthesis of APAD2, TAED = 2: Offsetting errors in both Sum and Cout for

two input assignments. There are
(6

2

)
candidates for synthesis, and 3 of them have the

minimum literal cost.

Figure 2.2b shows one of them with following expressions.

Cout = A

Sum = AB + ACin + BCin

Logic synthesis of APAD3, TAED = 3: Since we reached a literal cost of 1 for Cout

in APAD2, no further 0-1 transitions are preferred for Cout. However, for Sum we

use one more error. As a result, offsetting errors in both Sum and Cout for two input

assignments, and an error in Sum for one input assignment return TAED = 3. There

are
(6

2

)(4
1

)
candidates for synthesis, and 9 of them have the minimum literal cost.

Figure 2.2c shows one of them with following expressions.

Cout = A

Sum = ACin + B

Logic synthesis of APAD4, TAED = 4: Similar to APAD3 synthesis, we use

offsetting errors in both Sum and Cout for two input assignment. Additionally, we

apply errors in Sum for two input assignments, so TAED = 4. There are
(6

2

)(4
2

)
candidates for synthesis, and 9 of them have the minimum literal cost.

11

Figure 2.2d shows one of them with following expressions for outputs.

Cout = A

Sum = B

0 1 0 1

1 0 0 1 0

AB

00 01 11 10

C=0

C=1

Sum

0 0 1 0

0 1 1 1 1

AB

00 01 11 10

C=0

C=1

Cout

Figure 2.2a : APAD1.

0 0 1 0 1

0 1 0 1 1

AB

00 01 11 10

C=0

C=1

Cout

0 1 0 1 0

1 0 1 1 0

AB

00 01 11 10

C=0

C=1

Sum

Figure 2.2b : APAD2.

0 1 0 1 0

1 0 1 1 0

AB

00 01 11 10

C=0

C=1

Sum

0 0 1 0 1

0 1 0 1 1

AB

00 01 11 10

C=0

C=1

Cout

1

Figure 2.2c : APAD3.

0 1 0 1 0

1 0 1 1 0

AB

00 01 11 10

C=0

C=1

Sum

0 0 1 0 1

0 1 0 1 1

AB

00 01 11 10

C=0

C=1

Cout

1

0

Figure 2.2d : APAD4.

Figure 2.2 : Karnough Maps of APADs.

12

Ta
bl

e
2.

2
:T

ru
th

ta
bl

es
of

ex
ac

ta
nd

ap
pr

ox
im

at
e

1-
bi

ta
dd

er
s.

A
dd

er
Ty

pe
In

pu
ts

FA
A

PA
D

1
A

PA
D

2
A

PA
D

3
A

PA
D

4
A

B
C

in
C

ou
tS

um
D

ec
im

al
C

ou
tS

um
E

rr
or

D
ec

im
al

C
ou

tS
um

E
rr

or
D

ec
im

al
C

ou
tS

um
E

rr
or

D
ec

im
al

C
ou

tS
um

E
rr

or
D

ec
im

al
0

0
0

0
0

0
0✓

0✓
0

0
0✓

0✓
0

0
0✓

0✓
0

0
0✓

0✓
0

0
0

0
1

0
1

1
0✓

1✓
0

1
0✓

1✓
0

1
0✓

1✓
0

1
0✓

0✗
-1

0
0

1
0

0
1

1
1✗

0✗
+1

2
0✓

1✓
0

1
0✓

1✓
0

1
0✓

1✓
0

1
0

1
1

1
0

2
1✓

0✓
0

2
0✗

1✗
-1

1
0✗

1✗
-1

1
0✗

1✗
-1

1
1

0
0

0
1

1
0✓

1✓
0

1
1✗

0✗
+1

2
1

✗
0✗

+1
2

1✗
0✗

+1
2

1
0

1
1

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1
1

0
1

0
2

1✓
0✓

0
2

1✓
0✓

0
2

1✓
1✗

+1
3

1✓
1✗

+1
3

1
1

1
1

1
3

1✓
1✓

0
3

1✓
1✓

0
3

1✓
1✓

0
3

1✓
1✓

0
3

13

2.2.2 n-bit ripple-carry adder design

We composed the ripple-carry adder such that no build-up errors can occur when two

approximate 1-bit full adders are used in a sequence. For example, if a 1-bit adder

generates an erroneous logic 1 output, which should be logic 0, we should guarantee

that the output of the neighbor adder will be error-free or will generate an offsetting

error with a logic 0 output, which should be logic 1. The following lemma specifies

the conditions that must be met in order to avoid build-up errors.

Lemma 1. Consider a ripple-carry adder with various 1-bit approximate adders. If

and only if all of the following conditions are fulfilled, build-up errors in successive

adders will be eliminated:

1. For all input assignments causing error, Cout = Cin;

2. For all input assignments causing a positive error that increases the expected

output, all corresponding Couts should be the same ; and

3. For all input assignments causing a negative error, decreasing the expected output,

all corresponding Couts should be the same.

Proof. The proof comes in the form of a contradiction. If a 1-bit adder has an

assignment that causes an error with Cout = Cin, so repeatedly using this adder will

result in build-up errors. A build-up error occurs when the second or third condition is

violated even the first is met. Finally, meeting these three criteria is enough to avoid

build-up errors.

To illustrate this lemma, consider a 2-bit adder in which the least significant bit adder

is APAD4 and the second adder may be any of the proposed APADs . Let’s look at all

of the potential inputs and their inexact outcomes. Start with 001 as an APAD4 input,

which yields 0s for both Cout and Sum. According to Table 2.2, this outcome is less

than the actual result, so we call it a negative error. We examine inputs with Cin = 0

for the second adder since Cout of APAD4 is Cin of the second adder.

According to Table 2.2 when Cin is 0, the generated results are exact results or positive

errors. i.e if APAD4 generates negative error, it is impossible to have a positive error

14

for the second adder. Next, consider the other input 011 causing negative error; same

considerations are applicable for this case too. For positive error cases, inputs are 100

and 110; for both cases Cout value is 1. According to Table 2.2, if there is a positive

error, Cin is always 0. Therefore two consecutive positive error is impossible too.

To satisfy Lemma 1, we shrink our 1-bit approximate adder library. Initially, it consists

of 2 APAD1, 3 APAD2, 9 APAD3, and 9 APAD4, and it becomes 2 APAD1, 2 APAD2,

2 APAD3, and 2 APAD4, all satisfying Lemma 1 with Cin = 0 for positive errors,

Cin = 1 for negative errors, and Cout = Cin. Note that for each APAD type, we have

two options with identical area and error performances. For simplicity we use the

adders given in Table 2.2, where all of proposed adders, satisfying Lemma 1 for all

experiments.

In our synthesis technique, starting from the least to the most significant bit, we benefit

the ordering of APAD4-APAD3-APAD2-APAD1-EXAD, where this array is justified

with the following lemma.

Lemma 2. Consider two successive 1-bit adders in a ripple-carry adder. To achieve

minimum area with a given error constraint, the one closer to the least significant bit

should have a larger or an equal TAED value compared to the one closer to the most

significant bit.

Proof. By contradiction, assume that the statement is wrong. By interchanging the

two adders, we achieve a smaller error with the same area. However, the minimum

area should have a negative correlation with the given error constraint. There is a

contradiction.

To understanding this lemma consider two scenarios for 2-bit adder. In the first

scenario the least significant bit adder is APAD4 and the second bit adder is APAD1.

In the second scenario the least significant bit adder is APAD1 and the second bit adder

is APAD4. Both cases hold same area, but the first scenario results in smaller error.

In our synthesis technique, we use average absolute error distance (AAED) that is

obtained with dividing TAED by the number of input assignments. For example

AAED values of APAD4, APAD3, APAD2, and APAD1 are 4/8, 3/8, 2/8, and 1/8,

respectively. We model AAED value and named it estimated average absolute error

15

distance (EAAED). For an n-bit ripple-carry adder:

EAAED =
n−1

∑
i=0

Ei2i−1 (2.2)

where Ei represents the error contribution of the ith 1-bit adder from the least

significant bit.

Ei =
2
3 ∑

a∈{−1,0,1}
∑

b∈{−1,1}
P(i−1 : a, i : b) | 0.5a+b | (2.3)

where a and b represent the error values of the (i − 1)th and ith 1-bit adders,

respectively. Since, Equation 2.2.2 gives the error contribution of the ith adder,

b = 0 case, no error in the ith adder, is excluded. In the equation, P represents

a probability that the (i− 1)th and ith adders have errors of a and b, respectively.

The constant factor 2/3 is the ratio of the error contribution of the ith adder (X)

to the total error contribution of the ith and the (i− 1)th adders (0.5X + X). In

a similar fashion, | 0.5a + b | represents the total error distance caused by the the

(i− 1)th and the ith adders. In calculating P’s we use conditional probability such

that P(i−1 : a, i : b) = P(i−1 : a)P(i : b | i−1 : a). The following example elucidates

our calculation steps of Ei given in Equation 2.2.2.

Example 1. Calculate Ei if the (i−1)th and the ith adders are both APAD4.

Table 2.3 gives the calculations by using the truth table of APAD4, previously given in

Table 2.2. There are six cases in Table 2.3 corresponding to six rows in the table for

different assignments of a and b. For the first and the sixth cases P’s are zero, since

two successive positive error or negative error is impossible. For the second case,

P(i−1 :−1) = 2/8 since APAD4 has 2 input assignments causing −1 error among 8

total assignments. Additionally, P(i : +1 | i−1 :−1) = 2/4 since−1 error causes Cout

= 0 for the (i−1)th adder, so the ith adder’s C is logic 0 and it has 2 input assignments

causing +1 error among 4 total assignments with C = 0. A similar justification can be

done for the fifth case. For the third and the fourth cases, P(i−1 : 0) = 4/8 and since

a = 0, P(i : b | i−1 : 0) = P(i : b) = 2/8.

16

Table 2.3 : Calculation of Ei for example 1.

a b P = P(i−1 : a)×P(i : b | i−1 : a) | 0.5a+b | ∑b∈{−1,1}
−1 −1 2/8×0 3/2 0
−1 +1 2/8×2/4 1/2 1/16
0 −1 4/8×2/8 1 2/16
0 +1 4/8×2/8 1 2/16
+1 −1 2/8×2/4 1/2 1/16
+1 +1 2/8×0 3/2 0

2
3 ∑a∈{−1,0,1}∑b∈{−1,1}P(i−1 : a, i : b) | 0.5a+b | = 4/16

Table 2.4 : Values of Ei’s for different APAD combinations.

H
HHH

HHi
i−1

APAD1 APAD2 APAD3 APAD4

APAD1 2.66/32 ✘ ✘ ✘

APAD2 2.33/32 4.66/32 ✘ ✘

APAD3 2.33/32 4.33/32 6.66/32 ✘

APAD4 2/32 4/32 6/32 8/32

Table 2.4 gives Ei values for all different combinations of APAD’s as the (i−1)th and

the ith adders with satisfying Lemma 2. Since C = 0 for the ripple-carry first adder,

we can obtain E1 as 2/4 for APAD4 and APAD3, and 1/4 for APAD2 and APAD1 by

using the truth tables in Table 2.2.

Example 2. Calculate EAAED of an 8-bit ripple-carry adder having

APAD4-APAD4-APAD4-APAD4-APAD2-APAD1-EXAD-EXAD 1-bit adders ordered

from the least to the most significant bit.

With E1 = 2/4, and using Table 2.4: EAAED = 2
420 + 8

32(2
1 + 22 + 23) + 4

3224 +

2.33
32 25 = 8.33.

Constructed on Lemma 2 and the proposed error calculation method summarized in

Table 2.4, our synthesis technique consists of the following 5 steps.

1. Start with an exact ripple-carry adder consisting of EXAD’s.

2. From the least to the most significant bit, replace EXAD’s with APAD4’s until the

calculated error value is larger than the given target error value.

3. Repeat the second step for APAD3, APAD2, and APAD1 instead of APAD4,

respectively, replacing the unchanged EXAD’s. Save the solution.

17

Step1:

EXAD-EXAD-EXAD-EXAD-EXAD-EXAD-EXAD-EXAD
Array EAAED

0

EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4 188
EXAD-EXAD-EXAD-APAD1-APAD1-APAD3-APAD4-APAD4 208
EXAD-EXAD-EXAD-APAD1-APAD2-APAD2-APAD4-APAD4 204

Array Cost

Step5:



EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4
Array EAAED

3.5

Step3:

Step2:

EXAD-EXAD-EXAD-EXAD-EXAD-APAD4-APAD4-APAD4
Array EAAED

2



Step4:






 

APAD1-APAD4-APAD4EXAD-EXAD-EXAD-APAD1
EXAD-EXAD-EXAD-EXAD

APAD1

 EXAD-EXAD-EXAD-APAD2

APAD2-APAD4-APAD4
APAD2EXAD-EXAD-EXAD-APAD1

EXAD-EXAD-EXAD-EXAD




EXAD-EXAD-EXAD-APAD1
EXAD-EXAD-EXAD-EXAD

APAD1



 



EXAD-EXAD-EXAD-APAD1
EXAD-EXAD-EXAD-EXAD

APAD1



  

EXAD-EXAD-EXAD-APAD2
EXAD-EXAD-EXAD-APAD1
EXAD-EXAD-EXAD-EXAD

APAD2


APAD3-APAD4-APAD4

APAD3

EXAD-EXAD-EXAD-APAD3
EXAD-EXAD-EXAD-APAD2
EXAD-EXAD-EXAD-APAD1
EXAD-EXAD-EXAD-EXAD










EXAD APAD3,2,1

EXAD-EXAD-EXAD-EXAD-APAD3-APAD4-APAD4-APAD4

Figure 2.3 : Demonstration of steps for example 3.

4. Replace all APAD3’s, APAD2’s, and APAD1’s with EXAD’s in Step 3; replace the

last APAD4 (most significant one) respectively with APAD3, APAD2, and APAD1;

apply the second step with APAD3, APAD2 and APAD1 instead of APAD4. Save

solutions.

5. Using area costs of APAD4, APAD3, APAD2, APAD1, and EXAD, select the best

solution with minimum area cost.

Note that due to the essence of the proposed method, without using any error detection

block that causes area overhead, build-up errors are fully eliminated. To elucidate our

synthesis technique, we present an example.

Example 3. With a given target AAED = 3.9, synthesize an approximate 8-bit

ripple-carry adder. Suppose that the 1-bit adders are implemented with a generic

library consisting of NAND2 gates (4 transistors) and inverters (2 transistors); APAD4,

APAD3, APAD2, APAD1, and EXAD has transistor costs of 0,12,20,32, and 44,

respectively.

Steps are shown in Figure 2.3. In Step 4 check-marks are for satisfying given error

and Lemma 2.

By examining our methodology, the importance of the second and third steps was

shown. The fourth stage involves going backward to check more candidates for the

minimum area. We have three solutions in the fifth stage, and the one with the smallest

area cost wins. Our tests show that the first answer is usually the best. Different area

costs of 1-bit adders, on the other hand, will alter this. For example, suppose the

area costs for EXAD, APAD1, APAD2, APAD3, and APAD4 are 70,45,20,10, and 0,

18

respectively. Table 2.5 compares our synthesis technique with the exhaustive search

technique for different AAED’s.

Table 2.5 gives the order of approximate adders in the 8-bit ripple carry adder for

different AAED values. The desired error is an upper limit for the error value.

The exhaustive search is carried out by examining all approximate and exact adder

combinations that match Lemma 2. Also, for exhaustive search the exact AAED values

by evaluating all possible input combinations are calculated. On the other hand, the

proposed method calculates the AAED value by the introduced equation . The results

indicate the efficiency of the proposed method in terms of the run-time. Furthermore,

estimated AAED values are almost identical to exact AAED values. There are some

deviations, but this is to be expected because our calculation technique only considers

the target adder and the previous adder when applying conditional probability to adder

pairs. All of the previous adders should be considered in a fully precise calculation.

This type of calculation, however, would result in impractical run times.

It’s worth noting that different technologies may result in different APAD area sizes.

Our synthesis algorithm, on the other hand, is unaffected by technology and always

finds near-optimal area solutions.

In Table 2.5, run-times for the proposed and exhaustive search methods are listed.

It should be noted that, thanks to the proposed simple error calculation technique,

the proposed synthesis method is both fast and accurate enough when compared to

other logic synthesis tools, which are typically based on try and check and suffer from

run-time problems as bit length increases. In contrast, any bit number can be used in

the proposed synthesis method without restriction in run-time.

19

Ta
bl

e
2.

5
:S

yn
th

es
is

of
8-

bi
ta

dd
er

s
w

ith
th

e
pr

op
os

ed
sy

nt
he

si
s

te
ch

ni
qu

e
an

d
ex

ha
us

tiv
e

se
ar

ch
.

Pr
op

os
ed

M
et

ho
d

E
xh

au
st

iv
e

Se
ar

ch
D

es
ir

ed
R

ip
pl

e-
ca

rr
y

E
st

.
Ti

m
e

R
ip

pl
e-

ca
rr

y
E

xa
ct

Ti
m

e
E

rr
or

A
A

E
D

(s
)

A
A

E
D

(s
)

1.
5

E
E

E
E

E
2

4
4

1.
5

.0
2

E
E

E
E

E
2

4
4

1.
5

>1
04

2.
9

E
E

E
E

2
2

4
4

2.
66

5
.0

22
E

E
E

E
2

2
4

4
2.

87
5

>1
04

4.
5

E
E

E
1

2
4

4
4

4.
16

5
.0

16
E

E
E

1
2

4
4

4
4.

46
>1

04

7.
5

E
E

E
3

4
4

4
4

7
.0

2
E

E
E

3
4

4
4

4
7.

12
5

>
10

4

18
E

1
2

4
4

4
4

4
16

.6
6

.0
17

E
1

2
4

4
4

4
4

17
.5

9
>

10
4

48
2

4
4

4
4

4
4

4
48

.0
16

2
4

4
4

4
4

4
4

48
>

10
4

64
4

4
4

4
4

4
4

4
64

.0
23

4
4

4
4

4
4

4
4

64
>

10
4

20

2.3 Approximate Multiplier Design

Wallace-tree multipliers are implemented in three stages using 1-bit full adders, 1-bit

half adders, and AND gates. For 4-bit inputs, this is shown in Figure 2.4 . The

multiplier inputs a0, a1, a2, a3 and b0, b1, b2, b3 are ANDed in the first stage. The

AND gates’ outputs are then fed into 1-bit adders.

The multiplier inputs take logic 1 and 0 values with equal probabilities of 1/2, the

adder inputs take logic 1 and 0 values with 1/4 and 3/4 probabilities, respectively. As

a result of this, we prefer erroneous outputs with 1/4 probability corresponding to the

input assignments, and we develop full and half adders based on the inputs’ occurrence

probabilities. As a result, we never use the APADs, which were previously used for

the synthesis of ripple-carry adders.

Another motivation for designing 1-bit adders is to achieve Cout = 0, which either

converts the preceding full adder to a half adder or rules out the preceding half adder

without sacrificing accuracy, i.e., obtaining 0 at the Cout eliminates a input of next

stages. As a result, we are not using approximate full adders in the second and third

stages; instead, we use approximate half adders.

We have two steps for the synthesis of an approximate multiplier. We start by building

a library of approximate 1-bit full and half adders. In the second step, we use the library

to systematically synthesize an n-bit Wallace-tree multiplier from the least to the most

significant bits; the multiplier satisfies the given error constraint while taking up the

smallest amount of space. These two steps are explained in detail in the following two

subsections.

2.3.1 Design of 1-bit approximate full adder (APFA) and half adder (APHA)

Logic synthesis of APFA, TAED = 1.375:

We design a novel approximate full adder to implement in the first stage of the

Wallace tree multiplier and called it APFA. We have two considerations for our design

approach; obtain error by minimum probability and set the Cout value to 0.

21

Table 2.6 shows the truth table of the proposed approximate adder APFA. The

offsetting error is applied to inputs by minimum occurrence probability. Also to set

the Cout value to 0, an error in the last assignment is applied. The outputs’ expressions

are as follows.

Cout = 0

Sum = A + B + Cin

Also the adder’s TAED value is given by:

TAED =
7

∑
i=0

8 | yi− ŷi | Pi (2.4)

where Pi denotes the probability of the ith input assignment occurring. The TAED

value for APFA is calculated as follow.

TAED = 8(3/64+3/64+3/64+2/64) = 1.375

Logic synthesis of APHA, TAED = 0.25, 1.34, 0.58:

The half adders are commonly exploited in the wallace-tree architecture. Table 2.7

shows our proposed approximate half adder’s truth table. The design strategies are

same as the full adder’s method. For the last input assignment, with a probability

of 1/16, we use offsetting errors in both Sum and Cout. The following expressions

demonstrate the output of proposed approximate half adder.

Cout = 0

Sum = A + B

Also, the TAED value of an half adder is determined as follows:

TAED =
4

∑
i=1

4 | yi− ŷi | Pi (2.5)

where Pi is the possibility that the ith input assignment will occur. APHAs are used

in all stages, unlike APFAs, which are only used in the first stage. As a result, as

shown in Table 2.7, different Pi values exist for three distinct cases. Case 1 is exploited

in first stage. When APHA’s A and B inputs are connected to APFA’s Sum, Case 2

will employ. Also, when APHA’s input A is connected to an AND gate’s output and

APHA’s input B is connected to an APFA Sum, the Case 3 will employ.

22

a3b0

a2b1

a1b2

a3b1

a2b2

a1b3

a0b1

a1b0a2b0

a1b1

a0b2

s4-1

a0b3

c3-1

c2-1

s3-1

c4-1

s5-1a3b2

a2b3

c5-1

a0b0

a3b2

a2b3a3b3

a3b3

a3b3

c5-2

s6-1

c4-2

s5-2

s4-2

c3-2

s2-1 a0b0

a0b0s3-2

Stage1

Stage2

2-1

3-1

3-2

4-1

4-2

4-3

5-1

5-2

5-3

6-1

6-2

7-1

s2-1

Stage3

a0b0s3-2 s2-1s4-3s5-3s6-2s7-1c7-1

c4-3c5-3

c6-2

Figure 2.4 : 4×4 bit exact wallace-tree multiplier.

Table 2.6 : Truth table of the proposed approximate full Adder APFA.

Adder Type Error
Inputs

EXAD APFA
Error Probabiility

A B Cin Sum Cout Sum Cout
0 0 0 0 0 0✓ 0✓ 0 3/4×3/4×3/4 = 27/64
0 0 1 1 0 1✓ 0✓ 0 3/4×3/4×1/4 = 9/64
0 1 0 1 0 1✓ 0✓ 0 3/4×1/4×3/4 = 9/64
0 1 1 0 1 1✘ 0✘ -1 3/4×1/4×1/4 = 3/64
1 0 0 1 0 1✓ 0✓ 0 1/4×3/4×3/4 = 9/64
1 0 1 0 1 1✘ 0✘ -1 1/4×3/4×1/4 = 3/64
1 1 0 0 1 1✘ 0✘ -1 1/4×1/4×3/4 = 3/64
1 1 1 1 1 1✓ 0✘ -2 1/4×1/4×1/4 = 1/64

By considering Table 2.7, TAED values of 0.25, 1.34, and 0.58 have been determined

for Cases 1, 2, and 3.

The obtained full adders and half adders will be employed as the building blocks of the

approximate multipliers. The choices between different adders provide ease of mind

for designers to pick up among different adders based on the application and expected

errors.

23

Ta
bl

e
2.

7
:T

ru
th

ta
bl

e
of

th
e

pr
op

os
ed

ap
pr

ox
im

at
e

ha
lf

ad
de

rA
PH

A
.

A
dd

er
Ty

pe
E

rr
or

In
pu

ts
E

X
A

D
A

PH
A

E
rr

or
Pr

ob
ab

ili
ty

A
B

Su
m

C
ou

t
Su

m
C

ou
t

C
as

e1
(S

ta
ge

1)
C

as
e2

(S
ta

ge
2-

3)
C

as
e3

(S
ta

ge
2-

3)
0

0
0

0
0✓

0✓
0

3/
4
×

3/
4
=

9/
16

27
/

64
×

27
/6

4
=

72
9/

40
96

3/
4
×

27
/6

4
=

81
/2

56
0

1
1

0
1✓

0✓
0

3/
4
×

1/
4
=

3/
16

27
/

64
×

37
/6

4
=

99
9/

40
96

3/
4
×

37
/6

4
=

11
1/

25
6

1
0

1
0

1✓
0✓

0
1/

4
×

3/
4
=

3/
16

27
/

64
×

37
/6

4
=

99
9/

40
96

1/
4
×

27
/6

4
=

27
/2

56
1

1
0

1
1✘

0✘
-1

1/
4
×

1/
4
=

1/
16

37
/

64
×

37
/

64
=

13
69

/4
09

6
1/

4
×

37
/6

4
=

37
/2

56

24

2.3.2 n-bit wallace-tree multiplier design

The multiplier synthesis technique is convenient to use than the ripple-carry adder,

also, the error calculation method is effectively accurate. Restricted exploitation of

APFA and APHA yields only negative errors and allowing us to calculate the exact

error value by summing the errors. Furthermore, using APFA or APHA reduces the

number of inputs of the proceeding adder by one, so only two consecutive approximate

adders can be employed.

We exploit the AAED as an error metric for the synthesis of approximate multipliers.

This value is obtained by dividing the TAED value by the number of input assignments.

For example, the AAED of APFA is 1.375/8.

Regarding input probability and negative error inherent of APFA and APHA, the n-bit

multiplier AAED value is formulated as below.

AAED = ∑
i

∑
j

AAEDi− j2i−1 (2.6)

where AAEDi− j represents the error contribution of the adder in the ith column and

the jth row of the Wallace-tree structure. Check that the multiplier in Figure 2.4 has 7

columns and 3 rows.

Our synthesis technique consists of the following 5 steps:

1. Start with an exact Wallace-tree multiplier.

2. Replace an exact adder having the smallest column and row numbers (column

numbers are more significant) with an approximate adder. Calculate AAED.

3. Update the multiplier structure without loss of accuracy by converting full adders

to half adders and/or ruling out half adders.

4. Repeat the second and the third steps until the calculated error value AAED is larger

than the given target error value and store result.

5. Obtain the area cost of the multiplier by using the area costs AND gates, exact

adders, and approximate adders.

25

To elucidate our synthesis technique, we present an example.

Example 4. With a given target AAED = 1, synthesize an approximate 4-bit×4-bit

Wallace-tree multiplier. Suppose that the circuits are implemented with a generic

library consisting of NAND2 gates (4 transistors) and inverters (2 transistors); AND2

gate, APHA, APFA, exact half adder, and exact full adder has transistor costs of

6,8,16,14, and 44, respectively.

In the first step, we have an exact multiplier having 6 full adders, 6 half adders, and 16

AND2 gates as shown in Figure 2.4.

In the second step, we start with the half adder in the place 2-1, to be replaced by

APHA (AAED2-1 = 0.25/4).

In the third step, we first rule out the half adder in 3-2 since c2-1 = 0, the half adder

in 3-2 becomes s3-1 that also makes c3-2 = 0. Similarly, the half adder in 4-3 is ruled

out.

In the fourth step since AAED is smaller than the target error rate, we repeat the second

and third steps. We replace the full adder in 3-1 with APFA (AAED3-1 = 1.375/8)

that converts the full adder in 4-2 to an half adder. The total error is given by AAED

= (0.25/4)21 + (1.375/8)22 = 0.8125. Since the next approximation in 4-1 would

make AAED exceed the target error of 1, we stop here.

In the last step, since the final multiplier structure has 4 exact full adders, 3 exact half

adders, 1 APFA, 1 APHA, and 16 AND2 gates, we achieve the total area cost of 338

(24% area saving).

2.4 Experimental Results

In the three subsections that follow, we evaluate the proposed adders and multipliers.

Initially, we compare the proposed adders and multipliers’ area, delay, power, and

energy performances with those of prominent studies in the literature for the same

AAED values. The image processing applications of mean filter and bit-wise

multiplication operations are performed with PSNR and area saving values are reported

in the second subsection. In the third subsection, an artificial neural network is used

to perform a learning application that demonstrates the trade-off between area saving

26

and misclassification rate. All of the circuits are implemented in the same environment

using the Cadence Genus tool with TSMC 018µm CMOS technology.

2.4.1 Area, power, delay, and energy versus average error

The hardware costs of the proposed 1-bit adder and other well-known adders in

literature are given in Table 2.8. While XOR/XNOR based adders from [3] and

mirror-based adders from [1] are synthesized at the transistor level, the rest of

the adders including the introduced adders, are implemented under logic synthesis

algorithms using standard gate libraries. We consider the best adders in terms of

hardware cost among many different 1-bit adders in the literature for comparison.

Also, we considered the capability of running a consecutive blocks for investigated

adders. For example, due to stability problems, the INAXA1 is not considered in this

study. Only AMA3 is chosen for comparison among the adders in [1], because it

performs much better than the other AMAs. The proposed APAD4 is also the same

as AMA5, but the design methodology of AMAs and our method are completely

different. It’s worth noting that the occupied area and dissipated power for APAD4

and AMA5 are zero.

All of the proposed APADs in Table 2.8 are derived from an exact adder using the

synthesis method described above. Because mirror and XOR/XNOR based exact

adders are built at the transistor level with low power consideration, their area

and power are inevitably smaller than those of a standard logic-level exact adder.

According to this table, the proposed APADs perform better in most cases for the

same TAED values.

To evaluate the efficiency of the proposed synthesis technique the proposed 8-bit

ripple-carry adders hardware specifications are compared with different methods in the

literature, and the results are given in Table 2.9. According to this table, for different

AAED values, results for design area, dissipated power, delay time, and power-delay

product (PDPg) are given.

Note that, to obtain the AAED value, we considered all combinations for the inputs

(256× 256). AMA3 and INAXA3 represent the performance of the transistor-level

method; these adders were chosen based on the results for one-bit adders in Table 2.8.

27

Among the logic-synthesis approximation methods, the Evoapprox adders in [29]

were chosen because the library generated in this study covers all competitive adders.

Among the various adders introduced in [29], we chose adders that save the most

area for a given AAED value. The results in Table 2.9 show that the proposed and

Evoapprox adders come out on top, but the introduced adders in [29] are limited to

8-bit due to a long run-time problem. Our proposed adders are generally the best in

terms of area; the adders are comparable in terms of the other specifications. It should

be noted these findings imply that transistor-level synthesis methods are inefficient for

multi-bit adder.

A similar analysis was done in Table 2.10 for the proposed multipliers compared to

other Wallace-tree multipliers. Note that for the exact multipliers, compressor-based

multipliers [4, 5] generally occupies less area when compared to the adder-based

multipliers [29].

Based on our employed technology for synthesis of the exact version of these

multipliers, the design area for [4,5] and [29] are 7348µm2 and 8097µm2, respectively.

Due to the essence of the compressor-based multiplier, for the small values of error, the

approximation procedure is not applicable, and hardware costs of their exact version

are given instead in Table 2.10. According to Table 2.10, the proposed multipliers

almost always hold the smallest design area and delay time among investigated studies.

28

Ta
bl

e
2.

8
:1

-B
it

ad
de

rr
es

ul
ts

.

A
dd

er
Ty

pe
R

es
ul

ts
A

re
a

D
el

ay
A

ve
ra

ge
Po

w
er

A
ve

ra
ge

E
ne

rg
y

W
or

st
ca

se
Po

w
er

TA
E

D
µ

m
2

ρ
s

µ
w

ρ
w

s
µ

w
E

xa
ct

A
dd

er
14

8
10

80
34

8
14

.9
8

29
32

0
A

PA
D

1
14

8
95

5
58

2
14

.2
4

14
70

1
A

PA
D

2
74

22
0

20
8

2.
63

10
60

2
A

PA
D

3
55

18
3

22
6

2.
41

93
0

3
A

X
E

xa
ct

[3
]

53
96

00
15

4
60

2
12

80
0

IN
X

A
3

[3
]

44
95

00
13

3
35

8
64

9
2

IN
X

A
2

[3
]

48
28

00
35

3
45

6
77

2
2

A
M

A
cc

ur
at

e
[1

]
16

9
71

8
23

1
14

.2
7

16
80

0
A

M
A

3
[1

]
58

12
00

29
0

13
61

6
3

L
og

ic
1

[3
9,

51
]

23
5

10
50

41
7

18
.6

8
24

30
1

L
og

ic
2

[3
9,

51
]

84
95

7
29

1
14

.1
12

60
2

L
og

ic
4

[3
9,

51
]

10
5

97
0

22
9

13
.3

18
00

4
C

ar
vi

ng
[5

2]
10

5
10

29
23

3
13

.0
6

18
00

4
B

L
A

SY
S

[5
3]

64
94

7
71

7
10

.9
8

10
86

4

29

Ta
bl

e
2.

9
:8

-B
it

ad
de

rr
es

ul
ts

.

A
dd

er
Ty

pe

A
A

E
D

0.
75

2.
2

3.
3

6.
6

11
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
A

M
A

3
[1

]
92

5
62

2
21

67
13

.4
74

6
50

0
22

63
11

.3
74

6
50

0
22

63
11

.3
65

2
41

2
23

68
9.

7
55

8
30

3
24

72
7.

4
IN

A
X

A
3

[3
]

86
9

59
4

25
39

15
78

4
52

3
28

53
14

.9
78

4
52

3
28

53
14

.9
69

9
44

8
31

66
14

.2
61

5
36

6
34

80
12

.7
E

vo
ap

pr
ox

[2
9]

85
0

56
1

16
57

9.
3

63
0

36
3

16
94

6.
1

60
8

35
7

11
48

4
45

8
19

4
17

36
3.

4
39

2
16

1
15

66
2.

5
Tr

un
ca

tio
n

98
2

63
7

24
59

15
.6

85
0

56
0

22
04

12
.3

71
8

45
3

19
49

8.
8

71
8

45
3

19
49

8.
8

58
6

34
9

16
94

5.
9

Pr
op

os
ed

83
4

54
2

19
12

10
.3

64
9

40
0

16
57

6.
6

57
1

34
1

14
03

4.
8

43
9

23
1

11
48

2.
6

37
0

18
7

12
75

2.
4

30

Ta
bl

e
2.

10
:8

-B
it×

8-
B

it
m

ul
tip

lie
rr

es
ul

ts
.

M
ul

tip
lie

rT
yp

e

A
A

E
D

1
5

10
20

50
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
A

re
a

Po
w

er
D

el
ay

P
D

P
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
µ

m
2

µ
w

η
s

aJ
M

om
en

i-
1

[4
]

73
48

47
97

67
65

32
4

72
25

48
71

71
39

34
7

71
48

46
68

71
48

33
4

70
65

45
04

73
74

33
2

68
49

42
32

70
52

29
8

M
om

en
i-

2
[4

]
73

48
47

97
67

65
32

4
72

44
48

60
70

90
34

4
68

84
44

60
70

51
31

4
67

89
44

31
71

20
31

5
63

13
37

70
70

99
26

8
M

in
ho

[5
]

73
48

47
97

67
65

32
4

71
47

49
76

68
90

34
3

71
47

49
76

68
90

34
3

70
94

48
87

71
50

34
9

69
24

46
80

69
80

32
7

E
vo

ap
pr

ox
[2

9]
79

22
54

22
91

62
49

6
77

87
55

22
94

22
52

0
72

97
51

53
88

99
45

8
64

98
43

42
10

53
4

45
7

57
01

40
40

81
50

32
9

Tr
un

ca
tio

n
80

06
53

29
64

69
34

6
76

49
53

63
55

29
29

7
73

38
50

29
67

60
34

0
70

22
43

98
64

17
28

2
62

22
43

01
53

70
23

0
Pr

op
os

ed
77

21
53

74
56

28
30

2
71

50
49

92
57

29
28

6
69

59
48

58
55

73
27

0
64

85
44

10
57

26
25

2
57

61
39

60
54

50
21

6

31

2.4.2 Image processing: peak signal to noise ratio (PSNR) versus area saving

In order to obtain adders and multipliers performance within an application, mean filter

and bitwise multiplication are employed in this section. For the identical area saving

value, images’ PSNR values are considered as a performance metric in Figure 2.5 and

Figure 2.6.

For the mean filter application, a gaussian noise with a mean zero of 0.008 is injected

into a reference image. Then, the mean filter via different approximate adders is

exploited to smooth the noisy image, and results are shown in Figure2.5.

All the employed approximate ripple carry adder are 8-bit, and save saves 75 % of

design area compared with the exact version. For some of the approximate adders, 75%

of the area is not achievable, so the maximum possible area save value is considered

for them. According to the results, the proposed method posses maximum PSNR value

among investigated adders.

Bit-wise multiplication is employed to evaluate the efficiency of investigated

approximate multipliers. The size of multipliers is 8-bit×8-bit. Also, the area save

value is 40%, if this value is not achievable, the maximum possible value is considered.

The results are shown in Figure 2.6, according to this result, the proposed multiplier

obtains maximum performance between investigated cases.

2.4.3 Neural network: misclassification rate versus area saving

As a second application, we realized ANNs by exploiting approximate blocks. The

pen-digit handwritten digit recognition problem [54] is considered to speculate the

input pattern by trained networks. Pen-digit has 16 values as inputs, and the output is

a number between 0 to 9, where generally models by 10 output neuron.

Our designed ANN structure is 16-100-10, the inputs are unnormalized, where the

adder and multiplier input’s bit-widths are 12 and 8, respectively. The area is calculated

as gates number in this section, and for different area save values, the misclassification

rate is given in Table2.11. The employed multipliers and adders are selected by

considering their performance in Table 2.9 and Table 2.10.

32

Figure 2.5a : AM3 [1]. Figure 2.5b : AX1 [2]. Figure 2.5c : INAX [3].

Figure 2.5d : Trunct. Figure 2.5e : Exact. Figure 2.5f : Proposed.

Figure 2.5 : Mean filter results with approximate 8-Bit adders. Area saves are a)73%
b)50% c)53% d)75% e)0% f)75%. PSNR values are a)14.22dB

b)6.05dB c)14.22dB d)19.12dB e)NA f)37.61dB.

Figure 2.6a : Mmn1 [4]. Figure 2.6b : Mmn2 [4]. Figure 2.6c : Minho [5].

Figure 2.6d : Trunct. Figure 2.6e : Exact. Figure 2.6f : Proposed.

Figure 2.6 : Results for blending of two images by approximate 8-Bit×8-Bit
multipliers. Area saves are a)32% b)40% c)32% d)40% e)0% f)40%.
PSNR values are a)13.86dB b)13.86dB c)16.51dB d)15.10dB e)NA

f)37.12dB.

33

Table 2.11 : Neural network misclassification rates for different area savings.

Multiplier Adder Area Saving
Type Type 5% 13% 25% 34% 41%

Truncation Truncation 3.03 3.0303 4.54 18.45 58.119
Evoapprox [29] AMA3 [1] 3.0017 3.259 3.259 3.5163 13.52

Proposed Proposed 2.9445 3.0017 3.0303 3.6 3.6021

34

3. ANN HARDWARE REALIZATION

3.1 Introduction

Recent years have seen a tremendous interest in artifical neural networks (ANNs), their

successful applications in a wide range of problems, including image recognition [8]

and face detection [9], their promising development on graphical processing units

(GPUs) [55], and their efficient hardware implementations on different design

platforms, such as analog, digital, hybrid very large scale integrated circuits (VLSI),

and field programmable gate-arrays (FPGAs) [56].

An ANN is a computing system built up by a number of simple and highly

interconnected processing elements [57]. As shown in Figure 3.1, its fundamental

unit, called neuron, sums the multiplication of weights by input variables, adds the bias

value to this summation, and propagates this result to the activation function. While the

bias value has the effect of increasing or decreasing the input of the activation function,

the activation function limits the amplitude of the neuron output [58]. Mathematically,

the neuron behavior can be defined as following.

y =
n

∑
i=1

wixi (3.1)

z = φ(y+b) (3.2)

Where (n) denotes the number of input variables and weights. On the other hand,

Figure 3.2 presents an ANN design including hidden and output layers where each

circle denotes a neuron.

Observe from Figure 3.2 that the hardware complexity of an ANN depends heavily

on weight and bias values and is dominated by a large number of multiplications

of constant weights by input variables. Over the years, many algorithms and

design architectures have been introduced to reduce the hardware complexity of

ANNs [15, 19, 25, 59–63].

35

x1
x2

xn

Activation

Function

(ϕ)w1

wn

z
y

b

Bias

Weights
Inputs

+
Outputw2

Ʃwixi

Figure 3.1 : Artificial neuron.

In this thesis, we explore the hardware complexity of ANNs under the parallel

and time-multiplexed architectures. Note that a time-multiplexed design, where

computations are realized at a time, re-using the computing resources, is preferred

to a parallel design in applications with a strict area requirement. However, since the

time-multiplexed design needs multiple clock cycles to obtain the final result, it has

a higher latency and energy consumption with respect to the parallel design [64]. To

further explore the area versus latency and energy consumption trade-off, in this study,

we consider two time-multiplexed architectures. Furthermore, since floating-point

multiplication and addition operations take up more area and energy than their integer

equivalent [65], the floating-point weight and bias values observed through the training

phase are transferred to integers.

Since the sizes of integer weight and bias values have a direct impact on the hardware

complexity, we introduce a technique that can find the minimum quantization value,

sacrificing a little loss in the hardware accuracy.

Also, for each design architecture, we propose an algorithm that can tune the weight

and bias values such that the hardware complexity is reduced avoiding a loss in the

hardware accuracy. Furthermore, since the ANN design includes a large number

of multiplications of constant weights by input variables and these weights are

determined beforehand, these constant multiplications are realized under the shift-adds

architecture using the fewest number of addition/subtraction operations found by

previously proposed optimization algorithms [7, 66, 67].

This chapter implies that, different design architectures present alternative ANN

realizations with different hardware complexity so that a designer can choose the one

that fits best in an application. Consequently, obtained trade-off provides feasibility to

realize the ANNs based on the desired available hardware.

36

X1

X2

X3

Z1

Z2

ANN

Inputs
Hidden Layers

Output

Layer

Figure 3.2 : ANN with two hidden layers.

3.2 Background

3.2.1 ANN basics

Although the design techniques presented in this article can be applied to different

ANN architectures, such as convolutional and recurrent, we consider the feedforward

ANNs which do not include any feedback loop. Given the ANN structure including

the number of inputs, outputs, layers, and neurons in each layer and the activation

functions in each layer, the weight and bias values of ANN are determined in a training

phase where the error between the desired and actual values is reduced using an

iterative optimization algorithm. State-of-art training algorithms [19, 68, 69] consist

of efficient techniques on initialization, optimization, and stopping criteria and include

a number of activation functions.

The training process is generally carried out offline on processors and/or GPUs. In

the testing process, the ANN response on the applied inputs is computed using the

weight and bias values determined in the training phase. The ANN computation is

generally carried out online on a hardware design platform, such as application specific

integrated circuits (ASIC) and FPGAs.

3.2.2 Multiplierless constant multiplications

In many applications, such as digital signal processing, cryptography, and compilers,

multiplying constants by variable(s) is a common and essential operation [70].

Constant multiplications can be divided into four categories, as shown in

Figure. 3.3-3.6.

37

SCMx y = cx

Figure 3.3 : Single constant multiplication (SCM).

MCM

y1 = c1x
y2 = c2x

ym = cmx

x

Figure 3.4 : Multiple constant multiplication (MCM).

1. The single constant multiplication (SCM) operation realizes the multiplication of a

single constant c by a single variable x, i.e., y = cx.

2. The multiple constant multiplication (MCM) operation computes the multiplication

of a set of m constants C by a single variable x, i.e., y j = c jx with 1≤ j ≤ m.

3. The constant array-vector multiplication (CAVM) operation implements the

multiplication of a 1×n constant array C by an n×1 input vector X , i.e., y=∑k ckxk

with 1≤ k ≤ n.

4. The constant matrix-vector multiplication (CMVM) operation realizes the

multiplication of an m× n constant matrix C by an n× 1 input vector X , i.e.,

y j = ∑k c jkxk with 1≤ j ≤ m and 1≤ k ≤ n.

Observe that the CMVM operation is the most general case and corresponds to an SCM

operation when both m and n are 1, to an MCM operation when m > 1 and n is 1, and

to a CAVM operation when m is 1 and n > 1.

Since the constants are determined beforehand, these constant multiplications can

be realized using addition, subtraction, and shift operations under the shift-adds

architecture. Parallel shifts can be implemented in hardware using only wires without

paying any area cost. The digit-based recoding (DBR) [6] is a straightforward

shift-adds design technique that can achieve constant multiplications in two steps:

i) define the constants under a particular number representation, such as binary or

38

CAVM

x1

x2

xn

y = c1x1 + c2x2 + ... + cnxn

Figure 3.5 : Constant array vector multiplication (CAVM).

CMVM

x1

x2

xn

y1 = c11x1 + c12x2 + ... + c1nxn

y2 = c21x1 + c22x2 + ... + c2nxn

ym = cm1x1 + cm2x2 + ... + cmnxn

Figure 3.6 : Consant matrix vector multiplication (CMVM).

canonical signed digit (CSD)1; ii) for the nonzero digits in the representation of

constants, shift the input variables according to digit positions and add/subtract the

shifted variables with respect to digit values. As a simple example, consider the

CMVM operation in Figure 3.7. Its direct realization needs 4 multiplication and 2

addition operations. The DBR method finds a solution with a total number of 8 adders

and subtractors when constants are defined under the CSD representation as shown in

Figure 3.8.

The number of adders/subtractors can be further reduced by maximizing the sharing of

common partial products among constant multiplications [7,66,67,71–73]. Returning

to our example, the algorithm of [7] finds a solution with 4 operations sharing the

subexpression (x1 + x2) as shown in Figure 3.9. Moreover, prominent algorithms,

that can find multiplierless designs of constant multiplications taking into account the

gate-level area, delay, power dissipation, and throughput of the design, are introduced

in [74–77]. Furthermore, efficient algorithms are proposed for the multiplierless

realization of time-multiplexed constant multiplications in [78–80].

3.2.3 Related work

For the multiplierless realization of neural networks, binary neural networks (BNNs),

where weights values and activation functions are constrained to be either 1 or -1, were

introduced in [60]. It is shown that BNNs drastically reduce the memory size and the

1An integer can be written in CSD using n digits as ∑
n−1
i=0 di2i, where di ∈ {−1,0,1}. The nonzero digits

are not adjacent and a constant is represented with a minimum number of nonzero digits under CSD.

39

11 3

5 13

x1

x2

y1

y2
= .

x x

+

x x

+

x1 x1

y1 y2

x2x211 3 5 13

y1 = 11x1 + 3x2

y2 = 5x1 + 13x2

Figure 3.7 : Implementation of a CMVM operation realizing y1 = 11x1 +3x2 and
y2 = 5x1 +13x2.

number of accesses to the memory during training, and replace multipliers with XOR

operators in hardware. However, they lead to a worse accuracy when compared to

conventional neural networks [61]. Lesser nonzero numbers mean lesser adder and

subtractor; hence in [61, 62], the weights are obtained with minimum nonzero values

during the training phase. In [15], floating-point weights in each layer are dynamically

quantized, fixed-point weights are defined in binary representation, and the ANN is

implemented in a hardware accelerator.

The multiplierless hardware realization of ANNs is considered in [63] where the

multiplication of weights by input variables is realized in a bit-serial fashion, defining

weights under the CSD representation.

In [19], for the time-multiplexed realization of ANN design, a post-training algorithm,

that tunes weights to reduce the hardware complexity, is introduced and the

multiplication of constant weights by input variables in each neuron at each layer is

realized under the shift-adds architecture.

The multiply-accumulate (MAC) block is a fundamental operation in the

time-multiplexed design architecture. In [81], delay-efficient MAC structure uses

accumulators and carry-save adders to reduce its high latency. MAC-based

implementation efficient implementation of ANN designs on FPGAs using MAC

blocks is investigated in [82]. MAC blocks have recently been used to realize

neuromorphic cores using two versions, axonal-based and dendritic-based [29].

40

y1 = x1<<4 - x1<<2 - x1 + x2<<2 - x2

y2 = x1<<2 + x1 + x2<<4 - x2<<2 + x2

-

-

+

-

<<4 <<2 <<2

x1 x1

x1

x2 x2

y1

+ -

+

+

x1 x1 x2 x2

x2

<<2 <<4 <<2

y2

Figure 3.8 : DBR method [6].

3.3 Design Architectures

In this section, we present parallel and time-multiplexed design architectures used to

realize ANNs in hardware.

3.3.1 Parallel design

Figure 3.10 presents the realization of neuron computations at the kth layer where m

and n are the number of outputs (or neurons) and inputs at this layer, respectively.

Under the parallel architecture, after the ANN inputs are applied, neuron computations

at each layer are obtained concurrently, and the output values are obtained

simultaneously, i.e, unlike to the time-multiplexed design all the outputs are calculated

by one clock.

3.3.2 Time-Multiplexed design

The MAC block is a fundamental operation in an ANN design under the

time-multiplexed architecture. As shown in Figure 3.11, it can be used to realize

the neuron computation given in Figure 3.1, re-using the multiplication and addition

operations. Note that, the control block which is actually a counter, synchronizes

the multiplication of a weight by an input variable, and the result is added to the

accumulated value stored in the register R. For clarity, the clock and reset signals

41

+

+

-

-

x1 x2

x1
<<1

<<4

y2

y1

<<2

Figure 3.9 : The algorithm of [7] optimizing the number of operations.

xk1

xk2

zk1

zk2

+

+

yk1

yk2

bk1

bk2

Ʃwk1ixki

Ʃwk2ixki

Ʃwkmixkixkn zkm+

ykm

bkm

wk11

wkmn

Figure 3.10 : Neuron computations at the kth layer of ANN.

are not shown in this diagram. Under this architecture, the neuron computation is

obtained after n+ 1 clock cycles. The size of the counter and multiplexers, which is

determined by the number of weights and input variables, the size of the multiplier,

which is determined by the maximum bitwidths of the input variables and weights,

and the size of the adder and register, which is determined by the bitwidth of the inner

product of inputs and weights, all contribute to the MAC block’s design complexity,

i.e., y = ∑
n
i=1 wixi.

In this subsection, we present two time-multiplexed architectures to design the whole

ANN using MAC blocks. Under the first architecture, called smac_neuron, each

neuron at each layer is realized using a single MAC block and under the second

42

x1

x2

xn

w1w2 wn

x +
y

Control

Logic

R + z

MAC

b

Figure 3.11 : Multiply-accumulate (MAC) block in the neuron computation.

xk1 xk2 xkn

wk11
wk12

wk1n

R

x

yk1

+

wk21
wk22

wk2n

R

x

yk2

+

wkm1
wkm2

wkmn

R

x

ykm

+

Control
Logic

x

+bk1

zk1

+bk2

zk2

+bkm

zkm

MAC MAC MAC

Figure 3.12 : Neuron computations at the kth layer of ANN using MAC blocks.

architecture, called smac_ann, the whole ANN is realized using a single MAC block.

In following, these architectures are described in detail.

3.3.2.1 SMAC_NEURON ARCHITECTURE

The neuron computations at the kth layer of an ANN using m MAC blocks and a control

block are shown in Figure. 3.12. The multiplication of associated weights by input

variables is synchronized by the control block. If each layer of an ANN has ηi neurons,

where 1≤ i≤ λ and λ is the number of layers, the necessary number of MAC blocks

is ∑i ηi, i.e., the total number of neurons.

43

The number of inputs and weights determines the complexity of the operation and

registers of MAC blocks.The number of inputs at each layer determines the control

block’s complexity. Since the neuron computations are obtained layer by layer, the

neuron computations in the subsequent layer begin after the neuron computations in

the previous layer are completed. This is accomplished simply by producing an output

signal at each layer, which flags that, all neuron computations have been completed,

thus preventing the hardware from performing excessive computations and lowering

power consumption. The computation of the whole ANN with λ layers and ιi inputs

at each layer, where 1≤ i≤ λ , is obtained after ∑i(ιi +1) clock cycles.

3.3.2.2 SMAC_ANN ARCHITECTURE

The ANN design using a single MAC block is demonstrated in Figure 3.13, where

the clock and reset signals are omitted for clarity. The control block in this diagram

contains three counters that synchronize the multiplication of a weight by an input

variable, the addition of a bias value to each inner product, and the activation function.

The number of layers, the number of inputs at each layer, and the number of outputs

(or neurons) at each layer are all represented by these counters.

The variables X1,X2, . . .Xn denote the ANN’s primary inputs, and these variables

are multiplied by the associated weights during the first layer computations. While

the maximum number of inputs at all layers determines the size of multiplexers for

input variables, the total number of weight and bias values determines the size of

multiplexers for weight and bias values.

The maximum bitwidth of all input variables and weights determines the size of the

multiplier in the MAC block, while the maximum bitwidth of the multiplication of

weights by input variables in the whole ANN determines the size of the adder and

register. Furthermore, the maximum number of outputs at each layer determines the

number of registers used to store the outputs. We note that the computation of the

whole ANN with λ layers, ιi inputs at each layer, and ηi neurons at each layer, where

1≤ i≤ λ , is obtained after ∑i(ιi+2)ηi clock cycles. By considering the number of the

clock cycles and neurons, we proposed an algorithm to find the minimum quantization

value.

44

X1

X2

Xn

w111 w112 wkmn

x +

Control

Logic

R +

z11

b11 b12 bkm

R

R

R

z12

zkmMAC

Figure 3.13 : ANN design using a single MAC block.

3.4 Finding the Minimum Quantization Value

In this section, we present a technique proposed for finding the minimum quantization

value to convert the floating-point weight and bias values to integers and methods

introduced for tuning weight and bias values to reduce the ANN design complexity

under the parallel and time-multiplexed architectures.

As mentioned earlier MATLAB neural network tool is employed to train the desired

network. By default, MATLAB stores all numeric variables as double-precision

floating-point values. To decrease the design complexity, we convert the floating-points

to integers. By regarding the ANN accuracy, we find the minimum bit-width of weights

and biases. To do so, we first create a validation data set by randomly shifting 30% of

the training data set to this set, which is then used to compute the hardware accuracy.

Following is a summary of the suggested technique:

1. Set the quantization value, q, and the ANN accuracy in hardware, ha(q), to 0 in

both software and hardware.

2. Increase the value of q by 1.

3. Multiply each floating-point weight and bias value by 2q and find the smallest

integer greater than or equal to the result of this multiplication.

4. Using the integer weight and bias values, compute the ha(q) value for the validation

data set.

5. If ha(q)> 0 and ha(q)−ha(q−1) is greater than 0.1%, go to Step 2.

45

xk1

xk2

zk1

zk2

+

+

yk1

yk2

bk1

bk2

xkn zkm+

ykm

bkm

wk11

wkmn

CMVM

wk11 wk12 wk1n

wk21 wk22 wk2n

wkm1 wkm2 wkmn

xk1

xk2

xkn

Figure 3.14 : Neuron computations at the kth layer using a CMVM block.

6. Otherwise, return q as the minimum quantization value.

It’s worth noting that, in order to use limited size weight and bias values, we lose

only 0.1% in ANN precision in hardware computed on the validation data collection.

Consider that all the preprocessing tasks must execute on the validation data set and

the test date use only in the final step.

3.5 ANNs Under the Shift-Adds Architecture

This section presents the multiplierless realizations of ANN designs under the parallel

and time-multiplexed architectures.

3.5.1 Multiplierless ANN design under the parallel architecture

A straight-forward way for the multiplierless realization of ANN under the parallel

architecture is to describe each inner product at each layer, i.e., yk1,yk2, . . .ykn shown in

Figure 3.10, as a CAVM operation and to implement each CAVM block independently

under the shift-adds architecture. We use the algorithm of [67] to optimize the number

of adders/subtractors in the multiplierless designs of these CAVM blocks.

As shown in Figure 3.14, all inner products at the kth layer can be described as a

CMVM operation and the number of adders/subtractors in the multiplierless realization

of the CMVM block can be reduced using the algorithm of [7]. Thus, the possible

sharing of subexpressions can be increased, reducing the number of adders and

subtractors in the multiplierless ANN design.

46

xk1 xk2 xkn

wk11x

+ + +

Control
Logic

wk12x wk1nxwk21xwk22x wk2nx wkm1xwkm2x wkmnx

MCM Block

R

yk1

R

yk2

R

ykm

x

+bk1

zk1

+bk2

zk2

+bkm

zkm

Figure 3.15 : Multiplierless realization of neuron computations at the kth layer under
the SMAC_NEURON architecture.

3.5.2 Multiplierless ANN design under the time-multiplexed architectures

Under the SMAC_NEURON architecture, multiplications of related weights by input

variables at the kth layer, which is shown in Figure. 3.12, can be computed in an

MCM block and redirected to the corresponding adders using multiplexers as shown

in Figure. 3.15.

To increase the sharing of partial products and thus minimize the necessary number

of adders/subtractors, instead of using an MCM block for each neuron, a single MCM

block is used, which realizes the multiplication of all weights in a layer by an input

variable. To find the shift-adds realization of the MCM block with the fewest number

of adders/subtractors, the exact algorithm of [66] is used.

Similarly, the multiplierless realization of ANN under the SMAC_ANN architecture

presented in Figure 3.13 can be obtained when the multiplication of all weight values

by the selected input variable is implemented using an MCM block. However, since

one multiplier is replaced by a large number of adders/subtractors, such a multiplierless

realization increases the hardware complexity significantly.

47

3.6 SIMURG: The CAD Tool

In this section, we present our CAD tool called SIMURG developed to generate

automatically the hardware description of an ANN under the design architectures given

in Section 3.3 and the multiplierless design techniques described in Section 3.5.

The weight and bias values of the ANN are specified using a state-of-the-art method,

given the ANN structure, which includes the number of inputs, outputs, hidden layers,

and neurons in the hidden layers, as well as the type of activation function of neurons

for each layer. In this study, we used MATLAB neural network toolbox [69] to train the

ANN, but for this chapter we investigated, two different training methods, ZAAL [83],

and pytorch [68] in addition to the MATLAB to demonstrate the effect of the training

method.

Generally, Training tools include the conventional and stochastic gradient descent

methods, and the Adam optimizer [84] as an iterative optimization algorithm. They

have different weight initialization techniques, such as Xavier [85], He [86], and a

fully random method. They also have a variety of stopping requirements, such as the

number of iterations, early stopping using validation data, and loss function saturation.

It can describe sigmoid, hard sigmoid (hsig), hyperbolic tangent, hard hyperbolic

tangent (htanh), linear (lin), rectified linear unit (ReLU), saturating linear (satlin), and

softmax [87] as a activation functions for neurons in each layer.

To realize ANNs in hardware level, initially floating-point weight and bias values

determined during the training phase and converted to integers with given quantization

technique. The ANN design is described in hardware automatically with SIMURG

tool. This realization is based on the ANN structure given to a training algorithm,

the integer weight and bias values, and the design architecture, i.e., parallel,

SMAC_NEURON, or SMAC_ANN. The activation functions used in SIMURG are hsig,

htanh, lin, ReLU, and satlin due to their simplicity in hardware. The tool can define

the multiplication of constant weights by input variables in a behavioral fashion. Also,

it can find the multiplierless realizations of these constant multiplications as described

in Section 3.5. The tool also generates a test-bench and necessary files to verify the

48

ANN design and the synthesis scripts automatically. The SIMURG tool with its limited

number of functions is available at https://github.com/leventaksoy/ANNs.

3.7 Experimental Results

In this chapter, we used the pen-based handwritten digit recognition problem [54] as an

application to evaluate different architecture, structure, and training method of ANNs.

In the convolutional neural network design of this application, we implemented 5

feedforward ANN structures with different number of layers and number of neurons

in layers, denoted as pin–η1–η2– . . .–ηλ , where pin stands for the number of ANN

primary inputs, which is equal to 16, and ηk, where 1 ≤ k ≤ λ , indicates the number

of neurons in the kth layer. Note that the activation function of each neuron in the

hidden and output layers in training (hardware) was respectively tanh (htanh) and

satlin (satlin). The activation functions were determined based on the software test

accuracy found in training.

The ANNs were trained using 7494 data and tested using 3498 data. Table 3.1

presents the training and hardware design details on different ANN design structures.

In this table, sta and hta denote the software test accuracy, and hardware test accuracy,

respectively. Floating-point weight and bias values were converted to integers using

the minimum quantization value determined as described in Section 3.4. In the ANN

hardware design, bitwidths of ANN inputs and outputs at each layer were determined

as 8.

Observe from Table 3.1 that different architectures lead to ANN designs with different

hardware accuracy. However, they yield software test accuracy values close to

hardware test accuracy values. Note that the difference between the software and

hardware test accuracy is due to the quantization value, bitwidths of ANN inputs and

outputs at each layer, and different activation functions used in training and hardware

design.

In this work, we present gate-level results of ANN designs implemented in

three different architectures, namely parallel, SMAC_NEURON, and SMAC_ANN, as

described in Section 3.3. To allow a reasonable analogy with time-multiplexed designs,

flip-flops were applied to the ANN design outputs in parallel designs. The Cadence

49

Table 3.1 : Details of ANNs on training and hardware design.

Structure
ZAAL [83] PYTORCH [68] MATLAB [69]

sta hta tnzd sta hta tnzd sta hta tnzd
16-10 84.6 86.0 431 85.5 85.1 374 89.1 89.3 374
16-10-10 94.1 93.6 855 95.9 95.2 950 95.9 95.9 857
16-16-10 96.0 95.9 1245 95.6 95.6 1338 96.9 95.0 1291
16-10-10-10 94.7 94.0 1121 95.8 95.6 1190 96.4 94.7 1121
16-16-10-10 96.6 96.6 1432 96.7 96.7 1608 96.6 95.2 1560
Average 93.2 93.2 1017 93.9 93.6 1092 95.0 94.0 1041

RTL Compiler with the TSMC 40nm design library was used to synthesize ANN

designs that were defined in Verilog hardware description language.

Alongside the MATLAB ANN tool, we have trained the ANN using Pytorch and the

ZAAL tool, which was developed in our lab. Since the topic of this thesis is hardware

optimization of ANNs, we will only use the MATLAB tool to train networks in the

following chapter, which is more general.

It’s worth noting that different software strategies can help reduce ANN complexity

too. In order to explore the impact of a design architecture on the ANN hardware

complexity.

Figs. 3.16-3.18 present respectively area (in µm2), latency (in ns), and energy

consumption (in pJ) results of ANN designs under the parallel, SMAC_NEURON, and

SMAC_ANN architectures where constant multiplications are described in a behavioral

fashion. It’s worth noting that the ANN output is obtained by multiplying the clock

time by the number of clock cycles. Iteratively, the clock time was shortened by

using the retiming technique in the synthesis tool. The test data in simulation was

used to produce the switching activity data required for the computation of power

dissipation. The ANN design was also checked using this test data set. Latency and

power dissipation are multiplied to calculate energy consumption.

Observe that weight and bias values found by different training algorithms lead

to ANN designs with different hardware complexity where their impact is clearly

observed on ANN designs under the parallel architecture since there exist a large

number of constant multiplications. On the other hand, while ANN designs under

the SMAC_ANN architecture have the smallest area, the ones under the parallel

architecture occupy the largest area. However, the latency of ANN designs under

50

the parallel architecture is significantly smaller than those of ANN designs under

the time-multiplexed architectures. Moreover, ANN designs under the SMAC_ANN

architecture consume the most energy. Note that area, latency, and energy consumption

values of ANN designs under the SMAC_NEURON architecture are in between those of

ANN designs under the parallel and SMAC_ANN architectures.

51

0

1
0
00
0

2
0
00
0

3
0
00
0

4
0
00
0

5
0
00
0

6
0
00
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Area

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

0123456789

1
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Latency

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Energy Consumption

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

Fi
gu

re
3.

16
:A

N
N

de
si

gn
s

un
de

rt
he

pa
ra

lle
la

rc
hi

te
ct

ur
e

w
he

n
co

ns
ta

nt
m

ul
tip

lic
at

io
ns

ar
e

de
sc

ri
be

d
in

a
be

ha
vi

or
al

fa
sh

io
n.

0

2
0
00

4
0
00

6
0
00

8
0
00

1
0
00
0

1
2
00
0

1
4
00
0

1
6
00
0

1
8
00
0

2
0
00
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Area

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Latency

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Energy Consumption

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

Fi
gu

re
3.

17
:A

N
N

de
si

gn
s

un
de

rt
he

S
M

A
C

_N
E

U
R

O
N

ar
ch

ite
ct

ur
e

w
he

n
co

ns
ta

nt
m

ul
tip

lic
at

io
ns

ar
e

de
sc

ri
be

d
in

a
be

ha
vi

or
al

fa
sh

io
n.

52

0

5
0
0

1
0
00

1
5
00

2
0
00

2
5
00

3
0
00

3
5
00

4
0
00

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Area

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

0

5
0
0

1
0
00

1
5
00

2
0
00

2
5
00

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Latency

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

1
6
-1
0

1
6
-1
0
-1
0

1
6
-1
6
-1
0

1
6
-1
0
-1
0
-1
0

1
6
-1
6
-1
0
-1
0

Energy Consumption

A
N

N
 S

tr
u

ct
u

re

ZA
A
L

P
YT
O
R
CH

M
A
TL
A
B

Fi
gu

re
3.

18
:A

N
N

de
si

gn
s

un
de

rt
he

S
M

A
C

_A
N

N
ar

ch
ite

ct
ur

e
w

he
n

co
ns

ta
nt

m
ul

tip
lic

at
io

ns
ar

e
de

sc
ri

be
d

in
a

be
ha

vi
or

al
fa

sh
io

n.

53

54

4. EFFICIENT HARDWARE REALIZATION OF ANNS BY APPROXIMATE
BLOCKS

4.1 Introduction

The previous chapters served us essential acknowledge about the approximate

computing and ANNs hardware realization. We will exploit this knowledge to

implement the ANN by employing approximate blocks in this chapter. As discussed in

Chapter 3, ANNs building blocks are neuron that sums the multiplication of input

variables by weights as expressed in equation 3.1. Since Multipliers and adders

dominate ANNs hardware, the approximate versions of these arithmetic blocks are

replaced by their exact version in this chapter. Also, Chapter 3 reveals the efficiency of

the time-multiplexed architectures in terms of hardware complexity, consequently the

main focused architecture is MAC-based method in this chapter.

By investigate the literature we obtain many efficient algorithms for reducing ANN

hardware complexity, including [15, 26, 28, 60–62]. This chapter will deal with the

implementation of ANNs in hardware using approximate adders and multipliers in a

time-multiplexed architecture when accounting for the ANN hardware accuracy. In

order to do this, the exact adders and multipliers in the MAC blocks are replaced with

approximate adders and multipliers. We also present a novel approximate multiplier in

this chapter, which allows us to investigate the trade-off between hardware complexity

and error at the multiplier output by varying the approximation level. It is worth

noting that, contrary to the methods of [29, 31], the generation of an approximate

multiplier with different bit-widths of inputs under the given approximation level can

be performed in linear time. Using approximate multipliers by various approximation

levels for the neuron computations at different layers, will greatly reduce the ANN

hardware complexity [26].

Experiments show that, ANNs with the proposed approximate multiplier take up fewer

area and use less energy than those with previously suggested approximate multipliers

55

A B

Cin

Sum

Cout

A B

Cin

Sum

Cout

A B

Cin

Sum

Cout

Full Adder 1Full Adder 2Full Adder n

0

b0a0b1a1bn-1an-1

sn

sn-1 s1 s0

Figure 4.1 : Ripple carry adder.

in [29, 88]. It is also shown that, by using approximate adders, the ANN hardware

complexity can be further reduced.

4.2 Approximate Blocks for ANN

4.2.1 Approximate adders

Generally a n-bit ripple carry adder made up of n 1-bit full adders ,which is

demonstrated in Figure. 4.1. FA’s input bits are represented by A, B, and carry-in (Cin),

while its output bits are represented by Sum and carry-out (Cout). Conventionally it

is presumed that simultaneous errors on both the Sum and Cout outputs of FA can

produce a greater erroneous result in literature [3, 31]. We had showed this assertion,

though, ignores the fact that, while an error on one of an FA block’s outputs increases

the error at the adder output, an error on the other output can reduce the error at the

adder output. As we had discussed in Chapter 2, the simultaneous error in full adder

outputs, results in a considerable area save compared to the other full adders in the

literature. We had given the truth table of the proposed adder in Table 2.2. Also, we

had presented a synthesis method for obtaining a n-bit approximate ripple carry adder,

which replaces the exact FAs with APADs under the given error value.

To simplify the implementation of ANNs by approximate blocks, we introduce a new

error metric for the n-bit ripple carry adders in this chapter. According to Chapter 2

results, for different AAED values, APAD4 dominates the array of n-bit ripple carry

adder. As a result, we suggest the number of APAD4 as a new error metric which

we called it approximate level. Therefore, the approximate level for n-bit ripple-carry

adders is the number of APAD4. For example, if the ripple-carry adder is 8 bit and its

approximate level is 2, it means the 2 least significant one-bit adders are APAD4 and

the rest 6 one-bit adders are exact adders.

56

4.2.2 Approximate multipliers

We also introduce a new design methodology for implementation of approximate

multipliers, to suit better in ANNs. The realization of an exact multiplier is divided into

two steps: partial product generation by AND gates, and partial product accumulation

by half adders (HAs) 1 and FAs. An exact 4-bit unsigned multiplier structure is shown

in Figure 4.2. HAs and FAs are represented by rectangular blocks of two and three

entries, respectively.

Our proposed synthesis tool in Chapter 2, replaces exact HA and FA blocks in the

exact multiplier with their approximate versions, taking into account the error at the

multiplier output. The proposed method generates approximate multipliers called

PBAM, where these multipliers are probability-based approximate multipliers in the

design of an approximate multiplier, by considering the probability of occurring of

logic 0 and 1 at the outputs of all HA and FA. Also, we considered the CGP method

of [29], where approximate multipliers generated by this method are derived from the

exact multipliers.

In this chapter, we suggest a new approximate multiplier called LEBZAM, which is

applied by setting the least significant outputs of an exact multiplier to zero, where r is

the approximation level. The following is a description of the synthesis method: i) Set

the exact multiplier’s r least significant outputs to 0; ii) Remove all FA and HA blocks

needed to realize the exact multiplier’s r least significant outputs. The realization of

a 4-bit approximate multiplier when r is 3 is seen in Figure 4.3. Consider that, the

proposed approximate multiplier is completely different than truncation multipliers ,

where the proposed multipliers set the least significant bits to zero, but the truncation

multipliers eliminates these bits.

In contrast to the approximate multipliers of [29, 31], an approximate multiplier

LEBZAM can be conveniently obtained by providing the approximation level and

bit-widths of the inputs. As a result, in this section, under different ANN architectures,

which were discussed in chapter 3, and by exploiting approximate blocks by different

approximate levels, we are attempting to reduce the cost of ANN hardware.

1Half adder is obtained when one of the inputs of FA is set to 0.

57

34

1

a1b0
a0b1

2

a0b0

a3b2

a2b3a3b3

a3b3 s1

s1

a0b0

a0b0s6

a1b1
a0b2

a2b0a3b0
a2b1
a1b2

a3b1
a2b2
a1b3

c1

s2

6

c3

s4

8

a3b2
a2b3
c4

9

s7

c6

10

c8

s9

12

a3b3

13

c9

a0b0s6 s1s10s11s12s13c13

s3

a3b0

c2
7

c10
11

c7

s8

c11c12

a0b3

Figure 4.2 : Exact 4-bit unsigned multiplier.

12

a3b2

a2b3a3b3

a3b3

a3b0
a2b1
a1b2

a3b1
a2b2
a1b3

s1

a3b0

3

c1

s2

4

a3b2
a2b3
c2

5

c3

s4

6

c4

s5

7

a3b3

8

c5

00 0s3s6s7s8c8

c6c7

a0b3

Figure 4.3 : Approximate 4-bit unsigned multiplier with the least significant 3 bits
are set to logic value 0.

58

4.2.3 Approximate level

4.2.3.1 SMAC_NEURON

To determine the approximate level of the multipliers and adders based on the

misclassification rate (MR) for SMAC_NEURON architecture following steps are

obtained.

1. Set the hidden layer number n to 1.

2. Set the approximate level ALn to 0.

3. Increase ALn value by 1.

4. Calculate Approximation Misclassification rate AMR.

5. If AMR−MR < tolerable_error go to Step 3, otherwise increase n value by 1.

6. If n < nmax +1 save ALn−1 as the approximate level of nth layer and and return to

step2.

7. save ALn−1 as the approximate level of output.

These steps are taken separately for adders and multipliers. We must acknowledge that

starting with multipliers or adders will result in the same approximate level values for

the blocks, in this study, we apply the proposed method for approximate multipliers at

first. To shrink the search space of adders’ approximation level (AAL), the minimum

level value of AAL is set to the determined multipliers’ approximate level (MAL) value

increment by one. Additionally, the error distance values of LEBZAM are negative or

zero for all cases, based on this error pattern, the approximate level of multipliers and

adders for all neurons in each layer are chosen identical. Contrarily selecting a higher

approximate level for any neuron comparing to other neurons at the same layer, leads

to a negative bias of that neuron i.e. the neuron with the higher approximate level,

posses a scanty output regarding to other neurons, where this biasing results a disturb

in accuracy.

An arithmetic unit with m-bitwidth output, posses a number between 0 and m as

a approximate level((m + 1)options). By considering n-bit × n-bit multiplier for

59

MAC unit, the adder output bitwidth value will be (2n+ 1), and the total possible

combination number of approximate level for adder and multiplier for each neuron

will be (2n+1)× (2n+2). Also by considering that there are η neurons in λ layers,

the total possible combination for a ANN is formulated as follow.

(4n2 +6n+2)
λ

∑
i

ηi (4.1)

By exploiting the proposed method, the approximate level values of the multipliers

are identical for all of the neurons, according to the method, we increment the MAL

value by 1 until the error deviation becomes greater than the given error limit value.

MAL value of n-bit multiplier is a number between 0 and 2n, hence by exploiting the

proposed method, the total investigated case is MAL for all neurons in each layer. In

line with the proposed method, the minimum number of AALvalue is equivalent to the

determined MAL value increment by one. Similarly, the same steps are obtained to

find the AAL value; consequently, the total investigated cases is 2n−MAL−AAL for

all neurons of each layer. The total number of examined cases for the whole network

is given by following formula.

λ

∑
i
(MAL+1)+(AAL−MAL) (4.2)

As an example, consider a Pen-digit handwritten digit recognition problem [54], the

trained network architecture consists of 16 inputs, 50 neurons in the hidden layer, and

10 outputs. Assume the input and weights bit-width is 8, consequently the all possible

combination of MAL and AAL is:

(4(82)+(6×8)+2)× (50+10) = 18360

whereas, by exploiting the proposed method, the significant reduction in the explored

cases occurs.

The MR deviation percentage for different MALs and AALs values are shown in

Figure.4.4. Based on the proposed method, after seven iterations, the MAL1 value is

set to 6. To find this value all the other arithmetic units are set to their exact versions,

and their approximate level is 0. Note that setting MAL1 value to 7 causes to MR value

becomes greater than the given value where the tolerable error value is considered 1%

of MR for this example. The same steps are employed to obtain the MAL2 value.

60

AML2 , AAL2=0

AML1 + AML2+ AAL1+ AAL2

-30

-20

-10

10

20

30

40

M
R

 D
if

fe
re

n
ce

 (
%

)

 AAL1 = 0, AAL2= 0 AML1 = 6, AML2= 10

 AML2 = 0 AML1 = 6 AAL2 = 10 AAL1 =10

1%MR

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 32 33 34 35 36 37 37

Figure 4.4 : Misclassification rate for SMAC_NEURON architecture by the different
approximate levels of multipliers and adders.

According to the proposed algorithm, to investigate AAL1 and AAL2 values, the starting

points are set to their corresponding MAL value in each layer. As shown in Figure.4.4,

the AAL value for layer1 and layer2 is set to 10. Note that the total examined case

number for this example is:

(7+(10−7))+(10+(10−10)) = 20

which is negligible in comparison to the all possible 9180 cases.

4.2.3.2 SMAC_ANN

To determine the approximate level of multipliers and adders in SMAC_ANN

architecture following 7 steps are obtained.

1. Set the MAL and AAL to 0.

2. Increase MAL value by 1.

3. Calculate Approximation Misclassification rate AMR.

4. If AMR−MR < tolerable_error go to Step 2, otherwise save MAL− 1 as the

approximate level of multiplier.

5. Increase AAL value by 1.

6. Calculate Approximation Misclassification rate AMR.

7. If AMR−MR < tolerable_error go to Step 4, otherwise save AAL− 1 as the

approximate level of adder.

61

2 3 4 5 6 7 8 15 16 17 18

AML + AAL

-5

0

5

15

20

25

30
M

R
 D

if
fe

re
n
ce

 (
%

) AAL = 0 AML = 7

10%MR

Figure 4.5 : Misclassification rate for SMAC_ANNarchitecture by the different
approximate levels of multipliers and adders.

The SMAC_ANN architecture comprises a singular MAC unit as the arithmetic unit;

consequently, determining the approximate level of multiplier and adder is more

straightforward compared to the SMAC_ANN architecture.

Distinct from the ANN structure, the total possible combination of MAL and AAL

values is correlated with the output bit-width of arithmetic units. By assuming that the

multipliers and adders output bit-widths are j and k, respectively, the number of all

possible combinations of MAL and AAL will be j×k. On the other hand, by exploiting

the proposed method, the number of investigated cases shrinks to MAL+(AAL−MAL)

cases.

As an example, Pen-digit handwritten digit recognition problem is employed by the

same parameters but under SMAC_ANN architecture. The applied method results are

shown in Fig4.5. Starting by the multiplier, after 8 iterations the MAL value is set to

7, and the tolerable error value is considered as 1.1 of MR. According to the proposed

method, AAL initial value is set to MAL+ 1, and after 4 iterations, the AAL value is

set to 10 correspondingly. Take consider the total examined cases is 12, whereas all

possible combination is (16× 20) by considering that, the output bit-width is 16 and

20 for multipliers and adders, respectively.

4.3 Experimental Results

In this section, MNIST and Pen-digit data-set are exploited to train ANNs. The MNIST

handwritten digit classification problem is a well-known dataset in computer vision and

deep learning applications. The inputs for the MNIST are the real image pixels of the

62

handwritten numbers. On the other hand, the inputs for the Pen-digit are 16 attributes

of the images. Therefore, Pen-digit requires a less complex ANN structure to predict

the expected numbers. The ANN was trained using the MATLAB [69] deep learning

toolbox. The training and test inputs were normalized within -1 and 1, the weights were

randomly initialized and they were modified using a backpropagation-based learning

approach to minimize the error between the obtained and desired response. The

ANN designs hardware description language is Verilog and were synthesized using

the Cadence Genus tool with the TSMC 40nm design library.

The results for two different applications are provided in two different following

sections.

4.3.1 Pen-digit problem

We used the pen-digit handwritten digit recognition problem [54] as a first research

application. A Feedforward ANN was implemented, which includes 16 inputs, a

hidden layer by 16 neurons, and 10 neurons at the output layer. The hidden and output

layer activation functions were symmetric saturating linear, and softmax, respectively.

The ANN was trained by 7494 data and was tested by 3498 data. The misclassification

rate after training was calculated as 4.85%. Following the conversion into integers of

the floating-point weight and biasing values when the q quantization value was set to

8, the behavioral ANN design using exact adders and multipliers was described and

the hardware misclassification rate was identified as 5%.

The designs of the ANN in this study will be implemented using approximate adders

and multipliers without exceeding the HMR limit of 5.5%. Also, ANNs will be

implemented under two different SMAC_NEURON and SMAC_ANN architectures and

using 3 different approximate multipliers, which are PBAM, LEBZAM, and the logic

level approximate multipliers [29]. We note that all the exploited approximate

adders are our proposed adders. The approximate [29], mul12s 2NM and mul12s

2KM multipliers have 12-bit inputs and are selected among other multipliers for

their minimum area and error. Notice that, the approximation levels of adders and

multipliers in the hidden and output layers have been systemically calculated taking

HMR values into account.

63

ANN designs’ gate-level performance presented in Tables 4.1-4.2, in which area, delay

and power respectively stand for total area in µm2, the delay in the critical path which

is determined to be the clock period in ns, and total power dissipation in mW . The

time at ns that is needed to achieve ANN output after input, calculated as the clock

time multiplication with the number of clock cycles required to achieve the ANN

output, is latency. For our proposed ANNs the number of clock cycles required in

order to get an ANN output is calculated as 34 and 468 for SMAC_NEURON and

SMAC_ANN. Energy consumption (energy), in pJ calculated as a latency multiplied

by power dissipation.

We observe that the retiming procedure in the synthesis tool has increased the clocking

period. Use the test data in simulation to produce the switching activity data for

calculating of the power dissipation. Also, the test data was used to validate the ANN

design and calculate the hardware misclassification rate.

The results of gate-level ANN designs presented by the Table 4.1. The architecture for

ANN is SMAC NEURON, where just approximate multipliers in MAC blocks have been

replaced by the exact versions. Note that since approximate multipliers in [29] are

optimized for a fixed bit length, they may be worse in the area, latency, and energy

consumption values than ANN’s with exact multipliers. Also, consider that logic

synthesis tools optimize the exact multipliers separately, especially for widely-used

bit widths like 8×8 or 16×16.

According to these results, the use of approximate multipliers LEBZAM, by finding

the appropriate approximate multipliers in the hidden layers and in the output layers,

can reduce the ANN hardware complexity. In addition, the largest reduction in the

area, latency, and consumed energy is obtained by LEBZAM multipliers. Note that, by

simply changing the approximation level of multipliers the trade-off between hardware

complexity and accuracy is obtainable.

Table 4.2 presents the gate-level results of ANN designs under the SMAC_NEURON

architecture where both exact adders and multipliers in the MAC blocks are replaced

by the approximate ones. The experimental results indicate that concurrent use of

approximate multiplier and adders significantly reduces the complexity of the ANN.

64

Ta
bl

e
4.

1
:R

es
ul

ts
of

S
M

A
C

_N
E

U
R

O
N

ar
ch

ite
ct

ur
e

us
in

g
ap

pr
ox

im
at

e
m

ul
tip

lie
rs

.

M
ul

tip
lie

rT
yp

e
A

pp
ro

xi
m

at
io

n
L

ev
el

H
id

de
n

O
ut

pu
t

ar
ea

de
la

y
la

te
nc

y
po

w
er

en
er

gy
H

M
R

ar
ea

ga
in

en
er

gy
ga

in

B
eh

av
io

ra
l

0
0

15
32

7
3.

58
12

1.
68

1.
44

17
4.

77
5.

00
0%

0%
m

ul
12

s_
2N

M
[2

9]
N

A
N

A
13

92
9

3.
72

12
6.

31
1.

23
15

5.
04

5.
12

9%
11

%
m

ul
12

s_
2K

M
[2

9]
N

A
N

A
17

22
7

3.
70

12
5.

80
1.

44
18

1.
33

5.
00

-1
2%

-3
%

PB
A

M
[8

8]
7

11
13

27
6

3.
57

12
1.

35
1.

31
15

9.
14

4.
84

9%
13

%
PB

A
M

[8
8]

7
12

12
99

2
3.

66
12

4.
37

1.
30

16
1.

52
5.

03
15

%
8%

PB
A

M
[8

8]
8

11
12

76
1

3.
41

11
5.

91
1.

26
14

5.
51

5.
37

17
%

17
%

L
E

B
Z

A
M

6
9

11
99

9
3.

68
12

5.
02

1.
00

12
5.

21
5.

03
22

%
28

%
L

E
B

Z
A

M
7

11
10

22
4

3.
45

11
7.

40
1.

04
12

2.
05

4.
80

33
%

30
%

L
E

B
Z

A
M

7
12

97
23

3.
41

11
6.

01
0.

94
10

9.
41

5.
09

37
%

37
%

65

Ta
bl

e
4.

2
:R

es
ul

ts
of

S
M

A
C

_N
E

U
R

O
N

ar
ch

ite
ct

ur
e

us
in

g
ap

pr
ox

im
at

e
m

ul
tip

lie
rs

an
d

ad
de

rs
.

M
ul

tip
lie

rT
yp

e
A

pp
ro

xi
m

at
io

n
L

ev
el

H
id

de
n

O
ut

pu
t

M
ul

A
dd

M
ul

A
dd

ar
ea

de
la

y
la

te
nc

y
po

w
er

en
er

gy
H

M
R

ar
ea

ga
in

en
er

gy
ga

in

B
eh

av
io

ra
l

0
0

0
0

15
32

7
3.

58
12

1.
62

1.
44

17
4.

77
5.

00
0%

0%
m

ul
12

s_
2N

M
[2

9]
N

A
10

N
A

14
11

85
4

3.
92

13
3.

14
0.

59
78

.7
6

5.
17

22
%

55
%

m
ul

12
s_

2K
M

[2
9]

N
A

9
N

A
15

13
13

3
3.

95
13

4.
30

0.
69

92
.4

8
5.

34
14

%
47

%
PB

A
M

[8
8]

7
7

12
11

10
22

6
3.

66
12

4.
37

0.
61

76
.2

5
5.

03
33

%
57

%
PB

A
M

[8
8]

7
7

12
12

97
98

3.
64

12
3.

86
0.

61
75

.7
0

5.
20

33
%

57
%

PB
A

M
[8

8]
7

7
12

13
95

34
3.

66
12

4.
37

0.
62

77
.2

5
5.

17
39

%
56

%
L

E
B

Z
A

M
6

10
9

13
10

39
2

3.
58

12
1.

72
0.

58
70

.1
1

5.
31

32
%

60
%

L
E

B
Z

A
M

7
12

10
13

88
01

3.
61

12
2.

88
0.

55
67

.3
2

4.
88

43
%

61
%

L
E

B
Z

A
M

7
11

10
14

89
89

3.
61

12
2.

81
0.

52
63

.6
8

4.
97

41
%

64
%

66

Ta
bl

e
4.

3
:R

es
ul

ts
of

S
M

A
C

_A
N

N
ar

ch
ite

ct
ur

e
us

in
g

ap
pr

ox
im

at
e

m
ul

tip
lie

rs
.

M
ul

tip
lie

rT
yp

e
A

pp
ro

xi
m

at
io

n
L

ev
el

ar
ea

de
la

y
la

te
nc

y
po

w
er

en
er

gy
H

M
R

ar
ea

ga
in

en
er

gy
ga

in
B

eh
av

io
ra

l
0

31
80

3.
52

16
46

.4
2

0.
35

56
9.

33
5.

00
0%

0%
m

ul
12

s_
2N

M
[2

9]
N

A
32

78
3.

72
17

38
.6

2
0.

29
49

9.
80

5.
00

-3
%

12
%

m
ul

12
s_

2K
M

[2
9]

N
A

32
79

3.
77

17
64

.8
3

0.
29

50
4.

74
5.

00
-3

%
11

%
PB

A
M

[8
8]

0
32

87
3.

79
17

74
.1

9
0.

29
51

8.
38

5.
00

-3
%

9%
PB

A
M

[8
8]

7
31

94
3.

76
17

60
.1

5
0.

28
49

9.
60

4.
83

-1
%

12
%

PB
A

M
[8

8]
8

31
48

3.
24

15
18

.1
9

0.
28

43
1.

60
5.

34
2%

24
%

L
E

B
Z

A
M

5
31

89
3.

69
17

25
.9

8
0.

27
47

2.
95

4.
94

-2
%

8%
L

E
B

Z
A

M
6

31
52

3.
68

17
24

.5
8

0.
28

48
9.

60
4.

90
1%

14
%

L
E

B
Z

A
M

7
30

91
3.

56
16

64
.6

8
0.

27
44

9.
89

4.
80

3%
21

%

67

Ta
bl

e
4.

4
:R

es
ul

ts
of

S
M

A
C

_A
N

N
ar

ch
ite

ct
ur

e
us

in
g

ap
pr

ox
im

at
e

m
ul

tip
lie

rs
an

d
ad

de
rs

.

M
ul

tip
lie

rT
yp

e
A

pp
ro

xi
m

at
io

n
L

ev
el

M
ul

A
dd

ar
ea

de
la

y
la

te
nc

y
po

w
er

en
er

gy
H

M
R

ar
ea

ga
in

en
er

gy
ga

in

B
eh

av
io

ra
l

0
0

31
80

3.
52

16
46

.4
2

0.
35

56
9.

33
5.

00
0%

0%
m

ul
12

s_
2N

M
[2

9]
N

A
13

29
08

3.
40

15
90

.2
6

0.
25

39
1.

63
5.

06
9%

31
%

m
ul

12
s_

2K
M

[2
9]

N
A

13
31

40
3.

68
17

21
.3

0
0.

26
45

1.
51

5.
46

1%
21

%
PB

A
M

[8
8]

7
10

29
72

3.
55

16
59

.5
3

0.
26

42
6.

62
5.

03
7%

25
%

PB
A

M
[8

8]
8

9
29

78
3.

59
16

79
.1

8
0.

25
42

1.
98

5.
03

6%
26

%
PB

A
M

[8
8]

7
11

30
29

3.
84

17
98

.5
2

0.
25

44
8.

54
4.

66
5%

21
%

L
E

B
Z

A
M

6
14

30
46

3.
53

16
52

.5
1

0.
28

46
9.

89
4.

95
4%

17
%

L
E

B
Z

A
M

7
12

30
41

3.
62

16
92

.2
9

0.
26

44
0.

25
4.

66
4%

23
%

L
E

B
Z

A
M

7
13

30
21

3.
53

16
50

.1
7

0.
26

42
6.

73
5.

40
5%

25
%

68

According to Table 4.2, our approximate multipliers provide the maximum increase in

areas and energy consumption up to 43% and 64%, respectively.

As discussed in chapter 3, a single MAC unit processes the operations under the

SMAC_ANN architecture. By replacing the multiplier with approximate versions, new

ANNs are obtained, and results are given in Table 4.3. According to the results, the

proposed LEBZAM multipliers save more energy and area when compared with the

other methods. In addition to the LEBZAM multipliers, changing the exact adders to

the approximate counterparts leads to further reduction according to Table 4.4.

Interestingly, the use of approximate adders and multipliers can also improve the

hardware accuracy as can be observed on Tables 4.2 and 4.4.

4.3.2 MNIST problem

As the second application, we considered the MNIST handwritten digit recognition

problem [89]. The dataset consists of gray-scale images from NIST, which is

normalized to fit into (28× 28) pixel boxes. The ANN is employed to predict the

digits among 10 integers (0-9) based on the input pixels.

To examine the performance of the proposed method on a different structure, we

implemented the feedforward ANN with two different structures; 3 hidden layers by

256 neurons for the first case, and a hidden layer by 128 neurons for the second case.

The activation functions of the hidden and output layer were symmetric saturating

linear, and softmax, respectively.

The ANN was trained using 60000 data and was tested using 10000 data. Also, the

quantization factor q was set to 12 for employed ANN by exploiting the proposed steps

in Chapter 3.

By converting input data to 12 bits integer, 116 of 784 input pixels remained unchanged

for the train and test data. In a different expression, for 12-bit resolution, 116 of

the pixel values are identical for the whole of the train and test data. MATLAB

automatically pre-read the data and remove unchanged data because eliminating these

values will not affect the performance of ANN. By training ANN through MNIST

database at the software level, the computed MRs for test data were calculated as 2.60

and 2.24 for 668-256-256-256-10 and 668-128-10 structure, respectively.

69

To evaluate the efficiency of the proposed multipliers and the algorithm among the

other literature, proposed multipliers are compared with CGP based multipliers which

are introduced in [29]. According to [28] study, CGP based multipliers holds better

result among all the deliberately approximate multipliers.

The ANNs were implemented under the SMAC_NEURON and SMAC_ANN architec-

tures using the proposed approximate adders in this thesis, the approximate multipliers

of [29], and our proposed multipliers LEBZAM and PBAM. The signed approximate

multipliers of [29], have constant 12-bit×12-bit and 16-bit×16-bit inputs. Also,

according to SMAC synthesis method, inputs bit-widths of multipliers are non-identical

for this architecture. To adopt the [29] multipliers with the employed structure,

the multipliers from the library of [29] by maximum bit-width were selected, then

we removed the gates and in-outs of extra bits. Note, we have systematized the

approximation levels on the hidden layers and output layers of the PBAM and

LEBZAM multipliers in accordance with the HMR value. The ANN designs were

described in Verilog and synthesized using the Cadence Genus tool with the TSMC

40nm design library.

The energy and area save for trained ANN by ANN by 668-128-10 structure and under

SMAC_NEURON architecture are depicted in Figure. 4.6 and Figure. 4.7 respectively.

To evaluate the efficiency of the proposed method compared to the introduced method

in [29], 63 cases by different multipliers and adders are exploited. As shown in these

figures, exploiting simultaneously approximate multipliers and adders according to the

proposed method always hold more save in energy and area with the same HMR values

compared to the other methods.

HMR

En
er

gy
 s

av
e

(%
) LEBZAM

PBAM[22]

Proposed-LEBZAM

EvoAPP[18]

Proposed-PBAM

2.4 2.5 2.6 2.7 2.8 2.9 3
-10

0

10

20

30

40

50

60

Figure 4.6 : Energy save percentages of ANN for different approximate methods in
terms of hardware misclassification rate.

70

HMR

A
re

a
sa

ve
 (

%
)

EvoAPP[18]
PBAM[22]

LEBZAM
Proposed-PBAM
Proposed-LEBZAM

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1
-15

-10

-5

0

5

10

15

Figure 4.7 : Area save percentages of ANN for different approximate methods in
terms of hardware misclassification rate.

Tables 4.6-4.5 present the gate-level results, where area, delay, and power stand

respectively for total area in µm2, the delay in the critical path which is determined

to be the clock period in ns, and total power dissipation in mW . Again, latency refers

to the time in ms needed to produce an ANN output when an input is added. This value

was calculated as the number of clock cycles needed multiply by the clock period. The

number of clock cycles required to obtain the ANN output under the SMAC_NEURON

and SMAC_ANN is respectively computed as 798 and 87060 for 668-128-10 structure

and, 1440 and 306196 for 668-256-256-256-10 structure. Again, energy consumption

in µJ is calculated as the latency and dissipated power multiplication. The clock period

improving technique again has been applied. Also, the test data employed to design

validation, and save switching activity by generating the “.saif" file.

The gate level results of the SMAC_NEURON architecture, in which the exact

multipliers and adders of the blocks of MAC are replaced by the approximate ones,

are shown in Table 4.6 and Table 4.7. Approximate multipliers of [29] may have

worse area values than those of ANN using exact multipliers for the reasons which

were discussed in section 4.3.1. On the other hand, the use of LEBZAM multipliers

can save in the ANN hardware complexity by obtaining the proper approximation

levels of multipliers at the different layers. In addition, the proposed approximate

LEBZAM multiplier leads to the most significant decrease in area, latency and power

consumption. Notice that a change in the approximation level of the multipliers and

adders will explore the compromise between hardware complexity and accuracy.

By exploiting the proposed algorithm, the deviation limit is set to 2.5% of HMR and

by regarding that the HMR value is 2.63, the maximum tolerable HMR is 2.69 for

71

668-128-10 structure. The MAL value of LEBZAM multipliers are obtained as 7

and 16 for the hidden and output layers. Also, AAL values are calculated as 8 and

17, respectively, for the hidden layer and output layer. Furthermore, to obtain the

performance of the proposed approximate level algorithm, different cases beyond this

algorithm are given in Table 4.6. It must be noted that, due to the large search space

of MAL and AAL values, the proposed algorithm only finds near-optimal values by

acceptable variance.

By investigation of Table 4.6 results, observe that the simultaneous use of approximate

multipliers with the introduced approximate adders in [88], reduces the ANN hardware

complexity significantly. The maximum gain on area and energy consumption reaches

up to 6% and 48% using the approximate multipliers and adders with improving in

the accuracy. Table 4.7 presents the gate-level results of ANN designs under the

SMAC_NEURON architecture for 668-256-256-256-10 architecture. According to the

table result, exploiting approximate multipliers and adders yields up to 39% and 5%

save in energy and area respectively with a small degradation in the accuracy.

The gate-level results of ANN designs under the SMAC_ANNarchitecture are given in

Table 4.5. The results indicate the efficiency of the proposed method and blocks.

According to the SMAC_ANNarchitecture, only one multiplier and adder are replaced

by the approximate versions. As a result, the cost saving of hardware for this

architecture is lesser than the SMAC_NEURON architecture. Note that the proposed

approximate units lead to the largest gains on energy consumption.

Table 4.5 : Results of SMAC_ANN architecture for 668-128-10 structure using
approximate multipliers and adders.

Multiplier Type
Approximation Level

Mul Add latency power energy HMR
Energy

gain
Behavioral 0 0 688.04 9.33 6418.81 2.63 0%
LEBZAM 6 7 666.18 8.01 5333.17 2.63 17%

PBAM [88] 7 7 720.94 7.73 5570.29 2.7 13%
EvoAPP [29] HDG 0 695.78 8.30 5773.67 2.04 10%
EvoAPP [29] GAT 0 659.57 8.59 5667.82 2.78 12%

72

Ta
bl

e
4.

6
:R

es
ul

ts
of

S
M

A
C

_N
E

U
R

O
N

ar
ch

ite
ct

ur
e

fo
r6

68
-1

28
-1

0
st

ru
ct

ur
e

us
in

g
ap

pr
ox

im
at

e
m

ul
tip

lie
rs

an
d

ad
de

rs
.

M
ul

tip
lie

rT
yp

e
A

pp
ro

xi
m

at
io

n
L

ev
el

H
id

de
n

O
ut

pu
t

M
ul

A
dd

M
ul

A
dd

ar
ea

de
la

y
la

te
nc

y
po

w
er

en
er

gy
H

M
R

A
re

a
ga

in
E

ne
rg

y
ga

in

B
eh

av
io

ra
l

0
0

0
0

20
08

31
9.

56
7.

63
21

.5
2

16
4.

10
2.

63
0%

0%
PB

A
M

[8
8]

7
0

16
0

20
65

06
9.

29
7.

41
18

.7
0

13
8.

62
2.

54
-3

%
16

%
L

E
B

Z
A

M
7

0
16

0
18

97
96

7.
75

6.
18

17
.8

8
11

0.
52

2.
65

5%
33

%
E

vo
A

PP
[2

9]
H

D
G

/K
Q

0
H

D
G

/K
Q

0
22

46
21

8.
71

6.
95

17
.6

7
12

2.
73

2.
64

-1
2%

25
%

E
vo

A
PP

[2
9]

H
FZ

/K
5

0
H

FZ
/K

5
0

21
47

57
8.

30
6.

62
17

.6
4

11
6.

82
2.

66
-7

%
29

%
E

vo
A

PP
[2

9]
G

A
T

/N
M

0
G

A
T

/N
M

0
15

72
75

5.
85

4.
66

17
.2

8
80

.6
1

2.
78

22
%

51
%

E
vo

A
PP

[2
9]

2K
M

0
0

0
22

90
00

8.
39

6.
70

18
.7

8
12

5.
83

2.
63

-1
4%

23
%

E
vo

A
PP

[2
9]

0
0

H
D

G
/K

Q
0

20
26

15
8.

94
7.

13
22

.3
8

15
9.

54
2.

62
-1

%
3%

E
vo

A
PP

[2
9]

0
0

12
N

/G
A

T
0

20
33

42
9.

14
7.

29
21

.6
8

15
8.

07
2.

64
-1

%
4%

E
vo

A
PP

[2
9]

0
0

K
5/

H
FZ

0
20

03
49

9.
56

7.
63

21
.8

7
16

6.
89

2.
64

0%
-2

%
PB

A
M

[8
8]

7
8

14
15

19
14

31
8.

98
7.

17
12

.6
3

90
.4

8
2.

64
5%

45
%

PB
A

M
[8

8]
8

8
15

17
18

52
00

9.
18

7.
33

13
.6

7
10

0.
18

2.
61

8%
39

%
PB

A
M

[8
8]

7
7

16
16

19
19

25
10

.4
7

8.
35

11
.8

7
99

.1
3

2.
54

4%
40

%
L

E
B

Z
A

M
7

7
15

17
19

12
86

9.
09

7.
25

12
.8

8
93

.4
2

2.
56

5%
43

%
L

E
B

Z
A

M
7

8
15

15
18

93
43

8.
76

6.
99

12
.1

1
84

.6
6

2.
61

6%
48

%
L

E
B

Z
A

M
7

8
16

17
18

73
96

9.
03

7.
21

12
.8

5
92

.6
2

2.
63

7%
44

%
L

E
B

Z
A

M
7

7
16

16
19

04
66

9.
55

7.
62

13
.1

9
10

0.
53

2.
65

5%
39

%
L

E
B

Z
A

M
8

8
14

14
18

81
12

6.
70

5.
35

14
.3

1
76

.4
9

2.
76

6%
53

%

73

Ta
bl

e
4.

7
:R

es
ul

ts
of

S
M

A
C

_N
E

U
R

O
N

ar
ch

ite
ct

ur
e

fo
r6

68
-2

56
-2

56
-2

56
-1

0
st

ru
ct

ur
e

us
in

g
ap

pr
ox

im
at

e
m

ul
tip

lie
rs

an
d

ad
de

rs
.

M
ul

tip
lie

rT
yp

e
A

pp
ro

xi
m

at
io

n
L

ev
el

H
id

de
n1

H
id

de
n2

H
id

de
n3

O
ut

pu
t

M
ul

A
dd

M
ul

A
dd

M
ul

A
dd

M
ul

A
dd

ar
ea

de
la

y
la

te
nc

y
po

w
er

en
er

gy
H

M
R

A
re

a
ga

in
E

ne
rg

y
ga

in

B
eh

av
io

ra
l

0
0

0
0

0
0

0
0

93
90

76
8.

05
11

.6
14

1.
4

16
39

.6
3.

96
0%

0%
PB

A
M

[8
8]

7
0

7
0

7
0

14
0

97
19

48
7.

31
10

.5
13

1.
5

13
84

.6
4.

22
-4

%
16

%
PB

A
M

[8
8]

7
7

7
7

7
7

14
14

89
29

79
9.

03
13

.0
77

.1
10

02
.3

4.
22

5%
39

%
L

E
B

Z
A

M
6

0
6

0
6

0
14

0
92

93
30

9.
00

12
.9

10
7.

9
13

98
.7

4.
25

1%
6%

L
E

B
Z

A
M

6
6

6
6

6
6

14
14

91
96

64
9.

17
13

.2
84

.8
11

20
.2

4.
25

2%
32

%
E

vo
A

PP
[2

9]
D

G
/K

Q
0

D
G

/K
Q

0
D

G
/K

Q
0

D
G

/K
Q

0
10

51
00

4
9.

22
13

.3
11

1.
9

14
86

.3
3.

99
-1

2%
9%

E
vo

A
PP

[2
9]

FZ
/K

5
0

FZ
/K

5
0

FZ
/K

5
0

FZ
/K

5
0

10
00

47
8

9.
57

13
.8

10
5.

1
14

49
.5

4.
05

-7
%

12
%

74

5. CONVOLUTION LAYER

5.1 Introduction

The main focus of this dissertation is the efficient hardware realization of the

approximate ANNs. In the previous chapters, we proposed a methodology to

implement the desired ANNs with minimum hardware complexity. All the investigated

techniques were based on the feed-forward ANNs. We discussed that there is a

common tendency to train and test the networks on CPUs and GPUs due to their

processing strength. However, their large power consumption makes this method

impractical for portable devices where the number of processing units, battery

capacity, and memory is limited. These considerations make application-specific

integrated circuits (ASICs) a favorable method for hardware implementation. To

reduce the hardware complexity by considering an increase in latency, ANNs based

on Multiply-accumulated (MAC) units and multiplierless designs are proposed in

Chapter3. Also by introducing novel approximate units for MAC blocks, a remarkable

reduction in power consumption and occupied area are obtained for fully-connected

ANNs in Chapter4.

Beyond the discussed fully-connected ANNs, convolutional neural networks (CNN)

provide remarkable results in achieving better performances by extracting features

from the training data. In this chapter, we will address how to realize CNN convolution

layers by exploiting our techniques.

The CNNs consist of convolutional layers followed by the fully-connected layers.

Practically, the fully-connected layers are used to classify the inputs’ features which

are provided by filters or convolution layers. Due to numerous memory access and a

large power consumption, ASIC implementation of a CNN with millions of parameters

is impractical in the parallel fashion.

75

CNNs’ hardware complexity is dominated by convolution layers where each

convolution is a sum of weighted neighboring pixels. On the other hand,

fully-connected ANN is a vector multiplication of inputs with related weights. Inspired

by the fully-connected ANNs, a new computational method for convolution layers are

realized based on the MAC units to reduce the hardware complexity of convolution

layers [90]. Exploiting MAC units enables designers to reduce power consumption

and silicon area considerably by a hybrid operation (parallel-serial).

By considering the similarity of the fully-connected ANNs and the convolution

operation, we propose an efficient computational method to reduce both the number of

employed MAC units and the number of clock cycles. Experimental results shows that

our proposed computational method results in reduction in area, power dissipation and,

number of clock cycles in comparison to the generic computation method introduced

in [90] work.

5.1.1 Convolution layer

A convolution layer contains a set of filters whose parameters are specified during

the training phase. The convolution operation on an input image using kernel filters

extract fundamental features from the image. The inputs and filters are formed in 3

dimensions:height H, widthW and channel C.

The convolution operation is represented in Figure 5.4. The height and weight of the

filters are smaller than those of the input values. The filter plane slides over the entire

input image step by step and, the output is the result of multiple convolutions. As

an example, convolution operation in Figure 5.5, is considered as Cin = 1, Hin = 4,

Win = 4, Cout = 1, H f = 2, Wf = 2 and S = 1, where S stands for a stride value. In the

convolution operation process, stride is the number of pixel-shifting in each operation.

The number and the size of the filters varies for different applications.

Serial processing is an alternative approach for parallel fashion computing where

re-using a unit, results in a reduction in hardware complexity by an increase in latency.

As mentioned in Chapter5, ANNs’ hardware complexity are dominated by multipliers

and adders. ANNs can be designed under the time-multiplexed architecture using

the MAC blocks. The structure of the unit is represented in Figure 5.1, where each

neuron in a layer is replaced by a single MAC unit. Hardware realization of the

76

x1

x2

xn

w1w2 wn

x +
y

Control

Logic

R + z

MAC

b

Figure 5.1 : Multiply-accumulate (MAC) block in the neuron computation.

ANNs under MAC units can be classified into two models: axonal-based [23] and

dendritic-based [24] models.

For axonal-based model which is shown in Figure 5.2, every single input of a layer

is multiplied by the related weights of all neurons in a layer, where all the outputs are

calculated simultaneously. As a result, axonal-based model does not require obtaining

all the inputs at the same time. The process is realized step by step for all inputs

and, the control logic unit is a simple counter which counts from 1 to i, where i is the

number of inputs. To obtain all of the neuron’s output, i+1 clock cycles is required.

For dendritic-based model which is shown in Figure 5.3, the value of a next neuron is

calculated by multiplying all inputs with the related neuron’s weights and accumulating

them. This method results in the sequential generation of outputs and every step of

the calculation needs to obtain all the input values to start the next layer calculation.

This model needs n+ 1 clock cycles to determine all neurons’ output values where n

is the number of outputs. Also by combining these two models, parallel computing

is enabled in two successive layers to achieve smaller latency in the whole network

computing time [25].

77

Inputs Hidden Layers Output

Layer

Figure 5.2 : Axonal-based model.

Inputs Hidden Layers Output

Layer

Figure 5.3 : Dendritic-based model.

* = H
o
u
t

Wout

H
in

Win

H
f

Wf

Input Activation
Maps

Output Activation
Maps

Filters

1

2

n

Figure 5.4 : The computation of convolutional layer.

78

x2×w1 + x3×w2 + x4×w3+

x6×w4 + x7×w5 + x8×w6+

x10×w7 + x11×w8 + x12×w9
w1 w2

w4 w5

w3

w7

w6

w8 w9

x1 x2

x5 x6

x3 x4

x7 x8

x9 x10

x13 x14

x11 x12

x15 x16

x ×w + x ×w + x ×w +

x

6 1 7 2 8 3

10×w4 + x11×w5 + x12×w6+

x14×w7 + x15×w8 + x16×w9

+

x5×w1 + x6×w2 + x7×w3+

x9×w4 + x10×w5 + x11×w6

x13×w7 + x14×w8 + x15×w9

x ×w + x ×w + x ×w +1 1 2 2 3 3

x5×w4 + x6×w5 + x7×w6+

x9×w7 + x10×w8 + x11×w9

* =

Figure 5.5 : The computation of convolutional layer.

Table 5.1 : The axonal-based model data flow for convolutional computation.

Clock Cycles Neuron #1 Neuron #2 Neuron #3 Neuron #4
clk #1 X1×W1 X1×0 X1×0 X1×0
clk #2 X2×W2 X2×W1 X2×0 X2×0
clk #3 X3×W3 X3×W2 X3×0 X3×0
clk #4 X4×0 X4×W3 X4×0 X4×0
clk #5 X5×W4 X5×0 X5×W1 X5×0
clk #6 X6×W5 X6×W4 X6×W2 X6×W1
clk #7 X7×W6 X7×W5 X7×W3 X7×W2
clk #8 X8×0 X8×W6 X8×0 X8×W3
clk #9 X9×W7 X9×0 X9×W4 X9×0
clk #10 X10×W8 X10×W7 X10×W5 X10×W4
clk #11 X11×W9 X11×W8 X11×W6 X11×W5
clk #12 X12×0 X12×W9 X12×0 X12×W6
clk #13 X13×0 X13×0 X13×W7 X13×0
clk #14 X14×0 X14×0 X14×W8 X14×W7
clk #15 X15×0 X15×0 X15×W9 X15×W8
clk #16 X16×0 X16×0 X16×0 X16×W9

79

Ta
bl

e
5.

2
:T

he
pr

op
os

ed
m

et
ho

d
da

ta
flo

w
fo

rc
on

vo
lu

tio
na

lc
om

pu
ta

tio
n.

C
lo

ck
C

yc
le

s
N

eu
ro

n
#1

N
eu

ro
n

#2
N

eu
ro

n
#3

N
eu

ro
n

#4
N

eu
ro

n
#5

N
eu

ro
n

#6
N

eu
ro

n
#7

N
eu

ro
n

#8
N

eu
ro

n
#9

cl
k

#1
X

1
×

W
1

X
2
×

W
2

X
3
×

W
3

X
5
×

W
4

X
6
×

W
5

X
7
×

W
6

X
9
×

W
7

X
10
×

W
8

X
11
×

W
9

cl
k

#2
X

2
×

W
1

X
3
×

W
2

X
4
×

W
3

X
6
×

W
4

X
7
×

W
5

X
8
×

W
6

X
10
×

W
7

X
11
×

W
8

X
12
×

W
9

cl
k

#3
X

5
×

W
1

X
6
×

W
2

X
7
×

W
3

X
9
×

W
4

X
10
×

W
5

X
11
×

W
6

X
13
×

W
7

X
14
×

W
8

X
15
×

W
9

cl
k

#4
X

6
×

W
1

X
7
×

W
2

X
8
×

W
3

X
10
×

W
4

X
11
×

W
5

X
12
×

W
6

X
14
×

W
7

X
15
×

W
8

X
16
×

W
9

80

5.2 Experimental Results

To evaluate the performance of our proposed method, we considered convolutional

operation with 3 different filter sizes. The employed filter sizes are 3× 3, 5× 5 and,

7× 7. Additionally, to compare the efficiency of our proposed method, we provided

the hardware cost of axonal-based computation method. As an input, we considered

the MNIST handwritten digit recognition data set for the convolution process, where

the size of the images are 28×28 pixels.

The operation designs were described in Verilog and synthesized using Cadence

Genus tool with the TSMC 40nm design library. Hardware implementation results

are represented in Figure 5.6. As discussed in Section 5.1.1, the convolution operation

is processed based on the fully-connected ANN model. According to the convolution

process essence, the output pixels size decreases by increasing the size of filters.

Experimental results show our proposed method requires %14, %26 and, %38 less

clock numbers for 3× 3, 5× 5 and, 7× 7 filters, respectively, when compared to the

exploited axonal-based model in [90].

Latency (µs) in this work denotes as a required time for the output to be obtained

after the input is applied. Latency is determined as the multiplication of clock period

by the number of clock cycles to obtain the ANN output. The clock period was

reduced by using the re-timing technique in the synthesis tool iteratively. Due to the

simplicity of our proposed method structure, the resulted clock period of our proposed

method by re-timing technique is lesser than the axonal-based model. As a result, the

latency reduction value is even greater for our proposed method, when compared to

the axonal-based model.

According to the experimental results in Figure 5.6, our proposed method obtains the

output 31%, 46% and, 49% faster for 3×3, 5×5 and, 7×7 filters, respectively, when

compared to the other method. As discussed in Section 5.1.1, the filter size determines

the numbers of required MAC units, and this value is negligible for our proposed

method when compared to the axonal-based model. Contrarily to the axonal-based

model, all the exploited MAC units are active in our proposed method. The realization

81

of the convolution operation by small numbers of MAC units in our proposed method

yields a remarkable reduction in term of silicon area and total power dissipation.

According to the experimental results in Figure 5.6, our proposed approach saves

around 85% more area when compared to the axonal-based model.

In this study, the switching activity data required for the computation of power

dissipation were generated using the test data in the simulation where the test data

consists of 10000 image samples. The experimental results indicate the efficiency

of the power consumption for our proposed method. According to Figure 5.6, the

dissipated power of our proposed method is only 4%, 3% and, 9% of the conventional

axonal-based model for 3, 5 and, 7 filters, respectively.

Due to remarkable reduction in latency and power consumption for our proposed

method, the energy reduction reached to 98% of the axonal-based model as represented

in Figure 5.6. We note that, the energy consumption computed as the multiplication of

latency by power dissipation.

82

3
0

4
,8

7
7

2
8

0
,0

7
2

2
5

1
,8

3
2

5
3

,5
7

8
3

1
,8

0
9

2
9

,1
9

5

3
*

3
5

*
5

7
*

7

Area (µm
2
)

F
il

te
r

S
iz

e

A
x

o
n

al
-b

as
ed

P
ro

p
o

se
d

3
3
,2

9
5

2
9
,4

6
6

2
9
,0

8
4

1
,3

8
1

9
4
2

2
,7

7
1

3
*
3

5
*
5

7
*
7

Power Consumption (µW)

F
il

te
r

S
iz

e

A
x
o
n
al

-b
as

ed
P

ro
p
o
se

d

1
4
9

1
5

7
1

6
1

4
3

8

3
*

3
5

*
5

7
*

7

Energy Consumption (µJ)

F
il

te
r

S
iz

e

A
x

o
n

al
-b

as
ed

P
ro

p
o
se

d

7
8

6
7

8
6

7
8

6

6
7

8

5
7

8

4
8
6

3
×

3
3

×
3

5
×

5

Clock Number

F
il

te
r

S
iz

e

A
x

o
n

al
-b

as
ed

P
ro

p
o

se
d

4
,4

6
4

5
,3

4
5

5
,5

3
5

3
,0

9
8

2
,9

0
3

2
,8

7
4

3
*
3

5
*
5

7
*
7

Latency (µs)

F
il

te
r

S
iz

e

A
x
o
n
al

-b
as

ed
P

ro
p
o
se

d

6
7
6

5
7

6

4
8
4

9
2
5

4
9

3
×

3
5
×

5
7
×

7

MAC Number

F
il

te
r

S
iz

e

A
x
o

n
al

-b
as

ed
P

ro
p
o
se

d

Fi
gu

re
5.

6
:E

xp
er

im
en

ta
lr

es
ul

ts
of

th
e

pr
op

os
ed

m
et

ho
d

vs
th

e
ax

on
al

-b
as

ed
m

od
el

.

83

84

6. CONCLUSIONS

In this thesis, we initially perform area optimization techniques for approximate

ripple-carry adders and Wallace-tree multipliers to satisfy a given error constraint.

Our techniques are accurate and fast, in courtesy of the proposed error calculation

techniques that consider error dependencies of building blocks of adders and

multipliers as well as occurrence probabilities of input assignments.

In the next step, we investigated different synthesis techniques to realize feed-forward

ANNs. To reduce the bulky area of the ANNs, we discussed time-multiplexed method

and developed two different time-multiplexed realization method which we called

them SMAC_NEURON and SMAC_ANN. The experimental results showed that

however for small ANN, SMAC_ANN dissipates minor power and occupies a lesser

area when compared to the SMAC_NEURON but, this assumption is not valid for the

ANN, which posses many layers or neurons. The reason is, by increasing the size

of the ANN structure, controlling the MAC unit by clock cycle dominates the whole

design, and the area or power for processing is negligible compared to the control unit.

By using the proposed multipliers on ANNs, we discovered that the area and energy

usage in the design of ANN have decreased significantly relative to the approximate

multipliers already proposed in the literature. Also, we showed that exploiting proper

approximate adders based on the employed multipliers can reduce the complexity of

structure without changing in the accuracy. To exploit the proposed multipliers and

adders in ANNs structure based on the desired accuracy, we offered the approximate

level as a novel error metric. The generation of the approximate arithmetic units based

on this error metric can be done in linear times for different bit-width inputs as opposed

to the other methods.

According to the experimental results, the introduced metric has a linear relationship

with ANN accuracy. Furthermore, we proposed an algorithm to determine the

approximate level of multipliers and adders by considering the desired accuracy.

Experimental results clearly show that the use of approximate adders and multipliers

85

in the ANN designs reduces the design complexity significantly with the same

hardware accuracy, compared to the ANN designs using exact adders and multipliers.

Finally, to prove the efficiency of the proposed method in the CNN applications,

we presented hardware efficient implementation of the convolution layers under the

time-multiplexed architecture where computing resources are re-used using MAC

blocks. The conventional MAC-based realization, which is known as the axonal-based

model, suffers from high latency. Also, a high number of idle MAC units in

the mentioned method yields in a leakage power dissipation. To overcome these

drawbacks, we introduced a novel computing approach to speed up the convolutional

computation by 2× while only use roughly 2% of the area, power and, energy of

the conventional MAC-based method. As future work, we plan to realize a CNN

completely under this proposed structure, and obtain the efficiency of our proposed

approach for the CNN in real-world applications.

86

REFERENCES

[1] Gupta, V., Mohapatra, D., Raghunathan, A. and Roy, K. (2013).
Low-Power Digital Signal Processing Using Approximate Adders, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 32(1), 124–137.

[2] Yang, Z., Jain, A., Liang, J., Han, J. and Lombardi, F. (2013). Approximate
XOR/XNOR-based adders for inexact computing, 2013 13th IEEE
International Conference on Nanotechnology (IEEE-NANO 2013),
pp.690–693.

[3] Almurib, H.A.F., Kumar, T.N. and Lombardi, F. (2016). Inexact designs for
approximate low power addition by cell replacement, 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.660–665.

[4] Momeni, A., Han, J., Montuschi, P. and Lombardi, F. (2015). Design
and Analysis of Approximate Compressors for Multiplication, IEEE
Transactions on Computers, 64(4), 984–994.

[5] Ha, M. and Lee, S. (2017). Multipliers with Approximate 4-2 Compressors and
Error Recovery Modules, volume PP, pp.1–1.

[6] Ercegovac, M. and Lang, T. (2003). Digital Arithmetic, Morgan Kaufmann.

[7] Aksoy, L., Costa, E., Flores, P. and Monteiro, J. (2012). Multiplierless Design
of Linear DSP Transforms, VLSI-SoC: Advanced Research for Systems
on Chip, Springer Berlin Heidelberg, pp.73–93.

[8] Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D. and Chen, M. (2014). Medical
image classification with convolutional neural network, International
Conference on Control Automation Robotics Vision, pp.844–848.

[9] Li, H., Lin, Z., Shen, X., Brandt, J. and Hua, G. (2015). A Convolutional
Neural Network Cascade for Face Detection, IEEE Conference on
Computer Vision and Pattern Recognition, pp.5325–5334.

[10] Noh, H., Hong, S. and Han, B. (2015). Learning Deconvolution Network for
Semantic Segmentation, IEEE International Conference on Computer
Vision, pp.1520–1528.

[11] Cheng, J., Wang, P.s., Li, G., Hu, Q.h. and Lu, H.q. (2018). Recent advances
in efficient computation of deep convolutional neural networks, Frontiers
of Information Technology & Electronic Engineering, 19(1), 64–77.

[12] Misra, J. and Saha, I. (2010). Artificial neural networks in hardware: A survey
of two decades of progress, Neurocomputing, 74(1), 239 – 255.

87

[13] Holi, J.L. and Hwang, J.. (1993). Finite precision error analysis of neural
network hardware implementations, IEEE Transactions on Computers,
42(3), 281–290.

[14] Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A. (2016). XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,
Computer Vision – ECCV 2016, Springer International Publishing,
pp.525–542.

[15] Tann, H., Hashemi, S., Bahar, R.I. and Reda, S. (2017). Hardware-Software
Codesign of Accurate, Multiplier-free Deep Neural Networks, Design
Automation Conference (DAC), pp.28:1–28:6.

[16] Lee, E.H., Miyashita, D., Chai, E., Murmann, B. and Wong, S.S.
(2017). LogNet: Energy-efficient neural networks using logarithmic
computation, 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp.5900–5904.

[17] Li, G., Li, F., Zhao, T. and Cheng, J. (2018). Block convolution: Towards
memory-efficient inference of large-scale CNNs on FPGA, 2018
Design, Automation Test in Europe Conference Exhibition (DATE),
pp.1163–1166.

[18] Aksoy, L., da Costa, E., Flores, P. and Monteiro, J. (2008). Exact
and Approximate Algorithms for the Optimization of Area and
Delay in Multiple Constant Multiplications, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(6),
1013–1026.

[19] Aksoy, L., Parvin, S., Nojehdeh, M.E. and Altun, M. (2020). Efficient
Time-Multiplexed Realization of Feedforward Artificial Neural Net-
works, 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), pp.1–5.

[20] Brown, B.D. and Card, H.C. (2001). Stochastic neural computation. I.
Computational elements, IEEE Transactions on Computers, 50(9),
891–905.

[21] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu,
Z., Sun, N. and Temam, O. (2014). DaDianNao: A Machine-Learning
Supercomputer, 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp.609–622.

[22] Lee, S.K., Whatmough, P.N., Brooks, D. and Wei, G. (2019). A
16-nm Always-On DNN Processor With Adaptive Clocking and
Multi-Cycle Banked SRAMs, IEEE Journal of Solid-State Circuits,
54(7), 1982–1992.

[23] Arthur, J.V., Merolla, P.A., Akopyan, F., Alvarez, R., Cassidy, A., Chandra,
S., Esser, S.K. and Modha, D.S. (2012). Building block of a
programmable neuromorphic substrate: A digital neurosynaptic core,
International Joint Conference on Neural Networks (IJCNN), pp.1–8.

88

[24] Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,
P. and Modha, D.S. (2015). TrueNorth: Design and Tool Flow of a
65 mW 1 Million Neuron Programmable Neurosynaptic Chip, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10), 1537–1557.

[25] Park, H. and Kim, T. (2018). Structure optimizations of neuromorphic
computing architectures for deep neural network, 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.183–188.

[26] Zhang, Q., Wang, T., Tian, Y., Yuan, F. and Xu, Q. (2015). ApproxANN:
An Approximate Computing Framework for Artificial Neural Network,
DATE, pp.701–706.

[27] Esmali Nojehdeh, M., Aksoy, L. and Altun, M. (2020). Efficient Hardware
Implementation of Artificial Neural Networks Using Approximate
Multiply-Accumulate Blocks, 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp.96–101.

[28] Ansari, M.S., Mrazek, V., Cockburn, B.F., Sekanina, L., Vasicek, Z. and Han,
J. (2020). Improving the Accuracy and Hardware Efficiency of Neural
Networks Using Approximate Multipliers, IEEE Transactions on Very
Large Scale Integration Systems, 28(2), 317–328.

[29] Mrazek, V., Hrbacek, R., Vasicek, Z. and Sekanina, L. (2017). EvoApproxSb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods, (DATE), pp.258–261.

[30] Yamada, Y., Sano, T., Tanabe, Y., Ishigaki, Y., Hosoda, S., Hyuga, F.
and Yoshikawa, T. (2020). A 20.5 TOPS Multicore SoC With DNN
Accelerator and Image Signal Processor for Automotive Applications,
IEEE Journal of Solid-State Circuits, 55(1), 120–132.

[31] Bernasconi, A. and Ciriani, V. (2014). 2-SPP Approximate Synthesis for Error
Tolerant Applications, Euromicro Conference on Digital System Design,
pp.411–418.

[32] Kish, L.B. (2002). End of Moore’s law: thermal (noise) death of integration in
micro and nano electronics, Physics Letters A, 305(3), 144 – 149.

[33] Gupta, V., Mohapatra, D., Park, S.P., Raghunathan, A. and Roy, K. (2011).
IMPACT: IMPrecise adders for low-power approximate computing,
IEEE/ACM International Symposium on Low Power Electronics and
Design, pp.409–414.

[34] Han, J. and Orshansky, M. (2013). Approximate computing: An emerging
paradigm for energy-efficient design, 2013 18th IEEE European Test
Symposium (ETS), pp.1–6.

[35] Hanif, M.A., Hafiz, R., Hasan, O. and Shafique, M. (2017). QuAd: Design and
Analysis of Quality-Area Optimal Low-Latency Approximate Adders,
Proceedings of the 54th Annual Design Automation Conference 2017,
DAC ’17, ACM, New York, NY, USA, pp.42:1–42:6.

89

[36] Jiang, H., Han, J., Qiao, F. and Lombardi, F. (2016). Approximate Radix-8
Booth Multipliers for Low-Power and High-Performance Operation,
IEEE Transactions on Computers, 65(8), 2638–2644.

[37] Liu, C., Han, J. and Lombardi, F. (2014). A Low-power, High-performance
Approximate Multiplier with Configurable Partial Error Recovery,
Proceedings of the Conference on Design, Automation & Test in Europe,
DATE ’14, European Design and Automation Association, 3001 Leuven,
Belgium, Belgium, pp.95:1–95:4.

[38] Miao, J., Gerstlauer, A. and Orshansky, M. (2013). Approximate logic
synthesis under general error magnitude and frequency constraints,
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp.779–786.

[39] Shin, D. and Gupta, S.K. (2010). Approximate Logic Synthesis for Error
Tolerant Applications, Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, European Design and
Automation Association, 3001 Leuven, Belgium, Belgium, pp.957–960.

[40] Venkataramani, S., Roy, K. and Raghunathan, A. (2013).
Substitute-and-simplify: A Unified Design Paradigm for Approximate
and Quality Configurable Circuits, Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’13, EDA Consortium,
San Jose, CA, USA, pp.1367–1372.

[41] Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K. and Raghunathan,
A. (2012). SALSA: Systematic Logic Synthesis of Approximate Cir-
cuits, Proceedings of the 49th Annual Design Automation Conference,
DAC ’12, ACM, New York, NY, USA, pp.796–801.

[42] Wu, Y. and Qian, W. (2016). An Efficient Method for Multi-level Approximate
Logic Synthesis Under Error Rate Constraint, Proceedings of the 53rd
Annual Design Automation Conference, DAC ’16, ACM, New York, NY,
USA, pp.128:1–128:6.

[43] Zou, C., Qian, W. and Han, J. (2015). DPALS: A dynamic programming-based
algorithm for two-level approximate logic synthesis, 2015 IEEE 11th
International Conference on ASIC (ASICON), pp.1–4.

[44] Kulkarni, P., Gupta, P. and Ercegovac, M. (2011). Trading Accuracy for Power
with an Underdesigned Multiplier Architecture, 2011 24th Internatioal
Conference on VLSI Design, pp.346–351.

[45] Wang, Z., Jullien, G.A. and Miller, W.C. (1995). A new design technique for
column compression multipliers, volume 44, pp.962–970.

[46] King, E.J. and Swartzlander, E.E. (1997). Data-dependent truncation scheme
for parallel multipliers, Conference Record of the Thirty-First Asilomar
Conference on Signals, Systems and Computers (Cat. No.97CB36136),
volume 2, pp.1178–1182 vol.2.

90

[47] Schulte, M.J. and Swartzlander, E.E. (1993). Truncated multiplication with
correction constant [for DSP], Proceedings of IEEE Workshop on VLSI
Signal Processing, pp.388–396.

[48] Hashemi, S., Bahar, R.I. and Reda, S. (2015). DRUM: A Dynamic Range
Unbiased Multiplier for Approximate Applications, Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’15, IEEE Press, Piscataway, NJ, USA, pp.418–425.

[49] Saadat, H., Bokhari, H. and Parameswaran, S. (2018). Minimally Biased
Multipliers for Approximate Integer and Floating-Point Multiplication,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11), 2623–2635.

[50] Ye, R., Wang, T., Yuan, F., Kumar, R. and Xu, Q. (2013). On
reconfiguration-oriented approximate adder design and its application,
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp.48–54.

[51] Ichihara, H., Inaoka, T., Iwagaki, T. and Inoue, T. (2015). Logic simplification
by minterm complement for error tolerant application, 2015 33rd IEEE
International Conference on Computer Design (ICCD), pp.94–100.

[52] Scarabottolo, I., Ansaloni, G. and Pozzi, L. (2018). Circuit carving: A
methodology for the design of approximate hardware, 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.545–550.

[53] Hashemi, S., Tann, H. and Reda, S. (2018). BLASYS: Approximate Logic
Synthesis Using Boolean Matrix Factorization, Proceedings of the 55th
Annual Design Automation Conference, DAC ’18, ACM, New York, NY,
USA, pp.55:1–55:6.

[54] Alimoglu, F. and Alpaydin, E. (1997). Combining Multiple Representations and
Classifiers for Pen-based Handwritten Digit Recognition, International
Conference on Document Analysis and Recognition, pp.637–640.

[55] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks, International Conference on
Neural Information Processing Systems, pp.1106–1114.

[56] Misra, J. and Saha, I. (2010). Artificial Neural Networks in Hardware: A Survey
of Two Decades of Progress, Neurocomputing, 74(1-3), 239–255.

[57] Hecht-Nielsen, R. (1990). Neurocomputing, Addison-Wesley.

[58] Haykin, S. (1999). Neural Networks: A Comprehensive Foundation,
Prentice-Hall.

[59] Courbariaux, M., Bengio, Y. and David, J.P. (2015). Binaryconnect: Training
Deep Neural Networks with Binary Weights During Propagations,
ICNIPS, pp.3123–3131.

91

[60] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R. and Bengio, Y.
(2016). Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or -1, arXiv e-prints,
arXiv:1602.02830.

[61] Ding, R., Liu, Z., Blanton, R.D. and Marculescu, D. (2018). Quantized Deep
Neural Networks for Energy Efficient Hardware-based Inference, Asia
and South Pacific Design Automation Conference, pp.1–8.

[62] Sarwar, S.S., Venkataramani, S., Raghunathan, A. and Roy, K. (2016).
Multiplier-less Artificial Neurons Exploiting Error Resiliency for
Energy-Efficient Neural Computing, Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp.145–150.

[63] Szabo, T., Antoni, L., Horvath, G. and Feher, B. (2000). A full-parallel digital
implementation for pre-trained NNs, IJCNN, pp.49–54.

[64] Parhi, K. (1999). VLSI Digital Signal Processing Systems: Design and
Implementation, John Wiley & Sons.

[65] Horowitz, M. (2014). Computing’s Energy Problem (and what we can do about
it), IEEE International Solid-State Circuits Conference.

[66] Aksoy, L., Gunes, E.O. and Flores, P. (2010). Search algorithms for the
multiple constant multiplications problem: Exact and approximate,
Microprocessors and Microsystems, Embedded Hardware Design, 34(5),
151–162.

[67] Aksoy, L., Flores, P. and Monteiro, J. (2014). ECHO: A novel method
for the multiplierless design of constant array vector multiplication,
International Symposium on Circuits and Systems, pp.1456–1459.

[68] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A., Antiga, L. and Lerer, A. (2017).
Automatic differentiation in PyTorch, Conference on Neural Information
Processing Systems, Autodiff Workshop.

[69] The MathWorks Inc., (2020). Deep Learning Toolbox, Natick, Massachusetts,
United States, https://www.mathworks.com/help/
deeplearning/.

[70] Gustafsson, O. (2007). Lower Bounds for Constant Multiplication Problems,
IEEE Transactions on Circuits and Systems II: Express Briefs, 54(11),
974–978.

[71] Boullis, N. and Tisserand, A. (2005). Some Optimizations of Hardware
Multiplication by Constant Matrices, IEEE Transactions on Computers,
54(10), 1271–1282.

[72] Gustafsson, O. (2007). A Difference Based Adder Graph Heuristic for Multiple
Constant Multiplication Problems, International Symposium on Circuits
and Systems, pp.1097–1100.

92

https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/

[73] Y. Voronenko, M.P. (2007). Multiplierless Multiple Constant Multiplication,
ACM Transactions on Algorithms, 3(2).

[74] Kang, H.J. and Park, I.C. (2001). FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders, IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 48(8),
770–777.

[75] Demirsoy, S.S., Dempster, A.G. and Kale, I. (2002). Power analysis of
multiplier blocks, International Symposium on Circuits and Systems,
pp.297–300.

[76] Aksoy, L., Costa, E., Flores, P. and Monteiro, J. (2010). Optimization of
Area and Delay at Gate-Level in Multiple Constant Multiplications,
Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, pp.3–10.

[77] Kumm, M., Hardieck, M. and Zipf, P. (2017). Optimization of Constant
Matrix Multiplication with Low Power and High Throughput, IEEE
Transactions on Computers, 66(12), 2072–2080.

[78] Demirsoy, S., Kale, I. and Dempster, A. (2007). Reconfigurable Multiplier
Constant Blocks: Structures, Algorithm and Applications, Springer
Circuits, Systems and Signal Processing, 26(6), 793–827.

[79] Aksoy, L., Flores, P. and Monteiro, J. (2014). Multiplierless design of folded
DSP blocks, ACM Transactions on Design Automation of Electronic
Systems, 20(1), 14:1–14:24.

[80] Möller, K., Kumm, M., Kleinlein, M. and Zipf, P. (2016). Reconfigurable con-
stant multiplication for FPGAs, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(6), 927–937.

[81] Seo, Y. and Kim, D. (2010). A New VLSI Architecture of Parallel
Multiplier–Accumulator Based on Radix-2 Modified Booth Algorithm,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
18(2), 201–208.

[82] Nedjah, N., da Silva, R.M., Mourelle, L.M. and da Silva, M.V.C. (2009).
Dynamic MAC-based architecture of artificial neural networks suitable
for hardware implementation on FPGAs, Neurocomputing, 72(10), 2171
– 2179.

[83] M.E. Nojehdeh, S.parvin, M. (2021). Efficient Hardware Realizations of
Feed-forward Artificial Neural Networks.

[84] Kingma, D.P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization,
arXiv e-prints, arXiv:1412.6980.

[85] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks, International Conference on Artificial
Intelligence and Statistics, pp.249–256.

93

[86] He, K., Zhang, X., Ren, S. and Sun, J. (2015). Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,
arXiv e-prints, arXiv:1502.01852.

[87] Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S. (2018). Activation
Functions: Comparison of Trends in Practice and Research for Deep
Learning, arXiv e-prints, arXiv:1811.03378.

[88] Nojehdeh, M.E. and Altun, M. (2020). Systematic synthesis of approximate
adders and multipliers with accurate error calculations, Integration, 70,
99 – 107.

[89] LeCun, Y., Cortes, C. and Burges, C., (2010), Mnist handwritten digit database.
AT&T Labs.

[90] Ardakani, A., Condo, C., Ahmadi, M. and Gross, W.J. (2017). An architecture
to accelerate convolution in deep neural networks, IEEE Transactions on
Circuits and Systems I: Regular Papers, 65(4), 1349–1362.

94

CURRICULUM VITAE

Name Surname : Mohammadreza Esmali Nojehdeh

Place and Date of Birth : Ardabil - 1987

E-Mail : nojehdeh@itu.edu.tr

EDUCATION :

• B.Sc. : 2010, Ardabil University, Electrical Engineering
• M.Sc. : 2015, Istanbul Technical University, Faculty of

Electrical and Electronics, Department of Electrical
Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2016-Now Istanbul Technical University at Emerging Circuits and Computation
(ECC) Group.

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• M. E. Nojehdeh, M. Altun (2019). Systematic synthesis of approximate adders
and multipliers with accurate error calculations, Integration, ISSN 0167-9260,
https://doi.org/10.1016/j.vlsi.2019.10.001.

• M. E. Nojehdeh, L. Aksoy and, M.Altun, (2020). Efficient Hardware Imple-
mentation of Artificial Neural Networks Using Approximate Multiply-Accumulate
Blocks, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Limassol, Cyprus, 2020, pp. 96-101, doi: 10.1109/ISVLSI49217.2020.00027.

• L. Aksoy, S. Parvin, M. E. Nojehdeh and M. Altun, (2020). Efficient
Time-Multiplexed Realization of Feedforward Artificial Neural Networks, 2020
IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020,
pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181002.

95

kufluoglu
Rectangle

kufluoglu
Rectangle

• M. E. Nojehdeh, M. Altun, (2021). Energy Efficient Hardware Implementation of
Feed-Forward artificial Neural Networks Using Approximate Arithmetic Blocks,
ELSEVIER, Integration.(Under Review)

• M. E. Nojehdeh, S. Parvin and, M. Altun, (2021). Efficient Hardware Realizations
of Feed-forward Artificial Neural Networks, ELSEVIER, Integration.(Under
Review)

• M. E. Nojehdeh, S. Parvin and, M. Altun, (2021). Efficient Hardware
Implementation of Convolution Layers Using Multiply-Accumulate Blocks, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI).

96

F.
M

.S
U

R
N

A
M

E
A

PP
R

O
X

IM
A

T
E

A
R

T
IF

IC
IA

L
N

E
U

R
A

L
N

E
T

W
O

R
K

H
A

R
D

W
A

R
E

A
W

A
R

E
SY

N
T

H
E

SI
S

TO
O

L
20

20

	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	2. APPROXIMATE COMPUTING
	Background and Preliminary Works
	Ripple-Carry Adder Design
	1-bit full adder design
	n-bit ripple-carry adder design

	Approximate Multiplier Design
	Design of 1-bit approximate full adder (APFA) and half adder (APHA)
	n-bit wallace-tree multiplier design

	Experimental Results
	Area, power, delay, and energy versus average error
	Image processing: peak signal to noise ratio (PSNR) versus area saving
	Neural network: misclassification rate versus area saving

	3. ANN HARDWARE REALIZATION
	Introduction
	Background
	ANN basics
	Multiplierless constant multiplications
	Related work

	Design Architectures
	Parallel design
	Time-Multiplexed design
	 smac_neuron architecture
	smac_ann architecture

	Finding the Minimum Quantization Value
	ANNs Under the Shift-Adds Architecture
	Multiplierless ANN design under the parallel architecture
	Multiplierless ANN design under the time-multiplexed architectures

	SIMURG: The CAD Tool
	Experimental Results

	4. EFFICIENT HARDWARE REALIZATION OF ANNS BY APPROXIMATE BLOCKS
	Introduction
	Approximate Blocks for ANN
	Approximate adders
	Approximate multipliers
	Approximate level
	SMAC_NEURON
	SMAC_ANN

	Experimental Results
	Pen-digit problem
	MNIST problem

	5. CONVOLUTION LAYER
	Introduction
	Convolution layer

	Experimental Results

	6. CONCLUSIONS
	REFERENCES
	CURRICULUM VITAE

