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A MATHEMATICAL MODEL
FOR

αβ T CELL DIFFERENTIATION IN THE THYMUS

SUMMARY

As being a relatively new and an intricate research area of life sciences, immunology is
a still evolving subject in which scientists from many different disciplines like biology,
medicine, physics, chemistry, mathematics, computer sciences, etc. are joint to gain a
deeper understanding on how the immune system reveals its functions.

In most mammalian species, the immune system can be mainly subcategorized into
three levels of defense against pathogens: natural barriers, innate immunity and
adaptive immunity. Natural barriers are the first line of defense that has to be penetrated
by pathogens in order to cause disease and it exists in almost all living organisms. Any
invader that penetrates the natural barriers is greeted by innate immune system which
is the second line of defense. Innate immunity operates relatively quick, reacts to a
variety of usual pathogenic organisms and it has not specific elements against to any
particular pathogen. It also activates and controls the adaptive immunity. Almost all
organisms get along just fine with only natural barriers and the innate immune system
to defend them. However, in the vertebrates, the innate responses call into play the
third level of defense: ‘adaptive’ immunity which has specifically equipped soldiers to
cope with almost any foes. Moreover, players of the innate and the adaptive immune
systems usually work together to eradicate pathogens. The main factors distinguishing
the innate immunity and the adaptive immunity are timing and specificity of the
response against to a pathogenic attack. Both of the innate and the adaptive immune
responses depend upon the activities of white blood cells (called as leukocytes), which
are originated from bone marrow-derived hematopoietic stem cells. Adaptive immune
responses are provided by white blood cells called lymphocytes being subdivided into
two classes as antibody responses and cell mediated responses, which are carried out
by B- and T-cells, respectively. T cells develop in the thymus, and B cells, in mammals,
develop in the bone marrow in adults or in the liver in fetuses.

Pluripotent progenitors of T lymphocytes are produced in the bone marrow like all
the other hematopoietic cells, and migrate to the thymus gland for differentiating and
eventually committing to different T cell subsets: cytotoxic, helper and regulatory
(suppressor) T cells.

Thymic population of T cells is mainly composed of αβ subset and αβ thymocytes
commit to either helper T cells or cytotoxic T cells at mature stage. Differentiation
process leads to exclusive expression of CD4 and CD8 proteins on the surfaces
of helper and cytotoxic T cells, respectively. These coreceptor proteins have
indispensible roles in the TCR signaling events that modulate cell fate decisions.
An immature thymocyte entering into the thymus undergoes the sequential stages of
double negative (DN)- CD4−CD8−, double positive (DP)- CD4+CD8+, Intermediate-
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CD4+CD8low to become either a CD4+CD8− helper or a CD4−CD8+ cytotoxic
mature T cell.

The study of genetic regulatory systems has received a major impetus from the
recent development of experimental techniques by which spatio-temporal expression
levels of genes to be measured. Together with these still developing high throughput
experimental tools, it is indispensable employing theoretical models and computer
simulations in order to elicit structure and dynamics of the genetic regulatory network
that underlies the CD4/CD8 fate decision.

In theoretical biology, the conventional technique in building a regulatory network
model for a cell differentiation process is to define different attractors (or equilibrium
states) in the landscape picture corresponding to different cell types. With this
motivation, we aim to build a mathematical model which qualitatively describes
differentiation of αβ thymocytes, particularly beyond the Intermediate stage, as a
dynamical sytem. Hence, we form a regulatory network model of 8 components and 13
regulatory interactions among them, using environmental cues and regulatory proteins
that are implied to have important roles on the phenomenon in the literature.

To convert our model into a dynamical representation, we adopt a standardized
qualitative dynamical systems method which is an ordinary differential equation
formalism in nature. In the method, state of each node in a regulatory network can
be updated in time by taking into account the regulatory effects by the others and itself
with some specified parameters, namely strengths of activations, inhibitions, steepness
of the response curves and decay rates. But, in biology it is very ubiqitous that a
regulatory event can only occur in the co-existence of two or more regulatory elements
and the method fails to mimic such events. Thus, we further contribute to the method
by adding (only second order) co-regulatory terms.

By utilizing the improved method, we obtain a set of 8 nonlinear ODEs, each one
describing the time derivative of an independent variable in the network. Since there
is no reliable kinetic data yet, we choose parametric values for the equations to be
not favoring any specific interaction or decay and to make values of the variables
Boolean-like at equilibrium states. Then, first, we explore the fixed points of the
system utilizing fsolve optimization toolbox and ODE45 system solver of MATLAB.
All biologically meaningful fixed points are named Intermediate, CD4 SP and CD8
SP attractors depending on the activation patterns for the components. Second, we
investigate the effects of TCR and IL7 signalings onto CD4/CD8 fate decision in silico:
TCR signals with long duration lead to differentiation into CD4 SP whereas IL7 signals
with short duration cannot secure the CD8 lineage alone. Finally, we check the results
of salient component overexpression/knockout experiments in computer simulations
and capture good agreement with experimental observations in the literature (except
for some cases).

Further studies are needed to extend our model to one that describes the whole picture
of “DP to SP” transition in which coreceptor proteins have feedback effects in TCR
signaling events.
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TİMUSTA αβ T HÜCRESİ FARKLILAŞMASI
İÇİN

BİR MATEMATİKSEL MODEL

ÖZET

Yaşam bilimlerinin yeni ve karmaşık bir araştırma alanı olarak immünoloji, biyoloji,
tıp, fizik, kimya, matematik, bilgisayar bilimleri gibi pek çok farklı disiplinden
bilim insanlarının bir araya gelip, bağışıklık sisteminin fonksiyonlarını nasıl ortaya
koyduğunu anlamaya yönelik çalıştığı ve hala gelişen bir konudur.

Çoğu memeli türlerinde bağışıklık sistemi patojenlere karşı verilen savaşta üç farklı
savunma hattı olarak gruplandırılabilir: doğal bariyerler, doğuştan bağışıklık ve
edinilen bağışıklık. Doğal bariyerler, hastalığa sebep olabilmek için patojenler
tarafından geçilmesi gereken, savunmanın birinci hattıdır. Bu bariyerler neredeyse tüm
yaşayan organizmalarda bulunur. Doğal bariyerlerden sızan bir istilacı, savunmanın
ikinci hattı olan doğuştan bağışıklık sistemi tarafından karşılanır. Bu bağışıklık
tipi ‘doğuştan’ olarak adlandırılır, çünkü neredeyse tüm canlılarda doğal olarak
bulunur. Doğuştan bağışıklık göreceli olarak çabuk çalışır, çok sayıda ve çeşitli
genel patojenlere karşı tepki gösterir ve herhangi bir patojene karşı özel savunma
elemanlarına sahip değildir. Aynı zamanda edinilen bağışıklık sistemini etkinleştirir
ve kontrol eder. Neredeyse tüm canlılar sadece doğal bariyerler ve doğuştan
bağışıklık sistemleri tarafından savunularak yaşamlarını sürdürebilir. Bununla beraber,
omurgalılarda doğuştan bağışıklık tepkileri savunmanın üçüncü bir hattını oyuna
davet eder: neredeyse tüm düşmanlarla baş etmek üzere özel askerlere sahip olan
‘edinilen’ bağışıklık. Çoğu zaman, doğuştan ve edinilen bağışıklık sistemlerinin
elemanları patojenlerin kökünü kazımak için birlikte çalışır. Doğuştan ve edinilen
bağışıklık sistemlerini birbirinden ayıran ana faktörler, bir patojene karşı verilen
tepkinin zamanlaması ve özgünlüğüdür. Doğuştan ve edinilen bağışıklık tepkilerinin
her ikisi de, kemik iliğinde üretilen kan kök hücreleri kökenli beyaz kan hücrelerinin
(lökositler) etkenliklerine bağlıdır. Sırasıyla B- ve T- hücreleri tarafından yürütülen,
antikor tepkileri ve hücre ortamlı tepkiler olarak iki alt sınıfa ayrılan edinilen bağışıklık
tepkileri, lenfositler olarak adlandırılan beyaz kan hücreleri tarafından sağlanır.

T ve B hücreleri isimlerini geliştikleri organlardan alırlar. T hücreleri timusta gelişir.
Memelilerin B hücreleri, yetişkinlerde kemik iliğinde ve ceninlerde karaciğerde gelişir.
Aslında B ve T hücreleri, köken olarak, aynı genel lenfoid öncül hücrelerden iki kola
ayrılırlar.

T lenfositlerinin çok potansiyelli öncülleri, diğer bütün kan kökenli hücreler gibi,
kemik iliğinde üretilir, farklılaşmak üzere timus bezine göç eder ve nihayetinde farklı
özellikteki T hücresi alt gruplarına katılır: katil (sitotoksik), yardımcı ve düzenleyici
(baskılayıcı) T hücreleri. Etkin (efektör) bir katil T hücresi enfekte hücreyi, enfekte
hücrenin yüzeyinde MHC sınıf I molekülleri tarafından sunulan kendisine has olan
antijeni tanıdığında, doğrudan öldürür. Öte yandan, etkin bir yardımcı T hücresi,
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enfekte hücrenin yüzeyinde MHC sınıf II molekülleri tarafından sunulan kendisine
has olan antijeni tanıdığında, uyarıcı moleküller salgılama yoluyla, makrofajlar, B
hücreleri ve katil T hücreleri gibi diğer bağışıklık sistemi elemanlarını göreve çağırır.
Düzenleyici T hücrelerinin bağışıklık sistemindeki rolü ise tam olarak saptanamamış
olmasına rağmen, dallantılı (dendritik) hücrelerin, yardımcı ve katil T hücrelerinin
fonksiyonlarını düzenlediklerine inanılmaktadır.

T hücrelerinin timustaki popülasyonu genel olarak, olgun aşamada yardımcı ve katil
T hücreleri olarak iki alt gruba ayrılan αβ T hücreleri grubundan oluşur. Farklılaşma
süreci, yardımcı ve katil T hücrelerinin yüzeylerinde, sırasıyla, yalnızca CD4 ve CD8
proteinlerinin ifade edilmesine yol açar. Bu müşterek-almaç (koreseptör) proteinleri
hücre kader kararlarını ayarlayan T hücresi almacı sinyalleşmesi olaylarında
vazgeçilmez rollere sahiptir.

Alışılageldiği üzere, timusta olgunlaşmakta olan T hücrelerinin (timositlerin)
gelişimsel aşamaları CD4 ve CD8 proteinlerinin ayrımcı (diferansiyel) ifade edilmesi
ile tanımlanır: Timusa yeni giren olgunlaşmamış bir timosit, bir CD4+CD8− yardımcı
veya bir CD4−CD8+ katil T hücresi olmak için, birbirini izleyen çift negatif (ÇN)-
CD4−CD8−, çift pozitif (ÇP)- CD4+CD8+, Ortanca- CD4+CD8az aşamalarından
geçer. (Burada, farklı aşamaları gösteren bu semboller CD4 ve CD8 proteinlerinin
hücre yüzeyinde bulunup bulunmadığını anlatır. CD4+CD8az ile simgelenen Ortanca
aşamada ise CD8 proteini az da olsa hücrenin yüzeyinde bulunur.)

ÇN aşamasındaki bir timositin yüzeyinde T hücresi β almacı olarak adlandırılan öncül
bir T hücresi antijen almacı tipi bulunur. Bu almaç uyarıldığında ÇN timosit β seçilimi
olarak adlandırılan süreci yaşayarak ÇP aşamasına geçer. ÇP aşaması, CD4 ve CD8
proteinlerinin her ikisinin de hücre yüzeyinde yüksek miktarlarda bulunduğu ve aynı
zamanda tam fonksiyonlu bir T hücresi antijen almacının timositlerin yüzeyinde ilk
defa ortaya çıktığı aşamadır. ÇP aşamasındaki bir timosit antijen uyarımı alırsa,
ölmekten kurtulmuş olur (pozitif seçilim) ve nihayetinde ya yardımcı ya da katil bir
T hücresi olarak olgunlaşmasını tamamlar.

Bugün CD4/CD8 soy seçimini en iyi açıklayan model olarak kinetik sinyalleşme
modeli yaygın biçimde kabul görmektedir. Kinetik sinyalleşme modelinde, kısa süreli
T hücresi almacı sinyalleri CD8’e farklılaşma yolağına neden olurken uzun süreli
T hücresi almacı sinyalleri CD4 soyuna farklılaşmanın sürücüsüdür. Eğer Ortanca
aşamada T hücresi almacı sinyalleri kesilirse, interlökin 7 almacı CD8 T hücrelerine
farklılaşmayı destekleyen interlökin 7 sitokinlerini alabilir. Kinetik sinyalleşme
modelinin özgün iki prensibi şunlardır: i) Pozitif seçilim ve bir olgun hücre grubu
kaderininin seçimi aynı T hücresi antijen almacı sinyalleşmesi ile tetiklenen, eş
zamanlı olaylar olmanın aksine, ayrık ve ardışık olaylardır. ii) ÇP aşamasından sonra
müşterek-almaç proteinlerinden herhangi birisinin üretiminin durdurulması tersinemez
bir olay değildir. Yani süreç içersinde üretimi durdurulan bir müşterek-almaç proteini
(CD4 veya CD8), daha sonra tekrar üretilmeye başlanabilir.

Genetik düzenleyici sistemlerin çalışılması, genlerin ifade edilme düzeyleri hakkında
uzay-zaman bilgisini ölçebilen en son deneysel tekniklerin gelişimi ile büyük bir
ivme kazanmıştır. Bu halen gelişmekte olan yüksek işlem hacimli deneysel araçlarla
birlikte, CD4/CD8 kader kararının altında yatan genetik düzenleyici ağın yapısını
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ve dinamiğini meydana çıkarmak üzere, teorik modeller ve bilgisayar benzetimleri
kullanmak kaçınılmazdır.

Doğayı modellemek için kullanılan en geleneksel araç diferansiyel denklemlerdir ve
genetik düzenleyici ağları modelleme çalışmalarında da yaygın biçimde kullanılmak-
tadırlar. Adi diferansiyel denklemler formalizmi gerçek dünyadaki dinamik sistemler
üzerine çalışmak üzere yaygın bir modelleme aracıdır. Bu formalizmini kullanmak gen
düzenleyici ağların içersinde yer alan RNA, proteinler vb. düzenleyici elemanların
derişimlerini zamana bağımlı ve negatif olmayan gerçel sayılar olan değişkenler ile
modellemeye imkan verir.

Hücre farklılaşmasının, farklı hücre tiplerinin matematiksel olarak değişik çekici
noktalar (yani denge durumları) olarak tanımlanabildiği, peyzaj (lendskeyp) betim-
lemeleri çerçevesinde ele alınabildiği düzenleyici ağlar oluşturmak teorik biyoloji
çalışmalarında geleneksel bir usüldür. Buradan hareket ederek, αβ timositlerin özel
olarak Ortanca aşamasının ötesine farkılaşmalarını dinamik ve nitel bir temsil ile ele
alan bir matematiksel model oluşturmayı amaçlamaktayız. Bu yüzden, 8 farklı öğe ve
bunlar arasındaki 13 farklı etkileşmenin bir düzenleyici ağ modelini oluşturduk. Bu
kaba modelimiz, literatürde problem üzerine önemli rollerinin bulunduğu gösterilen
çevresel işaretler ve düzenleyici proteinleri içermektedir.

Timusta T hücrelerinin farklılaşmalarına ilişkin olarak gözleme dayalı bilginin
çokluğuna rağmen, dinamik temsillerde kullanılmak üzere devinsel (kinetik) veri ve
gerçek derişim değerlerini elde etme çalışmaları halen emekleme dönemindedir. Bu
yüzden, modelimizi dinamik bir temsile çevirmek için, bir ölçünlenmiş (standardize)
nitel dinamik sistemler yöntemini benimsedik. Bu yöntemde, düzenleyici ağ
içersindeki her bir elemanın durumu, diğer elemanlardan (ve hatta kendisinden) dolayı
üzerine etkiyen düzenleyici etkileri hesaba katarak, zaman içersinde güncellenir.
Fakat, biyolojide bir düzenleyici olayın gerçekleşmesinin ancak ve ancak iki
veya daha fazla müşterek-düzenleyici (ko-regülatör) elemanın eş zamanlı varlığı
altında olabilmesi sıklıkla karşılaşılan bir durumdur. Bu yüzden, yönteme
müşterek-düzenleyici (sadece ikinci dereceden) terimleri ekleyerek geliştirdik.

Bu geliştirilmiş yöntemi kullanarak, her biri ağdaki farklı bir bağımsız değişkenin
zamana göre değişimini tanımlayan 8 tane doğrusal olmayan adi diferansiyel
denklemden oluşan bir denklem seti elde ettik. Henüz tam anlamıyla güvenilir devinsel
veri mevcut olmadığından, denklemler sistemimiz için gerekli olan parametreleri
herhangi bir etkileşimi ya da bozunma olayını özellikle desteklemeyecek ve
değişkenlerin denge durumlarındayken alacakları etkenlik değerleri Boole değişkenleri
gibi (yaklaşık olarak 0 ve 1) olacak şekilde seçtik. İlk önce, MATLAB’ ın
fsolve optimizasyon araç çubuğunu ve ODE45 adi diferansiyel denklem sistemi
çözücüsünü kullanarak sistemin sabit noktalarını ortaya koyduk ve bu sabit noktaların
kararlılıklarını inceledik. Elde edilen biyolojik olarak anlamlı olan sabit noktalar
ağdaki bileşenlerin etkinlik düzeyi motiflerine göre Ortanca, CD4 ve CD8 çekici
noktaları olarak adlandırıldılar. İkinci olarak, modelimize göre T hücresi almacı
ve interlökin 7 sinyalleşmelerinin CD4/CD8 kader seçimi üzerine olan etkilerini
inceledik. Modele göre, uzun süreli T hücresi almacı sinyalleşmeleri, kinetik
sinyalleşme modelinin de kabul ettiği gibi, CD4 kaderine yönelime neden olur ve
sadece kısa süreli interlökin 7 sinyalleşmeleri CD8 kaderine farkılaşmanın belirleyicisi
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olamaz. Son olarak, ağdaki elemanların literatürde verili olan belli başlı aşırı ifade
olunma/devre dışı bırakılma deneylerinin sonuçlarını bilgisayar benzetimlerimizde
kontrol ettik. Birkaç durum dışında gözlemsel bulgularla iyi bir mutabakat
sağladığımızı gördük.

İlerisi için modelimizi, müşterek-almaç proteinlerinin T hücresi almacı sinyalleşme
olaylarında geri besleme rolüne sahip olacağı, Çift Pozitif aşamasından olgun aşamaya
geçişin tam bir resmini verebilecek şekilde, genişletmek üzere yeni çalışmalara ihtiyaç
vardır.
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1. INTRODUCTION

T lymphocytes (or thymocytes) are originated from the bone marrow like all the other

hematopoietic cell types and migrate to the thymus gland where they mature into T

cells. The progenitor T cells which are able to show an appropriate αβ T cell antigen

receptor on their surfaces in the thymus, mainly differentiate into the helper T cell

(CD4+ single positive), cytotoxic T cell (CD8+ single positive) lineages. Although

there has been an increasing surge in obtaining experimental data to determine the

underlying molecular and genetic mechanisms in the differentiation of baby T cells

into mature ones, a mathematical model describing the dynamic nature of a network

specific to this differentiation is hardly in the scope of simulations. In this thesis, we

construct a network model of 8 components and 13 regulatory interactions that are

mostly important for understanding the differentiation mechanism and dynamics by

utilizing a comprehensive scanning of the αβ T cell literature. We treat our model as

a continuous dynamical system by using a standardized qualitative dynamical systems

method of Luis Mendoza and Ioannis Xenarios (2006) which operates essentially based

on a set of ODEs. (Details will be given in Section 4.1.3.1). This method can be used

not only to deal with such a cell differentiation problem but also to investigate all

kinds of regulatory network problems having poor stoichiometric and kinetic data. We

further improve the method by adding second order regulatory input terms. (Details

will be given in Section 5.1).

Each node in the network represents a normalized value in the closed interval [0,1] of

activation level of a particular transcription factor protein, a cell signaling mediatory

protein, a cytokine or a gene at any time t. In addition to capturing functional

capabilities of the system without knowledge of any kinetic parameters or real

concentrations, the adapted method can easily be updated by possible upcoming data

of future works based on the advantage of usage of a normalized activation level value

for each node rather than a certain concentration and has the ability to operate as both a

continuous formalism and a discrete one by simply changing only a single parameter.
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After we present an overview of the immune system in the second chapter, in the

third chapter we give some detailed information about differentiation of thymocytes

developing in the thymus. In the fourth chapter, we mention some fundamental

concepts concerning mathematical and network modeling of biological regulatory

systems, and introduce the adopted mathematical formalism for getting closer to the

computer simulations of our network. In the fifth (and final) chapter we construct

our regulatory network model, and formulate a set of ODEs which gives a qualitative

description on dynamics of T cell differentiation in the thymus. We obtain good

agreement between steady state patterns of our mathematical model and activation

patterns belonging to thymocyte populations at distinct stages of differentiation, i.e.

progenitors and their offsprings. Furthermore, in Section 5.3.3, we introduce salient

in silico perturbations on the topology of the network which can lead to blockade of

one or both of the two possible mature subsets or lineage redirection of thymocytes

differentiating into either CD4 SP or CD8 SP fates in computer simulations. We also

conclude our results by comparing with experimental ones as long as it is possible

and make some recommendations for future research which would help to reveal the

underlying mechanism of the differentiation process.
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2. A BRIEF REVIEW OF THE IMMUNE SYSTEM

2.1 History

As being a relatively new and an intricate research area of life sciences, immunology is

a still evolving subject in which scientists from many different disciplines like biology,

medicine, physics, chemistry, mathematics, computer sciences, etc. are joint to gain a

deeper understanding on how the immune system reveals its functions.

The origin of modern immunology is commonly ascribed to Edward Jenner who

discovered in 1776 that cowpox (or vaccinia), brought protection against human

smallpox, which was a widespread fatal disease of the era. The term ‘vaccination’

refers to inoculation of healthy individuals with weakened disease-causing agents to

provide protection from the disease. It was named after Jenner’s procedure using

vaccinia. When Jenner introduced vaccination he knew nothing of the infectious

agents that cause disease. Then, Robert Koch proved that infectious diseases are

caused by microorganisms called pathogens (such as viruses, bacteria, pathogenic

fungi, parasites, etc.), and each one of them is responsible for a particular disease,

or pathology [4].

Such discoveries in 19th century, stimulated the extension of Jenner’s strategy of

vaccination to other diseases. In the 1880s, Louis Pasteur excogitated a vaccine

against cholera in chickens, and brought forth a rabies vaccine that achieved a striking

success upon its first trial in a boy bitten by a rabid dog. These practical triumphs

led to investigations on the mechanisms of protection and to the development of

the science of immunology. In 1890, Emil von Behring and Shibasaburo Kitasato

discovered that the blood serum1 of vaccinated individuals contained substances which

they called antibodies that specifically bound to a particular pathogenic fragment.

1Clear yellowish fluid component of the blood including neither blood cells such as white and red
blood cells nor clotting factors. It is obtained upon seperating whole blood into its solid and liquid
components after it has been coagulated.
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Figure 2.1: An overall aspect of the immune system.

Indeed, it quickly came out that specific antibodies can be induced against a vast range

of pathogenic fragments. Such fragments are known as antigens because they can

stimulate the generation of antibodies [4].

2.2 The Immune System

In livings, the magnificent orchestra composed of several types of cells, tissues and

organs which are responsible to immune functions is referred as ‘the immune system’.

The immune system is, therefore, a ‘network’ of a large number of components which

interact with each other through many different ways. In most mammalian species, it

can be mainly subcategorized into three levels of defense against pathogens: natural

barriers, the innate immunity and the adaptive immunity as sketched in Fig.2.1.

Natural barriers are the first line of defense that has to be penetrated by pathogens

in order to cause disease and it exists in almost all living organisms. The main

factors distinguishing the innate immunity and the adaptive immunity are timing and
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specificity of the response against to a pathogenic attack. In practice, there are alot of

interactions between them and sometimes natural barriers are counted as a preceding

subpart of the innate immunity. Both of the innate and the adaptive immune responses

depend upon the activities of white blood cells (called as leukocytes), which originate

from bone marrow-derived hematopoietic stem cells. Since these stem cells can

give rise to all of the different types of blood cells, they are referred as pluripotent

progenitor cells.

2.2.1 Natural Barriers

As forming the first level of defense comprising several natural barriers such as

mechanical, chemical and biological barriers, they can protect almost any organism

from infection. Pathogenic agents must first breach natural barriers to cause trouble.

The outer line of defense mainly operates through skin, cilia, mucous membranes of

digestive, respiratory, and reproductive tracts, etc. and provides a challenging media

in order to drive back intruders [1].

2.2.2 Innate Immunity

Any invader that penetrates the natural barriers is greeted by the innate immune system

which is the second line of defense. This type of immunity is called ‘innate’ because

it is a type of defense that almost all livings naturally have [1]. The innate immunity

operates relatively quick (a typical battle with an invader takes a few days), reacts to

a variety of usual pathogenic organisms and it has not specific elements against to any

particular pathogen. It also activates and controls the adaptive immunity. Complement

proteins, professional phagocytes, and natural killers are the most important players

of the innate team [1].

2.2.2.1 The complement system

Over twenty different proteins present at high concentrations in blood and in tissues

‘complement’ the killing of pathogens by antibodies. Any invader having a surface

with a spare hydroxy or amino group can be bounded by these complement proteins.
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Figure 2.2: Electron micrograph of a macrophage [1].

The complement system has also the ability to alarm other immune system players by

reacting very fast in response to a pathogenic attack [1].

2.2.2.2 Professional phagocytes

Professional phagocytes make their living mainly by eating, which is their

‘professional’ job. The most important ones are macrophages and neutrophils [1].

Macrophages

A Russian immunologist Elie Metchnikoff discovered that many microorganisms

could be eaten by phagocytic cells, which he called macrophages2. Macrophages

are available to struggle against a wide range of pathogens without requiring prior

exposure and are the cardinal player in the team of the innate immune system [4].

While a macrophage is eating its meal, the meal is first engulfed in a pouch (vesicle)

called ‘phagosome’. This vesicle is then taken inside the macrophage and fuses with

another vesicle called ‘lysosome’ which contains powerful chemicals and enzymes to

destroy the food. The whole process is called ‘phagocytosis’. Indeed, a macrophage is

a very versatile cell since it functions as a garbage collector by eating almost everything

that it comes across, as an antigen presenting cell3, or as a vicious killer-depending on

its activation level [1].

2Etymologically, macro refers to large and phage means eater, henceforth the term macrophage
stands for big eater.

3Cells that display foreign antigen complexes with major histocompatibility complexes (MHCs) on
their surfaces. These cells ingest and process antigens and present them to T-cells via interactions
between their MHCs and T cell receptors on the surface of T cells.
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Neutrophils

Neutrophils make up about 70% of the white blood cells in circulation, and about

100 billion of these cells are produced each day in the bone marrow. Neutrophils live

for a very short time. In contrast to macrophages, neutrophils do not act as antigen

presenters- they are only professional killers [1].

2.2.2.3 Natural killer cells

This has been a difficult cell population to be studied by researchers, because there are

different kinds of NK cells with somewhat different properties. They can kill tumor

cells, virus-infected cells, bacteria, parasites, and fungi [1].

2.2.3 Adaptive Immunity

Almost all livings get along just fine with only natural barriers and the innate immune

system to defend them. However, in the vertebrates, the innate responses call into play

the third level of defense: ‘adaptive’ immunity which has specifically equipped soldiers

to cope with almost any foes. Moreover, players of the innate and the adaptive immune

systems usually work together to eradicate pathogens [1, 2]. A specific immune

response, such as the production of antibodies against a particular pathogen, is known

as an adaptive immune response, because it occurs during the lifetime of an individual

as an adaptation to infection with that pathogen [4]. A person who experienced an

exposure to smallpox virus and could get rid of the infection, for example, is protected

against smallpox by the adaptive immune system for the rest of his or her life, although

not against any other viruses, such as those that cause mumps or measles. An adaptive

immune response bestows, in general, lifelong protection against reinfection with the

same pathogen [4]. While the phagocytic cells of the innate immune team can deal

with a wide range of usual pathogens without requiring a prior exposure, antibodies of

the adaptive system are produced only after infection. The adaptive system has also

an immunological memory meaning that a living’s response to the second exposure

of a particular pathogen is earlier and stronger than that of its first exposure to the

same pathogen. The antibodies present in a given person therefore directly reflects the

infections to which he or she has been exposed [4].
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Adaptive immune responses eliminate or destroy invaders and any toxic molecules

they produce. Since these responses are very destructive, it is important that they are

directed only against foreign molecules and not against molecules of the host organism.

The adaptive immune system uses multiple mechanisms to avoid damaging responses

against self molecules. Occasionally, however, these mechanisms fail, and the system

turns against the host, causing autoimmune diseases, which can be fatal [2].

Adaptive immune responses are provided by white blood cells called lymphocytes

being subdivided into two classes as antibody responses and cell mediated responses,

which are carried out by B- and T-cells, respectively.

T cells and B cells derive their names from the organs in which they develop. T cells

develop in the thymus, and B cells, in mammals, develop in the bone marrow in adults

or the liver in fetuses. In fact, both T and B cells are originally bifurcated from the

same common lymphoid progenitor cells. The common lymphoid progenitor cells

themselves derive from multipotential hematopoietic stem cells being located primarily

in hematopoietic tissues-mainly the liver in fetuses and the bone marrow in adults,

which give rise to all blood cell populations, including red blood cells, white blood

cells, and platelets (thrombocytes) [2].

2.2.3.1 B cells

In antibody responses, B cells are activated to secrete antibodies, which are essentially

proteins called immunoglobulins. The antibodies circulate in the bloodstream and

permeate the other body fluids, where they bind specifically to the antigen that

stimulated their production. Binding of antibody inactivates viruses and microbial

toxins by blocking their ability to bind to receptors on target cells. Antibody binding

also marks invading pathogens for destruction, mainly by forming a link between

cell surface proteins of pathogens and professional phagocytes to make it easier for

phagocytic cells of the innate immune system to ingest them [2] as depicted in Fig.2.3.

2.2.3.2 T cells

In T cell-mediated immune responses, activated T cells react directly against a foreign

antigen that is presented to them on the surface of a host cell, which is therefore
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Figure 2.3: Antibodies secreted by B cells form a link between pathogenic agents and
professional phagocytes.

referred to as an antigen-presenting cell. Remarkably, T cells which can detect

pathogens on host cells either kill the infected cells or help other cells to wipe the

invaders out. A T cell named as a killer (or cytotoxic) T cell, for example, might kill

a virus infected host cell that has viral antigens on its surface, thereby eliminating the

infected cell before the virus has had a chance to replicate. In other cases, the T cell

called as helper T cell produces signal molecules that either activate macrophages to

destroy the microbes that they have phagocytosed or invoke B cells to make antibodies

against the microbes [2].

T and B cells become morphologically distinguishable from each other only after

they have been activated by antigen. Resting T and B cells look very similar, even

in an electron microscope. Both are small, only marginally bigger than red blood

cells, and contain little cytoplasm (shown on the left in Fig.2.4). After activation by

an antigen, both proliferate and mature into effector cells. Effector B cells secrete

antibodies. In their most mature form, called plasma cells, they are filled with an

extensive rough endoplasmic reticulum that is busily making antibodies (shown in

the middle in Fig.2.4). In contrast, effector T cells contain very little endoplasmic
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Figure 2.4: Micrographs of B and T cells [2].

reticulum (shown on the right in Fig.2.4) and do not secrete antibodies; instead, they

secrete a variety of signal proteins called cytokines, which act as local mediators [2].

Whereas B cells can act over long distances by secreting antibodies that are widely

distributed by the bloodstream, T cells can migrate to distant sites, but, once there,

they act only locally on neighboring cells [2].

T cells must be stimulated by antigens via (T cell antigen receptors) TCRs on their

surfaces to either proliferate or differentiate into effector cells. The stimulation can

only occur when the antigen is displayed on the surface of antigen-presenting cells

(APCs), e.g. stromal cells in the thymus. Whereas B cells recognize intact antigenic

proteins, T cells can recognize antigenic protein fragments (peptides) that have been

partly degraded inside the antigen-presenting cell. In order to present antigens to

TCRs, some protein complexes called as MHCs; major histocompatibility complexes

are specialized to bind to the peptides and carry them to surface of the APCs where T

lymphocytes can recognize them [2].

To briefly summarize their roles in the protection mechanism against invaders, it can

be said that T cells survey the inside of cells while B cells survey the outside of the

cells.
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3. DEVELOPMENT AND DIFFERENTIATION OF T CELLS

3.1 Introduction

As being fundamental units of life, cells sense their environments via proteins on

their surfaces, called receptors, and fulfill biological functions such as movement,

secretion, growth, proliferation, differentiation, etc. in response to environmental cues.

To convey a specific message inside the cell, a particular receptor must encounter

its specific protein, named ligand. Such message delivery event is referred to as

signaling. Once a receptor bounds to its particular ligand in adequate circumstances, it

becomes stimulated and activated, promoting intracellular signaling pathways through

interacting proteins in the cytosolic domain. At the end of signaling pathways, some

proteins, termed transcription factors1, translocate into the nucleus of the cell, in order

to regulate expression of ad hoc genes to reveal the biological functions which are

relevant to the incoming stimulus as sketched in Fig.3.1.

T cells are originated from a single stem cell that differentiates into several subsets

of cells with specialized and exclusive functions. In such cellular differentiation

processes, each offspring of a progenitor can still differentiate further until it adopts

a specific cell fate. Every step of cellular differentiation leads to an increased

specialization and molecular complexity.

Like all the other hematopoietic cells, pluripotent progenitors of T lymphycoytes

are produced in the bone marrow, and migrate to the thymus gland to differentiate

and eventually commit to different T cell subsets: cytotoxic, helper and regulatory

(suppressor) T cells. An effector cytotoxic T cell directly kills the infected cell once

it recognizes its particular antigen presented by MHC class I molecules on the surface

1In molecular biology and genetics, a transcription factor (sometimes called a sequence-specific
DNA-binding factor) is a protein that binds to specific DNA sequences, thereby controlling the flow (or
transcription) of genetic information from DNA to mRNA. Transcription factors perform this function
alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor)
the recruitment of RNA polymerase (the enzyme that performs the transcription of genetic information
from DNA to RNA) to specific genes [5].
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Figure 3.1: A cell does sense its environment via receptors and regulates its behavior
in response to incoming stimulus.

of the target cell. An effector helper T cell, on the other hand, calls for the other

immune system players such as macrophages, B cells and cytotoxic T cells through

secreting stimulatory molecules once it recognizes its particular antigen presented by

an MHC class II molecule on the surface of the infected cell. Although the functions

of regulatory T cells in the immune system are not well established, they are believed

to downregulate the function of helper T cells, cytotoxic T cells, and dendritic cells [4].

3.2 Formation of Helper and Cytotoxic Lineage (αβ ) T cells

Differentiation of thymocytes in the thymus highly depends on intrathymic

stimulations orchestrated by their TCRs. As thymocytes differentiate, they can express

either αβ TCRs or γδ TCRs on their surfaces in the thymus. Let us remind that the αβ

and γδ subsets having different functionalities are originally bifurcated from common

progenitors.

Thymic population of T cells is mainly composed of αβ subset that is subdivided into

two fates at the mature stage: helper T cells and cytotoxic T cells. Differentiation
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process leads to exclusive expression of CD4 and CD8 proteins on the surfaces

of helper and cytotoxic T cells, respectively. These coreceptor proteins have

indispensible roles in the signaling events that modulate cell fate decisions.

Conventionally, the developmental stages of the maturing thymocytes in the thymus

are defined by differential expression of CD4 and CD8 coreceptors: An immature

thymocyte entering into the thymus undergoes the sequential stages of DN-

CD4−CD8−, DP- CD4+CD8+, Intermediate- CD4+CD8low to become either a

CD4+ helper or a CD8+ cytotoxic mature T cell. The earliest is the DN stage in

which a thymocyte does not express neither TCR nor CD4/CD8 proteins. When DN

thymocytes successfully rearrange the genes encoding the TCRβ chain they express

pre-TCRs. Next, DN thymocyte goes through a β selection process when it is

stimulated by its pre-TCRs to become a DP thymocyte. It is this stage at which

a fully functional αβ TCR is firstly expressed in the developmental pathway. DP

thymocytes are also unique among intrathymic populations in that they express both

CD4 and CD8 coreceptors and are unresponsive to the other survival signals of IL-7

[6]. Only a minority of thymocytes receiving signals through adequate TCR-MHC

class I/II-CD8/4 interactions can escape from death and differentiate beyond the DP

stage. This vital signaling event is termed positive selection. While TCR-MHC

class II interactions (MHC class II-restriction) requires CD4 coreceptor proteins, CD8

coreceptors are needed for TCR-MHC class I (MHC class I-restriction) interactions to

promote the signaling cascade.

Cellular signals, environmental cues and transcription factors involved in the

expression of one or the other coreceptors in the process have extensively been

studied for more than 25 years. All classical models share a set of fundamental

principles: i) positive selection and fate decision are simultaneous events induced

by the same TCR signaling cascades, ii) termination of one or the other coreceptor

is irreversible and indicates commitment to the opposite coreceptor’s lineage [6].

Contrary to these principles, with the discovery of helper-deficient (HD) mice, a

specific strain with exclusive deficiency of CD4 SP helper lineage T cells [7], an

intermediate stage (phenotypically CD4+CD8low and transcriptionally Cd4+Cd8−) in
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which, they initially terminate transcription of CD8 coreceptor proteins even when

they are maturing into CD8 SP T cells, was identified [8].

Then, kinetic signaling model was proposed [8]. In the model the ultimate lineage

choice of positively selected DP (Intermediate) thymocytes is determined by duration

of TCR signals and exposure of the thymocytes to IL-7 cytokines. In addition,

thymocytes at intermediate stage are defined as the last common progenitors of both

CD4 SP helper and CD8 SP cytotoxic T cells in the new model. (Further discussions

about the kinetic signaling model is given in Section 3.2.2.).

3.2.1 Classical models of CD4/CD8 lineage choice

Despite the experimental fails several times [6, 8, 9], the two classical models of

CD4/CD8 lineage choice are stochastic selection model and signal instructive models.

There is a striking concordance between the specificity of TCR expressed on the

surface of T cells and the type of coreceptor expressed by T cells. These models were

proposed to explain the mechanism of this concordance. The reader can refer to Singer

et al. (2008) for more information about classical models of T cell differentiation.

3.2.1.1 Stochastic selection model

According to stochastic selection model, if DP thymocytes receive a signal through

a TCR interacting with either an MHC class I or an MHC class II molecule, they

randomly terminate expression of one or the other coreceptor with half probabilities.

Then, only thymocytes continuing to express coreceptors matching with the MHC

specificity of their TCRs can survive and differentiate into mature T cells. The

remaining ‘mismatched’ thymocytes, that have a TCR specific to MHC class I but

express CD4 coreceptor or express MHC class II specific TCR but express CD8

coreceptor, die by apoptosis [6].

3.2.1.2 Signal instructive models

Instructive models propose that engagement of TCR by MHC class I or MHC class II

ligands results in qualitatively (duration of signal) or quantitatively (strength of signal)
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distinct TCR signals that directly dictate the lineage choice of a positively selected

thymocyte [9].

i) Strength of signal instructional model : This model postulates that engagement

of TCR by MHC class I or MHC class II ligands leads to quantitatively weaker or

stronger TCR signals that directly promotes differentiation of DP thymocytes to CD8

SP or CD4 SP lineages, respectively. The differences in TCR signaling strength are

surmised to be caused by weaker or stronger affinity of the cytosolic tails of CD8 and

CD4 for the key TCR signaling factor LCK, respectively (as cited in [9]).

ii) Duration of signal instructional model : This model implies that engagement of

TCR by an MHC class II ligand results with a signal of long duration while engagement

of TCR by an MHC class I ligand leads to a signal of shorter duration, and these signals

instruct differentiation of DP thymocytes into CD8+ and CD4+ lineages, respectively

(as cited in [6]).

3.2.2 From today’s perspective: Kinetic signaling model

Kinetic signaling model is widely accepted to give the best explanation of CD4/CD8

lineage choice today. This model incorporates some unrefuted principles of the

classical models and new premises based on more recent experimental observations.

In kinetic signaling model, TCR signals of long duration may drive differentiation into

CD4 SP lineage while TCR signals with shorter duration lead to CD8 SP differentiation

pathway. If TCR signals cease at the Intermediate stage, IL-7R can receive IL-7

cytokines promoting to differentiation into CD8+ T cells and thus inducing coreceptor

reversal (as cited in [6]). Since in all positively selected thymocytes the production of

CD8 coreceptor proteins is decreased, CD8-dependent MHC class I-restricted TCR

signals may cease in time leading to derepression of IL-7 signaling that induces

coreceptor reversal [8]. On the other hand, continuing expression of CD4 proteins

at CD4+CD8low stage yield persistent MHC class II-restricted TCR signaling and thus

result in CD4+ lineage choice.

In the kinetic signaling model, positive selection and lineage commitment are

sequential events rather than being induced simultaneously by the same TCR signals

15



and the last bipotent precursors regarding in developmental order are intermediate

thymocytes in which Cd8 gene is transcriptionally terminated.
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4. MATHEMATICAL AND NETWORK MODELING OF BIOLOGICAL
REGULATORY SYSTEMS

4.1 Introduction

Proteins, encoded by genes, function as transcription factors that can bind to regulatory

sites of genes, as enzymes catalyzing metabolic reactions, or as components of signal

transduction pathways. In an organism, with minor exceptions, all cells contain the

same genetic material. This means that, distinct functions of cells in an organism

are attributed by genetic regulatory programs determining which genes are expressed,

when and where in the organism, and to which extent. Such genetic regulatory

programs are essentially structured by networks of regulatory interactions between

DNA, RNA, proteins and small molecules [10].

As being core units of life, cells determine their behaviors like growth, move,

proliferation, differentiation, etc. through such regulatory networks usually forced

by environmental cues. The study of genetic regulatory systems has received a

major impetus from the recent development of experimental techniques by which

spatio-temporal expression levels of genes to be measured (as cited in [10]).

Together with these still developing high throughput experimental tools, it is

indispensable to employ theoretical models and computer simulations for eliciting

structure and dynamics of genetic regulatory networks. Especially in health sciences,

the quantitative models supported by recent improvements of single cell/molecule

experimentation techniques would lead to much more reliable predictions on dynamics

of real world problems, in particular encountered in health sciences.

Although ordinary and partial differential equations are the most conventional

mathematical tools to investigate the genetic regulatory networks, Boolean networks,

and stochastic master equations are some other formalims. The directed graph

technique is, on the other hand, a visual represention of network models.
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Figure 4.1: Directed graph of a representative regulatory network.

4.1.1 Directed graphs

The simplest way to represent a genetic regulatory network is with a directed graph.

Such graphs can make biologically relevant predictions about behavior of regulatory

systems by applying a number of operations on them. For example, a search for paths

between two components may reveal missing regulatory interactions among them or

an ignorance of a component or a link may provide clues about its redundancy in the

network [10].

A directed graph G is a tuple 〈V,E〉 of a set of nodes (V ) and a set of edges (E). A

directed edge is also represented as a tuple 〈i, j〉 of vertices, where i denotes the head

and j the tail of the edge. The nodes in a directed graph may correspond to genes

or any other elements of interest in the regulatory system, while the edges represent

interactions among them. Defining a directed edge as a tuple 〈i, j,s〉, with s equal to

+ or -, denotes whether i is activated or inhibited by j. For activation/inhibiton, the

frequent choice is →/a [10]. In Fig.4.1 a directed graph representation of a simple

regulatory network of three genes is shown.

4.1.2 Boolean networks

The activation state of a gene or any other element in a regulatory system, termed as a

node, can be approximated by a Boolean variable1 which is defined as active (on, 1) or

1Boolean logic is a binary calculus of truth values, named after George Boole who first developed
this algebra in the 1840s. It essentially operates based on logical operations conjunction (∨), disjunction
(∧), and negation (a ). Possible values of variables are conventionally represented by “ 0 and 1” to sake
for computational simplicity.
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inactive (off, 0). For instance, a gene encodes its specific product when it is at ‘on-state’

while there is no production when the gene is at the ‘off-state’ . Interactions between

nodes can be represented by Boolean functions (rules) which are specifically written

for each individual nodes. Let the vector x = (x1, x2, . . . , xn) represent the state of a

regulatory system taken as a Boolean network of n elements. Since each xi can take one

of the two possible values, the state space of the system consists of 2n different states.

A graph depicting the possible states of the regulatory system and transitions between

them is referred to as state transition graph and is useful to represent the dynamics of

the system. As an example, Fig.4.2.b shows the state transition graph for the network

given by Fig.4.2.a (Here, A, B and C are three elements having regulatory effects on

each other.). According to the defined Boolean rules, the system always converges to

the state (000) regardless of its initial state.

Boolean formalism is discrete both in space and time. The state of a node xi at time

t +1 is computed based on the state of the entire network at time t as given by (4.1),

xi(t +1) = fi(x(t)), i = 1, 2, . . . , n (4.1)

When all nodes in a Boolean network are simultaneously updated, it is referred to

synchronous updating that characterizes a fully deterministic dynamics for the system:

each Boolean state of the system will always converge to a single steady state (named a

point attractor) or steady cycle (dynamic attractor) through only a single trajectory. In

the biological context of cell differentiation, these end-points correspond to the mature

cell types [11]. In the state space of the system, the states which are not part of an

attractor are called as transient states. An attractor and the transient states leading to

the attractor form together a basin of attraction as sketched in the landscape picture

shown in Fig.4.3. Such landscape pictures aim to depict different states of a cell by

different positions on a two dimensional plane. The third dimension corresponds to

the (free) energy of a thermodynamical system for which lower positions refer to more

stable states for the cell. In fact, the depressions indicate stable solutions to the set of

mathematical equations that describe the dynamics of the system. In contrast, when

updating the system asynchronously (as cited in [11]), only the state value of a single

19



Figure 4.2: A simple regulatory network and its state transition graph under
synchronous Boolean updating.

element is changed at each step. In this case, multiple trajectories following the same

initial state are possible.

Although the Boolean formalism cannot mimic continuous changes of concentrations

of elements of a regulatory network or give time information when regulatory events

occur, it allows one to investigate easily the functional capabilities of the system

without knowledge of any kinetic parameters even for very large networks and provide

only a coarse-grained description of the network behavior.
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Figure 4.3: Landscape picture of cell differentiation [3].

4.1.3 Nonlinear ordinary differential equations

Ordinary differential equation (ODE) formalism is a widespread modeling tool for

studying dynamical systems in the real world. Using ODE formalism allows one

to model concentrations of regulatory elements such as RNA, proteins, etc. in gene

regulatory networks using variables which are time-dependent and non-negative real

numbers. As being essentially a biochemical process, gene regulation is defined by rate

equations giving the rate of production of any element of the system as a function of

current state of the entire system at any time, more specifically current concentrations

of the regulatory inputs to the element. In mathematical terms, the rate equation for

concentration value of node i at time t0 is given by (4.2)

dxi

dt
= fi(x(t0)), i = 1, 2, . . . , n, (4.2)

and its concentration value at a later time t1 is calculated by (4.3)

xi(t1) = xi(t0)+
∫ t1

t0

dxi

dt
dt, i = 1, 2, . . . , n, (4.3)
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Figure 4.4: Activatory Hill regulation function

where x = [x1, . . . , xn]
′ ≥ 0 is the state vector of the entire system consisting of

concentrations of each elements in the regulatory network and regulation functions fi’

s are usually nonlinear functions of the state variables.

One of the most used form of the nonlinear functions for studying gene regulation is

Hill function. If x j is an activator of any target gene, the corresponding Hill regulation

function is then defined by (4.4)

H+(x j,Vj,h) =
xh

j

xh
j +V h

j
, (4.4)

with Vj > 0, the threshold for the regulatory influence of x j on a target gene, and h > 0,

steepness parameter of the response of the target gene.

This function can take values varying in a continuous interval of [0,1] and increases

as x j → ∞, so that an increase in x j is reflected as an increase in the expression level

of the target gene (activation) (See Fig.4.4). In order to express that increasing x j

decreases the expression level of the target gene (inhibition), the regulation function

H+(x j,Vj,h) is subsitituted by H−(x j,Vj,h) = 1−H+(x j,Vj,h). For h> 1, Hill curves

have a sigmoid shape, in agreement with experimental evidence (as cited in [10]).
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Here, for larger values of h response curve becomes step-like making the variables of

the system Boolean-like at equilibrium states.

4.1.3.1 Standardized qualitative dynamical systems method

The Standardized Qualitative Dynamical Systems Method (SQDSM) was developed

by Mendoza, L. and Xenarios, I. in 2006 [12]. It is essentially a nonlinear ODE

modeling method that functions basically with the same approximations of Hill

functions. The method has the ability to deterministicaly compute time evolution of

a given regulatory network. In this method, the state variable, xi, of an element at

any time is determined by total input, ωi, to it at previous time. The mathematical

definition of the method is given by (4.5),

dxi

dt
=

−e0.5h + e−h(ωi−0.5)

(1− e0.5h)(1+ e−h(ωi−0.5))
− γixi, i = 1, 2, . . . , n (4.5)

ωi =



(
1+∑p αpi

∑p αpi

)(
∑p αpixac

pi

1+∑p αpixac
pi

)(
1−
(

1+∑m βmi

∑m βmi

)(
∑m βmixin

mi

1+∑m βmixin
mi

))
(a)(

1+∑p αpi

∑p αpi

)(
∑p αpixac

pi

1+∑p αp,xac
p,

)
(b)

(
1−
(

1+∑m βmi

∑m βmi

)(
∑m βmixin

mi

1+∑m βmixin
mi

))
(c)

0≤ xi ≤ 1 0≤ ωi ≤ 1 h,αpi,βmi > 0 γi ≥ 1

where {xac
p } is the set of positive regulators acting on xi, {xin

m} is the set of negative

regulators of xi. (a) is used if xi has both positive regulators and negative regulators,

(b) is used if xi has only positive regulators, and (c) is used if xi has only negative

regulators. Finally, if xi has no regulatory inputs then ωi is taken as 0.

SQDSM requires specification of several parameters; strengths of activations (α ′ s),

strengths of inhibitions (β ′ s), decay rates (γ ′ s), and steepness of response curves

(h′ s). To keep xi’ s in the closed interval [0,1], α’s, β ’s and h are taken as any positive

real numbers and γ’s are taken as greater than or equal to 1. In the method, the decay

rate of an element causes to inactivation it sooner or later, unless it has an activator.

This is valid even if the corresponding element has no inhibitors.
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Figure 4.5: The change in the activation value of an element with respect to total input
to it under different h choices.

As shown in Fig.4.5 and also pointed out in the context of Hill functions, larger the

value of h steeper the response curve. Therefore, SQDSM operates Boolean-like

for large values of h giving digital response curves and thus making the equilibrium

solutions comparable with the ones obtained from (synchronous) Boolean studies of

the same structure.

The total regulatory input to an element due to different strengths of activations by a

single activator and inhibitions by a single inhibitor are shown in Fig.4.6 and Fig.4.7,

respectively. As it can be easily seen, the total input to the element having only one

activator becomes more sharply increasing when the strength of the activation (alpha)

is increased. In the case of the element having only one inhibitor, the total input to it

becomes more sharply decreasing by increasing the inhibition strength (beta).

The change in the activation level of an element due to the effect of a single activatory

input by choosing different activation strengths (alpha) and a single inhibitory input

having different inhibition strengths (beta) are depicted in Fig.4.8 and Fig.4.9,

respectively. The activation level of the target element becomes more digitally
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Figure 4.6: The total input to an element having only one activator as a function of the
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Figure 4.7: The total input to an element having only one inhibitor as a function of the
activation level of the inhibitor with different inhibition strengths.

regulated when the strength of the regulation due to the corresponding regulator is

increased (for h = 10).

The change in the total input and activation level value of an element in the case of

co-existence of an activator and an inhibitor acting on it are shown in Fig.4.10 and
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Figure 4.8: The activation level value of an element having only one activator as a
function of the activation level of the activator with different activation
strengths.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

activation level of the inhibitor,  x
in

a
c

ti
v

a
ti

o
n

 l
e

v
e

l 
o

f 
a

n
y

 n
o

d
e

,  
x

 

 

beta= 0.01

beta= 1

beta= 2

beta= 3

beta= 4

beta= 5

beta= 6

beta= 7

beta= 8

Figure 4.9: The activation level value of an element having only one inhibitor as a
function of the activation level of the inhibitor with different inhibition
strengths.

in Fig.4.11, respectively. As it is clearly seen from these figures, the target element

can only become activated if the inhibitor is not at its maximum level of activation.
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inhibitory element as well (h = 1).

It can be also seen that the target element can be fully activated when the inhibitor is

inactivated and the activator is simultaneously at its maximum level of activation.
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Although analytical solutions to the rate equations (4.2) are not generally possible

due to the nonlinearity of fi’ s, at least some qualitative properties of the solutions

such as the number, pattern and the stability of the steady states (fixed points) can be

established using numerical and computational tools.

A big trouble challenging the numerical analysis of regulatory systems by utilizing

ODEs is the lack of measurements of kinetic parameters for the rate equations.

Therefore, in most cases the parametric values had to chosen such that the models

are able to reproduce the observed qualitative behavior. For almost last fifteen years,

availability of gene expression measurements have increasingly grown allowing the

required kinetic data to be extracted from time series data of state variables of a system

of interest. A probable interesting property of network models, termed robustness,

states that the network structure determines the stability character of the system rather

than the exact values of the parameters when essential properties of the system quite

unresponsive to variations in the parametric values [10].

4.1.3.2 Linear stability analysis of ODE systems

Let each xi stands for the state variable for element i of a system with i = 1, 2, . . . n,

and their changes with time are computed with fi functions as given by (4.2). If state

of entire system is represented by x = [x1, . . . , xn]
′ ≥ 0 and fi(x∗) = 0 for each i, then

x∗ is called a fixed point of the system.

Now let~η(t)= x(t)−x∗ be a small perturbation away from x∗ at time t. Time evolution

of this~η(t) determines the stability character of the fixed point x∗. Thus time derivative

of ~η is required to be calculated and it is essentially same as with the calculation of

time derivative of x at any time, as given by (4.6)

~̇η =
d
dt
(~η) =

d
dt
(x−x∗) = ẋ (4.6)

(here x∗ is constant). Thus ~̇η = ẋ = f (x) = f (x∗+~η). For n = 1, using Taylor’s

expansion we obtain

f (x∗+η) = f (x∗)+η f ′(x∗)+O(η2), (4.7)
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where O(η2) denotes quadratically small terms in η and f ′(x∗) stands for
d f
dx

∣∣∣∣
x=x∗

which is the derivative with respect to state variable x evaluated at x∗. Since x∗ is a

fixed point, f (x∗) = 0. Hence

f (x∗+η) = η f ′(x∗)+O(η2). (4.8)

Now if f ′(x∗) 6= 0, the O(η2) terms are negligible and it is conceivable to make the

approximation

η̇ = η f ′(x∗). (4.9)

This is a linear equation in the perturbation η , and is called the linearization about a

fixed point x∗. Since we are only keeping linear terms near a fixed point, this theorem

is called a linear stability analysis. In fact, f ′(x∗) is the slope at the fixed point and

determines its stability. The perturbation η(t) grows exponentially if f ′(x∗) > 0 and

decays if f ′(x∗)< 0, entitling the fixed point x∗ as unstable and stable, respectively . If

f ′(x∗) = 0, the O(η2) terms are not negligible and a nonlinear phase portrait analysis

is needed to determine the stability. The absolute value of f ′(x∗), gives the measure

of how much a fixed point is stable. Inverse of this value, 1/| f ′(x∗)|, is referred as

characteristic time scale determining the time required for x(t) to vary significantly in

the neighborhood of x∗ [13].

For n = 2, the dynamics of the system is defined by the following coupled equations

dx1

dt
= f1(x)

dx2

dt
= f2(x)

where x = [x1, x2]
′ ≥ 0 is the state vector of the system at any time, and f1 and

f2 are nonlinear regulatory functions. Let x∗ = [x∗,1, x∗,2]′ be a fixed point and

~η(t) = x(t)−x∗ be a small perturbation about it. Then by following the same

procedure in (4.6), (4.7), (4.8) and (4.9), we obtain
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ẋ1 = (x1− x∗,1)
∂ f1

∂x1

∣∣∣∣
x=x∗

+(x2− x∗,2)
∂ f1

∂x2

∣∣∣∣
x=x∗

,

ẋ2 = (x1− x∗,1)
∂ f2

∂x1

∣∣∣∣
x=x∗

+(x2− x∗,2)
∂ f2

∂x2

∣∣∣∣
x=x∗

.

Since it is possible to write the above equations as

η̇1 = η1
∂ f1

∂x1

∣∣∣∣
x=x∗

+η2
∂ f1

∂x2

∣∣∣∣
x=x∗

,

η̇2 = η1
∂ f2

∂x1

∣∣∣∣
x=x∗

+η2
∂ f2

∂x2

∣∣∣∣
x=x∗

,

we can use matrix notation as follows

(
η̇1
η̇2

)
=


∂ f1

∂x1

∂ f1

∂x2

∂ f2

∂x1

∂ f2

∂x2


x=x∗

(
η1
η2

)
.

The matrix J =

∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2


x=x∗

is called the Jacobian matrix calculated at the fixed

point x∗.

Now to determine whether the perturbation ~η grows or decays in time, we must find

the eigenvalues, λ1 and λ2, and corresponding eigenvectors, ~v1 and ~v2, of J. Then, in

theory of linear differential equations, the solution is written as the superposition of

terms that are in form exp(λi).

If trace (J11 + J22) and determinant (J11J22− J12J21) of J are denoted by τ and ∆,

respectively, then the eigenvalues can be calculated by (4.10)

λ1,2 =
1
2

(
τ ∓

√
τ2−4∆

)
. (4.10)

Let λi = ai + jbi, where ai and bi are, respectively, the real [Re(λi)] and imaginary

[Im(λi)] parts of the eigenvalue λi. Then the exponential terms are can be written as

exp(λit) = exp(ait)exp( jbit), j =
√
−1. (4.11)
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The complex exponential can be rewritten

exp( jbit) = cos(bit)+ j sin(bit). (4.12)

As it can easily be seen from (4.12), complex part of an eigenvalue contributes only an

oscillationary component to the solution. It is the real part that matters:

If ai > 0 for any i, exp(ait) grows with time, which indicates that trajectory of the

small perturbation will tend to move away from the fixed point. This makes the fixed

point unstable [14]. For n = 2, phase plane behavior of trajectories in the cases of

different kinds of fixed points is schematically represented in Fig.4.12. In the figure,

the stability character of fixed points is shown depending on the value of determinant

(∆, x-axis) and trace (τ , y-axis) of the Jacobian matrix.

To generalize for n = N, one may follow the same procedure in (4.6), (4.7), (4.8) and

(4.9) and finally write the Jacobian at the fixed point as,

J =



∂ f1

∂x1

∂ f1

∂x2
. . .

∂ f1

∂xN

∂ f2

∂x1

∂ f2

∂x2
. . .

∂ f2

∂xN
...

... . . . ...
∂ fN

∂x1

∂ fN

∂x2
. . .

∂ fN

∂xN


x=x∗

If all the eigenvalues of the Jacobian matrix has real parts smaller than zero, the fixed

point is then referred to as stable while the fixed point is called unstable when the

Jacobian has at least one eigenvalue with a real part greater than zero. It is important

to emphasize that the theorem is silent on the issue of what happens if some of the

eigenvalues have zero real parts while the others are all negative. This can not be

decided based on linear stability analysis. The nonlinear terms we left out in (4.8) in

fact determine the stability in this case.

4.1.4 Stochastic master equations

Despite providing the great possibility of modeling gene regulation in a fine details

even at a level of individual reaction steps, such as binding of a transcription factor
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Figure 4.12: Stability of fixed points in 2-dimensional systems.

to its specific regulatory site, differential equation models assume the dynamics of

the system of interest to be both continuous and deterministic. However, biochemical

reactions involved in gene regulatory events are both discrete and stochastic in nature.

Gene regulatory events are mainly processed inside the nucleus and so may be driven

by only a few tens of molecules. Hence, small changes in the number of components

become more important leading to a discrete state space for the system rather than a

continuous one. Moreover, molecular interactions are not really deterministic meaning

that all collisions between two molecules do not necessarily result in biochemical

reactions. Gene regulatory events, therefore, have a probabilistic dynamics: that is,

the same initial condition does not always end with the same steady state. Given the

state vector x = (x1, x2, . . . , , xN) of a regulatory system of S1, S2, . . . , Sn different
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species with xi’s that are positive integers, joint probability distribution function p(x, t),

describes the probability at a time t the cell contains x1 molecules of S1 species, x2

molecules of S2 species, etc. The time evolution of the function of p(x, t) can be

computed by

p(x, t +∆t) = p(x, t)

(
1−

m

∑
j=1

a j∆t

)
+

m

∑
k=1

bk∆t, (4.13)

where m is the number of reactions that can occur in the system, a j∆t is the probability

that reaction j will occur in the interval [t, t +∆t] given that the system is in the state

x at t, and bk∆t, the probability that reaction k will bring the system to state x from

another state in [t, t +∆t] [15].

Rearranging (4.13),

p(x, t +∆t)− p(x, t) =−
m

∑
j=1

p(x, t)a j∆t +
m

∑
k=1

bk∆t

p(x, t +∆t)− p(x, t)
∆t

=
m

∑
j=1

[
b j−a j p(x, t)

]
and taking the limit ∆t → 0 where ∆t allows only a single reaction, time evolution of

probability function p(x, t) is obtained from the definition of derivative as follows,

d
dt

p(x, t) =
m

∑
j=1

[
b j−a j p(x, t)

]
. (4.14)

This is the stochastic analogue of rate equation named as master equation (as cited

in [10]). In general, it is almost impossible to find exact analytical solutions to master

equations. Moreover, numerical simulations of the system is highly complicated and

computationally expensive since there are n+1 independent variables: n discrete state

variables and a continuous time variable t.

A feasible algorithm has been proposed by Gillespie in 1977 [15]. This algorithm

computes stochastic time evolution of a biochemical system based on two fundamental

questions: (i) When will the next reaction occur? and (ii) Which type will it be among
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the possible reactions? Although Gillespie’s algorithm can be easily implemented

into a computer program, one needs to run the program for many times under a

particular initial condition to obtain a probability distribution given by (4.13) since

the algorithm simulates only a single trajectory for the system at each run. Gillespie’s

algorithm was used to simulate numerous biochemical processes in the literature and

gave strikingly reliable outcomes, in particular when the system involves low numbers

of molecules and strong competitive feedback loops which are often encountered in the

study of cell signaling mechanisms [16]. Moreover, in order to reveal spatio-temporal

dynamics of biochemical mechanisms, Gillespie’s algorithm was extended by adding

a reaction-diffusion term that answers a third question: Where will the next reaction

occur? (as cited in [17]). For further details about Gillespie’s algorithm the reader

refer to [15, 17].
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5. A REGULATORY NETWORK MODEL FOR DIFFERENTIATION OF
αβ THYMOCYTES BEYOND THE ‘INTERMEDIATE’ STAGE

In this thesis, we aim to build a mathematical model which qualitatively describes

differentiation of αβ thymocytes, particularly beyond the Intermediate stage, as a

dynamical system. We first had an extensive literature search to determine the most

important regulatory interactions between Intermediate stage and mature stage in T cell

developmental pathway. The elements and the associated interactions involved in the

process are presented in Table 5.1. Our model comprises a network of 8 components

and 13 regulatory interactions as sketched in the directed graph shown in Fig.5.1. In the

directed graph, we use the green and red arrows to represent activatory and inhibitory

interactions, respectively. On the other hand, the black arrow denotes the co-activatory

effect of GATA3 and ThPOK on CD4.

Figure 5.1: Directed graph of our regulatory network for the differentiation of αβ

thymocytes beyond the Intermediate (CD4+CD8low) stage.
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Figure 5.2: A landscape with three attractors is generated by mathematical modeling
of a simple genetic regulatory network [3].

5.1 Methodology

In theoretical biology, the conventional technique in building a regulatory network

model for a cell differentiation process is to define different attractors (or equilibrium

states) in the landscape picture corresponding to different cell types. For instance,

in the regulatory network illustrated at the top of Fig.5.2, two transcription factors

A and B, mutually inhibit each other and autoactivate expression of themselves.

Mathematical modeling of this network generates a landscape picture comprising

three attractors: two stable states, a and b, in which factors A and B are exclusively

expressed, and a metastable state, a/b, characterized by low coexpression of both

factors A and B. In the context of cell differentiation, a precursor cell which occupies

the metastable state a/b have the bipotency of moving to stable attractors either a or b,

namely distinct mature cell subsets.

Despite the existence of a great amount of empirical information related the T cell

differentiation in the thymus, obtaining kinetic data and real concentration values that

will help to employ dynamical representations is still in its infancy. Therefore, we

adopt SQDSM of Luis Mendoza and Ioannis Xenarios (2006) (Section 4.1.3.1) to

convert our directed graph into a dynamical mathematical representation.
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2 (with the strength η = 1).

In this method, the state of each element (termed node) in a regulatory network can

be updated in time by taking into account the regulatory effects by the others and

itself. But, in biology it is very ubiquitous that a regulatory event can only occur in the

co-existence of two or more regulatory elements and the formalism fails to mimic such

events. (As an example, the change in the activation level of an element having two

co-activators as a function of the activation levels of the co-activators is illustrated in

Fig.5.3.). With this in mind, we contribute to their formalism by adding co-regulatory

(only second order) terms into the definition of the input function, ω , as follows

ωi =



(
1+∑p αpi +∑k ηki

∑p αpi +∑k ηki

)(
∑p αpixac

p +∑k ηkixac
k,1xac

k,2

1+∑p αpixac
p +∑k ηkixac

k,1xac
k,2

)
×(

1−
(

1+∑m βmi +∑z ξzi

∑m βmi +∑z ξzi

)(
∑m βmixin

m +∑z ξzixin
z,1xin

z,2

1+∑m βmixin
m +∑z ξzixin

z,1xin
z,2

))
(a)

(
1+∑p αpi +∑k ηki

∑p αpi +∑k ηki

)(
∑p αpixac

p +∑k ηkixac
k,1xac

k,2

1+∑p αpixac
p +∑k ηkixac

k,1,x
ac
k,2

)
(b)

(
1−
(

1+∑m βmi +∑z ξzi

∑m βmi +∑z ξzi

)(
∑m βmixin

m +∑z ξzixin
z,1xin

z,2

1+∑m βmixin
m +∑z ξzixin

z,1xin
z,2

))
(c)

(5.1)

37



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Activation level of 
the co−activator 2, x

2

ac
Activation level of the co−activator 1, x

1

ac

In
p

u
t,

 ω
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2 , with the
strength η = 1.

where {xac
k,1xac

k,2} is the set of positive co-regulators acting on xi, {xin
z,1xin

z,2} is the set

of negative co-regulators acting on xi. The maximum numbers for indices k and z are

defined by the numbers of second order positive and negative regulations, respectively,

involved in the given network. Here, the new parameters η and ξ stand for strengths

of co-regulatory (second order) events and they should be greater than zero. Here, (a)

is used if xi has both positive regulators and negative regulators, (b) is used if xi has

only positive regulators, and (c) is used if xi has only negative regulators. If xi has

no regulatory inputs then ωi is taken as 0. We have tested the modified version of

the method to see if it still keeps the values of the variables in a normalized interval

and provides trustworthy outcomes for modeling regulatory networks. The inputs

and activation levels of any node with the two co-activator xac
1 , xac

2 , strength η = 1

and with the two inhibitors xin
1 , xin

2 , strength ξ = 1 are plotted in Fig.5.4, Fig.5.5,

Fig.5.6 and Fig.5.7. As it is clearly seen in the figures the modified method still

keeps the normalized values for the variables and allows one to simulate (second order)

co-regulatory events.
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5.2 Molecular description and construction of our regulatory network

First of all, in our model CD4 and CD8 coreceptor proteins are treated as the

end-products (Fig.5.1). In our network model, there are two components (TCR signal

and IL7) referring to strengths of intrathymic T cell antigen receptor (TCR) and

IL7 cytokine signalings which are the essential driving factors of CD4/CD8 lineage

choice for a maturing thymocyte (Section 3.2.2). GATA3, ThPOK, RUNX3, CD4

and CD8 represent expression level of respective genes and pSTAT corresponds to

phosphorylation level of the STAT molecule. In the model, GATA3 and pSTAT are

forming the bridges which convey the incoming stimuli by intrathymic signals to the

inner regulatory mechanism. GATA3, ThPOK, RUNX3 and pSTAT act as transcription

factors (TFs) since they produce proteins to fulfill particular functions for eventually

regulating the activation levels of CD4/8 coreceptor expression. (Of note, we assume

that the activation level of a gene has the same meaning with the amount of protein

encoded by itself.).

39



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Activation level 
of the co−activator 2, x

2

ac

Activation level of the co−activator 1, x
1

ac

L
e
v
e
l 
o

f 
a
c
ti

v
a
ti

o
n

, 
x

Figure 5.6: Level of activation of any node due to effect of two co-activators, xac
1 and

xac
2 , with the strength η = 1 (h = 1).

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Activation level of 
the co−inhibitor 2, x

2

in

Activation level of the co−inhibitor 1, x
1

in

L
e
v
e
l 
o

f 
th

e
 a

c
ti

v
a
ti

o
n

, 
x

Figure 5.7: Level of activation of any node due to effect of two co-inhibitors, xin
1 and

xin
2 , with the strength ξ = 1 (h = 1).

In the model, GATA3 forms a unique bridge between strength of TCR signaling and

lineage decision because it is triggered/regulated by TCR signals [18], and it is the
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Table 5.1: Regulatory interactions in our network.

Interaction Reference(s) Strength Parameter

TCR→ GATA3 [18] α1
GATA3→ GATA3 α2
RUNX3→ GATA3 α3
GATA3→ ThPOK [19] α4
RUNX3 a ThPOK [23] β1
ThPOK a RUNX3 [20] β2
pSTAT→ RUNX3 [25] α5

RUNX3 a CD4 [29, 30] β3
RUNX3→ CD8 [28] α6

GATA3→ pSTAT α7
GATA3 + ThPOK→ CD4 [19] η1

IL7→ pSTAT [25] α8
ThPOK a CD8 [20] β4

gateway to a lineage choice. It initiates expression of ThPOK [9, 19] starting from

DP stage. ThPOK inhibits expression of CD8 and RUNX3 proteins [20] and activates

CD4 expression co-operatively with GATA3 [19,21]. Expression of ThPOK is specific

for CD4 SP (helper) lineage [22] and inhibited by RUNX3 proteins [23]. Expression

of RUNX3 is first induced through IL7 signals, that cause to phosphorylation of STAT

molecules allowing them to translocate inside the nucleus [24], in positively selected

thymocytes [25, 26]. RUNX3 expression is specific for CD8 SP (cytotoxic) cells [27],

and increased through the CD8 differentiation program while it is excluded through

the CD4 SP differentiation pathway [28]. RUNX3 represses expression of CD4 [28–

30] and activates CD8 expression [28]. In addition to these interactions, we further

suggest two positive regulatory effects (one is from RUNX3 to GATA3 and the other

is from GATA3 to pSTAT) and an autoactivation loop for GATA3 in order to make the

activation patterns of the fixed points in the model consistent with those ones observed

in Intermediate, CD4 SP and CD8 SP cells.

We list all these regulatory interactions in Table 5.1 and use → and a symbols to

represent positive and negative regulatory interactions, respectively. Then using (5.1),

we specify the input functions, ω’ s, for each independent variable and present them

in Table 5.2.
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Table 5.3: Zero-point states of default system.

CD4 CD8 GATA3 ThPOK pSTAT RUNX3 TCR signal IL7

x? 0 0 0 0 0 0 0 0
x4 1 0 0.9998 1 1 0 0 0
x� 0 1 1 0 1 1 0 0
x† 0 0 1 0.3448 1 0.3448 0 0

5.3 Results

5.3.1 Investigation of the structure of the state space

By substituting the input functions given in Table 5.2 into Equation (4.5), we obtain

a system of 8-coupled nonlinear ODEs. We then take all parametric values (α’ s, β ’

s and γ’ s) as 1 since there is no available kinetic data on these specific interactions

in the model. Also such an assumption does not favor any regulatory interactions

or decay events. Furthermore, we call the system as default by also taking h as 50

to obtain step-like response curves, thus making our work easily comparable with

possible Boolean models.

In order to explore the fixed points of default system and their stabilities (in biology,

the fixed points represent distinct developmental stages and their level of maturity), we

first find the zero-point states of the system by using fsolve optimization toolbox of

MATLAB and present the results in Table5.3.

We then apply the linear stability analysis (as mentioned in Section 4.1.3.2) about

these zero-point states. When the Jacobian matrix of the system is evaluated at x?, the

eigenvalues are found to be λ ?
1,2,3,4,5,6 =−1, λ ?

7 =−1+7.411×10−8j and λ ?
8 =−1−

7.411×10−8j (here j stands for the imaginary unit). x? represents an attractor when the

real parts of all the eigenvalues are negative. For the Jacobian matrix computed at x4,

the eigenvalues are λ
4
1,2,3,4,5,6,7 =−1 and λ

4
8 =−0.9960 denoting x4 as an attractor.

At x�, eigenvalues of the Jacobian matrix are almost the same as in the case of x? and

thus x� is an attractor. On the other hand, the Jacobian matrix at x† gives the following
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eigen values: λ
†
1,2,3,4,5,6 = −1, λ

†
7 = −13.5014 and λ

†
8 = 11.5014 which indicate an

unstable fixed point.

To make the findings given above much more reliable and a comment on the sizes

of the basins of attraction of these attractors, it would be helpful to computationally

simulate time evolution (numerical integration) of the system of equations for all

possible different initial conditions (initial values of the variables). Our dynamical

representation is deterministic and asymptotic behavior of the system depends on its

initial conditions. Since the variables change continuously in the interval of [0,1], it

is not realistic to search over all possible combinations of initial conditions. However,

one can scan a big portion of the state space of the model by randomly picking up

large number of initial conditions. We randomly choose 50 000 independent initial

conditions and simulate the time evolutions for each case by using ODE45 solver of

MATLAB until the system converges to any steady state. Then, we cluster all the

resultant steady states into three subsets (x?, x4 and x�) and compute the mean and

variance values for variables in each subset, presented in Table 5.4. (Values close to

1 are emphasized by using bold numbers.). On the other hand, any time evolution

results in the x† point meaning that x† has a very tiny basin of attraction. This can

also be interpreted as x† is not a biologically meaningful zero point state. Among the

three subsets of attractors, two of them (x4 and x�) represent the specific activation

patterns of CD4 SP (helper) and CD8 SP (killer) mature T cells. These two attractors

have large basins of attraction. While 49.0% of all runs ends up with a final state

of CD4 SP attractor, 47.9% results in CD8 SP attractor. The rest (x?) with a very

small basin of attraction belongs to a distinct subset which has no activated elements.

This subset is a cluster of attractors from where the system moves to one of the other

two attractors in response to sufficient TCR and IL7 perturbations. Then, we call it

as Intermediate (CD4+CD8low) cell type attractor since this population is extensively

accepted as the last intermediate common precursor to follow either CD4 or CD8

differentiation pathways during thymic development [7].
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5.3.2 Effects of intrathymic TCR and IL7 signalings onto CD4 vs. CD8 lineage

choice

After determining the most possible steady states of the system, we apply many

combinations of TCR and IL7 signals onto a single precursor cell type to see whether

they drive the cell to one of the two mature subsets or not. Of note, we use the default

set of parametric values again. Our simulations show that a weak and short-lived TCR

signaling does not lead to CD4 SP lineage as shown in Fig.5.8 and Fig.5.9, while a

short-lived but strong TCR signaling results in differentiation to single positive CD4

lineage (see Fig.5.13). In Fig.5.10, Fig.5.11, very weak TCR signals with different

durations are introduced and the Intermediate thymocyte cannot differentiate to any

mature subset again. On the other hand, a TCR signal has the same strength with

that one in Fig.5.9 is subjected to the Intermediate cell for a longer duration and the

result is now differentiation to CD4 SP helper lineage (See Fig.5.12). These results

underline the importance of both strength and duration of TCR signals onto lineage

decision of an Intermediate thymocyte. In Fig.5.13, we also test the stability of the

CD4 SP attractor through introducing a maximum level of a short-lived IL7 signaling

and see that the system doesn’t move away from it: The CD4 SP attractor stays stable.

Next, we want to see if IL7 signaling itself would be enough to secure CD8 lineage.

We predict that the CD8 lineage can be preserved if the precursor cell is subjected

to a strong IL7 signaling for a longer period of time (see Fig.5.14 and Fig.5.15). In

addition, our calculation predicts that when strong and sharp (short-lived) IL7 signaling

accompanied by a weak and short-lived TCR signaling the CD8 lineage to be secured

(See Fig.5.16). Let us remind that, introducing a maximum level of TCR signaling

doesn’t change the CD8 lineage choice (See Fig.5.15) manifesting that the CD8 SP

attractor is stable.

In another scenario, a stronger but short-lived IL7 signal following a weak and

short-lived TCR signaling is found to be not sufficient to converge CD4 SP directed

lineage to CD8 SP attractor as shown in Fig.5.17.
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Figure 5.8: A very weak and short-lived TCR signaling cannot promote CD4 SP
lineage choice of the Intermediate cell.

5.3.3 Effects of mutations in silico

In our network model, we specify four key regulatory nodes: GATA3, ThPOK, RUNX3

and pSTAT. Despite the lack of quantitative measurements on these specific regulatory

factors in T cell differentiation, qualitative measurements on their salient knockout

and/or overexpression are available. To cross-validate results from our network

model with those from the literature, we implement corresponding experiments in

silico1 by manipulating their related variables in our system of equations. Knockout

and overexpression of a component can be implemented by keeping its activation

level value as 0 and 1, respectively, at all times during simulations. If there is no

manipulation about the variables of the system then the system is called Wild Type

(WT). By setting the activation level value of any node as 0 or 1 in the entire simulation,

i) a specific one or more of steady states related to the WT system of equations can

become unreachable, ii) a new one or set of either biological or non-biological steady

states can emerge, and iii) all the steady state motifs can remain as in the WT case.

1‘In silico’ is a computational biology jargon that means ‘in computer simulation’ .
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Figure 5.9: A weak and short-lived TCR signaling cannot promote CD4 SP lineage
choice of the Intermediate cell.
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Figure 5.10: A very weak and a bit longer TCR signaling cannot determine the lineage
choice of the Intermediate cell.

We first analyze steady state patterns of single node knockouts for all key regulatory

nodes with default set of parametric values by following the same procedure defined

in Section 5.3.1. We form Table 5.5 to present the corresponding results. Then, we test

single node overexpressions and give the corresponding results in Table 5.6. Finally,
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Figure 5.11: A very weak and much longer TCR signaling cannot determine the
lineage choice of the Intermediate cell.
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Figure 5.12: A weak but a bit longer TCR signaling leads to CD4 SP lineage choice
of the Intermediate cell.

we apply two synergistic mutations on the system in silico by knocking GATA3 out

with overexpressing ThPOK and knocking ThPOK out with overexpressing GATA3 as

summarized in Table 5.7. For knockout/overexpression of ThPOK and RUNX3, there

is almost a perfect agreement between our findings and those found in the literature.
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Figure 5.13: A strong and short-lived TCR signaling leads to CD4 SP lineage choice
of the Intermediate cell.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time in a.u.

a
c
ti

v
a
ti

o
n

 l
e
v

e
l

 

 

CD4

CD8

GATA3

ThPOK

RUNX3

TCR signal

IL7 signal

Figure 5.14: A strong but short-lived IL7 signaling is not enough to drive CD8 lineage
choice of the Intermediate cell alone.

For mutations of pSTAT, we have no experimental knowledge to compare our results.

And finally, our findings for knockout/overexpression of GATA3 are not consistent

with experiments.
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Figure 5.15: A strong and a bit longer IL7 signaling leads to CD8 SP lineage choice
of the precursor cell of the Intermediate cell.
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Figure 5.16: A strong but short-lived IL7 signaling with a concurrent weak (and short)
TCR signaling leads to CD8 SP lineage choice of the Intermediate cell.

In ‘Computational Finding’ columns of Tables 5.5, 5.6 and 5.7, we determine whether

three WT steady states are still reachable and new attractors emerge. In ‘Implications’

columns, we interpret the biological effects of each corresponding mutation on the

intrathymic differentiation. In ‘Evidence’ columns, we give a list of publications (we

are aware of), supporting our predictions.
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Figure 5.17: A weak but a bit longer TCR signaling leads to CD4 SP lineage choice
of the Intermediate cell even if a strong IL7 signaling is received as soon
as TCR signals ceases.

Table 5.5: Single node knockout experiments in silico.

Single Node Computational Finding Implications Evidence
Knockout

GATA3 CD4 SP and CD8 SP Absence of both helper
attractors disappear and cytotoxic lineage

ThPOK CD4 SP attractor Absence of helper lineage [9, 22]
disappears MHC II-restricted thymocytes may

be redirected into cytotoxic lineage
RUNX3 CD8 SP attractor Absence of cytotoxic lineage [23, 29]

disappears MHC I-restricted thymocytes may
be redirected to helper lineage

pSTAT CD8 SP attractor Absence of cytotoxic lineage
disappears MHC I-restricted thymocytes may

be redirected to helper lineage

5.4 Conclusions and Recommendations

We give a compact but coarse-grained mathematical description for CD4/CD8 lineage

choice of αβ thymocytes development beyond the Intermediate (CD4+CD8low) stage

in the thymus. Being an ODE model, our mathematical model also needs kinetic data,

52



Table 5.6: Single node overexpression experiments in silico.

Single Node Computational Implications Evidence
Overexpression Finding

GATA3 Intermediate
attractor disappears

ThPOK Intermediate and Absence of cytotoxic
CD8 SP attractors lineage [19, 22]
disappear MHC I-restricted thymocytes

may be redirected into
helper lineage

RUNX3 Intermediate and Absence of helper lineage [31]
CD4 SP attractors MHC II-restricted thymocytes
disappear may be redirected into cytotoxic

lineage
pSTAT Intermediate

attractor disappears

Table 5.7: Synergistic perturbation experiments in silico.

Synergistic Computational Implications Evidence
Perturbation Finding

GATA3 All WT steady Helper lineage can [19]
Knockout state patterns disappear not be rescued even
& and a new attractor if ThPOK is
ThPOK emerges with non-zero overexpressed
Overexpression ThPOK activation only in the case of

GATA3 deficiency
ThPOK Intermediate Absence of helper
Knockout and CD4 SP attractors lineage
& disappear MHC II-restricted
GATA3 thymocytes may be
Overexpression redirected into

cytotoxic lineage

but even in the default case of parametric values it gives a qualitative explanation of

the dynamical properties for the differentiation.

In our model, each regulatory link between any nodes represent flow of information

between them in the specified direction. It means that, even if any other intermediary
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element has a role on the line of a link it would not change the behavior of information

flow. So, the model can be extended into a more detailed one by only locating

intermediary component(s) on the lines of current links.

Our model has the ability to show the effects of intrathymic signals onto lineage

choice in line with the implications of kinetic signaling model. We first mimic two

fundamental assumptions of kinetic signaling model: i) Strong and/or long TCR

signals lead to differentiation to CD4 lineage, ii) IL7 cytokine signaling pathway

promotes CD8 gene program by activating CD8 and inhibiting CD4. Our model further

suggests that short-lived IL7 cytokines cannot promote CD8 lineage choice alone.

But, if a proper and simultaneous TCR signal is received then an Intermediate cell

can differentiate to CD8 lineage. The latter finding may be supported by the limited

amount of IL7 cytokines in the thymus [24].

Future studies should be planned in order to explain ‘coreceptor reversal’ [8]

mechanism after positive selection which is not achieved by our current model since

its scope is “Intermediate to SP” transition and it does not involve the feedback roles

of CD4 and CD8 coreceptors in TCR signaling event.

Our simulations involving salient mutations give results that are in good agreement

with experimental findings except for the cases of GATA3 knockout2 and

overexpression3. The model can be further improved by using another component

to feed IL7 signaling pathway rather than GATA3 as being an essential TCR signaling

downstream factor. Or it may be possible that GATA3 or any other GATA3 mediated

factor weakly contributes IL7 signaling pathway, that can be implemented by a

relatively small activation strength parameter for corresponding interaction in our

mathematical model.

2Disruption of GATA3 expression arrests development of MHC class II-restricted thymocytes during
‘DP to CD4 SP’ transition but it does not redirect them to CD8 SP lineage. It just minimally affects the
CD8 SP population [19].

3Overexpression of GATA3 blocks the differentiation to CD8 SP lineage [6], but it doesn’t result in
redirection of MHC class I-restricted thymocytes to CD4 SP lineage [18].
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