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A MATHEMATICAL MODEL
FOR
o3 T CELL DIFFERENTIATION IN THE THYMUS

SUMMARY

As being a relatively new and an intricate research area of life sciences, immunology is
a still evolving subject in which scientists from many different disciplines like biology,
medicine, physics, chemistry, mathematics, computer sciences, etc. are joint to gain a
deeper understanding on how the immune system reveals its functions.

In most mammalian species, the immune system can be mainly subcategorized into
three levels of defense against pathogens: natural barriers, innate immunity and
adaptive immunity. Natural barriers are the first line of defense that has to be penetrated
by pathogens in order to cause disease and it exists in almost all living organisms. Any
invader that penetrates the natural barriers is greeted by innate immune system which
is the second line of defense. Innate immunity operates relatively quick, reacts to a
variety of usual pathogenic organisms and it has not specific elements against to any
particular pathogen. It also activates and controls the adaptive immunity. Almost all
organisms get along just fine with only natural barriers and the innate immune system
to defend them. However, in the vertebrates, the innate responses call into play the
third level of defense: ‘adaptive’ immunity which has specifically equipped soldiers to
cope with almost any foes. Moreover, players of the innate and the adaptive immune
systems usually work together to eradicate pathogens. The main factors distinguishing
the innate immunity and the adaptive immunity are timing and specificity of the
response against to a pathogenic attack. Both of the innate and the adaptive immune
responses depend upon the activities of white blood cells (called as leukocytes), which
are originated from bone marrow-derived hematopoietic stem cells. Adaptive immune
responses are provided by white blood cells called lymphocytes being subdivided into
two classes as antibody responses and cell mediated responses, which are carried out
by B- and T-cells, respectively. T cells develop in the thymus, and B cells, in mammals,
develop in the bone marrow in adults or in the liver in fetuses.

Pluripotent progenitors of T lymphocytes are produced in the bone marrow like all
the other hematopoietic cells, and migrate to the thymus gland for differentiating and
eventually committing to different T cell subsets: cytotoxic, helper and regulatory
(suppressor) T cells.

Thymic population of T cells is mainly composed of aff subset and af8 thymocytes
commit to either helper T cells or cytotoxic T cells at mature stage. Differentiation
process leads to exclusive expression of CD4 and CDS8 proteins on the surfaces
of helper and cytotoxic T cells, respectively. These coreceptor proteins have
indispensible roles in the TCR signaling events that modulate cell fate decisions.
An immature thymocyte entering into the thymus undergoes the sequential stages of
double negative (DN)- CD4~CDS8 ™, double positive (DP)- CD4TCD8™, Intermediate-
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CD4+CD8"" to become either a CD4TCD8~ helper or a CD4~CD8" cytotoxic
mature T cell.

The study of genetic regulatory systems has received a major impetus from the
recent development of experimental techniques by which spatio-temporal expression
levels of genes to be measured. Together with these still developing high throughput
experimental tools, it is indispensable employing theoretical models and computer
simulations in order to elicit structure and dynamics of the genetic regulatory network
that underlies the CD4/CD8 fate decision.

In theoretical biology, the conventional technique in building a regulatory network
model for a cell differentiation process is to define different attractors (or equilibrium
states) in the landscape picture corresponding to different cell types. With this
motivation, we aim to build a mathematical model which qualitatively describes
differentiation of o8 thymocytes, particularly beyond the Intermediate stage, as a
dynamical sytem. Hence, we form a regulatory network model of 8 components and 13
regulatory interactions among them, using environmental cues and regulatory proteins
that are implied to have important roles on the phenomenon in the literature.

To convert our model into a dynamical representation, we adopt a standardized
qualitative dynamical systems method which is an ordinary differential equation
formalism in nature. In the method, state of each node in a regulatory network can
be updated in time by taking into account the regulatory effects by the others and itself
with some specified parameters, namely strengths of activations, inhibitions, steepness
of the response curves and decay rates. But, in biology it is very ubiqitous that a
regulatory event can only occur in the co-existence of two or more regulatory elements
and the method fails to mimic such events. Thus, we further contribute to the method
by adding (only second order) co-regulatory terms.

By utilizing the improved method, we obtain a set of 8 nonlinear ODEs, each one
describing the time derivative of an independent variable in the network. Since there
is no reliable kinetic data yet, we choose parametric values for the equations to be
not favoring any specific interaction or decay and to make values of the variables
Boolean-like at equilibrium states. Then, first, we explore the fixed points of the
system utilizing fsolve optimization toolbox and ODE45 system solver of MATLAB.
All biologically meaningful fixed points are named Intermediate, CD4 SP and CD8
SP attractors depending on the activation patterns for the components. Second, we
investigate the effects of TCR and IL7 signalings onto CD4/CDS8 fate decision in silico:
TCR signals with long duration lead to differentiation into CD4 SP whereas IL7 signals
with short duration cannot secure the CD8 lineage alone. Finally, we check the results
of salient component overexpression/knockout experiments in computer simulations
and capture good agreement with experimental observations in the literature (except
for some cases).

Further studies are needed to extend our model to one that describes the whole picture
of “DP to SP” transition in which coreceptor proteins have feedback effects in TCR
signaling events.
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TIMUSTA o8 T HUCRESI FARKLILASMASI
ICIN
BIiR MATEMATIKSEL MODEL

OZET

Yasam bilimlerinin yeni ve karmagik bir aragtirma alami olarak immiinoloji, biyoloji,
tip, fizik, kimya, matematik, bilgisayar bilimleri gibi pek c¢ok farkli disiplinden
bilim insanlarinin bir araya gelip, bagisiklik sisteminin fonksiyonlarini nasil ortaya
koydugunu anlamaya yonelik calisti1 ve hala gelisen bir konudur.

Cogu memeli tiirlerinde bagisiklik sistemi patojenlere karsi verilen savasta ii¢ farkl
savunma hatti olarak gruplandirilabilir: dogal bariyerler, dogustan bagisiklik ve
edinilen bagisiklik. Dogal bariyerler, hastaliga sebep olabilmek icin patojenler
tarafindan gec¢ilmesi gereken, savunmanin birinci hattidir. Bu bariyerler neredeyse tiim
yasayan organizmalarda bulunur. Dogal bariyerlerden sizan bir istilaci, savunmanin
ikinci hatti olan dogustan bagisiklik sistemi tarafindan karsilanir. Bu bagisiklik
tipt ‘dogustan’ olarak adlandirilir, ¢iinkii neredeyse tiim canlilarda dogal olarak
bulunur. Dogustan bagisiklik goreceli olarak cabuk calisir, cok sayida ve cesitli
genel patojenlere karsi tepki gosterir ve herhangi bir patojene kars1 6zel savunma
elemanlarina sahip degildir. Ayni zamanda edinilen bagisiklik sistemini etkinlegtirir
ve kontrol eder. Neredeyse tiim canlilar sadece dogal bariyerler ve dogustan
bagisiklik sistemleri tarafindan savunularak yasamlarini siirdiirebilir. Bununla beraber,
omurgalilarda dogustan bagisiklik tepkileri savunmanin {iciincii bir hattim oyuna
davet eder: neredeyse tiim diismanlarla bas etmek iizere 0zel askerlere sahip olan
‘edinilen’ bagisiklik. Cogu zaman, dogustan ve edinilen bagisiklik sistemlerinin
elemanlar1 patojenlerin kokiinii kazimak icin birlikte ¢alisir. Dogustan ve edinilen
bagisiklik sistemlerini birbirinden ayiran ana faktorler, bir patojene karsi verilen
tepkinin zamanlamasi ve ozgiinliigiidiir. Dogustan ve edinilen bagisiklik tepkilerinin
her ikisi de, kemik iliginde iiretilen kan kok hiicreleri kokenli beyaz kan hiicrelerinin
(Iokositler) etkenliklerine baghdir. Sirasiyla B- ve T- hiicreleri tarafindan yiiriitiilen,
antikor tepkileri ve hiicre ortamli tepkiler olarak iki alt sinifa ayrilan edinilen bagigiklik
tepkileri, lenfositler olarak adlandirilan beyaz kan hiicreleri tarafindan saglanir.

T ve B hiicreleri isimlerini gelistikleri organlardan alirlar. T hiicreleri timusta gelisir.
Memelilerin B hiicreleri, yetiskinlerde kemik iliginde ve ceninlerde karacigerde gelisir.
Aslinda B ve T hiicreleri, koken olarak, ayni genel lenfoid onciil hiicrelerden iki kola
ayrilirlar.

T lenfositlerinin ¢ok potansiyelli onciilleri, diger biitiin kan kokenli hiicreler gibi,
kemik iliginde {iiretilir, farklilasmak iizere timus bezine goc eder ve nihayetinde farkl
ozellikteki T hiicresi alt gruplarina katilir: katil (sitotoksik), yardimci ve diizenleyici
(baskilayici) T hiicreleri. Etkin (efektor) bir katil T hiicresi enfekte hiicreyi, enfekte
hiicrenin yiizeyinde MHC sinif I molekiilleri tarafindan sunulan kendisine has olan
antijeni tamdiginda, dogrudan oldiiriir. Ote yandan, etkin bir yardimc1 T hiicresi,

Xxi



enfekte hiicrenin yiizeyinde MHC sinif II molekiilleri tarafindan sunulan kendisine
has olan antijeni tanidiginda, uyarici molekiiller salgilama yoluyla, makrofajlar, B
hiicreleri ve katil T hiicreleri gibi diger bagisiklik sistemi elemanlarimi géreve ¢agirir.
Diizenleyici T hiicrelerinin bagisiklik sistemindeki rolil ise tam olarak saptanamamisg
olmasina ragmen, dallantili (dendritik) hiicrelerin, yardimci ve katil T hiicrelerinin
fonksiyonlarini diizenlediklerine inanilmaktadir.

T hiicrelerinin timustaki popiilasyonu genel olarak, olgun asamada yardimc1 ve katil
T hiicreleri olarak iki alt gruba ayrilan a8 T hiicreleri grubundan olusur. Farklilasma
stireci, yardimc ve katil T hiicrelerinin ylizeylerinde, sirasiyla, yalnizca CD4 ve CD8
proteinlerinin ifade edilmesine yol acar. Bu miisterek-almag (koreseptor) proteinleri
hiicre kader kararlarim ayarlayan T hiicresi almaci sinyallesmesi olaylarinda
vazgecilmez rollere sahiptir.

Alisilageldigi iizere, timusta olgunlagmakta olan T hiicrelerinin (timositlerin)
gelisimsel agamalar1t CD4 ve CDS8 proteinlerinin ayrimci (diferansiyel) ifade edilmesi
ile tanimlanir: Timusa yeni giren olgunlagmamus bir timosit, bir CD4+TCD8™ yardimci
veya bir CD4~CD8™" katil T hiicresi olmak i¢in, birbirini izleyen ¢ift negatif (CN)-
CD4-CDS8™, cift pozitif (CP)- CD4TCD8", Ortanca- CD4"CD8% asamalarindan
gecer. (Burada, farkli asamalar1 gosteren bu semboller CD4 ve CD8 proteinlerinin
hiicre yiizeyinde bulunup bulunmadigini anlatir. CD41TCD8% ile simgelenen Ortanca
asamada ise CD8 proteini az da olsa hiicrenin ylizeyinde bulunur.)

CN asamasindaki bir timositin yiizeyinde T hiicresi 8 almaci olarak adlandirilan 6nciil
bir T hiicresi antijen almaci tipi bulunur. Bu almag uyarildiginda CN timosit 8 secilimi
olarak adlandirilan siireci yasayarak CP asamasina gecer. CP asamasi, CD4 ve CDS8
proteinlerinin her ikisinin de hiicre yiizeyinde yiiksek miktarlarda bulundugu ve ayni
zamanda tam fonksiyonlu bir T hiicresi antijen almacinin timositlerin yiizeyinde ilk
defa ortaya ciktigi asamadir. CP asamasindaki bir timosit antijen uyarimi alirsa,
olmekten kurtulmus olur (pozitif secilim) ve nihayetinde ya yardimci ya da katil bir
T hiicresi olarak olgunlagmasini tamamlar.

Bugiin CD4/CD8 soy secimini en iyi aciklayan model olarak kinetik sinyallesme
modeli yaygin bicimde kabul gormektedir. Kinetik sinyallesme modelinde, kisa siireli
T hiicresi almaci sinyalleri CD8’e farklilasma yolagina neden olurken uzun siireli
T hiicresi almaci sinyalleri CD4 soyuna farklilasmanin siiriictisiidiir. Eger Ortanca
asamada T hiicresi almaci sinyalleri kesilirse, interlokin 7 almact CD8 T hiicrelerine
farklilagsmay1 destekleyen interlokin 7 sitokinlerini alabilir.  Kinetik sinyallesme
modelinin 6zgiin iki prensibi sunlardir: i) Pozitif se¢ilim ve bir olgun hiicre grubu
kaderininin secimi ayni T hiicresi antijen almaci sinyallesmesi ile tetiklenen, es
zamanl olaylar olmanin aksine, ayrik ve ardisik olaylardir. i) CP asamasindan sonra
miisterek-almag proteinlerinden herhangi birisinin iiretiminin durdurulmasi tersinemez
bir olay degildir. Yani siire¢ icersinde iiretimi durdurulan bir miisterek-almac proteini
(CD4 veya CD8), daha sonra tekrar iiretilmeye baglanabilir.

Genetik diizenleyici sistemlerin calisilmasi, genlerin ifade edilme diizeyleri hakkinda
uzay-zaman bilgisini Olcebilen en son deneysel tekniklerin gelisimi ile biiyiik bir
ivme kazanmistir. Bu halen gelismekte olan yiiksek islem hacimli deneysel araclarla
birlikte, CD4/CD8 kader kararinin altinda yatan genetik diizenleyici agin yapisini
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ve dinamigini meydana ¢ikarmak {izere, teorik modeller ve bilgisayar benzetimleri
kullanmak kaginilmazdir.

Dogay1 modellemek icin kullanilan en geleneksel ara¢ diferansiyel denklemlerdir ve
genetik diizenleyici aglar1t modelleme ¢alismalarinda da yaygin bi¢cimde kullanilmak-
tadirlar. Adi diferansiyel denklemler formalizmi gercek diinyadaki dinamik sistemler
izerine ¢calismak lizere yaygin bir modelleme aracidir. Bu formalizmini kullanmak gen
diizenleyici aglarin icersinde yer alan RNA, proteinler vb. diizenleyici elemanlarin
derisimlerini zamana bagimli ve negatif olmayan gercel sayilar olan degiskenler ile
modellemeye imkan verir.

Hiicre farklilagsmasinin, farkli hiicre tiplerinin matematiksel olarak degisik cekici
noktalar (yani denge durumlar1) olarak tanimlanabildigi, peyzaj (lendskeyp) betim-
lemeleri gercevesinde ele alinabildigi diizenleyici aglar olusturmak teorik biyoloji
calismalarinda geleneksel bir usiildiir. Buradan hareket ederek, a8 timositlerin 6zel
olarak Ortanca asamasinin otesine farkilagmalarin1 dinamik ve nitel bir temsil ile ele
alan bir matematiksel model olusturmay1 amaclamaktayiz. Bu yiizden, 8 farkli 6ge ve
bunlar arasindaki 13 farkl etkilesmenin bir diizenleyici ag§ modelini olusturduk. Bu
kaba modelimiz, literatiirde problem {iizerine 6nemli rollerinin bulundugu gosterilen
cevresel isaretler ve diizenleyici proteinleri icermektedir.

Timusta T hiicrelerinin farklilagsmalarina iligkin olarak gozleme dayali bilginin
cokluguna ragmen, dinamik temsillerde kullanilmak iizere devinsel (kinetik) veri ve
gercek derisim degerlerini elde etme calismalar1 halen emekleme donemindedir. Bu
yiizden, modelimizi dinamik bir temsile ¢cevirmek icin, bir dl¢iinlenmis (standardize)
nitel dinamik sistemler yontemini benimsedik. @ Bu yontemde, diizenleyici ag
icersindeki her bir elemanin durumu, diger elemanlardan (ve hatta kendisinden) dolay1
tizerine etkiyen diizenleyici etkileri hesaba katarak, zaman igersinde giincellenir.
Fakat, biyolojide bir diizenleyici olayin gerceklesmesinin ancak ve ancak iki
veya daha fazla miisterek-diizenleyici (ko-regiilatdr) elemanin es zamanl varligi
altinda olabilmesi siklikla karsilagilan bir durumdur.  Bu yiizden, yonteme
miisterek-diizenleyici (sadece ikinci dereceden) terimleri ekleyerek gelistirdik.

Bu gelistirilmis yontemi kullanarak, her biri agdaki farkli bir bagimsiz degiskenin
zamana gore degisimini tanimlayan 8 tane dogrusal olmayan adi diferansiyel
denklemden olusan bir denklem seti elde ettik. Heniiz tam anlamiyla giivenilir devinsel
veri mevcut olmadigindan, denklemler sistemimiz icin gerekli olan parametreleri
herhangi bir etkilesimi ya da bozunma olaym ozellikle desteklemeyecek ve
degiskenlerin denge durumlarindayken alacaklar1 etkenlik degerleri Boole degiskenleri
gibi (yaklagik olarak O ve 1) olacak sekilde sectik. Ilk ©nce, MATLAB’ 1
fsolve optimizasyon ara¢ cubufunu ve ODE45 adi diferansiyel denklem sistemi
coziiciisiinii kullanarak sistemin sabit noktalarini ortaya koyduk ve bu sabit noktalarin
kararliliklarin1 inceledik. Elde edilen biyolojik olarak anlamli olan sabit noktalar
agdaki bilesenlerin etkinlik diizeyi motiflerine gore Ortanca, CD4 ve CDS8 cekici
noktalar1 olarak adlandirildilar. Tkinci olarak, modelimize gore T hiicresi almaci
ve interlokin 7 sinyallesmelerinin CD4/CD8 kader se¢imi iizerine olan etkilerini
inceledik. Modele goére, uzun siireli T hiicresi almaci sinyallesmeleri, kinetik
sinyallesme modelinin de kabul ettii gibi, CD4 kaderine yonelime neden olur ve
sadece kisa siireli interlokin 7 sinyallesmeleri CD8 kaderine farkilagsmanin belirleyicisi
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olamaz. Son olarak, agdaki elemanlarin literatiirde verili olan belli bagh agir1 ifade
olunma/devre dis1 birakilma deneylerinin sonuglarini bilgisayar benzetimlerimizde
kontrol ettik. = Birka¢ durum disinda gozlemsel bulgularla iyi bir mutabakat
sagladigimiz1 gordiik.

Ilerisi i¢in modelimizi, miisterek-almag proteinlerinin T hiicresi almaci sinyallesme
olaylarinda geri besleme roliine sahip olacagi, Cift Pozitif asamasindan olgun agsamaya
gecisin tam bir resmini verebilecek sekilde, genisletmek iizere yeni ¢aligmalara ihtiyag
vardir.
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1. INTRODUCTION

T lymphocytes (or thymocytes) are originated from the bone marrow like all the other
hematopoietic cell types and migrate to the thymus gland where they mature into T
cells. The progenitor T cells which are able to show an appropriate a8 T cell antigen
receptor on their surfaces in the thymus, mainly differentiate into the helper T cell
(CD4* single positive), cytotoxic T cell (CD8" single positive) lineages. Although
there has been an increasing surge in obtaining experimental data to determine the
underlying molecular and genetic mechanisms in the differentiation of baby T cells
into mature ones, a mathematical model describing the dynamic nature of a network
specific to this differentiation is hardly in the scope of simulations. In this thesis, we
construct a network model of 8 components and 13 regulatory interactions that are
mostly important for understanding the differentiation mechanism and dynamics by
utilizing a comprehensive scanning of the af8 T cell literature. We treat our model as
a continuous dynamical system by using a standardized qualitative dynamical systems
method of Luis Mendoza and Ioannis Xenarios (2006) which operates essentially based
on a set of ODEs. (Details will be given in Section 4.1.3.1). This method can be used
not only to deal with such a cell differentiation problem but also to investigate all
kinds of regulatory network problems having poor stoichiometric and kinetic data. We
further improve the method by adding second order regulatory input terms. (Details

will be given in Section 5.1).

Each node in the network represents a normalized value in the closed interval [0, 1] of
activation level of a particular transcription factor protein, a cell signaling mediatory
protein, a cytokine or a gene at any time f. In addition to capturing functional
capabilities of the system without knowledge of any kinetic parameters or real
concentrations, the adapted method can easily be updated by possible upcoming data
of future works based on the advantage of usage of a normalized activation level value
for each node rather than a certain concentration and has the ability to operate as both a

continuous formalism and a discrete one by simply changing only a single parameter.
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After we present an overview of the immune system in the second chapter, in the
third chapter we give some detailed information about differentiation of thymocytes
developing in the thymus. In the fourth chapter, we mention some fundamental
concepts concerning mathematical and network modeling of biological regulatory
systems, and introduce the adopted mathematical formalism for getting closer to the
computer simulations of our network. In the fifth (and final) chapter we construct
our regulatory network model, and formulate a set of ODEs which gives a qualitative
description on dynamics of T cell differentiation in the thymus. We obtain good
agreement between steady state patterns of our mathematical model and activation
patterns belonging to thymocyte populations at distinct stages of differentiation, i.e.
progenitors and their offsprings. Furthermore, in Section 5.3.3, we introduce salient
in silico perturbations on the topology of the network which can lead to blockade of
one or both of the two possible mature subsets or lineage redirection of thymocytes
differentiating into either CD4 SP or CD8 SP fates in computer simulations. We also
conclude our results by comparing with experimental ones as long as it is possible
and make some recommendations for future research which would help to reveal the

underlying mechanism of the differentiation process.



2. A BRIEF REVIEW OF THE IMMUNE SYSTEM

2.1 History

As being a relatively new and an intricate research area of life sciences, immunology is
a still evolving subject in which scientists from many different disciplines like biology,
medicine, physics, chemistry, mathematics, computer sciences, etc. are joint to gain a

deeper understanding on how the immune system reveals its functions.

The origin of modern immunology is commonly ascribed to Edward Jenner who
discovered in 1776 that cowpox (or vaccinia), brought protection against human
smallpox, which was a widespread fatal disease of the era. The term ‘vaccination’
refers to inoculation of healthy individuals with weakened disease-causing agents to
provide protection from the disease. It was named after Jenner’s procedure using
vaccinia. When Jenner introduced vaccination he knew nothing of the infectious
agents that cause disease. Then, Robert Koch proved that infectious diseases are
caused by microorganisms called pathogens (such as viruses, bacteria, pathogenic
fungi, parasites, etc.), and each one of them is responsible for a particular disease,

or pathology [4].

Such discoveries in 19th century, stimulated the extension of Jenner’s strategy of
vaccination to other diseases. In the 1880s, Louis Pasteur excogitated a vaccine
against cholera in chickens, and brought forth a rabies vaccine that achieved a striking
success upon its first trial in a boy bitten by a rabid dog. These practical triumphs
led to investigations on the mechanisms of protection and to the development of
the science of immunology. In 1890, Emil von Behring and Shibasaburo Kitasato
discovered that the blood serum' of vaccinated individuals contained substances which

they called antibodies that specifically bound to a particular pathogenic fragment.

IClear yellowish fluid component of the blood including neither blood cells such as white and red
blood cells nor clotting factors. It is obtained upon seperating whole blood into its solid and liquid
components after it has been coagulated.
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Figure 2.1: An overall aspect of the immune system.

Indeed, it quickly came out that specific antibodies can be induced against a vast range
of pathogenic fragments. Such fragments are known as antigens because they can

stimulate the generation of antibodies [4].

2.2 The Immune System

In livings, the magnificent orchestra composed of several types of cells, tissues and
organs which are responsible to immune functions is referred as ‘the immune system’.
The immune system is, therefore, a ‘network’ of a large number of components which
interact with each other through many different ways. In most mammalian species, it
can be mainly subcategorized into three levels of defense against pathogens: natural

barriers, the innate immunity and the adaptive immunity as sketched in Fig.2.1.

Natural barriers are the first line of defense that has to be penetrated by pathogens
in order to cause disease and it exists in almost all living organisms. The main

factors distinguishing the innate immunity and the adaptive immunity are timing and



specificity of the response against to a pathogenic attack. In practice, there are alot of
interactions between them and sometimes natural barriers are counted as a preceding
subpart of the innate immunity. Both of the innate and the adaptive immune responses
depend upon the activities of white blood cells (called as leukocytes), which originate
from bone marrow-derived hematopoietic stem cells. Since these stem cells can
give rise to all of the different types of blood cells, they are referred as pluripotent

progenitor cells.

2.2.1 Natural Barriers

As forming the first level of defense comprising several natural barriers such as
mechanical, chemical and biological barriers, they can protect almost any organism
from infection. Pathogenic agents must first breach natural barriers to cause trouble.
The outer line of defense mainly operates through skin, cilia, mucous membranes of
digestive, respiratory, and reproductive tracts, etc. and provides a challenging media

in order to drive back intruders [1].

2.2.2 Innate Immunity

Any invader that penetrates the natural barriers is greeted by the innate immune system
which is the second line of defense. This type of immunity is called ‘innate’ because
it is a type of defense that almost all livings naturally have [1]. The innate immunity
operates relatively quick (a typical battle with an invader takes a few days), reacts to
a variety of usual pathogenic organisms and it has not specific elements against to any
particular pathogen. It also activates and controls the adaptive immunity. Complement
proteins, professional phagocytes, and natural killers are the most important players

of the innate team [1].

2.2.2.1 The complement system

Over twenty different proteins present at high concentrations in blood and in tissues
‘complement’ the killing of pathogens by antibodies. Any invader having a surface

with a spare hydroxy or amino group can be bounded by these complement proteins.



—

Figure 2.2: Electron micrograph of a macrophage [1].

The complement system has also the ability to alarm other immune system players by

reacting very fast in response to a pathogenic attack [1].

2.2.2.2 Professional phagocytes

Professional phagocytes make their living mainly by eating, which is their

‘professional’ job. The most important ones are macrophages and neutrophils [1].
Macrophages

A Russian immunologist Elie Metchnikoff discovered that many microorganisms

could be eaten by phagocytic cells, which he called macrophages®

. Macrophages
are available to struggle against a wide range of pathogens without requiring prior
exposure and are the cardinal player in the team of the innate immune system [4].
While a macrophage is eating its meal, the meal is first engulfed in a pouch (vesicle)
called ‘phagosome’. This vesicle is then taken inside the macrophage and fuses with
another vesicle called ‘lysosome’ which contains powerful chemicals and enzymes to
destroy the food. The whole process is called ‘phagocytosis’. Indeed, a macrophage is
a very versatile cell since it functions as a garbage collector by eating almost everything

that it comes across, as an antigen presenting cell’, or as a vicious killer-depending on

its activation level [1].

ZEtymologically, macro refers to large and phage means eater, henceforth the term macrophage
stands for big eater.

3Cells that display foreign antigen complexes with major histocompatibility complexes (MHCs) on
their surfaces. These cells ingest and process antigens and present them to T-cells via interactions
between their MHCs and T cell receptors on the surface of T cells.
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Neutrophils

Neutrophils make up about 70% of the white blood cells in circulation, and about
100 billion of these cells are produced each day in the bone marrow. Neutrophils live
for a very short time. In contrast to macrophages, neutrophils do not act as antigen

presenters- they are only professional killers [1].

2.2.2.3 Natural Kkiller cells

This has been a difficult cell population to be studied by researchers, because there are
different kinds of NK cells with somewhat different properties. They can kill tumor

cells, virus-infected cells, bacteria, parasites, and fungi [1].

2.2.3 Adaptive Immunity

Almost all livings get along just fine with only natural barriers and the innate immune
system to defend them. However, in the vertebrates, the innate responses call into play
the third level of defense: ‘adaptive’ immunity which has specifically equipped soldiers
to cope with almost any foes. Moreover, players of the innate and the adaptive immune
systems usually work together to eradicate pathogens [1,2]. A specific immune
response, such as the production of antibodies against a particular pathogen, is known
as an adaptive immune response, because it occurs during the lifetime of an individual
as an adaptation to infection with that pathogen [4]. A person who experienced an
exposure to smallpox virus and could get rid of the infection, for example, is protected
against smallpox by the adaptive immune system for the rest of his or her life, although
not against any other viruses, such as those that cause mumps or measles. An adaptive
immune response bestows, in general, lifelong protection against reinfection with the
same pathogen [4]. While the phagocytic cells of the innate immune team can deal
with a wide range of usual pathogens without requiring a prior exposure, antibodies of
the adaptive system are produced only after infection. The adaptive system has also
an immunological memory meaning that a living’s response to the second exposure
of a particular pathogen is earlier and stronger than that of its first exposure to the
same pathogen. The antibodies present in a given person therefore directly reflects the

infections to which he or she has been exposed [4].



Adaptive immune responses eliminate or destroy invaders and any toxic molecules
they produce. Since these responses are very destructive, it is important that they are
directed only against foreign molecules and not against molecules of the host organism.
The adaptive immune system uses multiple mechanisms to avoid damaging responses
against self molecules. Occasionally, however, these mechanisms fail, and the system

turns against the host, causing autoimmune diseases, which can be fatal [2].

Adaptive immune responses are provided by white blood cells called lymphocytes
being subdivided into two classes as antibody responses and cell mediated responses,

which are carried out by B- and T-cells, respectively.

T cells and B cells derive their names from the organs in which they develop. T cells
develop in the thymus, and B cells, in mammals, develop in the bone marrow in adults
or the liver in fetuses. In fact, both T and B cells are originally bifurcated from the
same common lymphoid progenitor cells. The common lymphoid progenitor cells
themselves derive from multipotential hematopoietic stem cells being located primarily
in hematopoietic tissues-mainly the liver in fetuses and the bone marrow in adults,
which give rise to all blood cell populations, including red blood cells, white blood

cells, and platelets (thrombocytes) [2].

2.2.3.1 B cells

In antibody responses, B cells are activated to secrete antibodies, which are essentially
proteins called immunoglobulins. The antibodies circulate in the bloodstream and
permeate the other body fluids, where they bind specifically to the antigen that
stimulated their production. Binding of antibody inactivates viruses and microbial
toxins by blocking their ability to bind to receptors on target cells. Antibody binding
also marks invading pathogens for destruction, mainly by forming a link between
cell surface proteins of pathogens and professional phagocytes to make it easier for

phagocytic cells of the innate immune system to ingest them [2] as depicted in Fig.2.3.

2.2.3.2 T cells

In T cell-mediated immune responses, activated T cells react directly against a foreign

antigen that is presented to them on the surface of a host cell, which is therefore



Receptor

Professional Phagocyte

Figure 2.3: Antibodies secreted by B cells form a link between pathogenic agents and
professional phagocytes.

referred to as an antigen-presenting cell. Remarkably, T cells which can detect
pathogens on host cells either kill the infected cells or help other cells to wipe the
invaders out. A T cell named as a killer (or cytotoxic) T cell, for example, might kill
a virus infected host cell that has viral antigens on its surface, thereby eliminating the
infected cell before the virus has had a chance to replicate. In other cases, the T cell
called as helper T cell produces signal molecules that either activate macrophages to
destroy the microbes that they have phagocytosed or invoke B cells to make antibodies

against the microbes [2].

T and B cells become morphologically distinguishable from each other only after
they have been activated by antigen. Resting T and B cells look very similar, even
in an electron microscope. Both are small, only marginally bigger than red blood
cells, and contain little cytoplasm (shown on the left in Fig.2.4). After activation by
an antigen, both proliferate and mature into effector cells. Effector B cells secrete
antibodies. In their most mature form, called plasma cells, they are filled with an
extensive rough endoplasmic reticulum that is busily making antibodies (shown in

the middle in Fig.2.4). In contrast, effector T cells contain very little endoplasmic



Figure 2.4: Micrographs of B and T cells [2].

reticulum (shown on the right in Fig.2.4) and do not secrete antibodies; instead, they

secrete a variety of signal proteins called cytokines, which act as local mediators [2].

Whereas B cells can act over long distances by secreting antibodies that are widely
distributed by the bloodstream, T cells can migrate to distant sites, but, once there,

they act only locally on neighboring cells [2].

T cells must be stimulated by antigens via (T cell antigen receptors) TCRs on their
surfaces to either proliferate or differentiate into effector cells. The stimulation can
only occur when the antigen is displayed on the surface of antigen-presenting cells
(APCs), e.g. stromal cells in the thymus. Whereas B cells recognize intact antigenic
proteins, T cells can recognize antigenic protein fragments (peptides) that have been
partly degraded inside the antigen-presenting cell. In order to present antigens to
TCRs, some protein complexes called as MHCs; major histocompatibility complexes
are specialized to bind to the peptides and carry them to surface of the APCs where T

lymphocytes can recognize them [2].

To briefly summarize their roles in the protection mechanism against invaders, it can
be said that T cells survey the inside of cells while B cells survey the outside of the

cells.
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3. DEVELOPMENT AND DIFFERENTIATION OF T CELLS

3.1 Introduction

As being fundamental units of life, cells sense their environments via proteins on
their surfaces, called receptors, and fulfill biological functions such as movement,
secretion, growth, proliferation, differentiation, etc. in response to environmental cues.
To convey a specific message inside the cell, a particular receptor must encounter
its specific protein, named ligand. Such message delivery event is referred to as
signaling. Once a receptor bounds to its particular ligand in adequate circumstances, it
becomes stimulated and activated, promoting intracellular signaling pathways through
interacting proteins in the cytosolic domain. At the end of signaling pathways, some
proteins, termed transcription factors1 , translocate into the nucleus of the cell, in order
to regulate expression of ad hoc genes to reveal the biological functions which are

relevant to the incoming stimulus as sketched in Fig.3.1.

T cells are originated from a single stem cell that differentiates into several subsets
of cells with specialized and exclusive functions. In such cellular differentiation
processes, each offspring of a progenitor can still differentiate further until it adopts
a specific cell fate. Every step of cellular differentiation leads to an increased

specialization and molecular complexity.

Like all the other hematopoietic cells, pluripotent progenitors of T lymphycoytes
are produced in the bone marrow, and migrate to the thymus gland to differentiate
and eventually commit to different T cell subsets: cytotoxic, helper and regulatory
(suppressor) T cells. An effector cytotoxic T cell directly kills the infected cell once

it recognizes its particular antigen presented by MHC class I molecules on the surface

'Tn molecular biology and genetics, a transcription factor (sometimes called a sequence-specific
DNA-binding factor) is a protein that binds to specific DNA sequences, thereby controlling the flow (or
transcription) of genetic information from DNA to mRNA. Transcription factors perform this function
alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor)
the recruitment of RNA polymerase (the enzyme that performs the transcription of genetic information
from DNA to RNA) to specific genes [5].

11
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Figure 3.1: A cell does sense its environment via receptors and regulates its behavior
in response to incoming stimulus.

of the target cell. An effector helper T cell, on the other hand, calls for the other
immune system players such as macrophages, B cells and cytotoxic T cells through
secreting stimulatory molecules once it recognizes its particular antigen presented by
an MHC class Il molecule on the surface of the infected cell. Although the functions
of regulatory T cells in the immune system are not well established, they are believed

to downregulate the function of helper T cells, cytotoxic T cells, and dendritic cells [4].

3.2 Formation of Helper and Cytotoxic Lineage (3) T cells

Differentiation of thymocytes in the thymus highly depends on intrathymic
stimulations orchestrated by their TCRs. As thymocytes differentiate, they can express
either aff TCRs or Y0 TCRs on their surfaces in the thymus. Let us remind that the a8
and 6 subsets having different functionalities are originally bifurcated from common

progenitors.

Thymic population of T cells is mainly composed of o3 subset that is subdivided into

two fates at the mature stage: helper T cells and cytotoxic T cells. Differentiation
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process leads to exclusive expression of CD4 and CDS8 proteins on the surfaces
of helper and cytotoxic T cells, respectively. These coreceptor proteins have

indispensible roles in the signaling events that modulate cell fate decisions.

Conventionally, the developmental stages of the maturing thymocytes in the thymus
are defined by differential expression of CD4 and CDS8 coreceptors: An immature
thymocyte entering into the thymus undergoes the sequential stages of DN-
CD4~-CD8~, DP- CD4TCD8", Intermediate- CD4TCD8/”" to become either a
CD4™ helper or a CD8" cytotoxic mature T cell. The earliest is the DN stage in
which a thymocyte does not express neither TCR nor CD4/CDS8 proteins. When DN
thymocytes successfully rearrange the genes encoding the TCRf chain they express
pre-TCRs. Next, DN thymocyte goes through a f selection process when it is
stimulated by its pre-TCRs to become a DP thymocyte. It is this stage at which
a fully functional 8 TCR is firstly expressed in the developmental pathway. DP
thymocytes are also unique among intrathymic populations in that they express both
CD4 and CDS coreceptors and are unresponsive to the other survival signals of IL-7
[6]. Only a minority of thymocytes receiving signals through adequate TCR-MHC
class I/II-CD8/4 interactions can escape from death and differentiate beyond the DP
stage. This vital signaling event is termed positive selection. While TCR-MHC
class II interactions (MHC class Il-restriction) requires CD4 coreceptor proteins, CD8
coreceptors are needed for TCR-MHC class I (MHC class I-restriction) interactions to

promote the signaling cascade.

Cellular signals, environmental cues and transcription factors involved in the
expression of one or the other coreceptors in the process have extensively been
studied for more than 25 years. All classical models share a set of fundamental
principles: i) positive selection and fate decision are simultaneous events induced
by the same TCR signaling cascades, i) termination of one or the other coreceptor
is irreversible and indicates commitment to the opposite coreceptor’s lineage [6].
Contrary to these principles, with the discovery of helper-deficient (HD) mice, a
specific strain with exclusive deficiency of CD4 SP helper lineage T cells [7], an

intermediate stage (phenotypically CD4TCD8/" and transcriptionally Cd4TCd8™) in
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which, they initially terminate transcription of CD8 coreceptor proteins even when

they are maturing into CD8 SP T cells, was identified [8].

Then, kinetic signaling model was proposed [8]. In the model the ultimate lineage
choice of positively selected DP (Intermediate) thymocytes is determined by duration
of TCR signals and exposure of the thymocytes to IL-7 cytokines. In addition,
thymocytes at intermediate stage are defined as the last common progenitors of both
CD4 SP helper and CD8 SP cytotoxic T cells in the new model. (Further discussions

about the kinetic signaling model is given in Section 3.2.2.).

3.2.1 Classical models of CD4/CDS8 lineage choice

Despite the experimental fails several times [6, 8, 9], the two classical models of
CD4/CD8 lineage choice are stochastic selection model and signal instructive models.
There is a striking concordance between the specificity of TCR expressed on the
surface of T cells and the type of coreceptor expressed by T cells. These models were
proposed to explain the mechanism of this concordance. The reader can refer to Singer

et al. (2008) for more information about classical models of T cell differentiation.

3.2.1.1 Stochastic selection model

According to stochastic selection model, if DP thymocytes receive a signal through
a TCR interacting with either an MHC class I or an MHC class II molecule, they
randomly terminate expression of one or the other coreceptor with half probabilities.
Then, only thymocytes continuing to express coreceptors matching with the MHC
specificity of their TCRs can survive and differentiate into mature T cells. The
remaining ‘mismatched’ thymocytes, that have a TCR specific to MHC class I but
express CD4 coreceptor or express MHC class II specific TCR but express CD8

coreceptor, die by apoptosis [6].

3.2.1.2 Signal instructive models

Instructive models propose that engagement of TCR by MHC class I or MHC class II

ligands results in qualitatively (duration of signal) or quantitatively (strength of signal)
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distinct TCR signals that directly dictate the lineage choice of a positively selected

thymocyte [9].

i) Strength of signal instructional model : This model postulates that engagement
of TCR by MHC class I or MHC class II ligands leads to quantitatively weaker or
stronger TCR signals that directly promotes differentiation of DP thymocytes to CD8
SP or CD4 SP lineages, respectively. The differences in TCR signaling strength are
surmised to be caused by weaker or stronger affinity of the cytosolic tails of CD8 and

CD4 for the key TCR signaling factor LCK, respectively (as cited in [9]).

ii) Duration of signal instructional model : This model implies that engagement of
TCR by an MHC class II ligand results with a signal of long duration while engagement
of TCR by an MHC class I ligand leads to a signal of shorter duration, and these signals
instruct differentiation of DP thymocytes into CD8*1 and CD4™ lineages, respectively

(as cited in [6]).

3.2.2 From today’s perspective: Kinetic signaling model

Kinetic signaling model is widely accepted to give the best explanation of CD4/CD8
lineage choice today. This model incorporates some unrefuted principles of the
classical models and new premises based on more recent experimental observations.
In kinetic signaling model, TCR signals of long duration may drive differentiation into
CD4 SP lineage while TCR signals with shorter duration lead to CD8 SP differentiation
pathway. If TCR signals cease at the Intermediate stage, IL-7R can receive IL-7
cytokines promoting to differentiation into CD8" T cells and thus inducing coreceptor
reversal (as cited in [6]). Since in all positively selected thymocytes the production of
CD8 coreceptor proteins is decreased, CD8-dependent MHC class I-restricted TCR
signals may cease in time leading to derepression of IL-7 signaling that induces
coreceptor reversal [8]. On the other hand, continuing expression of CD4 proteins
at CD4+CD8/" stage yield persistent MHC class II-restricted TCR signaling and thus

result in CD4 ™ lineage choice.

In the kinetic signaling model, positive selection and lineage commitment are

sequential events rather than being induced simultaneously by the same TCR signals
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and the last bipotent precursors regarding in developmental order are intermediate

thymocytes in which Cd8 gene is transcriptionally terminated.
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4. MATHEMATICAL AND NETWORK MODELING OF BIOLOGICAL
REGULATORY SYSTEMS

4.1 Introduction

Proteins, encoded by genes, function as transcription factors that can bind to regulatory
sites of genes, as enzymes catalyzing metabolic reactions, or as components of signal
transduction pathways. In an organism, with minor exceptions, all cells contain the
same genetic material. This means that, distinct functions of cells in an organism
are attributed by genetic regulatory programs determining which genes are expressed,
when and where in the organism, and to which extent. Such genetic regulatory
programs are essentially structured by networks of regulatory interactions between

DNA, RNA, proteins and small molecules [10].

As being core units of life, cells determine their behaviors like growth, move,
proliferation, differentiation, etc. through such regulatory networks usually forced
by environmental cues. The study of genetic regulatory systems has received a
major impetus from the recent development of experimental techniques by which
spatio-temporal expression levels of genes to be measured (as cited in [10]).
Together with these still developing high throughput experimental tools, it is
indispensable to employ theoretical models and computer simulations for eliciting
structure and dynamics of genetic regulatory networks. Especially in health sciences,
the quantitative models supported by recent improvements of single cell/molecule
experimentation techniques would lead to much more reliable predictions on dynamics

of real world problems, in particular encountered in health sciences.

Although ordinary and partial differential equations are the most conventional
mathematical tools to investigate the genetic regulatory networks, Boolean networks,
and stochastic master equations are some other formalims. The directed graph

technique is, on the other hand, a visual represention of network models.
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G=<V,E>
V={1, 2 3}

E={<12—><23—><3La>}

Figure 4.1: Directed graph of a representative regulatory network.

4.1.1 Directed graphs

The simplest way to represent a genetic regulatory network is with a directed graph.
Such graphs can make biologically relevant predictions about behavior of regulatory
systems by applying a number of operations on them. For example, a search for paths
between two components may reveal missing regulatory interactions among them or
an ignorance of a component or a link may provide clues about its redundancy in the

network [10].

A directed graph G is a tuple (V,E) of a set of nodes (V) and a set of edges (E). A
directed edge is also represented as a tuple (i, j) of vertices, where i denotes the head
and j the tail of the edge. The nodes in a directed graph may correspond to genes
or any other elements of interest in the regulatory system, while the edges represent
interactions among them. Defining a directed edge as a tuple (i, j,s), with s equal to
+ or -, denotes whether i is activated or inhibited by j. For activation/inhibiton, the
frequent choice is —/- [10]. In Fig.4.1 a directed graph representation of a simple

regulatory network of three genes is shown.

4.1.2 Boolean networks

The activation state of a gene or any other element in a regulatory system, termed as a

node, can be approximated by a Boolean variable!' which is defined as active (on, 1) or

"Boolean logic is a binary calculus of truth values, named after George Boole who first developed
this algebra in the 1840s. It essentially operates based on logical operations conjunction (V), disjunction
(N), and negation (). Possible values of variables are conventionally represented by “ 0 and 1” to sake
for computational simplicity.
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inactive (off, 0). For instance, a gene encodes its specific product when it is at ‘on-state’
while there is no production when the gene is at the ‘off-state’ . Interactions between
nodes can be represented by Boolean functions (rules) which are specifically written
for each individual nodes. Let the vector x = (x1, x2, ... , X,) represent the state of a
regulatory system taken as a Boolean network of n elements. Since each x; can take one
of the two possible values, the state space of the system consists of 2" different states.
A graph depicting the possible states of the regulatory system and transitions between
them is referred to as state transition graph and is useful to represent the dynamics of
the system. As an example, Fig.4.2.b shows the state transition graph for the network
given by Fig.4.2.a (Here, A, B and C are three elements having regulatory effects on
each other.). According to the defined Boolean rules, the system always converges to

the state (000) regardless of its initial state.

Boolean formalism is discrete both in space and time. The state of a node x; at time

t+ 1 is computed based on the state of the entire network at time 7 as given by (4.1),

xi(t+1) = fi(x(r)), i=1,2,...,n 4.1)

When all nodes in a Boolean network are simultaneously updated, it is referred to
synchronous updating that characterizes a fully deterministic dynamics for the system:
each Boolean state of the system will always converge to a single steady state (named a
point attractor) or steady cycle (dynamic attractor) through only a single trajectory. In
the biological context of cell differentiation, these end-points correspond to the mature
cell types [11]. In the state space of the system, the states which are not part of an
attractor are called as transient states. An attractor and the transient states leading to
the attractor form together a basin of attraction as sketched in the landscape picture
shown in Fig.4.3. Such landscape pictures aim to depict different states of a cell by
different positions on a two dimensional plane. The third dimension corresponds to
the (free) energy of a thermodynamical system for which lower positions refer to more
stable states for the cell. In fact, the depressions indicate stable solutions to the set of
mathematical equations that describe the dynamics of the system. In contrast, when

updating the system asynchronously (as cited in [11]), only the state value of a single
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A(t+ 1) = B(t) A not C(1L)
B(t+1)= C(t)
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Figure 4.2: A simple regulatory network and its state transition graph under
synchronous Boolean updating.

element is changed at each step. In this case, multiple trajectories following the same

initial state are possible.

Although the Boolean formalism cannot mimic continuous changes of concentrations
of elements of a regulatory network or give time information when regulatory events
occur, it allows one to investigate easily the functional capabilities of the system
without knowledge of any kinetic parameters even for very large networks and provide

only a coarse-grained description of the network behavior.
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An attractor

A basin of attraction

Figure 4.3: Landscape picture of cell differentiation [3].

4.1.3 Nonlinear ordinary differential equations

Ordinary differential equation (ODE) formalism is a widespread modeling tool for
studying dynamical systems in the real world. Using ODE formalism allows one
to model concentrations of regulatory elements such as RNA, proteins, etc. in gene
regulatory networks using variables which are time-dependent and non-negative real
numbers. As being essentially a biochemical process, gene regulation is defined by rate
equations giving the rate of production of any element of the system as a function of
current state of the entire system at any time, more specifically current concentrations
of the regulatory inputs to the element. In mathematical terms, the rate equation for

concentration value of node i at time #; is given by (4.2)

i = fi(x(19)), i=1,2,...,n, 4.2)

and its concentration value at a later time ¢ is calculated by (4.3)

. gl dx,- .
xi(ty) = xi(to) + 3 dr, i=1,2,...,n, 4.3)
to 1
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Figure 4.4: Activatory Hill regulation function

where x = [x1, ... , x,]’ > 0 is the state vector of the entire system consisting of
concentrations of each elements in the regulatory network and regulation functions f;’

s are usually nonlinear functions of the state variables.

One of the most used form of the nonlinear functions for studying gene regulation is
Hill function. If x; is an activator of any target gene, the corresponding Hill regulation

function is then defined by (4.4)

H" (x;,Vj,h) 5 4.4
Xjy Vi) = —7——7, .
V) =V @b

P
with V; > 0, the threshold for the regulatory influence of x; on a target gene, and 1 > 0,

steepness parameter of the response of the target gene.

This function can take values varying in a continuous interval of [0, 1] and increases
as xj — oo, so that an increase in x; is reflected as an increase in the expression level
of the target gene (activation) (See Fig.4.4). In order to express that increasing x;
decreases the expression level of the target gene (inhibition), the regulation function
H*(xj,Vj,h) is subsitituted by H (x;,V;,h) =1 —H"(x;,V;,h). For h > 1, Hill curves
have a sigmoid shape, in agreement with experimental evidence (as cited in [10]).
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Here, for larger values of & response curve becomes step-like making the variables of

the system Boolean-like at equilibrium states.

4.1.3.1 Standardized qualitative dynamical systems method

The Standardized Qualitative Dynamical Systems Method (SQDSM) was developed
by Mendoza, L. and Xenarios, I. in 2006 [12]. It is essentially a nonlinear ODE
modeling method that functions basically with the same approximations of Hill
functions. The method has the ability to deterministicaly compute time evolution of
a given regulatory network. In this method, the state variable, x;, of an element at
any time is determined by total input, @j;, to it at previous time. The mathematical

definition of the method is given by (4.5),

dx; _05h 4 p—h(@-0.5) ‘
T (105 (1 1 o W0 03) — Yixi, i=1,2,....n 4.5)

'<1+z,,api> ( Ly %X ) (1 B (1 +zmﬁm,~) ( Lo By )) @

Y., Opi 1+ Y, apix)y; Lo Pmi 1+ Yo Brnidy;

<1+2p a)( X, iy, ) (®)
Y Opi 1+ Y, op xge

_ 1+Ym ﬁmi Yo Bmixi,’;i ) )
\ <1 ( Zm Bmi > (1 + Zm ﬁmileli (C)

0<x;i<1 0<ay<1 hoBu>0 %>1

;

where {x{‘} is the set of positive regulators acting on x;, {x"} is the set of negative
regulators of x;. (a) is used if x; has both positive regulators and negative regulators,
(b) is used if x; has only positive regulators, and (c) is used if x; has only negative

regulators. Finally, if x; has no regulatory inputs then @ is taken as 0.

SQDSM requires specification of several parameters; strengths of activations (o’ s),
strengths of inhibitions (B’ s), decay rates (Y’ s), and steepness of response curves
(h's). To keep x;” s in the closed interval [0, 1], @’s, B’s and & are taken as any positive
real numbers and ¥’s are taken as greater than or equal to 1. In the method, the decay
rate of an element causes to inactivation it sooner or later, unless it has an activator.

This is valid even if the corresponding element has no inhibitors.
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Figure 4.5: The change in the activation value of an element with respect to total input
to it under different % choices.

As shown in Fig.4.5 and also pointed out in the context of Hill functions, larger the
value of & steeper the response curve. Therefore, SQDSM operates Boolean-like
for large values of & giving digital response curves and thus making the equilibrium
solutions comparable with the ones obtained from (synchronous) Boolean studies of

the same structure.

The total regulatory input to an element due to different strengths of activations by a
single activator and inhibitions by a single inhibitor are shown in Fig.4.6 and Fig.4.7,
respectively. As it can be easily seen, the total input to the element having only one
activator becomes more sharply increasing when the strength of the activation (alpha)
is increased. In the case of the element having only one inhibitor, the total input to it

becomes more sharply decreasing by increasing the inhibition strength (beta).

The change in the activation level of an element due to the effect of a single activatory
input by choosing different activation strengths (alpha) and a single inhibitory input
having different inhibition strengths (beta) are depicted in Fig.4.8 and Fig.4.9,

respectively. The activation level of the target element becomes more digitally
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Figure 4.6: The total input to an element having only one activator as a function of the
activation level of the activator with different activation strengths.
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Figure 4.7: The total input to an element having only one inhibitor as a function of the
activation level of the inhibitor with different inhibition strengths.

regulated when the strength of the regulation due to the corresponding regulator is

increased (for 2 = 10).

The change in the total input and activation level value of an element in the case of

co-existence of an activator and an inhibitor acting on it are shown in Fig.4.10 and
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Figure 4.9: The activation level value of an element having only one inhibitor as a
function of the activation level of the inhibitor with different inhibition
strengths.

in Fig.4.11, respectively. As it is clearly seen from these figures, the target element

can only become activated if the inhibitor is not at its maximum level of activation.
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Figure 4.10: Total regulatory input to any node which has an activatory and an
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Figure 4.11: Activation level value of any node which has an activatory and an
inhibitory element as well (h = 1).

It can be also seen that the target element can be fully activated when the inhibitor is

inactivated and the activator is simultaneously at its maximum level of activation.
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Although analytical solutions to the rate equations (4.2) are not generally possible
due to the nonlinearity of f;’ s, at least some qualitative properties of the solutions
such as the number, pattern and the stability of the steady states (fixed points) can be

established using numerical and computational tools.

A big trouble challenging the numerical analysis of regulatory systems by utilizing
ODEs is the lack of measurements of kinetic parameters for the rate equations.
Therefore, in most cases the parametric values had to chosen such that the models
are able to reproduce the observed qualitative behavior. For almost last fifteen years,
availability of gene expression measurements have increasingly grown allowing the
required kinetic data to be extracted from time series data of state variables of a system
of interest. A probable interesting property of network models, termed robustness,
states that the network structure determines the stability character of the system rather
than the exact values of the parameters when essential properties of the system quite

unresponsive to variations in the parametric values [10].

4.1.3.2 Linear stability analysis of ODE systems

Let each x; stands for the state variable for element i of a system withi =1, 2, ... n,
and their changes with time are computed with f; functions as given by (4.2). If state
of entire system is represented by x = [x1, ... , x,]' > 0 and f;(x.) = 0 for each i, then

X, 1s called a fixed point of the system.

Now let 7 () = x(r) — X, be a small perturbation away from x, at time 7. Time evolution
of this 7 (¢) determines the stability character of the fixed point x,.. Thus time derivative
of 7 is required to be calculated and it is essentially same as with the calculation of

time derivative of x at any time, as given by (4.6)

s doo0 d
= () = 3 (x—x) =x @6)

=l!

(here x, is constant). Thus 1) = X = f(x) = f(x,+1}). For n = 1, using Taylor’s

expansion we obtain

fl+n) = fx)+nf (x)+0(n?), 4.7)
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d
where O(n?) denotes quadratically small terms in i and f’(x,) stands for df

which is the derivative with respect to state variable x evaluated at x,. Since x, is a

fixed point, f(x,) = 0. Hence

fl+n) =nf(x)+0(n?). 4.8)

Now if f'(x) # 0, the O(n?) terms are negligible and it is conceivable to make the

approximation

il =nf (x). 4.9)

This is a linear equation in the perturbation 1, and is called the linearization about a
fixed point x,. Since we are only keeping linear terms near a fixed point, this theorem
is called a linear stability analysis. In fact, f'(x,) is the slope at the fixed point and
determines its stability. The perturbation 1(r) grows exponentially if f(x,) > 0 and
decays if f’(x,) < 0, entitling the fixed point x, as unstable and stable, respectively . If
f'(x+) = 0, the O(n?) terms are not negligible and a nonlinear phase portrait analysis
is needed to determine the stability. The absolute value of f’ (x4), gives the measure
of how much a fixed point is stable. Inverse of this value, 1/|f"(x,)|, is referred as
characteristic time scale determining the time required for x(¢) to vary significantly in

the neighborhood of x, [13].

For n = 2, the dynamics of the system is defined by the following coupled equations

dx
d_t] = f1(x)
dx

@ =P

where x = [x, xp)' > 0 is the state vector of the system at any time, and f; and
f> are nonlinear regulatory functions. Let X, = [x, 1, x.2] be a fixed point and
N(¢) = x(r) —x, be a small perturbation about it. Then by following the same
procedure in (4.6), (4.7), (4.8) and (4.9), we obtain
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. dfi dfi
X1 = (xl—x*71)—f +(x2 X 2) /
0 1 lx=x, ox X2 |x
. df afz
X2 = (X1 —Xe1) 35— + (X2 —Xx2)5—
IR = I
Since it is possible to write the above equations as
afi afi
1 =M= M5 ;
m=n x| XX, 0x> XX,
dfs af
=M= M5 ;
=1 axt | n 9xs .
we can use matrix notation as follows
ah
(7'11) _ |9 dm (7‘11)
m) " \on an| \m)
dx; dxo X=X,
The matrix J = 8;1 8;2 is called the Jacobian matrix calculated at the fixed

point X,.

Now to determine whether the perturbation 7} grows or decays in time, we must find
the eigenvalues, A; and A,, and corresponding eigenvectors, v} and v3, of J. Then, in
theory of linear differential equations, the solution is written as the superposition of

terms that are in form exp(4;).

If trace (J11 + J22) and determinant (J11J22 — Ji2J21) of J are denoted by 7 and A,

respectively, then the eigenvalues can be calculated by (4.10)

Ao = % (v 5 Vi2-4a). (4.10)

Let A; = a; + jb;, where a; and b; are, respectively, the real [Re (A;)] and imaginary

[Im (A;)] parts of the eigenvalue A;. Then the exponential terms are can be written as

exp(Ait) = exp(ait)exp(jbit), j=v-1. 4.11)
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The complex exponential can be rewritten

exp(jbit) = cos(bjt) + jsin(bjt). (4.12)

As it can easily be seen from (4.12), complex part of an eigenvalue contributes only an

oscillationary component to the solution. It is the real part that matters:

If a; > O for any i, exp(a;t) grows with time, which indicates that trajectory of the
small perturbation will tend to move away from the fixed point. This makes the fixed
point unstable [14]. For n = 2, phase plane behavior of trajectories in the cases of
different kinds of fixed points is schematically represented in Fig.4.12. In the figure,
the stability character of fixed points is shown depending on the value of determinant

(A, x-axis) and trace (7, y-axis) of the Jacobian matrix.

To generalize for n = N, one may follow the same procedure in (4.6), (4.7), (4.8) and

(4.9) and finally write the Jacobian at the fixed point as,

o on  an
axl 8x2 8xN
9 If If
J=| Ix; o0x) oxy
ox1 x> oxy

If all the eigenvalues of the Jacobian matrix has real parts smaller than zero, the fixed
point is then referred to as stable while the fixed point is called unstable when the
Jacobian has at least one eigenvalue with a real part greater than zero. It is important
to emphasize that the theorem is silent on the issue of what happens if some of the
eigenvalues have zero real parts while the others are all negative. This can not be
decided based on linear stability analysis. The nonlinear terms we left out in (4.8) in

fact determine the stability in this case.

4.1.4 Stochastic master equations

Despite providing the great possibility of modeling gene regulation in a fine details

even at a level of individual reaction steps, such as binding of a transcription factor
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Figure 4.12: Stability of fixed points in 2-dimensional systems.

to its specific regulatory site, differential equation models assume the dynamics of
the system of interest to be both continuous and deterministic. However, biochemical
reactions involved in gene regulatory events are both discrete and stochastic in nature.
Gene regulatory events are mainly processed inside the nucleus and so may be driven
by only a few tens of molecules. Hence, small changes in the number of components
become more important leading to a discrete state space for the system rather than a
continuous one. Moreover, molecular interactions are not really deterministic meaning
that all collisions between two molecules do not necessarily result in biochemical
reactions. Gene regulatory events, therefore, have a probabilistic dynamics: that is,
the same initial condition does not always end with the same steady state. Given the

state vector x = (x1, xp, ..., , xy) of a regulatory system of Sy, S», ... , S, different
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species with x;’s that are positive integers, joint probability distribution function p(x,?),
describes the probability at a time ¢ the cell contains x; molecules of S| species, x;
molecules of S, species, etc. The time evolution of the function of p(x,z) can be

computed by

m m
p(x,t+Ar) =p(x,0) | 1= Y ajAr |+ bAr, (4.13)

j=1 k=1
where m is the number of reactions that can occur in the system, a ;Ar is the probability
that reaction j will occur in the interval [t,7 4 Az] given that the system is in the state
X at ¢, and by At, the probability that reaction k will bring the system to state x from

another state in [¢,7 + At] [15].

Rearranging (4.13),

m

p(X,t+At) — p(x,t) = — Z p(x,t)a;At + Z brAt
j=1 k=1

pX,t+A)—p(x,t) o
At - Z [bj

and taking the limit At — O where At allows only a single reaction, time evolution of

probability function p(x,7) is obtained from the definition of derivative as follows,

m
%pxt ]_Zl [bj—ajp(x,1)]. (4.14)
This is the stochastic analogue of rate equation named as master equation (as cited
in [10]). In general, it is almost impossible to find exact analytical solutions to master
equations. Moreover, numerical simulations of the system is highly complicated and
computationally expensive since there are n 4 1 independent variables: n discrete state

variables and a continuous time variable 7.

A feasible algorithm has been proposed by Gillespie in 1977 [15]. This algorithm
computes stochastic time evolution of a biochemical system based on two fundamental

questions: (i) When will the next reaction occur? and (ii) Which type will it be among
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the possible reactions? Although Gillespie’s algorithm can be easily implemented
into a computer program, one needs to run the program for many times under a
particular initial condition to obtain a probability distribution given by (4.13) since
the algorithm simulates only a single trajectory for the system at each run. Gillespie’s
algorithm was used to simulate numerous biochemical processes in the literature and
gave strikingly reliable outcomes, in particular when the system involves low numbers
of molecules and strong competitive feedback loops which are often encountered in the
study of cell signaling mechanisms [16]. Moreover, in order to reveal spatio-temporal
dynamics of biochemical mechanisms, Gillespie’s algorithm was extended by adding
a reaction-diffusion term that answers a third question: Where will the next reaction
occur? (as cited in [17]). For further details about Gillespie’s algorithm the reader

refer to [15,17].
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5. A REGULATORY NETWORK MODEL FOR DIFFERENTIATION OF
off THYMOCYTES BEYOND THE ‘INTERMEDIATE’ STAGE

In this thesis, we aim to build a mathematical model which qualitatively describes
differentiation of aff thymocytes, particularly beyond the Intermediate stage, as a
dynamical system. We first had an extensive literature search to determine the most
important regulatory interactions between Intermediate stage and mature stage in T cell
developmental pathway. The elements and the associated interactions involved in the
process are presented in Table 5.1. Our model comprises a network of 8 components
and 13 regulatory interactions as sketched in the directed graph shown in Fig.5.1. In the
directed graph, we use the green and red arrows to represent activatory and inhibitory
interactions, respectively. On the other hand, the black arrow denotes the co-activatory

effect of GATA3 and ThPOK on CD4.
z’ | ’

Figure 5.1: Directed graph of our regulatory network for the differentiation of af3
thymocytes beyond the Intermediate (CD4TCD8/") stage.

—

TCR
signal
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Figure 5.2: A landscape with three attractors is generated by mathematical modeling
of a simple genetic regulatory network [3].

5.1 Methodology

In theoretical biology, the conventional technique in building a regulatory network
model for a cell differentiation process is to define different attractors (or equilibrium
states) in the landscape picture corresponding to different cell types. For instance,
in the regulatory network illustrated at the top of Fig.5.2, two transcription factors
A and B, mutually inhibit each other and autoactivate expression of themselves.
Mathematical modeling of this network generates a landscape picture comprising
three attractors: two stable states, a and b, in which factors A and B are exclusively
expressed, and a metastable state, a/b, characterized by low coexpression of both
factors A and B. In the context of cell differentiation, a precursor cell which occupies
the metastable state a/b have the bipotency of moving to stable attractors either a or b,

namely distinct mature cell subsets.

Despite the existence of a great amount of empirical information related the T cell
differentiation in the thymus, obtaining kinetic data and real concentration values that
will help to employ dynamical representations is still in its infancy. Therefore, we
adopt SQDSM of Luis Mendoza and loannis Xenarios (2006) (Section 4.1.3.1) to

convert our directed graph into a dynamical mathematical representation.
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Figure 5.3: In SQDSM, the change in the activation level of an element having two
co-activators with respect to the activation levels of the co-activators , x{°
and x9¢ (with the strength n = 1).

In this method, the state of each element (termed node) in a regulatory network can
be updated in time by taking into account the regulatory effects by the others and
itself. But, in biology it is very ubiquitous that a regulatory event can only occur in the
co-existence of two or more regulatory elements and the formalism fails to mimic such
events. (As an example, the change in the activation level of an element having two
co-activators as a function of the activation levels of the co-activators is illustrated in
Fig.5.3.). With this in mind, we contribute to their formalism by adding co-regulatory

(only second order) terms into the definition of the input function, ®, as follows

( 1+ Zp Opi + Xk lel> Zp apixgc + Xk nkifolxzfz
(xpl + Zk Nki 1+ Zp apixac + Zk nkixzclxa
1— 1 + Zm Bmi + Zz ézi) Zm Bmlx + ZZ gZ’xz lxz 2 (a)
Yon Bmi + X & 14+ X Brixi + Y. ézixmng
0; = ac ¢ .ac CRY
( L+Y, 0pi + Yk Nii ) Yp Opixy” + Yk MeiXy 1 X )
Z i + Yk Mk 1+ Zp Otpix?f + Xk nkifol,x]z’Cz
1 1 +Y.n ﬁmi + ZZ ézi> Yo ﬁmlx + Zz 5lez 195Z 2 ©
Yo Bmi + Y. 5zi L+Y,, ﬁmix;rrzl +); ézixz, 1xz,2
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Figure 5.4: Input to any node due to effect of two co-activators, x{ and x5¢, with the
strength n = 1.

where {x{x;%} is the set of positive co-regulators acting on x;, {x;’flxz‘z} is the set
of negative co-regulators acting on x;. The maximum numbers for indices k and z are
defined by the numbers of second order positive and negative regulations, respectively,
involved in the given network. Here, the new parameters 711 and & stand for strengths
of co-regulatory (second order) events and they should be greater than zero. Here, (a)
is used if x; has both positive regulators and negative regulators, (b) is used if x; has
only positive regulators, and (c) is used if x; has only negative regulators. If x; has
no regulatory inputs then ; is taken as 0. We have tested the modified version of
the method to see if it still keeps the values of the variables in a normalized interval
and provides trustworthy outcomes for modeling regulatory networks. The inputs
and activation levels of any node with the two co-activator x{¢, x5, strength n = 1
and with the two inhibitors x, xi', strength & = 1 are plotted in Fig.5.4, Fig.5.5,
Fig.5.6 and Fig.5.7. As it is clearly seen in the figures the modified method still

keeps the normalized values for the variables and allows one to simulate (second order)

co-regulatory events.
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Figure 5.5: Input to any node due to effect of two co-inhibitors, x’i” and xé”, with the
strength & = 1.

5.2 Molecular description and construction of our regulatory network

First of all, in our model CD4 and CDS8 coreceptor proteins are treated as the
end-products (Fig.5.1). In our network model, there are two components (TCR signal
and IL7) referring to strengths of intrathymic T cell antigen receptor (TCR) and
IL7 cytokine signalings which are the essential driving factors of CD4/CDS lineage
choice for a maturing thymocyte (Section 3.2.2). GATA3, ThPOK, RUNX3, CD4
and CDS represent expression level of respective genes and pSTAT corresponds to
phosphorylation level of the STAT molecule. In the model, GATA3 and pSTAT are
forming the bridges which convey the incoming stimuli by intrathymic signals to the
inner regulatory mechanism. GATA3, ThPOK, RUNX3 and pSTAT act as transcription
factors (TFs) since they produce proteins to fulfill particular functions for eventually
regulating the activation levels of CD4/8 coreceptor expression. (Of note, we assume
that the activation level of a gene has the same meaning with the amount of protein

encoded by itself.).
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In the model, GATA3 forms a unique bridge between strength of TCR signaling and

lineage decision because it is triggered/regulated by TCR signals [18], and it is the
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Table 5.1: Regulatory interactions in our network.

Interaction Reference(s) Strength Parameter
TCR — GATA3 [18] o
GATA3 — GATA3 (0%)
RUNX3 — GATA3 (07
GATA3 — ThPOK [19] 0
RUNX3 - ThPOK [23] B
ThPOK + RUNX3 [20] B>
pSTAT — RUNX3 [25] o5
RUNX3 4 CD4 [29,30] B3
RUNX3 — CD8 (28] Q6
GATA3 — pSTAT o7
GATA3 + ThPOK — CD4 [19] Uit
IL7 — pSTAT [25] O
ThPOK 4 CD8 [20] Ba

gateway to a lineage choice. It initiates expression of ThPOK [9, 19] starting from
DP stage. ThPOK inhibits expression of CD8 and RUNX3 proteins [20] and activates
CD4 expression co-operatively with GATA3 [19,21]. Expression of ThPOK is specific
for CD4 SP (helper) lineage [22] and inhibited by RUNX3 proteins [23]. Expression
of RUNXA3 is first induced through IL7 signals, that cause to phosphorylation of STAT
molecules allowing them to translocate inside the nucleus [24], in positively selected
thymocytes [25,26]. RUNX3 expression is specific for CD8 SP (cytotoxic) cells [27],
and increased through the CD8 differentiation program while it is excluded through
the CD4 SP differentiation pathway [28]. RUNX3 represses expression of CD4 [28—
30] and activates CD8 expression [28]. In addition to these interactions, we further
suggest two positive regulatory effects (one is from RUNX3 to GATA3 and the other
is from GATA3 to pSTAT) and an autoactivation loop for GATA3 in order to make the
activation patterns of the fixed points in the model consistent with those ones observed

in Intermediate, CD4 SP and CDS8 SP cells.

We list all these regulatory interactions in Table 5.1 and use — and - symbols to
represent positive and negative regulatory interactions, respectively. Then using (5.1),
we specify the input functions, @’ s, for each independent variable and present them

in Table 5.2.
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Table 5.3: Zero-point states of default system.
CD4 CD8 GATA3 ThPOK pSTAT RUNX3 TCR signal IL7

Xy 0 0 0 0 0 0 0 0
xa | 1 0  0.9998 1 1 0 0 0
x| O 1 1 0 1 1 0 0
X+ 0 0 1 0.3448 1 0.3448 0 0

5.3 Results

5.3.1 Investigation of the structure of the state space

By substituting the input functions given in Table 5.2 into Equation (4.5), we obtain
a system of 8-coupled nonlinear ODEs. We then take all parametric values (¢’ s, B’
s and 7’ s) as 1 since there is no available kinetic data on these specific interactions
in the model. Also such an assumption does not favor any regulatory interactions
or decay events. Furthermore, we call the system as default by also taking & as 50
to obtain step-like response curves, thus making our work easily comparable with

possible Boolean models.

In order to explore the fixed points of default system and their stabilities (in biology,
the fixed points represent distinct developmental stages and their level of maturity), we
first find the zero-point states of the system by using fsolve optimization toolbox of

MATLAB and present the results in Table5.3.

We then apply the linear stability analysis (as mentioned in Section 4.1.3.2) about
these zero-point states. When the Jacobian matrix of the system is evaluated at x,, the
eigenvalues are found tobe A5 3 456 = —1, 47 = —1+7.411 x 107 8jand Ay = —1—
7.411 x 1073j (here j stands for the imaginary unit). X, represents an attractor when the
real parts of all the eigenvalues are negative. For the Jacobian matrix computed at X,
the eigenvalues are lf 234567 = —1 and )»8A = —0.9960 denoting x as an attractor.
At x, eigenvalues of the Jacobian matrix are almost the same as in the case of x, and

thus x is an attractor. On the other hand, the Jacobian matrix at x; gives the following
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eigen values: A/, 5,5 =—1, 1] =—13.5014 and A = 11.5014 which indicate an

unstable fixed point.

To make the findings given above much more reliable and a comment on the sizes
of the basins of attraction of these attractors, it would be helpful to computationally
simulate time evolution (numerical integration) of the system of equations for all
possible different initial conditions (initial values of the variables). Our dynamical
representation is deterministic and asymptotic behavior of the system depends on its
initial conditions. Since the variables change continuously in the interval of [0, 1], it
is not realistic to search over all possible combinations of initial conditions. However,
one can scan a big portion of the state space of the model by randomly picking up
large number of initial conditions. We randomly choose 50 000 independent initial
conditions and simulate the time evolutions for each case by using ODE45 solver of
MATLAB until the system converges to any steady state. Then, we cluster all the
resultant steady states into three subsets (X4, XA and x) and compute the mean and
variance values for variables in each subset, presented in Table 5.4. (Values close to
1 are emphasized by using bold numbers.). On the other hand, any time evolution
results in the x; point meaning that x; has a very tiny basin of attraction. This can
also be interpreted as Xx; is not a biologically meaningful zero point state. Among the
three subsets of attractors, two of them (x and X)) represent the specific activation
patterns of CD4 SP (helper) and CD8 SP (killer) mature T cells. These two attractors
have large basins of attraction. While 49.0% of all runs ends up with a final state
of CD4 SP attractor, 47.9% results in CD8 SP attractor. The rest (x,) with a very
small basin of attraction belongs to a distinct subset which has no activated elements.
This subset is a cluster of attractors from where the system moves to one of the other
two attractors in response to sufficient TCR and IL7 perturbations. Then, we call it
as Intermediate (CD4TCD8/°") cell type attractor since this population is extensively
accepted as the last intermediate common precursor to follow either CD4 or CD8

differentiation pathways during thymic development [7].
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5.3.2 Effects of intrathymic TCR and IL7 signalings onto CD4 vs. CDS8 lineage

choice

After determining the most possible steady states of the system, we apply many
combinations of TCR and IL7 signals onto a single precursor cell type to see whether
they drive the cell to one of the two mature subsets or not. Of note, we use the default
set of parametric values again. Our simulations show that a weak and short-lived TCR
signaling does not lead to CD4 SP lineage as shown in Fig.5.8 and Fig.5.9, while a
short-lived but strong TCR signaling results in differentiation to single positive CD4
lineage (see Fig.5.13). In Fig.5.10, Fig.5.11, very weak TCR signals with different
durations are introduced and the Intermediate thymocyte cannot differentiate to any
mature subset again. On the other hand, a TCR signal has the same strength with
that one in Fig.5.9 is subjected to the Intermediate cell for a longer duration and the
result is now differentiation to CD4 SP helper lineage (See Fig.5.12). These results
underline the importance of both strength and duration of TCR signals onto lineage
decision of an Intermediate thymocyte. In Fig.5.13, we also test the stability of the
CD4 SP attractor through introducing a maximum level of a short-lived IL7 signaling
and see that the system doesn’t move away from it: The CD4 SP attractor stays stable.
Next, we want to see if IL7 signaling itself would be enough to secure CDS8 lineage.
We predict that the CDS8 lineage can be preserved if the precursor cell is subjected
to a strong IL7 signaling for a longer period of time (see Fig.5.14 and Fig.5.15). In
addition, our calculation predicts that when strong and sharp (short-lived) IL7 signaling
accompanied by a weak and short-lived TCR signaling the CD8 lineage to be secured
(See Fig.5.16). Let us remind that, introducing a maximum level of TCR signaling
doesn’t change the CDS8 lineage choice (See Fig.5.15) manifesting that the CD8 SP

attractor is stable.

In another scenario, a stronger but short-lived IL7 signal following a weak and
short-lived TCR signaling is found to be not sufficient to converge CD4 SP directed

lineage to CD8 SP attractor as shown in Fig.5.17.

46



— CD4
CD8
GATA3
ThPOK
e RUNX3

o
o

activation level
o
o

o
~
T

m— TCR signal

o
w

IL7 signal

o
N

o

o

time in a.u.

Figure 5.8: A very weak and short-lived TCR signaling cannot promote CD4 SP
lineage choice of the Intermediate cell.

5.3.3 Effects of mutations in silico

In our network model, we specify four key regulatory nodes: GATA3, ThPOK, RUNX3
and pSTAT. Despite the lack of quantitative measurements on these specific regulatory
factors in T cell differentiation, qualitative measurements on their salient knockout
and/or overexpression are available. To cross-validate results from our network
model with those from the literature, we implement corresponding experiments in
silico' by manipulating their related variables in our system of equations. Knockout
and overexpression of a component can be implemented by keeping its activation
level value as 0 and 1, respectively, at all times during simulations. If there is no
manipulation about the variables of the system then the system is called Wild Type
(WT). By setting the activation level value of any node as O or 1 in the entire simulation,
i) a specific one or more of steady states related to the WT system of equations can
become unreachable, ii) a new one or set of either biological or non-biological steady

states can emerge, and iii) all the steady state motifs can remain as in the WT case.

“In silico’ is a computational biology jargon that means ‘in computer simulation” .
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Figure 5.9: A weak and short-lived TCR signaling cannot promote CD4 SP lineage
choice of the Intermediate cell.
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Figure 5.10: A very weak and a bit longer TCR signaling cannot determine the lineage
choice of the Intermediate cell.

We first analyze steady state patterns of single node knockouts for all key regulatory
nodes with default set of parametric values by following the same procedure defined
in Section 5.3.1. We form Table 5.5 to present the corresponding results. Then, we test

single node overexpressions and give the corresponding results in Table 5.6. Finally,
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Figure 5.11: A very weak and much longer TCR signaling cannot determine the
lineage choice of the Intermediate cell.
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Figure 5.12: A weak but a bit longer TCR signaling leads to CD4 SP lineage choice
of the Intermediate cell.

we apply two synergistic mutations on the system in silico by knocking GATA3 out
with overexpressing ThPOK and knocking ThPOK out with overexpressing GATA3 as
summarized in Table 5.7. For knockout/overexpression of ThPOK and RUNX3, there

is almost a perfect agreement between our findings and those found in the literature.
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Figure 5.13: A strong and short-lived TCR signaling leads to CD4 SP lineage choice
of the Intermediate cell.
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Figure 5.14: A strong but short-lived IL7 signaling is not enough to drive CD8 lineage
choice of the Intermediate cell alone.

For mutations of pSTAT, we have no experimental knowledge to compare our results.
And finally, our findings for knockout/overexpression of GATA3 are not consistent

with experiments.
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Figure 5.15: A strong and a bit longer IL7 signaling leads to CD8 SP lineage choice
of the precursor cell of the Intermediate cell.
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Figure 5.16: A strong but short-lived IL7 signaling with a concurrent weak (and short)
TCR signaling leads to CD8 SP lineage choice of the Intermediate cell.

In ‘Computational Finding’ columns of Tables 5.5, 5.6 and 5.7, we determine whether
three WT steady states are still reachable and new attractors emerge. In ‘Implications’
columns, we interpret the biological effects of each corresponding mutation on the
intrathymic differentiation. In ‘Evidence’ columns, we give a list of publications (we

are aware of), supporting our predictions.
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Figure 5.17: A weak but a bit longer TCR signaling leads to CD4 SP lineage choice
of the Intermediate cell even if a strong IL7 signaling is received as soon

as TCR signals ceases.

Table 5.5: Single node knockout experiments in silico.

Single Node Computational Finding Implications Evidence
Knockout
GATA3 CD4 SP and CD8 SP Absence of both helper
attractors disappear and cytotoxic lineage
ThPOK CD4 SP attractor Absence of helper lineage [9,22]
disappears MHC II-restricted thymocytes may
be redirected into cytotoxic lineage
RUNX3 CD8 SP attractor Absence of cytotoxic lineage [23,29]
disappears MHC I-restricted thymocytes may
be redirected to helper lineage
pSTAT CD8 SP attractor Absence of cytotoxic lineage

disappears

MHC I-restricted thymocytes may
be redirected to helper lineage

5.4 Conclusions and Recommendations

We give a compact but coarse-grained mathematical description for CD4/CD8 lineage

choice of a8 thymocytes development beyond the Intermediate (CD4TCD8") stage

in the thymus. Being an ODE model, our mathematical model also needs kinetic data,

52



Table 5.6: Single node overexpression experiments in silico.

Single Node = Computational Implications Evidence
Overexpression Finding
GATA3 Intermediate
attractor disappears
ThPOK Intermediate and  Absence of cytotoxic
CD8 SP attractors lineage [19,22]
disappear MHC I-restricted thymocytes
may be redirected into
helper lineage
RUNX3 Intermediate and  Absence of helper lineage [31]
CD4 SP attractors MHC Il-restricted thymocytes
disappear may be redirected into cytotoxic
lineage
pSTAT Intermediate
attractor disappears
Table 5.7: Synergistic perturbation experiments in silico.
Synergistic Computational Implications Evidence
Perturbation Finding
GATA3 All WT steady Helper lineage can [19]
Knockout state patterns disappear not be rescued even
& and a new attractor if ThPOK 1is
ThPOK emerges with non-zero overexpressed
Overexpression ThPOK activation only in the case of
GATA3 deficiency
ThPOK Intermediate Absence of helper
Knockout and CD4 SP attractors lineage
& disappear MHC Il-restricted
GATA3 thymocytes may be
Overexpression redirected into

cytotoxic lineage

but even in the default case of parametric values it gives a qualitative explanation of

the dynamical properties for the differentiation.

In our model, each regulatory link between any nodes represent flow of information

between them in the specified direction. It means that, even if any other intermediary
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element has a role on the line of a link it would not change the behavior of information
flow. So, the model can be extended into a more detailed one by only locating

intermediary component(s) on the lines of current links.

Our model has the ability to show the effects of intrathymic signals onto lineage
choice in line with the implications of kinetic signaling model. We first mimic two
fundamental assumptions of kinetic signaling model: i) Strong and/or long TCR
signals lead to differentiation to CD4 lineage, ii) IL7 cytokine signaling pathway
promotes CD8 gene program by activating CD8 and inhibiting CD4. Our model further
suggests that short-lived IL7 cytokines cannot promote CD8 lineage choice alone.
But, if a proper and simultaneous TCR signal is received then an Intermediate cell
can differentiate to CD8 lineage. The latter finding may be supported by the limited

amount of IL7 cytokines in the thymus [24].

Future studies should be planned in order to explain ‘coreceptor reversal’ [8]
mechanism after positive selection which is not achieved by our current model since
its scope is “Intermediate to SP” transition and it does not involve the feedback roles

of CD4 and CDS8 coreceptors in TCR signaling event.

Our simulations involving salient mutations give results that are in good agreement
with experimental findings except for the cases of GATA3 knockout’ and

overexpression’

. The model can be further improved by using another component
to feed IL7 signaling pathway rather than GATA3 as being an essential TCR signaling
downstream factor. Or it may be possible that GATA3 or any other GATA3 mediated
factor weakly contributes IL7 signaling pathway, that can be implemented by a

relatively small activation strength parameter for corresponding interaction in our

mathematical model.

Disruption of GATA3 expression arrests development of MHC class II-restricted thymocytes during
‘DP to CD4 SP’ transition but it does not redirect them to CD8 SP lineage. It just minimally affects the
CDS8 SP population [19].

3Overexpression of GATA3 blocks the differentiation to CD8 SP lineage [6], but it doesn’t result in
redirection of MHC class I-restricted thymocytes to CD4 SP lineage [18].
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