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FUNCTIONAL ROLE OF yvgW GENE DURING SPORULATION IN 

BACILLUS SUBTILIS 

SUMMARY 

Bacterial spores are now considered as the cells that show the greatest resistance 

abilities. Those though structures, they are formed when exposed to starvation and 

they may stay still against heat, UV, chemical treatments like lysozyme and 

chloroform and time. Moreover, dormant spores may return to their vegetative state, 

after cessation of starvation, through germination exposing a key component: spore 

coat. There are also other elements, found in bacterial spores that play important 

parts for the resistance characteristics and germination properties. Those are small, 

acid-soluble proteins, SASP, which are the predominant spore core proteins with a 

dual function during sporulation and germination and DPA (dipicolinic acid) which 

has an important role in spore core dehydration and provides the spore with a good 

stability during germination, leading to spontaneous germination.  

Recently, under the light of the fact that, the timing of yvgW expression corresponds 

to the late sporulation stage, the dependence of yvgW expression on forespore-

specific sigma factor G was previously examined through construction of a new 

mutant strain containing transcriptional yvgW::lacZ fusion and an additional deletion 

on spoIIIG locus that is known to encode G. The present research includes the 

studies to achieve the molecular characterization and elucidation of the functional 

role of yvgW gene in the sporulation process in B. subtilis. Effects of the deletion of 

spoIIAC, spoIVCB, spoIVCB and sigB genes, encoding for F, E, K and B, 

respectively, on the expression of yvgW-lacZ were investigated. These subsequent 

analyzes of the effects of the sporulation-specific sigma factors on expression of 

yvgW gene strongly suggested  that yvgW is transcribed in both mother cell and 

forespore under the control of mother-cell specific sigma factor E and forespore-

specific sigma factor G, respectively. Moreover, through the construction of 

yvgWΔ537-1351::spc, yvgW mutant cells were investigated for their spore properties, 

such as their resistance profiles against heat chloroform and lysozyme, pointing out 

that spores of the mutant cells showed high sensitivity to heat and chloroform, but 

resistance to lysozyme. The level of dipicolinic acid was also investigated in yvgW 

spores and compared to wild type spores, revealing a significant reduction in yvgW 

spores as compared to wild type spores. Furthermore, the analyses of the nutrition 

specific germination and outgrowth characteristics of null mutant and wild type cells 

were performed in order to gain more insights about the functional role of yvgW gene 

in the sporulation process and those experiments showed that there was no defect in 

the initiation of yvgW spore germination but null mutant spores returned to 

vegetative state more slowly than the wild-type spores that . 
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Bacillus subtilis’ DE SPORLANMA SÜRESİNCE yvgW’ NUN FONKSİYONEL 

ROLÜ 

ÖZET 

Günümüzde bakteri sporları, en çok dayanıklılık yetisi gösteren yapılar olarak 

bilinirler. Bu yapılar, açlıkla karşılaştıklarında oluşurlar ve sıcaklığa, mor ötesi 

ışınlara, kloroform ve lizozim gibi kimyasal uygulamalara ve zamana karşı da 

varlıklarını sürdürürler. Ayrıca, açlığın kalkması sonucunda önemli bir spor elemanı 

olan spor ceketi parçalanır ve çimlenme süreci ile “uyku” halindeki sporlar üreme 

hücresi durumlarına da dönebilirler. Bakteri sporlarında direnç karakterlerinde ve 

çimlenme özelliklerinde önemli yer tutan farklı etmenler vardır. Sporlanma ve 

çimlenme olmak üzere, ikili görevi olan, spor gömleği proteinlerin en önemlilerinden 

küçük, asitte çözünür proteinler ve DPA (dipikolinik asit) bunlardandır. DPA’nın, 

sporun iç bölge dehidrsayonunda önemli bir rolü vardır ve çimlenme boyunca 

sağladığı kararlı yapı ile spontane çimlenmeye yol açar.  

yvgW ekspresyonun sporlanmanın geç evresinde gerçekleşmesi ışığı altında, yvgW 

geninin forspora-spesifik σG sigma faktörüne ekspresyon için bağımlılığı 

transkripsiyonel yvgW::lacZ füzyon ve fazladan spoIIIG lokusunda delesyon olan, 

σG’yi kodladığı bilinen yeni bir mutant suşun yaratılması ile incelenmiştir. Yapılmış 

olan bu çalışma, B. subtilis’te yvgW geninin sporlanma sürecinde işlevsel rolünün 

aydınlatılması ve moleküler karakterizasyonunun başarılması için yapılan deneysel 

araştırmaları içermektedir. Sırasıyla, F, E, K ve B sigma faktörlerini kodlayan 

spoIIAC, spoIVCB, spoIVCB ve sigB genlerinin delesyonlarının, yvgW-lacZ geninin 

ekspresyonuna olan etkisi araştırılmıştır. Bu sporulasyona özgü sigma faktörlerin 

yvgW üzerindeki etkilerinin incelendiği analizler sonucu, yvgW geninin anne 

hücreye özgü sigma faktörü, E ve forspora özgü sigma faktörü, G’ nin kontrolü 

altında, hem anne hücre hem de forsporda ifade edildiği önerilmiştir. Ayrıca, 

yvgWΔ537-1351::spc oluşturulması ile,  yvgW mutantının sıcaklık, kloroform ve 

lizozime karşı dirençliliği incelenmiştir ve bu incelemeler mutant suşun sporlarının 

sıcaklık ve kloroforma karşı hassasiyet ve lizozime karşı dirençlilik gösterdiğini 

ortaya çıkarmıştır. yvgW sporlarında DPA düzeyleri de incelenmiş, yaban birey ile 

karşılaştırılmıştır ve sonuçta mutant suşun oluşturduğu sporların belirgin bir miktarda 

daha az DPA oranı gösterdiği görülmüştür. Nul mutant ve yaban bireyin gösterdikleri 

beslenmeye bağlı özel çimlenme ve çimlenmeden sonra tekrar vejetatif büyümeye 

geçme (outgrowth) özellik analizleri, yvgW geninin sporlanma sürecindeki işlevsel 

rolünü anlamada daha fazla bilgi sahibi olunması için gerçekleştirilmiş ve bu 

deneyler hücrelerin çimlenme başlangıcında sorun yaşamadıklarını ancak null mutant 

sporların çimlenmeden sonra vejetatif hallerine daha geç döndüklerini göstermiştir.  

 



 1 

1. INTRODUCTION 

1.1. Bacillus subtilis 

Members of genus Bacillus represent aerobic, endospore-forming, rod-shaped Gram-

positive bacteria which also have an industrial importance coming from their 

capability of producing antibiotics, proteases, insecticides and so on (Harwood et al., 

1990). When their endospore-forming ability come along with the ease of working 

genetics and physiology of this bacteria, representatives of this genus took their 

milestone role in the trials of analyzing Gram-positive bacteria (Sonenshein et al., 

2002).  

Detection of first endospores was realized in Bacillus subtilis and Bacillus anthracis 

in 1876 by Cohn and Kock. Eventually, Bacillus subtilis has become not only one of 

the most intensively studied bacteria but also one of the most clearly understood 

organism found in nature. In fact, the particular investigation of this organism is 

counted as the most immaculate after Escherechia coli, among prokaryotes 

(Sonenshein et al., 2002 and Harwood et al., 1990). 

Additionally, Bacillus subtilis is a chemoorganotroph, so that it is able to maintain a 

suitable environment containing factors it demands for its growth by simply 

oxidizing organic compounds belonging to a broad range of family. Moreover, just 

like many other members of its genus, Bacillus subtilis is mesophilic and may 

undergo growth and production of normal-sized colonies within a day when placed at 

37oC. Another important characteristic of this organism is its being aerobe and 

therefore it requires sufficient aeration during growth (Harwood et al., 1990). 

Proved as the best representative of Gram-positive bacteria, soil bacterium Bacillus 

subtilis has a genome of 4.2 Mbp long (Franguel et al., 1999). Its genome sequence 

was completed in 1997 by an international collaboration, started initially by Japanese 

government and European Economic Union (Kunst et al., 1997). It is now known 

that Bacillus subtilis uses 275 genes, 25 of which are unknown, in order to grow in 

rich medium at moderate temperatures  and in aerated environment (Kobayashi et al., 
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2002). Its genome also consists of 17 sigma factors and approximately 250 DNA 

binding transcriptional regulators. In addition to these, 4106 protein-coding, 86 

tRNA, 30 rRNA and 3 small stable RNA genes were located on its genome (Ando, 

2002; Kobayashi et al., 2002). 

In 1947, Burkholder and Giles reported that they isolated many auxotrophic mutants 

of Bacillus subtilis, one of which is a tryptophan requiring strain called BGSC1A1, 

Bacillus subtilis 168. Subsequently, in 1958, transformable characteristic of this 

strain was reported and following this information, Bacillus subtilis 168 has became 

the most useful strain for genetic researches based on this organism (Spizen, 1958; 

Harwood et al., 1990). Therefore, Bacillus subtilis PY79 has found its place as the 

wild type strain of this project  as a consequence of its being prototrophic derivative 

of Bacillus subtilis 168. 

1.2. Sporulation in Bacillus subtilis 

A  wide range of bacteria go for specialized differentiated cell types when exposed to 

difficult environmental conditions and in order to handle starvation of many sources, 

like carbon, nitrogen or in some circumstance a phosphorous source (Errington, 

2003; Piggot and Hilbert, 2004). For instance in Bacillus subtilis, a variety of 

responses are stimulated to allow the bacteria survive in the increasingly hostile 

environment (Grossman, 1995; Phillips and Strauch, 2002). Production of antibiotics 

and macromolecular hydrolases, development of motility, chemotaxis and 

competance are among these responses (Jong et al., 2003; Kunst et al., 1997). 

Another response that makes Bacillus subtilis to form specialized cells is sporulation 

which is the final resort for this bacterium (Jong et al., 2003). Bacillus subtilis 

undergoes symmetric cell division, generating two identical daughter cells during 

vegetative growth, while during sporulation cell division is asymmetric, followed by 

engulfement of the smaller forespore by the larger sibling, the mother cell (Errington, 

2003; Levin and Grossman; 1998).  

The process of sporulation, which represents a series of morphological and 

physiological events, that occur through the sequential activation and silencing or 

blocking of genes, starts at the end of the exponential growth and this process 

requires approximately 8 to 10 hours in order to be completed. Steps of that 

morphological event are divided into seven stages that are designated with Roman 
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numerals. Figure 1.1 gives a schematic view of these stages (Errington, 2003). 

Sporulation mechanism begins with a vegetative cell, called the stage 0 of the 

sporulation and it ends with the release of mature spore, defined as stage VII 

(Errington, 1993). Cells enter the sporulation pathway by the formation of an axial 

filament, through which chromosomes generated by DNA replication become 

aligned across the long axis of the cell (Stragier and Losick, 1996). Next, the 

specialized spore septum is formed at a polar position stage II, giving rise to an 

asymmetric division, that subsequently produce two cells differing in size (Errington, 

1993; Stragier and Losick, 1996). Stage I is no longer recognized because it was 

defined as not being specific to sporulation (Piggot and Coote, 1976). Engulfement 

of forespore by the mother cell is completed at stage III. In this stage forespore cells 

don’t show their rigid shape because it lacks a thin layer of peptidoglycan called as 

the germ cell wall, which will end up later in spore cortex covering the forespore. 

Therefore, this defined shape starts to develop with the development of cortex 

between the forespore membranes during stage IV and furthermore the forespore 

starts to produce large amounts of small acid-soluble proteins known as SASP. 

Furthermore, this spore cortex is thought to be involved in attaining or maintaining 

the dehydrated and heat-resistant state of the spore. During this stage, proteinaceous 

spore coat also begins to be deposited outside the surface of the spore, stage V. The 

final period of sporulation is referred as the maturation, stage VI, along which 

properties of resistance, dormancy and germinability appear in sequence (Errington, 

1993; Errington, 1996, Webb et al., 1997). Final stage of sporulation is the stage VII 

and mature spore is released following the lysis of the mother cell, undergoing 

programmed cell death, whereas the immortal forespore becomes the mature spore 

and gives rise to subsequent progeny (Errington, 1993; Nicholson and Setlow, 1990, 

Stragier and Losick, 1996).  
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Figure 1.1: This simplified schematic shows only the key stages of the cycle 

designated by Roman numerals. 

1.2.1 Control of initiation of sporulation 

In bacteria, main elements of cellular regulatory pathways are two-component signal 

transduction systems and bacterial cells use these systems in order to sense 

environmental change and develop a response on the basis of gene expression (Hoch 

and Silhavy, 1995). First one of these two components is the signal ligand-responsive 

sensor histidine kinase and second one is the response regulator that is commonly a 

transcription factor. Receiving specific environmental signal sensor kinases bacteria 

cause an ATP-dependent autophosphorylation on a conserved histidine residue and 

this phosphorylated group is then transferred to a conserved aspartate residue in the 

regulatory domain of a specific response regulator-transcription factor, leading to the 

activation and/or repression properties of the output domain (Stephanson and Hoch, 

2002). When these two-component system reveal a more complex signal 

transduction pathway, they turn into a phosporelay cascade during which signal 

integration  circuits allow a higher level of control with more nodes and checkpoints 

for the input of both positive and negative signals. This system can be obviously 
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observed in Bacillus subtitlis sporulation phophorelay (Perego et al., 1994; Perego 

and Hoch, 1996; Stephenson and Hoch, 2002). 

In Bacillus subtitlis, regulation of sporulation in its initial level contains abrB and 

spo0H genes and also seven response regulator proteins, Spo0A, Spo0B, Spo0E, 

Spo0F, Spo0J, Spo0K and Spo0L, with Spo0A being the most critical control factor 

(Frandsen et al., 1999, Fawcett et al., 2000).  Sporulation initiation signals in Bacillus 

subtitlis result in the activation of the master regulatory protein, Spo0A, by 

phosporylation (Piggot and Hilbert; 2004). First of all, at least  five sensor kinases , 

KinA, KinB, KinC, KinD and KinE feed their phosphate into the phosphorelay 

cascade by initially phophorylating the single domain response regulator Spo0F (Fig 

1.2) (Fabret et al., 1999). Then this phosphate group is transferred to the relay protein 

Spo0B and finally to Spo0A (Stragier and Losick, 1996). Although the phosphate 

contribution of KinB may surpass that of KinA under certain environmental 

conditions, the two kinases may respond to different nutritional indicators (LeDeaux 

et al., 1995). The fact that KinA is cytoplasmic, whereas KinB is membrane-bound, 

may be used to explain these differences in sensing.  

 

Figure1.2: The B. subtilis sporulation phosphorelay. 

Phosphorylated Spo0A works by activating the transcription of several key 

sporulation-specific genes, and blocking expression of abrB gene that is a global 

negative regulator (Fujita and Losick, 2003). The product of abrB gene is a repressor 

that functions in the prevention of the expression of transition stage-specific genes 

during vegetative growth. spo0E, spo0H, spoVG genes, necessary for normal 

sporulation, stand among the genes regulated by abrB. Blockage of transcription of 

these genes affect sporulation, but among these genes, the crucial one is spo0H, 
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which encodes a nonessential sigma factor,  H that is involved in expression of 

vegetative and early stationary-phase genes (Stragier and Losick, 1996). 

Additionally, the regulation of phosphate-flow through is largely reversible so that, 

dephosphorylating any of the components not only prevents new Spo0A~P from 

being generated, but also shifts the overall equilibrium away from Spo0A~P, 

resulting in removing what is already present, thereby blocking initiation (Stephens, 

1998). 

Activated spo0A shows mainly dual function; first one is the triggering the 

asymmetric division and the second function is the transcription of spo0IIA, spo0IIE 

and spo0IIG loci, which encode key furthermore developmental regulators (Piggot 

and Hilbert, 2004). Spo0A is known to regulate transcription of 121 genes, including 

several transcription factors and about 400 genes are indirectly controlled by spo0A 

(Stragier and Losick, 1996). 

It is now that, different on different roles of spo0A are dependent on differing levels 

of phosphorylation (Piggot and Hilbert; 2004). Furthermore, within a population, 

Spo0A activity levels are variable and this variation causes deep impacts on 

development. For instance, cells that constitute of activated Spo0A produce on 

extracellular killing factor that kills cells that have not active Spo0A proteins. The 

ultimate purpose of this mechanism is enabling the procedures to feed on their non-

producing siblings (Gonzalez-Pastor et al., 2003). Moreover, activated Spo0A 

(Spo0A~P) functions on switching from symmetric to asymmetric septation, such 

that a mutant, unable to produce a sufficient level of Spo0A~P, goes for a normal 

chromosomal segregation as it did during vegetative growth instead of forming on 

axial filament and a polar septum (Levin and Grossman, 1998). As shown by Fujita 

and Losick in 2003, Spo0A continues to function of polar septum, when it is present 

exclusively in mother cell, functioning as a mother-cell specific transcription factor. 

1.2.2 Regulation of σ factor activity during sporulation in development  

It has been 25 years that a set of sigma (σ) factors are known to control temporal 

gene expression during sporulation in Bacillus subtilis (Losick and Pero; 1981). B. 

sutitlis carries genes for 17 different σ factors, and least 6 of which direct RNA 

polymerase (RNAP) to transcribe sporulation-specific genes, σA, σE, σF, σG, σK and 

σH (Kroos and Yu, 2000) (Figure 1.3).  
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Moreover, σF and σE factors are achieved shortly after assymetric division during 

which σF directs gene expression in forespore and σE direct gene expression in 

mother cell. σF and σE factors direct the transcription of largely overlapping sets of 

genes and later in sporulation σF is replaced by σG and σE is replaced in the mother 

cell by σK (Mergolis et al., 1991; Driks and Losick, 1991, Li and Piggot, 2001; 

Losick and Stragier, 1992) (Figure 1.4). 

 

Figure 1.3: Regulatory network controlling sigma factor synthesis and activation. 

Solid arrows indicate dependence relationships for σ factors and the products of 

genes that bring out morphological change. The two vertical lines represent the 

membranes that separate the mother cell and forespore after polar septum formation. 

Dashed arrows show signaling interactions between the two cell types that govern σ 

factor activation (short dashes) or synthesis (long dashes) (Kroos et. al., 1999). 

1.2.2.1. Sigma A and Sigma H  

Spo0A~P acts in cojunction with the housekeeping sigma factor σH in order to drive 

gene transcription at the onset of sporulation (Stragier and Losick 1996; Kroos and 

Yu, 2000). σH, when interacts with core RNAP, it directs this enzyme to initiate 

transcription from at least 49 promoters controlling 87 or more genes (Britton et al., 

2002). 

Additionally Spo0A~P binds to promoter regions and activates transcription by σA 

RNAP and σH RNAP probably by contacting homologous regions of σ factors with 

different surfaces of its carboxy terminal domain and by contacting RNAP also with 
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its amino-terminal domain (Buckner and Moran, 1998; Cervin and Spiegelman, 

1999). Furthermore in response to starvation, σA which is the major factor present in 

growing cells and σH a minorly abundant σ factor, direct transcription of genes 

whose products redirect septum formation and partition of each copy of the 

replicated DNA to forespore or mother cell. Moreover early in sporulation, σA and σH 

complete with each other for binding to core RNAP. The level and activity of σH is 

controlled by transcriptional and post-transcriptional mechanisms. With the help of 

inhibition of AbrB production by Spo0A~P, transcription of the spo0H gene 

encoding σH increases (Kroos et al., 1999). 

Furthermore, it is also reported by Fukushima et al. in 2003 a sigma A controlled veg 

gene was found to be expressed in the forespore, presumably functioning in further 

germination process suggesting that σA controls expression of some specific genes 

both before and after engulfment, due to its housekeeping characteristics 

1.2.2.2. sigma F  

In the time course of sporulation, the first activated sigma factor is σF, which 

becomes active in the forespore soon after asymmetric septation. σF is already 

present in the cell before sporulation begins, but it is kept inactive until asymmetric 

septation occurs. If σF is activated at the right time and in the right compartment, 

then the remaining sigma factors become correctly activated in their turn and 

sporulation progress to completion. Thus, the accurate regulation of σF is crucial for 

the success of sporulation (Kroos et. al., 1999). 

Activity of σF is confined to the forespore cell and cell-specific activation of σF is 

governed by a pathway involving the proteins SpoIIAB, SpoIIAA and SpoIIE 

(Mergolis et al. 1991; Duncan and Losick, 1993) 

In the predivisional sporangium and in the mother cell σF is held in an inactive 

complex with SpoIIAB, which is referred to as an antisigma factor (Duncan and 

Losick, 1993).  σF is liberated from the SpoIIAB- σF complex in the forespore due to 

the action of SpoIIAA, an anti-antisigma factor that binds to and antagonizes the 

action of spoIIAB (Alper et al., 1994; Diedrich et al., 1994). Action of SpoIIAA is 

regulated by it inteconversion between a phosphorylated and a dephosphorylted state 

(Duncan et al, 1995). This interconversion is governed by opposing actions of a 

serine kinase and a phosphatase. Serine kinase is SpoIIAB, which is a dual function 
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protein that is capable of binding to and inhibiting σF and of phosphorylation and 

thereby inactivating SpoIIAA (Alper et al., 1994; Diedrich et al., 1994). This reverse 

action is catalysed by the third member of σF regulatory pathway, spoIIE (Duncan et 

al., 1995). SpoIIE is a phosphatase that is responsible for converting the inactive, 

phosphorylated form of SpoIIAA (SpoIIAA-P) to its active, dephosphorylated form 

(Seavers et al., 2001). Therefore, SpoIIE indirectly activates σF through the 

dephosphorylation of SpoIIAA-P. SpoIIAB and SpoIIAA is mutually antagonistic: 

ATP-containing SpoIIAB can inactivate spoIIAA by covalent modification can 

inhibit ADP-containing spoIIAB by sequestering it in an inactive spoIIAA-AB 

complex. The capacity of spoIIAB to form alternative complexes with spoIIA is 

known as partner switching (Alper et al., 94; Diedrich et al., 94).  

1.2.2.3 Sigma E 

Establishment of forespore specificity through activation of σF is soon followed by 

the induction of a large set of genes in the mother cell, under the control of the 

transcription factor, σE (Londono-Vallejo and Stragier, 1995). σE is initially 

synthesized as an inactive proprotein pro-σE and this synthesis starts prior to 

septation but the conversion of pro-σE to mature σE does not take place unit after 

asymmetric division when the active form of the transcription factor is found in the 

mother cell. Proteolytic processing of pro-σE is mediated by the proprotein 

processing enzyme spoIIGA which is activated by a secreted signaling protein 

spoIIR that is produced in the forespore under the control of σF (Londono-Vallejo 

and Stragier, 1995; Peters and Haldenwang, 1994; Hofmeister et al., 1995; Karow et 

al., 1995). 

It was previously suggested by Helmann and Moran at 2002 that the largest regulon 

of four cell-specific σ factors, 70 genes are directly controlled by σE. However in 

2003, Eichenberg and friends reported that σE directs the transcription of more than 

250 genes during sporulation in Bacillus subtilis. 

The first major function accomplished by genes under the control of σE is to promote 

the engulfment of the forespore by the mother cell. Three genes have been shown to 

be essential for this process (spoIID, spoIIM and spoIIP) (Fraudsen and Stragier, 

1995). Their products are involved in degradation of the septal peptidoglycan and 

mutations in spoIID, spoIIM or spoIIP block sporulation at morphological stage II, 
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and prior to the stage of engulfment. Furthermore, it has been shown recently that 

these genes are also necessary for preventing septation at the other pole of the 

sporangium, creating a disporic formation (Poglieno et al. 1999; Eichenberg et al., 

2001) 

Second major function of σE controlled genes is the synthesis of the protective 

envelopes around the spore, the cortex and the different spore-coat layers. For 

instance SpoVB, SpoVD and SpoVE one σE controlled genes that function in cortex 

formation (Popham and Stragier, 1991; Daniel et al., 1994; Piggot et al., 1986) 

The third major function, carried out by a large group of genes under the control of 

σE is to maintain a sufficient level of metabolic activity to enable the progression of 

the sporulation process under conditions of limiting nutrient availability (Eichenberg 

et al. 2003). Many genes in this group, like ylbK, yvjE and ywnE appear to be 

involved in lipid metabolism. This suggests a possible way of generating energy in 

the absence of nutrients by oxidation of fatty acids from the cytpolasmic membrane 

and also of way polyhydroxyalkanate other genes like catabolism mlpA, pepE and 

yufN also encodes putative peptidases and proteases for the protein degradation in 

order to generate nutrients (Eichenberg et al., 2003; Jendrossek and Handrich, 2002) 

The forth major function of σE is to set the stage for the next and final steps of 

sporulation. Three major transcriptional regulators are controlled by σE, spoIIID, σG 

and σK (Stragier et al., 1989; Kroos et al., 1989; Halberg and Kroos, 1994; Sato et al., 

1994). Meanwhile, both σE and σK activity are needed in the mother cell for synthesis 

of the cortex and coat layers that encase the forespore. The cortex, produced by σE-

controlled genes, is a loosely cross-linked peptidoglycan formed between the 

membranes surrounding the forespore (Eichenberg et al., 2003). 

1.2.2.4. Sigma G 

Transcription of the spoIIIG gene, encoding the late forespore regulator σG, is driven 

by the σF related RNA polymerase. However, transcription of spoIIIG is delayed 

towards the end of the engulfment process, when compared to transcription of first 

class σF-dependent genes. Additionally, it requires both the activity of σE in the 

mother cell and expression of the σF-controlled gene spoIIQ (Sun et al., 2000).  

The late forespore-specific σ factor, σG is regulated at least three levels. First, its 

gene sigG or spoIIIG is transcribed from a promoter recognized by the first 
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forespore-specific σ factor, σF and later by σG itself thus restricting its location to the 

porespore compartment (Sun et al., 1991). Secondly, unlike other σF-dependent 

genes, sigG is not transcribed in the presence of mutations in the SpoIIG gene, which 

encodes first mother-cell specific sigma factor σE. Therefore, sigG transcription is 

also dependent on as yet unidentified signal transduction pathway of which at least 

one component is expressed in mother cell. Thirdly, sigG begins to be transcribed 

appoximately 120 minute after the initiation sporulation. However σG-dependent 

genes expression does not begin until 30 minute later (Patridge and Errington, 1993). 

Mutations in spoIIB, spoIID, spoIIIA and spoIIIJ, prevents transcription of σG-

depenendent genes without effecting σG synthesis, impliying that their products play 

a role in σG activation (Perez et al., 2000; Partridge and Errington, 1993). spoIIB, 

spoIID and spoIIM required for forespore engulfment, suggesting a link bw 

activation of σG and the completion of engulfment (Perez et al. 2000; Smith et al., 

1993) 

Evans et al. 2003 suggested that σG and anti sigma factor SpoIIAB form a 

nucleotide-dependent complex although this interaction is much whether than that of 

σF and spoIIAB. Furthermore anti-anti σ factor spoIIAA efficiently disrupts 

SpoIIAB:σG complex, thereby relasing σG. So that they report that spoIIAB interacts 

with σG in the same way as with σG that may be another mechanism to keep σG 

inactive while σF is active. 

The function of the σG is activating transcription of a large set of genes in the 

engulfed forespore, including the ssp genes encoding members of the SASP family. 

Among the genes activated by σG, the spoVT gene appears to play a specific 

regulatory role by encoding a protein required for expression of a subset of σG-

controlled genes in the forespore, such as spoVA. The SpoVT protein is related to the 

AbrB protein, a well-studied B. subtilis DNA-binding protein, and it is believed that, 

when the time needed for its concentration to reach a critical threshold expires, the 

SpoVT protein binds to some regulatory DNA sequences and allows expression of 

the latest class of forespore-specific genes. Moreover, via inhibiting spoIIIG 

transcription, SpoVT may also contribute to a progressive shut-off of the forespore-

specific transcription (Serrano et al., 2003). 
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1.2.2.5. Sigma K 

The late-appearing, mother-cell-specific transcription factor σK is synthesized as an 

inactive precursor protein, known as pro-σK, under the direction of σE acting in 

conjunction with the DNA-binding protein SpoIIID. Following this, σK collaborates 

with SpoIIID and directs transcription of its structural gene. Later in sporulation, 

transcription of sigK is repressed by the product of gerE that is controlled by σK 

(Kroos et al., 2002). 

The first level of regulation involves the creation of the sigK, interrupted by a large 

DNA element known as skin. The rearrangement of the intact σK coding sequence is 

accomplished by SpoIVCA, which is a recombinase that catalyzes the excision of 

skin. Furthermore, SpoIVCA is transcribed by the action of σE that works in 

conjunction with SpoIIID. As a consequence, the two truncated coding elements 

become joined in-frame. Because σE and SpoIIID are produced exclusively in the 

mother cell, skin is not excised from the germ line chromosome of the forespore and 

hence is passed to the subsequent progeny (Stragier and Losick, 1996). 

The second level of regulation is the transcription of sigK that initially requires the 

concerted action of σE and SpoIIID. Once again, this helps to ensure that σK is 

produced only in the mother cell (Kroos et al., 1999). 

Finally, the third level of regulation involves proteolytic removal of pro amino acid 

sequence of σK, like its early counterpart σE, achieved through initially signaling 

from the forespore. The signaling pathway involves SpoIVB, a serine peptidase 

produced in the forespore, which is believed to cross the innermost membrane of the 

forespore and activates a complex of proteins, including BofA, SpoIVFA, and 

SpoIVFB, located in the outermost membrane surrounding the forespore. Activation 

of the complex allows proteolytic processing of pro-σK, and the resulting σK RNA 

polymerase transcribes genes in the mother cell (Wakeley et al., 2000).  

σK directs the expression of the final regulon of sporulation genes whose products are 

involved in maturation of the spore coat and cortical layers (Kroos et al., 1999). 

Thus, premature expression of σK-controlled genes, leads to the production of a 

reduced number of spores with a disorganized coat structure, leading to defective 

germination (Nicholson and Setlow et al., 1990). In addition to this function, σK is 
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thought to be directing the transcription of genes involved in lysis of the mother cell 

and release of the mature spore (Errington, 2003). 

1.3. Spore Germination in Bacillus subtilis 

Bacterial endospores have a unique structure that determines their extreme resistance 

properties. The structure of Bacillus subtilis endospores includes three distinct 

features, i.e. spore coat, cortex and core. The spore cortex, which is required for 

spore dormancy and heat resistance, consists of a thick layer of peptidoglycan of a 

spore-specific structure. Despite their resistance and dormancy, the dormant spore 

monitors its environment, and when conditions are again favorable for growth, the 

spore germinates and goes through outgrowth, ultimately being converted back into a 

growing cell (Chirakkal et al., 2002). Resuscitation of spores is associated with a loss 

of phase brightness caused by hydration of all internal structural compartments 

which results in a phase dark, germinated spore when viewed under phase contrast 

optics of a light microscope. Germination of a spore population is a diverse, 

heterogeneous process and it is necessary to correlate the characteristic changes in a 

population of germinating spores with the behavior of individual spores in the same 

population (Vary and Halvorson, 1965).  

1.3.1. Earliest events in spore germination 

Earliest events in spore germination involve receptor proteins encoded by 

homologues of the GerAA, AB and AC proteins (Paidhungat and Setlow, 1999; Moir 

et al., 2002), which are located in the inner membrane (Hudson et al., 2001; 

Paidhungat and Setlow, 2001). Receptor±germinant interaction results in the 

triggering of a cascade of biochemical events, including loss of heat resistance and 

ion movements from the core (Thackray et al., 2001; Southworth et al., 2001). 

1.3.1.1. Germinant receptors 

The action of nutrient germinants is initiated by binding to receptors located in the 

spore’s inner membrane. In B. subtilis these receptors are encoded by the 

homologous tricistronic gerA, gerB and gerK operons (termed gerA operon 

homologs) expressed in the forespore late in sporulation. Similar GerA-type proteins 

are present in spores of other Bacillus and Clostridium species. In B. subtilis spores, 
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the GerA receptor recognizes L-alanine, whereas the GerB and GerK receptors are 

required together for germination with AGFK (Paidhungat and Setlow, 2002; Moir et 

al., 2002). 

In addition to the gerA operon homologs, there are several other genes whose 

products play roles in B. subtilis spore germination (Paidhungat and Setlow, 2001). 

These include: gerF, whose product adds diacylglycerol to membrane proteins, 

probably including the proteins encoded by the B cistrons of the gerA operon 

homologs; gerC, which encodes an enzyme of quinone biosynthesis; and gerD, 

whose product is needed in some unknown fashion for nutrient germination (Setlow, 

2003). 

1.3.1.2. Nutrient Germinants 

Spores in nature germinate probably only in response to nutrients, termed 

germinants. These germinants are generally single amino acids, sugars or purine 

nucleosides, but there are also combinations of nutrients that trigger spore 

germination, one being a mixture of asparagine, glucose, fructose and K+ (AGFK) 

that triggers B. subtilis spore germination. Within seconds of mixing spores and 

germinants, the spore becomes committed to germinate, and germination will 

proceed even after removal of the germinant (Paidhungat and Setlow, 2001). 

1.3.2. Subsequent steps in germination 

A common activation treatment for spore germination is a sub-lethal heat shock, but 

the mechanism of spore activation is not well understood, Following the germination 

initiation during which receptor±germinant interaction take place, subsequent steps 

of germination are triggered as seen figure 1.4 (Paidhungat and Setlow, 2001). First, 

spore H+, monovalent cations and Zn2+ are released probably from the spore core and 

the release of H+ elevates the core pH from 6.5 to 7.7 which is a change essential for 

spore metabolism once spore core hydration levels are high enough for enzyme 

action (Jedrzejas and Setlow, 2001). Second, the spore core’s large depot (10% of 

spore dry wt) of pyridine-2, 6-dicarboxylic acid (dipicolinic acid [DPA]) and its 

associated divalent cations, predominantly Ca2+ is released. Third, replacement of 

DPA by water takes place, resulting in an increase in core hydration and causing 

some decrease in spore wet-heat resistance, although this initial increase in core 

hydration is not sufficient for protein mobility or enzyme action in the spore core 



 15 

(Setlow et al., 2001; Cowan et al., 2003). Fourth, spore’s peptidoglycan spore cortex 

is hydrolysed and fifth, swelling of the spore core through further water uptake and 

expansion of the germ cell wall take place (Setlow et al., 2001). Only after this 

further increase in core hydration does protein mobility in the core return, thus 

allowing enzyme action (Setlow et al., 2001; Cowan et al., 2003). These events take 

place without detectable energy metabolism, and comprise the process of 

germination (Paidhungat and Setlow, 2001). This process is divided into two stages; 

stage I comprise the first three steps of the process, and stage II comprises the fourth 

and fifth steps. The two stages can be separated experimentally by either chemical 

treatments or mutations (Paidhungat and Setlow, 2001; Setlow et al., 2001; Setlow et 

al., 2002). The initiation of enzyme action in the spore core after completion of stage 

II allows initiation of spore metabolism, followed by the macromolecular synthesis 

that converts the germinated spore into a growing cell (Paidhungat and Setlow, 

2001). This period is termed spore outgrowth. 

 

 

Figure 1.4: Events in spore germination.  

Spore germination is divided into two stages, as cortex hydrolysis is not required for 

stage I. SASP degradation denotes the hydrolysis of the large depot of small, acid-

soluble spore proteins (SASP) that make up 10–20% of the protein in the spore core. 

One type of SASP, the α/β-type, saturates spore DNA and prevents many types of 

DNA damage (Setlow, 2000). Whereas metabolism and SASP degradation (which 

require enzyme action in the spore core) are shown as taking place only after stage II 

is complete, these events may begin partway through stage II when the core water 
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content has risen sufficiently for enzyme action. Also shown in figure 1.4 is that the 

spore’s germ cell wall must expand significantly to complete stage II of germination 

(Paidhungat and Setlow, 2001). The events in stage I may take only seconds for an 

individual spore, although there may be a lag of several minutes after addition of a 

germinant before these events begin, and spore cortex degradation may take several 

minutes for an individual spore. However, because of significant variation between 

individual spores, particularly in the times for the initiation of the first events in stage 

I after addition of a germinant, these events may take many minutes for a spore 

population (Setlow, 2003). 

1.3.3. Crucial roles of SASP and DPA in resistance characteristics and 

germination properties of Bacillus subtilis 

Since DPA is found only in dormant spores of Bacillus and Clostridium species and 

since these spores differ in a number of properties from vegetative cells, in particular 

in their dormancy and heat resistance, it is not surprising that DPA and divalent 

cations have been suggested to be involved in some of the spore’s unique properties. 

There is some evidence in support of this suggestion, since mutants whose spores do 

not accumulate DPA have been isolated in several Bacillus species, and often these 

DPA-less spores are heat sensitive (Balassa et al., 1979; Coote, 1972; Piggot et al., 

1980; Wise et al., 1967; Zytkovicz  and Halvorson., 1972). 

DPA is synthesized from an intermediate in the lysine pathway, and the enzyme that 

catalyzes DPA synthesis is termed DPA synthetase (Daniel and Errington, 1993). In 

B. subtilis this enzyme is encoded by the two cistrons of the spoVF operon, which is 

expressed only in the mother cell compartment of the sporulating cell, the site of 

DPA synthesis. Mutants of B. subtilis likely to be in or known to be in spoVF result 

in lack of DPA synthesis during sporulation, and the spores produced never attain the 

wet heat resistance of wild-type spores (Balassa et al., 1979; Coote, 1972; Piggot et 

al., 1986; Daniel and Errington, 1993). Unfortunately, it has been impossible to 

isolate and purify free spores from these spoVF mutants of B. subtilis, since the 

spores are extremely unstable and germinate and lyse during purification. This 

observation suggests that, at least in B. subtilis, DPA is needed in some fashion to 

maintain spore dormancy (Errington, 1993; Lewis, 1969), although the specific 

mechanism whereby this is achieved is not clear. In addition to its possible roles in 
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spore dormancy and resistance, DPA complexed with a divalent cation, usually Ca2+, 

is an effective germinant of spores of almost all Bacillus and Clostridium species. 

These and other data have led to the suggestion that DPA may activate, possibly 

allosterically, some enzyme involved in spore germination (Lewis, 1969). To date, 

this spore enzyme involved in spore germination has not been identified. However, 

DPA does allosterically modulate the activity of the germination protease (GPR) that 

initiates the degradation of the spore’s depot of small, acid-soluble spore proteins 

(SASPs) during spore germination. GPR is synthesized as an inactive zymogen 

(termed P46) during sporulation, and P46 autoprocesses to a smaller active form 

(termed P41) approximately 2h later in sporulation. This conversion of P46 to P41 is 

stimulated allosterically by DPA, and only the physiological DPA isomer is 

effective. The activation of this zymogen is also stimulated by the acidification and 

dehydration of the spore core, and together these conditions ensure that P41 is 

generated only late in sporulation, when the conditions in the spore core preclude 

enzyme action. As a result, GPR’s SASP substrates, which are synthesized in parallel 

with P46, are stable in the developing and dormant spore (Illades-Aguiar and Setlow, 

1994; Setlow and Setlow; 1993). 

This is important for spore survival, as some major SASP have two important 

functions; one exerted during dormancy and other one during germination (Slieman 

and Nicholson, 2001). SASP / are known to be DNA-binding proteins which form 

a complex with DNA in the spore core, causing a conformational change in DNA 

and eventually leading to the accumulation of spore photoproduct in dormant UV-

irradiated spores (Setlow, 1995; Setlow, 1999; Dirks and Setlow, 1999; Mason and 

Setlow, 1988). Furthermore, SASP  are degraded to amino acids in order to supply 

germinating spores with those amino acids also during outgrowth (Setlow, 1995; 

Setlow 1999; Dirks and Setlow, 1999; Hackett and Setlow, 1988; Sanchez-Salas et 

al., 1992). 

1.3.4. Ion/DPA channels 

The release of cations (the question of parallel anion release is not resolved), 

followed by release of DPA and associated divalent cations early in spore 

germination suggests that one or more channels for these ions must be opened in the 

inner spore membrane upon binding of a germinant to its receptor. Similarly, during 
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sporulation, there must be a mechanism for the uptake of DPA into the forespore 

from its site of synthesis in the mother cell compartment. DPA uptake into the 

forespore probably requires energy, given that extremely high concentrations of DPA 

are accumulated, but there is no obvious need for energy in the release of DPA and 

cations in germination. Unfortunately, the proteins involved in these ion movements 

are not known (Setlow, 2003). 

Another small molecule that exhibits significant movement in spore germination, but 

in the opposite direction of ions and DPA, is water. The B. subtilis spore core volume 

increases 2- to 2.5-fold through stage II of germination, and does so by water uptake. 

However, the mechanism for this water uptake is not known, and B. subtilis has no 

homologs of the aquaporins found in other organisms (Paidhungat and Setlow, 

2002). 

1.3.5. Cortex-lytic enzymes 

In B. subtilis two enzymes, CwlJ and SleB, play redundant roles in the degradation  

of the spore’s peptidoglycan cortex during germination (Paidhungat and Setlow, 

2002; Setlow et al., 2001; Boland et al. 2000; Atrich and Foster, 2001). Germination 

of cwlJ and sleB spores is relatively normal and even cwlJ sleB spores go through 

stage I of germination relatively normally. However, the double mutant spores 

cannot degrade their cortex and do not progress beyond stage I of germination. CwlJ 

and SleB require muramic-dlactam in peptidoglycan for their action, with SleB being 

a lytic transglycosylase while the specificity of CwlJ is unknown (Atrich and Foster, 

2001). The muramic-d-lactam requirement for peptidoglycan cleavage by CwlJ or 

SleB ensures that the spore’s germ cell wall, which lacks this modification, is not 

degraded during germination and becomes the cell wall of the outgrowing spore 

(Popham, 2002). Note that the germ cell wall must expand considerably to 

encompass the increased volume of the stage II germinated spore core. This 

expansion can be blocked by some treatments of spores, but its mechanism is not 

understood. CwlJ and SleB are synthesized only in sporulation, CwlJ in the mother 

cell and SleB in the forespore; neither is synthesized in zymogen form, although 

SleB is synthesized with a signal peptide that is rapidly removed (Melly et al., 2002; 

Paidhungat and Setlow, 2002). CwlJ is located in the spore coat fraction and is 

readily removed by decoating procedures (Bagyan and Setlow, 2002). CwlJ is also 
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absent from cotE spores, which have a severe coat defect. SleB is found in the spore 

integuments (coats, outer membrane and cortex). Since SleB has a potential 

peptidoglycan-binding domain, this protein may be located in the cortex or the 

coat/cortex boundary. However, a significant amount of SleB is also associated with 

the inner spore membrane. Both CwlJ and SleB require specific proteins for 

assembly and/or stability in spores. For SleB the protein required is YpeB. The ypeB 

gene is co-transcribed with sleB, and YpeB is in the same location in spores as SleB. 

Similarly, in most Bacillus species, cwlJ is co-transcribed with gerQ (originally 

called ywdL). Although this is not the case in B. subtilis, even in this organism, gerQ 

and cwlJ are transcribed in the mother cell at the same time in sporulation. GerQ is 

essential for the presence of CwlJ in spores and GerQ is, like CwlJ, a coat protein. 

The reason for the absence of CwlJ in gerQ spores is not clear, but gerQ spores have 

no gross coat defects and GerQ is not needed for cwlJ transcription (Setlow, 2003). 

Because both SleB and CwlJ are synthesized in a mature form, there must be a 

mechanism (or mechanisms) keeping these enzymes in an inactive state in dormant 

spores. For SleB, this mechanism is not clear, although it may be that SleB only 

works on a cortex in which the peptidoglycan has a level of stress much higher than 

that in dormant spores (Foster and Johnstone, 1987, Makino et al., 1994). However, 

the inactivity of CwlJ in dormant spores and its activation after stage I of 

germination is probably because CwlJ requires Ca2+– DPA for its action (Setlow, 

2003). Whereas CwlJ and SleB are the only enzymes needed for cortex degradation 

during B. subtilis spore germination, other enzymes may be involved in this process, 

yet not be essential. One such enzyme is the yaaH gene product that encodes a 

cortex-lytic enzyme (termed SleL in B. cereus). The situation in spores of 

Clostridium perfringens may be somewhat different from that in Bacillus spores, as 

C. perfringens spores have a cortex-lytic enzyme (termed SleC) that is activated by 

proteolysis in the first minutes of spore germination (Chen et al., 2000). 

1.3.6. Non-nutrient germinants 

In addition to nutrients, spores are germinated by a variety of non-nutrients (Gould, 

1969), including lysozyme, Ca2+– DPA, cationic surfactants, high pressures and salts. 

These various non-nutrients can bypass individual components of the nutrient 

germination pathway. Because lysozyme can degrade the cortex of most spores, this 
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is a potential pathway for spore germination, although lysozyme will also degrade 

the spore’s germ cell wall. In order for spores to be germinated by lysozyme, the 

spore coats must first be removed. With this pretreatment, spores are readily 

germinated by lysozyme, undergo DPA release and, if the lysozyme treatment is in a 

hypertonic medium, give rise to colonies. Exogenous Ca2+–DPA also is a good spore 

germinant. These findings strongly suggest that germination by exogenous Ca2+– 

DPA is via some direct or indirect activation of CwlJ. Spore germination by cationic 

surfactants like dodecylamine, was recognized over 40 years ago (Rode and Foster, 

1961). Complete spore germination induced by dodecylamine requires either CwlJ or 

SleB, but does not require the spore’s germinant receptors. Because dodecylamine 

causes rapid Ca2+–DPA release from spores that cannot degrade their cortex, yet 

causes no release of other small molecules from these spores, this agent may open 

the spore’s channels for Ca2+–DPA. Spores of many species can be germinated at 

very high pressures (100–600 megaPascals [MPa]) (Setlow, 2003). At lower 

pressures (100–200 MPa), germination is caused by the activation of the germinant 

receptors (Vuytagk et al. 2000). However, at higher pressures (500–600 MPa), spores 

that lack nutrien receptors trigger germination rapidly, suggesting that these 

pressures somehow open the spore’s Ca2+–DPA channels (Paidhungat et al., 2002). 

1.4. The Aim of the Present Project 

yvgW gene was first reported as a cadmium resistant gene in Bacillus subtilis that can 

be induced with the existence of Cd+2 ions (Solovieva and Entian, 2002). After this, 

the other publication was that it is a CPx-type ATPase which is selectively induced 

by Zn (II) and Co (II) as well as Cd(II) ions in B. subtilis (Gaballa and Helmann, 

2003). On the other hand, Yazgan et. al. (2001) mentioned that inactivation of yvgW 

caused reduction in sporulation efficiency in Bacillus subtilis. 

Under the light of the fact that, the timing of yvgW expression corresponds to the late 

sporulation stage, the dependence of yvgW expression on forespore-specific sigma 

factor G was previously examined through construction of a new mutant strain 

containing transcriptional yvgW::lacZ fusion and an additional deletion on spoIIIG 

locus that is known to encode G. The present research includes the studies to 

achieve the molecular characterization and elucidation of the functional role of yvgW 

gene in the sporulation process in B. subtilis. Effects of the deletion of spoIIAC, 
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spoIVCB, spoIVCB and sigB genes, encoding for F, E, K and B, respectively, on 

the expression of yvgW-lacZ were investigated. Moreover, through the construction 

of yvgW537-1351::spc, yvgW mutant cells were investigated for their spore 

properties, such as their resistance profiles against heat chloroform and lysozyme. 

The level of dipicolinic acid was also investigated in yvgW spores and compared to 

wild type spores. Furthermore, the nutrition specific germination and outgrowth 

characteristics of null mutant and wild type cells were analyzed in order to gain more 

insights about the functional role of yvgW gene in the sporulation process. 

 



 22 

2. MATERIALS and METHODS 

2.1. Materials 

2.1.1. Bacterial Strains 

Strains used in this project are listed in Table 2.1. The mini-Tn10 delivery vector  

pIC333 (Figure 2.1) was supplied by Prof. Tarek Msadek (Pasteur Institute, France) 

and pDrive vector. pDrive vectorfor cloning of PCR products (Figure 2.2) was 

obtained from Qiagen 

Table 2.1: Bacterial strains used in the project 

Strain or plasmid Relevant Genotype, phenotype, and/or 

characteristics 

Construction, 

source or reference 

B. subtilis PY79 wild type, BSP cured prototrophic 

derivative of B.subtilis 168 

P.Youngman 

AGU1 yvgW::yvgW-lacZ erm  Ayça Gülçin Ülgen 

AGU2 yvgW::yvgW-lacZ erm spoIIIG::cat  Ayça Gülçin Ülgen 

OY1 yvgW::yvgW-lacZ erm spoIIGB::kan  This work 

OY2 yvgW::yvgW-lacZ erm spoIIAC::kan  This work 

OY3 yvgW::yvgW-lacZ erm spoIVCB::neo This work 

OY4 yvgW::yvgW-lacZ erm spoIVCB::neo This work 

RL560 spoIIIG::cat Richard Losick 

ASK202 spoIIAC::kan Kazuhito Watabe 

ASK203 spoIIGB::kan Kazuhito Watabe 

Kei Asai 

SR276 spoIVCB::neo Lee Kroos 

ML6 sigB::cat Michael Hecker 

OY5 yvgW::spc This work 

E.coli Top 10 F’ [lacIq Tn10(Tetr)], mcrA (mrr-

hsdRMS-mcrBC), f80lacZM15 

lacX74, deoR, recA1, araD139 (ara-

leu)7697, galU, galK,rpsL (Strr), 

endA1, nupG 

M.A.Marahiel 
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Figure 2.1: Shematic presentation of the 7 kb pIC333 vector. 

 

 

Figure 2.2: Genomic map of pDrive cloning vector including the functional genes in the 

structure as well as the restriction map (http://www1.qiagen.com/HB/PCRCloning). 
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2.1.2. Bacterial Culture Media 

The compositions and preparation of bacterial culture media are given in Appendix 

A. 

2.1.3. Buffers and Solutions 

The compositions and preparation of buffers and solutions are given in Appendix B. 

2.1.4. Chemicals and Enzymes 

The chemicals and enzymes used and their suppliers are given in Appendix C 

together with their suppliers. 

2.1.5. Laboratory Equipment 

The laboratory equipment used during the project is listed in Appendix F.  

2.1.6. Maintenance of Bacterial Strains 

The bacterial strains and plasmids used in this study are described in Table 2.1. B. 

subtilis PY79, OY1, OY2, OY3, OY4 and OY5 strains were grown in Luria-Bertani 

(LB) broth medium and kept on Luria-Bertani (LB) agar plates. DSM agar was used 

for the maintenance of B. subtilis PY79 strain, DSM and SM (Sterlini, J.M., 

Mandelstam, J., 1969) medium were used for the induction of sporulation.  E. coli 

Top 10 F’ was grown in LB and in 2xYT liquid mediums and kept on LB and 2xYT 

agar plates. 2xYT was used for the transformation of the E. coli Top 10 F’ strain and 

HS and LS mediums were used for the transformation of B. subtilis strains. All 

cultures were stored at +4oC. 10% glycerol stocks of each strain were prepared and 

kept at -80oC. Erythromycin (Erm) (1μg/ml), spectinomycin (Spc) (100 g/ml), 

lincomycin (Ln) (25μg/ml), kanamycin (Kan) (10 g/ml), ampicilin (Amp) (100 

g/ml), neomycin (Neo) (5g/ml) and chloramphenicol (Cm) (5μg/ml) were used for 

B. subtilis strains. Amp (100 μg/ml) and Tetracycline (Tet) (20 μg/ml) were used for 

E.coli Top 10 F’ strain as the selective antibiotics. Germination assays were 

performed in 2xYT or Spizizen’s minimal medium (SMM) (Spizizen 1958). 
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2.2. DNA techniques and Manipulations 

2.2.1. Polymerase Chain Reaction – PCR 

The primers which are used during this study are shown in the Table 2.2. In PCR, all 

cycles lasted for 1 minute. The denaturation temperature was 94oC and the extention 

temperature was 72oC.The annealing temperature for the first 5 cycles was 55oC and 

60oC for the next 25 cycles. The concentration of chromosomal DNA was 0.01 to 

0.001 ng/l. Primers were used at 1-10 pM (equimolar) and deoxyribonucleoside 

5’triphosphates (dNTPs) were used at a final concentration of 2 mM. 

Table 2.2: The oligonucleotide primers used in this study 

Primers Oligonucleotide Sequence 
Target 

Sequence 
Location 

yvgW SacI R 
5’-CGG GAG CTC TTC ACT 

AGG CAA AAG CTT-3’ 408 bp 

long 

from 1351 bp to 

1757 bp of yvgW 

gene yvgW XbaI F 
5’-GCC TCT AGA GGG AAA 

ATG CTT TCC TCC-3’ 

yvgW PstI  F 
5’-GGC CTG CAG CAA TGG 

GTC ACG AAT AAA-3’ 377 bp 

long 

from 160 bp to 537 

bp of yvgW gene 
yvgW BamHI R 

5’-CGG GGA TCC AAG CTC 

ACC GAT TTG ATA-3’ 

spc screen F 
5’ -TTG CCA GAA CTA ATT 

GAG GGG- 3’ 1100 bp 

long 

700 bp spc cassette 

-  from 50bp to 750 

bp of yvgW  5’ end yvgW screen R 
5’-CAG CGG CAA TAC GAC 

AAA AT-3' 

spc cassette R 
5’ -CTA ATT GAG AGA AGT 

TTC TAT- 3’ 800 bp 

long 

from 98 bp to 898 

bp of spc cassette  
spc cassette F 

5’ -CTC TAG AGG ATC GAT 

CTG TAT- 3’ 

 

2.2.2. Restriction Enzyme Digestion 

Digestion reactions were carried out as the instruction manual, in a way that the 

amount of 10X digestion buffer was 1/10 of the total reaction mix. The reaction mix 

was incubated for 1-4 hours at 37°C, and then enzyme was denaturated at 65°C for 

20 min.   
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2.2.3. Agarose Gel Electrophoresis 

Depending on the purpose of the electrophoresis, different concentrations of agarose 

gel were used as indicated below: 

2.2.3.1. DNA Molecular Weight Markers 

Marker 1: Φx174 DNA / BsuRI (HaeIII) (Appendix D) 

Marker 3: Lambda DNA / EcoRI + HindIII (Appendix D) 

GeneRuler: 1kb DNA Ladder (Appendix D) 

Agarose gel with the necessary concentration was prepared and boiled to accomplish 

the agarose network. Then, the gel was cooled down to a degree that allows the 

addition of 1.5 μl EtBr. Gel loading dye (6X) was added to the samples depending on 

the sample amount. Gel was poured into tray and the comb was placed. Gel was left 

for solidification. Markers and samples were loaded and electrophoresis was carried 

out at 80V. 

2.2.4. Gel Extraction 

“QIAquick Gel Extraction Kit” was used for the gel extraction of the PCR products.  

The fragment was excised from the gel and 3 volumes of buffer QG were added 

depending on the weight of the fragment. If the color of the solution was not yellow, 

10 μl of 3M sodium acetate (pH 5.0) was added. Following, the solution was 

incubated for 10 min at 50°C by shortly vortexing every 2-3 min, until the gel was 

dissolved completely. After addition of 1 volume of isopropanol, the sample was 

applied to the QIAquick column and centrifuged at 13000 rpm for 1 minute. Then the 

flow through was discarded and the QIAquick column was placed back into the same 

collection tube. Later, 0.5 ml of buffer QG was added to the column and centrifuged 

at 13000 rpm for 1 minute. Subsequently, the flow through was discarded and 0.75 

ml of buffer PE was added to wash. The column was standed for 2-5 min and then 

centrifuged at 13000 rpm for 1 minute, which was followed with an additional 1 

minute at 13000 rpm. Eventually, the column was placed into a clean 1.5 ml 

microfuge tube and 30 μl from EB buffer was dropped to the center of the QIAquick 

membrane within the column and it was let to stand for 1 minute and then 
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centrifuged for 1 minute. The resulting solution within the 1.5 microfuge containing 

the plasmid DNA was stored at –20 °C.  

2.2.5. Ligation of the PCR Product into pDRIVE Cloning Vector 

Purified PCR fragments were inserted into pDrive (Qiagen) vector by using the 

componenets of Qiagen Cloning Kit, the ligation reactions were set up as follows: 

Table 2.3: Volume of components used in ligation of the PCR product into pDRIVE 

cloning vector. 

Component Volume/reaction 

pDrive Cloning Vector (50 ng/µl) 1 µl 

PCR product 2 µl 

Distilled water  2 µl 

Ligation Master Mix, 2x 5 µl 

Total volume 10 µl 

The ligation mix was then incubated at 16 oC for 1.5 hour and then ligase was 

denatured at 70°C for 10 min. 

2.2.6. Ligation with T4 Ligase 

Firstly, 9.5μl of PCR products as insert fragments and 0.5μl of vector were mixed in 

an eppendorf tube and incubated for 5 min at 65°C. Then, the tube was cooled on ice 

and spanned down to collect the whole mixture. Following, 2μl of ligation 10xbuffer, 

2μl of Polyethylene glycol (50% PEG 8000), 2μl of T4 DNA ligase, 4μl of dH2O 

were added into the same eppendorf tube. Following  centrifugation, the ligation mix 

was  incubated at 16°C for 16 hours.    

2.2.7. Preparation and Transformation of Electrocompetent E.coli Top 10 Cells 

Overnight E. coli Top 10 F’ cells were inoculated into 400 ml 2xYT broth containing 

20 μg/ml Tet with a 1/100 dilution and incubated at 37°C until OD600 reached 0.6. 

Then cells were incubated on ice for 30 min and centrifuged at 5000 rpm for 15 min. 

Later, pelleted cells were resuspended in 40 ml of cold sterile dH2O and centrifuged 

at 5000 rpm for 15 min. The pellet was gained by removing supernatant and it was 

resuspended in 20 ml of cold sterile dH2O and centrifuged at 5000 rpm for 15 min. 

Cells were resuspended in 1 ml of 10% glycerol (cold) and 40 μl volumes were 
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aliquoted in the 1.5 ml eppendorf tubes. Subsequently, the samples were quick 

freezed in the liquid nitrogen and stored at -80°C. 

For transformation of E.coli, firstly, electrocompotent E. coli Top 10 F’ cells were 

thawed on ice and centrifuged for a quick spin. Then, 20 μl of ligation sample was 

added and all together were transferred into an electroporation tube. Following, the 

electroporation tube was placed into electroporation machine and the process was 

carried out at 1800V. After addition of 1 ml 2xYT broth, the mixture was transferred 

to a 1.5 ml tube. Later the mixture was incubated for 1 hour at 37°C and then 

centrifuged at 5000 rpm for 15 min in order to harvest cells. Then the supernatant 

was discarded and the pellet was resuspended in 100 μl of 85% NaCl. At last, 100 μl 

of culture was spread out for each 2xYT (Amp100 μg/ml) plate and incubated 

overnight at 37°C. 

2.2.8. Plasmid DNA isolation 

Plasmid DNA isolation was applied through using the buffers and solutions of the 

“QIAquick Plasmid DNA Isolation Kit”. For Plasmid DNA isolation, 1.5 ml of 

bacterial cells were harvested by centrifugation at 13000 rpm for 5 min. The 

supernatant was removed and the pellet was resuspended in 300 μl P1 buffer. After 

addition of 300 μl of P2 buffer, the solution was incubated at room temperature for 5 

min. Then, 300 μl of P3 buffer was added and mixed through inverting until the 

lysate is no longer viscous. Following, the sample was incubated for 15 min on ice 

and centrifuged at 13000 rpm for 15 min. Supernatant was next transferred to a new 

1.5 ml eppendorf tubes and 0.7 volume of isopropanol was added depending on the 

volume of the supernatant and the solution was centrifuged at 13000 rpm for 30 min. 

The pellet was washed with 1ml of 70% ethanol by centrifugation at 13000 rpm for 5 

min. After the supernatant was removed, ethanol was dried out at 37°C for 15. At 

last, 15 μl of EB buffer was added and the tubes were incubated at 37°C for 15 min 

at 350 rpm.  

2.2.9. Preparation of B. subtilis Competent Cells and Transformation  

Preparation of B. subtilis competent cells and transformation were performed as 

described by Klein et al, 1992. HS and LS media were used for the preparation of B. 

subtilis competent cells. At first, 3 ml of overnight culture was prepared in HS 

medium by incubating at 37°C and shaking at 250 rpm. Then 0.5 ml of this overnight 
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inoculum was transformed into 20 ml of freshly prepared LS medium and incubated 

at 30°C with shaking at 100 rpm. until OD600 of cultures reached 0.55. Following, 1 

ml of competent cells was transferred into 2 ml eppendorf tube and 2 μl of DNA was 

added. Cells were incubated at 37°C for 2 hours with shaking at 250 rpm and then 

they were harvested via centrifugation at 5000 rpm for 15 min. Finally, cells were 

resuspended in 100 µl of sterile %85 NaCl and plated onto selective LB agar plates 

and incubated at 37°C for 16 hours. 

2.2.10. Chromosomal DNA isolation 

1,5 ml of overnight culture was centrifuged at 13000 rpm for 5 min. The pelleted 

cells were resuspended in 567 μl of TE by repeated vortexing. Then, 10 μl of 

proteinase K (20mg/ml), 6 μl of RNase (10 mg/ml), 24 μl of lysozyme (100mg/ml) 

and 30 μl of 10% SDS were added and the mixture was incubated for 1 hour at 37°C 

water bath. After addition of 100 μl of 5M NaCl solution, the sample was mixed 

without vortexing until the mucosal white substance become visible. Following, 80 

μl of CTAB / NaCl (prewarmed at 65°C) solution was added and the mixture was 

incubated for 10 min in 65°C water bath. The sample was then extracted with the 

same volume of freshly prepared phenol/chloroform/isoamyl alcohol (25:24:1) 

solution and centrifuged at 13000 rpm for 10 min. At later stage, the upper phase was 

transferred to a new 1.5 ml microfuge tube and 0.7 volume isopropanol was added. 

After mixing shortly, the sample was centrifuged at 13000 rpm for 15 min. The pellet 

was washed with 1ml of 70% ethanol centrifuged at 13000 rpm for 5 min. 

Subsequently, the pellet was dried at 37°C for 1 hour and dissolved in 10 μl of TE 

buffer via incubation at 37°C for 30 min. Finally, the isolated DNA was made run on 

0.6% agarose gel and absorbance at 260 nm and 280 nm were measured to determine 

the concentration and purity of the isolated DNA. 

2.3. Induction of Sporulation by Resuspension Method 

Inoculums for resuspension medium (Appendix A) was prepared just like in DSM, 

then they were used to inoculate 35ml of freshly prepared growth medium (Appendix 

A) to an initial optical density at 595 nm (OD595) of about 0.17. Later, the cultures 

were incubated at 37°C (250 rpm) until OD595 was 0.5-0.8 and centrifuged at 8000g 

for 5 min. Hereafter, cultures were resuspended in an equal volume of freshly 

prepared warm resuspension medium in the same flask and returned back to 
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incubation at 37°C. Starting from t0 that was defined as the point at which cells are 

resuspended, 1 ml of culture was taken as duplicates at each hour for the later 

execution of β-galactosidase assay. For the measurement of growth at OD595, the 

necessary amount of cultures were taken as dilutions. The following procedure was 

applied to the 1 ml of cultures.   

2.4. β-galactosidase Assay with ONPG 

After each sampling, the culture was centrifuged at 13000 rpm for 5 min and the 

supernatant was discarded. Then, the pellet was washed with 500 μl of ice-cold 25 

mM Tris-Cl (pH 7.4) by centrifugation. Following, the removal of the supernatant, 

the pellet was washed in 0.5 ml of ice old 25 mM TrisHCl (pH 7.4) for 5 min at 

13000 rpm in a microfuge. Then supernatant were discarded and cells were put on 

ice.    

Following the removal of the supernatant, the pellet was resuspended in 640 μl of Z-

buffer via vortexing and 160 μl of lysozyme was added. Later, the solution was 

vortexed for a second and incubated at 37°C for 5 min. Subsequently, the samples 

were taken on ice and 8 μl of 10% Triton-X100 was added. After vortexing for a 

while, the extracts were stored on ice.  

β-galactosidase assay was continued by prewarming the extracts in 30°C water bath 

for 5 min. Subsequent to this, 200 μl of ONPG solution was added and the solution 

was controlly watched for a yellowish color formation. Following the complete 

settlement of yellowish color, the reaction was stopped by adding 0.4 ml of 1 M 

Na2CO3 and reaction time was recorded. Reaction time refers to a period that was 

started by adding ONPG and continued until the settlement of the yellow color. At 

last, the samples were centrifuged at 13000 rpm for 5 min and the supernatant was 

taken to measure A420 and A550 of it. Calculations for β-galactosidase activity were 

carried out according to the formulation below (Miller, 1972) and graphs for β-

galactosidase activities were drawn.  

 

           A420 – (1.75 x A550 )  

Miller units =   --------------------------------------     x 1000 

         Reaction time (min) x OD595  
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2.5. Mature spore isolation 

Cells were grown in DSM and harvested at the end of 48th hour of culturing by 

centrifugation (10 000 g, 10 min, 4oC). Spores were purified through washes in ice 

cold deionized water two times and then through a further lysozyme treatment (0.1 

mg/ml, 37oC, 10 min). Following this step, spores were collected once again and 

washed multiple times by centrifugation (10 000 g, 10 min, 4oC) with ice cold 

deionized water. For the storage, purified spores were suspended in ice cold 

deionized water and kept in dark at -20oC for a short-term preservation. 

2.6. Germination and outgrowth of Bacillus subtilis spores 

Purified spores in water were heat activated at 65 oC for 30 min, cooled down and 

suspended in 2xYT and SMM. Spores were diluted to an OD600 of 0.4 in 2xYT and 

to an OD600 of 0.8 in SMM. After 15 min of adaptation at 37oC, germination agents 

of either L-alanine (10 mM) or AGFK (3.3 mM L, asparagine, 5.6 mM D-glucose, 

5.6 mM D-fructose, 10 mM KCl) was added to the medium in order to provide 

germination initiation. Furthermore, germination was monitored by measurement of 

loss in optical density at 600 nm at 37oC for 90 min with 10 minute intervals.  

2.7. Spore resistance 

Cells were grown in DSM at 37oC for 18 h following the end of exponential growth, 

which stands for approximately 24 hours, and a sample was removed from the 

cultures, diluted serially 10-fold in 0,85% saline solution and 0.1 ml aliquots of 

dilutions were plated on LB agar plates for total viable cell count. Afterwards these 

dilutions were heated at 80oC for 30 min and plated once again for total viable cell 

count. For the chloroform and lysozyme treatments, samples from the cultures were 

taken, diluted serially 10-fold in 0,85% saline solution and plated. Then, new 

samples were taken from the cultures and treated with lysozyme (final concentration, 

0.25 mg/ml) at 37oC for 10 min or with 10% v/v chloroform at room temperature for 

10 min. Following the treatments, lysozyme or chloroform-treated cultures were 

serially diluted and plated on LB agar medium containing plates. All the plates were 

incubated overnight at 37oC.  
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2.8. Assay for dipicolinic acid (DPA) 

Purified spores were diluted to OD600 of 2,5 in cold deionized water and 2 ml from 

these suspensions were harvested by 1 min. of centrifugation at 13.000 rpm and 

pellets were suspended in 1 ml of deionized water. Following this step, tubes were 

held in boiling water for 25 min. and then cooled down on ice. Subsequently, 

samples were centrifuged for 2 min. and their supernatants were saved. Assay 

reagent, composed of 25 mg L-cystein, 170 mg iron sulfate, 80 mg ammonium 

sulfate in 25 ml of 50 mM sodium acetate (pH 4.6 with glacial acetic acid) was 

prepared and 0,2 ml of this reagent was mixed with 0.4 ml of the supernatants taken 

and 0.4 ml of dH2O. These mixtures were centrifuged again for 2 min. and their 

optical densities at 440 nm were measured against a blank prepared from 0.8 ml of 

dH2O and 0.2 ml of assay reagent. Aiming the determination of exact DPA 

concentration (μg/ml), a calibration curve was prepared and treated similarly with 

pure DPA using standards of 0, 10, 20, 40, 70 and 100 μg DPA/ml. 
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3. RESULTS AND DISCUSSION 

3.1. Expression of yvgW in B. subtilis during sporulation  

Mutant strain AGU1 (yvgW::lacZ::erm) that was previously constructed through the 

use of Bacillus subtilis specific vector pMutinT3 involving lacZ reporter gene 

leading to a gene fusion into yvgW gene locus was previously assayed for the 

measurement of yvgW expression during sporulation, suggesting that the expression 

of yvgW in SM was showed to be induced at about 5th hour of its sporulation with a 

maximum β-galactosidase activity (approximately 16 Miller units) detected at 7th 

hour of sporulation. These results have already been reported to verify that 

expression of yvgW gene is sporulation specific and may be cell-compartment-

specific (mother cell or forespore) since genes expressed well after t2 of sporulation 

may be expressed in only one cell compartment and yvgW expression appeared after 

fourth hour in sporulation, reaching maximum levels at the seventh hour in 

sporulating cells (Gülçin Ülgen, M.Sc thesis in 2005). This time period corresponds 

to the late sporulation events during which accumulation of peptidoglycan in the cell 

wall, formation of cortex, and accumulation of spore coat proteins occur (Stragier 

and Losick, 1996).  

3.2. Sigma factor dependence of yvgW expression 

Following determination of the expression time of yvgW during sporulation process, 

which sigma factor is responsible for transcription of yvgW gene was aimed to be 

demonstrated.  

3.2.1. K and G dependences of yvgW expression 

Among four different sigma subunits of RNA polymerase, sigma K (K) and sigma 

G (G) function at late sporulation phase in mother cell and forespore respectively 

(Leichert et al., 2003). Since expression time of yvgW corresponds to late sporulation 

process, firstly dependence of yvgW expression on sporulation specific G factor was 
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previously examined by constructing a mutant strain, AGU2, containing 

transcriptional yvgW::lacZ fusion and deletion on spoIIIG locus that encodes sigma 

G marked by cat resistance gene by using chromosomal DNA of RL560 and using it 

to transform AGU1. Furthermore, expression of transcriptional yvgW::lacZ fusion in 

spoIVCB mutant background was analyzed and a mutant named OY3 was 

constructed following this aim. Firstly, chromosomal DNA of SR276 (B. subtilis 

PY79 spoIVCB::neo) was used to transform AGU1 and possible transformants 

were selected against NeoR and ErmR. During transformation, deletion of spoIVCB 

gene in AGU1 was revealed by double cross over in a way that, spoIIIG was 

replaced by the neo-cassette belonging to SR276. Transformant colonies were picked 

up and screened on DSM- agar plate, incubated for two days at 370C, to check 

sporulation negative mutant phenotype generated with deletion of spoIVCB. All of 

them were spo-, therefore one of them was chosen randomly and called as OY3 that 

contains transcriptional yvgW::lacZ fusion and deletion on spoIVCB gene with neo 

gene. In order to observe the effect of deletion of spoIIIG and spoIVCB genes on 

expression of yvgW gene, AGU1, AGU2 and OY3 strains were induced to 

sporulation in SM medium and β-galactosidase activity was measured during 

sporulation process. All the strains exhibited similar growth pattern, indicating that 

they were in the same stage of sporulation. Therefore, the β-galactosidase activity of 

AGU1, AGU2 and OY3 were comparable to each other giving idea about the sigma 

G and sigma K activities on the expression of yvgW. As seen on figure 3.1, deletion 

of the spoIIIG coding for G, caused a drastic reduction of the level of yvgW driven 

lacZ expression of about 50- 60 % relative to AGU1. However, Deletion of spoIVCB 

gene coding for K had no significant effect in the timing and level of the yvgW-lacZ 

expression. 
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Figure 3.1: Effects of deletion of genes encoding sporulation-specific sigma factors, 

σG and σK on expression of yvgW-lacZ. Time zero is the time of resuspension of the 

culture to initiate sporulation. The symbols used for the various strains are; (●) 

AGU1 (yvgW::yvgW-lacZ er), (Δ) OY3 (yvgW::yvgW-lacZ er spoIVCB::nm), (■) 

AGU2 (yvgW::yvgW-lacZ er spoIIIG::cat. 

3.2.2. F and E dependences of yvgW expression 

These data in section 3.2.1 suggested that yvgW is expressed specifically in the 

forespore compartment of the sporulation cell and yvgW transcription is controlled by 

mainly by G. However to certain the role of G in controlling yvgW expression, the 

expression of transcriptional yvgW::lacZ fusion not only in early forespore specific 

sigma factor F mutant but also in early and late mother-cell specific sigma factors 

E mutants’ background was analyzed. Therefore, chromosomal DNA of strain 

ASK202, carrying a deletion on spoIIAC that encodes sigma F marked by kan 

resistance gene and chromosomal DNA of strain ASK203, carrying a deletion on 

spoIIGB that encodes sigma E marked by kan resistance gene were used to transform 

AGU1 and possible transformants were selected against KanR and ErmR. During 

transformation, all the deletions in AGU1 were created by double cross over in a way 

that, spoIIIAC and spoIIGB were replaced by the kan-cassettes. Transformant 

colonies were picked up and screened on DSM- agar plate, incubated for two days at 

370C, to check sporulation negative mutant phenotype generated with deletions. All 

of them were spo-, therefore one of them was chosen randomly and called as OY1 

and OY2 that contains transcriptional yvgW::lacZ fusion and deletion on spoIIIAC 

and spoIIGB genes with kan gene, respectively.  

Following construction, AGU1, OY1 and OY2 were induced to sporulation by 

resuspension of a growing culture in a poor medium which is Sterlini-Mandelson 
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sporulation medium (SM) (Sterlini and Mandelstam, 1969) and samples were started 

to be taken at 1 hr intervals during the mid-log phase of their growth and continued 

until eight hr of sporulation (t8) with a final sample being taken at about t24 to assay 

for β –galactosidase using ONPG as substrate. In this method, time zero, reflecting 

the beginning of sporulation, was determined after incubating cultures until OD595 at 

0.5-0.8 in growth medium and resuspending them in resuspension medium. All the 

strains exhibited similar growth pattern, indicating that they were in the same stage 

of sporulation so that their β –galactosidase activities were compared and as seen in 

Fig.3.2, β –galactosidase assay revealed out that the deletion of spoIIAC and spoIIGB 

genes, coding for F and E, completely abolished yvgW-lacZ expression. 
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Figure 3.2: Effects of deletion of genes encoding sporulation-specific sigma factors, 

σF and σE on expression of yvgW-lacZ. Time zero is the time of resuspension of the 

culture to initiate sporulation. The symbols used for the various strains are; (●) 

AGU1 (yvgW::yvgW-lacZ erm), (□)OY1 (yvgW::yvgW-lacZ erm spoIIAC::kan) 

and (▲) OY2 (yvgW::yvgW-lacZ erm spoIIGB::kan) 

To sum up, in this study, although the deletion of spoIIAC and spoIIGB genes, 

coding for F and E, respectively, resulted in the complete elimination of yvgW-lacZ 

expression, the deletion of the spoIIIG coding for G caused a 50 to 60% reduction, 

compared to wild type strain in the level of yvgW-lacZ expression. In contrast, 

mutation in spoIVCB, encoding K, had no significant effect on the expression of 

yvgW-lacZ. Since, F drives not only the synthesis of G but also the activation of E, 

and E is required for the activation of G (Haldenwag, 1995), these results strongly 

suggest that yvgW is transcribed in both mother cell and forespore under the control 

of mother-cell specific sigma factor E and forespore-specific sigma factor G, 
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respectively, as in the case of the muramic--lactam biosynthetic gene, cwlD 

(Sekiguchi et al., 1995). 

3.2.3. B dependences of yvgW expression 

Additionally, the presence of A and B recognition sequences at the upstream of 

yvgW coding region (Gaballa and Helmann, 2003) and some recent reports about B 

and A directed sporulation genes such as obg (Scott and Haldenwang, 1999), spoVC 

(Price et al., 2001),  kat X (Bagyan et al., 1998), and veg gene (Fukushima et al., 

2003) suggested another possibility that yvgW might be transcribed primarily by 

RNA polymerase containing A  or B at the late stage of sporulation but somehow, 

pre and/or post transcriptional regulation of compartment-specific yvgW expression 

can be exclusively under the control of E and G. To check this hypothesis, the 

yvgW-lacZ transcription in B mutant background was analyzed in this study by 

constructing a new mutant, using chromosomal DNA of ML6, carrying a deletion on 

sigB gene, encoding sigma factor σB, and a cat gene on this deleted area to transform 

AGU1. Possible transformants were selected against CmR and ErmR and during 

transformation, deletion of sigB gene in AGU1 was revealed by double cross over in 

a way that, sigB was replaced by the cat-cassette belonging to ML6. One of the 

transformant colonies was picked up and named as OY4 and in order to observe the 

effect of deletion of sigB on expression of yvgW gene, AGU1 and OY4 strains were 

induced to sporulation in SM medium and β-galactosidase activity was measured 

during sporulation process. All the strains exhibited similar growth pattern, 

indicating that they were in the same stage of sporulation. Therefore, the β-

galactosidase activity of AGU1 and OY3 were comparable to each other giving idea 

about the sigma B activities on the expression of yvgW. As seen on figure 3.3, 

mutation in sigB had no significant effect on the level and or timing of sporulation 

specific yvgW-lacZ expression.  
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Figure 3.3: Effect of deletion of gene encoding σB on expression of yvgW-lacZ. 

Time zero is the time of resuspension of the culture to initiate sporulation. The 

symbols used for the various strains are; (●) AGU1 (yvgW::yvgW-lacZ erm) and 

(Δ)OY4 (yvgW::yvgW-lacZ erm sigB::cat)  

3.3. Construction of yvgW deletion vector 

3.3.1. Obtaining spc cassette 

7.0 kb long pIC333 vector was digested with BamHI for the interest of obtaining 2.4 

kb long mini-Tn10 fragment (Figure 3.4). Afterwards, mini-Tn10 fragment was 

double digested with XbaI and BamHI and 900 bp long spc cassette was obtained 

which had been isolated from the agarose gel. 

 

Figure 3.4: 2.4 kb long mini-Tn10 fragment obtained from pIC333 vector (lane 1). 

M: Marker 3: Lambda DNA / EcoRI + HindIII 
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Under the aim of cloning it into pDrive Cloning Vector (Qiagen), spc cassette was 

digested with XbaI and BamHI restriction enzymes and ligated into similarly 

digested pDrive Cloning Vector (Qiagen). This ligation mixture was used to 

transform electrocompetent cells of E.coli Top10 and transformants were selected on 

LB agar plates containing 100μg Ampicillin ml-1. 

Resulting transformants were picked up and 10 of them were used for plasmid DNA 

isolation for the verification of the cloning of 900 bp spc cassette fragment (Figure 

3.5).  

 

Figure 3.5: Plasmid DNA’ s isolated from E.coli Top10 AmpR transformants and M: 

Lambda / EcoRI+HindIII Marker DNA fragments. 

Plasmid DNA’s isolated from transformants were double digested with BamHI and 

XbaI restriction enzymes for further confirmation (Figure 3.6). The vector pDrive 

itself was 3850bp long while the insert was 900 bp long. Thus, molecular weight of 

the resulting recombinant plasmid was expected to be about 4750 bp long.  

 

Figure 3.6: pDrive cloning vector and spc cassette, after XbaI and BamHI double 

digestion (1). M : Marker 3: Lambda DNA / EcoRI+HindIII   
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As a consequence of   plasmid double digestion (Figure 3.6 lane 1), a 900 bp DNA 

fragment, which is equal to the cloned spc cassette from pIC333 (Figure 3.6 lane 1) 

and a 3850 bp DNA fragment which represents linear pDrive Cloning Vector DNA 

(Figure 3.6 lane 1) were observed on the agarose gel. Therefore, plasmid DNA’s 

isolated from this transformant was selected as the desired construct. 

3.3.2. Insertion of the PCR Fragments into pDrive Cloning Vector Containing 

spc Cassette 

An internal fragment of the B. subtilis PY79 yvgW gene, which stands between 1351 

bp to 1757 bp downstream of translational start codon was amplified by PCR using 

the chromosomal DNA of wild type strain Bacillus subtilis PY79 as template (Figure 

3.7). The reverse sequence was representing recognition site for SacI and the forward 

sequence was representing recognition site for the XbaI restriction endonucleases. 

 

 

 

Figure 3.7: 406 bp yvgW fragment amplified with PCR (lane 1), control PCR (lane 

2) and  Marker 1: PhiX174 DNA / BsuRI (HaeIII) (lane 3).  

In order to clone into the costructed plasmid, the resulting PCR fragment was 

digested with SacI and XbaI restriction enzymes and ligated into similarly digested 

pDrive containing Spc cassette vector (Figure 3.8). The ligation mixture was used to 

transform electrocompetent cells of E.coli Top10 and transformants were selected on 

LB agar plates containing 100μg Ampicillin ml-1. 

 

1    2                3 
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Figure 3.8: Gel extraction result of 4750 bp spc cassette containing pDrive cloning 

vector (lane 2) and 406 bp long PCR fragment double digestions with XbaI and 

BamHI after gel extraction (lane 3). Marker 3: Lambda DNA / EcoRI+HindIII (lane 

1).  

Following that, second internal fragment of B. subtilis PY79 yvgW gene, which stand 

between 160 bp to 537 bp downstream of translational start codon of the B. subtilis 

PY79 yvgW gene were amplified by PCR (Figure 3.9). The reverse sequence were 

representing recognition site for BamHI and the forward sequence were representing 

recognition site for the PstI restriction endonucleases. 

 

 

 

 

 

 

 

Figure 3.9: 377 bp BamHI-PaeI PCR fragment after gel extraction (lane 2). Marker 

1: PhiX174 DNA / BsuRI (HaeIII) (lane1). 

To clone this second PCR product into the constructed vector containing both Spc 

cassette and XbaI-SacI fragment, and second PCR product was double digested with 

BamHI-PaeI and ligated into similarly digested constructed vector. The ligation 

1      2       3       4      5       6

21226bp-------

5148bp------

2027bp------

1375bp------

947bp-----

564bp----

  1                  2 
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mixture was used to transform electrocompetent cells of E.coli Top10 and 

transformants were selected on LB agar plates containing 100μg Ampicillin ml-1. 

The resulting transformants were picked up and all of them were used for plasmid 

DNA isolation (Figure 3.10.A) to verify the cloning of the inserted fragments. 

Following this, restriction digestion analysis was carried out and the rescued 

plasmids were linearized with SacI (Figure 3.10.B) As a consequence of these 

digestions, one plasmid was identified as having the expected molecular weight and 

containing the cloned fragment (Figure 3.10.B).  

A.  

B.  

Figure 3.10: A. Undigested plasmids, B. Uncut plasmids 1,4,7,8 (lanes 1,3,5,7), 

Linearization of the obtained plasmids 1,4,7 and 8 with SacI (lane 2,4,6,8) M: 

Marker 3: Lambda DNA / EcoRI+HindIII. 

The vector pDrive itself was 3,85 kb long while the inserts were totally 1,68 kb long. 

The molecular weight of the resulting recombinant plasmid was expected to be about 

5,53 kb long. Therefore, a band app. 5,53 kb  in size was obtained from the plasmid 

digestion with SacI (Figure 3.13.B).  

With the objective of size determination,  this chosen plasmid was amplified in E. 

coli Top10, and the recombinant plasmid was further screened with the sequence 

analysis, using the specific primers to the ends of yvgW gene; PstI forward and SacI 

reverse and M13 forward(-40) specific primer, respectively. It was shown that this 
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constructed vector contains both the ends of the yvgW gene and also the spc cassette 

(Figure 3.11).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Constructed Deletion Vector 

3.3.3. Construction of yvgW deletion in B. Subtilis 

In order to provide construction of yvgW deletion mutant, constructed deletion vector 

DNA was used to transform competent cells of B. subtilis PY79 to spectinomycin 

resistance. Recombinant plasmid was driven into the chromosomal DNA of B. 

subtilis PY79 by a double cross over event. Chromosomal DNA’s of resultant SpcR  

transformants were isolated and the deletion on their yvgW locus was analyzed 

through performing PCR reaction, using two different sets of primers (Figure 3.12). 

First set contained the primers for the amplification of a fragment belonging to spc-

cassette. Second set contained the primers for the amplification of a DNA fragment 

containing both a part of the spc-cassette and a part of the yvgW fragment that was 

standing at the 3’ end of the spc-cassette. The verified mutant was named as OY5. 
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Figure 3.12:  yvgW deletion mutant verification through PCR. A 800 bp fragment 

belonging to spc cassette was amplified by using primers specific to spc-cassette 

(lane 3). Control PCR with PY79 chromosomal DNA using primers specific to spc-

cassette (lane 4). A 1100 bp fragment amplified from the same mutant which can be 

seen in the lane 3, containing both a part of the spc-cassette and a part of the yvgW 

fragment that was standing at the 3’ end of the spc-cassette (lane 1). Control PCR 

with PY79 chromosomal DNA using primers specific to a part of the spc-cassette 

and a part of the yvgW fragment (lane 2). M: Gene Ruler 1 kb Marker. 

3.4 Properties of yvgW  spores 

In this study, deletion of yvgW showed a clear effect on sporulation phenotype, it 

produced heat-sensitive and chloroform-sensitive spores. When sporulation 

frequencies of wild type, PY79 strain and yvgW::spc, OY5 strain are compared 

(Table 2), it revealed an drastic decrease in the spore formation at OY5, when spores 

produced by this strain are incubated at 80oC for 30 min.  

Furthermore, survival frequencies of PY79 and OY5 spores, when treated with 10% 

(v/v) chloroform at room temperature for 10 min, differed dramatically, giving a 6-

fold greater frequency for PY79 spores (Table 2). On the other hand, it is shown in 

this study that spores produced by OY5 strain were lysozyme-resistant just like PY79 

spore cells (Table 2). Vegetative growth of the yvgW-deleted cells in DSM medium 

was also less efficient giving a 30-50% less total cell titer when compared to 

vegetative growth of PY79 cells in DSM medium (Table 2). 
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Table 3.1: Heat, chloroform and lysozyme resistance of cells grown for sporulation 

in DSM 

 

a. heat treatment: incubation of the sample at 80oC for 30 min chloroform treatment: 

with 10% v/v chloroform at room temperature for 10 min lysozyme treatment: with 

lysozyme (final concentration, 0.25 mg/ml) at 37oC for  10 min. 

b. cfu/ml of culture following growth for 24 h at 37oC in DSM. 

c. Survival is calculated by dividing cfu/ml after treatment to cfu/ml before treatment  

 

 

On the basis of dipicolinic acid assay, PY79 spores were found to synthesize about 

32.75 ± 3,06 μg/OD600 DPA, while yvgW mutant spores had only 63 % of this level, 

synthesizing about 20.75 ± 2,49 μg/ OD600 DPA.  

For the germination properties, pure spores from OY5 and PY79 were treated with 

different germination agents at different media. When made grow in minimal 

medium, PY79 and OY5 spores were found to germinate in a similar pattern the 

germination agent was L-alanine or AGFK. (Figure 3.13-A, 3.13-C). Additionally, in 

case of rich 2xYT medium, germination and outgrowth patterns did not differ from 

each other; even if spores were treated with different germination agents (Figure 

3.13-B, 3.13-D). Spore germination is a process that can be divided into three stages: 

activation, which is followed by germination and finally outgrowth. Outgrowth is the 

process during which anabolic reactions starts to take place of catabolic ones, so that 

spores regain their vegetative forms. Consequently, outgrowth is validated as the 

initial optical densities of purified spores are restored at the end of the second stage 

of germination. Therefore, when the outgrowth of OY5 and PY79 spore cells was 

visualized, it was noticed that OY5 cells return to their vegetative state in a more 

delayed pattern, compared to wild-type germinating spores. This defect was 

obviously observed in SMM minimal medium (Figure 3.13-A; 3.13-C), while no 

Strain Treatmenta Cell titer before 

treatmentb 

(cfu/ml) 

Cell titer after 

treatment 

(cfu/ml) 

Survival 

frequencyc 

 PY79 heat 43.7 x 107 41.25 x 107 0.94 

  OY1 heat 33 x 107 2.55 x 107 0.077 

PY79 chloroform 59 x 107 41.7 x 107 0.71 

OY1 chloroform 30 x 107 3.8 x 107 0.13 

PY79 lysozyme 53 x 107 47 x 107 0.89 

OY1 lysozyme 31 x 107 26.5 x 107 0.85 
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differences in outgrowth properties between OY5 and PY79 spores were captured in 

2xYT medium (Figure 3.13-B; 3.13-C). 
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Figure 3.13: Effects of different germination agents L-alanine and AGFK on OY5 

and PY79 spores, when grown in either SMM or 2xYT. Spores were prepared, 

induced by heat and  germinated at 37 oC with 4mM L-alanine in SMM medium (A) 

and in 2xYT (B) and  with AGFK (3.3 mM L-asparagine, 5.6 mM D-glucose, 5.6 

mM D-fructose, 10 mM KCl) in SMM (C) and in 2xYT (D). Germination and 

outgrowth profile of OY5 and PY79 spore cells were drawn through measurement of 

loss in optical density at 600 nm at 37oC for 90 min at 10 min intervals and further 

measurements continued until outgrowth is observed at 60 min intervals. The 

symbols used for the strains are; (♦) OY5 (yvgW::spc) and (■) PY79 (wild type). 

All of these available data strongly suggest that deficiency of yvgW effects a late step 

in spore synthesis; spore coat/cortex synthesis, dehydration of spores, SASP 

synthesis, DPA synthesis and/or accumulaton in the spores. Since yvgW spores are 

lysozyme resistant and also have no defect in the initiation of spore germination, 

indicated that there is no major defect in the coats of yvgW spores but it presumably 

became more permeable to chloroform because of the pleiotropic effect of yvgW on 

the spore coat protein profile. The level of DPA in yvgW spores was significantly 

lower than in wild type spores, which could be the reason for heat sensitive 

phenotypes, as well as the slow outgrowth phenotype of yvgW spores. In B. subtilis, 
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the specifically blockage of DPA synthesis results in DPA-less spores with decreased 

resistance to wet heat by the increased core hydration (Balassa et al.; 1979, Coote, 

1972) which is the major determinant of spore heat resistance (Todd et al., 1986; 

Popham et al., 1995). In the case of recent report, spores of B. subtilis mutants 

lacking DPA because of null mutations in spoVF have a lower core wet density and 

are sensitive to wet heat (Paidhungat et al., 2000).  

The great majority of SASP degradation during spore germination is initiated by a 

single protease, GPR. The major phenotype of the gpr mutants is a slow return to 

vegetative growth after spore germination in rich medium. Because GPR is 

synthesized as a 46-kDA precursor (termed P46) during sporulation, and P46 

autoprocesses into a smaller active form (termed P41) ca. 2 hr later in sporulation. 

This conversion of P46 to P41 is stimulated allosterically by DPA only late in spore 

core maturations, when the core dehydrated and acidified. This dehydration and 

acidification also stimulates conversion of P46 to P41, and this condition in the spore 

core preclude enzyme action thus keeping SASPs as stable in developing and 

dormant spores (Sanchez-Salas et al., 1993). It was recently reported that very little 

P46 is processed to P41 in the more hydrated and DPA-less Δger3 spoVF spores which 

accompanies the degradation of SASP- during sporulation (Paidhungat et al., 2000). 

SASP- is an amino acid storage protein and its degradation helps support protein 

synthesis early in spore germination and outgrowth and SASP-- spores are retarded 

in spore outgrowth (Hackett and Setlow, 1988). Consistently, slow outgrowth 

phenotype of  heat-sensitive yvgW spores can be the consequence of the low level of 

DPA in yvgW spores due to the less efficient conversion of GPR P46 to P41 and thus 

presumably resulted in slow SASP degradation during early germination and/or the 

condition in yvgW spores core may not enough to preclude protease activity entirely 

and resulting in the loss of  some SASP proteins especially SASP- during 

sporulation or spore incubation periods due to the residual protease activity in spores 

as suggested by Paidhungat et al., 2000. Even the fact that slow outgrowth 

phenotypes of yvgW spores suppressed in the presence of rich medium (2xYT) 

containing large amount of free amino acids get stronger the possibility of later 

suggestion, a further detailed work on the level of dehydration of yvgW spore core, 

the level of GPR and SASPs in yvgW spores is needed. 
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The ultimate purpose of this research is to achieve the molecular characterization and 

the elucidation of the functional role of yvgW gene in the sporulation process. Under 

these respects, yvgW promoter region used during sporulation and vegetatif growth 

will be identified by primer extension method and further detailed characterization of 

mutant spores will be performed.  
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4. CONCLUSION 

Present study was focused on the functional characterization of yvgW in the 

sporulation process of B. subtilis. Previous analysis of yvgW expression showed that 

a significant compartment-specific yvgW expression take place during the late stage 

of sporulation (T5-T7) though a slight yvgW  expression was induced in the  

vegetative cell upon with the cessation of logarithmic growth. Subsequently, the 

effect of sporulation specific sigma factors on expression of yvgW gene was further 

analyzed. The deletion of spoIIAC and spoIIGB genes, coding for F and E, 

respectively, resulted in the complete elimination of yvgW-lacZ expression. 

Although, the previous deletion of the spoIIIG coding for G caused a remarkable 

reduction in the level of yvgW-lacZ expression, mutation in spoIVCB encoding K 

had no significant effect on the expression of yvgW-lacZ. Moreover, through the 

construction of yvgW::spc, yvgW mutant cells were investigated for their spore 

properties, giving that spores of mutant cells showed high sensitivity to heat and 

chloroform, and resistance to lysozyme. The level of dipicolinic acid was also 

significantly reduced (37 %) in yvgW spores compared to wild type spores. 

Furthermore, the analyses of the nutrition specific germination and outgrowth 

characteristics of null mutant and wild type cells showed that no defect in the 

initiation of yvgW spore germination but they return to vegetative state more slowly 

then wild-type spores. 
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APPENDIX A 

Compositions and Preparation of Culture Media 

Luria Bertani (LB) Medium (1000ml) 

Tryptone                   10 g/L 

Yeast Extract  5 g/L 

NaCl   5 g/L 

Distilled H2O was added up to 1000 ml and then autoclaved for 15 min. 

Luria Bertani (LB) Agar Medium (1000 ml) 

Tryptone  10 g/L 

Yeast Extract    5 g/L 

NaCl2     5 g/L 

Agar   15 g/L 

Distilled H2O was added up to 1000 ml and then autoclaved for 15 min. 

SMM (1000 ml) 

(NH4)2SO4                   2 g 

K2HPO4                      14 g 

KH2PO4                        6 g 

Na3.citrate.2H2O           1 g 

MgSO4.7H2O             0,2 g 

Distilled H2O was added up to 1000 ml and then autoclaved for 15 min. After 

cooling down, followings were added into the medium. 

50% glucose                10 ml 

L-tryptohan(3mg/ml)  10 ml 
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HS medium (30 ml) 

10X-S-base       3 ml 

Glucose (50%)  300 μl  

Yeast Extract (10%)  300 μl 

Casaminoacid (2%)  300 μl 

Arg (8%) + His (0.4%)    3 ml 

Tryptophan (0.5%)  300 μl 

Phenylalanine (0.3%)  450 μl 

Completed up to 30 ml with sterile distilled H2O and stored at cold room (+4°C) up 

to one week at most.  

LS Medium (20 ml) 

10X-S-Base   2 ml 

Glucose   200 μl 

Tryptophan   200 μl 

Phenylalanine     30 μl 

Casaminoacid   100 μl 

Beef Extract   200 μl 

Spermine (50mM)  200 μl 

MgCl2 (1M)(filter steriled)      50 μl   

Freshly prepared and completed up to 20 ml with sterile distilled H2O.  

2xYT Medium (1000 ml) 

Tryptone  16 g 

Yeast Extract  10 g 

NaCl     5 g 

Distilled H2O was added up to 1000 ml and then autoclaved for 15 min. 

Agar    15 g (Add before autoclaving for solid 2xYT medium) 
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DSM (Schaeffer’s sporulation medium / agar) (1000 ml) 

Nutrient Broth              8 g 

KCl (10% w/v)           10 ml 

MgSO4.7H2O (1.2%)           10 ml 

NaOH (1M)           0.5 ml 

Autoclaved for 30 min and cooled down to 50°C. 

Ca (NO3)4 (1M)  1 ml 

MnCl2 (0.01M)  1 ml 

FeSO4 (1mM)   1 ml (resuspend before use) 

% 1.5 Agar was added if necessary before autoclaving. 

Sterlini – Mandelstan Medium (SM medium) 

CH I + II 

Casein hydrosylate (Oxoid L41) 10 g 

L – Glutamic acid   3,68 g 

L – Alanine    1,25 g 

L – Aspargine    1,39 g 

KH2PO4    1,36 g 

NH4Cl     1,34 g 

Na2SO4    0,11 g 

NH4NO3    0,10 g 

FeCl3.6H2O    1 mg 

Dissolve the glutamic acid in distilled water by adjusting the pH to 7,0 with 10 M 

NaOH. Then add the other ingredients, adjust the final volume to 940 ml, dispense 

into 94 ml aliquots and autoclave. Do not replace casein hydrosylate with casamino 

acids. 

CH III 

MgSO4.7H2O    1,98 g 

10% (w/v) CaCl2   4 ml 
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Add separately to distilled water and bring the volume to 1 L. Autoclave and 

dispense into appropriate aliquots (100 ml) 

CH VI 

Dissolve 1.1 g of MnSO4.4H2O in 100 ml distilled water, dispense into 19 ml 

aliquots and autoclave. 

CH V 

This is L-Tryptopan (2 mg/ml) dissolved in water and fitler sterilized. 

Sporulation salts 

d H2O   989 ml 

solution A  1 ml 

solution B  10 ml 

Solution A 

Per 100 ml: 

FeCl3.6 H2O  0,089 g 

MgCl2.6 H2O  0,830 g 

MnCl2.4 H2O  1,979 g 

Autoclave, aliquot and store at 40C 

Solution B 

NH4Cl   53,5 g 

Na2SO4  10,6 g 

KH2PO4  6,8 g 

NH4NO3  9,7 g 

Dissolve in 800 ml d H2O.  

Adjust pH to 7,0 with 2 M NaOH and bring volume to 1 L. Store at 40C 

Solution C 

This is 5% L-Glutamate. (L-Glutamic acid; pH 7.0 with 10 M NaOH) Autoclave. 

Solution D 

This is 0.1 M CaCl2. Autoclave. 
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Solution E 

1 M MgSO4.7 H2O. Autoclave 

Growth Medium 

Growth medium (100 ml) is prepared on the day of use from the following sterile 

components. 

CH I + II 94 ml 

CH III  5 ml 

CH VI   0,2 ml 

CH V  1 ml 

Tryptophan ( CH V) is incorporated into the growth medium because this amino acid 

is lost during acid hydrolysis of casein. 

Resuspension Medium 

Resuspension medium (100 ml) is prepared on the day of use from the following 

sterile components :  

Sporulation salts 90 ml 

Solution C  4 ml 

Solution D  1 ml 

Solution E  4 ml 

The appropriate growth requirements must be added to this minimal medium. 

 

For antibiotic resistance LB liquid and solid media: 

Final concentration: 

Amp:  100 μg/ml 

Erm:  1 μg/ml  

Ln:                  25 μg/ml 

Spc:                100 g/ml 

Neo:                5g/ml  

Kan:                10 g/ml 

Cm:                5g/ml 

 

Added to the liquid media after autoclaving and cooling down  
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Added to the liquid agar media after cooling down to 50°C but before pouring into 

petri dishes 
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APPENDIX B 

Compositions of Buffers and Solutions 

TAE Buffer (50X) 

Tris base (2 moles)   242 g  

Glacial acetic acid                    57.1 ml 

EDTA                            100 ml (0.5 M, pH 8.0) 

Distilled H2O was added up to 1L   and pH was adjusted to 8 by HCl 

Low Melting Agarose Gel (1%) 

Agarose  0.5 g 

TAE buffer (1X) 50 ml 

1.5g/mL EtBr was added before pouring the gel into tray 

Low Melting Agarose Gel (2%) 

Agarose  1 g 

TAE buffer (1X) 50 ml 

Addb 1.5μl EtBr (final concentration: 0.5 μg/ml) was added before pouring the gel 

into tray. 

Physiological Sodium Chloride Solution (0.85%) (1000 ml) 

NaCl2  8.5 g   

Dissolved in 1000 ml distilled water and autoclaved.  

Z Buffer (500 ml, pH 7.0) 

Na2HPO4.7H2O   60mM, 5.33 g  

Na2HPO4    40 mM, 3.12 g 

KCl2     10 mM, 0.373 g 



 64 

MgSO4.7H2O    1 mM, 0.123 g 

All mixed and dissolved within 500 ml distilled water and the pH was adjusted to a 

value of 7.0.  

β-mercaptoethanol  final concentration: 270 μl / 100 ml  (add to Z buffer on 

the day of the use) 

Lysozyme   final concentration: 2.5 mg/ml 

ONPG    final concentration: 4.0 mg/ml  

Tris-Cl Solution (25mM, 1000 ml, pH 7.4) 

Tris (hydromethyl)aminomethane  3.03 g    

Dissolved in 1000 ml distilled water and pH was adjusted to 7.4 with HCl (1 M) 
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APPENDIX C 

ENZYMES AND CHEMICALS 

Enzyme       Supplier  

BamHI        Fermentas 

HindIII       Fermentas 

SacI Fermentas 

PstI Fermentas 

XbaI Fermentas 

Taq polymerase      Fermantas 

T4 DNA Ligase      Fermentas  

  

Chemical       Supplier 

Agar        Sigma 

Agarose       Sigma 

β-mercapthoethanol                                                              Merck 

Calcium chlorid (CaCl2)     Merck 

D(+)-Glucose monohydrate     Merck 

Iron(III) sulfate – 7 – hydrate (FeSO4.7H2O)  Riedel-de Haën 

L- Argininemonohydrochlorid    Merck 

L-Histidinmonohydrochlorid     Merck 

L-Tryptophan       Merck 

Lysozyme                                                                              Sigma 

Magnesium sulphate (MgSO4.7H2O)   Riedel-de Haën 

Natrum hydroxid (NaOH)     Riedel-de Haën 

Natrium sulfate (Na2SO4)     Riedel-de Haën 

Nutrient broth       Merck 

ONPG                                                                                    Sigma 

Polyethyleneglycol (HO(C2H4O)nH)    Merck 
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Potassium chloride (KCl)     Riedel-de Haën 

Sodium carbonate (Na2CO3)     Riedel-de Haën 

Sodium chloride (NaCl)     Riedel-de Haёn 

Sodium hydrogen phosphate(Na2HPO4.7H2O)    Merck 

Tris (hydrocymethyl) aminomethane                                    Merck 

Triton-X100                                                                          Sigma   

Tryptone       Sigma 

Yeast Extract       Sigma  
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APPENDIX D 

MARKERS………………………………………………………………Fermentas  

             

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker 3: Lambda DNA / 

EcoRI+HindIII Marker, 3 

Marker 1 : PhiX174 

DNA / BsuRI (HaeIII) 

Marker, 9 

 

1.0% agarose 
0.5µg/lane, 

8cm length gel, 

1X TAE, 17V/cm 

1.7% agarose 
0.5µg/lane, 

8cm length gel, 

1X TBE, 12V/cm 

GeneRuler 1kb DNA 

Ladder 
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APPENDIX E 

yvgW DNA Sequence 
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APPENDIX F 

LABORATORY EQUIPMENT 

Autoclave: Tuttnauer Systec Autoclave (2540 ml) 

Balances: Precisa 620C SCS 

      Precisa 125 A SCS 

Centrifuge: Beckman Coulter, Microfuge 18  

Centrifuge rotor: F241.5P 

Deep freezes and refrigerators: -80°C Heto Ultrafreeze 4410 

           -20°C Arçelik 209lt 

            +4°C Arçelik 

Electrophoresis equipments: E – C mini cell primo EC320 

Gel documentation system: UVI PHotoMW Version 99.05 for Windows 

Incubators: Nüve EN400 

          Nüve EN500 

Orbital shaker incubators: Sertomat S – 2 

              Thermo 430 

Pipettes: Gilson pipetteman 10 μl, 20 μl, 200 μl, 1000 μl 

      Volumate Mettler Toledo 10 μl, 20 μl, 200 μl, 1000 μl 

      Eppendorf research 10 μl, 20 μl, 200 μl, 1000 μl 

pH meter: Mettler Toledo MP220 

Spectrophotometer: PerkinElmer Lambda25 UV/VIS Spectrometer 

Thermocycler: Techne FTGENE 5D 

Thermomixer: Eppendorf thermomixer comfort (1.5 ml) 

Transillumunator: Biorad UV transilluminator 2000 

Vortexing machine: Heidolph Raax top  

Waterbaths: Memmert wb-22 
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