
ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF 

SCIENCE ENGINEERING AND TECHNOLOGY 

 

 
 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Management Engineering 

 

Management Engineering Programme 

 

 

Ph.D. THESIS 

Celal Barkan GÜRAN 

 

 

JULY 2015  

 

 

 

 

A GRADUAL APPROACH IN PORTFOLIO SELECTION PROBLEM: 

OPTIMIZATION BY USING FUZZY APPROACH  

WITH SSD EFFICIENCY TEST 

Thesis Advisor: Prof Dr. Oktay TAŞ 



  



 

 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF 

SCIENCE ENGINEERING AND TECHNOLOGY 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Management Engineering Programme 
 

 

 

 

Thesis Advisor: Prof Dr. Oktay TAŞ 
 

 

Department of Management Engineering 

 

 

 

 

 

Ph.D. THESIS 

Celal Barkan GÜRAN 

 (507092014) 

 

  

  

 

  

  

  

  

  

 

JULY 2015  
 

A GRADUAL APPROACH IN PORTFOLIO SELECTION PROBLEM: 

OPTIMIZATION BY USING FUZZY APPROACH  

WITH SSD EFFICIENCY TEST 





 

 

TEMMUZ 2015 
 

 

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

 

DOKTORA TEZİ 

Celal Barkan GÜRAN 

(507092014) 

 

 

İşletme Mühendisliği Anabilim Dalı 

 

İşletme Mühendisliği Programı 

Tez Danışmanı : Prof. Dr Oktay TAŞ 

  

  

  

  

 

İKİNCİ DERECE STOKASTİK BASKINLIKTA VERİMLİLİK TESTİ VE 

BULANIK MANTIK YAKLAŞIMI İLE  

İKİ AŞAMALI BİR PORTFÖY OPTİMİZASYONU 
 





 
v 

Celal Barkan Güran, a Ph.D. student of ITU Graduate School of Science 

Engineering and Technology student ID 507092014, successfully defended the 

thesis entitled “A GRADUAL APPROACH IN PORTFOLIO SELECTION 

PROBLEM: OPTIMIZATION BY USING FUZZY APPROACH WITH SSD 

EFFICIENCY TEST”, which he prepared after fulfilling the requirements specified 

in the associated legislations, before the jury whose signatures are below. 

 

 

 

 

 

Thesis Advisor :  Prof. Dr. Oktay TAŞ   .............................. 

 İstanbul Technical University  

 

 

Jury Members :  Prof. Dr. Cengiz KAHRAMAN  ............................. 

İstanbul Technical University 

 

 

Prof. Dr. Suat TEKER   .............................. 

Işık University 

 

 

Assoc. Prof. Dr. Cumhur EKİNCİ  .............................. 

İstanbul Technical University 

 

 

Assoc. Prof. Dr. Mehmet Fuat BEYAZIT .............................. 

Bilgi University 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date of Submission : 07 June 2015 

Date of Defense :  28 July 2015 



 
vi 

 

  



 
vii 

 

 

 

To my spouse and son, 

 

 

 

 

 



 
viii 

 

 

 

 

 

 

 

 

 



 
ix 

 

FOREWORD 

This thesis is the end product of an intensive Ph.D. work of five years. In addition to 

the approval of the examining committee, the acceptances of the thesis related 

academic papers by the prestigious journals during the thesis progress has increased 

my motivation.  

I would like to express my deep appreciation and thanks for my thesis advisor Prof. 

Dr. Oktay Taş who has helped me in all stages of this thesis process and also for my 

examining committee members Prof. Dr. Suat Teker and Prof. Dr. Cengiz Kahraman. 

Besides I want to thank to Institute of Science and Technology (TÜBİTAK) that has 

financially supported me during this long period. 

Furthermore, I must thank to my close family for their moral support during this 

tough duration: My wife Aysun Güran, my mothers Zeynep Güran and Meryem 

Doğrusöz, my fathers Ceyhan Güran and Harun Doğrusöz and my little son Emir 

Güran who is the newest member of my family. 

 

July 2015 

 

Celal Barkan GÜRAN 

(Mathematics Engineer)  

 

 

 

 



 
x 

 

 

 

 

 



 
xi 

 

 

TABLE OF CONTENTS 

 

                                                                                                                                             Page 

FOREWORD ............................................................................................................. ix 

TABLE OF CONTENTS .......................................................................................... xi 
ABBREVIATIONS ................................................................................................. xiii 
LIST OF TABLES ................................................................................................... xv 
LIST OF FIGURES ............................................................................................... xvii 

SUMMARY ............................................................................................................. xix 
ÖZET ........................................................................................................................ xxi 
1. INTRODUCTION .................................................................................................. 1 
2. FUNDAMENTAL CONCEPTS AND THEORETICAL BACKGROUND ..... 5 

2.1 Modern Portfolio Theory (MPT) ........................................................................ 5 
2.1.1 Mean-Variance (MV) optimization ............................................................ 6 
2.1.2 Shortcomings of MV optimization ............................................................. 8 

2.2 Basics of Fuzzy Logic ...................................................................................... 10 

2.2.1 Classical sets: Relations and functions ..................................................... 10 
2.2.2 Definition of fuzzy fets ............................................................................. 16 
2.2.3 Basic operations on fuzzy sets .................................................................. 20 

2.2.4 Fuzzy numbers .......................................................................................... 23 
2.2.5 Triangular fuzzy numbers ......................................................................... 25 

2.2.6 Trapezoidal fuzzy numbers ....................................................................... 27 
2.3 Stochastic Dominance (SD) ............................................................................. 29 

2.3.1 First order stochastic dominance (FSD) .................................................... 30 

2.3.2 Second order stochastic dominance (SSD) ............................................... 33 
2.3.3 Efficiency analysis by using SSD ............................................................. 36 

2.4 Measurements Criteria of the Portfolio Performance....................................... 37 

2.4.1 Sharpe Ratio (SR) ..................................................................................... 37 

2.4.2 Treynor Ratio (TR) ................................................................................... 37 

3. LITERATURE REVIEW .................................................................................... 39 
3.1 Studies including Fuzzy Approach .................................................................. 39 
3.2 Studies including Stochastic Dominance ......................................................... 45 

4. THEORY OF THE SUGGESTED MODEL ..................................................... 49 
4.1 First Step. Elimination of SSD inefficient stocks ............................................ 49 
4.2 Second Step. Minimizing the Fuzzy Variance at a given target return ............ 50 

5. APPLICATION OF THE SUGGESTED MODEL .......................................... 53 
5.1 Main Structure .................................................................................................. 53 
5.2 Data .................................................................................................................. 53 

5.3 Application of the Models ................................................................................ 58 
5.3.1 Model 1 -> Portfolio-A ............................................................................. 58 

5.3.2 Model 2 -> Portfolio-B ............................................................................. 59 
5.3.3 Model 3 -> Portfolio-C ............................................................................. 63 

6. CONCLUSION ..................................................................................................... 67 
6.1 The results of the Performance Tests ............................................................... 67 



 
xii 

6.2 Concluding Remarks ........................................................................................ 68 
6.3 Future Work...................................................................................................... 69 

REFERENCES ......................................................................................................... 71 

APPENDICES .......................................................................................................... 75 
CURRICULUM VITAE .......................................................................................... 81 



 
xiii 

ABBREVIATIONS 

CDF                : Cumulative Distribution Function 

FSD : First Order Stochastic Dominance 

IPO : Initial Public Offering 

MPT : Modern Portfolio Theory 

MV : Mean-Variance 

SR : Sharpe Ratio 

SSD : Second Order Stochastic Dominance 

SWF               : Social Welfare Function 

TR : Treynor Ratio 

 

 

 

 

 

  



 
xiv 

 

 

 

 

 

 

 

 



 
xv 

 

LIST OF TABLES 

                                                                                                                                            Page 

Table 5.1 : BIST-30 Index of Turkey. ....................................................................... 54 
Table 5.2 : Bist-30 Companies sorted from largest to smallest according to their 

weight of the stock in the index .............................................................. 55 
Table 5.3 : Bist-30 Companies sorted from largest to smallest according to their 

market value in USD ............................................................................... 56 
Table 5.4 : Bist-30 Companies sorted from oldest to newest according to their       

IPO Date .................................................................................................. 57 

Table 5.5 : MV optimized portfolios of BIST-30 Stocks .......................................... 58 
Table 5.6 : SR computation of the BIST-30 Portfolios. ............................................ 59 

Table 5.7 : SSD output matrix showing all 435 SSD relationships among 30     

assets........................................................................................................ 60 

Table 5.8 : MV optimized portfolios of 12 SSD Efficient Stocks. ........................... 62 
Table 5.9 : Sharpe Ratio computation of the 12 SSD Efficient Stocks. .................... 62 

Table 5.10: The necessary calculations of the SSD efficient 12 stocks to minimize  

the fuzzy variance.................................................................................... 64 

Table 5.11: The linear optimization model. .............................................................. 65 
Table 5.12: Fuzzy Varince minimization of the SSD efficient 12 stocks. ................ 65 
 

Table A.1 : Additional Information about BIST-30 Companies ............................... 76 
Table A.2 : Closing values of 30 Stocks in BIST-30 ................................................ 77 

Table A.3 : Variance-Covariance Matrix of Model 1 ............................................... 78 
   Shapiro-Wilk Normality Test results of stock returns ........................... 79 

 



 
xvi 

 

 

 

 

 

 

 



 
xvii 

 

LIST OF FIGURES 

                                                                                                                   Page 

Figure 2.1 : Graphical display of the relationship between Standard Deviation vs      

Expected Return of a portfolio and its Efficient Frontier. ...................... 8 

Figure 2.2 : Graphical Display of the Cartesian product with two finite sets. .......... 12 
Figure 2.3 : Graphical Display of the Cartesian product with one finite and one 

infinite set. ............................................................................................ 13 
Figure 2.4 : Membership function of the set tall men. .............................................. 15 
Figure 2.5 : Graphical Display of Fuzzy Set A. ........................................................ 19 

Figure 2.6 : The fuzzy set A1 representing real numbers close to 10. ...................... 19 
Figure 2.7 : Description of tall men by fuzzy set. ..................................................... 20 

Figure 2.8 : µA(x)  and  µB(x)  and their complementation intersection and union 

sets ........................................................................................................ 22 

Figure 2.9 : The law of excluded middle both for classical and fuzzy sets .............. 22 
Figure 2.10: Fuzzy numbers: (a) with a maximum; (b) with a flat. .......................... 23 

Figure 2.11: The general graphical presentation of Piecewise-quadratic fuzzy 

number. ............................................................................................... 24 

Figure 2.12: Triangular fuzzy number with center aM. ............................................. 25 
Figure 2.13: (a) Central triangular number; (b) Central triangular number 

symmetrical about µ. .......................................................................... 26 

Figure 2.14: Trapezoidal fuzzy number with a flat [b1,b2]. ...................................... 27 
Figure 2.15: Trapezoidal number in central form. .................................................... 28 

Figure 2.16: (a) Right trapezoidal number Ar representing small; (b) Left  

trapezoidal number Al representing large. ......................................... 28 

Figure 2.17:  An example distribution  stating the output of rewards of two    

lotteries ............................................................................................... 30 
Figure 2.18: Graphical representation of the cumulative probability distributions     

of F and G ........................................................................................... 32 
Figure 2.19: Graphical representation of SSD where the solid and the dotted    

curves while the dashed straight line is x−1. ...................................... 36 
 

Figure 3.1 : Triangular fuzzy number (a,α,β) with center a and presentation of      

a1(γ) and a2(γ) .......................................................................................... 43 
Figure 3.2 : Typical Lorenz Curve compared with the line y=x ............................... 46 

Figure 3.3 : Generalized Lorenz and Second Order Dominance .............................. 47 

 

Figure 5.1 : Efficient Frontier of the MV Optimized BIST-30 Portfolios. ............... 59 
Figure 5.2 : The Venn diagram of the SSD clusters ................................................. 61 
Figure 5.3 : Efficient Frontier of the MV Optimized SSD Efficient Portfolios ........ 62 
Figure 5.4 : The calculation logic of up (βi) and down (αi) directions explained       

by the “Arçelik” Stock .......................................................................... 64 



 
xviii 

 

Figure 6.1 :  Sharpe Ratio (SR) results of the compared portfolios .......................... 68 
Figure 6.2 :  Treynor Ratio (TR) results of the compared portfolios ........................ 68 

 

 

 



  
xix 

A GRADUAL APPROACH IN PORTFOLIO SELECTION PROBLEM: 

OPTIMIZATION BY USING FUZZY APPROACH WITH SSD EFFICIENCY 

TEST 

SUMMARY 

 

Portfolio management is a trillion dollar business in today’s financial world where 

every investor tries to increase the return of his portfolio while at the same time to 

decrease the risk of it. The classical and 60 years old Mean Variance (MV) portfolio 

optimization method has become old fashioned since it has some weaknesses which 

do not satisfy today’s financial needs when working with real data. At the core, 

among other shortcomings, the requirement of normal distributed returns renders the 

MV optimized portfolios Second Order Stochastic Dominance (SSD) inefficient. In 

this thesis, a new two step gradual portfolio optimization method is introduced. In the 

first step of this method SSD inefficient stocks are eliminated after c(n,2) pairwise 

SSD comparisons of all stocks in the portfolio. At this point, a SSD inefficient stock 

means that it is second order stochastically dominated by at least one other stock. 

The second step of this gradual method is the application of the “fuzzy variance” 

minimization instead of MV. In this second step the future returns of the stocks are 

predicted with the help of the triangular fuzzy numbers where their centres are the 

average returns and their left and right deviations are relatively the worst and the best 

returns of the stocks in the observation period. As an empirical example, this 

suggested method is applied to the Turkish BIST-30 Index. Once the application is 

completed, the optimized portfolio of the suggested method is compared with both 

the MV optimized portfolio and the original BIST-30 portfolio according to most 

well known performance measurements, Sharpe Ratio (SR) and Treynor Ratio (TR). 

Detailed performance tests show that this new gradual method has overwhelming 

superiority over the classical method which requires normal distribution of stock 

returns that is nearly impossible in real data. In the near future, this novel gradual 

portfolio optimization method will be applied to other markets of the world to 

generalize its superiority over the MV. 
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İKİNCİ DERECE STOKASTİK BASKINLIKTA VERİMLİLİK TESTİ VE 

BULANIK MANTIK YAKLAŞIMI İLE İKİ AŞAMALI BİR PORTFÖY 

OPTİMİZASYONU 

ÖZET 

Yatırımcıların portföylerinin getirisini maksimize etmeye çalışırken aynı zamanda 

riskini de minimize etmeye çalıştıkları günümüzün  finans dünyasında portföy 

yönetimi trilyon dolarlık bir pazar haline gelmiştir. 60 yıllık mazisi olan klasik 

varyans minimizasyonu yöntemi (MV) gerçek veri ile çalışırken günümüzün 

ihtiyaçlarını karşılamakta zayıf kalmaktadır. MV’nin diğer tüm zaaflarının yanında 

portföy varlıklarının getirileri üstüne getirdiği normal dağılım zorunluluğu bu 

yöntem ile optimize edilmiş portföylerin ikinci derece  stokastik baskınlıkta (SSD) 

etkin olamaması sonucunu doğurmaktadır.  

Bu tezde, ilk aşamasında SSD’de etkin olmayan hisse senetlerini eleyen ikinci 

aşamada da bulanık mantık yaklaşımı ile hesaplanan “bulanık varyans”ı minimize 

eden iki basamaklı yeni bir portföy optimizasyon metodu ortaya konmaktadır. 

Akabinde de bu metot BIST-30 endeksine uygulanmaktadır. Uygulama 

tamamlandıktan sonra, bu yeni iki aşamalı yöntemle oluşturulan portföy hem MV ile 

hesaplanan portföy hem de orijinal BIST-30 portföyü ile meşhur performans ölçütleri 

olan Sharpe Oranı (SR) ve Treynor Oranı (TR) kriterlerine gore kıyaslanmaktadır. 

Yapılan detaylı performans analizleri bu tezde ortaya konan yeni metodun gerçek 

veri ile yapılan çalışmalarda pratik olarak varolması neredeyse imkansız olan normal 

dağılım şartı yüzünden klasik metoda göre üstünlük sağladığını göstermektedir. 

Yakın gelecekte de bu yöntemin dünya çapındaki önemli endekslere uygulanarak 

performans sonuçlarının MV yöntemine karşı gösterdiği üstünlüğün ülkeden 

bağımsız olarak tüm finans piyasalarında genellenmesi hedeflenmektedir. 

Portföy yönetimi ile ilgili genel açıklamalar içeren ve ilk paragrafta da belirtilmiş 

olan "Giriş" bölümünden sonra "Temel Kavramlar ve Teorik Altyapı" başlıklı ikinci 

bölümünde ortaya konan özgün modelin bu konular hakkında ileri düzeyde bilgi 

birikimine sahip olmayan bir okuyucu için bile anlaşılır olması için temel kavramlar 

ve bu kavramlara ait teorik bilgiler pekiştirici örnekler verilerek anlatılmıştır. Bu 

bölümde öncelikle Modern Portföy Teorisi (MPT) detaylandırılarak bu teori 

kapsamında Markowitz tarafından 1952'de ortaya konan Nobel ödüllü "Sabit getiride 

minimum Varyans" modeli (MV) tanıtılmıştır. Ayrıca MV'nin günümüzün finans 

dünyasında ortaya çıkan dezavantajları da tek tek listelenmiştir. İkinci kısımda, 

bulanık mantık teorisi ile ilgili tüm temel tanım ve kavramlar tanıtılmıştır. Bu esnada 

tezdeki modelde yoğun biçimde kullanılan üçgensel bulanık üyelik fonksiyonları da 

açıklayıcı örnekler ile anlatılmıştır. Üçüncü kısımda, Stokastik Baskınlık (SD) 

konusu hem birinci derece stokastik baskınlık (FSD) hem ikinci derece stokastik 

baskınlık (SSD) alt başlıkları altında teorik bilgilere ek açıklayıcı örneklerle 

anlatılmıştır. Sonrasında da tezde önemli bir yer tutan SSD etkinlik testinin mantığı 

ve uygulama biçimi anlatılmıştır. Dördüncü ve son kısımda ise portföylerin 



  
xxii 

performansının ölçülmesi safhasında çok önemli bir yeri olan Sharpe Oranı (SR) ve 

Treynor Oranı (TR) isimli performans kriterleri tanıtılmıştır. 

“Literatür Taraması” isimli üçüncü bölümde, tezde ortaya konan modeldeki iki 

aşamanın temellerini oluşturan bulanık mantık ve stokastik baskınlık yaklaşımları ile 

ilgili bu güne kadar ekonomi ve finans dergilerinde yayınlanmış çalışmalar 

kronolojik sırada özetlenmiştir. Bu literatür özetleri okuyucuya bulanık mantık ve 

stokastik baskınlık konularının günümüzün finans dünyasındaki uygulamaları 

hakkında geniş bir perspektif kazandırmakla birlikte tezdeki modelin teorisinde 

kullanılacak kritik bazı tanımların ve denklemlerin nereden geldiğini de 

anlatmaktadır. Carlsson ve Fullër isimli akademisyenlerin 2001’de yayınladıkları 

makalelerinin özeti sırasında bulanık sayıların olasılıksal ortalama, varyans ve 

kovaryanslarının teorik olarak integraller yardımı ile nasıl tanımlandığı anlatılmıştır. 

Akabinde de bu tanımlar bir adım ileri götürülerek doğrusal olan üçgensel üyelik 

fonksiyonları ile çalışıldığında bu genel formüllerin kendilerini hangi sade formlara 

indirgediği de işlem detayları ile belirtilmiştir. Başka bir deyişle, doğrusal üyelik 

fonksiyonları ile çalışmanın hesaplama kolaylığı açısından ne kadar büyük avantajlar 

sağladığı bu literatür özetleri sırasında çok bariz bir biçimde ortaya konmuştur. 

“Önerilen Modelin Teorisi” isimli dördüncü bölümde ise modelde ortaya konan iki 

basamaklı optimizasyonun teorik temelleri tüm detayları ile masaya yatırılmıştır. İlk 

etapta, SSD etkin olmayan hisse senetlerinin nasıl portföy dışında bırakıldığı 

anlatılmıştır. Bu bağlamda incelenen N hisse senedinde N’in ikili kombinasyonu adet 

ikili SSD kıyaslaması yapılarak her hisse senedinin bir diğerine göre SSD ilişkisi 

ortaya konmuştur. Akabinde de en az bir hisse senedi tarafından ikinci derece 

stokastik olarak domine edilen hisse senetleri “SSD verimsiz” olarak adlandırılıp 

kurulacak portföyün dışında bırakılmıştır. İkinci etapta ise, sadece “SSD verimli” 

hisse senetlerinin olduğu bir altkümede portföyün bulanık varyansının sabit bir getiri 

seviyesinde minimize edilmesi prensibine dayanan bir optimizasyon uygulanmıştır. 

Bu ikinci aşamadaki en önemli kısım, doğrusal olan üçgensel üyelik fonksiyonları ile 

oluşturulmuş bulanık ortalama, varyans ve kovaryans kavramlarının n adet “SSD 

verimli” hisse senedine sahip bir indirgenmiş portföye nasıl uygulandığı hususudur. 

Bu noktada, üçgensel üyelik fonksiyonları hisse senetlerinin gelecek dönemdeki 

getirilerini tahmin eden bir dağılımı temsil etmektedirler. Üçgenin tepe noktası 

ortalama getiriyi, sağ aşağı köşe noktası gelecek dönemde yapması olası en yüksek 

getiriyi, benzer şekilde sol aşağı köşe noktası da gelecek dönemde yapması olası en 

düşük getiriyi temsil etmektedir. Ortalama getirideki bu maksimum ve minimum 

sapmalar yardımı ile bir önceki bölümde çıkarılan indirgenmiş formüller n hisse 

senedinin tümüne uygulandığında artık portföyün tamamının bulanık varyansı ve 

bulanık ortalaması ortaya çıkmıştır. Son olarak, ortaya konan bu bulanık varyansın 

minimizasyonu aşamasına gelindiğinde ise bu formülün içinde ortaya çıkan ikinci 

dereceden terimler doğrusal bir modelde optimizasyon yapmaya engel olmuştur. Bu 

doğrusal olmama sorununu aşmak için de modelde bulanık varyans yerine bulanık 

standart sapmanın kullanılması önerilmiştir. Literatürdeki tanımındaki gibi bulanık 

varyansın karekökü alınarak hesaplanan bulanık standart sapmada bu ikinci 

dereceden terimler düşmüş ve geriye sadece doğrusal terimler kalmıştır. Sonuç 

olarak tezde ortaya konan modelin ikinci aşaması bulanık varyans yerine bulanık 

standart sapmanın belli bir bulanık getiri düzeyinde minimize edilerek optimize 

portföyler ortaya çıkarılması prensibine dayanmaktadır.   

“Önerilen Modelin Uygulaması” isimli beşinci bölümde ise tezde önerilen iki 

aşamalı model Türkiye’deki BIST-30 hisse senetleri üstünde uygulanmıştır. Bu 
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bölümde öncelikle uygulamanın yapılacağı veri seti detaylı olarak tanıtılmıştır. 

BIST-30’a dahil hisse senetlerinin piyasa değeri, halka arz zamanı ve portföy 

içindeki ağırlık değerleri gibi özellikleri tek tek incelenmiştir. Hisse senetlerinin bu 

detaylı analizlerinden sonra 2010 Aralık ayından 2013 Temmuz ayına kadarki 

kapanış değerleri haftalık olarak çekilmiştir ve sonrasında da bu değerler yardımı ile 

her hisse senedi için 135 adet haftalık getiri hesaplanmıştır. Bu veri kümesi üstünde 

1952’de Markowitz tarafından ortaya konan klasik MV yönteminin herhangi bir yeni 

yaklaşım ortaya koymadan uygulaması sonucu etkin sınır üstünde ortaya çıkan 

portföylerden Sharpe oranını maksimize edeni A Portföyü olarak adlandırılmıştır. 

Kıyaslama yapabilmek için bir standartın yakalanması adına A Portföyündeki getiri 

düzeyi diğer portföylerde de aynı seviyede alınmıştır. Sadece birinci etaptaki 

yöntemin gücünün tek başına test edilmesi için BIST-30’daki 18 adet “SSD 

verimsiz” hisse senedi elenmiş ve geriye kalan 12 adet “SSD verimli” hisse senedine 

de gene Markowitz’in klasik MV optimizasyonunun uygulanıp akabinde de etkin 

sınır üstünde belirlenen getiri düzeyindeki portföye B portföyü denilmiştir. Son 

olarak da tezde ortaya konan model her iki aşamasıyla BIST-30’a uygulanmıştır. Bu 

bağlamda 18 adet “SSD verimsiz” elendikten sonra geriye kalan 12 tane “SSD 

verimli” hisse senedine tezde ortaya konan bulanık standart sapmanın 

minimizasyonu yöntemi ile optimizasyon yapılmıştır. Etkin sınır üstünde ortaya 

çıkan portföyler içinde gene belirlenen standart getiri düzeyi seçilerek bu portföye de 

Portföy C denilmiştir.  

“Sonuç” başlıklı tezin son bölümünde ise öncelikle performans testleri ve bunların 

sonuçları değerlendirilmiştir. Değerlendirmeler yapılırken, ortaya konan A, B ve C 

portföylerinde verinin bittiği tarih olan Temmuz 2013’den ileriye doğru aynı hisse 

senetlerine ait bir yıllık veri çekilmiştir ve bu portföylerin bu gelecek verisi 

üstündeki performansları hem Sharpe hem Treynor oranına bakarak 

değerlendirilmiştir. Bu bağlamda 2013 Temmuz başlangıç olma üzere 10, 20, 30, 40 

ve 50 haftalık farklı zaman dilimlerinde beş ayrı inceleme yapılmıştır. Ayrıca bu üç 

portföye ek olarak BIST-30’un orijinal portföyünde de aynı analizler yapılmıştır. 

Yapılan bu çok yönlü performans değerlendirmelerinin sonuçları ise ikinci kısımda 

detaylı olarak masaya yatırılmıştır. Grafiklerle de desteklenen bu analiz sonuçları 

tezdeki iki aşamalı model sonucunda ortaya çıkan C portföyünün diğer tüm 

portföylere tüm zaman dilimlerinde her iki performans kriterine göre de de üstünlük 

sağladığını göstermiştir. Ayrıca B portföyünün de A portföyü ve BIST-30’a göre 

üstünlük sağladığı sonucu çıkmıştır ki bu da modelin sadece birinci aşamasının bile 

tek başına önemli bir katma değer yarattığını göstermektedir. C portföyünün 

diğerlerine göre üstünlüğünü gözler önüne seren tablonun altında yatan nedenler de 

araştırılarak BIST-30 hisselerinin incelendiği 135 haftalık getirilerinin dağılımı 

incelenmiştir ve bu hisselerin neredeyse yarısının Shapiro-Wilk normallik testine 

istinaden normal dağılıma uymadığı görülmüştür. Bu sonuç da mazisi çok eskilere 

dayanan klasik MV metodunun tezde ortaya konan yönteme kıyasla neden başarısız 

sonuçlar ürettiği hakkında fikir üretmiştir. Tezin son kısmında da, bu modelin BIST-

30 dışındaki başka piyasalara uygulanması ve akabinde de bu modeli uygulayan 

hazır bir bilgisayar programının hazırlanması gibi yazarın gelecekte planladığı 

çalışmalar anlatılmıştır. 
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1.  INTRODUCTION 

Portfolio management is a trillion dollar business. Nowadays investors are constantly 

faced with the dilemma of guessing the direction of market moves in order to meet 

the return target for assets. Because of the uncertainty inherent in financial markets, 

financial experts must be very cautious in expressing their market views. The 

information content in such circumstances can be best described as being “fuzzy”, in 

terms of both the direction and the size of market moves. Nevertheless, this is one of 

the best ways to structure portfolios so that the target return, which is assumed to be 

higher than the risk-free rate, is met. In general, achieving returns higher than the 

risk-free rate requires taking either market or credit risk.  

In other words, generating returns higher than the risk-free rate requires investors to 

hold a portfolio of risky assets. Such portfolios may be structured around imprecise 

and potentially incorrect information of portfolio experts regarding the size and 

direction of market moves. In addition to that, investors may operate under strict 

constraints requiring a minimum rate of return for the assets being managed.  

In mathematical terms, the target rate of return and the minimum rate of return for 

the portfolio will be a function of the investment horizon, the risk preference of the 

investor and the nature of assets that can be included in the portfolio. In the financial 

world, individuals and business firms make portfolio and investment decisions with 

the objective of maximising the expected income over a given time horizon. Such 

decisions are based on the subjective evaluation of income expectations and the risk 

preferences of the investors taking these decisions.  

In this thesis a novel two-step gradual portfolio optimization method having lots of 

advantages compared to classical approaches is introduced.  

The first step of this method deal with the Second-Order Stochastic Dominance 

(SSD) inefficiency problem so that the all SSD inefficient stocks are directly 

excluded from the portfolio and as a natural result a SSD efficient portfolio is 

constituted.  
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The second step is the variance minimization, but apart from the classical way which 

has serious shortcomings working with real data, the fuzzy variance is minimized by 

using triangular fuzzy numbers to forecast next movements of returns. This gradual 

method is then applied to Turkish BIST-30 Index and its performance is checked 

compared with other benchmark portfolios by using the most important 

Measurements Criteria. 

Chapter 2 makes a deep summary about fundamental concepts and theoretical 

background. In the first part of this chapter the Modern Portfolio Theory (MPT) is 

summarized. After reminding the basic definitions the Markowitz’s classical 

portfolio optimization model its shortcomings are also introduced. In the second part 

the basics of Fuzzy Logic is introduced. Firstly the fundamental differences between 

classical and fuzzy sets are determined, then basic definitions and operations of 

Fuzzy Sets are reported and lastly triangular and trapezoidal Fuzzy Numbers are 

introduced with instructive examples. In the third part the concept of Stochastic 

Dominance (SD) is explained deeply. After introducing first and second order 

Stochastic Dominance, FSD and SSD, the basics of the SSD efficiency analysis are 

introduced. In the fourth part Measurements Criteria of the Portfolio Performance, 

Sharper and Treynor Ratios, are defined. 

Chapter 3 makes a detailed literature review. In its first part the studies including 

fuzzy approach in portfolio optimization; in its second part studies including 

Stochastic Dominance are summarized in a chronological order. 

Chapter 4 presents the background theory of the proposed model in this thesis. This 

chapter fully explains the details of the first step which is “Elimination of SSD 

inefficient stock” and the second step which is “Minimizing the Fuzzy Variance at a 

given target return”. 

Chapter 5 is the application of the proposed model to the BIST-30 Stock Exchange. 

After a detailed examination of the companies in BIST-30, the portfolio of the 

proposed model and also its benchmark portfolios for comparison are constituted. 

Notice that all theoretical findings of the previous chapters are used in this 

application process. 
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Chapter 6, the conclusion part, begins with the presentation of the performance tests 

then these results are analysed and interpreted to focus the superiority of the 

proposed model. Lastly, the ideas of the future work are listed. 
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2.  FUNDAMENTAL CONCEPTS AND THEORETICAL BACKGROUND 

Before introducing the proposed portfolio optimization model of this thesis basic 

concepts and theoretical background is summarized.  

2.1 Modern Portfolio Theory (MPT) 

The fundamental key point behind MPT is that the assets in an investment portfolio 

should not be selected individually, each on their own merits. Rather, it is important 

to consider how each asset changes in price relative to how every other asset in the 

portfolio changes in price. 

Investing is a tradeoff between risk and expected return. In general, assets with 

higher expected returns are riskier. For a given amount of risk, MPT describes how 

to select a portfolio with the highest possible expected return. Or, for a given 

expected return, MPT explains how to select a portfolio with the lowest possible risk. 

The targeted expected return cannot be more than the highest-returning available 

security, of course, unless negative holdings of assets are possible. (Elton and 

Gruber, 1997) 

Therefore, MPT is a form of diversification. Under certain assumptions and for 

specific quantitative definitions of risk and return, MPT explains how to find the best 

possible diversification strategy. Markowitz (1952) introduced MPT in a article and 

later he wrote a book. (Markowitz, 1959) 

MPT assumes that investors are risk averse, meaning that given two portfolios that 

offer the same expected return, investors will prefer the less risky one. Thus, an 

investor will take on increased risk only if compensated by higher expected returns.  

Conversely, an investor who wants higher expected returns must accept more risk. 

The exact trade-off will be the same for all investors, but different investors will 

evaluate the trade-off differently based on individual risk aversion characteristics.  
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The implication is that a rational investor will not invest in a portfolio if a second 

portfolio exists with a more favorable risk-expected return profile – i.e., if for that 

level of risk an alternative portfolio exists which has better expected returns. 

Note that the theory uses standard deviation of return as a proxy for risk, which is 

valid if asset returns are jointly normally distributed or otherwise elliptically 

distributed.  

Under the model:  

- Portfolio return is the proportion-weighted combination of the constituent 

assets' returns. 

- Portfolio volatility is a function of the correlations ρij of the component 

assets, for all asset pairs (i, j). 

2.1.1 Mean-Variance (MV) optimization  

E(RP): Expected return  

                                                                                      (2.1) 

where RP is the return on the portfolio, Ri is the return on asset i (that is, the share of 

asset i in the portfolio) and wi is the weighting of component asset. 

 p
2
: Portfolio return variance 

                                         
     

 
   

                                                    (2.2) 

where ρij is the correlation coefficient between the returns on assets i and j. 

Alternatively the expression can be written as  

                                                           
                                (2.3) 

where ρij=1 for i=j.  

 p: Portfolio return volatility (standard deviation): 

                                                                           
                             (2.4) 

An investor can reduce portfolio risk simply by holding combinations of instruments 

which are not perfectly positively correlated (correlation coefficient -1≤ρij<1). In 

other words, investors can reduce their exposure to individual asset risk by holding a 

diversified portfolio of assets.  
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Diversification may allow for the same portfolio expected return with reduced risk. 

These ideas have been started with Markowitz and then reinforced by other 

economists and mathematicians who have expressed ideas in the limitation of 

variance through portfolio theory. 

So according to Markowitz’s findings, the model of an optimal portfolio with 

minimum variance, called classical Mean-Variance (MV) optimization, can be 

formulated as in (2.5). 

             Min    
 

   
                    

         Subject to                  and                            (2.5) 

If all the asset pairs have correlations of zero they are perfectly uncorrelated—the 

portfolio's return variance is the sum over all assets of the square of the fraction held 

in the asset times the asset's return variance (and the portfolio standard deviation is 

the square root of this sum). 

As shown in the Figure 2.1, every possible combination of the risky assets, without 

including any holdings of the risk-free asset, can be plotted in risk-expected return 

space, and the collection of all such possible portfolios defines a region in this space. 

According to Merton (1972), the left boundary of this region is a hyperbola, and the 

upper edge of this region is the efficient frontier in the absence of a risk-free asset 

(sometimes called "the Markowitz bullet"). Combinations along this upper edge 

represent portfolios (including no holdings of the risk-free asset) for which there is 

lowest risk for a given level of expected return. Equivalently, a portfolio lying on the 

efficient frontier represents the combination offering the best possible expected 

return for given risk level. 
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Figure 2.1 : Graphical display of the relationship between Standard Deviation vs  

Expected Return of a portfolio and its Efficient Frontier. 

2.1.2 Shortcomings of MV optimization  

MV is very common because of its simple algorithm which allows finding the 

optimal weights. But on the other side, in real life there are some very important 

shortcomings of MV. 

Despite its theoretical importance, critics of MV Optimization question whether it is 

an ideal investing strategy, because its model of financial markets does not match the 

real world in many ways. 

Efforts to translate the theoretical foundation into a viable portfolio construction 

algorithm have been plagued by technical difficulties stemming from the instability 

of the original optimization problem with respect to the available data. Brodie et al 

(2009) has shown recently that instabilities of this type disappear when a regularizing 

constraint or penalty term is incorporated in the optimization procedure. 

Firstly, MV Optimization requires that the returns are normally distributed, but in the 

real data it is very rare to find normal distributed returns. Since this assumption 

brings some problems with it, the investor’s problem is reduced to a one-period 

problem. Samuelson (1970) and Constandinides and Malliaris (1995) discuss this 

topic in detail and they work on the choice of MV optimal portfolios.  

Secondly, MV Optimization is valid only for the quadratic utility functions but there 

are many other concave utility functions adopted by risk-averse investors.  
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Thirdly, MV Optimization deals only with two parameters - mean and variance - but 

there are two other significant parameters such as skewness and kurtosis. There is 

some research showing that risk averse investors prefer positive skewness and avoid 

kurtosis. For further details of MV Optimization’s shortcomings the reader can 

examine the studies of Kraus and Litzenberger (1976), Athayde and Flores (1997), 

Fang and Lai (1997), Dittmar (2002), Post, Levy and Vliet (2008), Wong (2007). 

Apart from them there are some other implicit assumptions and none of these 

assumptions are entirely true, and each of them compromises MV Optimization to 

some degree. These assumptions can be summarized as below: 

 Correlations between assets are fixed and constant forever. Correlations 

depend on systemic relationships between the underlying assets, and change 

when these relationships change.  

 All investors aim to maximize economic utility (in other words, to make as 

much money as possible, regardless of any other considerations).  

 All investors are rational and risk-averse.  

 All investors have access to the same information at the same time. In fact, 

real markets contain information asymmetry, insider trading, and those who 

are simply better informed than others. 

 Investors have an accurate conception of possible returns, i.e., the probability 

beliefs of investors match the true distribution of returns. A different 

possibility is that investors' expectations are biased, causing market prices to 

be informationally inefficient. In fact, real markets contain information 

asymmetry, insider trading, and those who are simply better informed than 

others. 

 There are no taxes or transaction costs. Real financial products are subject 

both to taxes and transaction costs (such as broker fees), and taking these into 

account will alter the composition of the optimum portfolio.  

 All investors are price takers, i.e., their actions do not influence prices. In 

reality, sufficiently large sales or purchases of individual assets can shift 

market prices for that asset and others  
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 Any investor can lend and borrow an unlimited amount at the risk free rate of 

interest. In reality, every investor has a credit limit. 

 All securities can be divided into parcels of any size. In reality, fractional 

shares usually cannot be bought or sold, and some assets have minimum 

orders sizes. 

 Risk/Volatility of an asset is known in advance/is constant. In fact, markets 

often misprice risk (e.g. the US mortgage bubble or the european debt crisis) 

and volatility changes rapidly. 

2.2 Basics of Fuzzy Logic 

This chapter begins with a brief review of classical sets in order to facilitate the 

introduction of fuzzy sets. Next the concept of membership function is explained. It 

defines the degree to which an element under consideration belongs to a fuzzy set. 

Fuzzy numbers are described as a particular case of fuzzy sets. Fuzzy sets and fuzzy 

numbers will be used in fuzzy logic to model words such as profit, investment, cost, 

income, age, etc. Fuzzy relations together with some operations on fuzzy relations 

are introduced as a generalization of fuzzy sets and ordinary relations. They have 

application in database models. Fuzzy sets and fuzzy relations play an important role 

in fuzzy logic. 

2.2.1 Classical sets: Relations and functions 

This section reviews briefy the terminology, notations, and basic properties of 

classical sets, usually called sets. The concept of a set or collection of objects is 

common in our everyday experience. For instance, all persons listed in a certain 

telephone directory, all employees in a company, etc. There is a defining property 

that allows us to consider the objects as a whole. The objects in a set are called 

elements or members of the set. We will denote elements by small letters 

a,b,c,...,x,y,z and the sets by capital letters A,B,C,.....,X,Y,Z. Sets are also called 

ordinary or crisp in order to be distinguished from fuzzy sets. 

The fundamental notion in set theory is that of belonging or membership. If an object 

x belongs to the set A we write xϵA. In other words for each object x there are only 

two possibilities: either x belongs to A or it does not.  
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A set containing finite number of members is called finite set; otherwise it is called 

infinite set. We present two methods of describing sets: 

The set is described by listing its elements placed in braces; for example 

A={1,3,6,7,8},B={business, finance, managementg}.  

The order in which elements are listed is of no importance. An element should be 

listed only once. 

The set is described by one or more properties to be satisfied only by objects in the 

set: A={x| x satifies some property or properties} 

This reads: “A is the set of all x such that x satisfies some property or properties." 

For example R = {x| x is real number} reads: “R is the set of all x such that x is a real 

number"; R+ ={x| x≥0; xϵR} reads R+ is the set of all x which are nonnegative real 

numbers. 

The set of all objects under consideration in a particular situation is called universal 

set or universe; it will be denoted by U. A set without elements is called empty; it is 

denoted by Φ. The set of all real numbers x such that a1<x<a2, where a1 and a2 are 

real numbers, form a closed interval [a1; a2] = {x| a1<x<a2; xϵR} with boundaries a1 

and a2. It is also called interval number. 

If sets A and B are equal , it is denoted by A = B, they have the same elements. The 

set A is a subset of the set B (A is included in B), denoted by A c B, if every element 

of A is also an element of B. Every set is subset of itself, A c A. The empty set Φ is a 

subset of any set. It is assumed that each set we are dealing with is a subset of a 

universal set U. 

A is a proper subset of B, denoted A c B, if A c B and there is at least one element in 

B which does not belong to A. For instance {a,b} C {a,b,c}. If A c B and B c C, then 

A c C. 

The intersection of the sets A and B, denoted by A ∩ B, is defined by A ∩ B ={x| 

xϵA and xϵB} A ∩ B is a set whose elements are common to A and B. The union of 

A and B , denoted by A U B, is defined by A U B ={x| xϵA or xϵB} A U B is a set 

whose elements are in A or B, including any element that belongs to both A and B.  
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If the sets A and B have no elements in common, they are called disjoint. The 

complement of A c U, denoted by A, is the set A’ = {xϵ U| x  } The complement 

of a set consists of all elements in the universal set that are not in the given set. 

Consider the universe U to be the set of real numbers R. A subset S of R is said to be 

convex if and only if, for all x1, x2 ϵ S and for every real number λ satisfying 

     , we have              .  

For example, any interval S = [a1; a2] is a convex set since the condition is satisfied; 

[0, 1] and [3, 4] are convex, but [0; 1]U[[3; 4] is not. 

Sets are geometrically represented by circles inside a rectangle (the universal set U).  

It was noted that the order of the elements of a set is not important. However there 

are cases when the order is important. To indicate that a set or pair of two elements a 

and b is ordered, we write (a,b), i.e. use parentheses instead of braces; a is called first 

element of the pair and b is called second element. 

Cartesian product (or cross product) of the sets A and B denoted AxB is the set of 

ordered pairs AxB = {(a, b) | aϵA, bϵB}. 

Given A = {1,2,3} and B={1,2}; then we find  

AxB = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}; geometrically it is presented as in 

Figure 2.2. 

 

Figure 2.2 : Graphical Display of the Cartesian product with two finite sets. 
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If X, Y = R, the set of all real numbers, then XxY = {(x, y) | xϵX, yϵY}= RxR is the 

set of all ordered pairs which form the cartesian plane xy, geometrically it is 

presented as in Figure 2.3. 

 

Figure 2.3 : Graphical Display of the Cartesian product with one finite and one 

infinite set. 

The concept of relation is very general. It is based on the concepts of ordered pair 

(a,b), aϵA, bϵB, and cartesian product of the sets A and B. 

A relation from A to B (or between A and B) is any subset R of the cartesian product 

AxB. We say that aϵA and bϵB are related by R; the elements a and b form the 

domain and range of the relation, correspondingly. Since a relation is a set, it may be 

described by either the listing method or the membership rule. The relation R is 

called binary relation since two sets, A and B, are related. 

Let A = {x1; x2; x3} and B = {1; 2; 3; 4}. 

We list some binary relations generated by A and B: 

R1 = {(x1; 1); (x2; 1); (x3; 4)}, 

R2 = {(x1; 2); (x1; 3)};  

R3 = {(x2; 2); (x3; 1)} 

R4 = {(x1; 1); (x1; 2); (x1; 3); (x1; 4); (x2; 1); (x4; 1)} 

are relations from A to B; 

R5 = {(1; x2); (2; x3); (3; x1)}, 
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R6 = {(1; x1); (2; x1)}, 

R7 = {(1; x1); (1; x2); (1; x4)}, 

R8 = {(2; x1); (3; x3)} 

are relations from B to A; the empty set Φ is a relation; the cross product AxB is a 

relation from A to B and the cross product BxA is a relation from B to A. 

A function f is a relation R such that for every element x in the domain of f there 

corresponds a unique element y in the range of f. For instance the relations in Figure 

2.2 and Figure 2.3 are not functions. 

We often say that f maps x onto y; y is the image of x under f. Then we can write  

f: x ⇾y. However, it is customary to use the notation y = f(x). 

The notions of ordered pair, Cartesian product, relation, and function can be 

generalized for higher dimensions than two. For instance when n = 3 we have: 

Ordered triple (a, b, c), 

Cartesian product AxBxC = {(a,b,c) | aϵA, bϵB, cϵC}; 

Relation from AxBxC is any subset R of AxBxC. 

Function z = f(x; y) is a relation such that for every pair (x; y) in the domain of f 

there corresponds a unique element z in its range. 

The membership rule that characterizes the elements (members) of a set     can 

be established by the concept of characteristic function (or membership function) 

µA(x) taking only two values, 1 and 0, indicating whether or not xϵU is a member of 

A: 

                                                        
         
         

                                          (2.6) 

Hence µA(x)ϵ{0,1}. Inversely, if a function µA(x) is defined as in (2.6), then it is the 

characteristic function for a set     in the sense that A consists of the values of  

xϵU for which µA(x) is equal to 1. In other words every set is uniquely determined by 

its characteristic function. 

The universal set U has for membership function µA(x) which is identically equal to 

1, i.e. µU(x)= 1. The empty set Φ has for membership function µΦ(x)= 0. 
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Consider the universe U = {x1, x2, x3, x4, x5, x6} and its subset A, A = {x2; x3; x5} 

Only three of the six elements in U belong A. Using the embership notation gives 

µA(x1)=0, µA(x2)=1, µA(x3)=1, µA(x4)=0, µA(x5)=1, µA(x6)=0 

Hence the characteristic function of the set A is 

       
                
                

  

The set A can be represented as 

A = {(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x5, 1), (x6, 0)} 

Let us try to use crisp sets to describe tall men. Consider for instance a man as tall if 

his height is 180 cm or greater; otherwise the man is not tall. The characteristic 

function of the set A = {tall men} then is 

       
           

               
  

It is shown in the in Figure 2.4, where the universe is U = {x|           

 

Figure 2.4 : Membership function of the set tall men. 

Clearly this description of the set of tall men is not satisfactory since it does not 

allow gradation. The word tall is vague. For instance, a person whose height is 179 

cm is not tall as well as a person whose height is 160 cm. Yet a person whose height 

is 180 is tall and so is a person with height 200 cm. Also this definition introduces a 

drastic difference between heights of 179 cm and 180 cm, thus fails to describe 

realistically borderline cases. 

A paradox coming from ancient Greece has caused serious problems to logicians and 

mathematicians. Consider a heap of grains of sand. Take a grain and the heap is still 

there. Take another grain, and another grain, and continue the process. Eventually ten 
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grains are left, then nine, and so on. When one grain is left, what happens with the 

heap. Is it still a heap? When the last grain is removed and there is nothing, does the 

heap cease to be a heap?  

There are many paradoxes of similar nature called “sorites." This word comes from 

“soros" which is the Greek word for heap. For instance let us apply the above 

procedure to the cash (say, one million) of a rich person. He/she spends one dollar 

and is still rich; then another dollar and so on. When one hundred dollars are left, 

what happens to his/her richness? When does that person cease to be rich? In the 

crisp set theory such dilemmas are solved by sort of appropriate assumptions or by 

decree. In the case of the heap a certain natural number n is to be selected; if the 

number of sand grains is   n, then the grains constitute a heap; n-1 sand grains does 

not form a heap anymore. 

This defies common sense. Also how to select the number n? Is it 100, 1000, or 

1,000,000, or larger? Common sense hints that the concept heap is a vague one. 

Hence a tool that can deal with vagueness is necessary. The concept of fuzzy set, a 

generalization of Cantor's sets, is such a tool. The following thoughts by Bertrand 

Russell (1923) are quoted very often: “All traditional logic habitually assumes that 

precise symbols are being employed. It is therefore not applicable to this terrestrial 

life, but only to an imagined celestial one. The law of excluded middle is true when 

precise symbols are employed but it is not true when symbols are vague, as, in fact, 

all symbols are." “All language is vague." “Vagueness, clearly, is a matter of 

degree." 

An important step towards dealing with vagueness was made by the philosopher Max 

Black (1937) who introduced the concept of vague set. 

2.2.2 Definition of fuzzy sets 

We have seen that belonging or membership of an object to a set is a precise concept; 

the object is either a member to a set or it is not, hence the membership function can 

take only two values, 1 or 0. The example of the set tall men illustrates the need to 

increase the describing capabilities of classical sets while dealing with words. 

To describe gradual transitions Zadeh (1965), the founder of fuzzy sets, introduced 

grades between 0 and 1 and the concept of graded membership. 
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Let us refer to previous example. Each of the six elements of the universal set U = 

{x1; x2; x3; x4; x5; x6} either belongs to or does not belong to the set A = {x2; x3; 

x5}. According to this, the characteristic function µA(x) takes only the values 1 or 0. 

Assume now that a characteristicfunction may take values in the interval [0, 1]. In 

this way the concept of membership is not any more crisp (either 1 or 0), but 

becomes fuzzy in the sense of representing partial belonging or degree of 

membership. 

Consider a classical set A of the universe U. A fuzzy set A is defined by a set or 

ordered pairs, a binary relation, 

                                            A = {(x, µA(x)) | xϵA; µA(x)ϵ[0; 1]}                            (2.7) 

where µA(x) is a function called membership function; µA(x) specifies the grade or 

degree to which any element x in A belongs to the fuzzy set A. Definition associates 

with each element x in A a real number µA(x) in the interval [0, 1] which is assigned 

to x. Larger values of µA(x) indicate higher degrees of membership. 

Fuzzy, adv. fuzziness, in fuzzy logic is associated with the concept of graded 

membership which can be interpreted as degree of truth. The objects under study in 

fuzzy logic admit of degrees expressed by the membership functions of fuzzy sets 

Problems and events in reality involving components labeled as vague, ambiguous, 

uncertain, imprecise are considered in this thesis as fuzzy problems and events if 

graded membership is the tool for their description. In other words, when gradation is 

involved, vagueness, ambiguity, uncertainty, imprecision are included into the 

concept of fuzziness. 

Beside the fundamental volume Fuzzy Sets and Applications: Selected Papers by 

L.A. Zadeh (1983), here we list several important books dealing with fuzzy sets and 

fuzzy logic used in this text: Kaufmann (1975), Dubois and Prade (1980), 

Zimmermann (1984), Kandel (1986), Klir and Folger (1988), Novak (1989), Terano, 

Asai, Sugeno (1992). Fascinating popular books on fuzzy logic are written by 

McNeill and Freiberger (1993) and Kosko (1993). 



 
18 

Let us express the meaning of this binary relationship A in a slightly modified way. 

The first elements x in the pair (x, µA(x)) are given numbers or objects of the 

classical set A; they satisfy some property (P) under consideration partly (to various 

degrees). The second elements µA(x) belong to the interval (classical set) [0; 1]; they 

indicate to what extent (degree) the elements x satisfy the property P. 

It is assumed here that the membership function µA(x) is either piecewise continuous 

or discrete. 

The fuzzy set A according to the definition is formally equal to its membership 

function µA(x). We will identify any fuzzy set with its membership function and use 

these two concepts as interchangeable. Also we may look at a fuzzy set over a 

domain A as a function mapping A into [0, 1]. 

Fuzzy sets are denoted by letters A, B, C, ... and the corresponding membership 

functions by µA(x), µB(x), µC(x), ... 

Elements with zero degree of membership in a fuzzy set are usually not listed. 

Classical sets can be considered as a special case of fuzzy sets with all membership 

grades equal to 1. 

A fuzzy set is called normalized when at least one xϵA attains the maximum 

membership grade 1; otherwise the set is called nonnormalized. Assume the set A is 

nonnormalized; then max µA(x) < 1. To normalize the set A means to normalize its 

membership function µA(x), i.e. to divide it by max µA(x), which gives 
     

         
 . 

A is called empty set labeled Φ if µA(x)=0 for each xϵA. The fuzzy set A = {(x1; 

µA(x1)}, where x1 is the only value in     and µA(x1) ϵ [0; 1] is called fuzzy 

singleton. While the set A is a subset of the universal set U which is crisp, the fuzzy 

set A is not. 

Assume that xi, i = 1,....,6  are integers, namely, x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 

5, x6 = 6, they belong to the set A = {1; 2; 3; 4; 5; 6}, a subset of the universe U = N, 

the set of all integers. The fuzzy set A becomes 

A = {(1, 0.1), (2, 0.5), (3, 0.3), (4, 0.8), (5, 1), (6, 0.2)}, 

its membership function µA(x) shown in Figure 2.5 by dots is a discrete one. 
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Figure 2.5 : Graphical Display of Fuzzy Set A. 

Let us describe numbers close to 10. First consider the fuzzy set 

A1 = {(x, µA(x)) | x ϵ [5; 15]; µA1(x)=
 

         
  

where µA1(x) shown in Figure 2.6 is a continuous function.  

 

Figure 2.6 : The fuzzy set A1 representing real numbers close to 10. 

We have seen that the description of tall men by classical sets is not adequate. Now 

we employ for the same purpose the fuzzy set T = {(x; µT(x)}, where x measured in 

cm belongs to the interval [160, 200] and µT(x) is defined by 
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The membership function µT(x) is a continuous piecewise-quadratic function. The 

numbers on the horizontal axis x give height in cm and the vertical axis µ shows the 

degree to which a man can be labeled tall. According to the graph, if a person's 

height is 160 cm, the person is a little tall (degree 0.22), 180 cm stands for almost tall 

(degree 0.78), 200 cm for tall (degree 1). The segment [0.22, 1] of the vertical axis µ 

expresses the quantification of the degree of vagueness of the word tall. The 

graphical display is as in Figure 2.7. 

 

Figure 2.7 : Description of tall men by fuzzy set. 

2.2.3 Basic operations on fuzzy sets 

Consider the fuzzy sets A and B in the universe U, 

A = {(x, µA(x))}, µA(x) ϵ [0; 1], 

B = {(x, µB(x))}, µB(x) ϵ [0; 1], 

The operations with A and B are introduced via operations on their membership 

functions µA(x) and µB(x). 

The fuzzy sets A and B are equal denoted by A = B if and only if for every x ϵ U, 

µA(x) = µB(x). 

The fuzzy set A is included in the fuzzy set B denoted by A   B if for every x ϵ U, 

µA(x)   µB(x). Then A is called a subset of B. 
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The fuzzy set A is called a proper subset of the fuzzy set B denoted A   B when A is 

a subset of B and A   B, that is 

µA(x)   µB(x) for every x ϵ U, 

µA(x)   µB(x) for at least one x ϵ U. 

The fuzzy sets A and A are complementary if 

µA’(x) = 1 - µA(x)   or   µA’(x) + µA(x) = 1 

The membership function µA’(x) is symmetrical to µA(x) with respect to the line 

µ=0.5. 

The operation intersection of A and B denoted as A   B and the operation union of 

A and B denoted as A   B are defined by 

                          µA(x), µA(x)),                  µA(x), µA(x)), x ϵ U   (2.8) 

If a1 < a2, min(a1,a2) = a1. For instance min(0.5, 0.7) = 0.5. 

If a1 < a2, max(a1,a2) = a2. For instance min(0.5, 0.7) = 0.7. 

Fuzzy sets are schematically represented by their membership functions (assumed 

continuous) inside of rectangles. In Figure 2.8 are shown µA(x) and µB(x) and their 

complementation intersection and union sets in graphical representation. 
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Figure 2.8 : µA(x) and µB(x) and their complementation intersection and union sets. 

It is natural that the law of the excluded middle is not valid for fuzzy sets. In classical 

sets every object does or does not have a certain property, expressed by 1 or 0. Fuzzy 

sets were introduced to reflect the existence of objects in reality that have a property 

to a degree between 0 and 1. There are many shades of gray color between black and 

white. 

 

Figure 2.9 : The law of excluded middle both for classical and fuzzy sets. 
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The lack of the law of excluded middle in fuzzy set theory makes it less specific than 

that of classical set theory. However, at the same time, this lack makes fuzzy sets 

more general and flexible than classical sets and very suitable for describing 

vagueness and processes with incomplete and imprecise information. 

2.2.4 Fuzzy numbers 

A fuzzy number is defined on the universe R as a convex and normalized fuzzy set. 

The concept of fuzzy number was introduced after that of fuzzy set. Valuable 

contributions to fuzzy numbers were made by Nahmias (1977), Dubois and Prade 

(1978), and Kaufmann and Gupta (1985), see also G. Bojadziev and M. Bojadziev 

(1995). 

The interval [a1, a2] is called supporting interval for the fuzzy number. For x = aM the 

fuzzy number in Figure 2.10 (a) has a maximum. In Figure 2.10 (b) the flat segment 

has maximum height 1; actually it is the α-cut at the highest confidence level 1. 

Fuzzy numbers will be denoted by capital letters A,B,C, . . . and their membership 

functions by µA(x), µB(x), µC(x), ... 

 

Figure 2.10 : Fuzzy numbers: (a) with a maximum; (b) with a flat. 

The membership function µA(x) of a piecewise-quadratic fuzzy number shown in 

Figure 2.11 is bell-shaped, symmetric about the line x = p, has a supporting interval 

A = [a1, a2], and is characterized by two parameters, p=0.5(a1+a2) and βϵ(0,a2-p).  
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The peak-point (the maximum point) is (p,1); 2β called bandwidth is defined as the 

segment (α-cut) at level α=0.5 between the points (p-β,0.5) and (p+β,0.5), called 

crossover points. 

 

Figure 2.11 : The general graphical presentation of Piecewise-quadratic fuzzy 

number. 

                      

 
 
 

 
 

 

          
       

                  

 
 

                                            

 
 

          
       

               

                                         

          (2.9) 

The interpretation for the fuzzy number in (2.9) is real numbers close to the number 

p. Since the word close is vague and in that sense fuzzy, it cannot be defined 

uniquely. That depends on the selection of the supporting interval and the bandwidth 

which are supposed to reflect a particular situation. For instance the fuzzy set tall 

men is a particular case of this equation (left branch) on the interval [160, 200] with 

a1=140, p=200 and β= 30. 
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2.2.5 Triangular fuzzy numbers 

A triangular fuzzy number A or simply triangular number with membership function  

                                           

 
 
 

 
 

    

     
                       

    

     
                     

 
                                         

                     (2.10) 

where [a1, a2] is the supporting interval and the point (aM,1) is the peak. The third 

line can be dropped. 

 

Figure 2.12 : Triangular fuzzy number with center aM. 

Often in applications the point aM ϵ (a1,a2) is located at the middle of the supporting 

interval, i.e. aM = 0.5 (a1+a2) . Then substituting this value in definition (2.10) gives 

                                     

 
 
 

 
  

    

     
                    

     

 
 

 
    

     
              

     

 
     

 
                                         

            (2.11) 

We say that the definition (2.11) represents a central triangular fuzzy number. 

Similarly to the piecewise-quadratic fuzzy number, it is very suitable to describe the 

word close (close to aM). Triangular numbers are very often used in the applications 

(fuzzy controllers, managerial decision making, business and finance, social 

sciences, etc.).  
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They have a membership function consisting of two linear segments A
l
 (left) and A

r
 

(right) joined at the peak (aM,1) which makes graphical representations and 

operations with triangular numbers very simple. Also it is important that they can be 

constructed easily on the basis of little information. 

 

Figure 2.13 : (a) Central triangular number; (b) Central triangular number 

symmetrical about µ. 

Assume while dealing with an uncertain value we are able to specify the smallest and 

largest possible values, i.e. the supporting interval A = [a1; a2]. If further we can 

indicate a value aM in [a1; a2] as most plausible to represent the uncertain value, then 

the peak will be the point (aM; 1). Hence with the three values a1; a2 and aM, one can 

construct a triangular number and write down its membership function. That is why 

the triangular number is also denoted by A = (a1; aM; a2) 

A central triangular number is symmetrical with respect to the axis µ if a1=-a; a2=a, 

hence aM=0. According to these substutions it is denoted by A = (-a, 0, a). 

It is very suitable to express the word small. The right branch (segment) of A = (-a, 

0, a), i.e. when 0   x   a, can be used to describe positive small (PS), for instance 

young age, small profit, small risk, etc. We can denote it by A
r
 = (0, 0, a). 

More generally, the left and right branches of the triangular number (1.14) can be 

denoted correspondingly by A
l
 = (a1, aM, aM) and A

r
 = (aM, aM, a2). They will be 

considered as triangular numbers and called correspondingly left and right triangular 

numbers.  
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The left triangular number A
l
 is suitable to represent positive large (PL) or words 

with similar meaning, for instance old age, big profit, high risk, etc. provided that aM 

is large number. 

2.2.6 Trapezoidal fuzzy numbers 

A trapezoidal fuzzy number A or shortly trapezoidal number is defined on R by 

                           

 
 
 

 
 

    

     
                       

                                    
    

     
                      

 
                                         

              (2.12) 

It is a particular case of a fuzzy number with a at. 

The supporting interval is A=[a1,a2] and the at segment on level  

 α=1 has projection [b1,b2] on the x-axis. With the four values a1, a2, b1 and b2, we 

can construct the trapezoidal number in Figure 2.14. It can be denoted by A = (a1, b1, 

b2, a2). 

If b1 = b2 = aM, the trapezoidal number reduces to a triangular fuzzy number and is 

denoted by (a1, aM, aM, a2). Hence a triangular number (a1, aM, a2) can be written in 

the form of a trapezoidal number, i.e. (a1, aM, a2) = (a1, aM, aM, a2). 

If [a1, b1] = [b2, a2], the trapezoidal number is symmetrical with respect to the line 

x=0.5(b1+b2). It is in central form and represents the interval [b1,b2] and real number 

close to this interval. 

 

Figure 2.14 : Trapezoidal fuzzy number with a flat [b1,b2]. 
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Figure 2.15 : Trapezoidal number in central form. 

Similarly to right and left triangular numbers we can introduce right and left 

trapezoidal numbers as parts of a trapezoidal number. 

The right trapezoidal number denoted A
r
 = (b1, b1, b2, a2) has supporting interval [b1, 

a2] and the left denoted A
l
 = (a1, b1, b2, b2) has supporting interval [a1, b2]. Especially 

they are suitable to represent small A
r
 = (0, 0, b2, a2) and large A

l
 = (a1, b1, b2, b2) 

where b1 is a large number. 

 

Figure 2.16 : (a) Right trapezoidal number Ar representing small;  

                   (b) Left trapezoidal number Al representing large. 
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2.3 Stochastic Dominance (SD) 

Stochastic Dominance (SD) is a fundamental concept in decision theory with 

uncertainty. It describes when a particular random prospect, such as a lottery or a 

stock, is better than another random prospect based on preferences regarding 

outcomes which may be expressed in terms of utility values. 

The stochastic dominance is designed to capture the technical properties of statistical 

distributions for lotteries that enable broad rankings of those lotteries (with only 

limited information about the utility function of a particular consumer). Practically 

speaking, it is a way of comparing different lotteries or distributions of outcomes. 

Let L1 be a lottery with cumulative distribution F(x) and L2 be a lottery with 

cumulative distribution G(x). One approach to comparing these lotteries (and thus 

examining stochastic dominance) is to ask the following two questions: 

1- When can we say that everyone will prefer L1 to L2? 

2- When can we say that anyone who is risk averse will prefer L1 to L2? 

The answer to the first question is defined as the property of First-Order Stochastic 

Dominance (FSD), while the answer to the second question is the property of 

Second-Order Stochastic Dominance (SSD). A second approach to stochastic 

dominance asks two related questions: 

1a) Can we write L1 = L2+ “something good”? If we can do so, then everyone 

should prefer L1 to L2 for the right definition of “something good.” 

2a) Can we write L2 = L1+ “risk”? If we can do so, then every risk averse person 

should prefer L1 to L2 (and every risk loving person should prefer L2 to L1) for the 

right definition of risk.” 

This section explains the definitions of “something good” and “risk, and then shows 

how the two approaches to stochastic dominance are equivalent for these definitions. 

There is also a separate set of technical conditions that can be used to check for FSD 

and SSD, but they are just simplified versions of the conditions for (1a) and (2a).  

A final important general point is that FSD and SSD require only weak preference 

for L1 vs. L2, corresponding to weak conditions on utility functions (e.g. weak rather 

than strict concavity for risk aversion). 

Two major types of SD, the FSD and SSD, with the latter being more common than 

the former in portfolio optimization since all investors are assumed to be risk-averse. 

The detailed explanations of FSD and SSD can be found in next parts. 
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2.3.1 First order stochastic dominance (FSD) 

We want to find conditions where we can write L1 = L2+ “something good” and we 

want to find the appropriate definition (so that everyone will prefer L1 = L2) of 

“something good”. We will impose only the most minimal restriction on the utility 

function, specifying that u(x) is non-decreasing. This means that more wealth is at 

least as good as less wealth. For our definition, it must be that every person at least 

weakly prefers L1 to L2. No matter how strange the utility function, if it non-

decreasing, it must be true that L1   L2. 

In line with this restriction on u(x), if we can match up the outcomes in L1 and L2 so 

that the outcomes in L1 are at least as good as the outcomes in L2 (in pairwise 

fashion) and L1 is sometimes strictly better than L2, then everyone will prefer L1 to 

L2. If L1 and L2 are identical, then technically speaking, L1 FSDs L2, and L2 also 

FSDs L1, but this is not very interesting. 

Convert a simple lottery into percentile terms as an example. There are four states 

with the results for L1 and L2 as shown in Figure 2.17. 

 

Figure 2.17 : An example distribution stating the output of rewards of two lotteries. 

From these states the related percentiles can be calculated as in Table 2.1. 
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Table 2.1 : Percentiles of rewards of two lotteries. 

 
 

We can make two immediate observations: First, L2 is better in some states than L1. 

Second, L1 is at least as good as L2 at every percentile, and L1 is strictly better than 

L2 in 8 of the 10 percentiles. The second observation is important to the comparison 

of the lotteries in terms of expected utility because expected utility relies on a 

comparison of distributions of outcomes, not a comparison of outcomes in individual 

states. 

We can compare the expected utility for each lottery 

EU(L1) = 0.2 u(80) + 0.3 u(30) + 0.1 u(60) + 0.4 u(50) 

EU(L2) = 0.2 u(10) + 0.3 u(50) + 0.1 u(70) + 0.4 u(30) 

Now we can compare them directly by rewriting. 

EU(L1) - EU(L2) = 0.2[u(30) - u(10)] + 0.3[u(50) - u(30)] + 0.1[u(60) - u(50)] 

+0.1[u(80) - u(50)] + 0.1[u(80) - u(70)] 

So we obtain 

EU(L1) - EU(L2)   0. 

Note that each percentile contributes a term to the calculation of EU(L1) - EU(L2). 

In fact, it is not necessary to calculate EU(L1) and EU(L2) once we can rank order 

the terms from both lotteries and show that L1 is at least as good at every possible 

percentile. 

With a finite number of outcomes in each lottery (a discrete distribution), we would 

have to find the least common denominator of probability outcomes in order to find 

the relevant percentiles that will enable comparison of L1 and L2. For example, if the 

L1 probabilities are in 1/5’s, and the L2 probabilities are in 1/6’s, then the relevant 

percentiles will be in 1/30’s. 

Percentile L1 L2

0%-10% $30 $10

10%-20% $30 $10

20%-30% $30 $30

30%-40% $50 $30

40%-50% $50 $30

50%-60% $50 $30

60%-70% $50 $50

70%-80% $60 $50

80%-90% $80 $50

90%-100% $80 $70
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Formalizing this discussion, for a finite number of outcomes, if we can divide the 

distribution functions for L1 and L2 into probability ranges of size 1/M (where 1/M 

is the least common denominator) and L1 is at least as good as L2 for each range, 

then L1   L2. 

With a continuous distribution of outcomes, where L1 is given by the cumulative 

density function (cdf) F(x); and L2 is given by the cdf G(x), the same condition 

would be that for each p between 0 and 1, for the values x1 and x2 such that F(x1) = 

G(x2) = p, then x1   x2. Since the cdf F(x) is non-decreasing, this condition is 

equivalent to F(x2)   G(x2) for x2 such that G(x2) = p. But there is nothing special 

about the particular value of p - this statement must hold for each and every p 

between 0 and 1, and therefore for each x.  

Y is first-order stochastically dominant over X, if   

                                                              F(t) ≤ G(t)                                              (2.13) 

where F and G represents the cumulative probability distributions of Y and X 

respectively. 

As an example let X is uniformly distributed on (0,1) and Y is uniformly distributed 

on (0,2). Since FX(x)  FY(x) for x value,Y first orderly dominates X. 

       
                      
                            

  

       
                       
                            

  

Graphically 

 

Figure 2.18 : Graphical representation of the cumulative probability distributions of 

F and G. 
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2.3.2 Second order stochastic dominance (SSD) 

We want to write L2 = L1+ “risk”, and then find the appropriate definition for “risk” 

so that every risk averse person will prefer L1 to L2. Here we assume weak 

preference and weak concavity, so u"(x)   0 is the condition for risk aversion. To 

isolate the effect of risk, we want the two distributions to have the same mean. This 

can be accomplished by specifying L2 = L1+L3, where L3 represents “risk”and has a 

conditional mean of 0 for each value of L1. 

We will use this as our definition for “risk”: L2 = L1 + L3, where L3 is a mean-

preserving spread for each possible value in L1. Here a mean-preserving spread is a 

lottery with mean 0 and some variation, meaning that it is not a degenerate lottery 

with 0 as the only possible outcome. 

L3 is the 50%-50% lottery between +$25 and -$25 if L1 = $50, and L3 = 0 for 

certain if L1 = -$50. In simple lottery form, L2 can be written as: {+75, +25, -50; 

1/4, 1/4, 1/2}. By Jensen’s inequality, if u(x) is concave: u(50)   0.5 u(75)+ 0.5 

u(25). That is, every risk averse person prefers $50 for sure to $50 plus the mean-

preserving spread of L3 (the lottery between an additional +$25 or -$25). The 

comparison between L1 and L2 depends only on the parts where they differ. 

The result then is that L1   L2 if the consumer is risk averse. In equation form: 

EU(L1) = 0.5 u(50) + 0.5 u(-50)   0.5 [0.5 u(75) + 0.5 u(25)] + 0.5 u(-50) = EU(L2) 

Again, the result is an application of Jensen’s inequality. Thus, L1 L2 for every risk 

averse person. If we can write L2 = L1+L3, where L3 is mean-preserving spread, or 

0, for each value of L1 and there are always a finite number of values for each 

lottery, then repeated use of Jensen’s inequality, as in the example, will show that L1 

  L2 if u(x) is concave. 

Although the derivation is slightly trickier if the lotteries have continuous 

distributions of values, the result is the same and the idea of the derivation is the 

same: repeated application of Jensen’s inequality to mean-preserving spreads shows 

that L1  L2. 

The next step is to find a condition to check whether L2 = L1+L3, where L3 is mean-

preserving spread or 0. It will not always be obvious how to create an L3 that 

transforms L1 into L2 even when L2 is clearly riskier than L1. The best way to 

proceed is to try some examples and see if we can discover, through experience, the 

appropriate conditions to check. 
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Here L1 and L2 each have the expected value $50, and it seems clear that L2 is 

riskier than L1 since its outcomes vary more from $50 than do the outcomes in L2. 

Suppose we try to addadditional mean-preserving spreads to L1 to create L2. 

Step 1: Add a mean-preserving spread to +$20 to create outcomes $0 and $100. This 

will require a lottery with outcomes -$20 and +$80, so probabilities must be 4/5 and 

1/5 to give the expected value of 0.In simplified form, this compound lottery reduces 

to: {$0, $100, $80; 2/5, 1/10, 1/2}. This step reduces expected utility because it adds 

risk to the certain outcome +$20. 

Step 2: Now add a mean-preserving spread to +$80 to create outcomes $0 and $100. 

In simplified form, this compound lottery reduces to: {$0, $100; 1/2, 1/2}. Thus, we 

have recreated L2 by adding this pair of lotteries to L1. L2 = L1 + L3 

Since L3 is a mean-preserving spread, L1   L2 for all concave u(x). 

The preceding example suggests an algorithm for trying to transform L1 into L2 

when there are a finite number of outcomes. Start with the lowest outcome in L1. 

Transform the lowest value in L1 into the two lowest values in L2. Then do the same 

for the second-lowest value in L1, and continue through all values in L1, subject to 

some checking. 

So far, the two examples we’ve examined showed how to add mean-preserving 

spreads to L1 to recreate L2. Each addition of a mean-preserving spread makes L1 

less attractive to a risk-averse consumer. This shows that if we can translate L1 into 

L2 by the addition of mean-preserving spreads, then every consumer who is risk 

averse will prefer L1 to L2. This preference is strict if the consumer is strictly risk 

averse (i.e. u"(x) < 0). 

To derive a mathematical condition for SSD, suppose that L1 has a cdf F(z), and L2 

has a cdf G(z), with associated pdf’s f(z) and g(z) respectively. This analysis will 

assume continuous distributions of outcomes for L1 and L2, but the argument also 

holds for finite numbers of outcomes in each lottery. 

Assume further that for some value x, that P(L1 x)=P(L2 x) and E(L1|L1 x) < 

E(L2|L3 x). Lastly, let the outcomes of both lotteries be distributed among values 

greater than or equal to zero. So, for some value of x, F(x) = G(x), and 

                  
 

 
  

 

 
 Use integration by parts for          

 

 
, with u=z, 

du=dz; and v=F(z), dv=f(z)dz we have                  
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    This lets us rewrite E(L1|L1 x) < E(L2|L2 x)  as       

     
 

 
              

 

 
   

Since F(x) = G(x) by assumption, this is equivalent to:      
 

 
        

 

 
   

This condition turns out to be precisely the standard condition for SSD to fail at the 

value x (with the generalization that the outcomes for other lotteries might be 

negative). In other words, as long as      
 

  
        

 

  
   for each and every 

x, we are guaranteed that the problems with the conversion algorithm that occurred 

in the preceding examples will not occur. 

Comment: This discussion does not constitute a proof, and for this reason, MWG 

opted not to include it at all in the discussion in stochastic dominance. The important 

concepts to take away from this discussion are: 

1) SSD cannot hold if F(x) = G(x) and E(L1|L1  x) < E(L2|L2  x)  for any x; 

2) Statement #1 is equivalent to saying that F(z) cannot SOSD G(z) if, for any x, 

     
 

 
        

 

 
  . Thus, to determine whether F(z) second-order 

stochastically dominates G(z), it is only necessary to check that: 

                                      
 

  
        

 

  
                                                 (2.14) 

To understand the working principle of SSD in continuous functions let X is 

uniformly distributed on (0,2) and Y is uniformly distributed on (0.5,1.5). Then 

       

 

 
                     

                            

  

       
                                

                               
                                     

  

A quick look at the graphs of FX and FY shows that there is no FSD, e.g. 

FX(0.5)=0.25 > FY(0.5)=0 but FX(1.5)=0.75 < FY(1.5)=1. However 
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And so       
 

  
          

 

  
   with strict inequality for 0.5<x<2, and we 

have that Y is 2nd-order stochastically dominant over X. The easiest way to see this 

is from the graph in Figure 2.19. 

 

Figure 2.19 : Graphical representation of SSD where the solid curves shows 

      
 

  
  , the dotted curve shows       

 

  
   while the dashed 

straight line is x−1. 

It can be directly realized that FSD is stronger than SSD. In terms of portfolio 

optimization, the results of FSD can be generalized for all investors while SSD is 

valid only for risk-averse investors, in mathematical terms, for all concave utility 

functions. Since all investors are assumed to be risk-averse, SSD must be preferred 

over FSD in an efficiency analysis of a portfolio. 

2.3.3 Efficiency analysis by using SSD 

To be efficient, a portfolio must not contain any SSD between any stock pairs. The 

set of all assets which are not dominated by other ones, according to SSD, is an SSD 

efficient set. As a further analysis of SSD efficiency, Yitzhaki and Mayshar (2001) 

provide some necessary and sufficient conditions which enable finding a direction 

for improving on an inefficient portfolio. More recently, Güran et al. (2013) applied 

SSD efficiency to the Turkish stock market. 

SSD is used to determine the efficiency of the selected portfolio. Since SSD is a 

measure of a stock pair, it is obvious that SSD must be checked c(N,2)=N!/[2*(N-
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2)!] times in a portfolio with N assets. To call the portfolio efficient, none of these 

c(N,2) pairwise comparisons must contain SSD. 

2.4 Measurements Criteria of the Portfolio Performance 

In this part two powerful performance criteria, Sharpe Ratio (SR) and Treynor Ratio 

(TR) are explained in detail that are very well known in financial world to measure 

the performance of portfolios.  

2.4.1 Sharpe Ratio (SR) 

Sharpe (1994) developed a ratio to measure risk-adjusted performance. The Sharpe 

Ratio is calculated by subtracting the risk-free rate from the rate of return for a 

portfolio and dividing the result by the standard deviation of the portfolio returns. 

The Sharpe Ratio (SR) formula is. 

   
      

  
                                                     (2.15) 

Where Rp is the portfolio return, Rf risk free return and σp portfolio standard 

deviation. 

The Sharpe ratio tells us whether a portfolio's returns are due to smart investment 

decisions or a result of excess risk. This measurement is very useful because 

although one portfolio or fund can reap higher returns than its peers, it is only a good 

investment if those higher returns do not come with too much additional risk. The 

greater a portfolio's Sharpe ratio, the better its risk-adjusted performance has proven 

to be. A negative Sharpe ratio indicates that a risk-less asset would perform better 

than the security being analysed. 

2.4.2 Treynor Ratio (TR) 

The Treynor ratio (sometimes called the reward-to-volatility ratio or Treynor 

measure), named after Jack L. Treynor, is a measurement of the returns earned in 

excess of that which could have been earned on an investment that has no 

diversifiable risk (e.g., Treasury bills or a completely diversified portfolio), per each 

unit of market risk assumed. (Treynor, 1965) The Treynor Ratio (TR) formula is. 

                                              
      

  
                                            (2.16)  
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Where Rp is the portfolio return, Rf risk free return and βp beta of the portfolio. 

The Treynor ratio relates excess return over the risk-free rate to the additional risk 

taken; however, systematic risk is used instead of total risk. The higher the Treynor 

ratio, the better the performance of the portfolio under analysis. 

  



 
39 

 

3.  LITERATURE REVIEW  

In this part the previous studies about economics, finance and portfolio optimization 

is summarized. In this literature review part analysed papers are grouped into two 

classes, fuzzy approach and stochastic dominance, in a chronological order. 

3.1 Studies including Fuzzy Approach 

Inuiguchi et al (1992) introduced the idea that the possibilistic programming can be 

applied to the portfolio selection problem. In the possibilistic programming 

approaches, the expected return rates are not handled as random variables but as 

possibilistic variables. According to them possibilistic programming has two main 

advantageous.  

i. The financial experts can easily contribute their knowledge to the estimation 

of the return rates 

ii. The reduced problem is more tractable than that of the stochastic 

programming approach of MPT 

Inuiguchi et al (1992) introduced some possibilistic programming approaches Before 

introducing this minimax regret approach Inuiguchi and Tanino (2000) summarize 

three basic approaches based on possibilistic programming. 

 Fractile Approach. 

According to this method, the portfolio optimization problem is formulated as to 

maximize the Fractile z under a constraint that a necessity measure of the event 

that the objective function value is not less than z is greater than or equal to h
0
, 

where h
0
 is a given appropriate level lying on the interval of (0,1]. The model of 

this approach is as in (3.1) and (3.2). 
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Maximize   z, 

Subject to   NC({c|c
T
x≥z})≥h

0
, 

                                                    e
T
x=1, x≥0.                               (3.1) 

where NC shows a necessity degree represented as  

NC({c|c
T
x≥z})=infc 1-πc(c) 

                                                          C
T
x<z                                                (3.2) 

Under the possibilistic independence this model is reduced to a linear 

programming problem and in this case it can be solved easily.  

 Modality Optimization Approach.  

According to this approach, the objective is to maximize the necessity 

measure in a given target value z
0
, represented as in (3.3). 

Maximize  NC({c|c
T
x≥z

0
}), 

                                       Subject to     e
T
x=1, x≥0.                                    (3.3) 

 Spread Minimization Approach. 

According to this approach the possibility distribution πC
t
x on the objective 

function value can be minimized under the constraint c
^T

x≥z
0
.  h

0
(0,1] and 

z
0 
are given and πC

t
x is calculated by the extension principle as in (3.4). 

                                                πC
T

X(y)=supc πc(c), c
T
x=y              (3.4) 

So the problem is formulated as 

Minimize  w, 

Subject to  max (y
R
-y

L
)≤w, 

c
^T

x≥z
0
, 

e
T
x=1, x≥0 

                                  where y
R
,y

L
[ c

T
x]h

0
                  (3.5) 

Since there is a close relationship between the variance of a probability distribution 

and the spread of a possibility distribution, this model is a counterpart of the 

Markowitz model.  

Inuiguchi and Tanino (2000) introduce a new possibilistic programming approach to 

the portfolio selection. This new approach is based on a regret which the decision 

maker may undertake.  



 
41 

It is shown that a distributive investment solution is obtained by this minimax regret 

approach to the possibilistic portfolio selection. At the end of the paper, they give 

numerical examples in order to compare the solutions obtained by the previous and 

proposed approaches. 

This new possibilistic approach is based on the worst regret criterion. Suppose that 

an investor has invested his money in a bond according to a concentrated investment 

solution. If the return of another bond would be greater than that concentrated 

solution as a result, the investor feels regret. Since at the decision stage no one can 

determine the future returns, any concentrated investment solution may bring regret 

to the investor. In this logic, to minimize the worst regret of the investor a 

distributive investment solution must be preferable. 

This Minimize Regret Model can be represented as in (3.6). 

Minimize  q, 

Subject to  max  f(ci)c
T
x+g(ci)≤q, 

Ccl(C)1-h0 

i=1,2,...,n, 

                                            e
T
x=1, x≥0.               (3.6) 

An example of f(r) and g(r) functions can be given as in (3.7).  

                                                                  
 

   
            

 

   
               (3.7) 

At the end of the paper, Inuiguchi and Tanino (2000) compare all of these methods in 

different case scenarios. According to the results, the solution obtained from the 

minimax regret approach has a distributive investment solution, but not the other 

possibilistic methods such as Fractile, Modality and Spread Minimization 

approaches. And the solution of the minimax regret approach seems better than the 

classical Markowitz Method since it is following the return rate pattern. 

Tanaka et al (2000) proposed a model based on fuzzy probabilities and possibility 

distributions which reflects experts’ knowledge. As a main contribution of this 

model, the possibility grade hi reflects a similarity degree between the future state of 

stock markets and the state of the ith sample offered by experts. These grades hi 

(i=1,2,...,m) are used to determine the fuzzy average vector and covariance matrix for 

the analysed data where m shows the number of the observed periods. 
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Under the light of this possibility grade, the fuzzy average vector a=[α1,...., αn]
t
 can 

be defined as follows where n donates the number of assets in the portfolio 

                                                                          
 
   

 
                                       (3.8) 

Similarly, the fuzzy weight covariance matrix ∑=[σij] can be defined by 

                                                   
                    

 
    

   
 
   

                              (3.9)   

It can be noted that, with the same importance grade this fuzzy portfolio selection 

model is the same as the Markowitz’s model. 

Tanaka et al (2000) defined a performance function CA where zi
t
 CA zi ≤ -ln(hi), 

i=1,...,m. By using this function with the transformations y=r-a and z=T
t
 y, they 

designed the optimization problem as in (3.10). 

Max    
     

 
    

s.t. zi
t
 CA zi ≤ -ln(hi), i=1,...,m 

cj≥ɛ, 

                                                         DA=(T CA T
t
)
-1

                         (3.10) 

Where T is the linear transformation matrix whose colums consist of the 

eigenvectors of the covariance matrix ∑ and DA is the possibility distribution matrix. 

In addition to these studies, Carlsson and Fullër (2001) defined possibilistic mean 

value, variance and covariance of fuzzy numbers by developing earlier works of 

Dubois and Prade (1987).  

According to these works, A fuzzy number A is a fuzzy set of the real line R with a 

normal, fuzzy convex and continuous membership function of bounded support. The 

family of fuzzy numbers will be denoted by F. Let A be a fuzzy number with γ level 

set [A]γ = [a1(γ), a2(γ)](γ > 0). So the possibilistic mean value of fuzzy numbers is as 

in (3.11). 

                                  (3.11) 

It follows that M (A) is nothing else but the level-weighted average of the arithmetic 

means of all γ level sets, that is, the weight of the arithmetic mean of a1(γ) and a2(γ) 
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is just γ. In a similar manner possibilistic variance of fuzzy numbers can be 

introduced as in (3.12). 

                           (3.12) 

Let apply these general definitions where a1(γ) and a2(γ) are linear functions in other 

words let them apply to a triangular fuzzy number (a,α,β) with center a, left with 

center a, leftwidth α > 0 and right-width β > 0 as in Figure 3.1. 

 

Figure 3.1 : Triangular fuzzy number (a,α,β) with center a and presentation of a1(γ) 

and a2(γ). 

Because of their linear nature by using simple mathematic rules ai(γ), i=1,2 become 

                                 a1(γ)=a−(1−γ)α , a2(γ)=a+(1−γ)β ; γ[0,1]            (3.13) 

When (3.13) is put on (3.11), possibilistic mean of the triangular fuzzy number 

A=(a,α,β) is calculated after a few integral calculations as in (3.14). 

                                                                     
    

 
                                  (3.14) 

When (3.13) is put on (3.12), possibilistic variance A=(a,α,β) is calculated in a 

similar manner after a few more integral calculations as in (3.15). 
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                                         (3.15) 

By considering two fuzzy numbers A and B such that [A]γ=[a1(γ), a2(γ)] and 

[B]γ=[b1(γ), b2(γ)] (γ > 0) the possibilistic covariance of A and B can be defined as in 

(3.16). 

                                 (3.16) 

When A=(a,α,β) and B=(b, θ, λ) are triangular fuzzy numbers then the related 

functions become as in (3.17).  

a1(γ)=a−(1−γ)α, a2(γ)=a+(1−γ)β 

                                            b1(γ)=b−(1−γ)θ,b2(γ)=b+(1−γ)λ             (3.17) 

If (3.17) is put on (3.16) then Cov(A,B) can calculated as in (3.18). 

                                                                 
          

  
                                  (3.18) 

It can be noticed when A=B then Cov(A,A) is equals to (α+β)
2
/24 which is Var(A) as 

expected according to statistics rules.   

Apart from these definitions, let λ, μ   R and let A and B be fuzzy numbers. Then 

the identity in (3.19) can be written.  

                       Var(λA + μB) =  λ
2
 Var(A) + μ

2
 Var(B) + 2 |λμ| Cov(A,B)          (3.19) 

where the addition and multiplication by a scalar of fuzzy numbers is defined by the 

sup-min extension principle. Carlsson and Fullër (2001) proved this theorem which 

forms the fundemantal of the portfolio variance in fuzzy environment.  

If this theorem is generalized to n fuzzy numbers A1,...,An with constants c1,...,cn  R, 

the generalized result in (3.20) can be obtained easily 

Var(c1A1+...+cnAn)= 

      c1
2
Var(A1)+...+cn

2
Var(An) + 2|c1c2|Cov(A1,A2) +...+  2|cn-1cn|Cov(An-1,An)  (3.20) 
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3.2 Studies including Stochastic Dominance 

When studying either income inequality or poverty, one is automatically in a 

normative context. Most modern studies make explicit or implicit use of a social 

welfare function (SWF). In a paper by Blackorby and Donaldson (1980), various 

ethically desirable criteria are developed and the sorts of SWF that respect these 

criteria are characterized. 

One of these criteria is the anonymity of individuals. If we take all the worldly goods 

of a rich man and give them to a poor man, and then give the few worldly goods of 

the poor man to the rich, then social welfare should be unchanged. Formally, a SWF 

that respects this requirement is symmetric with respect to its arguments, which are 

the incomes of the members of society. 

Another requirement is the Pareto principle. According to it, we should rank situation 

B better than situation A if at least one individual is better off in B than in A, and no 

one is worse off. In order for a SWF to respect the Pareto principle, it must be 

increasing in all its arguments. 

As with welfare functions, this result can be extended. By progressively restricting 

the admissible class of poverty indices, in particular by imposing signs on the 

derivatives of                  
 

 
, it can be seen that all poverty indices in 

these more restricted classes unanimously see more poverty in A than in B if there is 

a progressively higher order of stochastic dominance; see Davidson and Duclos 

(2000) for more details. An essential reference on poverty measurement is Atkinson 

(1987), in which the axiomatic approach is extended to poverty measurement. See 

also three papers by Foster and Shorrocks (1988a, b, and c). 

If a richer person in distribution A transfers some income to a poorer person in such 

a way that the richer person stays richer after the transfer, the post-transfer 

distribution B stochastically dominates A at second order. The Pigou-Dalton 

principle of transfers says that “Robin-Hood” transfers of the sort described should 

improve welfare. 
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But it is easy to see that distribution B does not dominate A at first order, and indeed 

this is right and proper according to the Pareto principle, since the richer person is 

worse off after the transfer. 

This example shows that, when we discuss inequality, we are not talking about the 

same thing as welfare. Any reasonable measure of inequality must declare that there 

is no inequality if everyone has the same income, even if everyone is in abject 

poverty. 

The classical tool for studying inequality is the Lorenz curve. For any proportion p 

between zero and one, the ordinate of the corresponding point on the Lorenz curve 

for a given income distribution is the proportion of total income that accrues to the 

first 100p per cent of people when they are sorted in order of increasing income. By 

construction, the Lorenz curve fits into the unit square, lies below the 45-degree line 

that is the diagonal of that square, and is (weakly) convex. Figure 3.2 displays a 

typical Lorenz curve. 

 

Figure 3.2 : Typical Lorenz Curve compared with the line y=x. 
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A distribution B is said to Lorenz dominate another distribution A if the Lorenz 

curve of B lies everywhere above that of A. We then say that there is less inequality 

in B than in A. But this comparison of A and B is not a welfare comparison, and, in 

particular, does not allow a comparison of poverty. This defect is remedied by the 

concept of generalized Lorenz dominance, based on the generalized Lorenz curve 

introduced by Shorrocks (1983). The ordinates of this curve are the Lorenz ordinates 

multiplied by the average income of the distribution. It turns out that generalized 

Lorenz dominance is the same thing as second-order stochastic dominance. Either 

one of these concepts implicitly mixes notions of welfare and inequality, as shown 

by the fact that the function u in a SWF  that respects second-order dominance has a 

negative second derivative, which implies diminishing marginal (social) utility of 

income. The discussion of the previous section shows that higher-order dominance 

criteria put more and more weight on the welfare of the poorest members of society. 

Consider the setup in Figure 3.3, where the CDFs of two distributions A and B are 

plotted. 

 

Figure 3.3 : Generalized Lorenz and Second Order Dominance. 



 
48 

The functions                  
 

 
 used for second-order dominance 

comparisons can be evaluated for a given argument, like z1 in the figure, as the areas 

beneath the CDFs, by the usual geometric interpretation of the Riemann integral. We 

see that distribution B dominates A at second order because, although the CDFs 

cross, the areas between them are such that the condition for second-order dominance 

is always satisfied. Thus the vertical line MN marks off a large positive area between 

the graphs of the two CDFs up to the point at which they cross, and thereafter a small 

negative area bounded on the right by MN. 

For generalized Lorenz dominance, it can be shown that what must be non-negative 

everywhere is the area between the two curves, bounded not by a vertical line like 

MN, but rather by a horizontal line like KL. This area is the difference between the 

areas under two quantile functions, a quantile function being by definition the inverse 

of the CDF. Although it is tedious to demonstrate it algebraically, it is intuitively 

clear that if the areas bounded on the right by vertical lines like MN are always 

positive, then so are the areas bounded above by horizontal lines like KL. This is 

why generalized Lorenz dominance and second-order stochastic dominance are 

equivalent conditions. The whole theory of stochastic dominance can be developed 

using quantiles rather than incomes; this is called a p-approach. Such approaches are 

used to advantage in Jenkins and Lambert (1997, 1998), Shorrocks (1998), and also 

Spencer and Fisher (1992). 

Another thing that emerges clearly from Figure 3.3 is that the threshold income z1 up 

to which first-order stochastic dominance holds is always smaller than the threshold 

z2 up to which we have second-order dominance. In the Figure, we have second-

order dominance everywhere, and so we can set z2 equal to the highest income in 

either distribution. More generally, we can define a threshold zs as the greatest 

income up to which we have dominance at order s. The zs constitute an increasing 

sequence. 

A result shown in Davidson and Duclos (2000) is that, if the distribution B dominates 

A at first-order over a range [0, z], with z > 0, then, no matter what happens for 

incomes above z, there is always some order s such that B dominates A at order s 

over the full range of the two distributions, provided only that that range is finite. 
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4.  THEORY OF THE SUGGESTED MODEL  

The gradual portfolio optimization method proposed in this thesis have two main 

steps. In the first step, the SSD inefficient stocks are excluded from the portfolio. In 

the second step, the optimized portfolio is found by minimizing the fuzzy variance 

for a given target return level.  

4.1 First Step. Elimination of SSD inefficient stocks  

To begin with this step, the SSD relationships between all stock pairs should be 

determined. To check an SSD between two assets is very easy if their cumulative 

distribution functions are known, but in this application there are n stocks to be 

examined and this equals c(n,2) pairwise SSD detections. It is obvious that this job 

cannot be done manually and because of that an algorithm, written in C++, is 

developed to check these SSDs among the stock pairs automatically. This code 

applies the same procedures for all stock pairs by taking the cumulative distributions 

and returns as inputs to detect the SSDs.  

To explain the working principle of this algorithm, suppose that f(ri) and g(ri) are two 

cumulative distributions of a stock pair A and B respectively, where ri represents the 

observed return levels of A and B. If (2.14) is applied to this A&B pair, taking into 

account that f and g are discrete functions, the inequality in (4.1) should be checked  

                                              
   , for all i=1,..,n                                    (4.1) 

According to the definition of SSD, if only non-positive terms are found such as in 

(4.1), it can be said that A dominates B in terms of SSD. On the other hand, only 

non-negative terms show that B dominates A. In a mixed situation of both positive 

and negative terms for i=1,..,n, there is no SSD between A and B. 
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4.2 Second Step. Minimizing the Fuzzy Variance at a given target return  

In terms of fuzzy logic triangular membership functions are used to forecast future 

returns both because of its suitable nature to the portfolio selection problem and 

because of its linear structure which facilitates the optimization model. To predict the 

future return of a stock, it is assumed that the membership degree of the fuzzy 

average is always 1. But the membership degrees will change depending on the 

scenario whilst deviating vastly from the fuzzy average. This triangular membership 

function representing the future returns ri of the i
th

 stock (i=1,...,n) as in (4.2). 

                                            

 
 
 

 
 

 
 

  
  

     

  
           

 
 

  
  

     

  
           

                           

                                 (4.2) 

In fuzzy terms this triangular membership function can be expressed by (ri-αi,ri,ri+βi) 

where βi and αi represent maximum possible differences of future returns 

respectively in up and down directions and ri is the expected centre future return with 

the highest membership value of 1. 

After the calculation of ri, αi and βi values of each stock, the fuzzy mean value of the 

whole portfolio return of n assets can be defined as in (4.3). 

                                                      
 
                                       (4.3) 

In this definition xi (i=1,...,n) represents the weights of the stocks. These proportions 

satisfy the condition in (4.4) because in the proposed models short selling of any 

stock is not allowed. 

                                                           
                        (4.4) 

Since ri is the midpoint of the triangular fuzzy number for stock i, by using (3.14) the 

expression in (4.5) can be obtained.  

                                                       
     

 
                                (4.5) 

If the equation in (4.5) is substituted into the equation in (4.3), the equation in (4.6) 

can be obtained for the fuzzy mean value of the whole portfolio return. 

                                                      
     

 
    

 
                           (4.6) 
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According to portfolio theory, to solve the right portfolio selection problem, in other 

words to find the optimal weights, the fuzzy variance of the whole portfolio must be 

defined in addition to fuzzy portfolio return. For this purpose, the identity in (3.20) 

can be used to determine the portfolio variance as in (4.7). 

                 

 

   

   

x1
2
 Var(r1)+...+xn

2
Var(r10) + 2|x1x2|Cov(r1,r2) +...+  2|xn-1xn|Cov(rn-1,rn)           (4.7) 

 Because of the triangular feature of r1,...,rn the identities in (3.15) and (3.18) can be 

applied in (4.7) and the formula in (4.8) can be concluded to determine the portfolio 

variance. 

        
       

 

  
  
    

       
        

 

  
    

 
     

 
       

     

   

 
       

      (4.8) 

According to MPT, the fuzzy mean-variance model can formulated as in (4.9).  

        
     

   

 

   

    
    

                
     

 
       

 

   

 

                                                             
    

                                                                                      (4.9) 

In this quadratic nonlinear optimization model, µ represents the desired minimum 

portfolio return level and this size of µ is left to the preference of the portfolio maker. 

It is obvious that the greater the risk, the greater the appetite of the investor and the 

bigger the size of the desired minimum portfolio return.     

To facilitate the solution of this optimization model, standard deviation can be used 

instead of variance. When the square root of the objective function in (4.9) is taken, 

all nonlinear terms drop from the formula and the defuzzified standard deviation of 

the whole portfolio is as in (4.10). 
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                                (4.10) 

When defuzzified standard deviation is minimized instead of fuzzy variance, the 

model in (4.9) is transformed to a linear optimization model as in (4.11). 

     
  

  
       

 

   

      

                
     

 
       

 

   

 

                                                                  
    

                                                                                                                (4.11) 
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5.  APPLICATION OF THE SUGGESTED MODEL  

5.1 Main Structure 

In this thesis three different model are applied in the BIST-30 Index.  

 Model 1. MV Optimization 

In this model the classical MV optimization of Markowitz is applied without 

any modification. This model generates a benchmark portfolio which can be 

compared with other portfolios to test their performance.  

 Model 2. MV Optimization after elimination of SSD inefficient stocks  

In this model the SSD inefficient stocks are eliminated in the first step and 

the MV optimization is applied in the second step. This model generates a 

portfolio which shows the effect of the only first step. 

 Model 3. Fuzzy Variance Minimization after elimination of SSD inefficient 

stocks 

In this model the proposed two-step gradual method is completely applied. 

This model generates a portfolio which shows the effect of two steps 

together. 

5.2 Data 

BIST-30 Index consists of 30 stocks which belong to the largest companies in 

Turkey. An alphabetical list of these stocks including the company name, stock code, 

the weight of the stock in the index, initial public offering (IPO) date and market 

value in terms of USD can be found as in Table 5.1. 
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Table 5.1 : BIST-30 Index of Turkey. 

 

 

  

Additional information about the companies such as general manager, chairman of 

the board and the official website are also listed in Table A.1. 

To a better consideration of the BIST-30 indexes all of these 30 companies are sorted 

according the quantitave parameters which are stock code, the weight of the stock in 

the index, initial public offering (IPO) date and market value in terms of USD. The 

sorted tables can be found in Table 5.2, Table 5.3 and Table 5.4. 
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Table 5.2 : Bist-30 Companies sorted from largest to smallest according to their 

weight of the stock in the index. 
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Table 5.3 : Bist-30 Companies sorted from largest to smallest according to their 

market value in USD. 
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Table 5.4 : Bist-30 Companies sorted from oldest to newest according to their IPO 

Date. 

 

 

All data consisting of the closing values of these stocks from 03.12.2010 to 

05.07.2013 are taken from the official web site of Istanbul Stock Exchange, 

borsaistanbul.com, on a weekly basis total of 135 observation periods that are 

displayed in Table A.2. The data before 03.12.2010 would be incomplete since some 

of these 30 companies have no returns before 03.12.2010. 

http://www.borsaistanbul.com/
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5.3 Application of the Models  

It is obvious that each model generates many portfolios lying on the efficient frontier 

according to their varying target returns. To prevent the confusion among hundreds 

of portfolios the target return level which maximizes the SR of Model 1 is taken as 

the standard level for all three portfolios. So under this condition just one portfolio is 

selected from each model. 

Model 1 -> Portfolio-A 

Model 2 -> Portfolio-B 

Model 3 -> Portfolio-C 

5.3.1 Model 1 -> Portfolio-A 

The classical MV optimization will be applied on this data. As a first step of MV 

optimization variance-covariance matrix (displayed in the Table A.1) and average 

returns of the 30 stocks are determined. Next, MV optimization stated in (2.5) is 

applied with the help of MatLab Software (Version 7.9). The list of MV optimized 

portfolios according to 20 different return (µ) levels is in Table 5.5. 

Table 5.5 : MV optimized portfolios of BIST-30 Stocks. 

 

It can be observed that in these portfolios the weights of some stocks are always 

zero. But the number of stocks, which do not enter the portfolio, is not constant; it is 

changeable from one portfolio to another. For that reason, the Portfolio A which 

maximizes the SR is chosen among these 20 portfolios. 
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To find the SR of each portfolio, risk free rates were collected from the Turkish 

central bank website (www.tcmb.gov.tr) and the weighted weekly risk free rate is 

calculated as 0.00110. Then the formula (2.15) is applied to these portfolios. The 

results are as in Table 5.6. 

Table 5.6 : SR computation of the BIST-30 Portfolios. 

 

 

 

Figure 5.1 : Efficient Frontier of the MV Optimized BIST-30 Portfolios. 

It is obvious from this table that the 15
th

 portfolio has the maximum SR, so this 

portfolio can be selected as Portfolio-A. In this Portfolio-A only the stocks 

2,3,13,18,23,25,26 have a positive weight and the other 23 stocks have a weight of 

zero, in other words, these stocks do not enter the portfolio.  

5.3.2 Model 2 -> Portfolio-B 

In this model the SSD inefficient stocks of BIST-30 are excluded in the first step. To 

identify these SSD inefficient stocks, c(30,2)=435 pairwise SSD comparisons are 

made with the help of  C++ code. The comparison matrix of these stocks is as Table 

5.7. 

Risk Free Rate 0,00110

Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Return 0,0022 0,0024 0,0026 0,0028 0,0031 0,0033 0,0035 0,0037 0,0040 0,0042 0,0044 0,0046 0,0049 0,0051 0,0053 0,0055 0,0058 0,0060 0,0062 0,0064

Risk Free adjusted Return 0,0011 0,0013 0,0015 0,0017 0,0020 0,0022 0,0024 0,0026 0,0029 0,0031 0,0033 0,0035 0,0038 0,0040 0,0042 0,0044 0,0047 0,0049 0,0051 0,0053

Std Dev 0,0239 0,0240 0,0241 0,0242 0,0245 0,0248 0,0253 0,0258 0,0264 0,0271 0,0280 0,0289 0,0299 0,0311 0,0324 0,0343 0,0366 0,0429 0,0577 0,0779

Sharpe Ratio 0,0458 0,0540 0,0620 0,0700 0,0814 0,0885 0,0947 0,1006 0,1097 0,1142 0,1177 0,1209 0,1269 0,1285 0,1295 0,1281 0,1283 0,1141 0,0883 0,0680
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Table 5.7 : SSD output matrix showing all 435 SSD relationships among 30 assets. 

 

 

Suppose that aij is an element of this matrix, then “1” means that the stock i second 

orderly dominates the stock j. Similarly, “2” means that the stock j second orderly 

dominates the stock i. On the other side “3” represents no SSD between i and j. 

As it is expected, this matrix has only 435 elements. Apart from the values “1,2,3” 

the zero values are attained in meaningless situations. All diagonal elements are zero 

since to check the SSD of two identical stocks is meaningless. Additionally because 

of the symmetric structure of SSD zeros are automatically allocated to the values 

below the diagonal elements. For example, if aij=1, i.e. i dominates j, then that also 

means aji=2. Therefore, all elements below the diagonal can be easily understood 

from the part above.   

As it can be easily interpreted from this SSD matrix, the stocks can be grouped in 

four discrete clusters. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 3 3 1 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 2 3 3 3 2 3 3 1

2 0 0 3 1 3 1 3 3 3 3 3 3 3 3 3 1 1 3 1 3 3 3 3 3 3 1 3 3 1 1

3 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3

4 0 0 0 0 3 3 2 2 2 2 3 3 3 2 2 3 3 2 3 2 2 2 2 2 2 3 2 2 3 3

5 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 2 3 3 2 3 3 3

6 0 0 0 0 0 0 2 2 3 3 2 3 3 3 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 3

7 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 2 3 3 3 3 3 3 3

8 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1

9 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3

10 0 0 0 0 0 0 0 0 0 0 3 3 3 3 2 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1

11 0 0 0 0 0 0 0 0 0 0 0 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 2 3 3 1

12 0 0 0 0 0 0 0 0 0 0 0 0 3 3 2 3 3 2 3 2 2 3 2 2 3 3 2 2 3 3

13 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 3 3 3 2 3 3 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 1 3 3 1 3 3 3 3 3 3 1 1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 2 3 2 3 2 3 2 3 3 3

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 2 3 2 3 3 3 3 3

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 3 3 3 3 3 3 3 3 3

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 3 3

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 1 1

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 3 3 3 3 1 1

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 2 3 3 3

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 1 1

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 1

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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A. The stocks which dominate at least one stock and are not dominated by any other 

stock 

B. The stocks which are dominated by at least one stock and do not dominate any 

other stock    

C. The stocks which are dominated by at least one stock and dominate at least one 

other stock   

D. The stocks which are not dominated by any other stock and do not dominate any 

other stock 

According to the results of this matrix, the contents of these clusters are A={2, 8, 9, 

15, 18, 20, 21, 23, 24, 25, 27};  B={3, 4, 5, 6, 12, 19, 30};  C={1, 7, 10, 11, 14, 16, 

17, 22, 26, 28, 29};  D={13} which are displayed with the help of venn diagrams in 

Figure 5.2. 

 

Figure 5.2 .The Venn diagram of the SSD clusters. 

It is obvious that the stocks which are in the clusters B and C are dominated by at 

least one stock. Because of that these stocks must not be in a portfolio which is built 

by using these 30 stocks. In other words, the stocks in A and D should be taken in the 

portfolio optimization. 

To apply Model 2, MV optimization stated in (2.15) is applied to this efficient set of 

A and D which consists of only 12 stocks with the help of MatLab Software (Version 

7.9). These 12 stocks can be regarded as a SSD efficient subset of BIST-30 stocks. 

The list of MV optimized portfolios according to 20 different return (µ) levels is 

stated in Table 5.8. 
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Table 5.8 . MV optimized portfolios of 12 SSD Efficient Stocks. 

 

Similar to the previous parts risk free adjusted return, standard deviation and SR of 

each SSD efficient portfolio are computed. The results are shown in Table 5.9 and 

Figure 5.3. 

Table 5.9 . Sharpe Ratio computation of the 12 SSD Efficient Stocks. 

 

 

 

Figure 5.3 . Efficient Frontier of the MV Optimized SSD Efficient Portfolios. 

As it is realized the 15
th

 portfolio has the same risk free return of 0,0042 as the 

Portfolio-A, besides this portfolio has also the maximum SR among these SSD 

efficient portfolios. So this one can be selected as the Portfolio-B.  
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5.3.3 Model 3 -> Portfolio-C 

In this Model 3, the suggested two-step gradual method of the thesis is applied 

completely. The first step of the Model 3, is the as Model 2. Then the fuzzy variance 

minimization is applied to the SSD efficient subset of 12 stocks of the clusters  A and 

D which are explicitly stated in Figure 5.2. 

To apply the fuzzy variance minimization, first of all, the membership function in 

(4.2) displaying the future return should be determined for each of these SSD 

efficient 12 stocks. To determine these functions, it is easy to compute the expected 

centre future return (ri) since it can be accepted as the average return of the stock 

(i=1,...,12). But there is not just a certain rule to estimate the up direction (βi) and the 

down direction (αi) representing the maximum possible differences of future returns. 

Actually these deviations reflect the expert knowledge. That means this fuzzy model 

enables that up and down directions can be determined according to the next coming 

economic conditions. But in this application part of the thesis no subjective opinion 

is added to the model. The past observations of the stocks in the last 135 weeks are 

observed and under the lights of this information βi and αi are determined due to 

relatively the best and the worst returns in the past. The logic of βi and αi calculation 

can be explained by the “Arçelik” Stock which belongs to BIST-30 Portfolio. The 

related graph of this example is displayed in Figure 5.4. 
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Figure 5.4: The calculation logic of up (βi) and down (αi) directions explained by the 

“Arçelik” Stock. 

As it can be understood from Figure 5.4 the best and the worst returns of the stock 

constitute the end points of the triangular base side. To apply the optimization model 

in (4.11) the necessary calculations of the 12 SSD efficient stocks are made as in 

Table 5.10. 

Table 5.10. The necessary calculations of the SSD efficient 12 stocks to minimize 

the fuzzy variance. 

 

The linear optimization model is stated in Table 5.11. 
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Table 5.11 . The linear optimization model. 

 

The results of the optimization are listed in Table 5.12. 

Table 5.12. Fuzzy Varince minimization of the SSD efficient 12 stocks. 

 

The portfolio with the fuzzy goal return of 0.053 is chosen as the Portfolio C among 

the optimized portfolios of Model 3 to ensure equal comparison conditions since the 

return of the SR max portfolios A and B is also 0.053 before the adjustment of risk 

free rate.  
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6.  CONCLUSION 

In this part the performance of the optimized portfolio created by the the new gradual 

method is tested in next coming future data and then the results are interpreted.  

 

6.1 The results of the Performance Tests 

In this part the portfolios A, B and C are tested in future data in various time 

horizons, such as next 10, 20, 30, 40 and 50 weeks from the end of the application 

period which is 12.07.2013.  

As stated in the previous part, there are three models and in each method there are a 

lot of optimized portfolios. To be able to compare these methods with each other, the 

return level of SR maximizing Portfolio A is also accepted for Portfolio B and C to 

ensure equal comparison conditions. Apart from these three portfolios A, B and C, 

the BIST-30 Index, in other words the market portfolio, is also added into the 

comparison table. 

To measure the performance of these portfolios the two most important criteria of the 

finance world, SR in (2.15) and TR in (2.16), are calculated. 

Table 6.1. Performance results of the compared portfolios. 

 
 

Notice that TR of the Market Portfolio is not calculated since beta of the market is 

always one. The bar charts for both SR and TR are displayed in Figure 6.1 for a 

visual perception. 

SR TR SR TR SR TR SR TR SR TR

 Market Potfolio -0,0350 0,0429 -0,1428 -0,0053 0,0384

Portfolio A -0,0509 -0,0024 0,0956 0,0043 -0,0516 -0,0023 0,0368 0,0016 0,0873 0,0037

Portfolio B 0,0026 0,0001 0,1098 0,0050 -0,0292 -0,0013 0,0447 0,0020 0,0880 0,0038

Portfolio C 0,1473 0,0083 0,2195 0,0120 0,0156 0,0008 0,0963 0,0048 0,1784 0,0085

10 Weeks after 

12.07.2013

20 Weeks after 

12.07.2013

30 Weeks after 

12.07.2013

40 Weeks after 

12.07.2013

50 Weeks after 

12.07.2013
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Figure 6.1. Sharpe Ratio (SR) results of the compared portfolios. 

 

Figure 6.2. Treynor Ratio (TR) results of the compared portfolios. 

6.2 Concluding Remarks 

The Portfolio-B consists of the only first step of the suggested gradual method that is 

exclusion of the SSD inefficient stocks from the MV portfolio. According these 

results Portfolio-B performs better than the classical MV Portfolio (Portfolio-A) in 

all fields and this superiority indicates that the first step alone generates an 

improvement in the classical MV method.  

But the Portfolio-C which also contains the second step, fuzzy variance 

minimization, in addition the first step performs far better than even Portfolio-B. 

That means in plain words, the both steps of the suggested gradual two-step method 

improves the classical MV method as plain as a pikestaff by generating a portfolio 
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which has a higher performance in all time horizons and in both performance criteria 

SR and TR. Furthermore, SR of Portfolio-C is higher than the SR of the market 

portfolio again in all time intervals.      

Finally, the technical reasons behind this superiority of the Portfolio-C among the 

others are explained. As it is stated in Part 2.1.2 MV has some shortcomings because 

of its assumptions which are practically not applicable. Among the others, the 

assumption requiring that the returns of all stocks in the portfolio must be distributed 

normally is probably the most impossible one in the real world. To check the validity 

of this normality assumption, Shapiro-Wilk Normality Test is applied to all stocks of 

BIST-30 data. The test outcomes are displayed in the Table A.2 and this table 

indicates that 14 of the 30 stocks are not normally distributed at the %5 confidence 

level.  

In plain words, although MV requires that returns of the stocks in portfolio must be 

distributed normally, in the BIST-30 data nearly the half of them is not normally 

distributed. This striking result alone shows why the MV model generates such low 

performance portfolios. Since Fuzzy variance minimization does not require 

anything about the distribution of the stock returns apart from MV, the Portfolio-C 

has overwhelming superiority over the Portfolio-A and Portfolio-B. So it can be 

concluded from these findings that the suggested gradual optimization model works 

far better than classical MV model, especially in the real data, because of its simple 

algorithm which does not require any assumption over the return distributions. 

6.3 Future Work 

In this thesis a completely new gradual portfolio optimization method is suggested 

and this method is to the BIST-30 data applied. The performance tests show that this 

new method is more successful than the classical method.  

The aim in the short run is to establish a series of academic papers which apply this 

new method to other markets of the world apart from Turkish Stock Exchange and 

generalize its results for the whole finance world.  

The aim in the long run is creation of a user friendly software program which applies 

this method to any stock market and gives the optimized portfolio as the output. 
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Table A.1 : Additional Information about BIST-30 Companies. 

 

  

Stock Code General Manager Chairman of the Board Web Site

1 AKBNK S.HAKAN BİNBAŞGİL SUZAN SABANCI DİNÇER www.akbank.com

2 ARCLK Levent Çakıroğlu Mustafa Rahmi Koç www.arcelik.com.tr

3 ASELS FAİK EKEN Mustafa Murat Şeker www.aselsan.com.tr

4 ASYAB Aydın Gündoğdu MEHMET ALİ İSLAMOĞLU www.bankasya.com.tr

5 BIMAS Mustafa Latif Topbaş Mustafa Latif TOPBAŞ www.bim.com.tr

6  DOHOL Yahya Üzdiyen Yaşar Begümhan Doğan Faralyalı www.doganholding.com.tr

7 EKGYO MURAT KURUM ERTAN YETİM www.emlakkonut.com.tr

8 ENKAI AGAH MEHMET TARA M.Sinan Tara www.enka.com

9 EREGL Sedat ORHAN Ali Aydın PANDIR www.erdemirgrubu.com.tr

10 GARAN SAİT ERGUN ÖZEN FERİT FAİK ŞAHENK www.garanti.com.tr

11 HALKB Ali Fuat Taşkesenlioğlu Hasan CEBECİ www.halkbank.com.tr

12 IHLAS Ahmet Mücahid Ören Ahmet Mücahid Ören www.ihlas.com.tr

13 IPEKE C.Tekin İpek Hamdi Akın İPEK www.koza.com.tr

14 ISCTR Adnan Bali H. Ersin Özince www.isbank.com.tr

15 KCHOL Levent Çakıroğlu Rahmi M. Koç www.koc.com.tr

16 KOZAA Şaban Yörüklü Hamdi Akın İPEK www.koza.com.tr

17 KOZAL İSMET SİVRİOĞLU HAMDİ AKIN İPEK www.kozaaltin.com.tr

18 KRDMD Uğur YILMAZ MUTULLAH YOLBULAN www.kardemir.com

19 MGROS Ömer Özgür Tort Fevzi Bülent Özaydınlı www.migroskurumsal.com

20 PETKM Sadettin Korkut VAGIF ALIYEV www.petkim.com.tr

21 SAHOL ZAFER KURTUL GÜLER SABANCI www.sabanci.com.tr

22 SISE Prof.Dr.Ahmet Kırman Hakkı Ersin Özince www.sisecam.com.tr

23 TAVHL MUSTAFA SANİ ŞENER Hamdi Akın www.tav.com.tr

24 TCELL Kaan Terzioğlu Ahmet Akça www.turkcell.com.tr

25 THYAO Temel Kotil M. İlker AYCI www.thy.com

26 TOASO Cengiz EROLDU Mustafa Vehbi KOÇ www.tofas.com.tr

27 TTKOM Rami Aslan Mohammed Hariri www.turktelekom.com.tr

28 TUPRS Yavuz Erkut ÖMER MEHMET KOÇ www.tupras.com.tr

29 VAKBN Halil AYDOĞAN Ramazan GÜNDÜZ www.vakifbank.com.tr

30 YKBNK Hüseyin Faik Açıkalın Mustafa V. Koç www.ykb.com.tr
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Table A.2 : Closing values of 30 Stocks in BIST-30. 
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Table A.3 : Variance-Covariance Matrix of Model 1 
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Table A.4 : Shapiro-Wilk Normality Test results of stock returns. 

 
* Returns are not normally distributed at the 5% Confidence Level 

 

 

 

 

Stock No Shapiro-Wilk Test Statistics Significance 

1 0.991 0.579 

2 0.989 0.396 

3 0.660 0.000* 

4 0.971 0.005* 

5 0.594 0.000* 

6 0.926 0.000* 

7 0.967 0.002* 

8 0.992 0.694 

9 0.991 0.558 

10 0.983 0.097 

11 0.991 0.523 

12 0.897 0.000* 

13 0.820 0.000* 

14 0.993 0.712 

15 0.987 0.257 

16 0.957 0.000* 

17 0.981 0.061 

18 0.969 0.004* 

19 0.947 0.000* 

20 0.970 0.005* 

21 0.988 0.322 

22 0.992 0.629 

23 0.976 0.019* 

24 0.960 0.001* 

25 0.995 0.918 

26 0.992 0.653 

27 0.988 0.293 

28 0.973 0.009* 

29 0.991 0.552 

30 0.990 0.456 
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