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NOMENCLATURE 

Tm : Melting Temperature 
Tg : Glass Transition Temperature 
U : Crystal Growth Rate 
E : Activation Energy Of Crystal Growth 
D′′ : Diffusion Coefficient 
∆G : Bulk Free Energy Of Crystallization 
a0 : Molecular Diameter 
α : Heating Rate 
R : Ideal Gas Constant  
n, m and k : Numerical Factors Which Depend On The Crystallization Mechanism 
Tp : Crystallization Peak Temperature 
ν : Frequency Factor 
HV : Vickers Hardness 
δ(T)p : The height of the Crystallization Peak 
N : The Number of Nuclei 
k : The Reaction Rate Constant 
Cp : The Heat Capacity 
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ENDÜSTRİYEL ATIKLARDAN CAM, CAM-SERAMİK VE SİNTERLENMİŞ 
MALZEMELERİN ÜRETİMİ 
 
ÖZET 
 
Bu çalışmada, endüstriyel atıklardan cam, cam-seramik ve sinterlenmiş malzemeler 
üretilmiştir. Bu amaçla, Afşin-Elbistan, Çan, Çatalağzı, Çayırhan, Orhaneli, Seyitömer ve 
Tunçbilek termik santrallerinden uçucu küller temin edilmiştir. Silis dumanı ve Seydişehir 
alüminyum tesislerinden elde edilen kırmızı çamur ise katkı maddesi olarak kullanılmışlardır. 
Öncelikle, Afşin-Elbistan, Çayırhan, Orhaneli, Seyitömer ve Tunçbilek uçucu küllerinden 
cam üretimi gerçekleştirilmiştir. Üretilen cam numunelerine 1273 K’de ve 2 saat süreyle ısıl 
işlem uygulanmıştır. Cam numunelerine ısıl işlem uygulanması ile amorf faz kaybolmuş ve 
numunelerde diopsid, gelenit, wollastonit ve augit fazları oluşmuştur. Isıl işlem uygulanan 
cam numunelerinin, mekanik, fiziksel ve kimyasal özelliklerinin cam numunelerinkine oranla 
daha iyi olduğu görülmüştür. Cam numunelerine ısıl işlem uygulanması, numunelerin 
özelliklerini iyi yönde geliştirmiştir. Toksisite deneyi sonuçları, cam ve ısıl işlem uygulanmış 
cam numunelerinin çevreye zarar vermeyen malzemeler olduğunu göstermiştir.  
 
Tunçbilek uçucu külünden ve Çayırhan ile Orhaneli uçucu küllerine kırmızı çamur ve silis 
dumanı ilavesi ile cam-seramik malzemeler üretilmiştir. Cam numunelerine, cam-seramik 
malzeme üretebilmek amacıyla hem klasik hem de sinterleme yöntemleri uygulanmıştır. Cam 
numunelerine; diferansiyel termal analiz sonucunda elde edilen bilgiler ışığında, 
çekirdeklenme ve kristalizasyon ısıl işlemleri uygulanarak cam-seramik malzemeler 
üretilmiştir. Kristalizasyon sıcaklığında bekleme süresinin üretilen cam-seramik 
numunelerinin mikroyapısal, kimyasal ve fiziksel özelliklerine olan etkisi incelenmiştir. 
Kristalizasyon sıcaklığında süresinin artması ile birlikte cam-seramik numunelerde oluşan 
kristal fazın oranı artmıştır. Ayrıca cam-seramik numunelerinin iyi yönde geliştiği 
gözlenmiştir. Klasik yöntem ile üretilen cam-seramik numunelerin özellikleri camın kimyasal 
yapısına ve uygulanan ısıl işlemlerin koşullarına bağlı olarak değişmektedir. Sinterleme 
yöntemi ile üretilen cam-seramik numunelerin özellikleri ise camın kimyasal yapısına, 
ortalama tane boyutuna, katkı maddelerine, ısıtma hızına, sinterleme basıncı ve sıcaklığına 
bağlıdır. Tunçbilek uçucu külünden üretilen cam-seramik numuneler hariç, sinterleme 
yöntemi ile elde edilen tüm cam-seramik malzemelerin özelliklerinin, PVA ilavesi ile iyi 
yönde geliştiği tespit edilmiştir. Toksisite sonuçları ağır metallerin, üretilen cam-seramik 
numunelerin yapıları içerisinde tutulduğunu göstermiştir.  
 
Endüstriyel atıklardan üretilen cam numunelerinin kristalizasyon mekanizmaları izotermal ve 
izotermal olmayan yöntemler kullanılarak tespit edilmiştir. Ayrıca, cam numunelerinin tane 
boyutunun kristalizasyon mekanizmasına olan etkisi incelenmiştir. İzotermal olmayan yöntem 
kullanılarak tespit edilen aktivasyon enerjisi değerleri, tane boyutu büyük cam  numuneleri 
için 233-578 kJ/mol, toz halindeki cam numuneleri için is 369-662 kJ/mol arasında 
değişmektedir. Cam numunelerinin aktivasyon enerjisi değerleri tane boyutunun düşmesi ile 
birlikte artmıştır. Tane boyutu büyük ve toz halindeki cam numunelerinin, izotermal ve 
izotermal olmayan yöntemler kullanılarak hesaplanan aktivasyon enerjisi değerleri birbirine 
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oldukça yakın çıkmıştır. Ancak, izotermal olmayan yöntemler kullanılarak hesaplanan 
aktivasyon enerjisi değerleri, izotermal yöntemler kullanılarak hesaplananlardan daha büyük 
çıkmıştır. 
 
Yedi farklı termik santralden temin edilen uçucu küllerden herhangi bir katkı madde ilavesi 
olmadan sinterleme yöntemi kullanılarak seramik malzeme üretilmeye çalışılmıştır. 
Sinterleme sıcaklığının, üretilen malzemelerin yoğunluk, gözeneklilik, su emme, mekanik ve 
mikroyapısal özelliklerine olan etkisi incelenmiştir. Sinterleme yöntemiyle üretilen 
malzemelerin özelliklerinin, sinterleme sıcaklığı ve süresine, kullanılan uçucu külün kimyasal 
bileşimine ve tane boyutuna bağlı olduğu saptanmıştır. Sinterlenmiş malzemelerin 
özelliklerinin, sinterleme sıcaklığının artması ile birlikte iyi yönde geliştiği gözlenmiştir. Bu 
çalışma açıkça göstermektedir ki, endüstriyel atıklardan cam, cam-seramik ve sinterlenmiş 
malzemeler başarılı bir şekilde üretilebilmiştir. 
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GLASS, GLASS-CERAMIC AND SINTERED MATERIALS PRODUCED FROM 
INDUSTRIAL WASTES 
 
SUMMARY 
 
In this study, the production of glasses, glass-ceramics and sintered materials from industrial 
wastes has been investigated. For this purpose, coal fly ash samples were obtained from 7 
different thermal power plants which are located in Afşin-Elbistan, Çan, Çatalağzı, Çayırhan, 
Orhaneli, Seyitömer and Tunçbilek. Beside coal fly ashes, red mud from Seydişehir alumina 
plant and silica fume from ferrosilicon alloy production were used as additives. To 
accomplish this study first of all, glass samples were produced from Çayırhan, Orhaneli, 
Seyitömer, Afşin-Elbistan and Tunçbilek fly ashes. The produced glass samples were heat 
treated for 2 h at 1273 K to observe the physical, microstructural and mechanical changes in 
the glass structure. When the heat-treatment process was applied to the glass samples, the 
amorphous phase had practically disappeared and diopside, augite, gehlenite and wollastonite 
phases occurred in the samples. Physical, mechanical and chemical properties of the heat-
treated glass samples are better than those of the produced glass samples. The heat-treatment 
process improved the properties of the glass samples. TCLP results revealed that the both 
glass and the heat treated glass samples can be taken as non-hazardous materials.  
 
Glass-ceramic materials were produced from Tunçbilek, Çayırhan and Orhaneli coal fly ashes 
without or with the addition of red mud and silica fume. Both classical and sintering methods 
were applied to the produced glass samples. The nucleation and crystallization experiments 
were carried out on the basis of differential thermal analysis results to produce glass-ceramic 
materials. The effect of different holding times at the crystallization temperature on the 
microstructure and the properties of the produced glass-ceramic samples was also 
investigated. It was observed that the volume of the crystalline phase increased with the 
increase in holding time at the crystallization temperature in all glass-ceramic samples and 
this result caused to improve the physical, mechanical and chemical properties of the glass-
ceramic samples. The properties of the bulk glass-ceramic samples were influenced by the 
glass composition, glass production conditions and the heat treatment process while the 
properties of the sintered glass-ceramic samples are depending on the glass composition, 
particle size, the addition of the binder, heating rate, sintering pressure and the firing 
temperature. It was observed that, in all glass-ceramic samples, except glass-ceramic samples 
produced from Tunçbilek fly ash, addition of PVA improved the properties of the produced 
samples. TCLP results indicated that the heavy metals successfully solidified into the glass-
ceramic samples’ structures.  
 
A comprehensive investigation of the kinetics of nucleation and crystal growth mechanisms 
of glasses obtained from waste materials was studied by both isothermal and non-isothermal 
methods. The influences of the particle size on the crystallization kinetics of glasses was 
investigated. The activation energies of crystal growth which were determined by using non-
isothermal methods for the coarse and fine glasses are in the range of 233-578 kJ/mol and 
369-662 kJ/mol, respectively. The activation energy values for crystallization increased with 

 xxi 



the decrease in particle size of the waste glasses. The Avrami constants and crystallization 
activation energy values of all coarse and fine glasses for the non-isothermal and isothermal 
methods are roughly close.  
 
Coal fly ash samples obtained from seven different thermal power plants were sintered to 
form ceramic materials using conventional powder processing based on milling, powder 
compaction and firing, without the addition of organic binders or other inorganic additives. 
The effect of firing temperature on the density, porosity, water adsorption, microstructure and 
mechanical properties of sintered fly ash samples was investigated. The sintering process 
results showed that the properties of the produced materials are depending the sintering 
temperature and time, the particle size and distribution of the powder, the composition of the 
system and packing pressure. The properties of the sintered materials improved with the 
increase in the sintering temperature since the crystallization degree also increased with the 
increase in sintering temperature. This study has clearly shown that industrial wastes can 
successfully recycled in the glass, glass-ceramic and sintered materials production. 
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1.INTRODUCTION 

 

Industrial development over the last few decades has generated large amounts of 

toxic and hazardous inorganic wastes, for example fly ashes from thermal power 

plants, metallurgical slags and muds of different origins.  

 

Disposal of fly ash as a by-product of incineration of coal, municipal solid wastes, 

metallurgical slags and red muds from aluminium and beryllium extraction is 

becoming an increasing economic and environmental burden. As a consequence, 

there is a growing interest in looking for avenues where the material can be used as a 

potential resource for preparation of value added products. The majority of fly ash is 

generated by coal fired power stations and a percentage (typically 10-20%) does find 

reuse, primarily in cementitious (concrete and cement) products [1-2], but also in 

construction areas, such as highway road bases [3], grout mixes [4] and stabilizing 

clay based building materials [5]. 

 

However, despite positive uses, the rate of production clearly far outweighs 

consumption. In Turkey, annually 13 million tons of fly ash are produced from 11 

different power stations, but only a small amount is utilized mainly in the 

construction sector [6]. For the remaining material, disposal practices involve 

holding ponds, lagoons, landfills and slag heaps, all of which can be regarded as 

unsightly, unenvironmentally undesirable and a non-productive use of land 

resources, as well as posing an on-going financial burden through their long-term 

maintenance. 

 

Furthermore, for those coal power plants located in urban areas, finding disposal 

sites is becoming increasingly more difficult. With competition for limited space and 

tightening of regulations on surface water and ground water discharge, any waste 

resulting from fly ash disposal sites must be well managed(causing the leaching of 

materials into water beds), so that local surface and ground water supplies are 

protected [7]. Contamination of soil by chemicals and heavy metals (as Pb, Cr, Zn, 
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Cu, Cd and Hg) is often another serious environmental problem. This can cause 

significant economic burden to achieve the necessary water and land management. 

These factors have prompted researchers to look for alternative usages for fly ash, 

other than the cement and construction industry. It is thus necessary, for the 

inertization of fly ashes, to look for new technologies in order to immobilize their 

dangerous components in glass, glass-ceramic or ceramic materials.  

The production of vitreous materials can be an effective route for recycling of wastes 

because the high temperature involved in the process leads to the complete 

destruction of the organic pollutants. Furthermore, heavy metals can be either 

incorporated in the glassy product [8]. The inert glass product can also be used as a 

secondary raw material, especially in building and construction. Unfortunately 

vitrification is an energy intensive process, which involves high cost[9]. Therefore, 

more effective and economic solutions must be considered to improve the properties 

of the waste glass materials. 

 

Since the major constituents of fly ashes are various oxides of silicon and aluminum, 

these can be good candidates for glass-ceramic production [10]. Therefore by proper 

heat treatment and controlled crystallization, it should be possible to produce a new 

marketable materials like glass-ceramics, which can be used in many industrial 

applications [11]. 

 

Glass-ceramics are commercially important ceramics with unique thermal shock 

resistance and mechanical properties. For example, properties such as strength, 

hardness and corrosion resistance are superior to the parent glass making them 

attractive materials for the construction, mechanical and chemical industries [12].  

 

Glass-ceramics have now became technologically important materials since their 

discovery in the 1950s, and are used in microwave radomes, microelectric substrates 

and packaging, domestic cooker tops and cooking utilities, astronomical telescopes, 

high integrity vacuum envelopes and biomedical applications [13,14]. 

 

Coal fly ash has also been incorporated into conventionally sintered ceramics [15]. 

This industry uses large volumes of silicate-based raw materials and therefore has the 

potential to use significant amounts of fly ash [16,17]. 
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The present study concentrate on the production of glass, glass-ceramic materials 

from waste materials such as, coal fly ash, red mud from aluminum production and 

silica fume in order to reduce their volume, make them more inert and to produce a 

new markatable product (eco-product) useful in the construction industry. To achieve 

this first of all, glass samples are produced from coal fly ash samples obtained from 

seven different thermal power plants with or without the addition of red mud and 

silica fume. They have been heat treated for 2 h at 1273 K to observe the physical, 

microstructural and mechanical changes in the glass structure. Classical and sintering 

methods have been applied to the obtained glass samples to produce glass-ceramic 

materials. The effect of different holding times at the crystallization temperature on 

the microstructure and properties of glass-ceramic samples has been investigated.  

 

A comprehensive investigation of the kinetics of nucleation and crystal growth 

mechanisms of glasses obtained from waste materials has been studied by both 

isothermal and non-isothermal methods. Special attention is paid to the influences of 

the particle size of the glasses on crystallization kinetics to assess the feasibility of 

producing glass-ceramics.  

 

In addition, in this research coal fly ash samples obtained from seven different 

thermal power plants have been sintered to form ceramic materials using 

conventional powder processing based on milling, powder compaction and firing, 

without the addition of organic binders or other inorganic additives. The effect of 

firing temperature on the density, porosity, water adsorption, microstructure and 

mechanical properties of sintered fly ash samples is reported.  
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2. Glass 

 

2.1 Definition of Glass 

 

Glass might be described as a transparent substance possessing the properties of 

hardness, rigidity and brittleness. Thus, with the possible exception of transparency, 

the properties usually thought of as characterising glass are those normally associated 

with solids. However, glass possesses a number of properties that are characteristic 

of the liquid state and the classification of glass as a liquid of very high viscosity 

rather than as a solid would be in accordance with modern views [18]. 

 

Various definitions of glass have been put forward but one of them is widely 

accepted is that proposed by the A.S.T.M.: Glass is an inorganic product of fusion 

that has cooled to a rigid condition without crystallizing.  This definition has several 

drawbacks. First, it suggests that glasses have to be inorganic and so excludes the 

many organic glasses. It fails to point the way to useful common areas between 

polymers and glasses. Most of all, it focuses on one method of preparation, that used 

in the glass industry and this has probably deflected effort from seeking alternatives. 

For example, in 1978 it was shown that good silica glasses can be made from gels 

without melting [19,20]. 

 

A more acceptable definition of a glass is a non-crystalline elastic solid, i.e. 2 nm 

maximum order, with a viscosity of   >1013.5 poise. 

 

Man-made glasses appeared around 4000 BC in Egypt and Mesopotamia as 

decorative glasses and glass working was known by around 1500 BC as an art and a 

technology. Glass science was not further developed until the work of Faraday and 

later Zeiss, Abbé and Schott, who in 1881 began to develop new optical glasses. By 

1900 these workers had used some thirty-four elements in experimental glass 

formulations. Although seventy elements have now been tried, only three major 
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commercial glass systems constitute 99% by weight of all glass production. These 

systems are: 

• Soda (Na2O)-lime (CaO)-silica (SiO2) 

• Lead crystal glass, PbO- SiO2 

• Low expansion borosilicate glass B2O3-SiO2-Na2O-CaO 

Continued competitiveness requires serious reappraisal of glass structure and glass 

science, together with a willingness to explore new raw materials such as La2O3, 

V2O5 and non-oxide materials. 

 

There is also the possibility that restrictive definitions and dominant views on glass 

structure have further delayed modern exploitation of new areas. The developments 

in glass science have paralleled major advances in surface treatments to improve 

strength and durability. Whether the material will continue to be constantly 

competitive is open to question, in the face of demands from the electrical industry 

for better metal sealing glasses and for glass able to withstand attack at high 

temperature by metal vapors; the electronics industry for electron-conducting 

glasses; the optical industry for high refractive index glasses for fibre optics; and the 

ceramics industry in general for compositions suitable for the manufacture of glass-

ceramics [19]. 

 

2.2 Glass Formation 

 

Traditionally, glasses have been processed by cooling a liquid fast enough to prevent 

detectable crystallization. From this kinetic viewpoint, we can define glass formation 

as the avoidance of crystallization. In principle, any liquid can be rendered glassy 

given a sufficiently rapid cooling rate.  It is the difference in respective rates of 

crystallization that allows us to form many commercial oxide glasses by cooling at a 

leisurely rate of a few degrees per minute (0/min), while metallic glasses must be 

quenched at more than 106 degrees per second (0/sec). Glass-ceramics are 

commercially important ceramics with unique thermal shock and mechanical 

properties, made by controllably nucleating a very high density of crystals in a parent 

glass body.  
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Glasses can also be made by a number of alternative processes, which have in 

common the aspect of consolidation at low temperatures to defeat crystallization. 

Condensation of a vapor onto a cold substrate is one method (physical or chemical 

vapor deposition), often used for the preparation of electronic thin-films (glassy and 

crystalline). Another is the precipitation of a disordered ceramic from liquid 

chemical solution (referred to as sol-gel processing), followed by densification into a 

glass. The structure and properties of glasses made by these techniques can differ 

substantially from those prepared from the melt. For applications that require a 

monolithic body, the vast majority of glasses continue to be processed from the melt.  

When the glasses are produced by cooling from the melt, the phase transformation 

from liquid to solid occurs at a glass transition temperature (Tg) that lies below the 

melting temperature Tm at which crystallization would otherwise take place. At Tg 

there is a transformation in physical properties from those of a liquid to those of a 

solid; one such property illustrated in Figure 2.1 is the specific volume. The slope of 

this curve is directly related to the volume expansion coefficient α (=∂V/V∂T at 

constant composition and pressure). Above Tm one has a liquid; between Tm and Tg 

there exist a supercooled liquid. Figure 2.1 shows a transition to a glassy state where 

structural rearrangements are no longer to take place on a reasonable time scale and 

where the thermal expansivity and other properties become that of a solid.  

 

Since glass is a supercooled liquid it does not have a sharp melting point but softens 

gradually and eventually becomes fluid due to the continuous fall of viscosity with 

increase of temperature. 

 

The relationship between viscosity and temperature for glasses is important in a 

number of respects. For example, during the melting of glasses a low viscosity favors 

the rapid rise of gas bubbles through the melt thus permitting clear bubble free glass 

to be produced. Also the annealing of glass (to remove strains introduced as a result 

of uneven cooling during the shaping operations) depends upon heating the glass to a 

temperature where its viscosity is low enough to permit stress relief without resulting 

in distortion of the glass. In making glass-ceramics, which involves nucleation and 

crystallization of glasses under carefully controlled conditions, the selection of 

optimum heat-treatment temperatures is governed by the viscosity-temperature 

characteristics of the glasses [18]. 
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Figure 2.1: Volume-temperature relations for liquid, crystal and glass phases [21]. 

 

Smooth curves can be drawn relating the viscosities of glasses to temperature for a 

wide range but it is often more convenient to define the viscosity-temperature 

relationship in terms of certain characteristic temperatures which are given in Table 

2.1 together with the corresponding values of viscosity [21].  

 

Table 2.1:Characteristic temperatures with corresponding viscosities for glasses [21] 

Characteristic Temperature (K) Viscosity (poise) 

Working point 104 

Softening point  107.6 

Annealing point   1013.4 

Glass transition point       1013-14.5 

 

2.3 Glass Structure 

 

Glass possesses the mechanical properties of a solid. Unlike the structure of most 

other solids, glass, however, is a non-crystalline and has a structure similar to that of 

a liquid. Although there are other important glass types, most glasses used in waste 

immobilization is some type of silicate glass. Glasses are produced by melting 

crystalline materials and/or frit (previously formed glasses) at elevated temperatures 

to produce liquids. These liquids are then cooled to a rigid condition without 
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crystallization. The glass composition is predominatly inorganic with silica being the 

most common constituent.  

 

There are two types of theories for glass formation: structural and kinetic. Within the 

structural type, there are many theories for glass formation of which Zachariasen and 

Sun are two that have contributed significantly. Zachariasen’s theory is based on the 

argument that the atomic forces of a crystalline material and a glass material must be 

of the same order of magnitude because mechanical properties of glass are similar to 

those of the corresponding crystals [22-24]. Zachariasen noted that silicate glasses 

were not composed of discrete molecules in a close-packed structure, but were three 

dimensional networks. These networks consisted of the basic structure, a silicon 

oxygen tetrahedral, where the silicon atom is bonded to four oxygen atoms [22, 25]. 

The silica tetrahedra is linked at the corners where each of the oxygen’s can be 

shared with another tetrahedron. All or some of the oxygen can be shared with other 

tetrahedra to form a three dimensional network. The irregularity of the structure and 

the random bonds are what prevent crystallization. 

 

After determining that the formation of the network was necessary for glass 

formation to occur. Zachariasen formalized his considerations of the structural 

arrangements into four rules. They are: 

1. The number of oxygen atom is linked to no more than two atoms, 

2. The number of oxygen atoms surrounding network cation must be small, 

specially either three or four, 

3. The cation polyhedra share corners, not edges nor faces, 

4. At least three corners are shared. 

These rules are known as “Zachariasen Random Network Theory”. 

 

Bond strength has also been used as a criterion for predicting glass formation. Sun 

argued that strong bonds did not allow for reorganization of the melt into a 

crystalline structure upon cooling and therefore caused glass formation. The higher 

the bond strength, the better the oxide was able to form glass. The bond strength 

defined as the dissociation energy divided by the number of cation-anion bonds in 

the unit cell. Sun’s “Single Bond Strength Criterion”, as his theory became known, 

contributed the classification of substances into three divisions based on their glass 
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forming ability (glass network formers, intermediates and glass network 

modifiers)[22-24]. 

 

More recent glass formation theories recognize that the defining factor is not whether 

a material will form a glass, but rather how fast the melt must be cooled to avoid 

crystallization. Crystallization requires first the presence of a nucleus (nucleation) 

and second, a rate at which the crystal will grow to a noticeable size (crystal growth). 

To avoid crystallization, nucleation and crystal growth must not exist. 

Nucleation and crystal growth occur simultaneously during the cooling of a melt. 

The rates of each are continuously changing with the change in temperature 

throughout the process. Any realistic approach to glass formation must deal with the 

interactions between these two processes. To develop a quantitative model 

calculations for nucleation as a function of temperature and crystal growth as a 

function of temperature are needed. The results must be combined to determine an 

approximation for the amount of material crystallized as a function of time. When 

the assumption of dependence between nucleation/crystal growth and temperature is 

made, the result is the ability to construct a curve that yields the time necessary to 

cause a given volume fraction of crystallization. These curves are called TTT(time-

temperature-transformation) diagrams. The general shape of the curve (as seen in 

Figure 2.2) is due to the competing nature of kinetic and thermodynamic factors for 

both nucleation and crystal growth rates. The least favorable condition for glass 

formation occurs at the temperature corresponding to the nose of the curve [23]. As 

long as the cooling rate is greater than the rate given by the tangent at the nose, glass 

formation is present [24].  

 

2.4 Glass Chemistry 

 

The oxides used in commercial glass production can be classifies into three general 

categories:  Network forming oxides, modifying oxides and intermediate oxides. 
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2.4.1 Network forming oxides 

 

Oxides, which form glassy structure when melted and cooled, and vitrify are called 

network-forming oxides because of their ability to buildup continuos three-

dimensional random networks. Examples are SiO2, B2O3 and P2O5. 

 

Glasses made solely from network formers often have limited utility. Pure B2O3 glass 

is not water resistant and pure SiO2 glass, while valued for its chemical durability, 

high application temperature and thermal shock resistance, must be processed above 

2000 K. Therefore to alter processing and properties, oxide modifiers and 

intermediates are used [12,26]. 
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Figure 2.2: A time-temperature-transformation (TTT) curve for a glass forming melt 

[23]. 

 

2.4.2 Modifying oxides 

 

Modifying oxides do not form glass by themselves but, when used in certain 

proportions, enable the modification of the manufacturing conditions or properties of 

the resulting glass. This may include reducing the viscosity of the glass, increasing 

the thermal expansion coefficient, or lowering the melting point. Examples of 

modifiers are Na2O, K2O and Li2O [27]. 
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While alkaline oxides are very effective modifiers, the result is that glasses are not 

chemically durable. The chemical durability is greatly improved with the additional 

modifier of CaO. The oxides such as PbO, MgO, ZnO and BaO may also act as 

modifying oxides and prevent deterioration of the finished product[12]. 

 

2.4.3 Intermediate oxides 

 

Although not usually capable of forming a glass, these oxides can be incorporated 

into the glass network. Examples are Al2O3, BeO, TiO2 and ZrO2. The following 

Table 2.2 gives the percentages by weight of oxides in the common commercial 

types of glass and some special types. Secondary components are always used in 

small proportions and are used to change the color (transition metal oxides) or 

manufacturing conditions (arsenic and antimony oxides)[27]. 

 

Table 2.2: The percentage by weight of oxides in the common commercial types of 

glass and some special types [27]. 

 SiO2 B2O3 Al2O3 Na2O K2O CaO BaO MgO PbO Fe2O3 

Sheet 

Glass 

72.5  1.5 13 0.3 9.3  3  0.1 

Bottle 

Glass 

73  1.0 15  10    0.05 

Light 

Bulb 

80.6  1.0 16 0.6 5.2  3.6   

Pyrex 54.6 12.6 2.2 4.2  0.1  0.05  0.05 

Glass 

Fiber 

55.5 8.0 14.8 0.3 0.3 17.4  4.5   

Crystal 28    11.0    33  

Optical 

Glass 

   1.0 1.0    70  

Na Lamp 

Glass 

 36 27    27 10   
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In a typical commercial glass, the number of different oxide constituents within each 

classification is usually small. However, this is not true of glass made from 

hazardous wastes. The waste include a large number of components and any waste 

can contain up to 69 of the elements in the periodic table. The relationship between 

chemical durability and these large numbers of chemical constituents that are to be 

used in the formation of vitrified waste forms is quite complicated and not 

completely understood. Additives can affect the rate of corrosion in different ways 

depending on what solution comes in contact with the glass. The understanding of 

this relationship is critical in the control of the vitrification process for waste 

treatment [28].  
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3. Glass-ceramic 

 

3.1 Definition and History of Glass-ceramic 

 

A glass-ceramic is initially a glass in which, at some stage, the formation of nuclei is 

enhanced either by the addition of a nucleating agent or by using special 

compositions which are self nucleating. The resulting material contains very small 

crystals [19].  

 

A more common definition of glass-ceramic is that glass-ceramics are polycrystalline 

solids prepared by the controlled crystallization of glasses. Crystallization is 

accomplished by subjecting suitable glasses to a carefully regulated heat treatment 

schedule that results in the nucleation and growth of crystal phases within the glass. 

In many cases, the crystallization process can be taken almost the completion but a 

small proportion of residual glass phase is often present [18] 

 

These definitions point immediately to some advantageous general properties and 

directs the attention to important areas to consider in more detail. 

 

Glass manufacturing techniques have the advantage that any shape is easily produced 

with close control of dimensions and high speed automation can be applied. The 

method of production leads to zero porosity and an outstanding uniformity of 

properties in the finished ceramic, because of the molten state first achieved and the 

nature of the nucleation process. Dimensional changes in manufacture are 

consequently small compared to any other ceramic process. 

 

Experience show that many practical advantages arise. In principle, it is possible to 

engineer materials to order, with specific properties, from any composition that can 

be cooled to the glassy state. Properties that can be built into ceramics by design at 

the base composition stage include thermal expansions in the range –20x10-7 to 

200x10-7 oC-1, strengths in the range 6x107-108 N/m2, any degree of transparency, 
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durabilities from soluble to inert and electrical properties from semi conducting to 

insulating [19]. New crystalline phases unobtainable by other routes are sometimes 

produced which adds to the excitement of this field [29]. 

The factors that influence the final properties of a glass-ceramic and therefore those 

that the technologist seeks to control can be listed as follows and Figure 3.1 

summarizes this philosophy.  

1. Properties of crystalline phases: In this case, as compared to traditional ceramics, 

the intrinsic properties of the crystals will have a major effect on the final 

properties of the material and the role of texture will be less dominant. 

2. Grain size. 

3. Intergranular bounding. This property, together with grain size, dominates in the 

final strength and appearance of the product. 

4. Crystal orientation. 

5. Percentage crystallinity and distribution of any remaining glassy phase. Although 

glass-ceramics should be 100% crystalline, this is not always possible to attain 

and indeed for some applications it is desirable to have a residual glass phase 

[19]. 

 

The development of practical glass-ceramics is comparatively recent although it has 

long been known that most glasses can be crystallized or devitrified if they are 

heated for a sufficient length of time at a suitable temperature. This knowledge led to 

the early attempts by Réaumur (1739), a French chemist, to produce polycrystalline 

materials from glass. He showed that if glass bottles were packed into a mixture of 

sand and gypsum and subjected to red heat for several days they were converted into 

opaque porcelain like objects. Although Réaumur was able to convert glass into a 

polycrystalline ceramic, he was unable to achieve the control of the crystallization 

process since the obtained materials had low mechanical strengths [18].  

 

It became recognized that, in order to achieve the desired end product, it would be 

necessary to provide many sites within the glass body on which subsequent crystal 

growth take place. It was not, however, until the 1950s that research Corning 

Glassworks (USA) and subsequently at other establishments in the worldwide 

demonstrated that, under suitable conditions, a usable polycrystalline ceramic could 

be obtained by the controlled devitrification of a glass.  
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It has also been known for many years that a considerable number of glasses are, in 

fact, not single phase, but are to some extent (and possibly only a microscale) 

separated into two or more distinct phases. This phenomenon has been seen to be a 

necessary step in the preparation of a glass-ceramic but over the years it has posed a 

problem for the glass technologist in that a phase separated glass is likely to possess 

inferior properties, particularly in terms of corrosion resistance. In certain cases this 

has been turned to advantage, for example, in the Corning Vycor process [30] for 

making a high silica glass from a borosilicate glass and also for the preparation of 

microporous membranes for the desalination of water [31,32]. 

 

 

From 

By varying 

Gives 
control over 

a) Base composition 

b) Choise of nucleant 

c) Heat treatment 

• Crystalline phases 

• Grain size 

• Inter-grain bonds 

• Crystal orientation 

• Residual glass(%) 

1. Thermal expansion 

2. Strength 

3. Opacity 

4. Electrical properties 

5. Durability 

Glass-ceramic 

(100% crystals) 

Glass 

Figure 3.1: Controlling variables in glass-ceramic production [19] 

 

Over the years, greater understanding of phase separation in glasses and of 

nucleation and crystallization phenomena has been achieved [33,34]. This has 

enabled the range of materials, because their mode of preparation are referred to as 

glass-ceramics [35,36]. A wide range of glass-ceramics is now possible and is 

continually being added to, so that materials possessing the properties to fulfil many 
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applications can be made or are becoming available. The advent of glass-ceramics 

has enabled the overall range of polycrystalline ceramic materials to be extended and 

amplified and has enabled applications to be addressed that would not readily be 

possible with other types of ceramics, e.g. sintered materials [14]. 

 

3.2 The Scientific and Technological Importance of Glass-ceramics 

 

The investigation and development of glass-ceramics are closely related to studies of 

nucleation and crystallization of supercooled liquids and are therefore of general 

interest in this field. Crystal nucleation and growth studies are investigations of 

amorphous phase separation. This subject is of the basic phenomena involved and 

with regard to modifications of glass properties that accompany the structural 

change.  

 

The wide range of compositions that can be produced in the vitreous state is 

particularly valuable since it allows phase transformations to be investigated in 

widely differing chemical environments. The development of many crystal types, 

including metastable and stable phases and the formation of solid solutions, can be 

investigated under controlled conditions. Because molten glass is a good solvent for 

metal oxides, for certain metals and some for halides and other compounds, the 

effects of these, present as minor constituent, upon crystal nucleation and growth 

processes can be investigated. Such studies, in addition to their basic importance, are 

of considerable interest in relation to the development of glass-ceramic 

microstructures. 

 

In addition to their value for the study of physico-chemical effects, glass-ceramics 

are also valuable for fundamental investigations of certain physical properties. One 

important field is the investigation of mechanical strength and fracture process for 

brittle solids. Glass-ceramics are especially valuable in such studies because they can 

be produced to have a very fine microstructure and in addition can contain a wide 

variety of crystal types. A further valuable possibility is that for identical chemical 

compositions, the degree of crystallinity can be varied from the amorphous glass at 

one extreme to the almost completely crystalline glass-ceramic at the other. This 
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latter possibility is of interest not only in studies of mechanical failure but also in the 

investigation of properties that are dependent on diffusion process. 

 

In materials science, glass-ceramics are of importance because they offer 

combinations of physical properties not available with other classes of materials. To 

the glass technologist, the development of glass-ceramics is of great interest not only 

because they extend the possible applications of glass making techniques but also 

because the search for new glass-ceramic stimulates research into glass compositions 

and the relative stabilities of various types of glass. Many of these data can be a 

value in the development and production of conventional glasses. In the field of 

conventional glasses it is interesting to study the relationship between 

crystallographic constitution and physical properties. Investigations of glass-

ceramics may be particularly valuable because the crystal phases present can be 

varied in a controlled manner and materials having identical chemical compositions 

at different crystallographic compositions can be prepared. The possibility of 

investigating the effects of variations in the proportion and chemical composition of 

the vitreous phase in glass-ceramics is also a value since in some conventional 

ceramics the vitreous phase plays an important part in determining certain properties.  

 

An important feature of the glass-ceramic process is that it is applicable to a wide 

range of compositions and this, together with the variations which can be applied in 

the heat treatment process, means that various crystal types can be developed in 

controlled proportions. As a result, the physical characteristics of glass-ceramics can 

be varied in a controlled manner and this fact has an important bearing upon the 

practical applications of glass-ceramics. For example, the thermal expansion 

coefficients of glass-ceramics can be varied over a very wide range so that at one 

extreme materials possessing low expansion coefficients and having very good 

resistance to thermal shock are possible while at the other extreme materials 

possessing very high thermal expansion coefficients closely matched to those of 

common metals can be obtained.  

 

The use of glass working processes such as pressing, blowing or drawing offers 

certain advantages over the techniques available for shaping conventional ceramics 

since glass lends itself to the use of high speed automatic machinery. In general, the 
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techniques used for shaping conventional ceramics, such as extrusion, jolleying or 

slip casting are slower than glass shaping methods and a further point is that the 

ceramic ware usually requires extended drying and firing periods to avoid distortion 

and cracking. The advantages of the glass-ceramic process are particularly apparent 

in the production of thin-walled hollow-ware and other shapes where the section of 

the material is small since unfired conventional ceramic articles of this type are 

fragile, while the parent glass articles in the glass-ceramic process are relatively 

strong. 

 

During conversion of the glass to the glass-ceramic form, a change in dimension 

occurs. However, this change is small and controllable so that control of the shape 

and dimensions of the glass-ceramic article can be achieved without too much 

difficulty. With conventional ceramics, relatively large shrinkages (40 to 50 % by 

volume) occur during the drying and firing operations and these dimensional changes 

may be accompanied by distortion. Consequently, control of the final dimensions is 

more difficult for conventional ceramics than for glass-ceramics. 

 

The glass-ceramic process has certain special characteristics which allow new 

process to be applied. Since the materials originate as glasses they can be bonded to 

metals by relatively simple processes based on the fact that glass in its molten state 

will wet other materials. Thus it is possible to seal the parent glass to a suitable metal 

and to heat the composite article to convert to glass into a polycrystalline glass-

ceramic. This method has many advantages over the processes available for 

conventional ceramics that involve complicated and expensive pre-treatment and 

furnacing procedures. 

 

In recent years, important advances have taken place in the control of glass-ceramic 

microstructures resulting, for example, in the development of machinable glass-

ceramics and in the production of bulk and fibreous glass-ceramics having orientated 

microstructures. 

 

Glass-ceramics have become established as commercially important materials in the 

fields such as consumer products, vacuum tube envelopes, astronomical telescopes, 

radomes for the aerospace industry, protective coatings for metals, microwave 
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radomes, microelectronic substrates, packaging, domestic cooker tops, cooking 

utensils and biomedical applications [14,18]. 

 

Glass-ceramics can be regarded as a most valuable addition to the materials available 

to the design engineer. Being inorganic and non-metallic they combine useful high 

temperature capabilities with a high degree of chemical stability and corrosion 

resistance. Their unique combination of properties is likely to make them attractive 

for a number of specialised engineering applications [18]. 

 

3.3 The Crystallization Process 

 

Crystallization is the process by which the regular lattice of the crystal is generated 

from the less well-ordered liquid structure. In its simplest form, crystallization is 

observed when a melt of a single pure element or compound is cooled; conversion 

from the liquid to the solid state occurs at a temperature that is fixed for a given 

pressure and is known as the freezing point. 

A very important and fundamental observation which is valid for crystallization 

process and indeed for other phase transformation processes such as the formation of 

liquid drops in a vapor phase is that the transformation does not occur simultaneously 

throughout the mother phase. The transformation proceeds from distinct centers and 

crystal growth takes place by deposition of material upon the first tiny crystals or 

nuclei. Two stages of the crystallization processes are therefore distinguished: 

Nucleation and crystal growth. The first part involving the formation of a stable 

nucleus and the second, growth of a nucleus to form a crystal.  

 

3.3.1 Nucleation 

 

Nucleation involves the formation of regions of longer range atomic order than are 

normally present in the liquid phase. These unstable intermediate states are known as 

embryos and the embryos having a critical minimum size which are capable of 

developing spontaneously into gross particles of the stable phase are known as 

nuclei. Nucleation is classified as homogeneous if it occurs within a pure phase and 

as heterogeneous if the nucleus is formed at an interface, such as container walls, 

bubbles or particles of a second phase. Glass materials form because of the large 
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energy barrier to homogeneous nucleation then it is likely that heterogeneously 

nucleation is more important in the formation of glass-ceramics. Therefore 

nucleation catalysts are added to the base of glass composition. In order to consider 

the addition of such agents less empirically and to explain the features they should 

possess, it is useful to compare the two nucleation mechanisms on a quantitative 

basis [18,19]. 

 

3.3.1.1 Homogeneous nucleation 
 

When a liquid is supercooled, formation of a crystal nucleus is possible. This 

involves two changes: First, a liquid to solid phase transformation; second, the 

formation of a solid-liquid interface. For homogeneous nucleation all foreign nuclei 

must have been excluded and this is always difficult to prove.  

 

Tamman (1925) made classical studies of crystallization in supercooled liquids 

including inorganic glasses which contributed greatly to the knowledge of nucleation 

and crystallization processes [18]. He showed that below the equilibrium melting 

temperature there exists a temperature interval, referred to as the metastable zone, in 

which nuclei do not form at a detectable rate. In this zone, however, crystals can 

grow if nuclei are provided, i.e. if the melt is seeded or inoculated. At temperatures 

below this region the crystallization process is controlled by two factors: The rate of 

formation of nuclei and the crystal growth rate. Melts which increase rapidly in 

viscosity during cooling, such as those which can form glasses, show maxima in 

nucleation and crystal growth rates because at the lower temperatures the high 

viscosity hinders the atomic rearrangements and diffusion processes which are 

necessary for nucleation and crystal growth. Consequently, curves for nucleation and 

crystal growth rate for a viscous melt have the form shown in Figure 3.2. 

 

It is evident from this figure that if the aim is to produce the largest possible number 

of small crystals, nucleation should occur at or near to the temperature at which the 

maximum nucleation rate occurs. It is clear that selection of the optimum nucleation 

temperature is important in the production of glass-ceramics. 
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Figure 3.2: Rates of homogeneous nucleation and crystal growth in a viscous liquid 

[18] 

 

The metastable zone of supercooling (T1-T2) below the equilibrium melting 

temperature occurs because the very tiny crystal nuclei have melting temperatures 

appreciably below that of the bulk material. Similarly, the metastable zone of 

supersaturation in solutions results from the higher solubility of small crystallites as 

compared with that of larger crystals. From Figure 3.2 it will be noted that there also 

exists a temperature, T3, below which the homogeneous nucleation is zero due to the 

high viscosity of the melt [18]. 

 

3.3.1.2 Heterogeneous nucleation 
 

In heterogeneous nucleation the nucleus develops on the surface of a foreign solid 

(substrate). The substrate may be container wall or it may be a solid dispersed 

throughout the liquid. If we introduce a suitable substrate into an undercooled liquid, 

we are able to reduce the energy barrier to nucleation. However, choosing a suitable 

substrate is an important point. The substrate needs to be thoroughly wetted by the 

liquid, but that is all we know. Crystal chemistry here comes to aid in the form of 

epitaxial growth, sometimes called oriented overgrowth. If we put into an 

undercooled liquid a seed crystal which has a low index plane in which the atomic 
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spacing and arrangement are similar to those of one of the low index planes in the 

crystal that wishes to form, then the liquid will start to crystallize on the foreign 

nucleus. If there is no near match, then the liquid will not crystallize. But, how much 

disregistry can be tolerated? It seems to at least 15% maximum for metal systems. In 

the case of glass-ceramics however, a digregistry of 8% would seem to be the 

maximum which can be tolerated. Even so, after only six lattice spacings there will 

be complete mismatch [22]. 

 

The effect of pre-existing surfaces (such as colloidal inclusions, container walls, etc.) 

in a supersaturated solution or a supercooled melt is to reduce the value of ∆G, the 

free energy for homogeneous nucleation, by decreasing the interface energy. The 

volume free energy change between the liquid phase and the crystal phase is not 

altered by heterogeneous nucleation and neither is the activation energy for diffusion, 

E. The important feature of heterogeneous nucleation is that the interfacial tension 

between the heterogenity and the nucleated phase must be low. Therefore, the 

influence of the catalysing surface is determined by the contact angle at the substrate-

melt-precipitate junction. 

 

To summarize the considerations of heterogeneous nucleation; there are two 

important criteria which determine the effectiveness of a nucleation catalyst. There 

are: 

• The interfacial tension between the nucleation catalyst and the primary crystal 

phase must be low. 

• The crystal structures must be closely similar so that the digregistry on low index 

planes is not more than about 15%[18]. 

It is generally agreed that crystallization in glass forming systems almost always 

occurs by heterogeneous nucleation, usually proceeding from an external surface or 

an interior bubble or other discontinuity [37]. 

 

3.3.2 Crystal Growth 

 

The controlled crystallization of glasses involves crystal growth as well as 

nucleation. While the latter process is highly critical to the production of 

microcrystalline glass-ceramics, the growth process is also of considerable 
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importance in determining the morphology of the material produced. Crystal growth 

is dependent upon two factors: 

• The rate at which the irregular glass structure can be rearranged into the periodic 

lattice of the growing crystal 

• The rate at which energy released in the phase transformation process can be 

eliminated. This is the rate of heat flow away from the crystal glass interface. 

 

Considering first the process of structural transformation; an atom in the crystal 

structure has a lower free energy than a corresponding atom in the glass phase by an 

amount ∆G, the bulk free energy of crystallization. Also, for an atom to cross the 

interface between the glass and crystal phases it must overcome an energy barrier 

corresponding to an activation energy of crystal growth, E. Thus an expression for 

crystal growth rate, U, can be derived: 

[ )RT/Gexp(1D
a
fU

0

∆−−′′= ]      (3.1) 

where f is the fraction of site at the interface where molecules can preferentially be 

added, a0 is the molecular diameter, D′′ is the diffusion coefficient for transport 

across the crystal liquid interface. 

 

The expression describes what is known as normal growth. It is based on the 

assumption that the probability of an atom being added to or removed from a given 

site is the same for all sites on the crystal liquid interface and this requires the 

interface to be rough on atomic scale [18,38].  

 

Returning the equation (3.1), the diffusion coefficient is generally expressed as 

follows: 





−=′′

RT
EexpDD 0         (3.2) 

where E is the activation energy for diffusion, Do is the pre-exponential constant. At 

relatively low temperatures, the temperature dependence term of the [1-exp(-

∆G/RT)] is negligibly small compared with that of D′′[39]; therefore, equation (3.1) 

can be rewritten as 
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where the energy E may be considered as the activation energy for crystal 

growth[38]. 

 

It is also important to emphasis the effect of change of viscosity in modifying crystal 

growth rates in glasses. Thus although the growth rate increases at first as the melt is 

cooled below the liquidus temperature, the rapid increase of viscosity soon exerts a 

dominating influence causing the growth rate to fall and giving rise to the typical 

growth rate curve (Figure 3.2)[18]. 

 

3.3.2.1 Determination of activation energy for crystal growth by differential 

thermal   analysis 
 

The controlled transformation of glass into a polycrystalline material occurs during a 

predetermined heat-treatment process. The heating rate, time and temperature 

influence average dimensions of crystals, volume fractions of crystalline and vitreous 

phases and types of crystal. As a result, properties and characteristics of the glass-

ceramics can be varied in a controlled manner. Therefore, the determination of the 

heat treatment schedule is one of the most important steps in the production of glass-

ceramic material [18,40,41].  

 

Parameters required for the heat treatment process can be obtained from 

crystallization kinetic studies. Differential thermal analysis (DTA) has been 

extensively used in investigating the crystallization kinetics of glasses as a rapid and 

convenient means for detecting the reaction process. The rate of chemical reaction 

was analyzed quantitatively by DTA and the activation energies were obtained.  

Furthermore this method was used to obtain the activation energy for the 

crystallization of glass, assuming that the process of crystallization is a first order 

reaction. The physical meaning of the activation energy thus obtained is obscure, 

however, considering that the crystallization of glass is advanced by nucleation and 

growth mechanism [38]. 
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Theoretical analysis 

 

As the crystallization proceeds in glass, the heat of crystallization is evolved and the 

exothermic peak appears on the DTA curve. The heat balance during a time period, 

dt, in the DTA process can be approximately expressed by the equation [42,43]. 

 

d(∆H) = Cp d(∆T) + K∆T dt       (3.4) 

Where Cp is the heat capacity, ∆T is the temperature difference between the sample 

and reference material, ∆H is the amount of heat associated with crystallization and 

K is the heat transfer coefficient. Assuming Cp and K to be independent of 

temperature and accordingly, of time over the reaction period, the following 

expression can be derived, 

∫∫ ∆+∆=∆
2

1

2

1

t

t

t

t
p TdtK)T(dCH        (3.5) 

Since ∆T is zero at both t=t1 and t=t2, the first term of the right hand side of the 

equation is zero. The integral in the second term means the total area under the curve, 

A. Therefore, 

 

∆H = KA         (3.6) 

Substituting the relation dx = d(∆H)/∆H (where ,x is the volume fraction of crystal) 

and equation (3.6) into equation (3.4), we obtain,     





 ∆+

∆
= Tk

dt
)T(dC

KA
1

dt
dx

p        (3.7) 

It is known that, usually, the rate of crystal nucleation in glasses reaches its 

maximum at a temperature somewhat higher than the glass transition temperature 

and then decreases rapidly with increasing temperature while the rate of crystal 

growth reaches its maximum at a temperature much higher than the temperature at 

which the nucleation rate is highest [44-49]. In other words, for the heating of glass 

at a constant heating rate, crystal nuclei formed at lower temperatures grow in size at 

higher temperatures without an increase in number [47,49]. It should be noted that 

there are two types of crystallization; one based on bulk nucleation and the other 

based on surface nucleation [38]. 
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In the case of bulk nucleation, the variation of crystal volume fraction is expressed 

[50] by 

dt
dr)x1(nr4

dt
dx 2 −π=         (3.8) 

where n is the number of crystal nuclei per unit volume of the sample formed in the 

course of heating and r is the radius of crystal particle. In deriving equation (3.8), the 

impingement of crystal particles and reduction of the glass phase are taken into 

account [50]. (1-x) is the correction factor for the impingement of crystal particles 

and reduction of the glass phase. This factor is also used to derive the Johnson-Mehl-

Avrami (JMA) equation [51]. The rate of crystal growth, U, was derived by equation 

(3.3). The radius of crystallite, r, is expressed as follows, 

∫ ∫ 
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RT
EexpUdt)RT/Eexp(Ur 0

0     (3.9) 

where α is the heating rate (α = dT/dt). This integral can not be expressed by any 

elementary function and the following approximation is made, 

 

r ≅ ro exp (-E/RT)        (3.10) 

From equations (3.3), (3.8) and (3.10), 
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A = 4πnro
2 = constant and Uo = α-(n-1) are taken, 
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−= −−

RT
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dt
dx kn exp)1()1(α       (3.12) 

where R is the gas constant and n, m and k are numerical factors which depend on 

the crystallization mechanism ( m depends on the dimensionality of crystal growth). 

The parameters n, m and k can take on various values, as summarized in Table 

3.1[52-55]. 

 

In the case of interface controlled growth where U is independent of time, m has the 

values of 1, 2 and 3 for one-, two- and three-dimensional growths, respectively. For 

diffusion controlled growth where U is dependent of time, m is assumed to be 1/2, 1 

and 3/2 for the respective dimensionalities of growth [56]. 
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Table 3.1: Values of n and m for different crystallization mechanisms in the heating  

process [52-55] 

Crystallization Mechanism 
n m k 

Bulk crystallization with a constant number of nuclei 

(i.e. the number of nuclei is independent of the heating rate) 

 

 

  

 

Three-dimensional growth of crystals 3 3 1 

Two-dimensional growth of crystals 2 2 1 

One-dimensional growth of crystals 1 1 1 

Bulk crystallization with an increasing number of nuclei 

(i.e. the number of nuclei is inversely proportional to the 

heating rate) 

 

 

  

 

Three-dimensional growth of crystals 4 3 1 

Two-dimensional growth of crystals 3 2 1 

One-dimensional growth of crystals 2 1 1 

Surface Crystallization 1 1 2/3 

 

The rate of increase of x reaches its maximum at a temperature Tp. Solving equation 

(3.12) for d(dx/dt)/dt =0, the following equation is derived: 
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p
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T
      (3.13) 

where xp is the fraction crystallized at Tp. According to the Table 3.1 k is equal to 1 

for bulk crystallization. Therefore (1-xp)k-1 is equal to 1 for all cases. For surface 

crystallization (k = 2/3), usually, the change of  (1-xp)k-1 is negligibly small compared 

with the exponantional term and (1-xp)k-1 can be taken as constant. Therefore, 

equation (3.13) is rewritten as  
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 α       (3.14) 

The activation energy is found from the slope (-mE/R) of a plot of ln(αn/Tp
2) against 

1/Tp, on substitution of the appropriate values for n, m and R [38,55]. 
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Activation energy for crystallization 
 

Many different methods can be used for estimating the activation energy of a 

process, e.g. crystallization of a glass, but care is required in the choice of method 

and in the interpretation of data obtained. It should also be noted that values 

determined for activation energy may be compound values (corresponding, for 

example, to nucleation and growth processes or overlapping of two or more 

crystalline phases) rather than specific to a single process. Techniques can be broadly 

classified into isothermal and non-isothermal methods [57]. In the isothermal 

method, glass samples are quickly heated up and held at a temperature above the 

glass transition temperature. Crystallization occurs at a constant temperature. In the 

non-isothermal method, glass samples are heated up at a fixed heating rate and 

crystallized during the thermal analysis scan. Generally, an isothermal experiment 

takes longer than a non-isothermal experiment. On the other hand, non-isothermal 

experiments themselves are rather simple and quick, but assumptions are usually 

required for data interpretation due to the deficiency of uniquely accepted equations 

for non-isothermal analysis [58].  

 

Isothermal Methods 
 

In general, isothermal methods are related through application of the Johnson-Mehl-

Avrami (JMA) transformation kinetic equation [43,59-62]: 

     

x = 1- exp (-ktn)        (3.15) 

where x is the fraction crystallized at a given temperature in time t; k is the reaction 

rate constant and n, the Avrami exponent, is a dimensionless constant which is 

related to the nucleation and growth mechanisms. The reaction rate constant, k, is 

related to the activation energy for the process, E, through the Arhenius temperature 

dependence 

   

k = ν exp (-E/RT)        (3.16) 

where ν is frequency factor and T is the (isothermal) absolute temperature. Taking 

logs, equation (3.16) may be rewritten as: 

 

 28 



ln(k) = ln(ν) – E/RT        (3.17) 

Appropriate values of k are found experimentally by plotting the fraction 

crystallized, x, against the isothermal hold time for a range of different temperatures. 

From these plots, the time to reach a given x can then be found for a range of x 

values. Values for k and n are then determined using the relationship (derived from 

equation (3.15) by taking logs and rearranging) 

 

ln [- ln(1-x)] = n lnk + n lnt       (3.18) 

The above equation indicates that a plot of ln [- ln(1-x)] against lnt for different 

temperatures is expected to be linear and gives the values of n and k. A plot of ln k 

against 1/T for different isothermal temperatures is also expected to be linear 

according to the equation (3.17). From these plots, the values of E and ν can thus be 

obtained by isothermal method [57]. 

 

Non-isothermal methods 
 

Several equations have been proposed, attempting to interpret the non-isothermal 

data [63-69]. Most of these equations assume that the variation of peak 

crystallization temperature, Tp, on non-isothermal analysis curves is directly related 

to the heating rate, α. Apparent activation energies for crystallization may be 

determined employing non-isothermal methods to the crystallization peak. For 

example, in the Kissinger method [70], the crystallization peak temperature is 

monitored as a function of the heating rate; the following relationship is then applied 

   ttancons
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 α    (3.19) 

where Eck is activation energy for crystallization, determined by the Kissinger 

method. A plot of ln (α/Tp
2) vs 1/Tp should be straight line, from the slope of which 

Eck can be determined.  Matusita-Sakka[38, 54, 71] have stated that equation (3.19) 

is valid only when crystal growth occurs on a fixed number of nuclei. Incorrect 

values for the activation energy are obtained if a majority of the nuclei are formed 

during the DTA measurement, so that the number of nuclei continuously varies with 

α. They have proposed a modified form of the Kissinger equation as given before 

(equation (3.14)) 
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where Ec is the correct activation energy for crystallization. When surface 

crystallization predominates, m = 1 and when the crystallization is predominantly 

bulk, m = 3(from Table 3.1). The value of m is related to n as m = n when 

crystallization at different heating rates occurs on a fixed number of nuclei (i.e., the 

number of nuclei is constant during DTA runs at different values of α), and m = n-1 

when nucleation occurs during DTA and the number of nuclei in the glass is 

inversely proportional to α. 

 

In addition, when surface crystallization predominates, m = n = 1 and equation (3.14) 

essentially reduces to the Kissinger equation will yield the correct value for the 

activation energy, i.e., Eck = Ec. 

 

In the presence of bulk crystallization, Eck does not necessarily to be equal to Ec. 

Rather, a close inspection of equations (3.14) and (3.19) shows that 

     

Ec = (n/m) Eck – 2 ((n-1)/m)RTp      (3.20) 

For most oxide glass systems, Ec ≥ 20 RTp typically [56]. Therefore, the neglect of 2 

((n-1)/m)RTp ≤ 2 RTp in equation (3.20) will result in an error less than only 10 % in 

the value of Ec. This error is within the error range of the DTA experiment. Then we 

obtain 

     

Ec ≅ (n/m) Eck         (3.21) 

For m = n, i.e., when crystallization occurs on a fixed number of nuclei, Eck = Ec. 

Thus, for predominantly surface crystallization or for crystal growth that occurs on a 

fixed number of nuclei, the analysis of DTA data by the Kissinger model (equation 

(3.19)) yields the correct value of Ec. When the number of nuclei changes during the 

DTA measurements, either, equation (3.14) should be used or Eck determined from 

equation (3.19) should be multiplied by the term (n/m) to obtain the correct 

activation energy [72]. 
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From the exothermic peak, the Avrami parameter,n, can be obtained by using the 

modified Ozawa equation[73]: 

n
d

xd

T

−=
−−

αln
)))1ln((ln(        (3.22) 

 

where x is the volume fraction crystallized at a fixed temperature T with the heating 

rate of α. x is the ratio of the partial area at a certain temperature to the total area of a 

crystallization exotherm (Figure A.1). The value of n close to 1 means that surface 

crystallization dominates overall crystallization while the value of 3 implies a 

significant contribution of the bulk crystallization process [74].  

 

3.4 Glass-ceramic Process 

 

The preparation of glass-ceramic involves a number of steps, the first one of which, 

as the name implies, is the preparation of a glass. The mixture of raw materials that 

will form the desired composition is melted in a suitable container at a temperature 

generally in the range 1273 to 1973 K (depending on the composition). After refining 

and homogenization to provide a good quality glass, the molten glass is worked by 

the usual methods employed in the glass industry, for example, casting, pressing, 

drawing or chilling to form glass frit that can subsequently be reduced to glass 

powder. 

 

Many, although not all, of the compositions that form glass-ceramics are silicate 

based and the ranges of compositions that can be melted and which can then be 

converted to the polycrystalline structure of a glass-ceramic are now extensive. The 

earliest glass-ceramics were based on lithium silicate and lithium aluminosilicate 

compositions but many alkali free materials now available that are more refractory 

and with improved mechanical and electrical, particularly dielectric, properties. The 

fabrication routes for all these materials can take advantage of bulk glass shaping 

techniques or the materials can be processed via powder routes similar to those 

employed for sintered ceramics[14]. 
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3.4.1 Bulk glass-ceramics 

 

For any given bulk glass, the tendency and ability to crystallize can be expressed in 

terms of the nucleation and crystal growth curves given in Figure 3.2, which 

illustrate rates of homogeneous nucleation and crystallization in a glass. Below the 

equilibrium melting temperature there exists a temperature interval, referred to as the 

metastable zone, in which nuclei do not form at a detectable rate, owing to the fact 

that the very small crystal nuclei have melting temperatures significantly below that 

of the bulk material. Crystals can grow in this region, if nuclei of a sufficient size are 

provided by seeding (heterogeneous nucleation). At temperatures below this region 

the crystallization process is governed by the rate of formation of nuclei and the 

crystal growth rate. As the temperature falls the nucleation and crystallization rates 

increase, as shown in Figure 3.2, passing through maxima as the increasing viscosity 

of the glass hinders the atomic rearrangements and diffusion processes necessary for 

nucleation and crystal growth. Eventually, at still lower temperatures, the viscosity 

becomes so high that the nucleation and crystallization processes cease [14]. 

 

Generally, the nucleation and crystallization curves overlap to some extent, as shown 

in Fiure 3.2, and this permits crystal growth to start when a large number of nuclei 

are present, thus enabling the desired fine crystal structure to be obtained. It is clear 

that if the aim is to produce the largest number of small crystals than the greatest 

number of nuclei, on which crystal growth can commence simultaneously, 

temperature and holding time are very important. It has been demonstrated that the 

greatest number of nuclei are not necessarily developed by heating at the temperature 

of the maximum nucleation rate, but rather at a lower temperature and maintaining 

that temperature for extended periods of time [75]. Under these conditions, a long 

induction period may be observed before nucleation starts, although the subsequent 

number of nuclei formed is high. 

 

The preparation of a satisfactory glass-ceramic from a bulk glass thus depends on 

crystallizing the glass composition under strictly controlled conditions, determined 

by previous experimentation, in order to provide the desired closely interlocking, 

microcrystalline structure and a smooth surface, free from cracks and other 

blemishes. In order to achieve this, it has usually been necessary to include a 
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constituent in the glass that will provide the nuclei for subsequent crystal growth or 

influence the structural reorganization in the glass in such a manner that many 

crystals of the desired types grow in the glass. Table 3.2 lists some of the nucleating 

agents that have been used by different workers [76]. Oxide nucleants such as TiO2, 

P2O5 and ZrO2 have been employed and are preferred to give better results than any 

one of the individual nucleants used in the same total proportion [14,58,59]. 

 

Table 3.2: Nucleating agents used in glass-ceramics [76] 

Metals Au, Ag, Cu, Pt 

Single nucleating agents TiO2, P2O5, ZrO2, Fe2O5, V2O5 

Complex nucleants P2O5+TiO2, P2O5+ ZrO2, 

P2O5+MoO3, P2O5+ WO3, 

TiO2+P2O5, ZrO2+TiO2 

 

3.4.1.1. The heat treatment process 
 

The object of the heat treatment process is to convert the glass into a microcrystalline 

ceramic having properties superior to those of the original glass. It is especially 

important to achieve a high mechanical strength and since this is favored by a fine-

grained microstructure, the aim is to produce a glass-ceramic containing crystals of 

small dimensions which are closely interlocked. 

 

A clear idea of the various stages of the heat treatment process will be obtained by 

reference to Figure 3.3 which represents an idealized heat treatment schedule for a 

glass-ceramic. It is proposed to consider the different parts of the heat treatment 

schedule in further detail so that the various factors of importance may be 

emphasized. 

 

The crystallization of the desired phases at controlled grain sizes is achieved by 

carrying out two step heat treatment sequences causing first the copious nucleation of 

crystallites, followed by crystal growth. The object is formed from the glass at a 

working range viscosity of about 104 poise, corresponding to a temperature range 

near the liquidus at 1523 K. The glass object is then heated from room temperature to 

the nucleation temperature [21]. Generally, speaking, the rate of heating employed 
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here is not critical so far as the crystallization process is concerned. It is limited 

mainly by the requirement that dangerously high stresses which might cause cracking 

shall not be generated due to temperature gradients within the glass articles. The 

thickness of the glass ware will chiefly determine the rate of heating which can be 

employed, although the thermal expansion coefficient of the glass will also play a 

part since glasses with low expansion coefficients can withstand higher temperature 

gradients without cracking than can the glasses with high expansion coefficients. 

Normally heating rates between 2 and 5 K/min will be employed, although for thin 

glass ware rates as high as 10 K/min can safely be used. 

 

The optimum nucleation temperature generally seems to lie within the range of 

temperatures corresponding with viscosities of 1011 to 1012 poises. The temperature 

within this range which gives optimum nucleation temperature is determined by 

experimentation. As a first approximation, the optimum nucleation temperature lies 

between the glass transition temperature and a temperature 50 K higher than this. A 

more exact determination of the optimum nucleation temperature may be carried out 

by the following method. A droplet of glass is melted in a furnace provided with 

means for measuring the temperature of the glass droplet accurately and rapidly and 

arranged so that the droplet can be under microscopic observation. The droplet is 

cooled to an arbitrarily chosen temperature, held at this temperature for a minute or 

so and then reheated to the lowest liquidus temperature of the glass (when several 

different crystal phases can be produced by the devitrification of a glass it will posses 

a corresponding number of liquidus temperatures). If on reheating to the lowest 

liquidus temperature no crystallization occurs, the glass droplet is completely 

remelted and cooled to a slightly lower temperature than before and is again reheated 

to observe crystal formation, if any. This procedure is continued until the 

temperature of maximum nucleation has been determined. The period of time for 

which the glass is maintained at the nucleation temperature will usually change from 

0.5 to 2 hours, although longer periods may not have a detrimental effect. Although 

nucleation can occur at any temperature between the temperature of nucleation and 

the annealing point, the use of lower temperatures for nucleation can greatly increase 

the time for nucleation to be completed since the rapid increase of viscosity as the 

temperature falls leads to great reduction of the nucleation rate. For example, at the 

annealing point corresponding to a viscosity of 1013.4 poises, a period of 100 hours 
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may be required to achieve satisfactory nucleation of glasses containing TiO2 as the 

nucleating agent. An important point to note in connection with the nucleation 

process is that to achieve a glass-ceramic of optimum strength, the glass must be 

cooled below the maximum nucleation temperature before the nucleation heating 

stage. This will often occur in the natural course of events, since the material will be 

cooled in the glassy state and annealed at a temperature below the nucleation 

temperature, followed by slow cooling to room temperature. In some cases, however, 

the crystallization heat treatment process may follow immediately from the shaping 

of the glass ware and in these cases it is necessary to cool the glass substantially 

below the nucleation temperature and in some cases the temperature interval 

necessary may be as much as 373 K to 573 K. 

 

As an alternative to the procedure outlined in the preceding paragraph, the optimum 

temperature for nucleation may be determined by heat treating specimens for a fixed 

period (eg. 1 hour) at various temperatures in the nucleating range and then 

transferring them to a furnace held at a crystal growth temperature. After a pre-

determined time the specimens are removed from the furnace. The specimens are 

effectively quenched, therefore the crystal growth process is arrested. By means of 

optical and electron microscopy, the number of growth centers and mean crystal 

diameters can be established and shown to be strongly dependent upon the nucleation 

temperature used.  

 

Following the nucleation stage, the temperature of the glass is increased at a 

controlled rate sufficiently slowly to permit crystal growth to occur so that 

deformation of the glass article will not take place. Crystallization occurs 

increasingly rapidly as the liquidus temperature of a predominant crystalline phase is 

approached but, to prevent deformation in the early stages when the glass phase 

predominates, as a heating rate not usually exceeding 5 K/min is employed. The 

permissible heating rate can readily be determined by experiments in which rods 

supported two knife edges are subjected to the nucleation heat treatment stage and 

are then heated at various rates. The sag occurring at the center of the rod is 

afterwards measured and used as a guide to decide upon an acceptable rate of 

heating. 

 

 35 



The upper crystallization temperature for a glass-ceramic is chosen so that maximum 

crystallization can be achieved without leading to excessive deformation of the 

material. The temperature at which the final product will deform appreciably will 

correspond to the liquidus temperature of the predominant crystal phase since 

increasing the temperature above this liquidus will cause the phase to redissolve. The 

upper crystallization temperature will be lower than the temperature at which the 

predominant crystalline phase will redissolve by a suitable interval, usually 298 to 

323 K. 

 

Melting 
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Growth 

Nucleation 
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                 1523 
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Liquidus             
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Figure 3.3: Heat treatment schedule for a glass-ceramic [21] 

 

The upper crystallization temperature, determined by one of the foregoing methods, 

is maintained for a period of at least one hour, but longer holding periods may be 

employed if this is necessary in order to achieve the desired degree of crystallinity in 

the glass-ceramic. After completion of the holding period the glass-ceramic is cooled 

to room temperature. Cooling can be quite rapid since the glass-ceramic can 

withstand fairly high temperature gradients because of their high mechanical 

strengths. A certain amount of care is exercised in cooling materials of high thermal 

expansion coefficient although, cooling rates as high as 10 K/min can often be 

employed and for the low expansion materials faster cooling still is quite safe. Unlike 

glasses, glass-ceramics do not require annealing to prevent the generation of 

permanent strains in the materials. 
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Some of the crystalline phases present may exhibit structural changes in certain 

temperature zones and these changes are accompanied by alterations of density and 

thermal expansion coefficient. In a conventional ceramic, structural changes of this 

type can cause breakage unless the ceramic is cooled slowly though the critical 

temperature zone. For glass-ceramics, this limitation is not found to the same degree 

since quite rapid cooling through critical temperature zones does not cause fracture 

of the material. The superiority of glass-ceramics in this respect may be due to the 

very small sizes of the crystals present, since the stresses generated as a result of 

volume changes would be small [18]. 

 

3.4.2 Bulk glass-ceramics via powder techniques 

 

This method of combining the powder particles to form a bulk material follows 

essentially the principles of conventional sintered ceramic technology. The 

difference lies in that the starting powder is a glass, sintering and crystallization 

processes occur in the one firing cycle. 

 

The advantages of this method are essentially that relatively thin films of the 

dielectric material can readily be obtained as described below in a process which is 

likely to be cheaper than the bulk approach where a significant proportion of 

substrate cost can result from machining operations. A problem is that, in common 

with other sintered materials, closed pores are present in the fired product, which 

reduce dielectric properties, dielectric breakdown 

strength, mechanical strength and capability of obtaining a high quality surface 

finish. 

 

A number of types of glass-ceramic have been examined by the authors for the 

preparation of bulk materials via the powder route, including materials of the LiO2-

Al2O3-SiO2, ZnO-Al2O3-SiO2 and MgO-Al2O2-SiO2 types. Nucleation and 

crystallization phenomena in the materials differ from those experienced in the bulk 

glass-ceramics. This arises in part from the nature of the particle surface which 

results in a greater predominance of surface crystallization processes rather than bulk 

nucleated crystallization. 
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Glasses of the various types are prepared in a similar manner to those for bulk 

materials. Following refining the glasses are cast into cold water or on to cold metal 

plates to provide frit. After drying (if necessary), the glass frit is reduced to powder 

by milling. It is essential to determine the particle size distribution required for the 

preparation of the sintered glass-ceramic body, which is controlled in subsequent 

batches of the powder as part of quality assurance procedures. 

 

The required sintering conditions vary to some extent with the method of forming the 

green state body, requiring that each case be treated individually in the final 

iterations of process development. The powder processing routes for the preparation 

of glass-ceramic substrates are: 

1. Compacting by means of die pressing or isostatic pressing 

2. Screen printing 

3. Tape casting 

 

Compacting by pressing 
 

This involves incorporation into the powder of a binder such as diethylene glycol 

monostearate (DGMS) or polyvinyl alcohol (PVA) which will hold the powder 

particles together in the desired shape prior to further processing. 

 

Screen printing 
 

This process is utilized for the build up multilayers on a previously prepared 

substrate, which can be a suitable organic film from which the screened material can 

be separated. The powder and organic binder are mixed to form an ink which can be 

screened through a suitable mesh. This method offers the advantage of preparing thin 

layers in selected patterns. 

 

Tape casting 
 

This process is again involves mixing powder and suitable organic liquids to form a 

viscous substance which can be applied via a doctor blade process on to a suitable 

organic carrier film to form a continuous tape. The ceramic/binder mix sets 
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sufficiently to form a flexible tape which can be used to form multilayer structures 

after pre-processing such as punching holes through the tape. This method has been 

used with ceramics such as alumina and BaTiO3 (capacitors) but it is only recently 

that glass-ceramics have been investigated and utilized in this context.  

 

Firing 
 

Following the preparation of green state glass-ceramic body the material has to be 

sintered to maximum density. As a first stage the binder has to be burned out at 

temperatures in the region of 773 K and during this process sufficient oxygen must 

be maintained in the furnace atmosphere to enable this to occur without leaving any 

deleterious deposits (e.g. carbon). Subsequently, as the temperature is raised to 

promote sintering, the furnace atmosphere is not necessarily oxidizing and in some 

cases is advantageously neutral. The firing continuous to temperature in the range 

1073 to 1473 K, depending on composition. In this stage of the process sintering 

occurs by solid reactions between the particles and by flow as the glass particles 

soften. At the same time crystallization in the particles is progressing by a 

combination of bulk and surface processes, particularly latter in fine powders. By 

this means, the loosely bounded initial glass powder is converted to a dense, glass-

ceramic material [77]. 

 

3.4.3 Changes in physical characteristics of glass-ceramics brought about by the 

heat treatment process 

 

An obvious change brought about by the heat treatment is to conversion of the 

transparent glass to an opaque polycrystalline material. The opacity of the glass-

ceramic is due to scattering of light at interfaces between adjacent crystals and 

between crystals and the residual glass phase due to the differences in refractive 

indices of the phases. In certain instances, where the crystals are small and the 

refractive indices of the various phases are fairly closely matched, the glass-ceramic 

may be transparent or translucent. 

 

In addition to obvious change in appearance, there is another, more subtle change 

which is only apparent when the materials are examined under high magnifications. 
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To the eye and to the touch glass-ceramics appear perfectly smooth, but examination 

by the electron microscope reveals that their surfaces are not so smooth as those of 

the parent glasses. Clearly, the result of heat treatment is to produce a generally 

undulating surface made up of rounded crystal boundaries and occasionally there are 

angular crystals which project above the mean surface level. Even though the surface 

of glass-ceramic is less smooth than that of a glass, this difference is not significant 

in most practical applications. A further point is that glass-ceramic surfaces will be 

considerably smoother than those of unglazed conventional ceramics. 

 

The specific gravity of a glass-ceramic is very often different from that of the parent 

glass because small volume changes may occur during the heat treatment process. 

These changes may involve either a slight contraction or a slight expansion of the 

material but they would not usually exceed a 3% volume change. This may be 

contrasted with the large volume changes which occur during the drying and firing of 

conventional ceramics which may quite often total as high as 40 to 50%. The volume 

changes in glass-ceramics are a result of the overall differences in specific gravity of 

the crystalline phases which are formed as compared with those of the parent glasses. 

The crystal phases formed may have higher or lower densities than the glass so that 

the net effect of crystallization can be to cause a contraction or an expansion of the 

material. 

 

The relatively small dimensional changes which take place during heat treatment 

constitutes one of the advantages of the glass-ceramic process over conventional 

ceramic manufacturing techniques, since it enables articles to be produced to much 

closer dimensional tolerances. 

 

The thermal expansion coefficients of glass-ceramics are generally markedly 

different from those of the parent glasses. Devitrification of the glass may result in 

raising or lowering of the thermal expansion coefficient depending on the types of 

crystals which are formed. The formation of cristobalite, for example, will give 

materials with high expansion coefficients, especially for the temperature range 293 

to about 473 K. On the other hand, the formation of the lithium aluminosilicate type 

crystals such as beta spodumene or beta eucrptite can give materials having very low 

thermal expansion coefficients. 
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Another change in physical characteristics brought about by devitrification is the 

increase in refractoriness of the material. 

 

Perhaps the most striking and important change in characteristics is the increase of 

the mechanical strength.  

 

Generally speaking, the electrical properties of glass-ceramics are superior to those 

of the parent glasses and in particular the electrical resistivities are higher and 

dielectric losses are lower. This improvement in properties can to a large extent be 

attributed to the tighter binding of ions, especially alkali metal ions within the regular 

crystal lattices as compared with the disordered glass structure [18]. 

 

3.5 Glass Compositions for Glass-ceramic Production 

 

In any given part of a glass forming system, one crystal phase is likely to 

predominate on conversion to glass-ceramic. Typical examples of the principal 

crystal phases that develop in a number of glass-ceramic forming systems are given 

in Table 3.3. The phases that are produced are influenced not only by the major 

constituents in the composition of the material, but minor constituents in the glass-

ceramics can also have a profound effect. For example, the presence of large ions 

such as K2O and BaO, in proportions up to about 5% in a high expansion Li2O-SiO2 

(low Al2O3) based material, favor the silica crystal phase appearing as quartz rather 

than cristobalite. Another interesting phenomenon is associated with the presence of 

small proportions of ZnO (about 1%) in glass-ceramics which can prevent their 

discoloration in neutral or reducing atmospheres resulting from the presence of iron 

in the materials. This is thought to arise from the capability of ZnO to release oxygen 

at elevated temperatures [14]. Phase composition may also be affected by the heat 

treatment given to the glass, particularly for glasses of high silica contents [78,79]. 

These, in turn, will have a significant effect on the properties of the glass-ceramics. 

Thus, it is important to appreciate that the crystal phases derived by the glass-

ceramic process do not necessarily correspond with those which might be anticipated 

from the study of phase diagrams. This is to be expected in view of the different 
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methods involved in developing crystal phases in glass-ceramics and those used to 

produce crystal phases in phase diagram construction [14]. 

 

3.6 The Properties of Glass-ceramics 

 

Glass-ceramic materials can be considered as a non-porous matter consisting of fine 

crystals uniformly distributed throughout a residual glass phase. As glass-ceramic 

materials contain arbitrarily oriented crystals, their properties are independent of 

direction. The extremely fine and uniform structure, even distribution throughout the 

bulk of the material, and the absence of pores are important characteristics in the 

structure of glass-ceramic materials [36].  

 

Table 3.3: Examples of crystal phases developing in glass-ceramics [14] 

Glass-ceramic systems Crystal phases 

Li2O-Al2O3-SiO2 (low Al2O3) 

 

Quartz, Cristobalite, Lithium disilicate, Lithium 

metasilicate 

Li2O-Al2O3-SiO2 (low Al2O3) Beta spodumene, Beta eucryptite 

Li2O-MgO-SiO2  

 

Quartz, Cristobalite, Lithium disilicate, Lithium 

metasilicate, Enstatite, Forsterite 

Li2O-ZnO-SiO2 

 

Quartz, Cristobalite, Lithium disilicate, Lithium 

metasilicate, Willemite 

MgO-Al2O3-SiO2  

 

Quartz, Cristobalite, Enstatite, Forsterite, 

Cordierite 

ZnO-Al2O3-SiO2  Quartz, Cristobalite, Willemite, Gahnite 

 

The properties of glass-ceramic materials depend primarily on the physico-chemical 

properties of the main crystalline phase and the size of the crystal, residual glass, the 

amount and morphology of glass phase present in the total bulk material and the 

interface formed between the crystalline and glass phase. A review of some of the 

more important properties are summarized below [18]: 
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3.6.1 General physical and chemical properties 

 

3.6.1.1 Microstructure and porosity 
 

One of the notable characteristics of glass-ceramics is extremely fine grain size and it 

is likely that this feature is responsible in a large measure for the valuable properties 

of the materials. It is true to say that a glass-ceramic can have an almost ideal 

polycrystalline microstructure since, in addition to the fine texture, the crystals are 

fairly uniform in size and they are randomly oriented.  

 

In general, the average crystal size in useful glass-ceramics is not greater than a few 

microns and materials with mean crystal sizes as small as 200 to 300 Å are known. 

For some material prepared by the crystallization of the glasses, however, greater 

mean grain sizes are obtained especially where the nucleation density is low and the 

crystal growth is spherulitic in nature but such materials do not have good 

mechanical strengths. 

 

In addition to the crystalline phases, there is usually a residual glass phase. It should 

be noted that this phase does not normally have the same chemical composition as 

the parent glass since it will be deficient in those oxides which have taken part in 

crystal formation. 

 

In contrast to the fine microstructure characteristic of glass-ceramics, the average 

crystal size of sintered alumina ceramics is in usually in the vicinity of 10 to 20 

microns and that in mineral based ceramics such as an electrical porcelain may be up 

to 40 microns. 

 

Although ceramics made by conventional techniques can often be quite impermeable 

to liquids or gases so that their apparent porosity is zero and they are vacuum tight, 

they are rarely, if ever, completely free from closed pores. In a sintered high alumina 

ceramic the percentage of closed porosity is usually in the region of 5 to 10% and in 

a feldspathic porcelain of the type used for electrical insulators it is about 10%. In 

contrast with conventional ceramics, glass-ceramics are entirely free from any type 

of porosity, providing the glass from which they are prepared is free from gas 
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bubbles. Porosity does not develop during the conversion from the glass to ceramic 

state since the overall volume changes are very small. Quite often the volume change 

is a shrinkage but even when the conversion is accompanied by a volume increase, 

voids do not develop within the interior of the material, the volume increase being 

due to the production of crystals of lower density than the original glass. The 

complete absence of pores in glass-ceramics is a characteristics which favors the 

development of good properties since pores will reduce the mechanical strength by 

diminishing the useful cross-section and the material [18]. 

 

3.6.1.2 Density 
 

The density of a glass-ceramic will be an additive function of the various crystal and 

glass phases present. Since the volume change which occurs during conversion from 

the glass state to the glass-ceramic is usually small, it would be expected that the 

effects of various oxides on the densities of glass-ceramics would be similar to those 

observed with conventional glasses. Broadly speaking, it is true because this oxides, 

such as barium or lead oxides, which tend to confer high densities on glasses also 

result in glass-ceramics with high densities. Similarly, glass-ceramics having lithia as 

a major constituent have low densities, as do glasses containing this oxide. It is also 

found that increases of the proportions of MgO, CaO, ZnO, BaO or PbO at the 

expenses of Al2O3 or SiO2 in the glass-ceramics lead to higher densities and that BaO 

and PbO exert the most marked effects. In some glass-ceramics, oxides present in 

minor amounts may exert a significant influence on the density because they affect 

the types of major crystal phases which are present [18]. 

 

3.6.1.3 Chemical durability 
 

The resistance of a material to chemical attack by water or other reagents is of 

considerable practical importance. The processes involved are often very complex 

and methods of studying chemical durability usually involve subjecting a sample of 

carefully controlled surface area to closely specified test conditions. Often, the 

process of attack is accelerated, as compared with anticipated service conditions, by 

employing conditions of increased temperature and, in some cases, pressure. 
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Tests of this nature have indicated that glass-ceramics in general posses good 

chemical stability and that they compare favorably in this respect with other ceramic 

type materials.  

 

In many cases, it is likely that when a glass-ceramic is chemically attacked the initial 

effect is on the glass phase present. This occurs because the early stages of attack 

involve ion exchange between hydrogen and mobile cations (usually alkali metal 

ions) in the glass. Subsequently the silica network structure can be attacked by a 

process hydration. The greater mobility of alkali metal ions in the glass phase as 

compared with that of similar ions incorporated in crystal phases, will lead to greater 

reactivity of the glass phase and hence to inferior resistance to chemical attack.  

 

Certain types of glass-ceramics have good resistance to attack by corrosive chemical 

reagents. Low expansion glass-ceramics derived from lithium aluminasilicate glasses 

are only slightly inferior to borosilicate chemically resistant glass with regard to 

attack by strong acids. They are also more resistant to attack by alkaline solutions. 

Even at high temperatures, certain types of glass-ceramics can be resistant to attack 

by corrosive gases [18].   

 

3.6.2 Mechanical properties 

 

Mechanical properties such as strength, elasticity, hardness and abrasion resistance 

are influenced by particle size and volume fraction of the crystalline phase, 

interfacial bond strength and differences in elastic modulus and differences in 

thermal expansions. Increased strength over the parent glass is a result of fine grain 

and uniform microstructure.  

 

3.6.2.1 Mechanical strength 
 

The mechanical strength of a material is one of the most important property since it 

is often the major factor in determining the suitability of the material for a particular 

application. In addition, other important characteristics, such as the ability of a 

material to withstand sudden temperature changes without failure, are strongly 

influenced by mechanical strength. Not only it is desirable to have a high mechanical 
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strength at normal ambient temperatures but also to retain high strengths at elevated 

temperatures since quite often the material may be required to operate under such 

conditions. For these reasons it is necessary to know how the strength of a glass-

ceramic is influenced both by its constitutions and by external factors. Composition, 

heat treatment processes, temperature and surface conditions affect the mechanical 

strength of glass-ceramics. 

 

Interpretations of the results of mechanical strength investigations on glasses have 

relied very heavily on the well known expression for mechanical strength, σ, derived 

by Griffith (1920): 

 

c
E2
π

γ
=σ          (3.23) 

where E is the elastic modulus, γ is the fracture surface energy and c is the length of 

the critical flaw. From this it is evident that increase of strength would occur only if 

E or γ were increased or if c were reduced. It is of interest to consider the relative 

importance of these parameters with regard to the mechanical strength of glass-

ceramics. 

 

The mechanical strength, σ, of a glass-ceramic is related to the mean grain diameter, 

d, by the well known Hall-Petch relation: 

 

σ = Kd-1/2          (3.24) 

where K is tensile factor. The implication of this relationship is that the crack length, 

c, in the Griffith equation is proportional to the grain diameter. 

 

The mechanical strengths of glass-ceramics are higher than those of many 

conventional ceramics and glasses when comparison is made using specimens that 

have received the same abrasion treatment. The complete absence of pores has 

already be mentioned as factor contributing to high strength. This, however, does not 

provide a sufficient explanation for the observed strengths and it seems that a 

combination of factors may be responsible. The various possibilities are as follows 

[18]: 
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1. The elastic moduli of glass-ceramics are significantly greater than those of 

glasses and thus theories of mechanical strength based on a critical strain concept 

would predict a higher strength for glass-ceramics. This explanation is 

insufficient, however, since glass-ceramics are often stronger than glasses by a 

greater factor than the ratio of the elastic moduli. 

2. Glass-ceramics are harder and more abrasion resistant than glasses and surface 

damage leading to loss of strength is likely to be less severe for a given abrading 

condition. 

3. The combination of crystal and glass phases having different thermal expansion 

may lead to a system of microstresses that favors high mechanical strengths. 

Where the crystal has a higher thermal expansion coefficient than the 

surrounding glass, the radial stresses in the glass will be tensile. Where the 

crystal posses the lower expansion coefficient, the signs of the stresses are 

reversed. 

4. The presence of crystals in a glass-ceramic causes deflection and possibly 

blunting of the fracture tip. Thus the work of fracture is increased and the crack 

may be slowed down or even arrested as it traverses or crosses boundaries 

between crystalline or glass phases whereas in glass there will be an 

uninterrupted fracture path. 

5. It is probable that the mechanical strengths of glass-ceramics are controlled by 

the severity and distributions of microcracks in the surface. These factors will be 

controlled by the surface microstructure of the glass-ceramics if, as seems likely, 

the microcracks are propagated across crystal glass boundaries with greater 

difficulty than through the intervening glass. In this case length of the 

microcracks will be related to the sizes and volume fractions of the crystal phases 

and it is probable that an optimum microstructure will exist which will result in a 

minimum average microcrack length and therefore in maximum mechanical 

strength [18]. 

 

The Young’s modulus and bending strength of glass-ceramic materials can be 

compared with other materials. This is shown in Tables 3.4 and 3.5[ 36]. 
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Table 3.4: Young’s modulus of glass-ceramic materials compared with other 

materials [36]. 

Material Young’s modulus 

(MPa 10-4) 

Glass-ceramic 8-14 

Sodium-calcium glass 7.0 

Boro-silicate glass 6.6 

Ceramics (High Al2O3) 28-35 

Marble  2.7-8.2 

Granite 4.2-6.0 

 

Table 3.5: Bending strength of glass-ceramic materials compared with other 

materials[36]. 

Material Bending strength 

(MPa) 

Glass 55-70 

Glass-ceramic 70-350 

Glass-ceramic with modified 

surface 

Up to 1400 

Electro porcelain (glazed) 86-140 

Ceramics (High Al2O3) 212-353 

Cast iron 140-320* 

Steel 300-1400* 

* Tensile strength 

 

3.6.2.2 Elastic properties 
 

The elastic properties of a material are of great importance in determining its 

behavior when it is subjected to deformation. For example, the modulus of elasticity 

fixes the levels of stress which are generated if a glass-ceramic is strained by the 

application of a temperature gradient. This can occur when the material is suddenly 

heated or cooled. In this case a low modulus of elasticity is desirable. Similarly, if 

the glass-ceramic is to be sealed to another material having a different coefficient of 

thermal expansion a low modulus of elasticity is useful since for a given strain the 
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stress will be lower. There are cases, of course, where a high modulus of elasticity 

may be desirable. This situation exists for glass used in fiber form for reinforcing 

plastics. 

 

The moduli of elasticity for glass-ceramics are higher than those of ordinary glasses 

and of some conventional ceramics, but they are lower than those of sintered pure 

oxide ceramics. The moduli of elasticity of glass-ceramic materials compared with 

other materials is shown in Table 3.6.  For glasses, the modulus of elasticity, E, 

shows a roughly additive relationship with chemical composition. The modulus of 

elasticity of a polyphase ceramic will also be an additive function of the individual 

characteristics of the crystalline and glassy phases. In a glass-ceramic it is to be 

expected that the modulus of elasticity will be determined primarily by the elastic 

constants of the major crystalline phases although the presence in the glass phase of 

oxides which promote the development of high values of E must be allowed for; in 

particular, calcium oxide, magnesium oxide and aluminum oxide appear to exert a 

marked influence on the elastic moduli of glasses [18]. 

 

Table 3.6: Bending strength of glass-ceramic materials compared with other 

materials[36]. 

Material Elasticity modulus 

(MPa 104 ) 

Glass 7.2 

Sodium-calcium glass 6.9 

Glass-ceramic  8.3-13.8 

Electro porcelain (glazed) 6.6 

Ceramics (High Al2O3) 36.6 

Pyrex 6.6 

 

3.6.2.3. Hardness and abrasion resistance 
 

Hardness is not a fundamental physical characteristics of a material but rather it is a 

complex function of physical properties which are combined in differing degrees 

depending on the method of test. In a sense, we can equate the hardness of a material 

with its resistance to abrasion or wear and this characteristic is of practical interest 
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since it may determine the durability of a material during normal use and it may also 

decide the suitability of the material for special applications where abrasion 

resistance is of prime importance. Thus, the resistance of the material to abrasion 

under closely specified conditions may be taken as one measure of hardness. The 

resistance to scratching of the material by other materials represents another measure 

of its hardness and the depth of penetration of a loaded pyramid (usually a diamond ) 

into the material under specified conditions represents yet another measure of 

hardness.  

 

The maximum hardness corresponded approximately but not exactly with the 

maximum volume fraction of the crystal phase in the glass-ceramic suggesting that 

microstructural effects influence hardness. Researches have indicated that the nature 

of the crystal phases may play a highly significant role in determining hardness. 

Some crystal phases, even when present in only a small volume fraction seem to 

result in marked enhancement of hardness. Phases of the spinel type appear to be 

particularly effective in this respect. 

 

It is thought that a more practical and reliable method of studying the relative 

hardnesses of glass-ceramics would be to abrade them under standard conditions and 

to measure the amount of which occurs. In considering the wear occurring between 

glass-ceramic parts which are moving in contact with one another due to sliding or 

rotation, the extent to which friction occurs becomes important. For this reason, it is 

of interest to know the values for coefficients of friction between glass-ceramic 

surfaces [18]. 

 

3.6.3 Electrical properties 

 

3.6.3.1 Electrical resistivity 
 

If a glass-ceramic is to be used for electrical insulation, its resistivity should be as 

high as possible. In many cases the insulating material is required to operate at or 

near to normal ambient temperatures but in some devices the insulator may be 

required to operate at elevated temperatures and for these applications the variation 

of electrical resistivity with temperature is important. 
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Depending on chemical composition and on the nature of the crystal phases present, 

the electrical resistivities of glass-ceramics can vary widely. Values of resistivity at 

573 K, for example, range from 106 to 1012 ohm cm. 

 

3.6.3.2 Dielectric loss 
 

The dielectric losses for glass-ceramics is more complicated than glasses. It is 

difficult to assess the exact effects of the various crystal phases and of the residual 

glass phase, since the precise chemical composition of glass is not usually known. 

The dielectric losses for single crystals are small and mainly determined by minor 

impurities and it is likely that the glass phase of the glass-ceramic is the main 

contributor to dielectric losses. This means that to achieve low losses the amount of 

residual glass phase must be as small as possible. In addition to the effects of 

chemical constitution, the dielectric losses of a glass-ceramic, like a glass, are related 

to the frequency which is measured at a specific temperature. The general effect for 

the losses is to increase the temperature, although the temperature dependence of 

dielectric losses become less marked as the frequency increases. 

 

3.6.3.3 Dielectric strength 
 

If an insulating material is subjected to a large voltage gradient, failure of  the 

material may occur due to puncture. This possibility is one of the important factors 

which govern the design of high voltage insulators. Dielectric breakdown strength is 

also of importance in the design of capacitors required to operate at high voltages 

such as those used for energy storage applications.  

 

Glass-ceramics have high dielectric breakdown strengths compared with 

conventional ceramics. It may be partly due to the complete absence of closed pores 

in the former materials. Porosity tends to give variations in the local electrical field 

thus giving rise to low measured values. The very homogeneous and fine grained 

nature of the glass-ceramics may be another factor which favors high breakdown 

strengths [18]. 
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3.6.4 Thermal Properties  

 

3.6.4.1 Thermal expansion coefficient 
 

The dimensional changes which occur with change of temperature are of great 

importance from a number of points of view. For example, if a glass-ceramic is 

required to have high thermal shock resistance, the thermal expansion coefficient 

should be as low as possible to minimize strain resulting from temperature gradients 

within the material. Also if the glass-ceramic is to be sealed or otherwise rigidly 

joined to another material such as a metal, close matching of the thermal expansion 

coefficients is necessary to prevent the generation of high stresses when the 

composite article is heated or cooled. In some applications, dimensional stability 

with change of temperature may be important and a glass-ceramic of near zero 

thermal expansion coefficient would be required for this. 

 

Glass-ceramics are remarkable for the very wide range of thermal expansion 

coefficients. At one extreme, materials having negative thermal expansion 

coefficients are available while for other compositions very high positive thermal 

expansion coefficients are observed. Between these two extremes there exists glass-

ceramics having thermal expansion coefficients practically equal to zero and others 

whose thermal expansion coefficients are similar to those of ordinary glasses or 

ceramics or to those of certain metals or alloys. 

 

The thermal expansion coefficient of a glass-ceramic can be markedly different from 

that of the parent glass. The glass-ceramic may have a higher or lower thermal 

expansion coefficient depending on the crystal phases formed. While the 

development of crystal phases usually causes the major changes in the thermal 

expansion coefficient, crystallization will alter the composition of the residual glass 

phase from that of the parent glass and this must be taken into account when 

attempting to analyze the thermal expansion coefficients in glass-ceramics in relation 

to their constitution. In certain cases, the changes in composition of the residual glass 

phase result in changes of the thermal expansion coefficient of a sufficient magnitude 

to counterbalance the effects of the development of the crystal phase. 

 

 52 



An extremely wide range of thermal expansion coefficients is covered by the 

different crystal types and the development of these phases in appropriate 

proportions forms the basis of the production of glass-ceramics having controlled 

thermal expansion coefficients. Thus a low thermal expansion coefficient glass-

ceramic may contain beta-eucryptite, beta-spodumene or cordierite as major phases 

while at the other extreme, a high thermal expansion coefficient glass-ceramic 

contain major proportions of crystals such as lithium disilicate, quartz or cristobalite. 

 

3.6.4.2 Refractoriness 
 

The temperature to which a glass-ceramic can be heated without exhibiting 

deformation can be important if the material is required to operate or to be processed 

at high temperatures. For this reason, it is necessary to know how glass-ceramics 

compare with other ceramic type materials with regard to refractoriness and it is also 

useful to relate this characteristic to the glass-ceramic type. 

 

The factors which govern the deformation of a glass-ceramic are complex, since 

there are one or more crystal phases present together with a residual glass phase; this 

phase is probably distributed fairly uniformly between the crystals. It is very likely 

that it is the characteristics of the glass phase which largely govern the refractoriness 

of a glass-ceramic since most of the crystal phase have high melting temperatures. 

Obviously, the proportion of glass phase present will have a strong bearing on the 

refractoriness of the glass-ceramic and from this point of view it is desirable to limit 

the glass phase to the smallest possible proportion. In addition, the composition of 

the glass phase is of great importance and it is necessary to ensure that oxides which 

will lower the softening temperature of the glass phase are present only small 

proportions. Oxides which would have this effect include the alkali metal oxides, 

boric oxide and lead oxide.  

 

Glass-ceramics are more refractory than most conventional glasses since, although 

some aluminasilicate glasses may have dilatometric softening temperature of 1073 K 

or so, and fused silica glass is even more refractory, commonly available glasses 

have dilatometric softening points not exceeding 773 to 873 K. Thus glass-ceramics 

are more suitable for high temperature applications than most glasses. Comparison 
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with conventional ceramics is not too easy since the methods of assessing 

refractoriness often differ from those which have been used for glass-ceramics. 

Nevertheless a qualitative comparison can be made and it appears that glass-ceramics 

are generally less refractory than high alumina ceramics. 

 

3.6.4.3 Thermal conductivity 
 

A glass-ceramic may be required for use as a thermal conductor or as a thermal 

insulator and its suitability for these applications will be largely determined by the 

rate of heat transfer through it under a given temperature gradient. A reasonably high 

thermal conductivity is desirable if the material is to be used for cooking vessels. In 

addition, the thermal shock resistance of the material is influenced by the thermal 

conductivity. The thermal conductivities of glass-ceramics are somewhat higher than 

those of glasses but lower than those of pure oxide ceramics [18]. 

 

3.6.5 Optical Properties 

 

The most important optical property is radiation transmission. Although some glass 

ceramic materials are translucent or transparent or transmit infrared radiation. Most 

of the materials are opaque. The passage of light is affected primarily by the crystal 

size and if the crystals are smaller than the wavelength of visible light, then the glass-

ceramic material is transparent. Transparent glass-ceramic materials with high 

permittivity show good electro-optical properties [36].  

 

3.7 Applications of Glass-ceramics  

 

The applications can, in broad sense, be termed as engineering and thus glass-

ceramic may be considered to fall within the general class of materials referred to as 

engineering ceramics. Increasingly, ceramics, including glass-ceramics, are being 

used for critical components outside their traditional engineering areas of electrical 

insulation and in domestic applications. They are used because of their properties 

that are quite unlike any other group of materials and nothing else can fit the 

requirements. These properties include; hardness and wear resistance, resistance to 

oxidation and to high temperatures, resistance to chemical attack, dimensional 

 54 



stability, optical and other transmission characteristics and specific electrical 

properties. 

 

Of course, not all glass-ceramics can be expected to posses all these characteristics. 

Each material, each proprietary product has both advantageous and disadvantageous 

properties when it comes to engineering performance. It is the function of the glass-

ceramic experts, in collaboration with design engineers, to develop materials and 

component designs to fulfil the needs of specific applications. Examples of the ways 

in which this has been achieved with glass-ceramics, often in competition with other 

ceramic materials, are given below, which covers the principal uses of glass-ceramics 

at the present time. 

 

3.7.1 Engine applications 

 

The use of ceramic materials in engines is seen as a way towards increasing engine 

efficiency and allowing engines to operate at higher temperatures than can currently 

be realized because of limitations imposed by the metals and alloys that are presently 

available. The general properties of glass-ceramics suggest that they could be 

potentially useful in engine applications, both for diesel and gas turbines. 

Interestingly, in spite of the useful combinations of properties available, together 

with their capabilities of providing adherent coatings or strongly bonded composite 

structures, little work has been carried out in this field with glass-ceramics [14]. One 

of the most important glass-ceramic developments has been as rotary heat 

exchangers in which a low expansion lithium aluminosilicate fabricated to a 

honeycombe section with through channels, was employed. The hot gases from the 

engine heated a section of the device which rotated continuously so that the hot 

sections were able to heat incoming air [80]. Ceramic seals and bearings were 

developed for these applications. 

 

A limited amount of work has also been carried out to investigate low expansion and 

cordierite glass-ceramics for cylinders [81] and to examine the possibilities of 

providing coatings onto nickel based turbine blades with the aim of enhancing 

corrosion resistance. Glass-ceramics are more likely to be used in diesel engines to 

increase resistance to corrosion and act as thermal barriers. In addition, the glass-
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ceramic processing capabilities suggest that these materials offer a high potential for 

thermal expansion matching and high quality bonding to the various metals and 

alloys employed in the engine [14]. 

 

3.7.2 Pumps, valves and pipes 

 

The high hardness and excellent abrasion resistance of glass-ceramics suggest their 

use for the construction of pumps, valves and pipes for handling abrasive slurries. In 

addition, the good chemical durabilities of many glass-ceramics enable them to be 

used in contact with corrosive liquids under conditions where many metals would 

undergo unacceptable deterioration. Stainless steel components can be used in some 

applications but the superior resistance to wear of glass-ceramics would be 

advantageous. The low thermal expansion coefficient confers high thermal shock 

resistance rendering the components suitable for handling hot fluids. The use of 

techniques which enable metal parts to be firmly attached to the glass-ceramic or the 

cladding of metal components with an abrasion resistant coating gives the 

potentiality for great flexibility of design [18]. 

 

3.7.3 Machinable glass-ceramics 

 

The materials that have been described so far can be further shaped after forming and 

heat treatment by means of suitable machining. This requires the use of diamond 

tipped and occasionally silicon carbide tooling because of the hardness of the 

materials. It would be useful, in some instances, if post shaping were made easier and 

this has been achieved in the case of glass-ceramics in which mica flakes of the 

phlogopite and fluorophlogopite types have been precipitated during heat treatment 

[82,83]. A number of mica containing glass-ceramics are available that can be 

shaped using more conventional metal working tooling. This offers considerable 

advantages for the preparation of certain complex shapes and for the development of 

prototypes, but the cost of these materials limits their more general use [14]. 
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3.7.4 Refractory glass-ceramics 

 

The ability of a ceramic type material to withstand high temperatures is important in 

a number of applications in which either processing and/or usage temperatures are 

necessarily high. Resistance to temperature in the region of 1173 K is needed. Other 

potential applications include engines where even higher temperature capability will 

be essential. Glass-ceramics that are capable of withstanding temperatures well in 

excess of 1273 K are now well established. Materials of the magnesium 

aluminosilicate and zinc aluminosilicate types, together with barium silicate 

materials fall into this category. However, the biggest advance which has been made 

in this direction has been the introduction of nitrogen, replacing some of the oxygen 

in selected compositions.  

 

Study of nitrogen containing glass-ceramics originated from the need to make the 

glassy phase in sialon (Si-Al-O-N, made by firing silicon nitride with alumina added 

essentially as a sintering aid) ceramics more refractory in order to improve the high 

temperature capabilities of these materials. Following studies on the ceramic systems 

the glass and glass-ceramic compositions were prepared independently and the 

overall range extended [84]. Incorporation of nitrogen into to the glasses influences 

their properties significantly, essentially as a result of the nitrogen producing a more 

tightly bonded glass structure [85]. Properties such as density, hardness, Young’s 

modulus and glass transition temperature all increase with increasing nitrogen 

content, whereas the thermal expansion of the glass decreases [14].  

 

3.7.5 High dielectric constant materials 

 

Ceramic materials possess high dielectric constants. They can be used in infrared 

sensors, as capacitors, as pizoelectrics, as magnetic materials and in optoelectronic 

devices [86]. Sintered ceramic materials based on barium, strontium or lead titanates 

are predominant in this field and can possess dielectric constants in excess of 20000. 

There are some advantages, however, to be gained by fabricating materials via glass-

ceramic routes, particularly where very high dielectric constants are not required and 

where the dielectric can be produced in thin section using bulk fabrication routes. 

Although it has been demonstrated that glass-ceramics possessing dielectric 
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constants up to 11500 are possible [87]. In practical terms the highest dielectric 

constant that can usefully be realized in a barium titanate in the range 2000-2500 

measured at a frequency of 1 MHz. The advantage of glass-ceramic over the sintered 

material is that it can be made in a pore free condition via bulk processing routes, 

which provides much higher dielectric breakdown strength, about ten times greater 

than can be achieved with the sintered material. Thus the glass-ceramic is more 

suitable for the high voltage applications [88]. It can also be readily made in a thin 

film form and this form possesses greater strength than the sintered material [14]. 

 

3.7.6 Storage of radioactive wastes 

 

A number of solutions have been put forward to this difficult problem. Clearly, any 

material used for the storage of radioactive wastes must be impervious to attack not 

only by the wastes but also by any surrounding medium. Glasses and ceramics have 

been considered for uses where the waste material forms one of the constituents of 

the glass and ceramic. Glass-ceramics also offer considerable potential in this fields 

and materials can be prepared that will meet the exacting requirements. Glass-

ceramics of the Na2O-Al2O3-CaO-TiO2-SiO2 type have been prepared containing up 

to 20% by weight of simulated nuclear fuel recycle waste. Sphene (CaTiSiO5) was 

the principal crystal phase developed and the uranium was found to be concentrated 

in the glassy phase [89,90]. 

 

3.7.7 Low and zero expansion glass-ceramics 

 

Materials of this type are suitable for use in applications where dimensional stability 

with change in temperature is required, often in combination with good electrical , 

transmissive and mechanical properties. A number of approaches is possible. An 

attractive way to produce materials of very low expansion is to prepare glass-

ceramics of the lithium aluminasilicate type in which the principal crystal phase 

developed is β-spodumene (Li2O.Al2O3.4SiO2) or β-eucryptite (Li2O.Al2O3.2SiO2). 

The presence of these crystals enables glass-ceramics with the thermal expansion 

coefficients in the range –4x10-6 to 4x10-6 K-1. Control of the 

nucleation/crystallization procedures [91] can enable materials that also possess high 
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transparency in the visible and near infrared to be obtained [92,93] combined with 

the low or nearly zero thermal expansion characteristics. 

 

The low expansion transparent glass-ceramics have received most attention in recent 

years in two principal applications, namely telescope mirrors and laser envelopes 

[94] where their dimensional stability with change in temperature is of considerable 

value in reducing optical distortion (mirrors) and ensuring frequency stability 

(lasers). The high transparency enable this type glass-ceramics to be used as 

windows in the laser applications. An application that is well developed, is in ring 

lasers, where the laser is in the form of a triangle with mirrors at the truncated apices, 

used for gyroscopic guidance systems in aircraft etc, where the laser body contains a 

helium gas discharge [94,95]. 

 

A further development of a lithium alimunasilicate, low expansion, transparent type 

of glass-ceramics, with which the general public is more familiar, is in domestic 

cooker hot plates and cooking utensils. The hot plate and cooking dishes made in 

these materials must possess high strength and be resistant to thermal shock and to 

mechanical shock, which, it has been amply demonstrated, they do. The domestic 

area represents a large volume output of this type of glass-ceramic worldwide in the 

cooking dish field and in the cooker hob field. Large number of both items are 

produced annually [14].  

 

3.7.8 Windows 

 

Glass-ceramics that can transmit over a wide range of frequencies/wavelengths are 

needed. For transmission in near infrared, in the 3-5 µm wavelength, it is likely that 

aluminate materials will be preferred although others are possible. This may impose 

some penalties for dual mode operation in the near infrared and at milimeterwaves 

owing to the dielectric constant of these materials being in the region of ten but dual 

mode operation at microwave and in the near infrared may be possible. 

 

Glass-ceramics of the magnesium aluminosilicate type have been seen earlier to 

provide windows for applications requiring transmissions at frequencies in the range 
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10-20 GHz [93]. In addition, their dielectric properties at higher frequencies suggest 

that they could be useful at milimetrewaves frequencies. 

 

The high transmission, together with refractoriness, that can be achieved with certain 

glass-ceramics, particularly those of the magnesium aluminosilicate type, indicates 

their potential usefulness in the lighting applications [91]. Aluminate based materials 

may be more suitable for lighting uses involving sodium based discharge lamps, 

because of their expected higher resistance to attack by sodium vapor- although this 

would have to be proved [14]. 

 

3.7.9 Joining 

 

3.7.9.1 Vacuum envelopes 
 

The developments of glass-ceramics to join to further metals and alloys, particularly 

cheap and readily available ones, would clearly be of advantage, always with the 

essential thermal expansion matching being achieved. Further developments utilizing 

more refractory glass-ceramics are likely and necessary in order to meet competition 

from such materials as alumina and where higher vacuum bake-out temperature 

and/or higher operating temperature capability is required. 

 

3.7.9.2 Coatings 
 

Class-ceramic coating materials, for application to metals, that possess higher 

electrical resistivity, greater resistance to corrosion and with improved thermal 

dissipation characteristics are required. A possible way forward is by the use of sol-

gel procedures. An alternative, that has some merit for a number of applications, is 

the modification of the properties of present coating materials in fine powder form 

and it is anticipated that more will be made of this aspect in the future [96]. 

 

3.7.9.3 Bonding media 
 

Further development of nonmetallic bonds to join sintered ceramics such as SiC, 

Si3N4 and ZrO2 to themselves and to appropriate metals is needed. At present, 

metallic bonding media are considered to be the most successful of the various 
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joining technologies available but vitreous joining systems have a lot to offer, 

particularly in terms of their stability and resistance to oxidation at elevated 

temperatures [14]. 

 

3.7.10 Superconducting materials 

 

Any discussion on the potential uses of glass-ceramics would not be complete 

without mention of the preparation of superconducting materials by this technique. 

The discovery, in the mid 1980s, of ceramic materials that could exhibit a state of 

zero electrical resistivity at temperatures above the boiling point of liquid nitrogen 

(77 K), had considerable impact and a great deal of effort and resources were 

expended through out the world on these materials. This effort has now decreased as 

the enormity of problems to be overcome, particularly in high voltage, high current 

electrical applications and where high magnetic fields are present, has been 

appreciated. Present forecasts indicate that the successful and profitable use of these 

materials in power electrical engineering applications is a long way away [97]. 

However, more immediate applications in light current fields appear to be possible 

and real. 

 

It has been realized that considerable advantage would ensure if glass-ceramic 

technology could be used, particularly for the preparation of fibers for use as 

conductors. Success with this has been realized with compositions of bismuth 

strontium calcium copper oxide (BiSCCO) type incorporation lead oxide (PbO) into 

the composition. Successful preparation of flexible fiber, rods, tapes and tubes has 

been achieved by redrawing from a cast boule (in a manner analogous to that used 

for the preparation of optical fibers)[98,99]. 

 

3.7.11 Glass-ceramics in biomedical applications 

 

Ceramic materials find extensive use in biomedical applications. The most widely 

used has been high purity alumina (>99.5%) which is strong, highly resistant to 

attack by body fluids and which is very resistant to wear [100]. The areas in which 

glass-ceramics have been considered are as bone implants and as fillings for teeth. 

Glass-ceramics can be classed as either bioinert (not reacting with bone or other 
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tissue) or bioactive reaction occurs with the bone so that an integral structure is 

developed. 

 

3.7.11.1 Bone replacements 
 

 The principal advantage of glass-ceramics in this field is in their potential as 

bioactive materials. Little advantage may accrue from their use as bioinert materials 

where they are likely to be less strong and less wear resistant than alumina. Those 

that have been studied have crystal phases, such as apatite, present so that bioactivity 

with the living bone can take place and developments have been directed towards 

improving the strength of the material and ease of forming to a near net shape 

product. Strengths comparable to those of human arm and leg bones have been 

achieved with glass-ceramics of the Na2O-CaO-P2O5-SiO2 type in which the 

principal crystal phases were Ca2P2O5 and Na2Ca3Si6O16 with a mean crystal size of 

about 30 µm 101]. The presence of silicon has been established as increasing bone 

mineralising rates and shown to be useful for normal skeletal development. 

 

Another approach has been to include constituents in the composition that will 

provide mica type crystals in the glass-ceramic. The presence of the mica crystals 

means that the glass-ceramics are readily machinable and adjustments can be carried 

out during the course of an operation, by the surgeon, if necessary. These glass-

ceramics have been used successfully in a number of replacement situations, 

particularly in the spine and as tooth root implants. 

 

Another approach has been to prepare composite structures comprising two 

interlocking crystal phases of Ca3(PO4)2 and MgAl2O4 spinel [102]. As an implant, 

the phosphate phase is bioresorbable and is largely replaced by bone so that it acts as 

a means of stimulating bone growth. 

 

3.7.11.2 Dental applications 
 

This application of glass-ceramics is probably the best suitable area in biomedical 

usage. It would clearly be useful if the glass-ceramic could be made to be of a similar 

appearance to that of natural teeth., with which it will be placed adjacent and this can 

vary from person to person. A number of different compositions have been studied 
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for use as crowns including; potassium aluminasilicates applied onto a metallic 

dental prosthesis, lithium calcium aluminasilicates that are made by the powder 

technology route and which can readily be colored to match natural teeth, mica 

containing glass-ceramics for which the shaping of the article is carried out using a 

lost wax investment casting process, and calcium magnesium phosphorus silicate 

type, also made by a lost wax process, but only applied as a thin veneer to the tooth 

rather than as a full crown [103]. 

 

Filling of teeth, after decayed material has been removed, is one of the most 

important aspects of dentistry. For many years metal amalgams have been used, but 

use is now being made of glass and glass-ceramic materials in this application. These 

materials are usually in the form of a glass ionomer material which powder glass 

being mixed with an organic resin. Glass-ceramics of the above types may be used, 

the resin gripping the tooth cavity and the glass-ceramic providing wear resistance 

and color matching. In cases where higher strength is required in order to provide 

longer term resistance to chewing stresses the glass ionomer cement can be further 

strengthened by filling with amalgam in finely divided form [14]. 

 

3.8 Glass-ceramic Materials Obtained by Industrial Wastes 

 

3.8.1 Glass-ceramics by Bulk Crystallization 

 

The vitrification process to obtain glass-ceramics is a well established technique 

which improves the properties of a parent glass produced by using pure raw 

materials, as in the case of low thermal expansion glass-ceramics or industrial 

residues such as paving tiles or wall covering panels produced by vitrification and 

crystallization of foundry slags and thermal power plant fly ashes [104]. 

 

The more recent studies and applications are aimed at finding a recycling process for 

the huge amount of fly ashes generated from coal and oil fired electric power stations 

i.e. and industrial gaseous effluent purification, by producing marketable products for 

the building industry. Besides fly ashes and slag or mud from metallurgy, other 

quantitatively consistent industrial residues are the mud and scraps of the caving and 

sawing of natural rocks [105]. 
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For the recycling and exploitation of coal fly ash, several approaches have been 

taken over half a decade to develop a glass-ceramic from coal fly ash produced by 

thermal power plants. Typically, glass-ceramics obtained from fly ash have been 

produced by a combination of melting the fly ash and a one or two stage heat 

treatment for crystallization, nucleation and crystal growth. Other approaches 

involving a sintering process have also been used.  

 

The properties of glass-ceramics differ according to the make up of components and 

heat treatment conditions. In general the major component found in the ash is CAS 

(CaO-Al2O3-SiO2), with minor components such as MgO, Na2O present in order to 

form crystalline phase. In order to devitrify fly ash glass after melting, the 

composition of the ash is modified in terms of composition for internal 

crystallization. There are several ways to modify the composition of the fly ash 

[106]: 

 

Some of the researchers used nucleating agents in the production of glass-ceramic 

materials from coal fly ash [107]. Cumpston et al. [108] produced glass-ceramic 

materials from coal fly ash with adding 1 wt.% TiO2 to study the effect of nucleating 

agent on the microstructure of the samples. SEM studies showed that the use of these 

additives had little effect on the degree of crystallization, but it did improve the 

definition of the crystal shape and morphology. Kim et al. [106] used TiO2 and CaO 

(using arc shell as the source of the CaO) as nucleating agents and also to decrease 

the melting temperature of the coal fly ash, meaning a more economical process. The 

obtained glass-ceramic samples showed sufficiently high wear resistance and fracture 

toughness to be used in building materials requiring good mechanical properties.  

 

Another approach that can be found in the literature is to add different industrial 

wastes as minor constituent to coal fly ash to produce glass-ceramic. The addition of 

inorganic wastes such as SiO2, CaO and Na2O as a glass cullet and CaO and MgO as 

a float dolomite promote the formation of amorphous and semicrystallized materials. 

Glasses and glass-ceramics were obtained by mixing up to 50 % of Italian coal fly 

ash with glass cullet and float dolomite [109]. The behavior of ten compositions was 

investigated by differential thermal analysis and x-ray diffraction and microstructural 
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(SEM) characterization. It was verified that the contribution of the alkaline earth 

elements in the original composition was fundamental to obtaining glass-ceramics 

with a fine microstructure that improves mechanical properties. With a small 

addition of dolomite slag and glass cullet into the coal fly ash, very stable glass-

ceramic materials were obtained [11,110]. Results showed that the properties of 

glass-ceramic samples were better than the commercial glass-ceramic materials. 

Mendez et al. [111] mixed  industrial wastes (coal fly ash, dolomite slag) with quartz 

sand to produce glass-ceramic. Glass-ceramic with a surface crystallized pyroxene 

type phase was obtained from those wastes. Another example mixing different 

industrial wastes to obtain glass-ceramic material was reported by Barbieri et 

al.[112]. Several compositions were formulated with mixing in different percentages 

of coal fly ashes, municipal solid waste (MSW), glass cullet and float dolomite from 

mineral extraction operations. It was reported that all the glass-ceramic samples 

showed a good crystallization tendency with the formation of pyroxene and 

wollastonite. Coal fly ash is also rich in iron and Francis et al. [113,114] mixed the 

waste with borosilicate or sodalime glass powders to promote the densification and 

to directly produce glass-ceramic products containing magnetic phases.  

 

Some of the researchers obtained glass, glass-ceramic materials by adding Na2O to 

decrease the melting point of fly ash and CaO, Na2O as fluxing additives. Sheng et 

al.[115] added 10 wt.% of  Na2O to the coal fly ash and the melting point of fly ash 

decreased to 1473 K. Peng et al.[116] produced glass-ceramic samples from coal fly 

ash with Na2O + CaO and BaO + CaO as fluxing additives. XRD and SEM studies 

showed that the main crystalline phase in the both glass-ceramic samples was 

wollastonite and the average crystalline size was below 300 nm. Another example of 

adding fluxing additives was reported by Leroy et al.[117].  10 wt. % CaO and 10 

wt.% Na2O were added to the coal fly ash however, the melting temperature of 1793 

K for 2 h was found to be too high.  

 

Coal fly ashes were transformed into glass-ceramics without any additives or 

nucleating agents. Erol et al. were reported that coal fly ash can be used as a raw 

material to produce glass-ceramic materials and obtained glass-ceramic materials 

were good candidates for industrial use in construction, tiling and cladding 

applications [118-120]. 
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More recently, a wide range of other industrial wastes, leading to very different glass 

compositions, has been used to produce glass-ceramics for building industry or other 

applications. Glass-ceramics from MSW fly ash can be obtained mainly by 

controlling the temperature of the vitrified product during the cooling down stage 

[10,121]. The resulting product presents better mechanical and technical properties 

than those of the amorphous product. According to Boccaccini et al.[10], obtained 

glass-ceramic samples have higher hardness, better workability and increased 

fracture toughness, strength (almost three fold) and thermal shock resistance. From 

the mechanical point of view, it is desirable to maximize the number of nuclei 

formed to produce microcrystalline ceramics. In another study Boccacccini et al.[8] 

showed that almost three fold increase of bending strength (from 90 to 240 MPa) and 

fracture toughness (from 0.6 to 1.7 MPa m0.5) for a glass-ceramic with respect to the 

parent glass, produced from vitrification of MSW ash. Chemical durability tests 

should be conducted on all glass-ceramics produced from MSW ash. MSW ashes 

were vitrified by heating at 1773 K by Park et al. [122], with the addition of at least 

10 wt.% of silica and MgO (10 wt.%) to avoid heavy metal leaching and obtain an 

inert glass-ceramic. They indicated that the main problem of this type of waste lies in 

the relevant chlorine content, particularly high in this case if compared with other 

reported compositions, due to a high concentration of salty food waste and plastic 

materials in the MSW. Up to 70 wt. % MSW ash corrected with waste from feldspar 

production were transformed to glass-ceramic materials by Karamanov et 

al.[123,124], obtaining a chemically inert glass-ceramic.  

 

A mixture of different fly ashes has been sometimes used with the aim of obtaining a 

composition more suitable for glass-ceramic production, as reported by Cheng [125] 

in the melting and ceramization of dust generated in an electric arc furnace for 

stainless steel making and MSW fly ashes (in the weight ratio 1:9, respectively). 

However, the resulting glass-ceramic product showed a certain leachability for Cr 

ions, depending on the temperature of the ceramization treatment. The same 

approach was followed also by Barbieri et al., with the production of glass-ceramics 

from different fly ashes melted at 1773 K after correction with glass cullet and 

dolomite [110,126,127]. Glass-ceramics are also produced from slags obtained from 

different metallurgical industries. Öveçoğlu [128] recently produced slag-based 

glass-ceramics with a high bending strength (> 300 MPa ) and excellent fracture 
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toughness (5.2 MPa m0.5). Ferreira et al. [129] produced several glass-ceramics from 

basic oxygen furnace (BOF) slag and found that an optimal composition was 60% 

BOF slag, 35% sand and 5% Na2O. Steelwork slag was also used in the glass-

ceramic production and Gomes et al.[130] proposed the addition of residues of 

bauxite extraction, limestone, sand and TiO2 as nucleating agent.  

 

Knowledge of nucleation and crystallization kinetic parameters such as, activation 

energy for crystal growth and crystal growth mechanism is important in the 

preparation of glass-ceramics with desired microstructure and properties. Although a 

number of studies have been reported on examining the crystallization behavior of 

glasses produced from industrial wastes[110,111,131-133], only a few researchers 

have done investigations on coal fly ash based glasses. The activation energy of the 

glasses produced from coal fly ash was calculated as 370 kJ/mol by Cioffi et al. 

[134]. Erol et al.[135,136] determined the kinetic parameters that describe the 

crystallization process of coal fly ash based glasses. Studies showed that the 

activation energies of the fly ash based glasses were between 283-320 kJ/mol and the 

bulk nucleation occurred in the glasses by three dimensional growth. The 

crystallization behavior of glasses made of mixture of coal ash and soda lime glass 

cullet was investigated by Francis et al.[137]. Obtained results showed that the 

crystallization mechanism is diffusion controlled crystallization with a decreasing 

nucleation rate.  

 

Table 3.7 presents a literature survey of the main studies carried out on the topic of 

glass-ceramic materials produced from industrial wastes. The main compositions and 

heat treatment conditions do not differ greatly, however there are a variety of types 

of crystalline phases in the final product according to the presence of any of the 

minor components. 
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Table 3.7: Literature survey of the glass-ceramic materials obtained by industrial 

wastes 

Waste Crystalline phase Main property Application Ref. 

Slag Wollastonite, 

anorthite, mellite, 

diopside 

Wear, chemical 

resistance, mechanical 

strength 

Tiles, pipes, wall 

cladding, floor tile 

121,138,

139,140 

Slag and shale Wollastonite, 

diopside 

Erosion resistance Pipes 141 

Oil shale and 

mining residues 

n.r. Crystallization study, 

Wear, chemical 

resistance, mechanical 

strength 

n.r. 142,143 

Fly ash, fluorine 

 Flotation, clay 

n.r. Appearance, chemical 

resistance 

Decorative panels 144 

Slag, copper 

industry, fly ash 

Wollastonite, 

anorthite, 

diopside 

Chemical resistance, 

mechanical strength 

Wall covering 105 

Fly ash Wollastonite, 

anorthite, 

diopside, 

esseneite, 

nepheline 

Chemical resistance, 

mechanical strength 

Building industry, 

refractory 

materials 

107,108,

117,145 

Fly ash Mullite, anorthite Crystallization study n.r. 111 

Zinc 

hydrometallurgy 

Magnetite, 

pyroxenes 

Chemical resistance, 

mechanical strength 

Building industry 146,147 

Ash and slag 

from fertilizer 

industry 

Quartz, feldspar, 

mullite 

Bending strength and 

low porosity 

Tiles, bricks 148 

Steel slag, fly 

ash, slurry 

Pyroxenes Mechanical strength 

and alkali resistance 

Building materials 149 

Ash, glass cullet 

and clay 

Mullite, anorthite n.r. Facing tiles and 

panels 

150 

Ash and slag Augite, 

wollastanite, 

alumino-silicate, 

magnetite 

Thermal and acid 

resistance 

Refractories, light 

filling materials, 

bricks 

151 
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Table 3.7: Literature survey of the glass-ceramic materials obtained by industrial

wastes 

Steel slag, ash, 

gangue 

Nepheline, illite Machinability n.r. 152 

Steel fly ash, 

municipal 

incinerator fly 

ash 

Wollastonite, 

anorthite, 

diopside 

Crystallization study, 

chemical resistance 

n.r. 125,153 

Municipal 

incinerator fly 

ash, glass cullet, 

Mg(OH)2 

Pryroxene, 

akermanite, 

gehlenite, augite 

Crystallization study,  

mechanical strength, 

chemical resistance 

Building materials, 

engineering and 

construction 

applications 

10, 130, 

132,154,

155 

n.r. : not reported 

 

 

3.8.2  Glass-ceramics by Sinter Crystallization   

 

A drawback of the typical glass-ceramics manufacturing route is requiring a 

nucleation/crystal growth step that may be difficult to control and economically 

expensive. Moreover, defects in the glass articles, like pores, remain in the glass-

ceramic, causing a decrease in the mechanical properties. This problem is 

particularly pressing when waste glasses are used as starting material; in order to 

obtain good glass-ceramics the present glasses should be extensively refined, so that 

gas bubbles may evolve from the glass melt. The refining treatment requires high 

temperatures and long holding times, especially when the glass, due to the content in 

heavy metals, is dark and its thermal conductivity by radiation is consequently low. 

In addition, the visual appearance of glass-ceramics obtained by the traditional route 

is inferior to that of natural stones and traditional ceramics. In order to avoid these 

problems, another glass-ceramic production route was developed in the 1950s, that of 

sintered glass-ceramics, which led to marble like materials for architectonic 

applications [156]. This approach has been reevaluated since the early 1990s, in the 

treatment of wastes, mainly due to the work of Karamanov et al.[157]. 

 

The advantage, when applying the sintering route to the production of glass-ceramics 

from wastes, is that only a short time vitrification treatment can be used and there is 

no need to refine the melt before casting into a frit, thus reducing cost and gaseous 

emissions. The ground glass powder is subsequently heated to a certain temperature, 
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at which sintering occurs together with crystallization. The simultaneous sintering 

and crystallization treatment is known as sinter-crystallization. Glass surface is a 

preferred site for crystallization and thus ground glass is easier to devitrify than bulk 

glass with the same composition and nucleating agents are not needed [158-161]. 

Karamanov et al. [162] recently exploited this process to produce sintered glass-

ceramics for building applications starting from iron rich wastes. The heating 

conditions during sinter crystallization were also found to be of importance. 

Karamanov et. al.[123] reported that the balance between surface crystallization and 

bulk crystallization is strongly affected by the heating rate. Low heating rates favor 

bulk crystallization and sintering may be inhibited by the crystal phase, causing 

incomplete densification. High heating rates favor sintering so that low porosity 

remains in the material; however the degree of crystal phase formation is lower, 

because crystallization occurs only at the surface. Other recent works confirmed the 

feasibility of sinter crystallization as a way to obtain glass-ceramics exhibiting good 

mechanical properties from wastes. Cheng et al.[163] manufactured glass-ceramics 

compacts from MSW fly ashes (with porosity in the range 12 to 26%) with good 

compressive strength (from 30 to 50 MPa) and acceptable durability. Brusatin et 

al.[164] obtained by cold pressing of fine powders and heating at 1213 K for 5 h, 

highly dense sintered glass-ceramics, exhibiting a remarkable modulus of rupture (>7 

GPa) and fracture toughness (>2 MPa m0.5). 

 

A comprehensive literature survey showed that any research which has been 

conducted on to the sintered glass-ceramics produced from coal fly ash can not find. 

Table 3.8 presents a literature survey of the main studies carried out on the topic of 

sintered glass-ceramic materials produced from industrial wastes. 
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Table 3.8: Literature survey of sintered glass-ceramic materials produced from 

industrial wastes 

Waste Crystalline 

phase 

Main property Application Ref. 

Municipal incinerator 

fly ash 

Pryroxene, 

gehlenite, 

diopside 

Physical properties, 

mechanical strength, 

chemical resistance 

Building 

materials 

163,165 

Municipal incinerator 

fly ash, glass cullet 

Pryroxene n.r. n.r. 166 

Fly ash from 

domiciliary solid 

waste 

Diopside, 

wollastonite 

n.r. n.r. 123,124 

The incinerator fly 

ash,  from domestic 

waste incinerator 

Gehlenite  n.r. n.r. 167 
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4 Sintering 

 
4.1 Definition and History of Sintering 

 

Sintering is a thermal treatment for bonding particles into a coherent, predominantly 

solid structure via mass transport events that often occur on the atomic scale. The 

bonding leads to improved strength and a lower system energy [168]. In other words, 

sintering is the bonding together of particles at high temperatures.  It can occur at 

temperatures below the melting point by solid state atomic transport events, but in 

many instances involves the formation of a liquid phase [169]. 

 

Powders exhibit a fluidlike character that allows shaping over a wide range of 

stresses. Consequently, powders are beneficial in forming many objects, ranging 

from automotive connecting rods to pottery. A variety of shaping processes can be 

applicable to powders, including die compacting, slip casting, tape casting, extrusion, 

injection molding, isostatic pressing and rolling. In each case, to maintain the 

strength in the shaped powder requires a firing treatment known as sintering. Upon 

heating, the particles bond to one another giving a higher strength. Thus, particulate 

materials are attractive because they allow net-shaping, but sinter bonding is 

necessary to attain desirable final physical properties. This is the reason for 

widespread interest in sintering in terms of both the available materials and of 

applications. 

 

It is typical for particles to sinter bond together when heated to relatively high 

temperatures. Sintering is usually evident at temperatures in excess of approximately 

half of the absolute melting temperature. Materials melt over a wide range of 

temperatures; accordingly, sintering is performed over an equally wide range of 

conditions.  

 

The sintering process has been known for thousands of years. Some of the first 

sintered products were bricks heated in open pit fires to add strength. Even today 
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sintering is a primary operation in the production of the most common ceramics; 

whitewares, refractories, bricks, abrasives, porcelain and construction materials. 

Many sintered ceramic structures are known around the world, including porcelain, a 

glass-bonded ceramic formed by sintering. Other examples include gold-platinum 

jewelry sintered by the Incas; and Egyptian uses of sintered materials (metal and 

ceramic) date back to 3000 BC. During the nineteenth century the need for platinum 

laboratory equipment led to the development of chemically precipitated Pt powder 

that was hot pressed to form dense structures. Other historical uses of sintered 

materials include coins from sintered copper, silver and lead powders. 

 

The modern era of sintering is traced to Coolidge, who used tungsten powder to 

develop a durable lamp filament for Edison. Subsequently, spark plugs, cemented 

carbides, porous bronze bearings, electrical insulators and copper graphite electrical 

contacts were developed in the 1930s. By the 1940s, sintering was used in fabrication 

of tungsten alloys, uranium dioxide nuclear fuel elements, electrical contacts, ferrous 

structural alloys and many refractories. In the latter part of the twentieth century 

there has been enormous growth in sintering practice, especially for the creation of 

technical ceramics. Particular attention has been directed to materials with high 

temperature strength, high fracture toughness, high wear resistance or novel 

electronic properties. Today, sintering is employed in a diverse range of products that 

includes dental implants, rocket nozzles, aircraft wing weights, ultrasonic 

transducers, turbochargers, semiconductor substrates and golf clubs. Many of the 

modern applications reflect factors that include manufacturing economy, improved 

properties and novel compositions [168,170]. 

 

4.2 The Sintering Process 

 

A basic characteristic encountered in sintering is a transformation of the particles 

into a solid object consisting of bonded particles. Usually, the particles are smaller 

than 1 mm in size and can be spheres, cubes, wires, flakes, disks, snowflakes, or 

other small solids that flow and pack as a powder. At small particle sizes the high 

surface area/volume ratio ensures that surface forces are relatively large.  
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Sintering lowers the surface energy by reducing surface area with the connection of 

the interparticle bonds. The bonds grow by various mechanisms that occur at the 

atomic level. For many metals and ceramics, bonding is by solid state diffusion. 

Alternatively, particle melting occurs during liquid phase sintering, resulting in a 

solid-liquid mixture during the thermal cycle. The liquid phase provides bonding, 

contributes a capillary force and usually enhances the rate of mass transport as 

compared to solid-state processes. Other sintering techniques apply pressure to 

enhance particle deformation and bonding simultaneously. Hot isostatic pressing is a 

popular form of pressure assisted sintering, where yielding and diffusion can both 

occur. Newer techniques involve reactions between mixed powders, leading to the 

synthesis of a new composition by sintering under the conditions of an exothermic 

reaction.  

 

Particle shapes and the application of pressure can give higher densities, but usually 

there is always porosity between particles. Thus, all powder structures are initially 

porous. The initial structure is termed the green state, reflecting the unfired condition 

of the powder. The shaped, but unfired powders are often termed a compact, to 

reflect the pressed condition. Most compacts are prepared by applying pressure to the 

powder to increase density and invoke shape to the powder. A green compact is 

usually weak; vitamin pills and aspirin are common examples of pressed powders. 

These shapes are sintered to improve strength and other properties. 

 

The stage of sintering refer to geometric categories for analyzing the mass from 

process is outlined in Table 4.1. For most cases the starting point is an assembly 

consisting of contacting particles. Depending on the fabrication of the particle 

compact, the initial bonds range from points contacts to highly deformed interfaces. 

With sintering the contacts grow in size and in the initial stage there is extensive loss 

of surface area. As the pore structure becomes rounded the discrete particles are less 

evident and the intermediate stage of sintering occurs. This characterized by a 

tubular, rounded pore structure that is open to the compact surface. Gas can permeate 

through the open pore space. Consequently, many sintered structures are sintered to 

this stage only to preserve desired pore structures. 
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In a crystalline solid the grain boundaries are usually attached to the open pore 

structure. As the pore shrink, a final stage of sintering occurs. Now as the density 

increases the pores spheroidize and are no longer connected to the compact surface. 

These are termed close pores and any gas trapped in the pores proves difficult to 

remove. Since open pores are more effective in retarding grain growth, the transition 

to final stage sintering gives less grain boundary pinning and usually results in rapid 

grain growth. There are many variants to this basic progress, but the three stages 

provide a convenient definition for the morphology progression. For some structural 

materials all three stages are encountered, while for porous structures sintering is 

usually terminated in the intermediate stage [168].  

 

4.3 Development of Microstructure 

 

Accompanying particle bonding during sintering cause significant changes in the 

pore structure. Additionally, many properties, including strength, ductility, 

conductivity, magnetic permeability and corrosion resistance undergo dramatic 

improvements during sintering. These property changes are primary concerns in 

industrial sintering cycles. To understand the evaluation of various properties, it is 

important to study the microstructure changes. One negative consequence of 

microstructure coarsening is the occurrence of oversintering, where the properties 

peak and then decline with continued heating for longer times or at higher 

temperatures. 

 

In many cases, sintering is accompanied by an increase in compact density due to 

dimensional shrinkage. The particles actually attract each other and self compress to 

eliminate pores. This is common in ceramics. On the other hand, zero dimensional 

change is desired in many components. The key is to use the forming pressures to 

control density and to use lower sintering temperatures to minimize shrinkage. 

Although the essentials seem simple, there is complexity because of the large number 

of events that occur in sintering. Of special concern is evolution of microstructure, 

since microstructure is primary factor in determining properties [168]. 

 

Although opinions vary somewhat concerning that exact events constituting each 

stage, it is important to realize that this description is at best very qualitative and that 
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these stages may occur virtually simultaneously within the compact. Nevertheless, 

the concept does help to introduce the physical nature of the sintering process. 

Sintering is divided into six stages[171]: 

• Interparticle bonding 

• Neck growth 

• Closure of pore channels 

• Rounding of pores 

• Pore shrinkages (densification) 

• Pore coarsening. 

 

Table 4.1: Classic stages of sintering [168] 

Stage Process Surface area loss Densification Coarsening 

Adhesion Contact 

formation 

Minimal unless 

compacted at  

high pressures 

None None 

Initial Neck growth Significant, up to 

50% loss 

Small at first Minimal 

Intermediate Pore 

rounding and 

elongation 

Near total loss of 

open porosity 

Significant Increase in grain 

size and pore size 

Final Pore closure,  

final 

densification 

Negligible further  

Loss 

Slow and 

relatively 

minimal 

Extensive grain 

and pore growth 

 

Interparticle Bonding: Transport of atoms at particle contact points leads to the 

establishment of physical bonding and grain boundaries at these points. These initial 

bonds are developed very rapidly even as the compact is being heated to temperature. 

 

Neck Growth: Continuing mass transport leads to the development of distinct necks 

between particles, growing from the initial bonds. This stage greatly increases the 

strength of the compact but does not involve any densification. 
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Pore Channel Closure: Continued neck growth can cause pore channels within the 

compact to be closed, leading to isolated porosity. It is very important to control this 

event in sintering powder metallurgy products, which utilize interconnected porosity 

for example, filters, self lubricating bearings, etc. 

 

Pore Rounding : As neck growth reaches an advanced stage, the material transported 

from the general particle surfaces to the neck regions results in a smoothing of the 

pore walls (reduction of pore area). This can be an important structural change with 

respect to improving to ductility and toughness of the sintered compact. This stage of 

sintering is illustrated by the idealized three sphere models in Figure 4.1 [172]. 

 

Pore Shrinkage: As sintering progresses, the pores in the compact may begin to 

shrink in size and decrease in number, resulting in densification. This stage must 

involve extensive diffusion and annihilation of vacancies. Not all porosity can be 

eliminated during this stage of sintering; some residual pores will be left (particularly 

inside of grains) even after very long sintering times. 

 

Pore Coarsing: This stage is not considered to be very important in most commercial 

sintering operations. When it occurs, it involves in increase in size of some of the 

larger pores and concurrent elimination of some smaller pores. No net change in the 

pore volume fraction is involved, so the average distance between pores is increased. 

In many respects, this microstructral change is analogues to the precipate coarsing, 

which occurs during severe overaging of conventional age-hardening alloys[172]. 

 

4.4 Sintering Techniques 

 

Theory is most accurate for the case of single phase powders sintering by solid state 

diffusion. Unfortunately, this is only a small portion of actual sintering practice. 

Many sintering systems consists of multiple phases, possibly forming a liquid and 

may even be subjected to an external pressure to enhance densification. The diagram 

in Figure 4.2 helps relate the key sintering techniques. This chart is a conceptual map 

to the various processes. In a general categorization, pressure is the first 

consideration. However, most sintering is performed without an external pressure 

(pressureless sintering). Pressure assisted sintering techniques are newer and 
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represent a hybrid between high density approaches such as hot isostatic pressing and 

pressureless sintering. These approaches involve sintering a material to a low 

residual porosity level, then using gas pressure to squeeze out the remaining pores. 

Pressurezation during sintering is most useful in processing materials that are 

unresponsive to traditional sintering cycles; for example, composites and high 

temperature intermetallics. The pressure can be low, giving densification controlled 

by diffusional creep. Alternatively, densification at high pressures is rapid if the 

effective stress exceeds the yield strength of the material. Pressure is usually 

hydrostatic (hot isostatic pressing) or uniaxial (forging and hot pressing). 

 

Figure 4.1: Three sphere sintering models. (a) Original points contacts. (b) Neck 

growth. (c) and (d) Pore rounding[172]. 

 

A major distinction among pressureless sintering techniques is between solid state 

and liquid phase processes. Single phase solid state sintering has received the 

greatest consideration from a theoretical standpoint. Several reviews [173-180] give 

details on solid state sintering theory. The classic treatments are applicable to pure 

substances such as nickel, alumina or copper. Among the solid state processes, there 

are options involving second (solid) phases. These include compact homogenization 

(such as occurs with sintering mixed powders that are soluble in each other), 

activated sintering and mixed phase sintering in the solid state. The latter process is 

the basis for sintering composites. Activated sintering is a solid state process where a 

second solid phase contributes to rapid particle bonding. In such a situation, sintering 

occurs in a equilibrium two phase field, such as high carbon steels at temperatures 

where ferrite and cementite coexists. Homogenization occurs during sintering of 
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mixed powders that form a single phase product, such as with alumina and chromia, 

which form a solid solution. 

 

Many sintering cycles generate a liquid. It may be present momentarily or may 

persist during much of the sintering cycle. The liquid improves mass transport rates. 

It also exerts a capilarly pull on the particles that are equivalent to a large external 

pressure. Because of cost and productivity advantages, the greatest level of industrial 

sintering is performed in the presence of a liquid phase. It is estimated that over 70% 

of the sintered products are processed in the presence of a liquid phase. This includes 

stainless steels, superalloys, aluminides, tool steels,  

titinates, TiC-Fe, WC-Co, Fe-P, Mo-Cu, W-Ag, Cu-Sn, W-Ni-Fe and Fe-Cu-C as 

common examples. 

SINTERING PROCESSES 
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Figure 4.2: Map to sintering processes [168] 

 

There are similarities between solid state and liquid phase sintering, but the presence 

of a liquid in the sintering cycle accelerates mass transfer, densification and 
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microstructure coarsening. There are two main forms of liquid phase sintering. 

Persistent liquid phases exists throughout the high temperature portion of the 

sintering cycle and can be formed by use of prealloyed powder (supersolidus liquid 

phase sintering) or by inducing melting in a mixture of powders. Alternatively, 

transient liquid phase sintering has a liquid that disappears during the sintering cycle, 

due to dissolution into the solid (solid solution) of formation of a new phase. The 

latter process is reactive liquid phase sintering and is employed in the generation of 

high temperature compounds, including MoSi2, Ni3Al, WC and TiB2 [168]. 

 

4.5 Goals in Sintering Studies 

 

Since particles are fluidlike prior to consolidation, various shaping techniques have 

evolved for placing the particles into desired geometries. Sintering preserves the 

compact shape while bonding the particles to one another, a process referred to as net 

shaping. The ability to control product shape, properties and defects are important to 

sintering. Sintered products are usually more precise than castings but less precise 

than machined components. However, the lower fabrication cost makes sintered 

objects very desirable for a wide range of components. Because the green powder 

compacts are weak, sintering proves to necessary to attain the needed final 

properties. In cases where the particles have a high level of compressibility, sintering 

can be performed at a low temperature with zero dimensional change. Thus, bonding 

occurs without shrinkage or densification, leading to high precision [169].  

 

To understand the evolution of the final microstructure, attention is given to particle 

size, initial density and pore microstructure, heating rate, maximum temperature, 

hold time and atmosphere. With such understanding it is possible to evaluate 

processing alternatives. Table 4.2 outlines some of the key processing changes and 

their effects. 

 

Sintering is irreversible, so once defects are formed, they persist. Although sintering 

is sensitive to many factors, the basic kinetics are sufficiently slow that considerable 

control can be exercised during the process. It is critical to several industries, 

including ore processing, powder metallurgy, nuclear fuel processing, ceramics, 

filtration, catalysis and refractories. Sintered products can be tailored for a wide 
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range of engineering properties. Examples of sintered products are all around us in 

automobiles, airplanes, bathroom fixtures, appliances, wristwatches, musical 

instruments and sporting equipments. Further, sintering is often used to bond objects 

into assemblies or to put protective coatings in place. This diversity of applications 

often clouds the fundamental unifying technology. 

 

In the fabrication of bearings, filters, catalysts, heat wicks, batteries, capacitors and 

other devices requiring high surface areas, it is desirable to obtain strength without 

densification. Here sintering cycles are designed to obtain desirable pore structures, 

with minimal loss of surface area. Alternatively, in ceramic materials, poor 

compressibility inhibits pressing to high densities; thus, it is necessary to sinter at 

high temperatures where shrinkage occurs. Further, in ceramics the residual pores act 

as incipient cracks to degrade strength substantially. Consequently, full density is 

most useful for competitive mechanical properties. Similarly, powders are used in the 

fabrication of high performance components for jet engines, automobile engines, 

metal cutting tools, biomedical implants, sputtering targets and magnetic recording 

sensors. It is necessary to densify these structures fully, so that external pressure 

applied during sintering to ensure closure of all pores. Such a diversity in processing 

routes makes sintering a useful option in materials processing, especially since all 

common engineering materials can be sintered to net shape [168].  

 

Table 4.2: Sintering processing effects [168] 
Change to aid sintering Effects 

Decrease in particle size Faster sintering, Greater expense, Higher impurity level, Increased 

hazards 

Increase in time Greater expense, Grain growth and coarsening 

Reduced productivity 

Increase in temperature Greater shrinkage, Grain growth, Greater expense, Less precision, 

Higher properties, Furnace limitations, Pore coarsening 

Increase in green density Less shrinkage, Smaller pores, Higher final density, Uniform 

dimensions, Density gradients 

Increase in alloying/additives Higher strength, Homogeneity problems, Higher sintering 

temperatures 

Use of sintering aids Faster sintering, Lower sintering temperatures, Embrittlement, 

Distortion, Grain growth control 
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5. Experimental Procedure  

 

5.1 Introduction 

 

In this study, the production of glasses, glass-ceramics and sintered materials from 

industrial wastes has been investigated. For this purpose, coal fly ash samples were 

obtained from 7 different thermal power plants which are located in Afşin-Elbistan, 

Çan, Çatalağzı, Çayırhan, Orhaneli, Seyitömer and Tunçbilek. Beside coal fly ashes, 

red mud from Seydişehir alumina plant and silica fume from ferrosilicon alloy 

production were used as additives. To accomplish this study, different techniques 

such as differential thermal analysis (DTA), x-ray diffraction (XRD), mercury 

porosimeter, inductively coupled plasma spectrometry (ICP) and scanning electron 

microscopy (SEM) have been used. Determination of chemical, physical and 

mechanical properties of the waste materials and the produced samples have been 

made according to internationally accepted standards. 

 

5.2 Starting Materials 

 

5.2.1 Fly ash 

 

Fly ash is the particulate very fine matter removed from the stack gas of thermal 

power plants as a waste product and constitutes ecological and disposal problems. 

Fly ash is basically a silicous and aluminous combustion waste product, occurring as  

a result of burning pulverized bituminous coal or lignite at high temperatures.  

 

ASTM identifies two classes of fly ash based on the coal source; Class F fly ash 

originating from butimunous coal and Class C from subbituminous coal or lignite 

[181,182]. In general fly ash consists of glassy spheres of sizes varying from under 1 

µm to as large as 100 µm, although typical particle size distribution shows that most 

of the material is under 20 µm. According to Luke [183], the specific gravity of fly 

ash particles range from 1.97 to 3.02, but is normally in the range of 2.2 to 2.8.  
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Fly ash generally comprises the following mineral phases bound to glassy matrix: 

Quartz (SiO2), mullite (Al6Si2O13), magnetite (Fe3O4), hematite (Fe2O3), anorthite 

(CaAl2Si2O8) and enstatite ((Mg, Fe)SiO3). Wide ranges exists in the amounts of the 

three principle constituents of fly ash, namely silica (SiO2, 25 to 60%), alumina 

(Al2O3, 0 to 30%) and iron oxide (Fe2O3, 5 to 25%). The magnesium oxide (MgO) 

content of fly ash is generally not greater than 5%. Class F fly ashes usually contain 

less than 5% whereas Class C ones contain 15 to 35% calcium oxide (CaO). The 

level of alkali oxides expressed as Na2O and K2O equivalant is generally less than 

5% in Class F fly ashes , but it may range up to about 10% in Class C fly ashes[184]. 

 

5.2.2 Red mud 

 

Red mud is a waste material generated by alumina production from bauxite. 

Producing one ton of metallic aluminum requires two tons of alumina, which in turn 

takes about four tons of ore (bauxite), due to the presence of iron oxides and other 

impurities. This means that about two tons of red mud is generated per ton of 

metallic aluminum. World production of red mud is roughly 30 million tons per year 

(dry basis)[185]. 

 

The red mud consists of alumina, iron oxide, titanium oxide and small quantities of 

silica, calcium oxide and alkali oxides. It also contains trace elements such as P, V, 

Mn, Cr, Mg, Zn and Ga. The pH value of red mud changes in the range of 10-12 and 

they may have a very fine particle size (sometimes less than 1 micron) [186]. 

 

5.2.3. Silica fume 

 

Silica fume is a by-product resulting from the production of silicon or ferrosilicon- or 

other silicon-alloys. Silica fume is light or dark gray in colour containing high 

content of amorphous silicon dioxide. Silica fume powder as collected from waste 

gasses without further treatment is some times referred to as undensified silica fume 

to distinguish it from other forms of treated silica fume. Undensified silicon fume 

consists of very fine vitreous spherical particles with average diameter about 0.1µm, 

which is 100 times smaller than the average cement particle. The undensified silica 
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fume is almost as fine as cigarette ash and the bulk density is only about 200 - 300 

kg/m3 and relative density of typical silica fume particle is between 2.2 and 2.5. 

Because the extreme fineness and high silicon content, silica fume is a highly 

effective pozzolan[187,188]. Chemical composition of silica fume varies depending 

on the nature of the product from the manufacture process of which the silica fume is 

collected. The main constituent material in silica fume is silica (SiO2), the content of 

which is normally over 90%[189]. 

 

5.3 Characterization of Industrial Wastes 

 

In order to utilize as a raw material, the chemical, physical and mineralogical 

properties of the waste materials were firstly determined.  

 

Table 5.1 shows the color of the waste materials. The colors of the waste materials 

depend on the chemical compositions of them. The appearence of fly ash samples 

was found to be much darker in color and in fine powder form. The dark color of the 

fly ash samples is the evidence of the high iron and unburned carbon residues.  

 

Table 5.1: The colors of the waste materials 

Waste Material Color 

Çayırhan Thermal Power Plant Fly Ash Dark brown 

Çan Thermal Power Plant Fly Ash Light grey 

Çatalağzı Thermal Power Plant Fly Ash Grey 

Seyitömer Thermal Power Plant Fly Ash Dark brown 

Tunçbilek Thermal Power Plant Fly Ash Dark brown 

Orhaneli Thermal Power Plant Fly Ash Between dark red and brown 

Afşin-Elbistan Thermal Power Plant Fly Ash Light grey 

Red Mud Red 

Silica Fume Light grey 

 

Waste materials were chemically analyzed using well established analytical methods 

[190-192] which are of ASTM (oxidies including SiO2, Al2O3, CaO, MgO,...) and 

ICP (Zn, Pb, Cr, Mn). Chemical analysis of silica fume and fly ash samples were 
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determined in other studies by means of ASTM methods [193,194]. Chemical 

compositions of waste materials were given in Table 5.2 [193,194] and Table 5.3 (for 

ICP). It is clear that the major chemical components in fly ash samples are SiO2, 

Al2O3, CaO. The amount of SiO2-Al2O3-CaO varied in the range of 63.54-83.27 %. 

The chemical composition of fly ash samples, except Afşin-Elbistan fly ash, is 

typical of the most common glassy ternary systems. Significant amount of Fe2O3, 

which can be used as a nucleating agent, is also present especially in the Tunçbilek, 

Çayırhan, Seyitömer fly ash samples. Red mud and silica fume were composed of 

mostly Fe2O3 and SiO2, respectively. Therefore, they can’t be used as a raw material 

source in the production of glasses and glass-ceramics. They can be used as additives 

in fly ash batches. All other elements such as Cr, Mn, Zn and Pb were determined in 

the parts per million range. 

 

Table 5.2: Chemical analysis of waste materials [193,194] 
Waste 

Materials 

SiO2 

(%) 

Al2O3 

(%) 

CaO 

(%) 

MgO 

(%) 

Fe2O3 

(%) 

Na2O 

(%) 

K2O 

(%) 

LOI 

(%) 

Çayırhan  

Fly Ash 

41.53 17.77 12.52 4.46 9.93 2.57 2.43 0.68 

Çan  

Fly Ash 

49.07 30.80 1.46 2.46 6.13 0.63 3.86 0.83 

Çatalağzı  

Fly Ash 

48.88 27.63 6.16 2.71 6.68 0.45 2.39 1.41 

Seyitömer  

Fly Ash 

44.58 22.54 6.76 8.98 9.85 0.22 0.60 3.83 

Tunçbilek  

Fly Ash 

54.08 25.58 3.10 3.03 9.82 0.58 1.51 2.01 

Orhaneli  

Fly Ash 

32.83 13.34 30.35 4.51 5.61 2.15 1.37 3.67 

Afşin-

Elbistan 

Fly Ash  

18.11 7.63 37.80 3.50 5.23 0.22 0.60 8.40 

Silica Fume 90.80 1.02 2.55 0.94 1.93 - - 1.57 

Red Mud* 10.40 28.50 3.90 7.70 35.1 3.80 1.60 3.90 
*Chemical composition was determined in this study 
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Table 5.3: Heavy metals detected in waste materials 

Waste Materials Cr 

(ppm) 

Pb 

(ppm) 

Mn 

(ppm) 

Zn 

(ppm) 

Çayırhan Fly Ash 15.70 10.20 9.70 25.8 

Çan Fly Ash 19.40 15.20 11.30 30.20 

Çatalağzı Fly Ash 18.27 14.43 12.41 29.82 

Seyitömer Fly Ash 18.20 9.82 7.60 24.60 

Tunçbilek Fly Ash 20.30 11.70 10.50 28.70 

Orhaneli Fly Ash 14.70 9.20 7.90 21.40 

Afşin-ElbistanFly Ash  13.80 8.60 6.30 23.20 

Silica Fume 10.23 5.62 4.23 11.21 

Red Mud 19.21 13.23 10.21 28.24 

 

The average particle sizes of waste materials were determined using centrifugal 

particle size analyzer and their densities were determined by means of mercury 

porosimeter. Particle size and the densities of waste materials except red mud were 

obtained from previous studies [193,194]. As seen from Table 5.4 particle size of 

waste materials varied in a wide range. Particle size of fly ash samples was smaller 

than red mud. Density of fly ash samples ranged from 1.69 to 2.48 g/cm3.  

 

X-ray diffraction was utilized to determine the mineralogical properties of the waste 

materials. During the combustion process, temperature may exceed 1873 K. This 

temperature is sufficiently high to melt most of the inorganic materials present in the 

waste materials. The majority of the minerals formed were quartz, anorthite, mullite 

and enstatite. The following Table 5.5 shows the mineralogical composition of waste 

materials obtained in the prerious studies except red mud [193,194]. 
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Table 5.4: Particle size and densities of the waste materials [193,194] 

Waste Materials Density 

(g/cm3) 

Average particle size 

(µm) 

Çayırhan Fly Ash 1.80 139 

Çan Fly Ash 1.69 29 

Çatalağzı Fly Ash 1.72 12 

Seyitömer Fly Ash 1.73 261 

Tunçbilek Fly Ash 1.77 75 

Orhaneli Fly Ash 2.48 84 

Afşin-Elbistan Fly Ash  2.03 57 

Silica Fume 1.06 20 

Red Mud* 2.55 550 
* Density and average particle size were determined in this study 

 

Table 5.5: Mineralogical compositions of the waste materials [193,194] 

Waste Materials Mineral phases 

Çayırhan Fly Ash Quartz, mullite, anorthite, enstatite, hematite 

Çan Fly Ash Quartz, mullite, anorthite, enstatite 

Çatalağzı Fly Ash Quartz, mullite, anorthite, enstatite 

Seyitömer Fly Ash Quartz, mullite, anorthite, enstatite, hematite 

Tunçbilek Fly Ash Quartz, mullite, anorthite, enstatite, hematite 

Orhaneli Fly Ash Quartz, mullite, anorthite, enstatite 

Afşin-Elbistan Fly Ash  Quartz, mullite, anorthite, enstatite 

Silica Fume Quartz 

Red Mud* Quartz, mullite, anorthite, enstatite, hematite 
* Mineralogical phases  were determined in this study 

 

As seen from Table 5.5 Çayırhan, Seyitömer and Tunçbilek fly ash samples contain 

hematite phase in addition to other phases present in the all fly ash samples, due to 

their high Fe2O3 content. Quartz is the main phase present in the silica fume as it is 

expected. Figure 5.1 is a x-ray diffraction pattern of the red mud. As seen in Figure 

5.1, red mud comprised the mineral phases : Mullite, enstatite, hematite, quartz and 
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anorthite. The number and the intensity of the hematite and enstatite peaks were 

more than the other peaks present in the x-ray pattern of the red mud. This result is in 

well agreement with the chemical analysis of red mud. 
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Figure 5.1: X-ray diffaction pattern of red mud 

 

5.4 Glass Preparation 

 

Glass samples were prepared from the fly ashes without or with the addition of red 

mud and silica fume in different percentages. In each batch 20 g of fly ash was 

melted in platinum crucible for 2 hours in an electrically heated furnace (Protherm 

PLF 1600 Model) at 1773 K. To ensure homogeneity, the melt was poured into 

water. The cast glasses were crushed, pulverized and remelted at the same 

temperature for 3 h to remove the air bubbles from the melt. Following this 
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procedure, the refined melt was cast in a preheated graphite mould (673 K) to form 

cylinders of approximately 0.8 to 1 cm in diameter and 1 to 4 cm in length. The 

cylinders were cooled to room temperature. To remove thermal residual stress, the 

cast glasses were annealed in a furnace at 873 K for 2 h followed by slow cooling to 

room temperature. The annealing temperature was chosen as 873 K since 70-100 K 

below the glass transition temperature is appropriate for the annealing temperature as 

reported in the literature [11,195]. The annealing time of 2 h was determined as an 

optimum time in a previous study [135]. Annealed glass samples were subjected to a 

heat treatment process. As it is known, some glass structures have no crystallization 

tendency. So, any significant crystalline phase could not occur when a heat treatment 

process apply to the glasses which show no crystallization tendency. These glasses 

could not be transformed to the glass-ceramic materials, but their mechanical, 

physical and chemical properties could change. Therefore, produced glass samples 

were heated at a rate of 10 K/min to 1423 K and held at this temperature for 2 h to 

determine the effect of heat treatment process on the properties of glasses. The heat-

treated glass samples were then cooled in the furnace. 

 

5.5 Differential Thermal Analysis 

 

DTA scans of annealed glass specimens were carried out using two different thermal 

analyzers. Rigaku (Model Thermoflex) thermal analyzer was used to detect the glass 

transition (Tg) and the crystallization peak temperatures (Tp). The crystallization 

behavior of  glasses was determined by using a Perkin Elmer (Model TAC7/DX) 

thermal analyzer. The glasses were ground to a coarse particle size (800-1000 µm) to 

be a representative of a bulk sample. The particle size of fine glasses used in DTA 

experiments is about 180 µm. DTA experiments were performed by heating 20 mg 

glass samples in a Pt-crucible and using Al2O3 as a reference material in the 

temperature range between 293 and 1373 K at the heating rates of 5, 10, 15 and 20 

K/min. DTA measurements were applied to the produced glass samples to determine 

the glass transition temperature (Tg), the maximum nucleation temperature, 

maximum nucleation time and crystallization temperature at a heating rate of 10 

K/min. For the determination of the maximum nucleation temperature, the as-

quenched glass samples were held for 4 h at different nucleation temperatures, that is 

above the Tg temperature, in 5 K intervals. To estimate the maximum nucleation 
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time, the glass samples were heat treated isothermally at the maximum nucleation 

temperature for 1, 2, 3 and 4 h.  

 

The variation of the crystallization peaks with different heating rates can be used to 

estimate the activation energy for crystallization and to determine the crystallization 

mechanism. The crystallization behavior of glasses was determined by using the both 

isothermal and non-isothermal methods. DTA was performed on both coarse and fine 

glass samples in each method to determine the particle size effect on the 

crystallization mechanism. Johnson-Mehl-Avrami (JMA) method has been widely 

used as an isothermal method for the interpretation of the crystallization experiments 

and for the determination of the crystallization mechanisms from the results of DTA 

curves. In the JMA method, the as-quenched glass samples were heated to the 

maximum nucleation temperature at a heating rate of 20 K/min and nucleated at this 

temperature for the maximum nucleation time. Fully nucleated samples were then 

heated to the selected temperature at a heating rate of 20 K/min and held at this 

temperature for 15, 30 and 60 min. Then the temperature was raised to the 

crystallization temperature without being removed the samples from the DTA.  

 

Kissinger, Matusita-Sakka and Ozawa methods were used as non-isothermal 

methods. Crystallization mechanisms and activation energies were calculated in each 

method from the heating rate dependence of the crystallization peak temperature. In 

order to investigate the crystallization behavior of glass samples by using the 

Kissinger equation, the glass samples were heated to the maximum nucleation 

temperature and held at this temperature for the maximum nucleation time for 

complete nucleation to prevent the increase in the number of nuclei during the DTA 

scans. The temperature was then raised to the maximum working temperature of 

DTA. DTA scans of fully nucleated glass samples were performed at the heating 

rates of 5, 10, 15 and 20 K/min. In this method, the number of nuclei is independent 

of the heating rate. Assuming that the nucleation had occurred in glass samples 

during the DTA measurements, DTA data were analyzed by Matusita-Sakka and 

Ozawa methods. The glass samples were heated at a heating rate of 5, 10, 15 and 20 

K/min to 1373 K without being removed from the DTA. In this method, the number 

of nuclei is inversely proportional to the heating rate. The reason that all of these 
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methods were used in the present study is to obtain more accurate kinetic parameters 

for the glasses produced from waste materials.  

 

5.6 Glass-ceramic Forming 

 

To produce the glass-ceramic samples, both classical and sintering methods were 

applied to the bulk and powder glass samples to understand the particle size effect on 

the crystallization mechanism. Since the objective was to produce bulk and sintered 

glass-ceramics, two batches were made for each composition. In the first case 

produced glasses were cut by diamond saw blade in identical pieces with a disc 

shape of about 10 mm diameter and 5 mm height suitable for microstructural and 

mechanical characterizations. In the second case, glass samples were milled until 

they passes through a sieve of 180 µm. The grounded powder was subsequently 

humidified at 5 wt % with distilled water without any additives. 5 wt % polyvinil 

alcohol (PVA) water solution was also added to the grounded powder to determine 

the effect of the binder on the properties of sintered glass-ceramics. Glass powders 

were than cold pressed using 40 MPa in a disc shape (10 x 5 mm). Cylindrical 

samples were dried in an electric oven at 383 K for 2 h. Finally, both bulk and 

pressed glass samples were crystallized by suitable nucleation and crystal growth 

heat treatments on the basis of DTA results. For this purpose, glass samples were 

placed in an alumina brick and heated at a rate of 10 K/min to the maximum 

nucleation temperature and held at this temperature for maximum nucleation time. 

Following the nucleation, the temperature was raised to the crystallization 

temperature and held at this temperature for 15, 30 and 60 min to examine the effects 

of holding time at the crystallization stage on the microstructural, mechanical, 

physical, and chemical properties of the produced glass-ceramic samples. The 

crystallized samples were then cooled in the furnace. Heat treatments were carried 

out in an electric muffle furnace. Flow chart of glass-ceramic production can be seen 

in Figure 5.2 
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Figure 5.2: Flow chart for glass-ceramic production 

 

5.7 Preparation of Sintered Materials from Fly Ash Samples 

 

Afşin-Elbistan, Çan, Çatalağzı, Çayırhan, Orhaneli, Seyitömer and Tunçbilek 

thermal power plant fly ashes were sintered to form ceramic materials using 

conventional powder processing   technique based on powder compaction and firing, 

without the addition of organic binder or inorganic additives. In sample preparation, 

a small amount of water was used to humudify the fly ash before compaction. 1.5 g 

of fly ash was mixed in a mortar with water at the water/solid ratio of 0.1 for each 

pellet. The circular pellets of 10 mm diameter were uniaxially pressed at 40 MPa to 

achieve a reasonable strength. The powder compacts were sintered in air. The 

sintering temperature varied between 1298 K and 1523 K to determine the effect of 
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firing temperature on the properties of sintered fly ash samples. Firing experiments 

were carried out in the Protherm PLF 1600 furnace equipped with a small chamber 

and a programmable controller (the internal PID constants were adjusted to obtain a 

maximum deviation of 7 K). Before every sintering operation the samples were pre-

heated to 573 K for 60 min to derive off adsorbed gasses and moisture. After that, the 

temperature was raised to the firing temperature. The heating rate was 10 K/min and 

the sintering time was 120 min for all samples. All samples were cooled down in the 

furnace.  

 

5.8 Characterization of the Produced Glass, Glass-ceramic and Sintered 

Materials 

 

5.8.1 X-ray diffraction studies 

 

X-ray diffraction was utilized to determine the crystalline phases occurred in the 

glass-ceramic and sintered materials and also the amount of amorphous glass present 

in the samples. The initial glass compositions were analyzed to check for any 

crystalline phases that may have formed during annealing process. The crystallized 

samples were analyzed to determine which crystalline phases were present and also 

to determine if the sample had fully crystallized.  

 

In all cases, samples which were analyzed by x-ray diffraction were ground to fine 

powder form. A Siemens diffractometer Model D 5000 operated at 40 kV and 30 mA 

utilizing CuKα radiation was used for the measurements. The detector was scanned 

over a range of 2θ angles from 10 to 80 0, at a step size of 0.02 0 and a dwell time of 

2 seconds per step. The resulting powder diffraction patterns were analyzed utilizing 

a software package program. The crystalline phases were identified by comparing the 

peak positions and intensities with those in the Joint Committee on Powder 

Diffraction Standards (JCPDS) data files.  

 

5.8.2 Scanning electron microscopy (SEM) analysis 

 

SEM is a versatile instrument capable of producing an image with high resolution. 

Images displayed on the monitor can result from secondary electrons or 
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backscattered electrons captured by the detector. In this study, Jeol Model JSM-5410 

and Amray Model 1830 both operated at 20 kV were used to observe the 

microstructure of the produced samples. Samples were mounted (using Buehler 

Model Simpliment II) in epoxy resin and their surfaces were ground flat by 400, 800, 

1000 and 1200 grit abrasive papers. Then the samples were polished with diamond 

paste to achieve a mirror-smooth surface. The polished samples were etched with HF 

solution (5 volume %) for 1.5 min, immediately rinsed with excess distilled water 

and then cleaned in ethanol for 2 minutes. The samples were coated with carbon 

prior to examination. The microstructures of the samples were examined by SEM 

and the photographs were taken. 

 

5.8.3 Mechanical tests 

 

5.8.3.1 Vickers microhardness 
 

Vickers microhardness measurements were done on the produced glass and glass-

ceramic samples. The microhardness tester used in this study was a Leco Model M-

400-G. Samples were ground and polished with diamond paste. A load of 0.5 kg was 

selected and the time of indentation was fixed as 15 seconds. The diamond indenter 

was a Vickers indenter ground in a shape of a square based pyramid with an angle of 

136 0 between the faces. The surface of the samples must be completely normal to 

the indenter to ensure a symetrical indentation. For this reason, the mounted sample 

was placed in an universal clamp. The size of the indentation was precisely measured 

with a microscope having a good resolving power. The average value of indentation 

diagonals was used for hardness calculation in the following equation [196]. 

 

HV = 1.854 (P/d2)        (5.1) 

 

Where HV is the Vickers hardness, P is the test load (kg), d is the arithmetic mean of 

the two diagonals (mm). For each condition an average value was calculated.  

 

 

 

 

 94 



5.8.3.2 Rockwell hardness 
 

Rockwell hardness measurements were done on the sintered materials produced from 

fly ashes to determine the effects of different heat treatment processes on the 

mechanical properties of the samples. The Rockwell hardness tester used in this 

study was a Wilson Model 4J. A Rockwell hardness test is a hardness measurement 

based on the net increase in the depth of impression as a load is applied. Rockwell 

hardness numbers have no units and commonly given in the B, C, R, L, K, M and E 

scales. The higher the number in each of the scales means the harder the material. 

This test proceeds in two steps. At first the penetration start point (zero) under a 

minor or preliminary load is determined, and the second step happens under a major 

load. The latent deformation measured after releasing the major load, is a direct 

measure of the Rockwell hardness, which is given on the scale of the dial gauge. 

[196]. The hardness of sintered materials were determined by the Rockwell hardness 

test, according to the specifications of ASTM E-18 [197]. This test measures the 

difference in depth caused by two different forces, using a dial gauge. Using standard 

hardness conversion tables, the Rockwell hardness value is determined for the load 

applied, the diameter of the indentor, and the indentation depth [197]. 

 

A superficial Rockwell Hardness tester (Wilson) was employed with 1.588 mm ball 

indenter (B scale) to the sintered materials loading at a minor load of 0.5 kg and 

major load of 1 kg. Ten indentations were performed on each sample and the results 

averaged. 

 

5.8.4 Measurements of the density and the porosity 

 

Density and the porosity of the produced glass, glass-ceramic and sintered materials 

were measured by using a Quantachrome Autoscan-33 mercury porosimeter. 

Mercury intrusion porosimetry measurements of the samples were carried out 

pressurizing up to 227 MPa with a Hg contact angle of 1400. Samples were weighed, 

placed in the penetrometer and loaded in the filling apparatus (low pressure port of 

the porosimeter). The penetrometer was sealed with high vacuum grease. Samples 

were evacuated of residual air in the low-pressure port where initial mercury 

intrusion subsequently takes place. The penetrometer assembly was then transferred 
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to autoclave (high-pressure port). Mercury intrusion to the samples takes place with 

the increase of pressure. Data on density and percent porosity were acquired through 

a microcomputer data acquisition system interfaced with the porosimeter.  

 

5.8.5 Toxicity characteristic leaching procedure (TCLP) 

 

Toxicity evaluation was made by application of standard leaching procedures. 

Leaching test methods are used in order to asses: i) whether a waste should be 

classified as hazardous, ii) the waste treatment process effectiveness and iii) whether 

land disposal of a specific waste is an appropriate method of management. Due to the 

variations in the numerous applicable leaching tests, the choice of the most 

appropriate ones should be carefully considered. The number of vitrified samples 

produced did not allow the use of some other leaching tests. Consequently, attention 

was focused on single batch leaching tests (equilibrium based).  

 

Toxicity characteristic leaching procedure (TCLP) was selected as the most 

appropriate method for the determination of leachability of the produced samples. 

TCLP is a relatively simple method. Furthermore, TCLP has acceptable limits so that 

it is extensively used for comparison to results of analogous studies.  In order to 

asses the stabilization of the wastes  (fly ash, red mud and silica fume) into a glass 

and glass-ceramic materials, the produced glass and glass-ceramic samples were 

subjected to TCLP test. 

 

The experimental procedure according to TCLP is summarized as follows [198]: One 

leaching solution (extraction fluid) was used in the experiments. Extraction fluid 

consists of 5.7 ml of acetic acid diluted in 500 ml of distilled water, in which 64.3 ml 

of NaOH (1 N) were added and the resulting solution was diluted with distilled water 

to the volume of 1 l giving a final pH value of 4.93±0.05. The produced samples 

were manually crushed (< 9.5 mm) and placed in a conical flask. Extraction fluid 

was added in order to keep a liquid to solid ratio of 20 (L/S=20). The flask is tightly 

closed and stored at 298 K for 18 h. The resultant solutions were filtered through a 

0.6-0.8 µm filter and the concentrations of heavy metals in the leachate were 

determined by using ICP. A Perkin Elmer Model Optima 3000 XL ICP operated at 

13.56 MHz (using Ar and N2 gases) was used for the measurements.  
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5.8.6 Determination of the chemical resistance and water adsorption of the 

produced materials 

 

The chemical resistances of the glass, glass-ceramic and sintered materials were 

estimated in 10 % HNO3 and 10 % NaOH solutions. In these experiments, 2 g of 

grained samples with average particle sizes between 0.3 and 0.5 mm were treated at 

373 K for 2 h in 70 ml solutions. After washing and drying, the grained samples were 

weighed and the percentages of weight losses were calculated.  

 

The water adsorptions (%) of the produced materials were determined using the 

procedure outlined in the ASTM standards [199]. For this purpose, the samples were 

dried to constant weight at 383 K, cooled to room temperature in a desicator and 

weighed accurately (W1). The samples were immersed in distilled water and boiled 

for 2 h. The heating was then removed and the samples were taken out and excess 

water from the surfaces was removed by wiping with damp cloth. The sample was 

again weighted accurately (W2) and the water adsorption (%) was calculated using 

the following formula: 

 

(W2-W1/W1)*100        (5.2) 
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6. Experimental Results and Discussions 

 

6.1 Glass Production 

 

Glass formulation optimization for coal fly ash is constrained by product control 

(chemical durability, homogeneity and thermal stability), process control (viscosity, 

melting temperature and waste solubility) and overall economics. The chemical 

durability and viscosity are highly dependent on the glass composition. The viscosity 

of a glass melt, as a function of temperature, is the most important variable affecting 

the melt rate and pourability of the glass. The viscosity determines the rate of melting 

of the raw feed, the rate of glass bubble release (foaming and fining), the rate of 

homogenization and thus, quality of the final glass product. As a possible industrial 

material, glass product should have good chemical durability and enough mechanical 

strength. Another factor that effects the glass production is the release of heavy 

metals or other hazardous elements into environment. Less additives is the major 

factor that influences the overall economics. In general, chemical durability and 

viscosity are the main initial factors used to determine the acceptability of a glass 

formulation. 

 

The glass structure is usually considered as a random network. The elements are 

generally classified into three types: 

1. Network forming atoms: such as Si, B, P, Ge; 

2. Network modifiers (or glass fluxes): such as Na, K, Li, Ca, Mg; 

3. Intermediates: such as Al, Fe, Zn, Ti, Mo, etc. 

 

The chemical durability of glass is mainly influenced by the chemical composition. 

There has been much research focused on the composition-durability relationships of 

glass made of waste. Some general rules can be extracted from these studies, such as 

the following [115,200]: 
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1. The components that form the strongest bonds in glasses results in the greatest 

improvement to glass durability, whereas those that form the weakest bonds 

generally prove the greatest detriment to glass durability; 

2. Adding SiO2, Al2O3, B2O3, ZrO2 may improve durability; 

3. Adding alkali metal oxides may decrease the durability. 

 

The glass formers are the major constituents of all waste glasses. If the inorganic 

oxides from the waste have insufficient glass formers to fall within an accepted glass 

formulation range, additional glass formers must be added through the process. 

Although the network modifiers (such as alkali metals) may decrease the durability, 

they are important to control melted glass viscosity. The addition of fluxes to the 

glass melt is controlled as increased flux composition generally lowers melting 

temperature, glass viscosity and leaching resistance. Of the glass forming oxides, 

SiO2 is the most important in glass making and used as the major ingredient in most 

glasses because of its good chemical durability. According to the current knowledge, 

the coal fly ash contains high amounts of SiO2 and Al2O3, but has insufficient glass 

network modifiers. The most effective glass modifier is Na2O. Other than CaO or 

MgO, adding Na2O does not increase the crystalline tendency [115]. On the other 

hand, Fe2O3 as an intermediate network oxide increases the crystalline tendency. It is 

generally used as a nucleating agent in the waste glass compositions. 

 

According to the above discussions, it can be estimated from Table 5.2 that 

Çayırhan, Tunçbilek, Orhaneli, Çan, Çatalağzı and Seyitömer fly ashes are the most 

appropriate candidates for the production of glasses; however Afşin-Elbistan fly ash 

is not suitable for the glass production because of the low SiO2 - Al2O3 content and 

high CaO content of it. As can be seen from chemical composition of the silica fume 

and red mud, both of them are not suitable for glass production. On the basis of these 

observations, all coal fly ash samples used for the glass production starting from the 

Çayırhan fly ash. Glasses were obtained from Çayırhan, Tunçbilek, Orhaneli, Afşin-

Elbistan and Seyitömer fly ashes without any additives according to the procedure 

described in section 5.4. However, the glass production from Çan and Çatalağzı fly 

ashes cannot be achieved because of the very high viscosities of them at the melting 

temperature of 1773 K. The higher SiO2 and Al2O3 content of those fly ashes led to 

higher viscosity. The viscosity is mainly depending on the amount of network 
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formers and can be decreased with the addition of Na2O, K2O and CaO. The 

literature surveys showed that Na2O content higher than 15% could lead to adequate 

melts, since this modifier tends to lower the viscosity of the batch fluid increasing the 

workability of the melts [117,201]. However, this indication was not followed, 

because Na2O rich glasses are usually very unstable and exhibit low chemical 

durability. Glass formation with good chemical durability achieved with using the 

combined addition of fluxes Na2O and CaO [117]. With the aim of lowering the 

viscosity of the batch fluids, different amounts of modifier oxides were added by trial 

and error, essaying firstly the effect of Na2O content and then the effect of 

Na2O+CaO. Na2CO3 CaCO3 were used as raw materials for Na2O and CaO sources, 

respectively. Table 6.1 shows the effect of additives on the melting behavior of fly 

ashes. As seen from Table 6.1, the addition of Na2O cannot be enough to decrease 

the viscosity. On the basis of these results, both Na2O and CaO were added to the 

Çan and Çatalağzı fly ashes.  

 

Table 6.1: Effects of different amounts of additives on the melting behavior of Çan 

and Çatalağzı fly ashes 

Amount of 
added oxides 
(wt %) 

 
 

Na2O CaO 

 
Effect on melting behavior 

5 - Melt is very viscous and couldn’t be poured into 
water 

5 5 Melt is very viscous and hardly poured out of 
crucible 

Çan fly ash 

10 7 A small amount of melt could be poured out of the 
crucible 

5 - Melt is very viscous and couldn’t be poured into 
water 

5 5 Melt is very viscous and hardly poured out of 
crucible 

Çatalağzı fly ash 

10 7 A small amount of melt could be poured out of the 
crucible 

 

 

Since the compositions of the Çan and Çatalağzı fly ashes are not significantly 

different from each other, it was decided to add the same amount of 5 wt% Na2O + 5 

wt% CaO to those fly ashes. The obtained melts for both fly ashes couldn’t be 

poured to the water due to their high viscosities. Glass production from Çan and 
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Çatalağzı fly ashes tried again with the increase in the amount of Na2O + CaO 

content. 10 wt% Na2O + 7 wt% CaO were added to fly ashes to decrease the 

viscosity of the melt. But, only a small amount of melt could be poured into the 

water. This amount was not sufficient for the glass production. Therefore, it was 

decided to quit the glass production from Çan and Çatalağzı fly ashes. The glass 

samples produced from Çayırhan, Tunçbilek, Orhaneli, Afşin-Elbistan and Seyitömer 

fly ashes were deep brown to black in color. The color of the glasses produced from 

Çayırhan, Tunçbilek and Seyitömer fly ashes were deep black because of their high 

Fe2O3 content of them. Iron is the coloring ion in ashes caused the formation of dark 

colored glasses. The produced glasses were homogeneous and free from bubble. 

Codes were given to the produced glass samples obtained from fly ashes (Table 6.2). 

 

6.2 Experimental Results on Glass Production 

 

6.2.1 DTA results of the produced glasses 

 

DTA was utilized to measure the glass thermal properties by heating 20 mg glass 

sample with a heating rate of 20 K/min (Figures 6.1-6.5).  

 

As a glass is heated, its heat capacity changes within a narrow temperature range 

called the glass transition temperature (Tg), which corresponds to the temperature at 

which the glass network acquires sufficient mobility to change from a rigid to a 

plastic solid. It was observed that the endothermic peaks that show the glass 

transition temperature took place in all glass samples. The glass transition 

temperatures of the glass samples varied in the temperature range of 964-1023 K. As 

the crystallization takes place, the heat of crystallization is evolved and an 

exothermic peak that shows the crystallization peak temperature (Tp) occurs. Table 

6.3 shows the Tg and Tp values of the produced glasses. As seen from Table 6.3, 

only TG sample has one crystallization peak temperature at 1166 K. This result can 

be seen from Figure 6.5 as well. Any exothermic peak was not observed in the other 

glass sample’s DTA scans. According to DTA results, it can be said that only one 

glass sample obtained from Tunçbilek fly ash is suitable for the glass-ceramic 

production and glass-ceramic samples can’t be produced from Çayırhan, Orhaneli, 

Afşin-Elbistan and Seyitömer fly ashes without any additives.  
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Table 6.2: Codes of the produced glass samples 

Glass Code 

Obtained from Çayırhan Fly Ash CG 

Obtained from Seyitömer Fly Ash SG 

Obtained from Tunçbilek Fly Ash TG 

Obtained from Orhaneli Fly Ash OG 

Obtained from Afşin-Elbistan Fly Ash  AEG 

 

Table 6.3: DTA results of the produced glasses 

Glass Tg(K) Tp(K) 

CG 988 - 

SG 985 - 

TG 964 1166 

OG 1003 - 

AEG 1023 - 
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Figure 6.1: DTA Graph of the CG sample 
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6.2.2 XRD studies of the produced glasses 

 

XRD pattern of the TG sample shown in Figure 6.6 indicated the amorphous state of 

the sample. No significant crystalline phase could be detected by the XRD in tested 

CG sample. XRD patterns of the SG, CG, OG, AEG samples were given in 

Appendix A Figure A.2. In all cases, the spectra show presence of a non-crystalline 

material and absence of any distinct crystalline species, as it was expected.  
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Figure 6.2: DTA Graph of the SG sample 
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Figure 6.3: DTA Graph of the OG sample 
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Figure 6.6:  X-ray diffraction pattern of TG sample  
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6.2.3 SEM studies of the produced glasses 

 

The microstructural studies were performed on the obtained glass samples using 

SEM. The knowledge homogeneity of waste glass was obviously related to the 

performance of the production process. SEM investigations confirmed their 

homogeneous nature of all glass samples. Figure 6.7 indicates the SEM micrographs 

of the CG, SG, TG, OG and AEG samples. All the produced glass samples had shiny 

surfaces and were bubble free except AEG sample. A significant volume of 

approximately spherical pores in the glass matrix can be seen in Figure 6.7 (e). These 

are believed to result from softening of the glassy phase present in the ash, together 

with simultaneous evaluation of gas at this temperature. 

(a) 

           (b) 

            (c) 

Figure 6.7: SEM micrographs of the CG (a), SG (b) and TG (c) samples 

 106



                                                               (d) 

                                      
         (e) 

 

Figure 6.7: SEM micrographs of the OG (d) and AEG (e) samples 

 

6.2.4 Physical and mechanical properties of the produced glasses 

 

Density, porosity, water adsorption and Vickers microhardness values of glasses 

were given in Table 6.4. Densities of the glasses were in the range of 1.29-2.91 

g/cm3. Density of AEG sample has the lowest value due to Afşin-Elbistan fly ash has 

the lowest SiO2 - Al2O3 and highest CaO content. Of the glass forming oxides, SiO2 

is the most important in glass making and used as the major ingredient in most 

glasses because of its good chemical durability. The results also indicated that Al2O3 

had the same effect as SiO2 on the properties of glass materials. Higher SiO2 - Al2O3 

content makes the glass structure more rigid. CaO, Na2O and K2O which form the 

weakest bonds generally prove the greatest detriment to glass durability. Similar 

results were shown in the microhardness values. Decrease in density also resulted in 

decrease of microhardness. As seen from Figure 6.8, Vickers microhardness of 

glasses obtained from fly ashes increased from 317 to 511 kg/mm2 as SiO2 - Al2O3 

content increases. This indicates that SiO2 - Al2O3 acts as a network former, which 

enhances the network connectivity of the glass matrix. In addition, bond energy of a 
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network former is much higher than that of a network modifier [202]. Microhardness 

values of CG, SG and TG samples are high in comparison with window glass (418.1 

kg/mm2), silica glass (476.7 kg/mm2)[203], glasses produced from coal fly ash in 

another study (410 kg/mm2)[204] and glasses produced from municipal solid waste 

(MSW) incinerator fly ash (482.3 kg/mm2)[205]. Both water adsorption and porosity 

correlated well with each other and decreased with the increase of the density values 

of the produced glasses. AEG sample has the highest porosity value of 8.6%. This 

result is in well agreement with the SEM observations. 

 

Table 6.4: Physical and mechanical properties of the produced glass samples 

Glass Density 

(g/cm3) 

Vickers Microhardness 

(kg/mm2) 

Porosity 

(%) 

Water adsorption 

(%) 

CG 2.81 485 0.38 0.6 

AEG 1.29 317 8.60 3.2 

OG 2.76 455 0.50 1.7 

SG 2.85 498 0.35 0.3 

TG 2.91 511 0.31 0.1 
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Figure 6.8: The effect of SiO2 + Al2O3 content on the hardness of the glass samples 
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6.2.5 TCLP results of the produced glasses 

 

The TCLP test was conducted to study the heavy metals migration. The dissolution 

of the silica matrix can release heavy metals from the glass structure [115]. In this 

study, the TCLP analyses were limited to the main hazardous heavy metals of Zn, 

Pb, Mn and Cr. TCLP results of the glasses produced from fly ashes were given in 

Table 6.5. The results were compared with the US EPA limits. It was found that the 

extracted amounts of heavy metals are lower than the limits required by the US EPA. 

It should be noted that the volatile metals such as Zn and Pb may evaporate to the 

atmosphere before or during melting stage. Therefore, to treat fly ashes by using 

thermal melting technology, a secondary air pollution control system should be 

designed to catch volatile metals [155]. Another reason for the lower leachability is 

due to the heavy metal ions replaced with other ions and successfully solidified into 

the glass matrix. The percentage of leachable fraction of heavy metals is different. 

Among the studied heavy metals, Zn showed the highest percentage of leachable 

fraction than others, since Zn is unstable in acidic solutions and also Zn 

concentration is the highest in all fly ash samples. As seen from Tables 5.2, 6.5 and 

Figures 6.9, 6.10, leaching of heavy metal ions decreased with the increase in SiO2 

and decrease in CaO and MgO content. In general, chemical stability is consistent 

with the progressive formation of a more compact and interconnected glass network 

structure with the addition of the glass formers [205]. Therefore, increase in the ratio 

of SiO2 strengths the chemical stability of the glasses. On the other hand, the network 

modifiers (such as CaO, Na2O) may decrease the durability. They lower melting 

temperature and glass viscosity but also lower leaching resistance since they weaken 

the network structure. Therefore, AEG and OG samples have the lowest leaching 

resistances. The glasses produced in this work showed high leaching resistance than 

the glasses obtained from coal fly ash by Sheng et al.[115] and incinerator fly ash by 

Park et al.[205]. TCLP results showed that the glasses produced from coal fly ashes 

could be taken as non-hazardous, which showed the potential application as useful 

materials.  
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Table 6.5: TCLP results of the produced glass samples 

Glass Cr3+ 

(ppm) 

Mn2+ 

(ppm) 

Zn2+ 

(ppm) 

Pb2+ 

(ppm) 

CG BDL BDL 0.006 BDL 

AEG 0.06 0.03 0.22 0.09 

OG 0.01 0.01 0.11 0.02 

SG BDL BDL 0.001 BDL 

TG BDL BDL 0.005 BDL 

US EPA limit 5 5 500 0.5 

 BDL: Below Detection Limit 
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Figure 6.9: The relationship between the heavy metal concentrations in the leachate 

of the produced glasses and SiO2 content of the fly ash samples  
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Figure 6.10: The relationship between the heavy metal concentrations in the leachate 

of the produced glasses and CaO-MgO content of the fly ash samples  

 

6.2.6 Chemical resistance of the produced glasses 

 

Chemical resistance of glasses was listed in Table 6.6. Chemical resistance of glasses 

increased with the increase in SiO2 + Al2O3 content of fly ashes (Figure 6.11(a)). 

Same results were obtained and discussed in the Sections 6.1, 6.2.4 and 6.2.5. 

Furthermore, Fe2O3, which is found in the initial ash is a serious candidate to take 

part in the construction of the vitreous network of the stabilized product. It has been 

found that Fe2O3 can be incorporated into a silicate glass and increase the number of 

polyhedra taking part in the vitreous network [206]. It can thus act as an intermediate 
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rather than a modifier. The higher Fe2O3 content leads to a more chemically stable 

product. Therefore, chemical resistance of the glass samples also increased with 

increasing in Fe2O3 content of fly ash (Figure 6.11(b)). The chemical durability of 

glasses shows acceptable behavior. However, they have relatively high weight losses 

for HNO3 durability compare to NaOH durability. It is apparent that the produced 

glasses show high resistance to alkali solutions. 

 

Table 6.6: Chemical resistance of the glass samples 

 

Glass HNO3 (%) NaOH(%) 

CG 1.3 0.05 

AEG 31.3 0.1 

OG 13.2 0.08 

SG 2.8 0.14 

TG 1.11 0.05 
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Figure 6.11: The effect of SiO2 - Al2O3 (a) and Fe2O3 (b) contents on the chemical 

resistance of the glass samples 
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6.3 Experimental Results on Heat-Treated Glass Samples 

 

It was concluded from the DTA results that the glasses produced from fly ashes 

except Tunçbilek fly ash showed no crystallization tendency since any exothermic 

peak couldn’t be seen on the DTA curves. However, physical, microstructural, 

mechanical and chemical properties of the glass samples can be changed when a heat 

treatment process conducted on the produced glasses. One of the objectives of this 

study was to determine whether or not the glasses could be transformed to a 

crystalline structured material by means of heat treatment. Therefore, to investigate 

the effect of heat treatment on the properties of glass samples, SEM and XRD, TCLP 

test, density, porosity, water adsorption, microhardness and chemical resistance 

measurements were performed. Some codes were given to the heat-treated glass 

samples which are shown in Table 6.7. 

 

Table 6.7: Codes of the heat-treated glass samples 

 

Heat Treated Glass Code 

Obtained from Çayırhan Fly Ash CG1000 

Obtained from Seyitömer Fly Ash SG1000 

Obtained from Tunçbilek Fly Ash TG1000 

Obtained from Orhaneli Fly Ash OG1000 

Obtained from Afşin-Elbistan Fly Ash  AEG1000 

 

6.3.1 XRD studies of the heat-treated glasses 

In order to identify the crystalline phase(s), x-ray scans were carried out on samples 

which had been heat-treated up to 1423 K followed by slow cooling in the furnace to 

the room temperature. The XRD analysis of OG1000 sample is shown in Figure 

6.12. XRD patterns of CG1000, SG1000, TG1000 and AEG1000 samples were given 

in Appendix A in Figure A.3. There is no doubt that crystalline phases coexist since 

the XRD patterns show that the amorphous phase has practically disappeared and 

augite, diopside, wollastonite and gehlenite crystalline phases occurred in the 

samples. On the XRD pattern of the AEG1000 sample the characteristic broad peak 

of amorphous material and some small peaks which correspond to diopside phase 
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(CaMg(SiO3)2) are present. AEG1000 sample has the most amorphous material in all 

samples because of the chemical composition of it. As it was discussed in the 

previous sections Afşin-Elbistan fly ash has the lowest SiO2 - Al2O3 content and 

therefore, it is not suitable for glass and glass-ceramic production. Furthermore, it 

has the lowest Fe2O3 content among the fly ash samples. So, only a small amount of 

diopside phase occurred in the microcrystalline structure. Diopside phase (Ca (Mg, 

Fe, Al)(Si, Al)2O6) was also determined in the SG1000 and CG1000 samples. 

Diopside structure occurred in this samples is the same since the chemical 

composition of these samples are very similar. It is important to note that Fe2O3 

known to be a nucleating agent and presented in reasonable amounts in those 

samples. Only a small proportion of glassy phase detected in the XRD patterns of 

those samples. XRD result of TG1000 sample revealed that the main crystalline 

phase was aluminum augite (Ca(Mg, Fe3+, Al)(Si, Al)2O6). Although it is usually 

considered as an intermediate glass network ion, the Fe3+ could act as a modifier of 

the TG glass structure, breaking the Si-O-Si bonds to form the augite phase. Mg and 

Ca ions have also effects on the formation of crystalline structure as network 

modifiers [12]. However, Fe3+ plays an important role in the crystalline structure as 

the network modifier since the content of Fe3+ is high enough compared to the Ca 

and Mg ions. Ca and Mg contents of the Çayırhan and Seyitömer fly ashes are higher 

than that of the Tunçbilek fly ash. Therefore, diopside phase (Ca(Mg,Al)(Si,Al)2O6) 

occurred in the CG1000 and SG1000 samples instead of aluminum augite 

phase(Ca(Mg, Fe3+, Al)(Si, Al)2O6) which was obtained in the TG1000 sample. 

However, diopside and augite phases belong to the same group. XRD pattern of the 

OG1000 sample shows the presence of wollastonite (CaSiO3) and gehlenite 

(Ca2Al2SiO7) phases. The high Ca and Si content, which are essential elements for 

wollastonite formation (CaSiO3) on the surface, may enhance the crystallization 

probability of this phase. Since CaO content of Orhaneli fly ash is high, wollastonite 

and gehlenite phases occurred in the microcrystalline form in contrast to the SG1000, 

CG1000 and TG1000 samples. 
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Figure 6.12: XRD pattern of the OG1000 sample 

 

6.3.2 SEM studies of the heat-treated glasses 

 

SEM investigations were conducted in order to obtain better understanding of the 

morphology and size of the resultant microstructure. SEM micrograph of the 

TG1000 sample (Figure 6.13) shows the presence of strongly interlocked tiny 

crystals of about 0.15-0.30 µm size embedded in a glassy matrix and the absence of 

pores. Figures 6.14 and 6.15 are representative SEM micrographs of SG1000 and 

CG1000 samples, respectively. As seen from these figures, diopside crystals formed 

in a very irregular shape and orientation were observed in the SEM micrographs of 

the SG1000 samples. Their size ranges from 0.5 to 1 µm. The holes in the crystals 

are probably due to preferential etching in HF solution. The crystals were formed 

randomly in the microstructure and still a large amount of glassy phase remained 

between the crystallites. As seen from Figure 6.15, small diopside crystallites were 

dispersed in the microstructure of the CG1000 sample. There are also extensive 

cracks on the surface of the sample. These cracks may occur due to the thermal 
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residual stress of the glass during the cooling of the melt to the room temperature. 

The microstructure of the OG1000 sample corresponded well with the crystal phases 

found by XRD as seen in Figure 6.16. A network of  wollastonite and gehlenite 

crystallites were formed with perpendical branching.  Irregular shaped crystallites 

dispersed randomly in the microstructure of the OG1000sample. Some small pores 

with a diameter of 1 µm or less than 1 µm can also be observed on the surface of the 

sample.  Figure 6.17 shows SEM micrgraph of the AEG1000 sample. It is seen from 

this figure that, high content of glassy phase still remained in the volume of the 

sample, as it was expected from the XRD result. Only a few glassy droplets were 

converted into diopside crystals. Their size and shape are irregular and crystallites 

randomly distributed in the glassy microstructure. XRD and SEM results of the 

AEG1000, SG1000, OG1000 and CG1000 samples revealed that small amount of 

crystallites occurred in the microstructure of the samples in contrast to the DTA 

results. DTA results were showed that those glass samples had no crystallization 

tendency because of the absence of crystallization peak. However, maximum 

working temperature of DTA is 1373 K and above this temperature there may be an 

exothermic peak that we couldn’t detect. Crystallization peak temperatures of glasses 

produced from fly ashes generally change between 1073-1273 K [116,118,135,207]. 

However, several authors reported that crystallization peak temperatures of glasses 

produced from waste materials are in the range of 1293-1414 K [131,204]. If there 

had been exothermic peaks of those glass samples we could not have detected since 

the maximum working temperature of DTA is limited. Therefore, glass samples were 

heated to the temperature of 1423 K, which is above the maximum working 

temperature of DTA to determine the effect of heat treatment process. The controlled 

nucleation and crystallization of glasses is of prime importance in the formation of 

glass-ceramics, because the properties are influenced by the manner in which 

crystallization occurs. Accordingly, the conventional process to produce a glass-

ceramic involves two steps: a low temperature heat treatment of glasses, to induce 

nucleation, followed by heating to a second, higher temperature, to allow crystal 

growth of the nuclei as we knew. However, in this case the controlled heat treatment 

process couldn’t be applied to the glass samples since the crystallization peak 

temperatures were not known. This is one of the reasons for the poor 

microcrystalline structure obtained in the AEG1000, CG1000, OG1000 and SG1000 

samples. But, TG1000 sample has the best microcrystalline structure. Tiny 
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crystallites dispersed in the microstructure of the sample since iron oxide content of 

Tunçbilek fly ash is high. Some authors have reported on the influence of Fe2O3 and 

Al2O3 in the nucleation and crystallization of silicate glasses. Thus, Rogers et 

al.[208] found that iron oxide has a large influence on the nucleation of glasses if 

Fe2O3 content higher than 5 wt%. In this study, TG1000 sample has one of the 

highest Fe2O3 and Al2O3 content and AEG1000 has the lowest Fe2O3 content. 

Therefore, tiny crystallites dispersed in the microstructure increased with the 

increasing Fe2O3 and Al2O3 content of sample. Furthermore, the another reason for 

better microcrystalline structure for TG1000 sample is the chemical composition of 

it. Thus, TG sample is the most appropriate candidate for glass-ceramic production 

because of the chemical composition of it and DTA results, as it was discussed in the 

previous sections.  

 

Figure 6.13: SEM micrographs of the TG1000 sample 

 

 

 Figure 6.14: SEM micrographs of the SG1000 sample 
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Figure 6.15: SEM micrographs of the CG1000 sample 

 

                                        

Figure 6.16: SEM micrographs of the OG1000 sample 

 

 

Figure 6.17: SEM micrographs of the AEG1000 sample 

 

6.3.3 Physical and mechanical properties of the heat-treated glasses 

 

Density, porosity, water adsorption and Vickers microhardness values of the heat-

treated glass samples were given in Table 6.8. Densities of the heat-treated glass 

samples are changed in the range of 2.03-3.19 g/cm3 and increased with increasing 
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crystalline volume in the glassy matrix. Density values are functions of both the 

crystalline sizes and the crystalline volume in the glassy matrix. Both porosity and 

water adsorption are correlated well each other and decreased with the increase of the 

crystalline sites. The Vickers microhardness values increased with increasing amount 

of crystallites and decreasing the average crystalline sizes. The factors which effect 

the hardness values are crystal type, crytallization rate and homogeneity of crystal 

size. As discussed above, the main crystalline phases were augite for TG1000, 

diopside for CG1000, AEG1000 and SG1000 and wollastonite+gehlenite for 

OG1000. SEM results revealed that the amount of crystallites increased and the 

average crystalline size decreased in the sequence of TG1000, SG1000, CG1000, 

OG1000 and AEG1000. From Table 6.8, it is obvious that TG1000 sample has 

highest hardness value with the best microcrystalline structure. It is reported that fine 

grained crystalline materials posses better microhardness [116]. However, the 

crystallization rate is also an important factor deciding hardness. From the XRD and 

SEM results it can be said that some glassy phase was remained AEG1000, SG1000, 

CG1000 and OG1000 samples and only TG1000 sample reached complete 

crystallization. From the SEM investigations, it can be observed that average crystal 

size of TG1000 sample was smaller than the other samples and the sphereletic 

crystallites dispersed in the microstructure homogeneously. The crystal size of other 

samples ranges greatly and the shapes of the crystallites were irregular. This 

inhomogeneity of crystal size and shape may also cause a decrease in the hardness of 

the samples. Similar to hardness results, as the samples became more crystalline, the 

density increased, the porosity and water adsorption decreased. By comparing the 

physical and mechanical properties of the heat treated glasses, it was obvious that 

AEG1000 sample has the lowest values due to its lower ratio of glass formers and 

intermediate elements (here considering: Si+Al+Fe) to the modifier elements (in this 

case: Ca+Mg+Na+K). Properties of heat-treated glasses were compared with the 

properties of glasses and glass-ceramics produced from industrial wastes. These 

properties of the SG1000, OG1000, CG1000 and TG1000 samples are better than the 

properties of glass-ceramic materials produced from incinerator fly ash [155,163]. 

According to Cheng et al., the highest hardness value of the gehlenite glass-ceramic 

was 479 kg/mm2 [163]. Hardness values of TG1000, OG1000, SG1000 and CG1000 

are higher than that value. Density and hardness values of TG1000 sample are higher 
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than the values of the glasses produced from domiciliary incinerator fly ash 

measured by Romero et al.[209]. 

 

Table 6.8: Physical and mechanical properties of the heat-treated glass samples 

 

Heat Treated 

Glass 

Density 

(g/cm3) 

Vickers Microhardness 

(kg/mm2) 

Porosity 

(%) 

Water adsorption 

(%) 

CG1000 2.98 542 0.11 0.30 

AEG1000 2.03 398 1.40 2.10 

OG1000 2.86 512 0.21 0.90 

SG1000 3.08 522 0.10 0.20 

TG1000 3.19 792 0.00 0.03 

 

6.3.4 TCLP results of the heat-treated glasses 

 

TCLP tests were performed to all heat-treated glass samples and the experimental 

results are presented in Table 6.9. Mn concentration of all samples was found to be 

below the detection limit of analytical method, which is 0.001 ppm. All extracted 

amounts of heavy metals are lower than the limits required by US EPA. Each sample 

analyzed has insignificant leachibility characteristics for all heavy metals, suggesting 

that the heavy metal ions replaced other ions, such as Ca2+ and Al3+ and were held in 

the framework of the samples. In order to interpret the TCLP results, on the first 

place, the strong effect of microcrystalline structure formed in the samples, on the 

second place, the structural role of the main oxide should be taken into consideration. 

It was reported that crystalline structure affects leaching resistance [206]. After 

formation of crystalline phases in the heat-treated glass samples, the products 

become more resistant to leaching comparing to the produced glass samples. It was 

obvious that the leaching resistance of the glass samples were lower than the heat-

treated glass samples. The heavy metal ions were strongly bonded inside the 

structure of the crystalline phases (diopside, wollastonite and gehlenite). The bonds 

in the glass structure are weaker than the crystalline phases since the glasses are 

amorphous materials. In that way heavy metal ions in the heat-treated glasses seemed 

to become non-leachable. Leaching resistance is also affected from microstructure of 
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the samples. The better microcrystalline structure results the better leaching 

resistance. Therefore, TG1000 sample had the highest leaching resistance. The 

structural role of the main oxides was discussed in the previous sections. TCLP 

results of the heat-treated glass samples are better than the results of the glass-

ceramic materials produced from incinerator fly ashes. Cr-ion content in the resultant 

leachate solutions measured by Cheng et al.[125] is higher than the content of the 

leachate solutions in this study. TCLP results of the all heat treated glass samples are 

better than the TCLP results of the glasses and the heat-treated glasses produced 

from incinerator fly ash reported by Kavouras et al.[210]. 

 

Table 6.9: TCLP results of the heat-treated glass samples 

Heat Treated 

Glass 

Cr 

(ppm) 

Mn 

(ppm) 

Zn 

(ppm) 

Pb 

(ppm) 

CG1000 BDL BDL 0.006 BDL 

AEG1000 0.006 BDL 0.08 BDL 

OG1000 BDL BDL 0.009 0.002 

SG1000 BDL BDL 0.006 BDL 

TG1000 BDL BDL BDL BDL 

US EPA limit 5 5 500 0.5 

BDL: Below Detection Limit 

 

6.3.5 Chemical resistance properties of the heat-treated glasses 

 

Results for chemical resistance of the heat-treated glass samples were given in Table 

6.10. As seen from Table 6.10 chemical resistance of heat-treated glass samples to 

the alkali solutions is relatively high compared to the acidic solutions. However, both 

HNO3 and NaOH durability is better than the glass-ceramic produced from coal fly 

ash according to the study which was reported by Leroy et al.[117]. It can be seen 

from Table 6.10 that the durability of the samples correlates well with the 

crystallization tendency of the glass samples. Chemical resistance of TG1000 sample 

is the highest among all heat-treated glass samples due to its better microcrystalline 

structure. Chemical resistance increased with decreasing amount of glassy matrix 

surrounding the crystalline grains. Since weight losses are usually attributed to the 
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dissolution of the glassy matrix, this would lead to lower weight losses for TG1000 

sample than AEG1000 sample. Chemical resistance of the heat- treated glass samples 

is better than the produced glass samples. This result was expected since the other 

properties of the heat-treated glass samples were much improved than the glass 

samples. The improved properties are attributed to the crystalline structure formed in 

the heat-treated glass samples. 

 

Table 6.10: Chemical resistance of the heat-treated glass samples 

Heat Treated 

Glass 

HNO3 (%) NaOH(%) 

CG1000 0.14 0.04 

AEG1000 9.8 0.08 

OG1000 0.29 0.07 

SG1000 0.19 0.05 

TG1000 0.05 0.02 

 

6.4 Fly Ash Capability to Produce Glass-ceramics 

 

The tendency of the fly ash based-glasses to transform to glass-ceramics was 

examined theoretically before initiating experimental work. The final product should 

comprise a high crystalline phase volume fraction containing finely textured crystals. 

The controlled vitrification process is a versatile method, allowing for a wide range 

of crystalline materials because of the variety of compositions for the manufacture of 

glass-ceramics from waste materials. Oxide compositions varied in a limited range 

for glass-ceramic production from waste materials which is given in the literature as 

[11]: 40-55 % SiO2, 10-25 % Al2O3, <25 % CaO, 2-13 % MgO, 2-5 % Na2O, 0.7-2 

% K2O and 4-11 % Fe2O3. In principle, depending on the chemical compositions of 

these materials, the following phases could be obtained in glass-ceramic production: 

Anorthite (CaO-Al2O3-2SiO2), calcium ferrite (Fe-O-CaO), wollastonite (CaO-SiO2), 

gehlenite (CaO- Al2O3-2SiO2), diopside (CaO-MgO-2SiO2), and/or augite (CaO-

MgO-FeO-SiO2). According to the above discussions, it can be estimated from Table 

5.2 that CG, TG and SG samples are the most appropriate candidates for the glass-

ceramic production. The silica contents of these samples are within the glass forming 
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region of the CaO-Al2O3-SiO2 (CAS) ternary and fall between the silica content of 

the fly ash used by Boccaccini et al. [211] and that of the As Pontes fly ash used by 

Barbieri et al. [11] to form glass and glass-ceramics. CAS system glasses which 

belong to one of the fundamental silicate systems have been used widely in many 

fields of industry. Although glass production was achieved by using Orhaneli fly ash, 

it is not suitable for glass-ceramic production because of its low Fe2O3 content. AEG 

sample is not suitable for glass-ceramic production since it has low Al2O3-SiO2 and 

high CaO content. On the basis of these interpretations that are based on chemical 

composition of fly ashes, only TG, CG and SG samples can be used for glass-

ceramic production.  

 

Initially the theoretical approach used for glass-ceramic production was applied in 

order to study the capability to devitrify the different glasses. The Ginsberg method  

uses a ternary diagram to represent the composition of the original glasses; Sal 

(Al2O3-SiO2), Cafem (CaO + (FeO + Fe2O3) + MgO) and Alk (Na2O + K2O) [212]. 

Basically, only glasses located between the 60-70 % Sal band are considered suitable 

for producing glass-ceramics with the best properties. The glass compositions below 

this zone contain excessive modifiers that destabilize the glass network. Those with 

higher SiO2 content have a very rigid structure, making processing operations 

difficult. Experimental data (Figure 6.18 (a)) show that only CG and SG glasses are 

located in the Sal band and TG sample is close to the ideal band. OG and AEG 

samples are far from the Sal band so they don’t have acceptable compositions for 

producing glass-ceramics. 

 

Another well-known method is the Rashin-Tschetveritkov [213] method modified by 

Kanazirsky and Tetzo in 1972 [214]. In this case, the triangular diagram corresponds 

to the corners of: Q, L and M, where Q is SiO2, L is Al2O3+ Na2O + K2O and M is 

CaO + (Fe2O + Fe2O3) + MgO + TiO2. This diagram is divided into three zones 

limited by tie lines : pyroxene-feldspar and pyroxene-Tschermark molecule (Tsch(a 

well-known calcium excess pyroxene from the geochemical basalt process), 

CaALSi2O6)[215]. The pyroxene (P) and feldspar (Fd) positions corresponds to their 

theoretical compositions. The glasses located in the Q-P-Fd region have excess SiO2 

causing high viscosity on molding. More suitable glasses are located inside or near 

the line P-Tsch and inside the triangle P-Fd-Tsch. The compositions under the P-
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Tsch line are inadequate, because they precipitate olivine crystals [110,112]. Glasses 

obtained from fly ashes in this study are far away from this ideal triangle (Figure 

6.18(b)). TG and SG samples are close to the quartz corner, which is related to 

higher viscosity on melting and controlled crystallization. AEG sample is under P-

Tsch line, which indicates inadequate composition for glass-ceramic production. 

 

Finally, Lebedeva modified the diagram (Figure 6.18(c)) by considering the role of 

modifier cations (Ca2+, Mg2+ and Fe2+) in the crystallization process [216]. Thus the 

Lebedeva diagram considers the following corners: MG, CA andFE, where MG = 

Mg2+, CA = Ca2+ and FE = Fe2+. This ternary diagram is divided into six zones 

according to the appearance of crystalline phases. Consequently, glasses located in 

zone I give rise to magnetite (Fe3O4) surrounded by spherulitic pyroxene crystals. 

Inside zone II, magnetite is not the primary phase, giving rise to materials where 

pyroxene could coexist with secondary magnetite. Zones III to V are very similar in 

microstructural composition (Diopside, augite and anorthite). Finally, zone VI 

produces olivine (MgO.SiO2), which is not adequate for glass-ceramic production 

[112]. Because of SG, TG and CG compositions fall into region V of the diagram, 

diopside or augite can be crystalline phase occurred in this samples. As seen from 

Figure 6.18 (c), it is particularly evident for OG and AEG glasses that they 

experimentally could not be adequate for glass-ceramic production as suggested by 

Lebedeva diagram. 

 

According to the above discussions, TG, SG and CG samples are suitable for glass-

ceramic production. The three methods are complementary, because we are not 

allowed to define what is the best composition for glass-ceramic production. Thus, 

the Ginsberg method gives us an idea of the role played by cations in the 

crystallization precess. Similarly, the Raschin and Lebedeva methods give us 

information about the nature and sequence of crystallization [110]. It is important to 

note that, only experimental thermal behavior can give the actual trend for 

crystallization in these complex glasses as it was given in the following section. 
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Figure 6.18: Diagrams used to study glasses’ capability to transform into glass-

ceramic materials. (a) Ginsberg, (b) Raschin-Tschetveritkov and (c) Lebedeva 

diagrams. 

 

6.5 Re-production of Glasses from Waste materials to Obtain Better 

Crystallization Tendency 

 

DTA experiments conducted on the all glass samples and the results were given in 

Section 6.2.1. As it was mentioned in Section 6.2.1, only TG sample had an 

exothermic peak, which shows the crystallization tendency of this glass. To be able 

to produce glass-ceramic materials from other glass samples, the composition of 

those glasses must be changed. Therefore, silica fume and red mud were added to 

Çayırhan, Seyitömer, Orhaneli and Afşin-Elbistan fly ashes as additives to obtain 
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new compositions of their glasses suitable for glass-ceramic production. First of all, 

Çayırhan fly ash was selected for the glass re-production since its composition is 

more convenient than the others compositions according to the discussion given in 

Section 6.4. If the chemical composition of Çayırhan fly ash is examined, it will be 

seen that only the addition of nucleating agent will be enough for the glass 

production. Therefore, 5 % of red mud was added to the Çayırhan fly ash because of 

the high Fe2O3 content of it. High Fe2O3 content plays an important role in the glass-

ceramic production as it was discussed in the Sections 6.3.1 and 6.3.2. Glass samples 

were produced from Çayırhan fly ash with the addition of 5 % of red mud according 

to the procedure described in Section 5.3. The new composition of Çayırhan fly ash 

with the addition of 5 % red mud is 39.97 % SiO2, 12.09 % CaO, 4.43 % MgO, 11.18 

% Fe2O3, 18.30 % Al2O3, 2.63 % Na2O and 2.39 % K2O. DTA experiment was 

performed on 20 mg of the glass sample produced from Çayırhan fly ash and red 

mud at a heating rate of 20 K/min and the observed DTA graph was given in Figure 

6.19.  As it was seen from Figure 6.19, an endothermic peak at 968 K and an 

exothermic peak at 1222 K were detected. Therefore, the studies continued with 

Seyitömer fly ash to re-produce glass samples with the addition of 5 % red mud. 

DTA was conducted on the produced glass samples at a heating rate of 20 K/min up 

to the temperature of 1373 K. On the DTA thermogram of the produced glass 

sample, one small endothermic peak at 980 K was observed, but there was no 

exothermic peak (Figure 6.20 (a)). Therefore, 10 % red mud was added to Seyitömer 

fly ash and the new glass sample was produced. However, only a small amount of 

glass could be obtained because of the high viscosity of the melt. DTA thermogram 

of the produced glass sample from Seyitömer fly ash showed only one endothermic 

peak at 978 K (Figure 6.20(b)). As seen from Figure 6.20 (b), there is no evident for 

the exothermic peak. The studies on the re-production of glass from Seyitömer fly 

ash with the addition of red mud was finished since the high viscosity of the melt and 

the unsuitableness of red mud as a nucleating agent for this composition. The 

composition of Seyitömer fly ash and 10 % red mud mixture is 41.16 % SiO2, 6.47 % 

CaO, 8.85 % MgO, 12.38 % Fe2O3, 23.13 % Al2O3, 0.58 % Na2O and 0.7 % K2O. 

This composition is not suitable for glass-ceramic production because of the high 

Fe2O3 and Al2O3 content. Studies showed that more than 11 % of Fe2O3 is not 

suitable for glass-ceramic production [11,110,112]. High Al2O3 content causes the 

higher viscosity of the melt. Therefore, studies continued with the re-production of 
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glass from Orhaneli fly ash. 20 % red mud and 20 % silica fume were added to the 

Orhaneli fly ash since both SiO2 and Fe2O3 contents of it was not enough for the 

glass-ceramic production. The new composition of Orhaneli fly ash, red mud and 

silica fume mixture were given as: 39.94 % SiO2, 19.5 % CaO, 4.43 % MgO, 10.77 

% Fe2O3, 13.9 % Al2O3, 2.05 % Na2O and 1.14 % K2O. The DTA curve of the 

produced glass sample given in Figure 6.21 indicates that one endothermic peak at 

983 K and one exothermic peak at 1254 K were appeared at the heating rate of 20 

K/min. Lastly, 10 % red mud and 30 % silica fume were added to the Afşin-Elbistan 

fly ash to produce glass samples. Since the SiO2 content of the Afşin-Elbistan fly ash 

is very low, the percentage of silica fume was increased and red mud percentage was 

decreased. Figure 6.22 (a) shows the DTA graph of the produced glass sample. There 

is one endothermic peak at 976 K but there is no evidence for any exothermic peak. 

Therefore, red mud percentage was increased to 20 % to improve the crystallization 

tendency. The new glass samples were produced with the addition of 20 % red mud 

and 30 % silica fume into the Afşin-Elbistan fly ash. The new composition of the 

waste is 38.87 % SiO2, 20.44 % CaO, 3.57 % MgO, 10.21 % Fe2O3, 11.41 % Al2O3, 

0.87 % Na2O and 0.62 % K2O. However, any exothermic peak could not be observed 

in DTA graph as it was seen from Figure 6.22 (b). There is only one endothermic 

peak at 1056 K. The new composition of waste glass is not suitable for glass-ceramic 

production because of its high CaO content. The high CaO content decreases the 

crystallization tendency [115]. Therefore, any exothermic peak could not be 

obtained. Afşin-Elbistan fly ash is not suitable for glass-ceramic production because 

of the high CaO, low SiO2 and Fe2O3 content of it. It was also noted that the red mud 

and silica fume are not suitable additives for Afşin-Elbistan fly ash. The new codes 

were given to the re-produced glasses from waste materials. The new codes of the re-

produced glass samples are; CRG: Re-produced glass sample obtained from 

Çayırhan fly ash and red mud, SRG: Re-produced glass sample obtained from 

Seyitömer fly ash and red mud, ORSG: Re-produced glass sample obtained from 

Orhaneli fly ash, silica fume and red mud, AERSG: Re-produced glass sample 

obtained from Afşin-Elbistan fly ash, silica fume and red mud. 

 

These glasses showed different tendencies toward crystallization. SRG and AERG 

glasses were more thermally stable, showing the glass transition peak without any 

exothermic peak at high temperatures. Above the glass transition temperature, TG, 
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ORSG and CRG samples, conversely, showed very clear exothermic peaks that 

correspond to the formation of a crystalline phase. Therefore, TG, ORSG and CRG 

glasses were used in the glass-ceramic production and the crystallization behavior of 

those glasses were investigated. In addition to those glasses, thermal and sintering 

behavior of the glass sample produced from Çayırhan thermal power plant fly ash 

(obtained in 1997) were also investigated in this study. Altough the crystallization 

behavior of glasses produced from Çayırhan fly ash (obtained in 1997) was 

determined in a previous study [118], some of the properties of these glasses could 

not be determined. Chemical composition of Çayırhan thermal power plant fly ash 

obtained in 1997 was different from Çayırhan thermal power plant fly ash obtained 

in the year 2000. Therefore, crystallization behavior of those glasses and glass-

ceramics produced from those glasses were also different. The code of CG-97 was 

given to the glasses produced from Çayırhan thermal power plant fly ash obtained in 

1997. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: DTA graph of the CRG sample 
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Figure 6.20: DTA graphs of the SRG samples( (a) 5 % red mud; (b) 10 % red mud) 

 

 129



 

 

400 800 1200

12
54

 K
 

98
3 

K
 

T (K) 

 

 

 

 

 

 

 

∆T
 

 

 

 

 

 

 

 

Figure 6.21: DTA graph of the ORG sample 
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Figure 6.22: DTA graph of the AERSG sample (a) 10 %red mud, 30 % silica fume 
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6.6 Thermal Behavior of Glasses Produced from Waste Materials 

 

DTA investigations were conducted on all samples at the heating rates of 5, 10, 15 

and 20 K/min to determine the thermal behavior of the produced glasses. To perform 

the heat treatment schedules on the glass samples maximum nucleation temperature, 

maximum nucleation time and crystallization peak temperatures were obtained on 

the basis of DTA scan results. Kinetic parameters of crystal growth were determined 

by using both isothermal and non-isothermal methods.  
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Figure 6.22: DTA graph of the AERSG sample (b) 20 % red mud, 30 % silica fume 

 

6.6.1 Determination of maximum nucleation temperature and time 

 

As reported by Marotta et al. [66] and Xu et al.[72], the DTA technique can be used 

to determine the maximum nucleation temperature and time. In the DTA technique, 

the crystallization peak temperature, Tp, is determined as a function of the nucleation 

temperature, Tn, using a constant sample weight and heating rate. The crystallization 

peak in the DTA analysis occurs because of the heat evolution during crystal growth 
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from the nuclei present in the glass. The number of nuclei in a glass can be expressed 

as 

 

N = Nq + Ni + Nh        (6.1) 

where Nq is the concentration of quenched in nuclei, Ni the number of nuclei formed 

per unit volume during the isothermal heat treatment and Nh is the number of nuclei 

per unit volume that form during non-isothermal heating in the DTA. For a high 

heating rate, the glass spends a relatively shorter time in the temperature range for 

nucleation and Nh can be neglected [217]. Furthermore, using a constant heating rate 

for all the measurements means that Nh is constant (even if it is small) in all the 

samples of the same composition. Likewise, Nq for all  samples should be the same if 

the samples are prepared in the same manner from the same glass melt. 

Consequently, any change in DTA peaks for the glass samples nucleated at different 

temperatures for the same time should result solely from the contribution of Ni, 

which is proportional to the nucleation rate (I) at the temperature for nucleation (Tn). 

For glasses with the same composition, the following relationship [72] is applied 

between the number of nuclei, N and the crystallization peak temperature, Tp, when 

the heating rates are the same for the DTA runs. 

tcons
RT
EN
p

tanln +=        (6.2) 

Thus, the greater the number of nuclei, the lower the crystallization temperature. 

Therefore, the change in Tp with Tn is primarily due to a change in the glass type 

[53]. The height of the crystallization peak, (δT)p, is also proportional to N. Although 

no definite relationship has been established between (δT)p and N, experimental 

studies [72,218] showed that the concentration of nuclei in the glass increases with 

the increase in (δT)p. For the determination of maximum nucleation temperature, the 

glass samples were held for 4 h at different nucleation temperatures that is above the 

glass transition temperature, Tg, in 5 K intervals. To estimate the maximum 

nucleation time glass samples were heat treated isothermally at the maximum 

nucleation temperature for 1, 2, 3 and 4 h. The obtained Tp and (δT)p values for all 

glass samples were summarized in Tables 6.11-6.14 and the DTA graphs of these 

glass samples were given in Figures B1-8 in Appendix B. In all DTA scans, the 

heating rate was 10 K/min. 

 132



 

It is well known that the nucleation rate (number of nuclei formed per unit volume 

per second) is a function of temperature and becomes maximum at a temperature 

near the middle of the temperature range where nucleation can occur. As seen from 

Table 6.11, Tp values reached the lowest value at 963 K while δ(T)p values reached a 

maximum at this temperature for CRG glass. Therefore, maximum nucleation 

temperature was selected as 963 K. As seen in Table 6.11, Tp values decreased and 

δ(T)p values increase with increasing nucleation times. With increasing holding time 

at the nucleation temperature (963 K), the concentration of nuclei in the glass 

increases, which increases the crystallization rate as indicated by the larger δ(T)p and 

lower Tp values. The increase in δ(T)p and decrease in Tp, which are considered to be 

the direct result of increasing concentration of nuclei in the glass, are expected to 

continue until the glass becomes saturated with nuclei. If the crystallization 

temperature does not vary with the nucleation time, this case shows that the 

nucleation stage is fully completed [72,219]. On the basis of these interpretations, the 

nucleation time that is necessary to achieve optimum conditions was selected as 4 h. 

In previous studies [118,135], it was determined that 10 K above the Tp value was 

sufficient for crystal growth in the microstructure of the glass sample. Therefore, 

crystallization temperatures were chosen 10 K above the Tp values in this study. 

Consequently, maximum nucleation temperature, maximum nucleation time and 

crystallization temperature of CRG glass were determined as 963 K, 4 h and 1135 K, 

respectively. As seen from Table 6.12, Tp values decreased and δ(T)p values 

increased with increasing nucleation temperature until 988 K for ORSG sample. On 

the other hand, δ(T)p values reached a maximum at 2 h of nucleation time and then 

decreased gradually with the increase in the nucleation time. Therefore, for ORSG 

sample maximum nucleation temperature and time were selected as 988 K and 2 h 

while the crystallization temperature was 1188 K. The same observations were 

detected at the DTA results of TG glass (Table 6.13). On the basis of DTA results 

and the interpretations mentioned above, maximum nucleation temperature, 

maximum nucleation time and crystallization temperature were determined as 948 K, 

2 h and 1140 K, respectively. In a previous study [118], maximum nucleation 

temperature and time were detected by more time consuming methods instead of 

DTA technique. Maximum nucleation temperature of CG-97 glass was selected as 10 
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K above the Tg temperature (953 K) according to the literature survey of glass 

systems that have the similar compositions. Maximum nucleation time was 

determined as 5 h on the basis of microstructural studies and the mechanical 

properties of the produced glass-ceramics nucleated at different holding times. In this 

study, maximum nucleation temperature and time for CRG sample were selected as 

958 K and 4 h on the basis of DTA results that are given in Table 6.14. These results 

are very close to the results obtained in a previous study [118], however DTA 

technique is more convenient and shorter. The crystallization temperature of CG-97 

glass was determined as 1142 K which is lower than the crystallization temperature 

of 1190 K obtained in the previous study [118]. 

 

Table 6.11: Tp and δ(T)p values of CRG sample 

Tp and δ(T)p  values for  different 

nucleation temperatures 

Tp and δ(T)p  values for different holding 

times at 963 K 

Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p 

953 4 1128 2.301 963 1 1132 2.503 

963 4 1125 2.572 963 2 1127 2.542 

968 4 1136 2.512 963 3 1126 2.558 

973 4 1141 2.428 963 4 1125 2.572 

 

Table 6.12: Tp and δ(T)p values of ORSG sample 

Tp and δ(T)p  values for  different 

nucleation temperatures 

Tp and δ(T)p  values for different holding 

times at 963 K 

Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p 

978 4 1188 0.714 988 1 1187 0.718 

983 4 1185 0.725 988 2 1178 0.794 

988 4 1183 0.753 988 3 1180 0.773 

993 4 1192 0.614 988 4 1183 0.753 
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Table 6.13: Tp and δ(T)p values of TG sample 

Tp and δ(T)p  values for  different 

nucleation temperatures 

Tp and δ(T)p  values for different holding 

times at 963 K 

Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p 

943 4 1138 0.654 948 1 1143 0.621 

948 4 1136 0.669 948 2 1130 0.706 

953 4 1141 0.646 948 3 1134 0.682 

958 4 1142 0.634 948 4 1136 0.669 

 

Table 6.14: Tp and δ(T)p values of CG sample 

Tp and δ(T)p  values for  different 

nucleation temperatures 

Tp and δ(T)p  values for different holding 

times at 963 K 

Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p Nuc. temp. 

(K) 

Hold. 

time (h) 

Tp (K) δ(T)p 

958 4 1133 1.015 958 1 1141 0.882 

963 4 1138 0.908 958 2 1137 0.912 

968 4 1145 0.825 958 3 1133 1.018 

973 4 1146 0.802 958 4 1133 1.015 

 

6.6.2 Kinetic parameters of crystal growth 

 

The crystallization kinetics of glasses produced from waste materials was 

investigated by using both isothermal and non-isothermal methods. Coarse (particle 

size is about 1 mm) and fine (particle size is less than 180 µm) glasses with sample 

weight of ≈20 mg were used in all DTA experiments. There were three main aim for 

conducting these experiments: 1) to determine more accurate value for the Avrami 

exponent, n, and activation energy for crystallization, E., 2) to examine the effect of 

particle size on crystallization mechanism and 3) to compare the results of kinetic 

data as determined by isothermal and non-isothermal methods. 
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6.6.2.1 Non-isothermal analysis 

 

The kinetic parameters of the glass-crystallization transformation were estimated 

under non-isothermal conditions applying three different equations, namely, 

Kissinger[70], Matusuta-Sakka[38,54,71] and Ozawa[73]. Non-isothermal DTA 

curves were obtained with selected heating rates (5, 10, 15 and 20 K/min) using both 

coarse and fine glass samples. Typical DTA graphs for coarse and fine samples of 

CRG, ORSG and TG glasses recorded at 4 different heating rates were shown in 

Figures B9-10, B11-12 and B13-14 in Appendix B, respectively. The characteristic 

temperature and the heights of the crystallization peaks of CRG, ORSG and TG 

glasses of both coarse and fine particles measured by DTA were given in Tables 

6.15, 6.16 and 6.17, respectively. As can be seen in Figures B9-14 and Tables 6.15-

17, crystallization peak temperatures of all glass samples increased with the increase 

in heating rates. Tp for coarse particles was significantly higher than that for fine 

particles and this difference in Tp increased consistently with increasing heating rate.  

Table 6.15: DTA results of coarse and fine CRG sample 

Coarse Particles Fine Particles  

Heating rate (K/min) 

 

Crystallization  

temp. (K) 

Crystallization 

temp. (K) 

5 1157 1080 

10 1187 1091 

15 1205 1108 

20 1222 1113 
 

Table 6.16: DTA results of coarse and fine ORSG sample 

Coarse Particles Fine Particles  

Heating rate (K/min) Crystallization 

temp. (K) 

Crystallization 

temp. (K) 

5 1200 1082 

10 1222 1097 

15 1237 1108 

20 1254 1110 
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Table 6.17: DTA results of coarse and fine TG sample 

Coarse Particles Fine Particles  

Heating rate (K/min) Crystallization 

temp. (K) 

Crystallization 

temp. (K) 

5 1134 1043 

10 1149 1046 

15 1161 1050 

20 1166 1060 

 

At a particular heating rate, the Tp for a glass depends on the total concentration of 

surface and bulk nuclei present in the glass and decreases with increasing 

concentration of nuclei. Since the surface area increases with decreasing particle size, 

the concentration of surface nuclei is expected to be higher for fine particles. If a 

glass is not initially saturated with internal nuclei, the concentration of nuclei will be 

higher for lower heating rates, since the glass spends longer time in the temperature 

range where nucleation can occur. The effect of these internal nuclei on 

crystallization is more pronounced in coarse particles, as they provide larger 

effective volumes for internal nucleation. It is expected that at low heating rates, all 

the different particle sizes are highly nucleated (surface or bulk). At high heating 

rates, the concentration of nuclei in the coarse particles is less than that in the fine 

particles so that crystallization for coarse particles occurs at a higher temperature. 

This is due to the particle size effect on heat transfer. Temperature gradients 

developed between the surrounding air and the surface of the glass sample and inside 

the glass sample. Temperature gradients can arise when the glass samples 

dimensions or the heating rate are relatively high. At a given heating rate, coarse 

particles have greater heat transfer resistance, so it takes longer for the center of the 

particle to reach the furnace temperature and a higher observed crystallization 

temperature results. The concentration of nuclei in coarse particles is expected to 

decrease with increasing heating rate (less time in the nucleation range), so the 

difference in nuclei concentration between coarse and fine particles will increase 

with increasing heating rate. This will cause the difference in Tp between coarse and 

fine particles with increasing heating rate. This case has also been observed by 

several researchers [111,217,220-222].  
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Matusuta-Sakka [54] mentioned that the Kissinger equation is valid only when the 

number of nuclei is fixed during crystal growth. If most of the nuclei are formed 

during the DTA scan, the activation energy values from the Kissinger equation are 

incorrect. Therefore, CRG, ORSG and TG glasses were completely nucleated at the 

transition temperature and the crystallization behavior of these nucleated glasses was 

also examined by using DTA scans. For this purpose, , CRG, ORSG and TG glass 

samples were heated at different heating rates of 5, 10, 15 and 20 K/min, until the 

maximum nucleation temperature and nucleated at this temperature for the maximum 

nucleation time determined in the previous section. Then the nucleated samples were 

crystallized at these heating rates without being removed from DTA. DTA scans of 

the completely nucleated CRG, ORSG and TG glasses of coarse and fine particles 

were shown in Figures B15, B16-17 and B18-19 in Appendix B, respectively. Tables 

6.18-6.20 list the crystallization peak temperatures of the CRG, ORSG and TG 

glasses according to the heating rates. However, DTA results of CRG glasses of fine 

particles could not be given since Tp values were found same for all heating rates. In 

this case, it is impossible to determine the activation energy of fine CRG glasses by 

using Kissinger equation. As can be seen from Figures B15-19 and Tables 6.18-20, 

Tp values increased with the increasing in particle size as it was observed in the 

glasses which were not nucleated at Tg. If we compare the DTA results of as-

quenched and fully nucleated glasses of both coarse and fine particles, we can see 

that there is a small difference in each of the Tp values of the quenched and nucleated 

glasses. The decreased Tp values in the nucleated glasses would result from the 

increased number of nuclei as it was discussed in the previous sections. The variation 

of crystallization peaks of as-quenched glasses with different DTA heating rates can 

be used to estimate the activation energy for crystallization and to determine the 

crystallization mechanism. In comparison with the fully nucleated CRG, ORSG and 

TG glasses, as-quenched glasses that were not heat treated, were expected to be 

initially unsaturated with nuclei. Therefore, internal nuclei could form in as-

quenched glass samples during the DTA measurements, and the number of nuclei 

formed during the DTA run will be a function of α. This means that crystal growth in 

as-quenched glass samples could occur on a different number of nuclei when 

crystallized at different values of α. Since the number of nuclei available for crystal 

growth decreases with increasing α (less time in the nucleation temperature range), 
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Tp shifts to a progressively higher temperature with increasing heating rate [72]. This 

temperature is higher than what it would be if the crystal growth occurred on a fixed 

number of nuclei as it was observed in the fully nucleated glasses. 

 

Table 6.18: DTA results of the CRG glasses held at nucleation temperature for 4 h 

Coarse Particles 

Heating rate 

(K/min) 

Nuc. temp. 

(K) 

Crystallization temp. 

 (K) 

5 943 1129 

10 958 1149 

15 963 1160 

20 968 1168 
 

Table 6.19: DTA results of coarse and fine ORSG glass samples held at nucleation 

temperature for 2 h 

Coarse Particles Fine Particles  

Heating rate 

(K/min) 

Nuc. 

temp. (K) 

Crystallization 

temp. (K) 

Nuc. 

temp. (K) 

Crystallization 

temp. (K) 

5 973 1170 983 1059 

10 978 1190 985 1073 

15 980 1198 990 1083 

20 983 1205 993 1084 
 

Table 6.20: DTA results of coarse and fine TG glass samples held at nucleation 

temperature for 2 h 

Coarse Particles Fine Particles  

Heating rate 

(K/min) 

Nuc. 

temp. (K) 

Crystallization 

temp. (K) 

Nuc. 

temp. (K) 

Crystallization 

temp. (K) 

5 940 1130 930 1020 

10 943 1140 935 1026 

15 944 1151 941 1031 

20 964 1159 953 1038 
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Assuming that the nucleation and growth processes had occurred simultaneously in 

as-quenched samples during the DTA measurements, the data for as-quenched 

glasses were analyzed by Matusita-Sakka model (Eq. (3.14)) to determine Ec. Since 

Eq. (3.14) includes the parameters of n and m, their values first determined using 

Ozawa model (Eq.(3.22)). Plots of ln(-ln(1-x))- (x values were determined according 

to the Figure A.1) vs. lnα for CRG glass of coarse and fine particles are shown in 

Figure 6.23 and the values of n determined from the slopes of these plots are found 

as 3.42 for coarse particles and 1.36 for fine particles. These values indicate that bulk 

and surface crystallizations are dominant in the coarse and fine particles, 

respectively. The m value for the coarse particles should be equal to n-1, i.e. 2.42 

from Table 3.1. Fine particles have a larger effective surface area so that the number 

of internal nuclei formed during the DTA run could be neglected. This means that 

crystal growth for glasses of fine particles should have occurred on a fixed number of 

nuclei during the DTA measurements. Therefore, we can assume that n is equal to m 

for the fine glasses. n = m =1.36 for CRG glass of fine particles and these value is 

very close to 1 which means surface crystallization is dominant. By substituting the 

appropriate values of n, m and R (R value was taken as 8.3144 J/molK) in Matusita-

Sakka equation (Eq.(3.14)), the following equations can be obtained for both coarse 

and fine particles: 
 
 
 

For coarse particles  c
RT

E
T p

c

p

+
−

=








 42.2ln 2

42.3α    (6.3) 

For fine particles  c
RT
E

T p

c

p

+
−

=








 36.1ln 2

36.1α    (6.4) 
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Figure 6.23: The Ozawa plots of the coarse and fine CRG glasses 
                                 

Using n and m values, Matusita-Sakka plots, ln(αn/Tp
2) vs. 1/Tp, for CRG sample 

yield Ec values as 350 and 372 kJ/mol for coarse and fine particles, respectively 

(Figures 6.24 and 6.25). Also using the Kissinger model (Eq.(3.19)), Eck values of as-

quenched glass of coarse and fine particles can be determined from the slope of the 

plots ln(α/Tp) vs. 1/Tp(Figure 6.26). For coarse particle Eck is equal to 233 kJ/mol 

that is lower than the Ec value determined by Matusita-Sakka model. By using 

Eq.(3.21), i.e., multiplying Eck value for coarse particles by the factor n/m 

(=3.42/2.42) yields Ec value of 330 kJ/mol. For fine particles Eck value is equal to 

369 kJ/mol that is close to Ec value determined from the Matusita-Sakka model. For 

n=m, i.e., when crystallization occurs on a fixed number of nuclei, Eck = Ec. This 

case shows that the crystal growth for fine particles occurred on a fixed number of 

nuclei during the DTA measurements, so that all models gave similar results for 

activation energy of fine glasses (allowing for experimental errors, Ec values of all 

models are close to each other).  
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Figure 6.24: The Matusita-Sakka plot of the coarse CRG glass 
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Figure 6.25: The Matusita-Sakka plot of the fine CRG glass 
 
In order to determine the activation energy value for crystallization of completely 

nucleated CRG glass the Kissinger model (Eq.(3.19)) was applied. Figure 6.27 shows 

the Kissinger plot of the fully nucleated glasses of coarse particles. From the slope of 

the plot the activation energy for crystallization, Eck, was determined as 370 kJ/mol. 

This activation energy is more closer to the Ec value determined by using Matusita-

Sakka method than the Eck value which was estimated for as-quenched CRG glass by 
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using Kissinger model (Eq.(3.19)). If we consider the experimental errors, Ec values 

of CRG glass of coarse particles determined from all models are close to each other.  
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Figure 6.26: The Kissinger plots of the coarse and fine as-q
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Figure 6.27: The Kissinger plot of the fully nucleated coars

 

The Ozawa plots of ln(-ln(1-x)) vs. 1/Tp for the coarse a

ORSG glass are linear according to Eq.(3.22) with n 

respectively (Figure 6.28). n = 3.68 value for coarse par

crystallization while n = 1.24 value for fine particles

crystallization. For coarse particles m is equal to 2.68 while
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particles. If we place the n and m values into Matusita-Sakka equation (Eq.(3.14)), 

following new equations for coarse and fine particles are obtained: 

For coarse particles  c
RT
E

T p

c

p

+
−

=








 68.2ln 2

68.3α    (6.5) 

For fine particles  c
RT
E

T p

c

p

+
−

=








 24.1ln 2

24.1α    (6.6) 

 

By plotting ln(αn/Tp
2) vs. 1/Tp, Ec values for coarse and fine particles were estimated 

from the slope of straight lines as 439 and 450 kJ/mol, respectively (Figures 6.29 and 

6.30). Kissinger equation was used to determine the Eck values of as-quenched 

ORSG glasses. Plot of ln(α/Tp
2) vs. 1/Tp, for coarse and fine particles is shown in 

Figure 6.31 and the values of Eck obtained from the slopes of these plots are equal to 

305 and 444 kJ/mol, respectively. The activation energy of fine glass obtained from 

Kissinger equation is close to the Ec value of fine glass estimated from Matusita-

Sakka equation. n value of fine ORSG glass was found 1.24 which indicates the 

surface crystallization. We know that Kissinger equation (Eq. (3.19)) is valid only 

when the crystallization occurs on a fixed number of nuclei during the DTA runs or 

when the surface crystallization mechanism is dominant in the glass. Therefore, Eck 

value of fine ORSG glass is more accurate than the Eck value of coarse ORSG glass. 

If we multiply Eck value of coarse particles with n/m (=3.68/2.68) we obtained Ec 

value as 414 kJ/mol by using the Eq. (3.21).  

 

The activation energies of fully nucleated ORSG glasses were also determined by 

using Kissinger equation (Eq. (3.19)). By substituting α values and corresponding Tp 

values into Eq. (3.19), the Kissinger plots of coarse and fine particles were obtained 

as given in Figure 6.32,. The values of Eck for coarse and fine particles estimated 

from the slope of Kissinger plots are 446 and 469 kJ/mol, respectively. If we 

compare the Ec values determined by using all models for coarse particles, it can be 

seen that the Ec values are very close to each other. The same situation can be 

observed in the Ec values of fine particles. 
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Figure 6.28: The Ozawa plots of the coarse and fine ORSG glasses 
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Figure 6.29: The Matusita-Sakka plot of the coarse ORSG glass  

 

Plots of ln(-ln(1-x)) vs. 1/Tp (Eq.(3.22)) for crystallization of coarse and fine TG 

glasses are presented in Figure 6.33. n values of coarse glasses were estimated from 

the slope of Ozawa plot as 4.84 (m = n-1 = 3.84) which indicates the bulk 

crystallization, while n value of fine glasses is 1.7 (m = n= 1.7) which indicates that 

primary crystallization started from the surface of the sample.  
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Figure 6.30: The Matusita-Sakka plot of the fine ORSG glass  

7.9 8.0 8.1 8.2 8.3 8.4

-12.8

-12.4

-12.0

-11.6

-11.2

       9.0 9.1 9.1 9.2 9.2 9.3

-12.4

-12.0

-11.6

-11.2

-10.8

 

Coarse Fine 

ln
(α

/T
p2 ) 

ln
(α

/T
p2 ) 

 1/Tp *10-4 (K-1) 1/Tp *10-4 (K-1) 
 

Figure 6.31: The Kissinger plots of the coarse and fine as-quenched ORSG glasses  

 

By substituting n and m values into Eq.(3.14), the following equations were obtained 

for coarse and fine particles: 

For coarse particles  c
RT
E

T p

c

p

+
−

=








 84.3ln 2
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For fine particles  c
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Figure 6.32:The Kissinger plots of the coarse and fine fully nucleated ORSG glasses  
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Figure 6.33: The Ozawa plots of the coarse and fine TG glasses 

 

From the slopes, ln(αn/Tp
2) vs. 1/Tp, in Figures 6.34 and 6.35 , we obtained the Ec 

values as 578 kJ/mol for coarse glasses and 654 kJ/mol for fine glasses. From the 

Figure 6.36 the corresponding Eck values from the Kissinger method were obtained 

as 444 kJ/mol for coarse glasses and 645 kJ/mol for fine glasses. Also, by 

multiplying Eck for coarse TG sample determined from Kissinger method (444 

kJ/mol) by the factor n/m (=4.84/3.84) gives Ec value of 560 kJ/mol that is close to 

the other Ec values of coarse TG glasses. By applying Kissinger equation (Eq. (3.19)) 
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on fully nucleated coarse and fine glasses, Eck values were obtained. The Kissinger 

plot, ln(α/Tp
2) vs. 1/Tp, for the data given in Table 6.20 is shown in Figure 6.37. Eck 

values of coarse and fine particles determined from the slopes of Kissinger plots are 

544 and 662 kJ/mol, respectively. It’s clearly seen that the data of fully nucleated 

glasses gave more accurate results for Ec value than the data of as-quenched glasses 

when Kissinger method (Eq. (3.19)) was applied on the DTA results of these glasses.  
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Figure 6.34: The Matusita-Sakka plot of the coarse TG glass 
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Figure 6.36: The Kissinger plots of the coarse and fine as-quenched TG glasses 
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Figure 6.37: The Kissinger plot of the fully nucleated coarse TG glass 

 

For all as-quenched glass samples, the Eck values of coarse particles obtained from 

Kissinger method are lower than the Ec value of coarse particles determined from 

Matusita-Sakka method. However, activation energy values of fine glasses estimated 

from all methods are close to each other. The difference observed in activation 

energy values for coarse glasses is discussible when the Kissinger equation is used 

for the estimation of activation energy, E. Matusita-Sakka stated that Kissinger 

equation can only be used when crystallization occurs on a fixed number of nuclei as 

in the case of fine glass samples. Therefore, this result confirms that Ec value will be 

acceptable if the crystallization is made to occur on a fixed number of nuclei. 
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However, the analysis of crystallization data by using the Kissinger method will 

yield unacceptable values for Ec if nucleation and crystallization occur 

simultaneously. This result further confirms the necessity of using Matusita-Sakka 

model in determining Ec if the glass is initially unsaturated with nuclei. The 

Kissinger method can only be used to determine Ec values if the glass is fully 

nucleated with surface or bulk nuclei prior to crystallization so that crystal growth at 

a different α occurs always on a fixed number of nuclei.  

 

Tables 6.21 and 6.22 show Ec, n and m values of CRG, ORSG and TG glasses of 

coarse and fine particles, respectively. As seen from these tables, n and m values are 

different for coarse and fine glasses. It is important to note that during the DTA run, 

surface and bulk crystallization may proceed simultaneously but if there is a control 

of particle size in glass, the crystallization may be governed by particle size. The 

differences in activation energies obtained in this study could result from a different 

crystallization mechanism, which is strongly influenced by the particle size in 

glasses. As it was also observed in all glass samples high Ec value is associated with 

surface crystallization while small Ec value is associated with bulk crystallization in 

the same glass. 

 

The differences in n and m values obtained for coarse and fine glasses can be 

explained in terms of glass particle size. Large particles have much less surface area 

and few nuclei are formed. In this case, the dominant process would be the growth of 

nuclei. On heating above Tg, the nuclei are surrounded by liquid and their growth 

would be three-dimensional. As seen from Table 6.21, n values of all coarse glasses 

indicate the three-dimensional bulk crystallization. The larger surface area of smaller 

particles will contain larger numbers of nuclei. Supposing that glass surface is 

completely crystallized, crystal growth proceed one-dimensionally from surface to 

interior of the glass [223]. This statement can be clearly seen from Table 6.22. n 

values of fine samples showed that the crystallization mechanism is one-dimensional 

surface crystallization. The values of n obtained experimentally are changed in the 

range of 1.24 -1.7 for fine glasses. Table 6.23 shows the theoretical values of n at 

zero nucleation rate at crystal growth [224]. Comparing the experimental n values 

with those of the theoretical, it is found that the controlling mechanism may be either 

two-or three-dimension diffusional (n=1.0-1.5) or one-dimensional interfacial growth 
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(n =1)for the crystalline phase of fine glass-ceramic samples. n values of coarse 

glasses could not be compared with the theoretical values of n, since the crystal 

growth of coarse glasses did not occur on a fixed number of nuclei. The value of m 

coefficient depends on the mechanism for the formation of nuclei as summarized in 

Table 6.24 [225]. The m and n values determined for the coarse CRG and ORG 

glasses means that the nucleation growth occurred two- and three-dimensional 

interfacial controlled growth, respectively. m value of coarse TG sample is close to 4 

which means the constant rate of nucleation with a three-dimensional interfacial 

controlled growth. However, nucleation and crystal growth processes occurred with 

an increasing number of nuclei as it was determined previously. n = 4.84 and m = 

3.84 values are too high for coarse TG glasses assuming with the experimental 

errors. Actually, experiences show that obtaining n value of higher than 4 is very 

difficult and sometimes impossible for glasses [224]. m value of fine CRG, ORSG 

and TG glasses are changed in the range of 1.24–1.7. These values indicated that the 

crystallization growth occurred by three-dimensional diffusional controlled 

mechanism. These results showed that bulk crystallization with a three-dimensional 

interfacial controlled growth occurred in the coarse glass samples while the surface 

crystallization mechanism was dominant in the fine glasses with a one-dimensional 

growth.  

 

The crystallization mode of a glass has a practical importance in the usage of it and 

also in the fabrication of a glass-ceramic since the surface crystallization mode may 

introduce huge thermal expansion difference at the boundary between the glass phase 

and crystallized phase, building up high tensile stress. This high tensile stress at the 

interface mostly causes total failure of the glass. On the other hand, in the case of the 

bulk crystallization mode where the crystal growth occurs at the finely distributed 

precursor nuclei in the glass, the huge thermal expansion coefficient gradient across 

the whole body does not occur and the glass body is safe against the thermal failure 

[219]. Therefore, from this perspective the bulk crystallization is desirable compared 

to the surface crystallization.  
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Table 6.21: Ec, n and m values of the coarse glasses 

Activation Energy (kJ/mol)  

 

Sample Name 

Matusita-Sakka 

Method 

 

Kissinger 

Method 

Isothermal 

Kissinger 

Method 

 

 

 

n 

 

 

 

m 

CRG 350 233 370 3.42 2.42 

ORSG 439 305 446 3.68 2.68 

TG 578 444 544 4.84 3.84 

 

Table 6.22: Ec, n and m values of the fine glasses 

Activation Energy (kJ/mol)  

 

Sample Name 

Matusita-Sakka 

Method 

 

Kissinger 

Method 

Isothermal 

Kissinger 

Method 

 

 

 

n 

 

 

 

m 

CRG 372 369 - 1.36 1.36 

ORSG 450 444 469 1.24 1.24 

TG 654 645 662 1.70 1.70 

 

As seen from Tables 6.21 and 6.22, crystallization of fine glasses requires with 

higher activation energy than coarse glasses for all glass samples. This result may be 

understood that the surface strain of the grain boundaries of the glasses effects on the 

nucleation and growth of crystals inside the glass. The applied energy from DTA 

may be exhausted in the part for the crystallization inside the glass and the other part 

for the surface strain from the grain boundaries of the glass particles. Since the small 

sized glasses have large surface grain energy compared with the large sized glass 

particles, thus the more energy is needed relatively for the crystallization in the small 

sized glass sample. It can be clearly seen that activation energy is dependent on 

temperature, i.e., the higher crystallization temperature is correlated with lower 

activation energy. In the case of surface nucleation, smaller particle size with its 

relatively large specific surface area helps the occurrence of crystallization and thus 

decreases the crystallization temperature. Consequently, Ec is larger for fine glass 

samples than that observed for coarse glasses. These observations were reported by 

several authors [133,220,221,223,226]. The crystallization activation energies of 
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coarse CRG, ORSG and TG glasses are changed in the range of 233-370 kJ/mol, 

305-446 kJ/mol and 444-578 kJ/mol, respectively while the activation energies of 

fine CRG, ORSG and TG glasses are changed in the range of 369-372 kJ/mol, 444-

469 kJ/mol and 645-662 kJ/mol, respectively. The activation energy determined from 

Matusita-Sakka and isothermal Kissinger methods are close to each other in each 

glasses of both coarse and fine particles. These results showed the accuracy of the 

applied methods.  

 

The studied glasses are in the SiO2-Al2O3-Fe2O3-CaO quartet system since the mixed 

wastes are mainly composed of SiO2, Al2O3, Fe2O3 and CaO. With the solid-state 

reactions and the rearrangement of these structures, crystalline phases occur in the 

glassy matrix when the heat treatment process was applied on the glass samples. This 

must require breaking and reforming of the Si-O, Al-O, Fe-O and Ca-O bonds. The 

single bond strength of the Si-O, Al-O, Fe-O and Ca-O bonds are 445, 423, 335 and 

128 kJ/mol, respectively [224,226,227]. The crystallization activation energies of 

ORGS and CRG glasses are close to Si-O, Al-O and Fe-O bond strengths while the 

Ec value of TG glass is higher than those of the bond strengths. This result is 

consistent with the mechanism requiring the breaking of Si-O, Al-O and Fe-O bonds 

and also rules out their possibilities as a reaction controlling kinetics in forming 

crystalline phases in the glassy matrix. The Ec value of TG glass is higher than the Ec 

values of CRG and ORSG glasses. Since the SiO2 and Al2O3 contents of TG glasses 

are so high these Ec values are relatively high. It was also observed that the increase 

in Fe2O3 content in the glass compositions caused a decrease in the activation 

energies of the glasses. Since the CRG glass has the highest Fe2O3 content, its Ec 

value is the lowest one. This result was also observed in the other studies [126,228]. 

Iron oxides caused to lower glass viscosity and crystallization temperatures 

consequently increase the crystal growth rate. Despite that it is usually an 

intermediate glass network ion, the Fe3+ could act as a modifier of the glass structure, 

breaking the Si-O bonds. Therefore, the Ec value of TG glass is the highest one in all 

glass samples.  

 

Only a few researchers studied the crystallization kinetics of coal fly ash based 

glasses. Crystallization activation energy values of glasses produced from coal fly 

ashes were found 283 and 318 kJ/mol in the previous studies [135,136] which are 
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lower than the Ec values obtained in this study since the chemical composition of the 

studied glassy systems are different from each other. The calculated crystallization 

activation energy value of CRG glass is close to the value of 370 kJ/mol found by 

Cioffi et al. [134] for a glass produced from coal fly ash while the Ec values of 

ORSG and TG glasses are higher than that value. The activation energy values for 

crystallization are lower for the incinerator fly ashes than for coal fly ash containing 

glasses, which are in the SiO2-Al2O3-Fe2O3-CaO quartet glassy systems. The 

crystallization activation energy values for incinerator fly ashes are changed in the 

range of 379-468 kJ/mol [131,133,209], while the Ec values of glasses produced 

from industrial wastes (such as coal fly ash, glass cullet and soda-lime) are changed 

in the range of 534-545 kJ/mol [111,137]. These values are close to the Ec values of 

CRG and ORSG glasses obtained in this study.  
 

Table 6.23: Theoretical values of Avrami exponent, n, at zero nucleation rate[224] 
 

 Diffusion-controlled Interface-controlled 

3-dimension 1.5 3.0 

2-dimension 1.0 2.0 

1-dimension 0.5 1.0 
 

Table 6.24: Physical meaning of Johnson-Mehl-Avrami kinetic coefficient, m[225] 
 

Law of growing nuclei Type of nucleation and 
geometry of growing Interface-controlled Diffusion-controlled 
Instantaneous nucleation and 
one-dimensional growth 

1.0 0.5 

Instantaneous nucleation and 
two-dimensional growth 

2.0 1.0 

Instantaneous nucleation and 
three-dimensional growth 

3.0 1.5 

Constant rate of nucleation 
and one-dimensional growth 

2.0 1.5 

Constant rate of nucleation 
and two-dimensional growth 

3.0 2.0 

Constant rate of nucleation 
and three-dimensional growth 

4.0 2.5 
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6.6.2.2 Isothermal analysis 

 

The crystallization kinetics of the as-quenched coarse and fine glasses were also 

examined using isothermal differential thermal analysis. The DTA results were 

analyzed with the equation derived by Johnson-Mehl-Avrami (JMA)[43,59-62]. 

There were two main aims for conducting these experiments: 1) to determine a more 

accurate value for the Avrami exponent and Ec, 2) to compare the results of kinetic 

data as determined by isothermal and non-isothermal methods. The isothermal 

experiments were conducted in accordance with procedures stated in section 3.3.2.1. 

The obtained crystallization peak temperatures of CG-97, ORSG and TG glasses as a 

function of particle size were given in Tables 6.25-6.27. DTA graphs of CG-97, 

ORSG and TG glasses can be seen in Figures B20-37 in Appendix B. All exothermic 

peak’s shape and temperature were the same for the CRG glass. Therefore, JMA 

method could not be applied on CRG glasses of both coarse and fine glasses since 

the crystallized fraction, x, up to any time, could not be determined from the 

exothermic peaks in each DTA graph. The crystallization kinetics of CG-97 glasses 

obtained in a previous study [135] did not estimate from the isothermal methods so 

that isothermal DTA data of CG-97 glasses were obtained and examined in this 

study. As seen from Tables 6.25-6.27, coarse particles have higher Tp values than the 

fine particles in convenience with the non-isothermal methods. The increase in 

specific surface area of the glass samples would result in the decrease in Tp for the 

case of surface crystallization.  

 

The isothermal heat treatments of the coarse and fine CG-97 glasses were carried out 

in the temperature range of 1023-1058 K. The variation of the crystallized fraction 

(x) as a function of the isothermal hold time for both glass samples is shown in 

Figure 6.38. It is clearly seen that to complete crystallization at lower temperatures 

for glass samples take longer time. Crystallized fraction, x, at the range of 0.1-0.95 

was employed to coarse and fine glass samples to construct the ln(-(ln(1-x)) versus ln 

t plots shown in Fig. 6.39. Determined values of the reaction rate constant and 

Avrami exponent from these plots are given in Table 6.28. The values of n of the 

coarse samples are roughly close to the values determined by the non-isothermal 

method previously [135]. Although the crystallization of the coarse samples is 
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governed by two dimensional bulk crystallization, the Avrami exponent values of the 

fine samples indicate that the mechanism is surface crystallization. Since fine 

samples have larger surface area than the coarse samples, this result is expected. The 

effective volume to surface area ratio is larger for coarse samples than fine samples. 

Therefore, bulk crystallization as opposed to surface crystallization is expected for 

coarse samples [72]. A plot of lnk as a function of 1/T is given in Fig. 6.40. 

Activation energies of the crystallization for coarse and fine particles were 

determined as 297 and 348 kJ/mol, respectively. The activation energy value of the 

coarse particles is close to the value determined by the non-isothermal method 

previously [135]. Fine particles have higher crystallization activation energy values 

than coarse particles. The frequency factors for coarse and fine particles were 

calculated as 1.94x1013 and 1.36x1016, respectively. 

 

 

Table 6.25: DTA results of CG-97 sample obtained from isothermal method 

Heating rate 20K/dak 

Coarse particles Fine particles 

Samples nucleated at 973 K for 2 h Samples nucleated at 983 K for 2 h 

Selected temperatures below 

the crystallization temperature 

(K) 

Selected temperatures below the 

crystallization temperature 

 (K) 

1038 1048 1058 1023 1033 1043 

 

Holding 

time 

(min) 

Crystallization peak 

temperatures (K) 

 

Holding 

time 

(min) 

Crystallization peak 

temperatures (K) 

15 1189 1166 1160 15 1161 1160 1159 

30 1185 1160 1148 30 1157 1158 1155 

60 1181 1156 1145 60 1155 1156 1153 
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Table 6.26: DTA results of ORSG sample obtained from isothermal method 

Heating rate 20K/dak 

Coarse particles Fine particles 

Samples nucleated at 1033 K for 2 h Samples nucleated at 988 K for 2 h 

Selected temperatures below 

the crystallization temperature 

(K) 

Selected temperatures below the 

crystallization temperature 

 (K) 

1073 1093 1113 1033 1053 1073 

 

Holding 

time 

(min) 

Crystallization peak 

temperatures (K) 

 

Holding 

time 

(min) 

Crystallization peak 

temperatures (K) 

15 1252 1250 1248 15 1187 1182 1179 

30 1251 1249 1248 30 1186 1181 1177 

60 1251 1249 1247 60 1183 1180 1170 

 

Table 6.27: DTA results of TG sample obtained from isothermal method 

Heating rate 20K/dak 

Coarse particles Fine particles 

Samples nucleated at 963 K for 2 h Samples nucleated at 953 K for 2 h 

Selected temperatures below 

the crystallization temperature 

(K) 

Selected temperatures below the 

crystallization temperature 

 (K) 

1033 1053 1073 1033 1053 1073 

 

Holding 

time 

(min) 

Crystallization peak 

temperatures (K) 

 

Holding 

time 

(min) 

Crystallization peak 

temperatures (K) 

15 1171 1169 1156 15 1164 1155 1156 

30 1171 1166 1153 30 1163 1154 1152 

60 1169 1164 1152 60 1156 1154 1151 
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Figure 6.38: Plots of coarse and fine CG-97 glasses crystallized as a function of 

isothermal hold time 
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Figure 6.39:  Plot of ln(-ln(1-x)) vs ln t for coarse and fine CG-97 glasses 
 

Table 6.28: Avrami exponent and reaction rate values of coarse and fine CG-97 

glasses 

Coarse particles Fine particles 

T (K) ln k(min-1) n T (K) ln k(min-1) n 

1038 -3.75 2.673 1023 -3.685 1.087 

1048 -3.48 2.480 1033 -3.440 1.075 

1058 -3.10 2.330 1043 -2.900 1.069 
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Figure 6.40: Plot of ln k vs 1/T for determining the values of E and A 

 

The isothermal DTA measurements of coarse and fine ORSG glasses were 

performed between 953-1113 K since ORSG glasses showed reasonable peak shapes 

for data analysis in this range. The crystallized fraction as a function of time for both 

coarse and fine glasses can be seen from Figure 6.41. As it was observed from the 

Figure 6.41, it takes longer time for the ORSG glass to complete crystallization at 

lower temperature. Information derived from these plots over the range of x from 

0.1-0.9 was employed to construct the ln(-ln(1-x)) vs. ln t plots shown in Figure 6.42. 

These plots were subsequently used to determine values for the reaction rate 

constant, k, and n in this range of temperature. The obtained data as summarized in 

Table 6.29 were then used to plot the graph of ln k vs. 1/T, shown in Figure 6.43 The 

average n value of coarse samples (n=3.37) indicates the three-dimensional bulk 

crystallization while the one-dimensional surface crystallization mechanism (n 

=1.71) is predominant for fine samples. Crystallization activation energies of coarse 

and fine glasses were estimated from these plots as 435 and 443 kJ/mol, respectively. 

As it was observed in non-isothermal methods, crystallization activation energy 

values increased with the decrease in particle size for the isothermal methods, too. 

The frequency factors for coarse and fine glasses were determined as 2.14x1014 and 

6.13x1019 s-1, respectively. 
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Figure 6.41: Plots of coarse and fine ORSG glasses crystallized as a function of 

isothermal hold time 
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Table 6.29: Avrami exponent and reaction rate values of coarse and fine ORSG 

glasses 

Coarse Fine 

T (K) ln k(min-1) n T (K) ln k(min-1) n 

1073 -11.72 3.39 1033 -6.55 1.75 

1093 -10.78 3.37 1053 -5.95 1.71 

1113 -9.94 3.34 1073 -5.65 1.67 
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Figure 6.43: Plots of ln k vs 1/T for determining the values of E and A  

 

Figure 6.44 shows the calculated results of the crystallized volume fraction of a 

coarse and fine TG glasses as a function of isothermal time at different temperatures 

which are in the range of 923-1073 K. As it was expected from the previous results, 

crystallization completed with the increase in holding time and the isothermal 

temperature. The kinetic parameters for crystallization, n and k, were determined at 

each temperature by using Eq. (3.18) as it was shown in Figure 6.45. The calculated 

values of n and k for each temperature were listed in Table 6.30 and the average 

values of n for coarse and fine glasses were 4.1 and 1.63, respectively. Avrami 

exponent of coarse glasses indicates three-dimensional bulk growth while the n value 

of fine glasses shows one-dimensional surface crystallization as it was observed in 

non-isothermal methods. Figure 6.46 is a plot of the reaction rate, k, vs. temperature, 

T obtained by using the data from Table 6.30. When the equation for reaction rate 

was applied to the plots in Figure 6.46, crystallization activation energy and 

frequency factor for coarse glasses were determined as 548 kJ/mol and 4.83x1018 s-1, 

respectively. The crystallization activation energy and frequency factor of fine 

glasses is 610 kJ/mol and 5.65x1029 s-1, respectively. n values of all coarse and fine 

glasses obtained from JMA model showed that the controlling mechanism was 

diffusion for fine glasses whereas the interface controlled mechanism was 

predominant for coarse glasses. These results were consistent with the results 

obtained in non-isothermal methods.  
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Figure 6.45:  Plots of ln(-ln(1-x)) vs ln t for coarse and fine TG glasses 
 

Table 6.30: Avrami exponent and reaction rate values of coarse and fine TG glasses 

Coarse Fine 

T (K) ln k(min-1) n T (K) ln k(min-1) n 

1033 -16.72 4.24 1033 -6.99 1.639 

1053 -15.48 4.12 1053 -6.26 1.633 

1073 -14.34 3.95 1073 -5.62 1.624 
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Figure 6.46: Plot of ln k vs 1/T for determining the values of E and A  

 

A comparison of kinetic parameters of all coarse and fine glasses, as determined by 

isothermal and non-isothermal methods, is shown in Tables 6.31 and 6.32, 

respectively. The value of n for the isothermal data was computed directly from 

curve fits applied to the entire exotherm instead of by just a calculation based on Tp 

for non-isothermal data. Therefore, n as calculated by the isothermal experiments, 

was more accurate and more precise than that calculated by the non-isothermal 

experiments. The crystallization activation energy values of all coarse and fine 

glasses for the non-isothermal and isothermal methods are roughly close. However, 

Ec values obtained from non-isothermal methods were higher than that obtained from 

isothermal method. The discrepancy between the isothermal and non-isothermal 

results may be interpreted as the experimental error. It must be noted that this 

observation stated by the other authors for different glassy systems [58,229]. The 

isothermal experiments yield the lowest crystallization activation energy. Since the 

samples were heated at the highest rate (20 K/min) to the isothermal hold 

temperatures, it is possible that those conditions were able to force the very earliest 

stages of crystallization. The crystal growth occurred on a fixed number of nuclei for 

all coarse and fine glasses in isothermal methods since the isothermal heat treatments 

were applied to the glasses in every stage (at nucleation and below the crystallization 

temperatures). Consequently, the kinetic parameters determined by isothermal 

analysis were evaluated to be more accurate and more precise then those calculated 

by non-isothermal experiments for two reasons: 1) the JMA equation used for the 
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kinetic model was derived for isothermal transformations and hence no 

approximations, special conditions or assumptions were necessary, 2) the 

calculations were based on a curve fit applied to the exothermic peak, not just on Tp. 

This minimizes potential sources of errors that sometimes occur when using the JMA 

equation to model isothermal experiments. Some disadvantages of this technique, are 

that the experiments take longer time to perform the model and that very precise 

control of the furnace temperature is required.  

 

Table 6.31: Ec, n and m values obtained from both isothermal and non-isothermal 
methods for the coarse glasses 

Activation Energy (kJ/mol) Non-

isothermal 

Isothermal  

 

Sample 

Name 

Matusita-

Sakka 

Method 

Kissinger 

Method 

Isothermal 

Kissinger 

Method 

JMA 

Equation 

 

n 

 

m 

 

n 

 

m 

CRG 350 233 370 - 3.42 2.42 - - 

ORSG 439 305 446 435 3.68 2.68 3.37 3.37 

TG 578 444 544 548 4.84 3.84 4.10 4.10 

CG-97 - - - 297 4.00 3.00 2.50 2.50 

 

Overall results showed that the results of isothermal and non-isothermal 

crystallization kinetics of glasses produced from coal fly ash and the other industrial 

wastes are in agreement within experimental error. These results indicate that the 

data of the crystallization mechanism and crystallization activation energy of glasses 

obtained in this study are accurate and reliable. Although a number of studies have 

been reported on examining the crystallization behavior of glasses produced from 

industrial wastes (such as incinerator fly ash, slag) by using isothermal and non-

isothermal methods [111,112,131,133,162,230], only a few researchers have done 

investigations on glasses produced from coal fly ash [134-136]. The question to be 

addressed is whether or not these kinetic models that we used in this study can be 

applied to the fly ash based glasses by using DTA. The similar non-isothermal and 

isothermal results give us confidence that variable heating rate DTA techniques can 

be used to determine crystallization kinetics of glasses produced from coal fly ash 

and the other industrial wastes.  
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Table 6.32: Ec, n and m values obtained from both isothermal and non-isothermal 

methods for the fine glasses 

Activation Energy (kJ/mol) Non-

isothermal 

Isothermal  

 

Sample 

Name 

Matusita-

Sakka 

Method 

 

Kissinger 

Method 

Isothermal 

Kissinger 

Method 

JMA 

Equation 

 

n 

 

m 

 

n 

 

m 

CRG 372 369 - - 1.36 1.36 - - 

ORSG 450 444 469 443 1.24 1.24 1.71 1.71 

TG 654 645 662 610 1.70 1.70 1.63 1.63 

CG-97 - - - 348 - - 1.08 1.08 

 

6.7 Glass-ceramic Production 

 

The ideal microstructure of glass-ceramics would be well-oriented and fine-grained 

crystallites extending the whole body in order to obtain the best microstructural, 

physical and mechanical properties. In addition, there should be a good bonding 

between crystallites, so that the glass-ceramic will have better properties. Glass-

ceramics can be produced both by a traditional glass-forming technique starting from 

the melted glass, followed by a nucleation, crystallization heat treatment and by glass 

powders sintering thorough heating to high temperatures. One of the main aims of 

this study is to investigate the possibility of obtaining bulk and sintered glass-

ceramics from coal fly ash and the other industrial wastes and to establish the best 

conditions to obtain a product with a high density and crystalline degree. For this 

purpose, bulk and sintered glass-ceramics produced from ORSG, CRG and TG 

glasses according to the procedure described in section 5.5. ORSG, CRG and TG 

glasses were the most appropriate candidates for the glass-ceramic production as it 

was determined previously. In this study, CG-97 glasses were also used to produce 

sintered glass-ceramics to compare the microstructural, physical, mechanical and 

chemical properties with the bulk glass-ceramics obtained in a previous study [118]. 

In all sintered glass-ceramics polyvinyl alcohol (PVA) used as a binder to determine 

its effect in the sintering technique. An idealized heat treatment schedule for 
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producing glass-ceramics from industrial wastes was determined by using the DTA 

results obtained in section 6.6.1. The applied heat treatment schedules to the all 

glasses were given in Table 6.33. CRGC, ORSGC, CGC-97 and TGC are 

corresponded to the glass-ceramics produced from CRG, ORSG, TG and CG-97 

glasses, respectively. P, S and B letters indicate the sintering technique with using 

PVA as a binder, sintering and the bulk process, respectively. All the glass samples 

heat treated at the crystallization temperature for 15, 30 and 60 min to investigate the 

effect of holding time at the crystallization temperature on the properties of glass-

ceramic samples. During all heat-treatment processes, heating rate was selected as 10 

K/min since this rate is sufficiently slow to avoid any deformation of the glass 

samples and to permit crystal growth. 

 

Table 6.33: Codes of the produced glass-ceramic samples 

 

Glass Nucleation Stage Crystallization Stage Code of the 
Glass-ceramic Samples 

Crystallized at 1135 K 
for 15 min 

CRGC-B15; CRGC-S15; 
CRGC-P15 

Crystallized at 1135 K 
for 30 min 

CRGC-B30; CRGC-S30; 
CRGC-P30 

CRG Nucleated at 963 
K for 4 h 

Crystallized at 1135 K 
for 60 min 

CRGC-B60; CRGC-S60; 
CRGC-P60 

Crystallized at 1188 K 
for 15 min 

ORSGC-B15; ORSGC-
S15; ORSGC-P15 

Crystallized at 1188 K 
for 30 min 

ORSGC-B30; ORSGC-
S30; ORSGC-P30 

ORSG Nucleated at 988 
K for 2 h 

Crystallized at 1188 K 
for 60 min 

ORSGC-B60; ORSGC-
S60; ORSGC-P60 

Crystallized at 1140 K 
for 15 min 

TGC-B15; TGC-S15; 
TGC-P15 

Crystallized at 1140 K 
for 30 min 

TGC-B30; TGC-S30; 
TGC-P30 

TG Nucleated at 948 
K for 2 h 

Crystallized at 1140 K 
for 60 min 

TGC-B60; TGC-S60; 
TGC-P60 

Crystallized at 1142 K 
for 15 min 

CGC-B15; CGC-S15; 
CGC-P15 

Crystallized at 1142 K 
for 30 min 

CGC-B30; CGC-S30; 
CGC-P30 

CG-97 Nucleated at 958 
K for 4 h 

Crystallized at 1142 K 
for 60 min 

CGC-B60; CGC-S60; 
CGC-P60 
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6.7.1 Experimental results on CRGC sample 

 

6.7.1.1 Microstructural characterization of CRGC sample 
 

X-ray diffractometry (XRD) scans were carried out on glass-ceramic samples 

produced by using different heat treatment schedules.  In all XRD scans of CRGC 

samples produced using different heat treatment schedules, the d-values matched the 

card values of the diopside-alumina (Ca(Mg,Al)(Si,Al)2O6) phase.  As seen in the 

representative XRD patterns of the CRGC-B samples (Fig. C.1 in Appendix C), all 

the diffraction peaks can be indexed as arising from the reflection planes of the 

diopside-alumina phase which has a monoclinic structure with lattice parameters a = 

0.973 nm, b = 0.887 nm, c = 0.528 nm and β = 105.92° [231].  This is in agreement 

with the reported literature on glass-ceramics produced from raw materials having 

similar chemical compositions to Çayırhan fly ash; either the diopside phase or 

phases belonging to the diopside group (melilite  or akermanite) were reported 

[105,108].  Barbieri et al.[11], Cheng [155] and Boccaccini et al.[10]  also reported 

the formation of the diopside phase during devitrification in the CaO-Al2O3-SiO2 

ternary system. XRD patterns of CRGC-S and CRGC-P samples were given in 

Figures C2-C3 in Appendix C. The main crystalline phase of all CRGC samples is 

diopside since the chemical compositions of those glass-ceramic samples are the 

same. The main crystalline phase cannot change when the production technique of 

glass-ceramic samples is different.  

 

SEM gives very detailed information about the process of conversion of glass into a 

glass-ceramic material. In addition to qualitative evaluation of microstructural 

changes, it also permits quantitative measurements, especially on the number of 

particles, their size and distribution. To examine the microstructural evaluation of 

glass-ceramic samples, SEM investigations were conducted on all samples. Figures 

6.47-6.49 show the SEM micrographs of the glass-ceramics produced by classical 

method. It is clearly seen that tiny crystallites dispersed in the microstructure of the 

samples. Figure 6.47 shows the SEM micrograph of the glass-ceramic sample 

crystallized at 1135 K for 15 min revealing tiny equiaxed crystallites uniformly 

dispersed in the microstructure. The average crystalline size is about 0.25 µm. Figure 

6.48 is a respective typical SEM micrograph of the fly ash-based glass-ceramic 
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crystallized at 1135 K for 30 min. As seen in Figure 6.48, the crystallites are 

uniformly dispersed in the microstructure and the average crystalline grain size is 

about 0.5 µm. As a result of increase in the holding time at the crystallization 

temperature, the average crystalline size for the 30 min sample is larger than that for 

the 15 min sample. Figure 6.49 is a SEM micrograph of the glass-ceramic 

crystallized at 1135 K for 60 min showing the presence of a homogeneous dispersion 

of equiaxed crystallites about 0.5 µm in size.  The crystallites are larger than those of 

the sample crystallized at 1135 K for 15 min.  

 

 

Figure 6.47: SEM micrographs of CRGC-B15 

 

 

Figure 6.48: SEM micrographs of CRGC-B30 
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Figure 6.49: SEM micrographs of CRGC-B60 

 

As seen in Figures 6.47-6.49, progressive increases in holding times at the nucleation 

temperature causes grain growth resulting in larger crystalline sizes in the 

microstructure. SEM micrographs have also shown that all glass-ceramic samples 

comprise uniformly dispersed crystallites with grain sizes varying between 0.25 – 0.5 

µm with an overall mean grain size of 0.3 µm.  This value is better than the mean 

crystalline size reported by Boccaccini et al.[132]. Further, since the controlled heat 

treatment procedure was applied to all glass-ceramic samples of the present 

investigations, the crystallites are more uniformly dispersed than those of the glass-

ceramic sample (code : 4AP) reported by Barbieri et al.[11].  In addition, there are no 

surface cracks observed in the glass-ceramic samples of the present investigation 

contrary to the glass-ceramic reported by Boccaccini et al.[10]. 

 

Cross-sectional SEM investigations were also carried out to characterize the 

crystalline morphology in the bulk of the sample. Figure 6.50 shows the cross-

sectional SEM micrograph of the CRGC-B30 sample. It can be seen from Figure 

6.50 that the similar average crystalline size and morphologies were also detected in 

the cross-sectional SEM investigations. This confirms that bulk crystallization is 

predominant mechanism in the glass-ceramic samples as determined in Section 6.6.2. 

 

Figures 6.51-6.53 show the SEM micrographs of sintered glass-ceramic samples. 

Fig. 6.51 shows the SEM micrograph of the glass-ceramic sample crystallized at 

1135 K for 15 min revealing tiny crystallites dispersed in the microstructure. The 

average crystalline size is about 1.13 µm. It is also seen that some glassy regions are 
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still remained in the bulk of the sample. Fig. 6.52 is a SEM micrograph of the glass-

ceramic sample crystallized at 1135 K for 30 min. The crystalline size of this sample 

varies between 1.5-1.7 µm. The crystallites are larger than that of the glass-ceramic 

sample crystallized at 1135 K for 15 min due to longer holding times at the 

crystallization temperature. It is also seen that the glassy region is smaller and the 

number of crystallites is greater. Fig. 6.53 is a representative SEM micrograph of the 

glass-ceramic sample crystallized at 1135 K for 60 min. As seen in Fig. 6.53, the 

crystallites have grain size between 1.85-2.2 µm and thus are larger than those of the 

samples crystallized at 1135 K for 15 and 30 min. The size and the number of 

crystallites occurred during the heat treatment processes increase with increasing 

holding time at the crystallization temperature. The similar crystalline shapes were 

observed in both sintered and bulk glass-ceramic samples. However, the number of 

the crystallites formed in all sintered glass-ceramic samples was less than the bulk 

glass-ceramic samples. The microcrystalline structures occurred in CRGC-S15 and 

CRGC-S30 samples are better than the microstructures of the sintered glass-ceramics 

reported by Boccaccini et al.[165] and Hong et al.[232]. 

 

 

Figure 6.50: Cross-sectional SEM micrographs of CRGC-B30 
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Figure 6.51: SEM micrographs of CRGC-S15 

 

Figure 6.52: SEM micrographs of CRGC-S30 

 

Figure 6.53: SEM micrographs of CRGC-S60 
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Fusing glass particles into a dense product occurs by viscous phase sintering at 

temperatures much lower than the melting temperatures of crystalline materials of 

the same composition. Sintering mechanism is controlled by glass composition, 

impurities, surface area, packing efficiency and crystallization behavior. The driving 

force for sintering of glass particles is to reduction of surface area. Increasing the 

surface area tends to promote sintering. The surface area is increased by decrease in 

the particle size. Another important parameter that affects sintering is how well the 

particles are initially packed together. Increasing the packing density promotes 

sintering. In the cold pressing technique, the sintering pressure is very important to 

get a better initially packed glass particles. Sintering can also be enhanced by 

additions of binders. Binders can promote sintering, but usually also increase the cost 

and complexity of the materials system. According to the above discussions, the 

presence of the glassy regions in the sintered glass-ceramic samples occurred since 

the selected sintering pressure and the particle size of the glass powders may not be 

suitable for this glass sample. And binderless working can also be another factor that 

resulted to the remained glassy regions. To see the effects of binders PVA was added 

to the glass powders and the glass samples were sintered according to the procedure 

described in Section 5.5.  

 

Figures 6.54-56 show the SEM micrographs of the CRGC-P15, CRGC-P30 and 

CRGC-P60 samples. As seen from the SEM micrographs, tiny equiaxed crystallites 

uniformly dispersed in the microstructure of the samples. The crystalline size 

increased with the increase in holding time at the crystallization temperature as it was 

observed in the bulk and sintered samples. The average crystalline size changes in 

the range of 0.35-0.55 µm. Using of PVA as a binder in the CRG sample resulted 

better and denser crystalline structure without any glassy regions in the CRGC-P15, 

CRGC-P30 and CRGC-P60 samples contrary to the CRGC-S15, CRGC-S30 and 

CRGC-S60 samples. Using PVA in sintered samples as a binder resulted to stick the 

glass powders together and to promote the packing efficiency.  
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Figure 6.54: SEM micrographs of CRGC-P15 

 

Figure 6.55: SEM micrographs of CRGC-P30 

 

Figure 6.56: SEM micrographs of CRGC-P60 
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6.7.1.2 Physical and mechanical properties of CRGC samples 
 

Table 6.34 summarizes the results of the hardness, density, porosity and water 

absorption tests of the bulk and the sintered glass-ceramic samples. It is clear that the 

microhardness value increases with the increasing holding times at the crystallization 

temperature. It can be concluded that with the increase in crystallinity, the hardness 

values of glass-ceramic samples were also increased as reported previously [119]. 

Similar to microhardness results, as the glass-ceramic samples become more 

crystalline, the density of the glass-ceramic samples increases. It is also noted that 

the density and hardness values of the CRGC-B15, CRGC-B30 and CRGC-B60 

samples are higher than the CRGC-S15, CRGC-S30 and CRGC-S60 samples. This 

result was expected since the volume of the crystallized part of CRGC-S15, CRGC-

S30 and CRGC-S60 samples was lower than the CRGC-B15, CRGC-B30 and 

CRGC-B60 samples. However, hardness and density values of CRGC-P15, CRGC-

P30 and CRGC-P60 samples are very close to the bulk samples since the PVA 

results to denser microcrystalline structure in the sintering process. In compliance 

with the density and hardness results, porosity decreases when the glass-ceramics get 

more dense structures with the increase in holding times at crystallization 

temperature. Water absorption of all samples is so low that it can be negligible. This 

property is well correlated with the other properties especially with porosity. Since 

the porosity of all samples is so low even zero for CRGC-B60 and CRGC-P60 

samples, water absorption is negligible. These properties are better than the physical 

and mechanical properties of the CG glass samples. Since the chemical compositions 

of CRG and CG glasses are close to each other we can compare the properties of CG 

glasses with CRGC glass-ceramics to investigate the transformation of glass to a 

glass-ceramic material. All the properties of CG sample improved with the increase 

of the crystalline volume in the glassy matrix. It is known that if fine grained 

crystallites homogeneously dispersed in the whole body of the glass-ceramic 

samples, this result will get better physical, mechanical and chemical properties for 

this material. Therefore, glass-ceramic samples possess better properties than the 

corresponded glass sample. 

 

The properties of bulk and sintered samples are better than the samples produced 

from incinerator fly ashes as it was reported by Cheng et al.[163], Romero et al.[131] 
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and Karamanov et al.[124]. Boccaccini et al.[165] reported that the hardness value of 

the sintered sample produced from incinerator fly ash was 380 kg/mm2 which was so 

low than the hardness values of the sintered samples produced in this study. 

However, density value of the sintered sample (2.74 g/cm3) obtained by Boccaccini 

et al.[165] is higher than the density values obtained in this study. If we think from 

the point of hardness and density of the material, the harder the material the denser it 

is. The reason of this can be high heavy metal concentration of incinerator fly ash 

sample. Incinerator fly ash sample contains more heavy metals (such as Pb2+, Zn2+), 

which increase the density of the sample, then the coal fly ash and therefore 

incinerator fly ash has higher density value than the fly ash. Therefore, density of 

sintered glass-ceramics could be higher. The properties of CRGC-B60 sample are 

better than the bulk glass-ceramic samples produced from coal fly ash as reported by 

Barbieri et al.[11], Leroy et al.[117], Shao et al.[204] and Boccaccini et al.[10]. 

Porosity and water absorption values of all samples of this study are so low than the 

values reported by Cheng et al.[163]. 

 

Table 6.34: Properties of CRGC samples 

Sample Name Hardness 

(kg/mm2) 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

CRGC-B15 594 2.62 0.73 Negligible 

CRGC-B30 716 2.74 0.56 Negligible 

CRGC-B60 852 3.03 0.00 Negligible 

CRGC-S15 514 2.56 1.16 Negligible 

CRGC-S30 677 2.65 0.95 Negligible 

CRGC-S60 802 2.71 0.05 0.11 

CRGC-P15 584 2.60 1.05 Negligible 

CRGC-P30 708 2.70 0.82 Negligible 

CRGC-P60 837 2.92 0.00 Negligible 

 

 

6.7.1.3 TCLP results of CRGC samples 
 

TCLP results of CRGC-B60, CRGC-S60 and CRGC-P60 samples were given in 

Table 6.35. As seen from Table 6.35, any heavy metal ions could not be detected in 
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the leachate solutions of those samples. This result is better than the TCLP results of 

CG sample. The crystalline phase occurred in the glass-ceramic samples affected the 

chemical stability. Crystalline phase makes the glass-ceramic materials more 

chemically stable and this results the resistance to leachability. Glasses show a much 

higher leachabilty with their amourphous phase. The higher leaching resistance of 

glass-ceramics indicated that the heavy metal ions replaced other ions, such as Ca2+ 

or Al3+ and were held in the crystalline phase. TCLP results of CRGC-B60,  CRGC-

S60 and CRGC-P60 samples are better than the bulk glass-ceramics produced from 

electric arc furnace (EAF) dust and incinerator fly ash as it was reported by Cheng 

[125] and Kavauras et al.[210]. Since the heavy metal concentration could not be 

detected in the leachates of CRGC-B60, CRGC-S60 and CRGC-P60 samples these 

are appropriate chemically stable products suitable for the production of safe 

structural materials.  

 

Table 6.35: TCLP results of CRGC samples 

Sample Name Cr (ppm) Mn (ppm) Zn (ppm) Pb (ppm) 

CRGC-B60 BDL BDL BDL BDL 

CRGC-S60 BDL BDL BDL BDL 

CRGC-P60 BDL BDL BDL BDL 

BDL: Below Detection Limit 

 

6.7.1.4 Chemical properties of CRGC samples 
 

Table 6.36 shows the chemical resistance of CRGC samples. Glass-ceramics show 

higher chemical resistance than the CG glasses. As seen in Table 6.36, the chemical 

resistance of all glass-ceramic samples does not correlate with the heat treatment 

procedures but the CRGC-S15, CRGC-S30 and CRGC-S60 samples show lower 

resistance than the other glass-ceramic samples. Since weight losses are usually 

attributed to the dissolution of glassy matrix, this would lead to higher weight losses. 

It is also seen that the resistance to acids is relatively low for all glass-ceramic 

samples. Improvement of chemical durability especially for acid attacks, requires 

further investigation. The chemical resistance of CRGC samples is higher than the 

glass-ceramic samples produced from incinerator fly ash and coal fly ash reported by 

Cheng et al.[155,163] and Leroy et al.[117], respectively. Diopside phase is the main 
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crystalline phase in CRGC samples and may be a more chemically stable crystalline 

than the gehlenite, augite+anorthite and essenite phases occurred in the glass-ceramic 

samples produced from incinerator fly ash and coal fly ash, respectively. 

 

It is desired to produce fine-grained crystalline structure with good mechanical 

properties in the glass-ceramic production. Overall results for CRGC samples 

showed that the properties of all samples are good enough for glass-ceramics 

produced from industrial wastes. CRGC-B60 sample had the best properties in all 

CRGC samples. 

 

Table 6.36: Chemical resistances of the CRGC samples 

Sample Name HNO3 (%) NaOH(%) 

CRGC-B15 0.13 Negligible 

CRGC-B30 0.31 Negligible 

CRGC-B60 0.13 Negligible 

CRGC-S15 0.29 0.29 

CRGC-S30 0.38 0.20 

CRGC-S60 0.31 0.25 

CRGC-P15 0.18 Negligible 

CRGC-P30 0.11 Negligible 

CRGC-P60 0.13 Negligible 

 

6.7.2 Experimental results of ORSGC samples 

 

6.7.2.1 Microstructural characterization of ORSGC samples 
 

CaO-Al2O3-SiO2 (CAS) system glasses are one of the fundamental silicate systems 

that have been used widely in many fields of industry. The crystallization of CAS 

system glasses produced from industrial wastes has been investigated by many 

researchers and it was reported that the main crystalline phases can be diopside, 

anorthite and wollastonite in this ternary system[10,11,126]. Chemical composition 

of ORSG samples are in the CaO-Al2O3-SiO2 (CAS) ternary glassy system. Figure 

C.4 in Appendix C shows the x-ray patterns of ORSGC-B samples. X-ray diffraction 

analysis revealed that the main crystalline phase occurred in all ORSGC samples was 
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diopside (Ca(Mg,Al)(Si,Al)2O6). X-ray patterns of ORSGC-S and ORSGC-P 

samples were given in Figures C.5-C.6 in Appendix C. The addition of PVA to the 

ORSG glass samples to produce sintered glass-ceramics could not change the 

crystallization phase of ORSGC-P15, ORSGC-P30 and ORSGC-P60 samples as it 

was seen from Figure C.6. Altough the ORSG is a CAS type glass but  Fe2O3 content 

of it is high enough compared to the CAS type glasses. For crystallization of CAS 

type glass Fe2O3 works efficiently as a nucleant to promote the speed of nucleation 

[9]. Iron oxide decreases glass viscosity and therefore, it increases the crystal growth 

rate since Fe3+ ion could act as a modifier of the structure, with breaking the Si-O-Si 

bonds. When the temperature was increased further to the maximum nucleation and 

crystallization temperatures to produce glass-ceramics diopside phase took place in 

the whole body of the ORSGC samples. This result is in well agreement with the 

Lebedeva diagram which indicates that the diopside phase can be the main 

crystalline phase in ORSGC sample. In ORSG glasses, not only the coal fly ash, but 

also the red mud and silica fume were used to produce glass samples. With the 

addition of red mud and silica fume, the chemical composition of ORSG glass was 

changed and became close to the chemical composition of CRSG glass. Therefore, 

diopside phase was also expected in the ORSGC samples. However, this result is 

quite different from the results of other researchers whose use coal fly ash as a raw 

material in the glass-ceramic production. They obtained anorthite, wollastonite and 

mullite phases in the CAS type coal fly ash-based glass-ceramics [110,116,117,204]. 

This phenomenon indicates the complexity and uncertainty of nucleation and 

crystallization in the CAS glass system. 

 

SEM investigations were conducted in order to get a better understanding of the 

morphology of the microstructure. SEM micrographs of ORSGC-B15, ORSGC-B30 

and ORSGC-B60 samples are shown in Figures 6.57-6.59. SEM observations 

revealed that both locally oriented dendritic crystalline growth and a significant 

number of leaf-shaped crystals occurred in the glass-ceramic samples. It was found 

that the volume of the crystalline phase increased after the holding time increased 

from 15 min to 60 min, as it was seen from Figures 6.57-6.59. This is due to higher 

driving force and increasing the crystal growth rate with the longer heat treatment 

process. The nuclei got more energy to achieve the crystal growth process when the 

holding time at crystallization increased. Pelino [233] reported that increasing the 
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crystallization time has a positive effect on the properties of glass-ceramic materials 

and the physical and mechanical properties of them yielded better characteristics. It 

was also observed that some pores with irregular shapes were found in the ORSGC-

B15, ORSGC-B30 and ORSGC-B60 samples. The amount of pores decreased with 

the increase in the heating time. This is occurred since the number of the crystallites 

increased. Cross-sectional SEM investigations revealed that the similar average 

crystalline size and shape were observed in the Figure 6.60 of ORSGC-B60 sample. 

Surface and the cross-sectional microstructures of the ORSGC sample are the same 

and this result indicated that the bulk crystallization mechanism is the main 

crystallization mechanism in the ORGCS-B60 sample and also in all ORSGC 

samples. This result is in well agreement with the results obtained in Section 6.6.2.  

 

 

 

                         
 

Figure 6.57: SEM micrographs of ORSGC-B15 
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Figure 6.58: SEM micrographs of ORSGC-B30 

 

 
 

Figure 6.59: SEM micrographs of ORSGC-B60 

 

Figures 6.61-6.63 are representative SEM micrographs of ORSGC-S15, ORSGC-S30 

and ORSGC-S60 samples. As seen from Figures 6.61-6.63, the crystalline sizes of 

sintered samples are smaller than the crystalline size of the bulk glass-ceramics. The 

particle size has a great effect on crystallization of glass particles. The total effective 

surface area to the volume ratio increased with decreasing particle size for a fixed 

amount of sample [234]. Therefore, the number of nuclei occurred in the fine glasses 

is greater than bulk glasses having the same volume. The nuclei grow gradually to 

form crystallites when the heat treatment applied to the samples. The amount of 
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nuclei occurred in the bulk glass in the same volume is less than the fine glass, so the 

crystals grow more. Therefore, the crystalline size of the bulk samples is greater than 

the sintered samples. It was also observed that the shape of the crystallites was 

changed. The amount of leaf-shaped crystallites decreased with the increasing 

holding time. The crystalline shrinkage maintains a constant value and the 

crystallites do not maintain their shapes any more in the ORSGC-S60 sample. The 

number of the crystallites increased with the increase in holding time at 

crystallization temperature as it was observed in the bulk samples. The porosity also 

decreased in the sintered samples. Glass softening and flow is required for glass 

particles to sinter together into a dense product and to produce a smooth surface. In 

another words, for better microcrystalline structure and complete crystallization 

sintering must start before the crystallization process. The better microcrystalline 

microstructure of sintered ORSGC samples compare to bulk samples indicated that 

the sintering plays an important role in the crystallization of ORSG samples. This 

result is also revealed that the parameters for sintering process such as, particle size, 

firing temperature, sintering pressure and glass composition are suitable for ORSG 

glass samples to perform complete densification and crystallization. The sintered 

samples favor to bulk samples since all the samples show the maximum 

crystallization degree. 

 

                                     
 

Figure 6.60: Cross-sectional SEM micrographs of ORSGC-B60 

 

 

 181 



 
Figure 6.61: SEM micrographs of ORSGC-S15 

                                  
Figure 6.62: SEM micrographs of ORSGC-S30 

                                
Figure 6.63: SEM micrographs of ORSGC-S60 

 

Figures 6.64-6.66 show the SEM micrographs of ORSG-P15, ORSG-P30 and 

ORSG-P60 samples, respectively. It was clearly seen from these figures that the 

crystalline size and shape was completely different from the bulk glass-ceramic 

samples. The crystalline size and shape was also different from the ORSGC-S15, 

ORSGC-S30 and ORSGC-S60 samples. The crystalline size is getting smaller with 

the increasing holding time and the leaf-shaped crystallites disappeared from the 
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surface of the ORSG-P15, ORSG-P30 and ORSG-P60 samples. The addition of PVA 

to the glass powders increased the crystallization degree gradually by reducing the 

porosity formation as shown from Figures 6.64-6.66. The number of the crystallites 

occurred in the ORSGC-P60 sample is higher than the ORSGC-P15 sample. PVA 

bonds the glass powders together and with the sintering process denser product was 

obtained. The denser structure results in crystallization throughout the sample. 

Therefore, crystallization degree increased and the porosity decreased when the 

material became dense. The crystalline size and shape were changed since the PVA 

bonds glass powders to stick together. Using PVA in the sintering process resulted 

better microcrystalline structure for ORSGC samples.  

 

                                 
Figure 6.64: SEM micrographs of ORSGC-P15 

 

                                
 

Figure 6.65: SEM micrographs of ORSGC-P30 

 

 183 



 
 

Figure 6.66: SEM micrographs of ORSGC-P60 

 

6.7.2.2 Physical and mechanical properties of ORSGC samples 
 

Table 6.37 gives values for the microhardness, density, porosity and water absorption 

of ORSGC samples. The general trend in microhardness found is that as samples 

become more crystalline, the average microhardness increases. The hardness values 

of sintered ORSGC samples are greater than the bulk ORSGC samples. The 

microhardness trend is consistent with what can be expected based on crystallization. 

The sintered ORSGC samples have more crystalline sites, whereas bulk ORSGC 

samples have less crystalline sites, as it was observed from the SEM micrographs. In 

compliance with the hardness values, density values of the glass-ceramic samples 

increased with the increase in crystallization degree. Density values of ORSGC 

samples are found in the range of 2.71-3.22 g/cm3. The density of diopside is  3.39 

g/cm3. Therefore, it is expected that the density of the samples increased with the 

increase in crystalline phase occurred in the glass-ceramic samples. ORSG-P60 

sample has the highest density value due to its highest crystalline degree. The 

porosity and water absorption values of sintered samples are lower than the bulk 

glass-ceramic samples since the crystallization degree is higher in the sintered 

samples. The presence of pores in the bulk samples was also confirmed by SEM 

observations. Both porosity and water absorption values correlated well each other 

and decreased with the increase of crystallinity. The factors regulating physical, 

mechanical and chemical properties are crystalline phase, crystallization degree, the 

size of the crysatallites and homogeneity of crystal size [116]. As it was determined 
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in the previous section, the main crystalline phase of all samples is the same 

(diopside). It was reported that fine-grained glass-ceramics possess better properties 

[235]. We can observe that although crystal size of samples grew larger along with 

crystallization time, the glass-ceramics obtained better properties. However, the 

crystallization degree is also an important factor which effects the hardness and the 

other properties of glass-ceramic samples. The closed porosity was observed in the 

bulk samples and only ORSGC-P60 sample reached complete crystallization. The 

closed porosity remained in the bulk samples for the shorter crystallization time 

damaged continuity of the crystal phase accounting for the decrease in hardness of 

the bulk glass-ceramic samples. ORSGC-P samples have higher crystallization 

degree with a smaller crystalline size and less porosity compared to ORSGC-B 

samples. Therefore, physical and mechanical properties of ORSG-P samples are 

better than the ORSGC-B samples. The physical and mechanical properties of all 

glass-ceramic samples are better than the OG sample because of the presence of the 

crystalline phase occurred in the glass-ceramic samples. The density values of 

ORSGC-S60 and ORSGC-P60 are higher while the porosity and water absorption 

values are lower than the values reported by Cheng [125]. Density and hardness 

values of ORSGC samples are higher than the glass-ceramic samples produced in 

different studies from coal fly ash and incinerator fly ash [131,204,209,235]. The 

density and hardness values of ORSGC-S60 and ORSGC-P60 sample are higher than 

the bulk glass-ceramics produced in different studies from coal fly ash [106] and the 

sintered samples produced from incinerator fly ash [124,165].  

 

6.7.2.3 TCLP results of ORSGC samples 
 

TCLP results of the ORSGC samples are given in Table 6.38. As seen from Table 

6.38, any heavy metal concentration could not be detected in the extraction solutions 

of ORSGC-S30 and ORSGC-P30 samples, except ORSGC-B30 sample. But the 

extracted amount of Zn for ORSGC-B60 sample is lower than the limits required by 

US EPA. This result is better than the TCLP results of OG sample. Transformation 

of glass into a glass-ceramic material significantly improves the leachability 

characteristics of the materials. Heavy metal ions replaced other ions and held in the 

crystalline phase. Diopside has been shown to be an ideal crystalline matrix for the 

immobilization of wastes in the production of glass-ceramic materials. Chick et 
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al.[236] reported that the leachability of the glass-ceramic materials obtained from 

wastes is 4-10 times lower than the parent glass and the crystalline phase remains 

while the residual glass is dissolved away during leaching. It was also obtained in 

this study that the glass-ceramics are more chemically stable materials compare to 

the parent glasses. TCLP results of ORSGC samples is better than the TCLP results 

of bulk glass-ceramics produced by Cheng [125,155] and Kavaouras et al.[210]. 

TCLP results showed that the ORSGC samples are non-toxic materials.  

 

Table 6.37: Properties of ORSGC samples 

Sample Name Hardness 

(kg/mm2) 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

ORSGC-B15 577 2.71 1.08 0.21 

ORSGC-B30 711 2.82 0.96 0.14 

ORSGC-B60 827 2.91 0.61 Negligible 

ORSGC-S15 589 2.92 0.92 Negligible 

ORSGC-S30 705 3.10 0.69 Negligible 

ORSGC-S60 838 3.17 0.32 Negligible 

ORSGC-P15 592 3.03 0.88 Negligible 

ORSGC-P30 728 3.11 0.25 Negligible 

ORSGC-P60 842 3.22 0.15 Negligible 

 

 

Table 6.38: TCLP results of ORSGC samples 

Sample Name Cr (ppm) Mn (ppm) Zn (ppm) Pb (ppm) 

ORSGC-B30 BDL BDL 0.005 BDL 

ORSGC-S30 BDL BDL BDL BDL 

ORSGC-P30 BDL BDL BDL BDL 

BDL: Below Detection Limit 

 

6.7.2.4 Chemical resistance of ORSGC samples 
 

Table 6.39 shows the chemical durability of glass-ceramic materials. Studying the 

chemical durability of glass-ceramics revealed that the weight loss decreased with 

the increase in the volume crystalline content. Comparing the chemical durability 
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results of OG samples with ORSGC samples, it can be seen that the weight loss 

percent is higher than those for the glass-ceramic samples in both HNO3 and NaOH 

solutions. This seems to be due to the more bonding in glass-ceramic network rather 

than the parent glass, due to the formation of crystalline phases during heat treatment 

process. The achievement of high chemical durability in glass-ceramics indicates that 

the chemical composition of the crystalline phases obtained favor good stability. 

McMillan [18] had stated that the glass-ceramics, in general, possess good chemical 

stability and that they compare favorably in this respect with other ceramic type 

materials. Consequently, an increase in the content of the diopside phase results the 

higher chemical resistance in the glass-ceramic materials. Therefore, chemical 

resistance of sintered materials, especially of the PVA added samples are higher than 

the bulk glass-ceramic samples. It is apparent that the produced glass-ceramic 

samples show higher resistance to alkali solutions than the acidic solutions. Chemical 

resistances of glass-ceramics are better than those glass-ceramics produced in 

different studies from coal fly ash and incinerator fly ash [117,125,155,163]. Owing 

to its physical, mechanical and chemical properties, ORSGC-P60 sample has the best 

properties in all ORSGC samples. 

 

Table 6.39: Chemical resistances of the ORSGC samples 

Sample Name HNO3 (%) NaOH(%) 

ORSGC-B15 0.60 Negligible 

ORSGC-B30 0.42 Negligible 

ORSGC-B60 0.28 Negligible 

ORSGC-S15 0.51 Negligible 

ORSGC-S30 0.35 Negligible 

ORSGC-S60 0.16 Negligible 

ORSGC-P15 0.42 Negligible 

ORSGC-P30 0.24 Negligible 

ORSGC-P60 0.16 Negligible 
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6.7.3 Experimental results of TGC samples 

 

6.7.3.1 Microstructural characterization of TGC samples 
 

In order to identify the crystalline phases, XRD analysis was carried out on the 

produced glass-ceramic samples. XRD patterns of TGC-B, TGC-S and TGC-P 

samples were given in Figures C7-C9 in Appendix C, respectively. XRD results 

revealed that the main crystalline phase was aluminum augite (Ca(Mg, Fe3+, Al)(Si, 

Al)2O6). Lebedeva diagram shows that the crystalline phase could be augite confirms 

this result. The main components of TG sample are SiO2, Al2O3 and Fe2O3, whereas, 

CaO and MgO contents of TG sample are low compare to the other glass samples. In 

the structure of glass, O2- is attracted to near Si4+ in the form of (SiO4)4-. At the same 

time the network modifiers also have a tendency to attract O2- with a partial negative 

charge (non-bridge oxygen), so the network modifiers compete with Si4+ for O2- [12]. 

When the surrounding temperature is equal to Tg, the structure of the glass becomes 

relaxed and diffusion of ions occurs easier. For glass with more network modifiers, 

non-bridged oxygens are concentrated in the area that contains more network 

modifiers and the glass separated into two phases, which are the phase with more 

Si4+ and the phase with more network modifiers. The conditions of nucleation are 

that ions diffuse together from the uniform glassy matrix and the ions are rearranged 

to give the structure of the crystals. Although it is usually considered as an 

intermediate glass network ion, the Fe3+ could act as a modifier of the TG glass 

structure, breaking the Si-O-Si bonds to form the augite phase. Mg and Ca ions have 

also effects on the formation of crystalline structure as network modifiers [12]. 

However, Fe3+ plays an important role in the crystalline structure as the network 

modifier since the content of Fe3+ is high enough compared to the Ca and Mg ions. 

Ca and Mg contents of the CRG and ORSG samples are higher than that of the TG 

sample. Therefore, diopside phase (Ca(Mg,Al)(Si,Al)2O6) occurred in the CRG and 

ORSG samples instead of aluminum augite phase(Ca(Mg, Fe3+, Al)(Si, Al)2O6) 

which was obtained in the TG sample. The formation of augite has been reported 

during crystallization of coal fly ashes by Barbieri et al.[11]. Morover, augite crystals 

have also been observed in glass-ceramics obtained from other industrial wastes rich 

in Fe-ion such as, incinerator fly ash [131,165], and electric arc furnace 

dust(EAF)[125].  
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SEM micrographs of the TGC-B15, TGC-B30 and TGC-B60 samples were given in 

Figures 6.67-6.69, respectively. In all cases, SEM analyses show the presence of 

strongly interlocked crystals of about 100-500 nm size embedded in a glassy matrix. 

The morphology of the crystalline phase is composed of equiaxed or spherical 

networks forming a fully ordered microcrystalline mosaic that is mainly made up of 

augite. Microstructural observation clearly indicated that crystallization volume 

increases when the length of thermal treatment time increased. Figures 6.67-6.69 

show the following features: Some of the equiaxed nano-crystals with a bright 

contrast were occurred in the glassy matrix; besides some of the nano-crystals 

exhibiting a grey contrast and making the most part of the crystalline phase and; 

areas of the amorphous residual glassy phase which appears in dark contrast were 

observed. To check the accuracy of the crystallization mechanism obtained from 

DTA results, cross-sectional SEM investigations were conducted on the TGC-B60 

sample. Figure 6.70 shows the cross-sectional area of the TGC-B60 sample. The 

equiaxed nano-crystallites dispersed in the volume of the sample as it was expected. 

This result confirms the bulk crystallization of TGC samples determined in Section 

6.6.2. 

 

                                 
                                             

Figure 6.67: SEM micrographs of TGC-B15 
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Figure 6.68: SEM micrographs of TGC-B30 

                                 
Figure 6.69: SEM micrographs of TGC-B60 

 

                                 
                                                         

Figure 6.70: Cross-sectional SEM micrographs of TGC-B60 
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Figures 6.71-6.73 are representative SEM micrographs of the TGC-S15, TGC-S30 

and TGC-S60 samples. As seen from Figures 6.71-6.73, there were only a few 

crystallites in the bulk of the samples. High content of the glassy phase still remained 

in the volume of the samples. Thus, only a few glassy droplets were converted into 

crystals. However, the number of the crystallites increased with the increase in 

holding time at the crystallization temperature, as it was observed in the bulk 

samples. The average crystalline size of sintered samples is bigger than the average 

crystalline size of the bulk samples. Glass softening and viscous flow are required for 

densification of glass particles. Some glass compositions densify easily by viscous 

phase sintering, while other compositions do not densify well. The viscosity has to 

decrease sufficiently for glass flow to occur densification process. The particle size 

of the glass powders is an important parameter in the sintering process. When the 

glass is milled into finer particles, the surface area greatly increased. The new surface 

area is covered with broken chemical bonds. This makes the surface highly reactive 

and thus it will react and bond to anything that will satisfy these broken bonds. 

Because of this highly reactive surface, variations in surface chemistry easily occur 

from changes in processing conditions. The surface chemistry can have a significant 

affect on particles crystallization and also on the sintering behavior. It is also known 

that as the particle size decreased the rate of crystallization increases and the 

crystallization temperature decreases. Because of this coarser particle size will 

reduce the tendency for crystallization [234]. However, the glass composition, 

sintering pressure, addition of any binders and firing conditions are also important 

parameters in the controlling of crystallization behavior of sintered glass-ceramics in 

addition to the particle size of the glass particles. It can be said that particle size of 

TG samples is coarse for this type of glassy system and thus reducing the glass 

particle size to a finer powder form may enhance the sintering and crystallization 

behavior. The heating rate applied to the TG samples is fast enough for this glass 

composition since it may cause a rapid decrease in the viscosity as it was observed in 

the CRG and ORSG samples. The sintering temperatures of 948 and 1140 K were 

also corresponded to the nucleation and crystallization temperatures of the bulk glass 

samples. Therefore, these temperatures may not be suitable for fine glass samples. As 

it was observed in Section 6.6.1, Tg and Tp values of the bulk samples were higher 

than the temperatures of the fine glass samples. However, nucleation and 

crystallization temperatures of the bulk CRG and ORSG samples which were also 
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selected as sintering temperatures gave better results for sintering of CRG and ORSG 

samples. SEM results revealed that the selected sintering temperatures, particle size 

of glass samples and sintering pressure may not be suitable for this glassy system.  

 

                             
Figure 6.71: SEM micrographs of TGC-S15 sample 

                            
Figure 6.72: SEM micrographs of TGC-S30 sample 

                           
Figure 6.73: SEM micrographs of TGC-S60 sample 
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The SEM micrographs of TGC-P15, TGC-P30 and TGC-P60 samples were given in 

Figures 6.74-6.76, respectively. It can be clearly seen that the microstructure of the 

TGC-S15, TGC-S30 and TGC-S60 samples are better than the TGC-P15, TGC-P30 

and TGC-P60 samples. There is a high glass phase in the TGC-P15, TGC-P30 and 

TGC-P60 samples. The number of crystallites is less than the TGC-S15, TGC-S30 

and TGC-S60 samples. The crystalline volume increased with the increase in holding 

time at Tp as it was expected. Addition of PVA to the glass powders resulted to more 

remained glassy regions in the TGC-P15, TGC-P30 and TGC-P60 samples. PVA 

helps to obtain dense materials by sticking glass powders together. However, in this 

case sintering temperatures and particle size are very important parameters for this 

glassy system. Therefore, addition of PVA did not improve the microstructure of the 

sintered glass-ceramic samples. It can also be said that PVA is not an appropriate 

binder for this type of glassy system. SEM investigations showed that the crystalline 

degree is highest in the bulk samples and this result is in well agreement with the 

XRD results.  

 

 

                       
 

Figure 6.74: SEM micrographs of TGC-P15 sample 
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Figure 6.75: SEM micrographs of TGC-P30 sample 

 

                           
 

Figure 6.76: SEM micrographs of TGC-P60 sample 

 

6.7.3.2 Physical and mechanical properties of TGC samples 
 

Physical and mechanical properties of both bulk and sintered glass-ceramics were 

listed in Table 6.40. Densities of bulk samples are in the range of 2.96-3.32 g/cm3 

and increased with increasing crystallization degree and decreasing pore volume. The 

density values of bulk samples are higher than the TG sample since the amorphous 

glassy phase transformed to a dense crystalline material when the heat treatment 

process applied to the TG samples. In compliance with the SEM observations 

porosity decreased with the increasing holding time at the Tp as it was expected. 

TGC-B60 sample has almost zero porosity. However, TGC-S15, TGC-S30, TGC-
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S60, TGC-P15, TGC-P30 and TGC-P60 samples have the lowest density and the 

highest porosity values. Density values of these samples are close to the density 

values of TG sample since the high volume of glassy phase still remained in the 

sintered glass-ceramic samples. Both porosity and water absorption values correlated 

well each other and decreased with the increase of the crystallization degree in all 

samples. We obtained the similar results in the hardness values of the glass-ceramic 

samples. Hardness values of the bulk samples are higher than the sintered sample’s 

values, as it was expected. Increasing of crystallization degree also increased the 

hardness values of the glass-ceramic samples. Density and hardness values of TGC-

B15, TGC-B30 and TGC-B60 samples are better than the values of the glass-ceramic 

samples produced in different studies from industrial wastes such as coal fly ash 

[117,204] and incinerator fly ash [124,131,155,165,209]. Porosity and water 

absorption values of bulk samples are lower than the values reported by Cheng et 

al.[163]. Hardness and density values of sintered samples are worse than the values 

of the sintered glass-ceramic samples produced from incinerator fly ash [124,165]. 

However, porosity and the water absorption values of the sintered samples in this 

study are better than the values of the sintered samples obtained from Cheng et 

al.[163]. 

 

Table 6.40: Properties of TGC samples 

Sample Name Hardness 

(kg/mm2) 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

TGC-B15 628 3.03 0.71 Negligible 

TGC-B30 776 3.14 0.17 Negligible 

TGC-B60 867 3.32 0.10 Negligible 

TGC-S15 326 2.81 8.05 4.11 

TGC-S30 332 2.92 6.72 3.30 

TGC-S60 339 2.98 6.74 3.10 

TGC-P15 302 2.85 10.11 5.21 

TGC-P30 319 2.89 9.72 4.21 

TGC-P60 321 2.91 9.71 4.01 

 

 

 195 



6.7.3.3 TCLP results of the TGC samples 
 

TCLP results of TGC samples were given in Table 6.41. Any heavy metal 

concentration could not be detected in the extraction solution of the TGC-B15 

sample. However, small concentrations of Zn and Cr ions were detected in the 

extraction solutions of the TGC-S15 and TGC-P15 samples since the solubility of 

amorphous glassy phase is higher than the augite crystalline phase. But these values 

are still lower than the limits of EPA. Only Cr and Zn ions were determined in the 

extraction solutions. The reason of this result may be the high Cr and Zn ion 

concentrations of Tunçbilek fly ash comparing to the Mn and Pb ion contents. Cr and 

Zn ion concentrations of extraction solutions are better than the values reported by 

Cheng [125] and Kavaouras et al.[210]. However, Cr ion content is higher than the 

Cr ion content of glass-ceramic sample produced from incinerator fly ash [155] while 

the content of Zn-ion is lower than the Zn-ion content of the same sample [167]. 

Consequently, the bulk and the sintered samples were sufficiently stabilized, 

according to the US EPA standards.  

 

Table 6.41: TCLP results of TGC samples 

Sample Name Cr (ppm) Mn (ppm) Zn (ppm) Pb (ppm) 

TGC-B15 BDL BDL BDL BDL 

TGC-S15 0.002 BDL 0.008 BDL 

TGC-P15 0.008 BDL 0.01 BDL 

BDL: Below Detection Limit 

 

 

6.7.3.4 Chemical resistance results of the TGC samples 
 

Results for chemical resistance of the glass-ceramic samples are listed in Table 6.42. 

It can be seen that the durability of both bulk and sintered glass-ceramic samples 

correlate with volume of the crystalline phase and show acceptable chemical 

resistance behavior for all samples. However, chemical resistance of sintered 

materials is lower than the chemical resistance of the bulk samples, as can be 

predicted from the previous results. Sintered materials have relatively high weight 

losses for the acid attacks comparing to the alkali solutions. It is known that the 

glassy matrix is more easily leached in the acidic solutions. Chemical resistance of 
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bulk glass-ceramic samples is higher than the chemical resistance of the glass-

ceramic samples produced in a different study from coal fly ash [117], while the 

chemical resistance of sintered samples obtained in this study is worse than the those 

samples. Chemical resistance of sintered samples are better than the values reported 

by Cheng et al.[125,155,163] but worse than the values reported by Karamanov et 

al.[124]. In any case, the chemical resistance is strongly influenced by the crystalline 

phase. Overall results showed that the TGC-B60 sample has the best microstructural, 

mechanical, physical and chemical properties of all glass-ceramic samples. 

 

Table 6.42: Chemical resistances of the TGC samples 

Sample Name HNO3 (%) NaOH(%) 

TGC-B15 0.100 Negligible 

TGC-B30 0.033 Negligible 

TGC-B60 0.015 Negligible 

TGC-S15 4.770 1.12 

TGC-S30 4.620 1.02 

TGC-S60 4.120 1.07 

TGC-P15 4.890 1.47 

TGC-P30 4.720 1.46 

TGC-P60 4.650 1.32 

 

6.7.4 Experimental results of CGC samples 

 

6.7.4.1 Microstructural characterization of CGC samples 
 

XRD scans of the sintered glass-ceramic samples produced by using different heat 

treatment procedures were obtained. Interpretation the XRD scans of three sintered 

samples showed that the main crystalline phase is the diopside (CaMgSi2O6). CaO 

and MgO might modify the glass network by decreasing the relative proportion of 

bridging oxygen bonds to non-bridging oxygen bonds. Structural rearrangements 

might take place in the earlier stages of crystallization process. Octahedral 

magnesium groups ([MgO6]10-) tend to combine with [CaO6]10- octahedrons and 

endless [SiO3]2- groups, leading to diopside formation. This conclusion is in 

agreement with the reported literature on sintered glass-ceramics developed from 
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industrial wastes which belong to the diopside group [237]. XRD patterns of CGC-S 

and CGC-P were given in Figures C.10-C.11 in Appendix C. 

 

The microstructures of the crystallized glass samples were examined by using SEM. 

Fig. 6.77 shows the SEM micrograph of the CGC-S15 sample. Fig. 6.77 reveals tiny 

crystals dispersed in the microstructure and the glassy regions still remained in the 

bulk of the sample. It is also seen that there are extensive cracks on the surface of the 

sample. Figs. 6.78 and 6.79 are the representative SEM micrographs of the CGC-S30 

and CGC-S60 samples, respectively. As seen from the figures, same microstructures 

were detected in the bulk of the sample and also the number of crystallites increased 

with the increasing holding time at the crystallization temperature. It was determined 

that the number of crystallites occurred in the sintered glass-ceramic samples is less 

and the size of the crystallites is larger than that of the samples produced by the 

classical method. It was also detected that extensive cracks and glassy regions were 

observed in the microstructure of the sintered glass-ceramic samples, in contrast to 

the glass-ceramic samples obtained by the classical method. It was concluded that the 

microstructures of the glass-ceramic samples produced by the classical method 

which was reported in the previous study [118] are better than the glass-ceramic 

samples produced by the sintering method. 

 

 

                     
                        

Figure 6.77: SEM micrographs of CGC-S15 sample 
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Figures 6.80-6.82 show the SEM micrographs of the CGC-P15, CGC-P30 and CGC-

P60 samples, respectively. As seen from these figures, tiny equiaxed crystallites 

homogeneously dispersed in the bulk of the sample. The volume of the crystalline 

phase increased with the increase in holding time at Tp as it was expected. 

Furthermore, there is no cracks and glassy regions on the surface of the CGC-P15, 

CGC-P30 and CGC-P60 samples. It was observed that the microstructures of these 

samples are very similar to the microstructures of the bulk glass-ceramic samples 

obtained in the previous study [118]. PVA helps to bond to glass powders together 

and thus the more dense structure occurred in the glass-ceramic samples. Any cracks 

could not be observed on the surface of the PVA added samples. It was concluded 

that the addition of PVA as a binder to the CG-97 glass powder improved the 

microstructure of the sintered glass-ceramic samples. 

                           
Figure 6.78: SEM micrographs of CGC-S30 sample 

                                       

                          
                    

Figure 6.79: SEM micrographs of CGC-S60 sample 
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Figure 6.80: SEM micrographs of CGC-P15 sample 

 

                      
Figure 6.81: SEM micrographs of CGC-P30 sample 

 

                                               
 

Figure 6.82: SEM micrographs of CGC-P60 sample 
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6.7.4.2 Physical and mechanical properties of CGC samples 
 

Table 6.43 summarizes the Vickers microhardness, density, porosity and water 

absorption values of the sintered glass-ceramic samples. Hardness and density values 

increased with the increasing holding times at the crystallization temperature. It can 

be concluded that if the crystallinity increased, the hardness and density values of 

glass-ceramic samples increased and water absorption also decreased, which is also 

observed previously [119]. Although the CGC-P60 has the maximum hardness value 

of 887 kg/mm2, the hardness values of glass-ceramic samples produced by classical 

method reported in the previous study [118] are better than this value. However, 

density and hardness values of CGC-P15, CGC-P30 and CGC-P60 samples are 

higher than the values reported by Shao et al.[204], Leroy et al.[117]. The extensive 

cracks on the surface of the CGC-S15, CGC-S30 and CGC-S60 samples caused to 

decrease the hardness values of those samples. The hardness value of CGC-S60 

sample is higher than the value of sintered sample produced from incinerator fly ash 

[165]. Water absorption and porosity values decreased with the increase in 

crystallization degree. Cracks on the surface of the CGC-S15, CGC-S30 and CGC-

S60 samples also resulted to increase the water absorption of these samples. Water 

absorption and porosity values of all samples are lower than the values of the 

incinerator fly ash based-glass-ceramic materials [155,163] 

 

Table 6.43: Properties of CGC samples 

Sample Name Hardness 

(kg/mm2) 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

CGC-S15 386 2.38 0.90 0.20 

CGC-S30 403 2.66 0.85 0.17 

CGC-S60 458 3.74 0.20 0.03 

CGC-P15 598 2.98 0.40 Negligible 

CGC-P30 653 2.89 0.15 Negligible 

CGC-P60 887 3.32 0.00 Negligible 
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6.7.4.3 TCLP results of CGC samples 
 

Table 6.44 shows the TCLP test results of CGC samples. As seen from Table 6.44, 

Cr and Zn ions were detected in the extraction solution of CGC-S60 sample. Their 

concentration values are under the limits of US EPA and are also better than the 

values reported by Cheng [155] and Kavaouras et al.[210]. The remained glassy 

phase and the extensive cracks on the surface of the CGC-S60 sample may lead to 

dissolution of heavy metal ions from bulk of the sample to the extraction solution. 

Any heavy metal ion concentration could not be detected in the extraction solutions 

of CGC-P60 sample since the heavy metal ions replaced Ca2+ and Al3+ and hold in 

the framework of the glass-ceramic samples. Therefore, CGC-P60 sample is more 

chemically stable than the CGC-S60 sample. However, according to the US EPA 

standards heavy metal ions were successfully hold in both CGC-P60 and CGC-S60 

samples.  

 

Table 6.44: TCLP results of CGC samples 

Sample Name Cr (ppm) Mn (ppm) Zn (ppm) Pb (ppm) 

CGC-S60 0.005 BDL 0.008 BDL 

CGC-P60 BDL BDL BDL BDL 

BDL: Below Detection Limit 

 

 

6.7.4.4 Chemical resistance of CGC samples 
 

Chemical resistances of sintered glass-ceramic samples were given in Table 6.45. As 

seen in Table 6.45, the results for chemical resistance of the glass-ceramic samples 

do not correlate with the heat treatment procedures. CGC-P15, CGC-P30 and CGC-

P60 samples showed more resistance to both acidic and alkali solutions than the 

CGC-S15, CGC-S30 and CGC-S60 samples since their crystallization degree is 

higher than the CGC-S15, CGC-S30 and CGC-S60 samples. And, there is not any 

crack on the surface of the CGC-P15, CGC-P30 and CGC-P60 samples. The CGC-

P60 sample has the highest chemical resistance of all samples. These results 

indicated that the chemical resistance increased with the increase in crystallization 

volume as it was concluded before. However, it is apparent that the all samples show 

low resistance to acidic solutions. It was found that the chemical resistance of CGC 
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samples was higher than the chemical resistance of glass-ceramics produced from 

incinerator fly ash [163]. It can be concluded that the higher the crystallinity the 

better the chemical durability and the smaller the quantity of metals found in the 

leaching solutions.  

 

Table 6.45: Chemical resistances of the CGC samples 

Sample Name HNO3 (%) NaOH(%) 
CGC-S15 0.90 0.60 
CGC-S30 1.00 0.70 
CGC-S60 0.80 0.14 
CGC-P15 0.71 Negligible 
CGC-P30 0.61 Negligible 
CGC-P60 0.32 Negligible 

 

6.7.5 Overall results of the produced glass-ceramic materials 

 

Overall results showed that CRGC-B60, ORSGC-P60, TGC-B60 and CGC-P60 

samples have the best microstructural, mechanical, physical and chemical properties 

among all glass-ceramic samples produced from Çayırhan, Orhaneli, Tunçbilek fly 

ashes with or without the addition of red mud and silica fume at different heat 

treatment conditions. The obtained properties of these glass-ceramic samples are 

better than the most of the glass-ceramic samples produced from industrial wastes as 

it was discussed in the previous sections. Only the crystalline phase of TGC samples 

is different from the other glass-ceramic sample’s crystalline phases since the 

chemical composition of TG sample is different from the other glass compositions. 

The chemical compositions of CG, CRG and ORG glasses are similar to each other. 

Al2O3 and SiO2 contents of TG sample are higher while MgO and CaO contents are 

lower than the other glass compositions. Therefore, crystalline phase occurred in the 

TGC samples is different. However, diopside and augite phases belong to the same 

group. The properties of the sintered glass-ceramic samples are depending on the 

glass composition, particle size, the addition of the binder, heating rate, sintering 

pressure and the firing temperature. It was observed that, in all glass-ceramic 

samples, except TGC-P15, TGC-P30 and TGC-P60 samples, addition of PVA 

improved the properties of the samples.  
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The properties of the bulk glass-ceramic samples were influenced by the glass 

composition, glass production conditions and the heat treatment process. TGC-B60 

sample has the best properties in all bulk glass-ceramic samples while ORSGC-B15 

sample has the worst one. The crystalline size and the shapes of the ORSGC samples 

are different from the other bulk glass-ceramic samples. The crystalline size of the 

ORGC samples is the bigger than those of the other glass-ceramic samples. It was 

also observed that in all glass-ceramic samples the volume of the crystalline phase 

increased with the increase in holding time at Tp and this result caused to improve the 

physical, mechanical and chemical properties of the glass-ceramic samples. With the 

increasing of crystallization degree, crystallites were strongly interlocked together to 

form a more dense crystalline structure. Therefore, amorphous glassy phase deceased 

gradually and the properties of the samples were improved.  

 

Overall results indicated that coal fly ash can be used as a raw material to produce 

glass-ceramic materials with or without the addition of red mud and silica fume and 

coal fly ash-based glass-ceramics have several desirable properties that would make 

them attractive to industrial use in construction, tiling and cladding applications. 

 

6.8 Sintering Process 

 

The sintering behavior of Seyitömer, Tunçbilek, Orhaneli, Çan, Çatalağzı, Çayırhan 

and Afşin-Elbistan thermal power plant fly ashes were investigated. The main aim of 

this investigation is to optimize a powder technology route for fly ash samples in 

order to maximize the sintered density of the products with the lowest possible 

sintering temperature. For this purpose, coal fly ash samples were sintered to form 

ceramic materials by using conventional powder processing based on powder 

compaction and firing, without the addition of any organic or inorganic binders. A 

number of preliminary experimental trials were conducted on fly ash samples at 

different temperatures and residence times in order to investigate the possibility of 

thermal treatment of fly ash alone. The firing temperature ranges and the residence 

time, which were selected on the basis of preliminary runs, are 1223-1473 K and 2 h, 

respectively. Fly ash samples were sintered at 4 different temperatures to determine 

the lowest sintering temperature. Some codes were given to the sintered products and 

these codes were listed in Table 6.46. To investigate the effects of firing 
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temperatures on the properties of the sintered materials, microstructural analysis, 

mechanical and physical tests were conducted on the products.  

 

Table 6.46: Codes of the sintered fly ash samples 

Fly Ash Sintering 
Time (h) 

Sintering 
Temperature (K) 

Code of the 
Sintered Samples 

1298 CAYFA1298 
1323 CAYFA1323 
1348 CAYFA1348 

Çayırhan 
Fly Ash 

 
2 

1373 CAYFA1373 
1373 CFA1373 
1398 CFA1398 
1423 CFA1423 

Çan Fly 
Ash 

 
2 

1448 CFA1448 
1373 CATFA1373 
1398 CATFA1398 
1423 CATFA1423 

Çatalağzı 
Fly Ash 

 
2 

1448 CATFA1448 
1373 SFA1373 
1398 SFA1398 
1423 SFA1423 

Seyitömer 
Fly Ash 

 
2 

1448 SFA1448 
1398 TFA1398 
1423 TFA1423 
1448 TFA1448 

Tunçbilek 
Fly Ash 

 
2 

1473 TFA1473 
1273 OFA1273 
1298 OFA1298 
1323 OFA1323 

Orhaneli 
Fly Ash 

 
2 

1348 OFA1348 
1223 AEFA1223 
1248 AEFA1248 
1273 AEFA1273 

Afşin-
Elbistan 
Fly Ash 

 
2 

1298 AEFA1298 
 

6.8.1 Experimental results of sintered CAYFA samples 

 

6.8.1.1 Microstructural analysis of sintered CAYFA samples 
 

Çayırhan fly ash samples were prepared according to the procedure in Section 5.7 

and then fired at the temperatures of 1298, 1323, 1348 and 1373 K for 2h in an 

electric furnace with a heating rate of 10 K/min. Visual inspection of the sintered 

samples showed that the color of the samples changed from brown to dark brown and 
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the samples displayed smooth surfaces with glassy appearance with the increasing of 

firing temperature. The major oxides SiO2, CaO and Al2O3 account for 

approximately 71 % of the fly ash mass. The amounts of SiO2 and Al2O3 are the 

indication of the suitability of sintering process. XRD analysis of CAYFA1298, 

CAYFA1323, CAYFA1348 and CAYFA1373 samples revealed that the main 

crystalline phases were mullite (Al6Si2O13), anorthite (CaAl2Si2O8) and diopside 

(Ca(Mg, Al)(Si, Al)2O6) and the volume and the types of the crystalline phases 

changed with the firing temperatures. XRD patterns of CAYFA1298, CAYFA1323, 

CAYFA1348 and CAYFA1373 samples were given in Figure D.1 in Appendix D, 

respectively. Çayırhan fly ash comprised of quartz, mullite, anorthite, enstatite and 

hematite mineral phases as it was given in Section 5.3. As seen from Figure D.1, 

hematite and enstatite phases disappeared when the pressed samples were fired at 

1298 K and further heating resulted to form a diopside phase in the CAYFA1323, 

CAYFA1348 and CAYFA1373 samples. The peak intensities and the locations 

changed when firing temperature was above 1298 K. The amount of mullite 

decreased gradually with the increasing of firing temperature. Diopside formed as the 

major crystalline phase at 1373 K together with a small amount of anorthite phase. 

The changes in the crystalline phases occurred in the CAYFA1298, CAYFA1323, 

CAYFA1348 and CAYFA1373 samples were given in Table 6.47. The structure of 

mullite in CAYFA1298 sample began to broken apart with the increasing of firing 

temperature. Then free Ca2+ and Mg2+ forced to rearrange mullite phase and unite 

with it since their amounts were high enough. Thus diopside and anorthite phases 

formed in the CAYFA1373 sample as the main crystalline phase. Diopside phase 

was more stable than the other phases in CAYFA 1348 and CAYFA 1373 samples. 

 

SEM micrographs of both surfaces and interior crystalline structures of 

CAYFA1298, CAYFA1323, CAYFA1348 and CAYFA1373 samples are shown in 

Figures 6.83-6.86. As seen from Figures 6.83-6.86, the surface of the samples is 

getting smoother with the increasing of firing temperature. The volume of the pores 

decreased gradually and CAYFA1373 sample has a more dense structure with a 

much smoother surface. The surface of CAYFA1298 sample is rough and contains 

significant amount of pores, indicating a relatively poorly sintered material. The 

diameter of the pores is more than 2 µm (Figure 6.83(a)). With the increasing of 

firing temperature to 1323 K, the amount and the size of the pores decreased, as seen 
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from Figure 6.84(a). Small spherulitic crystallites occurred in the microstructure of 

the CAYFA1323 sample with the effect of high firing temperature. As seen from 

Figure 6.85(a), the surface of the CAYFA1348 sample is smoother than the 

CAYFA1323 sample. However, some spherical pores was still observed on the 

surface of the CAYFA1348 sample. It was thought that this was a result of the 

softening of the glassy phase present in the fly ash, together with simultaneous 

evaluation of gaseous species at this temperature. CAYFA1373 sample has a much 

smoother surface with a lower porosity than the other samples. More dense structure 

was obtained above 1348 K. Small crystallites can also be seen from Figure 86(a). 

 

Inspection of crystalline structures of CAYFA1298, CAYFA1323, CAYFA1348 and 

CAYFA1373 samples revealed that the spherical diopside crystallites dispersed 

randomly in the microstructure of the samples. The crystalline size and the shape 

were changed with the increasing of firing temperature. In compliance with the XRD 

results, the amount of diopside crystallites also increased with the increasing of firing 

temperature. Figure 6.83(b) shows the SEM micrograph of CAYFA1298 sample. As 

can be seen from the figure, tiny spherulitic crystallites were dispersed randomly in 

the microstructure of the CAYFA1298 sample. It was also observed that there were 

relatively big crystallites with the irregular shapes in the microstructure of the 

CAYFA1298 sample. This difference in the crystalline size and the shape was 

expected since the three different crystalline phases were obtained from the XRD 

results. The remained glassy phase can also be seen from Figure 6.83(b). More 

spherulitic crystallites and less glassy phase were determined in CAYFA1323 sample 

as it was seen from Figure 6.84(b). There were still irregular shaped crystallites. It 

can be seen that the average crystalline size of CAYFA1348 sample is bigger than 

the CAYFA1323 sample if the Figures 6.84(b) and 6.85(b) were compared. The 

equiaxed crystallites were dispersed randomly in the microstructure of CAYFA1348 

sample. The elongated and the irregular shaped crystallites were also detected in the 

CAYFA1348 sample. The volume of the glassy phase of CAYFA1348 sample was 

less than the CAYFA1323 sample. Figure 6.86(b) indicates that the only equiaxed 

crystallites occurred in the microstructure of CAYFA samples above 1348 K. The 

volume of the crystalline phase increased with the increase in firing temperatures. 

Crystal size and morphology appeared to play an important role in affecting physical 
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and mechanical properties of sintered materials, as will be discussed in the following 

section. 

 

                                            
  (a)             (b) 

Figure 6.83: SEM micrographs of CAYFA1298 sample at lower(a) and higher 
magnifications (b) 
 

                           
  (a)             (b) 

Figure 6.84: SEM micrographs of CAYFA1323 sample at lower(a) and higher 
magnifications (b) 

                           
  (a)           (b) 

Figure 6.85: SEM micrographs of CAYFA1348 sample at lower(a) and higher 

magnifications (b) 
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  (a)            (b) 

Figure 6.86: SEM micrographs of CAYFA1373 sample at lower(a) and higher 

magnifications (b) 

 

6.8.1.2 Physical and mechanical properties of sintered CAYFA samples 
 

Physical and mechanical properties of CAYFA samples heat-treated at different 

temperatures were listed in Table 6.47. Densities of heat-treated samples were 

measured to be around 1.95-2.26 g/cm3 that were higher than the pressed CAYFA 

samples. The density of the samples increased with the increase in firing temperature 

in consistent with the SEM observations as it was reported by the several researchers 

[15,238,239]. CAYFA1373 sample that has a more dense crystalline structure has the 

highest density value of all samples. The density values of CAYFA samples are 

found higher than the density values of bricks produced from fly ash by Lingling et 

al.[238]. The density value of CAYFA1348 and CAYFA1373 samples are very close 

to the commercial porcelainized stoneware [240]. The low density values of the 

CAYFA1298 and CAYFA 1323 samples indicate that these samples were not 

sintered effectively. At lower firing temperatures sintered samples exhibited a porous 

surface that was maintained up to 1373 K. Due to the existing open porosity, the 

water absorption was high for the CAYFA1298, CAYFA1323 and CAYFA1348 

samples. The porosity decreased to the value of 5.6 % when the samples were heat 

treated at 1373 K. Therefore, water absorption reaches the lowest value of 3.1 % for 

the CAYFA1373 sample. Water absorption and porosity values are better than the 

values of the fly ash based-bricks reported by Lingling et al.[238], Jonker et al.[241], 

Artır et al.[242], Illic et al.[239] and Queralt et al.[15] who produced ceramic 

materials from coal fly ash obtained less water absorption values than the values 

reported in this study. Rockwell hardness values of sintered samples increased with 

the increasing of firing temperature, as it was expected. CAYFA1373 sample has the 
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highest value of 69 in the B scale since it has the highest crystalline phase in all 

samples. Microstructural, mechanical and physical properties of CAYFA1373 

sample are better than the other samples. These results showed that the sintering can 

be achieved above 1348 K for Çayırhan fly ash.  

 

Overall results showed that the fired samples have superior properties than the 

pressed samples. Conducting heat treatment process on the pressed samples resulted 

to improve the properties of the pressed samples.  

 

Table 6.47: Properties of CAYFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite, enstatite 

and hematite 

28 1.81 30.0 25.50 

CAYFA1298 Mullite, anorthite 

and diopside 

35 1.95 15.0 9.25 

CAYFA1323 Mullite, anorthite 

and diopside 

45 1.98 11.2 7.60 

CAYFA1348 Anorthite and 

diopside 

51 2.11 10.8 6.20 

CAYFA1373 Anorthite and 

diopside 

69 2.26 5.6 3.10 

 

6.8.2 Experimental results of sintered CFA samples 

 

6.8.2.1 Microstructural analysis of sintered CFA samples 
 

Pressed Çan fly ash samples were heat treated at the temperatures of 1373, 1398, 

1423 and 1448 K on the basis of preliminary experimental trials. The firing 

temperatures were selected higher than the temperatures applied for CAYFA 

samples. The reason of this is the higher SiO2+Al2O3 and lower alkali oxide contents 

of CFA samples than the CAYFA samples. It is well known that, SiO2+Al2O3 behave 
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as a glass former which increase the melting temperature while the alkali oxides 

decrease the melting temperature. Alkali oxide content affects the viscosity of the 

material and consequently the mass transport during the sintering process. The low 

melting temperature causes the occurrence of liquid phase which enhances the 

connecting of fly ash particles and reacting of components each other at lower 

temperatures. Therefore, high alkali oxide content lowers the sintering temperature. 

The color of the CFA samples changed from light to dark grey when the heat 

treatment process applied on the pressed samples. The surface of the samples is 

getting smoother and shiny dark color with the increasing firing temperature. In order 

to investigate the nature of phases resulting from thermal treatment, the XRD 

patterns of samples heat treated at different temperatures were compared. XRD 

patterns of CFA1373, CFA1398, CFA1423 and CFA1448 samples were given in 

Figure D.2 in Appendix D, respectively. As seen from Figure D.2, the peak 

intensities and the locations were slightly changed with the increasing of firing 

temperature. The intensities of the mullite peaks increased with the increasing firing 

temperatures. The changes in the crystallization phases can also be seen from Table 

6.48. Enstatite and anorthite phases in the as-received fly ash sample disappeared in 

the sintered samples. Çan fly ash sample belongs to mainly SiO2-Al2O3-Fe2O3 

system. From phase diagrams for ceramics, the behavior of fly ash during firing can 

be predicted. The main composition of Çan fly ash is located in the primary phase 

field of mullite and therefore, this phase can be expected in the sintered CFA 

samples. The formation reaction of mullite in the SiO2 and Al2O3 couple occurred by 

the following solid-state reactions [243]: 

 

Al2O3.2SiO2.2H2O     Al2O3.2SiO2 + 2H2O   (6.9) 

   

Al2O3.2SiO2    Al2O3.SiO2 + SiO2   (6.10) 

 

3(Al2O3.SiO2)    3Al2O3.2SiO2 + SiO2   (6.11) 

1073 K-1173 K 

1273 K 

823 K-843 K 

 
3.2 Mullite 

 

Since the Al2O3 and SiO2 content of Çan fly ash is relatively high enough to form 

mullite phase, the main crystalline phase occurred in the sintered CFA samples is 

mullite (Al6Si2O13) The mullitization reaction was practically completed at 1373 K 
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and mullite crystallinity increased with the further increase in firing temperature. The 

mullite phase occurred in the coal fly ash-based ceramics was also reported by Jung 

et al.[244] and Queralt et al.[15].  

 

SEM observations of sintered samples indicated that the mullite crystallites formed 

in the microstructure of the sintered CFA samples. Figure 6.87-6.90 shows the 

surface and the crystalline structures of the CFA samples. CFA samples have more 

porous and rough surfaces at low sintering temperatures. Figure 6.87(a) shows the 

rough and porous surface of the CFA1373 sample. With the increasing of firing 

temperature from 1373 K to 1398 K, more smooth surface and less porosity was 

obtained (Figure 6.88(a)). As seen from Figure 6.88(a), a small amount of glassy 

phase and a crystalline site were also observed on the surface of the CFA1398 

sample. CFA1423 sample has less porosity than the CFA1373 and CFA1398 samples 

(Figure 6.89(a)). Figure 6.89(a) indicates the elongated mullite crystallites on the 

surface of the CFA1423 sample even if at this low magnification. There was also a 

small glassy phase on the surface of the CFA1423 sample. Figure 6.90(a) showed 

that the CFA1448 sample has the more dense structure and smoother surface than the 

other CFA samples. There was a little glassy phase with the absence of porosity. It 

was also seen that interlocked crystallites homogeneously dispersed in the 

microstructure of the CFA1448 sample.  

 

SEM micrographs taken at higher magnifications revealed the crystalline structure of 

the sintered samples. Figure 6.87(b) shows the interlocked elongated crystallites with 

small grains. A small amount of glassy phase can also be seen. Interlocked irregular 

shaped crystallites were dispersed in the microstructure of the CFA1398 sample as 

seen from Figure 6.88(b). There was also a small glassy phase between the 

crystalline particles. After a further increase in the firing temperature the volume 

fraction of elongated crystallites decreased while the equiaxed mullite crystallites 

increased (Figure 6.89(b)). In the later stage of sintering reaction, prismatic, equiaxed 

mulite crystallites embedded in a fine-grained matrix formed by solid state reactions 

(Figure 6.90(b)). The crystalline size varied in a wide range since the different 

crystalline shapes occurred in the microstructure. The crystallites strictly interlocked 

together to form a more dense structure. As seen from Figure 6.90(b), no glassy 

phase was detected in the microstructure of the CFA1448 sample. SEM observations 
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showed that the crystalline size decreased and more dense crystalline structure was 

observed when the firing temperature increased. Surface of the samples were getting 

smoother and no glassy phase or porosity could be observed in the sintered samples 

at higher temperatures. The microstructure of CFA1428 and CFA1448 samples are 

better than the microstructure of the sintered coal fly ash produced by Illic et 

al.[239]. 

 

                              
  (a)      (b) 

Figure 6.87: SEM micrographs of CFA1373 sample at lower(a) and higher 
magnifications (b) 
 

                             
(a)      (b) 

Figure 6.88: SEM micrographs of CFA1398 sample at lower(a) and higher 
magnifications (b) 
 

                             
(a)      (b) 

Figure 6.89: SEM micrographs of CFA1423 sample at lower(a) and higher 
magnifications (b) 
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(a)      (b) 

Figure 6.90: SEM micrographs of CFA1448 sample at lower(a) and higher 

magnifications (b) 

 

6.8.2.2 Physical and mechanical properties of sintered CFA samples 
 

Table 6.48 shows the physical and mechanical properties of the sintered CFA 

samples. As seen from Table 6.48, density and Rockwell hardness values increased 

while the porosity and water absorption values decreased with the increasing of 

sintering temperature. The increasing of sintering temperature resulted in a densified 

structure as it was observed in SEM investigations. The density value reached the 

highest value of 2.55 g/cm3 at 1448 K. This value is higher than the density values of 

sintered samples reported by the other researchers [239,244]. Densities obtained for 

sintered materials are comparable to those of commercially produced ceramics 

including clay-based sintered materials [245].  

 

The water absorption values were ranged from 11.2% to 1.3 % depending on the 

sintering temperature. Similar results were also obtained by the studies on coal fly 

ash sintering at different temperatures. Illic et al.[239], Queralt et al.[15] and 

Pollettini et al.[246] found that the water absorption decreased with the increasing 

sintering temperatures. Kara et al.[247] and Jonker et al.[241] obtained higher water 

absorption values for sintered materials produced from different industrial wastes 

(such as fly ash, iron-rich waste and gypsum) than the water absorption value of 

CFA1448 sample.  

 

CFA1448 sample has the lowest porosity value of 0.8 %. This result is in well 

agreement with the SEM observations; density and water absorption values. The low 

density and high water absorption values are the indicatives of a porous material.  
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Rockwell hardness values are also increased with the increase in sintering 

temperature as it was expected. More dense and tiny crystalline structure caused 

better mechanical properties. Large and irregular shaped crystallites, glassy phase 

and porosity decrease the mechanical properties of the materials. It was also known 

that the mullite properties (low thermal expansion, high hardness, low thermal 

conductivity) make it an ideal canditate for making ceramic bodies from fly ash 

[248]. Kim et al.[249] reported that the Rockwell hardness value of the traditional 

ceramics was in the range of 72.2-80.8 at the major load of 15 kg. The maximum 

hardness value of 82 for CFA148 sample was better than those values. 

 

Table 6.48: Properties of CFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite and 

enstatite  

 

38 

 

1.98 

 

25.0 

 

11.20 

CFA1373 Mullite and quartz 51 2.05 12.0 7.10 

CFA1398 Mullite and quartz 63 2.27   7.0 4.30 

CFA1423 Mullite and quartz 71 2.48   1.5 2.55 

CFA1448 Mullite and quartz 82 2.55   0.8 1.30 

 

 

6.8.3 Experimental results of sintered CATFA samples 

 

6.8.3.1 Microstructural analysis of sintered CATFA samples 
 

Çatalağzı fly ash samples sintered at 1373, 1398, 1423 and 1448 K after pressed at 

40 MPa. It was observed that the pressed samples were in grey color, which tended 

to become pale brown after the heat treatment process. The surfaces of the sintered 

samples were became smoother with a glassy appearance when the firing 

temperature increased. XRD investigations revealed the crystalline phases occurred 

in the sintered samples. In Appendix D Figure D.3 shows the XRD patterns of 

CATFA1373, CATFA1398, CATFA1423 and CATFA1448 samples, respectively. 
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The crystalline phases occurred in each sample were given in Table 6.49. The 

sintered samples show the presence of quartz (SiO2), mullite (Al6Si2O13) and 

anorthite (CaAl2Si2O8) phases while the untreated fly ash sample comprised of the 

quartz, mullite, anorthite and enstatite phases. Crystalline phases changed 

significantly with the increasing of firing temperature. Quartz and mullite phases 

were detected in the CATFA1373 sample (Figure D.3(a)). When the pressed samples 

were heated to 1398 K, anorthite phase occurred. As seen from Figure D.3(b), new 

peaks were observed at 22.5o, 24o, 27.2o, 28.3o, 30o, 30.5o, 36.5o and 37o 2θ 

corresponding to anorthite phase. The peak corresponding to quartz phase 

disappeared at 1398 K. Further heat treatment at higher temperature resulted to 

decrease in the intensity of the mullite phase. As seen from x-ray diffraction 

diagrams, the intensity of the anorthite peaks increased while the intensity of the 

mullite peaks decreased with the increase in firing temperature. The main crystalline 

phase occurred in CATFA 1448 sample was determined as anorthite (CaAl2Si2O8). 

Figure D.3(d) shows only two peaks corresponding to the mullite peaks at 1448 K. 

The composition of Çatalağzı fly ash is in the SiO2-Al2O3-CaO-Fe2O3 system. The 

compositions of Çan and Çatalağzı fly ash samples are similar to each other. 

However, CaO content of Çatalağzı fly ash is higher than Çan fly ash. The formation 

of the anorthite phase may be explained by the high CaO content of Çatalağzı fly 

ash. The presence of anorthite is generally associated with the substitution of Ca ion 

into the SiO2-Al2O3 couple at high temperatures. Therefore, mulite phase 

transformed gradually into anorthite phase above 1373 K due to higher CaO content.  

 

SEM examination results revealed the microstructural evolution of the sintered 

samples, as shown in Figures 6.91-6.94. Figures 6.91(a) and (b) are representative 

SEM micrographs of CATFA1373 sample both low and high magnifications, 

respectively. Glassy phase on the surface of the sample can be seen from the Figure 

6.91(a). However, a small amount of crystalline sites which were randomly 

distributed on the surface of the sample was also observed. Surface of the 

CATFA1373 sample was highly porous. The high SiO2-Al2O3 content and the low 

alkali oxides content resulted to the high melting temperature as it was discussed 

previously. The viscosity of the material is high at the relatively low temperatures. It 

is expected that the evolution of gasses from the material would start at lower 

temperatures than the sintering temperatures, when the particle coalescence is still 
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continuing. The combination of the evolution of gaseous species during thermal 

treatment and the high viscosity of the material, resulting in increasing the size and 

the number of pores. Particle coalescence is still continuing at 1373 K as seen from 

Figure 6.91(b). This result showed that the sintering stage could not be completed. 

Irregular shaped crystallites were detected in the CATFA1373 sample. There are also 

small pores on the microstructure of the sample. Figure 6.92(a) shows the surface of 

the CATFA1398 sample. The surface of the CATFA1398 sample is absolutely 

different from the CATFA1373 sample. No porosity was observed on the surface of 

the sample and needle-like mullite crystallites were also detected (Figure 6.92(a)). 

The volume of the glassy phase was less than the CATFA1373 sample. Needle-like 

crystallites can be clearly seen at higher magnification from Figure 6.92 (b). There 

was also a small amount of equiaxed crystallites on the surface of the CATFA1398 

sample. Glassy phase can be still seen even if at higher magnifications. The 

microstructure of the sintered samples changed above the temperature of 1398 K. As 

seen from Figure 6.93 (a), the amount of the needle-like mullite crystallites 

decreased and small equiaxed crystallites occurred on the surface of the CATFA1428 

sample. A small amount of glass phase was still observed on the surface of the 

sample. Figure 6.93 (b) shows the microstructure of the CATFA1428 sample at 

higher magnification. As seen from Figure 6.93 (b) irregular shaped crystallites 

dispersed homugeneously on the microstructure of the CATFA1428 sample. Both 

needle-like mullite crystallites and small equiaxed crystallites were embedded in the 

glassy matrix. Small crystallites were detected on the surface of the CATFA1448 

sample (Figure 6.94 (a)). As seen from Figure 6.94 (a), a small amount of glassy 

phase remained in the CATFA1448 sample. The crystallites occurred in the 

CATFA1448 sample were small equiaxed crystals and some irregular shaped 

crystallites were also observed. It was clearly shown from the Figure 6.94 (b), small 

equiaxed crystallites interlocked together to form a more dense well-sintered 

microstructure with a uniform distribution of crystals. Any glassy phase could not be 

detected in the microstructure of the CATFA1448 sample. The shape and the size of 

the crystallites changed dramatically with the increasing of firing temperature. The 

equiaxed crystals formed in the microstructure of the sintered samples instead of the 

needle-like mullite crystallites with the thermal treatment of pressed samples above 

the temperature of 1398 K. The crystalline size also decreased with the increase in 
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firing temperature since the crystalline phase and the shape of the crystals are 

changed. These results are in well agreement with the XRD results.  

 

                                        
(a)      (b) 

Figure 6.91: SEM micrographs of CATFA1373 sample at lower(a) and higher 

magnifications (b) 

 

                                        
(a)      (b) 

Figure 6.92: SEM micrographs of CATFA1398 sample at lower(a) and higher 

magnifications (b) 

 

                                     
(a)      (b) 

Figure 6.93: SEM micrographs of CATFA1423 sample at lower(a) and higher 

magnifications (b) 
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(a)      (b) 

Figure 6.94: SEM micrographs of CATFA1448 sample at lower(a) and higher 

magnifications (b) 

 

6.8.3.2 Physical and mechanical properties of sintered CATFA samples 
 

To determine the effects of firing temperatures on the properties of sintered materials 

physical and mechanical properties were determined and the results were given in 

Table 6.49. Densities of the sintered samples were in the range of 2.12-2.58 g/cm3. 

The density of the pressed sample (1.97 g/cm3) was improved by applying the heat 

treatment processes on this material. In consistent with SEM observations, 

CATFA1448 sample has the highest density value of 2.58 g/cm3. A high degree of 

densification by sintering could be achieved at temperature above 1398 K. It was 

reported that the density values of sintered materials obtained from fly ashes (such as 

coal fly ash and incinerator fly ash) varied in a wide range between 0.8-2.48 g/cm3 

[15,238,239,246,250-252]. These reported values are lower than the density value of 

CATFA1448 sample. However, Hernandez et al.[240] produced a municipal solid 

waste fly ash based-sintered material with a density value of 2.73 g/cm3 which is 

higher than the value of CATFA1448 sample.  

 

As seen from Table 6.49, porosity and water absorption values of CATFA samples 

decreased with the increasing firing temperature as it was expected from the density 

values and SEM observations. Water absorption is an indication of the porosity of 

the material. Therefore, both porosity and water absorption values correlated well 

each other. Water absorption and porosity values of all sintered CATFA samples are 

lower than the values reported by Jonker et al.[241] and Artır et al.[242] even if 

CATFA1373 sample.  
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Rockwell hardness values of sintered samples were found in the range of 38-72. 

With the increasing of firing temperature, the crystallization degree increased and 

more dense crystalline structure occurred in the sintered samples. Therefore, 

CATFA1448 sample has the highest hardness value while the pressed sample has the 

lowest hardness value. Overall results showed that the heat treatment process yielded 

better characteristics for physical and mechanical properties of CATFA samples.  

 

Table 6.49: Properties of CATFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite and 

enstatite  

30 1.97 21.0 15.7 

CATFA1373 Mullite and quartz 38 2.12 15.2  9.8 

CATFA1398 Mullite, anorthite 

and quartz 

48 2.29   8.5  8.3 

CATFA1423 Mullite and 

anorthite  

53 2.42   5.7  6.1 

CATFA1448 Anorthite 72 2.58   3.2  3.2 

 

6.8.4 Experimental results of sintered SFA samples 

 

6.8.4.1 Microstructural analysis of sintered SFA samples 
 

1373, 1398, 1423 and 1448 K were selected as the sintering temperatures for 

Seyitömer fly ash according to the preliminary experimental trials. Color and the 

texture of the pressed Seyitömer fly ash samples changed with the heat treatment 

process. Pressed brown samples with rough surfaces transformed to dark brown 

sintered samples with a smooth shiny surfaces. Mineralogical composition of the 

samples also changed with the increasing of firing temperature. Transformation of 

phases can be seen from Figure D.4 in Appendix D. The crystalline phases found in 

the sintered samples and as-received fly ash were listed in Table 6.50. As seen from 

Table 6.50 and Figure D.4, only hematite phase disappeared when the heat treatment 
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process was applied on the pressed samples at 1373 K comparing with the as-

received fly ash mineralogical composition. The increase in firing temperature only 

changed the intensity of the mullite (Al6Si2O13) and anorthite (CaAl2Si2O8) peaks. 

The intensity of the mullite and anorthite peaks (at 33.2o and 36o 2θ, respectively) 

decreased at SFA1398 sample as seen from Figure D.4(b9. Quartz peak which shows 

the glassy phase formed in the microstructure has the highest intensity in all peaks 

detected in the XRD patterns of SFA1398 sample. As seen from Figure D.4(c), 

quartz intensity deceased while the mullite and anorthite peak intensities increased 

sharply in the XRD pattern of SFA 1423 sample. A new anorthite peak occurred at 

22o 2θ and the intensity of the anorthite peaks at 24o, 36o, 49.5o 2θ increased in 

SFA1423 sample. The intensity of mullite peak at 33.2o 2θ increased sharply while 

the intensity of quartz peak at 26.9o 2θ decreased. Anorthite peak at 28o 2θ has the 

highest intensity in the XRD patterns of SFA1448 sample as seen from Figure 

D.4(d). Further increase in the sintering temperature caused to decrease in the 

amount of quartz phase while the amount of anorthite and mullite phases increased in 

the SFA1448 sample. Transformation to anorthite phase at higher temperatures is 

higher than the mullite phase since the relatively high CaO content of Seyitömer fly 

ash compare to the Çan fly ash. Chemical compositions of Çatalağzı and Seyitömer 

fly ashes are similar to each other and therefore, mullite and anorthite phases were 

detected in both sintered CATFA and SFA samples. However, Fe2O3 and MgO 

content of Seyitömer fly ash is higher than the Çatalağzı fly ash. So, enstatite phase 

remained in the sintered SFA samples because of the high Fe2O3 and MgO content of 

Seyitömer fly ash. 

 

SEM observations revealed that the surface of the sintered SFA samples was smooth 

and any porosity could not be detected on the surface of the samples as seen from 

Figures 6.95 (a)-6.98(a). Figure 6.95(a) is a representative SEM micrograph of 

SFA1373 sample. It was clearly seen from this figure that the large crystalline sites 

formed on the surface of the sample with glassy phase regions. Figure 6.96 (a) 

indicates that the surface of the sample could not changed when the temperature was 

raised to 1398 K. The amount of the crystalline sites and the glassy phase are similar 

in SFA1373 and SFA1398 samples. Further increase in the firing temperature 

resulted to decrease in the amount of glassy phase in the SFA1423 sample as it was 
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observed in the XRD investigations. Large irregular shaped crystallites were detected 

on the surface of the SFA1423 sample even if at low magnification (Figure 6.97 (a)). 

As seen from Figure 6.98 (a), the amount of glassy phase in the SFA1448 sample 

was less than the glassy phase remained in the SFA1423 sample. However, the 

similar crystalline sites were observed in both SFA1448 and SFA1423 samples.  

 

The detailed SEM investigations on the crystalline size and the shapes of the sintered 

SFA samples were performed at higher magnifications. As seen from Figure 6.95 (b), 

the needle-like mullite crystallites varied in the range of 1-2 µm. The small equiaxed 

crystallites were also observed with glassy phase regions. The amount of the needle-

like mullite crystallites decreased when the temperature was raised to 1398 K. As 

seen from Figure 6.96 (b), there was still glassy region and size of the equiaxed 

crystallites decerased. With the effect of higher firing temperature, the more dense 

microcrystalline structure was obtained in the SFA1423 sample (Figure 6.97 (b)). 

The needle-like mullite crystallites were still observed in the microstructure. Some 

big crystallites with irregular shapes were detected in the SFA1423 sample. Small 

equiaxed crystallites were interlocked together. Small glassy regions still remained 

between the needle-like and equiaxed crystallites. As seen from Figure 6.98 (b), 

more dense structure with interlocked equiaxed crystallites was obtained in the 

SFA1448 sample. Small glassy regions can also be seen in this figure. Some irregular 

shaped crystallites were detected in the SFA1448 sample. The amount of the needle-

like crystals observed in the SFA1448 sample is less than the SFA1423 sample. 

Consequently, overall results indicated that SEM observations confirm XRD results.  

 

                                     
(a)      (b) 

Figure 6.95: SEM micrographs of SFA1373 sample at lower(a) and higher 
magnifications (b) 
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(a)      (b) 

Figure 6.96: SEM micrographs of SFA1398 sample at lower(a) and higher 

magnifications (b) 

                                    
(a)      (b) 

Figure 6.97: SEM micrographs of SFA1428 sample at lower(a) and higher 

magnifications (b) 

                                  
(a)      (b) 

Figure 6.98: SEM micrographs of SFA1448 sample at lower(a) and higher 

magnifications (b) 

 

 

6.8.4.2 Physical and mechanical properties of sintered SFA samples 
 

Physical and mechanical properties of SFA samples were listed in Table 6.50. It was 

seen from Table 6.50 that sintering process has a strong effect on the densification 

behavior. The density of the pressed samples increased significantly from the value 

of 1.78 g/cm3 to the highest value of 2.14 g/cm3 when it was sintered at 1448 K. For 

sintering process the increase in the sintering temperature promotes densification. 
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The density values of the sintered fly ash samples obtained by Bernavidez et al.[251], 

Lingling et al.[238] and Artır et al.[242] were lower than the density values of 

sintered SFA samples. The densities obtained for the sintered SFA samples are close 

to the porcelains and glasses [239].  

 

Water absorption data demonstrates the reduction in open, water accessible porosity 

with increased firing temperature. In compliance with the water absorption values, 

porosity values decreased with increasing sintering temperature. The lowest water 

absorption value of 3 % is an indicative of the lowest porosity value of 2.1 % for the 

SFA1448 sample. The water absorption and porosity values of sintered SFA samples 

were lower than the values reported by Lingling et al.[238] and Artır et al.[242]. 

However, Illic et al.[239] obtained the lower water absorption value of 0.1 % and the 

higher density value of 2.48 g/cm3 for the sintered coal fly ash samples at 1443 K. 

Those properties are better than the properties of the sintered SFA samples. It was 

also important to note that the particle size of the coal fly ash (7.3 µm) used by Illic 

et al.[239] was significantly lower than the particle size of Seyitömer fly ash (261 

µm). It was stated by Illic et al.[239] that the particle size play an important role on 

the properties of the sintered fly ash samples. According to the studies carried out by 

Illic et al.[239], microstructural and physical properties of the sintered fly ah samples 

improved with the decrease in particle size. Rockwell hardness values of the SFA 

samples were found in the range of 35-53. The hardness values were getting better 

with the increase in firing temperature as it was expected. The more dense crystalline 

structure and therefore, less glass phase resulted to higher hardness values.   

 

6.8.5 Experimental results of sintered TFA samples 

 

6.8.5.1 Microstructural analysis of sintered TFA samples 
 

Pressed Tunçbilek fly ashes were sintered at 1398, 1423, 1448 and 1473 K. These 

temperatures are the highest firing temperatures applied to all sintered samples. 

Tunçbilek fly ash has the highest Al2O3 - SiO2 content and the lowest alkali oxides 

content so that the melting point would be higher as it was discussed previously. 

Therefore, firing temperatures were selected higher than the all other samples 

according to the preliminary experimental trials.  
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Table 6.50: Properties of SFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite, hematite 

and enstatite  

35 1.78 19.6 12.61  

SFA1373 Mullite, anorthite, 

enstatite and quartz 

42 1.92 10.1 11.20 

SFA1398 Mullite, anorthite, 

enstatite and quartz 

48 2.02  7.1 10.10 

SFA1423 Mullite, anorthite, 

enstatite and quartz 

53 2.14  5.6   8.20 

SFA1448 Mullite, anorthite 

and enstatite  

57 2.43  2.1              3.00 

 

Visual inspection of the color and texture of the TFA samples showed that the dark 

red color of the pressed samples became brown after the thermal treatment. The 

rough surface of the pressed sample was getting smoother and further heat treatment 

caused to shiny glassy texture on the surface of the sintered samples. The crystalline 

phases occurred in the sintered TFA samples changed with the increase in the firing 

temperature. As seen from Figure D.5 in Appendix D, the intensity and the location 

of the peaks changed. The crystalline phases detected in TFA samples were given in 

Table 6.51. Both anorthite and hematite phases disappeared when the pressed TFA 

samples heat treated at 1398 K. Quartz, (SiO2)  mullite (Al6Si2O13) and enstatite 

((Mg, Fe)SiO3) phases can be seen from the Table 6.47 and Figure D.5(a). It can be 

inferred from the XRD pattern of TFA1398 sample that the amounts of enstatite and 

mullite phases were higher than the quartz phase. The intensities of quartz and 

enstatite peaks (at 27o and 35.6o 2θ, respectively) decreased when the TFA sample 

sintered at 1423 K. When the sintering temperature increased to 1448 K the quartz 

peak at 27o 2θ disappeared in the XRD pattern of TFA1448 sample. The intensity of 

the mullite and enstatite peaks increased sharply at 1448 K. This result indicates that 
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the amount of glassy phase decreased while the amount of crystalline phase 

increased. At 1473 K, enstatite and mullite phases are the two main phases in the 

microcrystalline structure of the TFA1473 sample. High Al2O3 - SiO2 content of 

Tunçbilek fly ash caused the mullite phase while the enstatite phase was an 

indicative of high Fe2O3 content of it.  

 

To investigate the microstructural evolution, SEM was conducted on the sintered 

TFA samples. Figures 6.99-6.102 are the representative SEM micrographs of the 

TFA1398, TFA1423, TFA1448 and TFA1473 samples, respectively. As seen from 

Figure 6.99(a), the surface of the TFA1398 sample was rough and some small pores 

can be seen. Figure 6.99(b) shows the SEM micrograph of the TFA1398 sample at 

higher magnification. It was clearly seen from this micrograph that small amount of 

crystallites occurred in the glassy matrix. The elongated crystallites gathered to form 

a bigger crystalline size. These gathered crystallites were surrounded by the glassy 

phase. The surface of the TFA1423 sample can be seen from Figure 6.100(a). The 

surface of the TFA1423 was still rough but smoother than the TFA1398 sample. The 

gathered crystallites can be seen from the surface micrograph of TFA1423 sample. 

Figure 6.100(b) shows these gathered crystallites at higher magnification. Crystalline 

size and the shape can clearly be seen at the higher magnification. The 

microstructures of these two samples are very similar to each other. The amount of 

the crystallites occurred on the microstructure of both samples were low. 

Microstructure of the sintered TFA samples changed when the sintering temperature 

was raised. As seen from Figure 6.101(a), the amount of the crystallites increased in 

the microstructure of the TFA1448 sample. The gathered crystallites dispersed in the 

microstructure randomly. The surface of the TFA1448 sample was smoother than the 

TFA1423 sample. Figure 6.101(b) is a SEM micrograph of the TFA1448 sample at 

higher magnification. As seen from this figure, more elongated crystallites dispersed 

in the microstructure of the sample. The amount of the crystallites increased with the 

increase in sintering temperature. Small pores can be seen on the surface of the 

sample. The pore diameter also decreased with the increase in firing temperature. It 

was clearly seen from the Figure 6.102(a) that the surface of the TFA1473 sample 

was smoother than the other sintered TFA samples. The elongated crystallites were 

observed on the microstructure of the sample. Figure 6.102(b) shows these crystals 

closer at the higher magnification. The crystalline size and the shape were similar 
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with the crystallites formed in the TFA1448 sample. However, the microcrystalline 

structure was denser than the microstructure of TFA1448 sample. The amount of the 

crystallites increased in the TFA1473 sample. The elongated crystallites interlocked 

together to form a more dense crystalline structure. Small amount of glassy phase 

still remained in the microstructure of the TFA1473 sample. SEM observations 

revealed that the crystalline size decreased with the increase in sintering temperature 

and more dense crystalline structure occurred.  

 

 

                                   
(a)      (b) 

Figure 6.99: SEM micrographs of TFA1398 sample at lower(a) and higher 

magnifications (b) 

 

 

                                   
(a)      (b) 

Figure 6.100: SEM micrographs of TFA1423 sample at lower(a) and higher 

magnifications (b) 
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(a)      (b) 

Figure 6.101: SEM micrographs of TFA1448 sample at lower(a) and higher 

magnifications (b) 

 

                                 
(a)      (b) 

Figure 6.102: SEM micrographs of TFA1473 sample at lower(a) and higher 

magnifications (b) 

 

6.8.5.2 Physical and mechanical properties of the sintered TFA samples 
 

To determine the effect of sintering temperatures on the properties of sintered TFA 

samples, some physical and mechanical properties of the samples were measured and 

the results were given in Table 6.51. By increasing the sintering temperature the TFA 

samples displayed smooth surfaces with glassy appearance. The structural changes 

observed at macroscopic level were mirrored by their physical and mechanical 

properties. Density is a parameter that can be used as an indicator of the degree of 

sintering. Density values increased from 1.81 g/cm3 to 2.37 g/cm3 during the thermal 

treatment of the samples. Increasing of density values is a result of more dense 

crystalline structure with a less glassy phase and porosity. Therefore, with the 

increase in density values the water absorption values are also decreased. The density 

values of sintered TFA samples are higher than the density values of sintered fly ash 

samples produced by Artır et al.[242], Polettini et al.[246] and Lingling et al.[238]. 
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The water absorption and the porosity values were also better than the values 

reported by Lingling et al.[238] and Artır et al.[242].  

 

The Rockwell hardness values increased with the increase in sintering temperatures 

as it was observed in the density values. From SEM observations, we can clearly see 

that the average crystal sizes of both TFA1448 and TFA1473 samples were smaller 

than the other samples and the hardness values were better. It was reported in the 

literature that the fine-grained ceramic materials possess better hardness property 

together with finer crystal size [253]. Overall results showed that the TFA1473 

sample had more dense microcrystalline structure with better physical and 

mechanical properties than those of the other sintered TFA samples. 

 

 

Table 6.51: Properties of TFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite, hematite 

and enstatite  

32 1.81 18.0 15.60 

TFA1398 Mullite, enstatite 

and quartz 

40 1.93 15.3 13.20 

TFA1423 Mullite, enstatite 

and quartz 

43 2.03 12.1   9.70 

TFA1448 Mullite and enstatite  53 2.17   8.6   6.78 

TFA1473 Mullite and enstatite  58 2.37   6.3   5.12 

 

 

6.8.6 Experimental results of sintered OFA samples 

 

6.8.6.1 Microstructural analysis of sintered OFA samples 
 

The sintering temperatures were selected as 1273, 1298, 1323 and 1348 K for the 

Orhaneli fly ash. These temperatures are lower than those of the sintering 
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temperatures for CAYFA, CFA, CATFA, SFA and TFA samples. Low Al2O3 - SiO2 

and high alkali oxides contents caused to decrease the sintering temperatures of OFA 

samples. The structural changes occurred in the sintered OFA samples observed at 

macroscopic level are: The color of the pressed OFA samples changed from light 

green to dark green when the heat treatment processes were conducted on the 

samples; the rough surface of the pressed OFA samples was getting smoother with 

the increase in sintering temperatures.  

 

To determine the mineralogical changes, XRD analyses were performed on the 

sintered OFA samples. XRD patterns of OFA1273, OFA1298, OFA1323 and 

OFA1348 samples can be seen from Figure D.6, respectively in Appendix D. The 

crystalline phases obtained in the sintered samples and Orhaneli fly ash were given in 

Table 6.52. Table 6.52 and Figure D.6(a) revealed that the quartz (SiO2), mullite 

(Al6Si2O13), anorthite (CaAl2Si2O8) and enstatite ((Mg, Fe)SiO3) phases detected in 

Orhaneli fly ash sample disappeared and wollastonite (CaSiO3) and gehlenite 

(Ca2Al2SiO7) phases occurred in the OFA1273 sample. The amount of the 

wollastonite phase is more than the gehlenite phase. Only one peak at 31.5o 2θ 

corresponded to gehlenite peak. Orhaneli fly ash belongs mainly to the CAS system 

because of the chemical composition of it. The crystallization behavior can be 

explained by the theory of stable energy of glassy structure unit [235]. According to 

this theory, the structure units of CAS system are (SiO4) and ((AlO4)Ca(AlO4)). 

When CAS system material is heated, the structure unit ((AlO4)Ca(AlO4)) begin to 

broken apart and the free Ca2+ join to (SiO4) tetrahedrals and therefore wollastonite 

formed first. After wollastonite deposits, (AlO4) tetrahedrals remain in the structure. 

It becomes harder for free Ca2+ to meet (SiO4) because of the presence of (AlO4) 

tetrahedrals. Though ((AlO4)Ca(AlO4)) is very large and inconvenient to regroup as a 

whole, it is forced to rearrange and unite with (SiO4) tetrahedrals [235]. Therefore, 

gehlenite deposits from the glass structure after wollastonite deposits. When the 

temperature was raised to 1298 K, the peak intensity of the gehlenite phase at 31.5o 

2θ increased while the peak intensities of wollastonite phase decreased. The location 

and the intensity of the wollastonite peak changed with the increase in firing 

temperature as seen from Figure D.6(b). The wollastonite peaks at 25.5oand 60o 2θ 

disappeared and new wollastonite peaks at 29o, 30o, 35o and 36o 2θ formed in the 
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microstructure of the OFA1298 sample. A new gehlenite peak was also detected at 

24.2o 2θ. The peak positions and the shapes did not change above 1298 K as seen 

from Figures D.6(c) and D.6(d). The main crystalline phases were determined as 

gehlenite and wollastonite in the microstructure of the sintered OFA samples.  

 

Both surface and the microcrystalline SEM investigations were conducted on the 

sintered OFA samples. Figure 6.103 (a) shows the surface of the OFA1273 sample. 

The surface of the OFA1273 sample was rough and some porosity was also detected. 

With the increase in sintering temperature, the surface of the sintered samples was 

getting smoother as seen from Figure 6.104(a). The surface of the OFA1298 sample 

was still rough but it was smoother than the OFA1273 sample. The porosity was less 

than of the OFA1273 sample. The surface of the OFA1323 sample was smoother 

than those of the OFA1273 and 1298 samples. (Figure 6.105(a)). Some porosity still 

existed on the surface of the OFA1323 sample. Figure 6.106(a) shows the smooth 

surface of OFA1348 sample with less porosity. The pore size decreased with the 

increase in sintering temperature.  

 

Microstructural SEM investigations were performed also at higher magnifications. 

Figure 6.103(b) shows the dentritic crystallites occurred in the OFA1273 sample. 

The shape of the crystallites resembles to flower. There was also some glassy phase 

determined in the OFA1273 sample. The same structure was also observed in the 

OFA1298 sample as seen from Figure 6.104 (b). Same crystallites and some glassy 

regions were observed in the OFA1298 sample. Further increase in sintering 

temperatures resulted to change the shape and the size of the crystallites (Figure 

6.105(b)). The more dense crystalline structure was obtained with dentritic 

crystallites. The shape of the crystallites was like a leaf-shaped as it was observed in 

the microstructure of the ORSGC samples. The same crystalline shape was also 

observed in the microstructure of the OFA1348 sample (Figure 6.106(b)). It was also 

observed that the small amount of glassy phase remained in the microstructure of the 

OFA1348 sample. 
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(a)      (b) 

Figure 6.103: SEM micrographs of OFA1273 sample at lower(a) and higher 
magnifications (b) 
 

                                
(a)      (b) 

Figure 6.104: SEM micrographs of OFA1298 sample at lower(a) and higher 
magnifications (b) 
 

                              
(a)      (b) 

Figure 6.105: SEM micrographs of OFA1323 sample at lower(a) and higher 
magnifications (b) 
 

                              
(a)      (b) 

Figure 6.106: SEM micrographs of OFA1348 sample at lower(a) and higher 
magnifications (b) 
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6.8.6.2 Physical and mechanical properties of the sintered OFA samples 
 

Table 6.52 shows the variations in density, water absorption, porosity and the 

Rockwell hardness values with sintering temperatures. The density values of the 

pressed and the sintered OFA samples were ranging from 2.5 g/cm3 to 2.7 g/cm3. The 

sintered density slightly increased as increasing firing temperature. The densification 

degree was low at the lower sintering temperatures because of the high porosity of 

those sintered samples. The higher density of 2.7 g/cm3 was achieved at 1348 K. The 

density values of the sintered samples are better than those of the sintered materials 

produced in different studies from coal fly ash [239,242,252,254]. The water 

absorption values increased with the decrease in the sintering temperature. The water 

absorption rate has been used as an indication of porosity for the sintered materials. 

The accuracy of this statement was seen from the Table 6.52. Both porosity and 

water absorption values well correlated each other. The high water absorption and 

porosity values of pressed Orhaneli fly ash samples decreased from 18.12 % and 

24.12 % to 4.12 % and 4.1 %, respectively. The lowest porosity and water absorption 

values of the OFA1348 sample are indicatives of dense well-sintered microstructure 

with a minimum volume of porosity. This result is in well agreement with the SEM 

observations of OFA1348 sample.  

 

Similar to density values, as the sintered materials became more crystalline, the 

hardness of the sintered OFA samples increases. It is known that the remaining 

glassy phase resulted to the lower hardness values. Therefore, OFA1273 sample has 

the lowest hardness value while the OFA1348 sample has the highest hardness value.  

 

6.8.7 Experimental results of the sintered AEFA samples 

 

6.8.7.1 Microstructural changes of the sintered AEFA samples 
 

Afşin-Elbistan fly ash sample was sintered at 1223, 1248, 1273 and 1298 K on the 

basis of the preliminary experimental trials. The sintering temperatures of AEFA 

samples were the lowest temperatures among all sintered fly ash samples. This result 

was expected since the Afşin-Elbistan fly ash sample has the lowest SiO2+Al2O3 

content.  
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The color and the texture of the sintered samples changed when the temperature was 

raised. The AEFA1223 sample was weak and chalky. The surface of the AEFA1223 

sample was also rough compare to the other sintered samples. Sintering in between 

1248-1298 K resulted to produce well-sintered materials. Sintering above 1298 K 

caused to agglomeration and sticking problems in AEFA samples. The grey color of 

the pressed AEFA sample changed to dark grey by sintering process.  

 

Table 6.52: Properties of OFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite and 

enstatite  

32 2.50 24.12 18.12 

OFA1273 Gehlenite and 

wollastonite 

39 2.60 18.60 15.78 

OFA1298 Gehlenite and 

wollastonite 

47 2.63 14.70 13.98 

OFA1323 Gehlenite and 

wollastonite 

68 2.68 10.20  8.16 

OFA1348 Gehlenite and 

wollastonite 

72 2.70  4.10  4.12 

 

XRD analysis revealed that the gehlenite (Ca2Al2SiO7) and wolastonite (CaSiO3) 

phases occurred in the pressed AEFA samples after heat treatment. XRD patterns of 

AEFA1223, AEFA1248, AEFA1273 and AEFA1298 samples can be seen from 

Figure D.7, respectively in Appendix D. The crystalline phases occurred during the 

sintering process were also given in Table 6.53. As seen from Table 6.53 quartz, 

mullite and anorthite phases disappeared when the pressed samples were sintered at 

different temperatures. Only gehlenite phase remained in the sintered samples. The 

main crystalline peaks obtained in the AEFA1223 sample corresponded to the 

gehlenite at 31.5o 2θ and wollastonite at 25.5o 2θ. (Figure D.7(a)). As seen from 

Figure D.7(b), the wollastonite peak at 25.5o 2θ disappeared when the sintering 
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temperature was raised to 1248 K. A small wollastonite peak was detected at 29.2o 

2θ in the XRD pattern of AEFA1248 sample. The main crystalline phase is gehlenite 

in the AEFA1248 sample. Figure D.7(c) and D.7(d) show the XRD patterns of 

AEFA1273 and 1298 samples, respectively. The XRD patterns of these samples are 

similar to each other and to AEFA1248 sample. The same crystalline phases 

(gehlenite+wollastonite) were obtained in both OFA and AEFA samples since they 

had the similar chemical compositions with low SiO2+Al2O3 and high CaO contents. 

However, gehlenite was the main crystalline phase in AEFA1248, AEFA1273 and 

AEFA1298 samples comparing to the sintered OFA samples. High CaO content of 

Afşin-Elbistan fly ash can cause to this result. Chemical composition of Afşin-

Elbistan fly ash is close to the CAS system. It can be inferred from the phase 

diagrams for the ceramics that chemical composition of Afşin-Elbistan fly ash was 

placed in the phase field of gehlenite. The phase diagrams of ceramics were also 

supported the XRD results of sintered AEFA samples. 

 

SEM micrographs of the sintered AEFA samples heat treated at 1223-1298 K are 

shown in Figures 6.107-6.110. The changes occurred as a result of thermal treatment 

are clear. Figure 6.107(a) shows the surface of the AEFA1223 sample. As seen from 

Figure 6.107 (a), AEFA1223 sample contained some spherical pores. These pores are 

believed to form when the glass viscosity falls to a level which gas forming 

decomposition reactions take place. The gas release can produce the voids observed 

[255,256]. AEFA1223 sample has a rough surface. As seen from Figure 6.107 (b), 

sintering at 1223 K resulted in the microstructure of the AEFA1223 sample 

significant amount of glassy phase. Tiny crystallites were dispersed randomly in the 

microstructure of AEFA1223 sample. AEFA1248 sample has still a rough surface. 

However, the amount and the size of the pores decreased when the sintering 

temperature was raised to 1248 K as it was observed in Figure 6.108(a). The amount 

of the crystallization increased with the increase in sintering temperature in contrast 

to the glassy phase content. More dense, interlocked crystalline structure was 

detected in AEFA1248 sample as seen from Figure 6.108 (b). AEFA1248 and 

AEFA1273 samples had similar microstructures. The surfaces of both AEFA1248 

and AEFA1273 samples are rough and had some porosity. Crystallization degree 

increased above the sintering temperature of AEFA1248 sample. The amount of 

glassy phase was also decreased in the AEFA1273 sample as it was observed from 
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Figure 6.109(b). Further increase in sintering temperature caused to occur a different 

microcrystalline structure. The surface of the AEFA1298 sample was smoother than 

those of the sintered AEFA samples. More compact structure with a less porosity 

occurred on the surface of the sample as a result of sintering temperature (Figure 

6.110(a)). The more dense crystalline structure was obtained in AEFA1298 sample. 

Small crystallites dispersed randomly in the microstructure of the AEFA1298 

sample. Some porosity can be seen from Figure 6.110(b).  

 

 

                                 
(a)      (b) 

Figure 6.107: SEM micrographs of AEFA1223 sample at lower(a) and higher 

magnifications (b) 

 

 

                                 
(a)      (b) 

Figure 6.108: SEM micrographs of AEFA1248 sample at lower(a) and higher 

magnifications (b) 
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(a)      (b) 

Figure 6.109: SEM micrographs of AEFA1273 sample at lower(a) and higher 

magnifications (b) 

 

                             
(a)      (b) 

Figure 6.110: SEM micrographs of AEFA1298 sample at lower(a) and higher 

magnifications (b) 

 

 

6.8.7.2 Physical and mechanical properties of the sintered AEFA samples 
 

The effect of firing temperature on the properties of sintered AEFA samples is shown 

in Table 6.53. The improvement of physical and mechanical properties of sintered 

materials with the increase in sintering temperature is a common behavior of all 

samples. The density reached a maximum value of 2.58 g/cm3 for the sample heat 

treated at 1298 K. This value is higher than the density values of most of the sintered 

materials produced in different studies from coal fly, incinerator fly ash and sewage 

sludge ash [255,257-259]. Vilches et al.[260] obtained fireproof products from coal 

fly ash with an average density of 0.74 g/cm3 and high porosity. The density values 

of the all sintered materials produced in this study even if the pressed samples are 

much higher than the value reported that by Vilches et al.[260]. The water absorption 

of the sintered AEFA samples reduced with increasing firing temperature, indicating 
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a reduction in open, water accessible porosity. This result is in well agreement with 

the porosimetry studies of sintered AEFA samples. The decrease in porosity and 

water absorption may be due to formation of low silica glass, which has lower 

viscosity and flows easily to fill up open pores. As seen from Table 6.53 Rockwell 

hardness values of sintered AEFA samples are much lower than those of the sintered 

samples from other fly ashes. This result can be explained with the microstructural 

formation of the sintered AEFA samples. The crystallization degree and the number 

of the crystallites occurred on the microstructure of the sintered AEFA samples are 

so low and the volume of the glassy phase is high compare to the other sintered fly 

ash samples on the basis of SEM investigations. The volume of the crystallites and 

the glassy phase are important factors for the hardness of the samples. It was reported 

that the remaining glassy phase wrecked continuity of the crystal phase and 

decreased the hardness of the ceramic materials [235]. Therefore, hardness values of 

sintered AEFA samples were lower than those of the other sintered fly ash samples. 

 

Table 6.53: Properties of AEFA samples 

Sample Name Crystalline Phases Rockwell 

Hardness  

Bulk 

Density 

(g/cm3) 

Porosity 

(%) 

Water Absorption 

(wt. % loss) 

Pressed 

Sample 

Quartz, mullite, 

anorthite and 

enstatite  

20 2.013 25.20 31.7 

AEFA1223 Gehlenite and 

wollastonite 

30 2.180 19.30 26.3 

AEFA1248 Gehlenite and 

wollastonite  

38 2.370 18.71 18.3 

AEFA1273 Gehlenite and 

wollastonite 

45 2.460 12.16 10.4 

AEFA1298 Gehlenite and 

wollastonite 

48 2.580  9.13  7.6 
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6.8.8 Overall results of the sintered fly ash samples 

 

The experiments carried out have shown that the sintered CFA samples have the best 

physical, mechanical and microstructural properties among all sintered fly ash 

samples. The properties of the produced materials are dependent on the sintering 

conditions. The important variables in the sintering process are determined as: The 

sintering temperature and time, the particle size and distribution of the powder, the 

composition of the system and packing pressure. Although the sintering time and 

packing pressure are the same for all fly ash samples during the sintering process, 

sintering temperature, particle size and chemical composition of the fly ash samples 

are different from each other. Sintering temperature of the produced materials is 

dependent on the chemical composition of the fly ash samples as it was determined 

previously in this study. Properties of the sintered materials improved with the 

increase in the sintering temperature. The chemical composition and the particle size 

of the fly ashes are the other important factors which effect the properties of the 

resultant materials. The average particle size of Çan fly ash sample is lower than the 

other fly ash samples except Çatalağzı fly ash sample. The decrease in particle size 

caused to increase in surface area. Increasing the surface area promotes the sintering 

process. It was also reported that the decreasing the particle size of fly ash samples 

resulted to the improvement of the properties of the sintered fly ash samples [245]. 

Therefore, sintered Çan and Çatalağzı fly ash samples had better properties with the 

lowest particle size. High Al2O3 + SiO2 contents caused the mullite formation in the 

sintered CFA samples. It is known that high Al2O3 content and mullite formation 

improve the properties of the ceramic materials [248]. So, sintered material, with the 

highest hardness value is the CFA1448 sample that had the highest crystallization 

degree with the lowest glassy phase. The low Al2O3 + SiO2 content of Afşin-Elbistan 

fly ash resulted to the worst microcrystalline structure in the sintered AEFA samples 

compare to the other sintered fly ash samples in this study. Overall results showed 

that using a simple, cost effective powder technology method and relatively low 

sintering temperatures sufficiently dense materials produced from coal fly ashes.  
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7. CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 

In this study, the possibility of using waste coal fly ashes, silica fume and red mud in 

glass, glass-ceramic and ceramic production as a raw material source was 

investigated. It was aimed at the optimizing the experimental condition for the 

development of glass, glass-ceramic and ceramic materials from these industrial 

wastes. On the basis of the results reported in this study, the following conclusions 

can be drawn: 

 

1- Seyitömer, Tunçbilek, Çayırhan, Orhaneli, Afşin-Elbistan fly ash ashes were 

successfully vitrified without any additives. Glass samples can not be 

produced from Çan and Çatalağzı fly ashes because of the high viscosity of 

their melts at 1773 K. 

2- DTA graphs of the AEG, TG, CG, OG and SG samples showed endothermic 

peaks corresponding to Tg in the temperature range of 938-1023 K. However, 

any exothermic peak could not be detected in the DTA graphs of these 

samples except TG sample. 

3- XRD patterns of the glass samples indicated the amorphous state of all glass 

samples. No significant crystalline phase could be determined. 

4- SEM investigations of the produced glasses showed that all samples had 

featureless surfaces and were bubble free and homogeneous without any 

crystalline structure. However, a significant volume of spherical pores in the 

glass matrix of AEG sample was detected. 

5- Physical and mechanical properties of the produced glasses strictly depended 

on the amount of SiO2 and Al2O3 content of the flay ash samples. Density and 

microhardness values of the glass samples increased with higher SiO2 + 

Al2O3 content. Both water adsorption and porosity correlated well with each 

other and decreased with the increase of the density values of the produced 

glasses. 
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6- TCLP results indicated that the heavy metals successfully solidified into the 

glass matrix of all samples. Since the produced glass samples showed high 

leaching resistance they can be taken as non-hazaourdous materials. 

7- The chemical durability of glasses was good enough. However, they have 

relatively high weight losses for HNO3 durability. The produced glasses show 

high resistance to alkali solutions rather than acidic solutions.  

8- AEG sample had the worst properties of all glass samples because of the 

lowest SiO2-Al2O3, which are main glass network formers, content of Afşin-

Elbistan fly ash.  

9- When the heat-treatment process was applied to the glass samples, the 

amorphous phase had practically disappeared and diopside, augite, gehlenite 

and wollastonite phases occurred in the samples. 

10- It was observed that high Al2O3 and Fe2O3 contents of fly ash samples had 

great influence on the microcrystalline structure of the heat-treated glass 

samples. TG1000 samples had the best microcrystalline structure in all heat-

treated samples because of the high Al2O3 and Fe2O3 content of Tunçbilek fly 

ash. 

11- Physical, mechanical and chemical properties of the heat-treated glass 

samples are better than those of the produced glass samples. It is clearly seen 

that heat treatment process improved the properties of the glass samples. 

12- Glasses which are suitable for glass-ceramic production were obtained from 

Çayırhan, Orhaneli fly ashes with the addition of red mud and silica fume. 

The studies on the re-production of glasses from Seyitömer and Afşin-

Elbistan fly ashes with the addition of red mud and silica fume showed that 

those glasses were not suitable for glass-ceramic production since they had no 

crystallization tendency. 

13- DTA results of the produced glass samples showed that crystallization peak 

temperatures increased with the increase in particle size, while the 

crystallization peak height decreased. 

14- Using the Ozawa equation, the Avrami constants, n, were calculated as 3.42, 

3.68 and 4.84 for coarse CRG, ORSG and TG samples, respectively, 

indicating that bulk crystallization occurs in all glasses by three dimensional 

growth. n values of fine samples showed that the crystallization mechanism is 

one-dimensional surface crystallization. 
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15- The activation energies of crystal growth which were determined by using 

non-isothermal methods for the coarse CRG, ORSG and TG glasses are in the 

range of 233-370 kJ/mol, 305-446 kJ/mol and 444-578 kJ/mol, respectively 

while the activation energies of fine CRG, ORSG and TG glasses are changed 

in the range of 369-372 kJ/mol, 444-469 kJ/mol and 645-662 kJ/mol, 

respectively. 

16- The activation energy values for crystallization increased with the decrease in 

particle size of the waste glasses. 

17- The crystallization activation energies determined from Matusita-Sakka and 

isothermal Kissinger methods are close to each other in each glasses of both 

coarse and fine particles. 

18- On the basis of isothermal analysis, crystallization activation energy values 

were obtained as 435 kJ/mol, 548 kJ/mol and 297 kJ/mol for coarse ORSG, 

TG and CG-97 glasses, respectively while the n values of those glasses were 

3.37, 4.1 and 2.5, respectively. 

19- The crystallization activation energies and n values of fine glasses are in the 

range of 348-610 kJ/mol and 1.08-1.71, respectively. 

20- For coarse glasses, crystallization activation energy values determined by 

using isothermal method are lower than those of fine glasses as it was 

observed in the non-isothermal methods. 

21- The Avrami constants and crystallization activation energy values of all 

coarse and fine glasses for the non-isothermal and isothermal methods are 

roughly close. However, activation energy values obtained from non-

isothermal methods were higher than that obtained from isothermal method.  

22- On the basis of DTA results, maximum nucleation temperatures, maximum 

nucleation times and crystallization temperatures of the produced glass 

samples were determined as 963 K, 4 h and 1135 K for CG glass; 988 K, 2 h 

and 1188 K for ORSG glass; 948 K, 2 h and 1140 K for TG glass; 958 K, 4 h 

and 1142 K for CG-97 glass, respectively. 

23- The studies on glass-ceramic production showed that CRGC-B60, ORSGC-

P60, TGC-B60 and CGC-P60 samples have the best microstructural, 

mechanical, physical and chemical properties among all glass-ceramic 

samples produced from Çayırhan, Orhaneli, Tunçbilek fly ashes with or 
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without the addition of red mud and silica fume at different heat treatment 

conditions. 

24- XRD studies revealed that the crystalline phase of TGC samples is different 

from the other glass-ceramic sample’s crystalline phases since the chemical 

composition of TG sample is different from the other glass compositions. 

25- SEM observations showed that the crystalline size and the shapes of the 

ORSGC samples are different from those of the other produced glass-ceramic 

samples. 

26- It was also observed that the volume of the crystalline phase increased with 

the increase in holding time at the crystallization temperature in all glass-

ceramic samples and this result caused to improve the physical, mechanical 

and chemical properties of the glass-ceramic samples. 

27- The properties of the bulk glass-ceramic samples were influenced by the glass 

composition, glass production conditions and the heat treatment process 

while the properties of the sintered glass-ceramic samples are depending on 

the glass composition, particle size, the addition of the binder, heating rate, 

sintering pressure and the firing temperature. 

28- TCLP results indicated that the produced glass-ceramic samples can be taken 

as non-hazardous materials. 

29- The results of the sintered CRGC, ORSGC and CGC samples indicated that it 

is possible to produce sintered glass-ceramic materials by applying the 

nucleation and crystallization heat treatment processes on the basis of DTA 

results, instead of using the classical sintering technique of one firing cycle. 

30- It was observed that, in all glass-ceramic samples, except TGC-P samples, 

addition of PVA improved the properties of the produced samples. 

31- Owing to their physical, microstructural and mechanical properties, CGC-P60 

and TGC-B60 sample have the best properties in all sintered and bulk glass-

ceramic samples, respectively. 

32- The properties of the bulk glass-ceramic samples are better than those of the 

produced glass samples. 

33- Bulk and sintered glass-ceramic possessing desirable properties to fulfill 

many applications were produced from Tunçbilek and Çayırhan (obtained in 

1997) fly ashes, respectively without any additives by applying suitable heat 

treatments. 
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34- It was also noted that Çayırhan (obtained in 2000) and Orhaneli fly ashes can 

be used as raw materials to produce glass-ceramic materials with or without 

the addition of red mud and silica fume and those produced materials have 

several desirable properties that would make them attractive to industrial use 

in construction, tiling and cladding applications. 

35- The sintering process results showed that the properties of the produced 

materials are depending the sintering temperature and time, the particle size 

and distribution of the powder, the composition of the system and packing 

pressure. 

36- The properties of the sintered materials improved with the increase in the 

sintering temperature since the crystallization degree also increased with the 

increase in sintering temperature. 

37- Sintering temperature of the produced materials is strongly dependent on the 

chemical composition of the fly ash samples. 

38- Decreasing the particle size of fly ash samples resulted to the improvement of 

the properties of the sintered fly ash samples. 

39- Higher Al2O3 + SiO2 contents caused to better properties in all sintered 

materials. 

40- The sintered CFA samples have the best physical, mechanical and 

microstructural properties among all sintered fly ash samples. 

41- It can be said that using a simple, cost effective powder technology method 

and relatively low sintering temperatures resulted to sufficiently dense 

materials obtained from coal fly ashes. 

 

Overall results showed that it is possible to produce glass, glass-ceramic and sintered 

materials from coal fly ashes without or with the addition of binder and additives 

such as PVA, red mud and silica fume. It was observed that microstructures of the 

produced glass, glass-ceramic and sintered materials were completely different from 

each other since the production methods and the chemical compositions of those 

materials were different. The produced bulk glass-ceramic samples had superior 

properties than the obtained glass and sintered materials. It was also concluded that 

the produced glass, glass-ceramic and sintered materials can be good candidates for 

industrial use in the construction sector. 
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7.2 Recommendations for Future Work 

 

Based on the experimental data collected so far, the following future works are 

suggested: 

 

1- Seyitömer, Tunçbilek, Çayırhan, Orhaneli, Afşin-Elbistan fly ash ashes were 

transformed into glass materials. However, glasses can not be produced from 

Çan and Çatalağzı fly ashes. One goal would be to add different amount of 

fluxes such as K2O instead of Na2O and CaO to be able to produce glass 

materials. 

2- The properties of the glasses produced from Seyitömer, Tunçbilek, Çayırhan, 

and Orhaneli, fly ashes were better than those of glass obtained from Afşin-

Elbistan fly ash. The oxides such as SiO2 and Al2O3 could be added to Afşin-

Elbistan fly ash to improve the properties of the glass produced from Afşin-

Elbistan fly ash. 

3- Glass samples obtained from Seyitömer and Afşin-Elbistan fly ashes can not 

be transformed into glass-ceramic materials. Different nucleating agents such 

as TiO2 and P2O5 should be added to those fly ashes to improve the 

crystallization tendency of the glasses. A more detailed study of the 

crystallization tendency of glasses produced from Çayırhan, Orhaneli and 

Tunçbilek fly ashes with various additions of TiO2 and P2O5 should also be 

undertaken to better understand the behavior of glassy and crystalline forms 

of those materials. 

4- The average glass particle sizes should be widen instead of using only coarse 

(800-1000 µm) and fine glasses (~ 180 µm) to investigate the effect of 

particle size on the crystallization mechanism. 

5- Glass-ceramic materials with good properties were produced by applying 

sintering method to the glass powders except TGC-S and TGC-P samples. To 

improve the properties of TGC-S and TGC-P samples; particle size, the 

binder, sintering pressure, heating rate and the heat treatment schedule should 

be changed. 

6- Sintered glass-ceramic materials were produced by applying two-step heat 

treatment schedules which are nucleation and crystallization processes. One 

firing heat treatment cycle at different temperatures should be applied to the 
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glass powders to compare one firing cycle method with the two-step heat 

treatment method. 

7- Further investigations on mechanical properties such as bending strength, 

electrical properties such as dielectric constant will provide valuable 

information to be able to determine the suitable application areas for the 

produced glass-ceramic materials. 

8- Thermal expansion coefficient of the produced glass-ceramics should be 

determined to better understanding of the thermal behavior of those samples. 

9- Seven different fly ashes were sintered to form ceramic materials. Particle 

size of the fly ashes, sintering pressure could be changed and different 

binders could also be added to the fly ashes to get better properties for the 

produced materials.  

10- The properties of the AEFA samples are not good enough comparing with 

those of other sintered materials. Silica fume should be added to the Afşin-

Elbistan fly ash to produce ceramic material with good properties. 

11- Seven different coal fly ashes, red mud from aluminum production and silica 

fume were used as raw material sources in the production of glass, glass-

ceramic and sintered materials. Glass, glass-ceramic and sintered materials 

can be produced from different industrial wastes such as municipal 

incinerator fly ash, slags obtained from different metallurgical industries and 

steel fly ash.  
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Figure A.2. XRD patterns of  CG (a), SG (b), AEG (c) and OG (d) 
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Figure A.3. XRD patterns of  TG (a), AEG (b), CG (c) and SG (d) 
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Figure B.1. DTA plots of the CG glasses nucleated at the temperatures of: a) 958 K, 
b) 963 K, c) 968 K and d) 973 K. 
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Figure B.2. DTA plots of the CG glasses nucleated at 963 K for the holding times of: 
a) 1 h, b) 2 h, c) 3 h and d) 4 h. 
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Figure B.3. DTA plots of the ORSG glasses nucleated at the temperatures of: a) 978 
K, b) 983 K, c) 988 K and d) 993 K. 
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Figure B.4. DTA plots of the ORSG glasses nucleated at 988 K for the holding times 
of: a) 1 h, b) 2 h, c) 3 h and d) 4 h. 
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Figure B.5. DTA plots of the TG glasses nucleated at the temperatures of: a) 943 K, 
b) 948 K, c) 953 K and d) 958 K. 
 
 
 
 

 274



 
 
 
 
 
 
 

0 400 800 1200 1600 

∆
T 

 E
xo

th
er

m
ic
→

 

(a) 

(b) 

(c) 

(d) 

 
T (K)  

 
 
Figure B.6. DTA plots of the TG glasses nucleated at 948 K for the holding times of: 
a) 1 h, b) 2 h, c) 3 h and d) 4 h. 
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Figure B.7. DTA plots of the CRG glasses nucleated at the temperatures of: a) 953 
K, b) 963 K, c) 968 K and d) 973 K. 
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Figure B.8. DTA plots of the CRG glasses nucleated at 988 K for the holding times 
of: a) 1 h, b) 2 h, c) 3 h and d) 4 h. 
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Figure B.9. DTA plots of the coarse CRG glasses  scanned at the heating rates of: a) 
5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.10. DTA plots of the fine CRG glasses  scanned at the heating rates of: a) 5 
K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.11. DTA plots of the coarse ORSG glasses  scanned at the heating rates of: 
a) 5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.12. DTA plots of the fine ORGS glasses  scanned at the heating rates of: a) 
5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.13. DTA plots of the coarse TG glasses  scanned at the heating rates of: a) 5 
K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.14. DTA plots of the fine TG glasses  scanned at the heating rates of: a) 5 
K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.15. DTA plots of the nucleated coarse CRG glasses  scanned at the heating 
rates of: a) 5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.16. DTA plots of the nucleated coarse ORSG glasses  scanned at the 
heating rates of: a) 5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.17. DTA plots of the nucleated fine ORSG glasses  scanned at the heating 
rates of: a) 5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
 
 
 
 
 
 
 
 
 

 286



 
 
 
 

400 800 1200  

(d) 

∆
T 

(c) 

(b) 

(a) 

 T (K) 
 

 
 
 
 
 
 
Figure B.18. DTA plots of the nucleated coarse TG glasses  scanned at the heating 
rates of: a) 5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.19. DTA plots of the nucleated fine TG glasses  scanned at the heating rates 
of: a) 5 K/min, b) 10 K/min, c) 15 K/min and d) 20 K/min. 
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Figure B.20. DTA plots of the coarse CRG glasses heat-treated at 1038 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.21. DTA plots of the coarse CRG glasses heat-treated at 1048 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.22. DTA plots of the coarse CRG glasses heat-treated at 1058 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.23. DTA plots of the fine CRG glasses heat-treated at 1023 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.24. DTA plots of the fine CRG glasses heat-treated at 1033 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.25. DTA plots of the fine CRG glasses heat-treated at 1043 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.26. DTA plots of the coarse ORSG glasses heat-treated at 1073 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.27. DTA plots of the coarse ORSG glasses heat-treated at 1093 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.28. DTA plots of the coarse ORSG glasses heat-treated at 1113 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
 
 
 
 
 
 
 

 297



 
 

400 800 1200  

(c) ∆
T 

(b) 

(a) 

 
T (K) 

 
 
 
 
 
 
 
Figure B.29. DTA plots of the fine ORSG glasses heat-treated at 1033 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.30. DTA plots of the fine ORSG glasses heat-treated at 1053 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.31. DTA plots of the fine ORSG glasses heat-treated at 1073 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
 
 
 
 
 
 
 

 300



 

400 800 1200  

(c) ∆
T 

(b) 

(a) 

 
 
 
Figure B.32. DTA plots of the coarse TG glasses heat-treated at 1033 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min. 
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Figure B.33. DTA plots of the coarse TG glasses heat-treated at 1053 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min 
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Figure B.34. DTA plots of the coarse TG glasses heat-treated at 1073 K for the 
holding times of: a) 15 min, b) 30 min and c) 60 min 
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Figure B.35. DTA plots of the fine TG glasses heat-treated at 1033 K for the holding 
times of: a) 15 min, b) 30 min and c) 60 min 
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Figure B.36. DTA plots of the fine TG glasses heat-treated at 1053 K for the holding 
times of: a) 15 min, b) 30 min and c) 60 min 
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Figure B.37. DTA plots of the fine TG glasses heat-treated at 1073 K for the holding 
times of: a) 15 min, b) 30 min and c) 60 min 
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Figure C.1. XRD patterns of  CRGC-B samples crystallized at 1135 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
 
 
 
 
 
 
 
 
 
 
 
 
 

 308



 
 
 

0 20 40 60 80 100 

Diopside 

(c) 

In
te

ns
ity

 (a
.u

.) 

(b) 

(a) 

2θ 
 
 
 
Figure C.2. XRD patterns of  CRGC-S samples crystallized at 1135 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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Figure C.3. XRD patterns of  CRGC-P samples crystallized at 1135 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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Figure C.4. XRD patterns of  ORSGC-B samples crystallized at 1188 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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Figure C.5. XRD patterns of  ORSGC-S samples crystallized at 1188 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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Figure C.6. XRD patterns of  ORSGC-P samples crystallized at 1188 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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Figure C.7. XRD patterns of  TGC-B samples crystallized at 1140 K for : (a) 15 min, 
(b) 30 min and (c) 60 min 
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Figure C.8. XRD patterns of  TGC-S samples crystallized at 1140 K for : (a) 15 min, 
(b) 30 min and (c) 60 
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Figure C.9. XRD patterns of  TGC-P samples crystallized at 1140 K for : (a) 15 min, 
(b) 30 min and (c) 60 
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Figure C.10. XRD patterns of  CGC-S samples crystallized at 1142 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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Figure C.11. XRD patterns of  CGC-P samples crystallized at 1142 K for : (a) 15 
min, (b) 30 min and (c) 60 min 
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APPENDIX D 
 

X-RAY DIFFRACTION PATTERNS OF THE PRODUCED SINTERED 
SAMPLES 
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Figure D.1. XRD pattern of CAYFA samples sintered at the temperatures of : (a) 
1298 K, (b) 1323 K, (c) 1348 K and (d) 1373 K 
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Figure D.2. XRD pattern of CFA samples sintered at the temperatures of : (a) 1373 
K, (b) 1398 K, (c) 1423 K and (d) 1488 K 
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Figure D.3. XRD pattern of CATFA samples sintered at the temperatures of : (a) 
1373 K, (b) 1398 K, (c) 1423 K and (d) 1488 K 
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Figure D.4 XRD pattern of SFA samples sintered at the temperatures of : (a) 1373 K, 
(b) 1398 K, (c) 1423 K and (d) 1488 K 
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Figure D.5. XRD pattern of TFA samples sintered at the temperatures of : (a) 1398 K, 
(b) 1423 K, (c) 1448 K and (d) 1473 K 
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 Figure D.6. XRD pattern of OFA samples sintered at the temperatures of : (a) 1273 K, 

(b) 1298 K, (c) 1323 K and (d) 1348 K 
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Figure D.7. XRD pattern of AEFA samples sintered at the temperatures of : (a) 1223 
K, (b) 1248 K, (c) 1273 K and (d) 1298 K 
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