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USING SYMBIOTIC POPULATIONS FOR LEARNING DOMINANCE IN 

DIPLOID POPULATIONS FOR GENETIC ALGORITHMS  

SUMMARY 

The universe in which we live is nonstationary, so optimization problems are often 

assessed in manner of time varying. This makes optimization more difficult than it 

would be otherwise. For that reason, recently, there has been a significant increase in 

the number of works, which are applying Genetic Algorithms (GAs) in dynamic 

environments.Genetic algorithms are rooted in Darwin's theory of natural selection 

and evolution. They provide an alternative to traditional optimization methods by 

using powerful search techniques to locate optimal solutions in complex landscapes. 

The popularity of genetic algorithms is reflected in the ever increasing mass of 

literature devoted to theoretical works and real-world applications on various 

subjects such as financial portfolio management, strategy planning, design of 

equipment, and so on. 

Genetic Algorithms (GAs) belong to the type of Evolutionary Algorithm that is the 

population based optimization algorithms and it was initially conceived by Holland 

as a means of studying adaptive behavior and performs an adaptive search by 

maintaining a population of candidate solutions that are allocated dynamically to 

promising regions of the search space. They generally considered as function 

optimization methods. The distributed nature of the genetic search provides a natural 

source of power for searching in changing environments. As long as sufficient 

diversity remains in the population, the genetic algorithm may respond to a changing 

response surface by reallocating future trials. However, the tendency of genetic 

algorithms to converge rapidly reduces their ability to identify regions of the search 

space that might suddenly become more attractive as the environment changes. 

Inspired by the diploidy and dominance mechanisms in nature, a model of 

dominance mechanisms has been proposed for dynamic optimization problems 

(DOPs). In this thesis, an important mechanism in Diploidy GA is dominance 

scheme, and further investigated to improve the robustness and adaptability of 

conventional GA in dynamic environments. The most computer-based GAs is 

haploid. Haploid GAs involves the use of a single stranded chromosome to represent 

the solution to a problem. Haploid GAs has been shown to be useful for a variety of 

difficult optimization problems. However, the most complex biological organisms 

have two strands of chromosomes. This fact makes it natural to investigate the use of 

diploid GAs (double stranded chromosomes) for optimization problems. 

In this thesis, we accept the learning dominance mechanism from symbiotic 

population as a combinatorial optimisation problem. So we propose a new population 

type which called Symbiotic population. We carefully investigate the effect of the 

symbiotic population to the diploid genetic algorithm with constructing two different 

symbiotic population based models. After that, both   Symbiotic models are applied 

on bit match benchmark problem for comparing with DomGA (Dominance Genetic 

Algorithm) and adaptive PDGA (adaptive Primal-Dual Genetic Algorithm) 

algorithms. 

The aim of this work is to illustrate applications of one of the evolutionary 

computation type which is Genetic Algorithm (GA) to problems in the biological 

sciences, with particular emphasis on problems in optimization. Therefore; this thesis 
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represents the unification of DomGA, adaptive PDGA and SymGA-I genetic 

algorithm (SymGA-I GA) and SymGA-II genetic algorithm (SymGA-II GA) with 

evolution as a diploidy and dominance theme tested on bit match benchmark 

problem and then compared.All of those models are offered for the optimization in 

need of real world problems in order to improve robustness of Genetic Algorithm in 

dynamic environments. 

This thesis mainly discusses the modification of the conventional genetic algorithm 

that is designed to maintain the diversity required to track a changing response 

surface. Therefore, this thesis investigates the idea of different dominance 

mechanism models for combinatorial optimization problems in dynamic 

environments. Symbiotic genetic algorithm schemes based on the important factor 

are introduced: we built dominance mechanism as a separate haploid population 

(dominance population). Then original diploid population and the population 

representing the dominance information (haploid) are co-evolved with different 

approach in both Symbiotic approach. At each iteration, one of the populations is 

fixed and the other is allowed to produce a new generation.Therefore, the main 

objective of the thesis is the study  on  these  model  in order to properly  balance 

between the exploration and exploitation. First ideas were analyzed to create 

mechanism based on the dynamical system and then associated with balanced form 

in term of exploration and exploitation in order to adapt more suitable characteristics 

of diploidy genetic algorithms. Then, the most suitable parameters were selected and 

combined to create different design alternatives. 

The design alternatives are evaluated according to certain criteria. These criteria are 

as following: genetic encoding of solutions, initial population of solutions, evolution 

of the fitness of solution, genetic operators for the generation of new solutions and 

parameters such as population size, probabilities of crossover and mutation, 

replacement scheme and number of generations. The criteria are given quotients 

according to their overall importance and each design alternative is applied with the 

objective function in order to improving optimization in dynamic system. After this 

evaluation process,these parameter alternatives give  best optimizing quality 

behaviour of   diploidy  Genetic algorithm. Later, for controlling changing process in 

this thesis we use dynamic bit changing process, so we used dynamic bit matching 

benchmark based on different levels of change severities and change  frequencies for 

applied to these  builded models. 

As a result of this thesis; a study is carried out to show the way to trying  to design 

effective  genotype-to-phenotype mapping   in dynamic environments.When we 

compare the SymGA-I GA,SymGA-II GA ,domGA and  adaptive PDGA based on 

the bitmatching benchmark problem, we cretated mechanisms  by means of 

systematic approach in Dynamic Optimization Problems. 
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SİMBİYOTİK POPULASYON KULLANIMI İLE DİPLOİD GENETİC 

ALGORİTMALARDA BASKINLIK MEKANİZMALARININ 

ÖĞRENİLMESİ 

ÖZET 

İçinde yaşadığımız evren durağan olmadığından optimizasyon problemleri genellikle 

değişen zaman açısından değerlendirilir. Bu da optimizasyonu olduğundan daha zor 

duruma getirmektedir.Bu nedenden dolayı ,dinamik ortamlardaki Genetik Algoritma 

uygulamaları hakkında yapılan çalışmaların sayısı son zamanlarda  önemli ölçüde 

artmıştır. Genetik algoritma (GA) raslantısal  arama tekniklerini kullanarak çözüm 

bulmaya çalışan,parametre kodlama esasına dayanan sezgisel bir arama 

tekniğidir.(Goldberg, 1989). 

Genetik algoritmalar  Darwin'in  doğal  seleksiyon ve  evrim  teorisinin   temeline 

dayanmaktadır.Darwin’in  “en iyi olan yaşar (survival of the fittest) ” prensibine 

dayalı olarak bir popülasyonu oluşturan bireylerin rekabet etmelerini ve rekabet 

sonucu elemelerini sağlayan evrimsel süreci simüle eden Genetik Algoritmalar,ilk 

olarak John Holland, meslektaşları ve Michigan Üniversitesindeki öğrencileri 

taafınfan ortaya atılmıştır (Holland, 1975). Bu Algoritma, standart optimizasyon 

metodlarında güçlü  arama tekniklerini kullanarak optimal çözümleri   komplex    yer 

uzayına  yerleştimek için  alternatifler sunar.Genetik algoritmaların popularitesi  

güçlü arama algoritması ve çeşitli alanlardaki teorik çalışmalara ve gerçek dünya 

uygulamalarına başarıyla uygulanabilmesi   nedeniyle   yankı bulmuştur. 

Genetik algoritmalar evrimsel hesaplamaların bir  türü olup populasyona dayalı  bir  

optimizasyon algoritmasıdır. İlk olarak Holland tarafından tasarlanmış olan adaptif 

davranış çalışması anlamına gelen bu çalışma populasyonun aday çözümlerinin 

arama uzayının  ümit verici bölgelerinde  dinamik bir şekilde adaptif yerleşmesini 

gerçekleştirir. Genetik aramanın dağıtık doğası değişen ortamlarda arama 

işlemlerinin yerine getirilmesi için  gereken gücü  doğal kaynağından elde 

etmektedir. Genetik algoritmalar  kendilerini güçlü arama algoritmaları olarak 

ispatlamış ve çoğunlukla bu durum optimizasyon fonksiyonunun metodları olarak da 

düşünülmüştür.   Populasyon içerisindeki yeterli çeşitlilik bulunduğu sürece genetic 

algoritmalar  değişen ortamı  gelecek örnekleri yeniden yerleştirerek yerine getirir. 

Buna rağmen, genetik algoritmaların hızlı bir şekilde yakınsayarak  arama alanlarını  

tanımlama yeteneklerini azaltma eğilimleri, bir anda ortam değişikliklerinin meydana 

gelmesini daha cazip hale getirir. 

Standart genetik algoritmalar tek kromozomlu yapıdadır.Tek kromozom yapılı 

Genetik algoritmaları tek sarmal kollu kromozomlar ile probleme ait çözümü temsil 

ederler.Tek kromozom yapılı genetik algoritmaların  komplex optimizasyon 

problemleri için yararlı  olduğu gösterilmiştir. Ancak, daha komplex biyolojik 

organizmalar çift  sarmal kollu kromozom yapısındadır.Başka  bir deyişle, doğada 

bulunan organizmaların çoğu diploid kromozom yapısına sahiptir ve çift sarmal kollu 

kromozom üzerinde yer alan iki alel tarafından temsil edilmektedir. 

Organizmanın dıştan görünen özelliği ise  bu iki alelin  baskın olanı tarafından 

belirlenmekte,çekinik alel ise organizmanın genotipinde saklı kalmaktadır.Her 

özelliğin iki alel tarafından temsil edilmesi fazlalık olarak görünmenin aksine genetik 

belleğin tutulması açısıdan yararlı bir metodtur.Bu gerçek ,Optimizasyon problemleri 

için diploid genetic algoritmalarının (çift sarmal kollu kromozom yapılı) 
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kullanımının incelenmesini doğal olarak ortaya koyar.Bu çalışmadaki amaç  evrimsel 

hesaplamalardan biri olan genetik algoritmanın uygulamalarını  biyoloji bilimindeki 

problemlerinden özellikle optimizasyon problemlerini vurgulayarak  örneklemektir.  

Doğadan esinlenen diploid ve baskınlık  mekanizmalarıyla dinamik optimizasyon 

problemleri için diploid popülasyonlar kullanılarak modellenen bir baskınlık  

mekanizması önerilmiştir.Diploid genetik algoritmaların baskınlık tasarımı tümleşik  

optimizasyon problemi olarak değerlendirilmiştir.Bu tezde yeni popülasyon çeşidi 

kullanılarak  diploid genetik algoritmaların  baskınlık mekanizmalarının öğrenilmesi 

hedef alınmıştır.Bu popülasyon çeşidi bu tezde Simbiyotik popülasyon olarak 

adlandırılmıştır. Geleneksel genetik algoritmaların dinamik ortam içerisindeki 

dayanıklılık ve  adaptabilitesini  artırmak amacıyla baskınlık mekanizmalarının 

öğrenilmesi bu tezde önemle incelenmiştir. 

Bu yüzden, simbiyotik popülasyonların diploid genetik algoritmaya etkisi iki farklı 

modelle incelenmiştir.Simbiyotik popülasyon kullanılarak tasarlanan her iki model, 

domGA (Dominance Genetik Algoritması) ve  adaptive PDGA(adaptive Primal-Dual 

Genetic Algorithm)  algoritmalarıyla bitmatching problem üzerine uygulanmıştır ve 

test edilmiştir, sonrasında da domGA (Dominance Genetik Algoritması) ve  adaptive 

PDGA(adaptive Primal-Dual Genetic Algorithm)  algoritmalarıyla kıyaslanmıştır.   

Günümüzde dinamik ortamlarda optimizasyon problemlerinin genetik algoritmalarla 

çözümü yoğun ilgi görmektedir.Bu nedenle ,bu tezin konusu  geleneksel genetik 

algoritmanın  modifiye edilerek  gerekli  çeşitliliğin korunmasının  uygun değişken 

yüzeyin  izlenmesi  esas alınarak dikkatle tasarlanmıştır. Bu tez  yaygın olarak 

gerçek dünya üzerinde  uygulanan dinamik ortamdaki tümleşik optimizasyon 

problemleri  için  modellenen  farklı baskınlık mekanizmalarını  inceler. Dominance 

genetik algoritması (DomGA), Adaptive Primal-Dual genetik algoritması ( adaptive 

PDGA) ve Simbiyotik Versiyon-I genetik algoritması (Symbiotic Versiyon-I GA) ve 

Simbiyotik Versiyon-II genetik algoritması (Symbiotic Versiyon-II GA) diploid ve 

baskınlık  temaları çerçevesinde bitmatching problemi üzerinde test edilerek 

gösterilmiştir.  

Genetik algoritmanın dinamik ortamda tasarlanması  Symbiotic  genetik algoritması 

olarak isimlendirilmiştir. Symbiotic genetik algoritmasının baskınlık  mekanizması 

populasyon tabanlı  bir yapı halinde inşa edilmiştir ve her bireyin baskınlık 

kromozomu genotipindeki diploid kromozomun (çift kromozomlu yapı)    aksine (tek 

kromozomlu yapı)  olarak modellenmiştir. Daha sonra  orjinal (çift kromozomlu 

yapı)   ve  baskınlık bilgilerini gösteren ( tek kromozomlu yapı)  biraraya getirilerek 

beklenti maksimizasyonu yaklaşımı mantığıyla geliştirilmiştir. Her bir jenerasyonda, 

populasyonlardan biri sabit tutularak diger populasyonun yeni jenerasyonunun 

oluşturulmasına izin verilir.Bu nedenle, bu tezin başlıca amacı bu modeler üzerine 

çalışarak  keşif ve sömürme arasında uygun bir denge sağlamaktır.Karşılaşılabilecek 

problemleri engellemek amacıyla yeni haritalama uygunluk tasarımı kullanılarak  

problemlerin üstesinden gelmeye çalışılmıştır. Bireyin başarım değeri fenotipi 

kullanılarak hesaplandığından her aşama sonunda bireylerin genotiplerinden 

fenotiplerinin belirlenmesi için bir baskınlık mekanizmasının inşa edilmesi 

modellerin tasarımının temel fonksiyonudur.İstenen sayıda jenerasyon 

tamamlandığında algoritma sonlanır. Tüm jenerasyonlar boyunca tutulan, o 

jenerasyon içinde en yüksek başarım değerine sahip bireylerin en iyisi, aranan 

optimal çözüm olarak belirlenir. Böylece, pek çok nesil aracılığıyla iyi özellikler 
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populasyon içerisinde yayılırlar ve genetik işlemler aracılığıyla da diğer iyi 

özelliklerle bütünleşirler.  

Durağan değerlendirme problemleri tarafından düzenlenen dinamik test ortamlarına 

dayandırılarak oluşturulan testler  önerilen Symbiotik genetik algoritmayı 

onaylamaktadır.Test sonuçları dinamik ortamdaki Symbiotik genetik algoritmanın 

yeterli olduğunu göstermektedir.  

Symbiotik genetik algoritmada , inşa edilen  mekanizma dinamik sistem tabanlı olup 

sonradan keşif ve sömürme  dengesiyle birleştirilerek genetik algoritma 

karakteristiklerinin adaptesi daha uygun hale getirilmiştir.Sonrasında en uygun 

parametreler seçilerek farklı tasarım alternatifleri oluşturmak için 

birleştirilmiştir.Tasarım alternatifleri bazı kriterlere göre değerlendirilmiştir.Bu 

kriterler, mesela çözümlerin genetik  kodlaması, çözümlerin ilk populasyonları, 

bireyin başarım değeri, jenerasyonun  yeni çözümleri için genetic işlemciler ve 

parametreler, mesela  populasyon büyüklüğü, çaprazlama ve mutasyon olasılıkları, 

Yeniden yerleştirme planı, jenerasyon numarası. Bu  kriterler  her  bölümün  

önemlilik derecelerine  ve her biri tasarım alternatifleri hedef fonksiyonları üzerine 

uygulanarak dinamik ortamdaki optimizasyonu artırmak amacına göre  

önemsenmiştir. Daha sonra , değişen sürecin kontrolü için bu tez de dinamik bit 

değişim süreci kullanılmıştır,Bu yüzden dinamik bit eşleştirme kriteri  farklı 

seviyelerdeki  değişim şiddetleri  ve değişim frekansları temeliyle oluşturularak  

modellere uygulanmıştır.  

Sonuç olarak bu tezde,  dinamik ortamdaki tümleşik problemlerin çözümü için 

önemli kriterler göz önünde bulunularak inşa edilen  verimli Genotip-Penotip 

haritalamasının (baskınlık mekanizmasının) tasarımı için denenen yollar 

gösterilmiştir. Arama uzaylarının büyük ve karmaşık olduğu, geleneksel genetik 

algoritmadan istenen sonuçlar alınmadığı , arama uzayı içerisinde mevcut optimum 

çözüm bulunamadığı ve matematiksel olarak modellenemeyen problemlerin 

çözümünde etkili olmak amacıyla tasarımlara ihtiyaç duyulmuştur.Böylelikle diploid  

genetik algoritma için önerilen baskınlık mekanizmalarının  tanımı  yapılmış  ve  

Symbiotik genetik algoritmalar test edilmiş sonuçların ve algoritmanın başarımının 

DomGA ve Adaptive Primal-Dual genetik algoritması ile karşılaştırması yapılmıştır 

ve sonrasında mekanizmaların dinamik optimizasyon problemlerinin sistematik 

yaklaşımla tasarlandığı ortaya konmuştur.  
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1.  INTRODUCTION 

Genetic Algorithms (Holland, 1975) (GAs) are stochastic and global optimization 

methods and they are robust structures fundamentally constructed from the model of 

biological principles of Darwin’s theory and Mendelian principles of inheritance. 

These algorithms are widely used as an effective optimization technique for real-

world problem such as, scheduling, design, ill-behaved objective functions, and 

highly complex combinatorial problems. When we try to solve a specific problem 

with GA, an initially population of individuals or candidate solutions are generated 

randomly. This candidate population of solution is evolved by means of the 

principles of variation, selection, and inheritance.   

This model depends largely on the careful design and set-up of the algorithm 

components, mechanisms and parameters. This includes encoding mechanism, 

creation of a population of chromosomes, the  definition of a fitness function, genetic 

manipulation of the chromosomes, genetic operators for the generation of new 

solutions and parameters such as population size, probabilities of crossover and 

mutation, the replacement scheme and the number of generations. The initial  

population of individuals  is usually generated randomly with fixed number of 

individuals  for each generation. In the design of genetic algorithm, to decide for   

population size is crucial because  increasing population size increases its diversity 

and reduces the probability of a premature converge to a local optimum. Individuals 

of  generations  are  obtained from the previous generation through the following 

procedure: individuals  are randomly selected from the current populations with 

preffered selection scheme. In that selection scheme  individual pairs are  selected 

then  these parents are submitted to the  any type  of the crossover operation then a 

mutation operation with a mutation probability  pm is applied; and then fitness 

function is determined. 

In Darwinian evolution each individuals of the population use an evoluation function 

in order to determine each individual fitness. That function plays key role  in the 

environmental pressure which means low fitness individuals are less likely to be 
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selected than high-fitness individuals. That environment pressure determines  which 

survival individual will be parents of the next generations. In order to prevent 

premature converge,  we use selection scheme. One of the most commonly one is 

tournament selection, in which set of individual are selected randomly. Then 

individuals with the highest fitness of the tournament competitors will be winner of 

the tournament. Then, that  winner is  incorporated in the mating pool and that 

individual produces cause the selection pressure because of its highest fitness. Those 

factors improve the fitness of each generation as a result. Effect of the genetic 

operators which are Crossover and mutation are different in the generation process. 

This means, these genetic operators allow the  creation of new chromosomes during 

the reproduction phase. Another important  step in the generation process is the  

Elitism ; substitution of  “worst”  individuals of the current population by the “best” 

individuals; the algorithm stops after a predefined number of generations has been 

created. An alternative stopping mechanism is a limit on computing time.  

1.1 Research Objective  

The primary objective of our research is to propose and build a framework of a GA, 

which tries to learn about the dominance mechanism from symbiotic population in 

order to improve the robustness and adaptability of genetic algorithms especially in 

dynamic environments.  

Primary objective can be further divided into 4 parts: 

1.  To conduct an extensive survey of GAs in the context of diploid GAs 

2. To focus on solving dynamic fitness problems with using diploid structured 

individuals in dynamic environments 

3. To conduct research on various ways to construct the Dominance Change 

Mechanism in GAs 

4. To show performance of the proposed dominance change mechanisms based on 

the Symbiotic population for optimization problems and then compare the results 

with that of other dominance change mechanism. 
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1.2 Outline Of the Thesis 

The thesis is divided into 6 chapters. 

Chapter 2. Genetic Algorithms  

Chapter 2 describes Genetic Algorithms. It starts by describing GAs then continue 

with the brief description of genetic representations. This part shows a 

comprehensive   overview on the influence of problem representation on Genetic 

Algorithm performance. It further explains genetic alphabet and genes, genotypes 

and phenotypes, the characteristics of fitness landscape and then  shows  more 

significant  characteristics  of the  GA these are: Genetic Algorithms in Feature 

Selection, the basic algorithm of GAs, Feature Selection, Creating an Initial 

Population, Building a Mating Population, Parental Selection, Reproduction and 

Inheritance , Process Offspring, Updating the Population. Then with motivating,   

each of these GA characteristics describes the general workflow of GA. 

Chapter 3. Diploid Genetic Algorithm in Dynamic Environment 

Conventional GA was modeled differently with building domination mechanisms to 

characterize population of individuals in diploidy manner. This section starts by 

describing Diploid Genetic Algorithm Scheme in Dynamic environment, then we 

continue with Diploidy and Dominance. Chapter 3 reviews the Models of Adaptive 

Domination Change Mechanism, then continues with  introduction of  DomGA 

(Dominance Genetic Algorithm), adaptive PDGA(Adaptive Primal-Dual Genetic 

Algorithm and SYMbiotic Genetic Algorithm. More focus is given in the Research 

on performance which shows improved results of the Research in more efficient way 

to modelize  Diploid GA parameters and Performance enhancement using different 

GA techniques.  

Chapter 4. Results and Discussions 

Chapter 4 presents  Discussion of  Problem and Tests Results  about  the   Dynamic 

performance of Symbiotic-Iv1, Symbiotic-Iv2, Symbiotic-IIv1,  Symbiotic-IIv2,  

domGA and  adaptive PDGA on Test Environment. 
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Chapter 5. Conclusions 

Chapter 5 presents some of the important contributions made by our research study 

and highlights the thesis’s general conclusion. Then it outlines some of the 

immediate future works that may be of significance to the development of more 

effective Genetic algorithms in dynamic environments.  
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2.  CONVENTIONAL  GENETIC ALGORITHM  

2.1 Genetic Representations 

The starting point of the genetic algorithm, which differs one algorithm from others, 

is finding suitable schemes, which used to represent chromosomes. The semantic of 

the genetic operators, the design, the implementation and the measures used to 

evaluate fitness of the genetic algorithm directly affected by using of the encoding 

scheme. 

In this section, we briefly describe the structure of chromosomes and how their 

fitness can be evaluated. The first stage of building any Genetic algorithm is to 

decide on a genetic representation of a candidate solution to the problem. In a GA, a 

solution to the problem is encoded as a set of values, x={x1, x2,....,xn}.Each 

representing solution is composed of a string of genes. The string of values is known 

as a chromosome. The genetic encoding of a real or artificial organism is contained 

within their chromosomes. Each chromosome consists of a large number of genes, 

each uniquely located on the chromosome. Each gene in turn is composed of several 

alleles. In artificial organism, i.e. genetic algorithms, an allele is encoded with the 

discrete values. Depending on the application or upon the problem type, a bit, real or 

integer string can be used for the chromosome. Once choosing a suitable 

representation is important to enable a solution to be encoded with the “right” 

representation for the problem being solved. Getting the representation right is one of 

the most difficult parts of designing a good genetic algorithm. The large variety of 

data types, encoding and crossover options allow users to solve a wide range of 

search and optimization problems using Genetic algorithm. Often this is only decided 

with practicing of a wide range of optimization problems and a good knowledge of 

the application domain. Some commonly used representations types are binary 

representations, Integer representations, real -valued or floating- point representation, 

permutation representations.  
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In this thesis, we will mainly be concerned with bit-integer chromosomes. The 

number of genes in the chromosome is known as chromosome length and will be 

defined by n. Each solution x, has an extra value associated with it known as its 

fitness value, which measures the goodness of that solution. 

The fitness value is calculated from given optimization criteria that are modeled in 

the form of a function known as fitness function f(x). For example, Figure 2.1 shows 

a bit-string chromosome with chromosome length n=6.Here, the fitness function is 

simply the sum of all the bits in the chromosome.  

          A chromosome                                      fitness 

1 0 0 1 1 0 
 3 

  X= { x1, x2, x3, x4, x5, x6 }                           f(x) 

                 

                      A fitness function  

                  f(x)=∑    
    

Figure 2.1: A 6-bit long chromosome and its fitness function (Shakya 2006) 

The set of all possible solutions is known as the search space. For the 6-bit long 

chromosome shown in Figure 2.1, the search space consist of      solutions (Shakya 

2006). 

2.1.1 Genetic alphabet and genes  

Genetic methods work based on the population of solutions, which are represented 

by a string of values. A small number of vectors is used to store each solution of the 

problem in order to represent the chromosomes of the organisms, which consist of a 

series of genes. The coding scheme, and the representation of the values, have an 

effect on the form of the mating and mutation operators. Three different coding 

schemes will be denoted gene based, node based and delta coding. 

In a gene based coding, each value in the string represents an independent variable 

(Leardi,2003).There is a one-to-one correspondence between the gene number and a 

particular spectral intensity or a particular descriptor used to describe a set of 
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molecules. This is the most common coding scheme, but is limited to only certain 

types of problems. 

In a node-based scheme, the string represents a path, schedule or route. This coding 

scheme is necessary for the travelling salesperson problem (TSP).In the TSP; each 

city can only be included once in a route. This means that the values of the genetic 

string are not independent. 

 Delta coding can only be used for problems that can also accept gene based coding 

or  used less because it can only be applied to certain types of problem. The fitness of 

a solution is determined by applying the string of deltas to the template values, 

obtaining a solution, and calculating the accuracy of that solution. 

The form of the genetic alphabet is dependent upon the problem and coding scheme. 

So, the problem should determine which genetic alphabet and which coding scheme 

can be used (Leardi, 2003). 

2.1.2 Genotypes to phenotypes   

Mendel recognized that the nature stores the complete genetic information for an 

individual in pair wise alleles (Mendel 1866). A number of strings store the genetic 

information that determines the properties, appearance, and shape of an individual. 

Later, it was discovered that a double string of four nucleotides, called DNA, forms 

the genetic information. 

Mendel realized that the nature distinguishes between the genetic code of an 

individual and its outward appearance. The genotype represents all the information 

stored in the chromosomes and allows us to describe an individual on the level of 

genes. The phenotype describes the outward appearance of an individual, like its hair 

color or eye size, which is determined by one, or more alleles; then these alleles 

together are denoted to be a gene. A gene is a region on a chromosome that must be 

interpreted together and which is responsible for a specific phenotypic property. A 

transformation exists (a genotype-phenotype mapping or a representation) that uses 

the genotypic information to construct the phenotype. 

When talking about individuals in a population, we must carefully distinguish 

between genotypes and phenotypes. The phenotypic appearance of an individual 

determines its success in life. Therefore, when comparing the abilities of different 
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individuals, they should be evaluated on the level of the phenotype. However, when 

it comes to reproduction we must view individuals on the level of the genotype. 

During sexual reproduction, the offspring does not inherit the phenotypic properties 

of its parents, but only the genotypic information regarding the phenotypic 

properties. The offspring inherits genetic material from both parents. Therefore, 

genetic operators work on the level of the genotype, whereas the evaluation of the 

individuals is performed on the level of the phenotype (Rothlauf  and Spahr 2006). 

2.1.3 Characteristics of fitness landscape 

The majority of the EC applications to date has had problem domains in which the 

fitness landscape is time-invariant and the fitness of individuals can be computed 

independently from other members of the current population (Grefenstette  1999). In 

genetic algorithms on fixed fitness landscapes, the usual practice is to scale the 

fitness by, assume that, increasing the baseline value of the objective function against 

which fitness is measured. This is necessary to maintain selective pressure as the 

population converges toward high fitness regions (Grefenstette, 1986). In a dynamic 

fitness landscape, such baseline scaling may lead to instabilities since the mean 

fitness of the population may vary dramatically as the landscape shifts (Grefenstette  

1999). It seems even more interesting and open-ended if we attack problem classes in 

which the fitness landscape varies over time. 

 

 

Figure 2.2: Wright’s adaptive landscapes, then and now (Johnson 2008). 
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2.2 Genetic Algorithms in Feature Selection  

Starting from the original algorithm, several changes made genetic algorithms a 

powerful tool in feature selection. Feature selection is the problem of selecting a 

subset of d features from a set of D features based on certain optimization criterion. 

The primary purpose of feature selection is to design a more compact classifier with 

as little performance degradation as possible. GA is naturally applicable to feature 

selection since the problem has an exponential search space. The pioneering work by 

Siedleckiand Sklansky demonstrated evidence for the superiority of the GA 

compared to representative classical algorithms (Oh,Lee and Moon 2004). 

2.2.1 About feature selection 

The procedure of feature selection,appearently so simple ,is indeed very dangerous 

and needs a very careful validation,to avoid the risk of over estimating the predictive 

ability of the selected model;in such cases,when using it on new data,one can be 

deceived,discovering that it has no predictive ability at all (Lanteri,1992). 

The only way to be sure of selecting the best subset of variables (of course without 

taking into account the problem of random correlations) would be to compute all the 

possible models. The only limitation to this approach is the fact that with n variables, 

     combinations are possible. Consequently, this method becomes not applicable 

when the variables are more than just a few. To give an idea, with 30 variables (a 

rather small data set) more than one bilion combinations are possible (computing one 

model per second, it would take 34 years!). 

GA, in their favour, always allows the exploration of the completely experimental 

space; due to the occurrence of the mutations, each possible combination can occur 

at any moment (Deviller, 1996). 

2.2.2 Creating an initial population 

In creating an initial population, two decisions are required; the size of the 

population and the source of the initial guesses at the solution. 

If the genetic operators have a strong focusing effect, it may be advisable to use a 

rather large population size. This will improve the chances of at least one initial 
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solution having a relatively high fitness and having many values in common with the 

optimal solution. If the initial population is too small, relatively good initial solution 

may only have many values in common with a suboptimal solution and very likely 

not the optimal one but this solution will be the one found. Conversely, if the size of 

the population is too large, an initial solution with many values in common with the 

optimal one may overcome by the sheer number of other solutions and may not be 

able to have an impact on the overall population. In other words, studies have shown 

that if good solutions are too ‘diluted’ by less fit ones, the good solutions may 

actually disappear after several generations (Cecconi and parisi, 1994). 

If the genetic operator has a non-confusing effect, a smaller population may suffice. 

This will also depend upon how much similar to the parent(s) the offspring is. If this 

similarity is high and the offspring displaces other solutions in the population, it is 

possible that the population will converge on a solution that is close (in search space) 

to an initial solution. Here, the population size should also be large so that there is a 

better chance that one of the initial solutions will be in vicinity of the optimal one. 

In general, these initial solutions may come from purely random guesses that satisfy 

some minimal fitness criteria, or from the results of other calculations or studies, just 

as for population size. There is no single best method for generating initial 

populations for all problems .Different methods will have to be tried with each initial 

population size and set of genetic operators to see which method yields the best 

results (Deviller, 1996). 

2.2.3 Building a mating population  

In many applications, of genetic methods presented in the literature, a selection 

process occurs where members of the current population are placed in a mating 

population, with very fit members being placed more often than less fit ones. This 

mating population is then used to create offspring. 

Several selection strategies are available, and some will be described here. The first 

is to simply use some linear ramping functions. For example, if the population size 

was selected to be 100,the best solution can be copied to the mating population 6 

times, the second best 5 times, the third best 4 times, the fourth best 3 times and the 

fifth best 2 times. Since the mating population now contains 20 solutions, member 6 
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through 85(assuming they are preordered by fitness) can be copied once to the 

mating population. This ramping can be more severe such that fewer different 

solutions are placed in the mating population and better ones are placed more often. 

Another selection procedure that is heavily used is called tournament selection. In 

this procedure, the user has to select a tournament size.  If this size is 2,for 

example,two members of the current population are selected at random. The solution 

with the highest fitness of the two is placed in the mating population. If the 

tournament size is increased from 1 to the population size ,the mating population will 

change from one that is likely to resemble the original population to one that it 

completely composed of the most fit,or dominant,solution. 

It should be realized that selecting a mating population is a focusing process. If 

selection is used, it should be taken into account that the dominant solution in the 

initial population does not contribute considerably to all future offspring. This can be 

done by not biasing the selection process too heavily towards the most fit solutions 

and/or allowing mutations to play a large role in generating offspring (Deviller, 

1996). 

2.2.4 Parental selection  

Similar issues arise with respect to choosing which parents will produce offspring. 

Although to bias the selection too strongly towards the best individual’s leads to limit 

the search focus, to bias too little brings out a lack of focus needed. Current methods 

include uniform random selection, rank- proportional selection, and fitness-

proportional selection. 

We understand these selection strategies in isolation quite well (Back, 1995; Blickle 

and Thiele, 1995). However, it is clear that parental selection and individual deletion 

strategies must complement each other in terms of the overall effect they have on the 

exploration/exploitation balance. We can mention certain theories here for particular 

cases such as Holland’s “optimal allocation of trials” characterization of traditional 

GAs (Holland, 1975) but much stronger results are required (Menon, 2004). 
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2.2.5 Reproduction and inheritance  

In addition to these selection processes, the mechanisms used for reproduction also 

affect the balance between exploration and exploitation. 

The EC community has focused primarily on two reproductive mechanisms, which 

fall in between these two extremes: 1-parent reproduction with mutation and 2-parent 

reproduction with recombination and mutation. Historically, the EP and ES 

communities have emphasized the former while the GA community has emphasized 

the latter. 

Beginning with Holland’s initial work, the GA community has been analyzed in a 

considerable detail as well as the role of crossover and mutation (De Jong, 1975; 

Goldberg, 1989; Voseand Liepins, 1991; Booker, 1992 Spears, 1998). The ES 

community has developed theoretical models for optimal mutation rates with respect 

to convergence and convergence rates in the context of function optimization 

(Schwefel, 1975). 

One of the important and complicated issues is the benefit of adaptive reproductive 

operators. There are now a variety of empirical studies that show the effectiveness of 

adaptive mutation rates (Fogarty, 1989), (Back and Schwefel, 1993) or (Fogel, 1995) 

as well as adaptive recombination mechanisms (Schaffer and Morishima, 1987) or 

(Davis, 1989) (Menon, 2004). 

2.2.6 Process offspring  

There is no reason to require that the number of offspring must equal the number of 

parents, or that all offspring should be placed into the population. There are any 

number of options and only some of them will be described here. 

1-Use mating (with or without mutation and maturation) to create as many offspring 

as desired from two parents. From this group of offspring, keep the best one or more. 

Please realize that if only the best solution is kept, or if a solution and its complement 

are not kept together, this mating will be strongly focusing. If a solution and its 

complement  are kept together ,this pair spans the same search space dimensionality 

as their parents and will not result in immediate focusing. Conversely, if a large 
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population size is used, it may be advantageous to focus onto good areas as quickly 

as possible. Keeping only the best offspring will help this. 

2- Use a mutation operator to generate multiple offspring from a single parent (with 

or without maturation) and only keep the best one. This is non-focusing, and the 

number of values changed and the magnitude of the change caused by mutation can 

control the similarity between the parent and the offspring. 

3-Use a mutation operator (with or without maturation) to generate 100/N offspring 

from N% of the parents. For example, a new population can be created by generating 

5 offspring from the best %20 of the solutions through mutation (Nolfi and Parisi, 

1991; Parisi et al., 1991; Nolfi et al., 1994a, b; calabretta et al., 1995). 

When one or more offspring are selected, they can either be added to the current 

population by displacing an existing member, or can be placed in a new population. 

If an offspring is placed into the current population, it can be either  

1. Displace the weakest member of the population 

2. Displace a parent. This could be the only parent if single parents generate a single 

selected offspring through mating. 

3. Displace the most similar member of the current population, or a subset of this 

population (Deviller, 1996). 

2.2.7 Updating the population 

When the selected offspring are placed in a separate population and the size of this 

population reaches a predetermined size, which will be called KPOP (usually 

KPOP=NPOP, but this does not have to be the case) the generation of offspring 

stops. At this point, some mechanism has to be implemented to create a new 

‘current’ population. As with all the other operators discussed so far, there are many 

alternative options. 

1. Take the NPOP best solutions from the new population and make this the current 

population. 

2. Combine the NPOP-1 best solutions from the new population and the best solution 

from the current population to make the next current population. Including the best 

current solution in the next generation is called the elitist strategy. 
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3. Combine the current and new populations to make a population of size 

NPOP+KPOP. Take the NPOP best solutions from this combined population. 

4. Combine the current and new populations to make a population of size 

NPOP+KPOP. At this point, use a selection strategy to select NPOP members of this 

combined population. This can be performed with or without forcing the elitist 

strategy. 

5. Combine the current and new populations and select the fit n unique solutions to 

produce focus points. Then, in a cyclic fashion, choose the solution from the 

combined population that is most similar to focus point. 

As a final point in this section, the choices presented above can be cast in the (μ , λ) 

and (μ + λ) notation used in much of the literature on genetic methods. In this 

notation, μ  parents (i.e., NPOP) create   λ  offspring (i.e., KPOP) .In a (μ , λ)  

method,  λ must be greater than or equal to  μ individuals needed to build the new 

population are taken solely from the   λ offspring. In a (μ + λ) method, there are no 

restrictions on the size of either parameter. The  μ  solutions are simply chosen from 

the combined population, μ + λ ,using a selection procedure. Therefore, choices 1 

and 2 are (μ , λ) methods(without and with elitist strategy) and choices 3  to 5 are (μ 

+ λ) methods (Deviller ,1996). 
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3.  DIPLOID GENETIC ALGORITHM IN DYNAMIC ENVIRONMENT 

3.1  Diploid Genetic Algorithm Scheme  in  Dynamic Environment  

Genetic Algorithm is stochastic and global optimization method, which is based on 

the population of solutions. Fundamental algorithm structure is constructed from the 

model of biological principles of Darwin’s theory and Mendelian principles of 

inheritance Schaefer (2006). In the last four decades, the use of Genetic Algorithms 

(GAs) has developed into a powerful optimisation and problem-solving technique in 

a diverse range of fields. Originally, GA was modeled on the biological process of 

evolution by natural selection: the variation in individuals results in a range of 

reproductive fitnesses, which turns to fitter individuals having a greater genetic 

representation in future generations. Because primitive GA was inspired by 

biological genetics, the reproductive functions used to guide propagation in most 

algorithms also borrowed from a biological repertoire, and the process of crossing 

over, mutation, and asexual reproduction became instantiated into mainstream 

evolutionary algorithm strategies. At that point, the increasing availability of 

computer power and an unending store of potential problems  led GA into many 

different fields, often relying on the same catalog of crossover, mutation and 

reproduction with slight  variations in algorithm metastructure. 

This model depends largely on the careful design and set-up of the algorithm 

components and parameters. Algorithm components of the mechanism are  genetic 

encoding of solutions, the initial population of solutions, the evaluation of the fitness 

of solutions  and genetic operators for the generation of new solutions. Parameters 

are population size, the probabilities of crossover and the probabilities of  mutation, 

the replacement scheme and the number of generations. 

The standard genetic algorithm is based on the haploid structure and each 

individual‘s genome structure constituting from one chromosome, but diploid genetic 

algorithm is based on diploid structure and each individual‘s genome structure 

consititutes of haploid genome structure. Also, each individual constitutes of diploid 

genome structure. 

The main topic of this thesis  is creating models of the  adaptive domination change 

mechanism in terms of the  diploid genome structure.Diploidy and dominance  is 
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used as a powerful tool in creating model in order to improve performance of the 

nature inspired algorithms during processes of the evolution computations based on 

the balanced form between exploration and exploitation with combining of diploidy 

and the adaptive domination. In this thesis we proposed SYMbiotic model. We  

create population-based dominance mechanism.Each dominance chromosome 

consititutes from haploid genome structure.And also each individual  constitutes 

from diploid  genome structure.  

 Creating   dominance mechanism of the diploid genetic algorithm  requires a 

specific algorithm structure because of each individual in this model has paired 

genotypes. When there is heterozygosity (two different alleles) in a locus, dominance 

mechanisms are used to determine the final phenotype of the individual. 

 The main advantage of diploid model is that the recessive genes are conserved and 

in case of a change in the environment genetic diversity is preserved. We model our 

dominance mechanism as a separate haploid population (dominance population). 

Then original diploid population and the population representing the dominance 

information (haploid) are co-evolved similar to an Expectation-Maximization 

approach. At each iteration, one of the populations is fixed and the other is allowed 

to produce a new generation.  

Identifying regions of the search space can be changed;it means that the sufficient 

diversity can remain in the population or the rapidly convergence reduces the ability 

of  identifying regions of the search space. So, the population loses its genetic 

diversity, that causes premature converging to solutions. For that reason, traditional 

algorithm doesn’t perform well in that cases and diversity is an important factor for 

performance. At this point, we introduce Diploid genetic algorithm for improving 

performance. The basis of this approach is the modelling of population-based 

dominance mechanism in order to  determine the phenotype of each individual and in 

turn these phenotypes are used to calculate the fitness of individuals. In other words, 

we  need to use that  mechanism for mapping genotype to phenotype .That mapping  

process indicates a very critical part  of the  diploidy  genetic algorithm. For each 

individual phenotypes which expresses a set of characteristics of individuals and  

also  fitness which  represents the ability of the candidate solutions in order to 

express the quality of the  chromosome  determined (Uyar and Harmanci (2002)). 

When determining the phenotype, the genotype elements corresponding  to that  
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location  may either be equal or different in the cases where the two alleles for the 

genes on homologue chromosomes are the same.The corresponding phenotype 

equals that allele but in the case where they are different a method to determine the 

phenotypic value is needed. Several studies that have addressed the used diploidy 

Genetic algorithm, Goldberg and Smith (1987) first proposed a diploidy-based GA 

with a tri-allelic dominance scheme for the time-varying   knapsack problem. 

Thereafter, Ng and Wong (1995) investigated a dominance scheme with four 

possible alleles for a diploid GA and reported a better performance than the tri- 

allelic scheme. Hadad and Eick (1997)  used  multiploidy and a dominance vector as 

an additional part of an individual that breaks the ties whenever there are an equal 

amount of 0’s and 1’s at a specific gene location. (Ryan, 1997) used an additive 

multiploidy, where the genes determining one trait are added to determine the 

phenotypic trait. The phenotypic trait becomes 1 if a certain threshold is exceeded, or 

0, otherwise. (Lewis et al. , 1998) compared several multiploid approaches and 

observed some interesting results. For example, a simple dominance scheme is not 

sufficient to track the changing optimum well, but much better results can be 

obtained if the method is extended with a dominance change mechanism. 

     Recently, Uyar and Harmanci (2005) proposed an adaptive dominance change 

mechanism for diploid GAs, where the dominance characteristics for each locus are 

dynamically adjusted via the feedback from the current population. (Wang and Yang, 

2009 ). 

3.1.1 Characteristics of  dynamic environment generator  

In many real-world optimization problems in order to compare the performance of 

different GAs  in dynamic environments, a wide range of uncertainties have to be 

taken into account. These uncertainties  use  dynamic problem generators  in the 

evolutionary optimization, which  should meet some common properties. 

Some of these properties are listed as follows: 

-It should be possible to vary environmental parameters related to different facets of 

the problem being solved;  
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-It should be simple to realize different dynamics, such as frequency of change, 

severity of change, cyclic or not;  

 -It should be convenient to adjust the complexity and difficulty of dynamic 

problems;  

-It should be computationally efficient to realize required dynamic environments; . It 

should be easy to carry out formal analysis. (Zhu , Luo and Li 2011).  

3.1.2 Classification of dynamic environment generator  

In general, through changing (the parameters of) the stationary problem(s) different 

dynamic environments can be constructed.The environmental dynamics can be easily 

tuned by two parameters: the speed of change T and the severity of change 

determined by p, the ratio of ones in the bigger the value of p, the severer the 

environmental change and the bigger the challenge to GAS. If p = 0.0, the 

environment stays stationary while if p = 1.0 the environment undergoes extreme 

changes in the sense of Hamming space. Changing mechanisms dynamic problem 

generators can be roughly divided into four types, as described below.  

1) Switching Fitness Landscapes : In this type of dynamic environment generators 

the environment is just switched between two or more stationary problems or 

between two or more states of one stationary problem. For example, time varying 

knapsack problem where the total weight capacity of the knapsack changes over 

time, usually oscillating between two or more fixed values ,the dynamic bit- 

matching problem  aims to maximize the number of bits in a string that matches a 

given template and the template varies over time. For this type of generator, the 

dynamics of environmental changes is mainly characterized by the speed of 

environmental changes. It can be fast or slow relative to EA time and is usually 

measured in EA generations.  

2) Drifting Fitness Landscapes : In this type, the dynamic problem generator starts 

from a fitness landscape f(x), defined in n-dimensional real space  ( x Ԑ    ). This 

fitness landscape is drifted along one or more axes over time while its overall shape 

(morphology) keeps unchanged.  



19 

3) Reshaping Fitness Landscapes In this type, the  dynamic environment generators 

starts from a predefined fitness landscape, each of which can change independently, 

defined in n-dimensional real space  ( x Ԑ    ). Each component has its own 

morphology with such parameters as peak height, peak slope and peak location. And 

the center of the highest peak is the optimum of the landscape. (Zhu , Luo and Li 

2011). 

3.1.3  Dominance and diploidy        

Despite the maintanence of diversity is an essential requirement in genetic algorithm, 

conventional genetic algorithm cannot adapt well in dynamic environments. The loss 

of the diversity in gene pool reduces the adaptation ability of the genetic algorithm. 

Organisms must adapt to change and  diversity  in order to survive in dynamic 

environments. For that reason, diploidy is considered in GA. In diploidy genetic 

algorithm, each individual has two chromosomes, each character  is represented by 

two genes located on these chromosomes. This implies that twice amount of 

genotypic information are added to gene pool. Alleles in both genomes might be 

recessive alleles or dominant alleles. Only the dominant one of these genes appears 

in the phenotype wheras the other allelle which is recessive one is not lost.In this 

way phenotype  is  formed with a dominance change mechanism.Eventually, 

individual has a chance of being fitter individuals in the next generations by variation 

in individuals results in a range of reproductive fitnesses, which depends on their 

phenotypic expression. 

3.2 Models of Adaptive Domination Change Mechanism 

3.2.1 domGA 

 In the model, the most important feature is proposing of the adaptive dominance, 

mechanism for diploid genetic algorithms in dynamic environment, which is 

different from non-domination, based genetic algorithm. The basic principles of the 

dominance genetic algortihm (domGA) is very similar to conventional genetic 

algorithms except two main differences.One of the main difference is representation 

and evaluation scheme and the other is reproduction operation. 
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The genotype and phenotype structure of an individual for Diploid Genetic algorithm 

is shown in Fig. 1. In that figure,the global domination map is represented for  

diploidy genotypes  and  also  dominance scheme  is  proposed  for each gene locus 

on  genotypes  in order to map  phenotypes.   

  

 
 

Figure 3.1 :  Representation and evaluation of an individual for DGAs. (Uyar  and 

Harmanci 2005). 
 

The general pseudocode of domGA is given in Figure 3.2.  

domGA  is formed from some basic criteria.The first criteria for domGA is the 

initialization of the individual parameters with random values.The second criteria is  

the selection operation , whic is performed with using the tournament selection for 

the mating pool.The third criteria is reproduction step in domGA, which consists of 

three phases: Crossover, Formation of offspring and Mutation. 

In crossover step two parents (each parent give one chromosome from their’s pair of 

chromosomes) exchange their chromosomes based on uniform crossover 

method.Then their chromosomes randomly create one temporary offspring.That 

offspring has one chromosomes from each parent and hence the genotype materials 

from the parents are mixed and propagated to the offspring.Then that produced 

offspring goes to mutation phase, with using same mutation probablity pm, for each 

locus, mutation independently applied to each of the two genotype chromosomes. 

The fourth criteria is updating_dominance_characteristics. 
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Figure 3.2 :  domGA  pseudocode (Uyar and Harmanci, 2005). 

 

In domGA, individuals are represented  in terms of the a di-allelic encoding form  as 

in Fig. 3.3.  

 
 

Figure 3.3 : The representation of an individual (Uyar and Harmanci, 2005). 

 

Dominance was determined in diploid populations based on  the genotype elements 

which corresponding to that location may either be equal or different.  

if c1i =0 and c2i = 0 then pi =0 

if c1i =1 and c2i =1 then pi =1 

This means that the probability of expressing a 1 or 0 in the phenotype on each locus 

is equal when two genotypic alleles of a locus are same. But when the probablity of 

expressing a 1 or 0 in the phenotype on each locus is not equal then, the dominance 

probability vector is updated every generation according to the current population.  

Calculation of the domination value domi for the ith location is given in Eqs. 3.1  

 

    [ ]  
∑        

  
          

∑    

 
                                                                ( 3.1 )   

 

Defining of  the dominance probability vector is determined  in terms of expressing 

alleles in the phenotype. Originally the dominance probability vector is initialized 

with the value 0,5 for each locus. The one which  represents the alleles 1 and 0 are 

equally dominant on the phenotype expression. Then new domination array 
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computed for  determining the phenotypes of the individuals, which driving forces in 

the next generation.In equation 3.1,where pij is the phenotypic value of the jth 

individual at the ith location, fj is the fitness value of the jth individual.At the end of 

each generation  the domination values are recalculated. 

At the end of each generation a generational replacement strategy with simple elitism 

is used for that model.Then with combining XOR operators in the dynamic 

environment manner we try to solve Dynamic optimisation problems. 

3.2.2 Adaptive primal-dual genetic algorithm 

Adaptive primal-dual genetic algorithm is  constructed based on the inspiration of 

complementary mechanism in nature.  

Because of the tradional genetic algorithm cannot adapt well on changing 

environment,adaptive PDGA genetic algorithm builded in order to improve genetic 

algortihm’s robustness and adaptability in dynamic environments. 

Improving of the robustness and adaptability is achieved by contributing improved 

schemes.Which are  primal-dual mapping (PDM) schemes, two different probablities 

based PDM operators,lamarckian  learning mechanism and Adaptive dominant 

replacement scheme.  

Wang and Yang (2009) In PDGA, each primal chromosome which is explicitly 

recorded in the  population, has its dual chromosome,which is calculated using a 

Primal –Dual  Mapping (PDM) operator.At each generation,a set of chromosomes in 

the population is selected to evaluate their duals before the next generation starts ,and 

a dominant replacement scheme is used to decide whether the duals can replace the 

selected primal chromosomes. 

Designing of the PDM operator is constructed as the maximum Hamming distance 

between a pair of primal-dual chromosomes.Each allele on the primal chromosome 

translated to its dual  based on the PDM operator.In this model ,PDM scheme is 

applied  by using  the statistical information of the distribution of the alleles in a gene 

locus over the population.   

General outline of the PDGA is shown in Fig 3.4. The PDGA starts by creating   

initial population.Genetic parameter pop_size  initialize with the genetic operators 

probablity crossover and probablity mutation at the initialization step.Then for each 

subsequent generation, chromosomes proportionaly are selected  from the current 
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population in order to evaluate with  crossover and mutation operation.Selecting  

D(t) population is setted in order to   performed  PDM operation before the next 

generation starts.  

 

 

Figure 3.4 : Pseudocode of the framework of PDGA (Wang and Yang, 2009). 

 

 Pseudocode of a general PDM operator  is shown in Fig. 3.5. PDM operator is a 

function between a pair of primal – dual chromosomes, which create dual 

chromosome from primal chromosome. It means that, each allele in the gene locus of 

primal chromosome is translated to its complement by producing dual chromosome. 

 

 

Figure 3.5 : Pseudocode of a general PDM operator (Wang and Yang, 2009). 

In order to improve  this  PDM operator , two different  probablity–based mapping 

scheme is used for each of a gene locus.Based on the statistical information over the 
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population two different mapping probablities are  calculated. 

In addition to this probablity-based PDM operator, an adaptive dominant 

replacement approach is developed.In Fig.3.6. Pseudocode for the adaptive 

probablity-based PDM oparator is shown. 

 

Figure 3.6 : Pseudocode for the adaptive probablity-based PDM operator (Wang and 

Yang, 2009). 

 

In this improvement scheme two different probability-based PDM operators are 

according to an Adaptive Lamarckian learning mechanism.Then effectively the 

adaptive dominant replacement scheme is  contributed  to that model.. 

This replacement mechanism enables algorithm to be highly explorative by  

accepting  an inferior dual chromosome with replacing primal chromosome in the 

current population with its complement. 

3.2.3 Proposed  Symbiotic population genetic algorithms 

In this thesis, we accept the learning dominance mechanism from symbiotic 

populations as another combinatorial optimization problem.Inspired by the diploidy 

and dominance mechanism in nature, we try to modelling and learning different 
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Dominance mechanisms from Symbiotic populations in Genetic Algorithms (GAs) 

for dynamic optimisation Problems (DOPs). So, we propose a new population type 

which called Symbiotic population.In the Symbiotic population based on genetic 

algorithm, an important factor is using  dominance population as a separate haploid 

population and using genotype population as a diploid population.Then population 

which represent the dominance information (haploid) and original genotype 

information (diploid) are co-evolved with each other. 

In SymGA-I  genetic algorithm approach, evolution starts from a separate haploid 

population (dominance population) which initially constitutes of  randomly generated 

individuals. In each generation, the fitness of every individual in the haploid 

population is evaluated. After producing offsprings, the best individual is selected as 

the dominance to be used in  diploid population. In this way, we use the best 

dominance individual of the haploid population in order  to create phenotype of each 

individual  in the diploid population. The fitness values of the haploid population  are 

never used for evaluating the performance of SymGA-I genetic algorithm.In other 

words, we just use the fitness value of the diploid populations during each step of the 

tests. At each iteration, one of the populations is fixed and the other is allowed to 

produce a new generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Pseudocode for the Symbitoic genetic Algorithm-I.  

Procedure SymGA-I 

begin 

parameterize (pop size, pc, pm ) 
t:=0 

initialize Population H(t); 

initialize Population D(t); 
repeat 

H’(t):=SelectForRecombination(H(t)); 

H’’(t)=Crossover(H’(t)); 
Mutate(H’’(t)); 

evaluatePopulation(H’’(t)); 

parameterize( bestdom ); 
for each diploid chromosome x  in D(t) 

  use bestdom to evaluate phenotype ; 

end for 

repeat 

D’(t):=SelectForRecombination(D(t)); 

D’’(t)=Crossover(D’(t)); 
Mutate(D’’(t)); 

evaluatePopulation(D’’(t)); 

parameterize( bestdip); 
until a termination condition is met; 

end 

 

Denotations :  

H(t):= the dominance population at generation t 

D(t):=the population at generation t 
bestdom:= best individual of the H(t) 

bestdip:= best individual of the D(t) 

 

http://en.wikipedia.org/wiki/Fitness_(biology)
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We construct version-1 of the SymGA-I , with setting  population sizes  to 60 for 

diploid population and 60 for  haploid population.Which called as SymGA-Iv1. In 

the same manner we try to create version-II of the SymGA-I, with setting  population 

sizes  to 100 for diploid population and 20 for  haploid population. Which called as 

SymGA-Iv2.In SymGA-II genetic algorithm approach, we start with assigning a 

random value to best dominance. Initially we use a random individual from  haploid 

population as the best dominance  to generate the phenotype of the diploid  

population. After producing offsprings,the fitness of each individual in diploid 

population  is  evaluated for obtaining best indvidual as a best diploid. Then, the best 

diploid individual is  used  in  separate haploid population in order to create 

phenotype for each individual in the haploid population. That best dominance 

indvidual is then evaluated as a best dominance. Thus, we update best dominance 

and best diploid inidividual for each successive generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Pseudocode for the Symbitoic  genetic Algorithm-II.  

 

Procedure SymGA-II 

begin 

parameterize (pop size, pc, pm ) 
set bestdom=random(); 

t:=0 

initialize Population D(t); 
initialize Population H(t); 

repeat 

for each diploid chromosome x  in D(t) 
  use bestdom to evaluate phenotype ; 

end for 

repeat 

D’(t):=SelectForRecombination(D(t)); 

D’’(t)=Crossover(D’(t)); 

Mutate(D’’(t)); 
evaluatePopulation(P’’(t)); 

parameterize(bestdip); 

for each haploid chromosome x  in H(t) 
 use bestdip to evaluate phenotype ; 

end for 

repeat 
H’(t):=SelectForRecombination(H(t)); 

H’’(t)=Crossover(H’(t)); 

Mutate(H’’(t)); 
evaluatePopulation(H’’(t)); 

parameterize( bestdom ); 

until a termination condition is met; 

end 

Denotations :  

H(t):= the dominance population at generation t; 
D(t):=the population at generation t; 

bestdom:= best individual of the H(t); 

bestdip:=best individual of the P(t); 
random():  a pseudo random number between 0 and 

popsize ; 
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The fitness values of the haploid population  are never used for evaluating the 

performance of SymGA-II genetic algorithm.In other words, we just use the fitness 

value of the diploid populations during each step of the tests.  At each iteration, one 

of the populations is fixed and the other is allowed to produce a new generation. 

We construct version-1 of the SymGA-II , with setting  population sizes  to 60 for 

diploid population and 60 for  haploid population. Which is called as SymGA-IIv1. 

As the same,  we try to create version-II of the SymGA-II, with setting  population 

sizes  to 100 for diploid population and 20 for  haploid populationwhich is called as 

SymGA-IIv2. 

The main genetic algorithm steps are used  in SymGA-Iv1,SymGA-Iv2,SymGA-

IIv1,  andSymGA-IIv2. First criteria is the initialization of the individual parameters 

with random values. The second criteria is the selection operation, which is 

performed with using the tournament selection for the mating pool. The third criteria 

is reproduction step, which consists of three phases: Crossover, Mutation and 

Formation of offspring.  

In the crossover step, two parents (each parent give one chromosome from their’s 

pair of chromosomes) exchange their chromosomes based on uniform crossover 

method. Then, their chromosomes randomly create one temporary offspring. That 

offspring has one chromosome each parent and hence the genotype materials from 

the parents are mixed and propagated to the offspring. Then that produced offspring 

goes to mutation phase, with using same mutation probablity pm, for each locus, 

mutation independently applied to each of the two genotype chromosomes. The main 

steps of the genetic algorithm is completed at the end of the formation of offsprings. 

A generational replacement strategy with simple elitism is used. The best individual 

from the previous generation replaces the current worst individual only if the fitness 

of the previous best individual is better than the fitness of the current worst 

individual. 

Diploidy and dominance mechanisms has an important effect on the performance of 

improving  the robustness  and the adaptability of genetic algorithms in the area of 

real world applications. In such representation it may be expressed that the 

characteristic of diploidy acts as a source of diversity in the gene pool during the 

domination mechanism guides the phenotype towards an optimum.  It means that we 

try to create  adaptive domination change mechanism as a  a balanced form between 

exploration and exploitation which is obtained from the combination of diploidy and 
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the adaptive domination. That is we try to adapt  the best dominance characteristics  

for each individual through  each subsequent populations. This model suggests an 

effective way to implement dominance mechanism as a separate population. At each 

iteration, one of the populations is fixed and the other is allowed to produce a new 

generation. 

In suggested framework, diploid genotypic structure  and  haploid dominance 

structure are used   for determining  the  phenotype of  each  individuals  or potential 

solutions. Each  determined  phenotype is  used  based on the problem’s objective 

function in order to determine the  fitness of each individual.  

Symbiotic genetic algorithm helps us for analysing the contribution of the major 

mechanisms which are used together. During the enhancement of this dynamic 

genetic algorithm we try to develop that algorithm with diploidy and dominance  

structure to create dynamically stable systems. We work  in dynamic environments in 

sense of the predefined generation numbers in which the environment changed only 

for consecutive generations. For controlling the changing process, we used dynamic  

bit matching benchmark based on different levels of change severities and 

frequencies.  

3.3 Research on Performance Improvements 

3.3.1 Research in more efficient way to modelize GA  dominance mechanism  

Some attempts have been made to create dominance mechanism in order to apply 

diploid  GA in changing-fitness problems. 

The first attempt’s  structure   is constructed by diploidy and dominance which are  

inspired from nature. In this structure, an important factor is the useof dominance 

chromosome as a part of the individual information like (seperate  dominance 

chromosome). The diploid structure and dominance chromosome used in order to 

find the best final phenotype for each individuals or potential solutions with 

appliying the main steps of genetic algorithm. Then,each determined phenotype is 

used based on the problem’s  objective function in order to adapt the dominance 

characteristics. In that approach, we don’t achive enough success percentage. 

In the second attempt’s structure,  an important factor is the use of the dominance 

population (a seperate  dominance population). Like the first attempt, we try to build  
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dominance mechanism for diploid genetic algorithm. When there is a heterozygosity 

(two different alleles) in a locus, the original diploid population and the population 

representing the dominance information (haploid)  are co-evolved similar to an 

expectation-maximization approach. It means that the dominance mechanism is  used 

as a seperate dominance population in order to determine the final phenotype of the 

individual. For each successive generation, we match each individual in the  diploid 

population with each individual in seperate dominance population in order to find 

best final phenotype for each individuals or potential solutions with appliying the 

main steps of genetic algorithm. Then we set each individual’s chromosome based on 

the each dominance chromosome which produce the best final phenotype. At each 

iteration,one of the  populations is fixed and the other is allowed to produce a new 

generation. In that attempt, the population loses its genetic diversity and that causes 

premature convergencing to solutions. The dominance maps converged too 

early.Furthermore, the amount of information stored in the dominance maps was on 

the same order as all of the information stored in the genotypes of the individuals. 

The third  attempt’s structure  which is similar to second attempt. It means that  the 

dominance mechanism is  again  used as a seperate dominance population in order to 

determine the final phenotype of the individual. For each successive generation we 

match each individual chromosome in the  diploid population with eachseperate 

dominance chromosome  in order to find the best final phenotype with appliying the 

main steps of genetic algorithm. Then, we set for each individual’s dominance 

chromosome just the best final phenotype dominance chromosome.Again, at each 

iteration, one of the  populations is fixed and the other is allowed to produce a new 

generation. In that attempt, beause search space consists from   , we find the best 

fitness quickly and that causes premature convergencing to solutions. 

At this point we introduce SymGA-I and SymGA-II,which are proposed in this 

thesiswhich are briefly described in the section 3.2.3. 

3.3.2 Performance enhancement using different GA techniques 

In this subsection, a dominance mechanism in nature into GAs to improve their 

performance for DOPs is emphasized. Cruz, Gonzolez and Pelta (2010) the challenge 

is to develop algorithms, methods, tools, and theoretical foundations that enable 
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effective design of adaptive systems which harness and control properties that 

emerge through the interaction of systems and their environment. 

Modelling appropriate methods, tools or mechanisms forgenetic algorithm in 

dynamic environments are emphasized. It is aimed to construct improved 

mechanisms for genetic algorithms in dynamic environment. 

Modelling appropriate methods, tools or mechanisms for genetic algorithm in 

dynamic environments emphasized. It is aimed to construct improved mechanisms 

for genetic algorithms in dynamic environment. 

Researchers have the relevant works are briefly reviewed. Goldberg and Smith 

(1987) first proposed a diploidy-based GA with a tri-allelic dominance scheme for 

the time-varying knapsack problem. Thereafter, Ng and Wong (1995) investigated a 

dominance scheme with four possible alleles for a diploid GA and reported a better 

performance than the triallelic scheme. Hadad and Eick (1997) used multiploidy and 

a dominance vector as an additional part of an individual that breaks the ties 

whenever there are an equal amount of 0’s and 1’s at a specific gene location. Ryan 

(1997) used an additive multiploidy, where the genes determining one trait are added 

to determine the phenotypic trait. The phenotypic trait becomes 1 if a certain 

threshold is exceeded, or 0, otherwise. Lewis et al. (1997) compared several 

multiploid approaches and observed some interesting results. For example, a simple 

dominance scheme is not sufficient to track the changing optimum well, but much 

better results can be obtained if the method is extended with a dominance change 

mechanism. Uyar and Harmanci (2005) proposed an adaptive dominance change 

mechanism for diploid GAs, where the dominance characteristics for each locus are 

dynamically adjusted via the feedback from the current population.  
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4.  RESULTS AND DISCUSSIONS 

4.1  Discussion of  Problem and Tests Results 

We follow the test strategy given in  (Uyar and Harmanci, 2005). The experiments 

are conducted in four stages. For all stages of the tests, a template of length 200 bits 

is used. The fitness of an individual is equal to the number of bits the phenotype 

matches in the given template. The highest fitness an individual can have is 200. For 

the experiments, 10 different test sets are used to explore the performance of each 

approach under the different levels of change severity and change frequency. These 

test sets are given and labeled in Table 4.1. In the table, LS denotes low severity 

changes where 5% of the bits are changed randomly, MS denotes medium severity 

changes where 20% of the bits are changed randomly, HS denotes high severity 

changes where 70% of the bits are changed randomly, LF denotes low frequency 

where changes occur every 100 generations, MF denotes medium frequency where 

changes occur every 50 generations, HF denotes high frequency where changes 

occur every 20 generations and RND denotes that change severity is determined 

randomly between 5 and 70% and the change frequency between 20 and 100 

generations at each change instance. 

To avoid unfair test instances, test set scenarios for each entry in the table is created 

in advance and the same test set scenario is applied to all approaches. 

 

Table 4.1 : Test sets used in experiments (Uyar and Harmanci, 2005). 

 

In all tested approaches the same set of parameters are used. There are 120 

individuals in the population for SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-

IIv2, SGA and domGA. In adaptive PDGA  there are 100 individuals in the 

population.There are  a chromosome consists of 200 genes for all approaches. SGA 
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and adaPDGA is used in the haploid representation, while domGA used diploid 

representation and SymGA-Iv1, SymGA-Iv2, SymGA-IIv2, SymGA-IIv1 co-evolved 

haploid and diploid representation with each other. For the selection step, tournament 

selection with tournament sizes of 2 is chosen for SymGA-Iv1, SymGA-Iv2, 

SymGA-IIv1, SymGA-IIv2, SGAand domGA. In adaptive PDGA fitness-

proportional selection strategy is used for selection step. Used to  selected individuals 

are placed in a mating pool. The individuals in the mating pool are paired off 

randomly. Uniform crossover with a probability of 1 and a crossover rate of 0.5 for 

each locus is used for SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-IIv2, SGA 

and domGA. In adaptive PDGA, one-point crossover is used. A mutation rate of 

0.005 is used for the first three stages of the experiments. For the final stage, different 

mutation rates are applied to each approach to see the effect of the mutation rate 

selection on performance. A generational replacement strategy with simple elitism is 

used. The best individual from the previous generation replaces the current worst 

individual only if the fitness of the previous best individual is better than the fitness 

of the current worst individual. Since the environment is not static, each best 

individual from the previous generation needs to be re-evaluated in the current 

generation. A total of 10 changes occur during each run. A random initial population 

is used for all tests and a new random seed is used in the random number generator 

for each run. The tested approaches are evaluated based on the offline error.Mean 

and standart deviation of the offline error values are  calculated at the end of the runs. 

The main objective of this section  is to define and  show the effect of the  proposed 

SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-IIv2 on improving the 

performance of diploid GAs in dynamic environments. All test sets (test-1 through 

test-10) are applied to all chosen approaches. We try to measure offline error for the  

proposed  SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-IIv2  algorithms based 

on the bitmatching benchmark problem.The environment is changed every τ 

generations and Parameter τ controls the speed of changes, whereas ρ ∈ (0.0, 1.0) 

controls the severity of changes.Additionally, we try to test on  bitmatching 

benchmark problem. 

A bigger ρ means more severe changes, whereas a smaller τ means more frequent 

changes. The dynamics parameter ρ is set to 0.05, 0.2 and 0.7, respectively, to 

examine the performance of algorithms in dynamic environments with different 

severities of changes. For each experiment of an algorithm on a test problem 20 
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independent runs were executed. For each run of an algorithm on a DOP, ten 

environmental changes were  allowed, and the best-of-generation fitness was 

recorded per generation.Since the environment is not static, each best individual from 

the previous generation needs to be re-evaluated in the current generation. 

4.1.1 Dynamic Performance of SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-

IIv2,  adaPDGA, DOMGA  and SGA on Test Environments 

In this section, we try to make a convenient description on the experiments which 

applied on the SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-IIv2 , DomGA  and  

adaptive PDGA. Which are  modeled based on the dynamic environments by using 

different levels of change severity and change frequency in order to compare effect 

of dominance mechanisms in SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-IIv2 

with DomGA  and  adaptive PDGA. For all test environments,a template of length 

200 bits is used and fitness is calculated  for  SymGA-Iv1, SymGA-Iv2, SymGA-

IIv1, SymGA-IIv2 and DomGA is number of bits in the phenotype matches in the 

given template,and for  adaptive PDGA is number of bits in the indvidual matches in 

the given template.The fitness of an indivdual maximum can be equal to 200. For 

each dynamic environment, the landscape is periodically changed for predefined 

number of generations during the run of a GA. 

In each periodically changed environment  fitness function f(x)  is computed for each 

of the individual in the population .  

The  best of generation fitness of algorithms ,aganist generation in dynamic 

environment is  plotted in each figures. The experimental results presented for the ten 

environmental changes,where the data averaged over 20 runs. In the below figures, 

SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, SymGA-IIv2, DomGA  and  adaptive 

PDGA respectively plotted in order to compare effect of the used different 

dominance mechanisms. 

The figures  below show  the Best- of-Generational  fitness on the test sets (test-1 

through test-10) are applied to all chosen approaches. The extra parameter settings 

specific to each test environments are given below. 
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Figure 4.1 : Test Environment 1 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2,DomGA,  ada PDGA  and SGA. 

 

 

 In Figure 4.1: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.05  and  τ is set to 50 

to examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  SGA,   adaPDGA, SymGA-Iv1, SymGA-Iv2, 

SymGA-IIv2, SymGA-IIv1,domGA respectively.   

 

 

0 100 200 300 400 500 600 700 800 900 1000
130

140

150

160

170

180

190

200

Generations

B
e
s
t-

O
f-

G
e
n
e
ra

ti
o
n
a
l-
F

it
n
e
s
s

Test Environment 1

 

 

SYMGA-Iv1

SYMGA-IIv1

SYMGA-Iv2

SYMGA-IIv2

DomGA

adaPDGA

SGA

javascript:dispOrigImg(%22/scitable/content/32600/shifting_balance_figure_FULL.jpg%22,%20%22Wright's%20adaptive%20landscapes,%20then%20and%20now.%22,%20%22true%22,%20%22Figure%201%22,%20%22a)%20Wright's%201931%20figure%20demonstrates%20his%20results%20in%20the%20statistical%20distribution%20of%20genes%20in%20an%20adaptive%20landscape%20diagram.%20Since%20Wright's%20original%20work,%20other%20scientists%20have%20presented%20additional%20interpretations%20of%20the%20data.%20b)%20Kaufmann%20and%20Levin's%20rugged%20adaptive%20landscape%20model%20represents%20a%20more%20recent%20interpretation%20of%20Wright's%20theory.%22,%20%22true%22,%20%22All%20rights%20reserved.%22,%20'420',%20'600',%20'http://www.genetics-gsa.org/');
javascript:dispOrigImg(%22/scitable/content/32600/shifting_balance_figure_FULL.jpg%22,%20%22Wright's%20adaptive%20landscapes,%20then%20and%20now.%22,%20%22true%22,%20%22Figure%201%22,%20%22a)%20Wright's%201931%20figure%20demonstrates%20his%20results%20in%20the%20statistical%20distribution%20of%20genes%20in%20an%20adaptive%20landscape%20diagram.%20Since%20Wright's%20original%20work,%20other%20scientists%20have%20presented%20additional%20interpretations%20of%20the%20data.%20b)%20Kaufmann%20and%20Levin's%20rugged%20adaptive%20landscape%20model%20represents%20a%20more%20recent%20interpretation%20of%20Wright's%20theory.%22,%20%22true%22,%20%22All%20rights%20reserved.%22,%20'420',%20'600',%20'http://www.genetics-gsa.org/');


35 

 
 

Figure 4.2 : Test Environment 2 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

 

In Figure 4.2: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.05  and  τ is set to 50 

to examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  SGA , adaPDGA, SymGA-Iv1, SymGA-Iv2, 

SymGA-IIv2, SymGA-IIv1, domGA  respectively. 
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Figure 4.3: Test Environment 3 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

In Figure 4.3: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.05  and  τ is set to 20 

to examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  SGA , adaPDGA, SymGA-Iv1, SymGA-Iv2, 

SymGA-IIv2, SymGA-IIv1, domGA respectively. 

 

 

 

0 20 40 60 80 100 120 140 160 180 200
130

140

150

160

170

180

190

200

Generations

B
e
s
t-

O
f-

G
e
n
e
ra

ti
o
n
a
l-
F

it
n
e
s
s

Test Environment 3

 

 

SYMGA-Iv1

SYMGA-IIv1

SYMGA-Iv2

SYMGA-IIv2

DomGA

adaPDGA

SGA

javascript:dispOrigImg(%22/scitable/content/32600/shifting_balance_figure_FULL.jpg%22,%20%22Wright's%20adaptive%20landscapes,%20then%20and%20now.%22,%20%22true%22,%20%22Figure%201%22,%20%22a)%20Wright's%201931%20figure%20demonstrates%20his%20results%20in%20the%20statistical%20distribution%20of%20genes%20in%20an%20adaptive%20landscape%20diagram.%20Since%20Wright's%20original%20work,%20other%20scientists%20have%20presented%20additional%20interpretations%20of%20the%20data.%20b)%20Kaufmann%20and%20Levin's%20rugged%20adaptive%20landscape%20model%20represents%20a%20more%20recent%20interpretation%20of%20Wright's%20theory.%22,%20%22true%22,%20%22All%20rights%20reserved.%22,%20'420',%20'600',%20'http://www.genetics-gsa.org/');
javascript:dispOrigImg(%22/scitable/content/32600/shifting_balance_figure_FULL.jpg%22,%20%22Wright's%20adaptive%20landscapes,%20then%20and%20now.%22,%20%22true%22,%20%22Figure%201%22,%20%22a)%20Wright's%201931%20figure%20demonstrates%20his%20results%20in%20the%20statistical%20distribution%20of%20genes%20in%20an%20adaptive%20landscape%20diagram.%20Since%20Wright's%20original%20work,%20other%20scientists%20have%20presented%20additional%20interpretations%20of%20the%20data.%20b)%20Kaufmann%20and%20Levin's%20rugged%20adaptive%20landscape%20model%20represents%20a%20more%20recent%20interpretation%20of%20Wright's%20theory.%22,%20%22true%22,%20%22All%20rights%20reserved.%22,%20'420',%20'600',%20'http://www.genetics-gsa.org/');


37 

 
 

Figure 4.4 : Test Environment 4 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

 In Figure 4.4: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.2  and  τ is set to 100 

to examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  adaPDGA , SymGA-Iv1 , SGA,  SymGA-IIv2, 

SymGA-IIv1, domGA  respectively.  
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Figure 4.5 : Test Environment 5 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

In Figure 4.5: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.2  and  τ is set to 50 to 

examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  SGA, SymGA-Iv1, adaPDGA, SymGA-Iv2, 

SymGA-IIv2,  SymGA-IIv1, domGA respectively.  
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Figure 4.6 : Test Environment 6 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

 

In Figure 4.6: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.2  and  τ is set to 20 to 

examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  SGA, SymGA-Iv1 , SymGA-Iv2, adaPDGA, 

SymGA-IIv2,  SymGA-IIv1, domGA respectively.  
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Figure 4.7 : Test Environment 7 for  SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

 

In Figure 4.7: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.7  and  τ is set to 100 

to examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for  adaPDAGA, SGA, SymGA-Iv1, SymGA-Iv2, 

,SymGA-IIv2, SymGA-IIv1,domGA  respectively.  
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Figure 4.8 : Test Environment 8  for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

 

In Figure 4.8: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.7  and  τ is set to 50 to 

examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for adaPDAGA, SGA, SymGA-Iv1, SymGA-Iv2, 

SymGA-IIv2, SymGA-IIv1, domGA respectively.  
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Figure 4.9 : Test Environment 9 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA. 

 

 

In Figure 4.9: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to 0.7  and  τ is set to 20 to 

examine the performance of algorithms in dynamic environments with different 

severities of changes. To see the effects of the all chosen approaches for  ten 

environmental changes, where the data averaged over 20 runs. Fitness value levels  

gives a better performance  for adaPDAGA ,SymGA-IIv2, SymGA-Iv2, SymGA-

Iv1, SymGA-IIv1,SGA, domGA respectively. 
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Figure 4.10 : Test Environment 10 for SymGA-Iv1, SymGA-IIv1, SymGA-Iv2, 

SymGA-IIv2, DomGA,  ada PDGA  and SGA.  

 

 

In Figure 4.10: A bigger ρ means more severe changes, whereas a smaller τ means 

more frequent changes. The dynamics parameters ρ is set to randomly chosen from 

values of the 0.05, 0.2, 0.7 and   τ   is randomly chosen from values of the 100,50 and 

20. To see the effects of the all chosen approaches for  ten environmental changes, 

where the data averaged over 20 runs. Fitness value levels  gives a better 

performance  for adaPDAGA, SGA, SymGA-Iv1, SymGA-IIv2,  SymGA-Iv2, 

SymGA-IIv1, domGA respectively.  

 

In figure 4.7, 4.8 and 4.9 because there is high severe ,adaPDGA has advantage.That 

means, when population converges to one solution, applying high severe  causes the 

finding best solution after the taking  duality. 

 

Table 4.2 shows the offline error levels for all approaches under the chosen test 

conditions and parameter settings. The tested approaches are evaluated based on the 

offline error. Mean and standart deviation of the offline error values are calculated at 

the end of the runs. 
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Table 4.2 : Mean and standard deviation values for offline errors with using test-10 

(SymGA-Iv1, SymGA-Iv2, SymGA-IIv1, SymGA-IIv2,DomGA, adaPDGA). 

 

 SymGAI1  
± SymGAI1  

 SymGAI2  
± SymGA2  

 SymGAII1  
± SymGAII1  

 SymGAII2  
± SymGAII2  

 domGA 
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 SGA 
± SGA   

 
 

Test-1  
 
 
 

 

Test-2 
 
 
 

Test-3 
 
 
 
 

Test-4 
 
 
 
 

Test-5 
 
 
 
 

Test-6 
 
 
 

Test-7 
 
 
 
 

Test-8 
 
 
 

Test-9 
 
 
 
 

Test-10 

3.111±0.30 3.58±0.353 

 

5.292±0.42 

 

4.50±0.459 

 

5.62±0.45 

 

 

2.9±0.19 2.7±0.2 

 

6.828±2.18 

 

 

7.63±2.00 

 

10.48±2.42 

 

9.417±2.21 

 

 

11.1±2.13 

 

 

6.4±1.92 6.0±1.9 

 

 

17.08±3.01 

 

 

18.29±2.98 

 

 

21.09±2.94 

 

 

20.26±2.64 

 

 

22.9±3.22 

 

 

17.9±4.2 

 

 

15.0±2.9 

 

 

10.73±0.58 

 

12.2±0.624 

 

15.00±0.48 

 

12.19±0.59 

 

15.98±0.6 
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22.5±1.01 

 

 

26.8±1.24 

 

 

25.20±0.97 
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18.6±0.7 
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43.1±2.02 

 

 

46.42±2.41 

 

 

44.4±2.16 

 

 

47.9±1.84 43.3±1.4 39.8±1.8 

 

 

41.7±0.64 43.4±0.57 46.37±0.92 

 

44.51±0.68 

 

48.4±0.91 

 

 

17.4±0.3 37.8±0.5 

 

60.5±0.70 
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27.5±7.24 29.07±7.39 32.06±7.29 29.00±7.30 32.9±7.30 18.7±6.7 25.0±7.0 
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5.  CONCLUSION 

5.1 Important Contributions 

In this section we try to investigate improvement of thesymbiotic population as an 

important contribution, according to main characteristics of Genetic Algorithms. 

Symbiotic population is created  for learning dominance mechanism in dynamic 

environment. 

In this thesis, a new population based on the dominance mechanism scheme is 

constructed based on the diploidy and dominance for genetic algorithms in changing 

environment. Constructing of  the dominance  mechanism  is formed by co-evalution 

of the two populations. It is useful to emphasize the note that  populations are called 

Diploid population which include  individual’s  diploidy genotype structure and 

Haploid population, which consist of haploid dominance chromosomes. These 

populations are used to map genotype to phenotype  in terms of expressing alleles in 

the phenotype. According to Symbiotic Genetic Algorithms model, our experiments 

are performed using different test environments. We set experiments in order to show 

performance  of the Symbiotic  populations for learning the dominance mechanism 

in dynamic environments. 

5.2 General Conclusion  

We propose the symbiotic dominance scheme in order to improve the performance of 

dynamic genetic algorithm. During the enhancement of this Symbiotic genetic 

algorithm we try to developed that algorithm with diploidy and dominance structure 

to create dynamically stable systems. This thesisproposes  a  way to improve a 

standart Genetic algorithm which is  more applicable in changing  environments. We 

work in dynamic environments in sense of the predefined generation numbers in 

which the environment changed after each of the predefined generation numbers. 
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Predefined generation numbers were denoted as change frequency. Diploidy 

genotype structured populations and haploid structured dominance populations 

implemented in  our study  with the genetic operators are based on the Genetic 

algorithm’s  main steps. Also, that work  helps us for  analysing  the contribution of 

the major mechanisms which were used together. 

The aim of this work is to illustrate applications of one of the evolutionary 

computation type, which is Genetic Algorithm (GA), to problems in the biological 

sciences, with particular emphasis on problems in optimisation. The offline errors of 

domGA, SGA, adaptive PDGA, Symbiotic Genetic Algorithm-I version1(SymGA-

Iv1),Symbiotic Genetic Algorithm-I version2 (SymGA-Iv2), Symbiotic Genetic 

Algorithm-II version1 (SymGA-IIv1)and Symbiotic Genetic Algorithm-II version2 

(SymGA-IIv2) calculated with evolution as a diploidy and dominance theme tested 

on bit match benchmark problem. All of those models are tried for the optimization 

bit match benchmark problem in order to improve robustness of Genetic Algorithm 

in dynamic environments. Parameter settings for dynamic bit match problem. 

According to domGA, adaptive PDGA, SymGA-Iv1, SymGA-Iv2, SymGA-IIv1 and 

SymGA-Iv2 the best-of-generation fitness was recorded per generation. The results 

of our experiments show the fitness value of   the  adaptive PDGA is  near the fitness 

value of the   SymGA-I, and the SymGA-II maintain a higher fitness level than  

DomGA. 

5.3 Future Work  

The research presented in this thesis seems to have raised more questions than it has 

answered. There are several lines of research arising from this work which should be 

pursued. 

First, parameter of population size, different type of crossover and mutation should 

be  studied in more detail. Second, the tests may be performed on two oscillating 

target instead of random targets. Finally, the proposed method should be compared 

with the existing methods on a real world problem. 
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